

RELEASE FOR CONSTRUCTION AS NOTED FOR PLAN REVIEW DEVELOPMENT SERVICES LEE'S SUMMIT. MISSOURI 05/22/2024

N 41-

.

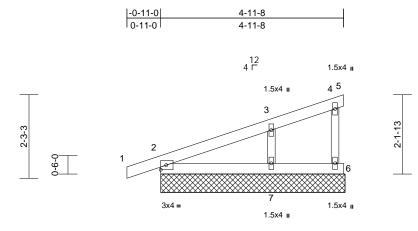
RE: P240476-01 - Roof - Osage Lot 61	MiTek, Inc.
Site Information: Project Customer: Clayton Properties Project Name	e: Basswoof Farmhouse 16023 Swingley Ridge Rd. Chesterfield, MO 63017
Lot/Block: 61 Subdivisi	on: Osage 314.434.1200
Model:	
Address: 3808 SW Ravengate PI	
City: Lee's Summit State: M	-
General Truss Engineering Criteria & Design Load	s (Individual Truss Design
Drawings Show Special Loading Conditions):	
Design Code: IRC2018/TPI2014	Design Program: MiTek 20/20 8.6
Wind Code: ASCE 7-16 Wind Speed: 115 mph	Design Method: MWFRS (Envelope)/C-C hybrid Wind ASCE 7-16
Roof Load: 45.0 psf	Floor Load: N/A psf
Mean Roof Height (feet): 35	Exposure Category: C

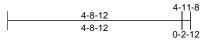

No.	Seal#	Truss Name	e Date
1	l65475617	B1	5/10/24
	l65475618	B2	5/10/24
3	165475619	B3	5/10/24
5	165475620	C1	5/10/24
	165475621	C2	5/10/24
6	165475622	Č3	5/10/24
7	165475623	D1	5/10/24
23456789	165475624	D2	5/10/24
	165475625	D3	5/10/24
10	165475626	E1	5/10/24
	165475627	E2	5/10/24
11 12 13	165475628 165475629	Ē3 E4	5/10/24 5/10/24
14	165475630	Ē5	5/10/24
15	l65475631	R1	5/10/24
16	l65475632	V1	5/10/24
17	l65475633	V2	5/10/24
18	l65475634	V3	5/10/24
19	l65475635	V4	5/10/24
20	l65475636	V5	5/10/24
21	l65475637	V6	5/10/24
22	l65475638	V7	5/10/24
23	165475639	V8	5/10/24

The truss drawing(s) referenced above have been prepared by MiTek USA, Inc. under my direct supervision based on the parameters provided by Premier Building Supply (Springhill, KS)20300 W 207th Street.

Truss Design Engineer's Name: Sevier, Scott

My license renewal date for the state of Missouri is December 31, 2025.


IMPORTANT NOTE: The seal on these truss component designs is a certification that the engineer named is licensed in the jurisdiction(s) identified and that the designs comply with ANSI/TPI 1. These designs are based upon parameters shown (e.g., loads, supports, dimensions, shapes and design codes), which were given to MiTek or TRENCO. Any project specific information included is for MiTek's or TRENCO's customers file reference purpose only, and was not taken into account in the preparation of these designs. MiTek or TRENCO has not independently verified the applicability of the design parameters or the designs for any particular building. Before use, the building designer should verify applicability of design parameters and properly incorporate these designs into the overall building design per ANSI/TPI 1, Chapter 2.



Sevier, Scott

						RELEASE FOR CONSTRUCTION
Job	Truss	Truss Type	Qty	Plv	Roof - Osage Lot 61	AS NOTED FOR PLAN REVIEW
000	11033		Guy	1 19	1001 - Osage Lot 01	DEVELOPMENT SERVICES 165475617
P240476-01	B1	Monopitch Supported Gable	1	1	Job Reference (optional	

Run: 8.63 S Apr 26 2024 Print: 8.630 S Apr 26 2024 MITek Industries, Inc. Tu May 02664722/2024

Scale = 1:31.3

00010 = 1.01.0													
Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 25.0 25.0 10.0 0.0 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	1-11-4 1.15 1.15 YES IRC201	8/TPI2014	CSI TC BC WB Matrix-P	0.16 0.07 0.08	DEFL Vert(LL) Vert(CT) Horz(CT)	in n/a n/a 0.00	(loc) - - 5	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 19 lb	GRIP 197/144 FT = 20%
FORCES TOP CHORD BOT CHORD WEBS NOTES	Max Horiz 2=84 (LC Max Uplift 2=-50 (LC (LC 12), 7 Max Grav 2=256 (LC (LC 23), 7 (lb) - Maximum Com Tension 1-2=0/12, 2-3=-157/ 4-6=-50/52 2-7=0/0, 6-7=0/0 3-7=-288/331	cept end verticals. applied or 10-0-0 or 5=5-0-0, 6=5-0-0, 7= 12) (12), 5=-9 (LC 16), ((=-75 (LC 16) C 23), 5=18 (LC 23), (=349 (LC 23) (pression/Maximum 59, 3-4=-41/9, 4-5=-	c 6) 55-0-0 7) 8) 6=-13 9) 6=57 1(9/5, 1 ⁻¹ 12	Plate DOL=1 DOL=1.15); Cs=1.00; Cti Unbalanced design. This truss ha load of 12.0 overhangs n Gable requir Gable studs This truss ha chord live loi All bearings capacity of 5 D) Provide mec bearing plate 5, 13 lb uplif uplift at joint Beveled plat surface with 2) This truss is International R802.10.2 a	snow loads have l as been designed f psf or 2.00 times f on-concurrent with es continuous bott spaced at 2-0-0 o as been designed f ad nonconcurrent are assumed to be 65 psi. thanical connectior e capable of withst t at joint 6, 50 lb up 7. e or shim required truss chord at join designed in accor Residential Code nd referenced star	(Lum DC t C; Fully been con for great lat roof I n other li tom choir c. for a 10. with any e SP No n (by oth ianding § plift at jo I to provit t(s) 2. dance w sections	DL=1.15 Plate Exp.; Ce=0.1 Insidered for the er of min roof bad of 25.0 p ve loads. I'd bearing. Dipsf bottom other live loa 2 crushing ers) of truss i D buplift at jo int 2 and 75 ll de full bearin ith the 2018 \$ R502.11.1 a	e 9; his flive sfon ads. to bint b g					
Vasd=91m Ke=1.00; (exterior zo	CE 7-16; Vult=115mph nph; TCDL=6.0psf; BC Cat. II; Exp C; Enclose one and C-C Corner(3E N) 4-1-0 to 4-11-8 zono	DL=6.0psf; h=35ft; d; MWFRS (envelop E) -0-11-0 to 4-1-0,	be)	OAD CASE(S)	Standard						Å	STATE OF I	тм.

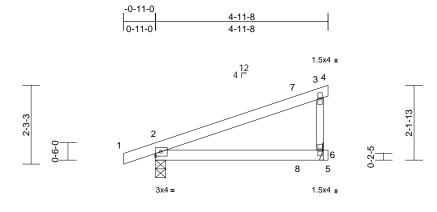
Lumber DOL=1.60 plate grip DOL=1.60 2) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

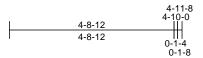
right exposed ; end vertical left exposed;C-C for members and forces & MWFRS for reactions shown;

 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.
 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not besign value for use only with with twit even connectors. This design is based only upon parameters shown, and is for an individual building designer must verify the applicability of design parameters and properly incorporate this design into the overall building designer must verify the applicability of design parameters and properly incorporate this design into the overall building designer. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcscomponents.com)

E

SEVIER


NUMBER


PE-2001018807

SSIONAL

						RELEASE FOR CONSTRUCTION
Job	Truss	Truss Type	Qty	Ply	Roof - Osage Lot 61	AS NOTED FOR PLAN REVIEW DEVELOPMENT SERVICES 165475618
P240476-01	B2	Monopitch	3	1	Job Reference (optional	
Premier Building Supply (Sprin	ghill, KS), Spring Hills, KS - 66083,				5 2024 MiTek Industries, Inc. T B70Ha3NSaPanL8w3uITXbG	

Run: 8.63 S Apr 26 2024 Print: 8.630 S Apr 26 2024 MiTek Industries, Inc. T u May (1) 2063 ID:O7VVk_L0RvxcNO62AgBqQ4ylfCg-RfC?PsB70Hq3NSgPqnL8w3uITXbG WrCDonve42ve f

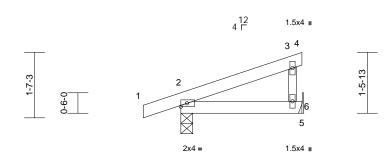
Scale = 1:33.1

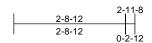
Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 25.0 25.0 10.0 0.0 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC201	8/TPI2014	CSI TC BC WB Matrix-P	0.62 0.48 0.00	DEFL Vert(LL) Vert(CT) Horz(CT)	in 0.10 0.08 0.00	(loc) 2-6 2-6 6	l/defl >549 >651 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 18 lb	GRIP 197/144 FT = 20%
WEBS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x3 SPF No.2 2x3 SPF No.2 Structural wood she 5-0-0 oc purlins, exi Rigid ceiling directly bracing. (size) 2=0-3-8, 6 Max Horiz 2=87 (LC Max Uplift 2=-131 (L Max Grav 2=404 (LC	cept end verticals. applied or 10-0-0 oc 6= Mechanical 12) C 12), 6=-106 (LC 12	: 9) ₂₎ LC	chord live loa Bearings are capacity of 5 Refer to gird Provide mec bearing plate joint 6 and 13 This truss is International	er(s) for truss to tru hanical connection capable of withsta 31 lb uplift at joint 2 designed in accord Residential Code nd referenced stan	with any oint 2 SI uss conr n (by oth anding 1 2. dance w sections	other live loa No.2 crushi nections. ers) of truss 06 lb uplift a th the 2018 R502.11.1 a	ing to t					
FORCES	(lb) - Maximum Com Tension												
TOP CHORD	1-2=0/13, 2-3=-105/ 3-6=-248/242	64, 3-4=-7/0,											
BOT CHORD	2-6=0/0, 5-6=0/0												
NOTES													
Vasd=91mp Ke=1.00; C exterior zor Interior (1) exposed ; e exposed;C	E 7-16; Vult=115mph ph; TCDL=6.0psf; BC Cat. II; Exp C; Enclose ne and C-C Exterior(2 4-1-0 to 4-11-8 zone; end vertical left expos -C for members and for hown; Lumber DOL=	DL=6.0psf; h=35ft; d; MWFRS (envelop E) -0-11-0 to 4-1-0, cantilever left and rig ed; porch left and rig porces & MWFRS for	ght								A	STATE OF M	MISSOLUTION
2) TCLL: ASC Plate DOL= DOL=1.15) Cs=1.00; C	CE 7-16; Pr=25.0 psf (=1.15); Pf=25.0 psf (L); Is=1.0; Rough Cat C Ct=1.10 d snow loads have be	um DOL=1.15 Plate ; Fully Exp.; Ce=0.9	•							-		SEVI NUMI	erre

- design.
- 4) This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 25.0 psf on overhangs non-concurrent with other live loads.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent colleges with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

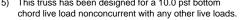
						KELEASE FU
Job	Truss	Truss Type	Qty	Ply	Roof - Osage Lot 61	AS NOTED F DEVELOPI
P240476-01	B3	Monopitch	7	1	Job Reference (optional	LEE'S SUN


-0-11-0


0-11-0

Premier Building Supply (Springhill, KS), Spring Hills, KS - 66083,

Run: 8.63 S Apr 26 2024 Print: 8.630 S Apr 26 2024 MiTek Industries, Inc. Thu May



2-11-8

2-11-8

Scale = 1:28.2

Loading	(psf)	Spacing	2-0-0	C	SI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15	т		.16	Vert(LL)	0.00	2-6	>999	240	MT20	197/144
Snow (Pf)	25.0	Lumber DOL	1.15	В	C 0	.07	Vert(CT)	-0.01	2-6	>999	180		
TCDL	10.0	Rep Stress Incr	YES	w	В 0	.00	Horz(CT)	0.00	6	n/a	n/a		
BCLL	0.0	Code	IRC2018/TF	PI2014 M	atrix-P								
BCDL	10.0											Weight: 11 lb	FT = 20%
LUMBER			6) Be	earings are ass	sumed to be: Joint	2 SF	P No.2 crushi	ng					
TOP CHORD	2x4 SP No.2			apacity of 565 p				0					
BOT CHORD	2x4 SP No.2) for truss to truss								
WEBS	2x3 SPF No.2				ical connection (by								
BRACING					pable of withstandi	ing 3	0 lb uplift at j	oint					
TOP CHORD				and 78 lb uplift	at joint 2. igned in accordand	ce wi	ith the 2018						
	3-0-0 oc purlins, ex				sidential Code sec			nd					
BOT CHORD	Rigid ceiling directly bracing.	applied of 10-0-0 of			eferenced standar								
REACTIONS	0	6= Mechanical	LOAD	CASE(S) St	andard								
	Max Horiz 2=57 (LC	13)											
	Max Uplift 2=-78 (LC	C 12), 6=-30 (LC 16)											
	Max Grav 2=281 (L	C 23), 6=161 (LC 23	5)										
FORCES	(lb) - Maximum Con	npression/Maximum											
	Tension												
TOP CHORD	,		51/144										
BOT CHORD	2-6=-23/25, 5-6=0/0												
NOTES													
	CE 7-16; Vult=115mph												
	mph; TCDL=6.0psf; BC Cat. II; Exp C; Enclose												
	one and C-C Exterior(2												
	exposed ; end vertical												~
	C-C for members and f											Sol	all
	shown; Lumber DOL=	1.60 plate grip										B.F. OF I	MISS W
DOL=1.6											4	TATE OF I	NJ
	SCE 7-16; Pr=25.0 psf (H	SCOT	TM. VEN
	L=1.15); Pf=25.0 psf (L 5); Is=1.0; Rough Cat (A	SEV	
Cs=1.00;		5, 1 ully Exp., 06-0.8	<i>,</i>								(U A	-	
	ed snow loads have be	een considered for th	nis								SV	4	0
design.											KX-	lotten.	Ser Mar
	s has been designed fo									-	YA -	NUM	ALL
	2.0 psf or 2.00 times fla		sf on								N.	PE-2001	018807
	s non-concurrent with										Y	NO 1	154
I nis truss	s has been designed fo	r a 10.0 psr bottom										N 0.02	- NUK

