

| Model:                                                                                         | MiTek, Inc.<br>16023 Swingley Ridge Rd.<br>Chesterfield, MO 63017<br>on: Osage |
|------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|
| Address: 3734/3736 SW Knoxville Ct<br>City: Lee's Summit State: M                              | 0                                                                              |
| General Truss Engineering Criteria & Design Load<br>Drawings Show Special Loading Conditions): | -                                                                              |
| Design Code: IRC2018/TPI2014                                                                   | Design Program: MiTek 20/20 8.6                                                |
| Wind Code: ASCE 7-16 Wind Speed: 115 mph                                                       | Design Method: MWFRS (Envelope)/C-C hybrid Wind ASCE 7-16                      |
| Roof Load: 45.0 psf                                                                            | Floor Load: N/A psf                                                            |
| Mean Roof Height (feet): 35                                                                    | Exposure Category: C                                                           |

No. Seal# Truss Name Date 1 I65691315 A6 5/20/24

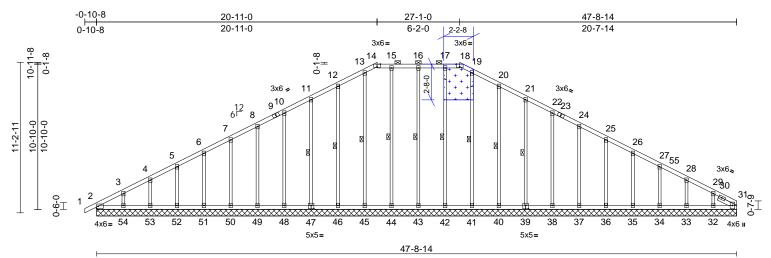
The truss drawing(s) referenced above have been prepared by MiTek USA, Inc. under my direct supervision based on the parameters provided by Premier Building Supply (Springhill, KS)20300 W 207th Street.

Truss Design Engineer's Name: Pace, Adam

My license renewal date for the state of Missouri is December 31, 2025.

**IMPORTANT NOTE:** The seal on these truss component designs is a certification that the engineer named is licensed in the jurisdiction(s) identified and that the designs comply with ANSI/TPI 1. These designs are based upon parameters shown (e.g., loads, supports, dimensions, shapes and design codes), which were given to MiTek or TRENCO. Any project specific information included is for MiTek's or TRENCO's customers file reference purpose only, and was not taken into account in the preparation of these designs. MiTek or TRENCO has not independently verified the applicability of the design parameters or the designs for any particular building. Before use, the building designer should verify applicability of design parameters and properly incorporate these designs into the overall building design per ANSI/TPI 1, Chapter 2.




Pace, Adam

| Job        | Truss | Truss Type                     | Qty | Ply | Roof - Osage Lot 82      |           |
|------------|-------|--------------------------------|-----|-----|--------------------------|-----------|
| P240069-02 | A6    | Piggyback Base Supported Gable | 2   | 1   | Job Reference (optional) | 165691315 |

Premier Building Supply (Springhill, KS), Spring Hills, KS - 66083, REPAIR:

Run: 8.63 S Apr 26 2024 Print: 8.630 S Apr 26 2024 MiTek Industries, Inc. Mon May 20 10:32:57 ID:JbPUB4NmDf0vUSJtFFIELayGxJT-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

BREAK IN MEMBERS 17-42 AND 19-41 LOCATED 0-10-0 FROM TOP CHORD.



ATTACH 7/16" OSB GUSSET (7/16" RATED SHEATHING 24/16 EXP 1) TO ONE FACE OF TRUSS WITH (0.113" X 2") NAILS PER THE FOLLOWING NAIL SCHEDULE: 2 X 3'S - 2 ROWS, 2 X 4'S - 3 ROWS, 2 X 6'S AND LARGER - 4 ROWS: SPACED @ 2" O.C. INTO EACH COVERED TRUSS MEMBER. USE 2" MEMBER END DISTANCE.

