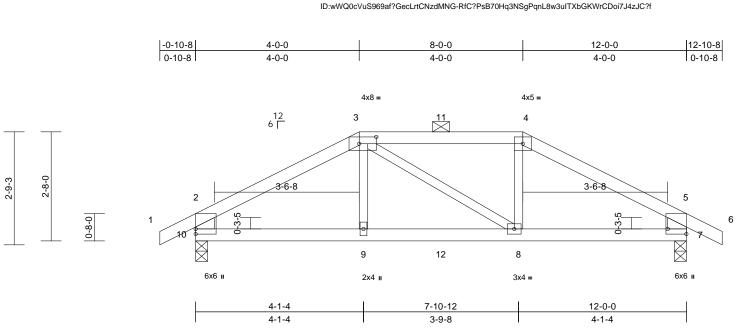


Die Information. Chesterfield, MO 630 Project Customer: Subdivision: Hawthorn Ridge Model: Charlotte - Tuscan - F12x16CGR Address: 3224 SW Arboridge Cir City: Lee's Summit State: MO General Truss Engineering Criteria & Design Loads (Individual Truss Design Drawings Show Special Loading Conditions): Design Program: MiTek 20/20 8.7 Design Code: RRC2018/TPI2014 Design Program: MWFRS (Envelope) ASCE 7-16 Roof Load: 45.0 psf Floor Load: N/A psf Mean Roof Height (feet): 25 Exposure Category: C No. Seal# Truss Name Date No. Seal# Truss Name Date 1 165280048 A2 5/2/24 36 165280081 9 5/2/24 2 165280050 B3 5/2/24 36 165280082 V10 5/2/24 3 165280058 B1 5/2/24 36 165280082 V10 5/2/24 4 165280058 B1 5/2/24 36 165280058 5/2/24 4 165280056 B3 5/2/24 165280058						
No.Seal#Truss Name DateNo.Seal#Truss Name Date1 165280047 A1 $5/2/24$ 35 165280081 V9 $5/2/24$ 2 165280049 B1 $5/2/24$ 36 165280082 V10 $5/2/24$ 3 165280049 B1 $5/2/24$ 36 165280082 V10 $5/2/24$ 4 165280051 B4 $5/2/24$ $5/2/24$ $5/2/24$ 5 165280052 B5 $5/2/24$ 6 165280054 B7 $5/2/24$ 9 165280056 B9 $5/2/24$ 10 165280057 B10 $5/2/24$ 11 165280057 B10 $5/2/24$ 12 165280057 B11 $5/2/24$ 13 165280059 B12 $5/2/24$ 14 165280061 C1 $5/2/24$ 15 165280062 C2 $5/2/24$ 16 1652800662 C220 165280067 E220 165280067 E221 165280067 E222 165280067 E223 165280077 11 24 165280077 12 25 165280071 12 26 165280071 12 27 165280074 12 26 165280074 12 27 165280077 13 27 1652800767 14 28 165280076 14 29 165280076 14 21 165280076 1	16023 Swingley Ridge Rd. Chesterfield, MO 63017 314.434.1200n: Hawthorn Ridge(Individual Truss Design Design Program: MiTek 20/20 8.7 Design Method: MWFRS (Envelope) ASCE 7-16 [Low Rise] Floor Load: N/A psf	Subdivision: GR Design Loads (I ditions): 15 mph D FI	t Homes Pro n - F12x16C0 idge Cir g Criteria & oading Cone Pl2014 imoRSmoded: 11	: Summit Ho Arboridge nit ngineering C Special Load C2018/TPI20 C2018/TPI20 Sf	nformation ct Customer ock: 194 l: Charlotte ess: 3224 S Lee's Sumn al Truss Er ngs Show S n Code: IR Code: ASCE Load: 45.0 pt	Site In Project Lot/Bla Model Addre City: L Genera Drawir Design Wind C Roof La
32 I65280078 V6 5/2/24	Truss Name Date	No. Seal# 35 165280081	ame Date 5/2/24 5/2/	Truss Name A1 A2 B1 B3 B4 B5 B6 B7 B8 B9 B10 B11 B12 B13 C1 C2 C3 C4 D1 E1 E2 E3 E4 J1 J2 J3 V1 V2 V3 V4 V5	Seal# I65280047 I65280048 I65280050 I65280051 I65280052 I65280054 I65280055 I65280055 I65280057 I65280059 I65280061 I65280063 I65280063 I65280064 I65280065 I65280066 I65280066 I65280069 I65280070 I65280071 I65280072 I65280074 I65280074 I65280076 I65280076 I65280076 I65280076 I65280076 I65280077	No. 1 23 4 56 7 8 9 10 11

My license renewal date for the state of Missouri is December 31, 2025.


IMPORTANT NOTE: The seal on these truss component designs is a certification that the engineer named is licensed in the jurisdiction(s) identified and that the designs comply with ANSI/TPI 1. These designs are based upon parameters shown (e.g., loads, supports, dimensions, shapes and design codes), which were given to MiTek or TRENCO. Any project specific information included is for MiTek's or TRENCO's customers file reference purpose only, and was not taken into account in the preparation of these designs. MiTek or TRENCO has not independently verified the applicability of the design parameters or the designs for any particular building. Before use, the building designer should verify applicability of design parameters and properly incorporate these designs into the overall building design per ANSI/TPI 1, Chapter 2.

Job	Truss	Truss Type	Qty	Ply	Lot 194 HT	
B240097	A1	Hip Girder	1	1	Job Reference (optional)	165280047

Run: 8.73 S Apr 25 2024 Print: 8.730 S Apr 25 2024 MiTek Industries, Inc. Wed May 01 07:38:10

Wheeler Lumber, Waverly, KS - 66871,

Scale = 1:28.2

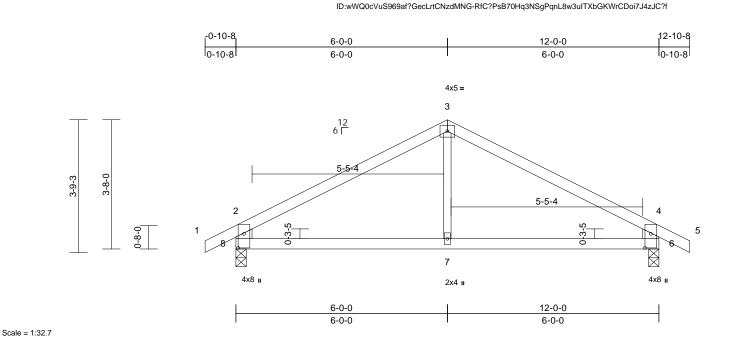
Plate Offsets (X, Y): [3:0-5-0,0-2-0], [7:Edge,0-5-8]

	() [];												
Loading	(psf)	Spacing	2-0-0		csi		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15		TC	0.71	Vert(LL)	-0.07	8-9	>999	360	MT20	197/144
TCDL	10.0	Lumber DOL	1.15		BC	0.67	Vert(CT)	-0.13	8-9	>999	240		
BCLL	0.0*	Rep Stress Incr	NO		WB	0.10	Horz(CT)	0.02	7	n/a	n/a		
BCDL	10.0	Code	IRC2	18/TPI2014	Matrix-S		Wind(LL)	0.06	8-9	>999	240	Weight: 39 lb	FT = 10%
LUMBER				6) All bearings	are assumed to	be SPF No	0.2 .						
TOP CHORD	2x4 SPF No.2				chanical connecti			to					
BOT CHORD					e capable of with								
WEBS	2x3 SPF No.2 *Exce	ept* 10-2,7-5:2x6 SF)	10 and 201	lb uplift at joint 7.		-	-					
	2400F 2.0E	. ,		This truss is	designed in acc	ordance w	ith the 2018						
BRACING					I Residential Coc			and					
TOP CHORD	Structural wood she	ed or		and referenced st									
	4-3-4 oc purlins, ex	urlin representati			size								
	2-0-0 oc purlins (5-0	-4 max.): 3-4.			ation of the purlir	n along the	top and/or						
BOT CHORD	Rigid ceiling directly	applied or 10-0-0 o	с	bottom chor		,							
	bracing.				r other connectio			70 11-					
REACTIONS	(size) 7=0-3-8, 7	10=0-3-8			fficient to support 7 lb up at 4-0-0,								
	Max Horiz 10=50 (LC	C 7)			, and 79 lb down								
	Max Uplift 7=-201 (L	C 9), 10=-201 (LC 8	3)		nd 220 lb down a								
	Max Grav 7=899 (L0	C 1), 10=899 (LC 1)			at 6-0-0, and 220								
FORCES	(lb) - Maximum Com	pression/Maximum			ottom chord. The								
	Tension				device(s) is the re								
TOP CHORD	1-2=0/35, 2-3=-1231	/277, 3-4=-1024/26	9,		CASE(S) sectio			face					
	4-5=-1232/276, 5-6=	=0/35, 2-10=-806/21			are noted as fron								
	5-7=-806/213			LOAD CASE(S)	Standard	. ,	. ,						
BOT CHORD		9=-219/1023,			of Live (balanced	d): Lumber	Increase=1.	15.					
	7-8=-196/1013			Plate Incre		-,		,					
WEBS	3-9=0/271, 3-8=-50/	52, 4-8=-5/279		Uniform Lo	ads (lb/ft)								(Th)
NOTES					2=-70, 2-3=-70, 3	8-4=-70, 4-	5=-70, 5-6=-7	70,				O DE	MIG
	ed roof live loads have	been considered fo	r	7-10=-2	0							ALE OF	WIIS'S
this desigr				Uniform Loads (lb/ft) Vert: 1-2=-70, 2-3=-70, 3-4=-70, 4-5=-70, 7-10=-20 Concentrated Loads (lb) Vert: 3=-46 (F), 4=-46 (F), 9=-220 (F), 8=-220 (F), at. 11=-46 (F), 12=-25 (F)									
	CE 7-16; Vult=115mph			Vert: 3=	-46 (F), 4=-46 (F)), 9=-220 (F), 8=-220 (F	-),			H	SCOT	TM. YEN
	nph; TCDL=6.0psf; BC			11=-46	(F), 12=-25 (F)						Ø	SEV	TER Y X
	II; Exp C; Enclosed; MWFRS (envelope) exterior zone;										R.		
	cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60										2	4	1 2 1
right expo	sea; Lumber DOL=1.6	U plate grip DOL=1.	60								U	0	····Q ~ 1

- 3) Provide adequate drainage to prevent water ponding.
- This truss has been designed for a 10.0 psf bottom 4)
- chord live load nonconcurrent with any other live loads. * This truss has been designed for a live load of 20.0psf 5) on the bottom chord in all areas where a rectangle
- 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.

DEVELORMENT SERVICES LEE'S'SUMMIT'SMISSOURI 06/05/2024 4:56:15

TION


Page: 1

 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.
 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not besign value for use only with with twit even connectors. This design is based only upon parameters shown, and is for an individual building designer must verify the applicability of design parameters and properly incorporate this design into the overall building designer must verify the applicability of design parameters and properly incorporate this design into the overall building designer. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcscomponents.com)

Job	Truss	Truss Type	Qty	Ply	Lot 194 HT	
B240097	A2	Common	6	1	Job Reference (optional)	165280048

Run: 8.73 S Apr 25 2024 Print: 8.730 S Apr 25 2024 MiTek Industries. Inc. Wed May 01 07:38:11

Wheeler Lumber, Waverly, KS - 66871,

Plate Offsets (X, Y): [6:0-4-13,0-2-0], [8:0-4-13,0-2-0]

Loading	(psf)	Spacing	2-0-0	csi		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15	TC	0.42	Vert(LL)	-0.02	7-8	>999	360	MT20	197/144
TCDL	10.0	Lumber DOL	1.15	BC	0.27	Vert(CT)	-0.05	7-8	>999	240		
BCLL	0.0*	Rep Stress Incr	YES	WB	0.08	Horz(CT)	0.01	6	n/a	n/a		
BCDL	10.0	Code	IRC2018/TPI2014	Matrix-R		Wind(LL)	0.01	7-8	>999	240	Weight: 35 lb	FT = 10%

LUMBER

WEBS

- TOP CHORD
- 2x4 SPF No.2 BOT CHORD 2x4 SPF No.2

7) This truss is designed in accordance with the 2018

International Residential Code sections R502.11.1 and

R802.10.2 and referenced standard ANSI/TPI 1.

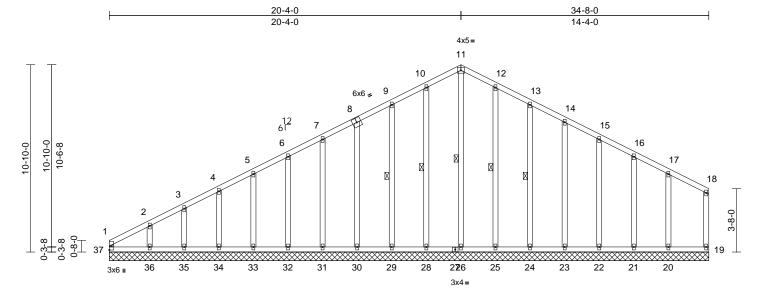
LOAD CASE(S) Standard

BRACING		
TOP CHORD	Structura	I wood sheathing directly applied or
	6-0-0 oc p	ourlins, except end verticals.
BOT CHORD	Rigid ceil	ing directly applied or 10-0-0 oc
	bracing.	
REACTIONS	(size)	6=0-3-8, 8=0-3-8
	Max Horiz	8=62 (LC 7)
	Max Uplift	6=-89 (LC 9), 8=-89 (LC 8)
	Max Grav	6=597 (LC 1), 8=597 (LC 1)
FORCES	(lb) - Max	imum Compression/Maximum
	Tension	
TOP CHORD	1-2=0/35,	2-3=-638/89, 3-4=-638/89,
	4-5=0/35,	2-8=-544/131, 4-6=-544/131

2x6 SPF No.2 *Except* 7-3:2x3 SPF No.2

BOT CHORD 7-8=-14/480, 6-7=-14/480 WEBS 3-7=0/246 NOTES

- Unbalanced roof live loads have been considered for 1) this design
- 2) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
- 3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 4) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- All bearings are assumed to be SPF No.2 . 5)
- Provide mechanical connection (by others) of truss to 6) bearing plate capable of withstanding 89 lb uplift at joint 8 and 89 lb uplift at joint 6.


Page: 1

 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.
 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponent.com)

Job	т	Truss	Truss Type	Qty	Ply	Lot 194 HT	
B240097	E	B1	Common Supported Gable	1	1	Job Reference (optional)	165280049

Run: 8.73 S Apr 25 2024 Print: 8.730 S Apr 25 2024 MiTek Industries, Inc. Wed May 01 07:38:11 ID:wWQ0cVuS969af?GecLrtCNzdMNG-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

