

RE: B240103 - Lot 137 HM Site Information: Project Customer: Summit Homes Project Name: Lot/Block: 137 Subdivisi Model: Riverside - Modern Farmhouse Address: 2759 SW 12th Terr City: Lee's Summit State: Me General Truss Engineering Criteria & Design Load Drawings Show Special Loading Conditions): Design Code: IRC2018/TPI2014 Wind Code: ASCE 7-16 [Notind Regreted: 115 mph	MiTek, Inc. 16023 Swingley Ridge Rd. Chesterfield, MO 63017 314.434.1200 S (Individual Truss Design Design Program: MiTek 20/20 8.7 Design Method: MWFRS (Envelope) ASCE 7-16 [Low Rise]
Roof Load: 45.0 psf	Floor Load: N/A psf
Mean Roof Height (feet): 25	Exposure Category: C
No.Seal#Truss NameDateNo.Seal#1 $ 65311995$ A1 $5/3/24$ 35 $ 6531201$ 2 $ 65311997$ A3 $5/3/24$ 36 $ 6531201$ 3 $ 65311997$ A3 $5/3/24$ 37 $ 6531201$ 4 $ 65311998$ B1 $5/3/24$ 38 $ 6531201$ 5 $ 65311999$ B2 $5/3/24$ 39 $ 6531201$ 6 $ 65312000$ C1 $5/3/24$ 40 $ 6531201$ 7 $ 65312002$ D1 $5/3/24$ 41 $ 6531201$ 8 $ 65312002$ D1 $5/3/24$ 42 $ 6531201$ 9 $ 65312006$ E2 $5/3/24$ 42 $ 6531200$ 9 $ 65312006$ E3 $5/3/24$ 42 $ 6531200$ 10 $ 65312007$ G1 $5/3/24$ 42 $ 6531201$ 11 $ 65312010$ H1 $5/3/24$ 42 $ 6531201$ 12 $ 65312012$ H3 $5/3/24$ 4214 $ 65312012$ H3 $5/3/24$ 4215 $ 65312012$ H3 $5/3/24$ 16 $ 65312013$ H4 $5/3/24$ 20 $ 65312014$ H5 $5/3/24$ 21 $ 65312020$ J2 $5/3/24$ 22 $ 65312023$ R1 $5/3/24$ 23 $ 65312024$ V1 $5/3/24$ 24 $ 65312026$ V2 $5/3/24$ 25 $ 65312026$ V2 $5/3/24$ 26 $ 65312026$ V3 $5/3/24$	Truss Name Date 29 V6 5/3/24 30 V7 5/3/24 31 V8 5/3/24 32 V9 5/3/24 33 V10 5/3/24 34 V11 5/3/24 35 V12 5/3/24 36 V13 5/3/24 36 V13 5/3/24
The truss drawing(s) referenced above have been prepared MiTek USA, Inc. under my direct supervision based on th provided by Wheeler - Waverly.	by e parameters

Truss Design Engineer's Name: Sevier, Scott My license renewal date for the state of Missouri is December 31, 2025.

IMPORTANT NOTE: The seal on these truss component designs is a certification that the engineer named is licensed in the jurisdiction(s) identified and that the designs comply with ANSI/TPI 1. These designs are based upon parameters shown (e.g., loads, supports, dimensions, shapes and design codes), which were given to MiTek or TRENCO. Any project specific information included is for MiTek's or TRENCO's customers file reference purpose only, and was not taken into account in the preparation of these designs parameters or the designs for any particular building. Before use, the building designer should verify applicability of design parameters and properly incorporate these designs into the overall building design per ANSI/TPI 1, Chapter 2.

Job	Truss	Truss Type	Qty	Ply	Lot 137 HM	
B240103	A1	Hip Girder	1	1	Job Reference (optional)	165311995

-0-10-8

0-10-8

4-0-0

4-0-0

Run: 8.73 S Apr 25 2024 Print: 8.730 S Apr 25 2024 MiTek Industries, Inc. Thu May 02 07:32:16 ID:XpMCmw72opF9?k_wkjEbUFziJgJ-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

14-10-8

0-10-8

14-0-0

4-0-0

rzophark_wkjebuHziJgJ-ktU?PsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC?f

10-0-0

6-0-0

Scale = 1:31.7

Plate Offsets (X, Y): [7:Edge,0-5-8]

Loading TCLL (roof) TCDL BCLL BCDL	(psf) 25.0 10.0 0.0 * 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 NO IRC2018	3/TPI2014	CSI TC BC WB Matrix-S	0.78 0.79 0.09	DEFL Vert(LL) Vert(CT) Horz(CT) Wind(LL)	in -0.11 -0.24 0.03 0.09	(loc) 8-9 8-9 7 8-9	l/defl >999 >683 n/a >999	L/d 360 240 n/a 240	PLATES MT20 Weight: 45 lb	GRIP 197/144 FT = 10%	
LUMBER TOP CHORE BOT CHORE WEBS BRACING TOP CHORE	 2x4 SPF No.2 *Exce 1.8E 2x4 SPF No.2 2x3 SPF No.2 *Exce 2400F 2.0E Structural wood she 3-7-13 oc purlins, e 	pt* 3-4:2x4 SPF 21(pt* 10-2,7-5:2x6 SP athing directly applie xcept end verticals,	5) 00F 6) 7) ed or and 8)	* This truss h on the bottom 3-06-00 tall b chord and an All bearings a Provide med bearing plate 10 and 196 ll This truss is laterrational	has been designed in chord in all areas by 2-00-00 wide will by other members. are assumed to be hanical connection capable of withsta o uplift at joint 7. designed in accord Residential Code	for a liv s where I fit betw SPF No (by oth anding 1 dance w	e load of 20. a rectangle veen the bott 0.2. ers) of truss 96 lb uplift a ith the 2018	Opsf tom to t joint						
BOT CHORE	2-0-0 oc purlins (5-9 Rigid ceiling directly bracing. (size) 7=0-3-8, 1 Max Horiz 10=-49 (L Max Uplift 7=-196 (L Max Grav 7=927 (LC	-13 max.): 3-4. applied or 10-0-0 or 10=0-3-8 C 6) C 9), 10=-196 (LC 8 C 1), 10=927 (LC 1)	c 9) 3) 10	R802.10.2 ar Graphical pu or the orienta bottom chorc Hanger(s) or provided suff	residential codes and referenced stan rlin representation ation of the purlin a l. other connection of icient to support co	dard AN does no long the device(s	ISI/TPI 1. ot depict the set top and/or) shall be tted load(s) 1	size 184						
F ORCES TOP CHORE	(lb) - Maximum Com Tension) 1-2=0/35, 2-3=-1354 4-5=-1355/270, 5-6=	pression/Maximum 1/270, 3-4=-1131/26 0/35, 2-10=-839/19	9, 7,	at 6-0-12, ar 184 lb down 74 lb down a down at 7-1	and 86 lb down and and 147 lb up at 1 t 4-0-0, 31 lb down 1-4, and 74 lb down	, 80 10 0 65 lb up 0-0-0 o n at 6-0 n at 9-1	at 7-11-4, and to 7 and to 7 at 7-11-4, and to 7 and 11 at 12, and 31 at 1-12, and 31 at 1-4 on botto	and and Ib m						
BOT CHORE	5-7=-839/197 9-10=-227/1135, 8-9 7-8=-207/1137 3-9=0/288, 3-8=-31/3	9=-233/1129, 35, 4-8=0/289	11	chord. The c (s) is the resp) In the LOAD of the truss a	lesign/selection of consibility of others CASE(S) section, re noted as front (I	such co s. Ioads aj F) or ba	nnection dev oplied to the ck (B).	vice face				OF N		
NOTES 1) Unbaland this desig 2) Wind: AS Vasd=91 II; Exp C cantileve right exp	ced roof live loads have gn. SCE 7-16; Vult=115mph mph; TCDL=6.0psf; BC ; Enclosed; MWFRS (er r left and right exposed osed: Lumber DOL=1.6	been considered fo (3-second gust) DL=6.0psf; h=25ff; (ivelope) exterior zor ; end vertical left an 0 plate grip DOL=1 (LC r 1) Cat. ne; id 60	DAD CASE(S) Dead + Roc Plate Increa Uniform Loa Vert: 1-2: 7-10=-20 Concentrate Vert: 3-a	Standard of Live (balanced): ise=1.15 ads (lb/ft) =-70, 2-3=-70, 3-4= ed Loads (lb) 111 (B) 4=-111 (B	Lumber =-70, 4-	Increase=1. 5=-70, 5-6=-7	.15, 70, B)		Ę		STATE OF T	I M. ER	7

- right exposed; Lumber DOL=1.60 plate grip DOL=1.60Provide adequate drainage to prevent water ponding.This truss has been designed for a 10.0 psf bottom
- chord live load nonconcurrent with any other live loads.

Vert: 3=-111 (B), 4=-111 (B), 9=-58 (B), 8=-58 (B), 11=-46 (B), 12=-46 (B), 13=-25 (B), 14=-25 (B)

05/24/2024 2:42:15

E

May 3,2024

PE-2001018807

SIONAL

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

Job	Truss	Truss Type	Qty	Ply	Lot 137 HM	
B240103	A2	Hip	1	1	Job Reference (optional)	165311996

Run: 8.73 S Apr 25 2024 Print: 8.730 S Apr 25 2024 MiTek Industries, Inc. Thu May 02 07:32:17

Wheeler Lumber, Waverly, KS - 66871,

Scale = 1:32.3 Plate Offsets (X, Y): [7:Edge.0-5-8]

3-9-3

iale Oliseis ((A, 1). [1.Luge,0-5-6]												
Loading TCLL (roof) TCDL BCLL	(psf) 25.0 10.0 0.0*	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr	2-0-0 1.15 1.15 YES	2/10/2014	CSI TC BC WB Matrix S	0.50 0.26 0.06	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.03 -0.07 0.01	(loc) 9-10 9-10 7	l/defl >999 >999 n/a	L/d 360 240 n/a	PLATES MT20	GRIP 197/144
BCDL	10.0	Code	IRC2018	3/TPI2014	Matrix-S		vvind(LL)	0.01	9-10	>999	240	vveight: 45 lb	FI = 10%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD	2x4 SPF No.2 2x4 SPF No.2 2x3 SPF No.2 *Exce No.2 Structural wood she 5-11-5 oc purlins, e 2-0-0 oc purlins (6-0	pt* 10-2,7-5:2x6 SPI athing directly applie xcept end verticals, a -0 max.): 3-4.	7) F 8) ed or 9) and	Provide mec bearing plate 10 and 94 lb This truss is International R802.10.2 ar Graphical pu or the orienta bottom chord	hanical connection capable of withst uplift at joint 7. designed in accor Residential Code nd referenced star rlin representation ation of the purlin a d.	n (by oth anding 9 dance w sections ndard AN n does no along the	ers) of truss t 4 lb uplift at j th the 2018 8 R502.11.1 a NSI/TPI 1. tot depict the s top and/or	to oint and size					
3OT CHORD	Rigid ceiling directly bracing.	applied or 10-0-0 oc	; LC	OAD CASE(S)	Standard								
REACTIONS	(size) 7=0-3-8, 1 Max Horiz 10=-61 (L Max Uplift 7=-94 (LC Max Grav 7=687 (LC	10=0-3-8 C 6) S 9), 10=-94 (LC 8) C 1), 10=687 (LC 1)											
FORCES	(lb) - Maximum Com Tension	pression/Maximum											
TOP CHORD	1-2=0/35, 2-3=-803/ 4-5=-804/77, 5-6=0/ 5-7=-624/138	77, 3-4=-625/115, 35, 2-10=-624/138,											
BOT CHORD	9-10=-28/627, 8-9=- 3-9=0/151 3-8=-126	29/624, 7-8=0/627											
	000,101,00 120	, 120, 10, 10, 10,											-
 Unbalance this design Wind: AS(ed roof live loads have n. CE 7-16: Vult=115mph	been considered for (3-second aust)									E	TE OF M	AISSOL
Vasd=91n II; Exp C; cantilever right expo	nph; TCDL=6.0psf; BC Enclosed; MWFRS (er left and right exposed sed: Lumber DOL=1.6	DL=6.0psf; h=25ft; C velope) exterior zon ; end vertical left and 0 plate grip DOI =1.6	Cat. le; d S0								a.	SCOT SEVI	F M.
 A) Provide ad 1) This truss chord live 5) * This trus 	dequate drainage to pr has been designed for load nonconcurrent wi s has been designed for	event water ponding r a 10.0 psf bottom th any other live load or a live load of 20.0	ds. psf								P	NUM PE-2001	018807 24
on the bot 3-06-00 ta chord and	tom chord in all areas all by 2-00-00 wide will any other members.	where a rectangle fit between the botto	m								Ŷ	SSIONA	L ENGIL

6) All bearings are assumed to be SPF No.2 .

May 3,2024

Connes

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent toulsable personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcscomponents.com)

TION IEW DEVELOPMENT SERVICES LEE'S' SUMMIT'S MISSOURI 05/24/2024 2:42:15

Job	Truss	Truss Type	Qty	Ply	Lot 137 HM	
B240103	A3	Common	4	1	Job Reference (optional)	165311997

Run: 8,73 S Apr 25 2024 Print: 8,730 S Apr 25 2024 MiTek Industries, Inc. Thu May 02 07:32:17

Wheeler Lumber, Waverly, KS - 66871,

Plate Offsets (X, Y): [6:Edge,0-5-8]

······································	3-,1	-											
Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP	
TCLL (roof)	25.0	Plate Grip DOL	1.15	TC	0.54	Vert(LL)	-0.04	6-7	>999	360	MT20	197/144	
TCDL	10.0	Lumber DOL	1.15	BC	0.38	Vert(CT)	-0.09	6-7	>999	240			
BCLL	0.0*	Rep Stress Incr	YES	WB	0.07	Horz(CT)	0.01	6	n/a	n/a			
BCDL	10.0	Code	IRC2018/TPI2014	Matrix-R		Wind(LL)	0.03	7-8	>999	240	Weight: 41 lb	FT = 10%	
LUMBER			7) This truss is	designed in acc	cordance wi	ith the 2018							

- TOP CHORD
- 2x4 SPF No.2 BOT CHORD 2x4 SPF No.2 2x6 SPF No.2 *Except* 7-3:2x4 SPF No.2 WEBS BRACING TOP CHORD Structural wood sheathing directly applied or 5-9-9 oc purlins, except end verticals. BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing. REACTIONS 6=0-3-8, 8=0-3-8 (size) Max Horiz 8=-69 (LC 6) Max Uplift 6=-101 (LC 9), 8=-101 (LC 8) Max Grav 6=687 (LC 1), 8=687 (LC 1) FORCES (Ib) - Maximum Compression/Maximum
- Tension 1-2=0/35, 2-3=-772/105, 3-4=-772/105, TOP CHORD 4-5=0/35, 2-8=-630/150, 4-6=-630/150 BOT CHORD 7-8=-20/586, 6-7=-20/586 WFBS 3-7=0/296

NOTES

- Unbalanced roof live loads have been considered for 1) this design
- 2) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
- 3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 4) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- All bearings are assumed to be SPF No.2 . 5)
- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 101 lb uplift at joint 8 and 101 lb uplift at joint 6.

- - International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard

May 3,2024

Page: 1

 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.
 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponent.com)

Job	Truss	Truss Type	Qty	Ply	Lot 137 HM	
B240103	B1	Monopitch	7	1	Job Reference (optional)	165311998

5-0-0 5-0-0

Wheeler Lumber, Waverly, KS - 66871,

Run: 8.73 S Apr 25 2024 Print: 8.730 S Apr 25 2024 MiTek Industries, Inc. Thu May 02 07:32:17 ID:vBszku21ozNPT?RIzYtJMSyXqDi-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

2x4 II 3

Scale = 1:26.5

Loading TCLL (roof) TCDL BCLL BCDL	(psf) 25.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018/TPI2014	CSI TC BC WB Matrix-P	0.42 0.23 0.00	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.03 -0.06 0.00	(loc) 2-4 2-4 4	l/defl >999 >933 n/a	L/d 360 240 n/a	PLATES MT20 Weight: 13 lb	GRIP 197/144 FT = 10%	
BOT CHORD	2x4 SPF No.2 2x4 SPF No.2												
WEBS	2x3 SPF No.2												
BRACING	Structural wood she	eathing directly appli	ed or										
	5-0-0 oc purlins, ex	cept end verticals.											
BOT CHORD	Rigid ceiling directly bracing.	y applied or 10-0-0 o	с										
REACTIONS	(size) 2=0-3-8,	4= Mechanical											
	Max Horiz 2=76 (LC Max Uplift 2=-58 (LC	5) C 4), 4=-45 (LC 8)											
	Max Grav 2=252 (L	.C 1), 4=212 (LC 1)											
FORCES	(lb) - Maximum Cor	npression/Maximum											
TOP CHORD	1-2=0/6, 2-3=-66/43	3, 3-4=-164/74											
BOT CHORD	2-4=-24/18	,											
NOTES													
1) Wind: ASC	E 7-16; Vult=115mpl	h (3-second gust)	a <i>i</i>										
Vasd=91m	ipn; ICDL=6.0pst; BC Enclosed: MW/ERS (e	DL=6.0pst; n=25π;	Cat.										
cantilever l	left and right exposed	: end vertical left ar	nd										
right expos	sed; Lumber DOL=1.6	50 plate grip DOL=1.	60										
2) This truss I	has been designed fo	or a 10.0 psf bottom											
chord live I	load nonconcurrent w	ith any other live loa	ids.								O DE I	ALC: NO	
3) * This truss	s has been designed	for a live load of 20.0	Opsf								ALE OF I	UISS OF	
3-06-00 tal	0m chord in all areas	fit between the bott	om							A		N.S	
chord and	any other members									R	SCOT	ГМ. ХЕУ	λ
 All bearing 	s are assumed to be	SPF No.2 .								R	SEV	ER \	8
5) Refer to gi	rder(s) for truss to tru	ss connections.								11		*	Ŋ
Provide me	echanical connection	(by others) of truss t	0							81	0	0 1	8
bearing pla	ate capable of withsta	inding 45 lb uplift at j	oint							8-	1 store	Some	8
4 and 58 lb	o uplift at joint 2.	anao with the 2010								W7	PE_2001	018807 181	9
Internation	al Residential Code s	sections R502 11 1 a	nd							N.	-2001	STORE A	6
R802.10.2	and referenced stand	dard ANSI/TPI 1.								Y	1ºSa	JON B	
LOAD CASE(S	S) Standard										NONA	LET	

CTION **IEW** DEVELOPMENT SERVICES LEE'S' SUMMIT'S MISSOURI 05/24/2024 2:42:15

May 3,2024

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent touls be personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TPI1 Quality Criteria, and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcscomponents.com)

Job	Truss	Truss Type	Qty	Ply	Lot 137 HM	
B240103	B2	Monopitch	3	1	Job Reference (optional)	165311999

Run: 8.73 S Apr 25 2024 Print: 8.730 S Apr 25 2024 MiTek Industries, Inc. Thu May 02 07:32:17 ID:vBszku21ozNPT?RIzYtJMSyXqDi-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Scale = 1:30.4

