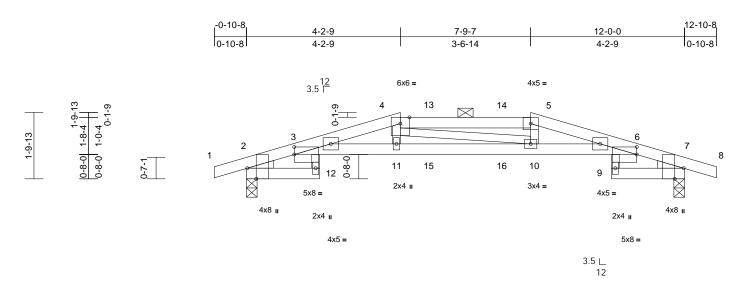


MiTek, Inc. RE: B240092 - Lot 179 HT 16023 Swinalev Ridae Rd. Site Information: Chesterfield, MO 63017 Project Customer: Summit Homes Project Name: 314.434.1200 Subdivision: Hawthorn Ridge Lot/Block: 179 Model: Charleston - Modern Farmhouse Address: 1629 SW Arborway Terr City: Lee's Summit State: MO General Truss Engineering Criteria & Design Loads (Individual Truss Design Drawings Show Special Loading Conditions): Design Code: IRC2018/TPI2014 Design Program: MiTek 20/20 8.7 Wind Code: ASCE 7-16 [IV/indRSpeced: 115 mph Design Method: MWFRS (Envelope) ASCE 7-16 [Low Rise] Roof Load: 45.0 psf Floor Load: N/A psf Mean Roof Height (feet): 25 Exposure Category: C No. Seal# Truss Name Date No. Seal# Truss Name Date 165199402 4/30/24 35 36 37 39 40 42 43 44 45 165199436 4/30/24 K3 $\begin{array}{c}1234567891012345678911123456789\end{array}$ A1 4/30/24 4/30/24 4/30/24 4/30/24 4/30/24 165199403 A2 165199437 LĂY1 4/30/24 R1 V1 l65199404 l65199405 A3 B1 165199438 4/30/24 165199439 4/30/24 l65199406 l65199407 V2 V3 B2 C2 C3 C4 C5 C6 D1 165199440 4/30/24 30/24 165199441 l65199408 l65199409 165199442 V4 30/24 4/30/24 V5 V6 30/24 165199443 165199409 165199410 165199411 165199412 165199413 165199444 4/30/24 4/30/24 30/24 165199445 ŴŽ 4/30/24 165199446 V8 4/30/24 4/30/24 l65199414 l65199415 D2 4/30/24 D3 4/30/24 165199416 165199417 D4 4/30/24 D5 4/30/24 165199418 165199419 D6 4/30/24 Đ7 4/30/2 D8 E1 E2 F1 165199420 165199421 19 20 21 22 23 24 25 26 27 29 30 32 33 33 33 4/30/24 4/30/2 165199422 165199423 /30/24 165199424 165199425 F2 J1 30/24 165199426 165199427 J2 J3 30/2 165199428 165199429 J4 /30/2 Ĵ5 165199430 Ĵ6 165199431 J7 165199432 J8 165199433 165199434 165199435 J9 K1 The truss drawing(s) referenced above have been prepared by MiTek USA, Inc. under my direct supervision based on the parameters provided by Wheeler - Waverly.

Truss Design Engineer's Name: Sevier, Scott My license renewal date for the state of Missouri is December 31, 2025.

IMPORTANT NOTE: The seal on these truss component designs is a certification that the engineer named is licensed in the jurisdiction(s) identified and that the designs comply with ANSI/TPI 1. These designs are based upon parameters shown (e.g., loads, supports, dimensions, shapes and design codes), which were given to MiTek or TRENCO. Any project specific information included is for MiTek's or TRENCO's customers file reference purpose only, and was not taken into account in the preparation of these designs. MiTek or TRENCO has not independently verified the applicability of the design parameters or the designs for any particular building. Before use, the building designer should verify applicability of design parameters and properly incorporate these designs into the overall building design per ANSI/TPI 1, Chapter 2.



Sevier, Scott

April 30,2024

Job	Truss	Truss Type	Qty	Ply	Lot 179 HT	
B240092	A1	Hip Girder	1	1	Job Reference (optional)	165199402

Run: 8.73 S Apr 3 2024 Print: 8.730 S Apr 3 2024 MiTek Industries, Inc. Fri Apr 26 13:54:26 ID:fo_pHZ9yGn_vQZFnO3SdoFzjHxw-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC?f