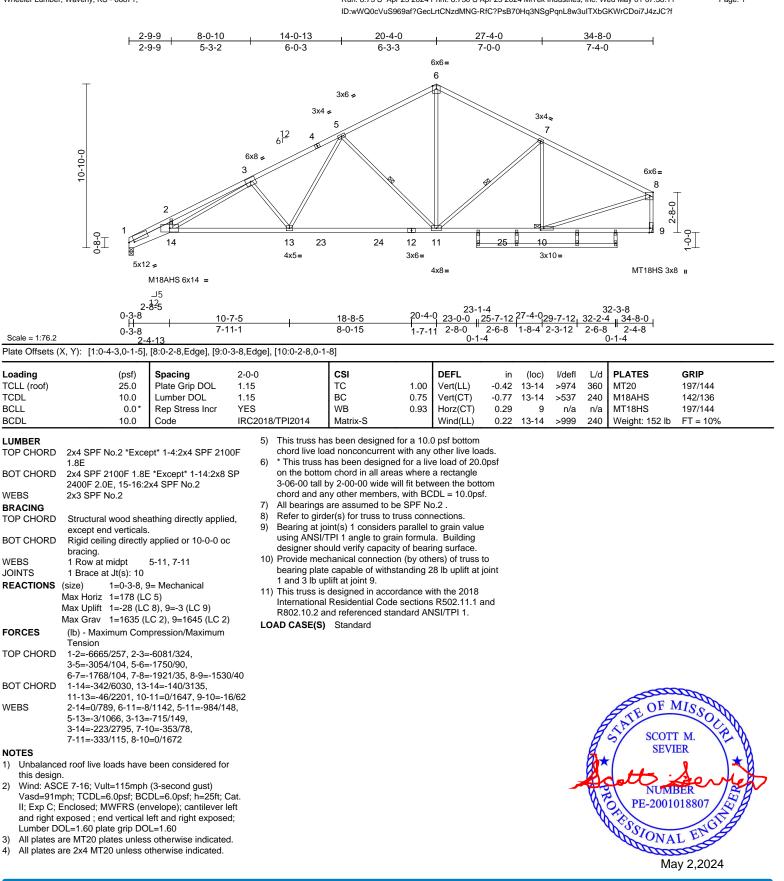
34-8-0

						34-8-0							
Scale = 1:66.6		i			•								
Loading	(psf)	Spacing	2-0-0		csi		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
CLL (roof)	25.0	Plate Grip DOL	1.15		TC	0.12	Vert(LL)	n/a	-	n/a	999	MT20	197/144
CDL	10.0	Lumber DOL	1.15		BC	0.07	Vert(TL)	n/a	-	n/a	999		
BCLL	0.0*	Rep Stress Incr	YES		WB	0.14	Horiz(TL)	0.00	19	n/a	n/a		
CDL	10.0	Code	IRC2018	3/TPI2014	Matrix-R							Weight: 200 lb	FT = 10%
30T CHORD 2x4 SI WEBS 2x3 SI DTHERS 2x4 SI BRACING FOP CHORD Struct 6-0-0 30T CHORD Rigid bracin WEBS 1 Row REACTIONS (size) Max Ho Max Up	PF No.2 ural wood she coc purlins, ex- ceiling directly g. r at midpt 19=34-8- 22=34-8- 32=34-8- 32=34-8- 32=34-8- 32=34-8- 32=34-8- 32=34-8- 32=34-8- 32=34-8- 32=34-8- 32=34-8- 32=34-8- 32=34-8- (21=-50 (L 21=-50 (L 21=-51 (L 33=-53 (L 29=-60 (L 31=-51 (L 33=-53 (L 21=174 (L 23=180 (23=180 (30=180 (30=180 (30=181 (30=218 (L) 30=218 (L) 30=180 (30=180 (30=218 (L) 30=180 (30=218 (L) 30=180 (30=218 (L) 30=180 (30=218 (L) 30=218 (L) 30=180 (30=218 (L) 30=218 (L) 30=218 (L) 30=218 (L) 30=180 (L) 30=180 (L) 30=180 (L) 30=180 (L) 30=180 (L) 30=218 (L)	$ \begin{array}{llllllllllllllllllllllllllllllllllll$	TC lo.2 d or BC 8-0, WE 8-0, WE 8-0, 8-0, 8-0, 8-0, 1) 2) , , 3) 2), 8), 4) , 5), 2), 8), 4) , 5), 2), 8), 4) , 5), 2), 5), 5), 4) 1), 5), 5), 5), 5), 5), 5), 5), 5), 5), 5	DP CHORD DT CHORD DT CHORD EBS Unbalanced this design. Wind: ASCE Vasd=91mp II; Exp C; Er cantilever le right expose Truss desig only. For sti see Standar or consult qu All plates an Gable requi Truss to be braced agai Gable studs	1-37=-125/57, 1-2 3-4=-170/139, 4-5 6-7=-125/182, 7-5 10-11=-72/282, 1 12-13=-65/232, 1: 14-15=-66/143, 1: 16-17=-68/87, 17- 36-37=-50/41, 32- 30-31=-50/41, 29- 26-28=-51/41, 29- 20-21=-51/41, 19- 20-21=-51/41, 19- 20-21=-51/41, 19- 20-21=-51/41, 19- 20-21=-51/41, 29- 20-21=-51/41, 29- 20-21=-51/41, 19- 11-26=-193/24, 10 9-29=-143/84, 8-3 6-32=-141/79, 5-3 3-35=-133/66, 2-3 12-25=-149/69, 1: 14-23=-140/77, 1: 16-21=-135/73, 1: 1 roof live loads ha E 7-16; Vult=115m bh; TCDL=6.0psf; In- holosed; MWFRS oft and right exposed to wind loads uds exposed to wind loads uds exposed to wind ualified building de e 2x4 MT20 unless res continuous boi fully sheathed from nst lateral movem is spaced at 2-0-0 c as been designed	5=-155/15 =-110/23 1-12=-67, 3-14=-66, 5-16=-66, -18=-67/6, -36=-50/4, -33=-50/4, -33=-50/4, -33=-51/4, -20=-51/4,	2, 5-6=-140/1 3, 9-10=-82/2 (274, 1184, (115, 11, 18-19=-76, 1, 34-35=-50, 1, 34-35=-50, 1, 24-25=-51, 1, 24-25=-51,	66, 61, (39) (41, (41, (41, (41, (41, (41, (41, (41,	on t 3-00 cho 10) All I 11) Pro bea 37, upli 31, upli 31, upli join 12) This Inte	the botto 6-00 tall rd and a bearings vide me tring plat 24 lb up ft at join 55 lb up ft at join t 36, 45 plift at join t 36, 45 plift at join t 36, 45 plift at join a struss is trust is trust is trust is	om cho by 2-0 any oth s are as are as a a a a a a a a a a a a a a a a a a	en designed for rd in all areas wh 0-00 wide will fit l er members. ssumed to be SP al connection (by able of withstandi joint 32, 53 lb uplif 4 lb uplift at joint 32, 53 lb uplif 2 lb uplift at joint 25, 59 lb 55 lb uplift at joint 20. ned in accordance dential Code sect erenced standard ndard	a live load of 20.0p lere a rectangle between the bottor F No.2. others) of truss to ng 57 lb uplift at join ft at joint 28, 60 lb 30, 51 lb uplift at join ft at joint 33, 59 lb 35, 129 lb uplift at ou plift at joint 24, 5 nt 22, 50 lb uplift at ou plift at joint 24, 5 nt 22, 50 lb uplift at ons R502.11.1 an d ANSI/TPI 1.
FORCES (Ib) - Maximum Compression/Maximum Tension					ad nonconcurrent			ds.			0	C'SSIONA	LEN
													2 2024

May 2,2024

ΓΙΟΝ IEW

Page: 1

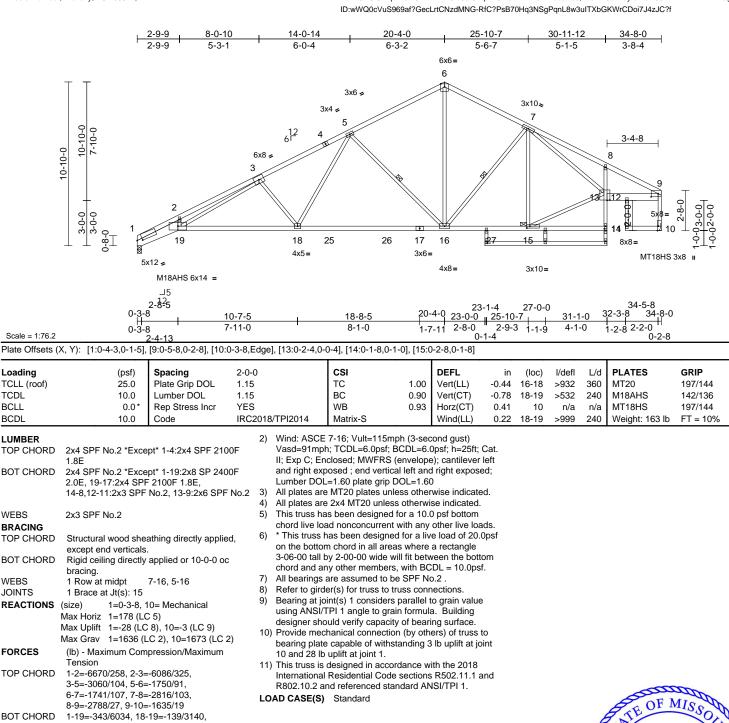

Job	Truss	Truss Type	Qty	Ply	Lot 194 HT	
B240097	B3	Roof Special	4	1	Job Reference (optional)	165280050

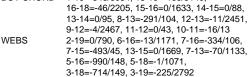
Run: 8.73 S Apr 25 2024 Print: 8.730 S Apr 25 2024 MiTek Industries, Inc. Wed May 01 07:38:11

Page: 1

ΤΙΟΝ

LEE'S'SUMMIT'SMISSOURI 06/05/2024 4:56:15




WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a trust system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria**, and **DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

Job	Truss	Truss Type	Qty	Ply	Lot 194 HT	
B240097	B4	Roof Special	1	1	Job Reference (optional)	165280051

Run: 8.73 S Apr 25 2024 Print: 8.730 S Apr 25 2024 MiTek Industries, Inc. Wed May 01 07:38:12

Page: 1

NOTES

TCDL

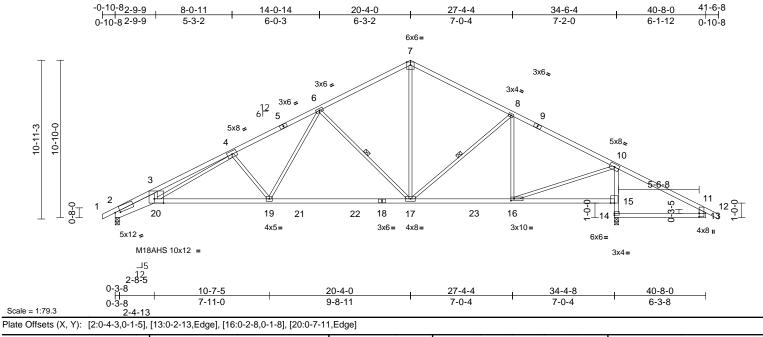
BCLL

BCDL

WFBS

WEBS

1) Unbalanced roof live loads have been considered for this design.


SCOTT M. SEVIER PE-2001018807 \mathbf{C} SIONAL E May 2,2024

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponent.com)

Job	Truss	Truss Type	Qty	Ply	Lot 194 HT	
B240097	B5	Roof Special	4	1	Job Reference (optional)	165280052

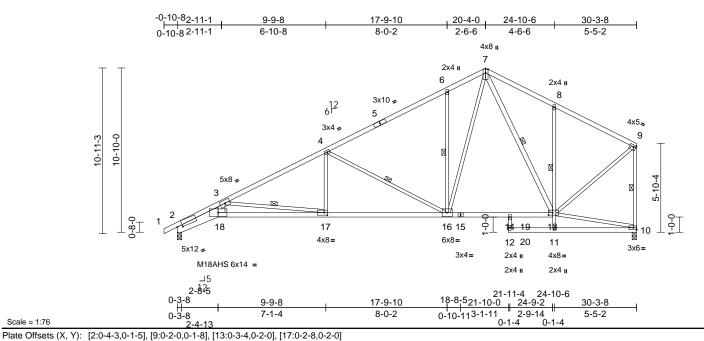
Run: 8.73 S Apr 25 2024 Print: 8.730 S Apr 25 2024 MiTek Industries, Inc. Wed May 01 07:38:12 ID:wWQ0cVuS969af?GecLrtCNzdMNG-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

												-	
Loading TCLL (roof) TCDL BCLL BCDL	(psf) 25.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018	8/TPI2014	CSI TC BC WB Matrix-S	0.94 0.92 0.88	Vert(CT)		(loc) 17-19 19-20 14 19-20	l/defl >999 >560 n/a >999	L/d 360 240 n/a 240	PLATES MT20 M18AHS Weight: 158 lb	GRIP 197/144 142/136 FT = 10%
FORCES TOP CHORD BOT CHORD WEBS NOTES 1) Unbalance this design	2100F 1.8E 2x4 SPF 2100F 1.8E 2400F 2.0E, 10-14,1 2x3 SPF No.2 *Exce Structural wood she 1-10-13 oc purlins, a Rigid ceiling directly bracing. 1 Row at midpt (size) 2=0-3-8,1 Max Horiz 2=181 (LC Max Uplift 2=-233 (L Max Uplift 2=-233 (L Max Grav 2=1633 (L (lb) - Maximum Com Tension 1-2=0/14, 2-3=-6275 4-6=-2895/434, 6-7= 7-8=-1617/298, 8-10 10-11=-114/674, 11- 2-20=-1038/5703, 11 17-19=-255/2063, 11 15-16=-664/214, 14+ 10-15=-2071/361, 12 3-20=0/773, 7-17=-1 8-16=-521/135, 10-1 6-17=-950/312, 6-19 4-19=-700/277, 4-20	E *Except* 2-20:2x8 : [8-15:2x4 SPF No.2 spt* 13-11:2x6 SPF N athing directly applie except end verticals. applied or 6-0-0 oc 8-17, 6-17 14=0-3-8 C 12) C 8), 14=-295 (LC 9) C 2), 14=2312 (LC 2) opression/Maximum 5/997, 3-4=-5703/103 e-1603/275, D=-1612/208, 1-12=0/35, 11-13=-24, 9-20=-483/2962, 6-17=-40/1357, -15=-2202/326, 3-14=-482/150 123/999, 8-17=-115/1 16=-137/2112, D=-157/2132, been considered for	SP 5) No.2 ed or 6) 7) 8) 9) 2) 9) 30, LC /115	This truss ha chord live loc * This truss I on the botto 3-06-00 tall I chord and an Bearings are Joint 14 SPF Bearing at jc using ANSI/ designer sho Provide mec bearing platt 14 and 233 I This truss is International	e MT20 plates unle as been designed f ad nonconcurrent v has been designed n chord in all area: by 2-00-00 wide wi y other members, assumed to be: J 2100F 1.8E . init(s) 2 considers j TPI 1 angle to grain ould verify capacity thanical connection a capable of withsta b uplift at joint 2. designed in accord Residential Code nd referenced stan Standard	or a 10. with any for a live s where Il fit betw with BC bint 2 S barallel n formul of bear a (by oth anding 2 dance w sections	0 psf bottom other live loa e load of 20. a rectangle veen the bott CDL = 10.0ps P 2400F 2.0E to grain value a. Building ing surface. ers) of truss 295 lb uplift a ith the 2018 \$ R502.11.1 a	ads. Opsf f. f. E , e to t joint				STATE OF M STATE OF M SEVI	ER *
Wind: ASC	CE 7-16; Vult=115mph	(3-second gust)									XX.	L-2001	and a start

Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60

SSIONAL E May 2,2024

Page: 1



Job	Truss	Truss Type	Qty	Ply	Lot 194 HT	
B240097	B6	Roof Special	3	1	Job Reference (optional)	165280053

Run: 8.73 S Apr 25 2024 Print: 8.730 S Apr 25 2024 MiTek Industries. Inc. Wed May 01 07:38:12 ID:wWQ0cVuS969af?GecLrtCNzdMNG-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15	TC	0.92	Vert(LL)	-0.37	17-18	>976	360	MT20	197/144
TCDL	10.0	Lumber DOL	1.15	BC	0.80	Vert(CT)	-0.65	17-18	>555	240	M18AHS	142/136
BCLL	0.0*	Rep Stress Incr	YES	WB	0.99	Horz(CT)	0.29	10	n/a	n/a		
BCDL	10.0	Code	IRC2018/TPI2014	Matrix-S		Wind(LL)	0.27	17-18	>999	240	Weight: 148 lb	FT = 10%

L	U	MB	BE	R

Scale = 1:76

TOP CHORD	2x4 SPF No.2						
BOT CHORD	2x4 SPF No.2 *Except* 2-18:2x8 SP 2400F 2.0E, 15-18:2x4 SPF 2100F 1.8E						
WEBS	2x3 SPF No.2 *Except* 18-3:2x6 SPF No.2, 13-7:2x4 SPF No.2						
BRACING							
TOP CHORD	Structural wood sheathing directly applied or 1-11-9 oc purlins, except end verticals.						
BOT CHORD	Rigid ceiling directly applied or 10-0-0 oc bracing, Except:						
	7-11-2 oc bracing: 17-18.						
WEBS	1 Row at midpt 9-10, 8-11, 7-13, 6-16, 4-16, 3-17						
REACTIONS	(size) 2=0-3-8, 10=0-3-8						
	Max Horiz 2=299 (LC 7)						
	Max Uplift 2=-214 (LC 8), 10=-140 (LC 8)						
	Max Uplift 2=-214 (LC 8), 10=-140 (LC 8) Max Grav 2=1483 (LC 2), 10=1477 (LC 2)						
FORCES							
FORCES	Max Grav 2=1483 (LC 2), 10=1477 (LC 2) (lb) - Maximum Compression/Maximum						
	Max Grav 2=1483 (LC 2), 10=1477 (LC 2) (lb) - Maximum Compression/Maximum Tension						
	Max Grav 2=1483 (LC 2), 10=1477 (LC 2) (lb) - Maximum Compression/Maximum Tension 1-2=0/14, 2-3=-6111/1077, 3-4=-2665/387,						
	Max Grav 2=1483 (LC 2), 10=1477 (LC 2) (lb) - Maximum Compression/Maximum Tension 1-2=0/14, 2-3=-6111/1077, 3-4=-2665/387, 4-6=-1616/256, 6-7=-1567/383,						
	Max Grav 2=1483 (LC 2), 10=1477 (LC 2) (lb) - Maximum Compression/Maximum Tension 1-2=0/14, 2-3=-6111/1077, 3-4=-2665/387, 4-6=-1616/256, 6-7=-1567/383, 7-8=-1132/249, 8-9=-1110/186,						
TOP CHORD	Max Grav 2=1483 (LC 2), 10=1477 (LC 2) (lb) - Maximum Compression/Maximum Tension 1-2=0/14, 2-3=-6111/1077, 3-4=-2665/387, 4-6=-1616/256, 6-7=-1567/383, 7-8=-1132/249, 8-9=-1110/186, 9-10=-1407/163						
TOP CHORD	Max Grav 2=1483 (LC 2), 10=1477 (LC 2) (b) - Maximum Compression/Maximum Tension 1-2=0/14, 2-3=-6111/1077, 3-4=-2665/387, 4-6=-1616/256, 6-7=-1567/383, 7-8=-1132/249, 8-9=-1110/186, 9-10=-1407/163 2-18=-1152/5591, 17-18=-980/4573, 16-17=-399/2375, 14-16=-66/1052, 13-14=-66/1052, 11-12=0/0, 10-11=0/31						
TOP CHORD	Max Grav 2=1483 (LC 2), 10=1477 (LC 2) (lb) - Maximum Compression/Maximum Tension 1-2e0/14, 2-3=-6111/1077, 3-4=-2665/387, 4-6=-1616/256, 6-7=-1567/383, 7-8=-1132/249, 8-9=-1110/186, 9-10=-1407/163 2-18=-1152/5591, 17-18=-980/4573, 16-17=-399/2375, 14-16=-66/1052, 13-14=-66/1052, 11-12=0/0, 10-11=0/31 12-14=0/13, 3-18=-346/2199, 11-13=0/270,						
TOP CHORD	Max Grav 2=1483 (LC 2), 10=1477 (LC 2) (lb) - Maximum Compression/Maximum Tension 1-2=0/14, 2-3=-6111/1077, 3-4=-2665/387, 4-6=-1616/256, 6-7=-1567/383, 7-8=-1132/249, 8-9=-1110/186, 9-10=-1407/163 2-18=-1152/5591, 17-18=-980/4573, 16-17=-399/2375, 14-16=-66/1052, 13-14=-06/1052, 11-12=0/0, 10-11=0/31 12-14=-0/13, 3-18=-346/2199, 11-13=0/270, 8-13=-409/236, 7-13=-315/51,						
TOP CHORD	Max Grav 2=1483 (LC 2), 10=1477 (LC 2) (lb) - Maximum Compression/Maximum Tension 1-2e0/14, 2-3=-6111/1077, 3-4=-2665/387, 4-6=-1616/256, 6-7=-1567/383, 7-8=-1132/249, 8-9=-1110/186, 9-10=-1407/163 2-18=-1152/5591, 17-18=-980/4573, 16-17=-399/2375, 14-16=-66/1052, 13-14=-66/1052, 11-12=0/0, 10-11=0/31 12-14=0/13, 3-18=-346/2199, 11-13=0/270,						

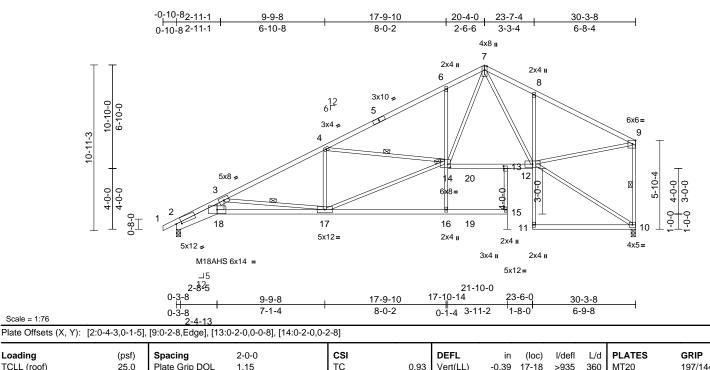
10-13=-92/53, 3-17=-2213/584

- 2) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60 3) All plates are MT20 plates unless otherwise indicated.
- This truss has been designed for a 10.0 psf bottom 4) chord live load nonconcurrent with any other live loads.
- 5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf. Bearings are assumed to be: Joint 2 SP 2400F 2.0E , 6)
- Joint 10 SPF No.2 Bearing at joint(s) 2 considers parallel to grain value 7)
- using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface. 8) Provide mechanical connection (by others) of truss to
- bearing plate capable of withstanding 214 lb uplift at joint 2 and 140 lb uplift at joint 10.
- 9) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard

May 2,2024

 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.
 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponent.com)



NOTES Unbalanced roof live loads have been considered for 1) this design.

