

MiTek, Inc. RE: P240476-01 - Roof - Osage Lot 61 16023 Swingley Ridge Rd. Site Information: Chesterfield, MO 63017 Project Customer: Clayton Properties Project Name: Basswoof Farmhouse 314.434.1200 Lot/Block: 61 Subdivision: Osage Model: Address: 3808 SW Ravengate PI City: Lee's Summit State: MO General Truss Engineering Criteria & Design Loads (Individual Truss Design Drawings Show Special Loading Conditions): Design Code: IRC2018/TPI2014 Design Program: MiTek 20/20 8.6 Wind Code: ASCE 7-16 Wind Speed: 115 mph Design Method: MWFRS (Envelope)/C-C hybrid Wind ASCE 7-16 Roof Load: 45.0 psf Floor Load: N/A psf Mean Roof Height (feet): 35 Exposure Category: C

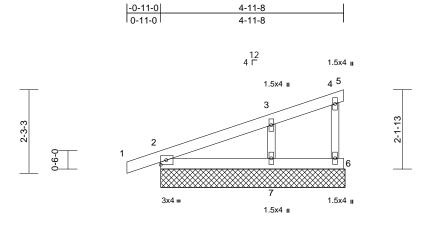

No.	Seal#	Truss Name	Date
1234567890112345678901 112345678900 112345678900 12345678900 12345678900 12345678900 12345678900 12345678900 12345678900 12345678900 12345678900 12345678900 12345678900 123456789000 123456789000 123456789000 123456789000000000000000000000000000000000000	Seal# 165475617 165475619 165475620 165475621 165475622 165475622 165475624 165475625 165475626 165475628 165475630 165475631 165475633 165475633 165475635 165475635 165475637 165475637	Truss Name B1 B2 B3 C1 C2 C3 D1 D2 D3 E1 E2 E3 E4 E5 R1 V1 V2 V3 V4 V5 V6 V7	Date 5/10/24
22 23	165475639	V8	5/10/24

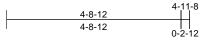
The truss drawing(s) referenced above have been prepared by MiTek USA, Inc. under my direct supervision based on the parameters provided by Premier Building Supply (Springhill, KS)20300 W 207th Street.

Truss Design Engineer's Name: Sevier, Scott

My license renewal date for the state of Missouri is December 31, 2025.

IMPORTANT NOTE: The seal on these truss component designs is a certification that the engineer named is licensed in the jurisdiction(s) identified and that the designs comply with ANSI/TPI 1. These designs are based upon parameters shown (e.g., loads, supports, dimensions, shapes and design codes), which were given to MiTek or TRENCO. Any project specific information included is for MiTek's or TRENCO's customers file reference purpose only, and was not taken into account in the preparation of these designs. MiTek or TRENCO has not independently verified the applicability of the design parameters or the designs for any particular building. Before use, the building designer should verify applicability of design parameters and properly incorporate these designs into the overall building design per ANSI/TPI 1, Chapter 2.




Sevier, Scott

Job	Truss	Truss Type	Qty	Ply	Roof - Osage Lot 61	
P240476-01	B1	Monopitch Supported Gable	1	1	Job Reference (optional)	165475617

Run: 8.63 S Apr 26 2024 Print: 8.630 S Apr 26 2024 MiTek Industries, Inc. Thu May 09 12:06:27 ID:OaSecMxhRSfQIAVWAXas1vylfDC-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:31.3

Loading	(psf)	Spacing	1-11-4		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
FCLL (roof)	25.0	Plate Grip DOL	1.15		TC	0.16	Vert(LL)	n/a	-	n/a	999	MT20	197/144
Snow (Pf) CDL	25.0	Lumber DOL	1.15		BC	0.07	Vert(CT)	n/a	-	n/a	999		
	10.0	Rep Stress Incr	YES		WB	0.08	Horz(CT)	0.00	5	n/a	n/a		
SCLL SCDL	0.0 10.0	Code	IRC20	8/TPI2014	Matrix-P							Weight: 19 lb	FT = 20%
	10.0											Weight. 13 lb	11 = 2078
UMBER			3		7-16; Pr=25.0								
OP CHORD	2x4 SP No.2				1.15); Pf=25.0 p								
OT CHORD	2x4 SP No.2 2x3 SPF No.2			DOL=1.15); Is=1.0; Rough Cat C; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10									
THERS	2x3 SPF No.2 2x3 SPF No.2		4	4) Unbalanced snow loads have been considered for this									
RACING	285 011 10.2		•	design.	chen leade hat	0 00011 001							
OP CHORD	Structural wood she	athing directly applie	dor 5		as been designe								
	5-0-0 oc purlins, ex				psf or 2.00 time			sf on					
OT CHORD	Rigid ceiling directly		,		on-concurrent w								
	bracing.		6		es continuous b		d bearing.						
EACTIONS	(size) 2=5-0-0, 5	5=5-0-0, 6=5-0-0, 7=	5-0-0	 7) Gable studs spaced at 2-0-0 oc. 8) This truss has been designed for a 10.0 psf bottom 									
	Max Horiz 2=84 (LC				ad nonconcurre			ds					
	Max Uplift 2=-50 (LC		6=-13 g		are assumed to								
		7=-75 (LC 16)	0 57	capacity of 5	65 psi.		0						
	Max Grav 2=256 (L0	23), 5=18 (LC 23), 7=349 (LC 23)	⁶⁼⁵⁷ 1		hanical connect								
ORCES	(lb) - Maximum Corr	, ,			e capable of with								
ORGES	Tension	ipression/maximum		· ·	t at joint 6, 50 lb	uplift at joi	nt 2 and 75 lt	b					
OP CHORD	1-2=0/12, 2-3=-157/	59. 3-4=-41/9. 4-5=-	9/5. 1	uplift at joint	7. e or shim requir	ed to provi	de full bearin	a					
	4-6=-50/52	,-	, I		truss chord at jo			9					
OT CHORD	2-7=0/0, 6-7=0/0		1		designed in acc		ith the 2018						
VEBS	3-7=-288/331				Residential Co			and					
OTES				R802.10.2 and referenced standard ANSI/TPI 1.									~
	CE 7-16; Vult=115mph		L	OAD CASE(S)	Standard							STATE OF I	De
	nph; TCDL=6.0psf; BC											F. OF I	MISS D
	Cat. II; Exp C; Enclose	e)								4	T. N.	N.S.	
	one and C-C Corner(38 N) 4-1-0 to 4-11-8 zon									H	SCOT	TM. VEN	
	N) 4-1-0 10 4-11-6 201										И	CEV	

Lumber DOL=1.60 plate grip DOL=1.60 2) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

right exposed ; end vertical left exposed;C-C for members and forces & MWFRS for reactions shown;

 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.
 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not besign value for use only with with twit even connectors. This design is based only upon parameters shown, and is for an individual building designer must verify the applicability of design parameters and properly incorporate this design into the overall building designer must verify the applicability of design parameters and properly incorporate this design into the overall building designer. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcscomponents.com)

E

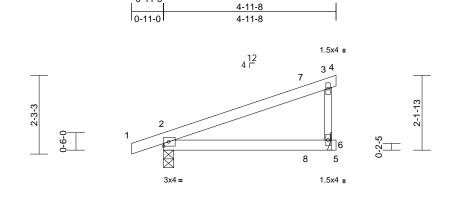
May 10,2024

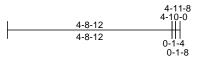
SEVIER

NUMBER

PE-2001018807

SSIONAL


Job	Truss	Truss Type	Qty	Ply	Roof - Osage Lot 61	
P240476-01	B2	Monopitch	3	1	Job Reference (optional)	165475618


-0-11-0

Premier Building Supply (Springhill, KS), Spring Hills, KS - 66083,

Run: 8.63 S Apr 26 2024 Print: 8.630 S Apr 26 2024 MiTek Industries, Inc. Thu May 09 12:06:28 ID:O7VVk_L0RvxcNO62AgBqQ4yIfCg-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:33.1

Loading TCLL (roof) Snow (Pf) TCDL BCLL	(psf) 25.0 25.0 10.0 0.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC201	8/TPI2014	CSI TC BC WB Matrix-P	0.62 0.48 0.00	DEFL Vert(LL) Vert(CT) Horz(CT)	in 0.10 0.08 0.00	(loc) 2-6 2-6 6	l/defl >549 >651 n/a	L/d 240 180 n/a	PLATES MT20	GRIP 197/144
BCDL	10.0	0000		0,1112011								Weight: 18 lb	FT = 20%
	2x4 SP No.2 2x4 SP No.2 2x3 SPF No.2 Structural wood she 5-0-0 oc purlins, exi Rigid ceiling directly bracing. (size) 2=0-3-8, 6 Max Horiz 2=87 (LC Max Uplift 2=-131 (L Max Grav 2=404 (LC	cept end verticals. applied or 10-0-0 oc 6= Mechanical 12) C 12), 6=-106 (LC 12	9) 2) LC	chord live loa Bearings are capacity of 5 Refer to gird Provide mec bearing plate joint 6 and 13 This truss is International	er(s) for truss to tru- nanical connection capable of withsta 31 lb uplift at joint 2 designed in accord Residential Code and referenced stan	vith any pint 2 SI uss conr (by oth anding 1 2. Jance w sections	other live loa No.2 crushi nections. ers) of truss t 06 lb uplift at ith the 2018 R502.11.1 a	o					
FORCES	(lb) - Maximum Com Tension												
TOP CHORD	1-2=0/13, 2-3=-105/ 3-6=-248/242	64, 3-4=-7/0,											
BOT CHORD	2-6=0/0, 5-6=0/0												
NOTES													
Vasd=91m Ke=1.00; C exterior zo Interior (1) exposed ; c exposed;C	CE 7-16; Vult=115mph nph; TCDL=6.0psf; BC Cat. II; Exp C; Enclose ne and C-C Exterior(2 4-1-0 to 4-11-8 zone; end vertical left exposi- C for members and for shown; Lumber DOL=	DL=6.0psf; h=35ft; d; MWFRS (envelop E) -0-11-0 to 4-1-0, cantilever left and rig ed; porch left and rig porces & MWFRS for	ght								A	STATE OF I	MISSOLUTION
2) TCLL: ASC Plate DOL: DOL=1.15) Cs=1.00; C	CE 7-16; Pr=25.0 psf (=1.15); Pf=25.0 psf (L); Is=1.0; Rough Cat C	um DOL=1.15 Plate ; Fully Exp.; Ce=0.9	;							-	AL A	SEVI NUM	erre

- design.
- 4) This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 25.0 psf on overhangs non-concurrent with other live loads.

PE-2001018807 ONAL ET May 10,2024

Job	Truss	Truss Type	Qty	Ply	Roof - Osage Lot 61	
P240476-01	B3	Monopitch	7	1	Job Reference (optional)	165475619

2-11-8

2-11-8

12 4 Г

-0-11-0

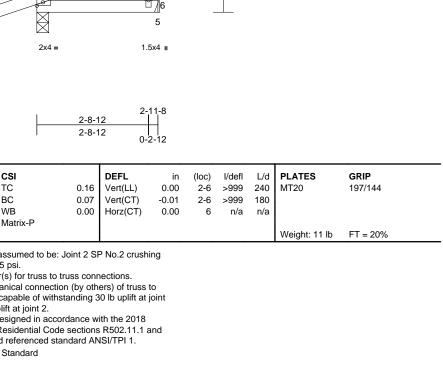
0-11-0

2

P

Premier Building Supply (Springhill, KS), Spring Hills, KS - 66083,

1-7-3


0-9-0

Run: 8.63 S Apr 26 2024 Print: 8.630 S Apr 26 2024 MiTek Industries, Inc. Thu May 09 12:06:28 ID:OfYMtcmLQLDnSdia9popoFylfC8-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

> 1.5x4 🛚 34 D

> > 0

Page: 1

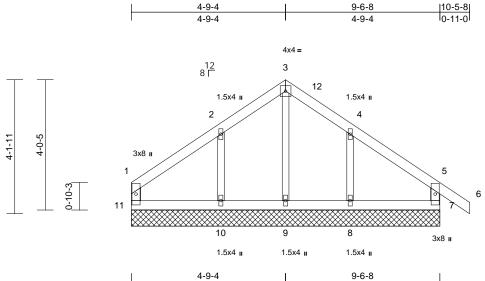
Ϋ́

Scale = 1:28.2

			1					· · · · ·						
Loa	ading	(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
	LL (roof)	25.0	Plate Grip DOL	1.15		TC	0.16	Vert(LL)	0.00	2-6	>999	240	MT20	197/144
	ow (Pf)	25.0	Lumber DOL	1.15		BC	0.07	Vert(CT)	-0.01	2-6	>999	180		
TCI	. ,	10.0	Rep Stress Incr	YES		WB	0.00	Horz(CT)	0.00	6	n/a	n/a		
BCI		0.0	Code	IRC2018/TPI	2014	Matrix-P	0.00	11012(01)	0.00	Ũ	n/a	n/a		
BCI		10.0		11(02010/111/	-014								Weight: 11 lb	FT = 20%
	DL	10.0											Weight. TTID	11 = 2070
	MBER P CHORD	2x4 SP No.2			rings are acity of 56	assumed to be: Jo	oint 2 SI	No.2 crushi	ing					
	T CHORD					er(s) for truss to tru	uss conr	nections.						
WE		2x3 SPF No.2				anical connection			to					
	ACING			bea	ring plate	capable of withsta	anding 3	80 lb uplift at j	joint					
	P CHORD	Structural wood she	athing directly applie	edor 6a	nd 78 lb up	plift at joint 2.	-							
101	ONORD	3-0-0 oc purlins, ex		9) This		designed in accord								
BO	T CHORD					Residential Code			and					
DE	ACTIONS	0	Machanical	LOAD	CASE(S)	Standard								
KE/	ACTIONS	Max Horiz 2=57 (LC	6= Mechanical		- (-)									
		Max Uplift 2=-78 (LC												
		Max Grav 2=281 (LC)										
FOI	RCES	(lb) - Maximum Com)										
FUI	RCES	Tension	pression/maximum											
TO	P CHORD	1-2=0/13, 2-3=-83/4		1/144										
BO	T CHORD	2-6=-23/25, 5-6=0/0												
NO	TES													
1)	Wind: ASC	CE 7-16; Vult=115mph	(3-second gust)											
,	Vasd=91m	nph; TCDL=6.0psf; BC	DL=6.0psf; h=35ft;											
		Cat. II; Exp C; Enclose												
		one and C-C Exterior(2		eft										
		exposed ; end vertical I												Th
		C-C for members and f											OF	ALC D
		shown; Lumber DOL=1	1.60 plate grip										ACEUT	IIS'S W
	DOL=1.60	 CE 7-16; Pr=25.0 psf (1 1 5								6	TATE OF M	W.S
		=1.15); Pf=25.0 psf (L										A	SCOT	ГМ. VEV
); Is=1.0; Rough Cat C										A	7 SEVI	ER YY
	Cs=1.00; 0		, i ully Exp., 00-0.0	',								(A) A		1 + 2
		ed snow loads have be	en considered for th	nis								SV	4	0
- /	design.												A TTS	Ser Man
	This truss	has been designed for									-	YI.	UM	
		0 psf or 2.00 times flat		sf on								N	O PE-2001	018807
		non-concurrent with c										V	1 AT	158
5)		has been designed for											N'S'SIG	ENUR
	chord live l	load nonconcurrent wi	th any other live load	ds.									SSIONA	L
													1000	555
													Max	40.0004