2-0-0	4-1-5	7-10-11	10-0-0	12-0-0	
2-0-0	2-1-5	3-9-6	2-1-5	2-0-0	

_______Scale = 1:31.6 Plate Offsets (X, Y): [2:0-3-8,Edge], [3:Edge,0-2-8], [6:Edge,0-2-8], [7:0-3-8,Edge]

	, i). [2.0 0 0,Euge],	[0.Luge,0 2 0], [0.L	uge,0 2 (j, [7:0 0 0,∟ug	<u>ار</u>	-							
Loading TCLL (roof) TCDL BCLL BCDL	(psf) 25.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 NO IRC20	18/TPI2014	CSI TC BC WB Matrix-S	0.84 0.65 0.11	DEFL Vert(LL) Vert(CT) Horz(CT) Wind(LL)	-0.35 0.26	(loc) 10-11 10-11 7 10-11	l/defl >774 >403 n/a >989	L/d 360 240 n/a 240	PLATES MT20 Weight: 37 lb	GRIP 197/144 FT = 10%
	10.0	0000	11(020	10/11/12011	Matrix 0		Wind(EE)	0.11	10 11	2000	210	Wolght. Of 15	11 - 10/0
LUMBER TOP CHORD BOT CHORD WEBS WEDGE	OP CHORD 2x4 SPF 2100F 1.8E *Except* 4-5:2x4 SPF No.2 OT CHORD 2x4 SPF No.2 *Except* 12-3,6-9:2x3 SPF No.2, 3-6:2x4 SPF 2100F 1.8E VEBS 2x3 SPF No.2			 5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members. 6) All bearings are assumed to be SPF No.2. 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 141 lb uplift at joint 									
	Right: 2x3 SPF No.2	2	_		uplift at joint 7.								
BRACING TOP CHORD	RACING				 8) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. 9) Graphical purlin representation does not depict the size 								
BOT CHORD	Rigid ceiling directly bracing.			or the orient bottom chore	ation of the purlin	along the	e top and/or						
	(size) 2=0-3-8, 7 Max Horiz 2=-25 (LC Max Uplift 2=-141 (L Max Grav 2=739 (LC	C 4), 7=-141 (LC 5)		provided suf down and 57 5-0-0, and 7	other connection ficient to support of lb up at 4-2-9, 7 lb down and 36	concentra '1 lb dow lb up at	ated load(s) 1 n and 36 lb u 7-0-0, and 11	p at 12 lb					
FORCES	(lb) - Maximum Com Tension			down at 4-2	7 lb up at 7-9-7 or -9, 33 lb down an and 17 lb up at 7-	d 17 lb u	oat 5-0-0, ai	nd					
TOP CHORD				7-9-7 on bot connection of	tom chord. The d levice(s) is the res CASE(S) section	esign/se sponsibil	ection of suc ty of others.	h					
BOT CHORD	2-12=-52/0, 3-12=0/9 10-11=-345/2627, 6- 7-9=-52/0		, ≡0/90, L	of the truss a OAD CASE(S)	are noted as front Standard	(F) or ba	ck (B).					THE OF I	MISSO
WEBS	4-11=0/249, 4-10=-2	276/72, 5-10=0/291	1) Dead + Ro Plate Incre	of Live (balanced)	: Lumbe	Increase=1.	15,			6	N	NSY
NOTES				Uniform Lo							B	SCOT	
1) Unbalance	ed roof live loads have	been considered fo	r	Vert: 1-3	=-70, 3-4=-70, 4-8	,	6=-70, 6-8=-7	70,			ha	SEV	
Vasd=91m II; Exp C; E cantilever right expos	n. CE 7-16; Vult=115mph nph; TCDL=6.0psf; BC Enclosed; MWFRS (er left and right exposed sed; Lumber DOL=1.6 dequate drainage to pr	DL=6.0psf; h=25ft; (ivelope) exterior zor ; end vertical left an 0 plate grip DOL=1.	ne; d 60	Concentrat Vert: 4=-), 3-6=-20, 7-9=-2 ed Loads (lb) 37 (B), 5=-37 (B), B), 14=-12 (B), 15	11=-46		В),		~	and the second	NUM PE-2001	

- 3) Provide adequate drainage to prevent water ponding.
- 4) This truss has been designed for a 10.0 psf bottom
- chord live load nonconcurrent with any other live loads.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

E

April 30,2024

ONAL

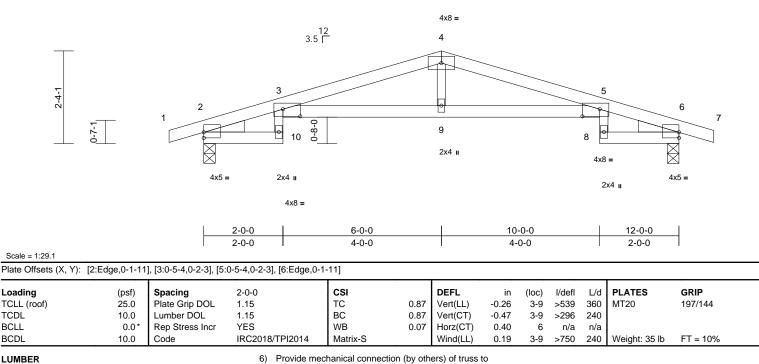
Page: 1

Job	Truss	Truss Type	Qty	Ply	Lot 179 HT	
B240092	A2	Roof Special	1	1	Job Reference (optional)	165199403

6-0-0

6-0-0

Wheeler Lumber, Waverly, KS - 66871,


-0-10-8

0-10-8

Run: 8.73 S Apr 3 2024 Print: 8.730 S Apr 3 2024 MiTek Industries. Inc. Fri Apr 26 13:54:27 ID:nfvsr4LQAuL?Adkc8fCcnwzjHwO-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

12-10-8 12-0-0 6-0-0 0-10-8

bearing plate capable of withstanding 121 lb uplift at joint

International Residential Code sections R502.11.1 and

This truss is designed in accordance with the 2018

R802.10.2 and referenced standard ANSI/TPI 1.