Loading TCLL (roof) TCDL BCLL BCDL	(psf) 25.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018/TPI2014	CSI TC BC WB Matrix-P	0.77 0.42 0.00	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.17 -0.34 0.00	(loc) 2-4 2-4 4	l/defl >553 >276 n/a	L/d 360 240 n/a	PLATES MT20 Weight: 21 lb	GRIP 197/144 FT = 10%	
	2×4 SPE 2100E 1 8	-											
BOT CHORD WEBS	2x4 SPF 2100F 1.8E 2x3 SPF No.2												
BRACING	2.00 0.1 110.2												
TOP CHORD	Structural wood she 6-0-0 oc purlins, ex	athing directly appli cept end verticals.	ed or										
BOT CHORD	Rigid ceiling directly bracing.	applied or 10-0-0 c	C										
REACTIONS	(size) 2=0-3-8, 4 Max Horiz 2=121 (LC Max Uplift 2=-79 (LC Max Gray 2=386 (LC	4= Mechanical C 5) C 4), 4=-74 (LC 8) C 1) 4=348 (LC 1)											
FORCES	(lb) - Maximum Com	pression/Maximum											
TOP CHORD BOT CHORD	1-2=0/6, 2-3=-105/7 2-4=-38/29	0, 3-4=-270/121											
NOTES													
1) Wind: ASC Vasd=91m	E 7-16; Vult=115mph ph; TCDL=6.0psf; BC	(3-second gust) DL=6.0psf; h=25ft;	Cat.										
cantilever	Enclosed; MVVERS (er	; end vertical left ar	ne; nd										
right expos	ed; Lumber DOL=1.6	0 plate grip DOL=1.	60										
This truss chord live 	has been designed fo	r a 10.0 psf bottom	hds								000	ADD	
 3) * This truss 	s has been designed f	or a live load of 20.	Opsf								OF I	MISC	
on the bott	om chord in all areas	where a rectangle								6	TATO	N'OC	
3-06-00 tal	any other members	fit between the bott	om							A	SCOT	ГМ. VEV	
 All bearing 	s are assumed to be	SPF No.2 .								R T	SEVI	ER \'Y	λ
5) Refer to gi	rder(s) for truss to trus	ss connections.								8 *		*	8
6) Provide me	echanical connection	(by others) of truss	to							8 *	b		Ø
bearing pla 4 and 79 lb	ate capable of withstai	nding 74 lb uplift at j	oint							NE	Catton	former?	8
7) This truss	is designed in accorda	ance with the 2018								N	PE-2001	018807	7
Internation	al Residential Code s	ections R502.11.1 a	and							V	The	158	
R802.10.2	and referenced stand	lard ANSI/TPI 1.									SION	TENO	
LUAD CASE(S	standard										NN NA	L	

DEVELOPMENT SERVICES LEE'S' SUMMIT'S MISSOURI 05/24/2024 2:42:15

ΤΙΟΝ 'IEW

May 3,2024

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent touls be personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TPI1 Quality Criteria, and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcscomponents.com)

Job	Truss	Truss Type	Qty	Ply	Lot 137 HM	
B240103	C1	GABLE	1	1	Job Reference (optional)	165312000

10-0-0

Wheeler Lumber, Waverly, KS - 66871,

Loading

TCDI

BCLL

BCDL

WEBS

OTHERS

FORCES

WEBS

NOTES

2)

3)

4)

LUMBER

-0-10-8

Run: 8,73 S Apr 25 2024 Print: 8,730 S Apr 25 2024 MiTek Industries, Inc. Thu May 02 07:32:17 ID:vBszku21ozNPT?RIzYtJMSyXqDi-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

LEE'S'SUMMIT'SMISSOURI 05/24/2024 2:42:15

0-10-8 10-0-0 7 12 4 6 0 5 4 3-10-0 1-3 ř ø 3 Þ 0-9-(A 8 12 11 10 9 10-0-0 Scale = 1:28.2 Spacing 2-0-0 CSI DEFL l/defl L/d PLATES GRIP (psf) in (loc) TCLL (roof) 25.0 Plate Grip DOL 1.15 TC 0.09 Vert(LL) n/a n/a 999 MT20 197/144 BC 10.0 Lumber DOL 1 15 999 0.03 Vert(CT) n/a n/a 0.0* Rep Stress Incr YES WB 0.03 Horz(CT) 0.00 8 n/a n/a 10.0 Code IRC2018/TPI2014 Matrix-S Weight: 35 lb FT = 10% Gable studs spaced at 2-0-0 oc. 5) TOP CHORD 2x4 SPF No.2 This truss has been designed for a 10.0 psf bottom 6) 2x4 SPF No.2 chord live load nonconcurrent with any other live loads. BOT CHORD * This truss has been designed for a live load of 20.0psf 2x3 SPF No.2 2x4 SPF No.2 on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom BRACING chord and any other members. TOP CHORD Structural wood sheathing directly applied or 8) All bearings are assumed to be SPF No.2 . 6-0-0 oc purlins, except end verticals. Provide mechanical connection (by others) of truss to 9) BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bearing plate capable of withstanding 16 lb uplift at joint bracing. 8, 22 lb uplift at joint 2, 52 lb uplift at joint 12, 44 lb uplift **REACTIONS** (size) 2=10-0-0, 8=10-0-0, 9=10-0-0, at joint 11, 42 lb uplift at joint 10 and 46 lb uplift at joint 9. 10=10-0-0, 11=10-0-0, 12=10-0-0 Max Horiz 2=158 (LC 7) 10) This truss is designed in accordance with the 2018 Max Uplift 2=-22 (LC 4), 8=-16 (LC 5), 9=-46 International Residential Code sections R502.11.1 and (LC 4), 10=-42 (LC 8), 11=-44 (LC 4), 12=-52 (LC 8) R802.10.2 and referenced standard ANSI/TPI 1. LOAD CASE(S) Standard Max Grav 2=150 (LC 1), 8=69 (LC 1), 9=194 (LC 1), 10=177 (LC 1), 11=180 (LC 1), 12=182 (LC 1) (lb) - Maximum Compression/Maximum Tension TOP CHORD 1-2=0/6, 2-3=-129/27, 3-4=-102/21, 4-5=-86/21, 5-6=-76/22, 6-7=-61/29, 7-8=-53/22 BOT CHORD 2-12=-50/37, 11-12=-50/37, 10-11=-50/37, 9-10=-50/37, 8-9=-50/37 OF MISS 3-12=-140/77, 4-11=-141/67, 5-10=-138/68, 6-9=-151/62 SCOTT M. 1) Wind: ASCE 7-16; Vult=115mph (3-second gust) SEVIER Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60 Truss designed for wind loads in the plane of the truss PE-200101880 only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable SIONAL or consult qualified building designer as per ANSI/TPI 1. E All plates are 2x4 MT20 unless otherwise indicated. Gable requires continuous bottom chord bearing. May 3,2024 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not

and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponent.com)

Job	Truss	Truss Type	Qty	Ply	Lot 137 HM	
B240103	C2	Monopitch	10	1	Job Reference (optional)	165312001

Run: 8.73 S Apr 25 2024 Print: 8.730 S Apr 25 2024 MiTek Industries, Inc. Thu May 02 07:32:18 ID:vBszku21ozNPT?RIzYtJMSyXqDi-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

4-11-6	10-0-0
4-11-6	5-0-10

Scale = 1:33.2													
Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP	
TCLL (roof)	25.0	Plate Grip DOL	1.15	тс	0.30	Vert(LL)	-0.02	2-6	>999	360	MT20	197/144	
TCDL	10.0	Lumber DOL	1.15	BC	0.26	Vert(CT)	-0.04	5-6	>999	240			
BCLL	0.0*	Rep Stress Incr	YES	WB	0.50	Horz(CT)	0.01	5	n/a	n/a			
BCDL	10.0	Code	IRC2018/TPI2014	Matrix-S		Wind(LL)	0.02	2-6	>999	240	Weight: 33 lb	FT = 10%	
LUMBER			LOAD CASE(S)	Standard									

LOWIDER		
TOP CHORD	2x4 SPF	No.2
BOT CHORD	2x4 SPF	No.2
WEBS	2x3 SPF	No.2
BRACING		
TOP CHORD	Structura 6-0-0 oc	l wood sheathing directly applied or purlins, except end verticals.
BOT CHORD	Rigid ceil bracing.	ing directly applied or 10-0-0 oc
REACTIONS	(size)	2=0-3-8, 5= Mechanical
	Max Horiz	2=158 (LC 5)
	Max Uplift	2=-115 (LC 4), 5=-94 (LC 8)
	Max Grav	2=514 (LC 1), 5=435 (LC 1)
FORCES	(lb) - Max Tension	imum Compression/Maximum
TOP CHORD	1-2=0/6, 2	2-3=-782/113, 3-4=-109/21,
	4-5=-141	/57
BOT CHORD	2-6=-134	/682, 5-6=-134/682
WEBS	3-6=0/228	8, 3-5=-714/178
NOTES		

- Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
 * This truss has been designed for a live load of 20.0psf
- This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- 4) All bearings are assumed to be SPF No.2 .
- 5) Refer to girder(s) for truss to truss connections.
- Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 94 lb uplift at joint 5 and 115 lb uplift at joint 2.
- 7) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSITPTI Quality Criteria**, and **DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcscomponents.com)

Job	Truss	Truss Type	Qty	Ply	Lot 137 HM	
B240103	D1	Common Supported Gable	1	1	Job Reference (optional)	165312002

Run: 8.73 S Apr 25 2024 Print: 8.730 S Apr 25 2024 MiTek Industries, Inc. Thu May 02 07:32:18 ID:vBszku21ozNPT?RIzYtJMSyXqDi-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

3x4 =

22-4-0

-0-10-8 0-10-8 11-2-0 22-4-0 11-2-0 11-2-0 4x5 = 7 6 æ 8 1<u>2</u> 4 Г 5 9 4 10 4-2-11 3 6 11 6 2 0-9-0 50 \otimes 23 22 21 20 19 18 17 16 15 14 3x4 = 3x4 =

Scale = 1:44.2

4-3-14

L oading TCLL (roof) TCDL	(psf) 25.0 10.0	Spacing Plate Grip DOL Lumber DOL	2-0-0 1.15 1.15		CSI TC BC	0.09	DEFL Vert(LL) Vert(CT)	in n/a n/a	(loc) - -	l/defl n/a n/a	L/d 999 999	PLATES MT20	GRIP 197/144	
BCLL	0.0*	Rep Stress Incr	YES		WB	0.03	Horz(CT)	0.00	12	n/a	n/a			
BCDL	10.0	Code	IRC2018	3/TPI2014	Matrix-S							Weight: 77 lb	FT = 10%	
LUMBER TOP CHORD 30T CHORD 30T CHORD 30T CHORD 30T CHORD REACTIONS FORCES TOP CHORD BOT CHORD BOT CHORD WEBS	2x4 SPF No.2 2x4 SPF No.2 2x4 SPF No.2 2x4 SPF No.2 2x4 SPF No.2 Structural wood shee 6-0-0 oc purlins. Rigid ceiling directly bracing. (size) 2=22-4-0 15=22-4-0 22=22-4-0 22=22-4-0 Max Horiz 2=71 (LC Max Uplift 2=-45 (LC 14=-68 (L 20=-46 (L 22=-36 (L 16=-44 (L 20=-46 (L 22=-36 (L 14=275 (L 16=187 (L 19=163 (L 21=187 (L 23=275 (L (lb) - Maximum Com 1-2=0/6, 2-3=-81/59, 5-6=-29/92, 6-7=-31 1-12=-56/38, 12-13 2-23=-3/57, 22-23=- 20-21=-3/57, 15-16= 12-14=-3/57 7-19=-123/0, 6-20=- 4-22=-117/57, 3-23= 9-16=-144/69, 10-15	athing directly applied applied or 10-0-0 oc 12=22-4-0, 14=22-4- 0, 16=22-4-0, 17=22 0, 20=22-4-0, 21=22 0, 23=22-4-0 8) 3 (4), 12=-54 (LC 5), C 9), 15=-36 (LC 5), C 9), 17=-46 (LC 9), C 8), 21=-44 (LC 8), C 4), 23=-70 (LC 8) C 1), 12=191 (LC 1), C 22), 15=-145 (LC 22), C 1), 22=145 (LC 21), C 1), 22=145 (LC 21), C 21), 20=189 (LC 21), C 21), 22=145 (LC 21), C 21), 22=145 (LC 21), C 21), 22=145 (LC 21), C 21), 22=145 (LC 22), C 1), 22=145 (LC 21), C 21), 22=145 (LC 21), C 21), 23=145 (LC 21), C 3), 27, 15=145 (LC 21), C 21), 23=145 (LC 21), C 3), 24=-47/60, 4-5=-28, 1/10, 7-8=-31/106, 8/47, 10-11=-35/28, i=-0/6 3/57, 21-22=-3/57, -3/57, 17-19=-3/57, -3/57, 14-15=-3/57, 150/70, 5-21=-144/69 i=-117/57, 11-14=-20;	1) 1) 2) 1 or 3) (0, 4-0, 4-0, 4-0, 5) 6) 7) 8) 2), 9) 1, 12 LC 0, (69, 5/99	Unbalanced i this design. Wind: ASCE Vasd=91mpr II; Exp C; En- cantilever leff right exposed Truss desigr only. For stu see Standard or consult qu All plates are Gable require Gable require Gable require Gable studs: This truss ha chord live loa * This truss ha chord and an All bearings a) Provide mect bearing plate 2, 46 lb uplift at joint 22, 70 44 lb uplift at joint 14 and 5) Beveled plate surface with fi) This truss is of International R802.10.2 ar	roof live loads have roof live loads have 7-16; Vult=115mpt ; TCDL=6.0psf; BC closed; MWFRS (e and right exposed ; Lumber DOL=1.6 the for wind loads in ds exposed to wind lindustry Gable Er alified building des 2x4 MT20 unless as continuous botto spaced at 2-0-0 oc s been designed for d nonconcurrent w as been designed n chord in all areas y 2-00-00 wide will y 2-00-00 wide will y 2-00-00 wide will y 2-00-00 wide will that joint 20, 44 lb up D buplift at joint 13 joint 16, 36 lb upliff at joint 20, 44 lb up D buplift at joint 13 joint 16, 36 lb upliff at or shim required to rouss chord at joint 1 a or shim required to standard Standard	e been of n (3-sec CDL=6.0 nvelope I; end v 50 plate in the pl d (norm nd Deta igner as otherwi orn a 10.0 vith any for a liv where fit betw SPF No (by oth no t at join 2. volume (by oth s) 2, 12 ance w sections dard AN	considered fo ond gust))psf; h=25ft; () exterior zor ertical left an grip DOL=1. ane of the tru ls as applicat s per ANSI/TF se indicated. d bearing.) psf bottom other live load e load of 20.0 a rectangle een the bottor of truss th 5 lb uplift at joint 1 t 15, 68 lb upl de full bearing. th the 2018 R502.11.1 a ISI/TPI 1.	r Cat. he; d 60 uss ble, PI 1. ds. opsf om o int uplift I7, lift at g nd				STATE OF M STATE OF M SCOTT SEVI PE-20010	H = 10%	
												IVIC	y 0,2027	

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent touls be personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TPI1 Quality Criteria, and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcscomponents.com)

Page: 1

23-2-8

0-10-8

12 13

Job	Truss	Truss Type	Qty	Ply	Lot 137 HM	
B240103	D2	Common	5	1	Job Reference (optional)	165312003

Run: 8.73 S Apr 25 2024 Print: 8.730 S Apr 25 2024 MiTek Industries, Inc. Thu May 02 07:32:18 ID:vBszku21ozNPT?RIzYtJMSyXqDi-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

Scale = 1:44.2

Plate Offsets (X, Y): [2:Edge,0-0-10], [6:Edge,0-0-10]

Loading FCLL (roof) FCDL BCLL BCDL	(psf) 25.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018	3/TPI2014	CSI TC BC WB Matrix-S	0.47 0.69 0.19	DEFL Vert(LL) Vert(CT) Horz(CT) Wind(LL)	in -0.12 -0.25 0.07 0.08	(loc) 8-10 6-8 6 8-10	l/defl >999 >999 n/a >999	L/d 360 240 n/a 240	PLATES MT20 Weight: 68 lb	GRIP 197/144 FT = 10%
LUMBER FOP CHORE BOT CHORE WEBS BRACING FOP CHORE BOT CHORE	 2x4 SPF No.2 2x4 SPF No.2 2x3 SPF No.2 Structural wood sheat 3-7-2 oc purlins. Rigid ceiling directly bracing. 	athing directly applie applied or 10-0-0 or	6) 7) ed or c	Provide mec bearing plate 2 and 189 lb This truss is International R802.10.2 a	hanical connectior capable of withst uplift at joint 6. designed in accord Residential Code nd referenced star Standard	n (by oth anding 1 dance wi sections ndard AN	ers) of truss t 89 lb uplift at th the 2018 R502.11.1 a ISI/TPI 1.	to t joint and					
REACTIONS	5 (size) 2=0-3-8, 6 Max Horiz 2=71 (LC Max Uplift 2=-189 (L' Max Grav 2=1063 (L	5=0-3-8 8) C 4), 6=-189 (LC 5) .C 1), 6=1063 (LC 1))										
ORCES	(lb) - Maximum Com Tension	pression/Maximum											
TOP CHORD	1-2=0/6, 2-3=-2232/3 4-5=-1909/260_5-6=	355, 3-4=-1909/259, -2232/355_6-7=0/6											
BOT CHORD	2-10=-333/2049, 8-1 6-8=-280/2049	0=-127/1406,											
VEBS	4-8=-59/541, 5-8=-4 3-10=-418/221	18/221, 4-10=-58/54	11,										
IOTES													
() Unhaland	ed roof live loads have	heen considered for	r										
this desig	n.											Con	ADV
2) Wind: AS Vasd=91 II; Exp C; cantileve	CE 7-16; Vult=115mph mph; TCDL=6.0psf; BC ; Enclosed; MWFRS (en r left and right exposed	(3-second gust) DL=6.0psf; h=25ft; (ivelope) exterior zor ; end vertical left and plote grip DOL 10	Cat. ne; d									STATE OF M	MISSOLA I M. ER
Ngni expo	s has been designed for	o plate grip DOL=1.t	50								(U *	-1	1 * 8
											VI()		0 1-19

- chord live load nonconcurrent with any other live loads.
 * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- 5) All bearings are assumed to be SPF No.2 .

