MiTek®

RE: P240393

MiTek, Inc. 16023 Swingley Ridge Rd. Chesterfield, MO 63017 314.434.1200

Date

4/23/2024

4/23/2024

4/23/2024

4/23/2024

Site Information:Customer: Clayton PropertiesProject Name: P240393Lot/Block: 192Model:Address: 3212 SW Arboridge CirSubdivision: Hawthorne RidgeCity: Lee's SummitState: MO

General Truss Engineering Criteria & Design Loads (Individual Truss Design Drawings Show Special Loading Conditions):

Design Code: IRC2018/TPI2014 Wind Code: ASCE 7-16 Roof Load: 45.0 psf

Design Program: MiTek 20/20 8.6 Wind Speed: 115 mph Floor Load: N/A psf

This package includes 24 individual, dated Truss Design Drawings and 0 Additional Drawings.

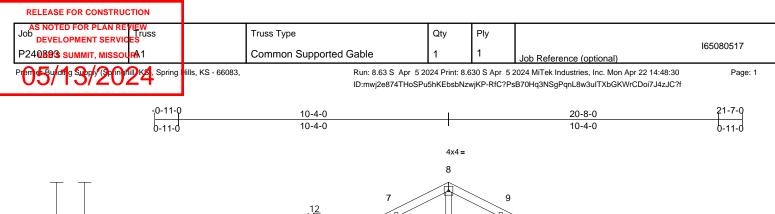
No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20	Seal# I65080517 I65080518 I65080519 I65080520 I65080522 I65080523 I65080523 I65080525 I65080526 I65080527 I65080528 I65080529 I65080530 I65080531 I65080533 I65080533 I65080533 I65080534 I65080535 I65080535 I65080535 I65080536	Truss Name A1 A2 A3 A4 A6 A7 B01 B02 C1 C2 C3 C4 C5 PB1 PB2 V1 V2 V3 V4 V5	Date 4/23/2024	No. 21 22 23 24	Seal# 165080537 165080538 165080539 165080540
--	---	--	---	-----------------------------	---

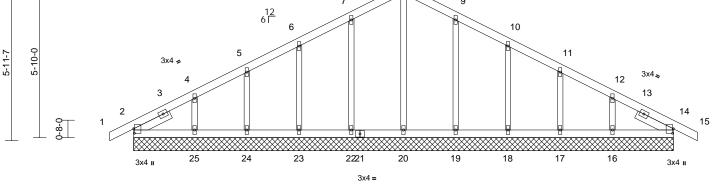
The truss drawing(s) referenced above have been prepared by MiTek USA, Inc under my direct supervision based on the parameters provided by . Truss Design Engineer's Name: Sevier, Scott

My license renewal date for the state of Missouri is December 31, 2025. Missouri COA: 001193

IMPORTANT NOTE: The seal on these truss component designs is a certification that the engineer named is licensed in the jurisdiction(s) identified and that the designs comply with ANSI/TPI 1. These designs are based upon parameters shown (e.g., loads, supports, dimensions, shapes and design codes), which were given to MiTek. Any project specific information included is for MiTek customers file reference purpose only, and was not taken into account in the preparation of these designs. MiTek has not independently verified the applicability of the design parameters or the designs for any particular building. Before use, the building designer should verify applicability of design parameters and properly incorporate these designs into the overall building design per ANSI/TPI 1, Chapter 2.

Truss Name


V6


V07

V7

V8

Sevier, Scott

Scale = 1:44.1 Plate Offsets (X, Y): [2:0-2-1,0-0-5], [14:0-2-1,0-0-5]

Plate Offsets ((X, Y): [2:0-2-1,0-0-5]	, [14:0-2-1,0-0-5]											
Loading TCLL (roof) Snow (Pf) TCDL BCLL	(psf) 25.0 25.0 10.0 0.0*	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC20	18/TPI2014	CSI TC BC WB Matrix-S	0.11 0.04 0.12	DEFL Vert(LL) Vert(CT) Horz(CT)	in n/a n/a 0.00	(loc) - - 14	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20	GRIP 197/144
BCDL	10.0											Weight: 95 lb	FT = 20%
LUMBER TOP CHORD BOT CHORD OTHERS SLIDER BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x4 SP No.2 2x3 SPF No.2 Left 2x4 SP No.2 1-6-7 Structural wood she 6-0-0 oc purlins. Rigid ceiling directly bracing. (size) 2=20-8-0.	1-6-7, Right 2x4 SP N eathing directly applie r applied or 10-0-0 oc , 14=20-8-0, 16=20-8 0, 18=20-8-0, 19=20-	No.2 V d or 1 -0,	this design. 2) Wind: ASCI	E 7-16; Vult=115m	2-23=-23 9-20=-23 7-18=-23 4-16=-23 2=-236/96 ·25=-149 ·18=-224 12-16=-1 ve been ph (3-se	/121, /121, /121, /121, ,6-23=-224/10 /185, /102, 49/181 considered for cond gust)	02,	chc 11) * TI on ' 3-0 chc 12) All cap 13) Pro bea 2, 6 upli 19,	ord live lo his truss the botto 6-00 tall ord and a bearing bacity of avide me aring plat 62 lb upli ift at join 64 lb up	bad not has be om cho by 2-0 any oth are as 565 ps chanic te capa ft at joi t 24, 9 lift at jo	en designed for a nconcurrent with een designed for rd in all areas wh 00-00 wide will fit eer members. ssumed to be SP si. al connection (by able of withstand int 22, 63 lb upliff a lb upliff at joint oint 18, 56 lb upl	10.0 psf bottom any other live loads. a live load of 20.0psf here a rectangle between the bottom P No.2 crushing V others) of truss to ing 27 lb uplift at joint t at joint 23, 55 lb 25, 61 lb uplift at joint ift at joint 17, 85 lb
	20=20-8-1 24=20-8-1 24=20-8-1 2=106 (L0 16=-85 (L 18=-64 (L 22=-62 (L 24=-55 (L 16=198 (L 16=198 (L 18=265 (I 20=161 (I	0, 22=20-8-0, 23=20- 0, 25=20-8-0 C 20) C 17), 14=-4 (LC 13), C 17), 17=-56 (LC 17) C 16), 23=-63 (LC 16) C 16), 23=-63 (LC 16) C 16), 25=-93 (LC 16) C 16), 25=-93 (LC 16) C 16), 14=183 (LC 1), LC 37), 17=218 (LC 2) LC 29), 22=276 (LC 2) LC 23), 24=218 (LC 2)	7), 7), 7), 5), 5) 24), 3), 23), 33),	Vasd=91mr Ke=1.00; C exterior zor Exterior(2N 15-4-0, Extr left and righ exposed;C- reactions sh DOL=1.60 3) Truss desig only. For si see Standa or consult q H TCLL: ASC	bh; TCDL=6.0psf; I at. II; Exp C; Enclo ue and C-C Corner) 4-4-0 to 10-4-0, (erior(2N) 15-4-0 to tt exposed ; end ve C for members an nown; Lumber DOI gned for wind load: tuds exposed to wi rd Industry Gable I jualified building de E 7-16; Pr=25.0 ps	SCDL=6. sed; MW (3E) -0-1 Corner(3I 21-7-0 z rrtical left d forces _=1.60 pl s in the p nd (norm End Deta esigner a sf (roof Ll	Opsf; h=35ft; (FRS (envelope 1-0 to 4-4-0, R) 10-4-0 to one; cantilever and right & MWFRS for ate grip lane of the trus ial to the face), ils as applicabl s per ANSI/TPI :: Lum DOL=1.	es 1.	14) Thi Inte R80	s truss is ernationa	s desig al Resid and ref) Sta	ferenced standar	ce with the 2018 tions R502.11.1 and d ANSI/TPI 1.
FORCES	(lb) - Maximum Com	npression/Maximum			:1.15); Pf=25.0 psf ; Is=1.0; Rough Ca						8	SEV	IER \ X
TOP CHORD	5-6=-75/101, 6-7=-7 8-9=-83/211, 9-10=-		02, 6 2 6	Cs=1.00; C 5) Unbalanced design. 5) This truss h load of 12.0 overhangs i 7) All plates ai		been co for great flat roof I h other li ess other	nsidered for this er of min roof li oad of 25.0 psf ve loads. wise indicated.	s ve on		•		PE-2001	018807

- 9) Gable studs spaced at 2-0-0 oc.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent colleges with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

16023 Swingley Ridge Rd.

Chesterfield, MO 63017 314.434.1200 / MiTek-US.com

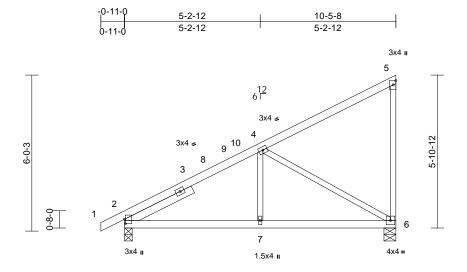
April 23,2024

tour

	OR CONSTRUCTION										
AS NOTED	FOR PLAN REVIEW		Truss Type		Qty	Ply					
-	JMMIT, MISSOURA2		Common Struct	ural Gable	1	1	loh Refe	rence (op	tional)		165080518
Premie Building		ing Hills, KS - 66083,	1	Run: 8.63 S Ap	r 5 2024 Prin	t: 8.630 S Apr 5				n Apr 22 14:48:31	Page: 1
00/1	5/2024			ID:fhyYUVBaW	WJuuVPTZ3fc	olDzwjKL-RfC?P	sB70Hq3NSg	PqnL8w3u	ITXbGK	WrCDoi7J4zJC?f	
	-0-11-0	7-9-4		15-4-0		22-1				30-8-0	31-7-0
	0-11-0	7-9-4	I	7-6-12	I	7-6	-12	I		7-9-4	0-11-0
			10		4x8=						
ТТ	_		1 <u>2</u> 6		12						
			3x4 ≠	11		13		3x4.			
		3x4 ≠	4x4 🚅	36			14 37		•		
		3x4 =	6 ⁷⁸				3	¹⁵ 16			
8-5-7 8-4-0		10.10	6'						,	2×4	
ά ά		^{12x12} = 5 3 4 ³⁵								3x4₅ 397	
		3 4	32	6 1		E E					3x4 👟
	2			31 3x6 II 21			34				18
				30		33		9			19
	- o 🗸 📈 🕅 3x4 🗉	29 2		24 23	22 21			20			
	5x4 II	20 2			3x4=						4x4=
					3x8=						
		<u>7-9-4</u> 7-9-4	10-1-1			<u>22-1</u> 7-6				<u> </u>	
Scale = 1:59.5		-		524		10	12			104	
Plate Offsets ((X, Y): [2:0-2-1,0-0-5], [3	3:2-6-7,Edge], [18:E	_dge,0-2-1]	- 1			-				
Loading TCLL (roof)	. ,	Spacing Plate Grip DOL	2-0-0 1.15	CSI TC)EFL /ert(LL) -(in (loc) 0.09 18-20		L/d 240	PLATES MT20	GRIP 244/190
Snow (Pf)	25.0	Lumber DOL	1.15	BC	0.63 V	/ert(CT) -0	.19 18-20	>999	180	W120	244/100
TCDL BCLL		Rep Stress Incr Code	YES IRC2018/TPI2014	WB Matrix-S	0.72 H	lorz(CT) (.03 18	n/a	n/a		
BCDL	10.0									Weight: 166 lb	FT = 20%
LUMBER TOP CHORD			BOT CHORE	2-29=-192/119, 2 27-28=-194/119, 2							greater of min roof live oof load of 25.0 psf on
BOT CHORD	2x4 SP No.2			25-26=-194/119,	24-25=-194/	/119,	٥V	erhangs	non-co	ncurrent with oth	ner live loads.
WEBS OTHERS	2x3 SPF No.2 2x3 SPF No.2			23-24=-194/119, 20-21=-148/1376	18-20=-148	8/1376	,	•		4 M120 unless o ed at 2-0-0 oc.	otherwise indicated.
SLIDER	Left 2x4 SP No.2 4-3 No.2 4-3-11	3-11, Right 2x4 SP	WEBS	12-21=-65/241, 2 33-34=-871/283,							a 10.0 psf bottom any other live loads.
BRACING				16-20=0/335, 7-3 30-31=-41/918, 2	2=-42/935, 3	31-32=-44/930	, 10) * -	This truss	has be	en designed for	a live load of 20.0psf here a rectangle
TOP CHORD	Structural wood sheat 3-1-9 oc purlins.	hing directly applie	d or	7-26=-570/45, 11	-30=-23/60,	,	3-	06-00 tall	by 2-0	0-00 wide will fit	between the bottom
BOT CHORD	Rigid ceiling directly a bracing, Except:	pplied or 6-0-0 oc		10-31=-283/116, 3 9-32=-274/85, 25	-32=-276/91	, 6-27=-314/5	2, 11) Al			er members. ssumed to be SF	P No.2 crushing
	10-0-0 oc bracing: 20-	21,18-20.		5-28=-122/83, 3-2 14-34=-38/12	29=-216/135	6, 13-33=-47/2		pacity of ovide me			y others) of truss to
JOINTS	1 Brace at Jt(s): 30, 31, 33, 34		NOTES	and roof live Is a dark	vo beer	oidored for	be	aring plat	te capa	able of withstand	ling 42 lb uplift at joint lift at joint 18, 107 lb
REACTIONS		8=0-3-8, 24=0-3-8, 26=10-3-8, 27=10-	3-8, this desig				up	lift at join	t 25, 1	1 lb uplift at joint	27, 62 lb uplift at joint
	28=10-3-8, Max Horiz 2=153 (LC 2			SCE 7-16; Vult=115m mph; TCDL=6.0psf; I			13) Tł	nis truss is	, s desig	, ned in accordan	Ib uplift at joint 24.
	Max Uplift 2=-42 (LC 1	7), 18=-213 (LC 17), autorior -	Cat. II; Exp C; Enclo cone and C-C Exterio						dential Code sec erenced standa	tions R502.11.1 and rd ANSI/TPI 1.
		C 16), 25=-107 (LC 17), 27=-11 (LC 17	7). Interior (1) 4-1-0 to 15-4-0, Ex	terior(2R) 1	5-4-0 to	LOAD	CASE(S) Sta	ndard	~
	28=-62 (LC Max Grav 2=166 (LC 3	16), 29=-101 (LC 2 36), 18=1104 (LC 2	and right	nterior (1) 20-4-0 to 3 exposed ; end vertic	al left and rig	ght				OF	MISSO
	24=686 (LC	23), 25=75 (LC 24 24), 27=331 (LC 2	l), exposed	C-C for members an shown; Lumber DO					4	ALF	
	28=153 (LC	36), 29=281 (LC 1	DOL=1.6						A	SCOT	
FORCES	(lb) - Maximum Comp Tension	ression/Maximum	only. Fo	r studs exposed to wi	nd (normal t	to the face),			20	SEV	
TOP CHORD	1-2=0/12, 2-3=-132/25 5-6=0/240, 6-7=-13/15		or consu	dard Industry Gable	esigner as p	er ANSI/TPI 1				otto.	Serviol
	9-10=-721/221, 10-11	=-704/248,		SCE 7-16; Pr=25.0 ps L=1.15); Pf=25.0 psf)	- -	N7	NUM PE-2001	
	11-12=-646/255, 12-1 13-14=-707/213, 14-1	6=-845/201,	DOL=1.1	5); ls=1.0; Rough Ca Ct=1.10					8	The second secon	120
	16-18=-1653/298, 18-	19=0/12	5) Unbalan	ced snow loads have	been consid	dered for this				ESSIONA	L ENG
			design.								
										Δnr	il 23.2024

April 23,2024

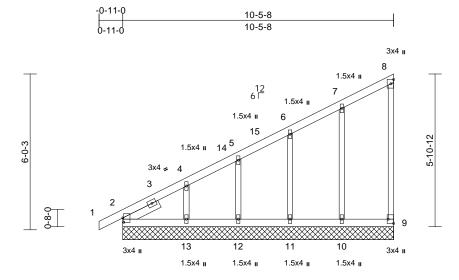
Mittek 16023 Swingley Ridge Rd. Chesterlield, MO 63017 314.434.1200 / Mittek-US.com


RELEASE FOR C											
AS NOTED FOR Job DEVELOPMEN	PLAN REVIEW		Truss Type		Qty	Ply					
P240893 SUMMIT			Common		6	1	Job Refere	ence (opt	tional)		165080519
P1015	2024 si	pring Hills, KS - 66083,				•				n Apr 22 14:48:32 WrCDoi7J4zJC?f	Page: 1
	-0-11-0 0-11-0	7-9-4 7-9-4		15-4-0 7-6-12		22-10 7-6-				<u>30-8-0</u> 7-9-4	31-7-0
					5x5=						
– –			1 <u>2</u> 6		6						
			3x6 ≠								
			3x4 ≈	18			19	3x4 ≥			
			17 4 ⁵				20	^{3x6} ₹			
8-5-7 8-4-0		3×4 +	4					P		3x4 ≈	
άά		3x4 ≠ 316								219	
		3x4 =				Ð					3x4 👟
	2	× ·									10
			8					g			11
C	⊠ 5x5 ∎		15		14 13			12			∑ 5x5 ∎
			1.5x4 I		4x4 =			1.5x4	l II		
		7-9-4		15-4-0	3x8=	22-10)-12			30-8-0	
		7-9-4		7-6-12		7-6-				7-9-4	
Scale = 1:59.5	()	a .								DI 4750	
Loading TCLL (roof)	(psf) 25.0	Spacing Plate Grip DOL	2-0-0 1.15	TC	0.76 Ver		in (loc) .10 12-13	l/defl >999	L/d 240	PLATES MT20	GRIP 244/190
Snow (Pf) TCDL	25.0 10.0	Lumber DOL Rep Stress Incr	1.15 YES	BC WB		. ,	.22 2-15 .10 10	>999 n/a	180 n/a		
BCLL BCDL	0.0* 10.0	Code	IRC2018/TPI2014	Matrix-S		2(01) 0				Waight: 120 lb	FT = 20%
	10.0		2) TCU - AS	CE 7-16; Pr=25.0 ps	f (roof LL : Lur	n DOI -1 15				Weight: 139 lb	F I = 2078
		Except* 1-5,7-11:2x	4 SP Plate DOL	=1.15); Pf=25.0 psf	(Lum DOL=1.	15 Plate					
BOT CHORD 2x4	50F 1.5E 4 SP No.2		Cs=1.00;								
	3 SPF No.2 it 2x4 SP No.2 4	-3-11, Right 2x4 SP	design.	ed snow loads have							
No. BRACING	.2 4-3-11			has been designed .0 psf or 2.00 times t			1				
TOP CHORD Str		athing directly applie		s non-concurrent wit has been designed							
BOT CHORD Rig	, ,	applied or 10-0-0 oc	chord live	load nonconcurrent is has been designed	with any othe	r live loads.					
	acing. Row at midpt 8	8-13, 4-13	on the bot	tom chord in all area	as where a rec	tangle					
REACTIONS (size Max	e) 2=0-3-8, 1 Horiz 2=-153 (L0		chord and	any other members	-						
Max	Uplift 2=-233 (LC	C 16), 10=-233 (LC C 23), 10=1451 (LC	17) capacity c			Ū.					
FORCES (lb)) - Maximum Com	pression/Maximum	· 5) 110414011	echanical connectio ate capable of withs							
	nsion 2=0/12, 2-4=-2366/	/375, 4-6=-1634/361		233 lb uplift at joint is designed in accor		e 2018					
	8=-1634/361, 8-10 5=-339/2003, 13-	=-2365/375, 10-11= 15=-339/2003,	0/12 Internation	nal Residential Code and referenced sta	sections R50	2.11.1 and					
12-	-13=-230/2003, 10		LOAD CASE							0000	alle
	3=-826/287, 4-15									FE OF M	AISSO
1) Unbalanced roo	of live loads have	been considered for							B	ST SCOT	1 CAN
	16; Vult=115mph									SEVI	
Ke=1.00; Cat. I		; MWFRS (envelop	e)						87	_1. A	1 1
	nd C-C Exterior(21 0 to 15-4-0, Exteri	E) -0-11-0 to 4-1-0, or(2R) 15-4-0 to							1A	cotto	Sources
20-4-0, Interior		-0 zone; cantilever l	eft						Ø.	PE-2001	018807
exposed;C-C fo	or members and fo	orces & MWFRS for							V	1288	ENGL
DOL=1.60	n; Lumber DOL=1	.00 plate grip								SIONA	L L L L L L L L L L L L L L L L L L L
											1 23,2024