Job	Truss	Truss Type Qty Ply Lot 194 HT		Lot 194 HT		
B240097	B7	Roof Special	1	1	Job Reference (optional)	165280054

Run: 8.73 S Apr 25 2024 Print: 8.730 S Apr 25 2024 MiTek Industries, Inc. Wed May 01 07:38:12 ID:wWQ0cVuS969af?GecLrtCNzdMNG-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15	TC	0.93	Vert(LL)	-0.39	17-18	>935	360	MT20	197/144
TCDL	10.0	Lumber DOL	1.15	BC	0.80	Vert(CT)	-0.68	17-18	>533	240	M18AHS	142/136
BCLL	0.0*	Rep Stress Incr	YES	WB	0.99	Horz(CT)	0.43	10	n/a	n/a		
BCDL	10.0	Code	IRC2018/TPI2014	Matrix-S		Wind(LL)	0.28	17-18	>999	240	Weight: 151 lb	FT = 10%
LUMBER 2) Wind: ASCE 7-16; Vult=115mph (3-second gust) TOP CHORD 2x4 SPF No.2 Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. PAT CHORD 0.05 Fth or 55 mert 0.100.00 DD 0.000 Ult Env 0.15 mert 0.100.00 DD 0.000												

TOP CHORD	2x4 SPF No.2
BOT CHORD	2x3 SPF No.2 *Except* 2-18:2x8 SP 2400F
	2.0E, 18-15:2x4 SPF 2100F 1.8E,
	14-12,11-10:2x4 SPF No.2
WEBS	2x3 SPF No.2 *Except* 18-3:2x6 SPF No.2
BRACING	·
TOP CHORD	Structural wood sheathing directly applied or
	1-11-6 oc purlins, except end verticals.
BOT CHORD	Rigid ceiling directly applied or 10-0-0 oc
bor onone	bracing, Except:
	7-11-0 oc bracing: 17-18.
WEBS	1 Row at midpt 9-10, 3-17, 4-14
JOINTS	1 Brace at Jt(s): 14
REACTIONS	(size) 2=0-3-8, 10=0-3-8
REACTIONS	Max Horiz 2=299 (LC 7)
	(),
	Max Uplift 2=-214 (LC 8), 10=-140 (LC 8)
	Max Grav 2=1491 (LC 2), 10=1474 (LC 2)
FORCES	(Ib) - Maximum Compression/Maximum
	Tension
TOP CHORD	1-2=0/14, 2-3=-6143/1079, 3-4=-2693/386,
	4-6=-2443/325, 6-7=-2394/451,
	7-8=-1885/324, 8-9=-1869/228,
	9-10=-1365/192
BOT CHORD	2-18=-1154/5620, 17-18=-981/4599,
	16-17=-1/42, 15-16=-4/29, 13-15=0/68,
	13-14=-94/1508, 12-13=-96/1537,
	11-12=0/132, 8-12=-448/257, 10-11=0/10
WEBS	3-18=-347/2203, 7-12=-202/368,
	9-12=-145/1651, 4-17=-399/177,
	3-17=-2214/586, 14-16=0/288,
	6-14=-449/261, 7-14=-370/1677,
	14-17=-423/2513, 4-14=-409/225,
	10-12=-92/67

NOTES

Scale = 1:76

Unbalanced roof live loads have been considered for 1) this design.

II; Exp C; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60 All plates are MT20 plates unless otherwise indicated.

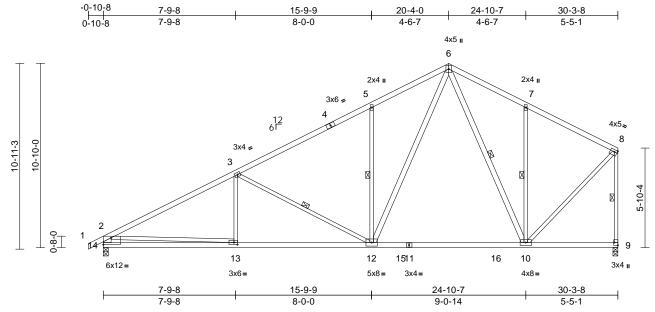
- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf. 6) Bearings are assumed to be: Joint 2 SP 2400F 2.0E ,
- Joint 10 SPF No.2 7) Bearing at joint(s) 2 considers parallel to grain value
- using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface. 8) Provide mechanical connection (by others) of truss to
- bearing plate capable of withstanding 140 lb uplift at joint 10 and 214 lb uplift at joint 2.
- 9) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. LOAD CASE(S) Standard

DEV

ΤΙΟΝ

ELORMENT SERVICES

LEE'S'SUMMIT'SMISSOURI 06/05/2024 4:56:15


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponent.com)

3)

Job	Truss	Truss Type	Qty	Ply	Lot 194 HT	
B240097	B8	Common	1	1	Job Reference (optional)	165280055

Run: 8.73 S Apr 25 2024 Print: 8.730 S Apr 25 2024 MiTek Industries, Inc. Wed May 01 07:38:12 ID:wWQ0cVuS969af?GecLrtCNzdMNG-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:67.8

Plate Offsets (X, Y): [8:0-2-0,0-1-8], [9:Edge,0-2-8], [13:0-2-8,0-1-8], [14:Edge,0-4-13]

Loading TCLL (roof)	(psf) 25.0	Spacing Plate Grip DOL	2-0-0 1.15		CSI TC	0.70	DEFL Vert(LL)	in -0.30	(loc) 10-12	l/defl >999	L/d 360	PLATES MT20	GRIP 197/144
TCDL	10.0	Lumber DOL	1.15		BC	0.95	Vert(CT)	-0.48	10-12	>756	240		
BCLL	0.0*	Rep Stress Incr	YES		WB	0.71	Horz(CT)	0.05	9	n/a	n/a		
BCDL	10.0	Code	IRC2018/T	FPI2014	Matrix-S		Wind(LL)	0.07	12-13	>999	240	Weight: 140 lb	FT = 10%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD	2x4 SPF No.2 2x3 SPF No.2 *Exce No.2, 14-2:2x6 SPF	No.2	PF 0 5) <i>A</i> 6) F	on the botton 3-06-00 tall b chord and an All bearings a Provide mecl	as been designed n chord in all area y 2-00-00 wide w y other members are assumed to be nanical connection capable of withst	is where ill fit betv , with BC e SPF No n (by oth	a rectangle veen the bott DL = 10.0ps b.2. ers) of truss	om f. to					
IOF CHORD	3-1-15 oc purlins, e				o uplift at joint 9.	Ū		,					
BOT CHORD					designed in accor								
	bracing.				Residential Code			and					
WEBS		8-9, 5-12, 6-10, 7-1	0,		nd referenced star	ndard AN	ISI/TPI 1.						
REACTIONS		3-12	LUA	D CASE(S)	Standard								
FORCES	Max Horiz 14=305 (L Max Uplift 9=-140 (L Max Grav 9=1441 (L (lb) - Maximum Com Tension	LC 5) C 8), 14=-215 (LC 8 LC 2), 14=1478 (LC 1 pression/Maximum	2)										
	5-6=-1608/399, 6-7= 8-9=-1394/165, 2-14	=-1352/257	/179,										
BOT CHORD	10-12=-65/923, 9-10)=-77/59											~
WEBS	8-10=-87/1181, 3-13 6-10=-332/73, 7-10= 3-12=-710/248, 6-12	-412/236,										TATE OF M	AISSO
NOTES											R	NY SCOT	New M
 Unbalance this design Wind: ASC Vasd=91n II; Exp C; cantilever 	ed roof live loads have n. CE 7-16; Vult=115mph mph; TCDL=6.0psf; BC Enclosed; MWFRS (er left and right exposed used; Lumber DOL=1.6	(3-second gust) DL=6.0psf; h=25ft; (avelope) exterior zon ; end vertical left and	Cat. ne; d									SCOTT SEVI	er und

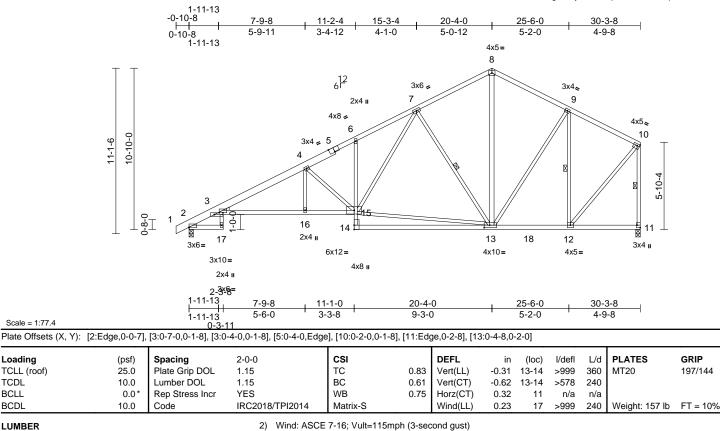
right exposed; Lumber DOL=1.60 plate grip DOL=1.60 3) This truss has been designed for a 10.0 psf bottom

chord live load nonconcurrent with any other live loads.

RELEASE FOR CONTRUCTION AS NOTED ON PLANS REVIEW DEVELORIMENTS SERVICES LEE'S SUMMITS MISSOURI


06/05/2024 4:56:15

May 2,2024


SIONAL ET

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent colleges with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

Job	Truss	Truss Type	Qty	Ply	Lot 194 HT	
B240097	B9	Roof Special	1	1	lob Reference (optional)	165280056

Page: 1

LUMBER				
TOP CHORD				
BOT CHORD				

2.0E

Scale = 1:77.4

Loading

TCDL

BCLL

BCDL

TCLL (roof)

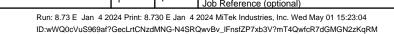
BOT CHORD	2x4 SPF No.2 *Except* 3-15:2x4 SPF 2100F
	1.8E, 6-14:2x3 SPF No.2
WEBS	
	2x3 SPF No.2 *Except* 13-8:2x4 SPF No.2
WEDGE	Left: 2x3 SPF No.2
BRACING	
TOP CHORD	Structural wood sheathing directly applied or
	2-11-15 oc purlins, except end verticals.
BOT CHORD	Rigid ceiling directly applied or 10-0-0 oc
	bracing, Except:
	6-0-0 oc bracing: 2-17.
WEBS	1 Row at midpt 10-11, 9-12, 7-13
REACTIONS	(lb/size) 2=1436/0-3-8, 11=1351/0-3-8
	Max Horiz 2=300 (LC 5)
	Max Uplift 2=-207 (LC 8), 11=-141 (LC 8)
	Max Grav 2=1477 (LC 2), 11=1422 (LC 2)
FORCES	(Ib) - Maximum Compression/Maximum
	Tension
TOP CHORD	1-2=0/12, 2-3=-918/32, 3-4=-2998/443,
	4-5=-2338/376, 5-6=-2279/390,
	6-7=-2197/440, 7-8=-1104/240,
	8-9=-1100/258, 9-10=-860/175,
	10-11=-1348/173
DOTOUODD	
BOT CHORD	2-17=-40/0, 3-16=-514/2793,
	15-16=-514/2792, 14-15=0/168, 6-15=0/95,
	Tension

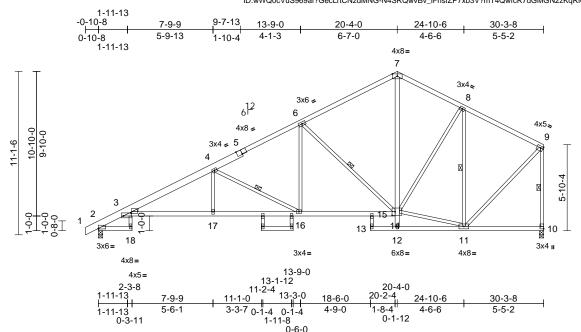
2x4 SPF No.2 *Except* 1-5:2x6 SP 2400F

- 13-14=0/238, 13-18=-101/736 12-18=-101/736, 11-12=-77/60 WEBS 3-17=0/81, 4-15=-1113/277, 7-15=-236/1097, 10-12=-98/1137, 13-15=-216/1190, 9-12=-744/129, 8-13=-118/655, 9-13=-29/378, 4-16=0/283, 7-13=-913/319
- NOTES

1) Unbalanced roof live loads have been considered for this design.

- Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60 This truss has been designed for a 10.0 psf bottom 3) chord live load nonconcurrent with any other live loads. * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle
- 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf. 5) All bearings are assumed to be SPF No.2 crushing capacity of 425 psi.
- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 207 lb uplift at joint 2 and 141 lb uplift at joint 11.
- This truss is designed in accordance with the 2018 7) International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. LOAD CASE(S) Standard




WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponent.com)

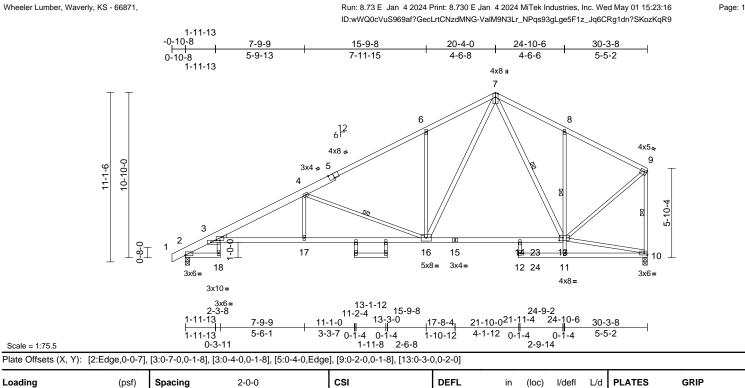
4)

Job	Truss	Truss Type	Qty	Ply	Lot 194 HT	
B240097	B10	Roof Special	1	1	Job Reference (optional)	165280057

Scale = 1:78.4

Plate Offsets ((X, Y): [2:Edge,0-0-7], [[3:0-6-8,0-2-8], [3:0-	-6-8,0-2-0], [5:0-4-0,Edg		<u>)-6-0</u> 8], [10:Edge	9,0-2-8], [14:0	0-2-8,0-3	-0]				
Loading TCLL (roof) TCDL BCLL BCDL	25.0 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC201	8/TPI2014	CSI TC BC WB Matrix-S	0.78 0.59 0.72	DEFL Vert(LL) Vert(CT) Horz(CT) Wind(LL)	in -0.26 -0.50 0.32 0.23	(loc) 3-17 3-17 10 3-17	l/defl >999 >728 n/a >999	L/d 360 240 n/a 240	PLATES MT20 Weight: 155 lb	GRIP 197/144 FT = 10%
LUMBER FOP CHORD BOT CHORD WEBS WEDGE BRACING FOP CHORD BOT CHORD WEBS REACTIONS	2x4 SPF No.2 *Excep 2.0E 2x4 SPF No.2 *Excep 1.8E, 15-13:2x3 SPF 2x3 SPF No.2 *Excep Left: 2x3 SPF No.2 Structural wood shea 3-5-6 oc purlins, exce Rigid ceiling directly a bracing. 1 Row at midpt 4	ot* 1-5:2x6 SP 2400 ot* 3-14:2x4 SPF 21 No.2 ot* 12-7:2x4 SPF No thing directly applie ept end verticals. applied or 6-0-0 oc 4-16, 6-14, 8-11, 9- 3-8, 10=1351/0-3-8 5) C 8), 10=-141 (LC 8	3) F 4) 00F 5) 5.2 6d or 7) 10 8)	All plates ar This truss h chord live lo * This truss on the botto 3-06-00 tall chord and a All bearings capacity of 4 Provide mea bearing plat 2 and 141 lb This truss is Internationa	e 2x4 MT20 unli as been designe ad nonconcurre has been design m chord in all ar by 2-00-00 widd ny other membe are assumed to 425 psi. chanical connec e capable of witi o uplift at joint ac designed in acc I Residential Co und referenced s	ed for a 10.0 nt with any ned for a liv reas where e will fit betw ers. b be SPF No tion (by oth- hstanding 2). cordance wi de sections	se indicated. J psf bottom other live loa e load of 20. a rectangle veen the bott b.2 crushing ers) of truss 07 lb uplift a th the 2018 R502.11.1 a	ads. Opsf rom to t joint					
TOP CHORD	Tension 1-2=0/12, 2-3=-790/3: 4-5=-1974/299, 5-6=- 6-7=-1190/237, 7-8=- 9-10=-1303/174 2-18=-34/0, 3-17=-50	1906/326, 1145/268, 8-9=-885	5/184,										
WEBS	16-17=-503/2590, 15- 14-15=-218/1654, 13- 11-12=-24/30, 10-11= 3-18=0/70, 4-16=-106 11-14=-75/731, 8-14= 7-14=-97/598, 8-11=- 4-17=0/279, 6-16=-62	-16=-242/1652, -15=-34/0, 12-13=-{ =-76/60 63/295, 6-14=-953/2 =-46/444, 12-14=0/1 822/147, 9-11=-93/	291, 196,									STATE OF M	M. YOY
this design 2) Wind: ASC Vasd=91m II; Exp C; I cantilever	ed roof live loads have b	been considered for (3-second gust) DL=6.0psf; h=25ft; C velope) exterior zon end vertical left and	Cat. le; d									PE-2001	LENGING

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent colleges with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)


cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60

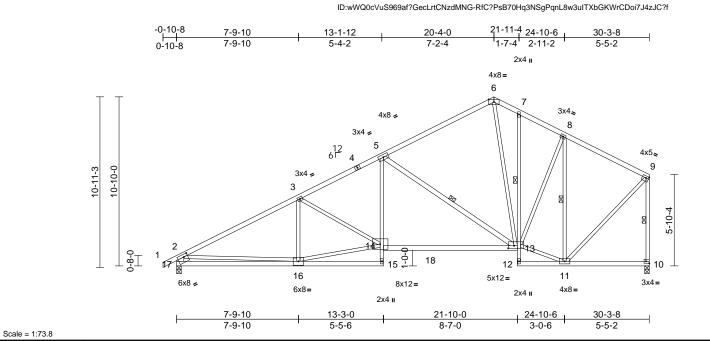
May 2,2024

Page: 1

Job	Truss	Truss Type	Qty	Ply	Lot 194 HT	
B240097	B11	Roof Special	2	1	lob Reference (optional)	165280058