ONAL

May 10,2024

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

											RELEASF	E FOR CONSTRUCTION
Job	Truss	,, , ,, , ,, , , , , , , , , , , , , , , , , , , ,	Truss Ty	уре		Qty	Ply	Roof - Osa	age Lot f	∂1		ED FOR PLAN REVIEW
P240476-01	C1		Commo	on Structural	I Gable	1	1	Job Refere	Ū.			OPMENT SERVICES 165475620 SUMMIT, MISSOURI
		Spring Hills, KS - 66083,	<u> </u>		Run: 8.63 S Apr 26 2	2024 Print	t: 8.630 S Apr 2	26 2024 MiTek	Industries,	s, Inc. T	u May 09 206:28	
					ID:gfrsVxpQoNOr6dk	kbbQOWdc	oylfDM-RfC?P	sB70Hq3NSgP	qnL8w3ul™	TXbGF	WrCDoi794z9e7	
					· • •					10.0		
					<u>4-9-4</u> 4-9-4	-+		9-6-8 4-9-4		10-5- 0-11-	- <u>8</u> 1-0	
					-			•••				
						4x4 =	2					
					1 <u>2</u> 8 Г	3						
		\top \top			1.5x4 u		12	1.5x4 n				
					2		\sim	4				
							4					
		4-0-5		3x8 II				\sum				
		4	1						\sim	5		
			-	۲.					- F	, T	2	
		0-10-3	_ 11				[<u></u>			6	
						XXXX			<u> </u>	\$	\checkmark	
					10	9		8	3	3x8 II		
					1.5x4 µ	1.5x4	II 1.	1.5x4 n				
				ļ	4-9-4			9-6-8		_		
Scale = 1:35.6				I	4-9-4	T		4-9-4		I		
oading	(psf)	Spacing	1-11-4	,	CSI	DF	EFL	in (loc)	l/defl	L/d	PLATES	GRIP
CLL (roof)	25.0	Plate Grip DOL	1.15)	тс о	0.15 Ve	ert(LL)	n/a -	n/a	999	MT20	197/144
Snow (Pf) FCDL	25.0 10.0	Lumber DOL Rep Stress Incr	1.15 YES)			()	n/a - 0.00 7	n/a n/a	999 n/a		
BCLL BCDL	0.0	Code		B/TPI2014	Matrix-R					,	Weight: 41 lb	FT = 20%
	10.0	L	3)				(the trues				Weignit. HT inc	FI = 20%
	2x4 SP No.2			only. For stud	ned for wind loads in t uds exposed to wind (r	(normal to	o the face),					
	2x4 SP No.2 2x4 SP No.2 *Excep	pt* 9-3:2x3 SPF No.2		or consult qua	rd Industry Gable End I ualified building design	gner as per	er ANSI/TPI 1	1.				
OTHERS 2	2x3 SPF No.2	• • •	4)	TCLL: ASCE	E 7-16; Pr=25.0 psf (ro 1.15); Pf=25.0 psf (Lun	roof LL: Lu	um DOL=1.15					
		eathing directly applied	d or		Is=1.0; Rough Cat C;							
	6-0-0 oc purlins, exe Rigid ceiling directly	xcept end verticals. y applied or 6-0-0 oc	5)	Unbalanced s	=1.10 I snow loads have beer	ən conside	ered for this					
	bracing.	8=9-6-8, 9=9-6-8,	6)		as been designed for g							
,	10=9-6-8,	3, 11=9-6-8			psf or 2.00 times flat r			'n				
		C 16), 8=-110 (LC 17),), 7)	Gable require	res continuous bottom fully sheathed from on	n chord be	earing.					
	10=-114 ((LC 16), 11=-41 (LC 1 _C 24), 8=337 (LC 24),	17) 0)	braced agains	nst lateral movement (i							
		_C 28), 10=364 (LC 23)	^{3),} 10)) This truss has	s spaced at 2-0-0 oc. as been designed for a							
•	lb) - Maximum Com	mpression/Maximum			ad nonconcurrent with are assumed to be SP							
TOP CHORD 1		-133/229, 3-4=-133/23	·	capacity of 56			0					
4		=0/69, 1-11=-155/112,	12)	bearing plate	e capable of withstand	ding 41 lb	o uplift at joint					
BOT CHORD 1)=-51/76, 8-9=-51/76,		lb uplift at join							STAT	ADE
WEBS 3		308/253, 4-8=-284/23	31	International I	designed in accordant Residential Code sec	ections R50	502.11.1 and			s/	BIE OF I	MISSOL
NOTES 1) Unbalanced r	roof live loads have	e been considered for			and referenced standar					R	ST SCOTI	TM. TEN
this design.			-	AD UNCENT	Oldiluara					h	SEVI	
Vasd=91mph	7-16; Vult=115mph n; TCDL=6.0psf; BC	CDL=6.0psf; h=35ft;								×	1 th,	ton lon
exterior zone	and C-C Corner(3E									Pr-	NUME	
	I-9-4 to 9-9-4, Exteri	rior(2N) 9-9-4 to 10-5-8 xposed ; end vertical le								Ø.	PE-20010	018807
			л							A.	ESSIONA	ENGL S
zone; cantilev and right expo	osed;C-C for memb										VIA TATA	TYPE
zone; cantilev and right expo	oosed;C-C for memb reactions shown; Lu	bers and forces & umber DOL=1.60 plate	9								CONA	L
zone; cantilev and right expo MWFRS for re	oosed;C-C for memb reactions shown; Lu		е								alle	y 10,2024

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUED MITEK REFERENCE PAGE MIL-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITEK® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcscomponents.com)

16023 Swingley Ridge Rd. Chesterfield, MO 63017 314.434.1200 / MiTek-US.com

Job P240476-01	Truss C2	Truss Type Common	Qty 1	Ply 1	Roof - Osage Lot 61 Job Reference (option	
Premier Building Supply (Spring	ghill, KS), Spring Hills, KS - 66083,				5 2024 MiTek Industries, In 0Hq3NSgPqnL8w3uITXbG	
		4-9-4			6-8 10- 9-4 0-1	
			4x4 = 2			
	4-1-11 4-0-5 0-10-3	8 ¹² 4-4-8 3x10 II 7 7	6 1.5x4		4-8 3 7 7 7 7 7 7 7 7 7 7 7 7 7	

Scale = 1:37 Plate Offsets (X, Y): [1:0-5-9,0-1-8], [5:0-5-9,0-1-8]

Plate Offsets	(X, Y): [1:0-5-9,0-1-8],	[5:0-5-9,0-1-8]											
Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 25.0 25.0 10.0 0.0 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC201	8/TPI2014	CSI TC BC WB Matrix-R	0.56 0.27 0.10	DEFL Vert(LL) Vert(CT) Horz(CT)	in 0.03 -0.03 0.00	(loc) 5-6 5-6 5	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 37 lb	GRIP 197/144 FT = 20%
 this desig Wind: AS Vasd=911 Ke=1.00; exterior z Exterior(2 zone; car exposed; and force DOL=1.6 TCLL: AS Plate DO DOL=1.1 Cs=1.00; 	 2x4 SP No.2 2x4 SP No.2 *Excep Structural wood she 6-0-0 cc purlins, exi Rigid ceiling directly bracing. (size) 5=0-3-0, 7 Max Horiz 7=-114 (L Max Uplift 5=-83 (LC (Max Grav 5=613 (LC (Ib) - Maximum Com Tension 1-2=-515/449, 2-3=- 1-7=-485/338, 3-5=- 0 6-7=-238/296, 5-6=- 2-6=-310/185 Ced roof live loads have gn. GCE 7-16; Vult=115mph mph; TCDL=6.0psf; BC (Cat. II; Exp C; Enclose cone and C-C Exterior(2 2R) 4-9-4 to 9-9-4, Inter itilever left and right exp ss & MWFRS for reactio 00 plate grip DOL=1.60 SCE 7-16; Pr=25.0 psf (L 5); Is=1.0; Rough Cat C 	athing directly applie cept end verticals. applied or 10-0-0 oc 7=0-3-8 C 12) : 17), 7=-56 (LC 16) C 24), 7=537 (LC 23) pression/Maximum 516/453, 3-4=0/71, 567/411 238/296 been considered for (3-second gust) DL=6.0psf; h=35ft; d; MWFRS (envelop E) 0-1-12 to 4-9-4, ior (1) 9-9-4 to 10-5- posed; c-C for memb ins shown; Lumber roof LL: Lum DOL=1 um DOL=1.15 Plate ; Fully Exp.; Ce=0.9	r ped or p) p) b) t t t t t t t t t t t t t t t t t t	load of 12.0 overhangs n This truss ha chord live loa All bearings capacity of 5 Provide mec bearing plate 7 and 83 lb u This truss is International	hanical connectio e capable of withs uplift at joint 5. designed in accor Residential Code nd referenced sta	flat roof le h other li for a 10.1 with any e SP No. n (by oth tanding f rdance w s sections	bad of 25.0 p ve loads. D psf bottom other live loa 2 crushing ers) of truss 66 lb uplift at th the 2018 5 R502.11.1 a	esf on ads. to joint		J		SEV SEV NUM PE-2001	BER 018807

.org) Mittek-US.com

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

											E FOR CONSTRUCTION
Job	Truss		Truss Type		Qty	Ply	R	oof - Osag	e Lot 61		ED FOR PLAN REVIEW LOPMENT SERVICES 165475622
P240476-01	C3		Common		1	1	Jc	ob Referen	nce (optior		165475622 S SUMMIT, MISSOURI
Premier Building Supply (S	pringhill, KS), S	pring Hills, KS - 66083,					pr 26 202	24 MiTek Inc	dustries, Inc	:. Thu May (9) 206:2 bGKWrCDol99429C?f	
				4-5-12		9-3-		1	0-2-0		
				4-5-12		4-9-	4	C)-11-0		
				4	<4 =						
				2							
	_			8 ¹²							
			1	4-1-0		\searrow					
	Ξ	ų									
	4-1-11	4-0-5	3x4 II				\searrow				
			1			4-4-8			3		
		1-0-8	0-7-2	6			4-13	-	4	0-10-3	
	-		7	6			Ó		5		
			Зх4 н		5x4 n			لط 3x8	3 11		
				4-5-12 4-5-12		9-3- 4-9-					
Scale = 1:37			;								
Loading	(psf)	Spacing	2-0-0	CSI TC	0.47	DEFL	in			/d PLATES 40 MT20	GRIP
TCLL (roof) Snow (Pf)	25.0 25.0	Plate Grip DOL Lumber DOL	1.15 1.15	BC	0.47 0.31	Vert(LL) Vert(CT)	0.04 -0.04		>999 24 >999 18		244/190
TCDL	10.0	Rep Stress Incr	YES	WB	0.10	Horz(CT)	0.00	5	n/a n	/a	
BCLL BCDL	0.0 10.0	Code	IRC2018/TPI2014	Matrix-R						Weight: 37 lb	FT = 20%

TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.2 WFBS 2x4 SP No.2 *Except* 6-2:2x3 SPF No.2 BRACING TOP CHORD Structural wood sheathing directly applied or 6-0-0 oc purlins, except end verticals. BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing. **REACTIONS** (size) 5=0-3-0, 7= Mechanical Max Horiz 7=-113 (LC 12) Max Uplift 5=-82 (LC 17), 7=-53 (LC 16) Max Grav 5=597 (LC 24), 7=514 (LC 23) FORCES (lb) - Maximum Compression/Maximum Tension 1-2=-475/433, 2-3=-488/427, 3-4=0/71, TOP CHORD 1-7=-454/330, 3-5=-549/400 BOT CHORD 6-7=-215/270, 5-6=-215/270 WEBS 2-6=-293/171 NOTES

Unbalanced roof live loads have been considered for

Wind: ASCE 7-16; Vult=115mph (3-second gust)

Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=35ft; Ke=1.00; Cat. II; Exp C; Enclosed; MWFRS (envelope)

exterior zone and C-C Exterior(2E) 0-1-12 to 4-5-12, Exterior(2R) 4-5-12 to 9-5-12, Interior (1) 9-5-12 to

10-2-0 zone; cantilever left and right exposed ; end

Lumber DOL=1.60 plate grip DOL=1.60

vertical right exposed; porch left and right exposed;C-C for members and forces & MWFRS for reactions shown;

TCLL: ASCE 7-16; Pr=25.0 psf (roof LL: Lum DOL=1.15

Plate DOL=1.15); Pf=25.0 psf (Lum DOL=1.15 Plate

DOL=1.15); Is=1.0; Rough Cat C; Fully Exp.; Ce=0.9;

Unbalanced snow loads have been considered for this

1)

2)

3)

4)

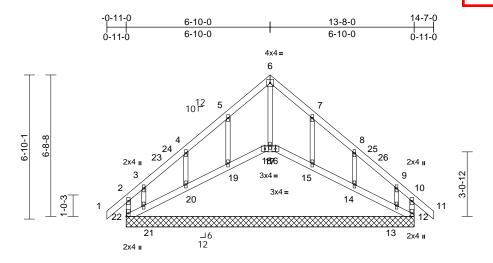
this design.