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSITPTI Quality Criteria**, and **DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcscomponents.com)

E

May 3,2024

PE-200101880

SSIONAL

Job	Truss	Truss Type	Qty	Ply	Lot 137 HM	
B240103	E1	GABLE	1	1	Job Reference (optional)	165312004

Run: 8.73 S Apr 25 2024 Print: 8.730 S Apr 25 2024 MiTek Industries, Inc. Thu May 02 07:32:18 ID:vBszku21ozNPT?RIzYtJMSyXqDi-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:51.4

Plate Offsets (X, Y): [10:0-2-0,Edge], [20:0-5-10,0-1-8], [35:0-5-10,0-1-8]

					-										
Loading TCLL (roof)		(psf) 25.0	Spacing Plate Grip DOL	2-0-0 1.15		CSI TC	0.08	DEFL Vert(LL)	in n/a	(loc) -	l/defl n/a	L/d 999	PLATES MT20	GRIP 197/144	
TCDL		10.0	Lumber DOL	1.15		BC	0.06	Vert(CT)	n/a	-	n/a	999			
BCLL		0.0*	Rep Stress Incr	YES		WB	0.09	Horz(CT)	0.00	20	n/a	n/a			
BCDL		10.0	Code	IRC201	8/TPI2014	Matrix-R							Weight: 115 lb	FT = 10%	
LUMBER TOP CHORD	2x4 SPF	No.2	•	т	OP CHORD	2-35=-162/77, 3-4=-110/109,	1-2=0/40, 2- 4-5=-102/10	3=-161/143, 0, 5-6=-89/10	00,	8) Thi	s truss h ord live lo	as bee ad noi	en designed for a nconcurrent with	10.0 psf bottom any other live load	ds.
BOT CHORD	2x4 SPF I	No.2				6-7=-76/125, 7	/-8=-64/150,	8-9=-54/184,		9) * T	his truss	has be	en designed for	a live load of 20.0)psf
WEBS	2x4 SPF I	No.2				9-10=-39/137,	10-11=-35/1	33, 11-12=-3	4/165,	on	the botto	m cho	rd in all areas wh	ere a rectangle	
OTHERS	2x4 SPF I	No.2				12-13=-31/128	8, 13-14=-40/	103,		3-0	6-00 tall	by 2-0	0-00 wide will fit I	between the botto	om
BRACING						14-15=-49/79,	15-16=-59/6	0, 16-17=-71	/69,	cho	ord and a	iny oth	er members.		
TOP CHORD	Structura	I wood shea	athing directly applie	d or		17-18=-129/94	l, 18-19=0/40	, 18-20=-136	5/43	10) All	bearings	are as	ssumed to be SP	- No.2 .	
	6-0-0 oc p	purlins, exe	cept end verticals.			04.05 00/404	00.04.00/	101		11) Pro	ovide me	chanic	al connection (by	others) of truss to	0
BOT CHORD	Rigid ceili bracing.	ing directly	applied or 6-0-0 oc	В	OI CHORD	34-35=-93/121 32-33=-93/121	, 33-34=-93/ , 31-32=-93/	121, 121, 121		Dea 35,	53 lb up	lift at jo	bint 20, 133 lb up	ift at joint 34, 28 l	bint Ib ioint
REACTIONS	(size)	20=20-0-0 23=20-0-0 26=20-0-0 29=20-0-0 32=20-0-0	0, 21=20-0-0, 22=20- 0, 24=20-0-0, 25=20- 0, 27=20-0-0, 28=20- 0, 30=20-0-0, 31=20- 0, 33=20-0-0, 34=20-	0-0, 0-0, 0-0, 0-0, 0-0,		30-31=-93/121 28-29=-93/121 26-27=-93/121 24-25=-93/121 22-23=-93/121 20-21=-93/121	, 29-30=-93/ , 27-28=-93/ , 25-26=-93/ , 23-24=-93/ , 21-22=-93/	121, 121, 121, 121, 121, 121,		upl 31, upl 24, Ib u 12) Thi	ift at joint 47 lb up ift at joint 50 lb up uplift at jo s truss is	t 33, 5 lift at jo t 26, 4 lift at jo pint 21. s desig	1 lb uplift at joint 3 oint 30, 64 lb uplif 7 lb uplift at joint 2 oint 23, 31 lb uplif ned in accordanc	12, 45 lb uplift at joint 29, 66 lb t at joint 29, 66 lb 25, 45 lb uplift at joint 22 and 1 t at joint 22 and 1 we with the 2018	joint joint 120
	Max Horiz	35=20-0-0	C 7)	W	/EBS	3-34=-104/103	8, 4-33=-99/5	5, 5-32=-98/6	64,	Inte	ernationa	I Resid	dential Code sect	ions R502.11.1 ar	nd
	Max Linlift	2053 (1	(0.5) 21-120 (1 C 9)			6-31=-98/62, 7	-30=-98/63,	8-29=-98/80,		R8	02.10.2 a	and ref	erenced standard	I ANSI/TPI 1.	
		20= 33 (L 22=-31 (L	C(9), 21= 120 ($C(9)$) C(9), 23=-50 ($C(9)$)	,		9-28=-119/9, 1	1-27=-108/0	12-26=-101	/82,	LOAD	CASE(S)) Sta	ndard		
		24=-45 (L	C 9), 25=-47 (LC 9),			13-25=-98/63,	14-24=-98/6	2, 15-23=-98 -	/64,						
		26=-66 (L	C 9), 29=-64 (LC 8),			16-22=-99/57,	17-21=-94/9	5							
		30=-47 (L	C 8), 31=-45 (LC 8),	N	OTES										
		32=-51 (L	C 8), 33=-28 (LC 8),	1)) Unbalanced	roof live loads	have been c	onsidered fo	r						
		34=-133 (LC 8), 35=-96 (LC 4)		this design.								000	TO	
	Max Grav	20=166 (L 22=127 (L 24=124 (L 26=128 (L 28=146 (L 30=125 (L 32=126 (L 34=158 (L	LC 15), 21=137 (LC 1 LC 22), 23=125 (LC 1 LC 16), 25=125 (LC 1 LC 16), 27=135 (LC 1 LC 16), 27=135 (LC 1 LC 18), 29=125 (LC 1 LC 15), 31=124 (LC 1 LC 15), 33=127 (LC 2 LC 15), 35=201 (LC 1	6), 2) 6), 6), 7), 5), 3) (1), 6)	 Wind: ASCE Vasd=91mp II; Exp C; Er cantilever le right expose Truss desig only. For st see Standar 	7-16; Vult=11 h; TCDL=6.0ps hclosed; MWFF ft and right exp ed; Lumber DO gned for wind lo uds exposed to rd Industry Gab	5mph (3-sec sf; BCDL=6.0 RS (envelope bosed ; end v L=1.60 plate bads in the plate b wind (normation ble End Detai	ond gust) psf; h=25ft; () exterior zor ertical left an grip DOL=1. ane of the tru al to the face Is as applical	Cat. ne; id 60 uss), ble,			R	STATE OF M SCOTT SEVI	AISSOLD M. ER	
FORCES	(lb) - Max	imum Com	pression/Maximum	41	or consult q	ualified building	designer as	per ANSI/TI	1. וי			33	NUM	SER /S	В
	Tension			4)	All plates ar	e 2x4 IVI I 20 UN	hottom char	t hooring				N	ON PE-2001	J18807 / 5 4	7
				5)	Truss to bo	fully sheathed	from one face	a peaning.				N	The last	12A	
				6)	hraced agai	nst lateral mov	ement (ie di	adonal web)				۲	A Ser	NON	
				7)) Gable studs	spaced at 1-4-	-0 oc.	agonai web)	•				ONA	LEL	

7) Gable studs spaced at 1-4-0 oc.

May 3,2024

tone

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent toulsable personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcscomponents.com)

ΓΙΟΝ IEW DEVELOPMENT SERVICES LEE'S' SUMMIT'S MISSOURI 05/24/2024 2:42:16

Job	Truss	Truss Type	Qty	Ply	Lot 137 HM	
B240103	E2	Common	3	1	Job Reference (optional)	165312005

Run: 8.73 S Apr 25 2024 Print: 8.730 S Apr 25 2024 MiTek Industries, Inc. Thu May 02 07:32:18

Wheeler Lumber, Waverly, KS - 66871,

Plate Offsets (X, Y): [8:0-3-6,0-8-1], [10:0-2-11,0-4-0]

Scale = 1:52.1

RIP 37/144 「 = 10%
[= 10%
= 10%
Γ = 10%
1 = 10%
The
de la
250.0
N.S.Y
N. 21 1
N N

- right exposed; Lumber DOL=1.60 plate grip DOL=1.60 This truss has been designed for a 10.0 psf bottom 3)
- chord live load nonconcurrent with any other live loads. 4) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- 5) All bearings are assumed to be SPF No.2 .

May 3,2024

NUMBER

PE-200101880'

SSIONAL

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent colleges with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

E

Job	Truss	Truss Type	Qty	Ply	Lot 137 HM	
B240103	E3	Roof Special Girder	1	3	Job Reference (optional)	165312006

Run: 8.73 S Apr 25 2024 Print: 8.730 S Apr 25 2024 MiTek Industries, Inc. Thu May 02 07:32:18 ID:vBszku21ozNPT?RIzYtJMSyXqDi-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

4x10 u

2-7-6	4-6-0	8-6-0	14-9-0	20-0-0
2-7-6	1-10-10	4-0-0	6-3-0	5-3-0

Plate Offsets	(X, Y): [1:Edge,0-2-3],	[7:Edge,0-2-3], [8:0	-4-0,0-5-4]	, [10:0-3-8,0-3	-0], [11:0-5-8,0-5	5-0], [12:E	dge,0-3-8], [1	13:0-3-8,0)-2-0]				
Loading TCLL (roof) TCDL BCLL BCDL	(psf) 25.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 NO IRC2018	8/TPI2014	CSI TC BC WB Matrix-S	0.67 0.62 0.59	DEFL Vert(LL) Vert(CT) Horz(CT) Wind(LL)	in -0.11 -0.20 0.08 0.07	(loc) 8-9 8-9 7 8-9	l/defl >999 >999 n/a >999	L/d 360 240 n/a 240	PLATES MT20 Weight: 410 lb	GRIP 197/144 FT = 10%
LUMBER TOP CHORD BOT CHORD WEBS WEDGE BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SPF No.2 2x8 SP 2400F 2.0E SPF No.2 2x4 SPF No.2 Lett: 2x3 SPF No.2 Right: 2x3 SPF No.2 Structural wood shea 5-11-1 oc purlins. Rigid ceiling directly bracing. (size) 1=0-3-8, 7 Max Horiz 1=183 (LC Max Uplift 1=-675 (L Max Grav 1=6998 (L	*Except* 12-3,4-9:2: athing directly applied applied or 10-0-0 or 7=0-3-8 C 7) C 8), 7=-730 (LC 9). C 1), 7=6990 (LC 1)	2) x4 3) 4) ed or c 5) 6)	All loads are except if not CASE(S) se provided to o unless other Unbalanced this design. Wind: ASCE Vasd=91mpl II; Exp C; En cantilever lef right expose This truss h chord live lot * This truss h on the bottoo	considered equa ed as front (F) or ction. Ply to ply o distribute only loa wise indicated. roof live loads h 7-16; Vult=115r h; TCDL=6.0psf; closed; MWFRS ft and right expos d; Lumber DOL= as been designer ad nonconcurren has been designer m chord in all are	ally applie back (B) connection ads noted ave been nph (3-sec BCDL=6. (envelop sed; end v -1.60 plate d for a 10. t with any ed for a liv as where wall the box	d to all plies, face in the Lt s have been as (F) or (B), considered for cond gust) 0psf; h=25ft; e) exterior zo vertical left ar o grip DOL=1 o psf bottom other live loa re load of 20. a rectangle	OAD or Cat. one; nd .60 ads. 0psf	Ur	hiform Le Vert: 1- oncentra Vert: 14 17=-136 (F), 21=	bads (II 5=-70, tted Lo3 =-1353 63 (F), ⊧-1353	b/ft) 5-7=-70, 1-12=- ads (lb) 3 (F), 15=-1358 18=-1361 (F), 1! (F), 22=-1353 (F	20, 10-11=-20, 7-9=-20 (F), 16=-1363 (F), 9=-1358 (F), 20=-1353 ⁻)
FORCES	(lb) - Maximum Com	pression/Maximum	, 	chord and a	ny other member	S.		lom					
TOP CHORD	1-2=-9573/901, 2-3= 3-4=-8592/845, 4-5= 5-6=-9344/1062 6-7	12949/1261, 8312/914, '=-9716/925	7) 8)	All bearings Provide med bearing plate	are assumed to chanical connecti e capable of with	be SP 240 on (by oth standing 6	ors) of truss 675 lb uplift a	to It joint					
BOT CHORD	1-13=-758/7239, 12- 11-12=-84/1825, 3-1 10-11=-1091/10900, 4-10=-87/294, 8-9=-	-13=-104/1036, 1=-381/4198, 9-10=-10/1684, 52/1161, 7-8=-674/7	9) 7688 10	This truss is International R802.10.2 a) Hanger(s) or	designed in acco Residential Cod nd referenced st r other connectio	ordance w le sections andard AN n device(s	ith the 2018 8 R502.11.1 a NSI/TPI 1. 6) shall be	and				STOF	MISS
WEBS	3-10=-4328/529, 8-1 5-10=-688/6279, 5-8 6-8=-133/590, 2-13= 11-13=-754/7155, 2-	0=-416/4527, =-577/3885, -3313/360, -11=-364/4181		provided suf lb down and up at 4-0-0, lb down and	ficient to support 182 lb up at 2-0 1363 lb down ar 195 lb up at 8-0	concentra)-0, 1358 nd 195 lb u)-0, 1361	ated load(s) 1 b down and 2 up at 6-0-0, b down and 2	1353 28 lb 1363 28 lb				STATE SCOT	T M. TER
NOTES 1) 3-ply trust (0.131"x3 Top chore	s to be connected toget ") nails as follows: ds connected as follows	ther with 10d s: 2x4 - 1 row at 0-6-	-0	up at 10-0-0 1353 lb down down and 18 182 lb up at selection of s), 1358 lb down a n and 182 lb up a 32 lb up at 16-0- 18-0-0 on bottor such connection	and 28 lb u at 14-0-0, 0, and 13 m chord. device(s)	up at 12-0-0, and 1353 lb 53 lb down at The design/ is the	, nd		ہ ہر	B	PE-2001	BER 1018807

Bottom chords connected as follows: 2x8 - 3 rows staggered at 0-4-0 oc, 2x4 - 1 row at 0-9-0 oc. Web connected as follows: 2x4 - 1 row at 0-9-0 oc.

ion device(s) is the responsibility of others.

LOAD CASE(S) Standard

Dead + Roof Live (balanced): Lumber Increase=1.15, 1) Plate Increase=1.15

May 3,2024

E

SIONAL

 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.
 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not besign value to dury with with where outputs into design is based only door parameters shown, and is for an individual building design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members and property incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TPH1 Quality Criteria**, and **DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcscomponents.com)

Job	Truss	Truss Type	Qty	Ply	Lot 137 HM	
B240103	G1	Roof Special Structural Gable	1	1	Job Reference (optional)	165312007

Run: 8.73 S Apr 25 2024 Print: 8.730 S Apr 25 2024 MiTek Industries, Inc. Thu May 02 07:32:18 ID:vBszku21ozNPT?RIzYtJMSyXqDi-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

0-3-8	3-3-8	9-8-8	12-8-8	13-0-0
0-3-8	3-0-0	6-5-0	3-0-0	0-3-8

Scale = 1:41.2

Plate Offsets (X, Y): [8:0-5-7,Edge], [11:0-2-3,Edge], [14:0-1-14,0-1-0], [23:0-1-14,0-1-0]

Loading TCLL (roof) TCDL BCLL	(psf) 25.0 10.0 0.0*	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr	2-0-0 1.15 1.15 YES		CSI TC BC WB	0.73 0.50 0.13	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.10 -0.23 0.09	(loc) 9-10 9-10 8	l/defl >999 >641 n/a	L/d 360 240 n/a	PLATES MT20	GRIP 197/144
LUMBER TOP CHORD BOT CHORD WEBS OTHERS	10.0 2x4 SPF No.2 2x4 SPF No.2 2x3 SPF No.2 *Exce 2400F 2.0E 2x4 SPF No.2	Code pt* 11-2,8-6:2x8 SP	6) 7) 8)	Gable studs s This truss ha chord live loa * This truss h on the botton 3-06-00 tall b	Matrix-S spaced at 1-4-0 oc s been designed fo d nonconcurrent w as been designed n chord in all areas y 2-00-00 wide will y other members	c. or a 10.0 vith any for a liv s where Il fit betv) psf bottom other live loa e load of 20.0 a rectangle ween the botto	0.05 Ids. Opsf om	9-10	>999	240	vveignt: 64 lb	FT = 10%
BRACING TOP CHORD BOT CHORD REACTIONS	Structural wood shea 4-5-15 oc purlins, ex Rigid ceiling directly bracing. (size) 8=0-3-8, 1 Max Horiz 11=155 (L Max Uplift 8=-89 (LC Max Gray, 8=640.0	athing directly applie ccept end verticals. applied or 10-0-0 oc 1=0-3-8 C 7) 9), 11=-89 (LC 8) 21, 11=640 (I C 1)	d or 9) 10) 11) 12)	All bearings a Bearing at joi using ANSI/T designer sho Provide mecl bearing plate 11 and 89 lb This truss is o	are assumed to be int(s) 11, 8 conside PI 1 angle to grain uld verify capacity nanical connection capable of withsta uplift at joint 8. designed in accord	SPF No ers para of formula of beari (by oth anding 8 dance w	0.2. Illel to grain va a. Building ing surface. ers) of truss t 9 lb uplift at j ith the 2018	alue to oint					
FORCES	(lb) - Maximum Com Tension	pression/Maximum		R802.10.2 ar	Residential Code s nd referenced stan	dard AN	ISI/TPI 1.	ind					
TOP CHORD	1-2=0/46, 2-3=-934/ ² 4-5=-816/188, 5-6=-5 2-11=-773/127, 6-8=	109, 3-4=-816/224, 934/67, 6-7=0/46, -773/99	LUA	AD CASE(S)	Stanuard								
BOT CHORD WEBS	10-11=-91/750, 9-10 5-9=-74/167, 4-9=-13 4-10=-155/437	=0/443, 8-9=0/687 33/395, 3-10=-67/15	7,										T
NOTES 1) Unbalance this design 2) Wind: ASC Vasd=91n	ed roof live loads have n. CE 7-16; Vult=115mph nph; TCDL=6.0psf; BCI	been considered for (3-second gust) DL=6.0psf; h=25ft; C	at.									STATE OF M	AISSOLAT

II; Exp C; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60

Truss designed for wind loads in the plane of the truss 3) only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

- All plates are 2x4 MT20 unless otherwise indicated. Truss to be fully sheathed from one face or securely 4)
- 5) braced against lateral movement (i.e. diagonal web).