Scale = 1:85.9

| Loading                                                                                           |                                                                             | (nof)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Specing                                                                                                                                            | 200                                                  |                                                                                                                                               | CSI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | DEFL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | in                                                                               | (100) | l/defl | I /d                                                                                                | PLATES                                                                                 | GRIP                                                                |
|---------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|-------|--------|-----------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|---------------------------------------------------------------------|
| TCLL (roof)                                                                                       |                                                                             | (psf)<br>25.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Spacing<br>Plate Grip DOL                                                                                                                          | 2-0-0<br>1.15                                        |                                                                                                                                               | TC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | in<br>n/a                                                                        | (loc) | n/a    | L/d<br>999                                                                                          | MT20                                                                                   | 244/190                                                             |
| TCDL                                                                                              |                                                                             | 10.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Lumber DOL                                                                                                                                         | 1.15                                                 |                                                                                                                                               | BC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Vert(CT)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | n/a                                                                              | -     | n/a    | 999                                                                                                 | 101120                                                                                 | 244/100                                                             |
| BCLL                                                                                              |                                                                             | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Rep Stress Incr                                                                                                                                    | YES                                                  |                                                                                                                                               | WB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.02                                                                             | 31    | n/a    | n/a                                                                                                 |                                                                                        |                                                                     |