2 and 121 lb uplift at joint 6.

LOAD CASE(S) Standard

TOP CHORD 2x4 SPF 2100F 1.8E BOT CHORD 2x4 SPF No.2 *Except* 10-3,5-8:2x3 SPF No.2 WEBS 2x3 SPF No 2 WEDGE Left: 2x4 SP No.3 Right: 2x4 SP No.3 BRACING TOP CHORD Structural wood sheathing directly applied or 2-2-0 oc purlins. BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing. REACTIONS (size) 2=0-3-8, 6=0-3-8 Max Horiz 2=35 (LC 8) Max Uplift 2=-121 (LC 4), 6=-121 (LC 5) Max Grav 2=598 (LC 1), 6=598 (LC 1) FORCES (Ib) - Maximum Compression/Maximum

Tension TOP CHORD 1-2=-2/0 2-3=-270/55 3-4=-1386/143 4-5=-1386/153, 5-6=-270/48, 6-7=-2/0 2-10=-1/18, 3-10=-1/94, 3-9=-107/1336, BOT CHORD 5-9=-107/1336, 5-8=0/94, 6-8=0/18 WFBS 4-9=0/223

NOTES

TCDL

BCLL

BCDL

- Unbalanced roof live loads have been considered for 1) this design.
- Wind: ASCE 7-16; Vult=115mph (3-second gust) 2) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
- 3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 4) * This truss has been designed for a live load of 20.0psf
- on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- 5) All bearings are assumed to be SPF No.2 .

 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.
 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a trust system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

16023 Swingley Ridge Rd. Chesterfield MO 63017 314.434.1200 / MiTek-US.com

Job	Truss	Truss Type	Qty	Ply	Lot 179 HT	
B240092	A3	Roof Special	2	1	Job Reference (optional)	165199404

Loading

TCDL

BCLL

BCDL

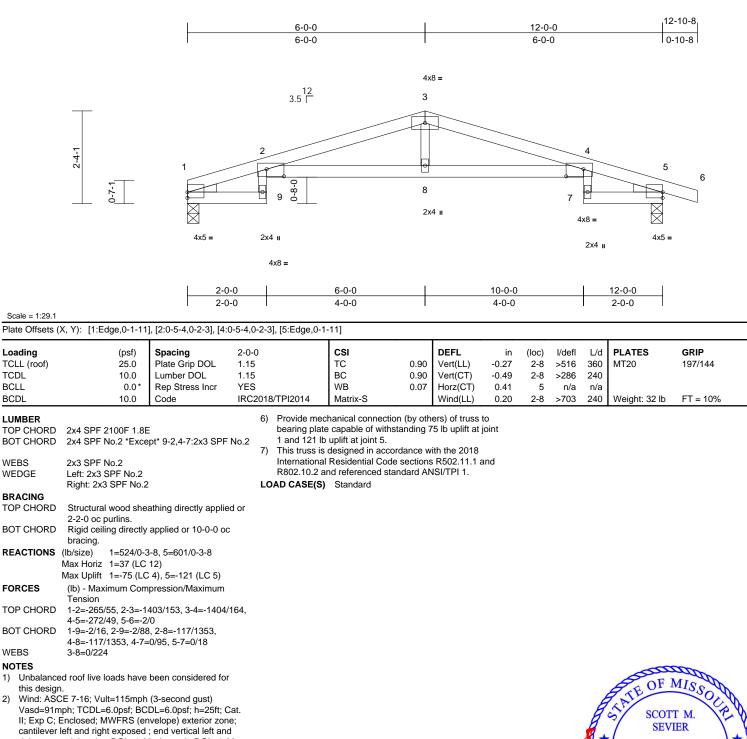
WEBS

WEDGE

BRACING

FORCES

WEBS


NOTES

2)

LUMBER

TCLL (roof)

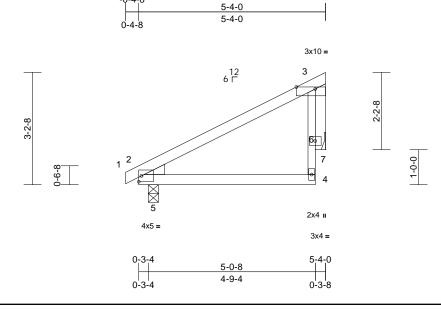
Run: 8.73 E Jan 4 2024 Print: 8.730 E Jan 4 2024 MiTek Industries, Inc. Tue Apr 30 07:15:42 ID:Gf2Wmsz1xsucQcjcBa8ottzjHva-ZiscS5pzrtiWDUZu5OiD_8ZMK72?cxDSNArJV8zLbmF

right exposed; Lumber DOL=1.60 plate grip DOL=1.60 3) This truss has been designed for a 10.0 psf bottom

chord live load nonconcurrent with any other live loads. 4) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.