RELEASE FOR CONSTRUCTION							
AS NOTED FOR PLAN REVIEW Job DEVELOPMENT SERVICES	Т	russ Type	C	ty Ply			
P240893 SUMMIT, MISSOURA4	с	Common	3	1	Job Reference (d	ontional)	165080520
Progenities and a spring the spring	łills, KS - 66083,				5 2024 MiTek Industries	s, Inc. Mon Apr 22 14:48:32 /3uITXbGKWrCDoi7J4zJC	0
-0-11-0	7-9-4		15-4-0		2-10-12	30-8-0)
0-11-0	7-9-4		7-6-12	5x5=	7-6-12	7-9-4	
		1 <u>2</u> 6		6			
ТТ		3x6 ≠					
		3x4 ≠			. :	3x4 👟	
		1 16	7			6.	
		4 5				78	
8-5-7	3x4 ≠					20 3×	4
	315					9	
	3x4 =		×₹				3x4 •
e_{\pm} 1 ²	B						10
						<u>e</u>	
5x5 II		14 1.5x4 u	13 4x4			11 1.5x4 u	5x5 II
		1.074		3x8=			
	7-9-4	1	15-4-0		2-10-12	30-8-0)
Scale = 1:59.5	7-9-4	I	7-6-12	-	7-6-12	7-9-4	
	acing 2-	-0-0	CSI	DEFL	in (loc) l/def	I L/d PLATES	GRIP
TCLL (roof) 25.0 Pla	te Grip DOL 1.	.15	TC 0.76	Vert(LL) -	-0.10 10-11 >999	9 240 MT20	244/190
		.15 ES	BC 0.72 WB 0.58		-0.23 10-11 >999 0.10 10 n/a		
BCLL 0.0* Con BCDL 10.0	de IR	RC2018/TPI2014	Matrix-S			Weight: 138 I	b FT = 20%
LUMBER		3) TCLL: ASCE	7-16; Pr=25.0 psf (roof L	L: Lum DOL=1.1	15		
TOP CHORD 2x4 SP 2400F 2.0E *Exce 1650F 1.5E	ept* 1-5,7-10:2x4 SI	P Plate DOL=1	.15); Pf=25.0 psf (Lum D s=1.0; Rough Cat C; Full	OL=1.15 Plate			
BOT CHORD 2x4 SP No.2		Cs=1.00; Ct=	=1.10 [°]				
WEBS 2x3 SPF No.2 SLIDER Left 2x4 SP No.2 4-3-1	1, Right 2x4 SP	design.	snow loads have been co				
No.2 4-3-11 BRACING		load of 12.0 p	s been designed for grea osf or 2.00 times flat roof	load of 25.0 psf			
TOP CHORD Structural wood sheathin 3-10-14 oc purlins.	g directly applied or		on-concurrent with other s been designed for a 10				
BOT CHORD Rigid ceiling directly appl bracing.	ied or 10-0-0 oc		ad nonconcurrent with an las been designed for a li	•			
WEBS 1 Row at midpt 8-12	, 4-12		n chord in all areas where y 2-00-00 wide will fit be		n		
REACTIONS (size) 2=0-3-8, 10=0- Max Horiz 2=155 (LC 16)		chord and an	are assumed to be SP No.				
Max Uplift 2=-233 (LC 16 Max Grav 2=1452 (LC 23		capacity of 5	65 psi.	0			
FORCES (lb) - Maximum Compress		bearing plate	hanical connection (by ot capable of withstanding				
Tension TOP CHORD 1-2=0/12, 2-4=-2367/376		10) This truss is	09 lb uplift at joint 10. designed in accordance				
6-8=-1637/366, 8-10=-23 BOT CHORD 2-14=-341/2004, 12-14=-	341/2004,		Residential Code section nd referenced standard A		d		
11-12=-235/2009, 10-11= WEBS 6-12=-100/843, 8-12=-83	1/290, 8-11=0/325,	LOAD CASE(S)	Standard			1000	Jan
4-12=-826/287, 4-14=0/3. NOTES	23					TE OF	MISSO
1) Unbalanced roof live loads have beer	o considered for					BAT	TT M.
this design. 2) Wind: ASCE 7-16; Vult=115mph (3-se							VIER
Vasd=91mph; TCDL=6.0psf; BCDL=6 Ke=1.00; Cat. II; Exp C; Enclosed; M	WFRS (envelope)					als -	
exterior zone and C-C Exterior(2E) -0 Interior (1) 4-1-0 to 15-4-0, Exterior(2						NUN	TERRET
20-4-0, Interior (1) 20-4-0 to 30-8-0 zo and right exposed ; end vertical left a	one; cantilever left					PE-200	1018807
exposed;C-C for members and forces	& MWFRS for					Session -	IL ENGL'S
reactions shown; Lumber DOL=1.60 p DOL=1.60	siale glip					SSION	AL LISS
						Ap	oril 23,2024

RELEASE FOR CONSTRUCTION							
AS NOTED FOR PLAN REVIEW Job DEVELOPMENT SERVICES		Truss Type		Qty	Ply		105000504
P240883 SUMMIT, MISSOURA6		Monopitch		3	1	Job Reference (optional)	165080521
Premie Building Soply (Sprin) Mill Kg, Spring	lills, KS - 66083,	Run: 8.63 S Apr 5 2024 Print: 8.630 S Apr 5 2024 MiTek Industries, Inc. Mon Apr 22 14:48:32 ID:zPwjqLQH8zLsijQ0BAYj2YzkcA4-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f					

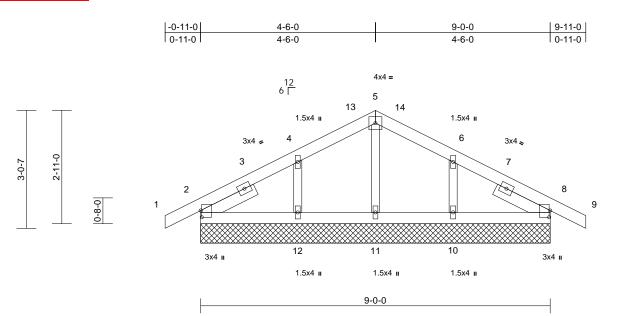
Scale = 1:44.4 Plate Offsets (X, Y): [2:0-2-1,0-0-5]


Plate Olisets (A	(, Y): [2:0-2-1,0-0-5]												
Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 25.0 25.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018/TPI	2014	CSI TC BC WB Matrix-S	0.61 0.29 0.60	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.02 -0.04 0.01	(loc) 6-7 6-7 6	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 50 lb	GRIP 197/144 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS SLIDER BRACING TOP CHORD BOT CHORD BOT CHORD BOT CHORD BOT CHORD BOT CHORD WEBS	2x4 SP No.2 2x4 SP No.2 2x3 SPF No.2 Left 2x4 SP No.2	athing directly applie cept end verticals. applied or 9-7-1 oc 5=0-5-8 C 13) C 16), 6=-134 (LC 16) C 23), 6=633 (LC 23) pression/Maximum 178, 4-5=-167/129, 360/609	loa ove 5) Thi chc 6) * Ti ad or 3-0 chc 7) All cap 8) Pro bes join 9) Thi Inte R80	d of 12.0 rhangs n s truss ha rd live loa his truss h he botton 6-00 tall h rd and an ocarings acity of 5 vide mec ring plate t 6 and 9 s truss is rnational 02.10.2 a	as been designed f psf or 2.00 times fl on-concurrent with as been designed f has been designed f has been designed n chord in all area by 2-00-00 wide win y other members. are assumed to be 65 psi. hanical connectior e capable of withst 3 lb uplift at joint 2 designed in accorr Residential Code nd referenced star Standard	lat roof lin o ther lin for a 10. with any d for a liv s where ill fit betw e SP No. h (by oth anding 1 dance w sections	bad of 25.0 p ve loads. D psf bottom other live loa e load of 20.1 a rectangle veen the bott 2 crushing ers) of truss i 34 lb uplift ar ith the 2018 s R502.11.1 a	sf on ads. Opsf om to t				Weight. 30 D	11-20/8
Vasd=91mj Ke=1.00; C exterior zor Interior (1) exposed ; c members a Lumber DC 2) TCLL: ASC Plate DOL= DOL=1.15) Cs=1.00; C	E 7-16; Vult=115mph ph; TCDL=6.0psf; BC iat. II; Exp C; Enclose ne and C-C Exterior(2 4-1-0 to 10-4-4 zone; end vertical left and rig nd forces & MWFRS JL=1.60 plate grip DC E 7-16; Pr=25.0 psf (L =1.15); Pf=25.0 psf (L ; Is=1.0; Rough Cat C it=1.10 d snow loads have be	DL=6.0psf; h=35ft; d; MWFRS (envelop iE) -0.11-0 to 4-1-0, cantilever left and rig ght exposed;C-C for for reactions shown; JL=1.60 roof LL: Lum DOL=1 um DOL=1.15 Plate ;; Fully Exp.; Ce=0.9	ght .15								R	STATE OF J SCOT SEV DE LOOI PE-2001	I M. HER 018807

April 23,2024

RELEASE FOR CONSTRUCTION						
AS NOTED FOR PLAN REVIEW Job DEVELOPMENT SERVICES		Truss Type	Qty	Ply		165080522
P240883 SUMMIT, MISSOURA7		Monopitch Supported Gable	1	1	Job Reference (optional)	105000522
Premie Euden Spry Comming Ka, Spring	Hills, KS - 66083,	Run: 8.63 S Apr 5 2024 Print: 8.630 S Apr 5 2024 MiTek Industries, Inc. Mon Apr 22 14:48:32 ID:1ZrpYIpMcoNJXetA3u7DLIzkc9a-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f				Page: 1

Scale = 1:44.5	ł	10-5-8	1	
Plate Offsets (X, Y): [2:0-2-1,0-0-5], [9	9:Edge,0-2-8]			


Loading	(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
CLL (roof)	25.0	Plate Grip DOL	1.15		TC	0.39	Vert(LL)	n/a	-	n/a	999	MT20	197/144
Snow (Pf)	25.0	Lumber DOL	1.15		BC	0.13	Vert(CT)	n/a	-	n/a	999		
CDL	10.0	Rep Stress Incr	YES		WB	0.12	Horz(CT)	0.00	9	n/a	n/a		
BCLL	0.0*	Code	IRC201	8/TPI2014	Matrix-S								FT 000/
BCDL	10.0											Weight: 50 lb	FT = 20%
LUMBER FOP CHORD BOT CHORD WEBS DTHERS SLIDER BRACING FOP CHORD	2x4 SP No.2 2x4 SP No.2 2x3 SPF No.2 2x3 SPF No.2 Left 2x4 SP No.2 Structural wood she 6-0-0 oc purlins, ex	athing directly applie	1) d or2)	Vasd=91mpl Ke=1.00; Ca exterior zone Interior (1) 4 exposed ; en members an Lumber DOL	7-16; Vult=115m n; TCDL=6.0psf; I t. II; Exp C; Enclo e and C-C Exterio 1-0 to 10-4-4 zor d vertical left and d forces & MWFF =1.60 plate grip I ned for wind load:	BCDL=6. sed; MW r(2E) -0- e; cantile right exp RS for rea DOL=1.6	Opsf; h=35ft; FRS (envelop 1-0 to 4-1-0, ever left and ri posed;C-C for ctions shown	ght ;	Inte R80	rnationa	and ref	ferenced standar	ions R502.11.1 and
BOT CHORD		applied or 10-0-0 oc		see Standard	ids exposed to wi d Industry Gable I alified building de	End Deta	ils as applicat	ole,					
REACTIONS	11=10-5- Max Horiz 2=248 (L/ Max Uplift 2=-7 (LC 10=-65 (L 12=-52 (L/ Max Grav 2=192 (L/ 10=278 (l/	12), 9=-33 (LC 13), C 16), 11=-62 (LC 10 C 16), 13=-106 (LC 10	5-8 ³⁾ 6), 4) 16) 5) 23), 5)	Plate DOL=1 DOL=1.15); Cs=1.00; Ct= Unbalanced design. This truss ha load of 12.0	: 7-16; Pr=25.0 ps .15); Pf=25.0 psf Is=1.0; Rough Ca =1.10 snow loads have us been designed psf or 2.00 times on-concurrent wit	(Lum DC t C; Fully been cor for great flat roof le	DL=1.15 Plate Exp.; Ce=0.9 nsidered for th er of min roof bad of 25.0 ps); iis live					
FORCES	(lb) - Maximum Con Tension	pression/Maximum	6)	All plates are	e 1.5x4 MT20 unle	ess other	wise indicated	I.					
TOP CHORD	1-2=0/12, 2-4=-419/	244, 4-5=-313/190, 194/147, 7-8=-109/9	7) 8) 9, 9)	Gable studs This truss ha	es continuous bo spaced at 2-0-0 c is been designed ad nonconcurrent	oc. for a 10.) psf bottom	de				THEOF	MISSO
BOT CHORD	2-13=-113/123, 12- ⁻ 11-12=-113/123, 10 9-10=-113/123		10) * This truss h on the bottor	nas been designe n chord in all area by 2-00-00 wide w	d for a liv as where	e load of 20.0 a rectangle	psf			A	SCOT SEV	
VEBS	7-10=-235/171, 6-1 5-12=-177/104, 4-13	,	11	chord and ar	by other members are assumed to b			/11			R	the	
NOTES				capacity of 5 Provide mec bearing plate 9, 7 lb uplift a		n (by oth tanding 3 lift at join	ers) of truss to 3 lb uplift at jo t 10, 62 lb upl	oint ift			A A A A A A A A A A A A A A A A A A A	NUM PE-2001	018807 E

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

16023 Swingley Ridge Rd. Chesterfield, MO 63017 314.434.1200 / MiTek-US.com

April 23,2024

RELEASE FOR CONSTRUCTION							
AS NOTED FOR PLAN REVIEW Job DEVELOPMENT SERVICES	Truss Type	Qty	Ply		105000500		
P24089's SUMMIT, MISSOURB01	Common	1	1	Job Reference (optional)	165080523		
	lls, KS - 66083,	Run: 8.63 S Apr 5 2024 Print: 8.630 S Apr 5 2024 MiTek Industries, Inc. Mon Apr 22 14:48:32 ID:I?h5?cK6hCpBKLKmGbtdElzwjK9-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f					

Plate Offsets (X. Y):	[2:0-2-1,0-0-5], [8:0-2-1,0-0-5]	
1 1010 0110010 (.,		

Scale = 1:29.7

Loading	(pof)	Spacing	2-0-0		csi		DEFL	in	(loo)	l/dofl	L/d	PLATES	GRIP		
TCLL (roof)	(psf) 25.0	Plate Grip DOL	2-0-0 1.15			0.11	Vert(LL)	in n/a	(loc)	l/defl n/a	999	MT20	197/144		
Snow (Pf)	25.0	Lumber DOL	1.15		BC	0.05	Vert(CT)	n/a	-	n/a	999 999	101120	197/144		
TCDL	10.0	Rep Stress Incr	YES		WB	0.05	Horz(CT)	0.00	8	n/a	n/a				
BCLL	0.0*	Code		8/TPI2014	Matrix-S	0.05	11012(01)	0.00	0	n/a	n/a				
BCDL	10.0		IKC201	5/1712014	Watrix-S							Weight: 40 lb	FT = 20%		
					7.40.1/							<u> </u>			
OP CHORD	2v4 SD No 2		2)		7-16; Vult=115m h; TCDL=6.0psf;							ned in accordance	tions R502.11.1 and		
OF CHORD	2x4 SP No.2 2x4 SP No.2				t. II; Exp C; Enclo)							
THERS	2x3 SPF No.2				and C-C Corner		referenced standard ANSI/TPI 1. standard								
SLIDER	Left 2x4 SP No.2	1 6 7 Dight 2v/ SD	No 2		4-1-0 to 4-6-0, C) Sla	nuaru								
LIDER	1-6-7	1-0-7, Right 2x4 3F	INU.2		9-6-0 to 9-11-0 z										
RACING	101				d ; end vertical le										
OP CHORD	Structural wood she	athing directly applie	ad or	for members	and forces & MV	NFRS for	reactions sho	wn;							
	6-0-0 oc purlins.	atiling directly applied		Lumber DOL	=1.60 plate grip	DOL=1.60)								
OT CHORD	Rigid ceiling directly	applied or 6-0-0 oc	3)		ned for wind load										
0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0	bracing.				ids exposed to w										
EACTIONS	0	3=9-0-0, 10=9-0-0,			d Industry Gable										
LAGINGING	11=9-0-0,				alified building d										
	Max Horiz 2=-51 (LC		4)	4) TCLL: ASCE 7-16; Pr=25.0 psf (roof LL: Lum DOL=1.15											
	Max Uplift 2=-38 (LC				1.15); Pf=25.0 ps										
		.C 17), 12=-84 (LC 1			Is=1.0; Rough Ca	at C; Fully	Exp.; Ce=0.9	;							
	Max Grav 2=287 (LC		۱´	Cs=1.00; Ct	snow loads have	hoon oor	aidarad far th	ie							
	10=316 (L	_C 24), 11=116 (LC	24), ³⁾		Show loads have	been cor		15							
	12=316 (L	_C 23)	6)	design.	as been designed	for aroot	or of min roof	livo							
ORCES	(lb) - Maximum Com	pression/Maximum	0)		psf or 2.00 times										
	Tension				on-concurrent wi										
OP CHORD	1-2=0/12, 2-4=-136/	77, 4-5=-107/177,	7)		es continuous bo										
	5-6=-107/175, 6-8=-	136/68, 8-9=0/12	8)		spaced at 2-0-0		a soanng.					Sol	Jan		
BOT CHORD	2-12=-2/54, 11-12=-	2/54, 10-11=-2/54,	9)		s been designed) psf bottom					A OF I	MISC		
	8-10=-2/54		-,		ad nonconcurrent			ds.			1	750	Nº OS		
VEBS	5-11=-83/0, 4-12=-2	62/223, 6-10=-262/2	221 10		nas been designe						B	STATE OF I	Nev M		
OTES					n chord in all are			-			R	S DCOI			
) Unbalance	ed roof live loads have	been considered for	r	3-06-00 tall I	oy 2-00-00 wide v	will fit betv	een the botto	m			И.	SEV			
this design	۱.				ny other members						8/				
			11		are assumed to b	be SP No.	2 crushing				X	1 stx			
				capacity of 5						_		NOUN	XMM		
			12	12) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 38 lb uplift at joint PE-2001018807											
				bearing plate	e capable of with	standing 3	8 lb uplift at jo			N	PE-2001	01000/ 200			

12) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 38 lb uplift at joint 2, 49 lb uplift at joint 8, 84 lb uplift at joint 12 and 80 lb uplift at joint 10.

 Beveled plate or shim required to provide full bearing surface with truss chord at joint(s) 8.

April 23,2024

FRSSIONAL EN

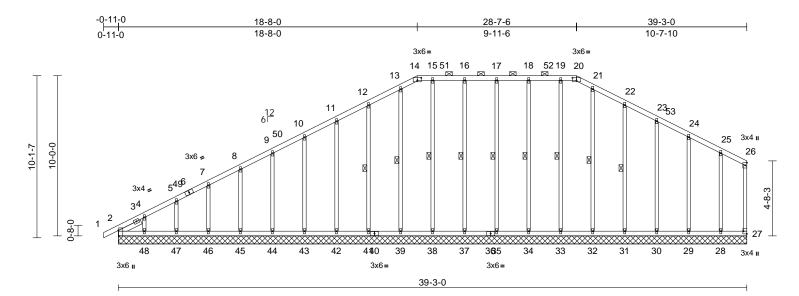
16023 Swingley Ridge Rd. Chesterfield, MO 63017 314.434.1200 / MITek-US.com

RELEASE FOR CONSTRUCTION					
AS NOTED FOR PLAN REVIEW Job DEVELOPMENT SERVICES	Truss Type	Qty	Ply		165080524
P240889's SUMMIT, MISSOUR802	Common	2	1	Job Reference (optional)	165080524
		•	•	2024 MiTek Industries, Inc. Mon Apr 22 14:48:32 370Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f	Page: 1

-0-11-0 4-6-0 9-0-0 9-11-0 0-11-0 0-11-0 4-6-0 4-6-0 4x4 = 12 6 Г 4 10 11 3x4 🥃 3x4 👟 3 5 2-11-0 3-0-7 P 67 6 2 ¹² 7 0-8-0 ٩ 8 3x4 II 3x4 II 1.5x4 u

Scale = 1:32.3 Plate Offsets (X, Y): [2:0-2-1,0-0-5], [6:0-2-1,0-0-5]

Flate Offsets (, f). [2.0-2-1,0-0-5],	[6.0-2-1,0-0-5]											
Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 25.0 25.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code		8/TPI2014	CSI TC BC WB Matrix-S	0.41 0.22 0.06	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.01 -0.02 0.01	(loc) 2-8 2-8 6	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 41 lb	GRIP 197/144 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS SLIDER BRACING TOP CHORD BOT CHORD REACTIONS FORCES TOP CHORD	No.2 2-5-12 Structural wood she 6-0-0 oc purlins.	C 17) C 16), 6=-84 (LC 17) C 23), 6=608 (LC 24) ppression/Maximum	8) 9) 10	design. This truss ha load of 12.0 overhangs n This truss ha chord live loa * This truss ha on the bottoo 3-06-00 tall 1 chord and at All bearings capacity of 5 Provide mee bearing platt 2 and 84 lb o 0) This truss is International R802.10.2 a	hanical connectio e capable of withs uplift at joint 6. designed in accou Residential Code nd referenced sta	for great flat roof le h other lin for a 10.4 with any d for a liv as where vill fit betv s. e SP No. n (by oth tanding & rdance w	er of min roo bad of 25.0 p ve loads. 0 psf bottom other live loa e load of 20. a rectangle veen the bott 2 crushing ers) of truss 84 lb uplift at ith the 2018 s R502.11.1 a	f live sf on ads. Opsf om to joint					
this desigr 2) Wind: ASC	2-8=-111/389, 6-8=- 4-8=0/204 ed roof live loads have	been considered for (3-second gust)		DAD CASE(S)	Stanuaru						ä	STATE OF I	MISSOUR