May 10,2024

16023 Swingley Ridge Rd. Chesterfield, MO 63017 314.434.1200 / MiTek-US.com


Job	Truss	Truss Type	Qty	Ply	Roof - Osage Lot 61	
P240476-01	C1	Common Structural Gable	1	1	Job Reference (optional)	165475620

Run: 8.63 S Apr 26 2024 Print: 8.630 S Apr 26 2024 MiTek Industries, Inc. Thu May 09 12:06:28 ID:gfrsVxpQoNOr6dkbbQOWdoylfDM-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

4-9-4

Page: 1

Scale = 1:35.6	

		· · · · · · · · · · · · · · · · · · ·				_									
Loading	(psf)	Spacing	1-11-4		csi		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP		
TCLL (roof)	25.0	Plate Grip DOL	1.15		TC	0.15	Vert(LL)	n/a	-	n/a	999	MT20	197/144		
Snow (Pf)	25.0	Lumber DOL	1.15		BC	0.05	Vert(CT)	n/a	-	n/a	999				
TCDL	10.0	Rep Stress Incr	YES		WB	0.07	Horz(CT)	0.00	7	n/a	n/a				
BCLL	0.0	Code	IRC201	8/TPI2014	Matrix-R										
BCDL	10.0		_									Weight: 41 lb	FT = 20%		
LUMBER			3)	Truss desig	ned for wind load	ds in the n	lane of the tr	uss							
TOP CHORD	2x4 SP No.2		-,		ids exposed to w										
BOT CHORD	2x4 SP No.2			see Standar	d Industry Gable	End Deta	ils as applica	ble,							
VEBS		ot* 9-3:2x3 SPF No.2		or consult qu	alified building d	lesigner a	s per ANSI/T	PI 1.							
OTHERS	2x3 SPF No.2		4)		7-16; Pr=25.0 p										
BRACING					1.15); Pf=25.0 ps										
TOP CHORD	Structural wood she	athing directly applie	ed or		Is=1.0; Rough C	at C; Fully	' Exp.; Ce=0.	9;							
	6-0-0 oc purlins, ex	cept end verticals.		Cs=1.00; Ct											
BOT CHORD	Rigid ceiling directly	applied or 6-0-0 oc	5)		snow loads have	e been coi	nsidered for t	his							
	bracing.		0	design.			or of min root	6 lis co							
REACTIONS	(size) 7=9-6-8,	8=9-6-8, 9=9-6-8,	6)		is been designed psf or 2.00 times										
	10=9-6-8, 11=9-6-8							51 011							
	Max Horiz 11=-121	· /	7)	overhangs non-concurrent with other live loads. 7) Gable requires continuous bottom chord bearing.											
	Max Uplift 7=-49 (LC), ₈)		ully sheathed fro		0	,							
		(LC 16), 11=-41 (LC	17) - '		ist lateral moven										
	Max Grav 7=260 (L				spaced at 2-0-0			,-							
		C 28), 10=364 (LC 2	^{3),} 10) This truss ha	s been designed	d for a 10.	0 psf bottom								
	11=175 (,		chord live lo	ad nonconcurren	it with any	other live loa	ads.							
FORCES	(lb) - Maximum Con	npression/Maximum	11) All bearings	are assumed to	be SP No	2 crushing								
TOP CHORD	Tension	400/000 0 4 400/0	24	capacity of 5											
TOP CHORD		-133/229, 3-4=-133/2 0/69, 1-11=-155/112,			hanical connecti										
	4-5=-118/117, 5-6= 5-7=-238/213	0/09, 1-11=-155/112,			capable of with										
BOT CHORD	10-11=-51/76, 9-10	51/76 8-051/76			ift at joint 7, 114	lb uplift at	joint 10 and	110					(The		
	7-8=-51/76		4.0	Ib uplift at jo								GOL	A Part		
WEBS		-308/253, 4-8=-284/2	13 131		designed in acco			ام مد م				R.F. OF	WISS OF		
NOTES	1 100,01,210-	200, 10 200/2			Residential Cod nd referenced st			DITE			4	TATE OF	N.S.		
	ed roof live loads have	been considered for				anuaru Ar	NOI/TETT.				H	SCOT	TM. YEN		
this design				DAD CASE(S)	Sianuaru						Ø	SEV			
	CE 7-16; Vult=115mph									h					
	nph; TCDL=6.0psf; BC									' <mark>XX</mark> ^		Kon lat			
	Cat. II: Exp.C: Enclose												* ener		

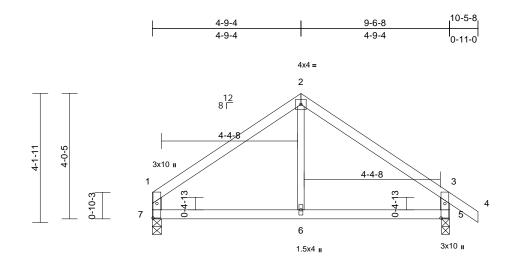
Ke=1.00; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone and C-C Corner(3E) 0-1-12 to 4-9-4, Corner(3R) 4-9-4 to 9-9-4, Exterior(2N) 9-9-4 to 10-5-8 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent colleges with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

E

May 10,2024

NUMBER


PE-2001018807

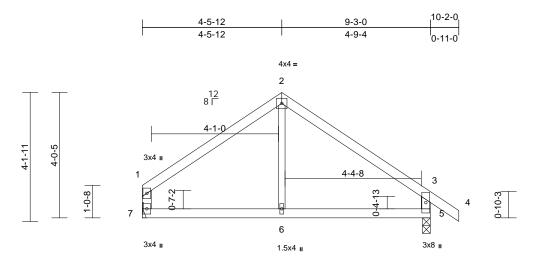
SSIONAL

OFF

Job	Truss	Truss Type	Qty	Ply	Roof - Osage Lot 61	
P240476-01	C2	Common	1	1	Job Reference (optional)	165475621

Run: 8.63 S Apr 26 2024 Print: 8.630 S Apr 26 2024 MiTek Industries, Inc. Thu May 09 12:06:28 ID:GfKth5P1324Gzx3gv2th0YylfKL-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

Scale = 1:37 Plate Offsets (X, Y): [1:0-5-9,0-1-8], [5:0-5-9,0-1-8]


Plate Offsets (X, Y): [1:0-5-9,0-1-8],	[5:0-5-9,0-1-8]											
Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 25.0 25.0 10.0 0.0 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC201	8/TPI2014	CSI TC BC WB Matrix-R	0.56 0.27 0.10	DEFL Vert(LL) Vert(CT) Horz(CT)	in 0.03 -0.03 0.00	(loc) 5-6 5-6 5	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 37 lb	GRIP 197/144 FT = 20%
FORCES TOP CHORD BOT CHORD WEBS NOTES 1) Unbalance this design 2) Wind: ASC Vasd=91m Ke=1.00; (exterior 22 Exterior(22 Zone; cant exposed; p and forces DOL=1.60 3) TCLL: ASC Plate DOL DOL=1.15 Cs=1.00; (Max Horiz 7=-114 (L Max Uplift 5=-83 (LC Max Grav 5=613 (LC (lb) - Maximum Com Tension 1-2=-515/449, 2-3=- 1-7=-485/338, 3-5=- 6-7=-238/296, 5-6=- 2-6=-310/185 ed roof live loads have http://toble/100 Cat. II; Exp C; Enclose one and C-C Exterior(2 R) 4-9-4 to 9-9-4, Inter ilever left and right exp orch left and right exp orch left and right exp s & MWFRS for reaction plate grip DOL=1.60 CE 7-16; Pr=25.0 psf (L :1.15); Pf=25.0 psf (L); Is=1.0; Rough Cat C	athing directly applie cept end verticals. applied or 10-0-0 oc 7=0-3-8 C 12) : 17), 7=-56 (LC 16) C 24), 7=537 (LC 23) pression/Maximum 516/453, 3-4=0/71, 567/411 238/296 been considered for (3-second gust) DL=6.0psf; h=35ft; d; MWFRS (envelop E) 0-1-12 to 4-9-4, ior (1) 9-9-4 to 10-5-to posed; C-C for membra nos shown; Lumber roof LL: Lum DOL=1 um DOL=1.15 Plate ; Fully Exp.; Ce=0.9	e) s e) e) k ight ers .15 ;	load of 12.0 overhangs n This truss ha chord live loa All bearings capacity of 5 Provide mec bearing plate 7 and 83 lb u This truss is International	hanical connectio e capable of withs uplift at joint 5. designed in accou Residential Code nd referenced sta	flat roof le h other li for a 10.1 with any e SP No. n (by oth tanding f rdance w s sections	bad of 25.0 p ve loads. D psf bottom other live loa 2 crushing ers) of truss t 66 lb uplift at j ith the 2018 5 R502.11.1 a	esf on ads. to joint				STATE OF STATE OF SEV PE-2001	T M. HER DISSO7

Job	Truss	Truss Type	Qty	Ply	Roof - Osage Lot 61	
P240476-01	C3	Common	1	1	Job Reference (optional)	165475622

Run: 8.63 S Apr 26 2024 Print: 8.630 S Apr 26 2024 MiTek Industries, Inc. Thu May 09 12:06:29 ID:bBOxdUdBwZQGDBIEEzD_0KylfMf-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

				1-5-12 1-5-12		<u>9-3-</u> 4-9-			-			
Scale = 1:37												
Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15	тс	0.47	Vert(LL)	0.04	5-6	>999	240	MT20	244/190
Snow (Pf)	25.0	Lumber DOL	1.15	BC	0.31	Vert(CT)	-0.04	5-6	>999	180		
TCDL	10.0	Rep Stress Incr	YES	WB	0.10	Horz(CT)	0.00	5	n/a	n/a		
BCLL	0.0	Code	IRC2018/TPI2014	Matrix-R								
BCDL	10.0										Weight: 37 lb	FT = 20%

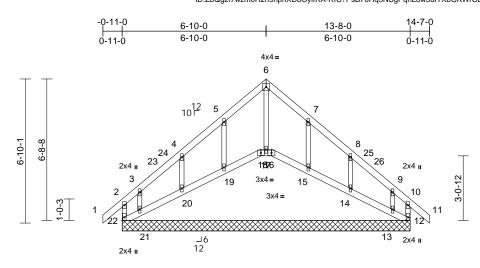
LUMBER		
TOP CHORD	2x4 SP N	0.2
BOT CHORD	2x4 SP N	0.2
WEBS	2x4 SP N	o.2 *Except* 6-2:2x3 SPF No.2
BRACING		
TOP CHORD	Structural	wood sheathing directly applied or
	6-0-0 oc p	ourlins, except end verticals.
BOT CHORD	Rigid ceili	ing directly applied or 10-0-0 oc
	bracing.	
REACTIONS	(size)	5=0-3-0, 7= Mechanical
	Max Horiz	7=-113 (LC 12)
	Max Uplift	5=-82 (LC 17), 7=-53 (LC 16)
	Max Grav	5=597 (LC 24), 7=514 (LC 23)
FORCES	(lb) - Max	imum Compression/Maximum
	Tension	·
TOP CHORD	1-2=-475/	433, 2-3=-488/427, 3-4=0/71,
	1-7=-454/	/330, 3-5=-549/400
BOT CHORD	6-7=-215/	270, 5-6=-215/270
WEBS	2-6=-293/	(171
NOTES		
1) Inhalance	ad roof live l	oads have been considered for

- 5) This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 25.0 psf on overhangs non-concurrent with other live loads.
- This truss has been designed for a 10.0 psf bottom 6) chord live load nonconcurrent with any other live loads.
- 7) Bearings are assumed to be: , Joint 5 SP No.2 crushing
- capacity of 565 psi.
- Refer to girder(s) for truss to truss connections. 8)
- Provide mechanical connection (by others) of truss to 9) bearing plate capable of withstanding 53 lb uplift at joint 7 and 82 lb uplift at joint 5.
- 10) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard

OF MISSO TE SCOTT M. SEVIER OFF PE-2001018807 SSIONAL E

May 10,2024


Unbalanced roof live loads have been considered for 1) this design 2) Wind: ASCE 7-16; Vult=115mph (3-second gust)

- Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=35ft; Ke=1.00; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) 0-1-12 to 4-5-12, Exterior(2R) 4-5-12 to 9-5-12, Interior (1) 9-5-12 to 10-2-0 zone; cantilever left and right exposed ; end vertical right exposed; porch left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- TCLL: ASCE 7-16; Pr=25.0 psf (roof LL: Lum DOL=1.15 3) Plate DOL=1.15); Pf=25.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat C; Fully Exp.; Ce=0.9; Cs=1.00: Ct=1.10
- 4) Unbalanced snow loads have been considered for this design.