All bearings are assumed to be SPF No.2 crushing 5) capacity of 425 psi.

Page: 1


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a trust system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

16023 Swingley Ridge Rd. Chesterfield MO 63017 314.434.1200 / MiTek-US.com

Job	Truss	Truss Type	Qty	Ply	Lot 179 HT	
B240092	B1	MONOPITCH	7	1	Job Reference (optional)	165199405

Run: 8.73 S Apr 3 2024 Print: 8.730 S Apr 3 2024 MiTek Industries, Inc. Fri Apr 26 13:54:27 ID:Lek3CAANj_gYbKvtCQHtmQzKvNM-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:32.9

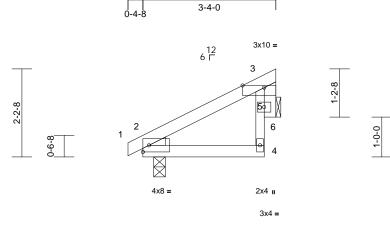
Plate Offsets (X, Y): [3:0-6-8,Edge]

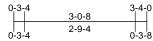
	,	1			-							
Loading	(psf)	Spacing	2-0-0	csi		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15	тс	0.23	Vert(LL)	-0.01	4-5	>999	360	MT20	197/144
TCDL	10.0	Lumber DOL	1.15	BC	0.22	Vert(CT)	-0.03	4-5	>999	240	-	
BCLL	0.0*	Rep Stress Incr	YES	WB	0.00	Horz(CT)	0.00	7	n/a	n/a		
BCDL	10.0	Code	IRC2018/TPI2014	Matrix-R		Wind(LL)	0.00	4-5	>999	240	Weight: 18 lb	FT = 10%
			Z) This toward									
LUMBER TOP CHORD				s designed in acco al Residential Code			and					
BOT CHORD				and referenced sta			anu					
WEBS	2x3 SPF No.2		LOAD CASE(S									
OTHERS	2x4 SPF No.2		LOAD CASE(S) Stanuaru								
WEDGE	Left: 2x4 SP No.3											
BRACING												
TOP CHORD	Structural wood she	athing directly applie	ed or									
	5-4-0 oc purlins, ex											
BOT CHORD			C									
	bracing.											
REACTIONS	(size) 5=0-3-8, 7	7= Mechanical										
	Max Horiz 5=92 (LC	8)										
	Max Uplift 5=-28 (LC	,, , ,										
	Max Grav 5=286 (L0	C 1), 7=185 (LC 1)										
FORCES	(lb) - Maximum Corr	npression/Maximum										
	Tension		4/405									
TOP CHORD		, ,	1/125									
BOT CHORD WEBS	,	87										
	3-7=-52/11											
NOTES		(2)										
	CE 7-16; Vult=115mph mph; TCDL=6.0psf; BC		Cat									
	Enclosed; MWFRS (er										TATE OF	aller
	r left and right exposed										B OF	MISC
	osed; Lumber DOL=1.6									6	7 22	- SOL W
	s has been designed fo									B	S SCOT	TM
	e load nonconcurrent wi		ds.							R	SEV SEV	
3) * This true	ss has been designed f	for a live load of 20.0)psf							0		
	ottom chord in all areas									w		0
	all by 2-00-00 wide will	fit between the botto	om							K	cott	Jan Mar
	d any other members.									5	NUM	BER
	igs are assumed to be									N	ON PE-2001	018807
	girder(s) for truss to trus nechanical connection		0							(V	12	188
	plate capable of withstar										NUM PE-2001	NO'B
	Ib uplift at joint 7.										NA	LEL
0 0.10 00											Un	

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

6023 Swingley Ridge Rd. Chesterfield, MO 63017 314.434.1200 / MiTek-US.com

April 30,2024


Job	Truss	Truss Type	Qty	Ply	Lot 179 HT	
B240092	B2	Monopitch	6	1	Job Reference (optional)	165199406


3-4-0

Wheeler Lumber, Waverly, KS - 66871,

Run: 8.73 S Apr 3 2024 Print: 8.730 S Apr 3 2024 MiTek Industries, Inc. Fri Apr 26 13:54:27 ID:Lek3CAANj_gYbKvtCQHtmQzKvNM-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