| BCDL                                                                                              |                                                                             | 10.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Code                                                                                                                                               | IRC2018/TPI201                                       | 4                                                                                                                                             | Matrix-S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                  |       |        |                                                                                                     | Weight: 267 lb                                                                         | FT = 20%                                                            |
| LUMBER<br>TOP CHORD<br>BOT CHORD<br>OTHERS<br>SLIDER<br>BRACING<br>TOP CHORD<br>BOT CHORD<br>WEBS | Structura<br>6-0-0 oc  <br>2-0-0 oc  <br>Rigid ceil<br>bracing.<br>1 Row at | o.2<br>No.2<br>SP No.2<br>I wood she<br>purlins, exc<br>purlins (6-0<br>ing directly<br>midpt                                                                                                                                                                                                                                                                                                                                                                                                                                      | athing directly applied<br>cept<br>-0 max.): 14-18.<br>applied or 10-0-0 oc<br>16-43, 17-42, 19-41,<br>20-40, 21-39, 15-44,<br>13-45, 12-46, 11-47 |                                                      | (Ib                                                                                                                                           | 32<br>34<br>36<br>38<br>40<br>42<br>44<br>46<br>48<br>50<br>52<br>54                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 178 (LC 21), :<br>=179 (LC 26),<br>=180 (LC 26),<br>=180 (LC 26),<br>=180 (LC 26),<br>=180 (LC 1),<br>=177 (LC 26),<br>=177 (LC 25),<br>=177 (LC 25),<br>=180 (LC 1), :<br>=180 (LC 1), :<br>=180 (LC 1), :<br>=181 (LC 25)<br>m Compressi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 33=182 (LC<br>35=180 (LC<br>37=180 (LC<br>39=180 (LC<br>41=174 (LC 2<br>43=183 (LC<br>45=176 (LC<br>45=176 (LC<br>49=180 (LC 2<br>49=180 (LC 2<br>53=179 (LC 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1),<br>1),<br>1),<br>26),<br>26),<br>26),<br>22),<br>25),<br>1),<br>25),<br>25), | ,     |        | 19-41<br>21-39<br>24-37<br>26-35<br>28-33<br>15-44<br>12-46<br>10-48<br>6-51=<br>3-54=<br>d roof li | -140/97, 5-52=-1<br>-138/171                                                           | 140/112,<br>140/96,<br>140/97,<br>139/106,<br>'=-137/191,<br>136/8, |
|                                                                                                   | Max Horiz                                                                   | $\begin{array}{c} 32 = 47 \cdot 8 \cdot \\ 34 = 47 \cdot 8 \cdot \\ 36 = 47 \cdot 8 \cdot \\ 40 = 47 \cdot 8 \cdot \\ 40 = 47 \cdot 8 \cdot \\ 42 = 47 \cdot 8 \cdot \\ 42 = 47 \cdot 8 \cdot \\ 46 = 47 \cdot 8 \cdot \\ 50 = 47 \cdot 8 \cdot \\ 50 = 47 \cdot 8 \cdot \\ 50 = 47 \cdot 8 \cdot \\ 52 = 47 \cdot 8 \cdot \\ 53 = -61 (L) \\ 33 = -61 (L) \\ 37 = -61 (L) \\ 47 = -61 (L) \\ 49 = -61 (L) \\ 51 = -61 (L) \\ 51 = -61 (L) \end{array}$ |                                                                                                                                                    | 3),<br>3),<br>3),<br>3),<br>3),<br>2),<br>2),<br>2), | RD 1-3<br>4-4<br>7-4<br>11<br>13<br>15<br>15<br>17<br>19<br>21<br>24<br>27<br>29<br>20<br>2-5<br>50<br>48<br>45<br>43<br>41<br>38<br>36<br>34 | 2=0/17, 2-3<br>5=-181/97,<br>8=-84/162,<br>-12=-106/2<br>-14=-126/3<br>-16=-118/3<br>-16=-118/3<br>-16=-118/3<br>-16=-118/3<br>-16=-118/3<br>-16=-118/3<br>-20=-127/3<br>-20=-127/3<br>-20=-127/3<br>-20=-127/3<br>-20=-127/3<br>-20=-127/3<br>-20=-127/3<br>-20=-127/3<br>-20=-127/3<br>-20=-127/3<br>-20=-127/3<br>-20=-127/3<br>-20=-127/3<br>-20=-127/3<br>-20=-127/3<br>-20=-127/3<br>-20=-127/3<br>-20=-127/3<br>-20=-127/3<br>-20=-127/3<br>-20=-127/3<br>-20=-127/3<br>-20=-127/3<br>-20=-127/3<br>-20=-127/3<br>-20=-127/3<br>-20=-127/3<br>-20=-127/3<br>-20=-127/3<br>-20=-127/3<br>-20=-127/3<br>-20=-127/3<br>-20=-127/3<br>-20=-127/3<br>-20=-127/3<br>-20=-127/3<br>-20=-127/3<br>-20=-127/3<br>-20=-127/3<br>-20=-127/3<br>-20=-127/3<br>-20=-127/3<br>-20=-127/3<br>-20=-127/3<br>-20=-127/3<br>-20=-127/3<br>-20=-127/3<br>-20=-127/3<br>-20=-127/3<br>-20=-127/3<br>-20=-127/3<br>-20=-127/3<br>-20=-127/3<br>-20=-127/3<br>-20=-127/3<br>-20=-127/3<br>-20=-127/3<br>-20=-127/3<br>-20=-127/3<br>-20=-127/3<br>-20=-127/3<br>-20=-127/3<br>-20=-