

RE: P230398-01 Roof - CB Lot 151

Site Information:

Site information.Customer: Clover & HiveProject Name: P230398-01Lot/Block: 151Model:Address: 3505 SE Corbin DrSubdivision: Cobey CreekCity: Lee's SummitState: MO

General Truss Engineering Criteria & Design Loads (Individual Truss Design Drawings Show Special

Loading Conditions): Design Code: IRC2018/TPI2014 Wind Code: ASCE 7-16 Roof Load: 45.0 psf

Design Program: MiTek 20/20 8.6 Wind Speed: 115 mph Floor Load: N/A psf

This package includes 32 individual, dated Truss Design Drawings and 0 Additional Drawings.

No.	Seal#	Truss Name	Date	No.	Seal#	Truss Name	Date
1	160735712	A01	9/13/2023	21	160735732	LG01	9/13/2023
2	160735713	B01	9/13/2023	22	160735733	LG02	9/13/2023
3	160735714	B02	9/13/2023	23	160735734	LG03	9/13/2023
4	160735715	B03	9/13/2023	24	160735735	LG04	9/13/2023
5	160735716	B04	9/13/2023	25	160735736	V01	9/13/2023
6	160735717	B05	9/13/2023	26	160735737	V02	9/13/2023
7	160735718	B06	9/13/2023	27	160735738	V03	9/13/2023
8	160735719	B07	9/13/2023	28	160735739	V04	9/13/2023
9	160735720	B08	9/13/2023	29	160735740	V05	9/13/2023
10	160735721	B09	9/13/2023	30	160735741	V06	9/13/2023
11	160735722	B10	9/13/2023	31	160735742	V07	9/13/2023
12	160735723	C01	9/13/2023	32	160735743	V08	9/13/2023
13	160735724	C02	9/13/2023				
14	160735725	C03	9/13/2023				
15	160735726	CJ01	9/13/2023				
16	160735727	D01	9/13/2023				
17	160735728	D02	9/13/2023				
18	160735729	J01	9/13/2023				
19	160735730	J02	9/13/2023				
20	160735731	J03	9/13/2023				

The truss drawing(s) referenced above have been prepared by MiTek USA, Inc under my direct supervision based on the parameters provided by . Truss Design Engineer's Name: Nathan Fox

My license renewal date for the state of Missouri is December 31, 2024. Missouri COA: 001193

IMPORTANT NOTE: The seal on these truss component designs is a certification that the engineer named is licensed in the jurisdiction(s) identified and that the designs comply with ANSI/TPI 1. These designs are based upon parameters shown (e.g., loads, supports, dimensions, shapes and design codes), which were given to MiTek. Any project specific information included is for MiTek customers file reference purpose only, and was not taken into account in the preparation of these designs. MiTek has not independently verified the applicability of the design parameters or the designs for any particular building. Before use, the building designer should verify applicability of design parameters and properly incorporate these designs into the overall building design per ANSI/TPI 1, Chapter 2.

Nathan

	September 13, 2023
Fox	RELEASE FOR CONSTRUCTION
TUX	AS NOTED ON PLANS REVIEW
	DEVELOPMENT SERVICES
	LEE'S SUMMIT, MISSOURI
	05/21/2024 9:18:44

MiTek, Inc. 16023 Swingley Ridge Rd. Chesterfield, MO 63017 314.434.1200

Job	Truss	Truss Type	Qty	Ply	Roof - CB Lot 151	
P230398-01	A01	Common Supported Gable	1	1	Job Reference (optional)	160735712

Run: 8.63 S Aug 30 2023 Print: 8.630 S Aug 30 2023 MiTek Industries, Inc. Tue Sep 12 18:26:29 ID:p7nZ_J5GH7L??3Ov?fiETHyx7_m-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:36.9

Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 25.0 25.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC201	18/TPI2014	CSI TC BC WB Matrix-S	0.11 0.05 0.07	DEFL Vert(LL) Vert(CT) Horz(CT)	in n/a n/a 0.00	(loc) - - 10	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 62 lb	GRIP 197/144 FT = 20%
LUMBER TOP CHORD BOT CHORD OTHERS SLIDER BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x4 SP No.2 2x3 SPF No.2 Left 2x4 SP No.2 1 1-6-4 Structural wood shea 6-0-0 oc purlins. Rigid ceiling directly bracing. (size) 2=13-0-0, 16=13-0-0 Max Horiz 2=136 (LC Max Uplift 2=-30 (LC 12=-114 (15=-73 (L Max Grav 2=218 (LC 12=317 (L 14=139)(L 13=13-0-0)(L 14=139)	I-6-4, Right 2x4 SP N athing directly applie applied or 10-0-0 oc 10=13-0-0, 12=13-0 0, 14=13-0-0, 15=13- 0 15) 17), 10=-7 (LC 16), LC 17), 13=-72 (LC 2 C 16), 16=-114 (LC 23), 10=187 (LC 2 C 24), 13=277 (LC 2 C 29), 15=280 (LC 2	2 d or 3 -0, 0-0, 4 17), 5 16) 5 14), 6 23),	 Wind: ASCE Vasd=91mph Ke=1.00; Ca exterior zone Exterior(2N) Exterior(2N) right exposed for members Lumber DOL Truss desigg only. For stu see Standard or consult qu TCLL: ASCE Plate DOL=1.15); Cs=1.00; Ct= Unbalanced design. This truss ha load of 12.0 overhangs n 	7-16; Vult=115r 7; TCDL=6.0psf; t. II; Exp C; Encl and C-C Corne 4-1-0 to 6-6-0, C 11-6-0 to 13-7-0 3; end vertical le and forces & M =1.60 plate grip hed for wind load ds exposed to w 1 Industry Gable alified building c 7-16; Pr=25.0 ps s=1.0; Rough C 1.10; Show loads have s been designer osf or 2.00 times p-concurrent w	nph (3-sec BCDL=6.1 osed; MW r(3E) -0-1 Orner(3R) 2 zone; car aft and righ WFRS for DOL=1.60 ds in the p vind (norm End Deta designer at osf (roof LL of (Lum DC at C; Fully e been cor d for greats a flat roof la th other li th to ther li	cond gust) Dipsf; h=35ft; FRS (envelop 1-0 to 4-1-0, 6-6-0 to 11-6 titlever left an t exposed;C- reactions shc) lane of the tru, al to the face ³ is as applical is per ANSI/TF .: Lum DOL= ³ bl=1.15 Plate Exp.; Ce=0.5 insidered for th pad of 25.0 ps re loads.	be) S-0, Id C Swn; Iss), ble, PI 1. 1.15 	14) This Inte R8(LOAD (s truss is rnationa)2.10.2 2 CASE(S	s desig al Resi and ref) Sta	gned in accordanc dential Code sect ferenced standard indard	e with the 2018 ions R502.11.1 and J ANSI/TPI 1.
FORCES	(lb) - Maximum Com Tension	pression/Maximum	7) All plates are) Gable require	1.5x4 MT20 un es continuous bo	less other ottom chor	wise indicated d bearing.	d.					The
TOP CHORD	1-2=0/31, 2-4=-161/8 5-6=-126/200, 6-7=- 8-10=-124/40, 10-11	84, 4-5=-119/115, 127/201, 7-8=-122/10 =0/5	9 09, 1	 Gable studs This truss ha chord live loa This truss is the student 	spaced at 2-0-0 s been designed ad nonconcurren	d for a 10.0 t with any) psf bottom other live loa	ds.			4	TE OF I	MISSO
BOT CHORD	2-16=-36/103, 15-16 14-15=-36/103, 13-1 12-13=-36/103, 10-1	=-36/103, 4=-36/103, 2=-36/103	I	on the bottor 3-06-00 tall b	n chord in all are y 2-00-00 wide	ed for a liv eas where will fit betv	a rectangle veen the botto	om			B	S NATHA	NIEL TE
WEBS	6-14=-127/30, 5-15= 4-16=-251/210, 7-13 8-12=-260/221	-245/137, =-243/141,	1	2) All bearings capacity of 5 3) Provide med	are assumed to 65 psi.	be SP No.	2 crushing	0				allam	A France
NOTES 1) Unbalanc this desig	NOTES 1) Unbalanced roof live loads have been considered for this design.				bearing plate capable of withstanding 30 lb uplift at joint 2, 7 lb uplift at joint 10, 73 lb uplift at joint 15, 114 lb uplift at joint 16, 72 lb uplift at joint 13 and 114 lb uplift at joint 12.								

- this design.
 - WARNING Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

TION IEW DEVELORMENT SERVICES LEE'S'SUMMIT'SMISSOURI 05/21/2024 9:18:44

September 13,2023

Job	Truss	Truss Type	Qty	Ply	Roof - CB Lot 151	
P230398-01	B01	Common Structural Gable	1	1	Job Reference (optional)	160735713

Run: 8.63 S Aug 30 2023 Print: 8.630 S Aug 30 2023 MiTek Industries, Inc. Tue Sep 12 18:26:31 ID:EEWYIzYUaU0lylj0fxswT5yx7_B-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

1	10-1-0	10-5-12 ₁₃₋₃₋₀	23-4-0	1
F	10-1-0	0-4-12 2-9-4	10-1-0	1
Scale = 1:59.9				

Plate Offsets (X, Y): [2:2-1-1,0-1-8], [3:0-4-0,0-2-8]

Loading TCLL (roof)		(psf) 25.0	Spacing Plate Grip DOL	2-0-0 1.15		CSI TC	0.51	DEFL Vert(LL)	in -0.24	(loc) 15-16	l/defl >646	L/d 240	PLATES MT20	GRIP 197/144	
Snow (Pf)		25.0	Lumber DOL	1.15		BC	0.86	Vert(CT)	-0.49	15-16	>316	180			
TCDL		10.0	Rep Stress Incr	YES		WB	0.43	Horz(CT)	0.01	15	n/a	n/a			
BCLI		0.0*	Code	IRC20	18/TPI2014	Matrix-S		- (-)							
BCDL		10.0											Weight: 140 lb	FT = 20%	6
															-
LUMBER				V	VEBS ²	10-16=-124/809, 16	-27=-5	98/323,		10) * Tł	nis truss	has be	en designed for	a live load	of 20.0psf
TOP CHORD	2x4 SP N	lo.2			2	27-28=-395/241, 13	-28=-4	13/251,		on f	he botto	m cho	rd in all areas wh	nere a recta	angle
BOT CHORD	2x4 SP N	0.2			-	0-19=-575/16, 7-26	5=-51/7	4, 25-26=-34	/61,	3-0	6-00 tall	by 2-0	0-00 wide will fit	between th	e bottom
WEBS	2x3 SPF	No.2				19-25=-166/119, 10	-1/=-2	57/0,		cho	rd and a	ny oth	er members.		
OTHERS	2x3 SPF	No.2				9-25=-202/77, 8-26=	=-249/1	06,		11) All I	pearings	are as	sumed to be SF	No.2 crusi	ning
SLIDER	Left 2x4 S	SP No.2 3	3-6-6, Right 2x4 SP N	lo.2	4	20-20=-302/123, 6-2	22=-97	15,		(10) Dro	acity of a	bbb ps	l. al anna atlan (h)	(athera) of	1
	3-6-6					0-20=-107/110, 0-24	20_ 1	109,		12) PIU	vide met		al connection (b)		liuss lo
BRACING						11-27=-200/110, 12	-20=-1	5/25		ioin	11119 piat + 15 70	e capa Ib unlif	t at joint 2 57 lb	unlift at ioir	10 07 lb
TOP CHORD	Structura	I wood shea	athing directly applied	dor 🏴	IOTES	<i></i>				Junii	ft at ioint	20 90) Ih unlift at joint	23 and 86	lh unlift at
	6-0-0 oc	purlins.		1) Unbalanced	roof live loads have	been	considered for	r	ioin	t 24	20, 00		20 414 00	ib upint ut
BOT CHORD	Rigid cell	ing directly	applied or 10-0-0 oc			7 16. Vult 115mph	(2 000	and quat)		13) This	s truss is	desia	ned in accordan	ce with the	2018
	bracing.	ف ما م	10.10	2	Vacd_01mpk	7-10, $Vuit=115111pin$		Doct: b-25ft:		Inte	rnationa	I Resid	dential Code sec	tions R502	.11.1 and
	1 Row at		10-19			t II: Exp C: Enclose		FRS (envelor		R802.10.2 and referenced standard ANSI/TPI 1.					
JUINTS	1 Brace a	at JI(S): 20,			exterior zone	RETING, Cal. II; EXP C; Enclosed; INIVERS (Envelope)						Sta	ndard		
DEACTIONS	20 (cizo)	2_10 7 9	15_0 2 9 19_0 2 9		Interior (1) 4-	1-0 to 11-10-14. Ex	terior(2	2R) 11-10-14	to		• • •				
REACTIONS	(5120)	2=10-7-0,	10=0-3-0, 10=0-3-0, 2 20=10-7-8 22=10-	7-8	16-10-14, Int	erior (1) 16-10-14 to	o 23-4-	0 zone; cantil	ever						
		23=10-7-8	3, 20=10-7-8, 22=10- 3, 24=10-7-8	7-0,	left and right	exposed ; end verti	cal left	and right							
	Max Horiz	2=229 (1 0	C 13)		exposed;C-C	for members and f	orces a	& MWFRS for							
	Max Unlift	2=-70 (LC	: 12) 15=-133 (I C 17	7)	reactions sho	wn; Lumber DOL=	1.60 pl	ate grip							
		19=-57 (L	C 16). 20=-97 (LC 16	5).	DOL=1.60										
		23=-90 (L	C 16), 24=-86 (LC 16	3) 3	 Truss design 	ned for wind loads in	n the p	ane of the tru	ISS						
	Max Grav	2=223 (LC	C 27), 15=678 (LC 24	.),	only. For stu	ds exposed to wind	I (norm	al to the face)),				and	alle	
		18=283 (L	C 24), 19=461 (LC 2	24),	see Standard	Industry Gable En	d Deta	ils as applicat	ole,				B. OF	MISS	h
		20=349 (L	C 23), 22=135 (LC 1),	or consult qu	alified building desi	gner as		-11. 145				4 TE	-0.0	N
		23=198 (L	.C 26), 24=174 (LC 2	26) 4	Plate DOI =1	15): Pf=25.0 psi (.: Lum DOL=	1.15			A	N	· · · · · · · · · · · · · · · · · · ·	Ne
FORCES	(lb) - Max	imum Com	pression/Maximum			. 15), PI=25.0 pSI (L		L=1.15 Flate	.			H	S/ NATHA	ANIEL	150
	Tension				Cs=1.00. Ct-	-1 10, Rough Cal C	, Fully	Exp., Ce=0.8	,		7	N/	FO FO	X	
TOP CHORD	1-2=0/31	, 2-3=-236/	147, 3-5=-218/138,	5) Unhalanced	snow loads have he	en cor	sidered for th	nis			UA	1 1/-	. 4	144
	5-6=-192	/150, 6-7=-	170/155, 7-8=-164/16	50, ^C	design.		0011 001		10			W/	THE	/	190
	8-9=-162	/199, 9-10=	-162/224,	6) This truss ha	s been designed fo	r areat	er of min roof	live			M H	MAAMM	DED	N AX
	10-11=-4	12/247, 11-	12=-380/174,		load of 12.0	osf or 2.00 times fla	t roof le	ad of 25.0 ps	sf on			07		DLK	159
	12-13=-5	U8/169, 13-	15=-805/203		overhangs n	on-concurrent with o	other liv	/e loads.				N	PE-2022	.042259	SA
	2-24=-01	1/125,23-24	-=-01/120, 12- 61/125	7) All plates are	1.5x4 MT20 unless	s other	wise indicated	d.			Y	Nº CO	1.0	NA .
	19-206	1/120, 20-2 1/125 18-1	.2=-01/120, 92/183 17-182/*	183 8) Gable studs	spaced at 2-0-0 oc.						6	STON.	TEN	A
	16-17-0/	186 15-16-	=-55/593	, g) This truss ha	s been designed fo	r a 10.0) psf bottom					UNA NA	L'S	~
	10 17 = 0/	100, 10 10-	- 00,000		chord live loa	ad nonconcurrent wi	ith any	other live load	ds.				Vac	00	

September 13,2023

Page: 1

Job	Truss	Truss Type	Qty	Ply	Roof - CB Lot 151	
P230398-01	B02	Common	6	1	Job Reference (optional)	160735714

Scale = 1:60

Run: 8.63 S Aug 30 2023 Print: 8.630 S Aug 30 2023 MiTek Industries, Inc. Tue Sep 12 18:26:31 ID:XaRBDMetweulHqIMavUZFZyx7_4-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

												-	
Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 25.0 25.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018	3/TPI2014	CSI TC BC WB Matrix-S	0.89 0.88 0.48	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.27 -0.56 0.04	(loc) 2-11 2-11 8	l/defl >999 >494 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 111 lb	GRIP 197/144 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS SLIDER BRACING TOP CHORD BOT CHORD WEBS REACTIONS FORCES	2x4 SP No.2 2x4 SP No.2 2x3 SPF No.2 *Excep Left 2x4 SP No.2 - 3 Structural wood shea 2-2-0 oc purlins, exc Rigid ceiling directly a bracing. 1 Row at midpt ((size) 2=0-3-8, 8 Max Horiz 2=241 (LC Max Uplift 2=-169 (LC Max Grav 2=1141 (L) (lb) - Maximum Comp Tension	pt* 8-7:2x4 SP No.2 -7-6 athing directly applied sept end verticals. applied or 10-0-0 oc 6-8 = Mechanical 2 13) C 16), 8=-142 (LC 17 C 23), 8=1072 (LC 2 pression/Maximum	3) 4) 1 or 5) 6) 7) 4) 8) 9)	TCLL: ASCE Plate DOL=1 DOL=1.15); I Cs=1.00; Ct= Unbalanced design. This truss ha load of 12.0 J overhangs m This truss ha chord live loa * This truss ha on the bottor 3-06-00 tall b chord and ar Bearings are capacity of 5 Refer to girdd	7-16; Pr=25.0 psf (I. 15); Pf=25.0 psf (I. Is=1.0; Rough Cat C 1.10 snow loads have be s been designed for psf or 2.00 times flat on-concurrent with c s been designed for ad nonconcurrent wi nas been designed for nas been designed for nas been designed for nas been designed for so y 2-00-00 wide will y other members. assumed to be: Joi 65 psi.	en cor great great roof lo ther liv a 10.0 th any or a liv where fit betv nt 2 SI s conr	:: Lum DOL= IL=1.15 Plate Exp.; Ce=0.9 asidered for the er of min roof pad of 25.0 p. ve loads.) psf bottom other live load e load of 20.0 a rectangle veen the bottom P No.2 crushing mections.	1.15 9; his f live sf on ds. Opsf om					
TOP CHORD BOT CHORD	1-2=0/31, 2-4=-1480/ 5-6=-1170/257, 6-7=- 2-11=-233/1144, 9-1	/251, 4-5=-1188/257, -500/111, 7-8=-403/1 1=-20/750.	10) 25) Provide mec bearing plate joint 2 and 14	hanical connection (capable of withstar 2 lb unlift at joint 8	by oth Iding 1	ers) of truss t 69 lb uplift at	to t					
WEBS	8-9=-146/1096 4-11=-448/275, 5-11= 6-9=-403/268, 6-8=-9	=-121/476, 5-9=-118/ 995/178	11) /419,) This truss is International R802.10.2 a	designed in accorda Residential Code se nd referenced standa	ince w ections ard AN	ith the 2018 R502.11.1 a ISI/TPI 1.	and				2000	and the
NOTES 1) Unbalanc this desig	ed roof live loads have l n.	been considered for	LO	AD CASE(S)	Standard						B	TATE OF N	AISSOLA

Wind: ASCE 7-16; Vult=115mph (3-second gust) 2) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=35ft; Ke=1.00; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) -0-11-0 to 4-1-0, Interior (1) 4-1-0 to 11-8-0, Exterior(2R) 11-8-0 to 16-8-0, Interior (1) 16-8-0 to 22-10-12 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.
 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not besign value to dury with with where outputs into design is based only door parameters shown, and is for an individual building design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members and property incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TPH1 Quality Criteria**, and **DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcscomponents.com)

FOX

PE-2022042259

September 13,2023

ESSIONAL

BER

E

Job	Truss	Truss Type	Qty	Ply	Roof - CB Lot 151	
P230398-01	B03	Half Hip	1	1	Job Reference (optional)	160735715

Run: 8.63 S Aug 30 2023 Print: 8.630 S Aug 30 2023 MiTek Industries, Inc. Tue Sep 12 18:26:32 ID:MkpTTQidWUev?IDWwAbzVqyx7__-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Plate Offsets (X, Y): [2:0-3-13,Edge]