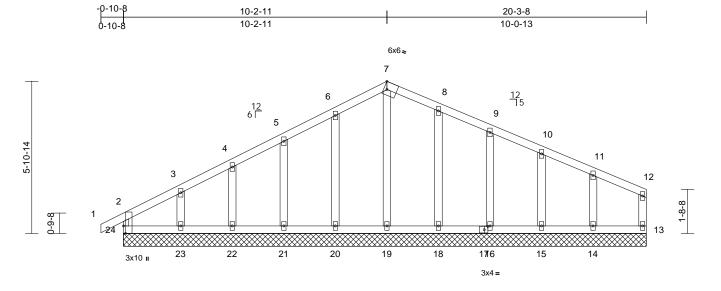
Scale = 1:28.9

Plate Offsets (X, Y): [3:0-6-8,Edge]

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15	TC	0.11	Vert(LL)	0.00	2-4	>999	360	MT20	197/144
TCDL	10.0	Lumber DOL	1.15	BC	0.09	Vert(CT)	0.00	2-4	>999	240		
BCLL	0.0*	Rep Stress Incr	YES	WB	0.00	Horz(CT)	0.00	6	n/a	n/a		
BCDL	10.0	Code	IRC2018/TPI2014	Matrix-R		Wind(LL)	0.00	2-4	>999	240	Weight: 11 lb	FT = 10%
LUMBER			7) This truss i	s designed in acc	cordance w	ith the 2018						
TOP CHORD	2x4 SPF No.2			al Residential Co			and					
BOT CHORD			R802.10.2	and referenced st	tandard AN	ISI/TPI 1.						
WEBS	2x3 SPF No.2		LOAD CASE(S	S) Standard								
OTHERS	2x4 SPF No.2		· ·									
WEDGE	Left: 2x3 SPF No.2											
BRACING												
TOP CHORD	Structural wood she	eathing directly appli	ed or									
	3-4-0 oc purlins, ex											
BOT CHORD	0 0 /	/ applied or 10-0-0 o	с									
	bracing.											
REACTIONS	()	6= Mechanical										
	Max Horiz 2=56 (LC											
	Max Uplift 2=-22 (LC											
	Max Grav 2=179 (L	, ,										
FORCES	(lb) - Maximum Con Tension	npression/Maximum										
TOP CHORD		0, 4-5=0/60, 3-5=-69	9/54									
BOT CHORD												
WEBS	3-6=-22/0											
NOTES												
	SCE 7-16; Vult=115mph	n (3-second gust)										
	mph; TCDL=6.0psf; BC		Cat.									an
	; Enclosed; MWFRS (er										OF	MIG
	r left and right exposed										TATE OF	N. OSCILL
	osed; Lumber DOL=1.6		60							6	AT	N SY
	s has been designed fo		da							B	SCOT	
	e load nonconcurrent w ss has been designed t									8-	_/ SEV	IER \ Y
	ottom chord in all areas		opsi							0.		0 *\
	all by 2-00-00 wide will		om							ØX.	atts	NONDA
	d any other members.										NUM	BER
	ngs are assumed to be									177	PE-2001	
	girder(s) for truss to tru									N	11-2001	51000/28
	nechanical connection									Y	1990	NON B
	late capable of withsta	nding 22 lb uplift at j	oint								CSSIONA	LENA
2 and 37	lb uplift at joint 6.										Chille P	

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

16023 Swingley Ridge Rd. Chesterfield, MO 63017


314.434.1200 / MiTek-US.com

April 30,2024

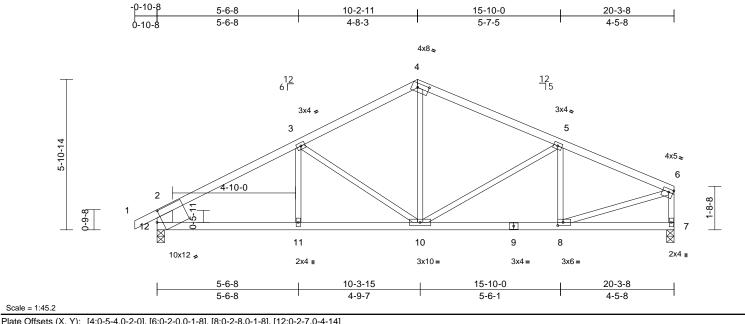
Job	Truss	Truss Type	Qty	Ply	Lot 179 HT	
B240092	C1	GABLE	1	1	Job Reference (optional)	165199407

Run: 8.73 S Apr 3 2024 Print: 8.730 S Apr 3 2024 MiTek Industries, Inc. Fri Apr 26 13:54:27 ID:Lek3CAANj_gYbKvtCQHtmQzKvNM-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