Loading TCLL (roof) TCDL BCLL BCDL	(psf) 25.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018	3/TPI2014	CSI TC BC WB Matrix-S	0.85 0.71 0.91	DEFL Vert(LL) Vert(CT) Horz(CT) Wind(LL)		(loc) 14-16 14-16 10 3-17	l/defl >890 >572 n/a >999	L/d 360 240 n/a 240	PLATES MT20 Weight: 157 lb	GRIP 197/144 FT = 10%
	No.2 Left: 2x3 SPF No.2 Structural wood she 2-4-4 oc purlins, exx Rigid ceiling directly bracing, Except: 6-0-0 oc bracing: 2-1 1 Row at midpt (lb/size) 2=1436/0. Max Horiz 2=300 (LC Max Uplift 2=-207 (L Max Grav 2=1508 (L	pt* 3-15:2x4 SPF 21(pt* 13-7,16-7:2x4 SP athing directly applied cept end verticals. applied or 10-0-0 oc 18. 4-16, 7-13, 8-11, 9-11 -3-8, 10=13710-3-8 5) C 8), 10=-141 (LC 8) .C 2), 10=1487 (LC 2	= 300F F 3) 4) 5) f or 6) 0 7) 8)	Vasd=91mph II; Exp C; Encantilever left right exposed All plates are This truss ha chord live loa * This truss h on the bottom 3-06-00 tall b chord and ar All bearings a capacity of 4. Provide med bearing plate 2 and 141 lb This truss is International	7-16; Vult=115mp i; TCDL=6.0psf; Bi closed; MWFRS (e and right exposed i; Lumber DOL=1. 2x4 MT20 unless s been designed fi d nonconcurrent v as been designed fi d nonconcurrent v as been designed fi d nonconcurrent v as been designed fi d chord in all areas y 2-00-00 wide wil y other members, are assumed to be 25 psi. nanical connection capable of withsta uplift at joint 10. designed in accord Residential Code si	CDL=6.6 enveloped 3; end v 60 plate otherwi for a 10.0 with any for a 110.0 with any for a liv s where I fit betw with BC SPF No (by oth anding 2 lance w sections	Dpsf; $h=25ft$; (a) exterior zon rertical left an grip DOL=1. see indicated. D psf bottom other live loa e load of 20.0 a rectangle ween the bottw DL = 10.0psf b.2 crushing ers) of truss t 07 lb uplift at ith the 2018 R502.11.1 a	ne; nd 60 nds. 0psf om f. to t joint					
FORCES	(lb) - Maximum Com Tension 1-2=0/12, 2-3=-936/3 4-5=-1913/245, 5-6= 6-7=-1837/412, 7-8= 8-9=-1133/183, 9-10	32, 3-4=-3062/469, :-1855/280, :-1152/245,	LC	OAD CASE(S)	Standard							OF M	
BOT CHORD	2-18=-40/0, 3-17=-5 16-17=-546/2848, 14 14-15=-71/1051, 14- 13-23=-71/1051, 12- 10-11=0/38	47/2849, 5-16=-71/1051, 23=-71/1051,										STATE OF M	M. YE Y
WEBS NOTES 1) Unbalance this design	7-13=-302/70, 11-13 9-13=-87/1269, 4-17 7-16=-307/1302, 10- ed roof live loads have		34,									PE-20010	LENGI

May 2,2024


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent colleges with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

Job	Truss	Truss Type	Qty	Ply	Lot 194 HT	
B240097	B12	Roof Special	1	1	Job Reference (optional)	165280059

Run: 8.73 S Apr 25 2024 Print: 8.730 S Apr 25 2024 MiTek Industries, Inc. Wed May 01 07:38:13

Wheeler Lumber, Waverly, KS - 66871,

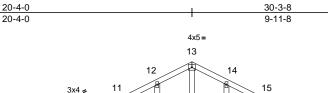
Plate Offsets (X, Y): [9:0-2-0,0-1-8], [10:Edge,0-1-8], [13:0-4-8,0-2-0], [17:0-3-0,0-2-0]

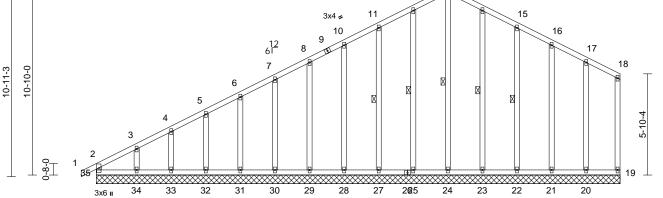
right exposed; Lumber DOL=1.60 plate grip DOL=1.60

					-								
Loading	(psf)	Spacing	2-0-0		csi		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15		тс	0.77	Vert(LL)	-0.26	13-14	>999	360	MT20	197/144
TCDL	10.0	Lumber DOL	1.15		BC	0.57	Vert(CT)	-0.50	13-14	>715	240		
BCLL	0.0*	Rep Stress Incr	YES		WB	0.70	Horz(CT)	0.09	10	n/a	n/a		
BCDL	10.0	Code	IRC201	8/TPI2014	Matrix-S		Wind(LL)	0.08	13-14	>999	240	Weight: 151 lb	FT = 10%
							· · · · ·						
LUMBER			3		as been designed								
TOP CHORD					ad nonconcurrent								
BOT CHORD			PF 4		nas been designe m chord in all are			upst					
	No.2, 14-13:2x4 SPI		~)		by 2-00-00 wide v		0	om					
NEBS	2x3 SPF No.2 *Exce 17-2:2x6 SP 2400F		0.2,		ny other members								
BRACING	17-2.2X0 3F 2400F	2.02	5		are assumed to b								
TOP CHORD	Structural wood she	athing directly applie			hanical connection			to					
	2-11-12 oc purlins,		eu 01 -		e capable of with								
BOT CHORD					b uplift at joint 10		-						
	bracing. Except:		7		designed in acco								
1 Row at midp					Residential Cod			and					
WEBS	1 Row at midpt	5-13, 8-11, 9-10			nd referenced sta	andard AN	ISI/TPI 1.						
REACTIONS	(size) 10=0-3-8,	17=0-3-8	L	OAD CASE(S)	Standard								
	Max Horiz 17=305 (I	_C 5)											
	Max Uplift 10=-140 ((LC 8), 17=-215 (LC	8)										
	Max Grav 10=1407	(LC 2), 17=1474 (LC	2)										
FORCES	(lb) - Maximum Corr	pression/Maximum											
	Tension												
TOP CHORD			2,										
	5-6=-1085/208, 6-7=	,											
	7-8=-1160/247, 8-9=												
	9-10=-1327/174, 2-1		070									000	TIC
BOT CHORD	16-17=-451/977, 15- 5-14=-49/786, 13-14											OFM	ALC.
	7-13=-39/110, 11-12											TATE OF M	W Scin
WEBS	3-16=-320/152, 14-1		/00								6	AN	N SY
	3-14=-151/100, 5-13										B	SCOT	ГМ. \УУ
	6-13=-68/584, 11-13		/577,								Re	/ SEVI	ER \ Y
	8-11=-936/151, 9-11	I=-94/1115, 2-16=0/	1046								2		1 * 13
NOTES											20	-	
1) Unbalance	ed roof live loads have	been considered fo	r										Dernen
this desig	n.									-	R.	DE 2001	010007 ATR
	CE 7-16; Vult=115mph										N.	PE-2001	10880/ 108810
	nph; TCDL=6.0psf; BC										Y	1 the	1.SA
	Enclosed; MWFRS (er										6	SSIONA	TENS
cantilever	left and right exposed		a									UNA A	

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent colleges with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

May 2,2024


Page: 1


Job)	Truss	Truss Type	Qty	Ply	Lot 194 HT	
B2	40097	B13	Common Supported Gable	1	1	Job Reference (optional)	165280060

-0-10-8 0-10-8

Run: 8.73 S Apr 25 2024 Print: 8.730 S Apr 25 2024 MiTek Industries, Inc. Wed May 01 07:38:13 ID:wWQ0cVuS969af?GecLrtCNzdMNG-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

30-3-8

3x4=

			L				30-3-8							=
Scale = 1:66.6			•											1
Loading TCLL (roof) TCDL BCLL BCDL		(psf) 25.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC20	18/TPI2014	CSI TC BC WB Matrix-R	0.14 0.08 0.14	DEFL Vert(LL) Vert(CT) Horz(CT)	in n/a n/a 0.00	(loc) - - 19	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 182 lb	GRIP 197/144 FT = 10%
	APP CHORD 2x4 SPF No.2 APT CHORD 2x4 SPF No.2 EBS 2x4 SPF No.2 HERS 2x4 SPF No.2 HERS 2x4 SPF No.2 ACING P P CHORD Structural wood sheathing directly applied or 6-0-0 oc purlins, except end verticals. DT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing. EBS 1 Row at midpt 13-24, 12-25, 11-27, 14-23, 15-22 EACTIONS (size) 19=30-3-8, 20=30-3-8, 21=30-3-8, 22=30-3-8, 30=30-3-8, 31=30-3-8, 35=30-3-8, 33=30-3-8, 34=30-3-8, 35=30-3-8 Max Horiz 35=305 (LC 5)		ed or E 3-8, -3-8, -3-8, -3-8, -3-8, -3-8, -3-8,		$\begin{array}{c} 2\text{-}35\text{=-}198/59,\\ 3\text{-}4\text{=-}223/106,\\ 6\text{-}7\text{=-}176/134,\\ 10\text{-}11\text{=-}132/17,\\ 12\text{-}13\text{=-}100/19\\ 14\text{-}15\text{=-}96/167\\ 16\text{-}17\text{=-}93/110\\ 34\text{-}35\text{=-}81/62,\\ 31\text{-}32\text{=-}81/62,\\ 24\text{-}25\text{=-}81/62,\\ 24\text{-}25\text{=-}81/62,\\ 24\text{-}25\text{=-}81/62,\\ 13\text{-}24\text{=-}157/51\\ 11\text{-}27\text{=-}139/81\\ 8\text{-}29\text{=-}140/78,\\ 5\text{-}32\text{=-}140/78,\\ 5\text{-}32\text{=-}140/74\\ 16\text{-}21\text{=-}140/75\\ \end{array}$	4-5=-207/10 7-8=-162/14 5, 11-12=-11 9, 13-14=-94 , 15-16=-96, , 17-18=-100 33-34=-81/6 30-31=-81/6 23-24=-81/6 23-24=-81/6 20-21=-81/6 , 12-25=-144, 7-30=-140/7 4-33=-139/6 , 15-22=-139	9, 5-6=-191/ 8, 8-10=-147 18/190, 5/193, 139, 5/91, 18-19=- 2, 32-33=-81 2, 29-30=-81 2, 29-30=-81 2, 22-23=-81 2, 22-23=-81 2, 19-20=-81 3/74, 3/77, 8, 6-31=-1420 4, 3-34=-144 3/81,	121, 7/162, 1/62, 1/62, 1/62, 1/62, 1/62, 1/62, 1/62, 1/62, 1/62, 1/62, 1/62, 1/62,	on t 3-00 cho 10) All I 11) Pro bea 35, upli 28, upli 33, upli join 12) This Inte	he botto 6-00 tall rd and a bearings vide me ring pla 32 lb up ft at join 54 lb up ft at join 136 lb u ft at join t 20. s truss is rnationa 02.10.2 a	om cho by 2-0 any oth s are as chanic te capa olift at jo t 25, 55 olift at jo t 31, 60 uplift at t 22, 55 s desig al Resid and ref	rd in all areas wh 0-00 wide will fit er members. ssumed to be SP al connection (by ble of withstandi oint 19, 11 lb upli 7 lb uplift at joint 1 joint 29, 54 lb upli 0 lb uplift at joint 1 joint 34, 51 lb up 5 lb uplift at joint 1 ned in accordance dential Code sect erenced standard	between the bottom F No.2. others) of truss to ng 55 lb uplift at joint ft at joint 24, 50 lb 27, 53 lb uplift at joint ft at joint 30, 53 lb 32, 31 lb uplift at joint lift at joint 23, 56 lb 21 and 54 lb uplift at we with the 2018 ions R502.11.1 and	
35=30-3-8) 3 2), 2), 15), 2 1), 5 1), 5 1), 5 1), 7	 this design. Wind: ASCI Vasd=91mg II; Exp C; E cantilever le right expose Truss desig only. For st see Standa or consult q All plates ar Gable requi Truss to be braced agai Gable stude 	I roof live loads T-16; Vult=111 bit; TCDL=6.0ps inclosed; MWFR and right exp ad; Lumber DOL gned for wind lo ruds exposed to ualified building re 2x4 MT20 unl res continuous fully sheathed f inst lateral move s spaced at 2-0- as been design	5mph (3-sec f; BCDL=6.0 SS (envelope osed; end v _=1.60 plate ads in the pl wind (norm le End Detai designer as less otherwis bottom chor rom one fac ement (i.e. d 0 oc.	ond gust) opsf; h=25ft; exterior zoi ertical left ar grip DOL=1. ane of the tri al to the face Is as applica se applica se indicated. d bearing. e or securely iagonal web)	Cat. ne; nd .60 uss 2), ble, PI 1.				STATE OF I SCOT SEVI	in the second	
FORCES (lb) - Maximum Compression/Maximum Tension					ad nonconcurre			ads.			Ø	FRS SION	121	

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent toulsable personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

May 2,2024

ONALE

Job	Truss	Truss Type	Qty	Ply	Lot 194 HT	
B240097	C1	GABLE	1	1	Job Reference (optional)	165280061

Run: 8.73 S Apr 25 2024 Print: 8.730 S Apr 25 2024 MiTek Industries, Inc. Wed May 01 07:38:13 ID:wWQ0cVuS969af?GecLrtCNzdMNG-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

10

-0-10-8 0-10-8 31-6-8 7-1-13 10-6-4 15-4-0 23-6-3 30-8-0 0-10-8 7-1-13 3-4-8 4-9-12 8-2-3 7-1-13 4x8= 5 12 5 F 3x4 🚅 3x6 👟 3 6 7-0-13 6-11-11 8 9 20 0-2-0 3x6 18 17 16 15 14 13 12 11 4x8 u 4x8 II 3x10= 3x4 II 3x4= 23-6-3 21-8-10 7-1-13 15-4-0 20-6-4 30-8-0 ¹1-2-6¹ 1-9-10 7-1-13 8-2-3 5-2-4 7-1-13

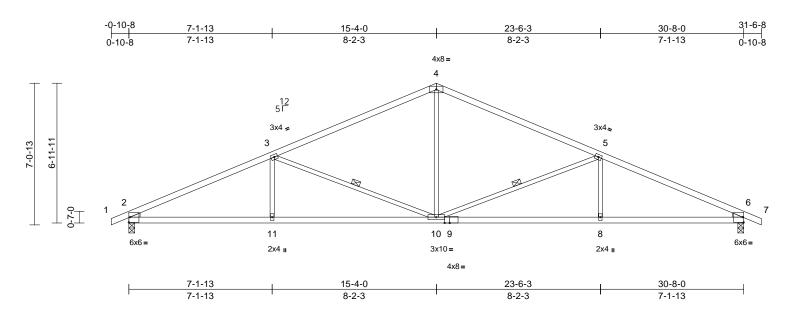
Scale = 1:57.5

Plate Offsets (X, Y): [2:0-3-8,Edge], [9:0-3-8,Edge], [28:0-0-8,0-2-4], [29:0-1-3,0-1-4]

	, , ,				-								
Loading TCLL (roof) TCDL BCLL BCDL	(psf) 25.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2017	8/TPI2014	CSI TC BC WB Matrix-S	0.88 0.64 0.52	DEFL Vert(LL) Vert(CT) Horz(CT) Wind(LL)		(loc) 17-18 17-18 15 2-18	l/defl >999 >999 n/a >999	L/d 360 240 n/a 240	PLATES MT20 Weight: 133 lb	GRIP 197/144 FT = 10%
LUMBER TOP CHORD BOT CHORD WEBS OTHERS WEDGE BRACING TOP CHORD BOT CHORD WEBS JOINTS	2x4 SPF No.2 2x3 SPF No.2 *Exce SPF No.2 2x4 SPF No.2 Left: 2x3 SPF No.2 Right: 2x3 SPF No.2 Structural wood shea 2-2-0 oc purlins. Rigid ceiling directly bracing, Except: 10-0-0 oc bracing: 2	athing directly applied applied or 6-0-0 oc	:2x4 N(1) 2)	OTES Unbalanced this design. Wind: ASCE Vasd=91mpl II; Exp C; En cantilever lef right expose Truss desig only. For stu see Standard or consult qu	7-19=0/239, 5-19 5-20=-56/890, 6-1 3-17=-714/166, 3- 19-20=-336/152, - 7-12=-114/218, 8- roof live loads ha 7-16; Vult=115m n; TCD=6.0psf; E closed; MWFRS t and right exposed t; Lumber DOL=1 red for wind loadt ds exposed to wi d Industry Gable E alified building de	I3=-1323, -18=0/34: 14-20=-3: -11=-288, ve been of ph (3-sec BCDL=6.1 (envelope ed ; end v 1.60 plate s in the p ind (norm End Deta assigner as	277, 3, 4-19=-333, 54/154, '143 considered fo cond gust) Opsf; h=25ft; exterior zo vertical left ar grip DOL=1 lane of the fr al to the face is as applica s per ANSI/T	/153, or Cat. ine; ind .60 uss s), ibble, PI 1.					
$\begin{array}{rcl} & & & & & & & & & & & & & & & & & & &$				Gable studs This truss ha chord live loa * This truss h on the bottor 3-06-00 tall b chord and ar All bearings Provide mec bearing plate 2, 255 lb upli uplift at joint)) This truss is International	2x4 MT20 unles spaced at 2-0-0 c is been designed ad onconcurrent has been designe n chord in all area by 2-00-00 wide w hy other members are assumed to b hanical connectio capable of withs ft at joint 13, 67 lf 12 and 111 lb upl designed in accoo Residential Code nd referenced sta Standard	bc. for a 10.0 with any d for a liv as where vill fit betw s. we SPF No on (by oth tanding 1 b uplift at joint rdance we sections	D psf bottom other live loa e load of 20. a rectangle ween the bott 0.2. ers) of truss 67 lb uplift a joint 9, 206 l 11. ith the 2018 s R502.11.1 a	ads. Opsf com to t joint b				STATE OF M SCOTT SEVI SEVI PE-20010	ER *

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent colleges with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

E


May 2,2024

SSIONAL

Job	Truss	Truss Type	Qty	Ply	Lot 194 HT	
B240097	C2	Common	4	1	Job Reference (optional)	165280062

Run: 8.73 S Apr 25 2024 Print: 8.730 S Apr 25 2024 MiTek Industries, Inc. Wed May 01 07:38:13 ID:wWQ0cVuS969af?GecLrtCNzdMNG-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:57.5

Plate Offsets (X, Y): [2:Edge,0-3-2], [6:Edge,0-3-2], [9:0-3-0,Edge]