SIONAL

NUMB

PE-2001018807

 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.
 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not besign value to dury with with where outputs into design is based only door parameters shown, and is for an individual building design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members and property incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TPH1 Quality Criteria**, and **DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcscomponents.com)

TION DEVELORMENTOSERVICES LEE'S'SUMMIT'SMISSOURI 05/24/2024 2:42:16

E

May 3,2024

Job	Truss	Truss Type	Qty	Ply	Lot 137 HM	
B240103	G2	Roof Special	1	1	Job Reference (optional)	165312008

Run: 8.73 S Apr 25 2024 Print: 8.730 S Apr 25 2024 MiTek Industries, Inc. Thu May 02 07:32:18 ID:vBszku21ozNPT?RIzYtJMSyXqDi-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

0.	3	·8	3-0-0		6-5-0		3-0-0	0-3	7 3-8
Ũ	~	•							

Scale = 1:41.2 Þ

Plate Offsets (X, Y):	[8:0-5-7,Edge], [11:0-2-3,Edge]	
		-

Loading TCLL (roof) TCDL BCLL BCDL	(psf) 25.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018/	TPI2014	CSI TC BC WB Matrix-S	0.73 0.50 0.13	DEFL Vert(LL) Vert(CT) Horz(CT) Wind(LL)	in -0.10 -0.23 0.09 0.05	(loc) 9-10 9-10 8 9-10	l/defl >999 >641 n/a >999	L/d 360 240 n/a 240	PLATES MT20 Weight: 50 lb	GRIP 197/144 FT = 10%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD	2x4 SPF No.2 2x4 SPF No.2 2x3 SPF No.2 *Exc 2400F 2.0E Structural wood sh 4-5-15 oc purlins, Rigid ceiling directl	ept* 11-2,8-6:2x8 SP pathing directly applie except end verticals. y applied or 10-0-0 oc	6) 7) ed or 8)	Bearing at jo using ANSI/T designer sho Provide mecl bearing plate 11 and 89 lb This truss is International R802.10.2 ar	int(s) 11, 8 conside PI 1 angle to grain uld verify capacity hanical connection capable of withsta uplift at joint 8. designed in accord Residential Code stan Capada	ers para of formula of beari (by oth anding 8 dance w sections idard AN	llel to grain v a. Building ng surface. ers) of truss 9 lb uplift at ith the 2018 R502.11.1 a ISI/TPI 1.	alue to joint and					
REACTIONS	bracing. (size) 8=0-3-8, Max Horiz 11=155 Max Uplift 8=-89 (L Max Grav 8=640 (J	11=0-3-8 LC 7) C 9), 11=-89 (LC 8) C 1) 11=640 (LC 1)	LOA	AD CASE(S)	Standard								
FORCES	(lb) - Maximum Con	npression/Maximum											
TOP CHORD	1-2=0/46, 2-3=-934 4-5=-816/188, 5-6= 2-11=-773/127, 6-8	/109, 3-4=-816/224, -934/67, 6-7=0/46, =-773/99											
BOT CHORD WEBS	10-11=-91/750, 9-1 4-9=-133/395, 5-9= 3-10=-67/157	0=0/443, 8-9=0/687 -74/167, 4-10=-155/4	37,										
NOTES 1) Unbalance this design 2) Wind: ASC Vasd=91n II; Exp C; captilevor	ed roof live loads hav n. CE 7-16; Vult=115mp nph; TCDL=6.0psf; Br Enclosed; MWFRS (6	e been considered for n (3-second gust) CDL=6.0psf; h=25ft; C nvelope) exterior zon	Cat. e;									STATE OF M	MISSOLITE M. ER

- cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60 3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf 4) on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- All bearings are assumed to be SPF No.2 . 5)

E

May 3,2024

ΠΠ

SIONAL

PE-200101880

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent colleges with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

TION DEVELORMENT SERVICES LEE'S'SUMMIT'SMISSOURI 05/24/2024 2:42:16

Job	Truss	Truss Type	Qty	Ply	Lot 137 HM	
B240103	G3	Roof Special	4	1	Job Reference (optional)	165312009

Run: 8,73 S Apr 25 2024 Print: 8,730 S Apr 25 2024 MiTek Industries, Inc. Thu May 02 07:32:19 ID:vBszku21ozNPT?RIzYtJMSyXqDi-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Scale - 1.40

Loading	(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15		тс	0.52	Vert(LL)	-0.11	7-8	>999	360	MT20	197/144
TCDL	10.0	Lumber DOL	1.15		BC	0.64	Vert(CT)	-0.27	7-8	>548	240		
BCLL	0.0*	Rep Stress Incr	YES		WB	0.14	Horz(CT)	0.11	6	n/a	n/a		
BCDL	10.0	Code	IRC201	3/TPI2014	Matrix-S		Wind(LL)	0.07	7-8	>999	240	Weight: 47 lb	FT = 10%
L UMBER TOP CHORD BOT CHORD WEBS	2x4 SPF No.2 2x4 SPF No.2 2x3 SPF No.2 *Exce 2.0E, 6-5:2x6 SPF N	pt* 9-1:2x8 SP 2400 lo.2	7) F 8)	Bearing at jo using ANSI/ designer sho Provide meo bearing plate	bint(s) 6 conside TPI 1 angle to g buld verify capa chanical connect at joint(s) 6.	ers parallel t grain formula city of beari tion (by oth	o grain value a. Building ng surface. ers) of truss f	e to					
BRACING TOP CHORD BOT CHORD	Structural wood shea 5-2-13 oc purlins, e: Rigid ceiling directly bracing.	athing directly applie xcept end verticals. applied or 10-0-0 oc	9) d or ; 10	bearing plate 6 and 61 lb) This truss is International	e capable of wit uplift at joint 9. designed in ac Residential Co	cordance w	1 lb uplift at j th the 2018 R502.11.1 a	joint and					

- **REACTIONS** (size) 6=0-2-0, 9= Mechanical Max Horiz 9=135 (LC 5) Max Uplift 6=-61 (LC 9), 9=-61 (LC 8) Max Grav 6=555 (LC 1), 9=555 (LC 1) FORCES (lb) - Maximum Compression/Maximum Tension TOP CHORD 1-2=-938/118, 2-3=-842/235, 3-4=-826/206, 4-5=-925/85, 1-9=-670/103, 5-6=-663/81
- BOT CHORD 8-9=-115/744, 7-8=-12/436, 6-7=-38/688 WEBS 3-7=-144/401, 4-7=-99/165, 3-8=-164/454, 2-8=-101/159

NOTES

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60 This truss has been designed for a 10.0 psf bottom
- 3) chord live load nonconcurrent with any other live loads.
- 4) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- All bearings are assumed to be SPF No.2 5)
- 6) Refer to girder(s) for truss to truss connections.

R802.10.2 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard

DEVELOPMEN SERVICES LEE'S'SUMMIT'SMISSOURI 05/24/2024 2:42:16

TION

Page: 1

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not beigh valid for use only with with with with the contractions. This design is based only door plantaters shown, and is for an individual dualing component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria**, and **DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcscomponents.com)

Job	Truss	Truss Type	Qty	Ply	Lot 137 HM	
B240103	H1	Common Supported Gable	2	1	Job Reference (optional)	165312010

Run: 8.73 S Apr 25 2024 Print: 8.730 S Apr 25 2024 MiTek Industries, Inc. Thu May 02 07:32:19 ID:vBszku21ozNPT?RIzYtJMSyXqDi-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Scale	=	1:57.2

Loading TCLL (roof) TCDL BCLL BCDL		(psf) 25.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC20	18/TPI2014	CSI TC BC WB Matrix-R	0.07 0.05 0.19	DEFL Vert(LL) Vert(CT) Horz(CT)	in n/a n/a 0.01	(loc) - - 19	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 147 lb	GRIP 197/144 FT = 10%	
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SPF No 2x4 SPF No 2x4 SPF No 2x4 SPF No Structural w 6-0-0 oc pur Rigid ceiling bracing. (size) 1! 2: 2: 2: 2: 3: 3: Max Horiz 3: Max Uplift 2: 2: 2: 2: 2: 2: 2: 2: 2: 2: 2: 2: 2: 2	0.2 0.2 0.2 *Excep 0.2 2 ood shear 1010, excep 9=31-0-0 2=31-0 2=51 (LC 2=51	bt* 18-19:2x3 SPF I thing directly applie tept end verticals. applied or 10-0-0 or , 20=31-0-0, 21=31 , 23=31-0-0, 24=31 , 30=31-0-0, 24=31 , 30=31-0-0, 31=31 , 33=31-0-0, 34=31 , 36=31-0-0 C 8) C 9), 21=-48 (LC 9), C 9), 22=-57 (LC 9), C 9), 22=-57 (LC 8) C 9), 29=-52 (LC 8)	-0-0, -0-0, -0-0, -0-0, -0-0, -0-0, -0-0, -0,	TOP CHORD	$\begin{array}{c} 2\text{-36}{=}-134/43, 1\\ 3\text{-4}{=}-119/75, 4\text{-}{\mathbb 5}\\ 6\text{-7}{=}-56/144, 7\text{-}{\mathbb 5}\\ 9\text{-10}{=}-41/219, 11\\ 12\text{-}13\text{-}-39/122, 15\text{-}16\text{-}52/45, 11\\ 18\text{-}19\text{-}62/0\\ 35\text{-}36\text{-}25/103, 33\text{-}34\text{-}25/103, 33\text{-}34\text{-}25/103, 26\text{-}28\text{-}25/103, 20\text{-}25/103, 26\text{-}28\text{-}25/103, 26\text{-}28\text{-}25/103, 26\text{-}28\text{-}25/103, 26\text{-}28\text{-}25/103, 26\text{-}28\text{-}25/103, 20\text{-}21\text{-}25/103, 20\text{-}21\text{-}25/103, 20\text{-}21\text{-}25/103, 10\text{-}28\text{-}161/0, 9\\ 7\text{-}31\text{-}140/78, 6\\ 4\text{-}34\text{-}147/75, 3\\ 11\text{-}26\text{-}150/75, 13\text{-}24\text{-}140/77, 15\text{-}22\text{-}139/78, 17\text{-}20\text{-}129/93\\ \end{array}$		3=-171/69, -6=-66/118, 8-9=-38/196, 11, 11-12=-3 97, 14-15=-3 7, 17-18=-12 103, 103, 103, 103, 103, 103, 103, 103,	/8/167, /8/71, /1/31, //80, //79,	8) This cho 9) * Th on t 3-00 cho 10) All t 11) Prov bea 36, uplit 24, uplit 24, uplit 12) This Inte R80 LOAD C	truss h rd live lo is truss he botto -00 tall rd and a eearings vide mee tring plat 52 lb up t at joint 46 lb up t at joint 54 lb up t at joint 54 lb up t at joint 54 lb up t at joint 55 lb up 55 lb up t at joint 55 lb up t at	as bee ad nor has be m choi by 2-00 ny otho y 2-00 ny otho are as chanica:	n designed for a neconcurrent with een designed for rd in all areas wh 0-00 wide will fit er members. ssumed to be SP al connection (by ble of withstandi oint 29, 56 lb upli 4 lb uplift at joint oint 34, 106 lb up 7 lb uplift at joint oint 23, 56 lb upli d 94 lb uplift at joint oned in accordand dential Code sec erenced standar ndard	10.0 psf bottom any other live load a live load of 20.0 ere a rectangle between the bottor F No.2. others) of truss to ng 43 lb uplift at jo ft at joint 30, 54 lb 32, 56 lb uplift at jo fift at joint 35, 51 ll 25, 54 lb uplift at jc ft at joint 22, 48 lb joint 20. we with the 2018 jons R502.11.1 ar d ANSI/TPI 1.	Is. psf m pint oint b oint
FORCES	$\begin{array}{c} 30 = -36 \ (LC \ 8), \ 31 = -54 \ (LC \ 8), \ 33 = -56 \ (LC \ 8), \ 33 = -56 \ (LC \ 8), \ 33 = -56 \ (LC \ 8), \ 34 = -46 \ (LC \ 8), \ 35 = -106 \ (LC \ 8), \ 36 = -43 \ (LC \ 18), \ 20 = 167 \ (LC \ 22), \ 21 = 183 \ (LC \ 11), \ 22 = 179 \ (LC \ 12), \ 22 = 179 \ (LC \ 1), \ 22 = 179 \ (LC \ 1), \ 22 = 179 \ (LC \ 1), \ 25 = 179 \ (LC \ 1), \ 25 = 179 \ (LC \ 1), \ 25 = 179 \ (LC \ 1), \ 31 = 180 \ (LC \ 21), \ 32 = 181 \ (LC \ 1), \ 33 = 178 \ (LC \ 21), \ 32 = 181 \ (LC \ 1), \ 33 = 178 \ (LC \ 21), \ 32 = 181 \ (LC \ 1), \ 33 = 178 \ (LC \ 21), \ 32 = 181 \ (LC \ 1), \ 35 = 133 \ (LC \ 15), \ 36 = 161 \ (LC \ 17) \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$				NOTES 1) Unbalance this design 2) Wind: ASC Vasd=91m II; Exp C; E cantilever I right expos 3) Truss desi only. For s see Standa or consult (4) All plates a 5) Gable requ 6) Truss to be braced aga 7) Gable stud	d roof live loads h F 7-16; Vult=115r ph; TCDL=6.0psf; inclosed; MWFRS eft and right expo ed; Lumber DOL= gned for wind loa tuds exposed to v ard Industry Gable qualified building or re 2x4 MT20 unle ires continuous b fully sheathed fro inst lateral mover s spaced at 2-0-0	ave been of mph (3-sec ; BCDL=6.0 S (envelope sed ; end v =1.60 plate ds in the pl wind (norm e End Deta designer as designer as designer as therwith ottom chor orm one fac ment (i.e. d	considered fo ond gust) Dpsf; h=25ft; (e) exterior zor rertical left an grip DOL=1. ane of the tru al to the face ils as applical s per ANSI/TT se indicated. d bearing. e or securely iagonal web)	r Cat. ne; d 60 Jss), ble, PI 1.				STE OF J SCOT SEV OF DE-2001	MISSOLIE FM. ER 018807	and i

DEVELOPMENT SERVICES LEE'S' SUMMIT'S MISSOURI 05/24/2024 2:42:16

TION IEW

May 3,2024

Page: 1

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent toulsable personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcscomponents.com)

Job	Truss	Truss Type	Qty	Ply	Lot 137 HM	
B240103	H2	Roof Special	1	1	Job Reference (optional)	l65312011

Run: 8.73 S Apr 25 2024 Print: 8.730 S Apr 25 2024 MiTek Industries, Inc. Thu May 02 07:32:19 Page: 1 ID:vBszku21ozNPT?RIzYtJMSyXqDi-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f -0-10-8 0-10-8 7-9-10 23-2-7 31-0-0 15-6-0 18-10-4 7-9-10 7-8-6 3-4-4 4-4-3 7-9-9 6x6= 4 4x8 👟 5 12 61 3x4 🚅 3x6**≈**

			5x12=			
1	7-9-10	15-6-0	18-9-0	23-2-7	31-0-0	
Г	7-9-10	7-8-6	3-3-0	4-5-7	7-9-9	7
Scale = 1:60.8						

Plate Offsets (X, Y): [7:0-3-4,0-2-0], [15:0-3-4,0-6-8]

Loading	(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP	
TCLL (roof)	25.0	Plate Grip DOL	1.15		тс	0.57	Vert(LL)	-0.21	11-12	>999	360	MT20	197/144	
TCDL	10.0	Lumber DOL	1.15		BC	0.77	Vert(CT)	-0.39	13-14	>932	240			
BCLL	0.0*	Rep Stress Incr	YES		WB	0.80	Horz(CT)	0.22	8	n/a	n/a			
BCDL	10.0	Code	IRC2018	3/TPI2014	Matrix-S		Wind(LL)	0.13	11-12	>999	240	Weight: 131 lb	FT = 10%	
												0		
LUMBER			4)	This truss ha	s been designed fo	or a 10.0) psf bottom							
TOP CHORD	2x4 SPF 2100F 1.8	3E		chord live loa	ad nonconcurrent w	vith any	other live loa	ids.						
BOT CHORD	2x4 SPF No.2 *Exc	cept* 13-4,5-10:2x3 S	PF 5)	* This truss h	as been designed	for a liv	e load of 20.0	Opsf						
	No.2			on the bottor	n chord in all areas	where	a rectangle							
WEBS	2x3 SPF No.2 *Exc	cept* 15-2,8-7:2x6 SP	F	3-06-00 tall b	y 2-00-00 wide wil	I fit betv	veen the botto	om						
	No.2		2	chord and ar	ly other members.									
BRACING			6)	All bearings	are assumed to be	SPF No	5.2.							
TOP CHORD	Structural wood sh	eathing directly applie	ed or 7)	Refer to gird	er(s) for truss to tru	iss conr	ections.	-						
	3-10-5 oc purlins,	except end verticals.	8)	Provide med	nanical connection	(by oth	ers) of truss t	0 Lioint						
BOT CHORD	Rigid ceiling direct	ly applied or 10-0-0 or	2	15 and 170	capable of Withsta	anuing 1	so in ublitt at	joint						
	bracing.		0)	This truce is	designed in accord		ith the 2019							
REACTIONS	(size) 8= Mech	nanical, 15=0-3-8	9)	International	Residential Code	ance W	01 010 2018 0 0502 11 1 2	nd						
	Max Horiz 15=138	(LC 12)		R802 10 2 a	d referenced stan	dard AN	ISI/TPI 1	inu						
	Max Uplift 8=-170	(LC 9), 15=-196 (LC 8)		Stondard		1 01/1111.							
	Max Grav 8=1373	(LC 1), 15=1453 (LC	1) LC	AD CASE(S)	Sidiluaru									
FORCES	(lb) - Maximum Co	mpression/Maximum												
	Tension													
TOP CHORD	1-2=0/35, 2-3=-228	35/274, 3-4=-2473/27 ⁻	1,											
	4-5=-2321/300, 5-6	6=-3447/307,												
	6-7=-2258/269, 2-1	15=-1381/236,												
	7-8=-1293/213													
BOT CHORD	14-15=-325/810, 1	3-14=0/25, 12-13=0/1	28,											
	4-12=-111/1663, 1	1-12=-136/2998,	_										TT.	
	10-11=0/52, 5-11=	-103/1249, 9-10=-3/17	ί,									OF N	ALC AL	
	8-9=-148/68/	4.4 205/2002										FEURM	NSS N	
WEB2	3-14=-005/214, 12	-14=-305/2063, 2- 1219/100									A		1.2%	
	3-12=-00/300, 5-12	2=-1310/199, 1145/1112									H	SCOTT	M	λ
	5-11=-100/2007, 0 6-0-101/107 2-1	-11=-40/1110, 1/_0/1130_7_060/11	222								H.	SEVI	FR	X
NOTES	0.0=-101+/10/,2=		202								84		···· \.	- YA
	ad reaf live leads to	a haan aanaldar- I f-									20		0 12	1
this design	eu looi live loads hav	e been considered for									W.	LAK .	J. O.K.	
	∩E 7-16· \/ult–115mn	b (3-second quet)								/	W.	NOM	Res VA	
Vaed-01n	D = 10, $V = 10$	CDI -6 Opef: b-25ft: (` at								N	>> PE-20010	18807	A
II: Exp C:	Enclosed: MWERS (envelope) exterior zor)al.								N	The second second	124	7
cantilever	left and right expose	d : end vertical left an	d								X	NºSo.	O'H	() ()
right expo	sed: Lumber DOI =1	60 plate arip DOI = 1.6	50									UNA ONA	LEFA	
ngin expo		So plate grip DOL-1.										The state	- 0	

right exposed; Lumber DOL=1.60 plate grip DOL=1.60 The Fabrication Tolerance at joint 2 = 6%3)

May 3,2024

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent toulsable personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcscomponents.com)

Job	Truss	Truss Type	Qty	Ply	Lot 137 HM	
B240103	H3	Roof Special	2	1	Job Reference (optional)	165312012

1)

2)

3)

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponent.com)

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI Claulity Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

Job	Truss	Truss Type	Qty	Ply	Lot 137 HM	
B240103	H5	Roof Special	1	1	lob Reference (optional)	165312014

1)

2)

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponent.com)

Job	Truss	Truss Type	Qty	Ply	Lot 137 HM	
B240103	H6	Common	4	1	Job Reference (optional)	165312015

Run: 8,73 S Apr 25 2024 Print: 8,730 S Apr 25 2024 MiTek Industries, Inc. Thu May 02 07:32:19

- NOTES
- Unbalanced roof live loads have been considered for 1) this design.