Cs=1.00; Ct=1.10

design.

- This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 25.0 psf on overhangs non-concurrent with other live loads.
 This truss has been designed for a 10.0 psf bottom
-) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 7) Bearings are assumed to be: , Joint 5 SP No.2 crushing
- capacity of 565 psi.
- 8) Refer to girder(s) for truss to truss connections.
- Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 53 lb uplift at joint 7 and 82 lb uplift at joint 5.
- 10) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSITPTI Quality Criteria**, and **DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcscomponents.com)

Aitak

16023 Swingley Ridge Rd. Chesterfield, MO 63017 314.434.1200 / MiTek-US.com

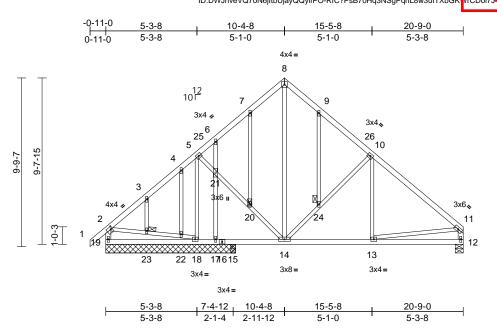
						RELEASE FOR CONSTRUCTION
Job	Truss	Truss Type	Qtv	Plv	Roof - Osage Lot 61	AS NOTED FOR PLAN REVIEW
				,		DEVELOPMENT SERVICES 165475623
P240476-01	D1	Roof Special Supported Gable	1	1	Job Reference (optional	
Premier Building Supply (Springh	nill, KS), Spring Hills, KS - 66083,				5 2024 MiTek Industries, Inc. T B70Hq3NSqPqnL8w3uITXbGI	

Run: 8.63 S Apr 26 2024 Print: 8.630 S Apr 26 2024 MiTek Industries, Inc. Thu May 09 266:29 22 ID:ZbQgzf7wzm0H2n9hpnXDoOylfRA-RfC?PsB70Hq3NSgPqnL8w3uITXbG WrCDoi 942927f

	0-5-8	6-7-0	7-1-0	13-2-8	13-8-0
Scale = 1:54.7	0-5-8	6-1-8	0-6-0	6-1-8	0-5-8

Plate Offsets (X, Y):	[10:0-0-0,Edge],	[13:0-0-0,Edge],	[14:0-0-0,Edge],	[15:0-0-0,Edge]

	, , , , , , , , , , , , , , , , , , , ,		ej, [13:0-0-0,Edgej, []	14.0 0 0	,Euge], [10.0 0								1	
Loading		(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)		25.0	Plate Grip DOL	1.15		TC	0.15	Vert(LL)	n/a	-	n/a	999	MT20	197/144
Snow (Pf)		25.0	Lumber DOL	1.15		BC	0.10	Vert(CT)	n/a	-	n/a	999		
TCDL		10.0	Rep Stress Incr	YES		WB	0.08	Horz(CT)	0.00	12	n/a	n/a	-	
BCLL		0.0	Code	IRC2	018/TPI2014	Matrix-R								
BCDL		10.0					-						Weight: 65 lb	FT = 20%
LUMBER					BOT CHORD	21-22=-154/150,	20-21=-1	24/121,		9) Tru	ss to be	fully s	heathed from or	e face or securely
TOP CHORD	2x4 SP N	0.2				19-20=-129/123,		,						(i.e. diagonal web).
BOT CHORD	2x4 SP N	0.2				17-18=-107/105,		,					ed at 2-0-0 oc.	
WEBS	2x3 SPF I					15-16=-128/120,								a 10.0 psf bottom
OTHERS	2x3 SPF I	No.2				13-14=-130/124,								any other live loads.
BRACING					WEBS	6-17=-295/103, 5							ssumed to be SI	P No.2 crushing
TOP CHORD	Structural	l wood she	athing directly applie	ed or		4-20=-220/144, 3					acity of			
			cept end verticals.			7-15=-268/138, 8	-14=-220	(144,						y others) of truss to
BOT CHORD		ing directly	applied or 6-0-0 oc			9-13=-127/118								ding 255 lb uplift at 9 lb uplift at joint 18, 20
	bracing.				NOTES									int 17, 102 lb uplift at
REACTIONS	(size)		0, 13=13-8-0, 14=13	-0-0,		d roof live loads ha	ave been	considered for	r					74 lb uplift at joint 21,
			0, 16=13-8-0, 17=13	,	this design									ft at joint 14 and 152 lb
			0, 19=13-8-0, 20=13	-8-0,		E 7-16; Vult=115m ph; TCDL=6.0psf;					ft at join			
			0, 22=13-8-0			at. II; Exp C; Enclo							him required to	provide full bearing
	Max Horiz					ne and C-C Exterio			je)					18, 16, 17, 19, 20, 21,
	Max Uplift		(LC 13), 13=-152 (LC			4-1-0 to 6-10-0, Ex					14, 13.		· · · · · · · · · · · · · · · · · · ·	-, -, , -, -, ,
			(LC 17), 15=-101 (LC		()	terior (1) 11-10-0 t		,	≏r	15) Thi	s truss is	s desig	ned in accordar	nce with the 2018
			.C 13), 17=-12 (LC 1			nt exposed ; end v				Inte	rnationa	al Resi	dential Code see	ctions R502.11.1 and
			.C 13), 19=-102 (LC (LC 16), 21=-174 (LC			C for members ar				R80	02.10.2	and ref	ferenced standa	rd ANSI/TPI 1.
		20=-100 (5 13),		hown; Lumber DO				LOAD	CASE(S) Sta	ndard	
	Max Grav		LC 22), 13=218 (LC	15)	DOL=1.60			01						
			LC 24), 15=308 (LC		3) Truss desi	gned for wind load	ls in the p	lane of the tru	SS					an
		•	C 14), 17=218 (LC 1		only. For s	tuds exposed to w	ind (norm	al to the face)	,				THE OF	MIG
		· ·	C 14), 19=308 (LC 2			rd Industry Gable							FEE	IN SCH
			LC 23), 21=242 (LC	14),		qualified building d						6	A.M.	N.S
		22=274 (l		<i>,</i> ,		E 7-16; Pr=25.0 p						R	SCOT	TM. YEY
FORCES	(lb) - Max	imum Corr	pression/Maximum			=1.15); Pf=25.0 ps						4	/ SEV	TER \ Y
	Tension					; Is=1.0; Rough Ca	at C; Fully	Exp.; Ce=0.9);			No.	1 11 2	
TOP CHORD	2-22=-186	6/138, 1-2=	=0/78, 2-3=-153/163	,	Cs=1.00; C									
	3-4=-100/	/122, 4-5=-	106/206, 5-6=-164/2	293,	,	d snow loads have	e neeu co	isidered for th	115		-		and.	Sime
	6-7=-164/	/287, 7-8=-	105/200, 8-9=-82/11	14,	design. 6) This truss ł	nas been designed	for area	er of min roof	livo			83		IBER
	9-10=-125	5/137, 10-1	11=0/78, 10-12=-186	6/118) psf or 2.00 times						N'	O∖ PE-200	1018807
												Q	1 and	188
						rhangs non-concurrent with other live loads. blates are 1.5x4 MT20 unless otherwise indicated. ble requires continuous bottom chord bearing.						ENO'S		
						ires continuous bo							NON!	AL EL
					-,								AUT IN	and
													Ma	


May 10,2024

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

						RELEASE FOR CONSTRUCTION
Job	Truss	Truss Type	Qty	Ply	Roof - Osage Lot 61	AS NOTED FOR PLAN REVIEW
565	11035	Truss Type	Quy	i iy	Roor - Osage Lot of	DEVELOPMENT SERVICES 165475624
P240476-01	D2	Common Structural Gable	1	1	Job Reference (optional)	

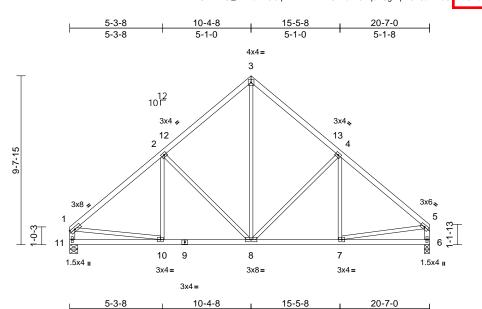
Run: 8.63 S Apr 26 2024 Print: 8.630 S Apr 26 2024 MiTek Industries, Inc. Thu May 0 26:35 22/29:24

Scale =	1:66.9
---------	--------

Plate Offsets (X, Y): [2:0-1-0,0-1-12]

Loading		(psf)	Spacing	1-11-4		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)		25.0	Plate Grip DOL	1.15		TC	0.48	Vert(LL)	-0.02	13-14	>999	240	MT20	197/144
Snow (Pf)		25.0	Lumber DOL	1.15		BC	0.26	Vert(CT)	-0.04	13-14	>999	180		
CDL		10.0	Rep Stress Incr	YES		WB	0.35	Horz(CT)	0.01	12	n/a	n/a		
BCLL		0.0	Code	IRC2018	8/TPI2014	Matrix-S								
BCDL		10.0											Weight: 128 lb	FT = 20%
UMBER OP CHORD OT CHORD VEBS THERS RACING OP CHORD OT CHORD	No.2 2x3 SPF N Structural v 5-10-4 oc p	.2 lo.2 *Exce lo.2 wood she purlins, e	ept* 19-2,12-11:2x4 S athing directly applie xcept end verticals. applied or 6-0-0 oc	P dor N(1)	DTES Unbalanced this design.	2-23=-259/263, 2 18-22=-280/279, 5-18=-559/100, 5 20-21=-24/402, 1 8-14=-106/178, 1 10-24=-405/221, 6-21=-321/120, 1 4-22=-68/50, 3-23 roof live loads ha	11-13=0/ -21=-18/3 4-20=-20 4-24=-44 10-13=0/ 7-21=-39 3=-22/24,	451, 97, 407, 0/235, 184, 7-20=-56 6/147, 9-24=-50/20 considered fo		cho 11) All I cap 12) Pro bea 19, Ib u 13) This Inte R80	rd live lo bearings acity of vide me tring plat 78 lb up plift at jo s truss is ernationa 02.10.2 a	bad noi s are as 565 ps chanic te capa blift at ju bint 17. s desig al Resid and ref	ssumed to be SP il. al connection (by able of withstandi oint 18, 75 lb upli ned in accordand dential Code sect ierenced standard	any other live loads. No.2 crushing others) of truss to ng 4 lb uplift at joint ft at joint 12 and 171 we with the 2018 ions R502.11.1 and
DINTS	1 Brace at 23, 24	Jt(s): 20,		2)	 Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=35ft; 					LOAD	CASE(S) Sta	ndard	
				6),),	 Ke=1.00; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) -0-11-0 to 4-4-8, Interior (1) 4-4-8 to 10-4-8, Exterior(2R) 10-4-8 to 15-5-8, Interior (1) 15-5-8 to 20-7-4 zone; cantilever left and right exposed; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 Truss designed for wind loads in the plane of the truss 									
ORCES	(lb) - Maxir Tension	num Corr	pression/Maximum	0)	only. For studs exposed to wind (normal to the face),								0000	1000
TOP CHORD													STATE OF I STATE SCOT	
BOT CHORD	18-19=-279/345, 17-18=-175/189, 15-17=-175/189, 14-15=-175/189, 13-14=-15/560, 12-13=-65/128				Unbalanced design.	=1.00; Ct=1.10 balanced snow loads have been considered for this sign.							Serve	
				6) 7) 8)	load of 12.0 overhangs r All plates ar Truss to be	as been designed psf or 2.00 times ion-concurrent wit e 1.5x4 MT20 unl fully sheathed from	flat roof le th other li ess other m one fac	bad of 25.0 per ve loads. wise indicated e or securely	sf on d.		-	No.	PE-2001	018807
				9)	•	nst lateral movem		iagonai web)	•				Car	T

Gable studs spaced at 2-0-0 oc.


9)

May 10,2024

						RELEASE FOR CONSTRUCTION
Job	Truss	Truss Type	Qty	Plv	Roof - Osage Lot 61	AS NOTED FOR PLAN REVIEW
			ς.,	,	1001 Oddgo Lot o'i	DEVELOPMENT SERVICES 165475625
P240476-01	D3	Common	7	1	Job Reference (optional	

Run: 8.63 S Apr 26 2024 Print: 8.630 S Apr 26 2024 MiTek Industries, Inc. Thu May (9) 246:39 ID:GxRwKJt_VBVId7M5I9q1YhznBFw-RfC?PsB70Hq3NSgPqnL8w3uITXbG WrCDoix 4256 f

5-1-0

5-1-8

5-3-8

Scale = 1:65.9													
Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 25.0 25.0 10.0 0.0 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC201	8/TPI2014	CSI TC BC WB Matrix-S	0.61 0.28 0.52	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.03 -0.06 0.01	(loc) 8-10 8-10 6	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 107 lb	GRIP 197/144 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD FORCES TOP CHORD BOT CHORD	2x4 SP No.2 2x4 SP No.2 2x3 SPF No.2 *Exce Structural wood she 4-9-4 oc purlins, exi Rigid ceiling directly bracing. (size) 6=0-3-8, 1 Max Horiz 11=273 (L Max Grav 6=0-61 (L Max Grav 6=0-61 (L Max Grav 6=0-61 (L) (b) - Maximum Com Tension 1-2=-1137/181, 2-3= 4-5=-1108/177, 1-11 10-11=-267/344, 8-1 7-8=-85/786, 6-7=-5	athing directly applie cept end verticals. applied or 10-0-0 or 11=0-5-8 _C 13) .C 17), 11=-113 (LC C 23), 11=969 (LC 2: pression/Maximum =-874/252, 3-4=-871/ 1=-917/155, 5-6=-915 10=-155/804,	4) ed or 5) c 6) 7) 16) 2) 8) /250, L	Plate DOL=1 DOL=1.15); Cs=1.00; Ct Unbalanced design. This truss ha chord live loa All bearings capacity of 5 Provide mec bearing plate 11 and 111 I This truss is International	snow loads hav as been designe are assumed to 65 psi. hanical connect e capable of with b uplift at joint 6 designed in acc Residential Coo nd referenced si	sf (Lum DC Cat C; Fully re been cor ed for a 10. nt with any be SP No. tion (by oth hstanding 1 5. cordance w de sections	DL=1.15 Plat Exp.; Ce=0 asidered for D psf bottom other live loc 2 crushing ers) of truss 13 lb uplift a ith the 2018 i R502.11.1	e .9; this ads. to at joint					

5-1-0

WFBS

.