Scale = 1:61.4

Loa TCL Sno TCC BCL BCL	ding L (roof) w (Pf) L L DL		(psf) 25.0 25.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018	3/TPI2014	CSI TC BC WB Matrix-S	0.98 0.77 0.58	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.15 -0.25 0.04	(loc) 8-9 8-9 8	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 131 lb	GRIP 197/144 FT = 20%
LUN TOF BOT WEE SLIE BRA TOF	IBER CHORD CHORD 3S DER ACING CHORD	2x4 SP No.2 2x4 SP No.2 2x3 SPF No.: Left 2x4 SP N Structural wo except end v (5-3-4 max.):	2 *Exce No.2 3 pod shea erticals, 5-7.	pt* 7-8,8-6:2x4 SP N -8-5 athing directly applied and 2-0-0 oc purlins	3) o.2 4) d, 5)	TCLL: ASCE Plate DOL=1 DOL=1.15); 1 Cs=1.00; Ct= Unbalanced design. This truss ha load of 12.0 overhangs n	7-16; Pr=25.0 psf .15); Pf=25.0 psf (L s=1.0; Rough Cat (.1.10 snow loads have b s been designed fc osf or 2.00 times fla on-concurrent with	(roof Ll Lum DC C; Fully een cor or great at roof le other li	L: Lum DOL= DL=1.15 Plate Exp.; Ce=0.9 Insidered for the er of min roof Dad of 25.0 p ve loads.	1.15 9; his f live sf on					
BOT WEE REA	CHORD 3S ACTIONS	Rigid ceiling bracing. 1 Row at mid (size) 2= Max Horiz 2= Max Uplift 2= Max Grav 2=	directly 0-3-8, 8 362 (LC -167 (L 1516 (L	applied or 8-5-11 oc 7-8, 5-9, 6-8 = Mechanical (13) C 16), 8=-229 (LC 13 C 38), 8=1400 (LC 3	6) 7) 8) 9) 9) 9)	 6) Provide adequate drainage to prevent water ponding. 7) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 8) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf. 9) Beoring are assumed to be: keizt 2 SP.Ne.2 surpling 									
FOR	CES	(lb) - Maximu Tension	ım Com	pression/Maximum	10	capacity of 5) Refer to gird	65 psi. er(s) for truss to tru	ss conr	nections.	5					
TOF	CHORD	1-2=0/31, 2-4 5-6=-797/216	4=-1962 3, 6-7=-1	/206, 4-5=-1719/317 172/179, 7-8=-277/82	, 11 2) Provide mec bearing plate	hanical connection capable of withsta	(by oth nding 2	ers) of truss t 29 lb uplift at	to t					
BOI	CHORD	2-11=-472/15 8-9=-234/685	579, 9-1 5 50, 5-11	1=-320/888, 211/1021	12	joint 8 and 16) This truss is	67 lb uplift at joint 2 designed in accord	ance w	ith the 2018	nd				0000	and a
~~		5-9=-451/195	5, 6-9=-7	=-211/1021, 74/786, 6-8=-1245/24	¥1	R802.10.2 ar	nd referenced stand	dard AN	ISI/TPI 1.					TE OF M	AISSO
NOTES 1) Unbalanced roof live loads have been considered for this design. 2) Wind: ASCE 7-16: Vult=115mph (3-second gust)					13	or the orientation of the purlin along the top and/or bottom chord.									
-,	Vasd=91n	nph; TCDL=6.0	psf; BCl	DL=6.0psf; h=35ft; d: MWERS (envelope	2)		Clandard						a/		1 TZ

exterior zone and C-C Exterior(2E) -0-11-0 to 4-1-0, Interior (1) 4-1-0 to 12-2-8, Exterior(2R) 12-2-8 to 19-3-6, Interior (1) 19-3-6 to 22-10-12 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.
 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not besign value to dury with with where outputs into design is based only door parameters shown, and is for an individual building design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members and property incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TPH1 Quality Criteria**, and **DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcscomponents.com)

PE-202204

SSIONAL ET

September 13,2023

Job	Truss	Truss Type	Qty	Ply	Roof - CB Lot 151	
P230398-01	B04	Half Hip	1	1	Job Reference (optional)	160735716

Run: 8.63 S Aug 30 2023 Print: 8.630 S Aug 30 2023 MiTek Industries, Inc. Tue Sep 12 18:26:32 ID:Un8ELUH6RwZE8zIYAXx_vkyx6zF-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

WEBS	2x4 SP No.2 *Except* 4-12,10-4,10-6:2x3 SPF No.2									
SLIDER	Left 2x4 SP No.2 4-10-10									
BRACING										
TOP CHORD	Structural wood sheathing directly applied,									
	except end verticals, and 2-0-0 oc purlins									
	(6-0-0 max.): 6-8.									
BOT CHORD	Rigid ceiling directly applied or 2-2-0 oc									
	bracing.									
WEBS	1 Row at midpt 8-9, 4-10, 7-9									
REACTIONS	(size) 2=0-3-8, 9= Mechanical									
REACTIONS	(size) 2=0-3-8, 9= Mechanical Max Horiz 2=417 (LC 13)									
REACTIONS	(size) 2=0-3-8, 9= Mechanical Max Horiz 2=417 (LC 13) Max Uplift 2=-171 (LC 16), 9=-229 (LC 13)									
REACTIONS	(size) 2=0-3-8, 9= Mechanical Max Horiz 2=417 (LC 13) Max Uplift 2=-171 (LC 16), 9=-229 (LC 13) Max Grav 2=1491 (LC 42), 9=1316 (LC 39)									
REACTIONS	(size) 2=0-3-8, 9= Mechanical Max Horiz 2=417 (LC 13) Max Uplift 2=-171 (LC 16), 9=-229 (LC 13) Max Grav 2=1491 (LC 42), 9=1316 (LC 39 (lb) - Maximum Compression/Maximum									
REACTIONS	(size) 2=0-3-8, 9= Mechanical Max Horiz 2=417 (LC 13) Max Uplift 2=-171 (LC 16), 9=-229 (LC 13) Max Grav 2=1491 (LC 42), 9=1316 (LC 39 (lb) - Maximum Compression/Maximum Tension									
REACTIONS FORCES	(size) 2=0-3-8, 9= Mechanical Max Horiz 2=417 (LC 13) Max Uplift 2=-171 (LC 16), 9=-229 (LC 13) Max Grav 2=1491 (LC 42), 9=1316 (LC 39 (Ib) - Maximum Compression/Maximum Tension 1-2=0/31, 2-4=-1911/186, 4-6=-1133/241,									
REACTIONS FORCES TOP CHORD	(size) 2=0-3-8, 9= Mechanical Max Horiz 2=417 (LC 13) Max Uplift 2=-171 (LC 16), 9=-229 (LC 13) Max Grav 2=1491 (LC 42), 9=1316 (LC 39 (lb) - Maximum Compression/Maximum Tension 1-2=0/31, 2-4=-1911/186, 4-6=-1133/241, 6-7=-760/227, 7-8=-195/204, 8-9=-229/81									
REACTIONS FORCES TOP CHORD BOT CHORD	(size) 2=0-3-8, 9= Mechanical Max Horiz 2=417 (LC 13) Max Uplift 2=-171 (LC 16), 9=-229 (LC 13) Max Grav 2=1491 (LC 42), 9=1316 (LC 39 (lb) - Maximum Compression/Maximum Tension 1-2=0/31, 2-4=-1911/186, 4-6=-1133/241, 6-7=-760/227, 7-8=-195/204, 8-9=-229/81 2-12=-448/1552, 10-12=-448/1552,									

Scale = 1:67.6

Loading

TCLL (roof)

Snow (Pf)

LUMBER

TOP CHORD

BOT CHORD

TCDL

BCLL

BCDL

WEBS

NOTES

left and right exposed ; end vertical left and right exposed:C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 TCLL: ASCE 7-16; Pr=25.0 psf (roof LL: Lum DOL=1.15

- 3) Plate DOL=1.15); Pf=25.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat C; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10
- 4) Unbalanced snow loads have been considered for this desian.
- This truss has been designed for greater of min roof live 5) load of 12.0 psf or 2.00 times flat roof load of 25.0 psf on overhangs non-concurrent with other live loads.
- Provide adequate drainage to prevent water ponding. 6)
- This truss has been designed for a 10.0 psf bottom 7)
- chord live load nonconcurrent with any other live loads. 8) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom
- chord and any other members, with BCDL = 10.0psf. 9) Bearings are assumed to be: Joint 2 SP No.2 crushing capacity of 565 psi.
- 10) Refer to girder(s) for truss to truss connections.
- 11) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 229 lb uplift at joint 9 and 171 lb uplift at joint 2.
- 12) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 13) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

OF MISS NATHANIEL FOX ER PE-2022042259 SIONAL F

this design.

7-10=-151/925, 7-9=-1062/289

1) Unbalanced roof live loads have been considered for

4-12=0/317, 4-10=-1018/293, 6-10=-29/235,

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponent.com)

Job	Truss	Truss Type	Qty	Ply	Roof - CB Lot 151	
P230398-01	B05	Half Hip	1	1	Job Reference (optional)	160735717

Loading

TCDL

BCLL

BCDL

LUMBER

WEBS

SLIDER

WEBS

FORCES

WEBS

NOTES

1)

Run: 8.63 S Aug 30 2023 Print: 8.630 S Aug 30 2023 MiTek Industries, Inc. Tue Sep 12 18:26:33 ID:bYyadlexN8LzlabJxqT073yx6yn-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

LEE'S'SUMMIT'SMISSOURI 05/21/2024 9:18:45

Job	Truss	Truss Type	Qty	Ply	Roof - CB Lot 151	
P230398-01	B06	Half Hip	1	1	Job Reference (optional)	160735718

Run: 8.63 S Aug 30 2023 Print: 8.630 S Aug 30 2023 MiTek Industries, Inc. Tue Sep 12 18:26:33

Page: 1

13) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or

WEBS NOTES

Loading

TCLL (roof)

Snow (Pf)

LUMBER

TCDL

BCLL

BCDL

WEBS

WEBS

FORCES

SLIDER

BRACING

- 1) Unbalanced roof live loads have been considered for this design.
- Wind: ASCE 7-16; Vult=115mph (3-second gust) 2) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=35ft; Ke=1.00; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) -0-11-0 to 4-1-0. Interior (1) 4-1-0 to 12-0-0. Exterior (2R) 12-0-0 to 19-0-14, Interior (1) 19-0-14 to 22-10-12 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

bottom chord.

LOAD CASE(S) Standard

LEE'S' SUMMIT'S MISSOURI 05/21/2024 9:18:45

Job	Truss	Truss Type	Qty	Ply	Roof - CB Lot 151	
P230398-01	B07	Half Hip	1	1	Job Reference (optional)	160735719

10-0-0

3-10-3

10-3-0

Premier Building Supply (Springhill, KS), Spring Hills, KS - 66083,

7-2-3 7-2-3

7-9-15

-0-11-0 <u>2-0-12</u> 0-11-0 2-0-12

Run: 8.63 S Aug 30 2023 Print: 8.630 S Aug 30 2023 MiTek Industries, Inc. Tue Sep 12 18:26:34 ID:8j1KGTfdbyx3qU0SsU_jXnyx6xT-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

23-0-8

6-7-8

0-3-0 MT18HS 5x8 = 3x8= 3x4 🛛 7 18 19 ⊠ 56 0-1-13 \boxtimes 12 8 Г 3x4 🍬 4

16-5-0

6-2-0

Scale = 1:52.7

Plate Offsets (X, Y): [2:0-2-11,0-2-0], [3:0-1-8,0-2-0], [5:0-5-5,Edge], [8:Edge,0-2-8], [12:0-3-8,0-2-4], [13:0-2-8,0-1-8], [14:0-3-0,Edge]

6-1-13

4-1-1

4x6 17

16

Loading	(psf)	Spacing	2-0-0		csi		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP		
TCLL (roof)	25.0	Plate Grip DOL	1.15		тс	0.85	Vert(LL)	-0.13	13-14	>999	240	MT20	197/144		
Snow (Pf)	25.0	Lumber DOI	1 15		BC	0.69	Vert(CT)	-0.20	13-14	>999	180	MT18HS	113/123		
	10.0	Rep Stress Incr	YES		WB	0.65	Horz(CT)	0.13		n/a	n/a				
	0.0*	Code	IPC2018		Matrix-S	0.00	11012(01)	0.10	0	n/a	n/a				
	10.0	Coue	11(02010	0/11/2014	Wath -0							Woight: 124 lb	ET - 20%		
BODL	10.0											weight. 134 ib	FT = 20.76		
LUMBER			2)	Wind: ASCE	7-16; Vult=115mp	h (3-seo	ond gust)		14) Gra	phical p	urlin re	presentation doe	s not depict the size	3	
TOP CHORD	2x6 SPF No.2 *Exce	ept* 5-8:2x4 SP 1650	F	Vasd=91mph	n; TCDL=6.0psf; B	CDL=6.0	0psf; h=35ft;		or th	ne orient	ation of	of the purlin along	the top and/or		
	1.5E			Ke=1.00; Ca	t. II; Exp C; Enclos	ed; MW	FRS (envelop	pe)	bott	om chor	d.				
BOT CHORD	2x4 SP No.2 *Excep	ot* 15-3:1 1/2" x 5 1/2		exterior zone	and C-C Exterior(2E) -0-1	1-0 to 4-1-0,		LOAD O	CASE(S)	Sta	ndard			
	2.0E Microllam® LV	L, 14-12:2x4 SP 1650	0F	Interior (1) 4-	1-0 to 10-0-0, Exte	erior(2R) 10-0-0 to								
	1.5E, 6-11:2x3 SPF	No.2		17-0-14, Inte	rior (1) 17-0-14 to	22-11-4	zone; cantile	ver							
NEBS	2x3 SPF No.2 *Exce	ept* 9-7,2-14:2x4 SP	No.2	left and right	exposed ; end ver	tical left	and right								
BRACING				exposed;C-C	for members and	forces a	& MWFRS for	r							
TOP CHORD	Structural wood she	athing directly applie	d or	reactions sho	own; Lumber DOL=	=1.60 pl	ate grip								
	4-1-3 oc purlins, ex	cept end verticals, ar	nd	DOL=1.60											
	2-0-0 oc purlins (5-4	l-3 max.): 5-8.	3)	TCLL: ASCE	TOLE: ASCE 7-10; MI=25.0 pSI (1001 LE: LUITI DOL=1.15										
BOT CHORD	Rigid ceiling directly	applied or 6-0-0 oc		Plate DOL=1	Tale DOL=1.15); $PI=25.0$ psi (Luffi DOL=1.15 Piale										
	bracing.			DOL=1.15); I	IS=1.0; Rough Cat	C; Fully	Exp.; Ce=0.9	9;							
NEBS	1 Row at midpt	7-9	4)	Use 1.00; Cle	=1.1U anow loodo hovo h		aidarad far th	aia							
REACTIONS	(size) 2=0-3-8, 9	9= Mechanical	4)	docian	Show loads have b	een cor		115							
	Max Horiz 2=301 (LO	C 15)	5)	This trues ha	s boon designed f	or aroot	or of min roof	livo							
	Max Uplift 2=-157 (L	.C 16), 9=-226 (LC 13	3) 3)	load of 12 0	nsf or 2 00 times fl	at roof l	ad of 25.0 p	sfon							
	Max Grav 2=1461 (I	LC 38), 9=1487 (LC 3	37)	overhands no	on-concurrent with	other liv	/e loads	31 011							
FORCES	(lb) - Maximum Corr	pression/Maximum	6)	Provide adec	uate drainage to p	revent	vater ponding	л.							
	Tension		7)	All plates are	MT20 plates unle	ss other	wise indicate	d.							
TOP CHORD	1-2=0/55, 2-3=-2562	2/296, 3-4=-2158/243	s, 8)	This truss ha	s been designed for	or a 10.0) psf bottom								
	4-5=-1454/215, 5-6=	-1220/210,	- /	chord live loa	ad nonconcurrent v	vith any	other live loa	ds.					-		
	6-7=-1225/211, 7-8=	=-143/150, 8-9=-335/	93 9)	* This truss h	nas been designed	for a liv	e load of 20.0	Opsf				A	and		
BOT CHORD	2-15=-234/1029, 14	-15=-19/22,		on the botton	n chord in all areas	where	a rectangle	•				BR OF M	11SS W		
	3-14=-89/411, 13-14	1=-878/3355,		3-06-00 tall b	y 2-00-00 wide wil	l fit betv	veen the botto	om			E	7.21	N'OS		
	12-13=-528/1830, 1	1-12=0/102,		chord and an	y other members,	with BC	DL = 10.0psf				8	NATHA	NIEI XAN		
	6-12=-15/468, 10-11	I=-8/66, 9-10=-227/1	049 10) Bearings are	assumed to be: Jo	oint 2 SI	P No.2 crushi	ng			R		ALLE AN		
NEBS	10-12=-224/1000, 7	-12=-182/563,		capacity of 5	65 psi.					•	V N	FO2	· · · · ·		
	7-10=-17/273, 7-9=-	1509/239, 4-13=-10/4	446, 11) Refer to girde	er(s) for truss to tru	iss conr	ections.				W/		(KA*V	1	
	3-13=-1546/354, 2-1	12	12) Provide mechanical connection (by others) of truss to								1711	11 TR	k		
	4-12=-990/232			bearing plate capable of withstanding 226 lb uplift at											
NOTES				joint 9 and 18	57 lb uplift at joint 2	2.					17	DE 20220	12250 181		
 Unbalance 	ed roof live loads have	been considered for	13) This truss is	designed in accord	lance w	ith the 2018				N.	-2022C	144437 14 D		

this design.

International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

September 13,2023

SSIONAL

Page: 1

8

7-2-3

9

Job	Truss	Truss Type	Qty	Ply	Roof - CB Lot 151	
P230398-01	B08	Half Hip	1	1	Job Reference (optional)	160735720

Run: 8.63 S Aug 30 2023 Print: 8.630 S Aug 30 2023 MiTek Industries, Inc. Tue Sep 12 18:26:34 ID:8F5BO53ybPDEvjd?rdbhvyyx6wx-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

LEE'S'SUMWIT,SMISSOURI 05/21/2024 9:18:45

Job	Truss	Truss Type	Qty	Ply	Roof - CB Lot 151	
P230398-01	B09	Half Hip	1	1	Job Reference (optional)	160735721

Run: 8.63 S Aug 30 2023 Print: 8.630 S Aug 30 2023 MiTek Industries, Inc. Tue Sep 12 18:26:35 ID:CP0H61S02EFhkd38jLABCiyx6wR-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

-0-11-0 0-11-0 2-0-12 6-0-0 10-3-0 16-5-14 23-0-8 2-0-12 3-11-4 4-3-0 6-2-14 6-6-10 7x8= 1.5x4 🛚 3x8 = MT18HS 3x10 = 3x4 🛛 17 0-1-13 H 5 6 0-1-13 4 18 7 8 12 8 Г \bowtie \bowtie \bowtie 16 3x10 u 8x8= 4-6-3 4-6-3 5-1-15 4-6-3 3 142 14 1-0-0 0-8-0 13 15 11 9 4x4 = 10 5x8= 3x4 u 3x6 =3x4 = 3x4 =4x6= 2-3-8 5-10-12 10-1-12 16-5-14 23-0-8 2-3-8 3-7-4 4-3-0 6-4-2 6-6-10

Scale = 1:46.8

Plate Offsets (X, Y): [2:Edge,0-0-3], [2:0-1-6,Edge], [3:0-3-4,0-7-4], [4:0-4-0,0-2-10], [8:Edge,0-2-8], [10:0-2-8,0-2-0], [12:0-3-4,0-2-4]													
Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 25.0 25.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018	3/TPI2014	CSI TC BC WB Matrix-S	0.84 0.85 0.63	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.17 -0.25 0.17	(loc) 5 5 9	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 MT18HS Weight: 119 lb	GRIP 197/144 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS WEDGE BRACING TOP CHORD	2x6 SPF No.2 *Excep 1.5E, 7-8:2x4 SP No 2x4 SP No.2 *Excep 2.0E Microllam® LVI 2x3 SPF No.2 *Exce Left: 2x4 SP No.2 Structural wood shea 4-2-13 oc purlins, co	pt* 4-7:2x4 SP 1650/ .2 t* 15-3:1 1/2" x 5 1/2' ., 5-11:2x3 SPF No.2 pt* 9-6:2x4 SP No.2 athing directly applied coept end verticals, a	2) = 2 d or 3)	Wind: ASCE Vasd=91mph Ke=1.00; Cat exterior zone Interior (1) 4- Interior (1) 13 right exposed for members Lumber DOL TCLL: ASCE Plate DOI =1	7-16; Vult=115mp t; TCDL=6.0psf; Bt t. II; Exp C; Enclos and C-C Exterior(1-0 to 6-0-0, Exter 3-0-14 to 22-11-4 z 1; end vertical left and forces & MWI =1.60 plate grip D 7-16; Pr=25.0 psf (15): Pf=25.0 psf	h (3-sec CDL=6. ed; MW 2E) -0- ⁻ ior(2R) cone; ca and righ FRS for OL=1.60 (roof LI Lum DC	ond gust) Opsf; h=35ft; FRS (envelop 1-0 to 4-1-0, 6-0-0 to 13-0 ntilever left a tt exposed;C- reactions sho .: Lum DOL= I =1 15 Plate	LOAD	CASE(S)	Sta	ndard		
BOT CHORD	2-0-0 oc purlins (3-6 Rigid ceiling directly bracing, Except: 6-11-13 oc bracing: 12	-1 max.): 4-8. applied or 10-0-0 oc 13-14 -13	4)	DOL=1.15); Is=1.0; Rough Cat C; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10 4) Unbalanced snow loads have been considered for this design									
WEBS REACTIONS	1 Row at midpt (size) 2=0-3-8, 9 Max Horiz 2=187 (LC Max Uplift 2=-124 (L Max Grav 2=1242 (L	6-9 9= Mechanical C 13) C 16), 9=-226 (LC 13 -C 37), 9=1602 (LC 3	5) 6) 7) 7)	This truss ha load of 12.0 p overhangs no Provide adeo All plates are	s been designed for osf or 2.00 times fla on-concurrent with juate drainage to p MT20 plates unle	or great at roof le other lip prevent ss other	er of min roof bad of 25.0 p ve loads. water ponding wise indicate	f live sf on g. ed.					
FORCES	(lb) - Maximum Com Tension	pression/Maximum	9)	chord live loa	s been designed to id nonconcurrent v las been designed	or a 10.0 vith any for a liv	other live loa	ids. Opsf					
TOP CHORD	1-2=0/44, 2-3=-1642 4-5=-2707/389, 5-6= 8-9=-339/87	2/168, 3-4=-2303/312 2699/389, 6-8=-98/9	, 95,	on the botton 3-06-00 tall b	n chord in all areas y 2-00-00 wide wil	where I fit betw	a rectangle	om				TE OF M	AISSO
BOT CHORD	2-15=-286/1109, 14- 13-14=-713/2745, 12 11-12=0/105, 5-12=- 9-10=-304/1866	15=-2/66, 3-14=0/10 2-13=-367/1936, 666/173, 10-11=-14/	7, 10 140, 11 12) Bearings are capacity of 50) Refer to girde	assumed to be: Jo 65 psi. er(s) for truss to tru nanical connection	oint 2 Sl Iss conr (bv oth	P No.2 crushi nections. ers) of truss t	ing to			an an	S NATHAI FOX	NIEL E
WEBS	4-12=-214/969, 10-1 6-12=-180/938, 6-10 6-9=-2196/314, 4-13 3-13=-1130/389	2=-294/1748, ⊨-143/179, ⊨-19/321,	13	bearing plate joint 9 and 12) This truss is o International	capable of withsta 24 lb uplift at joint 2 designed in accord Residential Code	anding 2 2. lance w sections	26 lb uplift at ith the 2018 R502.11.1 a	t and				PE-20220	BER 42259
NOTES 1) Unbalance this design	ed roof live loads have n.	been considered for	14	R802.10.2 ar Graphical pu or the orienta bottom chord	nd referenced stan rlin representation ttion of the purlin a l.	dard AN does no long the	ISI/TPI 1. ot depict the s top and/or	size			Y	ESSIONA	L ENGINE