127/3<br>-20=-127/3<br>-20=-127/3<br>-20=-127/3<br>-20=-127/3<br>-20=-127/3<br>-20=-127/3<br>-20=-127/3<br>-20=-127/3<br>-20=-127/3<br>-20=-127/3<br>-20=-127/3<br>-20=-127/3<br>-20=-127/3<br>-20=-127/3<br>-20=-127/3<br>-20=-127/3<br>-20=-127/3<br>-20=-127/3<br>-20=-127/3<br>-20=-127/3<br>-20=-127/3<br>-20=-127/3<br>-20=-127/3<br>-20=-127/3<br>-20=-127/3<br>-20=-127/3<br>-20=-127/3<br>-20=-127/3<br>-20=-127/3<br>-20=-127/3<br>-20=-127/3<br>-20=-127/3<br>-20=-127/3<br>-20=-127/3<br>-20=-127/3<br>-20=-127/3<br>-20=-127/3<br>-20=-127/3<br>-20=-127/3<br>-20=-127/3<br>-20=-127/3<br>-20=-127/3<br>-20=-127/3<br>-20=-127/3<br>-20=-127/3<br>-20=-127/3<br>-20=-127/3<br>-20=-127/3<br>-20=-127/3<br>-20=-127/3<br>-20=-127/3<br>-20=-127/3<br>-20=-127/3<br>-20=-127/3<br>-20=-127/3<br>-20=-127/3<br>-20=-127/3<br>-20=-127/3<br>-20=-127/3<br>-20=-127/3<br>-20=-127/3<br>-20=-127/3<br>-20=-127/3<br>-20=-127/3<br>-20=-127/3<br>-20=-127/3<br>-20=-127/3<br>-20=-127/3<br>-20=-127/3<br>-20=-127/3<br>-20=-127/3<br>-20=-127/3<br>-20=-127/3<br>-20=-127/3<br>-20=-127/3<br>-20=-127/3<br>-20=-127/3<br>-20=-127/3<br>-20=-127/3<br>-20=-127/3<br>-20=-127/3<br>-20=-127/3<br>-20=-127/3<br>-20=-127/3<br>-20=-127/3<br>-20=-127/3<br>-20=-127/3<br>-20=-127/3<br>-20=-127/3<br>-20=-127/3<br>-20=-127/3<br>-20=-127/3<br>-20=-127/3<br>-20=-127/3<br>-20=-127/3<br>-20=-127/3<br>-20=- | 3=-295/92, 3-4<br>5-6=-136/110<br>8-10=-71/190<br>(287, 12-13=-11<br>342, 16-17=-1<br>342, 16-17=-1<br>344, 14-15=-1<br>344, 22-24=-69<br>344, 22-24=-69<br>35, 53-54=-59/2<br>35, 51-52=-59/2<br>35, 51-52=-59/2<br>35, 40-41=-59<br>35, 40-41=-59<br>35, 442=-59/2<br>35, 442=-59/2<br>35, 442=-59/2<br>35, 442=-59/2<br>35, 442=-59/2<br>35, 37-38=-59/2<br>35, 33-34=-59/2<br>31, 32=-59/2<br>31, 32=-59 | ), 6-7=-110/1.<br>), 10-11=-88/<br>27/347,<br>19/341,<br>18/342,<br>26/341,<br>18/342,<br>26/341,<br>06/287,<br>(180,<br>172, 26-27=-7<br>5/43,<br>1/25,<br>1/225,<br>1/225,<br>1/225,<br>1/225,<br>1/225,<br>1/225,<br>1/225,<br>1/225,<br>1/225,<br>1/225,<br>1/225,<br>1/225,<br>1/225,<br>1/225,<br>1/225,<br>1/225,<br>1/225,<br>1/225,<br>1/225,<br>1/225,<br>1/225,<br>1/225,<br>1/225,<br>1/225,<br>1/225,<br>1/225,<br>1/225,<br>1/225,<br>1/225,<br>1/225,<br>1/225,<br>1/225,<br>1/225,<br>1/225,<br>1/225,<br>1/225,<br>1/225,<br>1/225,<br>1/225,<br>1/225,<br>1/225,<br>1/225,<br>1/225,<br>1/225,<br>1/225,<br>1/225,<br>1/225,<br>1/225,<br>1/225,<br>1/225,<br>1/225,<br>1/225,<br>1/225,<br>1/225,<br>1/225,<br>1/225,<br>1/225,<br>1/225,<br>1/225,<br>1/225,<br>1/225,<br>1/225,<br>1/225,<br>1/225,<br>1/225,<br>1/225,<br>1/225,<br>1/225,<br>1/225,<br>1/225,<br>1/225,<br>1/225,<br>1/225,<br>1/225,<br>1/225,<br>1/225,<br>1/225,<br>1/225,<br>1/225,<br>1/225,<br>1/225,<br>1/225,<br>1/225,<br>1/225,<br>1/225,<br>1/225,<br>1/225,<br>1/225,<br>1/225,<br>1/225,<br>1/225,<br>1/225,<br>1/225,<br>1/225,<br>1/225,<br>1/225,<br>1/225,<br>1/225,<br>1/225,<br>1/225,<br>1/225,<br>1/225,<br>1/225,<br>1/225,<br>1/225,<br>1/225,<br>1/225,<br>1/225,<br>1/225,<br>1/225,<br>1/225,<br>1/225,<br>1/225,<br>1/225,<br>1/225,<br>1/225,<br>1/225,<br>1/225,<br>1/225,<br>1/225,<br>1/225,<br>1/225,<br>1/225,<br>1/225,<br>1/225,<br>1/225,<br>1/225,<br>1/225,<br>1/225,<br>1/225,<br>1/225,<br>1/225,<br>1/225,<br>1/225,<br>1/225,<br>1/225,<br>1/225,<br>1/225,<br>1/225,<br>1/225,<br>1/225,<br>1/225,<br>1/225,<br>1/225,<br>1/225,<br>1/225,<br>1/225,<br>1/225,<br>1/225,<br>1/225,<br>1/225,<br>1/225,<br>1/225,<br>1/225,<br>1/225,<br>1/225,<br>1/225,<br>1/225,<br>1/225,<br>1/225,<br>1/225,<br>1/225,<br>1/225,<br>1/225,<br>1/225,<br>1/225,<br>1/225,<br>1/225,<br>1/225,<br>1/225,<br>1/225,<br>1/225,<br>1/225,<br>1/225,<br>1/225,<br>1/225,<br>1/225,<br>1/225,<br>1/225,<br>1/225,<br>1/225,<br>1/225,<br>1/225,<br>1/225,<br>1/225,<br>1/225,<br>1/225,<br>1/225,<br>1/225,<br>1/225,<br>1/225,<br>1/225,<br>1/225,<br>1/225,<br>1/225,<br>1/225,<br>1/225,<br>1/225,<br>1/225,<br>1/225,<br>1/225,<br>1/225,<br>1/225,<br>1/225,<br>1/225,<br>1/225,<br>1/225,<br>1/225,<br>1/225,<br>1/225,<br>1/225,<br>1/225,<br>1/225,<br>1/225,<br>1/225,<br>1/225,<br>1/225,<br>1/225,<br>1/225,<br>1/225,<br>1/225,<br>1/225,<br>1/225,<br>1/225,<br>1/225,<br>1/225,<br>1/225,<br>1/225,<br>1/225,<br>1/225,<br>1/225,<br>1/225,<br>1/225,<br>1/225,<br>1/225,<br>1/225,<br>1/225,<br>1/225,<br>1/225,<br>1/25 | 234,                                                                             |       |        |                                                                                                     | STATE OF I<br>ADA<br>PAC<br>PAC<br>PAC<br>PAC<br>PAC<br>PAC<br>PAC<br>PAC<br>PAC<br>PA | De t                                                                |