		-										
Loading	(psf)	Spacing	2-0-0	csi		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15	TC	0.62	Vert(LL)	-0.14	8-10	>999	360	MT20	197/144
TCDL	10.0	Lumber DOL	1.15	BC	0.79	Vert(CT)	-0.31	10-11	>999	240		
BCLL	0.0*	Rep Stress Incr	YES	WB	0.66	Horz(CT)	0.12	6	n/a	n/a		
BCDL	10.0	Code	IRC2018/TPI2014	Matrix-S		Wind(LL)	0.10	10-11	>999	240	Weight: 100 lb	FT = 10%
						_						
LUMBER				igs are assumed to b								
TOP CHORD				nechanical connection								
BOT CHORD				late capable of with	standing 1	99 lb uplift at	joint					
WEBS	2x3 SPF No.2			9 lb uplift at joint 6.	rdon oo w	ith the 2019						
WEDGE	Left: 2x3 SPF No.2			s is designed in acco nal Residential Code			nd					
	Right: 2x3 SPF No.2			2 and referenced sta			nu					
BRACING					anuaru Ar							
TOP CHORD		athing directly applie	ed or LUAD CASE	(S) Standard								
	4-2-12 oc purlins.	emplied at 0.40.45										
BOT CHORD	0 0 ,	applied of 9-10-15	JC									
WEBS	bracing. 1 Row at midpt	5-10, 3-10										
		,										
REACTIONS	()											
	Max Horiz 2=-119 (L Max Uplift 2=-199 (L											
	Max Grav 2=1438 (L		\									
	,	<i>,</i>)									
FORCES	(Ib) - Maximum Com	pression/Maximum										
TOP CHORD	Tension 1-2=0/6, 2-3=-2733/	226 2 4 1054/242										
IOF CHORD	4-5=-1854/242, 5-6=		,									
BOT CHORD		,										
BOT ONORD	8-10=-229/2402, 6-8											
WEBS	4-10=-14/807, 5-10=		4									
	3-10=-910/278, 3-11		-,								and	TOP
NOTES											THE OF M	Also
	ed roof live loads have	been considered for	r							1	750	N.O.
this desig										R	NY score	Nex /
	CE 7-16; Vult=115mph	(3-second gust)								A	SCOT	
Vasd=91r	mph; TCDL=6.0psf; BC	DL=6.0psf; h=25ft; (Cat.							H_	SEVI	
II; Exp C;	Enclosed; MWFRS (er	velope) exterior zor	ne;							W/*	1 -	
cantilever	r left and right exposed	; end vertical left an	d							₩/	MU.	ZIDANOD.
	osed; Lumber DOL=1.6		60							4	NUM	RER AND
	his truss has been designed for a 10.0 psf bottom hord live load nonconcurrent with any other live loads									47	DE 2001	118807 188
										N.	FE-2001	A STOOL STOOL
	ss has been designed f		pst							Y	PE-2001	IN B
	ottom chord in all areas									0	STONIA	LENS
	all by 2-00-00 wide will	in between the botto	om								UNA A	

3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent toulsable personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

May 2,2024

Job	Truss	Truss Type	Qty	Ply	Lot 194 HT	
B240097	C3	Common	6	1	Job Reference (optional)	165280063

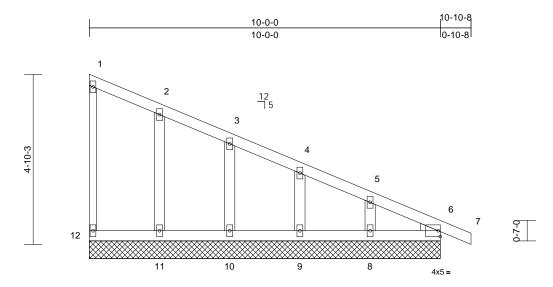
Run: 8.73 S Apr 25 2024 Print: 8.730 S Apr 25 2024 MiTek Industries, Inc. Wed May 01 07:38:13 ID:wWQ0cVuS969af?GecLrtCNzdMNG-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

31-6-8 7-1-13 15-4-0 23-6-3 30-8-0 7-1-13 8-2-3 8-2-3 7-1-13 0-10-8 4x8= 3 12 5 Г 3x4 ≤ 3x4 **≈** 2 7-0-13 4 6-11-11 5 0-7-0 6 X X 7 10 98 6x6= 6x6= 2x4 II 3x10= 2x4 II 4x8= 7-1-13 15-4-0 23-6-3 30-8-0 7-1-13 8-2-3 8-2-3 7-1-13

Scale = 1:56.1

Plate Offsets (X, Y): [1:Edge,0-3-2], [5:Edge,0-3-2], [8:0-3-0,Edge]


Loading	(psf)	Spacing	2-0-0	csi		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15	TC	0.62	Vert(LL)	-0.14	9-10	>999	360	MT20	197/144
TCDL	10.0	Lumber DOL	1.15	BC	0.79	Vert(CT)	-0.31	7-9	>999	240	11120	101/111
BCLL	0.0*	Rep Stress Incr	YES	WB	0.67	Horz(CT)	0.12	5	n/a	n/a		
BCDL	10.0	Code	IRC2018/TPI2014	Matrix-S	0.07	Wind(LL)	0.12	9-10	>999	240	Weight: 99 lb	FT = 10%
	10.0	Code	11(02010/1112014	Matrix-0		WING(LL)	0.10	3-10	2333	240	Weight. 33 lb	11 = 1078
LUMBER			All bearings	are assumed to	be SPF No	o.2 .						
TOP CHORD	2x4 SPF 2100F 1.8E		Provide me	chanical connecti	ion (by oth	ers) of truss	to					
BOT CHORD	2x4 SPF No.2		bearing pla	te capable of with	standing 1	75 lb uplift a	it joint					
WEBS	2x3 SPF No.2		1 and 199 I	b uplift at joint 5.								
WEDGE	Left: 2x3 SPF No.2		This truss is	s designed in acco	ordance w	ith the 2018						
	Right: 2x3 SPF No.2	2	Internationa	al Residential Cod	le sections	s R502.11.1 a	and					
BRACING	5		R802.10.2	and referenced st	andard AN	ISI/TPI 1.						
TOP CHORD	Structural wood she	athing directly applie	ed or LOAD CASE(S) Standard								
	4-1-5 oc purlins.											
BOT CHORD	Rigid ceiling directly	applied or 9-10-4 or	C									
	bracing.											
WEBS	1 Row at midpt	4-9, 2-9										
REACTIONS	(size) 1=0-3-8, 5	5=0-3-8										
	Max Horiz 1=-121 (L											
	Max Uplift 1=-175 (L											
	Max Grav 1=1366 (L											
FORCES	(lb) - Maximum Corr	<i>,,</i>	,									
	Tension	4050/040										
TOP CHORD	1-2=-2722/339, 2-3= 3-4=-1857/243, 4-5=											
BOT CHORD	,	,										
BOT CHORD	7-9=-229/2405, 5-7=	,										
WEBS	3-9=-15/810, 4-9=-9											
WEBS	2-9=-919/281, 2-10=	, , ,									000	ann
NOTES	2 0- 010/201, 2 10-	-0/020									POF.	MISSO
	ed roof live loads have	been considered for	r								ATEOF	
this design			I							A	NY and	- New
	 CE 7-16; Vult=115mph	(3-second quist)								B	SCOT	
	nph; TCDL=6.0psf; BC		Cat							Я.	/ SEV	TER \ Y
	Enclosed; MWFRS (er									2 🖈		
	left and right exposed	1 /	,							NK	-	
	sed; Lumber DOL=1.6								_		rell.	Servico
	has been designed fo									127	NUM	
	load nonconcurrent wi		ds.							N.	PE-2001	1018807
	s has been designed f									V V		158
	tom chord in all areas										0.500	NO'B
	all by 2-00-00 wide will		om								SSIONA	LEY
	any other members.										The	and a
											M	ay 2,2024
											111	uy 2,2027

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent oulgase with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TPI1 Quality Criteria, and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcscomponents.com)

Job	Truss	Truss Type	Qty	Ply	Lot 194 HT	
B240097	C4	Roof Special Supported Gable	1	1	Job Reference (optional)	165280064

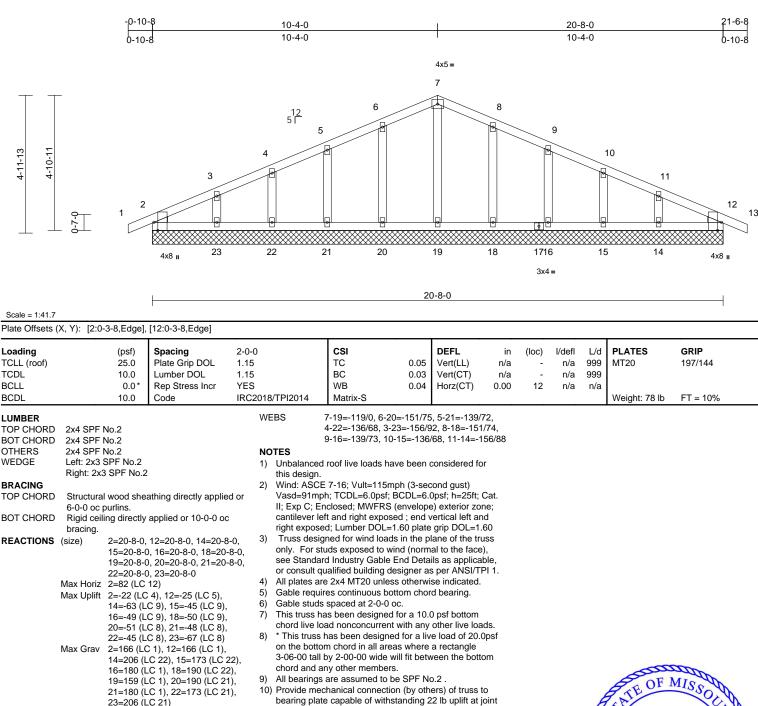
Run: 8.73 S Apr 25 2024 Print: 8.730 S Apr 25 2024 MiTek Industries, Inc. Wed May 01 07:38:13 ID:wWQ0cVuS969af?GecLrtCNzdMNG-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

10-0-0

Scale = 1:32.8

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15	тс	0.15	Vert(LL)	n/a	-	n/a	999	MT20	197/144
TCDL	10.0	Lumber DOL	1.15	BC	0.06	Vert(CT)	n/a	-	n/a	999		
BCLL	0.0*	Rep Stress Incr	YES	WB	0.04	Horz(CT)	0.00	6	n/a	n/a		
BCDL	10.0	Code	IRC2018/TPI2	014 Matrix-S							Weight: 38 lb	FT = 10%
LUMBER TOP CHORD BOT CHORD WEBS OTHERS WEDGE BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SPF No.2 2x4 SPF No.2 2x3 SPF No.2 *Exc 2x3 SPF No.2 Right: 2x3 SPF No.2 Structural wood she 6-0-0 cc purlins, exp Rigid ceiling directly bracing. (size) 6=10-0-0 10=10-0- Max Horiz 12=-194 Max Uplift 6=-1 (LC (LC 9), 1 9), 12=-2 Max Grav 6=150 (L	ept* 0-0:2x4 SPF No. 2 eaching directly applie ccept end verticals. y applied or 10-0-0 oc 1, 8=10-0-0, 9=10-0-0 0, 11=10-0-0, 12=10 (LC 4) 5), 8=-66 (LC 9), 9=- 0=-47 (LC 9), 11=-51 2 (LC 4)	4) Gabl 5) Gabl 6) This 2 chore 7) * Thi on th 3-06- chore 8) All be 9) Prov bear 12, 1 joint 47 10) Beve surfa (LC 11) This R802	e requires continuous b e studs spaced at 2-0-0 truss has been designe i live load nonconcurrer s truss has been design e bottom chord in all are 00 tall by 2-00-00 wide a and any other membel arings are assumed to de mechanical connecti ng plate capable of with lb uplift at joint 6, 66 lb 9, 47 lb uplift at joint 10 led plate or shim require ce with truss chord at jo truss is designed in acco national Residential Coo ASE(S) Standard	oc. d for a 10. tt with any ed for a liv ass where will fit betv rs. be SPF N ion (by oth standing 2 uplif at jo and 51 lb ed to provi init(s) 6. ordance w de sections	D psf bottom other live loa e load of 20.0 ers) of truss t 22 lb uplift at joint 1 de full bearing ith the 2018 s R502.11.1 a)psf om ooint lift at 1.					
FORCES	(lb) - Maximum Cor	LC 1), 12=69 (LC 1) npression/Maximum	LOAD O									
TOP CHORD	Tension 1-12=-53/22, 1-2=-7 3-4=-109/26, 4-5=-7 6-7=0/6	75/40, 2-3=-97/27, 128/26, 5-6=-166/33,										
BOT CHORD		11=-14/157, 9-10=-14 14/157	4/157,								FOF	MISSO
WEBS		141/70, 3-10=-138/74	Ļ,							B	STATE OF SCOT	N N
NOTES										B	SEV	
Vasd=91r II; Exp C; cantilever right expc 2) Truss de only. For see Stand or consult	CE 7-16; Vult=115mpl mph; TCDL=6.0psf; BC Enclosed; MWFRS (e left and right exposed sed; Lumber DOL=1.6 signed for wind loads i studs exposed to wind lard Industry Gable Er t qualified building des are 2x4 MT20 unless	CDL=6.0psf; h=25ff; C nvelope) exterior zon l; end vertical left and 50 plate grip DOL=1.6 in the plane of the tru d (normal to the face) d Details as applicat igner as per ANSI/TF	ne; d 60 ss , ble,						Ş		Coth PE-2001 PE-2001	Jeres 018807

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent toulsable personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)


May 2,2024

Page: 1

Job	Truss	Truss Type	Qty	Ply	Lot 194 HT	
B240097	D1	Common Supported Gable	1	1	Job Reference (optional)	165280065

Run: 8.73 S Apr 25 2024 Print: 8.730 S Apr 25 2024 MiTek Industries, Inc. Wed May 01 07:38:13 ID:wWQ0cVuS969af?GecLrtCNzdMNG-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

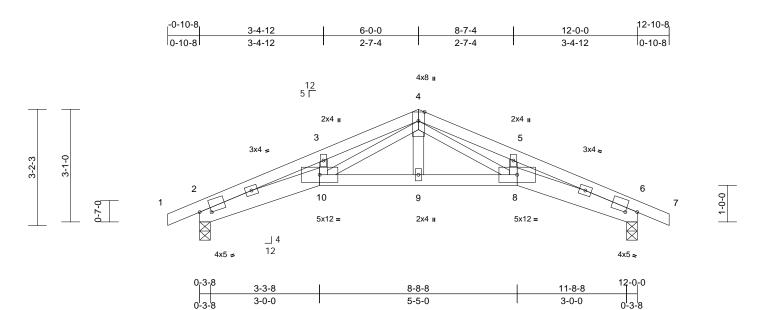
Page: 1

- 23=206 (LC 21) FORCES (lb) - Maximum Compression/Maximum Tension TOP CHORD 1-2=0/6, 2-3=-96/55, 3-4=-60/61, 4-5=-40/81, 5-6=-38/103, 6-7=-40/123, 7-8=-40/116, 8-9=-38/79, 9-10=-38/45, 10-11=-39/25, 11-12=-68/32, 12-13=0/6 BOT CHORD 2-23=-5/71, 22-23=-5/71, 21-22=-5/71, 20.941, 5/74, 40.940, 5/74
 - 20-21=-5/71, 19-20=-5/71, 18-19=-5/71, 16-18=-5/71, 15-16=-5/71, 14-15=-5/71, 12-14=-5/71
- 49 lb uplift at joint 16, 45 lb uplift at joint 15, 63 lb uplift at joint 14 and 25 lb uplift at joint 12.
 11) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

2, 51 lb uplift at joint 20, 48 lb uplift at joint 21, 45 lb uplift

at joint 22, 67 lb uplift at joint 23, 50 lb uplift at joint 18,

LOAD CASE(S) Standard


May 2,2024

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSUTPP1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcsccomponents.com)

Job	Truss	Truss Type	Qty	Ply	Lot 194 HT	
B240097	E1	Roof Special Structural Gable	1	1	Job Reference (optional)	165280066

Run: 8.73 S Apr 25 2024 Print: 8.730 S Apr 25 2024 MiTek Industries, Inc. Wed May 01 07:38:14 ID:wWQ0cVuS969af?GecLrtCNzdMNG-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

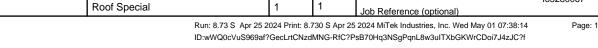
Scale	= '	1.31	6

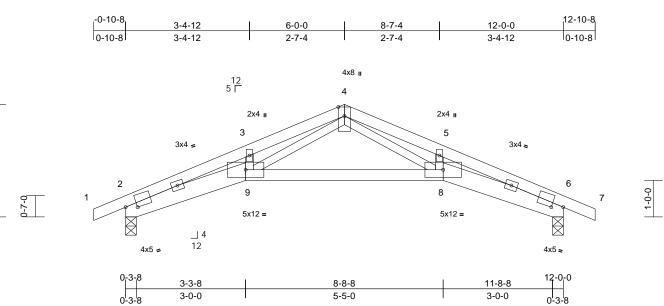
Plate Offsets (X, Y): [2:0-3-12,0-1-4], [6:0-3-12,0-1-4]

Loading TCLL (roof) TCDL BCLL BCDL	(psf) 25.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018	8/TPI2014	CSI TC BC WB Matrix-S	0.44 0.58 0.28	DEFL Vert(LL) Vert(CT) Horz(CT) Wind(LL)	in -0.10 -0.18 0.13 0.07	(loc) 8-9 8-9 6 9-10	l/defl >999 >772 n/a >999	L/d 360 240 n/a 240	MT20	GRIP 197/144 FT = 10%	
FORCES TOP CHORD BOT CHORD WEBS	Max Horiz 2=-50 (LC Max Uplift 2=-91 (LC Max Grav 2=598 (LC (Ib) - Maximum Com Tension	eathing directly applie grapplied or 10-0-0 o 6=0-3-8 2 9) 2 8), 6=-92 (LC 9) C 1), 6=598 (LC 1) npression/Maximum (223, 3-4=-1768/285 =-1909/156, 6-7=0/9 10=-46/941, 8-9=-46 0/138, 4-10=-200/81	7) 8) ed or 9) 10 10 , , ,	on the botto 3-06-00 tall chord and ar All bearings using ANSI/ designer sho Provide mec bearing platt 2 and 92 lb 0 This truss is International	has been designe m chord in all are by 2-00-00 wide v ny other members are assumed to t point(s) 2, 6 consid TPI 1 angle to gra buld verify capaci chanical connecti chanical connecti thanical connecti thanical connecti chanical connection that i point 6. designed in accor I Residential Cod nd referenced sta Standard	as where will fit betw s. be SPF No lers parall- ain formula ty of bear on (by oth standing 9 ordance w e sections	a rectangle veen the bott o.2. el to grain va a. Building ng surface. ers) of truss 11 lb uplift at ith the 2018 s R502.11.1 a	to to joint						
this desigr 2) Wind: ASC Vasd=91m II; Exp C; I cantilever right expos	ed roof live loads have DE 7-16; Vult=115mph nph; TCDL=6.0psf; BC Enclosed; MWFRS (er left and right exposed sed; Lumber DOL=1.6 signed for wind loads in	n (3-second gust) CDL=6.0psf; h=25ft; (nvelope) exterior zor ; end vertical left an 60 plate grip DOL=1.	Cat. ne; id 60									STATE OF SCOT	MISSOLUTI	

 Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
 Gable studs spaced at 2-0-0 oc.

5) This truss has been designed for a 10.0 psf bottom


chord live load nonconcurrent with any other live loads.