Job	Truss	Truss Type	Qty	Ply	Roof - Osage Lot 61		
P240476-01	D1	Roof Special Supported Gable	1	1	Job Reference (optional)	165475623	

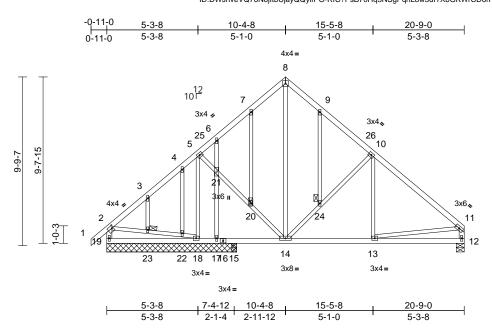
Run: 8.63 S Apr 26 2024 Print: 8.630 S Apr 26 2024 MiTek Industries, Inc. Thu May 09 12:06:29 ID:ZbQgzf7wzm0H2n9hpnXDoOylfRA-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

	0-5-8	6-7-0	7-1-0	13-2-8	13-8-0
Scale = 1:54.7	0-5-8	6-1-8	0-6-0	6-1-8	0-5-8

Plate Offsets (X Y)	10:0-0-0,Edge], [13:0-0-0,Edge], [14:0-0-0,Edge], [15:0-0-0,Edge]	ı.
	[10:0 0 0,Edg0], [10:0 0 0,Edg0], [11:0 0 0,Edg0], [10:0 0 0,Edg0]	

	A, T). [10.0-0-0,Edge	ej, [13:0-0-0,Eagej, [14:0	J-U-U,⊏uge], [15:U-U-	v,⊏ugej							-	
Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 25.0 25.0 10.0 0.0 10.0	Plate Grip DOL Lumber DOL Rep Stress Incr	2-0-0 1.15 1.15 YES IRC2018/TPI2014	CSI TC BC WB Matrix-R	0.15 0.10 0.08	DEFL Vert(LL) Vert(CT) Horz(CT)	in n/a n/a 0.00	(loc) - - 12	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 65 lb	GRIP 197/144 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	6-0-0 oc purlins, ex Rigid ceiling directly bracing. (size) 12=13-8- 15=13-8- 18=13-8- 21=13-8- Max Horiz 22=-218 14=-101 16=-20 (L 18=-19 (L 20=-100 22=-255 Max Grav 12=191 (I 14=261 (L 16=76 (L) 20=261 (I 22=274 (I	x applied or 6-0-0 oc 0, 13=13-8-0, 14=13-8-1 0, 16=13-8-0, 20=13-8-1 0, 19=13-8-0, 20=13-8-1 0, 22=13-8-0 (LC 14) (LC 13), 13=-152 (LC 15) (LC 17), 15=-101 (LC 11 (LC 12), 17=-12 (LC 16) (LC 16), 21=-174 (LC 15) (LC 24), 13=218 (LC 15) LC 24), 13=218 (LC 15) LC 24), 15=308 (LC 24) C 14), 17=-128 (LC 17), C 14), 19=308 (LC 23), LC 23), 21=242 (LC 14) LC 23),	NOTES 1) Unbalance 0, this design 0, 2) Wind: ASC Vasd=91m Ke=1.00; C 7), exterior zo 7), Interior (1) 11-10-0, In 11-10-0, In 11-10-0, In 11-10-0, In 10, exposed; C reactions s DOL=1.60 , 3) Truss des only. For s see Standa or consult 4) TCLL: ASC	E 7-16; Vult=115mp ph; TCDL=6.0psf; B Cat. II; Exp C; Enclos ne and C-C Exterior 4-1-0 to 6-10-0, Ext terior (1) 11-10-0 to ht exposed ; end ver -C for members and hown; Lumber DOL	8-19=-1 6-17=-1 4-15=-1 2-13=-9 19=-268 21=-136 14=-220 re been oh (3-sec CDL=6. sed; MM (2E) -0- erior(2R 14-7-0 ; trical left I forces = 1.60 pl in the p of (norm in the p of (norm in the p of (roof Ll	28/120, 07/105, 28/122, 0/91 /138, /123, /144, considered for cond gust) 0psf; h=35ft; /FRS (envelop: 11-0 to 4-1-0, 1) 6-10-0 to zone; cantileve and right & MWFRS for ate grip lane of the trus ial to the face), .ils as applicabl s per ANSI/TPI _: Lum DOL=1.	e) er ss le, l 1.	bra 10) Gal 11) Thi chc 12) All cap 13) Pro bea join 13) Pro bea join 101 upli 14) Bev sur 15, 15) Thi Inte R80	aced aga ble studs is truss h ord live k bearings bacity of ovide me aring pla tt 22, 12i uplift at join tt 19, 100 1 lb uplift ift at join veled pla face witt , 14, 13. is truss is ernationa	inst lat s space has bee oad nois s are as 565 ps echanic te capa 8 lb up oint 16, 0 lb up t at join at at join at at join t 13. ate or s h truss s desig al Resid and ref c) Sta	eral movement (ed at 2-0-0 oc. an designed for a nconcurrent with ssumed to be SF si. al connection (b) able of withstand lift at joint 12, 19 , 12 lb uplift at joi lift at joint 20, 17 at 15, 101 lb uplift shim required to p chord at joint(s) uned in accordand dential Code sect ferenced standar ndard	y others) of truss to ing 255 lb uplift at lb uplift at joint 18, 20 nt 17, 102 lb uplift at 4 lb uplift at joint 21, t at joint 14 and 152 lb provide full bearing 18, 16, 17, 19, 20, 21, ce with the 2018 tions R502.11.1 and d ANSI/TPI 1.
FORCES TOP CHORD	3-4=-100/122, 4-5=- 6-7=-164/287, 7-8=-	npression/Maximum =0/78, 2-3=-153/163, -106/206, 5-6=-164/293 -105/200, 8-9=-82/114, 11=0/78, 10-12=-186/11	DOL=1.15 Cs=1.00; C 5) Unbalance design. 8 6) This truss I load of 12. overhangs 7) All plates a	; Is=1.0; Rough Cat	C; Fully been co for great lat roof I n other li ss other	r Exp.; Ce=0.9; nsidered for thi er of min roof li oad of 25.0 psf ve loads. wise indicated.	s ive f on		-		NUM PE-2001	BER 018807


May 10,2024

Job	Truss	Truss Type	Qty	Ply	Roof - Osage Lot 61	
P240476-01	D2	Common Structural Gable	1	1	Job Reference (optional)	165475624

Run: 8.63 S Apr 26 2024 Print: 8.630 S Apr 26 2024 MiTek Industries, Inc. Thu May 09 12:06:29 ID:DWJnveVQ7oN6jltbUjayQQylfPO-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:66.9	

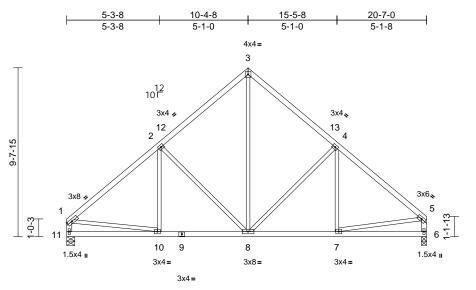
Plate Offsets (X,	Y):	[2:0-1-0,0-1-12]
-------------------	-----	------------------

	., ., [1											
Loading TCLL (roof) Snow (Pf) TCDL BCLL	(psf) 25.0 25.0 10.0 0.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	1-11-4 1.15 1.15 YES IRC2018	3/TPI2014	CSI TC BC WB Matrix-S	0.48 0.26 0.35	DEFL Vert(LL) Vert(CT) Horz(CT)		(loc) 13-14 13-14 12	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20	GRIP 197/144
BCDL	10.0											Weight: 128 lb	FI = 20%
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD	2x4 SP No.2 2x4 SP No.2 2x3 SPF No.2 *Exce No.2 2x3 SPF No.2 Structural wood she 5-10-4 oc purlins, e Rigid ceiling directly bracing.	athing directly applied xcept end verticals.	P dor NG	DTES	2-23=-259/263, 2: 18-22=-280/279, 5- 5-18=-559/100, 5- 20-21=-24/402, 1- 8-14=-106/178, 1- 10-24=-405/221, 1- 6-21=-321/120, 1- 4-22=-68/50, 3-23 Hoof live loads ha	11-13=0/ -21=-18/3 4-20=-20 4-24=-44 10-13=0/ 7-21=-39 3=-22/24,	451, 397, /407, 0/235, 184, 7-20=-56 6/147, 9-24=-50/20	,	cho 11) All I cap 12) Pro bea 19, Ib u 13) This Inte	ord live lo bearings pacity of wide me aring pla 78 lb up plift at jo s truss is ernationa	bad noi s are as 565 ps chanic te capa blift at ju point 17 s desig al Resid	ssumed to be SP si. al connection (by able of withstandi oint 18, 75 lb upli ned in accordance	any other live loads. No.2 crushing others) of truss to ng 4 lb uplift at joint ft at joint 12 and 171 we with the 2018 ions R502.11.1 and
JOINTS	1 Brace at Jt(s): 20,		2)		E 7-16; Vult=115m	ph (3-seo	cond gust)		LOAD	CASE(S) Sta	ndard	
	23, 24		,	Vasd=91mp	oh; TCDL=6.0psf; I	BCDL=6.	0psf; h=35ft;			-			
	18=7-6-8, Max Horiz 19=278 (L Max Uplift 12=-75 (L 18=-78 (L Max Grav 12=725 (L	.C 15) C 17), 17=-171 (LC 1 C 16), 19=-4 (LC 17) .C 24), 15=123 (LC 7 .C 23), 18=755 (LC 1	16), '),),	Interior (1) 4 15-5-8, Inter and right ex exposed;C-1 reactions sh DOL=1.60	e and C-C Exterio I-4-8 to 10-4-8, Ex rior (1) 15-5-8 to 2 posed ; end vertic C for members an hown; Lumber DOI	terior(2R 0-7-4 zor al left and d forces L=1.60 pl) 10-4-8 to he; cantilever d right & MWFRS fo ate grip	left r					
FORCES	(lb) - Maximum Com Tension	pression/Maximum	3)	only. For st	gned for wind load uds exposed to wi	ind (norm	al to the face	e),					ADD
TOP CHORD	1-2=0/79, 2-3=-142/ 4-5=-66/134, 5-6=-3 7-8=-329/186, 8-9=- 10-11=-820/96, 2-19 11-12=-677/101	49/122, 6-7=-389/166 339/162, 9-10=-522/1		or consult q TCLL: ASCI Plate DOL=	rd Industry Gable I ualified building de E 7-16; Pr=25.0 ps 1.15); Pf=25.0 psf Is=1.0; Rough Ca	esigner a sf (roof Ll (Lum DC	s per ANSI/TI _: Lum DOL=)L=1.15 Plate	PI 1. 1.15 9			ł	STATE OF M	
BOT CHORD	18-19=-279/345, 17- 18-19=-279/345, 17- 15-17=-175/189, 14- 13-14=-15/560, 12-1	15=-175/189,	5) 6)	design. This truss ha load of 12.0 overhangs r	I snow loads have as been designed psf or 2.00 times non-concurrent wit	for great flat roof l h other li	er of min roof oad of 25.0 p ve loads.	f live sf on		-	R	PE-2001	Serve
			7) 8) 9)	Truss to be braced agai	e 1.5x4 MT20 unle fully sheathed from inst lateral movem is spaced at 2-0-0 c	m one fac ent (i.e. c	e or securely	/			Y	ESSIONA	L ENGLIS

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent colleges with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

Gable studs spaced at 2-0-0 oc.

9)



May 10,2024

Job	Truss	Truss Type	Qty	Ply	Roof - Osage Lot 61	
P240476-01	D3	Common	7	1	Job Reference (optional)	165475625

Run: 8.63 S Apr 26 2024 Print: 8.630 S Apr 26 2024 MiTek Industries, Inc. Thu May 09 12:06:29 ID:GxRwKJt_VBVId7M5l9q1YhznBFw-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

1	5-3-8	10-4-8	15-5-8	20-7-0
	5-3-8	5-1-0	5-1-0	5-1-8

Scale = 1:65.9	50	1.65	1	_	ما	Scal	

Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 25.0 25.0 10.0 0.0 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC201	8/TPI2014	CSI TC BC WB Matrix-S	0.61 0.28 0.52	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.03 -0.06 0.01	(loc) 8-10 8-10 6	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 107 lb	GRIP 197/144 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD REACTIONS FORCES TOP CHORD	Structural wood she 4-9-4 oc purlins, ex Rigid ceiling directly bracing. (size) 6=0-3-8, ' Max Horiz 11=273 (I Max Uplift 6=-111 (L Max Grav 6=968 (LC (Ib) - Maximum Com Tension 1-2=-1137/181, 2-3=	applied or 10-0-0 oc 11=0-5-8 LC 13) C 17), 11=-113 (LC 2 C 23), 11=969 (LC 22	4 d or 5 6 7 16) 250, L	Plate DOL=1 DOL=1.15); Cs=1.00; Ct= Unbalanced design. This truss ha chord live loa All bearings a capacity of 5 Provide mec bearing plate 11 and 111 ll This truss is International	snow loads have t as been designed f ad nonconcurrent v are assumed to be 65 psi. hanical connectior e capable of withst b uplift at joint 6. designed in accorr Residential Code nd referenced star	(Lum DC C; Fully been con- for a 10. with any e SP No- an (by oth anding 1 dance w sections	DL=1.15 Plate Exp.; Ce=0. asidered for t 0 psf bottom other live loa 2 crushing ers) of truss 13 lb uplift a ith the 2018 ; R502.11.1 a	e 9; his ads. to t joint					
BOT CHORD	10-11=-267/344, 8-1												

NOTES

WFBS

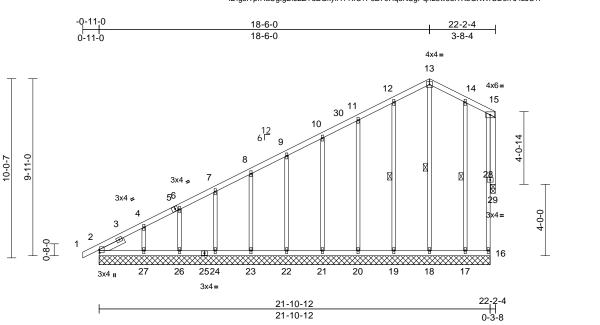
 Unbalanced roof live loads have been considered for this design.