- 2) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=35ft; Ke=1.00; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) -0-11-0 to 4-1-0, Interior (1) 4-1-0 to 4-6-0, Exterior(2R) 4-6-0 to 9-6-0, Interior (1) 9-6-0 to 9-11-0 zone; cantilever left and right exposed ; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- TCLL: ASCE 7-16; Pr=25.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=25.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat C; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10

PE-2001018807

April 23,2024

RELEASE FOR CONSTRUCTION					
AS NOTED FOR PLAN REVIEW Job DEVELOPMENT SERVICES	Truss Type	Qty	Ply		105000505
P240883 SUMMIT, MISSOURC1	Piggyback Base Supported Gable	1	1	Job Reference (optional)	165080525
Prenie Bulding Sppy (9c fin rill) Kg, Spring Hills, KS				2024 MiTek Industries, Inc. Mon Apr 22 14:48:32 PsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC?f	Page: 1

Scale = 1:71.9

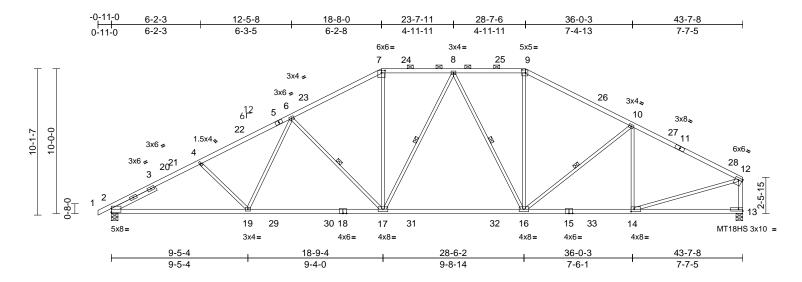
Plate Offsets (X, Y): [2:0-4-1,Edge	e], [14:0-3-0,0-2-0], [20:0-	3-0,0-2-0], [27:Edge	9,0-2-8]								-
Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 25.0 25.0 10.0 0.0* 10.0	Plate Grip DOL Lumber DOL Rep Stress Incr	2-0-0 1.15 1.15 YES RC2018/TPI2014	CSI TC BC WB Matrix-S	0.32 0.11 0.30	DEFL Vert(LL) Vert(CT) Horz(CT)	in n/a n/a 0.01	(loc) - - 27	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 232 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS OTHERS SLIDER BRACING TOP CHORD BOT CHORD WEBS	2x4 SP No.2 2x4 SP No.2 2x3 SPF No.2 2x3 SPF No.2 Left 2x4 SP No.2 - Structural wood sh 6-0-0 oc purlins, e 2-0-0 oc purlins, (6	eathing directly applied of except end verticals, and -0-0 max.): 14-20. Iy applied or 10-0-0 oc 15-38, 13-39, 12-41, 16-37, 17-35, 18-34,		30 32 34 37 39 42 44 46 (lb) - Maximu Tension 1-2=0/12, 2-4	200 (LC 51), 2 =264 (LC 41), =277 (LC 41), =259 (LC 40), =282 (LC 40), =282 (LC 40), =282 (LC 40), =278 (LC 41), =278 (LC 41), =278 (LC 41), =155 (LC 43) Im Compression 4=-276/199, 4- 5, 7-8=-177/13	29=283 (LC 31=283 (LC 33=259 (LC 35=278 (LC 35=278 (LC 41=282 (LC 43=278 (LC 45=279 (LC 47=200 (LC 5=-212/165,	2 41), 2 40), 2 40), 2 40), 2 40), 2 40), 2 41), 2 41), 2 41), 2 41),			12-41: 10-43: 7-46= 4-48= 17-35: 19-33: 22-31: 24-29: d roof li	=-218/52, 13-39 =-242/118, 11-4 =-238/97, 9-44= -234/96, 5-47=- -118/158, 16-37 =-238/71, 18-34 =-219/48, 21-32 =-243/118, 23-3 =-243/149, 25-2	=-221/37, -2=-238/95, -238/96, 8-45=-239/5 160/137, =-242/92, =-219/24, 0=-237/109,
			0, 0, 0, 0, 0 BOT CHORD	11-12=-170/3 13-14=-190/3 15-16=-179/3 17-18=-179/3 21-22=-194/3 23-24=-153/2 25-26=-125/1 2-48=-92/12 46-47=-92/12 44-45=-92/12 39-41=-92/12 34-35=-92/12 34-35=-92/12 30-31=-92/12 30-31=-92/12	07, 10-11=-152 314, 12-13=-15 378, 14-15=-17 375, 16-17=-17 375, 18-19=-17 375, 20-21=-18 377, 22-23=-17 172, 26-27=-98 4, 47-48=-92/1 24, 45-46=-92/ 24, 43-44=-92/ 24, 43-44=-92/ 24, 38-39=-92/ 24, 33-37=-92/ 24, 33-37=-92/ 24, 31-32=-92/ 24, 29-30=-92/ 24, 27-28=-92/	94/376, 79/375, 79/375, 79/375, 39/375, 39/377, 71/315, 32/206, 3/126 24, 124, 124, 124, 124, 124, 124, 124,					STATE OF SCOT SEV PE-200	1018807

Continued on page 2 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, reaction and tracing of trusces and truss systems, see ANSI/TP11 Quality Criteria, and DSB-22 available form Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

April 23,2024

RELEASE FOR CONSTRUCTION					
AS NOTED FOR PLAN REVIEW Job DEVELOPMENT SERVICES	Truss Type	Qty	Ply		105000505
P240883 SUMMIT, MISSOUR 1	Piggyback Base Supported Gable	1	1	Job Reference (optional)	165080525
Premie Building Stoply (Spring Hill Kg, Spring Hills, KS			•	2024 MiTek Industries, Inc. Mon Apr 22 14:48:32 PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f	Page: 2

Wind: ASCE 7-16; Vult=115mph (3-second gust) 2) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=35ft; Ke=1.00; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone and C-C Corner(3E) -0-11-0 to 4-1-0, Exterior(2N) 4-1-0 to 18-8-0, Corner(3R) 18-8-0 to 23-7-8, Exterior(2N) 23-7-8 to 28-7-6, Corner(3R) 28-7-6 to 33-7-8, Exterior(2N) 33-7-8 to 39-1-12 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60


- Truss designed for wind loads in the plane of the truss 3) only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- TCLL: ASCE 7-16; Pr=25.0 psf (roof LL: Lum DOL=1.15 4) Plate DOL=1.15); Pf=25.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat C; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10
- 5) Unbalanced snow loads have been considered for this desian.
- 6) This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 25.0 psf on overhangs non-concurrent with other live loads
- Provide adequate drainage to prevent water ponding.
- All plates are 1.5x4 MT20 unless otherwise indicated. 8)
- 9) Gable requires continuous bottom chord bearing.
- 10) Gable studs spaced at 2-0-0 oc.
- 11) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf 12) on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- 13) All bearings are assumed to be SP No.2 crushing capacity of 565 psi.
- 14) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 26 lb uplift at joint 27, 64 lb uplift at joint 2, 28 lb uplift at joint 38, 13 lb uplift at joint 39, 73 lb uplift at joint 41, 60 lb uplift at joint 42, 61 lb uplift at joint 43, 61 lb uplift at joint 44, 61 lb uplift at joint 45, 61 lb uplift at joint 46, 60 lb uplift at joint 47, 109 lb uplift at joint 48, 51 lb uplift at joint 37, 39 lb uplift at joint 35, 50 lb uplift at joint 34, 24 lb uplift at joint 33, 74 lb uplift at joint 31, 59 lb uplift at joint 30, 63 lb uplift at joint 29 and 59 lb uplift at joint 28.
- 15) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 16) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

LOAD CASE(S) Standard

 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.
 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not beigh valid to use only with with with the order to the standard of the standa

RELEASE FOR CONSTRUCTION				
AS NOTED FOR PLAN REVIEW JOD DEVELOPMENT SERVICES	Truss Type	Qty Ply		105000500
P240883 SUMMIT, MISSOUR	Piggyback Base	10 1	Job Reference (optional)	165080526
Premie Bulding Sport (Sprin) fill Kg, Spring Hills,			5 2024 MiTek Industries, Inc. Mon Apr 22 14:48:33 sB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f	Page: 1

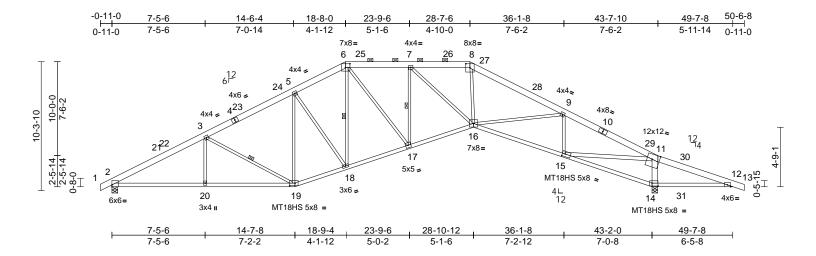

Scale = 1:79.6

Plate Offsets (X, Y): [2:Edge,0-3-1],	[7:0-3-0,0-2-0], [9:0	-3-0,0-2-8]	, [12:Edge,0-1-	-12], [14:0-2-8,0-2-	0]							
Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 25.0 25.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018	3/TPI2014	CSI TC BC WB Matrix-S	0.81 0.99 0.92	DEFL Vert(LL) Vert(CT) Horz(CT)		(loc) 16-17 16-17 13	l/defl >999 >841 n/a	L/d 240 180 n/a	PLATES MT20 MT18HS Weight: 213 lb	GRIP 244/190 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS SLIDER BRACING TOP CHORD BOT CHORD WEBS REACTIONS	2x4 SP 2400F 2.0E 1650F 1.5E, 7-9:2x4 2x4 SP 1650F 1.5E No.2, 18-15:2x4 SP 2x3 SPF No.2 *Exce Left 2x4 SP No.2 3 Structural wood she 2-5-1 oc purlins, ex 2-0-0 oc purlins (3-3 Rigid ceiling directly bracing.	SP No.2 *Except* 15-13:2x4 2400F 2.0E :pt* 13-12:2x4 SP No 3-5-1 athing directly applie cept end verticals, a -12 max.): 7-9. applied or 2-2-0 oc 10-16, 6-17, 8-17, 8 13=0-5-8 C 13) C 16), 13=-232 (LC .C 47), 13=2527 (LC ipression/Maximum 0/592, 4-6=-4176/57 :-2698/542,	SP o.2 ed or nd 3) i-16 4) 17) 5) 247) 6)	Vasd=91mpl Ke=1.00; Ca exterior zone Interior (1) 4 23-7-11, Inte 28-7-6 to 33- cantilever lef right expose for reactions DOL=1.60 TCLL: ASCE Plate DOL=1 DOL=1.15); Cs=1.00; Ct Unbalanced design. This truss ha load of 12.0 overhangs n Provide adec All plates are This truss ha	snow loads have b is been designed for psf or 2.00 times fla on-concurrent with quate drainage to p wT20 plates unles is been designed for	CDL=6. ed; MW 2E) -0- erior(2R 28-7-6, 28-7-6, -7-6 to 4 1; end v and fo DL=1.60 (roof LI Lum DC C; Fully een cor or great at roof li other li revent ss othei or a 10.	Dpsf; h=35ft; FRS (envelop 11-0 to 4-1-0, 13-0 to 4-1-0, 13-5-12 zone; vertical left an rces & MWFR 0 plate grip .: Lum DOL= ⁻¹ DL=1.15 Plate Exp.; Ce=0.5 asidered for th er of min roof pad of 25.0 ps ve loads. water ponding wise indicate 0 psf bottom	d :S 1.15); his live sf on g. d.	or tl	ne orient om chor	ation (d.) Sta	epresentation doe of the purlin along ndard	s not depict the size the top and/or
BOT CHORD WEBS NOTES 1) Unbalance this design	10-12=-3141/452, 12 2-19=-587/3840, 17- 16-17=-350/2610, 14 13-14=-55/130 7-17=-90/1000, 9-16 10-16=-407/222, 10- 12-14=-324/2689, 4- 6-19=-50/612, 6-17= 8-17=-245/310, 8-16 ed roof live loads have	2-13=-2439/370 -19=-494/3412, 4-16=-365/2699, 5=-66/832, -14=-626/188, -19=-374/230, -1142/309, 5=-583/171	10	* This truss h on the bottor 3-06-00 tall th chord and ar) Bearings are crushing cap capacity of 5) Provide mec bearing plate joint 2 and 2:) This truss is International	ad nonconcurrent w has been designed in chord in all areas by 2-00-00 wide will y other members, assumed to be: Jo acity of 565 psi, Jo 65 psi. hanical connection e capable of withste 32 lb uplift at joint 1 designed in accord Residential Code sind referenced stan	for a liv where I fit betw with BC bint 2 SI int 13 S (by oth noding 2 3. lance w sections	e load of 20.0 a rectangle veen the botto DL = 10.0psf 1650F 1.5E P No.2 crush ers) of truss t 96 lb uplift at ith the 2018 c R502.11.1 a	Opsf om ing o			R.	State OF M SCOTT SEVI DE COMM PE-20010 PE-20010	ER Journer 018807

April 23,2024

RELEASE FOR CONSTRUCTION				
AS NOTED FOR PLAN REVIEW Job DEVELOPMENT SERVICES	Truss Type	Qty Ply		105000507
P240883 SUMMIT, MISSOURC3	Piggyback Base	3 1	Job Reference (optional)	165080527
Premie Bulding Suppy (Spring hill) Kg, Spring Hills,			5 2024 MiTek Industries, Inc. Mon Apr 22 14:48:33 B70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f	Page: 1

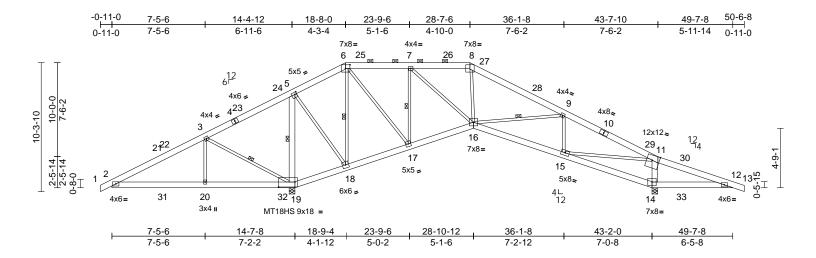

Scale = 1:92.1

Plate Offsets ()	X, Y): [2:Edge,0-1-14	4], [6:0-4-4,0-3-8], [8:0	-4-0,0-3-	8], [11:0-7-4,0-	4-12], [14:0-5-12,	0-2-12], [15:0-2-12,0-2	-8], [19:	0-5-0,0-2	2-8]			
Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 25.0 25.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC201	8/TPI2014	CSI TC BC WB Matrix-S	0.84 0.78 0.80	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.41 -0.66 0.45	(loc) 16 15-16 14	l/defl >999 >782 n/a	L/d 240 180 n/a	PLATES MT20 MT18HS Weight: 248 lb	GRIP 197/144 197/144 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD	No.2 2x3 SPF No.2 *Exce 15-11:2x4 SP 1650F	*Except* 14-12:2x4 \$ ept* 11-14:2x6 SPF N F 1.5E eathing directly applie	;p 2) o.2,	this design. Wind: ASCE Vasd=91mpl Ke=1.00; Ca exterior zone Interior (1) 4 23-9-6, Inter	roof live loads ha 7-16; Vult=115m h; TCDL=6.0psf; F t. II; Exp C; Enclo and C-C Exterio -1-0 to 18-8-0, Ex ior (1) 23-9-6 to 2	ph (3-seo 3CDL=6. sed; MW r(2E) -0- terior(2R 8-7-6, Ex	cond gust) 0psf; h=35ft; /FRS (envelop 11-0 to 4-1-0,) 18-8-0 to .terior(2R) 28-	oe) 7-6	Inte R80 13) Gra or ti bott	ernationa)2.10.2 a phical p	I Resident and refurmed and ref	erenced standard epresentation doe of the purlin along	ions R502.11.1 and ANSI/TPI 1. s not depict the size
BOT CHORD	2-2-0 oc purlins, exc 2-0-0 oc purlins (3 Rigid ceiling directly bracing, Except: 5-7-10 oc bracing: 1 5-1-12 oc bracing: 1 1 Row at midpt	cept 4-6 max.): 6-8. / applied or 10-0-0 oc 4-15 12-14. 3-19, 6-18, 7-17		left and right exposed;C-C reactions she DOL=1.60 TCLL: ASCE Plate DOL=1	terior (1) 33-7-6 to exposed ; end ve c for members an own; Lumber DOI c 7-16; Pr=25.0 ps l.15); Pf=25.0 psf ls=1.0; Rough Ca	ertical left d forces a _=1.60 pl sf (roof LL (Lum DC	and right & MWFRS for ate grip .: Lum DOL=1 DL=1.15 Plate	1.15					
	(size) 2=0-5-8, Max Horiz 2=-185 (L Max Uplift 2=-298 (L Max Grav 2=2449 (I	_C 21) _C 16), 14=-388 (LC ²		Cs=1.00; Ct= Unbalanced design.		been cor	nsidered for th	nis					
FORCES	(lb) - Maximum Con		5)	load of 12.0	psf or 2.00 times	flat roof l	oad of 25.0 ps						
TOP CHORD	Tension 1-2=0/23, 2-3=-4399 5-6=-3341/687, 6-7= 7-8=-4355/647, 8-9= 9-11=-4577/322, 11 12-13=0/23	=-5206/651,	, 6) 7) 8) 9)	Provide adeo All plates are This truss ha chord live loa	on-concurrent wit quate drainage to MT20 plates unl as been designed ad nonconcurrent nas been designe	prevent ess other for a 10.0 with any	water ponding rwise indicated 0 psf bottom other live load	d. ds.			ł.	TATE OF M	AISSOL
BOT CHORD	2-20=-500/3774, 19 18-19=-323/3172, 1 16-17=-278/3693, 1 14-15=-1571/1393,	7-18=-233/3032, 5-16=-127/4186,	- ,	on the bottor 3-06-00 tall b chord and ar	m chord in all area by 2-00-00 wide w by other members	as where vill fit betw 5.	a rectangle veen the botto	om				SCOTT SEVI	
WEBS NOTES		882/246, 5-19=-463/5 8=-205/404, 6=-76/1700, 5=-1322/463, 16=0/1193,	4,	crushing cap capacity of 5) Provide mec bearing plate	assumed to be: , acity of 565 psi, J 65 psi. hanical connectio e capable of withs 88 lb uplift at joint	loint 14 S n (by oth tanding 2	SP No.2 crush ers) of truss to	ing o			and the second s	PE-20010	LENGI

April 23,2024

16023 Swingley Ridge Rd. Chesterfield, MO 63017 314.434.1200 / MiTek-US.com

RELEASE FOR CONSTRUCTION				
AS NOTED FOR PLAN REVIEW Job DEVELOPMENT SERVICES	Truss Type	Qty Ply		105000500
P240883 SUMMIT, MISSOURC4	Piggyback Base	6 1	Job Reference (optional)	165080528
Prenie Bulding Sport (Spring hill K4, Spring Hills,			r 5 2024 MiTek Industries, Inc. Mon Apr 22 14:48:33 PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f	Page: 1