6-8=-65/1333

- Wind: ASCE 7-16; Vult=115mph (3-second gust) 2) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
- 3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

OF MISS SCOTT M. SEVIER PE-2001018807 SIONAL E

May 3,2024

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponent.com)

Job	Truss	Truss Type	Qty	Ply	Lot 137 HM	
B240103	H7	Common	3	1	Job Reference (optional)	165312016

8-6-3

Run: 8.73 S Apr 25 2024 Print: 8.730 S Apr 25 2024 MiTek Industries, Inc. Thu May 02 07:32:19 Page: 1 ID:vBszku21ozNPT?RIzYtJMSyXqDi-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f -0-10-8 0-10-8 31-10-8 7-9-10 15-6-0 23-2-6 31-0-0 7-9-10 7-8-6 7-8-6 7-9-10 0-10-8 4x8= 4 12 61 3x4 👟 3x4 🖌 3 5 8-5-0 6 -8-0 Y 8 ГЪП Ø 10 9 12 11 6x12= 6x12= 3x6= 3x10= 3x6= 3x6= 7-9-10 15-6-0 23-2-6 31-0-0 7-9-10 7-8-6 7-8-6 7-9-10 Scale = 1:58.3 Plate Offsets (X, Y): [8:Edge,0-4-13], [9:0-2-8,0-1-8], [12:0-2-8,0-1-8], [13:Edge,0-4-13]

		e c											
Loading	(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15		TC	0.81	Vert(LL)	-0.11	9-11	>999	360	MT20	197/144
TCDL	10.0	Lumber DOL	1.15		BC	0.62	Vert(CT)	-0.24	9-11	>999	240		
BCLL	0.0*	Rep Stress Incr	YES		WB	0.53	Horz(CT)	0.07	8	n/a	n/a		
BCDL	10.0	Code	IRC20	18/TPI2014	Matrix-S		Wind(LL)	0.07	11-12	>999	240	Weight: 117 lb	FT = 10%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD WEBS REACTIONS	2x4 SPF No.2 2x4 SPF No.2 2x3 SPF No.2 *Exce No.2 Structural wood she except end verticals Rigid ceiling directly bracing. 1 Row at midpt (size) 8=0-3-8, 1 Max Horiz 13=-128 (pt* 13-2,8-6:2x6 SPI athing directly applie applied or 10-0-0 oc 5-11, 3-11 13=0-3-8	4 F 5 6 d, ; 7 L	 This truss h on the botton 3-06-00 tall b chord and ar All bearings Provide mech bearing plate 13 and 196 ll This truss is International R802.10.2 ar 	as been designed n chord in all area by 2-00-00 wide w y other members are assumed to by nanical connection capable of withst o uplift at joint 8. designed in accor Residential Code nd referenced star Standard	d for a liv as where ill fit betv e SPF No n (by oth tanding 1 rdance w e sections ndard AN	e load of 20. a rectangle veen the bott c.2. ers) of truss 96 lb uplift a ith the 2018 is R502.11.1 a ISI/TPI 1.	0psf tom to ti joint and					
	Max Uplift 8=-196 (L Max Grav 8=1452 (L	LC 9) C 9), 13=-196 (LC 8) _C 1), 13=1452 (LC ²) 1)										
FORCES	(lb) - Maximum Com Tension	pression/Maximum											
TOP CHORD	1-2=0/35, 2-3=-2277 4-5=-1612/246, 5-6= 2-13=-1376/238, 6-8	7/277, 3-4=-1612/246 2277/277, 6-7=0/35 3=-1376/238	6, 5,										
BOT CHORD	12-13=-319/806, 11-	-12=-273/1931,											
WEBS	4-11=-52/829, 5-11= 3-11=-733/255, 3-12 6-9=-8/1127	203/254, 5-9=0/266 733/254, 5-9=0/266 2=0/266, 2-12=0/112	3, 7,									G OF M	AIS c
NOTES												950	1,0°
 Unbalance this design Wind: ASG Vasd=91n II; Exp C; cantilever right expo This truss 	ed roof live loads have n. CE 7-16; Vult=115mph nph; TCDL=6.0psf; BC Enclosed; MWFRS (er left and right exposed ised; Lumber DOL=1.6 has been designed for	been considered for (3-second gust) DL=6.0psf; h=25ft; C tvelope) exterior zon ; end vertical left and 0 plate grip DOL=1.6; r a 10.0 psf bottom	Cat. e; d 60									SCOTT SEVI	ER 18807

chord live load nonconcurrent with any other live loads.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent toulsable personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcscomponents.com)

May 3,2024

SSIONAL E

Job	Truss	Truss Type	Qty	Ply	Lot 137 HM	
B240103	H8	Common Girder	1	2	Job Reference (optional)	165312017

Run: 8.73 S Apr 25 2024 Print: 8.730 S Apr 25 2024 MiTek Industries, Inc. Thu May 02 07:32:20 ID:vBszku21ozNPT?RIzYtJMSyXqDi-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Scale = 1:59.8

Plate Offsets (X, Y): [2:Edge,0-0-13], [6:Edge,0-1-14], [9:0-4-0,0-4-8]

Loading (psf) TCLL (roof) 25.0 TCDL 10.0 BCLL 0.0 BCDL 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 NO IRC2018	3/TPI2014	CSI TC BC WB Matrix-S	0.93 0.69 0.83	DEFL Vert(LL) Vert(CT) Horz(CT) Wind(LL)	in -0.17 -0.30 0.07 0.12	(loc) 6-7 6-7 6 6-7	l/defl >999 >999 n/a >999	L/d 360 240 n/a 240	PLATES MT20 Weight: 311 lb	GRIP 197/144 FT = 10%	
LUMBER TOP CHORD 2x4 SPF No.2 *E) 2.0E BOT CHORD 2x6 SP 2400F 2.0 WEBS 2x4 SPF No.2 WEDGE Right: 2x4 SP No BRACING TOP CHORD Structural wood s BOT CHORD Rigid ceiling direc bracing. WEBS 1 Row at midpt REACTIONS (size) 2=0-3-1 Max Horiz 2=147 Max Horiz 2=147 Max Uplift 2=-397 Max Grav 2=2760 FORCES (b) - Maximum C TOP CHORD 1-2=0/11, 2-3=-5 4-5=-4467/683, 5 BOT CHORD 2-10=-659/4373, 7-8=-1141/8446, WEBS 4-9=-446/3385, 5 5-7=-320/2880, 3 5-8=-345/2115 NOTES 1) 2-ply truss to be connected to (0.131"x3") nails as follows: Top chords connected as follows: Top chords connected as follows: Top chords connected as follows: 2x4 SPF Notes 1) 2-ply truss to be connected to (0.131"x3") nails as follows: Top chords connected as follows: 2x4 SPF Notes 2) All loads are considered equa except if noted as front (F) or CASE(S) section. Ply to ply co provided to distribute only loa unless otherwise indicated.	cept* 4-6:2x4 SPF 240 E 3 heathing directly applied ty applied or 10-0-0 oc 5-9 5, 6=0-3-8 LC 27) (LC 8), 6=-819 (LC 9) (LC 1), 6=5720 (LC 1) pmpression/Maximum 01/703, 3-4=-4466/684 6=-9639/1399 3-10=-1246/9142, 5-7=-1135/8394 9=-5999/1062, 9=-599/363, 3-10=0/30 gether with 10d ws: 2x4 - 2 rows ollows: 2x6 - 2 rows 4 - 1 row at 0-9-0 oc. ly applied to all plies, back (B) face in the LC nnections have been is noted as (F) or (B),	3) DOF 4) ed. 5) 5 6) 7) 8) 9) 4, 10 D6, LC 1) PAD	Unbalanced this design. Wind: ASCE Vasd=91mpt II; Exp C; En cantilever lef right exposed This truss ha chord live loa * This truss ha chord live loa * This truss ha chord and an All bearing plate 6 and 397 lb This truss is 0 hternational R802.10.2 ar 1 Hanger(s) or provide suff lb down and 1 Bup at 23-1 and 535 lb dd down and 73 design/select responsibility PAD CASE(S) Dead + Roc Plate Increat Uniform Loa Vert: 1-4: Concentrate	roof live loads have 7-16; Vult=115mph ; TCDL=6.0psf; BC closed; MWFRS (et and right exposed d; Lumber DOL=1.6 s been designed fo d nonconcurrent w as been designed in a chord in all areas y 2-00-00 wide will y other members. are assumed to be annical connection capable of withstau uplift at joint 2. designed in accorda Residential Code s d referenced stanc other connection d icient to support co 556 lb up at 29-11-4 otion of such connect of others. Standard of Live (balanced): L se=1.15 ads (lb) 3502 (F), 11=-535 (536 (F)	been (d) (3-second provided in the second pro	considered for ond gust) pps; h=25ft; e) exterior zou ertical left ar grip DOL=1.) ps bottom other live load e load of 20.0 a rectangle veen the bottl 0F 2.0E . ers) of truss I 19 lb uplift al ith the 2018 R502.11.1 a ISI/TPI 1.) shall be tted load(s) 3 lb down and b down and 25-1 -4, and 536 l m chord. Th vice(s) is the Increase=1.	or Cat. ne; nd .60 ads. Opsf om to t joint and 8502 73 1-4, lb e 15,				NUME PE-20010	MISSOLA M. ER BER 118807	

May 3,2024

Page: 1

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent toulsable personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcscomponents.com)

RELEASE ICR CONSTRUCTION AS NOTED ON FLANS REVIEW DEVERSION ON FLANS REVIEW LEPS SUMWIT MISSOURI 05/24/2024 2:42:17

Job	Truss	Truss Type	Qty	Ply	Lot 137 HM	
B240103	H9	Common	6	1	Job Reference (optional)	165312018

Run: 8.73 S Apr 25 2024 Print: 8.730 S Apr 25 2024 MiTek Industries, Inc. Thu May 02 07:32:20

Wheeler Lumber, Waverly, KS - 66871,

Plate Offsets (X, Y): [5:0-6-8,0-0-8], [10:0-1-10,0-3-4]

Scale = 1:59.9

Loading	(psf)	Spacing	2-0-0		csi		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15		TC	0.88	Vert(LL)	-0.09	7-9	>999	360	MT20	197/144
TCDL	10.0	Lumber DOL	1.15		BC	0.57	Vert(CT)	-0.20	7-9	>999	240		
BCLL	0.0*	Rep Stress Incr	YES		WB	0.53	Horz(CT)	0.09	12	n/a	n/a		
BCDL	10.0	Code	IRC2018	3/TPI2014	Matrix-S		Wind(LL)	0.04	7-9	>999	240	Weight: 86 lb	FT = 10%
			5)	All bearings	are assumed to be	e SPF No	0.2 .						
TOP CHOR	2 2x4 SPF No 2		6)	Bearing at io	int(s) 12 considers	s parallel	to grain valu	le					
BOT CHOR	2x4 SPF No.2		- /	using ANSI/1	PI 1 angle to grai	in formula	a. Building						
WEBS	2x3 SPF No.2 *Exce	ot* 6-5:2x4 SPF No.	2.	designer sho	uld verify capacity	y of beari	ng surface.						
	10-2:2x8 SP 2400F	2.0E	7)	Provide mec	hanical connection	n (by othe	ers) of truss	to					
OTHERS	2x4 SPF No.2			bearing plate	capable of withst	tanding 1	56 lb uplift a	t joint					
BRACING				10 and 122 l	b uplift at joint 12.								
TOP CHOR	O Structural wood she	athing directly applie	ed or ⁸⁾	This truss is	designed in accor	rdance wi	th the 2018						
	2-2-0 oc purlins, ex	cept end verticals.		International	Residential Code	sections	R502.11.1 a	and					
BOT CHOR	D Rigid ceiling directly	applied or 10-0-0 oc	2	R802.10.2 a	nd referenced star	ndard AN	ISI/TPI 1.						
	bracing.		LC	DAD CASE(S)	Standard								
WEBS	1 Row at midpt	3-7											
REACTION	S (size) 10=0-3-8,	12=0-3-2											
	Max Horiz 10=223 (L	_C 5)											
	Max Uplift 10=-156 ((LC 8), 12=-122 (LC	8)										
	Max Grav 10=1055	(LC 1), 12=941 (LC	1)										
FORCES	(lb) - Maximum Com	pression/Maximum											
	Tension												
TOP CHOR	D 1-2=0/37, 2-3=-1463	3/195, 3-4=-765/129,											
	4-5=-723/160, 6-11=	=0/100, 5-11=0/100,											
	2-10=-965/200												
BOT CHOR	D 9-10=-269/1194, 7-9	9=-269/1194, 6-7=-46	6/83										
WEBS	4-7=0/242, 5-7=-94/	635, 3-7=-733/262,											Th
	3-9=0/302, 5-12=-95	54/124										OFI	ALC D
NOTES												ALEUTI	115S
1) Unbalar	ced roof live loads have	been considered for	ſ								A		1.5
this des	gn.										A	SCOT	TM. PY
2) Wind: A	SCE 7-16; Vult=115mph	(3-second gust)									a	7 SEV	TER YY
Vasd=9	impn; ICDL=6.0pst; BC	DL=6.0pst; n=25tt; (Jat.								1 at		
II; EXP C	; Enclosed; IVIVVERS (er	velope) exterior zon	ie;								RI		8
right over	osed Lumber DOI =1 6	, end ventical left and 0 plate arin DOI =1.4	u 30							_	2	toll'	- ener
3) This true	s has been designed for	r a 10 0 nsf bottom	50							_	5	T NUM	BER
chord liv	e load nonconcurrent wi	ith any other live load	ds								N	O∖ PE-2001	018807
2.1014 111											N N		

* This truss has been designed for a live load of 20.0psf 4) on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.

E

May 3,2024

SSIONAL

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent colleges with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

Job	Truss	Truss Type	Qty	Ply	Lot 137 HM	
B240103	J1	Diagonal Hip Girder	2	1	Job Reference (optional)	165312019

-1-2-14

1-2-14

Wheeler Lumber, Waverly, KS - 66871,

Run: 8.73 S Apr 25 2024 Print: 8.730 S Apr 25 2024 MiTek Industries, Inc. Thu May 02 07:32:20 ID:YsOUNzphuXNGFYh7BjxGp5ziJsK-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

5-6-6

5-6-6

5-6-6

Loading TCLL (roof) TCDL BCLL BCDL		(psf) 25.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 NO IRC2	018/TPI2014	CSI TC BC WB Matrix-R	0.49 0.29 0.00	DEFL Vert(LL) Vert(CT) Horz(CT) Wind(LL)	in -0.04 -0.08 0.02 0.03	(loc) 4-5 4-5 3 4-5	l/defl >999 >783 n/a >999	L/d 360 240 n/a 240	PLATES MT20 Weight: 15 lb	GRIP 197/144 FT = 10%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SPF N 2x4 SPF N 2x4 SPF N Structural 5-6-6 oc p Rigid ceili bracing. (size) Max Horiz Max Uplift Max Grav	No.2 No.2 No.2 No.2 No.2 No.2 S=Mecha 5=0-4.9 5=96 (LC 3=164 (LC 3=164 (LC (LC 1)	athing directly applied cept end verticals. applied or 10-0-0 oc inical, 4= Mechanical 4) 5 8), 5=-91 (LC 4) C 1), 4=100 (LC 3), 53	d or , =347	 8) Hanger(s) or provided suf down and 36 up at 2-9-8, and 3 chord. The (s) is the res 9) In the LOAD of the truss a LOAD CASE(S) 1) Dead + Ro Plate Incre. Uniform Lo Vert: 1-2 Concentrat Vert: 7=: 	r other connect ficient to supprise b lb up at 2-9-i on top chord, a lb down and 2 design/selectic ponsibility of ot CASE(S) sec are noted as fr Standard of Live (balance ase=1.15 ads (lb/ft) =-70, 2-3=-70, ed Loads (lb) 3 (F=2, B=2)	tion device(s ort concentra 8, and 69 lb and 3 lb dow 2 lb up at 2-6 but ers. tion, loads a ont (F) or ba ed): Lumber , 4-5=-20) shall be ated load(s) i down and 36 n and 2 lb uj 0-8 on bottor nnnection de oplied to the ck (B). Increase=1	69 lb 6 lb p at n vice face .15,					
TOP CHORD BOT CHORD	(Ib) - Maxi Tension 2-5=-306/ ⁻ 4-5=0/0	mum Com 137, 1-2=0	pression/Maximum)/32, 2-3=-92/42			- (,)								

3x6 II

NOTES

- Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
 * This truss has been designed for a live load of 20.0psf
- This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- 4) All bearings are assumed to be SPF No.2 .
- Refer to girder(s) for truss to truss connections.
 Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 91 lb uplift at joint
- 5 and 77 lb uplift at joint 3.
 7) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and
- International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSITPTI Quality Criteria**, and **DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcscomponents.com)

Job	Truss	Truss Type	Qty	Ply	Lot 137 HM	
B240103	J2	Jack-Open	4	1	Job Reference (optional)	165312020

Run: 8.73 S Apr 25 2024 Print: 8.730 S Apr 25 2024 MiTek Industries, Inc. Thu May 02 07:32:20 ID:YnHn5j?1veow56V2CRjJ3lziJtO-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

				4-0-0								
Scale = 1:24.8												
Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15	тс	0.20	Vert(LL)	-0.01	4-5	>999	360	MT20	197/144
TCDL	10.0	Lumber DOL	1.15	BC	0.13	Vert(CT)	-0.02	4-5	>999	240		
BCLL	0.0*	Rep Stress Incr	YES	WB	0.00	Horz(CT)	0.01	3	n/a	n/a		
BCDL	10.0	Code	IRC2018/TPI2014	Matrix-R		Wind(LL)	0.01	4-5	>999	240	Weight: 11 lb	FT = 10%

BCLL BCDL	0.0* 10.0	Code	YES IRC2018/TPI2014	WB Matrix-R	0.00	Wind(LL)	0.01 0.01	3 4-5	n/a >999	n/a 240	Weight: 11 lb
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD	2x4 SPF No.2 2x4 SPF No.2 2x4 SPF No.2 Structural wood sh 4-0-0 oc purlins, e Rigid ceiling directl	eathing directly applie xcept end verticals. y applied or 10-0-0 oc	LOAD CASE(S)	Standard							
REACTIONS	bracing. (size) 3= Mech 5=0-3-8 Max Horiz 5=89 (LC Max Uplift 3=-66 (L Max Grav 3=116 (L (LC 1)	anical, 4= Mechanica C 8) C 8), 5=-30 (LC 8) .C 1), 4=71 (LC 3), 5=	l, 252								
 TOP CHORD BOT CHORD BOT CHORD NOTES 1) Wind: AS Vasd=911 II; Exp C; cantilever right expc 2) This truss chord live 3) * This trus on the bo 3-06-00 tr chord and 4) All bearin 5) Refer to <u>6</u> 6) Provide n bearing p 5 and 66 7) This truss Internatio R802.10.1 	(II) - Maximum Con Tension 2-5=-221/67, 1-2=0 4-5=0/0 CE 7-16; Vult=115mp mph; TCDL=6.0psf; Bi Enclosed; MWFRS (e left and right exposer used; Lumber DOL=1. has been designed though an onconcurrent v ss has been designed ttom chord in all areas all by 2-00-00 wide wil d any other members. gs are assumed to be girder(s) for truss to tr nechanical connection late capable of withsta Ib uplift at joint 3. is designed in accorr nal Residential Code 2 and referenced stan	b/32, 2-3=-75/40 h (3-second gust) CDL=6.0psf; h=25ft; C envelope) exterior zon d; end vertical left and 60 plate grip DOL=1.6 or a 10.0 psf bottom vith any other live load for a live load of 20.0 s where a rectangle I fit between the botto SPF No.2. uss connections. (by others) of truss to anding 30 lb uplift at jo dance with the 2018 sections R502.11.1 ar dard ANSI/TPI 1.	eat. e; 100 Is. psf m						·		PE-2001