September 13,2023

05/21/2024 9:18:45

ΤΙΟΝ

IEW

DEVELOPMENT SERVICES LEE'S'SUMMIT'SMISSOURI

Job	Truss	Truss Type	Qty	Ply	Roof - CB Lot 151	
P230398-01	B10	Half Hip Girder	1	2	Job Reference (optional)	160735722

Run: 8.63 S Aug 30 2023 Print: 8.630 S Aug 30 2023 MiTek Industries, Inc. Tue Sep 12 18:26:36 ID:9LCugLucaIna39p3qvpefHyx6vt-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale =	1:46.7
---------	--------

Continued on page 2

Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 25.0 25.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 NO IRC2018	3/TPI2014	CSI TC BC WB Matrix-S	0.52 0.80 0.75	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.29 -0.41 0.17	(loc) 15-16 15-16 11	l/defl >935 >662 n/a	L/d 240 180 n/a	PLATES MT20 MT18HS Weight: 218 lb	GRIP 197/144 113/123 FT = 20%				
LUMBER TOP CHORD BOT CHORD WEBS WEDGE BRACING	MBER P CHORD 2x4 SP No.2 *Except* 1-4:2x6 SPF No.2 T CHORD 2x4 SP No.2 *Except* 18-3:1 1/2" x 5 1/2" 2.0E Microllam® LVL, 17-15:2x4 SP 1650F 1.5E, 6-14:2x3 SPF No.2 IBS 2x3 SPF No.2 IDGE Left: 2x4 SP No.2 ACING P CHORD Structural wood sheathing directly applied or				2-ply truss to be connected together with 10d (0.131"x3") nails as follows: Top chords connected as follows: 2x6 - 2 rows staggered at 0-9-0 oc, 2x4 - 1 row at 0-9-0 oc, 2x3 - 1 row at 0-9-0 oc. Bottom chords connected as follows: 2x4 - 1 row at 0-9-0 oc, 2x6 - 2 rows staggered at 0-9-0 oc, 2x3 - 1 row at 0-9-0 oc.							 10) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members. 11) Bearings are assumed to be: Joint 2 SP No.2 crushing capacity of 565 psi. 12) Refer to girder(s) for truss to truss connections. 13) Provide mechanical connection (by others) of truss to 					
TOP CHORD	Structural wood shea 6-0-0 oc purlins, exc 2-0-0 oc purlins (4-2- Rigid ceiling directly	athing directly applied cept end verticals, and ·3 max.): 4-10. applied or 10-0-0 oc	dor d 2)	Web connect All loads are except if note CASE(S) sec provided to d	at 0-9-0 oc. d to all plies, face in the LC s have been as (F) or (B).	 bearing plate capable of withstanding 611 lb uplift at join 11 and 528 lb uplift at joint 2. 14) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802 10.2 and referenced standard ANSUTE1 1. 											
REACTIONS	bracing. (size) 2=0-3-8, 1 Max Horiz 2=132 (LC Max Uplift 2=-528 (LC Max Grav 2=2212 (L	1= Mechanical ; 15) C 16), 11=-611 (LC 1; C 37), 11=2378 (LC ;	3) 3) 37)	unless otherv Wind: ASCE Vasd=91mph Ke=1.00; Cat exterior zone	provided to distribute only loads noted as (F) or (B), unless otherwise indicated. Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=35ft; Ke=1.00; Cat. II; Exp C; Enclosed; MWFRS (envelope)					 Graphical puritin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord. "NAILED" indicates Girder: 3-10d (0.148" x 3") toe-nails per NDS guidelines 							
FORCES	(lb) - Maximum Com Tension 1-2=0/44, 2-3=-3017 4-5=-4253/1125, 5-6 6-77038/1785, 7-9	pression/Maximum /724, 3-4=-5061/1318 =-7143/1807, 2928/757	8,	Exterior (2R) 4-0-0 to 11-0-14, Interior (1) 11-0-14 to 22-11-4 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber						NDO gu							
BOT CHORD	9-10=-2928/757, 10- 2-18=-607/2057, 17- 3-17=-189/73, 16-17 15-16=-1576/5993, 1 6-15=-488/145, 13-1		4)	 DOL=1.60 plate grip DOL=1.60 TCLL: ASCE 7-16; Pr=25.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=25.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat C; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10 							A	STATE OF	MISSOULANIEL				
WEBS	12-13=-1168/4468, 1 5-15=-367/1347, 13- 7-15=-741/2845, 7-1 7-12=-1865/473, 9-1	1-12=-51/77 15=-1151/4368, 3=-933/358, 2=-798/332, 16=-729/293	5) 6) 7)	design. This truss has load of 12.0 p overhangs no	er of min roof bad of 25.0 ps ve loads.	sidered for this FOX FOX ad of 25.0 psf on e loads.											
NOTES	10-12=-898/3502, 3-16=-729/293, 7) Provide adequate drainage to prevent water ponding. 4-16=-587/2244, 5-16=-2038/511 8) All plates are MT20 plates unless otherwise indicated. 9) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 0							.042259 50 H									

besign value to dury with with where outputs into design is based only door parameters shown, and is for an individual building design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members and property incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TPH1 Quality Criteria**, and **DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcscomponents.com)

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not

ΤΙΟΝ IEW DEVELOPMENT SERVICES LEE'S'SUMMIT'SMISSOURI 05/21/2024 9:18:45

September 13,2023

Job	Truss	Truss Type	Qty	Ply	Roof - CB Lot 151	
P230398-01	B10	Half Hip Girder	1	2	Job Reference (optional)	160735722

Run: 8.63 S Aug 30 2023 Print: 8.630 S Aug 30 2023 MiTek Industries, Inc. Tue Sep 12 18:26:36

ID:9LCugLucaIna39p3qvpefHyx6vt-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Premier Building Supply (Springhill, KS), Spring Hills, KS - 66083,

17) Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 157 lb down and 89 lb up at 4-0-0 on top chord, and 387 lb down and 166 lb up at 4-0-0 on bottom chord. The design/selection of such connection device(s) is the responsibility of others.

LOAD CASE(S) Standard

1) Dead + Snow (balanced): Lumber Increase=1.15, Plate Increase=1.15

Uniform Loads (lb/ft)

Vert: 1-4=-70, 4-10=-70, 2-18=-20, 15-17=-20, 11-14=-20

Concentrated Loads (lb)

Vert: 4=-26 (B), 8=-147 (B), 15=-152 (B), 6=-14 (B), 13=-19 (B), 7=-147 (B), 16=-387 (B), 19=-14 (B), 20=-14 (B), 22=-147 (B), 23=-147 (B), 24=-147 (B), 25=-152 (B), 26=-152 (B), 27=-152 (B), 28=-19 (B), 29=-19 (B), 30=-19 (B), 31=-19 (B), 32=-21 (B)

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSITPTI Quality Criteria**, and **DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcscomponents.com)

Page: 2

Job	Truss	Truss Type	Qty	Ply	Roof - CB Lot 151	
P230398-01	C01	Common Girder	1	2	Job Reference (optional)	160735723

Run: 8.63 S Aug 30 2023 Print: 8.630 S Aug 30 2023 MiTek Industries, Inc. Tue Sep 12 18:26:37 ID:la51IITjG2qmpYUHe_gucPyx6v7-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Loading	(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15		тс	0.87	Vert(LL)	-0.22	17-19	>999	240	MT20	244/190
Snow (Pf)	25.0	Lumber DOL	1.15		BC	0.53	Vert(CT)	-0.34	17-19	>987	180	M18AHS	186/179
TCDL	10.0	Rep Stress Incr	NO		WB	0.86	Horz(CT)	0.07	10	n/a	n/a		
BCLL	0.0	* Code	IRC2018	3/TPI2014	Matrix-S								
BCDL	10.0					-						Weight: 508 lb	FT = 20%
LUMBER			1)	2-ply truss to	be connected to	ogether wi	th 10d		9) Thi	s truss h	as bee	n designed for g	reater of min roof live
TOP CHORD	2x4 SP 1650F 1.5	5E *Except* 1-3:2x4 SF)	(0.131"x3") n	ails as follows:	0			Íloa	d of 12.0	psf or	2.00 times flat ro	of load of 25.0 psf on
	2400F 2.0E, 7-11	:2x4 SP No.2		Top chords of	connected as follo	ows: 2x4 ·	- 1 row at 0-6	-0	ove	rhangs	non-co	ncurrent with oth	er live loads.
BOT CHORD	2x8 SP 2400F 2.0)E		OC.					10) All	plates a	e MT2	0 plates unless o	otherwise indicated.
WEBS	2x4 SP No.2 *Exc	cept* 17-5,15-9:2x4 SP		Bottom choro staggered at	ds connected as	follows: 2	x8 - 4 rows		11) Thi	s truss h and live lo	as bee	n designed for a	10.0 psf bottom
DDACING	1050F 1.5E			Web connect	ted as follows: 2	x4 - 1 row	at 0-9-0 oc.		12) * TI	nis truss	has be	en designed for	a live load of 20 0psf
	Structurel wood o	boothing directly opplic	2)	All loads are	considered equa	ally applie	d to all plies.		on '	the botto	m cho	rd in all areas wh	iere a rectangle
TOP CHORD	2-11-4 oc purline	meaning directly applie	² u 0i ⁷	except if note	ed as front (F) or	back (B)	face in the LO	DAD	3-0	6-00 tall	by 2-0	0-00 wide will fit	between the bottom
BOT CHORD	Rigid ceiling direc	ctly applied or 10-0-0 or	2	CASE(S) sec	ction. Ply to ply c	onnection	s have been		chc	ord and a	iny oth	er members, with	n BCDL = 10.0psf.
201 0110112	bracing.			provided to d	listribute only loa	ds noted	as (F) or (B),		13) All	bearings	are as	sumed to be SP	2400F 2.0E crushing
WEBS	1 Row at midpt	4-17		unless other	wise indicated.				cap	acity of	805 ps	i.	
REACTIONS	(size) 1=(0-3	-8 + bearing block). (re	a. ³⁾	2x8 SP 2400	F 2.0E bearing b	lock 12" I	ong at jt. 1		14) Pro	vide me	chanic	al connection (by	/ others) of truss to
	0-4-2),	10=0-3-8, 13=(0-3-6 +		attached to e	ach face with 4	rows of 1	0d (0.131"x3	.)	bea	aring pla	te capa	ble of withstand	ing 1513 lb uplift at
	bearing	g block), (req. 0-4-11)		halls spaced	3" 0.C. 16 10tal	2400E 2	per block. o⊑			indicate	2931 ID 9 Rolov	uplift at joint 13.	ow for upword
	Max Horiz 1=-295	6 (LC 12)	4)	2v8 SP 2400	E 2 OE bearing h	2400F Z.	∪⊏. ongatit 13		15) /\ mo	Vement	s Relea	(c) 10	Jw for upward
	Max Uplift 1=-151	3 (LC 16), 10=REL,	4)	attached to e	ach face with 4	rows of 1	019 at jt. 13 0d (0 131"x3'	')	16) Thi	e truce is		,s) io. ned in accordanc	ce with the 2018
	13=-29	31 (LC 17)		nails spaced	3" o.c. 16 Total 1	fasteners	per block.	,	Inte	ernationa	I Resid	lential Code sect	tions R502.11.1 and
	Max Grav 1=996	2 (LC 23), 10=830 (LC	16),	Bearing is as	sumed to be SP	2400F 2.	OE.		R8(02.10.2	and ref	erenced standar	d ANSI/TPI 1.
	13=11	360 (LC 24)	5)	Unbalanced	roof live loads ha	ave been o	considered fo	or					
FORCES	(lb) - Maximum C	ompression/Maximum		this design.									
		0 4 44070/4007	6)	Wind: ASCE	7-16; Vult=115m	nph (3-seo	cond gust)						M
TOP CHORD	1-2=-14040/2142	, Z-4=-11372/1837, 5 6_ 9759/1524		Vasd=91mph	n; TCDL=6.0psf;	BCDL=6.	0psf; h=35ft;					OF !	MICh
	6-8-10886/1716	8-9-10418/1373		Ke=1.00; Ca	t. II; Exp C; Encl	osed; MW	FRS (envelo	pe)				ASE	115S
	9-10=-1501/0 10	-11=0/47		exterior zone	and C-C Exterio	or(2E) 0-1	-12 to 5-4-2,				B	A. M.	N.S.
BOT CHORD	1-20=-1833/1132	6. 19-20=-1833/11326.		20.0.15 Into	-4-2 (0 15-2-0, E)) 15-2-0 10	or			R	S NATHA	NIEL VEN
	17-19=-1448/938	9, 16-17=-1250/8997,		left and right	exposed : end v	ertical left	and right			<	20	, FO	X Y
	15-16=-1032/861	3, 13-15=0/1138,		exposed C-C	for members ar	nd forces a	& MWFRS for	r			1/4		
	10-13=0/1138			reactions sho	own: Lumber DO	L=1.60 pl	ate arip	-			ИГ	1111-0	
WEBS	2-20=-367/3033,	2-19=-2477/485,		DOL=1.60	,	· · F.	51				NA A	X UNAMI	Kon Alam
	4-19=-638/4155,	4-17=-3841/745,	7)	TCLL: ASCE	7-16; Pr=25.0 p	sf (roof LL	.: Lum DOL=	1.15			173	5	DER
	5-17=-1545/9243	, 6-17=-3221/577,		Plate DOL=1	.15); Pf=25.0 ps	f (Lum DC	DL=1.15 Plate	9			N.	OX PE-2022	.042259
	b - 16 = -453/3389,	9-13=-8844/2169,		DOL=1.15); I	ls=1.0; Rough Ca	at C; Fully	Exp.; Ce=0.9	9;			V	1 St.	154
	9-15=-1091/8430	, 0-10=-2/0/09/,		Cs=1.00; Ct=	=1.10							A SIG	FNOA
NOTEO	0-13=-1247/420		8)	Unbalanced	snow loads have	e been cor	nsidered for t	his				WNA	L L'A
NULES				aesian.								VILLE	

September 13,2023

Scale = 1:73.6

Continued on page 2 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not besign value to dury with with where outputs into design is based only door parameters shown, and is for an individual building design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members and property incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TPH1 Quality Criteria**, and **DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcscomponents.com)

Job	Truss	Truss Type	Qty	Ply	Roof - CB Lot 151	
P230398-01	C01	Common Girder	1	2	Job Reference (optional)	160735723

- 17) Use Simpson Strong-Tie LUS26 (4-10d Girder, 4-10d Truss) or equivalent spaced at 2-0-0 oc max. starting at 1-0-12 from the left end to 10-3-4 to connect truss(es) to back face of bottom chord.
- 18) Use Simpson Strong-Tie LUS28 (6-SD9112 Girder, 4-SD9212 Truss, Single Ply Girder) or equivalent spaced at 6-0-0 oc max. starting at 12-3-4 from the left end to 20-3-4 to connect truss(es) to back face of bottom chord.
- 19) Use Simpson Strong-Tie LUS28 (6-10d Girder, 4-10d Truss) or equivalent spaced at 2-0-0 oc max. starting at 14-3-4 from the left end to 16-3-4 to connect truss(es) to back face of bottom chord.
- 20) Use Simpson Strong-Tie HUS26 (14-10d Girder, 4-10d Truss) or equivalent spaced at 2-0-0 oc max. starting at 22-3-4 from the left end to 24-3-4 to connect truss(es) to back face of bottom chord.
- Use Simpson Strong-Tie HHUS26-2 (14-10d Girder, 4-10d Truss) or equivalent at 26-2-7 from the left end to connect truss(es) to back face of bottom chord.
- 22) Fill all nail holes where hanger is in contact with lumber. LOAD CASE(S) Standard
- 1) Dead + Snow (balanced): Lumber Increase=1.15, Plate Increase=1.15
 - Uniform Loads (lb/ft)
 - Vert: 1-5=-70, 5-11=-70, 1-10=-20
 - Concentrated Loads (lb) Vert: 18=-1254 (B), 19=-1052 (B), 16=-1467 (B),
 - 21=-1053 (B), 23=-1052 (B), 24=-1052 (B),
 - 25=-1052 (B), 26=-1052 (B), 27=-1360 (B),
 - 28=-1266 (B), 30=-1370 (B), 31=-1540 (B),
 - 32=-1582 (B), 33=-2358 (B)

Run: 8.63 S Aug 30 2023 Print: 8.630 S Aug 30 2023 MiTek Industries, Inc. Tue Sep 12 18:26:37 ID:la51IITjG2qmpYUHe_gucPyx6v7-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 2

Job	Truss	Truss Type	Qty	Ply	Roof - CB Lot 151	
P230398-01	C02	Common	3	1	Job Reference (optional)	160735724

Run: 8.63 S Aug 30 2023 Print: 8.630 S Aug 30 2023 MiTek Industries, Inc. Tue Sep 12 18:26:38

Page: 1

ELOPMENT SERVICES

LEE'S' SUMMIT'S MISSOURI 05/21/2024 9:18:45

a trust system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria**, and **DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

Job	Truss	Truss Type	Qty	Ply	Roof - CB Lot 151	
P230398-01	C03	Hip Girder	1	2	Job Reference (optional)	160735725

Run: 8.63 S Aug 30 2023 Print: 8.630 S Aug 30 2023 MiTek Industries, Inc. Tue Sep 12 18:26:39 ID:m?rts4KhE263g2hh6cwmJgyx6sk-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

2022		1010			
LUMBER TOP CHORD BOT CHORD	2x4 SP N 2x8 SPF	o.2 No.2 *Exce	pt* 12-17:2x8 SP 2400F	1)	2-ply truss to (0.131"x3") n Top chords c
WEBS	2.0E 2x4 SP N	0.2			Bottom chord
BRACING					staggered at
TOP CHORD	Structura 4-8-7 oc 2-0-0 oc	l wood shea purlins, exc purlins (6-0	athing directly applied or ept -0 max.): 5-6.	2)	Web connect All loads are except if note
BOT CHORD	Rigid ceil bracing.	ing directly	applied or 10-0-0 oc		provided to d
REACTIONS	(size)	1=0-3-8, 1	0=0-3-8, 14=0-5-8	3)	Unbalanced
	Max Horiz Max Liplift	1=277 (LC	5 15) C 16) 10–-392 (I C 17)	,	this design.
		14=-1001	(LC 17)	4)	Wind: ASCE
	Max Grav	1=4032 (L 14=7508 (.C 40), 10=3403 (LC 40) (LC 40)	,	Ke=1.00; Cat
FORCES	(lb) - Max	timum Com	pression/Maximum		Interior (1) 5-
	Tension	9/607 2 4-	2256/502		15-8-0, Exter
TOP CHORD	4-5=-122	7/286. 5-6=	-732/262.6-7=-809/273		22-8-14 to 30
	7-9=-181	8/288, 9-10	=-4182/500		members and
BOT CHORD	1-18=-66	3/4260, 16-	18=-663/4260,		Lumber DOL
	15-16=-4	38/2670, 14 70/1264 11	1-15=-194/774, 1 12- 242/2206	5)	TCLL: ASCE
	10-11=-3	42/3306	1-13=-342/3300,		Plate DOL=1
WEBS	2-18=-20	5/1970, 2-1	6=-2004/377,		$C_{s=1} 00^{\circ} C_{t=1}$
	4-16=-55	2/3936, 7-1	3=-262/1599,	6)	Unbalanced
	9-13=-24	47/440, 9-1	1=-248/2321,		design.
	0-14=-88 7-1416	0/120, 5-15 60/406 4-1	=-202/1210, 53934/687	7)	Provide adeo
NOTES	/ 14=10	00/ 1 00, 1 -1	0- 0007/001	8)	i nis truss ha
NOTED				9)	* This truss h
				,	

be connected together with 10d

ails as follows: connected as follows: 2x4 - 1 row at 0-9-0

ds connected as follows: 2x8 - 2 rows

0-8-0 oc ted as follows: 2x4 - 1 row at 0-9-0 oc.

considered equally applied to all plies, ed as front (F) or back (B) face in the LOAD ction. Ply to ply connections have been listribute only loads noted as (F) or (B), wise indicated.

roof live loads have been considered for

- 7-16; Vult=115mph (3-second gust) n; TCDL=6.0psf; BCDL=6.0psf; h=35ft; t. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2E) 0-1-12 to 5-2-2, 2-2 to 14-8-0, Exterior(2E) 14-8-0 to rior(2R) 15-8-0 to 22-8-14, Interior (1) 0-2-4 zone; cantilever left and right d vertical left and right exposed;C-C for d forces & MWFRS for reactions shown; =1.60 plate grip DOL=1.60
- 7-16; Pr=25.0 psf (roof LL: Lum DOL=1.15 .15); Pf=25.0 psf (Lum DOL=1.15 Plate Is=1.0; Rough Cat C; Fully Exp.; Ce=0.9; =1.10
- snow loads have been considered for this
- quate drainage to prevent water ponding.
- is been designed for a 10.0 psf bottom ad nonconcurrent with any other live loads.
- has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.

- 10) Bearings are assumed to be: Joint 1 SPF No.2 crushing capacity of 425 psi, Joint 14 SP 2400F 2.0E crushing capacity of 805 psi, Joint 10 SPF No.2 crushing capacity of 425 psi.
- 11) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 534 lb uplift at joint 1, 392 lb uplift at joint 10 and 1001 lb uplift at joint 14
- 12) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 13) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.
- 14) Use Simpson Strong-Tie LUS26 (4-10d Girder, 4-10d Truss, Single Ply Girder) or equivalent spaced at 16-0-0 oc max. starting at 1-4-12 from the left end to 29-4-12 to connect truss(es) to front face of bottom chord.
- 15) Use Simpson Strong-Tie LUS26 (4-10d Girder, 3-10d Truss, Single Ply Girder) or equivalent spaced at 2-0-0 oc max. starting at 9-4-12 from the left end to 21-4-12 to connect truss(es) to front face of bottom chord.