PE-2001018807 May 2,2024

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPH Claulity Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

Job	Truss	Truss Type	Qty	Ply	Lot 194 HT	
B240097	E2	Roof Special	1	1	Job Reference (optional)	165280067

Scale = 1:31.6

3-2-3

3-1-0

Plate Offsets (X, Y): [2:0-3-12,0-1-4], [6:0-3-12,0-1-4]

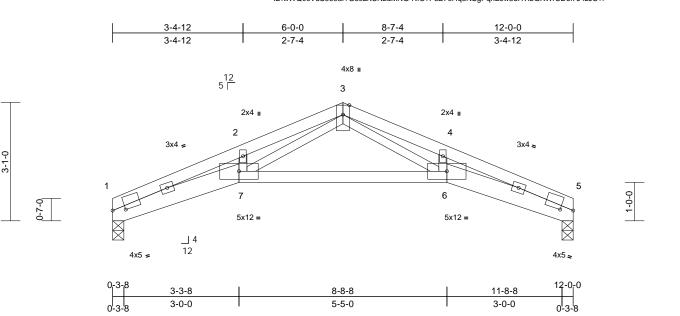
110		7, 1): [2:0 0 12,0 1 4	j, [0.0 0 12,0 1 4]										
	ading LL (roof)	(psf) 25.0	Spacing Plate Grip DOL	2-0-0 1.15	CSI TC	0.44	DEFL Vert(LL)	in -0.13	(loc) 8-9	l/defl >999	L/d 360	PLATES MT20	GRIP 197/144
TC	` '	10.0	Lumber DOL	1.15	BC	0.44	Vert(LL)	-0.13	8-9 8-9	>999 >525	240	WI120	197/144
BC		0.0*	Rep Stress Incr	YES	WB	0.37	Horz(CT)	0.14	6	/a	n/a		
BC		10.0	Code	IRC2018/TPI2014	Matrix-S	0.01	Wind(LL)	0.09	8-9	>999		Weight: 42 lb	FT = 10%
TO BO WE BR TO BO	JMBER 7) Provide mechanical connection (by others) of truss to DP CHORD 2x4 SPF No.2 *Except* 9-8:2x4 SPF No.2 DT CHORD 2x6 SPF No.2 *Except* 9-8:2x4 SPF No.2 EBS 2x3 SPF No.2 PC CHORD Structural wood sheathing directly applied or 3-9-3 oc purlins. DT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing. EACTIONS (size) 2=0-3-8, 6=0-3-8 MAX Horiz Max Horiz 2=50 (LC 12)												
RE		· · · ·	12) 8), 6=-91 (LC 9)										
FO	RCES	(lb) - Maximum Com Tension	pression/Maximum										
то	P CHORD	1-2=0/9, 2-3=-2058/2 4-5=-1901/213, 5-6=	,	,									
	T CHORD BS	2-9=-214/1864, 8-9= 4-8=-138/1064, 5-8= 3-9=0/158	-59/856, 6-8=-88/18	864									
NO	TES	0 0 0,100											
1)	Unbalance this design	ed roof live loads have	been considered fo	or									
2)	Wind: ASC Vasd=91m II; Exp C; I cantilever	L CE 7-16; Vult=115mph nph; TCDL=6.0psf; BC Enclosed; MWFRS (en left and right exposed sed; Lumber DOL=1.60	DL=6.0psf; h=25ft; (velope) exterior zor ; end vertical left an	ne; nd							Å	STATE OF I	
3)	This truss chord live	has been designed for load nonconcurrent wi	r a 10.0 psf bottom th any other live loa	ids.							8*	SEV	
4)		s has been designed for the term of te		Opsf							8-	Patts	Sameral
	3-06-00 ta	II by 2-00-00 wide will		om							87	DE 2001	018807 58
	chord and	any other members									N I	C FE-2001	01000/ 1000/

chord and any other members. 5)

All bearings are assumed to be SPF No.2 .

Bearing at joint(s) 2, 6 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface. 6)

E ONAL May 2,2024



TION IFW DEVELORMENT SERVICES LEE'S'SUMMIT,SMISSOURI 06/05/2024 4:56:16

Job	Truss	Truss Type	Qty	Ply	Lot 194 HT	
B240097	E3	Roof Special	3	1	Job Reference (optional)	165280068

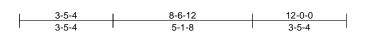
Run: 8.73 S Apr 25 2024 Print: 8.730 S Apr 25 2024 MiTek Industries, Inc. Wed May 01 07:38:14 ID:wWQ0cVuS969af?GecLrtCNzdMNG-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

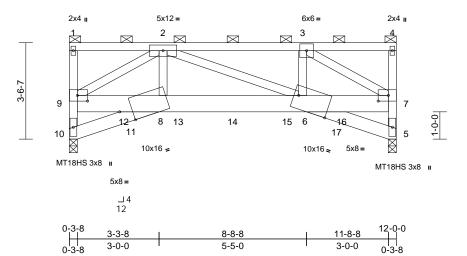
Page: 1

Scale = 1:30

Plate Offsets (X, Y): [1:0-4-0,0-1-0], [5:0-4-0,0-1-0]

		1										
Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15	тс	0.37	Vert(LL)	-0.14	6-7	>999	360	MT20	197/144
TCDL	10.0	Lumber DOL	1.15	BC	0.47	Vert(CT)	-0.28	6-7	>507	240		
BCLL	0.0*	Rep Stress Incr	YES	WB	0.39	Horz(CT)	0.15	5	n/a	n/a		
BCDL	10.0	Code	IRC2018/TPI2014	Matrix-S		Wind(LL)	0.09	6-7	>999	240	Weight: 40 lb	FT = 10%
LUMBER 7.0 Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 67 lb uplift at joint 1 and 67 lb uplift at joint 2 x3 SPF No.2 *texcept *7-6:2x4 SPF No.2 WEBS 2x3 SPF No.2 *texcept *7-6:2x4 SPF No.2 BRACING Structural wood sheathing directly applied or 3-8-2 co purlins. BOT CHORD Structural wood sheathing directly applied or 10-0-0 co bracing. REACTIONS (size) (size) 1=0-3-8, 5=0-3-8 Max Horiz 1=-48 (LC 13) Max Korav 1=627 (LC 1), 5=527 (LC 1), 3-7=204/1122, 2-7=0/151 POP CHORD 1-7=-239/1932, 6-7=66/875, 5-6=-119/1932 2, 2-7=6/(575, 5-6=-119/1932 2, 2-7=0/151 Notes 3-6=-160/1122, 4-6=0/151, 3-7=-204/1122, 2-7=0/151 Notes 1.0 tobalanced roof live loads have been considered for this design. 1) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psi; h=251; Cat. I; Exp (5: Enclosed; WTRS) envelope) exterior zone; cantilever left and right exposed; end vertical left and rig												
 II; Exp C; cantilever right expoo; This truss chord live * This trus on the bot 3-06-00 ta chord and All bearing Bearing at using ANS 	Enclosed; MWFRS (er left and right exposed	nvelope) exterior zono ; end vertical left and 0 plate grip DOL=1.6 r a 10.0 psf bottom th any other live load or a live load of 20.0] where a rectangle fit between the bottom SPF No.2. parallel to grain valu formula. Building	e; I O Is. Dosf m								PE-2001	UI8807


May 2,2024


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent toulsable personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

Job	Truss	Truss Type	Qty	Ply	Lot 194 HT	
B240097	E4	Roof Special Girder	1	2	Job Reference (optional)	165280069

Run: 8.73 S Apr 25 2024 Print: 8.730 S Apr 25 2024 MiTek Industries, Inc. Wed May 01 07:38:14 ID:wWQ0cVuS969af?GecLrtCNzdMNG-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Scale = 1:42.3

Plate Offsets (X, Y): [6:1-2-0,Edge], [7:0-4-8,0-2-8], [8:0-5-8,Edge], [9:0-4-8,0-2-8]

provided to distribute only loads noted as (F) or (B),

unless otherwise indicated.

			; 3-1/1-	,									-
Loading	(psf)	Spacing	2-0-0		csi		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15		TC	0.45	Vert(LL)	-0.10	6-8	>999	360	MT18HS	197/144
TCDL	10.0	Lumber DOL	1.15		BC	0.52	Vert(CT)	-0.17	6-8	>819	240	MT20	197/144
BCLL	0.0*	Rep Stress Incr	NO		WB	0.65	Horz(CT)	0.08	5	n/a	n/a		
BCDL	10.0	Code	IRC2018/TPI	2014	Matrix-S		Wind(LL)	0.05	6-8	>999	240	Weight: 170 lb	FT = 10%
LUMBER TOP CHORD BOT CHORD		ept* 9-7:2x8 SP 2400	ÝVas F II; E	sd=91mph Exp C; End	7-16; Vult=115m n; TCDL=6.0psf; I closed; MWFRS t and right expose	BCDL=6. (envelope	Opsf; h=25ft; e) exterior zo	ne;			=-1529	· · /	B), 14=-1529 (B),
WEBS	2.0E 2x4 SPF No.2				d; Lumber DOL=								
BRACING	2X4 3FF N0.2				uate drainage to								
TOP CHORD	2-0-0 oc purlips (4-6	6-8 max.): 1-4, excep	C) A11		MT20 plates unl								
	end verticals.	o max.j. 1 4, 0.00	6) Thi	s truss ha	s been designed	for a 10.) psf bottom						
BOT CHORD		applied or 10-0-0 oc			ad nonconcurrent								
REACTIONS FORCES TOP CHORD BOT CHORD	Max Horiz 10=122 (I Max Uplift 5=-152 (L Max Grav 5=4674 (I (Ib) - Maximum Com Tension 9-10=-4426/178, 1-5 2-3=-6681/184, 3-4= 4-7=-126/34 8-10=-164/757, 8-9= 6-8=-278/5744, 6-7=	10=0-3-8 LC 7) .C 5), 10=-152 (LC 4 LC 15), 10=4664 (LC apression/Maximum 9=-115/34, 1-2=-195/ =-162/24, 5-7=-4678/ =-172/7314, =-230/6588, 5-6=-12/	on 3-0 chc 8) All 9) Bea 16) usi des 10) Pro 27, bea 171, 10 11) Thi 133 R86	the botton 6-00 tall b ord and an bearings a aring at joi ng ANSI/T signer sho ovide mecl aring plate and 152 lb s truss is o ernational 02.10.2 ar	as been designe n chord in all area yy 2-00-00 wide w yy other members are assumed to b int(s) 10, 5 consis 'PI 1 angle to gra uld verify capacit nanical connectic capable of withs b uplift at joint 5. designed in accoo Residential Code nd referenced sta	as where vill fit betw s. be SPF No ders para ain formul ty of bear on (by oth standing 1 ordance w e sections andard AN	a rectangle veen the bott o.2. Illel to grain v a. Building ng surface. ers) of truss 52 lb uplift a ith the 2018 R502.11.1 a ISI/TPI 1.	tom value to t joint					
WEBS	2-9=-8542/240, 2-8= 3-6=0/4043, 3-7=-77	=-11/4386, 2-6=-28/1 749/227	/ 12) 010		rlin representatio ation of the purlin			size				Contra la	ADD .
NOTES				tom chord								TE OF T	AISSO
(0.131"x3 Top chord oc. Bottom ch staggered oc.	s to be connected toge ") nails as follows: ds connected as follows hords connected as follows d at 0-2-0 oc, 2x8 - 2 ro nected as follows: 2x4 -	s: 2x4 - 1 row at 0-9- lows: 2x6 - 2 rows ws staggered at 0-6-	, pro 0 lb c up 175 0 and sele	vided suff lown and at 4-0-0, 54 lb dowr 1 15 lb up ection of s	other connection icient to support 15 lb up at 2-0-0 1726 lb down and and 15 lb up at at 10-0-0 on bot such connection of of others.	concentra), 1726 lb d 15 lb up 8-0-0, ar tom chore	ated load(s) 1 down and 15 at 6-0-0, ar ad 1726 lb do d. The desig	5 lb nd own				SCOTT SEVI	ER BER
	are considered equally			CASE(S)	Standard						N.	PE-2001	018807
	noted as front (F) or ba section. Ply to ply conr		,	ead + Roc ate Increa	of Live (balanced) ase=1.15): Lumbei	Increase=1.	.15,			Y	SSICH.	ENGINE

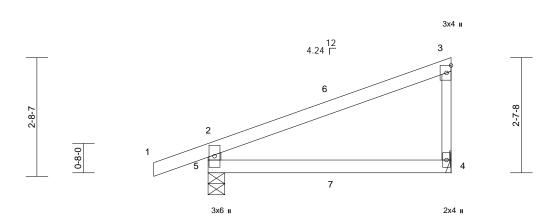
Uniform Loads (lb/ft)

Vert: 1-4=-70, 8-10=-20, 6-8=-20, 5-6=-20

May 2,2024

ONALE

 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.
 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not besign value to dury with with where outputs into design is based only door parameters shown, and is for an individual building design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members and property incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TPH1 Quality Criteria**, and **DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcscomponents.com)


Page: 1

Job	Truss	Truss Type	Qty	Ply	Lot 194 HT	
B240097	J1	Diagonal Hip Girder	2	1	Job Reference (optional)	165280070

Run: 8.73 S Apr 25 2024 Print: 8.730 S Apr 25 2024 MiTek Industries. Inc. Wed May 01 07:38:14 ID:wWQ0cVuS969af?GecLrtCNzdMNG-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Scale	_	1.26	2

Scale = 1:26.2												
Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15	TC	0.41	Vert(LL)	-0.03	4-5	>999	360	MT20	197/144
TCDL	10.0	Lumber DOL	1.15	BC	0.25	Vert(CT)	-0.07	4-5	>967	240		
BCLL	0.0*	Rep Stress Incr	NO	WB	0.00	Horz(CT)	0.00	4	n/a	n/a		
BCDL	10.0	Code	IRC2018/TPI2014	Matrix-R		Wind(LL)	0.01	4-5	>999	240	Weight: 16 lb	FT = 10%
LUMBER TOP CHORD	2x4 SPF No.2	•		or other connecti			69 lb					

5-6-6

\sim	ORD	

- BOT CHORD 2x4 SPF No.2

2x4 SPF No.2 *Except* 3-4:2x3 SPF No.2 WEBS BRACING TOP CHORD Structural wood sheathing directly applied or 5-6-6 oc purlins, except end verticals.

BOT CHORD	Rigid ceili bracing.	ng directly applied or 10-0-0 oc
REACTIONS	· · ·	4= Mechanical, 5=0-4-9
	IVIAX HOLIZ	5=111 (LC 5)

Max Uplift 4=-50 (LC 8), 5=-101 (LC 4) Max Grav 4=223 (LC 1), 5=346 (LC 1) FORCES (lb) - Maximum Compression/Maximum Tension TOP CHORD 2-5=-306/140, 1-2=0/32, 2-3=-139/14,

3-4=-160/73 BOT CHORD 4-5=-26/45

NOTES

- 1) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
- This truss has been designed for a 10.0 psf bottom 2) chord live load nonconcurrent with any other live loads.
- 3) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- 4) All bearings are assumed to be SPF No.2
- 5) Refer to girder(s) for truss to truss connections.
- Provide mechanical connection (by others) of truss to 6) bearing plate capable of withstanding 101 lb uplift at joint 5 and 50 lb uplift at joint 4.
- This truss is designed in accordance with the 2018 7) International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

- down and 36 lb up at 2-9-8, and 69 lb down and 36 lb up at 2-9-8 on top chord, and 3 lb down and 2 lb up at 2-9-8, and 3 lb down and 2 lb up at 2-9-8 on bottom chord. The design/selection of such connection device (s) is the responsibility of others. 9) In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (F) or back (B).
- LOAD CASE(S) Standard
- Dead + Roof Live (balanced): Lumber Increase=1.15, 1) Plate Increase=1.15 Uniform Loads (lb/ft)
 - Vert: 1-2=-70, 2-3=-70, 4-5=-20 Concentrated Loads (lb)
 - Vert: 7=3 (F=2, B=2)

OF MISS SCOTT M. SEVIER UMBER PE-200101880 0 SIONAL E

May 2,2024

DEVELOPMEN SERVICES LEE'S'SUMMIT'SMISSOURI 06/05/2024 4:56:16

TION

Job	Truss	Truss Type	Qty	Ply	Lot 194 HT	
B240097	J2	Jack-Open	3	1	Job Reference (optional)	165280071

4-0-0

4-0-0

4-0-0

-0-10-8

0-10-8

Wheeler Lumber, Waverly, KS - 66871,

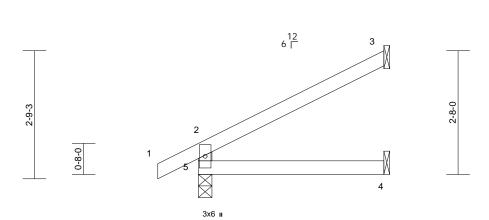
Run: 8.73 S Apr 25 2024 Print: 8.730 S Apr 25 2024 MiTek Industries, Inc. Wed May 01 07:38:14 ID:wWQ0cVuS969af?GecLrtCNzdMNG-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

0.01

4-5

>999

240


Weight: 11 lb

GRIP

197/144

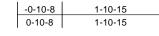
FT = 10%

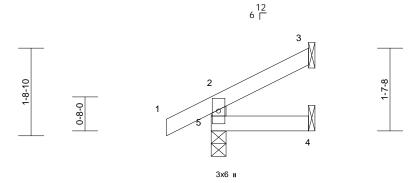
Scale = 1:24.8								I				
Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	
TCLL (roof)	25.0	Plate Grip DOL	1.15	TC	0.20	Vert(LL)	-0.01	4-5	>999	360	MT20	1
TCDL	10.0	Lumber DOL	1.15	BC	0.13	Vert(CT)	-0.02	4-5	>999	240		
BCLL	0.0*	Rep Stress Incr	YES	WB	0.00	Horz(CT)	0.01	3	n/a	n/a	l .	