E

May 3,2024

OF MISS

SCOTT M. SEVIER

PE-2001018807

ONAL

rs and READ NOTES ON THIS AND INCLUDED MITEK REFEREN WARNING - Verify design parameters and KEAD KO LES ON THIS AND INCLUDED MILEK REFERENCE PAGE MIL-7473 rev. 17/2/2023 BEFORE USE. Design valid for use only with MITeK® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria**, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcscomponents.com)

Job	Truss	Truss Type	Qty	Ply	Lot 137 HM	
B240103	J3	Jack-Open	4	1	Job Reference (optional)	165312021

Run: 8.73 S Apr 25 2024 Print: 8.730 S Apr 25 2024 MiTek Industries, Inc. Thu May 02 07:32:20 ID:?iJjkFo?gjnBAeG_G4RZQNziJte-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC?f

Scale = 1:22.6							I					
Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15	тс	0.07	Vert(LL)	0.00	4-5	>999	360	MT20	197/144
TCDL	10.0	Lumber DOL	1.15	BC	0.02	Vert(CT)	0.00	4-5	>999	240		
BCLL	0.0*	Rep Stress Incr	YES	WB	0.00	Horz(CT)	0.00	3	n/a	n/a		
BCDL	10.0	Code	IRC2018/TPI2014	Matrix-R		Wind(LL)	0.00	4-5	>999	240	Weight: 6 lb	FT = 10%

1-10-15

	2x4 SPE No 2	LOAD CASE(S)	Standard
BOT CHORD	2x4 SFF No.2 2x4 SPF No.2		
WEBS	2x4 SPF No.2		
BRACING			
TOP CHORD	Structural wood sheathing directly applied or 1-10-15 oc purlins, except end verticals.		
BOT CHORD	Rigid ceiling directly applied or 10-0-0 oc bracing.		
REACTIONS	(size) 3= Mechanical, 4= Mechanical, 5=0-3-8		
	Max Horiz 5=48 (LC 8)		
	Max Uplift 3=-30 (LC 8), 5=-26 (LC 8)		
	Max Grav 3=44 (LC 1), 4=31 (LC 3), 5=171 (LC 1)		
FORCES	(lb) - Maximum Compression/Maximum Tension		
TOP CHORD	2-5=-150/44, 1-2=0/32, 2-3=-37/14		
BOT CHORD	4-5=0/0		
NOTES			
1) Wind: AS	CE 7-16; Vult=115mph (3-second gust)		
Vasd=91r	nph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat.		
II; Exp C;	Enclosed; MWFRS (envelope) exterior zone;		
right expo	sed: Lumber DOL -1.60 plate grip DOL -1.60		
 This truss 	has been designed for a 10.0 psf bottom		Æ
chord live	load nonconcurrent with any other live loads.		E.
This trus	s has been designed for a live load of 20.0psf		H.A.
on the bot	tom chord in all areas where a rectangle		4 5/
3-06-00 ta	Il by 2-00-00 wide will fit between the bottom		
4) All bearing	any other members.		
5) Refer to g	irder(s) for truss to truss connections.		
6) Provide m	echanical connection (by others) of truss to		N ST
bearing pl	ate capable of withstanding 26 lb uplift at joint		WO/
5 and 30 l	b uplift at joint 3.		N S
 I his truss 	is designed in accordance with the 2018		
R802 10 3	and referenced standard ANSI/TPL1		U. C.
1002.10.2			

RELEASE ICROMETRUCTION AS NOTED ON LANS REVIEW DEVERSION SERVICES LEETS SUMMITY MISSOURI 05/24/2024 2:42:17

E

May 3,2024

OF MISSO

SCOTT M. SEVIER

NUMBER PE-2001018807

ONAL

Page: 1

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent colleges with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

Job	Truss	Truss Type	Qty	Ply	Lot 137 HM	
B240103	LAY1	Lay-In Gable	1	1	Job Reference (optional)	165312022

Run: 8.73 S Apr 25 2024 Print: 8.730 S Apr 25 2024 MiTek Industries, Inc. Thu May 02 07:32:20 ID:ipLE8EJHK7d0ILe5MzByFkziJuH-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Scale = 1:30

Plate Offsets (X, Y): [3:Edge,0-3-0]

Loading	(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15		тс	0.04	Vert(LL)	n/a	-	n/a	999	MT20	197/144
TCDL	10.0	Lumber DOL	1.15		BC	0.02	Vert(TL)	n/a	-	n/a	999		
BCLL	0.0*	Rep Stress Incr	YES		WB	0.02	Horiz(TL)	0.00	5	n/a	n/a		
BCDL	10.0	Code	IRC2018	3/TPI2014	Matrix-P							Weight: 19 lb	FT = 10%
LUMBER TOP CHORD BOT CHORD	2x4 SPF No.2 2x4 SPF No.2 2x4 SPF No.2		7)	* This truss h on the bottor 3-06-00 tall h chord and ar	nas been designe m chord in all are by 2-00-00 wide v ny other member	ed for a live as where will fit betw s.	e load of 20.0 a rectangle veen the botto	Dpsf om					
			8)	All bearings	are assumed to b	be SPF No	.2 .						
TOP CHORD	Structural wood she	athing directly applie	d or 9)	Provide mec bearing plate	hanical connection connectication connecticaticaticaticaticaticaticaticaticatic	on (by othe standing 1	ers) of truss t 06 lb uplift at	o i joint					
BOT CHORD	Rigid ceiling directly bracing.	applied or 10-0-0 oc	10	7 and 105 lb) This truss is	uplift at joint 6. designed in acco	ordance wi	th the 2018						
REACTIONS	(size) 1=5-9-15, 7=5-9-15	5=5-9-15, 6=5-9-15,	,	R802.10.2 a	Residential Cod	e sections andard AN	R502.11.1 a SI/TPI 1.	ind					
	Max Horiz 1=-78 (LC	2 4)	LC	AD CASE(S)	Standard								
	Max Uplift 6=-105 (L	C 9), 7=-106 (LC 8)											
	Max Grav 1=92 (LC (LC 16), 7	17), 5=91 (LC 18), 6 /=181 (LC 15)	=180										
FORCES	(lb) - Maximum Com Tension	pression/Maximum											
TOP CHORD	1-2=-112/62, 2-3=-5 4-5=-111/60	8/13, 3-4=-58/12,											
3OT CHORD WEBS	1-7=-40/103, 6-7=-4 2-7=-142/129, 4-6=-	0/103, 5-6=-40/103 140/128											
NOTES													
1) Unbalance	ed roof live loads have	been considered for											m
this desig	n.											OFA	ALC AL
2) Wind: AS	CE 7-16; Vult=115mph	(3-second gust)										FEUT	115'S
Vasd=91n	nph; TCDL=6.0psf; BC	DL=6.0psf; h=25ft; C	Cat.								A	(F)	1.5
II; Exp C;	Enclosed; MWFRS (er	velope) exterior zon	e;								A	SCOT	IM. P.V.
cantilever	left and right exposed	; end vertical left and	d A								H	SEVI	ER \ Y
right expo	sed; Lumber DOL=1.6	0 plate grip DOL=1.6	60 								0		
3) Truss des	signed for wind loads in	(normal to the face)	55								RX^	+	1. Lit
see Stand	lard Industry Gable En	d Details as applicab	, 							2		Coll a	Jerren
or consult	qualified building desir	oner as per ANSI/TP	11							-	5		BER
 Gable reg 	uires continuous botto	m chord bearing.									N	O∖ PE-2001	018807
5) Gable stu	ds spaced at 0-0-0 oc.	· · · · · · · · · · · · · · · · · · ·									N.	The last	188
 This truss 	has been designed for	r a 10.0 psf bottom										Ser	ENO'B
chord live	load nonconcurrent wi	th any other live load	ls.									UNA NA	LEY
		,										Van	DEED -

May 3,2024

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent touls be personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TPI1 Quality Criteria, and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcscomponents.com)

Job	Truss	Truss Type	Qty	Ply	Lot 137 HM	
B240103	R1	Flat Girder	1	2	Job Reference (optional)	165312023

Run: 8.73 S Apr 25 2024 Print: 8.730 S Apr 25 2024 MiTek Industries, Inc. Thu May 02 07:32:20 ID:vBszku21ozNPT?RIzYtJMSyXqDi-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

AS NOTED ON FLANS REVIEW DEVERSION SERVICES LEE'S'SUMWIT'S MISSOURI 05/24/2024 2:42:17

Scale = 1:32.1

Plate Offsets (X, Y): [4:Edge,0-3-8]

Loading TCLL (roof) TCDL BCLL BCDL	(psf) 25.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 NO IRC2018	/TPI2014	CSI TC BC WB Matrix-S	0.43 0.42 0.63	DEFL Vert(LL) Vert(CT) Horz(CT) Wind(LL)	in -0.09 -0.16 0.00 0.06	(loc) 5-6 5-6 4 5-6	l/defl >999 >942 n/a >999	L/d 360 240 n/a 240	PLATES MT20 Weight: 150 lb	GRIP 197/144 FT = 10%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD BOT CHORD REACTIONS FORCES TOP CHORD BOT CHORD BOT CHORD WEBS NOTES 1) 2-ply truss (0.131"x3" Top chord oc, 2x6 - 2 Bottom ch staggered Web conn 2) All loads a except if n CASE(S) : provided t unless oth 3) Wind: ASC Vasd=91n II; Exp C; cantilever right expo: 4) Provide ac	2x6 SPF No.2 2x6 SP 2400F 2.0E 2x4 SPF No.2 2-0-0 oc purlins (6-0 end verticals. Rigid ceiling directly bracing. (size) 4=0-2-0, (Max Horiz 6=-97 (LC Max Uplift 4=-489 (L Max Grav 4=3137 (I (Ib) - Maximum Corr Tension 1-6=-2177/384, 1-2= 2-3=-4969/758, 3-4= 5-6=-103/235, 4-5=- 1-5=-802/5124, 2-5= 5 to be connected toge 1) nails as follows: 2 rows staggered at 0-5 ords connected as follows 2 r	I-0 max.): 1-3, excep applied or 10-0-0 oc S= Mechanical C 5), 6=-544 (LC 4) C 5), 6=-544 (LC 4) C 1), 6=3522 (LC 1) pression/Maximum -4969/758, -2181/385 54/207 -367/288, 3-5=-804/3 ther with 10d S: 2x4 - 1 row at 0-9-0 G-0 oc. ows: 2x6 - 2 rows -1 row at 0-9-0 oc. applied to all plies, ck (B) face in the LO, nections have been noted as (F) or (B), (3-second gust) DL=6.0psf; h=25ft; C rvelope) exterior zonc ; end vertical left and 0 plate grip DOL=1.6 event water ponding.	5) 6) t 7) 8) 9) 10) 11) 12) 5136 13) 0 AD 1) at. 2; 0	This truss ha chord live loa * This truss h on the botton 3-06-00 tall b chord and ar Bearings are SP 2400F 2. Refer to girdt Provide meci- bearing plate 6 and 489 lb This truss is International R802.10.2 ar Graphical pu or the orienta bottom choro Hanger(s) or provided suff Ib down and up at 3-0-0, down and 13 Ib up at 9-0- on bottom choro Connection d AD CASE(S) Dead + Roo Plate Increa Uniform Loa Vert: 1-3: Concentrate	s been designed fo d nonconcurrent w as been designed fo n chord in all areas y 2-00-00 wide will y other members. assumed to be: Jo DE. er(s) for truss to tru- nanical connection at joint(s) 4. designed in accord Residential Code s and referenced stand tion of the purlin al other connection do cicient to support co 133 lb up at 1-0-0, 921 lb down and 13 4 lb up at 7-0-0, an 0, and 921 lb down ord. The design/se evice(s) is the resp Standard of Live (balanced): I se=1.15 ads (lb/ft) =-70, 4-6=-20 ed Loads (lb) 922, 8=-921, 9=-92	r a 10.0 r a 10.0 rith any for a liv where fit betw int 6 SF ss conr (by oth (by oth nding 5 ance w sections dard AN does no ong the levice(s nocentra 921 lb 34 lb up nd 921 and 13 election onsibili Lumber 1, 10=-	Dest bottom other live load e load of 20.0 a rectangle ween the botto PF No.2, Joir nections. ers) of truss t ers) of truss t ers) of truss t ith the 2018 R502.11.1 a USI/TPI 1. of depict the s e top and/or) shall be at 5-0-0, 92 b down and 13 o at 5-0-0, 92 b down and 13	ds. Opsf om nt 4 o o o joint size 22 44 lb 134 I-0-0 15,				STATE OF M STATE OF M SCOTT SEVI PE-20010 PE-20010 PE-20010 Ma	AISSOLUTION M. ER M. ER M. ER M. ER M. ER M. EN M. ER M. ER
Design va	IING - Verify design parame alid for use only with MiTek®	ters and READ NOTES Of connectors. This design is	N THIS AND I	NCLUDED MITEK	REFERENCE PAGE MI	I-7473 rev vidual bui	1. 1/2/2023 BEFO	RE USE.					

Design valid for use only with MTeK become tors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcscomponents.com)

Job	Truss	Truss Type	Qty	Ply	Lot 137 HM	
B240103	V1	Valley	1	1	Job Reference (optional)	165312024

Run: 8.73 S Apr 25 2024 Print: 8.730 S Apr 25 2024 MiTek Industries, Inc. Thu May 02 07:32:20 ID:vBszku21ozNPT?RIzYtJMSyXqDi-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

rag

Scale = 1:27

				-								
Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15	TC	0.44	Vert(LL)	n/a	-	n/a	999	MT20	197/144
TCDL	10.0	Lumber DOL	1.15	BC	0.23	Vert(TL)	n/a	-	n/a	999		
BCLL	0.0*	Rep Stress Incr	YES	WB	0.00	Horiz(TL)	0.00	3	n/a	n/a		
BCDL	10.0	Code	IRC2018/TPI2014	Matrix-P							Weight: 15 lb	FT = 10%
LUMBER			9) This truss is	designed in accord	lance w	ith the 2018						
TOP CHORD	2x4 SPF No.2		Internationa	Residential Code s	sections	R502.11.1 a	and					
BOT CHORD	2x4 SPF No.2		R802.10.2 a	nd referenced stand	dard AN	ISI/TPI 1.						
WEBS	2x3 SPF No.2		LOAD CASE(S)	Standard								
BRACING												
TOP CHORD	Structural wood she	athing directly appli	ed or									
	5-4-2 oc purlins, ex	cept end verticals.										
BOICHORD	bracing	applied or 10-0-0 o	С									
REACTIONS	(size) 1=5-3-12	, 3=5-3-12										
	Max Horiz 1=126 (L	C 5)										
	Max Uplift 1=-18 (LC	C 8), 3=-62 (LC 8)										
	Max Grav 1=214 (L0	C 1), 3=230 (LC 15)										
FORCES	(lb) - Maximum Com	npression/Maximum										
	1 2- 119/06 2 2- 1	02/01										
BOT CHORD	1-2=-110/90, 2-3=-1	02/91										
NOTES	10-10/01											
1) Wind AS(CE 7-16 [.] Vult=115mph	(3-second gust)										
Vasd=91n	nph: TCDL=6.0psf: BC	DL=6.0psf: h=25ft:	Cat.									
II; Exp C;	Enclosed; MWFRS (er	nvelope) exterior zo	ne;									
cantilever	left and right exposed	; end vertical left an	nd									
right expo	sed; Lumber DOL=1.6	0 plate grip DOL=1.	60									
 Iruss des 	signed for wind loads in	n the plane of the tru	JSS									100
only. For	and Industry Cable En	d Details as applica), ble								OFI	MIG
or consult	aualified building desi	oner as per ANSI/TI	PI 1								FIE	100°C
3) Gable req	uires continuous botto	m chord bearing.								a	N	New
4) Gable stu	ds spaced at 4-0-0 oc.	Ū								H	SCOT	ТМ. \`С УД
5) This truss	has been designed fo	r a 10.0 psf bottom								8	SEV.	IER \ X
chord live	load nonconcurrent w	ith any other live loa	ids.							BA		
6) * This trus	ss has been designed f	for a live load of 20.0	Opst							<u>Қ</u>		
3-06-00 ta	llom chord in all areas	fit between the bott	om						_		NUM	
chord and	any other members	In between the bott								N2	PE-2001	018807
 All bearing 	gs are assumed to be	SPF No.2 .								N	The	18A
8) Provide m	nechanical connection	(by others) of truss t	0							X	Ser	NO'A
bearing pl	late capable of withsta	nding 18 lb uplift at j	oint								ONA	LEL
1 and 62 l	lb uplift at joint 3.										1000	THE
											Ma	ay 3,2024

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent touls be personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TPI1 Quality Criteria, and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcscomponents.com)

Job	Truss	Truss Type	Qty	Ply	Lot 137 HM	
B240103	V2	Valley	1	1	Job Reference (optional)	165312025

3-9-12

3-9-12

Wheeler Lumber, Waverly, KS - 66871,

Run: 8.73 S Apr 25 2024 Print: 8.730 S Apr 25 2024 MiTek Industries, Inc. Thu May 02 07:32:20 ID:vBszku21ozNPT?RIzYtJMSyXqDi-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale - 1.23 1