ELOPMENT SER

LEE'S'SUMMIT'SMISSOURI 05/21/2024 9:18:45

ontinued on page 2

Scale = 1:74.7

Loading

TCLL (roof)

Snow (Pf)

TCDL

BCLL

BCDI

Job	Truss	Truss Type	Qty	Ply	Roof - CB Lot 151	
P230398-01	C03	Hip Girder	1	2	Job Reference (optional)	160735725

Run: 8.63 S Aug 30 2023 Print: 8.630 S Aug 30 2023 MiTek Industries, Inc. Tue Sep 12 18:26:39 ID:m?rts4KhE263g2hh6cwmJgyx6sk-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

16) Fill all nail holes where hanger is in contact with lumber. 17) N/A

LOAD CASE(S) Standard

Dead + Snow (balanced): Lumber Increase=1.15, Plate 1) Increase=1.15

Uniform Loads (lb/ft)

Vert: 1-5=-70, 5-6=-70, 6-10=-70, 1-10=-20

Concentrated Loads (lb)

Vert: 18=-726 (F), 11=-726 (F), 15=-726 (F), 25=-726 (F), 26=-726 (F), 27=-726 (F), 28=-726 (F), 29=-726 (F), 31=-726 (F), 33=-726 (F), 34=-726 (F), 35=-726 (F), 36=-726 (F), 37=-726 (F), 38=-728 (F)

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent touls be personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANS/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

Page: 2

Job	Truss	Truss Type	Qty	Ply	Roof - CB Lot 151	
P230398-01	CJ01	Diagonal Hip Girder	1	1	Job Reference (optional)	160735726

Run: 8.63 S Aug 30 2023 Print: 8.630 S Aug 30 2023 MiTek Industries, Inc. Tue Sep 12 18:26:39 ID:idVeFtx6L7iry3uPkRzBSYyx7_z-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

l/defl

n/a n/a

9 >717

10 >500 L/d

240

180

PLATES

Weight: 25 lb

MT20

GRIP

244/190

FT = 20%

Scale = 1:43.4

SLIDER

BRACING

TOP CHORD

BOT CHORD

FORCES

TOP CHORD

BOT CHORD

DOL=1.60

Cs=1.00; Ct=1.10

WFBS

1)

2)

NOTES

REACTIONS (size)

Plate Offsets (X, Y): [2:0-1-8,0-0-7], [10:Edge,0-2-8]

5-6-6 oc purlins.

2=0-4-9, 6= Mechanical, 7=

2=477 (LC 23), 6=80 (LC 23),

Max Uplift 2=-57 (LC 16), 6=-7 (LC 16), 7=-79

Mechanical

7=263 (LC 23)

1-2=0/30, 2-4=-391/44, 4-5=-78/80,

2-10=-138/219, 9-10=-5/68, 4-9=0/77,

(Ib) - Maximum Compression/Maximum

Max Horiz 2=138 (LC 16)

(LC 16)

bracing.

Max Grav

Tension

5-6=-13/33

8-9=0/0, 7-8=0/0

Wind: ASCE 7-16; Vult=115mph (3-second gust)

reactions shown; Lumber DOL=1.60 plate grip

Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=35ft;

Ke=1.00; Cat. II; Exp C; Enclosed; MWFRS (envelope)

TCLL: ASCE 7-16; Pr=25.0 psf (roof LL: Lum DOL=1.15

Plate DOL=1.15); Pf=25.0 psf (Lum DOL=1.15 Plate

DOL=1.15); Is=1.0; Rough Cat C; Fully Exp.; Ce=0.9;

exterior zone and C-C Corner (3) zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for

5-8=-158/132

Loading	(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)
TCLL (roof)	25.0	Plate Grip DOL	1.15		тс	0.59	Vert(LL)	-0.09	9
Snow (Pf)	25.0	Lumber DOL	1.15		BC	0.68	Vert(CT)	-0.13	10
TCDL	10.0	Rep Stress Incr	NO		WB	0.03	Horz(CT)	0.06	7
BCLL	0.0*	Code	IRC2018	/TPI2014	Matrix-S				
BCDL	10.0								
LUMBER TOP CHORD BOT CHORD	2x4 SP No.2 2x4 SP No.2 *Except	* 10-4:2x3 SPF No.2	3) 4)	Unbalanced design. This truss ha	snow loads ha s been design	ve been cor ed for greate	nsidered for t	his f live	

Left 2x4 SP No.2 -- 1-7-9 overhangs non-concurrent with other live loads. 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. Structural wood sheathing directly applied or 6) * This truss has been designed for a live load of 20.0psf Rigid ceiling directly applied or 10-0-0 oc

- on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members. Bearings are assumed to be: , Joint 2 SP No.2 crushing 7)
 - capacity of 565 psi.
 - Refer to girder(s) for truss to truss connections.
 - Provide mechanical connection (by others) of truss to 9) bearing plate capable of withstanding 7 lb uplift at joint 6, 57 lb uplift at joint 2 and 79 lb uplift at joint 7.
 - 10) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
 - 11) "NAILED" indicates Girder: 3-10d (0.148" x 3") toe-nails per NDS auidelines.
 - 12) In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (F) or back (B).
 - LOAD CASE(S) Standard
 - Dead + Snow (balanced): Lumber Increase=1.15, Plate 1) Increase=1.15 Uniform Loads (lb/ft)
 - Vert: 1-6=-70, 2-10=-20, 7-9=-20

Page: 1

Job	Truss	Truss Type	Qty	Ply	Roof - CB Lot 151	
P230398-01	D01	Scissor Supported Gable	2	1	Job Reference (optional)	160735727

Run: 8.63 S Aug 30 2023 Print: 8.630 S Aug 30 2023 MiTek Industries, Inc. Tue Sep 12 18:26:40 ID:I?iDxIh3U4YRR3ii3h_aCiyx6tY-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

BCDL LUMBER TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.2 WEBS 2x3 SPF No.2 OTHERS 2x3 SPF No.2 SLIDER Left 2x4 SP No.2 -- 4-5-14, Right 2x4 SP No.2 -- 4-4-7 BRACING TOP CHORD Structural wood sheathing directly applied or 6-0-0 oc purlins BOT CHORD Rigid ceiling directly applied or 6-0-0 oc bracing. REACTIONS 2=14-8-0, 10=14-8-0, 11=14-8-0, (size) 12=14-8-0, 13=14-8-0, 14=14-8-0, 15 = 14 - 8 - 0Max Horiz 2=154 (LC 13) Max Uplift 2=-62 (LC 17), 10=-16 (LC 17), 11=-133 (LC 17), 12=-70 (LC 17), 14=-76 (LC 16), 15=-131 (LC 16) 2=223 (LC 23), 10=128 (LC 24), Max Grav 11=357 (LC 24), 12=269 (LC 24), 13=223 (LC 33), 14=271 (LC 23), 15=357 (LC 23) FORCES (lb) - Maximum Compression/Maximum Tension TOP CHORD 1-2=0/24, 2-3=-148/126, 3-5=-123/102, 5-6=-90/136, 6-7=-90/132, 7-9=-116/69, 9-10=-88/76 BOT CHORD 2-15=-61/115, 14-15=-66/114, 13-14=-64/115, 12-13=-64/115, 11-12=-66/115, 10-11=-56/110 WEBS 6-13=-141/1, 5-14=-239/97, 3-15=-287/162, 7-12=-236/95, 9-11=-289/162 NOTES

Scale = 1:46.4

Loading

TCLL (roof)

Snow (Pf)

TCDL

BCLL

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=35ft; Ke=1.00; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) -0-11-0 to 4-1-0, Interior (1) 4-1-0 to 7-5-12. Exterior(2R) 7-5-12 to 12-5-12, Interior (1) 12-5-12 to 14-6-14 zone; cantilever left and right exposed ; end vertical left and right exposed:C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable or consult qualified building designer as per ANSI/TPI 1
- TCLL: ASCE 7-16; Pr=25.0 psf (roof LL: Lum DOL=1.15 4) Plate DOL=1.15); Pf=25.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat C; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10
- 5) Unbalanced snow loads have been considered for this design.
- This truss has been designed for greater of min roof live 6) load of 12.0 psf or 2.00 times flat roof load of 25.0 psf on overhands non-concurrent with other live loads.
- Gable studs spaced at 2-0-0 oc. 8)
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 9) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- 10) All bearings are assumed to be SP No.2 crushing capacity of 565 psi.
- 11) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 16 lb uplift at joint 10, 62 lb uplift at joint 2, 76 lb uplift at joint 14, 131 lb uplift at joint 15, 70 lb uplift at joint 12 and 133 lb uplift at joint 11.

12) Beveled plate or shim required to provide full bearing surface with truss chord at joint(s) 10.

13) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard

Job	Truss	Truss Type	Qty	Ply	Roof - CB Lot 151	
P230398-01	D02	Scissor	15	1	Job Reference (optional)	160735728

Run: 8.63 S Aug 30 2023 Print: 8.630 S Aug 30 2023 MiTek Industries, Inc. Tue Sep 12 18:26:40 ID:aX2aiF9TrY0h9ILFUSCGQRyx6uE-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

BRACING		
TOP CHORD	Structura	l wood sheathing directly applied or
	2-2-0 oc p	ourlins.
BOT CHORD	Rigid ceil	ing directly applied or 10-0-0 oc
	bracing.	
REACTIONS	(size)	2=0-3-8, 6= Mechanical
	Max Horiz	2=154 (LC 13)
	Max Uplift	2=-117 (LC 16), 6=-88 (LC 17)
	Max Grav	2=821 (LC 23), 6=746 (LC 24)
FORCES	(lb) - Max	imum Compression/Maximum
	Tension	
TOP CHORD	1-2=0/24,	2-4=-1296/165, 4-6=-1302/181
BOT CHORD	2-7=-65/9	82, 6-7=-63/983

WEBS

Scale = 1:44.9

Loading

TCLL (roof)

Snow (Pf)

LUMBER

WEBS

SLIDER

TOP CHORD

BOT CHORD

TCDL

BCLL

BCDL

NOTES

Unbalanced roof live loads have been considered for 1) this design.

4-7=0/767

2) Wind: ASCE 7-16: Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=35ft; Ke=1.00; Cat. II: Exp C: Enclosed: MWFRS (envelope) exterior zone and C-C Exterior(2E) -0-11-0 to 4-1-0, Interior (1) 4-1-0 to 7-5-12, Exterior(2R) 7-5-12 to 12-5-12, Interior (1) 12-5-12 to 14-6-14 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

- load of 12.0 psf or 2.00 times flat roof load of 25.0 psf on overhangs non-concurrent with other live loads. This truss has been designed for a 10.0 psf bottom 6) chord live load nonconcurrent with any other live loads.
- 7) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- Bearings are assumed to be: Joint 2 SP No.2 crushing 8) capacity of 565 psi.
- Refer to girder(s) for truss to truss connections.

10) Bearing at joint(s) 2 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.

- 11) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 88 lb uplift at joint 6 and 117 lb uplift at joint 2.
- 12) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard

September 13,2023

ELOPMENT SERVICES LEE'S'SUMMIT'SMISSOURI 05/21/2024 9:18:45

ΤΙΟΝ

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponent.com)

Job	Truss	Truss Type	Qty	Ply	Roof - CB Lot 151	
P230398-01	J01	Jack-Open	2	1	Job Reference (optional)	160735729

Run: 8.63 S Aug 30 2023 Print: 8.630 S Aug 30 2023 MiTek Industries, Inc. Tue Sep 12 18:26:41 ID:WzHepUPuyI1D29ymbUfe72yx7?g-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

1-10-15

Scale = 1:27.8

Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL		(psf) 25.0 25.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC20 ⁷	8/TPI2014	CSI TC BC WB Matrix-P	0.11 0.04 0.00	DEFL Vert(LL) Vert(CT) Horz(CT)	in 0.00 0.00 0.00	(loc) 2-5 2-5 4	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 10 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD SLIDER BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x4 SP No.2 Left 2x4 SP I Structural wc 1-10-15 oc p Rigid ceiling bracing. (size) 2= Max Horiz 2= Max Uplift 2= Max Grav 2 (L	No.2 1 pod shea purlins. directly =0-3-8, 4 echanica =80 (LC =-18 (LC =239 (LC C 7)	-4-12 athing directly applied applied or 10-0-0 oc = Mechanical, 5= al 16), 16), 4=-54 (LC 16) : 23), 4=77 (LC 23), 5	5 6 d or 7 8 9 1 5=38	 This truss ha chord live loa * This truss h on the bottor 3-06-00 tall h chord and ar Bearings are capacity of 5 Refer to gird Provide mec bearing plate 2 and 54 lb (This truss is International R802.10.2 a 	as been designed fa ad nonconcurrent v nas been designed m chord in all areas by 2-00-00 wide wil y other members. a assumed to be: , 655 psi. er(s) for truss to tr hanical connection e capable of withsta uplift at joint 4. designed in accord Residential Code nd referenced stan	for a 10.0 with any I for a liv s where II fit betv Joint 2 S russ con h (by oth anding 1 dance w sections idard AN	o) psf bottom other live loa e load of 20.0 a rectangle veen the botto SP No.2 crush nections. ers) of truss t 8 lb uplift at ji ith the 2018 s R502.11.1 a ISI/TPI 1.	ds.)psf om ning o oint nd					
FORCES	(lb) - Maximu Tension	um Com	pression/Maximum	L	UAD CASE(S)	Standard								
TOP CHORD BOT CHORD	1-2=0/31, 2-4 2-5=0/0	4=-87/40)											
NOTES 1) Wind: AS(Vasd=91n Ke=1.00; exterior zc and right e exposed;(reactions : DOL=1.60 2) TCLL: AS Plate DOL DOL=1.15	CE 7-16; Vult=1 nph; TCDL=6.0 Cat. II; Exp C; I one and C-C E; exposed ; end v C-C for membe shown; Lumber CE 7-16; Pr=25 =1.15); Pf=25. i); Is=1.0; Roug	115mph Dpsf; BCI Enclosed xterior(21 vertical le rs and fc r DOL=1 5.0 psf (r 0 psf (Lu gh Cat C	(3-second gust) DL=6.0psf; h=35ft; d; MWFRS (envelope E) zone; cantilever le sft and right prces & MWFRS for .60 plate grip oof LL: Lum DOL=1. m DOL=1.15 Plate ; Fully Exp.; Ce=0.9;	e) eft 15									STE OF M NATHA FOL	AISSOURIA

Unbalanced snow loads have been considered for this 3) design. 4) This truss has been designed for greater of min roof live

Cs=1.00; Ct=1.10

load of 12.0 psf or 2.00 times flat roof load of 25.0 psf on overhangs non-concurrent with other live loads.

ESSIONAL ET

September 13,2023

Job	Truss	Truss Type	Qty	Ply	Roof - CB Lot 151	
P230398-01	J02	Jack-Open	4	1	Job Reference (optional)	160735730

Run: 8.63 S Aug 30 2023 Print: 8.630 S Aug 30 2023 MiTek Industries, Inc. Tue Sep 12 18:26:41 ID:P?2aDgf3?IhF3N3oKOXZTUyx7?L-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

Scale = 1:39.5

Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 25.0 25.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018	8/TPI2014	CSI TC BC WB Matrix-S	0.25 0.32 0.02	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.03 -0.04 0.02	(loc) 9 10 7	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 20 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS SLIDER BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x4 SP No.2 *Excep 2x3 SPF No.2 Left 2x4 SP No.2 Structural wood she 4-0-0 oc purlins. Rigid ceiling directly bracing. (size) 2=0-3-8, 6 Mechanic Max Horiz 2=140 (LC 7=-58 (LC Max Grav 2=389 (LC 7=172 (LC (lb) - Maximum Com Tension	t* 10-4:2x3 SPF No.2 I-6-4 athing directly applied applied or 10-0-0 oc S= Mechanical, 7= al C 16), 16), 6=-27 (LC 16), 16), 23), 6=84 (LC 23), 23) pression/Maximum	4) 5) 6) 1 or 7) 8) 9) 10	This truss ha load of 12.0 µ overhangs no This truss ha chord live loa * This truss ha on the botton 3-06-00 tall b chord and an Bearings are capacity of 5 Refer to girdd Provide mecl bearing plate 6, 16 lb upliff 1) This truss is International R802.10.2 ar	s been designed ps for 2.00 times I on-concurrent with s been designed ad nonconcurrent nas been designed n chord in all area by 2-00-00 wide w by other members assumed to be: , 65 psi. er(s) for truss to t hanical connectio capable of withsi at joint 2 and 58 designed in accor Residential Code nd referenced stai Standard	for great lat roof lik of the other lin for a 10.0 with any d for a liv is where ill fit betw Joint 2 \$ russ con n (by oth tanding 2 lib uplift a dance w sections ndard AN	er of min roof pad of 25.0 p: ve loads. 0 psf bottom other live loa e load of 20.0 e load of 20.0 e load of 20.0 SP No.2 crush nections. ers) of truss t it joint 7. ith the 2018 s R502.11.1 a JSI/TPI 1.	live sf on ds. Dpsf om ning oint nd					
TOP CHORD BOT CHORD WEBS NOTES 1) Wind: ASI Vasd=91r Ke=1.00; exterior zc and right exposed;(reactions DOL=1.60	Tension 1-2=0/31, 2-4=-274// 2-10=-76/111, 9-10= 8-9=0/0, 7-8=0/0 5-8=-95/68 CE 7-16; Vult=115mph nph; TCDL=6.0psf; BC Cat. II; Exp C; Enclose cone and C-C Exterior(2 exposed ; end vertical I C-C for members and fi shown; Lumber DOL= CE 7.16; Dr. 25.0 pcf (0, 4-5=-74/75, 5-6=-2 -6/49, 4-9=-1/54, (3-second gust) DL=6.0psf; h=35ft; d; MWFRS (envelope E) zone; cantilever le eft and right prces & MWFRS for I.60 plate grip	8/45 :) ft									STE OF M NATHA FOI	MISSOUR NIEL X

- TCLL: ASCE 7-16; Pr=25.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=25.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat C; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10
- 3) Unbalanced snow loads have been considered for this design.

September 13,2023

PE-2022042259

SIONAL ET

RELEASE OR CONSTRUCTION AS NOTED ON LANS REVIEW DEVELORIMENT SERVICES LEE'S SUMMIT'S MISSOURI 05/21/2024 9:18:46

Job	Truss	Truss Type	Qty	Ply	Roof - CB Lot 151	
P230398-01	J03	Jack-Open	6	1	Job Reference (optional)	160735731

Run: 8.63 S Aug 30 2023 Print: 8.630 S Aug 30 2023 MiTek Industries, Inc. Tue Sep 12 18:26:41 ID:?ius9Sqri3SFIX7U8Knr2Ryx7?7-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

4-0-0

Scale = 1:30

Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL		(psf) 25.0 25.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC201	8/TPI2014	CSI TC BC WB Matrix-P	0.52 0.19 0.00	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.01 -0.03 0.01	(loc) 2-5 2-5 4	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 19 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD SLIDER BRACING TOP CHORD BOT CHORD	2x4 SP N 2x4 SP N Left 2x4 S Structura 4-0-0 oc Rigid ceil bracing.	lo.2 lo.2 SP No.2 2 l wood shea purlins. ing directly	2-5-0 athing directly applie applied or 10-0-0 oc	5) 6) d or 7) 8)	This truss ha chord live loa * This truss h on the bottor 3-06-00 tall h chord and ar Bearings are capacity of 5 Refer to gird	as been designed ad nonconcurrent has been designed in chord in all area by 2-00-00 wide w hy other members assumed to be: , 65 psi. er(s) for truss to t	for a 10.0 with any d for a liv as where iill fit betw Joint 2 S cruss con	0 psf bottom other live loa e load of 20. a rectangle veen the bott SP No.2 crus nections.	ads. Opsf tom shing					
REACTIONS	(size) Max Horiz Max Uplift Max Grav	2=0-3-8, 4 Mechanica 2=140 (LC 2=-16 (LC 2=389 (LC 5=79 (LC	4= Mechanical, 5= al 5 16) 5 16), 4=-108 (LC 16) 5 23), 4=217 (LC 23) 7)	9) 1(,	Provide mec bearing plate joint 4 and 1) This truss is International R802.10.2 a	hanical connection capable of withst 6 lb uplift at joint 2 designed in accor Residential Code nd referenced star Standard	n (by oth tanding 1 2. rdance w sections ndard AN	ers) of truss 08 lb uplift a ith the 2018 5 R502.11.1 a ISI/TPI 1.	to it and					
FORCES	(lb) - Max Tension	kimum Com	pression/Maximum	Γ.		Otanuaru								
TOP CHORD BOT CHORD	1-2=0/31 2-5=0/0	, 2-4=-157/9	94											
NOTES														
 Wind: AS Vasd=91r Ke=1.00; exterior z and right exposed; reactions DOL=1.60 TCLLLAS 	CE 7-16; Vu mph; TCDL= Cat. II; Exp one and C-C exposed ; e C-C for men shown; Lun 0 C-C 7 16; Pr	Ilt=115mph =6.0psf; BC C; Enclose C Exterior(2 nd vertical I nbers and for hber DOL=1	(3-second gust) DL=6.0psf; h=35ft; d; MWFRS (envelop E) zone; cantilever le eft and right prces & MWFRS for I.60 plate grip	e) eft								la l	STATE OF I	MISSOLINA

- 2 Plate DOL=1.15); Pf=25.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat C; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10
- Unbalanced snow loads have been considered for this 3) desian.
- 4) This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 25.0 psf on overhangs non-concurrent with other live loads.