BCDL	10.0	Code	IRC2018/TPI2014	Matrix-R	0.00	Wind(LL)
LUMBER TOP CHORD BOT CHORD WEBS	2x4 SPF No.2 2x4 SPF No.2 2x4 SPF No.2		LOAD CASE(S)	Standard		
BRACING TOP CHORD	Structural wood sheat 4-0-0 oc purlins, exc		d or			
BOT CHORD	Rigid ceiling directly bracing.					
	(size) 3= Mecha 5=0-3-8 Max Horiz 5=89 (LC Max Uplift 3=-66 (LC Max Grav 3=116 (LC (LC 1)	8), 5=-30 (LC 8)				
FORCES	(lb) - Maximum Com Tension	pression/Maximum				
TOP CHORD BOT CHORD	2-5=-221/67, 1-2=0/3 4-5=0/0	32, 2-3=-75/40				
NOTES						
Vasd=91m II; Exp C; E cantilever	E 7-16; Vult=115mph aph; TCDL=6.0psf; BCI Enclosed; MWFRS (en left and right exposed ; sed; Lumber DOL=1.60	DL=6.0psf; h=25ft; C velope) exterior zone ; end vertical left and	9;			
	has been designed for load nonconcurrent wit		e			
3) * This truss on the bott 3-06-00 tal	s has been designed for om chord in all areas v Il by 2-00-00 wide will f any other members.	or a live load of 20.0p where a rectangle	osf			
 All bearing Refer to gi Provide me 	is are assumed to be S rder(s) for truss to trus echanical connection (ate capable of withstan	ss connections. by others) of truss to				

5 and 66 lb uplift at joint 3. This truss is designed in accordance with the 2018 7) International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent colleges with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)




Job	Truss	Truss Type	Qty	Ply	Lot 194 HT	
B240097	J3	Jack-Open	4	1	Job Reference (optional)	165280072

Run: 8.73 S Apr 25 2024 Print: 8.730 S Apr 25 2024 MiTek Industries, Inc. Wed May 01 07:38:14 ID:wWQ0cVuS969af?GecLrtCNzdMNG-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:22.6	Scale = 1:22.6											
Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15	тс	0.07	Vert(LL)	0.00	4-5	>999	360	MT20	197/144
TCDL	10.0	Lumber DOL	1.15	BC	0.02	Vert(CT)	0.00	4-5	>999	240		
BCLL	0.0*	Rep Stress Incr	YES	WB	0.00	Horz(CT)	0.00	3	n/a	n/a		
BCDL	10.0	Code	IRC2018/TPI2014	Matrix-R		Wind(LL)	0.00	4-5	>999	240	Weight: 6 lb	FT = 10%

1-10-15

			LOAD CASE(S)	Standard		
TOP CHORD						
BOT CHORD WEBS	2x4 SPF 2x4 SPF					
	2X4 SPF	N0.2				
BRACING	<u>.</u>					
TOP CHORD		al wood sheathing directly applied or				
		oc purlins, except end verticals. ling directly applied or 10-0-0 oc				
BOT CHORD	bracing.	ing directly applied of 10-0-0 oc				
REACTIONS	0	3= Mechanical, 4= Mechanical,				
		5=0-3-8				
		5=48 (LC 8)				
		3=-30 (LC 8), 5=-26 (LC 8)				
	Max Grav	3=44 (LC 1), 4=31 (LC 3), 5=171 (LC 1)				
FORCES	(lb) - Max	kimum Compression/Maximum				
	Tension	• • •				
TOP CHORD	2-5=-150	/44, 1-2=0/32, 2-3=-37/14				
BOT CHORD	4-5=0/0					
NOTES						
1) Wind: AS	CE 7-16; Vu	ult=115mph (3-second gust)				
		=6.0psf; BCDL=6.0psf; h=25ft; Cat.				
II; Exp C;	Enclosed; M	MWFRS (envelope) exterior zone;				
		ht exposed ; end vertical left and				
		er DOL=1.60 plate grip DOL=1.60				
		lesigned for a 10.0 psf bottom				
		ncurrent with any other live loads.				
		designed for a live load of 20.0psf				B
		n all areas where a rectangle				R
	any other i	00 wide will fit between the bottom				8
		med to be SPF No.2 .				80
		truss to truss connections.				JAX.
		connection (by others) of truss to				
		of withstanding 26 lb uplift at joint				N.
	lb uplift at jo					Y V
7) This truss	s is designed	d in accordance with the 2018				
Internatio	nal Residen	tial Code sections R502.11.1 and				
R802.10.	2 and refere	enced standard ANSI/TPI 1.				
R802.10.	2 and refere	enced standard ANSI/TPI 1.				
WAR		lesign parameters and READ NOTES ON THIS	AND INCLUDED MITEK	REFERENCE PAGE MII-7473 rev.	1/2/2023 BEFORE USE.	

TION **IEW** DEVELOPMENT SERVICES LEE'S' SUMMIT'S MISSOURI 06/05/2024 4:56:16

E

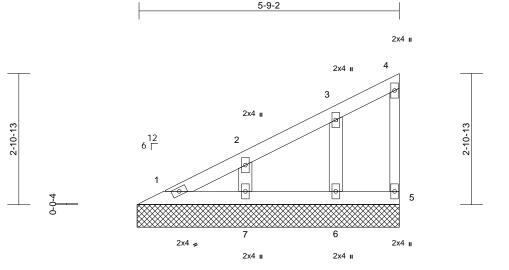
May 2,2024

OF MISSO

SCOTT M. SEVIER

UMBEI PE-2001018807

ONAL


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MILEK REFERENCE PAGE MIL-14/3 rev. 1/2/20/3 BEFURE USE.
Design valid for use only with MITER® connectors. This design is based only upon parameters and is for an individual building component, not
a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall
building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing
is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the
fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org)
and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

Job	Truss	Truss Type	Qty	Ply	Lot 194 HT	
B240097	V1	Valley	1	1	Job Reference (optional)	165280073

Run: 8.73 S Apr 25 2024 Print: 8.730 S Apr 25 2024 MiTek Industries, Inc. Wed May 01 07:38:14 ID:bEmnamQIzPDm3jINIZoXI0zOZMg-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

i u

5-9-2

Seal	<u> </u>	1:25	5

Loading TCLL (roof) TCDL BCLL BCDL		(psf) 25.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018	3/TPI2014	CSI TC BC WB Matrix-P	0.08 0.03 0.02	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 5	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 18 lb	GRIP 197/144 FT = 10%
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	5-9-10 oc Rigid ceili bracing. (size) Max Horiz Max Uplift	No.2 No.2 No.2 purlins, e. ing directly 1=5-9-10, 7=5-9-10 1=106 (LC 5=-14 (LC (LC 8) 1=70 (LC	athing directly applie xcept end verticals. applied or 10-0-0 or 5=5-9-10, 6=5-9-10 C 7) 5 5), 6=-48 (LC 8), 7= 16), 5=40 (LC 1), 6= 194 (LC 1)	o 9) ^{),} LC =-59	on the bottor 3-06-00 tall b chord and ar All bearings Provide mec bearing plate 5, 59 lb uplift This truss is International	has been design in chord in all an oy 2-00-00 wide are assumed to hanical connect a capable of with a ti joint 7 and 4 designed in acc Residential Coo ind referenced si Standard	eas where will fit betw rs. be SPF No ion (by oth astanding 1 8 Ib uplift a ordance wi de sections	a rectangle veen the bott 0.2 . ers) of truss t 4 lb uplift at j t joint 6. ith the 2018 R502.11.1 a	om to oint					
FORCES	(lb) - Max Tension	imum Com	pression/Maximum											
TOP CHORD	4-5=-32/1	9	/34, 3-4=-55/29,											
BOT CHORD WEBS		27, 6-7=-36 /84, 3-6=-1	/27, 5-6=-36/27 25/70											

NOTES

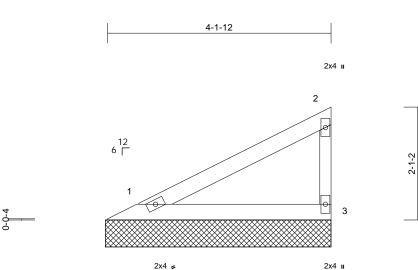
- Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
- Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 3) Gable requires continuous bottom chord bearing.

4) Gable studs spaced at 2-0-0 oc.

 This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

DEVELOPMENT: SERVICES LEE'S'SUMMIT: MISSOURI 06/05/2024 4:56:16

TION


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPH Claulity Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

Job	Truss	Truss Type	Qty	Ply	Lot 194 HT	
B240097	V2	Valley	2	1	Job Reference (optional)	165280074

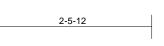
2-1-2

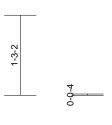
Run: 8.73 S Apr 25 2024 Print: 8.730 S Apr 25 2024 MiTek Industries, Inc. Wed May 01 07:38:14 ID:wWQ0cVuS969af?GecLrtCNzdMNG-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

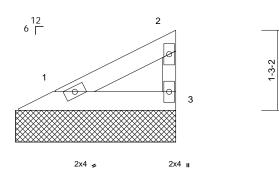
Page: 1

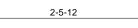
			ŀ		4-1-12			_			
Scale = 1:21.4			I					I			-
Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES
TCLL (roof)	25.0	Plate Grip DOL	1.15	TC	0.22	Vert(LL)	n/a	-	n/a	999	MT20
TCDL	10.0	Lumber DOL	1.15	BC	0.12	Vert(TL)	n/a	-	n/a	999	

Loading TCLL (roof) TCDL BCLL BCDL	(psf) 25.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018/TPI2014	CSI TC BC WB Matrix-P	0.22 0.12 0.00	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 3	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 10 lb	GRIP 197/144 FT = 10%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD	0 0 ,	cept end verticals.	International R802.10.2 a LOAD CASE(S)	designed in accord Residential Code nd referenced stan Standard	sections	R502.11.1 a	and					
	Max Horiz 1=72 (LC Max Uplift 1=-20 (LC Max Grav 1=155 (LC	7) 5 8), 3=-38 (LC 8) C 1), 3=155 (LC 1)										
FORCES TOP CHORD BOT CHORD	(lb) - Maximum Com Tension 1-2=-66/43, 2-3=-12 1-3=-25/19	•										
 Vasd=91m II; Exp C; I cantilever right expos 2) Truss des only. For see Stand. or consult 3) Gable requisité 4) Gable studies 5) This truss chord live 6) * This truss on the bott 3-06-00 ta chord and 7) All bearing 8) Provide m bearing plate 	CE 7-16; Vult=115mph nph; TCDL=6.0psf; BC Enclosed; MWFRS (er left and right exposed sed; Lumber DOL=1.6; signed for wind loads ir studs exposed to wind ard Industry Gable En- qualified building desig- uires continuous botton ds spaced at 4-0-0 oc. has been designed for load nonconcurrent wi s has been designed for tom chord in all areas i any other members. gs are assumed to be S echanical connection (ate capable of withstar b uplift at joint 3.	DL=6.0psf; h=25ff; C ivelope) exterior zon ; end vertical left and 0 plate grip DOL=1.6 the plane of the tru (normal to the face) d Details as applicat gner as per ANSI/TF m chord bearing. a 10.0 psf bottom th any other live load or a live load of 20.0 where a rectangle fit between the bottoc SPF No.2. by others) of truss to	e; d 30 ss ole, ole, olf 1. ds. psf m							S	PE-2001	I ENGINE


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent toulsable personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcscomponents.com)


May 2,2024


Job	Truss	Truss Type	Qty	Ply	Lot 194 HT	
B240097	V3	Valley	2	1	Job Reference (optional)	165280075

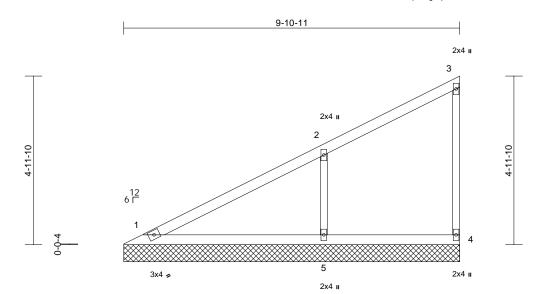

Run: 8.73 S Apr 25 2024 Print: 8.730 S Apr 25 2024 MiTek Industries, Inc. Wed May 01 07:38:14 ID:wWQ0cVuS969af?GecLrtCNzdMNG-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Scale =	1:18.1
---------	--------

Loading (psf)	Spacing	2-0-0	CSI TC	0.05	DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP 197/144
TCLL (roof) 25.0 TCDL 10.0	Plate Grip DOL Lumber DOL	1.15 1.15	BC	0.05 0.03	Vert(LL) Vert(TL)	n/a n/a	-	n/a n/a	999 999	MT20	197/144
BCLL 0.0*	Rep Stress Incr	YES	WB	0.03	Horiz(TL)	0.00	3	n/a	999 n/a		
	Code	IRC2018/TPI2014	Matrix-P	0.00	(12)	0.00	Ŭ	n/a	n/a	Weight: 6 lb	FT = 10%
BCDL 10.0 LUMBER TOP CHORD 2x4 SPF No.2 BOT CHORD 2x4 SPF No.2 BOT CHORD 2x4 SPF No.2 BRACING TOP CHORD Structural wood sheat 2-6-4 oc purlins, exc BOT CHORD Rigid ceiling directly is bracing. REACTIONS (size) 1=2-6-4, 3 Max Horiz 1=37 (LC & Max Uplift 1=70 (LC & Max Grav FORCES (lb) - Maximum Comp Tension TOP CHORD 1-2=-34/22, 2-3=-63/: BOT CHORD BOT CHORD 1-2=-34/22, 2-3=-63/: BOT CHORD BOT CHORD 1-2=-34/22, 2-3=-63/: BOT CHORD BOT CHORD 1-3=-13/10 NOTES 1) Wind: ASCE 7-16; Vult=115mph Vasd=91mph; TCDL=6.0psf; BCI II; Exp C; Enclosed; MWFRS (em cantilever left and right exposed; right exposed; Lumber DOL=1.6C 2) Truss designed for wind loads in only. For studs exposed to wind see Standard Industry Gable End or consult qualified building desig 3) Gable requires continuous bottom Gable studs spaced at 4-0-0 oc. 5) This truss has been designed for chord live load nonconcurrent witt * This truss has been designed for chord live load nonconcurrent witt 6) * This truss has been designed for chord and any other members. 7	athing directly applied ept end verticals. applied or 10-0-0 oc =2-6-4 5) 8), 3=-20 (LC 8) 1), 3=80 (LC 1) pression/Maximum 30 (3-second gust) DL=6.0psf; h=25ft; Ca velope) exterior zone end vertical left and 0 plate grip DOL=1.60 the plane of the trus (normal to the face), 1 Details as applicable iner as per ANSI/TPI in chord bearing. a 10.0 psf bottom h any other live loads or a live load of 20.0p where a rectangle it between the bottom SPF No.2.	9) This truss is Internationa R802.10.2 a LOAD CASE(S d or at. a; 0 s e, 1. s. ssf m	designed in accord Residential Code and referenced star	sections	8 R502.11.1 a	Ind					MISSOLUTION T.M. IER DISSOLUTION DISSOLUTION

May 2,2024

Page: 1


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent toulsible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

Job	Truss	Truss Type	Qty	Ply	Lot 194 HT	
B240097	V4	Valley	1	1	Job Reference (optional)	165280076

Run: 8.73 S Apr 25 2024 Print: 8.730 S Apr 25 2024 MiTek Industries, Inc. Wed May 01 07:38:15 ID:wWQ0cVuS969af?GecLrtCNzdMNG-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

. uge

9-10-11

Scale = 1:33.9

Scale = 1.55.9							
TCLL (roof) 2 TCDL 1 BCLL	psf) Spacing 25.0 Plate Grip DOL 10.0 Lumber DOL 0.0* Rep Stress Incr 10.0 Code	2-0-0 1.15 1.15 YES IRC2018/TPI2014	CSI TC 0.36 BC 0.19 WB 0.09 Matrix-S 0.09	DEFLinVert(LL)n/aVert(TL)n/aHoriz(TL)0.00	- n	efl L/d /a 999 /a 999 /a n/a	PLATES GRIP MT20 197/144 Weight: 29 lb FT = 10%
6-0-0 oc purlir BOT CHORD Rigid ceiling d bracing. REACTIONS (size) 1=9 Max Horiz 1=1 Max Uplift 4=-:	2 2 2 2 3 3 5 5 5 5 5 5 5 5 5 5 5 5 5	bearing pla 4 and 157 l 9) This truss is Internationa R802.10.2 i d or LOAD CASE(S	chanical connection (by oth te capable of withstanding is b uplift at joint 5. s designed in accordance v al Residential Code section and referenced standard Al) Standard	28 lb uplift at joint /ith the 2018 s R502.11.1 and			
Tension	n Compression/Maximum 2-3=-128/50, 3-4=-90/40 -5=-65/50						
 II; Exp C; Enclosed; MWFI cantilever left and right expright exposed; Lumber DO 2) Truss designed for wind ld only. For studs exposed to see Standard Industry Gat or consult qualified building 3) Gable requires continuous 4) Gable studs spaced at 4-0 5) This truss has been design chord live load nonconcurr 6) * This truss has been design on the bottom chord in all and the set of the	bsf; BCDL=6.0psf; h=25ft; C RS (envelope) exterior zone posed ; end vertical left and DL=1.60 plate grip DOL=1.6i oads in the plane of the trus o wind (normal to the face), ble End Details as applicabl g designer as per ANSI/TPI s bottom chord bearing.)-0 oc. ned for a 10.0 psf bottom rent with any other live load gned for a live load of 20.0p areas where a rectangle de will fit between the bottor bers.	e; I O Ss I I I I I I S. Ssf				1	STATE OF MISSOL SCOTT M. SEVIER NUMBER PE-2001018807

7) All bearings are assumed to be SPF No.2 .

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent toulsible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com) May 2,2024

Job	Truss	Truss Type	Qty	Ply	Lot 194 HT	
B240097	V5	Valley	1	1	Job Reference (optional)	165280077

Run: 8.73 S Apr 25 2024 Print: 8.730 S Apr 25 2024 MiTek Industries, Inc. Wed May 01 07:38:15 ID:wWQ0cVuS969af?GecLrtCNzdMNG-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

8-2-11 2x4 II 3 2x4 🛛 2 4-1-10 4-1-10 12 6 Г 4 -0-0 5 2x4 🍃 2x4 II 2x4 II

Scale = 1:30.5			I									
Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15	тс	0.23	Vert(LL)	n/a	-	n/a	999	MT20	197/144
TCDL	10.0	Lumber DOL	1.15	BC	0.12	Vert(TL)	n/a	-	n/a	999		
BCLL	0.0*	Rep Stress Incr	YES	WB	0.06	Horiz(TL)	0.00	4	n/a	n/a		
BCDL	10.0	Code	RC2018/TPI2014	Matrix-P							Weight: 23 lb	FT = 10%
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING	R 8) Provide mechanical connection (by others) of truss to ORD 2x4 SPF No.2 bearing plate capable of withstanding 27 lb uplift at joint ORD 2x4 SPF No.2 4 and 127 lb uplift at joint 5. 2x3 SPF No.2 9) This truss is designed in accordance with the 2018 S 2x3 SPF No.2 International Residential Code sections R502.11.1 and BP902 10.2 and textored at and ard detadard to the data data data data data data data dat											
TOP CHORD	Structural wood she	athing directly applied	or LOAD CASE(S)	Standard								

8-2-11

TOP CHORD	Structural	wood sheathing directly applied of
	6-0-0 oc p	ourlins, except end verticals.
BOT CHORD	Rigid ceili	ng directly applied or 10-0-0 oc
	bracing.	
REACTIONS	(size)	1=8-2-11, 4=8-2-11, 5=8-2-11
	Max Horiz	1=157 (LC 5)

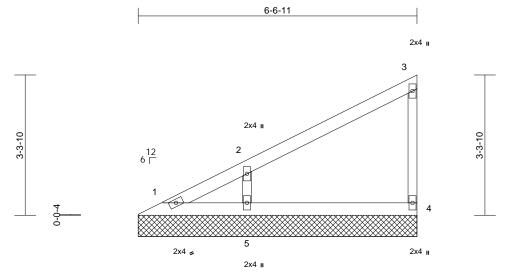
	Max Uplift	4=-27 (LC 5), 5=-127 (LC 8)
	Max Grav	1=126 (LC 16), 4=134 (LC 1)
		5=424 (LC 1)
FORCES	(lb) - Max	imum Compression/Maximum

Tension TOP CHORD 1-2=-127/74, 2-3=-115/44, 3-4=-105/44 1-5=-54/41, 4-5=-54/41 BOT CHORD WEBS 2-5=-329/184

NOTES

- 1) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
- Truss designed for wind loads in the plane of the truss 2) only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- Gable requires continuous bottom chord bearing. 3)
- Gable studs spaced at 4-0-0 oc. 4) 5)
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf 6) on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- 7) All bearings are assumed to be SPF No.2 .