 Unbalanced roof live loads have been considered for this design.

4-7=-32/135

1-10=-22/689, 5-7=-37/705, 2-10=-6/153, 2-8=-407/234, 3-8=-172/533, 4-8=-383/229,

2) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=35ft; Ke=1.00; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) 0-1-12 to 5-3-8, Interior (1) 5-3-8 to 10-4-8, Exterior(2R) 10-4-8 to 15-5-8, Interior (1) 15-5-8 to 20-5-4 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

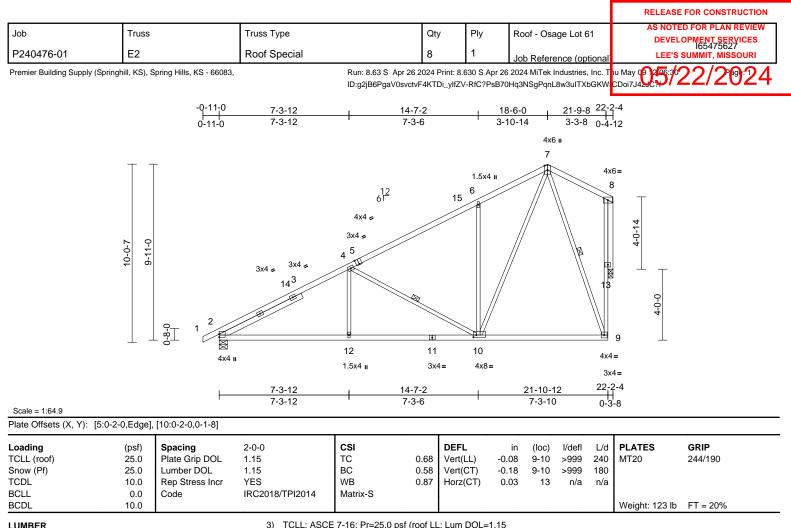
WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and property incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, rection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

16023 Swingley Ridge Rd. Chesterfield, MO 63017 314.434.1200 / MiTek-US.com

									RELEASE FOR CONSTRU	CTION
Job	Truss	Truss Type		Qty	Ply	Roof - (Osage Lot	61	AS NOTED FOR PLAN RE	
P240476-01	E1	Roof Spec	ial Supported Gable	1	1	Job Re	erence (or	otional	DEVELOPMENT SERVIC 165475626 LEE'S SUMMIT, MISSO	URI
Premier Building Supply ((Springhill, KS), Spring Hills	, KS - 66083,	Run: 8.63 S A ID:gsITprHaUg	pr 26 2024 Pr IgDiJ2ZYuBG	int: 8.630 S Ap ikylfYi-RfC?Psl	r 26 2024 MiT	ek Industries	s, Inc. T <mark>h</mark>	u May 0 25 22/20 CDoi7J4227	24
		-0-11-0	18-6-0				+ <u>22-2</u> + 3-8	2-4	ł	
		0-11-0	18-6-0				3-8	-4	I	
							4x4 =			
							13 ক	14 4x		
		3x4 = 55		10	30 ¹¹				4-0-14	
		1	2	1-10-12				22-2	2-4	
Scale = 1:64.5		l	2	1-10-12				22-2 0-3	1 -8	
	[2:0-2-1,0-0-5], [5:0-1-1:	2,0-1-8]								
Loading TCLL (roof) Snow (Pf)	(psf) Spacin 25.0 Plate G 25.0 Lumbe	ng 2-0-0 Grip DOL 1.15	CSI TC BC	0.13 0.04	DEFL Vert(LL) Vert(CT)	in (lo 0.00 2-2 0.00 2-2	7 >999	L/d 240 180	PLATES GRIP MT20 244/190	

	20.0		.10	
TCDL	10.0		ΈS	WB 0.28 Horz(CT) 0.01 29 n/a n/a
BCLL	0.0	Code I	RC2018/TPI2014	Matrix-R
BCDL	10.0			Weight: 132 lb FT = 20%
	Left 2x4 SP No.2 Structural wood sh 6-0-0 cc purlins, e Rigid ceiling directl bracing. 1 Row at midpt (size) 2=21-10 17=21-1 21=21-1 23=21-1 23=21-1 23=21-1 23=21-1 23=21-1 23=21-1 23=21-1 23=21-1 23=21-1 23=26-1 Max Uplift 16=-9 (L 19=64 (23=-60 (26=-42 (29=-11 (Max Grav 2=218 (l 17=240 19=261 21=183 23=180 26=171 29=22 (l	eathing directly applied c xcept end verticals. y applied or 10-0-0 oc 13-18, 12-19, 14-17 -12, 16=21-10-12, 0-12, 18=21-10-12, 0-12, 20=21-10-12, 0-12, 22=21-10-12, 0-12, 24=21-10-12, 0-12, 24=21-10-12, 0-12, 24=21-10-12, 0-12, 24=21-10-12, 0-12, 24=21-10-12, 0-12, 27=21-10-12, 0-12, 24=21-10-12, 0-12, 27=21-10-12, 0-12, 27=21-10-12, 0-12, 27=21-10-12, 0-12, 27=213 (LC 16), LC 16), 22=-61 (LC 16), LC 16), 22=-61 (LC 16), LC 16), 22=-61 (LC 16), LC 16), 18=180 (LC 24), (LC 23), 18=43 (LC 24), (LC 23), 22=180 (LC 36), (LC 3), 27=215 (LC 36),	WEBS NOTES 1) Unbalance this design 2) Wind: ASG Vasd=91n Ke=1.00; exterior 22 21-9-8 zor vertical lef MWFRS f grip DOL= 3) Truss des only. For see Stand or consult 4) TCLL: AS Plate DOL DOL=1.15 Cs=1.00;	 6-7=-278/100, 7-8=-227/80, 8-9=-179/62, 9-10=-130/43, 10-11=-81/44, 11-12=-48/54, 12-13=-52/106, 13-14=-54/94, 14-15=-25/38, 16-28=-32/21, 15-28=-32/21 D 2-27=-1/1, 26-27=-1/1, 24-26=-1/1, 20-21=-1/1, 12-22=-1/1, 12-22=-1/1, 12-22=-1/1, 20-21=-1/1, 12-22=-1/1, 20-21=-1/1, 18-19=-1/1, 13-18=-139/20, 12-19=-222/96, 11-20=-135/97, 4-27=-162/242, 14-17=-206/128, 15-29=-22/20 D ad of 12.0 psf or 2.00 times flat roof load of 25.0 psf on overhangs non-concurrent with other live loads. All plates are 1.5x4 MT20 unless otherwise indicated. Gable studs spaced at 2-0-0 oc. This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. Hoearing are assumed to be SP No.2 crushing capacity of 565 psi. Bearing at joint(s) 29 considers parallel to grain value using ANSI/TP1 1 angle to grain formula. Building designer should verify capacity of bearing surface. Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 9 lb uplift at joint 23, 65 lb uplift at joint 22, 60 lb uplift at joint 22, 60 lb uplift at joint 22, 36 lb uplift at joint 24, 42 lb uplift at joint 22, 61 lb uplift at joint 27, 50 lb uplift at joint 22, 60 lb uplift at joint 22, 37 This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TP1 1. SCE 7-16; Pr=25.0 psf (roof LL: Lum DOL=1.15 DL=1.15); Pr=25.0 psf (roof LL: Lum DOL=0.9);

iTek° 16023 Swingley Ridge Rd. Chesterfield, MO 63017 314.434.1200 / MiTek-US.com


Continued on page 2 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, reaction and bracing of trusses and truss systems, see AMSI/PTI Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

						RELEASE FOR CONSTRUCTION
Job	Truss	Truss Type	Qty	Ply	Roof - Osage Lot 61	AS NOTED FOR PLAN REVIEW DEVELOPMENT SERVICES
P240476-01	E1	Roof Special Supported Gable	1	1	Job Reference (optional)	DEVELOPMENT SERVICES 165475626 LEE'S SUMMIT, MISSOURI
Premier Building Supply (Springh	nill, KS), Spring Hills, KS - 66083,				2024 MiTek Industries, Inc. T Hq3NSgPqnL8w3uITXbGKWr	

LOAD CASE(S) Standard

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent buckling of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

TOP CHORD 2x4 SP No.2 2x4 SP No.2 *Except* 9-8:2x3 SPF No.2 BOT CHORD WEBS 2x3 SPF No.2 OTHERS 2x4 SP No.2 SLIDER Left 2x4 SP No.2 -- 5-2-1 BRACING TOP CHORD Structural wood sheathing directly applied or 4-3-10 oc purlins. BOT CHORD Rigid ceiling directly applied or 8-10-1 oc bracing. WEBS 1 Row at midpt 7-9, 4-10 REACTIONS 2=0-5-8. 13=0-3-2 (size) Max Horiz 2=382 (LC 16) Max Uplift 2=-157 (LC 16), 13=-232 (LC 16) Max Grav 2=1079 (LC 23), 13=990 (LC 23) FORCES (Ib) - Maximum Compression/Maximum Tension TOP CHORD 1-2=0/12, 2-4=-1604/185, 4-6=-925/130,

1-2=0/12, 2-4=-1004/150, 4-5=-525/130, 6-7=-927/268, 7-8=-97/66 BOT CHORD 2-12=-437/1333, 10-12=-437/1333, 9-10=-84/303, 9-13=-207/928, 8-13=-196/70 WEBS 7-10=-320/1117, 7-9=-915/255, 6-10=-544/264, 4-10=-703/269, 4-12=0/302

- NOTES
- Unbalanced roof live loads have been considered for this design.
- 2) Wind: AŠCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=35ft; Ke=1.00; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) -0-11-0 to 4-1-0, Interior (1) 4-1-0 to 18-6-0, Exterior(2E) 18-6-0 to 21-9-8 zone; cantilever left and right exposed ; end vertical left exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

- TCLL: ASCE 7-16; Pr=25.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=25.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat C; Fully Exp.; Ce=0.9; Cs=1.00: Ct=1.10
- Unbalanced snow loads have been considered for this design.
- 5) This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 25.0 psf on overhangs non-concurrent with other live loads.
- 6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.7) All bearings are assumed to be SP No.2 crushing
- an bearings are assumed to be SP No.2 crushing capacity of 565 psi.
 Bearing at joint(s) 13 considers parallel to grain value pairs (considers) and (consider
- using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface. 9) Provide mechanical connection (by others) of truss to
- bearing plate capable of withstanding 157 lb uplift at joint 2 and 232 lb uplift at joint 13.
- 10) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTPIT Quality Criteria, and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcscomponents.com)

					-	_				
Job	Truss		Truss Type		Qty	Ply	Roof - Osa	age Lot 61		OPMENT SERVICES 165475628
P240476-01	E3		Roof Special		2	1	Job Refere	ence (optional		SUMMIT, MISSOURI
Premier Building S	Supply (Springhill, KS), S	Spring Hills, KS - 66083,		Run: 8.63 S Apr 26 ID:HXyS?ajf9Rc8qt	3 2024 Print: DAhrG?Jw7yl	8.630 S Apr 2 fVZ-RfC?PsE	26 2024 MiTek I 370Hq3NSgPqn	Industries, Inc. T IL8w3uITXbGKV	nu May (9) 206:30 rCDoi7J42JC4	22/2024
		-0-11- 0-11-0	0 <u>5-3-9</u>) 5-3-9	10-8-5 5-4-12	<u>16-0-4</u> 5-3-15		19-5-0 <u>3-6-0 21</u> 5-12 ₀₋₁₁₋₀ 2 _{6x6}	22-2-4 <u> -9-8</u> -4-8 0-4-12		
							MT18HS 5x8 8	н		
	2-0-01		3x4 = 20 3 3 4 3 4 3 4 4 5 4 4 18 1.5x4 = 18	6^{12} 3x4 3x4 = 6 5 17 16 3x4 = 4x8		7		11	3-0-0 4-0-0	
Scale = 1:72.9		ŀ	5-3-9 5-3-9	10-8-5 5-4-12	<u>16-1-8</u> 5-5-3			22-2-4 <u>10-12</u> -7-0 ₀₋₃₋₈		
Plate Offsets (X	, Y): [2:Edge,0-2-1],	[13:0-4-8,0-3-0], [14	0-3-12,Edge]							
Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 25.0 25.0 10.0 0.0 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018/TPI2014	CSI TC BC WB Matrix-S	0.43 Ver	t(LL) - t(CT) -	in (loc) 0.08 7-14 0.15 15-16 0.07 19	l/defl L/d >999 240 >999 180 n/a n/a	MT20 MT18HS	GRIP 244/190 244/190 FT = 20%
WEBS OTHERS	2x4 SP No.2 *Excep SPF No.2 2x3 SPF No.2 2x4 SP No.2 Left 2x4 SP No.2 2	t* 15-7,9-12,11-10:2> 2-11-2 athing directly applied	Vasd=91mph Ke=1.00; Cat exterior zone Interior (1) 4- zone; cantilev and right exp MWFRS for r grip DOL=1.6 3) TCLL: ASCE	7-16; Vult=115mph ; TCDL=6.0psf; BCI : II; Exp C; Enclose: and C-C Exterior(2) 1-0 to 18-6-0, Exteri- ver left and right exp osed;C-C for memb eactions shown; Luu 00 7-16; Pr=25.0 psf (I 15): Pf=25.0 psf (I	DL=6.0psf; d; MWFRS E) -0-11-0 f ior(2E) 18-(posed ; end ers and for mber DOL=	h=35ft; (envelope) o 4-1-0, 5-0 to 21-9- vertical lefi ces & :1.60 plate n DOL=1.1	8 t			