SSIONAL ET September 13,2023 DEVELORMENT SERVICES

PE-2022042259

LEE'S'SUMMIT'SMISSOURI 05/21/2024 9:18:46

TION

ΊFW

 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.
 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not besign value for use only with with twit even connectors. This design is based only upon parameters shown, and is for an individual building designer must verify the applicability of design parameters and properly incorporate this design into the overall building designer must verify the applicability of design parameters and properly incorporate this design into the overall building designer. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcscomponents.com)

Job	Truss	Truss Type	Qty	Ply	Roof - CB Lot 151	
P230398-01	LG01	Lay-In Gable	1	1	Job Reference (optional)	160735732

Run: 8.63 S Aug 30 2023 Print: 8.630 S Aug 30 2023 MiTek Industries, Inc. Tue Sep 12 18:26:41 ID:_uJbS0CrjO0V7hkhf7NuTgyx7?w-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

September 13,2023

DEVELOPMENT SERVICES LEE'S'SUMMIT'S MISSOURI 05/21/2024 9:18:46

TION

Scale = 1:58.3

Plate Offsets (X, Y): [5:0-2-11,Edge], [11:Edge,0-3-8], [12:Edge,0-3-8]

0.0* 10.0	Rep Stress Incr Code	1.15 YES IRC201	8/TPI2014	BC WB Matrix-S	0.96 0.33 0.34	Vert(TL) Vert(TL) Horiz(TL)	n/a 0.00	- 12	n/a n/a n/a	999 999 n/a	MT20 Weight: 126 lb	244/190 FT = 20%
No.2 No.2 No.3 No.2 al wood shea purlins, exc purlins, exc purlins (6-0	athing directly applied sept end verticals, and -0 max.): 5-11.	T B or	OP CHORD 1 4 7 1 OT CHORD 1 1 1 1 1 1 1 1 2 5 5 5 5 5 5 5 5 5 5 5	-2=-681/668, 2-3=- -5=-272/274, 5-6=- -8=-176/192, 8-9=- 0-11=-176/192, 11- -22=-177/194, 20-2 9-20=-178/195, 18 7-18=-178/194, 16- 5-16=-178/194, 12- -22=-289/184, 3-20	545/54 176/19 176/19 12=-19 22=-17 19=-17 15=-17 15=-17 13=-17	2, 3-4=-404/4 1, 6-7=-176/ 2, 9-10=-176/ 33/203 7/195, 78/195, 78/194, 78/194, 78/194	15, 92, (192,	9) This choi 10) * Th on t 3-06 choi 11) All b cap: 12) Prov bea	truss h rd live lc is truss he botto 5-00 tall rd and a bearings acity of vide me	as bee ad nor has be m cho by 2-0 ny oth are as 565 ps chanica	n designed for a noconcurrent with een designed for rd in all areas wh 0-00 wide will end er members. ssumed to be SP i. al connection (by withstandi	10.0 psf bottom any other live loads. a live load of 20.0psf here a rectangle between the bottom No.2 crushing others) of truss to ing 193 lb unlift at
ling directly t midpt	applied or 10-0-0 oc 11-12, 5-18, 6-17, 7-1 8-15, 9-14, 10-13	6,	4 6 9	-22=-283/184, 3-20 -19=-306/192, 5-18 -17=-321/75, 7-16= -14=-311/79, 10-13	=-292/ =-292/ =-289/6 =-204/	/228, /5, 8-15=-291/ /142	/67,	joint Ib u joint	1, 73 lb plift at jo 18, 51	uplift int 20, b uplif	at joint 12, 168 lk 169 lb uplift at jo t at joint 17, 40 lk	o uplift at joint 22, 166 bint 19, 140 lb uplift at o uplift at joint 16, 46
1=18-10-9 13=18-10 15=18-10 17=18-10 19=18-10 22=18-10 1=391 (LC	1, 12=18-10-9, 9, 14=18-10-9, 9, 16=18-10-9, 9, 18=18-10-9, 9, 18=18-10-9, 9, 20=18-10-9, 9, 20=18-10-9, 9	N (1)	OTES Wind: ASCE Vasd=91mph Ke=1.00; Cat exterior zone Interior (1) 5- 14-11-10, Intu left and right	7-16; Vult=115mph ; TCDL=6.0psf; BC . II; Exp C; Enclose and C-C Exterior(2 3-12 to 7-10-13, Ex erior (1) 14-11-10 to exposed - end verti	(3-sec DL=6.0 d; MW E) 0-3- terior(2 0 18-9-0	cond gust) Dpsf; h=35ft; FRS (envelop -12 to 5-3-12, 2R) 7-10-13 to 0 zone; cantil- and right	be) D ever	lb uj at jo 13) This Inte R80 14) Gra or th bott	plift at jo plift at jo s truss is rnationa (2.10.2 a phical p ne orient om chor	int 15, desig I Resic Ind refu Ind refu In re ation c d.	65 lb uplift at join ned in accordance dential Code sect erenced standare presentation doe of the purlin along	nt 14 and 99 lb uplift ce with the 2018 tions R502.11.1 and d ANSI/TPI 1. es not depict the size g the top and/or
1=-193 (L 13=-99 (L 15=-46 (L 17=-51 (L 19=-169 (22=-168 (1=344 (L 13=247 (L	C 14), 12=-73 (LC 15) C 12), 14=-65 (LC 13) C 12), 16=-40 (LC 12) C 13), 18=-140 (LC 12) LC 16), 20=-166 (LC 1 LC 16) C 13), 12=46 (LC 12), C 46), 14=352 (LC 36	6, 6, 3), 2) 16), 3),	exposed;C-C reactions sho DOL=1.60 Truss design only. For stu see Standard or consult qu TCLL ASCE	for members and fi wm; Lumber DOL=' ed for wind loads ir ds exposed to wind I Industry Gable En- alified building desi 7-16: Pr=25 0 nsf (n the pl (norm d Detai gner as	AMWFRS for ate grip ane of the tru al to the face) is as applicat s per ANSI/TF	ss , ble, PI 1.	LOAD C	CASE(S)	Star	STATE OF I	MISSOLUTION
15=330 (L 17=361 (L 19=347 (L 22=340 (L ximum Com	C 36), 16=329 (LC 36 C 36), 18=219 (LC 40 C 41), 20=330 (LC 37 C 41) pression/Maximum	5), 3))), 7), 4) 5) 6) 7)	Plate DOL=1 Plate DOL=1 DOL=1.15); I Cs=1.00; Ct= Unbalanced s design. Provide adeq All plates are Gable require	(15); Pf=25.0 psf (L s=1.0; Rough Cat C 1.10 snow loads have be uate drainage to pr 1.5x4 MT20 unless es continuous bottol	event v otherv m chor	DL=1.15 Plate Exp.; Ce=0.9 asidered for th water ponding wise indicated d bearing.	is I.		1		PE-2022	BER 042259
	10.0 0.0* 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0	10.0 Rep Stress Incr 0.0* Code 10.0 Code 10.0 Code No.2 No.3 No.3 No.2 al wood sheathing directly applied purlins, except end verticals, and purlins, except end verticals, and purlins (6-0-0 max.): 5-11. iling directly applied or 10-0-0 oc thight t 11-12, 5-18, 6-17, 7-1 8-15, 9-14, 10-13 1=18-10-9, 12=18-10-9, 13=18-10-9, 13=18-10-9, 19=18-10-9, 20=18-10-9, 22=18-10-9, 22=18-10-9, 22=18-10-9, 22=18-10-9, 22=18-10-9, 22=18-10-9, 22=18-10-9, 22=18-10-9, 22=18-10-9, 22=18-10-9, 22=18-10-9, 22=18-10-9, 22=18-10-9, 22=18-10-9, 22=18-10-9, 22=18-10-9, 22=18-10-9, 22=18-10-9, 22=18-10-9, 22=18-10-9, 22=18-10-9, 22=18-10-9, 22=18-10-9, 22=18-10-9, 22=18-10-9, 22=18-10-9, 22=18-10-9, 22=18-10-9, 22=18-10-9, 22=18-10-9, 22=18-10-9, 22=18-10-9, 22=18-10-9, 22=18-10-9, 22=18-10-9, 22=18-10-9, 22=18-10-9, 22=18-10-9, 22=18-10-9, 22=18-10-9, 22=18-10-9, 22=18-10-9, 22=18-10-9, 22=18-10-9, 22=18-10-9, 22=18-10-9, 22=18-10-9, 22=18-10-9, 22=18-10-9, 22=18-10-9, 22=18-10-9, 22=18-10-9, 22=168, [LC 13), 12=-46, [LC 12], 13=-46, [LC 12], 13=-46, [LC 12], 13=-46, [LC 13], 12=-46, [LC 12], 13=-46, [LC 14], 13=247, (LC 46), 14=352, [LC 36, 15=320, [LC 37, 22=340, (LC 41), 20=330, (LC 37, 22=340, (LC 41)	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	10.0 Rep Stress Incr YES 0.0* Code IRC2018/TPI2014 10.0 IRC2018/TPI2014 10.0 TOP CHORD 1 vo.2 7 No.3 BOT CHORD 1 al wood sheathing directly applied or purlins, except end verticals, and purlins, except end verticals, and purlins (6-0-0 max.): 5-11. BOT CHORD 1 11 11-12, 5-18, 6-17, 7-16, 8-15, 9-14, 10-13 WEBS 2 13=18-10-9, 12=18-10-9, 13=18-10-9, 12=18-10-9, 15=18-10-9, 12=18-10-9, 19=18-10-9, 20=18-10-9, 22=18-10-9, 20=18-10-9, 22=18-10-9, 20=18-10-9, 19=-169 (LC 16), 20=-166 (LC 15), 13=-99 (LC 12), 14=-65 (LC 13), 15=-46 (LC 12), 16=-40 (LC 12), 17=-51 (LC 13), 18=-140 (LC 13), 19=-169 (LC 16), 20=-166 (LC 16), 22=-168 (LC 16) NOTES 1 Wind: ASCE Vasd=91mph Ke=1.00; Cat exterior zone 1 Interior (1) 5- 14-11-10, Intri- left and right. exposed; C-C reactions sho DOL=1.60 1 State of (LC 16), 20=-166 (LC 16), 22=-168 (LC 16), 20=-166 (LC 16), 21=330 (LC 36), 18=219 (LC 40), 19=347 (LC 41), 20=330 (LC 37), 22=340 (LC 41) 3) 1 TCL: ASCE Plate DOL=1 DOL=1.15); It Cs=1.00; Ct= 1 Unbalanced st design. 5) 1 Unbalanced st design. 10 1 All plates are 10 1 <td>10.0 0.0* 10.0Rep Stress Incr CodeYES IRC2018/TPI2014WB Matrix-S10.0CodeIRC2018/TPI2014Matrix-S10.01-2=-681/668, 2-3=- 4-5=-272/274, 5-6=- 7-8=-176/192, 8-9=- 10-11=-176/192, 8-9=- 10-11=-178/194, 14- 13-14=-178/194, 14- 13-</td> <td>10.0 0.0* 10.0Rep Stress Incr CodeYES IRC2018/TPI2014WB0.34 Matrix-SNo.2 $v.2$TOP CHORD$1-2=-681/668, 2-3=-545/54$ $4-5=-272/274, 5-6=-176/192, 8-9=-176/192, 8-9=-176/192, 8-9=-176/192, 8-9=-176/192, 8-9=-176/192, 8-9=-176/192, 8-9=-176/192, 8-9=-176/192, 8-9=-176/192, 8-9=-176/192, 8-9=-176/192, 8-9=-176/192, 8-9=-176/192, 8-9=-176/192, 8-9=-176/192, 8-9=-176/192, 8-9=-176/192, 8-9=-176/192, 8-9=-176/192, 8-9=-176/192, 8-9=-176/192, 8-9=-176/192, 8-9=-176/192, 8-9=-176/192, 8-9=-176/192, 8-9=-176/192, 8-9=-176/192, 8-9=-176/192, 8-9=-176/192, 8-9=-176/192, 8-9=-176/192, 8-9=-176/192, 8-9=-176/192, 8-9=-176/192, 8-9=-176/192, 8-9=-176/192, 8-9=-176/192, 8-9=-176/192, 8-9=-176/192, 8-9=-176/192, 8-9=-176/192, 8-9=-176/192, 8-9=-176/192, 8-9=-176/192, 8-9=-176/192, 8-9=-176/192, 8-9=-176/192, 8-9=-176/192, 8-9=-176/192, 8-9=-176/192, 8-9=-176/192, 8-9=-176/192, 8-9=-176/192, 8-9=-176/192, 8-9=-176/192, 8-9=-176/192, 8-9=-176/192, 8-9=-176/192, 8-9=-176/192, 8-9=-176/192, 8-9=-176/192, 8-9=-176/192, 8-9=-176/192, 8-9=-176/192, 8-9=-176/192, 8-9=-176/192, 8-9=-176/192, 8-9=-176/192, 8-9=-176/192, 8-9=-176/192, 8-9=-176/192, 8-9=-176/192, 8-9=-176/192, 8-9=-176/192, 8-9=-176/192, 8-9=-176/192, 8-9=-176/192, 8-9=-176/192, 8-9=-176/192, 8-9=-176/192, 8-9=-176/192, 8-9=-176/192, 8-9=-176/192, 8-9=-176/192, 8-9=-176/192, 8-9=-176/192, 8-9=-176/192, 8-9=-176/192, 8-9=-176/192, 8-9=-176/192, 8-9=-176/192, 8-9=-176/192, 8-9=-176/192, 8-9=-176/192, 8-9=-176/192, 8-9=-176/192, 8-9=-176/192, 8-9=-176/192, 8-9=-176/192, 8-9=-176/192, 8-9=-176/192, 8-9=-176/192, 8-9=-292/14-19306/192, 8-109, 8-109, 8-109, 8-109, 8-109, 8-109, 8-109, 8-109, 8-109, 8-109, 8-109, 8-109, 8-109, 8-109, 8-109, 8-109, 8-109, 8-109, 8-109, 8-109, 8-109, 8-109, 8-109, 8-109, 8-109, 8-109, 8-109, 8-109, 8-109, 8-109, 8-109, 8-109, 8-109, 8-109, 8-109, 8-109, 8-109, 8-109, 8-109, 8-109, 8-109, 8-109, 8-109, 8-109, 8-109, 8-109, 8-109, 8-1$</td> <td>10.0 0.0*Rep Stress Incr CodeYES IRC2018/TPI2014WB0.34 Matrix-SHorz(1L)10.0 1.0CodeIRC2018/TPI2014Matrix-SHorz(1L)10.0TOP CHORD1.2=681/668, 2-3=545/542, 3-4=-404/4Vo.2 Vo.24-5=-272/274, 5-6=-176/192, 9-10=-176/192, 9-10=-176/192, 9-10=-176/192, 9-10=-176/192, 9-10=-176/192, 9-10=-176/192, 9-10=-176/192, 9-10=-176/192, 9-10=-178/194, 12-15=-178/194, 12-15=-178/194, 12-15=-178/194, 12-15=-178/194, 12-15=-178/194, 12-15=-178/194, 12-15=-178/194, 12-15=-178/194, 12-15=-178/194, 12-15=-178/194, 12-15=-178/194, 12-15=-178/194, 12-15=-178/194, 12-15=-178/194, 12-15=-178/194, 12-15=-178/194, 12-15=-178/194, 12-15=-178/194, 12-15=-178/194, 12-15=-178/194, 12-15=-178/194, 12-15=-178/194, 12-15=-178/194, 12-15=-178/194, 12-15=-178/194, 12-15=-178/194, 12-15=-178/194, 12-15=-178/194, 12-15=-178/194, 12-15=-178/194, 12-15=-178/194, 12-15=-178/194, 12-15=-178/194, 12-15=-178/194, 12-15=-178/194, 12-15=-178/194, 12-15=-178/194, 12-15=-178/194, 12-15=-178/194, 12-15=-178/194, 12-15=-178/194, 12-15=-178/194, 12-15=-178/194, 12-15=-178/194, 12-15=-178/194, 12-15=-178/194, 12-15=-178/194, 12-15=-178/194, 12-15=-178/194, 12-15=-178/194, 12-15=-178/194, 12-15=-178/194, 12-15=-178/194, 12-15=-178/194, 12-15=-178/194, 12-15=-178/194, 12-15=-178/194, 12-15=-178/194, 12-15=-178/194, 12-15=-178/194, 12-15=-178/194, 12-15=-178/194, 12-15=-178/194, 12-15=-178/194, 12-15=-178/194, 12-15=-178/194, 12-15=-178/194, 12-15=-178/194, 12-15=-178/194, 12-15=-178/194, 12-15=-178/194, 12-15=-178/194, 12-15=-178/194, 12-15=-178/194, 12-15=-178/194, 12-15=-178/194, 12-15=-178/194, 12-15=-178/194, 12-15=-178/194, 12-15=-178/194, 12-15=-178/194, 12-15=-178/194, 12-15=-178/194, 12-15=-178/194, 12-15=-178/194, 12-15=-178/194, 12-15=-178/194, 12-15=-178/194, 12-15=-178/194, 12-15=-178/194, 12-15=-178/194, 12-15=-178/194, 12-15=-178/194, 12-15=-178/194, 12-1</td> <td>10.0 0.0* Rep Stress Incr YES Code WB 0.34 Matrix-S Horz(LL) 0.00 Matrix-S <td< td=""><td>10.0 Rep Stress Incr YES WB 0.34 Horz(L) 0.00 12 10.0 Code IRC2018/TPI2014 Matrix-S Matrix-S 9) This 10.0 TOP CHORD 1-2=681/668, 2-3=-545/542, 3-4=-404/415, 9 9) This 9) This 10.0 TOP CHORD 1-2=681/668, 2-3=-545/542, 3-4=-404/415, 9 9) This 9) This 5-45/542, 3-4=-404/415, 9 9) This 9) This 5-45/542, 3-4=-404/415, 9 9) This 7-8=-176/191, 6-7=-176/191, 6-7=-176/192, 9-7=-176/192, 9-7=-176/192, 8-7=-176/192, 8-7=-176/192, 8-7=-176/192, 8-7=-176/192, 8-7=-176/192, 8-7=-176/192, 8-7=-176/192, 8-7=-176/192, 8-7=-176/192, 8-7=-176/192, 8-7=-176/192, 8-7=-176/192, 8-7=-176/192, 5-7=176/192, 5-7=176/192, 5-7=176/192, 5-7=176/192, 5-7=176/192, 5-7=176/192, 5-7=176/192, 5-7=176/192, 5-7=176/192, 5-7=176/192, 5-7=176/192, 5-7=176/192, 5-7=176/192, 5-7=176/192, 5-7=176/192, 5-7=176/194, 5-7=178/194, 12-13=-178/194, 12-13=-178/194, 12-13=-178/194, 12-13=-178/194, 12-13=-178/194, 12-13=-178/194, 12-13=-178/194, 12-13=-178/194, 12-13=-178/194, 12-13=-178/194, 12-13=-178/194, 12-13=-178/194, 12-13=-178/194, 12-13=-178/194, 12-13=-178/194, 12-13=-178/194, 12-13=-178/194, 12-13=-178/194, 12-13=-178/194, 12-13=-178/194, 12-13=-178/194, 12-13=-178/194, 12-13=-178/194, 12-13=-178/194, 12-13=-178/194, 12-13=-178/194, 12-13=-178/194, 12-13=-178/194, 12-13=-178/194, 12-13=-178/194, 12-13=-178/194, 12-13=-178/194, 12-13=-178/194, 12-13=-178/</td><td>10.0 Rep Stress Incr YES WB 0.3 Horiz(1L) 0.00 12 n/a 0.0* Code IRC2018/TPI2014 Matrix-S Matrix-S 9) This truss in chord live low 10) 10) This truss in chord live low 10) 10) 11)</td><td>10.0 Rep Stress Incr YES WB 0.34 Horz(TL) 0.00 12 n/a 0.0* Code IRC2018/TPI2014 Matrix-S Matrix-S 9) This truss has bee chord live load nor the bottom chord live load nor thebottom chord live load nor the bottom chord live load no</td><td>10.0 Rep Stress Incr YES WB 0.34 Horz(TL) 0.00 12 n/a N/a 0.0 Code IRC2018/TPI2014 Matrix-S Matrix-S Weight: 126 lb 0.0 Value TOP CHORD 1-2=-81/668, 2-3=-545/542, 3-4=-404/415, 4-57/6192, 9-10=-176/192, 16-72-176/192, 9-10=-176/192, 9-10=-176/192, 16-72-176/192, 9-10=-176/192, 16-72-176/192, 9-10=-176/192, 16-72-176/192, 9-10=-176/192, 10-12=-178/194, 16-72-178/194, 16-72-178/194, 16-72-178/194, 16-72-178/194, 16-12=-178/194, 16-12=-178/194, 16-12=-178/194, 16-12=-178/194, 16-12=-178/194, 16-12=-178/194, 12-13=-178/194, 12-13=-178/194, 12-13=-178/194, 12-13=-178/194, 12-13=-178/194, 12-13=-178/194, 12-13=-178/194, 12-13=-178/194, 12-13=-178/194, 12-13=-178/194, 12-13=-178/194, 12-13=-178/194, 12-13=-178/194, 12-13=-178/194, 12-13=-178/194, 12-13=-178/194, 12-13=-178/194, 12-13=-178/194, 12-13=-178/194, 12-13=-178/194, 12-13=-178/194, 12-13=-178/194, 12-13=-178/194, 12-13=-178/194, 12-13=-178/194, 12-13=-178/194, 12-13=-178/194, 12-13=-178/194, 12-13=-178/194, 12-13=-178/194, 12-13=-178/194, 12-13=-178/194, 12-13=-178/194, 12-13=-178/194, 12-13=-178/194, 12-13=-178/194, 12-13=-178/194, 12-13=-178/194, 12-13=-178/194, 12-13=-178/194, 12-13=-178/194, 12-13=-178/194, 12-13=-178/194, 12-13=-178/194, 12-13=-178/194, 12-13=-178/194, 12-13=-178/194, 12-13=-178/194, 12-13=-178/194, 12-13=-178/194, 12-13=-178/194, 12-13=-178/194, 12-13=-178/194, 12-13=-178/194, 12-13=-178/194, 12-13=-178/194, 12-13=-178/194, 12-13=-178/194, 12-13=-178/194, 12-13=-178/194, 12-13=-178/194, 12-13=-178/194, 12-13=-178/194, 12-13=-178/194, 12-13=-178/194, 12-13=-178/194, 12-13=-178/194, 12-13=-178/194, 12-13=-178/194, 12-13=-178/194, 12-13=-178/194, 12-13=-178/194,</td></td<></td>	10.0 0.0* 10.0Rep Stress Incr CodeYES IRC2018/TPI2014WB Matrix-S10.0CodeIRC2018/TPI2014Matrix-S10.01-2=-681/668, 2-3=- 4-5=-272/274, 5-6=- 7-8=-176/192, 8-9=- 10-11=-176/192, 8-9=- 10-11=-178/194, 14- 13-14=-178/194, 14- 13-	10.0 0.0* 10.0Rep Stress Incr CodeYES IRC2018/TPI2014WB0.34 Matrix-SNo.2 $v.2$ TOP CHORD $1-2=-681/668, 2-3=-545/54$ $4-5=-272/274, 5-6=-176/192, 8-9=-176/192, 8-9=-176/192, 8-9=-176/192, 8-9=-176/192, 8-9=-176/192, 8-9=-176/192, 8-9=-176/192, 8-9=-176/192, 8-9=-176/192, 8-9=-176/192, 8-9=-176/192, 8-9=-176/192, 8-9=-176/192, 8-9=-176/192, 8-9=-176/192, 8-9=-176/192, 8-9=-176/192, 8-9=-176/192, 8-9=-176/192, 8-9=-176/192, 8-9=-176/192, 8-9=-176/192, 8-9=-176/192, 8-9=-176/192, 8-9=-176/192, 8-9=-176/192, 8-9=-176/192, 8-9=-176/192, 8-9=-176/192, 8-9=-176/192, 8-9=-176/192, 8-9=-176/192, 8-9=-176/192, 8-9=-176/192, 8-9=-176/192, 8-9=-176/192, 8-9=-176/192, 8-9=-176/192, 8-9=-176/192, 8-9=-176/192, 8-9=-176/192, 8-9=-176/192, 8-9=-176/192, 8-9=-176/192, 8-9=-176/192, 8-9=-176/192, 8-9=-176/192, 8-9=-176/192, 8-9=-176/192, 8-9=-176/192, 8-9=-176/192, 8-9=-176/192, 8-9=-176/192, 8-9=-176/192, 8-9=-176/192, 8-9=-176/192, 8-9=-176/192, 8-9=-176/192, 8-9=-176/192, 8-9=-176/192, 8-9=-176/192, 8-9=-176/192, 8-9=-176/192, 8-9=-176/192, 8-9=-176/192, 8-9=-176/192, 8-9=-176/192, 8-9=-176/192, 8-9=-176/192, 8-9=-176/192, 8-9=-176/192, 8-9=-176/192, 8-9=-176/192, 8-9=-176/192, 8-9=-176/192, 8-9=-176/192, 8-9=-176/192, 8-9=-176/192, 8-9=-176/192, 8-9=-176/192, 8-9=-176/192, 8-9=-176/192, 8-9=-176/192, 8-9=-176/192, 8-9=-176/192, 8-9=-176/192, 8-9=-176/192, 8-9=-176/192, 8-9=-176/192, 8-9=-176/192, 8-9=-176/192, 8-9=-176/192, 8-9=-176/192, 8-9=-176/192, 8-9=-176/192, 8-9=-176/192, 8-9=-176/192, 8-9=-176/192, 8-9=-176/192, 8-9=-176/192, 8-9=-176/192, 8-9=-176/192, 8-9=-292/14-19306/192, 8-109, 8-109, 8-109, 8-109, 8-109, 8-109, 8-109, 8-109, 8-109, 8-109, 8-109, 8-109, 8-109, 8-109, 8-109, 8-109, 8-109, 8-109, 8-109, 8-109, 8-109, 8-109, 8-109, 8-109, 8-109, 8-109, 8-109, 8-109, 8-109, 8-109, 8-109, 8-109, 8-109, 8-109, 8-109, 8-109, 8-109, 8-109, 8-109, 8-109, 8-109, 8-109, 8-109, 8-109, 8-109, 8-109, 8-109, 8-1$	10.0 0.0*Rep Stress Incr CodeYES IRC2018/TPI2014WB0.34 Matrix-SHorz(1L)10.0 1.0CodeIRC2018/TPI2014Matrix-SHorz(1L)10.0TOP CHORD1.2=681/668, 2-3=545/542, 3-4=-404/4Vo.2 Vo.24-5=-272/274, 5-6=-176/192, 9-10=-176/192, 9-10=-176/192, 9-10=-176/192, 9-10=-176/192, 9-10=-176/192, 9-10=-176/192, 9-10=-176/192, 9-10=-176/192, 9-10=-178/194, 12-15=-178/194, 12-15=-178/194, 12-15=-178/194, 12-15=-178/194, 12-15=-178/194, 12-15=-178/194, 12-15=-178/194, 12-15=-178/194, 12-15=-178/194, 12-15=-178/194, 12-15=-178/194, 12-15=-178/194, 12-15=-178/194, 12-15=-178/194, 12-15=-178/194, 12-15=-178/194, 12-15=-178/194, 12-15=-178/194, 12-15=-178/194, 12-15=-178/194, 12-15=-178/194, 12-15=-178/194, 12-15=-178/194, 12-15=-178/194, 12-15=-178/194, 12-15=-178/194, 12-15=-178/194, 12-15=-178/194, 12-15=-178/194, 12-15=-178/194, 12-15=-178/194, 12-15=-178/194, 12-15=-178/194, 12-15=-178/194, 12-15=-178/194, 12-15=-178/194, 12-15=-178/194, 12-15=-178/194, 12-15=-178/194, 12-15=-178/194, 12-15=-178/194, 12-15=-178/194, 12-15=-178/194, 12-15=-178/194, 12-15=-178/194, 12-15=-178/194, 12-15=-178/194, 12-15=-178/194, 12-15=-178/194, 12-15=-178/194, 12-15=-178/194, 12-15=-178/194, 12-15=-178/194, 12-15=-178/194, 12-15=-178/194, 12-15=-178/194, 12-15=-178/194, 12-15=-178/194, 12-15=-178/194, 12-15=-178/194, 12-15=-178/194, 12-15=-178/194, 12-15=-178/194, 12-15=-178/194, 12-15=-178/194, 12-15=-178/194, 12-15=-178/194, 12-15=-178/194, 12-15=-178/194, 12-15=-178/194, 12-15=-178/194, 12-15=-178/194, 12-15=-178/194, 12-15=-178/194, 12-15=-178/194, 12-15=-178/194, 12-15=-178/194, 12-15=-178/194, 12-15=-178/194, 12-15=-178/194, 12-15=-178/194, 12-15=-178/194, 12-15=-178/194, 12-15=-178/194, 12-15=-178/194, 12-15=-178/194, 12-15=-178/194, 12-15=-178/194, 12-15=-178/194, 12-15=-178/194, 12-15=-178/194, 12-15=-178/194, 12-15=-178/194, 12-15=-178/194, 12-1	10.0 0.0* Rep Stress Incr YES Code WB 0.34 Matrix-S Horz(LL) 0.00 Matrix-S Matrix-S <td< td=""><td>10.0 Rep Stress Incr YES WB 0.34 Horz(L) 0.00 12 10.0 Code IRC2018/TPI2014 Matrix-S Matrix-S 9) This 10.0 TOP CHORD 1-2=681/668, 2-3=-545/542, 3-4=-404/415, 9 9) This 9) This 10.0 TOP CHORD 1-2=681/668, 2-3=-545/542, 3-4=-404/415, 9 9) This 9) This 5-45/542, 3-4=-404/415, 9 9) This 9) This 5-45/542, 3-4=-404/415, 9 9) This 7-8=-176/191, 6-7=-176/191, 6-7=-176/192, 9-7=-176/192, 9-7=-176/192, 8-7=-176/192, 8-7=-176/192, 8-7=-176/192, 8-7=-176/192, 8-7=-176/192, 8-7=-176/192, 8-7=-176/192, 8-7=-176/192, 8-7=-176/192, 8-7=-176/192, 8-7=-176/192, 8-7=-176/192, 8-7=-176/192, 5-7=176/192, 5-7=176/192, 5-7=176/192, 5-7=176/192, 5-7=176/192, 5-7=176/192, 5-7=176/192, 5-7=176/192, 5-7=176/192, 5-7=176/192, 5-7=176/192, 5-7=176/192, 5-7=176/192, 5-7=176/192, 5-7=176/192, 5-7=176/194, 5-7=178/194, 12-13=-178/194, 12-13=-178/194, 12-13=-178/194, 12-13=-178/194, 12-13=-178/194, 12-13=-178/194, 12-13=-178/194, 12-13=-178/194, 12-13=-178/194, 12-13=-178/194, 12-13=-178/194, 12-13=-178/194, 12-13=-178/194, 12-13=-178/194, 12-13=-178/194, 12-13=-178/194, 12-13=-178/194, 12-13=-178/194, 12-13=-178/194, 12-13=-178/194, 12-13=-178/194, 12-13=-178/194, 12-13=-178/194, 12-13=-178/194, 12-13=-178/194, 12-13=-178/194, 12-13=-178/194, 12-13=-178/194, 12-13=-178/194, 12-13=-178/194, 12-13=-178/194, 12-13=-178/194, 12-13=-178/194, 12-13=-178/</td><td>10.0 Rep Stress Incr YES WB 0.3 Horiz(1L) 0.00 12 n/a 0.0* Code IRC2018/TPI2014 Matrix-S Matrix-S 9) This truss in chord live low 10) 10) This truss in chord live low 10) 10) 11)</td><td>10.0 Rep Stress Incr YES WB 0.34 Horz(TL) 0.00 12 n/a 0.0* Code IRC2018/TPI2014 Matrix-S Matrix-S 9) This truss has bee chord live load nor the bottom chord live load nor thebottom chord live load nor the bottom chord live load no</td><td>10.0 Rep Stress Incr YES WB 0.34 Horz(TL) 0.00 12 n/a N/a 0.0 Code IRC2018/TPI2014 Matrix-S Matrix-S Weight: 126 lb 0.0 Value TOP CHORD 1-2=-81/668, 2-3=-545/542, 3-4=-404/415, 4-57/6192, 9-10=-176/192, 16-72-176/192, 9-10=-176/192, 9-10=-176/192, 16-72-176/192, 9-10=-176/192, 16-72-176/192, 9-10=-176/192, 16-72-176/192, 9-10=-176/192, 10-12=-178/194, 16-72-178/194, 16-72-178/194, 16-72-178/194, 16-72-178/194, 16-12=-178/194, 16-12=-178/194, 16-12=-178/194, 16-12=-178/194, 16-12=-178/194, 16-12=-178/194, 12-13=-178/194, 12-13=-178/194, 12-13=-178/194, 12-13=-178/194, 12-13=-178/194, 12-13=-178/194, 12-13=-178/194, 12-13=-178/194, 12-13=-178/194, 12-13=-178/194, 12-13=-178/194, 12-13=-178/194, 12-13=-178/194, 12-13=-178/194, 12-13=-178/194, 12-13=-178/194, 12-13=-178/194, 12-13=-178/194, 12-13=-178/194, 12-13=-178/194, 12-13=-178/194, 12-13=-178/194, 12-13=-178/194, 12-13=-178/194, 12-13=-178/194, 12-13=-178/194, 12-13=-178/194, 12-13=-178/194, 12-13=-178/194, 12-13=-178/194, 12-13=-178/194, 12-13=-178/194, 12-13=-178/194, 12-13=-178/194, 12-13=-178/194, 12-13=-178/194, 12-13=-178/194, 12-13=-178/194, 12-13=-178/194, 12-13=-178/194, 12-13=-178/194, 12-13=-178/194, 12-13=-178/194, 12-13=-178/194, 12-13=-178/194, 12-13=-178/194, 12-13=-178/194, 12-13=-178/194, 12-13=-178/194, 12-13=-178/194, 12-13=-178/194, 12-13=-178/194, 12-13=-178/194, 12-13=-178/194, 12-13=-178/194, 12-13=-178/194, 12-13=-178/194, 12-13=-178/194, 12-13=-178/194, 12-13=-178/194, 12-13=-178/194, 12-13=-178/194, 12-13=-178/194, 12-13=-178/194, 12-13=-178/194, 12-13=-178/194, 12-13=-178/194, 12-13=-178/194, 12-13=-178/194, 12-13=-178/194, 12-13=-178/194, 12-13=-178/194,</td></td<>	10.0 Rep Stress Incr YES WB 0.34 Horz(L) 0.00 12 10.0 Code IRC2018/TPI2014 Matrix-S Matrix-S 9) This 10.0 TOP CHORD 1-2=681/668, 2-3=-545/542, 3-4=-404/415, 9 9) This 9) This 10.0 TOP CHORD 1-2=681/668, 2-3=-545/542, 3-4=-404/415, 9 9) This 9) This 5-45/542, 3-4=-404/415, 9 9) This 9) This 5-45/542, 3-4=-404/415, 9 9) This 7-8=-176/191, 6-7=-176/191, 6-7=-176/192, 9-7=-176/192, 9-7=-176/192, 8-7=-176/192, 8-7=-176/192, 8-7=-176/192, 8-7=-176/192, 8-7=-176/192, 8-7=-176/192, 8-7=-176/192, 8-7=-176/192, 8-7=-176/192, 8-7=-176/192, 8-7=-176/192, 8-7=-176/192, 8-7=-176/192, 5-7=176/192, 5-7=176/192, 5-7=176/192, 5-7=176/192, 5-7=176/192, 5-7=176/192, 5-7=176/192, 5-7=176/192, 5-7=176/192, 5-7=176/192, 5-7=176/192, 5-7=176/192, 5-7=176/192, 5-7=176/192, 5-7=176/192, 5-7=176/194, 5-7=178/194, 12-13=-178/194, 12-13=-178/194, 12-13=-178/194, 12-13=-178/194, 12-13=-178/194, 12-13=-178/194, 12-13=-178/194, 12-13=-178/194, 12-13=-178/194, 12-13=-178/194, 12-13=-178/194, 12-13=-178/194, 12-13=-178/194, 12-13=-178/194, 12-13=-178/194, 12-13=-178/194, 12-13=-178/194, 12-13=-178/194, 12-13=-178/194, 12-13=-178/194, 12-13=-178/194, 12-13=-178/194, 12-13=-178/194, 12-13=-178/194, 12-13=-178/194, 12-13=-178/194, 12-13=-178/194, 12-13=-178/194, 12-13=-178/194, 12-13=-178/194, 12-13=-178/194, 12-13=-178/194, 12-13=-178/194, 12-13=-178/	10.0 Rep Stress Incr YES WB 0.3 Horiz(1L) 0.00 12 n/a 0.0* Code IRC2018/TPI2014 Matrix-S Matrix-S 9) This truss in chord live low 10) 10) This truss in chord live low 10) 10) 11)	10.0 Rep Stress Incr YES WB 0.34 Horz(TL) 0.00 12 n/a 0.0* Code IRC2018/TPI2014 Matrix-S Matrix-S 9) This truss has bee chord live load nor the bottom chord live load nor thebottom chord live load nor the bottom chord live load no	10.0 Rep Stress Incr YES WB 0.34 Horz(TL) 0.00 12 n/a N/a 0.0 Code IRC2018/TPI2014 Matrix-S Matrix-S Weight: 126 lb 0.0 Value TOP CHORD 1-2=-81/668, 2-3=-545/542, 3-4=-404/415, 4-57/6192, 9-10=-176/192, 16-72-176/192, 9-10=-176/192, 9-10=-176/192, 16-72-176/192, 9-10=-176/192, 16-72-176/192, 9-10=-176/192, 16-72-176/192, 9-10=-176/192, 10-12=-178/194, 16-72-178/194, 16-72-178/194, 16-72-178/194, 16-72-178/194, 16-12=-178/194, 16-12=-178/194, 16-12=-178/194, 16-12=-178/194, 16-12=-178/194, 16-12=-178/194, 12-13=-178/194, 12-13=-178/194, 12-13=-178/194, 12-13=-178/194, 12-13=-178/194, 12-13=-178/194, 12-13=-178/194, 12-13=-178/194, 12-13=-178/194, 12-13=-178/194, 12-13=-178/194, 12-13=-178/194, 12-13=-178/194, 12-13=-178/194, 12-13=-178/194, 12-13=-178/194, 12-13=-178/194, 12-13=-178/194, 12-13=-178/194, 12-13=-178/194, 12-13=-178/194, 12-13=-178/194, 12-13=-178/194, 12-13=-178/194, 12-13=-178/194, 12-13=-178/194, 12-13=-178/194, 12-13=-178/194, 12-13=-178/194, 12-13=-178/194, 12-13=-178/194, 12-13=-178/194, 12-13=-178/194, 12-13=-178/194, 12-13=-178/194, 12-13=-178/194, 12-13=-178/194, 12-13=-178/194, 12-13=-178/194, 12-13=-178/194, 12-13=-178/194, 12-13=-178/194, 12-13=-178/194, 12-13=-178/194, 12-13=-178/194, 12-13=-178/194, 12-13=-178/194, 12-13=-178/194, 12-13=-178/194, 12-13=-178/194, 12-13=-178/194, 12-13=-178/194, 12-13=-178/194, 12-13=-178/194, 12-13=-178/194, 12-13=-178/194, 12-13=-178/194, 12-13=-178/194, 12-13=-178/194, 12-13=-178/194, 12-13=-178/194, 12-13=-178/194, 12-13=-178/194, 12-13=-178/194, 12-13=-178/194, 12-13=-178/194, 12-13=-178/194, 12-13=-178/194, 12-13=-178/194, 12-13=-178/194, 12-13=-178/194, 12-13=-178/194,