 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.
 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not beigh valid for use only with with with sets outputs into design is based only door parameters shown, and is for an individual dualing component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria**, and **DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcscomponents.com)



Job	Truss	Truss Type	Qty	Ply	Lot 194 HT	
B240097	V6	Valley	1	1	Job Reference (optional)	165280078

Run: 8.73 S Apr 25 2024 Print: 8.730 S Apr 25 2024 MiTek Industries, Inc. Wed May 01 07:38:15 ID:wWQ0cVuS969af?GecLrtCNzdMNG-RtC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

.

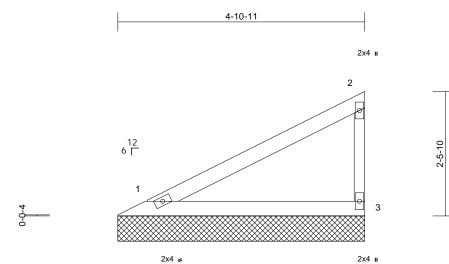
6-6-11

Scale	- 1	1.27	1

		i											
Loading	(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15		TC	0.19	Vert(LL)	n/a	-	n/a	999	MT20	197/144
TCDL	10.0	Lumber DOL	1.15		BC	0.10	Vert(TL)	n/a	-	n/a	999		
BCLL	0.0*	Rep Stress Incr	YES		WB	0.05	Horiz(TL)	0.00	4	n/a	n/a		
BCDL	10.0	Code	IRC2018/	TPI2014	Matrix-P							Weight: 18 lb	FT = 10%
LUMBER	LUMBER 8) Provide mechanical connection (by others) of truss to												
TOP CHORD													
BOT CHORD													
WEBS	2x3 SPF No.2				designed in acc								
OTHERS	2x3 SPF No.2				Residential Co			and					
BRACING					nd referenced s	tandard AN	ISI/TPI 1.						
TOP CHORD	Structural wood she 6-0-0 oc purlins, ex		ed or LOA	AD CASE(S)	Standard								
BOT CHORD			с										
	bracing.												
REACTIONS	(size) 1=6-6-11	, 4=6-6-11, 5=6-6-1 ²	1										
	Max Horiz 1=122 (LO	C 5)											
	Max Uplift 4=-28 (LC	C 8), 5=-108 (LC 8)											
	Max Grav 1=48 (LC	16), 4=143 (LC 1),	5=361										
	(LC 1)												
FORCES	(lb) - Maximum Com	npression/Maximum											
	Tension												
TOP CHORD	,	,											
BOT CHORD		/32											
	WEBS 2-5=-281/157												
NOTES													
 Wind: ASC 	CE 7-16; Vult=115mph	i (3-second gust)											

- Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed ; end vertical left and right exposed; Lember DOL=1.60 plate grip DOL=1.60
 2) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face),
- see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
 Gable requires continuous bottom chord bearing.
- 4) Gable studs spaced at 4-0-0 oc.
- 5) This truss has been designed for a 10.0 psf bottom
- chord live load nonconcurrent with any other live loads.6) * This truss has been designed for a live load of 20.0psf
- on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- 7) All bearings are assumed to be SPF No.2 .

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPH Claulity Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)



Job	Truss	Truss Type	Qty	Ply	Lot 194 HT		
B240097	V7	Valley	1	1	Job Reference (optional)	165280079	

2-5-10

Run: 8.73 S Apr 25 2024 Print: 8.730 S Apr 25 2024 MiTek Industries, Inc. Wed May 01 07:38:15 ID:wWQ0cVuS969af?GecLrtCNzdMNG-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

4-10-11

2x4 ዾ

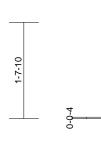
<u> </u>		
Scale	= 1:22.8	

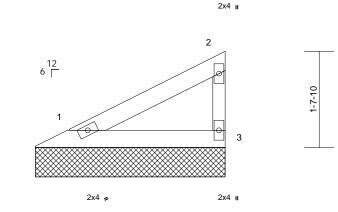
Scale = 1:22.8										
Loading (psf)	Spacing	2-0-0	CSI	D	EFL	in (lo	c) l/defl	L/d	PLATES	GRIP
TCLL (roof) 25.0	Plate Grip DOL	1.15	TC 0.	.33 Ve	ert(LL)	n/a `	- n/a	999	MT20	197/144
TCDL 10.0	Lumber DOL	1.15	BC 0.	.18 Ve	ert(TL)	n/a	- n/a	999		
BCLL 0.0*	Rep Stress Incr	YES	WB 0.	.00 H	oriz(TL) (0.00	3 n/a	n/a		
BCDL 10.0	Code	IRC2018/TPI2014	Matrix-P						Weight: 13 lb	FT = 10%
BCDL 10.0 LUMBER TOP CHORD 2x4 SPF No.2 BOT CHORD 2x4 SPF No.2 WEBS 2x3 SPF No.2 BRACING Structural wood sheat TOP CHORD Structural wood sheat 4-11-3 oc purlins, ex BOT CHORD Rigid ceiling directly is bracing.	Code athing directly applie tcept end verticals. applied or 10-0-0 oc , 3=4-10-11 5) 8), 3=-46 (LC 8) 1), 3=189 (LC 1) pression/Maximum 7/72 (3-second gust) DL=6.0psf; h=25ft; C velope) exterior zom- end vertical left anc 0 plate grip DOL=1.6 the plane of the trus (normal to the face), I Details as applicab iner as per ANSI/TP n chord bearing. a 10.0 psf bottom h any other live load or a live load of 20.0 where a rectangle it between the bottor BF No.2. by others) of truss to	IRC2018/TPI2014 9) This truss is International R802.10.2 a LOAD CASE(S) d or at. e; 1 0 ss he, 1.1. ls. osf m	Matrix-P designed in accordance Residential Code sect nd referenced standard	ce with t ions R5	the 2018 502.11.1 and				Weight: 13 lb	MISSOUR T M. IER JER 018807

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent toulsable personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcscomponents.com)

Job	Truss	Truss Type	Qty	Ply	Lot 194 HT	
B240097	V8	Valley	1	1	Job Reference (optional)	165280080

3-2-11


3-2-11


Wheeler Lumber, Waverly, KS - 66871,

Run: 8.73 S Apr 25 2024 Print: 8.730 S Apr 25 2024 MiTek Industries, Inc. Wed May 01 07:38:15 ID:wWQ0cVuS969af?GecLrtCNzdMNG-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:19.6

Scale = 1.19.0	·	1		1							1	
Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15	TC	0.11	Vert(LL)	n/a	-	n/a	999	MT20	197/144
TCDL	10.0	Lumber DOL	1.15	BC	0.06	Vert(TL)	n/a	-	n/a	999	-	
BCLL	0.0*	Rep Stress Incr	YES	WB	0.00	Horiz(TL)	0.00	3	n/a	n/a		
BCDL	10.0	Code	IRC2018/TPI2014	Matrix-P							Weight: 8 lb	FT = 10%
LUMBER			9) This truss i	s designed in acc	ordance w	ith the 2018						
TOP CHORD	2x4 SPF No.2			al Residential Cod			and					
BOT CHORD			R802.10.2	and referenced st	tandard Al	ISI/TPI 1.						
WEBS	2x3 SPF No.2		LOAD CASE(S) Standard								
BRACING			·	,								
TOP CHORD	Structural wood she	athing directly appli	ed or									
	3-3-3 oc purlins, ex											
BOT CHORD			C									
	bracing.											
REACTIONS	(size) 1=3-2-11	, 3=3-2-11										
	Max Horiz 1=53 (LC	5)										
	Max Uplift 1=-15 (LC											
	Max Grav 1=114 (L0	C 1), 3=114 (LC 1)										
FORCES	(lb) - Maximum Corr	npression/Maximum										
	Tension											
TOP CHORD	,	/43										
BOT CHORD	1-3=-18/14											
NOTES												
	CE 7-16; Vult=115mph											
Vasd=91r	mph; TCDL=6.0psf; BC	DL=6.0psf; h=25ft;	Cat.									
	Enclosed; MWFRS (er											
	left and right exposed											
	osed; Lumber DOL=1.6											
	signed for wind loads in											and
	studs exposed to wind dard Industry Gable En										OF	MISSO
	t qualified building desi										FIE	J. Seine
	quires continuous botto									6	AN'	N.S.
	ids spaced at 4-0-0 oc.									R	SCOT	TM. Y
	s has been designed fo									8	/ SEV	TER \ Y
	load nonconcurrent w		ids.							Ba		
	ss has been designed f									W.	THE A	· San Area
on the bo	ttom chord in all areas	where a rectangle	•								Juli	
3-06-00 ta	all by 2-00-00 wide will	fit between the bott	om							03		
	d any other members.									N.	PE-200	1018807
	gs are assumed to be									V		158
	nechanical connection										NºS'SIG	ENUR
	late capable of withsta	nding 15 lb uplift at j	oint								SSION	AL E'S
1 and 28	lb uplift at joint 3.										Vac	and a
											Μ	ay 2,2024
												,

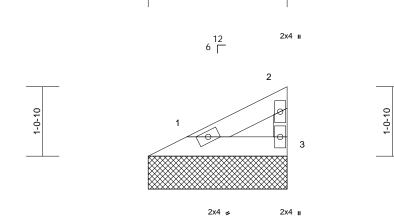
WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent toulsible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

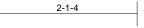
Job	Truss	Truss Type	Qty	Ply	Lot 194 HT	
B240097	V9	Valley	1	1	Job Reference (optional)	165280081

2-1-4

Wheeler Lumber, Waverly, KS - 66871,

Run: 8.73 S Apr 25 2024 Print: 8.730 S Apr 25 2024 MiTek Industries, Inc. Wed May 01 07:38:15 ID:wWQ0cVuS969af?GecLrtCNzdMNG-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f


Page: 1


FRUCTION VIEW

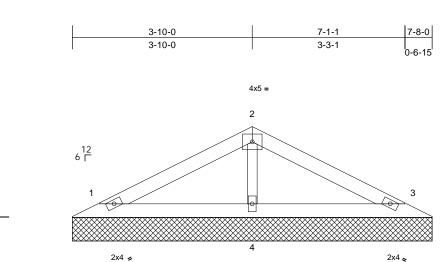
SRE

DEVELORMEN SERVICES LEE'S' SUMMIT'S MISSOURI 06/05/2024 4:56:17

Scale = 1:17.5

Scale = 1:17.5												
Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15	тс	0.03	Vert(LL)	n/a	-	n/a	999	MT20	197/144
TCDL	10.0	Lumber DOL	1.15	BC	0.02	Vert(TL)	n/a	-	n/a	999		
BCLL	0.0*	Rep Stress Incr	YES	WB	0.00	Horiz(TL)	0.00	3	n/a	n/a		
BCDL	10.0	Code	IRC2018/TPI2014	Matrix-P							Weight: 5 lb	FT = 10%
LUMBER				s designed in acco								
TOP CHORD				al Residential Cod			and					
BOT CHORD				and referenced sta	andard Ar	NSI/TPT1.						
NEBS	2x3 SPF No.2		LOAD CASE(S) Standard								
BRACING TOP CHORD	Structural wood abo	othing directly onnly	ad ar									
	Structural wood she 2-1-4 oc purlins, ex											
BOT CHORD	, ,		с									
REACTIONS	•	3=2-1-4										
	Max Horiz 1=29 (LC											
	Max Uplift 1=-8 (LC											
	Max Grav 1=62 (LC											
FORCES	(lb) - Maximum Com Tension	npression/Maximum										
TOP CHORD		2/24										
BOT CHORD	,	<i>"</i> ∠ 1										
NOTES												
	CE 7-16; Vult=115mph	(3-second gust)										
,	mph; TCDL=6.0psf; BC	· · · · ·	Cat.									
	Enclosed; MWFRS (er											
	left and right exposed											
	osed; Lumber DOL=1.6 signed for wind loads in											
	signed for wind loads in studs exposed to wind											an
	dard Industry Gable En										OF	MISSO
	t qualified building desi										THIE OF	
	quires continuous botto									A	N/ scor	New M
	ids spaced at 4-0-0 oc.									R	SCOT SEV	
	s has been designed fo load nonconcurrent w		da							Alas	SEV	
	ss has been designed f								۲ (-11	1 44	X The
	ttom chord in all areas		JP 31								coll?	Xemen
	all by 2-00-00 wide will		om							243	NUM	IBER A
	d any other members.									N.	O PE-2001	1018807
	gs are assumed to be									Ŷ	PE-200	158
	nechanical connection										W	FNUE
	late capable of withstan uplift at joint 3.	nuing 8 ib upint at jo									CON/	AL LO
	apint at joint 5.										all	
											M	ay 2,2024

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent toulsable personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)


Job	Truss	Truss Type	Qty	Ply	Lot 194 HT	
B240097	V10	Valley	1	1	Job Reference (optional)	165280082

1-7-8

0-0-4

1-11-4

Run: 8.73 S Apr 25 2024 Print: 8.730 S Apr 25 2024 MiTek Industries, Inc. Wed May 01 07:38:15 ID:wWQ0cVuS969af?GecLrtCNzdMNG-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

2x4 u

7-8-0

4 💋

Scale = 1.24.5

Scale = 1:24.5												
Loading TCLL (roof) TCDL BCLL BCDL LUMBER TOP CHORD BOT CHORD BOT CHORD BOT CHORD BOT CHORD REACTIONS	25.0 Pi 10.0 Lu 0.0* Re 10.0 Cc 2x4 SPF No.2 2x3 SPF No.2 Structural wood sheathir 6-0-0 cc purlins. Rigid ceiling directly app bracing. (size) 1=7-8-0, 3=7- Max Horiz 1=-29 (LC 13)	late Grip DOL umber DOL ep Stress Incr ode ing directly applied of plied or 10-0-0 oc -8-0, 4=7-8-0	on the bottor 3-06-00 tall t chord and ar 8) All bearings 9) Provide mec bearing plate 1, 40 lb uplifi 10) This truss is International R802.10.2 a	Residential Cod nd referenced sta	as where will fit betw s. De SPF No on (by oth standing 3 Ib uplift at ordance w e sections	a rectangle veen the botto o.2. ers) of truss t 5 lb uplift at j joint 4. ith the 2018 R502.11.1 a	o o oint	(loc) - - 3	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 18 lb	GRIP 197/144 FT = 10%
FORCES TOP CHORD BOT CHORD WEBS	Max Uplift 1=-35 (LC 8), (LC 8) Max Grav 1=153 (LC 1), (LC 1) (lb) - Maximum Compress Tension 1-2=-73/41, 2-3=-73/29 1-4=-1/32, 3-4=-1/32 2-4=-198/52	, 3=153 (LC 1), 4=2										

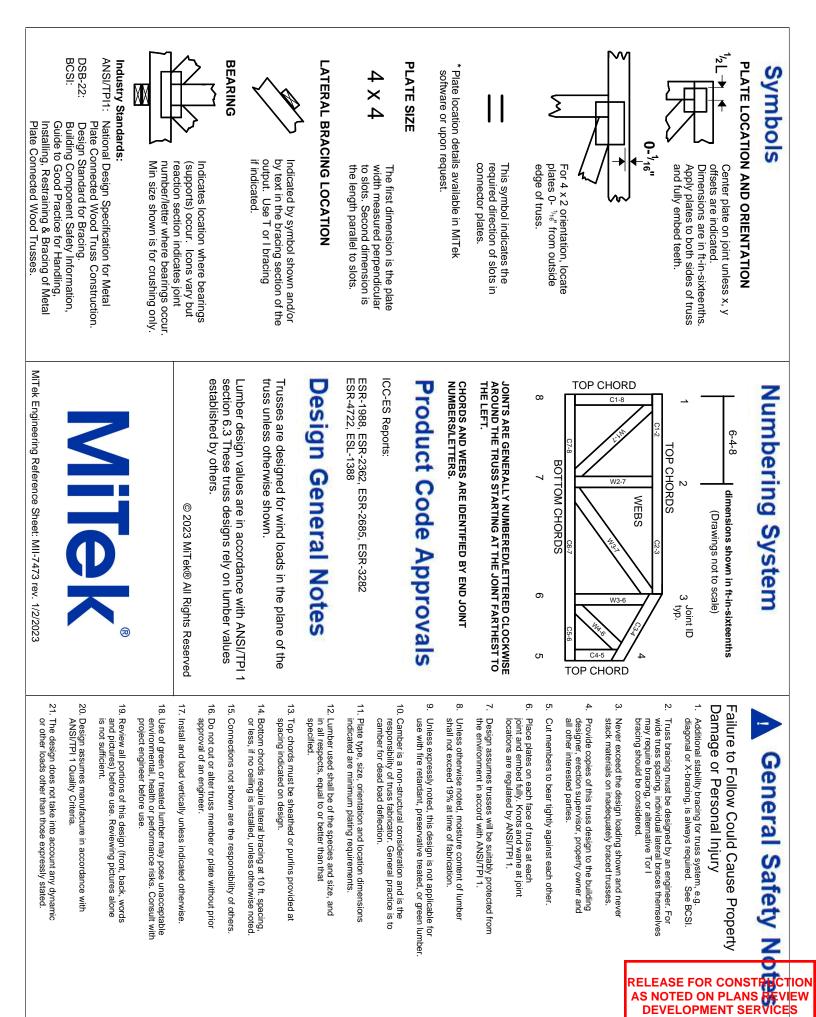
NOTES

1) Unbalanced roof live loads have been considered for this design.

- Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

4) Gable requires continuous bottom chord bearing.

5) Gable studs spaced at 4-0-0 oc.


 This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. STATE OF MISSOL

May 2,2024

Page: 1

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPH Claulity Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

RELEASE FOR DESTRUCTION AS NOTED ON PLANS REVIEW DEVELOR MINISSERVICES LEE'S'SUMMIT'S MISSOURI 06/05/2024 4:56:17

ASE FOR CONST **OTED ON PLANS** VELOPMENT SER LEE'S SUMMIT, MISSOURI

4:56:17

06/05/2024