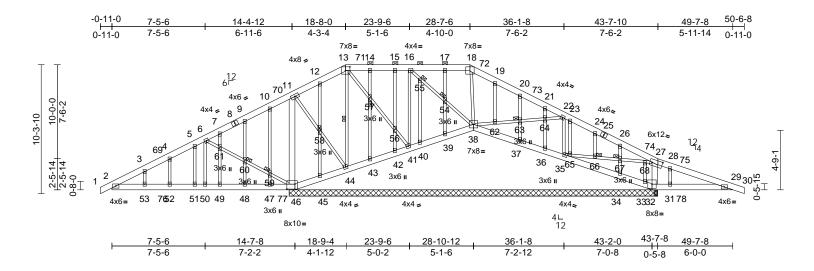

Scale = 1:92.1

Plate Offsets ((X, Y): [5:0-1-12,0-2-0], [6:0-4-4,0-3-8], [11:0	7-0,0-4	-12], [19:1-3-12	2,0-4-12]								
L oading TCLL (roof) Snow (Pf) TCDL BCLL	(psf) 25.0 25.0 10.0 0.0*	Plate Grip DOL Lumber DOL Rep Stress Incr	2-0-0 1.15 1.15 YES RC201	8/TPI2014	CSI TC BC WB Matrix-S	0.70 0.40 0.89	DEFL Vert(LL) Vert(CT) Horz(CT)		(loc) 15-16 15-16 14	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 MT18HS	GRIP 197/144 197/144
BCDL	10.0											Weight: 264 lb	FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD	No.2 Structural wood she 4-11-13 oc purlins, e 2-0-0 oc purlins (6-0			Vasd=91mpl Ke=1.00; Ca exterior zone Interior (1) 4 23-9-6, Interi to 33-7-6, Int left and right exposed;C-C	7-16; Vult=115i ;; TCDL=6.0psf t. II; Exp C; Enc and C-C Exteri 1-0 to 18-8-0, E or (1) 23-9-6 to erior (1) 33-7-6 exposed ; end v ; for members a pwn; Lumber DO	BCDL=6.0 losed; MW ior(2E) -0-1 exterior(2R) 28-7-6, Ex to 50-6-8 z vertical left nd forces &	Dpsf; h=35ft; FRS (envelop 1-0 to 4-1-0,) 18-8-0 to terior(2R) 28- cone; cantilev and right & MWFRS for	-7-6 er	or t		tation (rd.	of the purlin along	is not depict the size
WEBS	1 Row at midpt	5-19, 6-18, 7-17, 9-16,	3)		7-16; Pr=25.0 .15); Pf=25.0 ps								
	Max Horiz 19=-185 (Max Uplift 14=-350 (3-19 , 19=0-5-8, (req. 0-5-13 (LC 17) (LC 17), 19=-446 (LC 1 (LC 24), 19=3691 (LC -	6) ⁴⁾	DOL=1.15); Cs=1.00; Ct= Unbalanced design.	s=1.0; Rough C	cat C; Fully e been cor	Exp.; Ce=0.9); nis					
ORCES	(lb) - Maximum Com Tension	pression/Maximum	-,	load of 12.0	osf or 2.00 time	s flat roof lo	ad of 25.0 ps						
TOP CHORD	1-2=0/32, 2-3=-874/		. '	 overhangs non-concurrent with other live loads. 6) Provide adequate drainage to prevent water ponding. 7) All plates are MT20 plates unless otherwise indicated. 8) This truss has been designed for a 10.0 psf bottom abend this load accompany with the load accompany. 									ADE
BOT CHORD	2-20=-649/871, 19-2 18-19=-1845/1860, 16-17=-489/1423, 1 14-15=-1488/1350,	20=-649/871, 17-18=-898/1483, 5-16=0/1753,	9)	chord live load nonconcurrent with any other live loads. 9) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.								гм.	
NEBS NOTES 1) Unbalance this desigr	3-20=-529/342, 5-19 6-18=-1492/695, 5- 7-17=-1128/153, 8- 9-15=-565/176, 9-16 3-19=-1149/985, 6- 7-16=0/1208, 11-14 11-15=-248/2408 ed roof live loads have h.	18=-607/1575, 16=-252/738, 3=-785/442, 17=-88/1232, =-1318/313,	11 12	 WARNING: I than input be) All bearings capacity of 4 Provide mec bearing plate joint 19 and 3 This truss is International 	Required bearin aring size. are assumed to	g size at jo be SPF No ion (by oth histanding 4 pint 14. ordance w de sections	5.2 crushing ers) of truss t 46 lb uplift at ith the 2018 R502.11.1 a	0		4		PE-2001	L ENGINE

April 23,2024

16023 Swingley Ridge Rd. Chesterfield, MO 63017 314.434.1200 / MiTek-US.com

RELEASE FOR CONSTRUCTION								
AS NOTED FOR PLAN REVIEW Job DEVELOPMENT SERVICES		Truss Type	Qty	Ply		165080529		
P240883 SUMMIT, MISSOURC5		Piggyback Base Structural Gable	1	1	Job Reference (optional)	105080529		
Prentie Bulding Spy (2010) 1112 K4, Spring	Hills, KS - 66083,	Run: 8.63 S Apr 5 2024 Print: 8.630 S Apr 5 2024 MiTek Industries, Inc. Mon Apr 22 14:48:34 ID:Te_6WVOtZR9We_0Ly9vPsbzwjEv-RfC?PsB70Hq3NSqPqnL8w3uITXbGKWrCDoi7J4zJC?f						

Scale = 1:92.1

Plata Offcate (X, X):	[13:0-4-4,0-3-8], [27:0-10-0,0-3-0], [46:0-7-12,0-4-12]	
	13.0-4-4,0-3-0, 27.0-10-0,0-3-0, 40.0-7-12,0-4-12	

Loading TCLL (roof) Snow (Pf) TCDL BCLL		(psf) 25.0 25.0 10.0 0.0*	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018/TPI2014	CSI TC BC WB Matrix-S	0.64 0.36 0.85	DEFL Vert(LL) Vert(CT) Horz(CT)	in 0.00 0.00 0.03	(loc) 45-46 34-35 32	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20	GRIP 197/144
BCDL		10.0	Code	IRC2016/1FI2014	Matrix-5							Weight: 321 lb	FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS	2x6 SPF 2x3 SPF No.2	No.2 No.2 *Exce	pt* 46-11,27-32:2x6	FORCES TOP CHORD SPF	(lb) - Maximum C Tension 1-2=0/32, 2-3=-8 4-5=-823/809, 5- 6-7=-1549/1729,	58/720, 3 6=-875/88 7-9=-161	-4=-836/742, 88, 7/1876,						
OTHERS BRACING TOP CHORD	5-6-6 oc 2-0-0 oc	l wood she purlins, exc purlins (9-1	-1 max.): 13-18.	ed or	9-10=-1607/1925 11-12=-993/1337 13-14=-652/997, 15-16=-651/996, 17-18=-369/619, 19-20= 504/727	, 12-13=- 14-15=-6 16-17=-3 18-19=-4	926/1318, 51/996, 68/619, 76/811,						
BOT CHORD WEBS JOINTS	bracing. 1 Row at	midpt at Jt(s): 54, 8, 59, 60,	applied or 5-2-6 oc 13-44	BOT CHORD	19-20=-504/727, 20-21=-595/808, 21-22=-587/727, 22-23=-610/709, 23-24=-599/713, 24-26=-610/680, 26-27=-662/672, 27-28=-1082/1225, 28-29=-1083/1255, 29-30=0/32 SOT CHORD 2-53=-626/852, 52-53=-626/852,								
	(size) Max Horiz Max Uplift	32=29-5-8 36=29-5-8 39=29-5-8 42=29-5-8 46=-185 (32=-653 (34=-102 (37=-115 (39=-54 (L 41=-46 (L 43=-45 (L 43=-45 (L 45=-83 (L	LC 13), 33=-740 (LC LC 17), 36=-99 (LC LC 17), 38=-294 (LC C 12), 40=-11 (LC 4 C 13), 42=-34 (LC 1 C 12), 44=-101 (LC C 16), 46=-496 (LC C 17)	-5-8, -5-8, -5-8, -5-8 2 49), 49), 2 46), 3), 2), 60), 16),	51-52=-626/852, 49-50=-626/852, 47-48=-626/852, 45-46=-1857/187 43-44=-1257/134 41-42=-1252/133 39-40=-1056/114 37-38=-655/813, 35-36=-666/822, 33-34=-1253/122 31-32=-1115/108	48-49=-6 46-47=-6 5, 44-45= 0, 42-43= 4, 40-41= 4, 38-39= 36-37=-6 34-35=-1 29, 32-33=	26/852, 25/852, -1804/1834, -1252/1337, -1051/1143, -1056/1144, 37/804, 267/1227, -1489/1427,					STATE OF I	$\Gamma M. \qquad (\swarrow V)$
	Max Grav	34=507 (L 37=515 (L 39=379 (L 41=201 (L 43=324 (L	(LC 49), 33=287 (LC C 43), 36=110 (LC C 43), 38=142 (LC C 42), 40=46 (LC 7 C 42), 40=46 (LC 7 C 42), 42=244 (LC C 42), 44=72 (LC 1 C 43), 46=2904 (LC C 48)	55), 17),), 42), 2),								NUM PE-2001 FESSIONA April	018807