4-7=-32/135

7-8=-85/786, 6-7=-54/111

1-10=-22/689, 5-7=-37/705, 2-10=-6/153, 2-8=-407/234, 3-8=-172/533, 4-8=-383/229,

2) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=35ft; Ke=1.00; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) 0-1-12 to 5-3-8, Interior (1) 5-3-8 to 10-4-8, Exterior(2R) 10-4-8 to 15-5-8, Interior (1) 15-5-8 to 20-5-4 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60


May 10,2024

Job	Truss	Truss Type	Qty	Ply	Roof - Osage Lot 61	
P240476-01	E1	Roof Special Supported Gable	1	1	Job Reference (optional)	165475626

Run: 8.63 S Apr 26 2024 Print: 8.630 S Apr 26 2024 MiTek Industries, Inc. Thu May 09 12:06:29 ID:gsITprHaUgIgDiJ2ZYuBGkylfYi-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

21-10-12

Plate Offsets (X, Y): [2:0-2-1,0-0-5], [5:0-1-12,0-1-8]

				-										-
Loading		(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)		L/d	PLATES	GRIP
TCLL (roof)		25.0	Plate Grip DOL	1.15		TC		Vert(LL)	0.00	2-27		240	MT20	244/190
Snow (Pf)		25.0	Lumber DOL	1.15		BC	0.04	Vert(CT)	0.00	2-27		180		
TCDL		10.0	Rep Stress Incr	YES		WB	0.28	Horz(CT)	0.01	29) n/a	n/a		
BCLL		0.0	Code	IRC20	018/TPI2014	Matrix-R								
BCDL		10.0											Weight: 132 lb	FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS OTHERS SLIDER BRACING TOP CHORD BOT CHORD WEBS REACTIONS	2x4 SP No.2 2x3 SPF No. 2x3 SPF No. 2x3 SPF No. 2x3 SPF No. 2x3 SPF No. 2x3 SPF No. 2x3 SPF No. 2x4 SP No. 6-0-0 oc purl Rigid ceiling bracing. 1 Row at mic (size) 2= 17 19 21 23 26 29 Max Horiz 2= Max Uplift 16 29 Max Grav 2= 17 19 21 23 26 29 Max Grav 2= 17 19 21 23 26 29 Max Grav 2= 17 23 26 29 Max Grav 2= 17 20 20 20 20 20 20 20 20 20 20 20 20 20	2 2 *Exce No.2 1 pood shead lins, exc directly =21-10-1 =21-10-1 =21-10-3 =221-10-3 =221-10-3 =221-10-3 =221-10-3 =221-10-3 =221-10-3 =221-10-3 =221-10-3 =221-10-3 =221-10-3 =221-10-3 =221-10-3 =221-10-3 =221-10-3 =221-10-3 =221-10-3 =221-10-3 =221-10-3 =221-10-3 =22-10-3 =22-10-3 =22-10-3 =22-10-3 =22-10-3 =22-10-3 =2-1	athing directly applie cept end verticals. applied or 10-0-0 oc 13-18, 12-19, 14-17 12, 16=21-10-12, -12, 18=21-10-12, -12, 20=21-10-12, -12, 22=21-10-12, -12, 22=21-10-12, -12, 22=21-10-12, -12, 22=21-10-12, -12, 22=21-10-12, -12, 22=21-10-12, -12, 22=21-10-12, -13, 17=-50 (LC 17) C 16), 22=-61 (LC 16 C 16), 22=-61 (LC 16 C 16), 22=-61 (LC 16 C 16), 24=-65 (LC 16 C 16), 27=-147 (LC 24), 16=143 (LC 24), C 23), 20=233 (LC 2 C 23), 22=180 (LC 2 C 23), 22=180 (LC 3 C 23), 24=182 (LC 3 C 1), 27=215 (LC 36	.2 d or ,)),)),)), 6), 6), 6),	BOT CHORD WEBS 1) Unbalanced this design. 2) Wind: ASCE Vasd=91mp Ke=1.00; Ca exterior zon Exterior(2N) 21-9-8 zone vertical left e MWFRS for grip DOL=1. 3) Truss desig only. For sti see Standar or consult q 4) TCLL: ASCE Plate DOL=	1-2=0/12, 2-4=-412 6-7=-278/100, 7-8= 9-10=-130/43, 10-1 12-13=-52/106, 13- 16-28=-32/21, 15-2 2-27=-1/1, 26-27=- 23-24=-1/1, 12-23= 20-21=-1/1, 19-20= 17-18=-1/1, 16-17= 13-18=-139/20, 12- 11-20=-193/98, 10- 9-22=-140/97, 8-23 6-26=-135/97, 4-27 14-17=-206/128, 15 roof live loads have 7-16; Vult=115mpl h; TCDL=6.0psf; BC at. II; Exp C; Encloss e and C-C Corner(3 4-1-0 to 18-6-0, CC ; cantilever left and exposed; C-C for me reactions shown; Li 60 ned for wind loads i uds exposed to wind d Industry Gable Er Jalified building des 5 7-16; Pr=25.0 psf (I Is=1.0; Rough Cat (I s=1.0; Rou	-227/80 1=-81/2 14=-54, 8=-32/2 1/1, 24- -1/1, 21 -1/1, 18 -1/1, 19 -22 21=-14 19=-22 21=-14 0/5 -29=-2 -162/2 5-29=-2 -162/2	 a), 8-9=-179/62, b), 8-9=-179/62, c), 4, 11-12=-48/2 (94, 14-15=-25) c), 122=-1/1, c), -22=-1/1, c), -22=-1/1, c), 7-24=-141/2 <lic), 7-24="-141/2</li"> c), 7-24=-141/2 c), 7-24=-141/</lic),>	(54, //38, 100, e) e ss le, 11. 15	lo ov 7) Al 8) G 9) TI ch 10) Al ch 11) Bi 10 12) Pi be 16 16 12 12) TI 10 13) TI In	ad of 12.C verhangs II plates and able studs his truss hoord live Ic II bearings apacity of earing ANSI. asigner shrovide me earing plats 5, 64 lb up Dilft at join int 29. his truss is ternationa) psf or non-co re 1.5x s space as bee bad non s are as 565 ps oint(s) /TPI 1 oould ve chanic te capa blift at je t 21, 6 blift at je t 27, 56 s desig al Resid and ref	2.00 times flat rc ncurrent with oth 4 MT20 unless of ed at 2-0-0 oc. en designed for a nconcurrent with ssumed to be SP si. 29 considers par angle to grain for erify capacity of b al connection (by able of withstandi oint 24, 42 lb upli 0 lb uplift at joint 1 lb uplift at joint 1 ned in accordance dential Code sect ferenced standard	therwise indicated. 10.0 psf bottom any other live loads. No.2 crushing rallel to grain value mula. Building pearing surface. o others) of truss to ng 9 lb uplift at joint ft at joint 20, 61 lb 22, 60 lb uplift at joint ft at joint 26, 147 lb 17 and 11 lb uplift at the with the 2018 tions R502.11.1 and d ANSI/TPI 1. MISSOLUTI.
29=22 (LC 24) FORCES (lb) - Maximum Compression/Maximum Tension					Cs=1.00; Ct 5) Unbalanced design.						PE-2001018807			

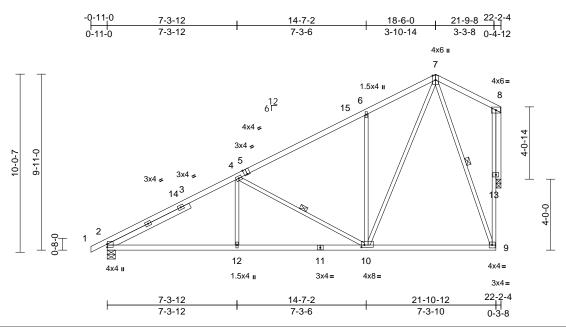
Continued on page 2 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

May 10,2024

Page: 1

Job	Truss	Truss Type	Qty	Ply	Roof - Osage Lot 61	165475626	
P240476-01	E1	Roof Special Supported Gable	1	1	Job Reference (optional)		
Premier Building Supply (Springh	nill, KS), Spring Hills, KS - 66083,	Run: 8.63 S Apr 26 2	Page: 2				

Run: 8.63 S Apr 26 2024 Print: 8.630 S Apr 26 2024 MiTek Industries, Inc. Thu May 09 12:06:29 ID:gsITprHaUgIgDiJ2ZYuBGkylfYi-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f


LOAD CASE(S) Standard

Job	Truss	Truss Type	Qty	Ply	Roof - Osage Lot 61	
P240476-01	E2	Roof Special	8	1	Job Reference (optional)	165475627

Run: 8.63 S Apr 26 2024 Print: 8.630 S Apr 26 2024 MiTek Industries, Inc. Thu May 09 12:06:30 ID:g2jB6PgaV0svctvF4KTDi_ylfZV-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:64.9 Plate Offsets (X, Y): [5:0-2-0,Edge], [10:0-2-0,0-1-8]

Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 25.0 25.0 10.0 0.0 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018	8/TPI2014	CSI TC BC WB Matrix-S	0.68 0.58 0.87	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.08 -0.18 0.03	(loc) 9-10 9-10 13	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 123 lb	GRIP 244/190 FT = 20%
FORCES TOP CHORD BOT CHORD WEBS NOTES 1) Unbalance this design 2) Wind: ASC	2x4 SP No.2 *Excep 2x3 SPF No.2 2x4 SP No.2 Left 2x4 SP No.2 5 Structural wood she 4-3-10 oc purlins. Rigid ceiling directly bracing. 1 Row at midpt (size) 2=0-5-8, 1 Max Horiz 2=382 (LC Max Uplift 2=-157 (L Max Grav 2=1079 (L (lb) - Maximum Com Tension 1-2=0/12, 2-4=-1604 6-7=-927/268, 7-8=- 2-12=-437/1333, 10- 9-10=-84/303, 9-13= 7-10=-320/1117, 7-9 6-10=-544/264, 4-10	5-2-1 athing directly applie applied or 8-10-1 or 7-9, 4-10 13=0-3-2 C 16) C 16), 13=-232 (LC C 23), 13=990 (LC pression/Maximum 4/185, 4-6=-925/130, 97/66 -12=-437/1333, -207/928, 8-13=-19)=-915/255,)=-703/269, 4-12=0/2 been considered fo (3-second gust)	4) 5) c 6) 7) 8) 16) 23) 9) , 10 6/70 LC 302	Plate DOL=1 DOL=1.15); Cs=1.00; Ct: Unbalanced design. This truss ha load of 12.0 overhangs n This truss ha chord live loa All bearings capacity of 5 Bearing at jo using ANSI/ designer sho Provide meo bearing platt joint 2 and 2)) This truss is International	snow loads have I as been designed f psf or 2.00 times f on-concurrent with as been designed f ad nonconcurrent are assumed to be i65 psi. wint(s) 13 considers TPI 1 angle to grai build verify capacity chanical connection e capable of withst 32 Ib uplift at joint designed in accor Residential Code nd referenced star	(Lum DC C; Fully been con for great lat roof I n other li for a 10. with any e SP No s paralle n formul v of bear n (by oth anding ' 13. dance w sections	DL=1.15 Plate Exp.; Ce=0. Insidered for t er of min roo bad of 25.0 p ve loads. 0 psf bottom other live loa 2 crushing I to grain valu a. Building ing surface. ers) of truss 157 lb uplift a ith the 2018 \$ R502.11.1 a	e 9; his f live ssf on ads. ue to t				STATE OF M STATE SCOTT SEVI	AISSOLA MISSOLA ER
	Cat. II; Exp C; Enclose		be)									hatt?	Some

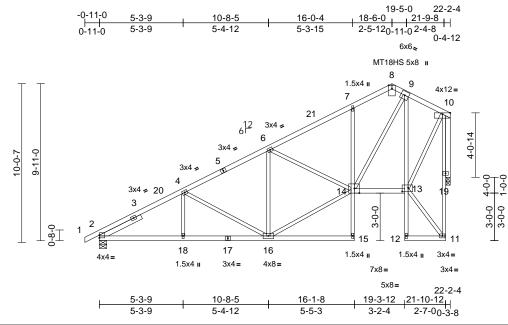
Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=35ft; Ke=1.00; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) -0-11-0 to 4-1-0, Interior (1) 4-1-0 to 18-6-0, Exterior(2E) 18-6-0 to 21-9-8 zone; cantilever left and right exposed ; end vertical left exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent colleges with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

E

NUMBER

PE-200101880


SSIONAL

0

Job	Truss	Truss Type	Qty	Ply	Roof - Osage Lot 61	
P240476-01	E3	Roof Special	2	1	Job Reference (optional)	165475628

Run: 8.63 S Apr 26 2024 Print: 8.630 S Apr 26 2024 MiTek Industries, Inc. Thu May 09 12:06:30 ID:HXyS?ajf9Rc8qbAhrG?Jw7ylfVZ-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC?f

Page: 1

Plate Offsets (X, Y): [2:Edge,0-2-1], [13:0-4-8,0-3-0], [14:0-3-12,Edge]