Job	Truss	Truss Type	Qty	Ply	Roof - CB Lot 151	
P230398-01	LG02	Lay-In Gable	1	1	Job Reference (optional)	160735733

Run: 8.63 S Aug 30 2023 Print: 8.630 S Aug 30 2023 MiTek Industries, Inc. Tue Sep 12 18:26:42 ID:S4tzfMDUUh9LlrJtDqu70uyx7?v-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

September 13,2023

DEVELOPMENT SERVICES LEE'S'SUMMIT'S MISSOURI 05/21/2024 9:18:46

ΤΙΟΝ 'IEW

Scale = 1:36.9

Plate Offsets (X, Y): [3:0-1-5,Edge]

Loading		(psf) 25.0	Spacing	2-0-0 1 15		CSI TC	0 19	DEFL	in n/a	(loc)	l/defl	L/d	PLATES	GRIP 244/190
Snow (Pf)		25.0		1.15		BC	0.15	Vert(TL)	n/a		n/a	aaa	101120	244/100
		10.0	Ren Stress Incr	VES		WB	0.00	Horiz(TL)	0.00	8	n/a	n/a		
BCU		0.0*	Code	IRC2018	8/TPI2014	Matrix-S	0.10	110112(112)	0.00	0	n/a	π/α		
BCDL		10.0	Code	11(02010	0/11/2014	Wath							Weight: 48 lb	FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD	2x4 SP N 2x4 SP N 2x4 SPF 2x3 SPF Structural 6-0-0 oc p 2-0-0 oc p Pigid coll	o.2 o.2 No.3 No.2 I wood shea purlins, exc purlins (10-	athing directly applied ept 0-0 max.): 3-8.	2) d or 3)	Wind: ASCE Vasd=91mph Ke=1.00; Ca exterior zone Exterior(2R) 10-10-12 zor vertical left a forces & MW DOL=1.60 pl Truss design	7-16; Vult=115mpl n; TCDL=6.0psf; B0 t. II; Exp C; Encloss e and C-C Exterior(3-0-13 to 10-1-10, ne; cantilever left ar nd right exposed;C (FRS for reactions e ate grip DOL=1.60 ned for wind loads i	n (3-sec CDL=6. ed; MW 2E) 0-3 Interior nd right -C for r shown; in the p	cond gust) opsf; h=35ft; FRS (envelop -12 to 3-0-13, (1) 10-1-10 to exposed ; enc nembers and Lumber lane of the trus	e) J	14) This Inte R80 15) Gra or th bott LOAD C	s truss is rnationa 2.10.2 a phical p ne orient om chor CASE(S)	desig I Resid and ref urlin re ation c d. Star	ned in accordance lential Code sect erenced standare presentation doe of the purlin along ndard	ee with the 2018 ions R502.11.1 and d ANSI/TPI 1. is not depict the size g the top and/or
BOICHORD	bracing	ing directly	applied or 10-0-0 oc	-,	only. For stu	ids exposed to wind	d (norm	al to the face)	,					
REACTIONS	(size) Max Horiz Max Uplift Max Grav	$\begin{array}{c} 1\!=\!10\!-\!10\!-\!1\\ 9\!=\!10\!-\!10\!-\!1\\ 11\!=\!10\!-\!10\!-\!1\\ 13\!=\!10\!-\!10\!-\!1\\ 13\!=\!10\!-\!10\!-\!1\\ 11\!=\!148\ (LC\\ 8\!=\!-14\ (LC\\ (LC\ 13),\ 1\\ (LC\ 13),\ 1\\ (LC\ 16),\ 1\\ (LC\ 36),\ 1\\ (LC\ 36),\ 1\\ \end{array}$	2, 8=10-10-12, 2, 10=10-10-12, 12, 12=10-10-12, 12, 14=10-10-12, 16) 36), 9=-49 (LC 7), 1 1=-44 (LC 12), 12=-4 3=-54 (LC 12), 14=-1 237), 8=3 (LC 13), 9: 0=198 (LC 36), 11=3 2=331 (LC 36), 13=3 4=355 (LC 37)	4) 0=-5 5) 160 6) =-14 8) 147 9) 138 10	see Standard or consult qu TCLL: ASCE Plate DOL=1 DOL=1.15); I Cs=1.00; Ct= Unbalanced design. Provide adec All plates are Gable requirin Gable studs) This truss ha chord live ha	a industry Gable Er lailified building des (7-16; Pr=25.0 psf (I Is=1.0; Rough Cat I =1.10 snow loads have b quate drainage to p = 1.5x4 MT20 unles es continuous botto spaced at 2-0-0 oc is been designed fo ad ponconcurrent w	igner a: (roof LL Lum DC C; Fully een cor revent s other or a 10./ vith any	Its as applicables s per ANSI/TP .: Lum DOL=1 DL=1.15 Plate Exp.; Ce=0.9 Insidered for the water ponding wise indicated d bearing. D psf bottom	ne, 1. .15 ; is				SS OF I	MISS
FORCES	(lb) - Max Tension	imum Com	pression/Maximum	11) * This truss h on the bottor	has been designed n chord in all areas	for a liv	e load of 20.0 a rectangle	psf			Å	THE	A SOCIAL
TOP CHORD	1-2=-176/ 5-6=0/0, 6	(155, 2-3=-9 6-7=0/0, 7-8	96/30, 3-4=0/0, 4-5=0 3=0/0	0/0,	3-06-00 tall b	by 2-00-00 wide will	fit betw	veen the botto	m		•	J.	S NATHA	X X
BOT CHORD	1-14=0/1, 10-11=0/0	13-14=0/0 9-10=0/0	, 12-13=0/0, 11-12=0	^{)/0,} 12) All bearings	are assumed to be	SP No.	2 crushing				8A	AT.	CA*
NEBS NOTES 1) Unbalance this design	7-10=-152 4-13=-303 ed roof live l	0, 9-10=0/0 2/33, 6-11= 3/74, 2-14= oads have	-309/67, 5-12=-289/6 -280/176 been considered for	^{54,} 13	capacity of 5) Provide mec bearing plate 8, 49 lb uplift at joint 11, 40 and 160 lb up	65 psi. hanical connection capable of withsta at joint 9, 5 lb uplif 0 lb uplift at joint 12 plift at joint 14.	(by oth Inding 1 It at join It, 54 lb	ers) of truss to 4 lb uplift at jo t 10, 44 lb upli uplift at joint 13	o bint ift 3			A La	PE-2022	L ENOLU