16023 Swingley Ridge Rd. Chesterfield, MO 63017 314.434.1200 / MiTek-US.com

Image: Display Image:	RELEASE FOR CONSTRUCTION						
<form>Description of the second second</form>	AS NOTED FOR PLAN REVIEW		Truss Type	Qtv	Plv		
Unit Unit Distribution Distribution <thdistribution< th=""> <thd< th=""><th>DEVELOPMENT SERVICES</th><th></th><th></th><th></th><th></th><th></th><th>165080529</th></thd<></thdistribution<>	DEVELOPMENT SERVICES						165080529
 Point and point of the point of the				Diate R			Daga: 2
 44-80-48643.134-47-00276. 14-80-48643.134-47-00276. 14-80-48643.144.144.144.144.144.144.144.144.144.1			ID:Te_6WVOtZR9W	e_0Ly9vPsbz	wjEv-RfC?P	· ·	Page: 2
 14-41-430281, 16-28-20726, 38-11-174086, 39-14-174086, 39-14-1259, 16-58, 59-14-174086, 39-14-14-1400, 16-58, 59-14-174086, 39-14-14-1400, 16-58-000, 39-14-14-14-14-14-14-14-14-14-14-14-14-14-							
 9482-92917, 1284-917, 2244-92017, 1285-917, 128							
6-81-125010, 0.9-91-117408, 9-91-115200, 0.955-10200, 0.955-10200, 11-03-0000, 0.955-10200, 0.955-10200, 11-03-0000, 0.955-0000, 0.955-0000, 11-03-0000, 0.955-0000, 0.955-0000, 11-03-0000, 0.955-0000, 0.955-0000, 11-03-0000, 0.955-0000, 0.955-0000, 11-03-0000, 0.955-0000, 0.955-0000, 11-03-0000, 0.955-0000, 0.950-0000, 11-03-0000, 0.950-0000, 0.950-0000, 11-03-0000	38-62=-299/201, 62-63=-2	91/196,	or the orientation of the purlin alor				
GP-BHC-1102000, 4-6581170807, 1440-30000, 3-84300700, 1440-30000, 3-84300700, 1440-30000, 3-84300700, 1440-30000, 3-84300700, 1440-30000, 3-84300700, 1440-30000, 3-84300700, 1440-30000, 3-84300700, 1440-3000, 3-8430070, 1440-3000, 3-843000, 1440-3000, 3-843000, 3-843000, 1440-3000, 3-843000, 3-843000, 3-843000, 1440-3000, 3-843000, 3-843000, 3-843000, 3-843000, 3-843000, 3-843000, 3-8430000, 3-8430000, 3-8430000, 3-8430000, 3-8430000, 3-8430000, 3-8430000, 3-8430000, 3-84300000, 3-84300000, 3-84300000, 3-84300000, 3-843000000, 3-84300000, 3-84300000, 3-84300000, 3-843000000, 3-843000000, 3-843000000, 3-8430000000, 3-843000000, 3-8430000000, 3-843000000000, 3-843000000000000000000000000000000000							
 41-86-3053 (1) + 558-30538 41-86-30538 (4) + 558-30538 42-86-30538 (4) + 558-30538 43-40-30538 (4) + 558-30538 43-40-30538 (4) + 558-30538 44-30538 (4) + 558-30538 44-30538 (4) + 558-30538 45-30538 (4) + 558-30538 45-	59-60=-1182/990, 46-59=-	1176/987,					
 Set-Set-SetSong, 39-Set-SetSing, 27, 28-SetSing, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28							
 65-68-30888, 27-68-30908, 27-68 64-55-309088, 27-68-30908, 27-68 64-55-309088, 27-68-30908, 27-68 64-55-30918, 17-68-72-309172, 24-51-20208, 25-68-11291, 47-58-309172, 24-51-20208, 25-69-11291, 47-58-30918, 24-58-20208, 24-58-20208, 24-58-309, 28-77-40018, 25-18-4002, 24-59-20208,							
 17-64-33011, 73-864-330140, 400 41-67-207171, 12-38-20012, 44-57-207171, 12-38-20012, 44-58-20177, 12-38-20012, 44-58-20177, 10-38-20012, 44-58-20177, 10-38-20012, 44-58-20177, 10-38-20012, 44-58-20177, 10-38-20012, 44-58							
 40-550143, 15-56020108, 45-56020108, 45-5601128, 77-10-580004, 75-560304, 9-670306, 4-600306, 4-500306, 4-500306, 4-500306, 4-500306, 4-500							
 4057-20178, 1258-2047 4758-20178, 1258-2044 4714-16170, 4451-2030, 551-1602, 4451-2030, 511-1602, 4452-2030, 2035-2018, 2035-20							
 45-58-324/6, 490-1206, 48-67.11021; 17-65-1206, 48-67.11021; 17-65-1205, 45-67.11021; 17-65-1205, 45-67.11021; 17-65-1205, 45-67.1002; 27-65-1205, 23-67.1002; 27-65-1205, 23-67.1002; 27-65-1205, 23-66.1002; 27-65-1205, 23-66.1002; 27-65-1205, 23-66.1002; 27-65-1205, 23-66.1002; 27-65-1205, 23-66.1002; 27-65-1205, 23-66.1002; 27-65-1205, 23-66.1002; 27-65-1205, 23-67.1002; 27-65-1205, 23-1205,							
 7-01-180/102, 48-01-6228, 55-01-14002, 46-01-6228, 55-01-4002, 46-01-0128, 37-02-0458, 32-04-0479, 39-02-0459, 30-02-0459, 30-02-0459, 30-02-0459, 30-02-0459, 30-02-	45-58=-324/177, 10-59=-8	0/43,					
 4-52-10380, 9-530-43773, 19-526-427184, 21-540-42736, 22-56-1039, 23-54-5410, 23-554-427184, 23-564-22-2066, 23-581-61280, 22-531-1857100 9-7012 9-							
 21-64-8/19, 36-67-8936, 25-66-22365, 36-67-2365, 36-67-2365, 36-67-2365, 36-67-303, 26-67-305, 26-7-305	4-52=-103/60, 3-53=-83/73	3, 19-62=-62/36					
 3-4-67-4-22/152, 33-68-1026, 23-31-185/109 NOTES Ibrahanced roof live loads have been considered for first design. Construction of the loads have been considered for first design. Vanach function (1): 44-10: 18: 460, 12: 660, 460, 461-351; 13: 48-40; 13: 48-40; 14: 44-10: 18: 460, 12: 68-40; 14: 44-10; 14: 44-10: 18: 460, 12: 68-40; 14: 44-10; 14: 44-10: 18: 460, 12: 68-40; 14: 44-10; 14: 44-10: 18: 460, 12: 68-40; 14: 44-10; 14: 44-10: 18: 460, 12: 68-40; 14: 44-10; 14: 44-10: 18: 460, 12: 68-40; 14: 44-10; 14: 44-10: 18: 460, 12: 68-40; 14: 44-10; 14: 44-10: 18: 460, 12: 68-40; 14: 44-10; 14: 44-10: 18: 460, 12: 68-40; 14: 44-10; 14: 44-10: 18: 460, 12: 68-40; 14: 44-10; 14: 460, 12: 68-40; 14: 44-10; 14: 460, 12: 68-40; 14: 44-10; 14: 460, 12: 68-40; 14: 44-10; 14: 460, 12: 68-40; 14: 44-10; 14: 460, 12: 68-40; 14: 44-10; 14: 460, 12: 68-40; 14: 44-10; 14: 460, 12: 68-40; 14: 44-10; 14: 460, 12: 68-40; 14: 44-10; 14: 460, 14: 44-10; 14: 460, 14: 44-10; 14: 460, 14: 14: 46-10; 14: 14: 16: 14: 14: 14: 14: 14: 14: 14: 14: 14: 14			55.				
 24:31-18(2)(10 Works 1) Inhalmode food live loads have been considered for this design. 2) Wind ASCE 7-16, Viule-115mph (Baecond part) 2) Truis celegined for wind loads in the plane of the truss only. For statist sepseed to wind (normal to the face), the plane of the truss only. For statist sepseed to wind (normal to the face), the plane of the truss only. This wind the plane of th	,	,					
 Uhealanced root live leads have been considered for this design. Wind. ASCE 7-16. Vulle115mph (3-second gus) Visad-91mpk. TOL=4.6.get BOL=4.6.get. he-Sett. Ken 1.00, Cut. II: Exp. C. Enclosed. IMVFRS (ervelope) Advanced and the second second gus) Visad-91mpk. TOL=4.6.get BOL=4.6.get. he-Sett. Ken 1.00, Cut. II: Exp. C. Enclosed. IMVFRS (ervelope) Advanced second second gus) Visad-91mpk. Cut. Advanced Second gus) Visad-91mpk. Cut. Biol. Biol.		0/20,					
 Wind: ASCE 7-16; Viul-115mpb (3-second gus) values (Viad-31mpb (1) (2-second gus) values (Viad-31mpb (2) (2-10) (2-		considered for					
 Vard-91mpb: TCDL=6.0pd; ECDL=6.0pd; NMPRS (envelope) exterior zone and C-C Exterior(2E) -0.11:0 6.41-0, https://dx.acd/2E) -0.12:34.9, interior(1).24.91:0 10.23:49, interior(2E) -0.11:0 10.41-0, https://dx.acd/2E) -0.12:34.9, interior(1).24.91:0 10.23:49, interior(2E) -0.11:0 10.41-0, https://dx.acd/2E) -0.11:0 10.23:49, interior(1).24.91:0 10.23:49, interior(2E) -0.11:0 10.41-0, https://dx.acd/2E) -0.11:0 10.23:49, interior(1).23:49, interior(2E) -0.11:0 10.41-0, https://dx.acd/2E) -0.11:0 10.23:49, interior(1).23:49, interior(2E) -0.11:0 10.41-0, https://dx.acd/2E) -0.11:0 10.23:49, interior(2E) -0.11:0 10.41-0, https://dx.acd/2E) -0.11:0 10.23:49, interior(2E) -0.23:49, interior(2E) -0.23:	this design.						
 exterior zone and C-C Exterior(28): 0-11-10 to 4-1-0. Interior (1) 4-10 to 18-9. Chereno(28): 18-04 to 23-94. to 33-7-6. Exterior(28): 28-7-6. there in (1) 14-10 to 18-9. Chereno(28): 18-07-80. to 33-7-6. Exterior(18): 33-74. Exterior(1) 13-7-74. to 50-94. <lito 50-94.<="" li=""> to 50-94. to 50-94</lito>	, , , , , , , , , , , , , , , , , , , ,						
 Interior (1) 41-10 to 18-9-0. Exterior(2R) 19-9-10 23-9-6, Interior (1) 33-7-6 to 25-7-6. Exterior(2R) 28-7-6 to 33-7-6, Interior (1) 33-7-6 to 25-7-6. Exterior(2R) 28-7-6 to 33-7-6, Interior (1) 33-7-6 to 25-7-6. Exterior(2R) 28-7-6 to 37-7-6, Interior (1) 33-7-6 to 25-7-6. Exterior(2R) 28-7-6 to 37-7-6, Interior (1) 23-9-6 to 25-7-6. Exterior(2R) 29-7-6 Thus designed for wind loads in the plane of the truss only. For subde exposed : on 4 wind loads in the plane of the truss on 'Loss designed for wind loads in the plane of the truss on 'Loss designed for wind loads in the plane of the truss on 'Loss designed for wind loads in the plane of the truss on 'Coust updited building designer as per ANSIPT1 1. TCLL ASCE 7-16. Pre-35.0 p8 (roof LL: Lum DOL=1.15 Plate DOL=1.15) Plate DOL=1.15) Is-10. Rough Cat C; Fully Exp.; Ca-0.9; Cast .00; Cu 1, 10 This truss has been designed for greater of min roof live flate dot 12.0 ps of z.00 times flat roof load of 25.0 ps on overfangs non-concurrent wind any other live loads. Provide adequate drainage to prevent water ponding. All plates are 34.4 M120 unless where a exclusion defined dot. Gable studs spaced at 2-0-0 oc. This truss has been designed for a 10.0 pt bottom chronid hive loads and the plane shere as where a rectangle and the plane of the interior of 10.0 pt bottom chronid hive load at 2-0-0 oc. This truss has been designed for a 10.0 pt bottom chronid with any other live loads in the plane zero. Bearing and submed to be: Joint 32.5 PF No.2 crussing capacity of 425 ps i.10 x32.5 PF No.2 crussing capacity of 425 ps i.10 x32.5 PF No.2 crussing capacity of 425 ps i.10 x32.5 PF No.2 crussing capacity of 425 ps i.10 x32.5 PF No.2 crussing capacity of 425 ps i.10 x32.5 PF No.2 crussing capacity of 425 ps i.10 x32.5 PF No.2 crussing capacity of 425 ps i.10 x32.5 PF No.2 c	· · · · · · · · · · · · · · · · · · ·)				
 b 33-76, Interior (1) 33-76 to 50-69 20ne; cantilever left and right exposed; c-C for members and forces & MWFRS for reactions shown; Lumber DOL=160 plate grip DOL=1.60 3 Truss designed for wind loads in the plane of the truss only. For stude exposed to wind (normal to the face), see Standard Industry Gale in En Dotaits as as per ANS/TP1 1. 4 TGLL 1AGC 716, PH=250 (N I root List). In MOVIP1 1. 5 TGL 1AGC 716, PH=250 (N I root List). In MOVIP1 1. 6 TGL 1AGC 716, PH=250 (N I root List). In MOVIP1 1. 7 TGLL 1AGC 716, PH=250 (N I root List). In MOVIP1 1. 7 TGLL 3AGC 916 (AL C). UND (C) I root 1.15 POL-1.15 POL-1.16 POL-1.15 POL-1	Interior (1) 4-1-0 to 18-8-0, Exterior(2R) 18-8-0 to					
 I and right exposed; cond vertical left and right exposed; Co for method and forces & MWRRS for reactions shown; Lumber DDL=160 plate grip DDL=160 T Tuss designed for wind loads in the plane of the truss only. For Studie exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TP1 1. T CLL: ASCE 7-16; Pre-25.0 psf (root LL: Lum DOL=1.15 Plate DOL=1.15; Pre-25.0 psf (root LL: Lum DOL=1.16) Plate DOL=1.16; test - 15; Pre-25.0 psf (root LL: Lum DOL=1.16) Plate DOL=1.16); test - 0.0 resolution of the read snow loads have been considered for this desgn. C Cart 100; C 16:1.0 Urbadanced snow loads have been considered for this desgn. Provide adequate drainage to prevent water ponding. All plates are 34 MT20 unless otherwise indicated. Gable studs spaced at 2-0 oc. This truss has been designed for a 1.0 or plat bottom chord live leads and values in my other live loads. The ord live lead nonconcurrent with any other live loads. The trust has been designed for a 1.0 or plat bottom chord and any other members. Bearing at joint(s) 65 considers parallel to grain value using ANSTPT 1.1 spin for the bottom chord in all areas where a rectangle of a 1.0 or plat otom chord and any other members. Bearing at joint(s) 65 considers parallel to grain value using ANSTPT 1.1 spin for the bottom chord in all areas where a tothing definition of the spin for a live of the spin for the spin fo		. ,					
 relations shown; Lumber DOL=1.60 plate grip DOL=1.60 Truss designed for wind loads in the plane of the truss only. For studies account to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANS/ITPI 1. TCLL: ASCE 7-16; Pra25.0 psf (nor TLL: Lum DOL=1.15 Plate DOL=1.15; He=25.0 psf (nor TLL: Lum DOL=1.16 Plate DOL=1.15; He=10; Rough Cat C; Fully Exp; Ce=0.9; Ca=1.00; Cl=1.0 Unbalanced snow loads have been considered for this design. This truss has been designed for greater of min roof live load of 12, 09 for 2.0 times that nod load of 25 0 psf on onchangs non-concurrent with other live loads. addie the state of the state of the state of the state of the state of the state of the state of the state of the state of the state. Beahings and the state of the state of 20 opsf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 will will between the bottom chord and any other members. Beahings are assumed to be uplint age train value using ANSITP1 angle to grint formal to grint age state of the chord in the state of the state of the state state of the chord in the state of the state of the state of the chord mode the state and state of the state of the state of the state state of the state of the state of the state of the bottom chord in all areas where a rectangle 3-06-00 tall will be between the bottom chord and any other members. Bearings at shuff to bottom for the state of the state state of the state state and the state of the state state of the state state and the state state of the state state of the state state and the state state of the state state of the state state and the state state state state state state state and the state sta	left and right exposed ; end vertical left	and right					
 DOL=160 Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSITP1 1. TCLL: ASC 716; Pr=25.0 pef (cotf LL: um DOL=1.15 Plate DOL=1.15); Pl=25.0 pef (cotf LL: um DOL=1.15 Plate DOL=1.15); Pl=25.0 pef (cotf LL: um DOL=1.15 Plate DOL=1.15); Pl=25.0 pef (cotf LL: um DOL=1.15 Plate DOL=1.16); Del (cotf LL: um DOL=1.15 Plate DOL=1.10) Unbalanced show back have been considered for this design. This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 25.0 psf on overhangs non-concurrent with other live loads. Provide adequate drainage to prevent water ponding. All plates are 3AM MT20 unless otherwise indicated. Gable studs spaced for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. This truss has been designed for a too 10.0 psf bottom chord and any other members. Bearings are assumed to be: Joint 33 SFF No.2 runshing capacity of 425 ps1. Joint 32 SFFF	,						
 only. For stude seposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANS/TPI 1. TCLL: ASCE 7-16; Pre-25: 0.psf (cott IL: Um DOL=1.15) Pilate DOL=1.15); Fl=25: 0.psf (cott IL: Um DOL=1.15) DoL=1.15); Fl=25: 0.psf (cott IL: Um DOL=1.15) Unbalanced snow loads have been considered for this design. This truss has been designed for greater of min roof live load of 12: 0.psf or 2.00 times flat roof load of 25: 0.psf on a start of the live loads. Provide adequate dranage to prevent water ponding. All plates are 3x4 MT20 unless otherwise indicated. Gable stude spaced at 2-00 cc. This truss has been designed for a live load of 20.0psf on overhangs non-current with other live loads. Provide adequate dranage to prevent water ponding. All plates are 3x4 MT20 unless otherwise indicated. Gable stude spaced at 2-00 cc. This truss has been designed for a live load of 20.0psf on overhangs non-current with any other live loads. This truss has been designed for a live load of 20.0psf on overhangs non-carding and with relevent with any other live loads. This truss has been designed for a live load of 20.0psf on overhangs non-carding and y other members. Beerings are assumed to be: Joint 33 SPF No.2 orushing capacity of 425 psi. Joint 32 SPF No.2 orushing capacity of 425 psi. Joint 32 SPF No.2 orushing capacity of 425 psi. Joint 33 SPF No.2 orushing capacity of 425 psi. Joint 33 SPF No.2 orushing capacity of 425 psi. Joint 33 SPF No.2 orushing capacity of 425 psi. Joint 33 SPF No.2 orushing capacity of 425 psi. Joint 33 SPF No.2 orushing capacity of 425 psi. Joint 33 SPF No.2 orushing capacity of 425 psi. Joint 33 SPF No.2 orushing capacity of 425 psi. Joint 33 SPF No.2 orushing capacity of 425 psi. Joint 33 SPF No.2 orushing capacity of 425 psi. Joint 33 SPF No.2 orushing capacity of 425 psi. Join	DOL=1.60	0.1					
 see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TP1 1, TCLL: ASCE 7-16; Pr=25.0 psf (root LL: Lum DOL-115 Plate DOL-115; Ib=10.0 Rough Cat C; Fully Exp; Ce=0.9; Ce=1.00; Ce1.10. Unbalanced snow loads have been considered for this design. This truss has been designed for greater of min roof live load of 20.0 psf on overhangs non-concurrent with other live loads. Provide adequate drainage to prevent water proding. All plates are 3x4 MT20 unless otherwise indicated. Gable study spaced 12-00 cc. This truss has been designed for greater of neither live loads. This truss has been designed for a live load of 20.0 psf on overhangs non-concurrent with other live loads. This truss has been designed for a live load of 20.0 psf on overhangs non-concurrent with any other live loads. This truss has been designed for a live load of 20.0 psf on overhangs and any other members. Bearing a transa where a rectangle 3-306-00 tall by 2-00-00 wide will fit between the bottom chord in all areas where a rectangle 3-306-00 tall by 2-00-00 wide will fit between the bottom chord main and areas where a rectangle 3-306-00 tall by 2-00-00 wide will fit between the bottom chord in all presenters. Bearings are assumed to be: Joint 32 SPF No.2 crussing capacity of 425 psi. Bearing 1 joint(s) & Gonsders parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should will standing 446 bit upilit at joint 43, 41 bit upilit at joint 43, 51 bit upilit at joint 32, 51 bit upilit at joint 32, 51 bit upilit at joint 32, 51 bit upilit at joint 43, 51 bit u	, 0		S				
 4) TCLL: ASCE 7-6; Pr-25; 0; psf (root LL: Lum DOL=1.15 Plate DOL=1.15; I/s=1.0; Rough Cat C; Fully Exp.; Ce=0.9; Cs=1.00; Ch=1.10 5) Unbalanced snow loads have been considered for this design. 6) This truss has been designed for greater of min root live load of 12.0 psf or 2.00 times flat root load of 25.0 psf on overhangs non-concurrent with other live loads. 7) Provide adequate drainage to prevent water ponding. 8) All plates are 334 MT20 unless otherwise indicated. 9) Gable studs spaced at 2-0-0 c. 10) This truss has been designed for a 10.0 psf bottom chord live load on concourrent with any other live loads. 17) Trovide adequate dividing where a rectangle 3-Ge-0 total by 2-0.00 will will fit between the bottom chord in we load nonconcurrent with any other live loads. 11) "This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 12) Bearings are assumed 10 be 2-Joint 33 SPF No.2 crushing capacity of 425 psi. Joint 32 SPF No.2 crushing capacity of 425 psi. 13) Bearing at joint(5) 65 considers parallel to grain value using ANSI/TP() for this trus of this dividing designer should verify capacity of bearing surface. 14) Provide mechanical connection (by others) of truss to bearing patie capable of 4.5 psi. Joint 32, SPF No.2 crushing capacity of 4.25 psi. 13) Bearing at joint(5) 65 considers parallel to grain tormula. Building designer should verify capacity of bearing surface. 14) Provide mechanical connection (by others) of truss to bearing patie capable of 4.5, 15 b uplift at joint 40, 294 ib uplift at joint 43, 633 lb uplift at joint 42, 294 ib uplift at joint 43, 543 lb uplift at joint 43, 11 b uplift at joint 43, 633 lb uplift at joint 45, 115 b uplift at joint 37, 99 lb uplift at joint 45, 115 b uplift at joint 37, 99 lb uplift at joint 45, 115 b uplift at joint 37, 91 b uplift at joint 45, 115 b uplift 	see Standard Industry Gable End Deta	ils as applicable					
 DOL-115): Is-10: Rough Cat C; Fully Exp; Ce=0.9; Cas-100; Ci=1.10 Unbalanced snow loads have been considered for this design. This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 limes flat roof load of 25.0 psf on overhangs non-concurrent with other live loads. Provide adequate drainage to prevent water ponding. All plates are 3x4 MT20 unless otherwise indicated. Gable studs spaced at 2-0-0 cc. This truss has been designed for a 10.0 psf bottom chord live load on onconcurrent with any other live loads. Thord ive load nonconcurrent with any other live loads. Thord ive load nonconcurrent with any other live load 5. This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live load 5. This truss has been designed for a live load 5. This truss has been designed for a live load 5. This truss has been designed for a live load 5. This truss has been designed for a live load 5. The trust shas been designed for a live load 5. This truss has been designed for a live load 5. This truss has been designed for a live load 5. This truss has been designed for a live load 5. This truss has been designed for a live load 5. This truss has been designed for a live load 5. This truss has been designed for a live load 5. This truss has been designed for a live load 5. Bearings at joint(5) 65 considers parallel to grain value using ANSI/TP1 1 angle to grain formula. Building designer should verify capacity of bearing surface. Provide mechanical connection (by others) of truss to bearing plate capable of bit has thigh 48. Bearing at joint(5) 65 bounded 10 up int to joint 3. Dif live uplift at joint 4.5, 34 bu uplift at joint 4.5, 151 bu uplift at joint 3.11 bu uplift at joint 4.5, 34 bu uplift at joint 4.5, 151 bu uplift at joint 3.2 bu							
 Cs=1.00; Čl=1.10 Uholalnoed anow loads have been considered for this design. This truss has been designed for greater of min roof live load of 2.0 part on overhangs non-concurrent with other live loads. Provide adequate drainage to prevent water ponding. All plates are 3x4 MT20 unless otherwise indicated. Gable studs spaced at 2.0-0 cc. This truss has been designed for a 10.0 psf bottom chord live load of 20.0 psf on overhangs are assumed to a live load of 20.0 psf on 20.0 wide will fit between the bottom chord in all areas where a rectangle 3:06-00 tall by 2:00-00 wide will fit between the bottom chord are graved to be joint 33 SPF No.2 crushing capacity of 425 psi. Bearings at joint(s) 65 considers parallel to grain value using ANSUTP1 1 angle to grain formula. Building designer should verify capacity of bearing surface. Provide adpable of withstanding 496 ib uplift at joint 32. Provide 4.4 b uplift at joint 44, 46 lb uplift at joint 32. Dist in 3, 71 b uplift at joint 44, 54 lb uplift at joint 33. 							
 design. 6) This truss has been designed for greater of min roof live lead of 12.0 psf or 2.00 times flat roof load J 25.0 psf on overhangs non-concurrent with other live loads. 7) Provide adequate drainage to prevent water ponding. 8) All plates are 3X4 MT20 unless otherwise indicated. 9) Gable studs spaced at 2-0-0 oc. 10) This truss has been designed for a 10.0 psf bottom chord live load scale. 11) 'This truss has been designed for a live load of 20.0 psf on the load non-chord live load non-concurrent with my other live loads. 11) 'This truss has been designed for a live load of 20.0 psf on the bottom chord live load non-concurrent with my other live loads. 12) Bearings are assumed to be: Joint 33 SPF No.2 crushing capacity of 425 psi, Joint 32 SPF No.2 crushing capacity of 425 psi. Joint 32 SPF No.2 crushing capacity of 425 psi. Joint 32 SPF No.2 crushing capacity of 425 psi. 13) Bearings at joint(s) 65 considers parallel to grain value using ANSUTP1 1 angle to grain formula. Building designer should verify capable of withstanding 496 lb uplift at joint 42, 46 lb uplift at joint 43, 54 b uplift at joint 43, 54 b uplift at joint 42, 44 b uplift at joint 43, 63 b uplift at joint 34, 63 b uplift at joint 43, 63 b uplift at joint 34, 63	Cs=1.00; Ct=1.10						
 6) This Truss has been designed for greater of min roof live load of 25.0 ps for 200 times flat roof load of 25.0 ps for 2.00 times flat roof load of 25.0 ps for 2.00 times flat roof load of 25.0 ps for 2.00 times flat roof load of 25.0 ps for 2.00 times flat roof load of 25.0 ps for 2.00 times flat roof load of 25.0 ps for 2.00 times flat roof load of 25.0 ps for 2.00 times flat roof load of 25.0 ps for 2.00 times flat roof live load nonconcurrent with any other live loads. 11) "This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 11) "This truss has been designed for a 10.0 psf bottom chord and any other members. 12) Bearings are assumed to be: Joint 33 SPF No.2 crushing capacity of 425 psi. 13) Bearing a triont(s) 65 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capabile y of beening sufface. 14) Provide mechanical connection (by others) of truss to bearing plate capabile of withstanding 496 lb uplift at joint 43, 24 lb uplift at joint 43, 24 lb uplift at joint 43. 15) Buy and 11 b uplift at joint 43. 16) Buy and the signer for a 13.0 time flat roof at a 10.0 time flat roof for a 10.0 time flat roof for a 10.0 time flat roof flat the plift at joint 43, 24 lb uplift at joint 43. 17) Buy and the roof for a 10.0 time flat roof for a 10.0 time flat roof flat the plift at joint 43. 18) Bearing a 11 buy time flat room flat the plift at joint 43. 19) Buy time flat room flat the plift at joint 43. 10) the uplift at joint 43. 11) Buy time flat room flat the plift at joint 43. 12) Buy time flat room flat the plift at joint 43. 13) Buy time flat room flat the plift at joint 43. 	-,	nsidered for this	3				
 overhangs non-concurrent with other live loads. 7) Provide adequate drainage to prevent water ponding. 8) All plates are 3x4 MT20 unless otherwise indicated. 9) Gable studs spaced at 2-0-0 oc. 10) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 11) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord any other members. 12) Bearings are assumed to be: Joint 33 SPF No.2 crushing capacity of 425 psi. Joint 32 SPF No.2 crushing capacity of 425 psi. Joint 32 SPF No.2 crushing capacity of 425 psi. Joint 32 SPF No.2 crushing capacity of 425 psi. Joint 32 SPF No.2 crushing capacity of 425 psi. Joint 32 SPF No.2 crushing capacity of 425 psi. 13) Bearing at joint(s) 65 considers parallel to grain value using ANSU/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface. 14) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 496 lb uplift at joint 32, 116 uplift at joint 43, 651 buplift at joint 42, 46 lb uplift at joint 42, 416 buplift at joint 42, 416 buplift at joint 43, 54 buplift at joint 43, 51 buplift at	6) This truss has been designed for great						
 7) Provide adequate drainage to prevent water ponding. 8) All plates are 3x4 MT20 unless otherwise indicated. 9) Gable studs spaced at 2-0-0 c. 10) This truss has been designed for a 10.0 psf bottom chord live load on 120.0 psf ontom chord live load on concurrent with may other live loads. 11) * This truss has been designed for a live load of 20.0 psf on the bottom chord live load on concurrent with may other live loads. 11) * This truss has been designed for a live load of 20.0 psf on the bottom chord in all areas where a rectangle 3-06-00 tail by 2-00-00 wide will fit between the bottom chord and any other members. 12) Bearing are assumed to be: Joint 33 SPF No.2 crushing capacity of 425 psi. Joint 32 SPF No.2 crushing capacity of 425 psi. 13) Bearing at joint(s) 65 considers parallel to grain value using ANSI/TP1 1 angle to grain formula. Building designer should verify capacity of bearing sufface. 14) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 496 live uplift at joint 43, 853 lb uplift at joint 43, 45 lb uplift at joint 43, 41 b uplift at joint 42, 44 lb uplift at joint 43, 41 b uplift at joint 42, 445 lb uplift at joint 34, 40 lb uplift at joint 43, 51 lb uplift at joint 34 and 740 lb uplift at joint 33. 			on				
 9) Gable studs spaced at 2-0-0 cc. 10) This truss has been designed for a 10.0 psf bottom chord live load noncourrent with any other live loads. 11) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members. 12) Bearings are assumed to be: Joint 33 SPF No.2 crushing capacity of 425 psi. 13) Bearing this to the set of the bottom designer should verify capacity of tuss to bearing plate capable of withstanding 496 lb uplift at joint 40, 294 lb uplift at joint 40, 54 lb uplift at joint 39, 61 lb uplift at joint 40, 54 lb uplift at joint 39, 41 lb uplift at joint 40, 51 lb uplift at joint 39, 41 lb uplift at joint 40, 51 lb uplift at joint 39, 41 lb uplift at joint 40, 51 lb uplift at joint 39, 41 lb uplift at joint 40, 51 lb uplift at joint 39, 41 lb uplift at joint 40, 51 lb uplift at joint 39, 41 lb uplift at joint 40, 51 lb uplift at joint 39, 41 lb uplift at joint 40, 51 lb uplift at joint 34, and 740 lb uplift at joint 33. 	7) Provide adequate drainage to prevent	water ponding.					
 10) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 11) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 oli dby 2-00-00 wide will fib between the bottom chord and any other members. 12) Bearings are assumed to be: Joint 33 SPF No.2 crushing capacity of 425 psi. 13) Bearing at joint(s) 65 considers parallel to grain value using ANSI/TP1 1 angle to grain formula. Building designer should verify capacity of bearing surface. 14) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 496 lb uplift at joint 48, 294 lb uplift at joint 32, 551 lb uplift at joint 32, 101 lb uplift at joint 43, 653 lb uplift at joint 42, 45 lb uplift at joint 45, 81 b uplift at joint 42, 45 lb uplift at joint 45, 81 b uplift at joint 45, 102 lb uplift at joint 38, 81 b uplift at joint 45, 102 lb uplift at joint 38 alb uplift at joint 33. 	, ,	ise indicated.					
 11) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 ollal by 2-00-00 wide will fit between the bottom chord and any other members. 12) Bearings are assumed to be: Joint 33 SPF No.2 crushing capacity of 425 psi. 13) Bearing at joint(s) 65 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface. 14) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 496 lb uplift at joint 46, 294 lb uplift at joint 43, 563 lb uplift at joint 32, 101 lb uplift at joint 43, 563 lb uplift at joint 42, 45 lb uplift at joint 43, 24 lb uplift at joint 42, 45 lb uplift at joint 43, 24 lb uplift at joint 65, 102 lb uplift at joint 34 and 740 lb uplift at joint 33. 	10) This truss has been designed for a 10.						
 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members. 12) Bearings are assumed to be: Joint 33 SPF No.2 crushing capacity of 425 psi, Joint 32 SPF No.2 crushing capacity of 425 psi. 13) Bearing at joint(s) 65 considers parallel to grain value using ANSI/TP1 1 angle to grain formula. Building designer should verify capacity of bearing surface. 14) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 496 lb uplift at joint 42, 46 lb uplift at joint 41, 54 lb uplift at joint 42, 46 lb uplift at joint 41, 54 lb uplift at joint 42, 45 lb uplift at joint 43, 115 lb uplift at joint 42, 45 lb uplift at joint 43, 14 lb uplift at joint 45, 115 lb uplift at joint 43, 140 lb uplift at joint 45, 115 lb uplift at joint 43, 140 lb uplift at joint 45, 115 lb uplift at joint 43, 140 lb uplift at joint 45, 115 lb uplift at joint 43, 140 lb uplift at joint 43, 141 bb uplift at joint 45, 115 lb uplift at joint 43, 140 lb uplift at joint 45, 115 lb uplift at joint 43, 140 lb uplift at joint 45, 115 lb uplift at joint 43, 140 lb uplift at joint 45, 115 lb uplift at joint 45, 115 lb uplift at joint 43, 140 lb uplift at joint 45, 115 l							
 chord and any other members. 12) Bearings are assumed to be: Joint 33 SPF No.2 crushing capacity of 425 psi. 13) Bearing at joint(s) 65 considers parallel to grain value using ANS/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface. 14) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 496 lb uplift at joint 42, 24 lb uplift at joint 43, 633 lb uplift at joint 42, 141 buplift at joint 43, 24 lb uplift at joint 42, 145 lb uplift at joint 43, 24 lb uplift at joint 45, 115 lb uplift at joint 45, 115 lb uplift at joint 37, 99 lb uplift at joint 38. 	on the bottom chord in all areas where	a rectangle					
 crushing capacity of 425 psi, Joint 32 SPF No.2 crushing capacity of 425 psi. 13) Bearing at joint(s) 65 considers parallel to grain value using ANSI/TP1 1 angle to grain formula. Building designer should verify capacity of bearing surface. 14) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 496 lb uplift at joint 46, 294 lb uplift at joint 38, 653 lb uplift at joint 32, 101 lb uplift at joint 40, 34 lb uplift at joint 42, 46 lb uplift at joint 42, 46 lb uplift at joint 42, 46 lb uplift at joint 42, 154 lb uplift at joint 43, 24 lb uplift at joint 42, 45 lb uplift at joint 36, 83 lb uplift at joint 65, 102 lb uplift at joint 34 and 740 lb uplift at joint 33. 	,	ween the bottom	1				
 crushing capacity of 425 psi. 13) Bearing at joint(s) 65 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface. 14) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 496 lb uplift at joint 46, 294 lb uplift at joint 38, 653 lb uplift at joint 32, 101 lb uplift at joint 44, 46 lb uplift at joint 41, 54 lb uplift at joint 42, 45 lb uplift at joint 43, 24 lb uplift at joint 42, 115 lb uplift at joint 42, 115 lb uplift at joint 43, 24 lb uplift at joint 45, 115 lb uplift at joint 37, 99 lb uplift at joint 36, 83 lb uplift at joint 65, 102 lb uplift at joint 34 and 740 lb uplift at joint 33. 							
using ANSİ/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface. 14) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 496 lb uplift at joint 46, 294 lb uplift at joint 38, 653 lb uplift at joint 32, 101 lb uplift at joint 44, 46 lb uplift at joint 42, 45 lb uplift at joint 40, 34 lb uplift at joint 42, 45 lb uplift at joint 43, 24 lb uplift at joint 45, 115 lb uplift at joint 37, 99 lb uplift at joint 36, 83 lb uplift at joint 65, 102 lb uplift at joint 34 and 740 lb uplift at joint 33.	crushing capacity of 425 psi.						
 designer should verify capacity of bearing surface. 14) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 496 lb uplift at joint 46, 294 lb uplift at joint 38, 653 lb uplift at joint 32, 101 lb uplift at joint 44, 46 lb uplift at joint 41, 54 lb uplift at joint 42, 44 lb uplift at joint 40, 34 lb uplift at joint 42, 45 lb uplift at joint 45, 115 lb uplift at joint 45, 115 lb uplift at joint 37, 99 lb uplift at joint 36, 83 lb uplift at joint 65, 102 lb uplift at joint 34 and 740 lb uplift at joint 33. 							
bearing plate capable of withstanding 496 lb uplift at joint 46, 294 lb uplift at joint 38, 653 lb uplift at joint 32, 101 lb uplift at joint 44, 46 lb uplift at joint 41, 54 lb uplift at joint 39, 11 lb uplift at joint 40, 34 lb uplift at joint 42, 45 lb uplift at joint 43, 24 lb uplift at joint 45, 115 lb uplift at joint 37, 99 lb uplift at joint 36, 83 lb uplift at joint 65, 102 lb uplift at joint 34 and 740 lb uplift at joint 33.	designer should verify capacity of bear	ing surface.					
joint 40, 294 lb uplift at joint 38, 653 lb uplift at joint 32, 101 lb uplift at joint 44, 46 lb uplift at joint 41, 54 lb uplift at joint 39, 11 lb uplift at joint 40, 34 lb uplift at joint 42, 45 lb uplift at joint 43, 24 lb uplift at joint 45, 115 lb uplift at joint 37, 99 lb uplift at joint 36, 83 lb uplift at joint 65, 102 lb uplift at joint 34 and 740 lb uplift at joint 33.							
at joint 39, 11 lb uplift at joint 40, 34 lb uplift at joint 42, 45 lb uplift at joint 43, 24 lb uplift at joint 45, 115 lb uplift at joint 37, 99 lb uplift at joint 36, 83 lb uplift at joint 65, 102 lb uplift at joint 34 and 740 lb uplift at joint 33.	joint 46, 294 lb uplift at joint 38, 653 lb	uplift at joint 32					
45 lb uplift at joint 43, 24 lb uplift at joint 45, 115 lb uplift at joint 37, 99 lb uplift at joint 36, 83 lb uplift at joint 65, 102 lb uplift at joint 34 and 740 lb uplift at joint 33.							
102 lb uplift at joint 34 and 740 lb uplift at joint 33.	45 lb uplift at joint 43, 24 lb uplift at join	nt 45, 115 lb upli	ift				
			,				
WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev 1/2/2023 REFORE LISE							
WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MIL-7473 rev 1/2/2023 REFORE USE							
				173 101 1/2/20	23 BEEODE		