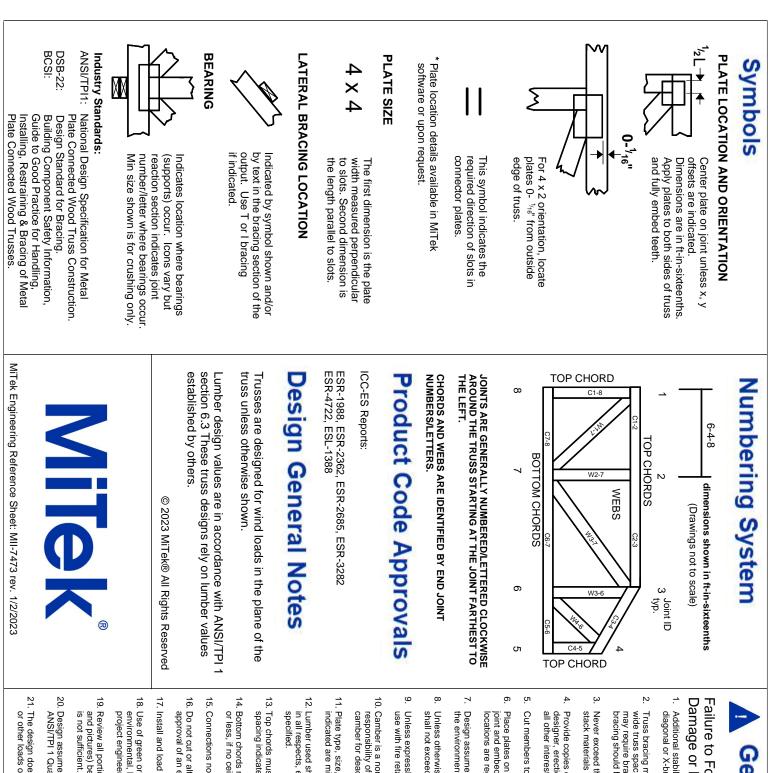
Continued on page 2 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not besign value to dury with with where outputs into design is based only door parameters shown, and is for an individual building design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members and property incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TPH1 Quality Criteria**, and **DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcscomponents.com)