Job	Truss	Truss Type	Qty	Ply	Roof - CB Lot 151	
P230398-01	LG03	Lay-In Gable	1	1	Job Reference (optional)	160735734

Run: 8.63 S Aug 30 2023 Print: 8.630 S Aug 30 2023 MiTek Industries, Inc. Tue Sep 12 18:26:42 ID:S4tzfMDUUh9LIrJtDqu70uyx7?v-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

September 13,2023

DEVELORMENT: SERVICES LEE'S SUMMIT'S MISSOURI 05/21/2024 9:18:46

CTION VIEW

Scale = 1:35.9

Plate Offsets (X, Y): [3:0-1-5,Edge]

		-											
Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 25.0 25.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018	3/TPI2014	CSI TC BC WB Matrix-S	0.15 0.06 0.09	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 8	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 46 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x4 SP No.2 2x4 SPF No.3 2x3 SPF No.2 Structural wood sh 6-0-0 oc purlins, ei 2-0-0 oc purlins, (1) Rigid ceiling direct bracing. (size) 1=10-8- 10=10-8 13=10-8 Max Horiz 1=137 (I) Max Uplift 8=19 (L (LC 13)	eathing directly applie ccept 0-0-0 max.): 3-8. ly applied or 10-0-0 oc 4, 8=10-8-4, 9=10-8-4, -4, 11=10-8-4, 12=10- -4, 14=10-8-4 _C 16), C 36), 9=-49 (LC 7), 1 1=-44 (LC 12), 12=-	Wind: ASCE Vasd=91mph Ke=1.00; Ca exterior zone Exterior (2R) 10-8-4 zone; vertical left a forces & MW DOL=1.60 pl Truss design only. For stu see Standard or consult qu TCLL: ASCE Plate DOL=1 DOL=1.15); I Cs=1.00; Ct=	7-16; Vult=115r n; TCDL=6.0psf; t. II; Exp C; Encl 2-10-5 to 9-11-2 cantilever left and right exposed (FRS for reactior ate grip DOL=1. ned for wind load ds exposed to w d Industry Gable ialified building c 7-16; Pr=25.0 ps Is=1.0; Rough C =1.10	ond gust) psf; h=35ft; FRS (envelop 12 to 2-10-5,)) 9-11-2 to possed ; end nembers and _umber ane of the tru al to the face) Is as applicat per ANSI/TF : Lum DOL=1 Exp.; Ce=0.9	ss , ole, .15 ;	 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. 15) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord. LOAD CASE(S) Standard 						
FORCES FOP CHORD BOT CHORD WEBS NOTES I) Unbalance this design	(LC 13), (LC 16), (LC 16), (LC 16), (LC 36), (LC 36), (lb) - Maximum Co Tension 1-2=-163/142, 2-3= 5-6=0/0, 6-7=0/0, 7 1-14=0/1, 13-14=0 10-11=0/0, 9-10=0 7-10=-157/34, 6-1* 4-13=-305/72, 2-14 ed roof live loads have	All plates are Gable requir Gable studs This truss ha chord live loa * This truss h on the bottor 3-06-00 tall b chord and ar All bearings a capacity of 5 Provide mec bearing plate 8, 49 lb uplift at joint 11, 40 and 145 lb up	b); Ct=1.10 need snow loads have been considered for this adequate drainage to prevent water ponding. Is are 1.5x4 MT20 unless otherwise indicated. equires continuous bottom chord bearing. tuds spaced at 2-0-0 oc. ss has been designed for a 10.0 psf bottom /e load nonconcurrent with any other live loads. uss has been designed for a live load of 20.0psf bottom chord in all areas where a rectangle tall by 2-00-00 wide will fit between the bottom nd any other members. ings are assumed to be SP No.2 crushing / of 565 psi. mechanical connection (by others) of truss to plate capable of withstanding 19 lb uplift at joint uplift at joint 12, 51 lb uplift at joint 13 ib uplift at joint 14.							MISSOLUT NIEL X MIEL X MALEN M			

Job	Truss	Truss Type	Qty	Ply	Roof - CB Lot 151			
P230398-01	LG04	Lay-In Gable	1	1	Job Reference (optional)	160735735		

Run: 8.63 S Aug 30 2023 Print: 8.630 S Aug 30 2023 MiTek Industries, Inc. Tue Sep 12 18:26:42 ID:S4tzfMDUUh9LIrJtDqu70uyx7?v-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

12-3-6 || 0-2-13 12-0-8 6-1-11 6-1-11 5-10-13 4x4 = 4 3 5 7-1-2 7-4-13 2 6 1<u>2</u> 14.42 Г -0-0 ****** 12 11 10 9 8 3x4、 3x4 🧳

12-3-6

Scale = 1:47.3

Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 25.0 25.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018	8/TPI2014	CSI TC BC WB Matrix-S	0.10 0.05 0.15	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 7	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 61 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x4 SP No.2 2x3 SPF No.2 Structural wood she 6-0-0 oc purlins. Rigid ceiling directly bracing. (size) 1=12-3-6 9=12-3-6 12=12-3- Max Uplift 1==80 (LC 8=-178 (L 11=-167 Max Grav 1=194 (LL 8=254 (LL 12=254 (l	athing directly applied applied or 10-0-0 oc , 7=12-3-6, 8=12-3-6, , 10=12-3-6, 11=12-3-6 C 13) C 13) C 14), 7=-54 (LC 15), C 17), 9=-166 (LC 17) (LC 16), 12=-178 (LC C 16), 7=177 (LC 17), C 23), 9=328 (LC 23), LC 28), 11=328 (LC 2), LC 28), 11=328 (LC 2)	2) d or 6, 3)), 4) 16) 2), 5) 6)	Wind: ASCE Vasd=91mph Ke=1.00; Cal exterior zone Interior (1) 5- 11-11-14, Inte left and right exposed;C-C reactions sho DOL=1.60 Truss desigr only. For stu see Standard or consult qu TCLL: ASCE Plate DOL=1 DOL=1.15); I CS=1.00; Ct= Unbalanced design.	7-16; Vult=115mg ; TCDL=6.0psf; B t. II; Exp C; Enclos and C-C Exterior 3-12 to 6-1-14, E) rior (1) 11-1-14 to exposed; end vei for members and wn; Lumber DOL med for wind loads ds exposed to wir Hudustry Gable E alified building de 7-16; Pr=25.0 psf s=1.0; Rough Cat 4.110 snow loads have I 1.5x4 MT20 uple	h (3-sec CDL=6.0 sed; MW (2E) 0-3 tterior(2I 12-0-1 z tical left forces 8 =1.60 pl in the p ad (norm ind Deta signer as ((roof LL (Lum DC C; Fully been cor	cond gust) Opsf; h=35ft; FRS (envelope -12 to 5-3-12, R) 6-1-14 to cone; cantileve and right & MWFRS for ate grip lane of the trus al to the face), ils as applicabl s per ANSI/TPI :: Lum DOL=1. DL=1.15 Plate Exp.; Ce=0.9; hide and right	e) r ss le, 15 s	LOAD C	ASE(S)) Sta	ndard	
FORCES	(lb) - Maximum Con Tension	pression/Maximum	7) 8)	Gable require	es continuous bot	om chor	d bearing.						
TOP CHORD	1-2=-271/173, 2-3=- 4-5=-167/124, 5-6=-	154/106, 3-4=-167/13 149/71, 6-7=-249/173	80, 9)	This truss ha	s been designed f	or a 10.0) psf bottom	•					The
BOT CHORD	1-12=-135/197, 11- 10-11=-136/197, 9- 8-9=-136/197, 7-8=-	I2=-136/197, I0=-136/197, 135/196	10) * This truss h on the botton 3-06-00 tall b	as been designed n chord in all area	I for a liv s where II fit bety	e load of 20.0p a rectangle	osf m			A	TE OF M	AISSOL
WEBS	4-10=-120/81, 3-11= 2-12=-229/195, 5-9=	=-290/193, =-290/192, 6-8=-229/1	95 11	chord and an) All bearings a	y other members. are assumed to be	e SP No.	2 crushing				Å	NATHA FO	NIEL TRA
NOTES				capacity of 5	65 psi.					•	BX	9 11-	
1) Unbalance	ed roof live loads have	been considered for	12) Provide mech	nanical connectior	n (by oth	ers) of truss to				ari		

 Unbalanced roof live loads have been considered for this design.

> uplift at joint 12, 166 lb uplift at joint 9 and 178 lb uplift at joint 8. 13) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

bearing plate capable of withstanding 80 lb uplift at joint

1, 54 lb uplift at joint 7, 167 lb uplift at joint 11, 178 lb

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSITPTI Quality Criteria**, and **DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcscomponents.com)

IBER

PE-20220422

TESSIONAL ET

September 13,2023

Job	Truss	Truss Type	Qty	Ply	Roof - CB Lot 151	
P230398-01	V01	Valley	1	1	Job Reference (optional)	160735736

1-10-14

Premier Building Supply (Springhill, KS), Spring Hills, KS - 66083,

Run: 8.63 S Aug 30 2023 Print: 8.630 S Aug 30 2023 MiTek Industries, Inc. Tue Sep 12 18:26:43 ID:S4tzfMDUUh9LlrJtDqu70uyx7?v-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

1.5x4 🛚

Page: 1

0-0-4

1-3-8

3x4 🍫

1-10-14

1-3-8

1.5x4 u

Scale = 1:18.2								1					
Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 25.0 25.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018	/TPI2014	CSI TC BC WB Matrix-P	0.05 0.02 0.00	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 3	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20	GRIP 244/190 ET – 20%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD REACTIONS	UMBER 7) This truss has been designed for a 10.0 psf bottom OP CHORD 2x4 SP No.2 7) This truss has been designed for a 10.0 psf bottom CTCHORD 2x4 SP No.2 8) * This truss has been designed for a live loads. YEBS 2x3 SPF No.2 8) * This truss has been designed for a live load of 20.0psf RACING 0P CHORD Structural wood sheathing directly applied or 1-11-4 oc purtins, except end verticals. OT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing. 9) All bearings are assumed to be SP No.2 crushing capacity of 565 psi. EACTIONS (size) 1=1-10-14, 3=1-10-14 Max Horiz 1=38 (LC 13) Max Uplift 1=-7 (LC 16), 3=-20 (LC 16) Max Grav 1=77 (LC 22), 3=77 (LC 22) 10) Provide mechanical conduction with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. ORCES (b) - Maximum Compression/Maximum Tension 10) CASE(S) Standard												
FORCES TOP CHORD BOT CHORD	Max Uplift 1=-7 (LC 16), 3=-20 (LC 16) Max Grav 1=77 (LC 22), 3=77 (LC 22) RCES (lb) - Maximum Compression/Maximum Tension IP CHORD 1-3=-56/42, 2-3=-64/67 T CHORD 1-3=-19/20												
DOP CHORD 1:2=-56/42, 2:3=-64/67 BOT CHORD 1:3=-19/20 NOTES 1) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0pst; BCDL=6.0pst; h=35ft; Ke=1.00; Cat: II; Exp C; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 2) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TP11. 3) TCLL: ASCE 7-16; Pr=25.0 psf (root LL: Lum DOL=1.15) Plate DOL=1.10; Ils=1.0; Rough Cat C; Fully Exp; Ce=0.9; Cs=1.00; Cl=1.10 Unbalanced snow loads have been considered for this design. 6 Gable requires continuous bottom chord bearing. 6 Gable studies spaced at 4-0-0 c.													

Job	Truss	Truss Type	Qty	Ply	Roof - CB Lot 151			
P230398-01	V02	Valley	1	1	Job Reference (optional)	160735737		

3-10-14

3-10-14

Premier Building Supply (Springhill, KS), Spring Hills, KS - 66083,

Run: 8.63 S Aug 30 2023 Print: 8.630 S Aug 30 2023 MiTek Industries, Inc. Tue Sep 12 18:26:43 ID:S4tzfMDUUh9LlrJtDqu70uyx7?v-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:23.4												
Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 25.0 25.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018/TPI2014	CSI TC BC WB Matrix-P	0.38 0.13 0.00	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 3	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 14 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD BOT CHORD REACTIONS FORCES TOP CHORD BOT CHORD BOT CHORD BOT CHORD BOT CHORD BOT CHORD NOTES 1) Wind: ASC Vasd=91n Ke=1.00; (exterior zc and right e exposed;(C reactions : DOL=1.60 2) Truss des only. For see Stand or consult 3) TCLL: ASI Plate DOL DOL=1.15 Cs=1.00; (4) Unbalance design. 5) Gable req 6) Gable stud	2x4 SP No.2 2x4 SP No.2 2x3 SPF No.2 Structural wood shea 3-11-4 oc purlins, ei Rigid ceiling directly bracing. (size) 1=3-10-14 Max Horiz 1=95 (LC Max Uplift 1=-16 (LC Max Uplift 1=-16 (LC (lb) - Maximum Com Tension 1-2=-133/99, 2-3=-11 1-3=-46/50 CE 7-16; Vult=115mph nph; TCDL=6.0psf; BC Cat. II; Exp C; Enclose one and C-C Exterior(2 exposed ; end vertical I 2-C for members and for shown; Lumber DOL=1) signed for wind loads in studs exposed to wind ard Industry Gable Enc (L=1.15); Pf=25.0 psf (LI); Is=-1.0; Rough Cat C Ct=1.10 ed snow loads have be uires continuous bottor ds spaced at 4-0-0 oc.	athing directly applie xcept end verticals. applied or 10-0-0 oc 4, 3=3-10-14 13) 2 16), 3=-50 (LC 16) 2 22), 3=216 (LC 22) pression/Maximum 82/156 (3-second gust) DL=6.0psf; h=35ft; d; MWFRS (envelop E) zone; cantilever l eft and right orces & MWFRS for 1.60 plate grip n the plane of the tru (normal to the face) d Details as applicat gner as per ANS/ITP roof LL: Lum DOL=1 um DOL=1.15 Plate 2; Fully Exp.; Ce=0.9 een considered for th m chord bearing.	e) eff eff eff	has been designe load nonconcurrei s has been designe tom chord in all ar ill by 2-00-00 wide any other membe gs are assumed to f 565 psi. echanical connect ate capable of with b uplift at joint 3. is designed in acc hal Residential Co 2 and referenced s S) Standard	ed for a 10.0 nt with any need for a liv reas where e will fit betw ers. b be SP No. tion (by oth hstanding 1 cordance w de sections standard AN	D psf bottom other live loa e load of 20.0 a rectangle veen the botto 2 crushing ers) of truss t 6 lb uplift at j ith the 2018 i R502.11.1 a ISI/TPI 1.	ids. Dpsf om oint and				PE-2022	MISSOLUE NIEL X BER 042259 IL ENGINE

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent oulgase with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TPI1 Quality Criteria, and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcscomponents.com)

CTION /IEW DEVELOPMEN SERVICES LEE'S' SUMMIT'S MISSOURI 05/21/2024 9:18:46

Job	Truss	Truss Type		Ply	Roof - CB Lot 151	
P230398-01	V03	Valley	1	1	Job Reference (optional)	160735738

Run: 8.63 S Aug 30 2023 Print: 8.630 S Aug 30 2023 MiTek Industries, Inc. Tue Sep 12 18:26:43 ID:wGRLsiE6F?HCN?u3nYPMZ5yx7?u-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

1.5x4 🛚

5-10-14

Scale = 1:30.8	Scale	= 1:30.8	
----------------	-------	----------	--

Cs=1.00; Ct=1.10

Plate DOL=1.15); Pf=25.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat C; Fully Exp.; Ce=0.9;

		i											
Loading	(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15		TC	0.38	Vert(LL)	n/a	-	n/a	999	MT20	244/190
Snow (Pf)	25.0	Lumber DOL	1.15		BC	0.12	Vert(TL)	n/a	-	n/a	999		
TCDL	10.0	Rep Stress Incr	YES		WB	0.08	Horiz(TL)	0.00	4	n/a	n/a		
BCLL	0.0*	Code	IRC2018	3/TPI2014	Matrix-P								
BCDL	10.0											Weight: 22 lb	FT = 20%
			4)	Unbalanced	snow loads have b	een cor	nsidered for th	nis					
TOP CHORD	2X4 SP No.2		5)	Gable requir	oc continuous bott	om choi	d booring						
WERS	2X4 SP N0.2		5)	Gable requir	es continuous botto		u beanny.						
	2X3 SPF NU.2		7)	This trues ha	s been designed for	ora 10 i) nef hottom						
DRAGNIC	2X3 3FF N0.2		')	chord live loa	ad nonconcurrent w	vith anv	other live loa	eh					
BRACING	Otmusture	- de la se allas a de sistema lla		* This truss h	as been designed	for a liv	e load of 20 (nsf					
TOP CHORD	5 11 4 oc purling	athing directly applie	ed or of	on the bottor	n chord in all areas	where	a rectangle						
	Bigid ceiling directly	applied or 10-0-0 or	-	3-06-00 tall b	y 2-00-00 wide wil	l fit betv	veen the botto	om					
BOT CHOILD	bracing			chord and ar	y other members.								
REACTIONS	(size) 1-5-10-14	1 4-5-10-14 5-5-10	9)	All bearings	are assumed to be	SP No.	2 crushing						
REAGINGING	Max Horiz 1-152 (1 (2 13)		capacity of 5	65 psi.								
	Max I Inlift 1=-67 (I C	(10)	10) Provide mec	hanical connection	(by oth	ers) of truss t	0					
	5=-157 (I	C 16)		bearing plate	capable of withsta	anding 6	67 lb uplift at j	oint					
	Max Grav 1=88 (LC	16), 4=216 (LC 22).		1, 40 lb uplift	at joint 4 and 157	Ib uplift	at joint 5.						
	5=551 (LC	C 22)	11) This truss is	designed in accord	ance w	Ith the 2018	nd					
FORCES	(lb) - Maximum Com	pression/Maximum		P802 10 2 a	d referenced stan	dard AN	S R 502.11.1 a	nu					
	Tension		10		Standard		NOI/1111.						
TOP CHORD	1-2=-330/215, 2-3=-	153/118, 3-4=-185/1	53		Standard								
BOT CHORD	1-5=-73/80, 4-5=-73	/80											
WEBS	2-5=-470/303												
NOTES													
1) Wind: AS	CE 7-16; Vult=115mph	(3-second gust)											~
Vasd=91r	mph; TCDL=6.0psf; BC	DL=6.0psf; h=35ft;										A	all
Ke=1.00;	Cat. II; Exp C; Enclose	d; MWFRS (envelop	be)									B & OF I	MISS
exterior zo	one and C-C Exterior(2	E) 0-5-12 to 5-5-12,									E	7 11	N.O.
Interior (1) 5-5-12 to 5-10-0 zone	; cantilever left and									8	NATHA	NIET XP.V
right expo	osed ; end vertical left a	nd right exposed;C-	С							_	R		
for memb	ers and forces & MWFI	RS for reactions sho	wn;								MA.	I I I FU	A A
Lumber D	OL=1.60 plate grip DO	L=1.60									N	LL	170
 Iruss des anhu Fee 	signed for wind loads in	the plane of the tru	ISS								ΜΙ.	TU	
Unity. FOr	sidus exposed to WINd	(normal to the face)	l, No							1	W/	X UNAMA	ER VAN
or consult	t avalified building desir	u Details as applicat	л с , DI1								177	PE-2022	042259 184
	CF 7-16 Pr-25 0 pef ($roof II \cdot I um DOI = 1$	11.								N	-2022	128
J TOLL AS	CL 1-10, FI=20.0 PSI (Y	100	INA

September 13,2023

DEVELOPMENT SERVICES LEE'S'SUMMIT'S MISSOURI 05/21/2024 9:18:46

CTION **IEW**

Job	Truss	Truss Type	Qty	Ply	Roof - CB Lot 151	
P230398-01	V04	Valley	1	1	Job Reference (optional)	160735739

Run: 8.63 S Aug 30 2023 Print: 8.630 S Aug 30 2023 MiTek Industries, Inc. Tue Sep 12 18:26:43 ID:wGRLsiE6F?HCN?u3nYPMZ5yx7?u-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

7-10-14

Scale = 1:35.2

Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 25.0 25.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018	8/TPI2014	CSI TC BC WB Matrix-P	0.50 0.14 0.10	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 4	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 31 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x4 SP No.2 2x3 SPF No.2 2x3 SPF No.2 Structural wood she 6-0-0 oc purlins, ex Rigid ceiling directly bracing. (size) 1=7-10-14 Max Horiz 1=209 (LC Max Uplift 1=-13 (LC 5=-179 (L Max Grav 1=147 (LC 5=5581 (LC	athing directly applie cept end verticals. applied or 10-0-0 oc 4, 4=7-10-14, 5=7-10 C 13) C 12), 4=-47 (LC 13), C 16) C 26), 4=213 (LC 22) C 22)	4) 5) 6) 7) d or 8) -14 9) 10	Unbalanced design. Gable requirt Gable studs This truss ha chord live loa * This truss h on the botton 3-06-00 tall b chord and an All bearings a capacity of 5) Provide mecl bearing plate 1, 47 lb uplift) This truss is a	snow loads have b es continuous botto spaced at 4-0-0 oc s been designed fo d nonconcurrent w as been designed n chord in all areas y 2-00-00 wide wil y other members. are assumed to be 65 psi. nanical connection capable of withsta at joint 4 and 179 designed in accord Beoidnetia Cocho	een cor or a 10.0 or a 10.0 or a liv for a liv swhere I fit betv SP No. (by oth unding 1 lb uplift lance w	nsidered for the d bearing. D psf bottom other live loa e load of 20.0 a rectangle veen the botto 2 crushing ers) of truss t 3 lb uplift at j at joint 5. ith the 2018	nis ds.)psf om oint					
	(lb) - Maximum Com Tension	pression/Maximum	LC	R802.10.2 ar	Residential Code s nd referenced stand Standard	dard AN	ISI/TPI 1.	na					
BOT CHORD	1-2=-361/242, 2-3=-	107/138, 3-4=-183/14	49										

WEBS 2-5=-489/312 NOTES 1) Wind: ASCE 7-16; Vult=115mph (3-second gust)

- Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=35ft; Ke=1.00; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) 0-5-12 to 5-5-12, Interior (1) 5-5-12 to 7-10-0 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- Truss designed for wind loads in the plane of the truss 2) only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 3) TCLL: ASCE 7-16; Pr=25.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=25.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat C; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10

Job	Truss	Truss Type	Qty	Ply	Roof - CB Lot 151	
P230398-01	V05	Valley	1	1	Job Reference (optional)	160735740

Run: 8.63 S Aug 30 2023 Print: 8.630 S Aug 30 2023 MiTek Industries, Inc. Tue Sep 12 18:26:44 ID:wGRLsiE6F?HCN?u3nYPMZ5yx7?u-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

September 13,2023

DEVELOPMENT SERVICES LEE'S'SUMMIT'S MISSOURI 05/21/2024 9:18:46

ΤΙΟΝ IEW

Scale = 1:43.7

Plate Offsets (X, Y): [5:Edge,0-2-8]

or consult qualified building designer as per ANSI/TPI 1.