00010 - 112011												
Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15	тс	0.19	Vert(LL)	n/a	-	n/a	999	MT20	197/144
TCDL	10.0	Lumber DOL	1.15	BC	0.10	Vert(TL)	n/a	-	n/a	999		
BCLL	0.0*	Rep Stress Incr	YES	WB	0.00	Horiz(TL)	0.00	3	n/a	n/a		
BCDL	10.0	Code	IRC2018/TPI2014	Matrix-P							Weight: 11 lb	FT = 10%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SPF No.2 2x4 SPF No.2 2x3 SPF No.2 Structural wood shea 3-10-2 oc purlins, e: Rigid ceiling directly bracing. (size) 1=3-9-12, Max Horiz 1=86 (LC Max Uplift 1=-12 (LC Max Grav 1=147 (LC (lb) - Maximum Com Tension	athing directly applied xcept end verticals. applied or 10-0-0 oc 3=3-9-12 5) 8), 3=-42 (LC 8) C 1), 3=157 (LC 15) pression/Maximum	9) This truss is International R802.10.2 a LOAD CASE(S)	designed in accor Residential Code nd referenced star Standard	dance w sections ndard AN	ith the 2018 R502.11.1 a ISI/TPI 1.	nd				Weight. This	
TOP CHORD BOT CHORD	1-2=-81/66, 2-3=-12 1-3=-31/23	5/62										
NOTES												
 Wind: ASC Vasd=91n II; Exp C; cantilever right expo Truss des only. For see Stand or consult Gable req Gable stud Gable stud This truss chord live * This truss on the bot 3-06-00 ta chord and All bearing Provide m bearing pl 1 and 42 l 	CE 7-16; Vult=115mph nph; TCDL=6.0psf; BC Enclosed; MWFRS (en left and right exposed sed; Lumber DOL=1.6 signed for wind loads in studs exposed to wind lard Industry Gable End qualified building desig uires continuous bottor ds spaced at 4-0-0 oc. has been designed for load nonconcurrent wi is has been designed for tom chord in all areas all by 2-00-00 wide will any other members. gs are assumed to be S eechanical connection (ate capable of withstar b uplift at joint 3.	(3-second gust) DL=6.0psf; h=25ft; C ivelope) exterior zonc; end vertical left and 0 plate grip DCL=1.6 h the plane of the trus (normal to the face), d Details as applicab gner as per ANSI/TP: n chord bearing. a 10.0 psf bottom th any other live load or a live load of 20.0p where a rectangle fit between the bottor SPF No.2. by others) of truss to adding 12 lb uplift at jo	at. e; 0 ss le, 11. s. ssf m						4		NUM PE-20010	MISSOLE T.M. ER BER DI8807

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent toulsable personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcscomponents.com)

Job	Truss	Truss Type	Qty	Ply	Lot 137 HM	
B240103	V3	Valley	1	1	Job Reference (optional)	165312026

Run: 8.73 S Apr 25 2024 Print: 8.730 S Apr 25 2024 MiTek Industries, Inc. Thu May 02 07:32:20 ID:vBszku21ozNPT?RIzYtJMSyXqDi-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

2x4 🛚

2-3-12

1-6-12

Scale = 1:21.8				1			1					
Loading TCLL (roof) TCDL BCLL BCDL	(psf) 25.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018/TPI2014	CSI TC BC WB Matrix-P	0.05 0.03 0.00	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 3	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 6 lb	GRIP 197/144 FT = 10%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD BOT CHORD REACTIONS	2x4 SPF No.2 2x4 SPF No.2 2x3 SPF No.2 Structural wood she 2-4-2 oc purlins, ex Rigid ceiling directly bracing. (size) 1=2-3-12, Max Horiz 1=47 (LC Max Uplift 1=-7 (LC Max Grav 1=79 (LC (lb) - Maximum Corr	eathing directly applie cept end verticals. applied or 10-0-0 or , 3=2-3-12 5) 8), 3=-23 (LC 8) 1), 3=85 (LC 15) apression/Maximum	9) This truss is Internationa R802.10.2 a LOAD CASE(S)	designed in accord I Residential Code s and referenced stan Standard	dance w sections dard AN	ith the 2018 R502.11.1 a ISI/TPI 1.	and				Weight. 0 ib	11 - 1078
TOP CHORD BOT CHORD	Tension 1-2=-43/35, 2-3=-67 1-3=-17/13	//33										
 NOTES 1) Wind: ASC Vasd=91m II; Exp C; E cantilever II; Exp C; E cantilever II; Exp C; I cantilever II; Exp	CE 7-16; Vult=115mph hph; TCDL=6.0psf; BC Enclosed; MWFRS (er left and right exposed sed; Lumber DOL=1.6 igned for wind loads in studs exposed to wind ard Industry Gable En qualified building desi uires continuous botto ds spaced at 4-0-0 oc. has been designed fo load nonconcurrent w s has been designed to be shas been designed to be shas been designed to s has been designed to be shas be	a (3-second gust) CDL=6.0psf; h=25ft; (hvelope) exterior zor ; end vertical left an 00 plate grip DOL=1.4 n the plane of the tru 1 (normal to the face) d Details as applicat gner as per ANSI/TF m chord bearing. r a 10.0 psf bottom ith any other live load for a live load of 20.0 where a rectangle fit between the bottot SPF No.2. (by others) of truss to nding 7 lb uplift at join	Cat. re; d 60 siss), ole, P1 1. ds. opsf om o int 1								STATE OF STATE OF SEV SEV PE-2007	MISSOLD T.M. TER Jones MISSOLD TER MISSOLD

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent toulsable personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcscomponents.com)

Job	Truss	Truss Type	Qty	Ply	Lot 137 HM	
B240103	V4	Valley	1	1	Job Reference (optional)	165312027

Run: 8.73 S Apr 25 2024 Print: 8.730 S Apr 25 2024 MiTek Industries, Inc. Thu May 02 07:32:20 ID:vBszku21ozNPT?RIzYtJMSyXqDi-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Scale = 1:45.2

Plate Offsets (X, Y): [8:0-3-8,Edge]

Loading TCLL (roof TCDL BCLL BCDL	(psf) 25.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018	3/TPI2014	CSI TC BC WB Matrix-S	0.32 0.19 0.11	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.02	(loc) - - 4	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 41 lb	GRIP 197/144 FT = 10%
LUMBER TOP CHOF BOT CHOF WEBS OTHERS BRACING TOP CHOF BOT CHOF REACTION	 2x4 SPF No.2 2x4 SPF No.2 *Exce 2x3 SPF No.2 2x3 SPF No.2 Structural wood she 6-0-0 oc purlins, ex Rigid ceiling directly bracing. (size) 4=13-5-4, 7=13-5-4, Max Horiz 8=-171 (L Max Uplift 4=-64 (LC (LC 5), 8= Max Grav 4=203 (LC 8=202 (LC 	athing directly applie cept end verticals. applied or 6-0-0 oc 5=13-5-4, 6=13-5-4 8=13-5-4 C 9) 2 9), 5=-191 (LC 9), 7 =-145 (LC 9) C 16), 5=615 (LC 16) 14), 7=376 (LC 18), 7, 16)	5) 6) 2 7) d or 8) 9) 723 723 11 12	Gable studs This truss ha chord live loa * This truss h on the bottor 3-06-00 tall b chord and ar All bearings Bearing at jo using ANSI/T designer sho) Provide mec bearing plate 8, 64 lb uplift uplift at joint) Beveled plate surface with) This truss is	spaced at 4-0-0 o s been designed ad nonconcurrent has been designed n chord in all area by 2-00-00 wide w y other members are assumed to be int(s) 7 considers TPI 1 angle to grai uld verify capacity hanical connection o capable of withst at joint 4, 23 lb up 5. e or shim required truss chord at join designed in accor	c. for a 10.0 with any d for a liv is where ill fit betw with BC e SPF No parallel t n formula v of bearin n (by oth canding 1 plift at joi l to provin t(s) 8. dance w) psf bottom other live loa e load of 20.0 a rectangle veen the bott DL = 10.0psi 0.2. o grain value a. Building ng surface. ers) of truss t 45 lb uplift at nt 7 and 191 de full bearin th the 2018	ads. Opsf om f. to t joint Ib g					
FORCES	(lb) - Maximum Com Tension	pression/Maximum		R802.10.2 a	nd referenced star	ndard AN	ISI/TPI 1.	and					
TOP CHOP	D 1-8=-150/158, 1-2=- 3-4=-84/120	164/245, 2-3=-142/2	43, LC	IAD CASE(S)	Standard								
BOT CHOP	2D 7-8=-11/36, 6-7=0/0 4-5=-5/7	, 2-7=-292/42, 5-6=-{	5/7,									STAT	ADDE
WEBS	3-5=-390/243											OF I	MIS.C.
NOTES 1) Unbala this de: 2) Wind: 4 Vasd=4 II; Exp cantiler right e> 3) Truss only. F see Sta cross	nced roof live loads have sign. SCE 7-16; Vult=115mph 1mph; TCDL=6.0psf; BC C; Enclosed; MWFRS (er rer left and right exposed posed; Lumber DOL=1.6 designed for wind loads in or studs exposed to wind indard Industry Gable En ult gualified building desi	been considered for (3-second gust) EDL=6.0psf; h=25ft; C hvelope) exterior zon ; end vertical left and 0 plate grip DOL=1.6 n the plane of the tru: I (normal to the face) d Details as applicab guera as one ANS/ITE	Cat. e; d 50 ss , , , , , , ,									SCOT SEVI NUM PE-2001	r M. ER DIS807
	an quamer building desi	m chard boaring										A INA	-

4) Gable requires continuous bottom chord bearing.

May 3,2024

Page: 1

TION 'IEW DEVELOPMENT SERVICES LEE'S' SUMMIT'S MISSOURI 05/24/2024 2:42:17

Job	Truss	Truss Type	Qty	Ply	Lot 137 HM	
B240103	V5	Valley	1	1	Job Reference (optional)	165312028

Run: 8.73 S Apr 25 2024 Print: 8.730 S Apr 25 2024 MiTek Industries, Inc. Thu May 02 07:32:21 ID:vBszku21ozNPT?RIzYtJMSyXqDi-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Scale = 1:40.5

Plate Offsets (X, Y): [8:0-3-8,Edge]

Loading TCLL (roof) TCDL BCLL BCDL	(psf) 25.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018	3/TPI2014	CSI TC BC WB Matrix-S	0.21 0.13 0.06	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.02	(loc) - - 4	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 35 lb	GRIP 197/144 FT = 10%	
LUMBER TOP CHORD 30T CHORD WEBS DTHERS BRACING TOP CHORD 30T CHORD REACTIONS	2x4 SPF No.2 2x4 SPF No.2 *Exce 2x3 SPF No.2 2x3 SPF No.2 Structural wood she 6-0-0 oc purlins, exi Rigid ceiling directly bracing. (size) 4=11-11-4 7=11-11-4 Max Horiz 8=-131 (L Max Uplift 4=-34 (LC (LC 5), 8= Max Grav 4=120 (LC (LC 3), 7= 21)	athing directly applie cept end verticals. applied or 10-0-0 od 4, 5=11-11-4, 6=11-1 4, 8=11-11-4 C 4) 5 9), 5=-156 (LC 9), 5 -106 (LC 9) C 1), 5=413 (LC 16), -313 (LC 15), 8=185	5) 6) 7) 6d or 8) 5 9) 11-4, 10 7=-5 6=65 11 (LC 12	Gable studs This truss ha chord live loa * This truss f on the bottor 3-06-00 tall b chord and ar All bearings : Bearing at jo using ANSI/I designer sho) Provide mec bearing plate 8, 34 lb uplift uplift at joint) Beveled plate surface with) This truss is International	spaced at 4-0-0 oc s been designed fi ad nonconcurrent v has been designed n chord in all areas yo 2-00-00 wide wil yo other members. are assumed to be int(s) 7 considers p TPI 1 angle to grain uld verify capacity hanical connection capable of withsta at joint 4, 5 lb upli 5. e or shim required truss chord at joint designed in accord Residential Code	c. or a 10.0 vith any for a liv s where Il fit betw SPF No coarallel t of beari (by oth anding 1 ft at join to provid (s) 8. dance w sections	D psf bottom other live loa e load of 20.0 a rectangle veen the botto b.2. o grain value a. Building ng surface. ers) of truss t 06 lb uplift at t 7 and 156 lt de full bearing ith the 2018	ds. Dpsf om joint g						
F ORCES	(lb) - Maximum Com Tension 1-8=-151/123, 1-2=-	pression/Maximum 145/189, 2-3=-118/1	80, LC	R802.10.2 ar	nd referenced stan Standard	dard AN	ISI/TPI 1.							
BOT CHORD	3-4=-50/79 7-8=-17/42, 6-7=0/0, 5-6=-10/18, 4-5=-10,	, 2-7=-262/23, /18											an	
NEBS	3-5=-317/201											F. OF M	AISS C	
NOTES	a di wa a f ilik ya dia a da di	have enclose 14	_								A	A. A.	1.50	
 Unbalanc this design 	ed root live loads have	been considered for	Γ								B	SCOTT	M. EN	
 this design of the second secon	I. CE 7-16; Vult=115mph nph; TCDL=6.0psf; BC Enclosed; MWFRS (er left and right exposed sed; Lumber DOL=1.6 signed for wind loads ir studs exposed to wind lard Industry Gable Eniq qualified building desig uirres continuous botton	(3-second gust) DL=6.0psf; h=25ft; (ivelope) exterior zor ; end vertical left an 0 plate grip DOL=1.6 the plane of the tru (normal to the face) d Details as applicat gner as per ANSI/TF m chord bearing	Cat. he; d 60 lss b, ble, PI 1.									SEVI NUM PE-20010	ER BER D18807	7

May 3,2024

Page: 1

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent toulsable personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcscomponents.com)

Job	Truss	Truss Type	Qty	Ply	Lot 137 HM	
B240103	V6	Valley	1	1	Job Reference (optional)	165312029

Run: 8.73 S Apr 25 2024 Print: 8.730 S Apr 25 2024 MiTek Industries, Inc. Thu May 02 07:32:21 ID:vBszku21ozNPT?RIzYtJMSyXqDi-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

?RIzYtJMSyXqDi-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Scale =	1:36.2
---------	--------

Plate Offsets (X, Y): [8:0-3-8,Edge]

Loading FCLL (roof) FCDL SCLL SCDL	(psf) 25.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018	3/TPI2014	CSI TC BC WB Matrix-S	0.21 0.13 0.05	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.01	(loc) - - 4	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 30 lb	GRIP 197/144 FT = 10%	
CDL 10.0 Code IR(UMBER OP CHORD 2x4 SPF No.2 Except* 2-6:2x3 SPF No.2 OT CHORD 2x4 SPF No.2 *Except* 2-6:2x3 SPF No.2 ////////////////////////////////////				Gable studs This truss ha chord live loa * This truss h on the bottor 3-06-00 tall b chord and ar All bearings a Bearing at jo/ designer sho) Provide mec bearing plate 8, 18 lb upliff) Beveled plate surface with) This truss is International	spaced at 4-0-0 oc s been designed for ad nonconcurrent w nas been designed n chord in all areas by 2-00-00 wide will yo other members. are assumed to be int(s) 7 considers p TPI 1 angle to grain uld verify capacity hanical connection o capable of withsta at joint 4 and 136 e or shim required truss chord at joint designed in accord Residential Code s	or a 10.0 vith any for a liv where I fit betw SPF No arallel formula of bear (by oth noding 6 lb uplift to provi (s) 8. lance w sections	D psf bottom other live loa e load of 20.0 a rectangle veen the bottu 0.2. o grain value a. Building ng surface. ers) of truss i 7 lb uplift at j at joint 5. de full bearin ith the 2018 R502.11.1 a	nds. Opsf om to joint g and						
ORCES	(lb) - Maximum Com Tension	pression/Maximum	LC	AD CASE(S)	Standard	dard Ar	ISI/TPI 1.							
FOP CHORD	1-8=-173/93, 1-2=-1 3-4=-87/53	45/114, 2-3=-133/10	06,											
BOT CHORD	7-8=-41/91, 6-7=0/0 4-5=-35/70	, 2-7=-214/0, 5-6=-3	85/70,									COLOR	ADD.	
NEBS	3-5=-277/178											F OF M	AISS D	
IOTES	a diverse filler and a l	have excluded 14	_								A	A	N.S.	
 Unbalance this design 	ea roof live loads have	been considered to	ſ								B	SCOTT	M. P.Y.	<i>u</i>
2) Wind: AS Vasd=91r II; Exp C; cantilever right expo	CE 7-16; Vult=115mph nph; TCDL=6.0psf; BC Enclosed; MWFRS (er left and right exposed issed; Lumber DOL=1.6	(3-second gust) iDL=6.0psf; h=25ft; (ivelope) exterior zor ; end vertical left an 0 plate grip DOL=1.0	Cat. ne; d 60							•		SEVI	ER Servie	
 Truss de only. For see Stand or consult Gable rec 	signed for wind loads ir studs exposed to wind lard Industry Gable En qualified building design juires continuous bottoo	n the plane of the tru I (normal to the face) d Details as applicat gner as per ANSI/TF m chord bearing.	uss), ble, PI 1.								Ø	FESSIONA	L ENGL	

May 3,2024

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent touls be personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TPI1 Quality Criteria, and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcscomponents.com)

Job	Truss	Truss Type	Qty	Ply	Lot 137 HM	
B240103	V7	Valley	1	1	Job Reference (optional)	165312030

Run: 8.73 S Apr 25 2024 Print: 8.730 S Apr 25 2024 MiTek Industries, Inc. Thu May 02 07:32:21 ID:vBszku21ozNPT?RIzYtJMSyXqDi-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

9-9-0

9-9-0

Scale = 1:30

		i			i								
Loading TCLL (roof) TCDL BCLL BCDL	(psf) 25.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC20	18/TPI2014	CSI TC BC WB Matrix-S	0.27 0.17 0.06	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 3	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 25 lb	GRIP 197/144 FT = 10%
LUMBER TOP CHORD BOT CHORD OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SPF No.2 2x4 SPF No.2 2x3 SPF No.2 Structural wood shea 6-0-0 oc purlins. Rigid ceiling directly bracing. (size) 1=9-9-0, 3 Max Horiz 1=-77 (LC Max Uplift 1=-39 (LC (LC 8) Max Grav 1=205 (LC (LC 1)	athing directly applied applied or 10-0-0 oc 3=9-9-0, 4=9-9-0 4) 8), 3=-48 (LC 9), 4= C 1), 3=205 (LC 1), 4:	d or 5	 * This truss I on the bottor 3-06-00 tall I chord and at All bearings Provide mec bearing plate 1, 48 lb uplif This truss is International R802.10.2 a CASE(S) 	has been designe in chord in all are by 2-00-00 wide v by other member are assumed to the hanical connection e capable of withs that joint 3 and 15 designed in accc Residential Cod nd referenced stat Standard	ed for a liv as where will fit betw s. be SPF No on (by oth standing 3 5 lb uplift a ordance w e sections andard AN	e load of 20. a rectangle veen the bott o.2. ers) of truss : 9 lb uplift at j t joint 4. th the 2018 R502.11.1 a ISI/TPI 1.	Opsf om to joint and					
FORCES TOP CHORD BOT CHORD WEBS NOTES	(lb) - Maximum Com Tension 1-2=-153/73, 2-3=-1! 1-4=-15/71, 3-4=-15/ 2-4=-252/64	pression/Maximum 52/55 /71											

1) Unbalanced roof live loads have been considered for this design.

- 2) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1. 4) Gable requires continuous bottom chord bearing.

5) Gable studs spaced at 4-0-0 oc.