Scale = 1:72.9

		1	-										
Loading	(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15		TC	0.66	Vert(LL)	-0.08	7-14	>999	240	MT20	244/190
Snow (Pf)	25.0	Lumber DOL	1.15		BC	0.43	Vert(CT)	-0.15	15-16	>999	180	MT18HS	244/190
TCDL	10.0	Rep Stress Incr	YES		WB	0.41	Horz(CT)	0.07	19	n/a	n/a		
BCLL	0.0	Code	IRC201	8/TPI2014	Matrix-S								
BCDL	10.0											Weight: 135 lb	FT = 20%
LUMBER			2)	Wind: ASCE	7-16; Vult=115m	ph (3-seo	cond aust)						
TOP CHORD	2x4 SP No.2		_,		h; TCDL=6.0psf; E		0,						
BOT CHORD	2x4 SP No.2 *Excep	ot* 15-7.9-12.11-10:2	x3	Ke=1.00; Cat. II; Exp C; Enclosed; MWFRS (envelope)									
	SPF No.2			exterior zone and C-C Exterior(2E) -0-11-0 to 4-1-0,									
WEBS	2x3 SPF No.2				-1-0 to 18-6-0, Ex								
OTHERS	2x4 SP No.2				ver left and right e			left					
SLIDER	Left 2x4 SP No.2 2	2-11-2			osed;C-C for me								
BRACING					reactions shown;	Lumber I	DOL=1.60 pla	ate					
TOP CHORD	Structural wood she	athing directly applie	d or	grip DOL=1.0		£ / ma a f		4 4 5					
	4-6-5 oc purlins.		3)		TCLL: ASCE 7-16; Pr=25.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=25.0 psf (Lum DOL=1.15 Plate								
BOT CHORD	Rigid ceiling directly	applied or 6-0-0 oc			Is=1.0; Rough Ca								
	bracing.			Cs=1.00: Ct=		t O, T uny	LAP., 00-0.	э,					
REACTIONS	(size) 2=0-5-8, 2		4)		snow loads have	been cor	nsidered for t	his					
	Max Horiz 2=382 (LC	,	-,	design.									
	Max Uplift 2=-157 (L	<i>,,</i>	/ 01		s been designed	for great	er of min root	f live					
	Max Grav 2=1079 (L	<i>y</i> · · · · · · · · · · · · · · · · · · ·	23)	load of 12.0	psf or 2.00 times	flat roof l	oad of 25.0 p	sf on					
FORCES	(lb) - Maximum Com	pression/Maximum		overhangs n	on-concurrent wit	h other li	ve loads.						
	Tension		6)		e MT20 plates unl			ed.					
TOP CHORD	1-2=0/12, 2-4=-1673	,	· · · /		as been designed								
	6-7=-1067/231, 7-8=	-964/302, 8-9=-685/	· · ·		ad nonconcurrent			ads.					
	9-10=-443/145	40 475/4005	8)		are assumed to b	e SP No.	2 crushing						
BOT CHORD	2-18=-475/1395, 16- 15-16=-1/12, 14-15=			capacity of 5								000	TO
		=0/90, 7-14=-239/13= 3=0/43, 9-13=-532/1			int(s) 19 consider FPI 1 angle to gra			le				8. OF M	Ale Ch
	,)/38, 10-19=-978/292	,		ould verify capacit							BIE	0.0
WEBS	11-13=-7/23, 10-13=	,			hanical connectio			to			6	THE OF N	NSY
		4=-248/91, 4-18=0/2			e capable of withs						B	SCOT	ΓM. Y Y
	4-16=-412/177, 6-16		,		32 lb uplift at joint		or is apint a				R	/ SEVI	ER \ Y
	14-16=-366/1185	,	11		designed in acco		ith the 2018				10		
NOTES					Residential Code			and				the	S ONA NONT
	ed roof live loads have	been considered for		R802.10.2 a	nd referenced sta	ndard AN	ISI/TPI 1.			-		NUM	

Unbalanced roof live loads have been considered for this design.

LOAD CASE(S) Standard

16023 Swingley Ridge Rd. Chesterfield, MO 63017 314.434.1200 / MiTek-US.com

Job	Truss	Truss Type	Qty	Ply	Roof - Osage Lot 61	105 (75000
P240476-01	E4	Common	7	1	Job Reference (optional)	165475629

Run: 8.63 S Apr 26 2024 Print: 8.630 S Apr 26 2024 MiTek Industries, Inc. Thu May 09 12:06:30 ID:80a_xmr2iWnAyeeW9D9b2FylfSp-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

7-3-12 14-7-2 37-0-0 18-6-0 22-4-14 29-8-4 3-10-14 7-3-12 7-3-6 3-10-14 7-3-6 7-3-12 5x5 II 7 1.5x4 **I** 1.5x4 **I** 612 6 8 ²³ ₂₄ 22 21 3x6 🚽 3x4 👟 3x4 🧔 3x6 👟 10-0-7 9-11-0 4 5 ⁹10 De la como 3x4 🚅 3x4 3²⁰ ²⁵11 3x4 3x4, ¹² 13 0-8-0 П Ш Ř Ř 19 18 17 16 15 14 MT18HS 3x10 II MT18HS 3x10 ॥ 4x8= 1.5x4 🛚 1.5x4 **I** 4x6= 4x8= 4x6= 7-3-12 14-7-2 29-8-4 37-0-0 22-4-14 7-3-12 7-9-12 7-3-12 7-3-6 7-3-6

Scale = 1:68.7

Plate Offsets (X, Y): [2:0-4-1,Edge], [12:0-4-1,Edge], [16:0-3-12,0-1-8], [17:0-1-12,0-1-8]

						-							
Loading TCLL (roof)	(psf) 25.0	Spacing Plate Grip DOL	2-0-0 1.15		CSI TC	0.90	DEFL Vert(LL)	in -0.17	(loc) 16-17	l/defl >999	L/d 240	PLATES MT20	GRIP 244/190
Snow (Pf)	25.0	Lumber DOL	1.15		BC	0.76	Vert(CT)	-0.36	16-17	>999	180	MT18HS	244/190
TCDL	10.0	Rep Stress Incr	YES		WB	0.90	Horz(CT)	0.14	12	n/a	n/a		
BCLL	0.0	Code	IRC2018	3/TPI2014	Matrix-S								
BCDL	10.0											Weight: 180 lb	FT = 20%
LUMBER			2)	Wind: ASCE	7-16; Vult=115m	nph (3-sec	cond gust)						
TOP CHORD	2x4 SP No.2		,	Vasd=91mpl	n; TCDL=6.0psf;	BCDL=6.	Opsf; h=35ft;						
BOT CHORD	2x4 SP No.2			Ke=1.00; Ca	t. II; Exp C; Enclo	osed; MW	FRS (envelop	be)					
WEBS	2x3 SPF No.2				and C-C Exterio	· · ·	,						
SLIDER	Left 2x4 SP No.2 4	1-0-10, Right 2x4 SF	1		-1-0 to 18-6-0, Ex								
	No.2 4-0-10				or (1) 23-6-0 to 3			r left					
BRACING					osed ; end vertic								
TOP CHORD	Structural wood she	athing directly applie	ed.		for members an								
BOT CHORD	Rigid ceiling directly	applied or 8-8-5 oc		DOL=1.60	own; Lumber DO	L=1.60 pi	ate grip						
	bracing.		3)		7-16; Pr=25.0 p	of (roof L		1 1 5					
WEBS	1 Row at midpt	4-17, 10-16	3)		.15); Pf=25.0 ps								
REACTIONS	(size) 2=0-5-8, 1	2=0-5-8			ls=1.0; Rough Ca								
	Max Horiz 2=183 (LC			Cs=1.00; Ct=		at O, T uny	Exp., 00=0.0	,					
	Max Uplift 2=-276 (L Max Grav 2=1729 (L			,	snow loads have	e been cor	nsidered for th	nis					
FORCES	(lb) - Maximum Com	pression/Maximum	, 5)	0	s been designed	l for areat	er of min roof	live					
	Tension		5)		osf or 2.00 times								
TOP CHORD	1-2=0/12, 2-4=-2935	/447, 4-6=-2308/43	5.		on-concurrent wi								
	6-7=-2285/551, 7-8=		6)		MT20 plates un			d.					
	8-10=-2308/435, 10-	12=-2935/447,	7)		s been designed								
	12-13=0/12			chord live loa	ad nonconcurrent	t with any	other live loa	ds.					
BOT CHORD			8)	All bearings	are assumed to b	be SP No.	2 crushing						Th
	16-17=-110/1596, 14	4-16=-286/2497,		capacity of 5								O DE M	A BUNK
	12-14=-286/2497		9)		hanical connection							RE OF I	IISS O
WEBS	4-19=0/296, 4-17=-6	,	264,		capable of with		76 lb uplift at				4	TATE OF M	N.S.
	8-16=-625/264, 10-1				76 lb uplift at join						H	SCOT	N. N. M.
	10-14=0/296, 7-17=-	320/1161,	10		designed in acco						B	SEVI	
	7-16=-319/1161				Residential Cod			nd			Rai		
NOTES					nd referenced sta	andard AN	ISI/TPI 1.					- Inter	
	ed roof live loads have	heen eensidered fer		AD CASE(S)	Standard						7		

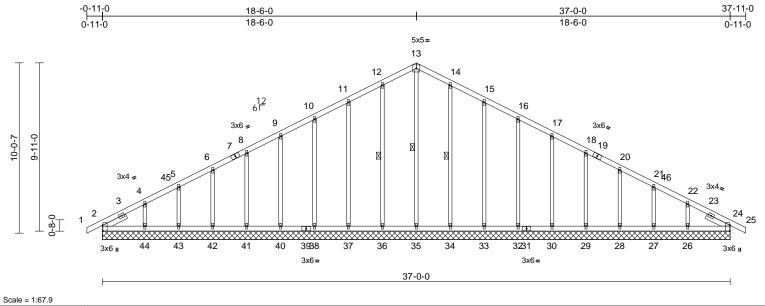
this design.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSITPTI Quality Criteria, and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcscomponents.com)

E

May 10,2024

NUMBER PE-200101880


SSIONAL

0

Page: 1

Job	Truss	Truss Type	Qty	Ply	Roof - Osage Lot 61	
P240476-01	E5	Common Supported Gable	1	1	Job Reference (optional)	165475630

Run: 8.63 S Apr 26 2024 Print: 8.630 S Apr 26 2024 MiTek Industries, Inc. Thu May 09 12:06:30 ID:WUXtsnQTcg5xShQIN2gNrTylfdh-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Plate Offsets (X, Y): [2:0-4-1,Edge], [24:0-4-1,Edge]

	X, Y): [2:0-	-4-1,Eagej,	, [24:0-4-1,Edge]												-	
Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL LUMBER		(psf) 25.0 25.0 10.0 0.0 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-(1.15 1.15 YES IRC2			C C /B atrix-S Grav 2=1	0.11 0.05 0.32 88 (LC 1), 24				- 24 Unba		L/d 999 999 n/a	PLATES MT20 Weight: 195 lb ive loads have be	GRIP 244/190 FT = 20% even considered for
TOP CHORD BOT CHORD OTHERS SLIDER	2x4 SP N 2x4 SP N 2x3 SPF I Left 2x4 S 1-6-7	o.2 No.2	1-6-7, Right 2x4 SP I	No.2			28= 30= 33= 35=	211 (LC 37), 182 (LC 37), 180 (LC 37), 265 (LC 24), 208 (LC 29),	29=180 (L0 32=221 (L0 34=274 (L0 36=274 (L0	24), 24), 24), 24), 23),	2)	Wind Vasd Ke=1 exter	l=91mp I.00; Ca ior zon	oh; TCI at. II; E e and	C-C Corner(3E)	_=6.0psf; h=35ft; MWFRS (envelope) -0-11-0 to 4-1-0,
BRACING TOP CHORD	Structure	lwood abo	othing directly opplie	dor				265 (LC 23), 180 (LC 36),							to 18-6-0, Corne N) 23-6-0 to 37-1	er(3R) 18-6-0 to 1-0 zone; cantilever
TOP CHORD	6-0-0 oc p		athing directly applie	ed or			42=	182 (LC 36),				left a	nd righ	t expo	sed ; end vertical	l left and right
BOT CHORD	Rigid ceili bracing.	ing directly	applied or 10-0-0 oc	0	FORCES	(lb)		211 (LC 36) n Compressi	on/Maximur	า					Lumber DOL=1.6	ces & MWFRS for 60 plate grip
WEBS	1 Row at	midpt	13-35, 12-36, 14-34		TOP CHORD	Ten			400/00		3)		=1.60	nod fo	wind loads in th	he plane of the truss
	(size) Max Horiz Max Uplift	27=37-0-(30=37-0-(37=37-0-(41=37-0-(41=37-0-(2=-183 (L 2=-27 (LC 27=-51 (L 29=-61 (L 32=-60 (L 34=-50 (L 37=-65 (L 40=-61 (L	C 17) C 17), 26=-105 (LC 1 C 17), 28=-63 (LC 1 C 17), 30=-61 (LC 1 C 17), 33=-67 (LC 1 C 17), 36=-55 (LC 1 C 17), 38=-60 (LC 1 C 16), 41=-60 (LC 1 C 16), 43=-48 (LC 1	-0-0, -0-0, -0-0, -0-0, -0-0, 7), 7), 7), 7), 6), 6), 6),	BOT CHORD	$\begin{array}{c} 5{\text{-}6{\text{=}}}\\ 9{\text{-}10}\\ 11{\text{-}1}\\ 13{\text{-}1}\\ 15{\text{-}1}\\ 17{\text{-}1}\\ 21{\text{-}2}\\ 2{\text{-}44}\\ 42{\text{-}4}\\ 42{\text{-}4}\\ 42{\text{-}4}\\ 42{\text{-}4}\\ 42{\text{-}4}\\ 42{\text{-}4}\\ 22{\text{-}6}\\ 23{\text{-}5}\\ 33{\text{-}5}\\ 33{\text{-}5}\\$	128/105, 73/187, 2=-111/29, 4=-128/30, 6=-91/231, 8=-58/130, 2:298/22, 1=-48/193, 1:1=	=-243/84, 4+5 6-8=-102/13 10-11=-91/2 34, 12-13=-11 41, 14-15=-11 7, 16-17=-73 0, 18-20=-58 22-24=-165 43-44=-48/1 3, 41-42=-48 3, 36-37=-48 3, 36-37=-48 3, 32-33=-48 3, 32-33=-48 3, 23-33=-48 3, 23-33=-48 3, 23-33=-48 3, 23-33=-48 3, 24-26=-48 2, 12-36=-23 24, 10-38=-11 8-41=-140/9 2, 12-36=-23 24, 10-38=-11 8-41=-140/9 2, 15-33=-222 5, 17-30=-144 5, 20-28=-14 01, 22-26=-11	1, 8-9=-82/ 37, 28/341, 11/294, 184, 76, 20-21=- 50, 24-25=(93, 194, 195, 6, 6-42=-14 205, 5/104, 10/97, 10/98,	73/31,)/12	4)	only. see S or co TCLL Plate DOL: Cs=1	For st Standar Insult q -: ASC DOL= =1.15); I.00; Cl alancec	uds ex rd Indu ualified E 7-16 1.15); Is=1.0 t snow	coosed to wind (n stry Gable End I d building design (F=25.0 psf (roor P=25.0 psf (Lun 0; Rough Cat C; F loads have beer	Details as applicable, er as per ANSI/TPI 1. of LL: Lum DOL=1.15 n DOL=1.15 Plate Fully Exp.; Ce=0.9; in considered for this MISSOLUTION TIM. ER DISSOLUTION BER 018807
					NOTES											/ 10,2024

Continued on page 2 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. WARNING - Verify design parameters and KEAD KO LES ON THIS AND INCLUDED MILEK REFERENCE PAGE MIL-7473 rev. 17/2/2023 BEFORE USE. Design valid for use only with MITeK® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria**, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcscomponents.com)

Page: 1

Job	Truss	Truss Type	Qty	Ply	Roof - Osage Lot 61	
P240476-01	E5	Common Supported Gable	1	1	Job Reference (optional)	165475630

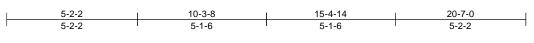
- 6) This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 25.0 psf on overhangs non-concurrent with other live loads.
- 7) All plates are 1.5x4 MT20 unless otherwise indicated.