Rigid ceiling directly applied or 6-0-0 oc bracing. REACTIONS 2=0-5-8. 19=0-3-2 (size) Max Horiz 2=382 (LC 16) Max Uplift 2=-157 (LC 16), 19=-232 (LC 16) Max Grav 2=1079 (LC 23), 19=990 (LC 23) FORCES (lb) - Maximum Compression/Maximum Tension TOP CHORD 1-2=0/12, 2-4=-1673/203, 4-6=-1240/167, 6-7=-1067/231, 7-8=-964/302, 8-9=-685/242, 9-10=-443/145 BOT CHORD 2-18=-475/1395, 16-18=-475/1395, 15-16=-1/12, 14-15=0/90, 7-14=-239/139, 13-14=-80/321, 12-13=0/43, 9-13=-532/179, 11-12=-6/1, 11-19=0/38, 10-19=-978/292 WEBS 11-13=-7/23, 10-13=-174/707, 9-14=-336/1100, 6-14=-248/91, 4-18=0/213, 4-16=-412/177, 6-16=-268/166, 14-16=-366/1185

NOTES

BOT CHORD

1) Unbalanced roof live loads have been considered for this design.

Plate DOL=1.15); Pf=25.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat C; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10

- 4) Unbalanced snow loads have been considered for this design.
- 5) This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 25.0 psf on overhangs non-concurrent with other live loads. 6) All plates are MT20 plates unless otherwise indicated.
- This truss has been designed for a 10.0 psf bottom 7) chord live load nonconcurrent with any other live loads.
- All bearings are assumed to be SP No.2 crushing 8) capacity of 565 psi.
- 9) Bearing at joint(s) 19 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.
- 10) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 157 lb uplift at joint 2 and 232 lb uplift at joint 19.
- 11) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not beigh valid for use only with with with sets outputs into design is based only door parameters shown, and is for an individual dualing component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria**, and **DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcscomponents.com)

									RELEA	SE FOR CONSTRUCTION
Job	Truss		Truss Type		Qty	Ply	Roof - Osa	age Lot 61		TED FOR PLAN REVIEW
P240476-01	E4		Common		7	1	Ioh Refere	ence (optiona	1.000	ELOPMENT SERVICES 165475629 IS SUMMIT, MISSOURI
Premier Building Supply	(Springhill, KS), Spr	ing Hills, KS - 66083,		Run: 8.63 S Apr 26			6 2024 MiTek I	ndustries, Inc.	Thu May (19 12 46:3	1
				ID:8Oa_xmr2iWnAy	eeW9D9b2Fy	lfSp-RfC?Ps	B70Hq3NSgPo	qnL8w3ulTXbG	WrCDoi794z3C?	22/2024
_	Q-11-0 7			10.0.0)- <u>0</u> 37-11-0
	· · ·	7-3-12 7-3-12	<u>14-7-2</u> 7-3-6	<u> </u>	22-4-7		<u> </u>		37-0	, ,
· · · · · · · · · · · · · · · · · · ·	, 110				5x5 II					0110
					7					
ΤΤ				1.5x4 II	$\overline{\mathbb{A}}$	1.5x4 I				
			12 6 22	6		8	²³ 24			
		3)	21				24	3	×4 👟	
× 0		3x4						3x6		
9-11-0		4 5						n s	10	
6		3x4 =			//			\rightarrow		3x4 ≈
	24	3 ²⁰				\parallel			25	11
	3x4 =		No. Contraction of the second se							3x4 ≥
	2						/		D	12 13
\perp \perp $\stackrel{\circ}{\to}$ \perp		19	18	17		16	15		4	
	MT18HS 3x10 ॥	1.5x4		4x8=		4x8=	4x6=		.5x4 II	MT18HS 3x10 II
	, 7	7-3-12	14-7-2	22-	-4-14	1	29-8-	4	37-0)-0
	7	7-3-12	7-3-6	7-	9-12	1	7-3-0	6	7-3-	12
Scale = 1:68.7										
Plate Offsets (X, Y):	[2:0-4-1,Edge], [1	12:0-4-1,Edge], [16:0	-3-12,0-1-8], [17:0-1-12	,0-1-8]						
Loading			2-0-0	CSI	DEF		in (loc)	l/defl L/d		GRIP
TCLL (roof) Snow (Pf)			1.15 1.15		0.90 Vert 0.76 Vert		0.17 16-17 0.36 16-17	>999 240 >999 180		244/190 244/190
TCDL	10.0	Rep Stress Incr	YES		0.90 Horz	. ,	0.14 12	n/a n/a		210,000
BCLL BCDL	0.0	Code	IRC2018/TPI2014	Matrix-S					Weight: 180 I	b FT = 20%
LUMBER			2) Wind: ASCE	7-16; Vult=115mph (3-second a	uet)	· · ·			
	SP No.2		Vasd=91mph	; TCDL=6.0psf; BCD	L=6.0psf; h	=35ft;				
	SP No.2 SPF No.2			II; Exp C; Enclosed and C-C Exterior(2E						
SLIDER Left 2	2x4 SP No.2 4-0	0-10, Right 2x4 SP		1-0 to 18-6-0, Exterio or (1) 23-6-0 to 37-1			÷+			
NO.2 BRACING	4-0-10		and right expo	osed ; end vertical le	ft and right		ı			
TOP CHORD Strue		hing directly applied.		for members and fo wn; Lumber DOL=1.						
BOT CHORD Rigit braci	0 , 1	pplied or 8-8-5 oc	DOL=1.60	,		•				
		-17, 10-16		7-16; Pr=25.0 psf (ro 15); Pf=25.0 psf (Lu)			
REACTIONS (size) Max H	2=0-5-8, 12 oriz 2=183 (LC 2		DOL=1.15); Is Cs=1.00; Ct=	s=1.0; Rough Cat C;	Fully Exp.;	Ce=0.9;				
		16), 12=-276 (LC 17 1), 12=1729 (LC 1)) 4) Unbalanced s	now loads have bee	en considere	ed for this				
		ression/Maximum	design. 5) This truss has	been designed for	greater of m	nin roof live	•			
Tens TOP CHORD 1-2=		47, 4-6=-2308/435,		sf or 2.00 times flat n-concurrent with ot			n			
6-7=	2285/551, 7-8=-2	2285/551,	6) All plates are	MT20 plates unless	otherwise i	ndicated.				
	=-2308/435, 10-12 3=0/12	2=-2935/447,	/	been designed for d nonconcurrent with						
	=-454/2497, 17-19		All bearings a	re assumed to be S						ADDE
	7=-110/1596, 14-′ 4=-286/2497	10=-200/2497,	capacity of 56 9) Provide mech	anical connection (b	by others) of	truss to			E OF	MISSO
	=0/296, 4-17=-64 [·] =-625/264, 10-16=	1/256, 6-17=-625/264 641/257		capable of withstand 6 lb uplift at joint 12.		uplift at			9251	1 CAN
10-1-	4=0/296, 7-17=-32		10) This truss is d	lesigned in accordar	nce with the			A		TT M.
7-16 NOTES	=-319/1161			Residential Code se d referenced standa				Ba	× SE	
1) Unbalanced roof	live loads have be	een considered for	LOAD CASE(S)					X	datts	Xan Lat
this design.								- W		
								1.0		1018807

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

16023 Swingley Ridge Rd. Chesterfield, MO 63017 314.434.1200 / MiTek-US.com

Job T P240476-01 E Premier Building Supply (Springhill,	russ	Truss Type			-				
	F			Qty	Ply	Roof -	Osage Lot 6	61	AS NOTED FOR PLAN REVIEW DEVELOPMENT SERVICES
Premier Building Supply (Springhill,	:D	Common Support	ed Gable	1	1	loh R	eference (op	tional	DEVELOPMENT SERVICES 165475630 LEE'S SUMMIT, MISSOURI
	KS), Spring Hills, KS - 66083,			6 2024 Print: 8 ShQIN2gNrTy	3.630 S Apr 2 /lfdh-RfC?Ps	26 2024 M	iTek Industries	, Inc. T	
-Q-11-0		10.0.0					27.0	_	37-11-0
0-11-0		<u>18-6-0</u> 18-6-0					<u> </u>		0-11-0
Scale = 1:67.9 Plate Offsets (X, Y): [2:0-4-1,E Loading (p) TCLL (roof) 25	6 4 = 45 ⁵ 4 4 4 4 4 4 4 4 4 4 4 4 4	6 ¹² 10 3x6 = 9 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8	= CSI TC	Image: Non-optimized state Image: Non-optimized state 0.11 DEF	t(LL)	16 323 3 in (i n/a	17 8 8 8 1 30 x6= 0 0 1/defl - n/a	3x6 18 1: 29	ða
Snow (Pf) 25 TCDL 10 BCLL 0		1.15 YES IRC2018/TPI2014	BC WB Matrix-S		t(CT) z(CT) (n/a).01	- n/a 24 n/a	999 n/a	
BCDL 10		IRC2010/1712014	Matrix-S						Weight: 195 lb FT = 20%
- 1-6-7 BRACING TOP CHORD Structural wood 6-0-0 oc purins BOT CHORD Rigid ceiling dir bracing. WEBS 1 Row at midpt REACTIONS (size) 2=37 34=3 34=3 41=3 44=3 Max Horiz 2=-1 Max Uplift 2=-2 29=- 32=- 34=- 37=- 44=3 44	rectly applied or 10-0-0 oc 13-35, 12-36, 14-34 7-0-0, 24=37-0-0, 26=37-0- 37-0-0, 28=37-0-0, 29=37-0 37-0-0, 32=37-0-0, 33=37-0 37-0-0, 38=37-0-0, 40=37-0 37-0-0, 42=37-0-0, 43=37-0 37-0-0, 42=37-0-0, 43=37-0 37-0-0	0.2 I or FORCES 0, 1-0, 1	28=182 (l 30=180 (l 33=265 (l 35=208 (l 37=265 (l 40=180 (l	C 37, $27=1C 37$, $29=2C 37$, $32=2C 24$, $34=2C 29$, $36=2C 23$, $38=2C 36$, $41=1C 36$, $43=1C 36$, $48=193$, $37=48/193$, $32=48/193$, $32=48/193$, $32=48/193$, $32=48/193$, $33=-48/193$, $33=-48/193$, $33=-48/193$, $33=-225/104C 36=-234/82$, $33=-225/104C 36=-241/98$, $32=-225/104$	172 (LC 1), 180 (LC 24) 221 (LC 24) 274 (LC 23) 221 (LC 23) 180 (LC 23) 172 (LC 1), aximum 2/90, 9=-82/159, 1, 4, 0-21=-73/3 4-25=0/12), 2)), 3) (, 3) (, 3) (, 3) (, 4) (, 5)	this design. Wind: ASCI Vasd=91mg Ke=1.00; C exterior zor Exterior (2N 23-6-0, Extr left and righ exposed;C- reactions sh DOL=1.60 Truss desig only. For si see Standa or consult of TCLL: ASCC Plate DOL= DOL=1.15); Cs=1.00; C	E 7-16; bh; TCI e and) 4-1-0 prior(22) t t expos C for n nown; I gned fcc trd Indu ualifiec E 7-16 (1.15); I s=-1.0 d snow	ve loads have been considered for Vult=115mph (3-second gust) DL=6.0psf; BCDL=6.0psf; h=35ft; xp C; Enclosed; MWFRS (envelope) C-C Corner(3E) -0-11-0 to 4-1-0, to 18-6-0, Corner(3R) 18-6-0 to N) 23-6-0 to 37-11-0 zone; cantilever sed ; end vertical left and right nembers and forces & MWFRS for Lumber DOL=1.60 plate grip or wind loads in the plane of the truss posed to wind (normal to the face), stry Gable End Details as applicable, d building designer as per ANSI/TPI 1. ; Pr=25.0 psf (roof LL: Lum DOL=1.15 Pf=25.0 psf (Lum DOL=1.15 Plate); Rough Cat C; Fully Exp.; Ce=0.9; loads have been considered for this

Continued on page 2 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, rection and bracing of trusces and truss systems, see AMSI/TP11 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

MiTek[®] 16023 Swingley Ridge Rd. Chesterfield, MO 63017 314.434.1200 / MiTek-US.com

						RELEASE FOR CONSTRUCTION
Job	Truss	Truss Type	Qty	Ply	Roof - Osage Lot 61	AS NOTED FOR PLAN REVIEW DEVELOPMENT SERVICES 165475630
P240476-01	E5	Common Supported Gable	1	1	Job Reference (optional	
Premier Building Supply (Spring	hill, KS), Spring Hills, KS - 66083,				5 2024 MiTek Industries, Inc. T 70Hq3NSgPqnL8w3ulTXbGK	

6) This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 25.0 psf on overhangs non-concurrent with other live loads.