20-3-8

Loading	(psf)	Spacing	2-0-0		csi		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15		TC	0.08	Vert(LL)	n/a	-	n/a	999	MT20	197/144
TCDL	10.0	Lumber DOL	1.15		BC	0.03	Vert(CT)	n/a	-	n/a	999		
BCLL	0.0	* Rep Stress Incr	YES		WB	0.07	Horz(CT)	0.00	13	n/a	n/a		
BCDL	10.0	Code	IRC2	018/TPI2014	Matrix-R							Weight: 86 lb	FT = 10%
LUMBER				WEBS	7-19=-128/0, 6-2	20=-151/80	5-21=-138/	80					
TOP CHORD	2x4 SPF No.2				4-22=-141/71, 3								
BOT CHORD	2x4 SPF No.2				9-16=-139/73, 1		,	,					
WEBS		cept* 12-13:2x4 SPF	No.2	NOTES									
OTHERS	2x4 SPF No.2			1) Unbalanced	roof live loads h	nave been o	considered for	or					
BRACING				this design.									
TOP CHORD	Structural wood s	neathing directly applie	ed or	 Wind: ASCE 	7-16; Vult=115	mph (3-sec	ond gust)						
		except end verticals.			h; TCDL=6.0psf								
BOT CHORD	Rigid ceiling direc	tly applied or 10-0-0 o	с		closed; MWFRS								
	bracing.				t and right expo								
REACTIONS		3-8, 14=20-3-8, 15=20			d; Lumber DOL								
		3-8, 18=20-3-8, 19=20	-5-0,		ned for wind loa uds exposed to v								
		3-8, 21=20-3-8, 22=20	-3-8,		d Industry Gable								
		3-8, 24=20-3-8			alified building								
	Max Horiz 24=91	· · ·			e 2x4 MT20 unle								
I		(LC 8), 14=-64 (LC 9) (LC 9), 16=-50 (LC 9)			es continuous b								
		(LC 9), 10=-56 (LC 9) (LC 9), 20=-56 (LC 8)			ully sheathed fr			,					
		(LC 8), 20=-30 (LC 8) (LC 8), 22=-43 (LC 8)			nst lateral mover								
		(LC 8), 24=-53 (LC 4)		7) Gable studs	spaced at 2-0-0) oc.							
		LC 1), 14=190 (LC 22			as been designe								
		(LC 22), 16=179 (LC			ad nonconcurre								
		(LC 22), 19=168 (LC			nas been desigr			Opsf					
	20=191	(LC 21), 21=179 (LC	1),		n chord in all ar							000	TOP
		(LC 1), 23=185 (LC 2	1),		by 2-00-00 wide		een the bott	om				OF I	MISSO
	24=170	(LC 1)			ny other membe							A TE	-0.0
FORCES	(lb) - Maximum Co	ompression/Maximum		10) All bearings							A	174	N N
	Tension			11) Provide mec							B	SCOT	
TOP CHORD	,	=0/31, 2-3=-98/78,			e capable of with ift at joint 13, 56						Я	/ SEV	ER \ Y
		41/106, 5-6=-38/133,			21, 43 lb uplift a						-01*		· 0 **
		-37/147, 8-9=-34/110,			ift at joint 18, 50								TO MAR ON
	,	1=-35/59, 11-12=-40/3	39,		15 and 64 lb up			-				NUM	
	12-13=-60/25	00 40/00 04 00 40	/20	12) This truss is							27		
BOT CHORD		23=-18/29, 21-22=-18	/29,		Residential Co			ind			N.	PE-2001	018807
		20=-18/29, 18-19=-18 16=-18/29, 14-15=-18			nd referenced s						Y	1 Bal	154
	13-14=-18/29	10-10/23, 14-13=-10	123,	LOAD CASE(S)	Standard							ESSIONA	FNUA
	1011-1-10/23			(-)								UNA	1.20

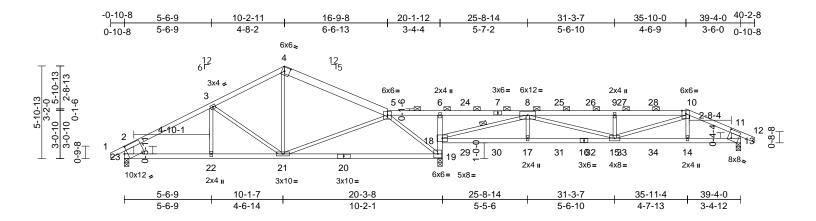

April 30,2024

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

Job	Truss	Truss Type	Qty	Ply	Lot 179 HT	
B240092	C2	Roof Special	1	1	Job Reference (optional)	165199408

Run: 8.73 S Apr 3 2024 Print: 8.730 S Apr 3 2024 MiTek Industries, Inc. Fri Apr 26 13:54:27 ID:Lek3CAANj_gYbKvtCQHtmQzKvNM-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