RELEASE FOR CONSTRUCTION						
AS NOTED FOR PLAN REVIEW OD DEVELOPMENT SERVICES	Truss Type	Qty	Ply			
240883 SUMMIT, MISSOURPB1	Piggyback	2	1	Job Reference (optio	nal)	165080530
en Sulata Spy & Mar 24 Spring Hills, I	-0-10-13	Run: 8.63 S Apr 5 2024 Pr ID:M3w3HUNXM3hNVKIrin 4-0-6	•	370Hq3NSgPqnL8w3ulT) 8-0-12		
2-5-14 2-4-6 2-4-6	0-10-13 	4-0-6 6 T 1.5x4 II 3 0 10 1.5x4 II	4x4 = 4 4 9 1.5x4 µ	4-0-6	0-10	7
Scale = 1:26.3			8-0-12			
bading(psf)SpacingCLL (roof)25.0Plate Grnow (Pf)25.0LumberCDL10.0Rep StreeCLL0.0*CodeCDL10.0	rip DOL 1.15 DOL 1.15	BC 0.04	DEFL i Vert(LL) n/ Vert(CT) n/ Horz(CT) 0.0	'a - n/a 9 'a - n/a 9	L/d PLATES 999 MT20 999 n/a Weight: 31 lb	GRIP 197/144 FT = 20%
JMBER DP CHORD 2x4 SP No.2 DT CHORD 2x4 SP No.2 THERS 2x3 SPF No.2 RACING DP CHORD DP CHORD Structural wood sheathing dire 6-0-0 cc purlins. DT CHORD Rigid ceiling directly applied or bracing. EACTIONS (size) 2=8-0-12, 6=8-0-12, 9=8-0-12, 10=8-0-12, 9=8-0-12, 10=8-0-12, 9=8-0-12, 10=8-0-12, 9=8-0-12, 10=8-0-12, 9=8-0-12, 10=8-0-12, 0=75 (LC 17), 10=- Max Horiz 2=-44 (LC 17) Max Uplift 2=-19 (LC 16), 6=-2 8=-75 (LC 17), 10=- Max Grav 2=185 (LC 23), 6=11 8=306 (LC 24), 9=11 10=306 (LC 24), 9=11 10=306 (LC 23) DRCES (lb) - Maximum Compression/N Tension DP CHORD 1-2=0/29, 2-3=-60/42, 3-4=-76 4-5=-76/99, 5-6=-60/42, 6-7=0 DT CHORD 1-2=0/29, 2-3=-60/42, 3-4=-76 4-5=-76/99, 5-6=-60/42, 6-7=0 DT CHORD 2-10=-13/49, 9-10=-13/49, 8-9 6-8=-13/49 EBS 4-9=-97/13, 3-10=-260/213, 5- OTES Unbalanced roof live loads have been consthis design. Wind: ASCE 7-16; Vult=115mph (3-second Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf Ke=1.00; Cat. II; Exp C; Enclosed; MWFRS exterior zone and C-C Exterior(2E) zone; c and right exposed ; end vertical left and rig exposed; C-C for members and forces & M	only. For st see Standar or consult q TCLL: ASCI Plate DOL= DOL=1.15); CS=1.00; CC Unbalanced design. 10-0-0 oc 2, 8=8-0-12, 2 27 (LC 17), 75 (LC 16) 85 (LC 24), 34 (LC 23), 27 (LC 23), 34 (LC 23), 35 (LC 24), 36 (LC 24), 36 (LC 24), 37 (LC 17), 75 (LC 16) 85 (LC 24), 36 (LC 24), 37 (LC 17), 75 (LC 16) 8 (Gable studs 75 (LC 16) 8 (Gable studs 9 (LC 24), 30 (L	snow loads have been cons as been designed for greate psf or 2.00 times flat roof loo non-concurrent with other live res continuous bottom chord spaced at 2-0-0 oc. as been designed for a 10.0 has been designed for a 10.0 has been designed for a live m chord in all areas where a by 2-00-00 wide will fit betwe ny other members. are assumed to be SP No.2 565 psi. chanical connection (by othe e capable of withstanding 15 ft at joint 6, 75 lb uplift at join	al to the face), Is as applicable, per ANSI/TPI 1. : Lum DOL=1.15 L=1.15 Plate Exp.; Ce=0.9; sidered for this er of min roof live ad of 25.0 psf on e loads. d bearing. P psf bottom other live loads. a load of 20.0psf a rectangle een the bottom 2 crushing ers) of truss to 9 lb uplift at joint at 10 and 75 lb th the 2018 R502.11.1 and SI/TPI 1. 5 Connection		SCO.	MISSOLIN TT M. TER

RELEASE FOR CONSTRUCT									
AS NOTED FOR PLAN REV	IEW Truss ≘S		Truss Type		Qty	Ply			105000504
P24088'S SUMMIT, MISSOUR	NT DZ		Piggyback		19	1	Job Reference (optional)		165080531
P105/1199/201	Ka, Spring	lills, KS - 66083,					2024 MiTek Industries, Inc. Mon A sB70Hq3NSgPqnL8w3uITXbGK\		Page: 1
			-0-10-13	4-0-6		1	8-0-12	8-11-9	
			0-10-13	4-0-6		I	4-0-6	0-10-13	
						4x4 =			
_				12 6 [3			

6

8-0-12

(loc)

in

l/defl

L/d

PLATES

GRIP

197/144

FT = 20%

DEFL

1.5x4 🛚

Scale = 1:28.7

Loading

TCLL (roof)		25.0	Plate Grip DOL	1.15		TC	0.54	Vert(LL)	n/a	-	n/a	999	MT20
Snow (Pf)		25.0	Lumber DOL	1.15		BC	0.16	Vert(CT)	n/a	-	n/a	999	
TCDL		10.0	Rep Stress Incr	YES		WB	0.05	Horz(CT)	0.00	4	n/a	n/a	
BCLL		0.0*	Code	IRC2018	3/TPI2014	Matrix-P							
BCDL		10.0		-									Weight: 30 lb
LUMBER				4)	TCLL: ASC	E 7-16; Pr=25.0	psf (roof Ll	.: Lum DOL=	1.15				
TOP CHORD	2x4 SP N	0.2		,	Plate DOL=	1.15); Pf=25.0 p	sf (Lum DC	DL=1.15 Plate)				
BOT CHORD	2x4 SP N	0.2			DOL=1.15);	Is=1.0; Rough	Cat C; Fully	Exp.; Ce=0.9	9;				
OTHERS	2x3 SPF I	No.2			Cs=1.00; Ct	=1.10							
BRACING				5)	Unbalanced	snow loads have	ve been co	nsidered for t	his				
TOP CHORD	Structural	wood she	athing directly applied	or	design.								
	6-0-0 oc p		5	6)		as been designe							
BOT CHORD			applied or 10-0-0 oc			psf or 2.00 time			sf on				
	bracing.	0 ,			•	ion-concurrent							
REACTIONS	(size)	2=8-0-12.	4=8-0-12, 6=8-0-12	7)		res continuous l		d bearing.					
	Max Horiz	,	,	8)		spaced at 4-0-							
		· ·	5 16), 4=-75 (LC 17), 6	i=-8 ⁹⁾		as been designe							
	max opint	(LC 16)	,			ad nonconcurre							
		()		10) * This truss	has heen desig	ned tor a liv	e load of 20 (Inst				

2

2-0-0

3x4 =

CSI

Max Grav 2=340 (LC 23), 4=340 (LC 24), 6=348 (LC 24) (Ib) - Maximum Compression/Maximum Tension TOP CHORD 1-2=0/29, 2-3=-123/76, 3-4=-123/87, 4-5=0/29 BOT CHORD 2-6=0/46. 4-6=0/46 3-6=-248/180

WEBS NOTES

FORCES

1) Unbalanced roof live loads have been considered for this design.

2-5-14

(psf)

Spacing

2-4-6

- 2) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=35ft; Ke=1.00; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- Truss designed for wind loads in the plane of the truss 3) only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

- This truss has been designed for a live load of 20.0pst 10) on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- 11) All bearings are assumed to be SP No.2 crushing capacity of 565 psi.
- 12) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 67 lb uplift at joint 2, 75 lb uplift at joint 4 and 8 lb uplift at joint 6.
- 13) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 14) See Standard Industry Piggyback Truss Connection Detail for Connection to base truss as applicable, or consult qualified building designer.

LOAD CASE(S) Standard

5

3x4 :

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not beigh valid for use only with with with sets outputs into design is based only door parameters shown, and is for an individual dualing component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria**, and **DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcscomponents.com)

16023 Swingley Ridge Rd. Chesterfield MO 63017 314.434.1200 / MiTek-US.com

RELEASE FOR CO											
AS NOTED FOR F	PLAN REVIEW		Truss Type		Qty	Ply					
P240883 SUMMIT			Valley		1	1	Joh	Refere	nce (option	al)	165080532
Profit Sulating Spr	202×4, sr	ring Hills, KS - 66083,		Run: 8.63 S Apr 5 2 ID:2Yh2R46XnS3Re5			r 5 2024 N	MiTek Ind	lustries, Inc. I	Mon Apr 22 14:48:35	Page: 1
		F	<u>4-10-8</u> 4-10-8				<u>15-9-1</u> 0-10-9			16-4-0 	
				4x4 =							
		1	6 ¹²	3		4	13				
	0-3-8 0-3-8 0-3-8 5-5-8								5	6 (16) 6	
			11 15	10	3	x4 =			7	3x4 👟	
Scale = 1:42.3		-			16-4	-0					
Loading FCLL (roof) Snow (Pf) FCDL BCLL	(psf) 25.0 25.0 10.0 0.0*	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018/TPI2014	BC 0	.36 Ve .17 Ve	EFL ert(LL) ert(TL) oriz(TL)	in n/a n/a 0.00	(loc) - - 6	l/defl L/ n/a 99 n/a 99 n/a n/	99 MT20 99 ⁄a	GRIP 197/144
BCDL	10.0									Weight: 63 lb	FT = 20%
BOT CHORD 2x4 WEBS 2x3 OTHERS 2x3 BRACING TOP CHORD Stru 6-0- BOT CHORD Rigi brac REACTIONS (size) Max I	-0 oc purlins, exc id ceiling directly a cing.) 6=16-4-0, 10=16-4-0 Horiz 12=-169 (L	applied or 6-0-0 oc 7=16-4-0, 8=16-4-0, 11=16-4-0, 12=16-	Vasd=91mpl Ke=1.00; Ca exterior zone Exterior(2R) 15-8-15 zone vertical left a forces & MW DOL=1.60 pl 3) Truss desig only. For stu- see Standarn or consult qu 4) TCLL: ASCE	7-16; Vult=115mph (3 h; TCDL=6.0psf; BCDI tt. II; Exp C; Enclosed; e and C-C Exterior(2E) 4-10-8 to 9-10-8, Inter e; cantilever left and rig ind right exposed; C-C /FRS for reactions sho late grip DOL=1.60 ned for wind loads in tt uds exposed to wind (r d Industry Gable End I ualified building design 5-16; Pr=25.0 psf (Lun 1.15); Pf=25.0 psf (Lun	=6.0psf MWFRS 0-1-4 tc ior (1) 9- ght expo for mem wn; Lum ne plane ormal tc Details a er as pe of LL: Lu	; h=35ft; 6 (envelope 6 4-10-8, -10-8 to sed ; end bers and ober of the trus of the trus of the face), s applicabl r ANSI/TPI m DOL=1.	ss , le, I 1.				

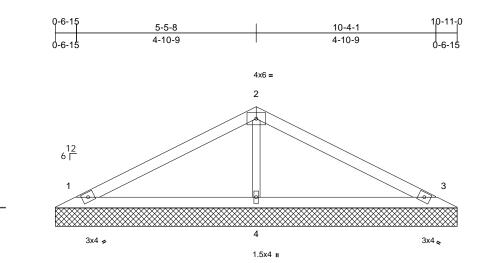
- 8=-137 (LC 17), 11=-131 (LC 16), 12=-168 (LC 5) Max Grav 6=120 (LC 25), 7=344 (LC 6), 8=543 (LC 23), 10=429 (LC 26), 11=549 (LC 22), 12=49 (LC 16) FORCES (lb) - Maximum Compression/Maximum Tension TOP CHORD 1-12=-93/145, 1-2=-78/102, 2-3=-117/179, 3-4=-118/191, 4-5=-123/96, 5-6=-196/118 11-12=-101/196, 10-11=-101/196, BOT CHORD 8-10=-101/196, 7-8=-101/196, 6-7=-101/196 WEBS 3-10=-269/126, 2-11=-476/220, 4-8=-463/239, 5-7=-258/188 NOTES

1) Unbalanced roof live loads have been considered for this design.

- DOL=1.15); Is=1.0; Rough Cat C; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10
- 5) Unbalanced snow loads have been considered for this design.
- All plates are 1.5x4 MT20 unless otherwise indicated. 6)
- Gable requires continuous bottom chord bearing. 7)
- Gable studs spaced at 4-0-0 oc. 8)
- This truss has been designed for a 10.0 psf bottom 9) chord live load nonconcurrent with any other live loads.
- 10) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- 11) All bearings are assumed to be SP No.2 crushing capacity of 565 psi.
- 12) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 168 lb uplift at joint 12, 6 lb uplift at joint 6, 131 lb uplift at joint 11, 137 Ib uplift at joint 8 and 113 lb uplift at joint 7.
- 13) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. LOAD CASE(S) Standard

16023 Swingley Ridge Rd. Chesterfield MO 63017 314.434.1200 / MiTek-US.com

RELEASE FOR CONSTRUCTION							
AS NOTED FOR PLAN REVIEW Job DEVELOPMENT SERVICES	Truss Type	Qty	Ply				
P240883 SUMMIT, MISSOURV2	Valley	1	1 _J	ob Referei	nce (optional)		165080533
Professional Sport Print Ka, Spring Hills, KS - 66083,	Run: 8.63 S Apr 5 2 ID:h7x0X?TjxMjKdY						Page: 1
			baa-NIC : F 3D70	nqənəyrqi	LOWSUITADOR	WICD01/3423C !!	
	4-10-8 4-10-8		13-9 8-10			14-4-0	
	4-10-0		8-10	-9		0-6-15	
	4x4 =						
\top $\overline{\top}$	612						
	1.5x4 II	\searrow	1.5x4 I				
	2		4	•			
+ -9 -0 + -5 -8			- H	10			
7	8						
2-3-12						5	
⁹ 9		*****		~~~~~~~	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		
5 5	8 7		6				
	1.5x4 u 1.5x4 u		1.5x4 ı	ı		3x4 👟	
	1.5x4 II						
	L	14-4-0)				
Scale = 1:40.3	· · · · · · · · · · · · · · · · · · · ·					1	
Loading(psf)SpacingTCLL (roof)25.0Plate Grip DOL	2-0-0 CSI 1.15 TC	0.47 Vert		. ,	l/defl L/d n/a 999	PLATES MT20	GRIP 197/144
Snow (Pf)25.0Lumber DOLTCDL10.0Rep Stress Incr		0.19 Vert 0.13 Hori	, ,		n/a 999 n/a n/a		
BCLL 0.0* Code BCDL 10.0	IRC2018/TPI2014 Matrix-S		()			Weight: 53 lb	FT = 20%
LUMBER	 Truss designed for wind loads in 	the plane of	f the truss			Troigini do is	
TOP CHORD2x4 SP No.2BOT CHORD2x4 SP No.2	only. For studs exposed to wind (see Standard Industry Gable End						
WEBS 2x3 SPF No.2 OTHERS 2x3 SPF No.2	or consult qualified building design 4) TCLL: ASCE 7-16; Pr=25.0 psf (ro						
BRACING TOP CHORD Structural wood sheathing directly applied	Plate DOL=1.15); Pf=25.0 psf (Lu DOL=1.15); Is=1.0; Rough Cat C;						
6-0-0 oc purlins, except end verticals. BOT CHORD Rigid ceiling directly applied or 6-0-0 oc	Cs=1.00; Ct=1.10 5) Unbalanced snow loads have bee	en consider	ed for this				
bracing.	design.6) Gable requires continuous bottom	n chord bea	ring.				
REACTIONS (size) 5=14-4-0, 6=14-4-0, 7=14-4-0, 8=14-4-0, 9=14-4-0 Max Ularia 0 1224 (0.4.2)	7) Gable studs spaced at 4-0-0 oc.8) This truss has been designed for	a 10.0 psf b	ottom				
Max Horiz 9=-124 (LC 12) Max Uplift 5=-3 (LC 17), 6=-170 (LC 17),	chord live load nonconcurrent with 9) * This truss has been designed fo						
8=-138 (LC 16), 9=-177 (LC 22 Max Grav 5=177 (LC 23), 6=643 (LC 23),	3-06-00 tall by 2-00-00 wide will fi						
7=330 (LC 22), 8=567 (LC 22), 9=52 (LC 16)	chord and any other members. 10) All bearings are assumed to be S						
FORCES (Ib) - Maximum Compression/Maximum Tension	capacity of 565 psi. 11) Provide mechanical connection (b		-				
TOP CHORD 1-9=-85/154, 1-2=-61/106, 2-3=-113/161, 3-4=-119/179, 4-5=-115/117	bearing plate capable of withstand joint 9, 3 lb uplift at joint 5, 138 lb	ding 177 lb	uplift at				
BOT CHORD 8-9=-70/143, 7-8=-70/143, 6-7=-70/143, 5-6=-70/143	lb uplift at joint 6. 12) This truss is designed in accordar					000	all a
WEBS 3-7=-258/110, 2-8=-488/269, 4-6=-528/29 NOTES	8 International Residential Code se R802.10.2 and referenced standa	ctions R502	.11.1 and			TEOF	MISSO
1) Unbalanced roof live loads have been considered for this design.	LOAD CASE(S) Standard				A	ST SCOT	VC. YA
 Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=35ft; 					Be		
Ke=1.00; Cat. II; Exp C; Enclosed; MWFRS (envelope exterior zone and C-C Exterior(2E) 0-1-4 to 4-10-8,	·)					att	Service
Exterior(2R) 4-10-8 to 9-10-8, Interior (1) 9-10-8 to 13-8-15 zone; cantilever left and right exposed ; end					N	NUM PE-200	IBER 1018807
vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber					V.	The second secon	
DOL=1.60 plate grip DOL=1.60						CSSION!	AL ENSA
						all	