7) All plates are 1.5x4 MT20 unless otherwise indicated.

8) Gable requires continuous bottom chord bearing.

9) Gable studs spaced at 2-0-0 oc.

10) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

11) All bearings are assumed to be SP No.2 crushing capacity of 565 psi.

12) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 27 lb uplift at joint 2, 55 lb uplift at joint 36, 65 lb uplift at joint 37, 60 lb uplift at joint 38, 61 lb uplift at joint 40, 60 lb uplift at joint 41, 64 lb uplift at joint 42, 48 lb uplift at joint 43, 118 lb uplift at joint 44, 50 lb uplift at joint 34, 67 lb uplift at joint 33, 60 lb uplift at joint 32, 61 lb uplift at joint 30, 61 lb uplift at joint 29, 63 lb uplift at joint 28, 51 lb uplift at joint 27 and 105 lb uplift at joint 26.

- 13) Beveled plate or shim required to provide full bearing surface with truss chord at joint(s) 2.
- 14) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSITPTI Quality Criteria, and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcscomponents.com)

												RELEASE	FOR CONSTRUCTION	
Job	Truss		Truss Ty	ре		Qt	y Ply	R	oof - Osa	ige Lot 6	51		D FOR PLAN REVIEW	
P240476-01	R1		Flat Gird	der		1	2		b Refere	ance (on	tional		OPMENT SERVICES 165475631 SUMMIT, MISSOURI	
Premier Building	Supply (Springhill, KS), S	Spring Hills, KS - 66083,			Run: 8.63 S Ap	r 26 2024 I						u May 09 2 26:31	22/2021	
					ID:p1ILYtHBqm2	Zt0HL5osF	BZ7ylfON-RfC?	PsB70H	q3NSgPqi	nL8w3ulT	XbGK	/rCDoi7J42J6?		
	L	5-2-2	1		10-3-8	1	15-4-14		1		20-7-(
		5-2-2	I		5-1-6	I	5-1-6		I		5-2-2			
		5x10 =	14 2	1		3x6 II 3 9	7x8 = 4	17	5x5= 5 18	×	19	5x10 =	,	
		0.0 -	8x8	8=	6x6 =	5x8=			8x8	-		0.0 -		
	0-1-	12 5 6 6									00 F 4	<u>1 20-</u> 7-0		
	0-1-				<u>10-3-8</u> 5-1-6	+	<u>15-4-14</u> 5-1-6				<u>20-5-4</u> 5-0-6			
Scale = 1:45.7												-		_
	X, Y): [8:0-2-8,0-4-0],	[11:0-2-8,0-4-0]					-							_
Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 25.0 25.0 10.0 0.0 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 NO IRC2018/	TPI2014	CSI TC BC WB Matrix-S	0.57 0.84 0.76	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.12 -0.22 0.03	• •	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 255 lb	GRIP 197/144 FT = 20%	
	end verticals. Rigid ceiling directly bracing. (size) 7=0-3-8, Max Horiz 12=-105 (Max Uplift 7=-1290 (Max Grav 7=5866 (I (Ib) - Maximum Com Tension 1-12=-5097/1324, 1-	P 1650F 1.5E -12 max.): 1-6, exce applied or 10-0-0 oc 12=0-5-8 LC 14) LC 13), 12=-1134 (LC .C 1), 12=5179 (LC 1 pression/Maximum	3) pt C 12) ⁴⁾	except if not CASE(S) see provided to d unless other Wind: ASCE Vasd=91mpl Ke=1.00; Ca exterior zone and right exg members an Lumber DOL TCLL: ASCE Plate DOL=1 DOL=1.15); Cs=1.00; Ct Unbalanced design.	snow loads have	back (B) nnection ls noted BCDL=6. Sed; MW (3) zone al left exp S for rea OCL=1.6(f (roof LL (Lum DC t C; Fully	face in the LC s have been as (F) or (B), cond gust) Dpsf; h=35ft; FRS (envelop; c antilever lef cosed;C-C for cctions shown; D :: Lum DOL=1.15 Plate Exp.; Ce=0.9	be) ft I.15 D; nis	provide state of the state of t	vided su (n and 2 2-0-0, 97 (n and 2 3-0-0, 97 (n and 2 3-0, 97	fficient 0 lb up 0 lb do 00 lb u 0 lb do 00 lb u 0 0 lb u 0, 970 1 and 2 up at 2 such c y of ot 0 Star ow (ba 1.15 bads (ll S=-70,	at 0-1-12, 970 l pwn and 200 lb u up at 6-0-0, 970 l pwn and 200 lb u up at 12-0-0, 970 l b down and 200 lb down and 200 lb down and 200 lb down and 200 lb	entrated load(s) 18 lb b down and 200 lb up p at 4-0-0, 970 lb b down and 200 lb up p at 10-0-0, 970 lb lb down and 200 lb lb up at 16-0-0, and -0, and 976 lb down rd. The design/	

- This truss has been designed for a 10.0 psf bottom 7) chord live load nonconcurrent with any other live loads.
- Bearings are assumed to be: Joint 12 SPF No.2 8) crushing capacity of 425 psi, Joint 7 SP No.2 crushing capacity of 565 psi.
- Bearing at joint(s) 12, 7 considers parallel to grain value 9) using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.
- 10) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 1134 lb uplift at joint 12 and 1290 lb uplift at joint 7.
- 11) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 12) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

Vert: 4=-920, 3=-920, 13=-920, 14=-920, 15=-920, 16=-920, 17=-920, 18=-920, 19=-920, 20=-940

 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.
 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not beigh valid for use only with with with sets outputs into design is based only door parameters shown, and is for an individual dualing component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria**, and **DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcscomponents.com)

5-6=-6413/1603, 6-7=-5782/1471

11-12=-97/106, 9-11=-1627/6339,

6-8=-1925/7694, 2-11=-4227/1157,

1-11=-1901/7608, 2-9=-588/2344,

3-9=-2521/704, 5-9=-579/2255,

Top chords connected as follows: 2x4 - 1 row at 0-9-0

Web connected as follows: 2x4 - 1 row at 0-9-0 oc, 2x3 -

Bottom chords connected as follows: 2x6 - 2 rows

8-9=-1603/6413, 7-8=-19/79

5-8=-4280/1166

oc, 2x8 - 2 rows staggered at 0-9-0 oc.

(0.131"x3") nails as follows:

staggered at 0-9-0 oc.

1 row at 0-9-0 oc.

2-ply truss to be connected together with 10d

BOT CHORD

WEBS

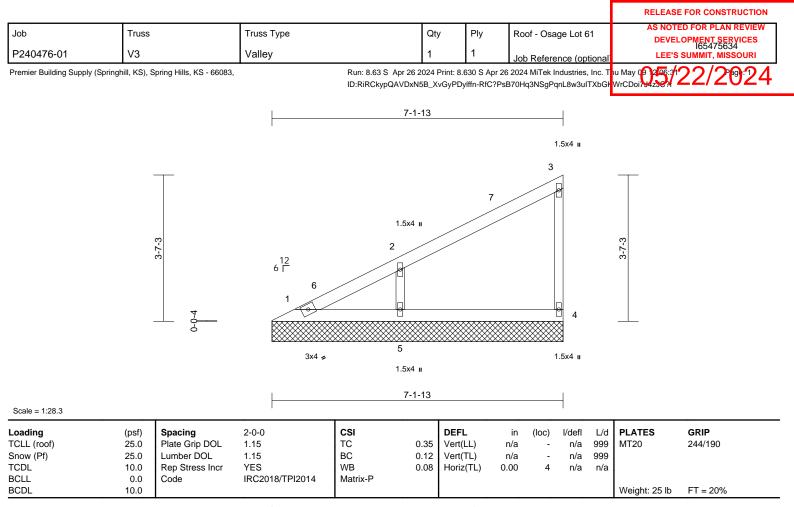
NOTES

1)

16023 Swingley Ridge Rd. Chesterfield MO 63017 314.434.1200 / MiTek-US.com

				1			-	1				E FOR CONSTRUCTION	
Job		Truss		Truss T	/pe		Qty	Ply	Roof - Osa	ge Lot 61		ED FOR PLAN REVIEW OPMENT SERVICES 165475632	
P240476-01		V1		Valley			1	1	Job Refere	nce (optional		SUMMIT, MISSOURI	
Premier Building	Supply (Springhil	II, KS), S	pring Hills, KS - 66083	3		Run: 8.63 S Apr 26						22/2024	4
						10.211003Q10FFLg	JIFSIGIS	yiiix-rio?ra	sbroi iqərəyeqi	ILEOWSUIT ADGR	MCD01734230 !!		
			F			13-8	8-9						
			_							7			
									6	ł			
							14	5					
							4						
		6-10-9				3	1				6-10-9		
		ġ									Q		
				10	2								
			6	1 <u>2</u>									
			4	1									
										8			
				3x4 ≠	13	12	11	10	9				
			L			13-8	9-9						
Scale = 1:42.8										1			
_oading FCLL (roof)		(psf) 25.0	Spacing Plate Grip DOL	1-11-4 1.15		CSI TC	0.13 DE	F L :(LL)	in (loc) n/a -	l/defl L/d n/a 999	PLATES MT20	GRIP 244/190	
Snow (Pf)	:	25.0	Lumber DOL	1.15		BC	0.07 Ver	(TL)	n/a -	n/a 999	WIT20	244/190	
TCDL BCLL		10.0 0.0	Rep Stress Incr Code	YES IRC2018	3/TPI2014	WB Matrix-S	0.17 Hoi	z(TL)	0.00 8	n/a n/a			
BCDL		10.0									Weight: 61 lb	FT = 20%	
LUMBER TOP CHORD	2x4 SP No.2			1)		7-16; Vult=115mph (TCDL=6.0psf; BCE							
BOT CHORD	2x4 SP No.2	2			Ke=1.00; Cat	II; Exp C; Enclosed and C-C Exterior(2E	; MWFRS	(envelope)					
NEBS DTHERS	2x3 SPF No.2 2x3 SPF No.2				Interior (1) 5-9	-1 to 13-7-13 zone; ;C-C for members a	cantilever	left and					
BRACING	Structural wo	od shea	athing directly appli	ed or	for reactions	shown; Lumber DOL							
BOT CHORD		,	cept end verticals. applied or 10-0-0 c	c 2)		ed for wind loads in							
	bracing.	-	8=13-8-9, 9=13-8-9			Is exposed to wind Industry Gable End			,				
REACTIONS	10	=13-8-9	, 11=13-8-9, 12=13	,		alified building desig 7-16; Pr=25.0 psf (r							
	Max Horiz 1=		2 16)	- /	Plate DOL=1.	15); Pf=25.0 psf (Lu =1.0; Rough Cat C;	Im DOL=1.	15 Plate					
			16), 9=-62 (LC 16) C 16), 11=-62 (LC ⁻		Cs=1.00; Ct=								
			C 16), 13=-95 (LC 27), 8=98 (LC 22)	l6) ´	design.								
	9=	270 (LC	C 22), 10=254 (LC 2 C 22), 12=136 (LC	(2), 5) (1) 6)	Gable require	1.5x4 MT20 unless s continuous bottom							
	13	=280 (L	C 22)	8)		paced at 2-0-0 oc. been designed for	a 10.0 psf	oottom					
ORCES	Tension		pression/Maximum	9)		d nonconcurrent with re assumed to be S							
FOP CHORD			249/97, 3-4=-204/8 1/48, 6-7=-54/28,	3, [′]	capacity of 56			Ū.			OF	MISSO	
BOT CHORD	7-8=-83/42 1-13=0/1, 12-	-13=0/1	, 11-12=0/1, 10-11:		bearing plate	capable of withstan at joint 9, 59 lb uplif	ding 24 lb	iplift at join		A	TE	130°C	
WEBS	9-10=0/1, 8-9 6-9=-228/116	9=0/1				Ib uplift at joint 12 a				A	SCOT SEV		
			=-110/83, 2-13=-20	9/165 11) This truss is c	lesigned in accorda				a x		∽∕∕… \∻≸.	•••
NOTES						Residential Code se d referenced standa					roll>	Since	7
				LC	AD CASE(S)	Standard				X	PE-2001	018807 /EA	
										V	THE	15A	
											SIONA	LEN	
											all a	y 10,2024	

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)