Plate Offsets (X, Y): [4:0-5-4,0-2-0],	[6:0-2-0,0-1-8], [8:0-	2-8,0-1-8], [12:0-2-7,0-	4-14]								
Loading TCLL (roof) TCDL	(psf) 25.0 10.0	Spacing Plate Grip DOL Lumber DOL	2-0-0 1.15 1.15	CSI TC BC WB	0.86 0.74	DEFL Vert(LL) Vert(CT)	-0.17	(loc) 10-11 10-11	l/defl >999 >999	L/d 360 240	PLATES MT20	GRIP 197/144
BCLL BCDL	0.0* 10.0	Rep Stress Incr Code	YES IRC2018/TPI2014	Matrix-S	0.35	Horz(CT) Wind(LL)	0.03 0.05	7 10-11	n/a >999	n/a 240	Weight: 75 lb	FT = 10%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD	2x4 SPF No.2 2x4 SPF No.2 2x3 SPF No.2 *Exce 2.0E Structural wood she 2-2-0 oc purlins, ex Rigid ceiling directly	athing directly applie cept end verticals.	bearing pla 12 and 112 0F 7) This truss is Internationa R802.10.2 d or LOAD CASE(S	chanical connection te capable of withs Ib uplift at joint 7. s designed in acco al Residential Code and referenced sta) Standard	standing 1 ordance w e sections	37 lb uplift at ith the 2018 8 R502.11.1 a	joint					
	bracing.											
	(size) 7=0-3-8, 7 Max Horiz 12=-90 (L Max Uplift 7=-112 (L Max Grav 7=892 (LC	C 6) C 9), 12=-137 (LC 8)	1									
FORCES	(lb) - Maximum Com											
	Tension 1-2=0/37, 2-3=-1285 4-5=-974/155, 5-6=- 2-12=-874/167, 6-7=	1121/147, =-850/131										
BOT CHORD WEBS	11-12=-156/1041, 10 8-10=-118/992, 7-8= 3-11=0/152, 3-10=-3	-17/38	8,									
NOTES	5-10=-269/127, 5-8=	-226/101, 6-8=-106/	1005								000	1000
1) Unbalance this design	ed roof live loads have n. CE 7-16; Vult=115mph									Å	TATEOF	MISSOL
Vasd=91m II; Exp C; I cantilever right expos	nph; TCDL=6.0psf; BC Enclosed; MWFRS (er left and right exposed sed; Lumber DOL=1.6	DL=6.0psf; h=25ft; C tvelope) exterior zon ; end vertical left and 0 plate grip DOL=1.6	e; I								S SCOT SEV	
 chord live 4) * This trust on the bott 3-06-00 ta 	has been designed for load nonconcurrent wi s has been designed f tom chord in all areas Il by 2-00-00 wide will	th any other live load or a live load of 20.0 where a rectangle	psf						د	ANA A	NUM PE-2001	018807
	any other members. and assumed to be s	SPF No.2 .									-un	


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

April 30,2024

Job	Truss	Truss Type	Qty	Ply	Lot 179 HT	
B240092	C3	Roof Special Girder	1	1	Job Reference (optional)	165199409

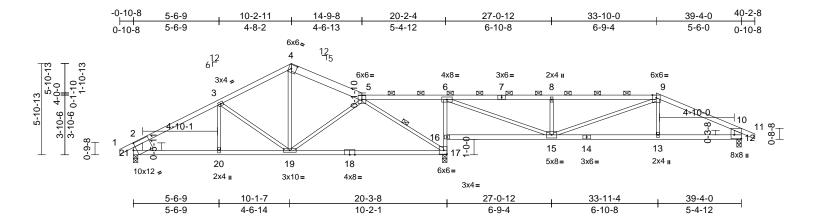
Run: 8.73 S Apr 3 2024 Print: 8.730 S Apr 3 2024 MiTek Industries, Inc. Fri Apr 26 13:54:27 ID:Lek3CAANj_gYbKvtCQHtmQzKvNM-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Scale = 1:73.5