April 23,2024

	OR CONSTRUCT														
AS NOTED	FOR PLAN REVI PMENT SERVICE	EW Iruss S			Truss T	/pe		Qty	F	Ply					10500050.1
	JMMIT, MISSOUR				Valley			1	1		Job Refe	rence (or	otional)		165080534
05//1	3/202	K <mark>8</mark> , Sp	oring Hills,	KS - 66083,			Run: 8.63 S Apr ID:zPwjqLQH8zL				2024 MiTek I	ndustries,	Inc. Mo	n Apr 22 14:48:	•
					I	4-	10-8	I			11-9-1			12-4-0	
							10-8				6-10-9			0-6-15	
								44							
								4x4 = 3							
	_	_	\top			6	12 5 -								
						1.5x4 ॥		\square	\searrow	10					
					1.5x4	"				\searrow	1.5	x4 u			
	3-9-0		3-5-8 3-5-8		1	2						4			
				2	Der	P					P		1 12	2	
		œ		1-3-12									\sim	5	
			0-3-8	-	9 💆		*****								
					×××	8		××××××× 7	******		<u>*******</u> 6	******	*****	3×4	
					1.5x4	н		1.5x4 ॥			1.5	x4 u		3x4 👟	
						1.5x4 u									
									12-4-0						
Scale = 1:35.9					\vdash				12-4-0						
oading	() (osf)	Spacing	3	2-0-0		CSI		DEFL	-	in (loc)	l/defl	L/d	PLATES	GRIP
CLL (roof) now (Pf)		5.0 5.0	Plate Gr Lumber	•	1.15 1.15		TC BC	0.35 0.11	Vert(LL Vert(TL	,	n/a - n/a -	n/a n/a	999 999	MT20	197/144
CDL	1	0.0	Rep Stre		YES		WB	0.09	Horiz(T	,	00 5	n/a	n/a		
CLL CDL		0.0* 0.0	Code		IRC2018	8/TPI2014	Matrix-S							Weight: 43 I	b FT = 20%
ORCES OP CHORD OT CHORD /EBS OTES) Unbalance this desigr) Wind: ASC Vasd=91rr Ke=1.00; (exterior 20 Exterior 21 11-8-15 zc vertical lef	8=1 Max Horiz 9=-1 Max Uplift 5=- 8=- Max Grav 5=9 (Ib) - Maximun Tension 1-9=-93/159, 1 3-4=-117/149, 8-9=-34/85, 3-7=-265/116, ed roof live loads CE 7-16; Vult=11 ph; TCDL=6.0p Cat. II; Exp C; El one and C-C Extt R) 4-10-8 to 9-10 cat. II; Exp C; El one and C-C Extt R) 4-10-8 to 9-10	IS, exc irectly : 2-4-0, 2-4-0, 80 (LC 10 (LC 150 (LC 2 (LC 2 (LC 4-5=-7 8=-34/i 4-5=-7 8=-34/i 5 have 1 5 mph 5 have 1 5 mph 5 have 1 5 h	ept end v applied o 6=12-4-0 9=12-4-0 12) 16), 6=-1 23), 6=52 23), 6=52 23, 6=52 24, 6=5224, 6=5224, 6=52 24, 6=5224, 6=5224, 6=5224, 6=5224, 6=5224,	verticals. r 6-0-0 oc , 7=12-4-0, 31 (LC 17), -175 (LC 22 3 (LC 23), 63 (LC 23), 63 (LC 22), Maximum 3=-115/136, 34/85, 4-6=-445/27 sidered for d gust) f; h=35ft; S (envelope o 4-10-8, 0-10-8 to osed ; end nbers and	5) 6) 7) 8) 9) 10 11 11 12 LC	see Standard or consult qu TCLL: ASCE Plate DOL=1 DOL=1.15); Cs=1.00; Ct- Unbalanced design. Gable studs This truss ha chord live loa * This truss ha chord and ar All bearings Provide mec bearing plate joint 9, 10 lb 131 lb uplift all bu plift is International	snow loads have l es continuous bot spaced at 4-0-0 o as been designed ad nonconcurrent has been designed in chord in all area by 2-00-00 wide w hy other members are assumed to be 65 psi. thanical connection e capable of withst uplift at joint 5, 15 at joint 6. designed in accor Residential Code nd referenced star	End Detai signer as f (roof LL (Lum DO t C; Fully been con tom chord c. for a 10.0 with any d for a live is where is s where is e SP No.2 n (by other tanding 1 0 lb uplift dance wi sections	Is as app per ANS : Lum DC L=1.15 F Exp.; Ce sidered f d bearing post both other live e load of a rectang een the l 2 crushin ers) of tru 75 lb upil at joint { th the 20 R502.11	blicable, SITPI 1. DL=1.15 Plate = 0.9; for this g. om bottom g g.				gotti	F MISSOUR DTT M. EVIER 01018807
	WFRS for react		nown; Lur	nber									Y	NOISSON	LAL ENGILE
forces & N DOL=1.60	plate grip DOL	-1.00												11	pril 23,2024

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEX REFERENCE PAGE MIL-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcscomponents.com) 16023 Swingley Ridge Rd. Chesterfield, MO 63017 314.434.1200 / MiTek-US.com

RELEASE FOR CONSTRUCTION									
AS NOTED FOR PLAN REVIEW Job DEVELOPMENT SERVICES		Truss Type		Qty	Ply		165080535		
P240883 SUMMIT, MISSOURV4		Valley		1	1	Job Reference (optional)	165080535		
Premie Bulding Soply (Sprin) fill Kg, Spring I	lills, KS - 66083,	KS - 66083, Run: 8.63 S Apr 5 2024 Print: 8.630 S Apr 5 2024 MiTek Industries, Inc. Mon Apr 22 14:48:35 ID:H5Jk1br9eudwrJmE5Ego4Czkba5-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f							

10-11-0

Scale = 1:31.3

Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 25.0 25.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018	3/TPI2014	CSI TC BC WB Matrix-S	0.62 0.24 0.07	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 3	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 34 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD OTHERS BRACING TOP CHORD BOT CHORD	6-0-0 oc purlins.	eathing directly applie	6) 7)	Plate DOL=1 DOL=1.15); I Cs=1.00; Ct= Unbalanced design. Gable require Gable studs This truss ha	7-16; Pr=25.0 ps .15); Pf=25.0 ps Is=1.0; Rough Ca =1.10 snow loads have es continuous bo spaced at 4-0-0 o is been designed ad nonconcurrent	(Lum DC at C; Fully been cor ttom chor bc. for a 10.0	DL=1.15 Plate Exp.; Ce=0.9 Insidered for the d bearing.	i; iis					
REACTIONS	(size) 1=10-11-1 Max Horiz 1=-46 (LC Max Uplift 1=-49 (LC 4=-37 (LC Max Grav 1=304 (LC 4=479 (LC	C 16), 3=-57 (LC 17), C 16) C 22), 3=304 (LC 23)	9)	* This truss h on the bottor 3-06-00 tall b chord and an	has been designe n chord in all area by 2-00-00 wide w hy other members are assumed to b	d for a liv as where vill fit betw s.	e load of 20.0 a rectangle veen the botto	psf					
FORCES TOP CHORD BOT CHORD WEBS	(lb) - Maximum Com Tension 1-2=-175/78, 2-3=-1 1-4=-3/53, 3-4=-3/53 2-4=-330/219	npression/Maximum 75/85) Provide mech bearing plate 1, 57 lb uplift) This truss is International	b5 psi. hanical connection capable of withs at joint 3 and 37 designed in accoo Residential Code	tanding 4 lb uplift a rdance w sections	9 lb uplift at jo t joint 4. ith the 2018 5 R502.11.1 a	pint					

NOTES

1) Unbalanced roof live loads have been considered for this design.

2-5-4

7-0-C

2-9-0

- Wind: ASCE 7-16; Vult=115mph (3-second gust) 2) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=35ft; Ke=1.00; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

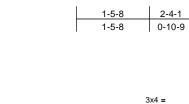
- R802.10.2 and referenced standard ANSI/TPI 1.
- LOAD CASE(S) Standard

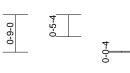
RELEASE FOR CONSTRUCTION							
AS NOTED FOR PLAN REVIEW Job DEVELOPMENT SERVICES		Truss Type		Qty	Ply		
P240893 SUMMIT, MISSOUR/5		Valley		1	1	Job Reference (optional)	165080536
Prende Sularing Spry 2 in rill Ka Spring	lills, KS - 66083,					2024 MiTek Industries, Inc. Mon Apr 22 14:48 B70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4z	-
			<u>3-5-8</u> 3-5-8			6-4-1 2-10-9 0-6-15	
					3x4 =		
			12 6 ┌─		2		
1-9-0 1-5-4			1			3	
	0-0	=					
			3x4 🍃			3x4 👟	
			I		6-11-0	I	

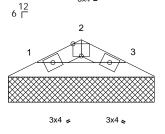
Scale = 1:23.1

Plate Offsets (X, Y): [2:0-2-0,Edge]

Plate Olisets ((X, Y): [2:0-2-0,Edge]	-										
Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 25.0 25.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018/TPI201	CSI TC BC WB 4 Matrix-P	0.25 0.43 0.00	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 3	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 20 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD BRACING TOP CHORD BOT CHORD REACTIONS FORCES TOP CHORD BOT CHORD BOT CHORD BOT CHORD NOTES 1) Unbalance this design	2x4 SP No.2 Structural wood she 6-0-0 oc purlins. Rigid ceiling directly bracing. (size) 1=6-11-0, Max Horiz 1=27 (LC Max Uplift 1=-39 (LC Max Grav 1=300 (LC (lb) - Maximum Com Tension 1-2=-270/212, 2-3=- 1-3=-144/200 ed roof live loads have	applied or 10-0-0 o , 3=6-11-0 16) C 16), 3=-39 (LC 17) C 22), 3=-300 (LC 23 npression/Maximum -270/224	7) Gable 8) This tr chord I 9) * This t on the c 3-06-00 chord a 10) All bea capacit 11) Provide bearing 1 and 3 12) This tr Interna R802.1 LOAD CAS	requires continuous bo studs spaced at 4-0-0 liss has been designed ve load nonconcurren russ has been designed bottom chord in all are bottom chord in all are of the state of the nd any other member rings are assumed to b y of 565 psi. e mechanical connection plate capable of with 19 lb uplift at joint 3. Iss is designed in acco tional Residential Cod 0.2 and referenced state SE(S) Standard	oc. d for a 10. t with any ed for a liv eas where will fit betw s. be SP No. on (by oth standing 3 ordance w le sections	D psf bottom other live loa e load of 20.0 a rectangle veen the botto 2 crushing ers) of truss t 99 lb uplift at j ith the 2018 s R502.11.1 a	0psf om to joint					
 Wind: ASC Vasd=91n Ke=1.00; (exterior zc and right e exposed;C reactions s DOL=1.60 Truss des only. For see Stand or consult TCLL: ASC Plate DOL 	CE 7-16; Vult=115mph nph; TCDL=6.0psf; BC Cat. II; Exp C; Enclose one and C-C Exterior(2 exposed ; end vertical 2-C for members and f shown; Lumber DOL=	:DL=6.0psf; h=35ft; ad; MWFRS (envelop 2E) zone; cantilever left and right orces & MWFRS for 1.60 plate grip n the plane of the tru I (normal to the face d Details as applica gner as per ANSI/TI (roof LL: Lum DOL= .um DOL=1.15 Plate	left), ble, Pl 1. 1.15								STATE OF SEV SEV PE-2001	BER ME


DOL=1.15); Is=1.0; Rough Cat C; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10


5) Unbalanced snow loads have been considered for this design.


ESSIONAL ET A CONTRACT April 23,2024

RELEASE FOR CONSTRUCTION							
AS NOTED FOR PLAN REVIEW Job DEVELOPMENT SERVICES		Truss Type		Qty	Ply		165090527
P240883 SUMMIT, MISSOURV6		Valley		1	1	Job Reference (optional)	165080537
Preme Building Spy (Springhill) Kg, Spring	lills, KS - 66083,		•		•	2024 MiTek Industries, Inc. Mon Apr 22 14:48:35 0Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f	Page: 1

2-11-0

Scale = 1:23

Plate Offsets (X, Y): [2:0-2-0,Edge]

												-
Loading	(psf)	Spacing	2-0-0	csi		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15	TC	0.03	Vert(LL)	n/a		n/a	999	MT20	244/190
Snow (Pf)	25.0	Lumber DOL	1.15	BC	0.04	Vert(TL)	n/a	-	n/a	999		
TCDL	10.0	Rep Stress Incr	YES	WB	0.00	Horiz(TL)	0.00	3	n/a	n/a		
BCLL	0.0*	Code	IRC2018/TPI20	14 Matrix-P								
BCDL	10.0										Weight: 7 lb	FT = 20%
LUMBER TOP CHORD BOT CHORD BRACING TOP CHORD BOT CHORD REACTIONS FORCES TOP CHORD BOT CHORD	2x4 SP No.2 Structural wood she 3-0-0 oc purlins. Rigid ceiling directly bracing. (size) 1=2-11-0, Max Horiz 1=8 (LC 1 Max Uplift 1=-12 (LC Max Grav 1=82 (LC (lb) - Maximum Com Tension 1-2=-78/70, 2-3=-78	16) C 16), 3=-12 (LC 17) 22), 3=82 (LC 23) pression/Maximum	7) Gable 8) This f chorc 9) * This on th 3-06- chorc 10) All be capac 11) Provi bearin 1 anc 12) This f Interr R802	e requires continuous b e studs spaced at 4-0-0 russ has been designe ive load nonconcurrei truss has been desigre bottom chord in all ar 00 tall by 2-00-00 wide and any other membe arings are assumed to bity of 565 psi. de mechanical connect g plate capable of with 12 lb uplift at joint 3. russ is designed in acc ational Residential Co. 10.2 and referenced s USE(S) Standard	o oc. ed for a 10. Int with any led for a live eas where will fit betw. rs. be SP No tion (by othe histanding for cordance with de sections	D psf bottom other live loa e load of 20.0 a rectangle veen the botto 2 crushing ers) of truss t 2 lb uplift at j ith the 2018 s R502.11.1 a	Opsf om to oint					
NOTES 1) Unbalance	ed roof live loads have	been considered for										
this design 2) Wind: ASC		(3-second gust)										
Ke=1.00; exterior zo and right e exposed;0	Cat. II; Exp C; Enclose one and C-C Exterior(2 exposed ; end vertical C-C for members and f shown; Lumber DOL=	ed; MWFRS (envelop E) zone; cantilever le left and right orces & MWFRS for									STATE OF SCOT	тм.
only. For see Stand	signed for wind loads in studs exposed to wind lard Industry Gable En qualified building desi	l (normal to the face) d Details as applicab	le,							B	ott:	Service
4) TCLL: AS Plate DOL DOL=1.15 Cs=1.00;	CE 7-16; Pr=25.0 psf (_=1.15); Pf=25.0 psf (L 5); Is=1.0; Rough Cat (Ct=1.10	roof LL: Lum DOL=1 um DOL=1.15 Plate C; Fully Exp.; Ce=0.9	.15							A.	PE-2001	018807
Unbalance design.	ed snow loads have be	een considered for th	S								-un	