May 10,2024

						RELEASE FOR CONSTRUCTION
Job	Truss	Truss Type	Qty	Ply	Roof - Osage Lot 61	AS NOTED FOR PLAN REVIEW DEVELOPMENT_SERVICES
P240476-01	V2	Valley	1	1	Job Reference (optiona	DEVELOPMENT SERVICES 165475633 LEE'S SUMMIT, MISSOURI
remier Building Supply (Spring	hill, KS), Spring Hills, KS - 66083,	- Run: 8.6 ID:CFvE	3 S Apr 26 2024 Prin QhvRHyDpKJoX?bP	it: 8.630 S Apr વૃkvylfff-RfC?P૬	26 2024 MiTek Industries, Inc. sB70Hq3NSgPqnL8w3uITXbGK	
			10-5-13			
					1.5x4 и 4	
	0-0-4	1.5x4 II 6 7 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	9 9	1.5x4 II	5	5.3.3
		3x4 ≠ 7 1.5x4 ⊯		6 1.5x4 ш	1.5x4 II	
Scale = 1:37.7			10-5-13			
oading CLL (roof) now (Pf) CDL CLL CDL	(psf)Spacing25.0Plate Grip DOL25.0Lumber DOL10.0Rep Stress Incr0.0Code10.0	2-0-0 CSI 1.15 TC 1.15 BC YES WB IRC2018/TPI2014 Matrix-S	0.38 V 0.13 V	PEFL /ert(LL) /ert(TL) loriz(TL)	in (loc) l/defl L/c n/a - n/a 999 n/a - n/a 999 0.00 5 n/a n/a	9 MT20 244/190 9
6-0-0 oc pu Rigid ceiling bracing. EACTIONS (size) 1 7 Max Horiz 1 Max Uplift 5 7 Max Grav 1 6 ORCES (Ib) - Maxim Tension OP CHORD 1-2=-299/11 4-5=-174/90 OT CHORD 1-7=-25, 6- /EBS 3-6=-480/20 OTES) Wind: ASCE 7-16; Vult= Vasd=91mph; TCDL=6. Ke=1.00; Cat. II; Exp C; exterior zone and C-C C Interior (1) 5-7-9 to 10-5 exposed ;C-C for memb reactions shown; Lumbo DOL=1.60) Truss designed for wind only. For studs exposed	2 .2 .2 vood sheathing directly applied rlins, except end verticals. g directly applied or 10-0-0 oc =10-5-13, 5=10-5-13, 6=10-5 '=10-5-13 =214 (LC 16) i=-48 (LC 16), 6=-137 (LC 16) '=-101 (LC 16) =93 (LC 16), 5=206 (LC 22), i=569 (LC 22), 7=302 (LC 22) hum Compression/Maximum 29, 2-3=-214/95, 3-4=-120/54, 9 -7=-2/5, 5-6=-2/5 39, 2-7=-236/218 =115mph (3-second gust) Opsf; BCDL=6.0psf; h=35ft; Enclosed; MWFRS (envelope Exterior(2E) 0-7-9 to 5-7-9, i-1 zone; cantilever left and rig pers and forces & MWFRS for	 (a) Gable studs spaced at 4 (b) Gable studs spaced at 4 (c) This truss has been deschord live load nonconc capacity of 565 psi. (c) Provide mechanical conbearing plate capable of 5, 137 lb uplift at joint 6 (c) This truss is designed in International Residentia R802.10.2 and reference LOAD CASE(S) Standard (c) Standard	5.0 psf (Lum DOL= ugh Cat C; Fully Ex- s have been consider bus bottom chord be 4-0-0 oc. signed for a 10.0 pre- current with any offer ed to be SP No.2 con- section (by others f withstanding 48 ll and 101 lb uplift an a cocordance with l Code sections Re- sed standard ANSI.	 1.15 Plate cp.; Ce=0.9; dered for this bearing. sf bottom ner live loads crushing s) of truss to b uplift at joint 7. the 2018 502.11.1 and 	s. nt	STATE OF MISSO SCOTT M. SEVIER NUMBER PE-2001018807 SJONAL ENGINE

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com) May 10,2024

LUMBER		
TOP CHORD	2x4 SP No	o.2
BOT CHORD	2x4 SP No	o.2
WEBS	2x3 SPF N	No.2
OTHERS	2x3 SPF N	No.2
BRACING		
TOP CHORD	Structural	wood sheathing directly applied or
	6-0-0 oc p	ourlins, except end verticals.
BOT CHORD	Rigid ceili	ng directly applied or 10-0-0 oc
	bracing.	
REACTIONS	(size)	1=7-1-13, 4=7-1-13, 5=7-1-13
REACTIONS	· · ·	1=7-1-13, 4=7-1-13, 5=7-1-13 1=141 (LC 16)
REACTIONS	Max Horiz	
REACTIONS	Max Horiz Max Uplift	1=141 (LC 16)
REACTIONS	Max Horiz Max Uplift	1=141 (LC 16) 4=-48 (LC 16), 5=-128 (LC 16)
REACTIONS	Max Horiz Max Uplift Max Grav	1=141 (LC 16) 4=-48 (LC 16), 5=-128 (LC 16) 1=72 (LC 27), 4=206 (LC 22),
	Max Horiz Max Uplift Max Grav	1=141 (LC 16) 4=-48 (LC 16), 5=-128 (LC 16) 1=72 (LC 27), 4=206 (LC 22), 5=541 (LC 22)
	Max Horiz Max Uplift Max Grav (lb) - Max Tension	1=141 (LC 16) 4=-48 (LC 16), 5=-128 (LC 16) 1=72 (LC 27), 4=206 (LC 22), 5=541 (LC 22)
FORCES	Max Horiz Max Uplift Max Grav (lb) - Max Tension	1=141 (LC 16) 4=-48 (LC 16), 5=-128 (LC 16) 1=72 (LC 27), 4=206 (LC 22), 5=541 (LC 22) imum Compression/Maximum 105, 2-3=-115/59, 3-4=-175/119

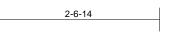
NOTES

- Wind: ASCE 7-16; Vult=115mph (3-second gust) 1) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=35ft; Ke=1.00; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) 0-7-9 to 5-7-9, Interior (1) 5-7-9 to 7-1-1 zone; cantilever left and right exposed ;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- Truss designed for wind loads in the plane of the truss 2) only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable or consult qualified building designer as per ANSI/TPI 1.
- 3) TCLL: ASCE 7-16; Pr=25.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=25.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat C; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10

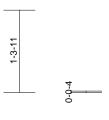
- 4) Unbalanced snow loads have been considered for this design.
- Gable requires continuous bottom chord bearing. 5)
- 6) Gable studs spaced at 4-0-0 oc.
- This truss has been designed for a 10.0 psf bottom 7)
- chord live load nonconcurrent with any other live loads.
- All bearings are assumed to be SP No.2 crushing 8)
- capacity of 565 psi.
- 9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 48 lb uplift at joint 4 and 128 lb uplift at joint 5.
- 10) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. LOAD CASE(S) Standard

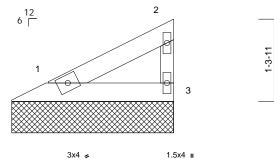
May 10,2024

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITEk® connectors. This design is based only upon parameters shown, and is for an individual building component, not beigh valid for use only with with with sets outputs into design is based only door parameters shown, and is for an individual dualing component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria**, and **DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcscomponents.com)


										RELEAS	E FOR CONSTRUCTION
Job	Truss	,	Truss Type		Qty	Ply	Roof	of - Osage Lot	t 61		ED FOR PLAN REVIEW
P240476-01	V4	ŗ	Valley		1	1	l dol.	Reference (o	ntional		LOPMENT SERVICES 165475635 SUMMIT, MISSOURI
Premier Building Supply (Sp	pringhill, KS), {	Spring Hills, KS - 66083,	<u>.</u>	Run: 8.63 S Apr 26 2 ID:GbG2QBgWm6qV	2024 Prin ^r	It: 8.630 S Apr	r 26 2024 M	MiTek Industrie	es, Inc. T	hu May 09 2 06:31	22/2021
				D.0002.20g	2F11002_	NTuyiny race.	P50101.4	JNOYI YILLO	ULIANC	WICD01707200	
			-	<u>3</u> .	3-9-13			-			
							1.	.5x4 II			
								JA7			
		<u> </u>					2	1	-		
			,	12				j			
		1-11-3	6	Ē	/	//				1-11-3	
				1	/	/				-	
		4	/					3			
			=		****				_		
			₩					1			
				3x4 ≤			1.5	.5x4 u			
				3	8-9-13		I	1			
Scale = 1:20.7			Γ								
Loading TCLL (roof)	(psf) 25.0	Spacing Plate Grip DOL	2-0-0 1.15	CSI TC 0		DEFL /ert(LL)	in (n/a	(loc) l/defl - n/a			GRIP 244/190
Snow (Pf) TCDL	25.0 25.0 10.0	Lumber DOL Rep Stress Incr	1.15 1.15 YES	BC 0	0.11 Ve	/ert(TL) /oriz(TL)	n/a n/a	- n/a - n/a	a 999		244/130
BCLL	0.0	Code	IRC2018/TPI2014	Matrix-P	7.00	J1Z(1∟)	11/a	- 174	11/0		FT 00%
	10.0	<u> </u>	7) This truss h	as been designed for a	<u> </u>	of bottom				Weight: 12 lb	FT = 20%
TOP CHORD 2x4 SP BOT CHORD 2x4 SP			chord live loa	bad nonconcurrent with are assumed to be SF	h any oth	her live loads	3.				
WEBS 2x3 SPI			capacity of 5			-					
		eathing directly applied	d or bearing plate	te capable of withstand uplift at joint 3.							
BOT CHORD Rigid ce	eiling directly	except end verticals. y applied or 10-0-0 oc	10) This truss is	s designed in accordant Residential Code sec			4				
bracing REACTIONS (size)	-	3, 3=3-9-13	R802.10.2 a	and referenced standar			1				
Max Hori	riz 1=68 (LC	,	LOAD CASE(S)	Standard							
Max Grav	av 1=191 (LC	_C 22), 3=191 (LC 22)									
Tensior	n	mpression/Maximum									
TOP CHORD 1-2=-74 BOT CHORD 1-3=0/0	4/57, 2-3=-16 0	<i>j</i> 0/130									
Ke=1.00; Cat. II; Ex exterior zone and C and right exposed ;(DL=6.0psf; BC xp C; Enclose C-C Exterior(2 ;C-C for meml	CDL=6.0psf; h=35ft; ed; MWFRS (envelope (2E) zone; cantilever lef nbers and forces &	eft							200	In
grip DOL=1.60		umber DOL=1.60 plate								FE OF I	MISSO
only. For studs exp	posed to wind	in the plane of the truss d (normal to the face),	,						E	STA SCOT	N N
		nd Details as applicable signer as per ANSI/TPI							A	SEVI	

- TCLL: ASCE 7-16; Pr=25.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=25.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat C; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10
- 4) Unbalanced snow loads have been considered for this design.
- 5) Gable requires continuous bottom chord bearing.
- 6) Gable studs spaced at 4-0-0 oc.




WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANS/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

						RELEASE FOR CONSTRUCTION
Job	Truss	Truss Type	Qty	Ply	Roof - Osage Lot 61	AS NOTED FOR PLAN REVIEW
P240476-01	V5	Valley	1	1	Job Reference (optional	DEVELOPMENT SERVICES 165475636 LEE'S SUMMIT, MISSOURI
Premier Building Supply (Sprin	ghill, KS), Spring Hills, KS - 66083,				5 2024 MiTek Industries, Inc. T 370Hq3NSgPqnL8w3uITXbGK	

2-6-14

Scale = 1:18.3

Scale = 1:18.3				1								
Loading TCLL (roof) Snow (Pf) TCDL BCLL	(psf) 25.0 25.0 10.0 0.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018/TPI201	4 CSI TC BC WB	0.09 0.04 0.00	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a n/a	(loc) - - -	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20	GRIP 244/190
BCDL	10.0										Weight: 8 lb	FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD REACTIONS (2x4 SP No.2 2x4 SP No.2 2x3 SPF No.2 Structural wood she 2-7-6 oc purlins, ex Rigid ceiling directly bracing. size) 1=2-6-14, Aax Horiz 1=41 (LC Aax Uplift 1=-8 (LC Max Grav 1=108 (LC (Ib) - Maximum Com	cept end verticals. applied or 10-0-0 or 3=2-6-14 16), 3=-29 (LC 16) C 22), 3=108 (LC 22	chord 8) All bea capaci 9) Provid bearin and 29 c 10) This tr Interna R802.1	uss has been designed live load nonconcurren rings are assumed to ty of 565 psi. e mechanical connecti g plate capable of with I b uplift at joint 3. uss is designed in acco titional Residential Cod 10.2 and referenced st SE(S) Standard	it with any be SP No. on (by oth standing & ordance w le sections	other live load 2 crushing ers) of truss to 3 lb uplift at join ith the 2018 \$ R502.11.1 ar) nt 1					
FURCES	Tension	pression/maximum										
	1-2=-44/32, 2-3=-89	/78										
	1-3=0/0											
Vasd=91mp Ke=1.00; C exterior zon and right ex	E 7-16; Vult=115mph sh; TCDL=6.0psf; BC at. II; Exp C; Enclose le and C-C Exterior(2 posed; C-C for meml reactions shown; Lu .60	DL=6.0psf; h=35ft; d; MWFRS (envelop E) zone; cantilever bers and forces &	left								S-C OF	MISSOL
only. For st see Standa	gned for wind loads ir tuds exposed to wind rd Industry Gable En- ualified building desig	(normal to the face) d Details as applical), ble,								S SCOT	1 CAN
Plate DOL=	E 7-16; Pr=25.0 psf (⊡1.15); Pf=25.0 psf (L ; Is=1.0; Rough Cat C t=1.10	um DOL=1.15 Plate	1						-	B	gett?	fine
4) Unbalanced design.	s now loads have be		nis							Ø	PE-200	128
	s spaced at 4-0-0 oc.										S'SION A	IL ENSE

- Ę
- 6) Gable studs spaced at 4-0-0 oc.