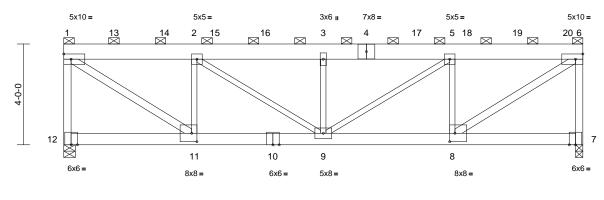
8) Gable requires continuous bottom chord bearing.

9) Gable studs spaced at 2-0-0 oc.

10) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

- 11) All bearings are assumed to be SP No.2 crushing capacity of 565 psi.
- 12) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 27 lb uplift at joint 2, 55 lb uplift at joint 36, 65 lb uplift at joint 37, 60 lb uplift at joint 38, 61 lb uplift at joint 40, 60 lb uplift at joint 41, 64 lb uplift at joint 42, 48 lb uplift at joint 43, 118 lb uplift at joint 44, 50 lb uplift at joint 34, 67 lb uplift at joint 33, 60 lb uplift at joint 32, 61 lb uplift at joint 32, 61 lb uplift at joint 30, 61 lb uplift at joint 29, 63 lb uplift at joint 28, 51 lb uplift at joint 27 and 105 lb uplift at joint 26.
- 13) Beveled plate or shim required to provide full bearing surface with truss chord at joint(s) 2.
- 14) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.


LOAD CASE(S) Standard


Run: 8.63 S Apr 26 2024 Print: 8.630 S Apr 26 2024 MiTek Industries, Inc. Thu May 09 12:06:30 ID:WUXtsnQTcg5xShQIN2gNrTylfdh-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 2

Job	Truss	Truss Type	Qty	Ply	Roof - Osage Lot 61	
P240476-01	R1	Flat Girder	1	2	Job Reference (optional)	165475631

Run: 8.63 S Apr 26 2024 Print: 8.630 S Apr 26 2024 MiTek Industries, Inc. Thu May 09 12:06:31 ID:p1ILYtHBqmZt0HL5osFBZ7yIfON-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

0-1-12	5-2-2	10-3-8	15-4-14	20-5-4	20-7-0
0-1-12	5-0-6	5-1-6	5-1-6	5-0-6	0-1-12

Plate Offsets (X, Y): [8:0-2-8,0-4-0], [11:0-2-8,0-4-0]

Scale = 1:45.7

	(,,, ,): [eie <u>=</u> eie : e];	[::::::::::::::::::::::::::::::::::::::											
Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 25.0 25.0 10.0 0.0 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 NO IRC201	8/TPI2014	CSI TC BC WB Matrix-S	0.57 0.84 0.76	- (- /	in -0.12 -0.22 0.03	(loc) 9 9 7	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 255 II	GRIP 197/144 b FT = 20%
DODL	10.0											Weight. 200 li	5 11 = 2078
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD REACTIONS	end verticals. Rigid ceiling directly bracing.	P 1650F 1.5E -12 max.): 1-6, exce applied or 10-0-0 oc	,	except if not CASE(S) see provided to o unless other Wind: ASCE Vasd=91mpl Ke=1.00; Ca exterior zone and right exp members an	considered equal ed as front (F) or b ction. Ply to ply co distribute only load wise indicated. 7-16; Vult=115mp n; TCDL=6.0psf; E t. II; Exp C; Enclose and C-C Corner bosed ; end vertica d forces & MWFR	back (B) nnectior ls noted bh (3-see SCDL=6. sed; MW (3) zone al left ex S for rea	face in the LC is have been as (F) or (B), cond gust) 0psf; h=35ft; /FRS (envelog ; cantilever le posed;C-C for actions shown	DAD pe) ft	pro dov at dov at 970 and sele	vided su vn and 2 2-0-0, 97 vn and 2 8-0-0, 97 vn and 2 at 14-0- 0 lb dowr d 209 lb ection of	fficient 0 lb up 70 lb d 00 lb u 70 lb d 00 lb u 0, 970 n and 2 up at 2 such o	t to support con o at 0-1-12, 97(own and 200 lb up at 6-0-0, 97(own and 200 lb up at 12-0-0, 97 lb down and 20 200 lb up at 18- 200-0-0 on top ch connection devi	vice(s) shall be centrated load(s) 18 lb 0 lb down and 200 lb up up at 4-0-0, 970 lb 0 lb down and 200 lb up up at 10-0-0, 970 lb 70 lb down and 200 lb 00 lb up at 16-0-0, and 0-0, and 976 lb down hord. The design/ ce(s) is the
	Max Horiz 12=-105 (Max Uplift 7=-1290 (Max Grav 7=5866 (L	LC 14) LC 13), 12=-1134 (LC LC 1), 12=5179 (LC 1	C 12) ´	TCLL: ASCE Plate DOL=1 DOL=1.15);	.=1.60 plate grip E 57-16; Pr=25.0 ps 1.15); Pf=25.0 psf Is=1.0; Rough Cat	f (roof Ll (Lum DC	L: Lum DOL= DL=1.15 Plate	•	LOAD (ponsibili CASE(S ead + Sr crease=) Sta now (ba	ndard	er Increase=1.15, Plate
FORCES	(lb) - Maximum Com Tension	pression/Maximum		Cs=1.00; Ct=					Ui	niform Lo	oads (I	b/ft)	
TOP CHORD	1-12=-5097/1324, 1·	-2=-6339/1627	5)	Unbalanced design.	snow loads have	been co	nsidered for th	าเร			,	7-12=-20	
	2-3=-8280/2083, 3-5		6)		quate drainage to	prevent	water ponding	r		oncentra			0 4 4 000 45 000
	5-6=-6413/1603, 6-7	/=-5782/1471	7)		is been designed			9.					0, 14=-920, 15=-920, 19=-920, 20=-940
BOT CHORD	11-12=-97/106, 9-11		,		ad nonconcurrent			ds.		10=-320	5, 17-	320, 10=-320,	3-320, 20-340
WEBS	8-9=-1603/6413, 7-8 6-8=-1925/7694, 2-1		8)		assumed to be: J								
WEBS	1-11=-1901/7608, 2-			crushing cap capacity of 5	acity of 425 psi, J	oint 7 Si	No.2 crushi	ng				000	JODE
	3-9=-2521/704, 5-9= 5-8=-4280/1166		9)	Bearing at jo	int(s) 12, 7 consid IPI 1 angle to grai			alue				ATEOF	MISSO
NOTES					ould verify capacity						B	S/ SCO	TT M. XEN
(0.131"x3 Top chord oc, 2x8 - 2 Bottom ch staggered	s to be connected toge ') nails as follows: Is connected as follows 2 rows staggered at 0-9 iords connected as folli- at 0-9-0 oc. vected as follows: 2x4 -	s: 2x4 - 1 row at 0-9-0 9-0 oc. ows: 2x6 - 2 rows	11	bearing plate joint 12 and) This truss is International R802.10.2 a	hanical connection e capable of withst 1290 lb uplift at joi designed in accor Residential Code nd referenced star Irlin representation	anding nt 7. dance w sections ndard Al	l134 lb uplift a rith the 2018 s R502.11.1 a NSI/TPI 1.	at Ind				SEV	1018807

Web connected as follows: 2x4 - 1 row at 0-9-0 oc, 2x3 - 1 row at 0-9-0 oc.

 Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

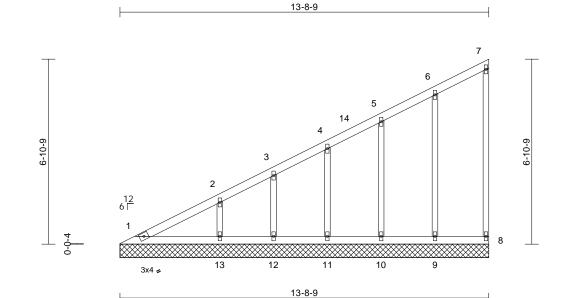
SSIONAL E

16023 Swingley Ridge Rd. Chesterfield, MO 63017 314.434.1200 / MiTek-US.com

May 10,2024

Page: 1

Job	Truss	Truss Type	Qty	Ply	Roof - Osage Lot 61	
P240476-01	V1	Valley	1	1	Job Reference (optional)	165475632

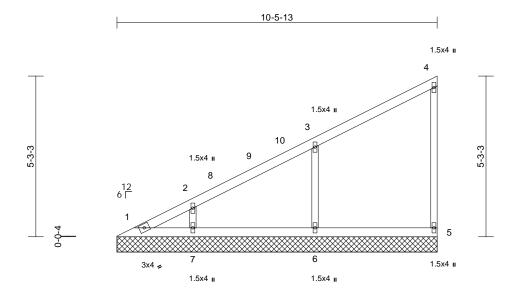

Run: 8.63 S Apr 26 2024 Print: 8.630 S Apr 26 2024 MiTek Industries, Inc. Thu May 09 12:06:31 ID:znOG5Q?SPPEgIYP3TGYi3bylffX-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

SIONAL ET

May 10,2024

16023 Swingley Ridge Rd. Chesterfield, MO 63017 314.434.1200 / MiTek-US.com


Scale = 1:42.8

Ocale = 1.42.0		·										
Loading TCLL (roof) Snow (Pf) TCDL BCLL	(psf) 25.0 25.0 10.0 0.0	Plate Grip DOL Lumber DOL Rep Stress Incr	1-11-4 1.15 1.15 YES RC2018/TPI2014	CSI TC BC WB Matrix-S	0.13 0.07 0.17	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 8	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20	GRIP 244/190
BCDL	10.0										Weight: 61 lb	FT = 20%
	6-0-0 oc purlins, ex Rigid ceiling directly bracing. (size) 1=13-8-9 10=13-8- 13=13-8- Max Horiz 1=276 (L Max Uplift 8=-24 (L0 10=-59 (L 12=-47 (L Max Grav 1=134 (L) 9=270 (L 11=224 (13=280 (x applied or 10-0-0 oc , 8=13-8-9, 9=13-8-9, 9, 11=13-8-9, 12=13-8-9 9 C 16), 9=-62 (LC 16), .C 16), 13=-92 (LC 16), .C 16), 13=-95 (LC 16) C 27), 8=98 (LC 22), C 22), 10=254 (LC 22), LC 22), 12=136 (LC 1), LC 22)	 Vasd=91m; Ke=1.00; C exterior zor Interior (1) i right exposs- for reaction DOL=1.60 2) Truss desig- only. For s see Standa or consult c Plate DOL= DOL=1.15) Cs=1.00; C 4) Unbalanced design. 5) All plates at 6) Gable required 	E 7-16; Vult=115mph sh; TCDL=6.0psf; BC at. II; Exp C; Enclose le and C-C Exterior(2 5-9-1 to 13-7-13 zone ad; C-C for members s shown; Lumber DC gned for wind loads in tuds exposed to wind rd Industry Gable En ualified building desi E 7-16; Pr=25.0 psf (L 1.15); Pf=25.0 psf (L 1.15,10; Rough Cat C t=1.10 d snow loads have be re 1.5x4 MT20 unless res continuous botto a spaced at 2-0-0 oc. as been designed fo	CDL=6.(ad; MW 2E) 0-7- a; cantil a and fo DL=1.6C n the pl d (norm d Detai gner as (roof LL (roof LL (roof C; Fully een cor s othen m chor	Dpsf; h=35ft; FRS (envelop 9 to 5-9-1, lever left and rcces & MWFF 0 plate grip ane of the tru al to the face) ils as applicat s per ANSI/TF .: Lum DOL=1 0L=1.15 Plate Exp.; Ce=0.9 isidered for th wise indicated d bearing.	SS ss , , ole, , 11. .15 ; is					
FORCES	(lb) - Maximum Con Tension	npression/Maximum	chord live lo	ad nonconcurrent with a re assumed to be	ith any	other live load	ds.					
TOP CHORD	1-2=-329/139, 2-3=- 4-5=-149/60, 5-6=-9 7-8=-83/42	-249/97, 3-4=-204/83, 91/48, 6-7=-54/28,	capacity of 10) Provide me		(by oth	ers) of truss to					TATE OF	MISSO
BOT CHORD		1, 11-12=0/1, 10-11=0/1	, 8, 62 lb upli	ft at joint 9, 59 lb upli 47 lb uplift at joint 12	ift at joi	nt 10, 62 lb u	olift			A	ST SCOT	T M.
WEBS	6-9=-228/116, 5-10 4-11=-181/100, 3-12	=-216/107, 2=-110/83, 2-13=-209/10	13.	s designed in accorda						B.	SEV	
NOTES	, -		Internationa	al Residential Code s and referenced stand	ections	R502.11.1 a	nd				PE-2001	Sand 018807

Job	Truss	Truss Type	Qty	Ply	Roof - Osage Lot 61	
P240476-01	V2	Valley	1	1	Job Reference (optional)	165475633

Run: 8.63 S Apr 26 2024 Print: 8.630 S Apr 26 2024 MiTek Industries, Inc. Thu May 09 12:06:31 ID:CFvEQhvRHyDpKJoX?bPqkvylfff-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

10-5-13

Scale = 1:37.7

					i							i	
Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 25.0 25.0 10.0 0.0 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2	018/TPI2014	CSI TC BC WB Matrix-S	0.38 0.13 0.12		in n/a n/a 0.00	(loc) - - 5	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 39 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD	6-0-0 oc purlins, e	neathing directly appli except end verticals. Ily applied or 10-0-0 o		 Plate DOL=1 DOL=1.15); Cs=1.00; Ct: Unbalanced design. Gable requir Gable studs This truss ha chord live loa 	snow loads have es continuous be spaced at 4-0-0 is been designed ad nonconcurren	f (Lum DC at C; Fully e been cor ottom chor oc. d for a 10. t with any	DL=1.15 Plate Exp.; Ce=0.9 nsidered for the d bearing. 0 psf bottom other live loa	9; his					
REACTIONS	7=10-5- Max Horiz 1=214 (Max Uplift 5=-48 (l 7=-101 Max Grav 1=93 (L	LC 16) LC 16), 6=-137 (LC 16	5), ,	capacity of 5 9) Provide mec bearing plate 5, 137 lb upl 10) This truss is International	hanical connecti capable of with ft at joint 6 and designed in acco Residential Cod	on (by oth standing 4 101 lb upli ordance w e sections	ers) of truss t l8 lb uplift at j ft at joint 7. ith the 2018 s R502.11.1 a	oint					
FORCES		ompression/Maximum	,	LOAD CASE(S)	nd referenced st Standard	andard Ar	NSI/TPI 1.						
TOP CHORD		=-214/95, 3-4=-120/54	4,										
BOT CHORD WEBS	1-7=-2/5, 6-7=-2/5 3-6=-480/289, 2-7	,											
Vasd=91n		bh (3-second gust) BCDL=6.0psf; h=35ft;	,								4	TE OF I	MISSOL

- Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=35ft; Ke=1.00; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) 0-7-9 to 5-7-9, Interior (1) 5-7-9 to 10-5-1 zone; cantilever left and right exposed ;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
 - WARNING Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSITPTI Quality Criteria**, and **DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcscomponents.com)

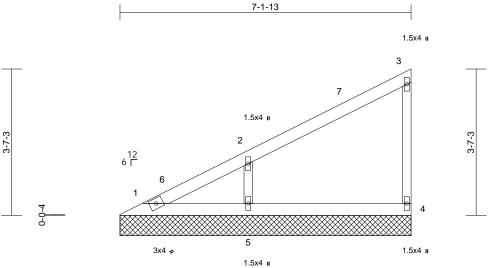
E

May 10,2024

SCOTT M.