6)

This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

May 3,2024

 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.
 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not besign value to dury with with where outputs into design is based only door parameters shown, and is for an individual building design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members and property incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TPH1 Quality Criteria**, and **DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcscomponents.com)

Job	Truss	Truss Type	Qty	Ply	Lot 137 HM	
B240103	V8	Valley	1	1	Job Reference (optional)	165312031

ဂု

1-11

2-3-4

Run: 8.73 S Apr 25 2024 Print: 8.730 S Apr 25 2024 MiTek Industries, Inc. Thu May 02 07:32:21 ID:vBszku21ozNPT?RIzYtJMSyXqDi-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

6-9-0

Scale = 1:25.9

														_
Loading TCLL (roof) TCDL BCLL BCDL	(psf) 25.0 10.0 0.0 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC201	8/TPI2014	CSI TC BC WB Matrix-P	0.15 0.07 0.03	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 3	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 17 lb	GRIP 197/144 FT = 10%	
LUMBER TOP CHORD BOT CHORD OTHERS BRACING TOP CHORD BOT CHORD	2x4 SPF No.2 2x4 SPF No.2 2x3 SPF No.2 Structural wood sl 6-0-0 oc purlins. Rigid ceiling direc bracing.	eathing directly applied or 10-0-0 c	8) 9) 10 ied or bc L0	All bearings a Provide mecl bearing plate 1 and 39 lb u 0) This truss is o International R802.10.2 ar DAD CASE(S)	are assumed to b nanical connection capable of withs plift at joint 3. designed in accoor Residential Code do referenced stat Standard	be SPF No on (by othe standing 3 ordance wi e sections andard AN	0.2 . ers) of truss t 3 lb uplift at j th the 2018 R502.11.1 a ISI/TPI 1.	to oint and						
REACTIONS	(size) 1=6-9-0 Max Horiz 1=51 (L Max Uplift 1=-33 (I Max Grav 1=148 ((LC 1)	, 3=6-9-0, 4=6-9-0 C 5) LC 8), 3=-39 (LC 9) LC 1), 3=148 (LC 1),	4=230											
FORCES	(lb) - Maximum Co Tension	mpression/Maximum	I											
TOP CHORD BOT CHORD WEBS	1-2=-92/47, 2-3=-8 1-4=-10/43, 3-4=- 2-4=-157/40	8/35 0/43												
NOTES														
 Unbalance this design Wind: ASC Vasd=91n II: Exp C: 	ed roof live loads hav n. CE 7-16; Vult=115mj nph; TCDL=6.0psf; E Enclosed: MWFRS (e been considered fo h (3-second gust) CDL=6.0psf; h=25ft; envelope) exterior zo	or Cat. ne:									-51111	all the second sec	
cantilever right expo 3) Truss des	left and right expose sed; Lumber DOL=1 signed for wind loads	d; end vertical left ar 60 plate grip DOL=1 in the plane of the tr od (normal to the face	nd .60 uss								A	STATE OF M	MISSOLR	

- Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
 Gable requires continuous bottom chord bearing.
- 5) Gable studs spaced at 4-0-0 oc.
- 6) This truss has been designed for a 10.0 psf bottom
- chord live load nonconcurrent with any other live loads.
- This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.

SCOTT M. SEVIER NUMBER PE-2001018807 NUMBER PE-2001018807 May 3,2024

Page: 1

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSITPTI Quality Criteria**, and **DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcscomponents.com)

Job	Truss	Truss Type	Qty	Ply	Lot 137 HM	
B240103	V9	Valley	1	1	Job Reference (optional)	165312032

Run: 8.73 S Apr 25 2024 Print: 8.730 S Apr 25 2024 MiTek Industries, Inc. Thu May 02 07:32:21 ID:vBszku21ozNPT?RIzYtJMSyXqDi-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

3-9-0

Scale = 1:22.2		
Plate Offsets (X, Y):	[2:0-2-0,Edge]	

	(, .). [==,=											
Loading	(psf)	Spacing	2-0-0	csi		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15	TC	0.03	Vert(LL)	n/a	()	n/a	999	MT20	197/144
TCDL	10.0	Lumber DOL	1.15	BC	0.08	Vert(TL)	n/a	-	n/a	999		
BCLL	0.0*	Rep Stress Incr	YES	WB	0.00	Horiz(TL)	0.00	3	n/a	n/a		
BCDL	10.0	Code	IRC2018/TPI2014	Matrix-P							Weight: 8 lb	FT = 10%
											5	
LUMBER			Provide me	echanical connect	tion (by oth	ers) of truss	to					
TOP CHORD	2x4 SPF No.2		bearing pla	te capable of with	nstanding 1	5 lb uplift at	joint					
BOT CHORD	2x4 SPF No.2		1 and 15 lt	o uplift at joint 3.		ith the 2010						
BRACING			10) This truss	s designed in acc	cordance w	Ith the 2018	and					
TOP CHORD	Structural wood she	athing directly applie	ed or R802 10 2	and referenced st	tandard AN	191/TDI 1	anu					
	3-9-12 oc purlins.			Stondard		1 01/1111.						
BOT CHORD	Rigid ceiling directly	applied or 10-0-0 or) Stanuaru								
	bracing.											
REACTIONS	(size) 1=3-9-0, 3	3=3-9-0										
	Max Horiz 1=-25 (LC	24) 20) 0.45(100)										
	Max Oplint 1=-15 (LC	(10, 3), 3 = -15 (L0, 9)										
		5 1), 3=128 (LC 1)										
FORCES	(Ib) - Maximum Corr Tension	pression/Maximum										
TOP CHORD	1-2=-112/34, 2-3=-1	12/34										
BOT CHORD	1-3=-15/75											
NOTES												
1) Unbalance	ed roof live loads have	been considered for	r									
this desig	in.											
2) Wind: AS	CE 7-16; Vult=115mph	(3-second gust)										
Vasd=91	mph; TCDL=6.0psf; BC	DL=6.0psf; h=25ft; 0	Cat.									
II; Exp C;	Enclosed; MWFRS (er	nvelope) exterior zor	ie;									
cantilever	r left and right exposed	; end vertical left an	d									alle
right expo	osed; Lumber DOL=1.6	0 plate grip DOL=1.0	50								POF	MISCO
3) Truss de	signed for wind loads it	n the plane of the tru	SS								A TE	-050.0
CONSTRUCTION	dord Inductry Coble En	d Dotails as applicat	, No							4	N.	- Con
or consult	t qualified building desi	aner as ner ANSI/TE	ле, И 1							B	ς' scot	TT M. YE Y
 Gable rec 	nuires continuous hotto	m chord bearing								8	SEV	TER \ Y
5) Gable stu	ids spaced at 4-0-0 oc	in onora boaring.								01		1 * 1
 This truss 	s has been designed fo	r a 10.0 psf bottom								0	0	
chord live	e load nonconcurrent wi	ith any other live load	ds.							И 🚽	A A A A A A A A A A A A A A A A A A A	anner 1
7) * This true	ss has been designed f	or a live load of 20.0	psf							47	DE 200	1010007 191
on the bo	ttom chord in all areas	where a rectangle								N	PE-200	101880/ 201
3-06-00 ta	all by 2-00-00 wide will	fit between the botto	m							Y	1 Per	1 SA
chord and	d any other members.										SION.	TENS
All bearin	igs are assumed to be	SPF No.2 .									UNIVI NI	AL P
											-un	
											N	iay 3,2024

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent toulsable personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcscomponents.com)

RELEASE FOR CONSTRUCT AS NOTED ON FLANS RE STRUCTION DEVELOPMEN SERVICES LEE'S' SUMMIT'S MISSOURI 05/24/2024 2:42:18

Job	Truss	Truss Type	Qty	Ply	Lot 137 HM	
B240103	V10	Valley	1	1	Job Reference (optional)	165312033

Run: 8.73 S Apr 25 2024 Print: 8.730 S Apr 25 2024 MiTek Industries, Inc. Thu May 02 07:32:21 ID:vBszku21ozNPT?RIzYtJMSyXqDi-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

7-2-8

Scale = 1:28.4

_oading	(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
FCLL (roof)	25.0	Plate Grip DOL	1.15		TC	0.19	Vert(LL)	n/a	-	n/a	999	MT20	197/144
FCDL	10.0	Lumber DOL	1.15		BC	0.10	Vert(TL)	n/a	-	n/a	999		
BCLL	0.0*	Rep Stress Incr	YES		WB	0.05	Horiz(TL)	0.00	4	n/a	n/a		
BCDL	10.0	Code	IRC201	8/TPI2014	Matrix-P							Weight: 20 lb	FT = 10%
LUMBER	2x4 SPF No.2 2x4 SPF No.2 2x3 SPE No.2		8)	Provide mec bearing plate 4 and 113 lb This truss is	hanical connection capable of withsta uplift at joint 5.	i (by oth anding 2 dance w	ers) of truss t 6 lb uplift at j ith the 2018	o oint					
THERS	2x3 SPF No 2		0)	International	Residential Code	sections	R502.11.1 a	ind					
	273 011 10.2			R802.10.2 a	nd referenced stan	dard AN	ISI/TPI 1.						
	Structural wood she	athing directly applie	dor LC	DAD CASE(S)	Standard								
	6-0-0 oc purlins, ex	cept end verticals.		. ,									
30T CHORD	 Rigid ceiling directly bracing. 	applied or 10-0-0 oc	;										
REACTIONS	(size) 1=7-2-8, 4 Max Horiz 1=136 (LC Max Uplift 4=-26 (LC Max Grav 1=82 (LC (LC 1)	4=7-2-8, 5=7-2-8 C 5) C 8), 5=-113 (LC 8) 16), 4=141 (LC 1), 5	i=378										
ORCES	(lb) - Maximum Com Tension	pression/Maximum											
FOP CHORD	1-2=-114/61, 2-3=-1	07/44, 3-4=-110/45											
BOT CHORD	1-5=-46/35, 4-5=-46	/35											
NEBS	2-5=-294/164												
OTES													
I) Wind: AS Vasd=91	CE 7-16; Vult=115mph mph; TCDL=6.0psf; BC	(3-second gust) DL=6.0psf; h=25ft; C	Cat.										
n, Exp C;	r left and right exposed	: end vertical left and	е, 1									and	ADD
right exp	nsed: Lumber DOI =1.6	0 plate grip DOI =1 6	30									S OF M	Alexan
2) Truss de	signed for wind loads in	the plane of the tru	ss								1	F.TE	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
only. For	studs exposed to wind	(normal to the face)	,								A	N	New
see Stan	dard Industry Gable En	d Details as applicab	ole,								H	SCOT	M. YAY
or consul	t qualified building desig	gner as per ANSI/TP	11.								B.	/ SEVI	ER \ X
Gable red	quires continuous botto	m chord bearing.									10*		
 Gable stu 	ids spaced at 4-0-0 oc.												~ OALLON /

- 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
 6) * This truss has been designed for a live load of 20.0psf
- This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- 7) All bearings are assumed to be SPF No.2.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

NUMBER

PE-2001018807

SSIONAL ET

Job	Truss	Truss Type	Qty	Ply	Lot 137 HM	
B240103	V11	Valley	1	1	Job Reference (optional)	165312034

4-6-8

Wheeler Lumber, Waverly, KS - 66871,

Run: 8,73 S Apr 25 2024 Print: 8,730 S Apr 25 2024 MiTek Industries, Inc. Thu May 02 07:32:21 ID:vBszku21ozNPT?RIzYtJMSyXqDi-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale	1 = 1	:22.1	

Scale = 1:22.1								1					
Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP	
TCLL (roof)	25.0	Plate Grip DOL	1.15	тс	0.27	Vert(LL)	n/a	-	n/a	999	MT20	197/144	
TCDL	10.0	Lumber DOL	1.15	BC	0.15	Vert(TL)	n/a	-	n/a	999			
BCLL	0.0*	Rep Stress Incr	YES	WB	0.00	Horiz(TL)	0.00	3	n/a	n/a			
BCDL	10.0	Code	IRC2018/TPI2014	Matrix-P							Weight: 12 lb	FT = 10%	
LUMBER TOP CHORD BOT CHORD WEBS	9) This truss is designed in accordance with the 2018 2x4 SPF No.2 International Residential Code sections R502.11.1 and 2x3 SPF No.2 LOAD CASE(S)												
TOP CHORD	Structural wood she	athing directly appli	ed or										

4-6-8

	4-7-0 oc p	ourlins, except end verticals.
BOT CHORD	Rigid ceili	ng directly applied or 10-0-0 oc
	bracing.	
REACTIONS	(size)	1=4-6-8, 3=4-6-8
	Max Horiz	1=80 (LC 5)
	Max Uplift	1=-22 (LC 8), 3=-42 (LC 8)
	Max Grav	1=173 (LC 1), 3=173 (LC 1)
FORCES	(lb) - Max	imum Compression/Maximum
	Tension	

TOP CHORD 1-2=-73/48, 2-3=-135/66 BOT CHORD 1-3=-27/21

NOTES

- Wind: ASCE 7-16; Vult=115mph (3-second gust) 1) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
- 2) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable or consult qualified building designer as per ANSI/TPI 1.
- Gable requires continuous bottom chord bearing. 3) Gable studs spaced at 4-0-0 oc. 4)
- 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf 6) on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom

chord and any other members. 7)

All bearings are assumed to be SPF No.2 . 8)

Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 22 lb uplift at joint 1 and 42 lb uplift at joint 3.

 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.
 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not beigh valid for use only with with with with the contractions. This design is based only door plantaters shown, and is for an individual dualing component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria**, and **DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcscomponents.com)

TION DEVELORMENT SERVICES LEE'S'SUMMIT'SMISSOURI 05/24/2024 2:42:18

Job	Truss	Truss Type	Qty	Ply	Lot 137 HM	
B240103	V12	Valley	1	1	Job Reference (optional)	165312035

3-2-8

3-2-8

Wheeler Lumber, Waverly, KS - 66871,

Run: 8.73 S Apr 25 2024 Print: 8.730 S Apr 25 2024 MiTek Industries, Inc. Thu May 02 07:32:21 ID:vBszku21ozNPT?RIzYtJMSyXqDi-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:19.5							1					
Loading TCLL (roof) TCDL BCLL BCDL	(psf) 25.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018/TPI2014	CSI TC BC WB Matrix-P	0.11 0.06 0.00	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 3	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 8 lb	GRIP 197/144 FT = 10%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD	2x4 SPF No.2 2x4 SPF No.2 2x3 SPF No.2 Structural wood she 3-3-0 oc purlins, ex Rigid ceiling directly bracing.	athing directly appli cept end verticals. applied or 10-0-0 c	9) This truss Internatio R802.10.1 LOAD CASE(ed or	is designed in acc nal Residential Co 2 and referenced s S) Standard	cordance wi de sections tandard AN	th the 2018 R502.11.1 ε ISI/TΡΙ 1.	ind					
REACTIONS	(size) 1=3-2-8, 3 Max Horiz 1=53 (LC Max Uplift 1=-15 (LC Max Grav 1=113 (LC	3=3-2-8 5) 3), 3=-28 (LC 8) 2 1), 3=113 (LC 1)										
FORCES	(lb) - Maximum Com Tension 1-2=-48/32, 2-3=-88	pression/Maximum										
 NOTES Wind: ASV Vasd=91r II; Exp C; cantilever right expo Truss des only. For see Stanc or consult Gable req Gable stu This truss chord live * This truss 	CE 7-16; Vult=115mph mph; TCDL=6.0psf; BC Enclosed; MWFRS (er left and right exposed signed for wind loads ir studs exposed to wind dard Industry Gable End c qualified building desig juires continuous bottor ds spaced at 4-0-0 oc. has been designed for load nonconcurrent wi ss has been designed for	(3-second gust) DL=6.0psf; h=25ft; ivelope) exterior zo ; end vertical left ar 0 plate grip DOL=1. h the plane of the trr (normal to the face d Details as applica gner as per ANSI/T m chord bearing. r a 10.0 psf bottom th any other live loa or a live load of 20.	Cat. ne; id .60 uss .), ble, PI 1. ads. 0psf							*	STATE OF STATE SCOT SEV	MISSOURT M. HER

- 1)
- 2) 3)
- 4)
- 5)
- 6)
- 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.

All bearings are assumed to be SPF No.2 . 7)

Provide mechanical connection (by others) of truss to 8) bearing plate capable of withstanding 15 lb uplift at joint 1 and 28 lb uplift at joint 3.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent touls be personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANS/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

Job	Truss	Truss Type	Qty	Ply	Lot 137 HM	
B240103	V13	Valley	1	1	Job Reference (optional)	165312036

2-11-8

Run: 8.73 S Apr 25 2024 Print: 8.730 S Apr 25 2024 MiTek Industries, Inc. Thu May 02 07:32:21 ID:vBszku21ozNPT?RIzYtJMSyXqDi-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

5-10-8

5-10-8

Scale = 1	1:24.7
-----------	--------

Loading	(psi	f) Spacing	2-0-0	csi		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (ro	of) 25.	0 Plate Grip DOL	1.15	тс	0.52	Vert(LL)	n/a	-	n/a	999	MT20	197/144
TCDL	10.	0 Lumber DOL	1.15	BC	0.28	Vert(TL)	n/a	-	n/a	999		
BCLL	0.	0* Rep Stress Incr	YES	WB	0.00	Horiz(TL)	0.00	3	n/a	n/a		
BCDL	10.	0 Code	IRC2018/TPI2014	Matrix-P							Weight: 15 lb	FT = 10%
LUMBER 9) This truss is designed in accordance with the 2018												
TOP CH	P CHORD 2x4 SPF No.2 International Residential Code sections R502.11.1 and											
BOT CHO	BOT CHORD 2x4 SPF No.2		R802.10.2 and referenced standard ANSI/TPI 1.									
WEBS	2x3 SPF No.2		LOAD CASE(S)	Standard								
BRACING												
TOP CHORD Structural wood sheathing directly applied or												
5-11-0 UC pumins, except end venticals.												
bracina.												
REACTIO	ONS (size) 1=5-1	0-8, 3=5-10-8										
	Max Horiz 1=108	3 (LC 5)										
	Max Uplift 1=-30	(LC 8), 3=-57 (LC 8)										
	Max Grav 1=233	3 (LC 1), 3=233 (LC 1)										
FORCES (Ib) - Maximum Compression/Maximum												
Notes												
1) Wind ASCE 7-16: Vult=115mph (3-second gust)												
Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat.												
II; Ex	C; Enclosed; MWFRS (envelope) exterior zone;											
canti	ntilever left and right exposed ; end vertical left and											
2) True	In exposed, Lumber DOL=1.00 plate grip DOL=1.00											
only.	In use designed to wind loads in the plane of the fluss								TOP			
see S	Standard Industry Gable	End Details as applica	ble,								OF N	AIS C
or co	or consult qualified building designer as per ANSI/TPI 1.										~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	
3) Gable requires continuous bottom chord bearing.												
4) Gabl	Gable studs spaced at 4-0-0 oc.										FR Y	
chord live load porconcurrent with any other live load s												
6) * This truss has been designed for a live load of 20.0psf										8		
on the bottom chord in all areas where a rectangle									- ener			
3-06-00 tall by 2-00-00 wide will fit between the bottom								DIADOT AND				
chord and any other members.								1000/201				
1) All Dealings are assumed to be SFF NO.2.									IS B			
bearing plate capable of withstanding 30 b uplift at joint							LENA					
1 and	57 lb uplift at joint 3.	5 · · · · · · · · · · · · · · ·	•								an	The second secon
											Ma	y 3,2024

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent touls be personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TPI1 Quality Criteria, and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcscomponents.com)

ASE FOR CONST **OTED ON PLANS** VELOPMENT SER LEE'S SUMMIT, MISSOURI

05/24/2024

2:42:18

- 19. Review all portions of this design (front, back, words and pictures) before use. Reviewing pictures alone
- 20. Design assumes manufacture in accordance with ANSI/TPI 1 Quality Criteria.
- 21. The design does not take into account any dynamic or other loads other than those expressly stated.