Loading		(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)		25.0	Plate Grip DOL	1.15		TC	0.52	Vert(LL)	n/a	-	n/a	999	MT20	244/190
Snow (Pf)		25.0	Lumber DOL	1.15		BC	0.17	Vert(TL)	n/a	-	n/a	999		
TCDL		10.0	Rep Stress Incr	YES		WB	0.17	Horiz(TL)	0.00	5	n/a	n/a		
BCLL		0.0*	Code	IRC20)18/TPI2014	Matrix-S								
BCDL		10.0											Weight: 40 lb	FT = 20%
LUMBER					3) TCLL: ASCE	7-16; Pr=25.0 ps	f (roof Ll	.: Lum DOL=	1.15					
TOP CHORD	2x4 SP N	0.2			Plate DOL=	1.15); Pf=25.0 psf	(Lum DC	DL=1.15 Plate	9					
BOT CHORD	2x4 SP N	0.2			DOL=1.15);	Is=1.0; Rough Cat	t C; Fully	Exp.; Ce=0.9	9;					
WEBS	2x3 SPF	No.2			Cs=1.00; Ct	=1.10								
OTHERS	2x3 SPF	No.2			Unbalanced	snow loads have been considered for this								
BRACING					design.									
TOP CHORD	Structura	I wood she	athing directly applie	ed or	5) Gable requir	es continuous bot	tom choi	d bearing.						
	6-0-0 oc	purlins, ex	cept end verticals.		Gable studs	spaced at 4-0-0 o	C.	0						
BOT CHORD	Rigid ceil	ing directly	applied or 10-0-0 oc	•	 I his truss has a chord live loss 	as been designed	for a 10.	J pst bottom	de					
	bracing.				8) * This trues	au nonconcurrent	d for a liv		lus. Onef					
REACTIONS	(size)	1=9-10-14	4, 5=9-10-14, 6=9-10)-14,	on the botto	m chord in all area	a lor a liv	a rectangle	opsi					
		7=9-10-14	1		3-06-00 tall	ov 2-00-00 wide w	ill fit betv	veen the bott	om					
	Max Horiz	1=265 (LC			chord and a	ny other members	, with BC	DL = 10.0pst	f.					
	Max Uplift	1=-80 (LC	(LC 13), 5=-56 (LC 13),	6)	9) All bearings	are assumed to be	e SP No	2 crushing						
	Max Gray	0=-170 (L 1_120 /L	C 10), 7=-124 (LC 1) C 12) 5-228 (LC 5)	0)	capacity of 5	i65 psi.								
	wax Grav	6-579 (LC	(10, 5) = 220 (10, 5),		10) Provide med	hanical connection	n (by oth	ers) of truss t	to					
FORCES	(lb) May				bearing plate	e capable of withst	tanding 8	80 lb uplift at j	joint					
FUNCES	(ID) - Max		pression/maximum		1, 56 lb uplif	t at joint 5, 176 lb	uplift at j	pint 6 and 12	4 lb					
TOP CHORD	1-2=-468	/296 2-3=-	366/252 3-4=-173/1	46	uplift at joint	<i>1</i> .								
	4-5=-186	/137		,	11) This truss is	designed in accor	dance w	Ith the 2018	and					
BOT CHORD	1-7=-125	/137, 6-7=-	125/137, 5-6=-125/1	37	R802 10 2 a	nd referenced star	ndard A	ISI/TPI 1	anu					
WEBS	3-6=-482	/301, 2-7=-	237/203			Standard		00/1111.					Same	ADD
NOTES						Standard							OF I	MISC
1) Wind: AS	CE 7-16; Vu	llt=115mph	(3-second gust)									1	754	N'ON
Vasd=91r	nph; TCDL=	6.0psf; BC	DL=6.0psf; h=35ft;									B	NATUA	NIEI XXX
Ke=1.00;	Cat. II; Exp	C; Enclose	d; MWFRS (envelop	e)								R	S NAME	
exterior zo	one and C-C	Exterior(2	E) 0-5-12 to 5-5-12,									n		
Interior (1) 5-5-12 to 9	9-10-0 zone	; cantilever left and									N/		12 13 2
right expo	sed; end ve	ertical left a	ind right exposed;C-0	C									b //Kent	1 Stal
for memb	ers and forc	es & MVVFI	KS for reactions sho	wn;								25	W KUM	BER
2) Truce der	UL=1.60 Pla	ate grip DO	uL=1.00 the plane of the true	<u></u>								N	O PE-2022	042259
2) I russ designed for wind loads in the plane of the truss												N	T	12A
see Stand	see Standard Industry Gable End Details as applicable											Y	1ºSer	JO'A
or consult	qualified bu	uilding desid	gner as per ANSI/TP	911.									ONA	LEF

Job	Truss	Truss Type	Qty	Ply	Roof - CB Lot 151	
P230398-01	V06	Valley	1	1	Job Reference (optional)	160735741

Run: 8.63 S Aug 30 2023 Print: 8.630 S Aug 30 2023 MiTek Industries, Inc. Tue Sep 12 18:26:44 ID:OT?j42Ek0JP3_9SGKFwb5Jyx7?t-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

September 13,2023

DEVELORMENT: SERVICES LEE'S'SUMMIT'SMISSOURI 05/21/2024 9:18:46

TION IEW

Scale = 1:49.6

Plate Offsets (X Y)·	[4·0-2-0 Edge]	[7:0-2-0 Edge]
	<i>,</i> , , ,		17.0 Z 0, Lugo,	11.0 Z 0, Lugo

Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL		(psf) 25.0 25.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC20 ⁷	18/TPI2014	CSI TC BC WB Matrix-S	0.37 0.16 0.31	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.01	(loc) - - 10	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 104 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	 LD 2x4 SP No.2 LD 2x4 SP No.2 LD 2x3 SPF No.2 LD 2x3 SPF No.2 LD Structural wood sheathing directly applied or 6-0-0 oc purlins, except 2-0-0 oc purlins (6-0-0 max.): 4-7. LD Rigid ceiling directly applied or 10-0-0 oc bracing. LS (size) 1=25-11-15, 10=25-11-15, 13=25-11-15, 13=25-11-15, 14=25-11-15, 13=25-11-15, 13=25-11-15, 13=25-11-15, 14=25-11, 15, 14=25-11, 15, 14=25-11, 15, 15=130, 12=14, 12, 14=25, 12, 14=25, 12, 14=25, 12, 14=25, 12, 14=25, 12, 14=25, 12, 14=25, 12, 14=25, 12, 14=25, 12, 14=25, 12, 14=25, 12, 14=25, 12, 14=25, 12, 14=25, 12, 12=15, 12, 12=15, 12, 12=15, 12, 12=15,				 Unbalanced roof live loads have been considered for this design. Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=35ft; Ke=1.00; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) 0-5-12 to 5-5-12, Interior (1) 5-5-12 to 10-9-2, Exterior(2E) 10-9-2 to 15-3-10, Exterior(2R) 15-3-10 to 22-4-7, Interior (1) 22-4-7 to 25-6-15 zone; cantilever left and right exposed ; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1. TCLL: ASCE 7-16; PT=25.0 psf (toor LL: Lum DOL=1.15 Plate DOL=1.15); Pf=25.0 psf (Lum DOL=1.15 Plate DOL=1.15); Pf=25.0 psf (Lum DOL=1.15 Plate DOL=1.15); Pf=25.0 psf (Lum DOL=1.15 Plate DOL=1.15); CF=1.0; Rough Cat C; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10 								<pre>/ others) of truss to ing 9 lb uplift at joint Jlift at joint 16, 56 lb it 11, 126 lb uplift at ce with the 2018 :tions R502.11.1 and 'd ANSI/TPI 1. es not depict the size g the top and/or</pre>	
FORCES TOP CHORD BOT CHORD WEBS	(lb) - Max Tension 1-2=-317/ 4-5=-164/ 7-8=-316/ 1-17=-69/ 12-13=-61 10-11=-61 2-17=-52/ 5-14=-27/ 9 12- 47	11=638 (L 13=351 (L 16=616 (L imum Com (121, 2-3=-: (112, 5-6=- (107, 8-9=-: (223, 16-17 9/223, 13-1 9/223, 11-1 9/223 6/212, 3-16 8/91, 9-11=	C 50), 12-611 (LC 5 C 6), 14=351 (LC 5) C 48), 17=637 (LC 4) pression/Maximum 339/85, 3-4=-316/11 162/113, 6-7=-164/1 339/51, 9-10=-300/8 =-69/223, 4=-69/223, 2=-69/223, =-471/181, -526/213, = -379/77	50), 5), 6 48) 7 8 7, 1 13, 9 1	 Unbalanced snow loads have been considered for this design. Provide adequate drainage to prevent water ponding. All plates are 1.5x4 MT20 unless otherwise indicated. Gable studs spaced at 4-0-0 oc. This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf. All bearings are assumed to be SP No.2 crushing capacity of 565 psi. 								MISSOLANIEL ANIEL DX BER DO D042259	
NOTES	0-124/	1/11/, 0-13	- 210/11									C	SION	LEN

Job	Truss	Truss Type	Qty	Ply	Roof - CB Lot 151	
P230398-01	V07	Valley	1	1	Job Reference (optional)	160735742

0-1-13

Run: 8.63 S Aug 30 2023 Print: 8.630 S Aug 30 2023 MiTek Industries, Inc. Tue Sep 12 18:26:44

Page: 1 ID:OT?j42Ek0JP3_9SGKFwb5Jyx7?t-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f 21-11-15 0-5-3 6-8-12 15-3-4 21-6-12 6-8-12 8-6-8 6-3-9 3x4 = 3x4 = 0-1-13 || 3 4 5 6 7 \bowtie \bowtie \bowtie \bowtie 16 17 2 8 12 8 Г 1 •

Scale = 1:42.1

4-6-1

Plate Offsets (X, Y): [3:0-2-0,Edge], [7:0-2-0,Edge]

						-							
Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 25.0 25.0 10.0 0.0 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr * Code	2-0-0 1.15 1.15 YES IRC2018	8/TPI2014	CSI TC BC WB Matrix-S	0.33 0.15 0.17	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.01	(loc) - - 9	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 81 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD OTHERS BRACING TOP CHORD BOT CHORD	2x4 SP No.2 2x4 SP No.2 2x3 SPF No.2 Structural wood s 6-0-0 oc purlins, 2-0-0 oc purlins (Rigid ceiling dired	heathing directly applie except 5-0-0 max.): 3-7. tty applied or 10-0-0 or	2) ed or	Wind: ASCE Vasd=91mph Ke=1.00; Ca exterior zone Interior (1) 5- 14-0-11, Inte 15-3-10 to 2' exposed ; en members an	7-16; Vult=115m n; TCDL=6.0psf; t. II; Exp C; Enclo and C-C Exterior 5-12 to 6-9-2, E: rior (1) 14-0-11 to 1-6-15 zone; cani d vertical left and d forces & MWFF	nph (3-sec BCDL=6. bsed; MW br(2E) 0-5 kterior(2R o 15-3-10 tilever left d right exp RS for rea	cond gust) Opsf; h=35ft; FRS (envelop -12 to 5-5-12,) 6-9-2 to , Exterior(2E) and right posed;C-C for ctions shown;	e)	14) This Inte R80 15) Gra or ti bott LOAD (s truss is rnationa 2.10.2 a phical p ne orient om chor CASE(S)	desig I Resid and ref urlin re ation o d. Stat	ned in accordan dential Code sec erenced standar presentation do of the purlin alon ndard	ce with the 2018 titons R502.11.1 and rd ANSI/TPI 1. es not depict the size ig the top and/or
REACTIONS	bracing. (size) 1=21-1 10=21 12=21 15=21 Max Horiz 1=115 Max Uplift 1=-5 (I 11=-42 13=-52 Max Grav 1=306 10=61 12=46 15=61	1-15, 9=21-11-15, 11-15, 11=21-11-15, 11-15, 13=21-11-15, 11-15 (LC 15) C 17), 10=-145 (LC 17 (LC 12), 12=-76 (LC 1 (LC 13), 15=-147 (LC (LC 40), 9=306 (LC 40 2 (LC 50), 11=404 (LC - 5 (LC 45), 13=404 (LC - 4 (LC 48)	3) (), (2), (16) (5), (45), (45), (7))	 Lumber DOL=1.60 plate grip DOL=1.60 Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1. TCLL: ASCE 7-16; Pr=25.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Is=25.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat C; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10 Unbalanced snow loads have been considered for this design. Provide adequate drainage to prevent water ponding. All relates are 1.5x4 MT20 unless otherwise indicated 									
FORCES	(lb) - Maximum C Tension	ompression/Maximum	8) 9)	Gable require Gable studs	es continuous bo spaced at 4-0-0 (ttom chor DC.	d bearing.					OF	MISC
TOP CHORD	1-2=-290/63, 2-3 4-5=-155/79, 5-6 7-8=-308/72, 8-9	308/80, 3-4=-157/80, 155/79, 6-7=-157/80, 290/43	11	chord live loa) * This truss h	ad nonconcurrent	t with any ed for a liv	other live load	ls. psf			A	APTE NATH	ANIEL
BOT CHORD	1-15=-32/171, 13 12-13=-32/171, 1 10-11=-32/171 9	-15=-32/171, 1-12=-32/171, -10=-32/171	10	on the bottor 3-06-00 tall b chord and ar	n chord in all are by 2-00-00 wide v by other members	as where vill fit betv s, with BC	a rectangle veen the botto CDL = 10.0psf.	m		•	h	FC	X A A A
WEBS	2-15=-485/191, 4 8-10=-485/188, 6	-13=-327/97, -11=-327/87, 5-12=-403	12 3/108 13	12) All bearings are assumed to be SP No.2 crushing capacity of 565 psi. 13) Provide mechanical connection (by others) of truss to									BER DE
 NOTES 1) Unbalanced roof live loads have been considered for this design. 				bearing plate capable of withstanding 5 lb uplift at joint 1, 147 lb uplift at joint 15, 54 lb uplift at joint 13, 145 lb uplift at joint 10, 43 lb uplift at joint 11 and 76 lb uplift at joint 12.							2042259 (5) A		

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent colleges with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

September 13,2023

Job	Truss	Truss Type	Qty	Ply	Roof - CB Lot 151	
P230398-01	V08	Valley	1	1	Job Reference (optional)	160735743

Run: 8.63 S Aug 30 2023 Print: 8.630 S Aug 30 2023 MiTek Industries, Inc. Tue Sep 12 18:26:45 ID:tfZ5HNFMmcXwcJ1SuzRqeWyx7?s-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

SSIONAL

September 13,2023

E

DEVELORMENT SERVICES LEE'S'SUMMIT'SMISSOURI 05/21/2024 9:18:46

TION

'IEW

Scale = 1:35.7

1-10-1

1-10-1 1-8-13 1-5-2 0-1-4

Plate Offsets (X, Y): [2:0-2-0,0-0-2], [7:0-2-0,0-0-2]

Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL		(psf) 25.0 25.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018	3/TPI2014	CSI TC BC WB Matrix-S	0.33 0.13 0.08	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 8	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 57 lb	GRIP 244/190 FT = 20%	
LUMBER TOP CHORD BOT CHORD OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	ORD 2x4 SP No.2 ORD 2x4 SP No.2 2x3 SPF No.2 ORD Structural wood sheathing directly applied or 6-0-0 oc purlins, except 2-0-0 oc purlins (6-0-0 max.): 2-7. ORD Rigid ceiling directly applied or 6-0-0 oc bracing. ONS (size) 1=17-11-15, 8=17-11-15, 9=17-11-15, 13=17-11-15, 11=17-11-15, 13=17-11-15 Max Horiz 1=41 (LC 15) Max Uplift 1=-36 (LC 16), 8=-37 (LC 17), 9=-82 (LC 12), 10=-70 (LC 13), 11=-70 (LC 12), 13=-86 (LC 13) Max Grav 1=284 (LC 40), 8=284 (LC 40), 9=547 (LC 39), 10=423 (LC 39), 14, 429 (LC 30), 425 647 (LC 30)				Wind: ASCE Vasd=91mpl Ke=1.00; Ca exterior zone Exterior(2R) 15-3-10, Ext cantilever lef right exposed for reactions DOL=1.60 Truss desigg only. For stu see Standard or consult qu TCLL: ASCE Plate DOL=1 DOL=1.15):	7-16; Vult=115mp n; TCDL=6.0psf; B t. II; Exp C; Enclos and C-C Exterior 2-9-2 to 10-0-11, erior(2E) 15-3-10 t tand right expose d;C-C for member shown; Lumber D ned for wind loads ids exposed to win d Industry Gable E alified building de 7-16; Pr=25.0 psf .15); Pf=25.0 psf .15); Pf=25.0 psf	bh (3-sec 3CDL=6. sed; MW (2E) 0-5- Interior (to 17-6-1 d; end v s and for OOL=1.60 s in the pind (norm End Deta signer at f (roof LL (Lum DC t C: Fully	ond gust))psf; h=35ft; FRS (envelop: 12 to 2-9-2, 1) 10-0-11 to 5 zone; retrical left and cers & MWFR) plate grip ane of the tru ane of the tru ane of the tru ane of the face) ils as applicat per ANSI/TF :: Lum DOL=1)L=1.15 Plate Exp.: Ce=0.9	d SS), ble, 1.15);	14) This Inte R80 15) Gra or ti bott LOAD (s truss is rnationa i2.10.2 a phical p phe orien om choi choi choi choi choi choi choi choi	a desig and ref urlin re tation rd.) Sta	ined in accordance dential Code sec ferenced standar epresentation doe of the purlin alony ndard	ce with the 2018 tions R502.11.1 and d ANSI/TPI 1. es not depict the size g the top and/or	
					Cs=1.00; Ct= Unbalanced design.	=1.10 snow loads have l	been cor	isidered for th	nis						
FORCES	(lb) - Maxim	um Com	pression/Maximum	, 6) 7)	All plates are	uate drainage to 1.5x4 MT20 unle	prevent v ss otherv	water ponding wise indicated). 1.						
TOP CHORD	Tension 1-2=-293/51 4-5=-178/57 7-8293/47	(b) - Maximum Compression/Maximum Tension 1-2=-293/51, 2-3=-179/58, 3-4=-178/57, 4-5=-178/57, 5-6=-178/57, 6-7=-179/58,			Gable require Gable studs) This truss ha	es continuous bott spaced at 4-0-0 o s been designed f	tom chor c. for a 10.0	d bearing.) psf bottom				c.	STE OF I	MISSO	
BOT CHORD	1-13=-16/17	8, 11-13 78 9-10	=-16/178, 16/178_8-916/1	78 11	chord live loa * This truss h	ad nonconcurrent has been designed	with any d for a liv	other live load e load of 20.0	ds.)psf			A	NATHA	ANIEL	
WEBS	10-11=-16/178, 9-10=-16/178, 8-9=-16/178 3-13=-459/134, 4-11=-376/103, 6-9=-459/131, 5-10=-376/103				on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members										
NOTES				12) All bearings a	are assumed to be	e SP No.	2 crushina				WI	ATT.	A22	
 Unbalance this design 	ed roof live loa n.	ds have	been considered for	. 13	capacity of 5) Provide mec bearing plate	65 psi. hanical connection capable of withst	n (by oth anding 3	ers) of truss to 6 lb uplift at jo	o pint			ALL.	PE-2022	BER 2 200	

- 1, 37 lb uplift at joint 8, 86 lb uplift at joint 13, 70 lb uplift
 - at joint 11, 82 lb uplift at joint 9 and 70 lb uplift at joint 10.

 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.
 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not besign value to dury with with where outputs into design is based only door parameters shown, and is for an individual building design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members and property incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TPH1 Quality Criteria**, and **DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcscomponents.com)

ASE FOR CONST **OTED ON PLANS** VELOPMENT SER LEE'S SUMMIT, MISSOURI

9:18:46

05/21/2024