May 10,2024

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

16023 Swingley Ridge Rd. Chesterfield, MO 63017 314.434.1200 / MiTek-US.com

										RELEASE FOR CONSTRUCTION			
Job	Truss		Truss Type		Qty	Ply	Roof - Os	age Lot 61		AS NOTED FOR PLAN REVIEW			
P240476-01	V6		Valley		1	1	1 Job Reference (option		nali	DEVELOPMENT SERVICES 165475637 LEE'S SUMMIT, MISSOURI			
Premier Building Supply	y (Springhill, KS), S	pring Hills, KS - 66083,		Run: 8.63 S Apr 26 2024 Print: 8.630 S Apr 26 2024 MiTek Industries, Inc. ID:gvQmUPVk3p3UtFmBZ9J5uxylfgA-RfC?PsB70Hq3NSgPqnL8w3uITXbC					. Thu May 09				
				ID:gvQmUPVk3p3UtH	FmBZ9J5	uxylfgA-RfC?P	sB70Hq3NSg	PqnL8w3ulTXt	GIWrCDoiA				
				5-10-14									
			I	1.5x4 u									
	_						2	1					
								ø					
	T	<u>-</u>	10						-1				
			1 <u>2</u> 6 Г						2-11-11				
			1										
		4											
	_	0-0 4-											
					******			8					
			:	3x4 ≠ 1.5x4 ∎									
				5-10	0-14			4					
Scale = 1:24.8		ı —	l	1				1					
Loading TCLL (roof)	(psf) 25.0	Spacing Plate Grip DOL	2-0-0 1.15	CSI TC 1		EFL ert(LL)	in (loc) n/a -		./d PLATE 99 MT20	ES GRIP 244/190			
Snow (Pf)	25.0	Lumber DOL	1.15	BC 0).34 Ve	ert(TL)	n/a -	n/a 9	99	277/100			
TCDL BCLL	10.0 0.0	Rep Stress Incr Code	YES IRC2018/TPI2014	WB 0 Matrix-P	0.00 Ho	oriz(TL)	n/a -	n/a r	/a				
BCDL	10.0			· · · · · · · · · · · · · · · · · · ·					Weight	:: 20 lb FT = 20%			
	SP No.2		chord live	has been designed for a load nonconcurrent with	any oth	er live loads.							
WEBS 2x3	SP No.2 SPF No.2		capacity o	 All bearings are assumed to be SP No.2 crushing capacity of 565 psi. Brevide mechanical economic (by others) of trues to 									
BRACING TOP CHORD Stru	uctural wood shea	bearing pla	 Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 23 lb uplift at joint 										
exce	ept end verticals.		1 and 80 ll 10) This truss	o uplift at joint 3. is designed in accordan									
brac REACTIONS (size)	cing.	l, 3=5-10-14	R802.10.2	al Residential Code sec and referenced standar									
Max	Horiz 1=114 (LC		LOAD CASE(S) Standard									
Max	Grav 1=341 (LC	C 22), 3=341 (LC 22)											
Ten	ision	pression/Maximum											
TOP CHORD 1-2= BOT CHORD 1-3=	=-120/103, 2-3=-2 =0/0	289/211											
NOTES 1) Wind: ASCE 7-1	16: Vult=115mph	(3-second aust)											
Vasd=91mph; T	CDL=6.0psf; BC	DL=6.0psf; h=35ft; d; MWFRS (envelope	2)										
exterior zone an	d C-C Exterior(2	E) zone; cantilever le bers and forces &											
		mber DOL=1.60 plate	9						B	OF MISSO			
2) Truss designed		n the plane of the trus (normal to the face),	s						H ANY				
see Standard In	dustry Gable End	d Details as applicabl gner as per ANSI/TPI						E	951	SCOTT M.			
3) TCLL: ASCE 7-1	16; Pr=25.0 psf (i	roof LL: Lum DOL=1.							*				
Plate DOL=1.15); Pf=25.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat C; Fully Exp.; Ce=0.9;									Servica				
		en considered for this	5					-	PI PI	E-2001018807			
design.5) Gable requires of		m chord bearing.							IN VO	ION ENGL			
Gable studs spa	aced at 4-0-0 oc.								D	IONAL ENCE			

May 10,2024

											FOR CONSTRUCTION	
Job	Truss		Truss Type		Qty	Ply	Roof - Osa	ige Lot 61	1		D FOR PLAN REVIEW]
P240476-01	V7		Valley	1	1 1		Job Reference (optional		DEVELOPMENT SERVICES 165475638 LEE'S SUMMIT, MISSOURI			
Premier Building	Supply (Springhill, KS), S	Spring Hills, KS - 66083,	Run: 8.63 S Apr 26 2024 Print: 8.630 S Apr 26 2024 MiTek Industries, Inc. T ID:rl3UEMR_TzJL9KJ1DuChfgylfgG-RfC?PsB70Hq3NSgPqnL8w3uITXbGK						nc. Th bGKV/	WINDOIT HOUSE / 22/2024		
				9-2-	-14							
			1.5x4 u									
		-0-0- 	6 ¹² 6 1 3x4 =	7	1.5x4 µ 2 8 1.5x4 µ			3 4 1.5x4	1	4-7-11		
Scale = 1:32.5				9-2-	-14							
Loading TCLL (roof) Snow (Pf) TCDL BCLL	(psf) 25.0 25.0 10.0 0.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018/TPI2014	BC	0.18 Ve	FL rt(LL) rt(TL) riz(TL)	in (loc) n/a - n/a - 0.00 4		L/d 999 999 n/a	PLATES MT20	GRIP 244/190	_
BCDL LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD	2x4 SP No.2 2x3 SPF No.2 2x3 SPF No.2 Structural wood she 6-0-0 oc purlins, exi	athing directly applied cept end verticals. applied or 10-0-0 oc	design. 5) Gable requir 6) Gable studs 7) This truss ha chord live loc 8) All bearings capacity of 5 9) Provide med	snow loads have been es continuous bottom spaced at 4-0-0 oc. as been designed for ad nonconcurrent with are assumed to be S i65 psi. hanical connection (te e capable of withstam.	n chord be a 10.0 psf n any othe P No.2 cru by others)	aring. bottom r live loads ishing of truss to	5.			Weight: 33 lb	FT = 20%	_

- Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 42 lb uplift at joint 4 and 162 lb uplift at joint 5.
- This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
 LOAD CASE(S) Standard

5=645 (LC 22) FORCES (Ib) - Maximum Compression/Maximum Tension TOP CHORD 1-2=-240/112, 2-3=-125/49, 3-4=-163/98 BOT CHORD 1-5=-2/5, 4-5=-2/5

2-5=-529/341

Max Horiz 1=187 (LC 16)

1=9-2-14, 4=9-2-14, 5=9-2-14

Max Uplift 4=-42 (LC 16), 5=-162 (LC 16)

Max Grav 1=171 (LC 22), 4=190 (LC 22),

bracing.

WEBS

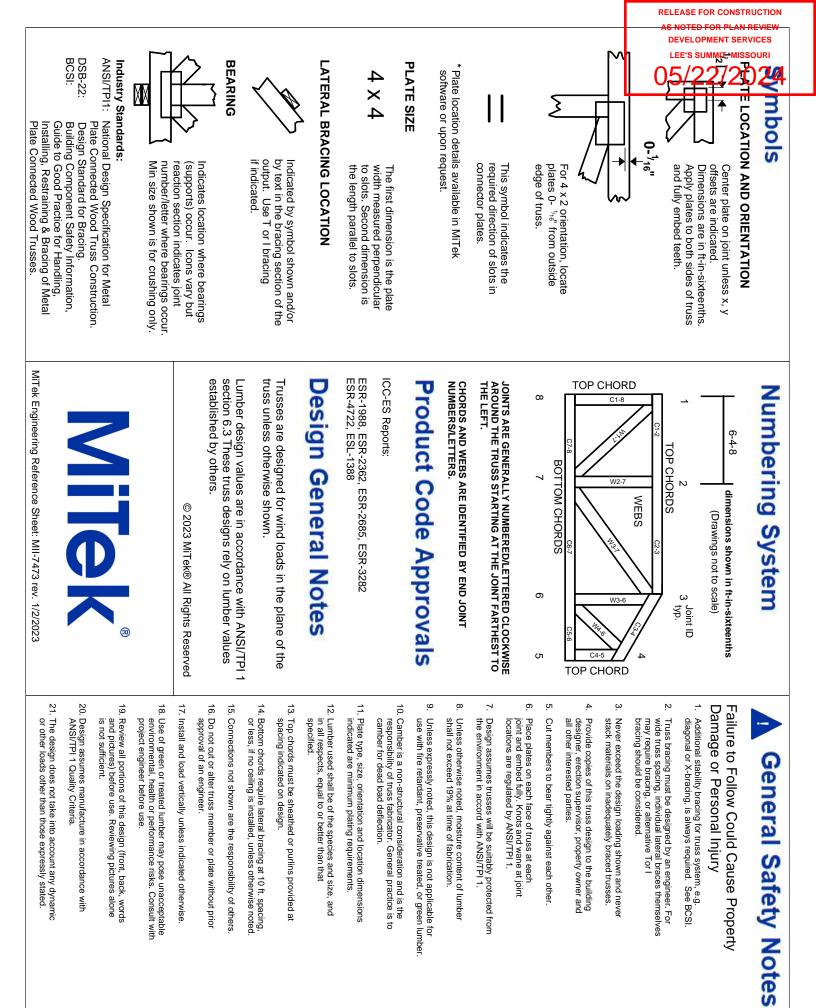
REACTIONS (size)

NOTES

- Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=35ft; Ke=1.00; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) 0-7-9 to 5-7-9, Interior (1) 5-7-9 to 9-2-2 zone; cantilever left and right exposed ;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- TCLL: ASCE 7-16; Pr=25.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=25.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat C; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10

NUMBER PE-2001018807 May 10,2024

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSITPTI Quality Criteria**, and **DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcscomponents.com)


										FOR CONSTRUCTION	
Job	Truss	5	Truss Type		Qty	Ply	Roof - Osa	ge Lot 61	AS NOTED FOR PLAN REVIEW DEVELOPMENT SERVICES 165475639 LEE'S SUMMIT, MISSOURI		٦
P240476-01	V8		Valley		1	1	lob Refere	nce (optional)			
Premier Building Supply (Springhill, KS), Spring Hills, KS - 66083,		Run: 8.63 S Apr 26 2024 Print: 8.630 S Apr 26 2024 MiTek Industries, Inc ID:UFCl20yWf_Ot_KqXRC?XaSylfgt-RfC?PsB70Hq3NSgPqnL8w3ulTXbC					ndustries, Inc. T				
				ID:UFCl20yWf_Ot_Kq	XRC?XaSy	lfgt-RfC?PsB	70Hq3NSgPqn	1L8w3ulTXbGK	VrCDoi7J42JS?i		r
			<u> </u>	12-6-1	4						
								1.5x4 u			
								4			
		T						P	\top		
						1.5x4 ॥	//				
					10 _	3					
		5		1.5x4 u 9					5		
		6-3-11		2 8					6-3-11		
				-							
			6F								
		4	1								
								5			
			3x4 ≠	7		6		1.5x4 I			
				1.5x4 II		1.5x4 ॥					
Scale = 1:42.1				12-6-1	4						
Loading	(psf)	Spacing	2-0-0	CSI	DEF		in (loc)	l/defl L/d	PLATES	GRIP	—
TCLL (roof)	25.0 25.0	Plate Grip DOL Lumber DOL	1.15 1.15	TC 0.	36 Vert	(LL)	n/a -	n/a 999	MT20	244/190	
Snow (Pf) TCDL	10.0	Rep Stress Incr	YES	WB 0.	13 Vert 19 Horiz	. ,	n/a - .00 5	n/a 999 n/a n/a			
BCLL BCDL	0.0 10.0	Code	IRC2018/TPI2014	Matrix-S					Weight: 48 lb	FT = 20%	
LUMBER		•		7-16; Pr=25.0 psf (roc							_
	2x4 SP No.2 2x4 SP No.2		DOL=1.15);	l.15); Pf=25.0 psf (Lum Is=1.0; Rough Cat C; F							
	2x3 SPF No.2 2x3 SPF No.2		/	=1.10 snow loads have been	considere	ed for this					
BRACING	Structural wood sh	neathing directly applied		es continuous bottom o	chord bea	ring.					
	6-0-0 oc purlins, e	except end verticals.	 Gable studs This trues has 	spaced at 4-0-0 oc. as been designed for a	10.0 psf b	ottom					
	bracing.	14, 5=12-6-14, 6=12-6	chord live loa	ad nonconcurrent with are assumed to be SP							
,	7=12-6-1	14	capacity of 5	65 psi. hanical connection (by	others) of	f truss to					
		_C 16), 6=-129 (LC 16)		e capable of withstandi ift at joint 6 and 136 lb							
Μ		LC 27), 5=210 (LC 22)	10) This truss is	designed in accordance Residential Code sect	e with the	2018					
	(lb) - Maximum Co	LC 22), 7=405 (LC 22) mpression/Maximum	R802.10.2 a LOAD CASE(S)	nd referenced standard Standard	ANSI/TP	41.					
TOP CHORD		=-193/90, 3-4=-118/56,		Clandara							
BOT CHORD	4-5=-176/94 1-7=-2/4, 6-7=-2/4,										
WEBS : NOTES	3-6=-465/247, 2-7=	=-308/243								ADDA	
1) Wind: ASCE	E 7-16; Vult=115mp	oh (3-second gust) CDL=6.0psf; h=35ft;							E OF M	MISSO	
Ke=1.00; Ca	at. II; Exp C; Enclos	sed; MWFRS (envelope	e)					Ē	ST SCOT	No. W	
Interior (1) 5-	5-7-9 to 12-6-2 zone	(2E) 0-7-9 to 5-7-9, e; cantilever left and rig d forces & MWERS for						ch.	SEVI		
reactions she	 C for members and nown; Lumber DOL= 	d forces & MWFRS for =1.60 plate grip							47	Que in a	>
		in the plane of the trus						Rec	NUM		
see Standar	rd Industry Gable E	nd (normal to the face), and Details as applicabl	le,					N.	PE-2001	018807	
or consult qu	ualified building des	signer as per ANSI/TPI	11.						SSIONA	LENGIA	
									and and		
									May	/ 10,2024	

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

Mitek 16023 Swingley Ridge Rd. Chesterfield, MO 63017

314.434.1200 / MiTek-US.com

May 10,2024