April 23,2024

Description Description <thdescription< th=""> <thdescription< th=""></thdescription<></thdescription<>	Market Poly Part Poly	RELEASE FOR CONSTRUCTION										
Products synam, max war War 1 1 Distances protocol Distances <	Provident summer, used private Provident summer, used provident summer, used provident summer	AS NOTED FOR PLAN REVIEW		Truss Type	Qt	y	Ply					
POSM 97/2024 smm m. s. e. c. com m. s. c. com m.	Optimization The face of a constrained on the backwards, for the ord 24 welds The face of a constrained on the backwards, for the ord 24 welds Image: Constrained on the backward on the backwa			Valley	1		1	Job Refere	nce (on	tional)		165080538
Image: Start Product Product Start Produc	Amount of the standard sta	* @5%1*3%2@2 %4**	ring Hills, KS - 66083,					2024 MiTek In	dustries,	Inc. Mo	n Apr 22 14:48:36	Page: 1
Image: space of the state of the s	Image: space of the s				4-1-	1						
Algorithm of the state of th	Image: space of the s											
Image: specific problem (1)	91 1							1.:	5x4 u			
Image: space of the space	Image: Provide matrixed and the state of the state state of the state of the state of the state of the s			1	2			2				
3 3 Setter = 118.7 41.1 CitL (root) 25.0 CitL (root) 25.0 Setter = 118.7 5 CitL (root) 25.0 CitL (root) 25.0 Setter = 118.7 5 CitL (root) 25.0 CitL (root) 25.0 Situation (P) 25.0 CitL (root) 25.0 CitL (root) 25.0 CitL (root) 10.0 CitL (root) 25.0 Situation (P) 25.0 CitL (root) 10.0 CitL (root) 25.5	3 3 3 4.1 Sele = 1187 4.1 Sele = 1187 5 Cit (arcol) 2.0.9 Sele = 1187 5 Sele = 11111 5 Sele = 111							0				
Image: State in the plane of the transport of transport of the transport of transport of the transport of the transport of transport of the transport of the transport of transport of the transport of transport of transport of the transport of transport of the transport of transport of transport of transport of transport of transport of transport o	Adva 1.54 m Sector 1187 4.1 Sector 1187 4.1 Sector 1187 1.54 m Sector 1187 1.54 m <tr< td=""><th>-4-10</th><td></td><td></td><td>1</td><td></td><td></td><td></td><td></td><td></td><td>-4-10</td><td></td></tr<>	-4-10			1						-4-10	
Jake = 1.5ME # State = 1.18.7	Judge 1.5x4 # Sold = 1.5x4 # Sold = 1.18.7 41.1 Sold = 1.18.7 41.1 Sold = 1.18.7 1.15 Sold = 1.10 1.15 Sold = 1.11 1.15 Sold = 1.11 1.12 Sold = 1.11 1.12 Sold = 1.11 <th>-</th> <td>_</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>3</td> <td></td> <td></td> <td></td>	-	_						3			
Junce 4-1-1 Scale + 118.7 CSI CSI <td>Junction 4-11 Loading (ps) Spacing 2-0-0 Image: CSI image:</td> <th></th> <td>0-0</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>5</td> <td></td> <td></td> <td></td>	Junction 4-11 Loading (ps) Spacing 2-0-0 Image: CSI image:		0-0						5			
Junction 4-1-1 States + 1:16.7 Spacing 2-0-0 Iso and the component of the component o	Additional word shearting directly applied or (1)-0.0.1 2-0-0.1 CSI 0.0.2 VEFIL 1. n/a in (100) Videf Lind VLATES GRIP Cill (root) 25.0 Lumber DOL 1.15 TC 0.28 VEFIL 1. n/a in (100) Videf Lind VLATES GRIP Cill (root) 0.00 Code VISE Difference Note (110)											
Scale = 118.7 Loading (pst) Spacing 2-0-0 TCL L(roof) 25.0 Plate Ginp DOL 1.15 Boow (P7) 25.0 Code 1.15 Rop Stress Incr YES Code 1.15 Rop Stress Incr YES Code 1.15 Rop Stress Incr YES SOID Code 1.15 TOP CHORD 2:4 SP No.2 SOIT CHORD 2:2 SP SP Classing of the methysing of the second solution of the botom chord in all areas where a rectanglin a condrace with the 2018 threamatinal Second soluti	Beake = 118.7 Loading (psf) CGL (roo) 2.0 Pata (sp) DCL 1.15 Bool 10.0 Code 1.15 Bool 10.0 Code 1.15 Bool 1.0.0 Bool 1.15 Bo				3x4 =			1.	5x4 u			
Loading (pst) Spacing 2-0-0 CSI 0 DEFL in (loc) I/deft L/d PLATES GRIP TCLL (roof) 25.0 Iumber DOL 1.15 BC 0.21 Vert(TL) n/a -n/a 999 TCDL 0.0 10.0 Code IRC2018/TPI2014 Wert(TL) n/a -n/a 999 Marko 0.00 3 n/a n/a 100 Weight: 12.16 FT = 20% UUMBER 10.0 0.00 2x4 SP No.2 7 This truss has been designed for a 10.0 pst botom chord ine botom chorocurrent with any other live load 0.00 3 n/a n/a VBES 2x4 SP No.2 7 This truss has been designed for a 10.0 pst botom chord ine botom chorocurrent with any other live load 0.00 3 n/a 10 Parameters 1.15 0.00	Loading (pst) Spacing 2-0-0 CSI TC 0.28 File Grip DOL 1.15 TC 0.28 Show (P) 25.0 Spacing 2-0-0 TCDL 0.00 1.15 BC 0.11 RCDL 0.00 Code RC2018/TPI2014 Wert(TL) n/a - n/a 999 BCDL 0.00 Code RC2018/TPI2014 Wert(TL) n/a - n/a 999 BCDL 0.00 Code RC2018/TPI2014 Wert(TL) n/a - n/a 999 BCDL 0.00 Code RC2018/TPI2014 Wert(TL) n/a - n/a 999 BCDL 0.00 Code RC2018/TPI2014 Wert(TL) n/a - n/a 999 BCDL 0.00 Code RC2018/TPI2014 Wert(TL) n/a - n/a 999 BCDC LORD 2:4 SP No.2 NTs truss has been designed for a 10.0 pst bottom - codeside - codeside - codeside - codeside BCD CHORD 2:4 SP No.2 Structural wood sheathing directly applied or 10-0 code - codeside - codeside - codeside BCD CHORD 1:4 -13 2:4 -13 - codeside - codeside - codeside				4-1-	1						
 CICLL (rod) Cick (rod)	CICLL (rod) 25.0 Place Sip DOL 1.15 TC 0.28 Vert(TL) r/a - r/a 999 MT20 244/190 CICL 0.00 10.0 Code IIIC201111 IIIC20111 - r/a 999 MT20 244/190 SIDL 0.00 10.0 Code IIIC2018/TPI2014 Wert(TL) r/a - r/a 999 MT20 244/190 SIDL 0.00 10.0 Code IIIC2018/TPI2014 Wert(TL) r/a - r/a 999 MT20 244/190 SIDL 0.00 1.00 Code IIIIC2018/TPI2014 Wert(TL) r/a - r/a 999 MT20 244/190 Micro CHOR 244 5P No.2 Wert(TL) r/a - r/a 999 MT20 244/190 SIDC FORD 244 5P No.2 Wert(TL) r/a - r/a 999 MT20 244/190 SIDC FORD Structural wood sheathing directly applied on to-ox r/a 141/190 20/00 wide will its between the bottom - r/a -	Scale = 1:18.7			1						1	
 Braw (P) 25.0 Lumber DOL. 11.5 Rep Stress Incr YES Code IRC2018/TPI2014 BC 0.00 Matrix-P Weight: 12.1b PT = 20% Weight: 12.1b <li< td=""><td> Brow (Pp) 25.0 Lumber DOL. 10.0 Code Rep Stress Incr Y ES Code IRC2018/TPI2014 BC Out Watrix-P Weight: 12 lb FT = 20% <l< td=""><th></th><td>• •</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>1</td><td></td></l<></td></li<>	 Brow (Pp) 25.0 Lumber DOL. 10.0 Code Rep Stress Incr Y ES Code IRC2018/TPI2014 BC Out Watrix-P Weight: 12 lb FT = 20% <l< td=""><th></th><td>• •</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>1</td><td></td></l<>		• •								1	
SCLL 0.0* Code IRC2018/TPI2014 Matrix-P SCDL 10.0 Veight: 12 lb FT = 20% SCDL 0.00* Code IRC2018/TPI2014 Matrix-P Veight: 12 lb FT = 20% V0P CHORD 2x4 SP No.2 SP FN No.2 SP FN No.2 V0P CHORD Structural wood sheathing directly applied or love load of 20 L0 Opst SP FN No.2 V0P CHORD Structural wood sheathing directly applied or 10-00 op braining. SP FN No.2 V0P CHORD Structural wood sheathing directly applied or 10-00 op braining. All braining are assumed to be SP No.2 crushing capable 0/ Withstanding 27 bound if the bottom chord in all areas where a rectangle assumed to be SP No.2 crushing capable 0/ Withstanding 27 bound if the bottom chord in all areas there a rectangle assumed to be sections R002.11.1 and R02.10.2 and ILC 12.2 and ILL (12.2 and ILL (SCLL 0.0* Code IRC2018/TPI2014 Matrix-P Weight: 12 lb FT = 20% SCDL 0.0.0 Code IRC2018/TPI2014 Matrix-P Weight: 12 lb FT = 20% VMBER COP CHORD 2x4 SP No.2 SP FN FN FN SP FN	Snow (Pf) 25.0	Lumber DOL	1.15	BC 0.11	Vert(ΓL) ι	n/a -	n/a	999		
 cip CipRD 2x4 SP No.2 cip CipRD 2x4 SP No.2 srACING CYCHORD 2x4 SP No.2 srACING CYCHORD 2x4 SP No.2 SrACING CYCHORD 4-1-13 wood sheathing directly applied or 10-0-0 c bracing. bracing. cip 2-10, 200 cip 14-1-13, 3-4-1-13 Max Horiz 1-50 (LC 15) Max Grav 1-181 (LC 22), 3-181 (LC 22) REACTIONS (ize) 14-1-13, 3-4-1-13 Max Horiz 1-50 (LC 15) Max Grav 1-181 (LC 22), 3-481 (LC 16) Max Grav 1-181 (LC 22), 3-181 (LC 22) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vissi cus 2 (1-2, 2-7)/43, 2-3a-150/142 OP CHORD 1-3a-2223 VISTES VISSI Cus 2 (1-1, 15) Protection (1-1,	 circl Circlo Diversion 2:4: SP No.2 chord live load nonconcurrent with any other live loads. chord live load nonconcurrent with any other live loads. chord live load nonconcurrent with any other live loads. chord live load nonconcurrent with any other live loads. chord live load nonconcurrent with any other live loads. chord live load nonconcurrent with any other live loads. chord live load nonconcurrent with any other live loads. chord live load nonconcurrent with any other live loads. chord live load nonconcurrent with any other live loads. chord live load nonconcurrent with any other live loads. chord live load nonconcurrent with any other live loads. chord live load nonconcurrent with any other live loads. chord live load nonconcurrent with any other live loads. chord live load nonconcurrent with any other live loads. chord live load nonconcurrent with any other live loads. chord live load nonconcurrent with any other live loads. chord live load nonconcurrent with any other live loads. chord live load nonconcurrent with any other live loads. chord live load nonconcurrent with any other live loads. chord and any other members. chord and any ot	3CLL 0.0*					(TL) 0.	.00 3	n/a	II/d	Weight: 12 lb	FT = 20%
D Gable Sluds Spaced at 4-0-0 0C.		 WEBS 2x3 SPF No.2 BRACING TOP CHORD Structural wood sheat 4-1-13 oc purlins, exx BOT CHORD Rigid ceiling directly a bracing. REACTIONS (size) 1=4-1-13, 3 Max Horiz 1=50 (LC 1 Max Uplift 1=-27 (LC ' Max Grav 1=181 (LC FORCES (b) - Maximum Comp Tension TOP CHORD 1-2=-71/43, 2-3=-150, 30T CHORD 1-3=-22/23 NOTES 1) Wind: ASCE 7-16; Vult=115mph (Vasd=91mph; TCDL=6.0psf; BCD Ke=1.00; Cat. II; Exp C; Enclosed exterior zone and C-C Exterior(2E and right exposed ; end vertical le exposed; C-C for members and for reactions shown; Lumber DOL=1. DOL=1.60 2) Truss designed for wind loads in only. For studs exposed to wind (see Standard Industry Gable End or consult qualified building desigr 3) TCLL: ASCE 7-16; Pr=25.0 psf (Lu DOL=1.15); Is=1.0; Rough Cat C; Cs=1.00; Cl=1.10 4) Unbalanced snow loads have bee design. 5) Gable requires continuous bottom 	cept end verticals. pplied or 10-0-0 oc 4=4-1-13 5) 12), 3=-34 (LC 16) 22), 3=181 (LC 22) ression/Maximum 142 3-second gust) L=6.0psf; h=35ft; ;MWFRS (envelope)) zone; cantilever left and right ces & MWFRS for 60 plate grip the plane of the trus normal to the face), Details as applicable the plane of the trus normal to the face), Details as applicable the plane of the trus normal to the face), Details as applicable the plane of the trus normal to the face), Details as applicable the plane of the trus normal to the face), Details as applicable the plane of the trus normal to the face), Details as applicable the plane of the trus normal to the face), Details as applicable the plane of the trus normal to the face), Details as applicable the plane of the trus normal to the face), Details as applicable the plane of the trus normal to the face), Details as applicable the plane of the trus normal to the face), Details as applicable the plane of the trus normal to the face), Details as applicable the plane of the trus normal to the face), Details as applicable the plane of the trus normal to the face), Details as applicable the plane of the trus normal to the face), Details as applicable the plane of the trus normal to the face), Details as applicable the plane of the trus normal to the face), Details as applicable the plane of the trus normal to the face), the plane of the trus the pla	on the botto 3-06-00 tall chord and a 9) All bearings capacity of 10) Provide me bearing plat 1 and 34 lb 11) This truss is Internationa R802.10.2 a LOAD CASE(S) e) ft s e, 1. 15	m chord in all areas where by 2-00-00 wide will fit betw ny other members. are assumed to be SP No. 565 psi. chanical connection (by oth e capable of withstanding 2 uplift at joint 3. designed in accordance w I Residential Code sections and referenced standard AN	a recta veen th 2 crush ers) of 27 lb up ith the 2 5 R502.	ngle e bottom hing truss to lift at joint 2018 11.1 and				SCO SEV SEV NUT PE-200	TT M. VIER 1018807

Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcscomponents.com)

16023 Swingley Ridge Rd. Chesterfield, MO 63017 314.434.1200 / MiTek-US.com

RELEASE FOR CONSTRUCTION										
AS NOTED FOR PLAN REVIEW Job DEVELOPMENT SERVICES		Truss Type		Qty	Ply					
P240893 SUMMIT, MISSOURV7		Valley		1	1	Job Refere	ence (or	tional)		165080539
05%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%	Spring Hills, KS - 66083,		Run: 8.63 S Apr 5 20. ID:4pBYIYEptzqyEKyR			2024 MiTek In	dustries,	Inc. Mo		Page: 1
			4-9-6			8-	11-13		9-6-12	
		I	4-9-6		I	4	-2-7		0-6-15	
					4x4 = 2					
	_									
2-4-15 2-1-3		6								
		1			0				3	
	0	24			4				2.4	
		3x4 ≠			1.5x4 u				3x4 ≈	
Scale = 1:26.5				-1	-6-12					
Loading (psf) ITCLL (roof) 25.0 Snow (Pf) 25.0 ITCDL 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr	2-0-0 1.15 1.15 YES	BC 0. WB 0.0	DEF 43 Vert(18 Vert(06 Horiz	(LL) (TL)	in (loc) n/a - n/a - .00 3	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20	GRIP 244/190
3CLL 0.0* 3CDL 10.0	Code	IRC2018/TPI2014	Matrix-S						Weight: 30 lb	FT = 20%
6-0-0 oc purlins. Rigid ceiling directly bracing. REACTIONS (size) 1=9-6-12 Max Horiz 1=40 (LC Max Uplift 1=-42 (L 4=-32 (L Max Grav 1=256 (L 4=406 (L	, 3=9-6-12, 4=9-6-12 16) (16), 3=-49 (LC 17), (16), 3=-49 (LC 17), (16) (22), 3=256 (LC 23), (23) (17	DOL=1.15); I Cs=1.00; Ct 5) Unbalanced design. 6) Gable requir 7) Gable studs 8) This truss ha chord live loa 9) * This truss h on the bottor 3-06-00 tall b chord and ar 10) All bearings i capacity of 5 11) Provide mec bearing plate 1, 49 lb uplift 12) This truss is International	snow loads have been es continuous bottom o spaced at 4-0-0 oc. Is been designed for a ad onoconcurrent with a has been designed for a n chord in all areas who by 2-00-00 wide will fit b yo other members. are assumed to be SP 65 psi. hanical connection (by e capable of withstandir t at joint 3 and 32 lb upl designed in accordanco Residential Code secti nd referenced standard	ully Exp.; considered hord bear 10.0 psf bany other any other a live load ere a rect vetween th No.2 crus others) of g 42 lb u iff at joint e with the ons R502	Ce=0.9; ed for this ring. bottom live loads. lof 20.0psf angle he bottom shing f truss to plift at joint 4. 2018 2.11.1 and					
 Yondarated for here loads have this design. Wind: ASCE 7-16; Vult=115mpl Vasd=91mph; TCDL=6.0psf; BC Ke=1.00; Cat. II; Exp C; Encloss exterior zone and C-C Exterior(and right exposed; end vertical exposed;C-C for members and reactions shown; Lumber DOL= DOL=1.60 Truss designed for wind loads only. For studs exposed to win see Standard Industry Gable Er or consult qualified building des 	a (3-second gust) DL=6.0psf; h=35ft; ad; MWFRS (envelope 2E) zone; cantilever le left and right forces & MWFRS for 1.60 plate grip an the plane of the trus I (normal to the face), d Details as applicabl	e) ft e,							SCOTT SEVI NUME PE-20010	ER BER D18807
A		I THIS AND INCLUDED MITEK							April	23,2024

RELEASE FOR CONSTRUCTION								
AS NOTED FOR PLAN REVIEW Job DEVELOPMENT SERVICES		Truss Type		Qty	Ply			
P240883 SUMMIT, MISSOURV8		Valley		1	1	Job Reference (optio	nal)	165080540
PM5ydang 300/2002 K4. Sprin	g Hills, KS - 66083,				•	i 2024 MiTek Industries, Inc 70Hq3NSgPqnL8w3uITXbG	•	Page: 1
			2-9 2-9			<u>4-11-13</u> 2-2-7	5-6-12 0-6-15	
					3x4	-		
1-4-15	1-1-3		6 F		2	0	3	
		Ġ	3x4 -			3x		

5-6-12

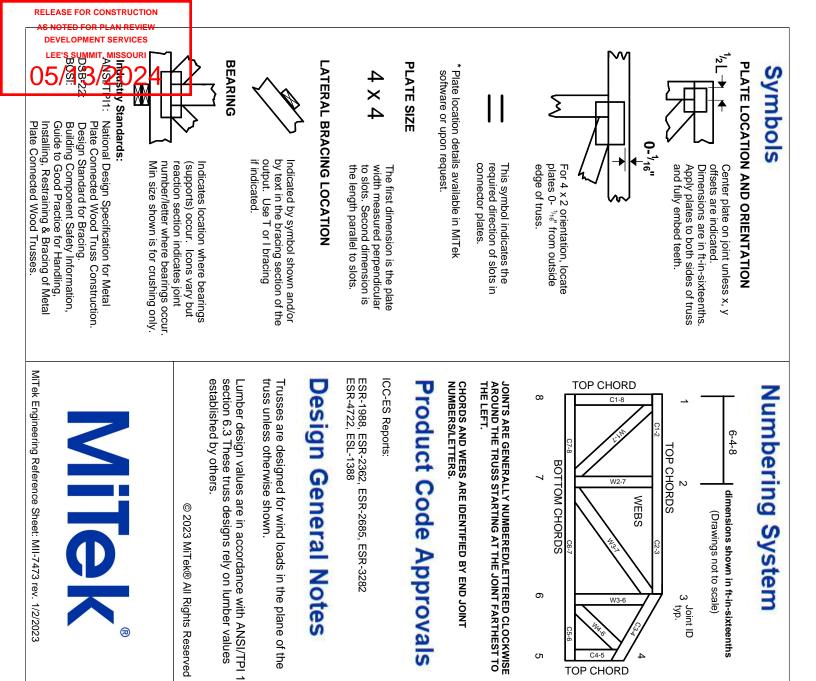

Scale = 1:21.8

Plate Offsets (X, Y): [2:0-2-0,Edge]

Plate Offsets (7	, r). [2.0-2-0,Euge]												
Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 25.0 25.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018/T	PI2014	CSI TC BC WB Matrix-P	0.13 0.24 0.00	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 3	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 16 lb	GRIP 244/190 FT = 20%
FORCES TOP CHORD BOT CHORD NOTES 1) Unbalance this design 2) Wind: ASC Vasd=91m Ke=1.00; C exterior zor and right e: exposed;C reactions s DOL=1.60 3) Truss desi only. For s see Standa or consult c 4) TCLL: ASC Plate DOL= DOL=1.15) Cs=1.00; C	5-7-12 oc purlins. Rigid ceiling directly bracing. (size) 1=5-6-12, Max Horiz 1=21 (LC Max Upift 1=-30 (LC Max Grav 1=223 (LC (lb) - Maximum Com Tension 1-2=-200/174, 2-3=- 1-3=-119/153 d roof live loads have E 7-16; Vult=115mph ph; TCDL=6.0psf; BC cat. II; Exp C; Enclose ne and C-C Exterior(2 xposed ; end vertical -C for members and f hown; Lumber DOL=: igned for wind loads in studs exposed to wind ard Industry Gable En qualified building desi CE 7-16; Pf=25.0 psf (L =1.15); Pf=25.0 psf (L	2 16), 3=-30 (LC 17) C 22), 3=223 (LC 23) apression/Maximum 200/184 been considered for (3-second gust) DL=6.0psf; h=35ft; d; MWFRS (envelop E) zone; cantilever lo left and right orces & MWFRS for 1.60 plate grip n the plane of the true I (normal to the face) d Details as applicab gner as per ANSI/TP roof LL: Lum DOL=1 um DOL=1.15 Plate C; Fully Exp.; Ce=0.9	7) (C 8) T (8) T (7) (C 10) A (11) F 11) F 11 12) T 12) T F LOA e) e) eft ss le, 11. .15	Gable studs s This truss ha chord live loag This truss h on the bottom 3-06-00 tall b chord and an All bearings a sapacity of 56 Provide mech bearing plate I and 30 lb u I has truss is on the trust is a set the trust is	nanical connection capable of withsta plift at joint 3. designed in accord Residential Code nd referenced star	c. for a 10. with any I for a liv s where Il fit betw SP No. a (by oth anding 3 dance w sections	0 psf bottom other live load e load of 20.0 a rectangle veen the botto 2 crushing ers) of truss to 0 lb uplift at jo ith the 2018 : R502.11.1 at	ipsf om o oint		(8	STATE OF I STATE OF I SCOT SEVEN STONA	L ENGL
-													1 23 2024

April 23,2024

General Safety Notes

Damage or Personal Injury Failure to Follow Could Cause Property

 Additional stability bracing for truss system, e.g diagonal or X-bracing, is always required. See BCSI

3 Joint ID typ.

- Ņ Truss bracing must be designed by an engineer. For wide truss spacing, individual lateral braces themselves may require bracing, or alternative Tor I bracing should be considered.
- ω Never exceed the design loading shown and never stack materials on inadequately braced trusses.

W3-

TOP CHORD

- 4 Provide copies of this truss design to the building designer, erection supervisor, property owner and all other interested parties.
- ςī Cut members to bear tightly against each other

თ

СЛ

- <u>о</u> Place plates on each face of truss at each joint and embed fully. Knots and wane at joint locations are regulated by ANSI/TPI 1.
- Design assumes trusses will be suitably protected from the environment in accord with ANSI/TPI 1.

7

- œ Unless otherwise noted, moisture content of lumber shall not exceed 19% at time of fabrication.
- <u>ب</u> Unless expressly noted, this design is not applicable for use with fire retardant, preservative treated, or green lumber.
- 10. Camber is a non-structural consideration and is the camber for dead load deflection responsibility of truss fabricator. General practice is to
- 11. Plate type, size, orientation and location dimensions indicated are minimum plating requirements.
- Lumber used shall be of the species and size, and in all respects, equal to or better than that specified
- Top chords must be sheathed or purlins provided at spacing indicated on design.
- . Bottom chords require lateral bracing at 10 ft. spacing, or less, if no ceiling is installed, unless otherwise noted.
- 15. Connections not shown are the responsibility of others
- Do not cut or alter truss member or plate without prior approval of an engineer.
- 17. Install and load vertically unless indicated otherwise.
- Use of green or treated lumber may pose unacceptable project engineer before use. environmental, health or performance risks. Consult with
- 19. Review all portions of this design (front, back, words is not sufficient. and pictures) before use. Reviewing pictures alone

æ

- 20. Design assumes manufacture in accordance with ANSI/TPI 1 Quality Criteria.
- 21. The design does not take into account any dynamic or other loads other than those expressly stated.