SEVIER

PE-2001018807


NUN

SSIONAL

Job	Truss	Truss Type	Qty	Ply	Roof - Osage Lot 61	
P240476-01	V3	Valley	1	1	Job Reference (optional)	165475634

Run: 8.63 S Apr 26 2024 Print: 8.630 S Apr 26 2024 MiTek Industries, Inc. Thu May 09 12:06:31 $ID:RiRCkypQAVDxN5B_XvGyPDylffn-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?ff$

Page: 1

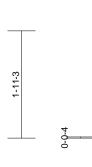
7-1-13

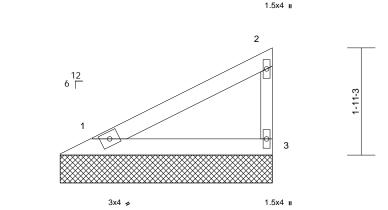
BOT CHORD 6-0-0 or Rigid ca bracing REACTIONS (size) Max Hori Max Upli Max Gar FORCES (lb) - Ma Tensior	P No.2 PF No.2 PF No.2 PF No.2 ural wood shea oc purlins, exc ceiling directly g. 1=7-1-13, riz 1=141 (LC lift 4=-48 (LC av 1=72 (LC 5=541 (LC	16), 5=-128 (LC 16 27), 4=206 (LC 22),	4 5 6 7 ed or 8 c 9 3 1 3 3 1	 design. Gable requir. Gable studs This truss ha chord live loa All bearings capacity of 5 Provide mec bearing plate 4 and 128 lb This truss is International 	hanical connect capable of with uplift at joint 5. designed in acc Residential Coo nd referenced s	ottom chor oc. d for a 10. nt with any be SP No tion (by oth nstanding 4 cordance w de sections	d bearing. D psf bottom other live loa 2 crushing ers) of truss i 18 lb uplift at j ith the 2018 5 R502.11.1 a	ads. to joint	(loc) - - 4	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 25 lb	GRIP 244/190 FT = 20%
TCLL (roof) Snow (Pf) TCDL BCLL BCDL LUMBER TOP CHORD 2x4 SP WEBS 2x3 SPI OTHERS 2x3 SPI BRACING TOP CHORD Structur 6-0-0 00 BOT CHORD Rigid ca bracing REACTIONS (size) Max Hori Max Upli Max Grav FORCES (lb) - Ma Tensior	25.0 25.0 10.0 0.0 10.0 25.0 10.0 25.0 10.0 25.0 20.0 25.0 20.0 25.0 20.0 25.0 20.0 25.0 20.0 25.0 20.0 25.0 20.0 20	Plate Grip DOL Lumber DOL Rep Stress Incr Code athing directly applie cept end verticals. applied or 10-0-0 oc 4=7-1-13, 5=7-1-13 2 16) 16), 5=-128 (LC 16 27), 4=206 (LC 22), 2 22)	1.15 1.15 YES IRC201 4, 5 6 7 ed or 8 c 9 3 1 5)	 Unbalanced design. Gable requir Gable studs This truss ha chord live loa All bearings. capacity of 5 Provide mec bearing plate 4 and 128 lb This truss is International R802.10.2 and 	TC BC WB Matrix-P snow loads hav es continuous b spaced at 4-0-0 as been designe ad nonconcurrer are assumed to 165 psi. thanical connect e capable of with uplift at joint 5 designed in accord Residential Coon nd referenced s	0.12 0.08 re been con oct. d for a 10. nt with any be SP No cion (by oth standing 4 cordance w de sections	Vert(LL) Vert(TL) Horiz(TL) insidered for the d bearing. Dipsf bottom other live loa 2 crushing ers) of truss f 8 lb uplift at j ith the 2018 5 R502.11.1 a	n/a n/a 0.00 his ads. to joint	-	n/a n/a	999 999	MT20	244/190
TOP CHORD 2x4 SP BOT CHORD 2x4 SP WEBS 2x3 SPI OTHERS 2x3 SPI BRACING TOP CHORD Structur 6-0-0 or BOT CHORD Rigid ce bracing REACTIONS (size) Max Hori Max Uplii Max Grav	P No.2 PF No.2 PF No.2 PF No.2 ural wood shea oc purlins, exc ceiling directly g. 1=7-1-13, riz 1=141 (LC lift 4=-48 (LC av 1=72 (LC 5=541 (LC	cept end verticals. applied or 10-0-0 oc 4=7-1-13, 5=7-1-13 2 16) 16), 5=-128 (LC 16) 27), 4=206 (LC 22), 2 22)	5 6 7 c 9 3 1 5)	 design. Gable requir. Gable studs This truss ha chord live loa All bearings capacity of 5 Provide mec bearing plate 4 and 128 lb This truss is International R802.10.2 and 	es continuous b spaced at 4-0-0 as been designe ad nonconcurrei are assumed to i65 psi. thanical connect e capable of with uplift at joint 5. designed in acc Residential Con nd referenced s	ottom chor oc. d for a 10. nt with any be SP No tion (by oth nstanding 4 cordance w de sections	d bearing. D psf bottom other live loa 2 crushing ers) of truss i 18 lb uplift at j ith the 2018 5 R502.11.1 a	ads. to joint				<u> </u>	
Tensior	laximum Com	pression/Maximum											
	27/105, 2-3=- ⁻ 0, 4-5=0/0 58/315 Vult=115mph DL=6.0psf; BCI xp C; Enclose C-C Exterior(2I o 7-1-1 zone; c nembers and f .umber DOL=1 r wind loads in posed to wind stry Gable Enc I building desig Pr=25.0 psf (L Pf=25.0 psf (L	(3-second gust) DL=6.0psf; h=35ft; d; MWFRS (envelop E) 0-7-9 to 5-7-9, antilever left and rigi forces & MWFRS for I.60 plate grip In the plane of the tru (normal to the face) d Details as applicat gner as per ANSI/TP roof LL: Lum DOL=1 um DOL=1.15 Plate	19 pe) ght uss), ble, PI 1. 1.15 3									STATE OF I SCOT SEV NUM PE-2001	T M. TER BER 1018807

May 10,2024

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not
a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing
is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the
fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

Job	Truss	Truss Type	Qty	Ply	Roof - Osage Lot 61	
P240476-01	V4	Valley	1	1	Job Reference (optional)	165475635


3-9-13


3-9-13

Premier Building Supply (Springhill, KS), Spring Hills, KS - 66083,

Run: 8.63 S Apr 26 2024 Print: 8.630 S Apr 26 2024 MiTek Industries, Inc. Thu May 09 12:06:31 ID:GbG2QBgWm6qVZPrtO5ZNTuyIffy-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

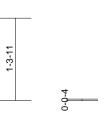
Scale = 1:20.7												
Loading TCLL (roof) Snow (Pf) TCDL BCLL	(psf) 25.0 25.0 10.0 0.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018/TPI2014	CSI TC BC WB Matrix-P	0.31 0.11 0.00	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a n/a	(loc) - - -	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20	GRIP 244/190
BCDL	10.0										Weight: 12 lb	FT = 20%
	Max Horiz 1=68 (LC Max Uplift 1=-14 (LC Max Grav 1=191 (LC	xcept end verticals. applied or 10-0-0 oc 3=3-9-13 16) 16), 3=-48 (LC 16) 2 22), 3=191 (LC 22)	d or 10) This truss is Internationa R802.10.2 a LOAD CASE(S)	chanical connection e capable of withs uplift at joint 3. designed in acco I Residential Code and referenced sta	with any e SP No. n (by oth tanding 1 rdance w e sections	other live load 2 crushing ers) of truss to 4 lb uplift at jo ith the 2018 5 R502.11.1 ar	int					
FORCES	(lb) - Maximum Com Tension	pression/iviaximum										
TOP CHORD BOT CHORD	1-2=-74/57, 2-3=-16 1-3=0/0	0/130										
NOTES	1-3=0/0											
 Wind: ASC Vasd=91m Ke=1.00; C exterior zor and right ex 	E 7-16; Vult=115mph ph; TCDL=6.0psf; BC cat. II; Exp C; Enclose ne and C-C Exterior(2 xposed ;C-C for meml r reactions shown; Lu 1.60	DL=6.0psf; h=35ft; d; MWFRS (envelop E) zone; cantilever le bers and forces &	eft								TATE OF L	MISS
only. For s see Standa	gned for wind loads ir tuds exposed to wind ard Industry Gable En- qualified building desig	(normal to the face) d Details as applicab	, le,								STATE SCOT SEV	TM. $\sum V_{\lambda}$
 TCLL: ASC Plate DOL= 	CE 7-16; Pr=25.0 psf (=1.15); Pf=25.0 psf (L ; Is=1.0; Rough Cat C	roof LL: Lum DOL=1 um DOL=1.15 Plate	.15							C	cotte	Sorres
4) Unbalance	d snow loads have be	en considered for th	is							Ø,	PE-2001	018807
	ires continuous bottor s spaced at 4-0-0 oc.	n chord bearing.								Y	SIONA	L ENGLAS

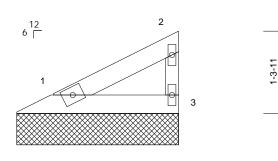
May 10,2024

Job	Truss	Truss Type	Qty	Ply	Roof - Osage Lot 61	
P240476-01	V5	Valley	1	1	Job Reference (optional)	165475636

2-6-14

Premier Building Supply (Springhill, KS), Spring Hills, KS - 66083,


Run: 8.63 S Apr 26 2024 Print: 8.630 S Apr 26 2024 MiTek Industries, Inc. Thu May 09 12:06:31 ID:zFLPyob7PzyVDKpXU7xkgQylfg3-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f


1.5x4 u

1.5x4 u

Page: 1

JC?f

3x4 ਫ਼

2-6-14

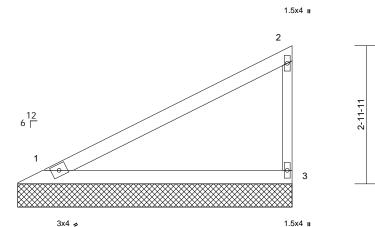
Scale =	4.4	0 2

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15	TC	0.09	Vert(LL)	n/a	(100)	n/a	999	MT20	244/190
Snow (Pf)	25.0	Lumber DOL	1.15	BC	0.04	Vert(TL)	n/a	-	n/a	999		
TCDL	10.0	Rep Stress Incr	YES	WB	0.00	Horiz(TL)	n/a	-	n/a	n/a		
BCLL	0.0	Code	IRC2018/TPI20		0.00	110112(112)	n/a		n/a	n/a		
BCDL	10.0		1102010/11/20								Weight: 8 lb	FT = 20%
BCDL LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD REACTIONS FORCES TOP CHORD BOT CHORD BOT CHORD BOT CHORD BOT CHORD NOTES 1) Wind: ASG Vasd=91n Ke=1.00; (exterior zc and right e MWFRS fi grip DOL= 2) Truss des only. For see Stand or consult 3) TCLL: AS; Plate DOL	2x4 SP No.2 2x4 SP No.2 2x3 SPF No.2 2x3 SPF No.2 Structural wood she 2-7-6 oc purlins, ex Rigid ceiling directly bracing. (size) 1=2-6-14, Max Horiz 1=41 (LC Max Uplift 1=-8 (LC Max Uplift 1=-8 (LC Max Grav 1=108 (LC (lb) - Maximum Con Tension 1-2=-44/32, 2-3=-89 1-3=0/0 CE 7-16; Vult=115mph nph; TCDL=6.0psf; BC Cat. II; Exp C; Enclose one and C-C Exterior(2 exposed ;C-C for mem or reactions shown; Lu -1.60 signed for wind loads in studs exposed to wind lard Industry Gable En qualified building desi CE 7-16; Pr=25.0 psf (L =1.15); Pf=25.0 psf (L	athing directly applie cept end verticals. applied or 10-0-0 or 3=2-6-14 16), 3=-29 (LC 16) C 22), 3=108 (LC 22 pression/Maximum /78 (3-second gust) DL=6.0psf; h=35ft; d; MWFRS (envelop E) zone; cantilever 1 bers and forces & imber DOL=1.60 pla n the plane of the tru I (normal to the face) d Details as applicat gner as per ANSI/TF roof LL: Lum DOL=1. 15 Plate	7) This i chorc 8) All be capar 9) Provi beari and 2 10) This i Interr R802 LOAD C/) be) eft te sss), ble, PI 1. 1.15	russ has been design live load nonconcurre arings are assumed to bity of 565 psi. de mechanical connec ig plate capable of wi 9 lb uplift at joint 3. russ is designed in ac ational Residential Co 10.2 and referenced is (SE(S) Standard	ent with any o be SP No. ction (by oth thstanding 8 ccordance w ode sections	other live loads 2 crushing ers) of truss to 1 b uplift at join ith the 2018 5 R502.11.1 an	ıt 1				STATE OF STATE SCOT SEV	MISSOUR T M. IER
design.	ed snow loads have be uires continuous botto		nis							W.	PE-2001	12 b
	ds spaced at 4-0-0 oc.	5									SSIONA	L Er