Page: 1

| Job        | Truss | Truss Type                     | Qty | Ply | Roof - Osage Lot 82      |           |
|------------|-------|--------------------------------|-----|-----|--------------------------|-----------|
| P240069-02 | A6    | Piggyback Base Supported Gable | 2   | 1   | Job Reference (optional) | 165691315 |

Premier Building Supply (Springhill, KS), Spring Hills, KS - 66083,


- 2) Wind: ASCE 7-16: Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=35ft; Ke=1.00; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone and C-C Corner(3E) -0-10-8 to 4-0-0, Exterior(2N) 4-0-0 to 20-11-0, Corner(3R) 20-11-0 to 26-0-0, Exterior(2N) 26-0-0 to 27-1-0, Corner(3R) 27-1-0 to 32-0-0, Exterior(2N) 32-0-0 to 47-8-14 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- Truss designed for wind loads in the plane of the truss 3) only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- Provide adequate drainage to prevent water ponding. 4)
- All plates are 3x4 MT20 unless otherwise indicated. 5) Gable requires continuous bottom chord bearing. 6)
- 7) Gable studs spaced at 2-0-0 oc.
- 8)
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. All bearings are assumed to be SP No.2 crushing 9)
- capacity of 565 psi. 10) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 26 lb uplift at joint 2, 58 lb uplift at joint 43, 9 lb uplift at joint 42, 74 lb uplift at joint 40, 60 lb uplift at joint 39, 61 lb uplift at joint 38, 61 lb uplift at joint 37, 61 lb uplift at joint 36, 61 lb uplift at joint 35, 62 lb uplift at joint 34, 59 lb uplift at joint 33, 103 lb uplift at joint 32, 12 lb uplift at joint 44, 71 lb uplift at joint 46, 61 lb uplift at joint 47, 61 lb uplift at joint 48, 61 lb uplift at joint 49, 61 lb uplift at joint 50, 61 lb uplift at joint 51, 61 lb uplift at joint 52, 61 lb uplift at joint 53 and 87 lb uplift at joint 54.
- 11) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 12) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord

LOAD CASE(S) Standard

Run: 8.63 S Apr 26 2024 Print: 8.630 S Apr 26 2024 MiTek Industries. Inc. Mon May 20 10:32:57 ID:JbPUB4NmDf0vUSJtFFIELayGxJT-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 2

 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.
Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not beign value of use only wan win exec connectors, this design is based only upon parameters shown, and is for an individual building domponent, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality** Criteria, and **DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcscomponents.com)



General Safety Notes

Failure to Follow Could Cause Property Damage or Personal Injury

- 1. Additional stability bracing for truss system, e.g. diagonal or X-bracing, is always required. See BCSI.
- Truss bracing must be designed by an engineer. For wide truss spacing, individual lateral braces themselves may require bracing, or alternative Tor1 bracing should be considered.
- Never exceed the design loading shown and never stack materials on inadequately braced trusses.
- Provide copies of this truss design to the building designer, erection supervisor, property owner and all other interested parties.
- 5. Cut members to bear tightly against each other
- Place plates on each face of truss at each joint and embed fully. Knots and wane at joint locations are regulated by ANSI/TPI 1.
- Design assumes trusses will be suitably protected from the environment in accord with ANSI/TPI 1.
- Unless otherwise noted, moisture content of lumber shall not exceed 19% at time of fabrication.
- Unless expressly noted, this design is not applicable for use with fire retardant, preservative treated, or green lumber.
- Camber is a non-structural consideration and is the responsibility of truss fabricator. General practice is to camber for dead load deflection.
- 11. Plate type, size, orientation and location dimensions indicated are minimum plating requirements.
- Lumber used shall be of the species and size, and in all respects, equal to or better than that specified.
- Top chords must be sheathed or purlins provided at spacing indicated on design.
- 14. Bottom chords require lateral bracing at 10 ft. spacing, or less, if no ceiling is installed, unless otherwise noted.
- 15. Connections not shown are the responsibility of others.
- Do not cut or alter truss member or plate without prior approval of an engineer.
- 17. Install and load vertically unless indicated otherwise.
- Use of green or treated lumber may pose unacceptable environmental, health or performance risks. Consult with project engineer before use.
- Review all portions of this design (front, back, words and pictures) before use. Reviewing pictures alone is not sufficient.
- 20. Design assumes manufacture in accordance with ANSI/TPI 1 Quality Criteria.
- 21. The design does not take into account any dynamic or other loads other than those expressly stated.