Course

Job	Truss	Truss Type	Qty	Ply	Roof - Osage Lot 61	
P240476-01	V6	Valley	1	1	Job Reference (optional)	165475637

5-10-14


5-10-14

Premier Building Supply (Springhill, KS), Spring Hills, KS - 66083,

Run: 8.63 S Apr 26 2024 Print: 8.630 S Apr 26 2024 MiTek Industries, Inc. Thu May 09 12:06:31 ID:gvQmUPVk3p3UtFmBZ9J5uxylfgA-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

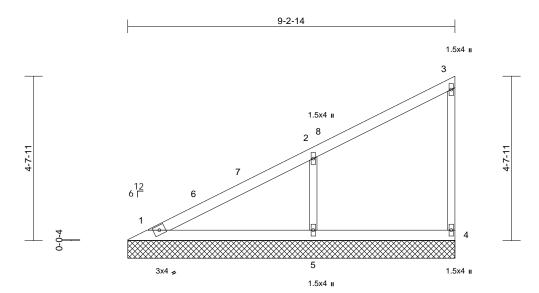
24	0			

Scale = 1:24.8										1			
Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 25.0 25.0 10.0 0.0 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC201	8/TPI2014	CSI TC BC WB Matrix-P	1.00 0.34 0.00	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a n/a	(loc) - -	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 20 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD 2x4 BOT CHORD 2x4 WEBS 2x5 BRACING TOP CHORD Str BOT CHORD Rig br REACTIONS (size Max Max FORCES (lb) Tel TOP CHORD 1-2 BOT CHORD 1-3 NOTES	4 SP No.2 4 SP No.2 3 SPF No.2 3 SPF No.2 4 SP No.2 5 Contemportant of the second sheet cept end verticals gid ceiling directly acing. 5 1 =5-10-14 1 Horiz 1=114 (Lt Uplift 1=-23 (LC Grav 1=341 (Lt) - Maximum Com nsion 2=-120/103, 2-3=- 3=0/0	r applied or 10-0-0 oc 4, 3=5-10-14 C 16) C 16), 3=-80 (LC 16) C 22), 3=341 (LC 22) apression/Maximum -289/211	10 L0	chord live loa All bearings capacity of 5 Provide mec bearing plate 1 and 80 lb u D) This truss is International	hanical connection e capable of withs uplift at joint 3. designed in acco Residential Code nd referenced sta	with any e SP No. on (by oth tanding 2 rdance w e sections	other live load 2 crushing ers) of truss to 3 lb uplift at jo ith the 2018 5 R502.11.1 ar	o bint				rroigne zo ib	2070
Vasd=91mph; Ke=1.00; Cat. I exterior zone a and right expos MWFRS for rec grip DOL=1.60 2) Truss designe only. For studs see Standard II or consult quali 3) TCLL: ASCE 7	II; Exp C; Enclose nd C-C Exterior(2 sed ;C-C for mem actions shown; Lu d for wind loads ii s exposed to winc industry Gable En fifed building desi -16; Pr=25.0 psf ((3-second gust) iDL=6.0psf; h=35ft; ad; MWFRS (envelop; 2E) zone; cantilever le bers and forces & umber DOL=1.60 plat: n the plane of the trus (normal to the face), d Details as applicab gner as per ANSI/TP (roof LL: Lum DOL=1. um DOL=1.15 Plate	e ss le, l 1.									STATE OF M	ΓM. Y Y

- DOL=1.15); Is=1.0; Rough Cat C; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10 4)
- Unbalanced snow loads have been considered for this design.
- 5) Gable requires continuous bottom chord bearing.
- 6) Gable studs spaced at 4-0-0 oc.

OFFESSIONAL ET

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent colleges with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)



May 10,2024

Job	Truss	Truss Type	Qty	Ply	Roof - Osage Lot 61	
P240476-01	V7	Valley	1	1	Job Reference (optional)	165475638

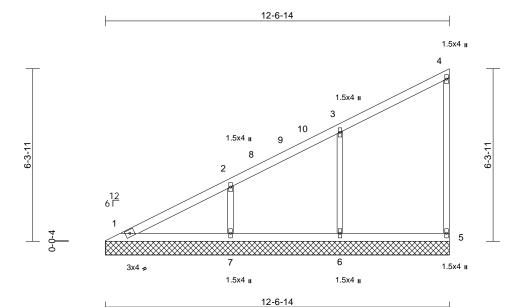
Run: 8.63 S Apr 26 2024 Print: 8.630 S Apr 26 2024 MiTek Industries, Inc. Thu May 09 12:06:31 ID:r/J3UEMR_TzJL9KJ1DuChfgylfgG-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

9-2-14

Scale =	1.32.5

00010 - 110210													
Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 25.0 25.0 10.0 0.0 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC201	8/TPI2014	CSI TC BC WB Matrix-S	0.46 0.18 0.11	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 4	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 33 lb	GRIP 244/190 FT = 20%
	2x4 SP No.2 2x3 SPF No.2 2x3 SPF No.2 Structural wood she 6-0-0 oc purlins, ex Rigid ceiling directly bracing.	cept end verticals. applied or 10-0-0 oc 4=9-2-14, 5=9-2-14 C 16) C 16), 5=-162 (LC 16 C 22), 4=190 (LC 22)	, _{ed or} 8) ; 9) 10	design. Gable requir Gable studs This truss ha chord live loa All bearings capacity of 5 Provide mec bearing plate 4 and 162 lb)) This truss is International	hanical connecti capable of with uplift at joint 5. designed in acco Residential Cod nd referenced sta	ottom chor oc. d for a 10.0 tt with any be SP No. ion (by oth standing 4 ordance w de sections	d bearing.) psf bottom other live loa 2 crushing ers) of truss t :2 lb uplift at j ith the 2018 : R502.11.1 a	ds. o oint					
Vasd=91rr Ke=1.00; (exterior zc Interior (1) exposed; (reactions s DOL=1.60 2) Truss des only. For see Stand or consult 3) TCLL: AS(Plate DOL	1-5=-2/5, 4-5=-2/5 2-5=-529/341 CE 7-16; Vult=115mph nph; TCDL=6.0psf; BC Cat. II; Exp C; Enclose one and C-C Exterior(2) 5-7-9 to 9-2-2 zone; C C-C for members and shown; Lumber DOL=') signed for wind loads in studs exposed to wind lard Industry Gable En qualified building desi CE 7-16; Pr=25.0 psf (L =1.15); Pf=25.0 psf (L 6); Is=1.0; Rough Cat C	125/49, 3-4=-163/98 (3-second gust) DL=6.0psf; h=35ft; d; MWFRS (envelop E) 0-7-9 to 5-7-9, antilever left and rig forces & MWFRS for 1.60 plate grip In the plane of the tru (normal to the face) d Details as applicat gner as per ANSI/TF roof LL: Lum DOL=1 um DOL=1.15 Plate	e) ht ss , le, 11. .15							7		STATE OF J STATE OF J SEV SEV NUM PE-2001	Jer Jer Ber 018807



May 10,2024

tures

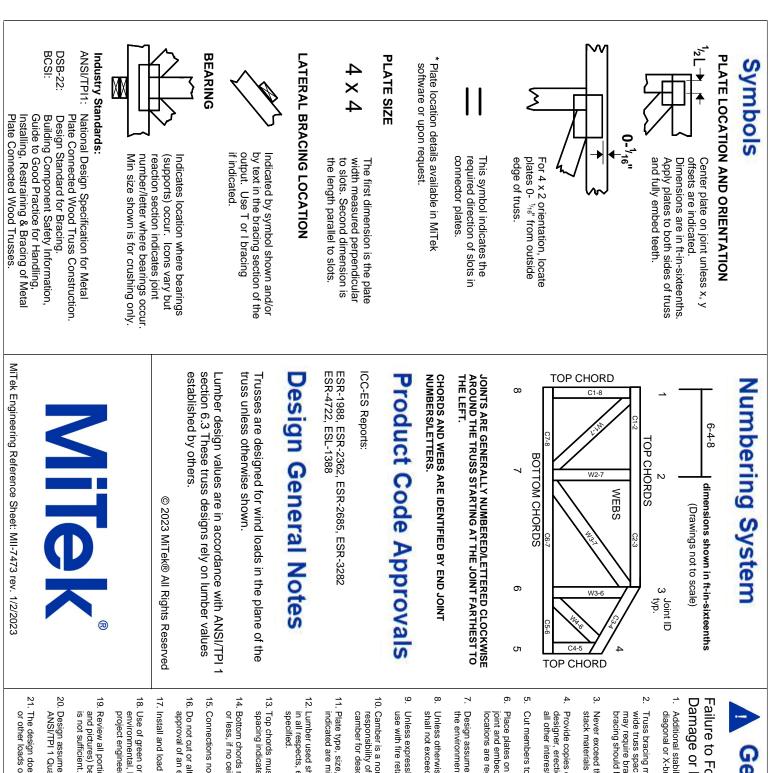
Job	Truss	Truss Type	Qty	Ply	Roof - Osage Lot 61	
P240476-01	V8	Valley	1	1	Job Reference (optional)	165475639

Run: 8.63 S Apr 26 2024 Print: 8.630 S Apr 26 2024 MiTek Industries, Inc. Thu May 09 12:06:31 ID:UFCl20yWf_Ot_KqXRC?XaSylfgt-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

Scale = 1:42	.1

00010 - 1.42.1													
Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 25.0 25.0 10.0 0.0 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC20	18/TPI2014	CSI TC BC WB Matrix-S	0.36 0.13 0.19	Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 5	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 48 lb	GRIP 244/190 FT = 20%
	CHORD 2x4 SP No.2 CHORD 2x4 SP No.2 S 2x3 SPF No.2 ERS 2x3 SPF No.2 CING CHORD CHORD Structural wood sheathing directly applied or 6-0-0 oc purlins, except end verticals. CHORD Rigid ceiling directly applied or 10-0-0 oc bracing.			 TCLL: ASCE 7-16; Pr=25.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=25.0 psf (Lum DOL=1.15 Plate DOL=1.15); ls=1.0; Rough Cat C; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10 Unbalanced snow loads have been considered for this design. Gable requires continuous bottom chord bearing. Gable studs spaced at 4-0-0 oc. This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. All bearings are assumed to be SP No.2 crushing capacity of 565 psi. Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 49 lb uplift at joint 5, 129 lb uplift at joint 6 and 136 lb uplift at joint 7. 									
FORCES	(lb) - Maximum Corr Tension	C 27), 5=210 (LC 22) C 22), 7=405 (LC 22) ppression/Maximum),) I	 This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. LOAD CASE(S) Standard 									
TOP CHORD	1-2=-310/137, 2-3=- 4-5=-176/94		i,										
BOT CHORD WEBS	1-7=-2/4, 6-7=-2/4, 5 3-6=-465/247, 2-7=-												~
Vasd=91m Ke=1.00; 0 exterior zo Interior (1)	CE 7-16; Vult=115mph pph; TCDL=6.0psf; BC Cat. II; Exp C; Enclose ne and C-C Exterior(2 5-7-9 to 12-6-2 zone; C-C for members and	DL=6.0psf; h=35ft; d; MWFRS (envelop 2E) 0-7-9 to 5-7-9, cantilever left and ri forces & MWFRS for	ght							٢		STATE OF I	MISSOUR T.M. HER

DOL=1.60
 Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TP11.


reactions shown; Lumber DOL=1.60 plate grip

AT3 rev. 1/2/2023 BEFORE USE. ual building component, not te this design into the overall Mittelk

NUM

PE-200101880'

General Safety Notes

Failure to Follow Could Cause Property Damage or Personal Injury

- 1. Additional stability bracing for truss system, e.g. diagonal or X-bracing, is always required. See BCSI.
- Truss bracing must be designed by an engineer. For wide truss spacing, individual lateral braces themselves may require bracing, or alternative Tor1 bracing should be considered.
- Never exceed the design loading shown and never stack materials on inadequately braced trusses.
- Provide copies of this truss design to the building designer, erection supervisor, property owner and all other interested parties.
- 5. Cut members to bear tightly against each other
- Place plates on each face of truss at each joint and embed fully. Knots and wane at joint locations are regulated by ANSI/TPI 1.
- Design assumes trusses will be suitably protected from the environment in accord with ANSI/TPI 1.
- Unless otherwise noted, moisture content of lumber shall not exceed 19% at time of fabrication.
- Unless expressly noted, this design is not applicable for use with fire retardant, preservative treated, or green lumber.
- Camber is a non-structural consideration and is the responsibility of truss fabricator. General practice is to camber for dead load deflection.
- 11. Plate type, size, orientation and location dimensions indicated are minimum plating requirements.
- 12. Lumber used shall be of the species and size, and in all respects, equal to or better than that specified.
- Top chords must be sheathed or purlins provided at spacing indicated on design.
- 14. Bottom chords require lateral bracing at 10 ft. spacing, or less, if no ceiling is installed, unless otherwise noted.
- 15. Connections not shown are the responsibility of others.
- Do not cut or alter truss member or plate without prior approval of an engineer.
- 17. Install and load vertically unless indicated otherwise.
- Use of green or treated lumber may pose unacceptable environmental, health or performance risks. Consult with project engineer before use.
- Review all portions of this design (front, back, words and pictures) before use. Reviewing pictures alone is not sufficient.
- 20. Design assumes manufacture in accordance with ANSI/TPI 1 Quality Criteria.
- 21. The design does not take into account any dynamic or other loads other than those expressly stated.