Plate Offsets (X, Y): [4:0-3-15,0-3-0], [13:0-2-13,0-6-6]	, [23:0-2-7,	0-4-14]									
Loading TCLL (roof) TCDL BCLL BCDL	(psf) 25.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 NO IRC20	18/TPI2014	CSI TC BC WB Matrix-S	0.85 0.99 0.92	DEFL Vert(LL) Vert(CT) Horz(CT) Wind(LL)	-0.45 0.02	19-21	l/defl >999 >526 n/a >999	L/d 360 240 n/a 240	PLATES MT20 Weight: 141 lb	GRIP 197/144 FT = 10%
		F 1.8E pt* 23-20,20-19:2x pt* 23-2,13-11:2x8 athing directly appl cept end verticals, i -1 max.): 5-10. applied or 9-0-13 c 8-18 19=0-3-8, 23=0-3- .C 27) LC 9), 19=-388 (LC LC 27) (LC 22), 19=2123 (0.2, 2 4 SPF 3 ied or 4 and 5 oc 6 8 7 C 9), 1 C 1)	 Unbalanced roof live loads have been considered for this design. Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60 Provide adequate drainage to prevent water ponding. This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members. All bearings are assumed to be SPF No.2 . Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 158 lb uplift at joint 23, 246 lb uplift at joint 13 and 388 lb uplift at joint 23, 246 lb uplift at joint 13 and 388 lb uplift at joint 23, 246 lb uplift at joint 13 and 388 lb uplift at joint 23, 246 lb uplift at joint 13 and 388 lb uplift at joint 23, 246 lb uplift at joint 13 and 388 lb uplift at joint 23, 246 lb uplift at joint 13 and 388 lb uplift at joint 23, 246 lb uplift at joint 13 and 388 lb uplift at joint 23, 246 lb uplift at joint 13 and 388 lb uplift at joint 23, 246 lb uplift at joint 13 and 388 lb uplift at joint 24, 24, 26, 24, 26, 24, 27, 25, 25, 26, 26, 27, 26, 28, 27, 26, 28, 28, 27, 26, 28, 28, 27, 26, 28, 28, 27, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28								r back (B). hber Increase=1.15, 5-10=-70, 20, 13-18=-20 33 (F), 17=-17 (F), (F), 26=-33 (F), (F), 30=-17 (F),	
FORCES TOP CHORD BOT CHORD WEBS	(lb) - Maximum Com Tension 1-2=0/37, 2-3=-1133 4-5=-841/179, 5-6=- 8-9=-2657/624, 9-10 10-11=-1696/374, 1 ⁻ 2-23=-790/189, 11-1 2-23=-203/913, 21- 19-21=-220/402, 18- 6-18=-432/175, 17-1 15-17=-416/1989, 14- 3-22=-20/71, 3-21=- 5-21=-19/399, 5-19= 8-15=-162/720, 9-15 10-15=-292/1257, 10 8-18=-2704/604	%/203, 3-4=-864/17/ 79/443, 6-8=-106/6 %-2657/624, 1-12=0/32, 3=-951/237 -22=-203/913, -19=-1342/324, 8=-416/1989, 4-15=-301/1484, 293/170, 4-21=-35/ -1096/196, 8-17=0 5=-484/227,	4, 9 ;34, 1 /343,	 R802.10.2 a Graphical pu or the orienta bottom chord Hanger(s) or provided suf down and 56 23-9-4, 83 lb and 56 lb up 29-9-4, 83 lb down and 56 lb up at 35-' 21-9-4, 23 lb lb down at 2 31-9-4, and 2 35-9-4 on bc 	Residential Code and referenced sta urlin representation ation of the purlin d. other connection ficient to support a: b up at 21-9-4, down and 56 lb u at 27-9-4, 83 lb down and 56 lb u down and 56 lb u down and 56 lb u down at 33-9-4, 10-0 on top chord, down at 23-9-4, 23 lb down at 33- itom chord. The levice(s) is the res	ndard Al n does n along the device(s concentr 83 lb doo up at 25- down and up at 31- and 195 , and 23 23 lb do a at 29-9 9-4, and design/s	NSI/TPI 1. ot depict the set op and/or s) shall be ated load(s) 8 wn and 56 lb 9-4, 83 lb do do d 56 lb up at 9-4, and 83 l lb down and lb down at wn at 25-9-4 -4, 23 lb dow 56 lb down a selection of su	size 33 lb up at wn 126 , 23 n at tt				STATE OF M SCOTT SEVI PE-20010 PE-20010	ER *

NOTES

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSITPTI Quality Criteria, and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcscomponents.com) Mitek 16023 Swingley Ridge Rd. Chesterfield, MO 63017


314.434.1200 / MiTek-US.com

April 30,2024

Page: 1

Job	Truss	Truss Type	Qty	Ply	Lot 179 HT	
B240092	C4	Roof Special	1	1	Job Reference (optional)	165199410

Run: 8.73 S Apr 3 2024 Print: 8.730 S Apr 3 2024 MiTek Industries, Inc. Fri Apr 26 13:54:28 ID:Lek3CAANj_gYbKvtCQHtmQzKvNM-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

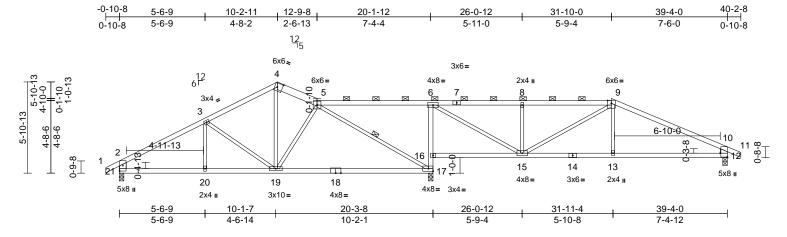
Scale = 1:74.5

	(X, Y): [4:0-3-15,0-3-0				1							1	
oading	(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
CLL (roof)	25.0	Plate Grip DOL	1.15		TC	0.78	Vert(LL)		17-19	>999	360	MT20	197/144
CDL	10.0	Lumber DOL	1.15		BC	0.65	Vert(CT)		17-19	>492	240		
CLL	0.0*	Rep Stress Incr	YES		WB	0.57	Horz(CT)	0.02	17	n/a	n/a	-	
CDL	10.0	Code	IRC20	18/TPI2014	Matrix-S		Wind(LL)	0.10	13-15	>999	240	Weight: 139 lb	FT = 10%
MBER				2) Wind: ASCI	E 7-16; Vult=115	Smph (3-sec	ond aust)						
OP CHORD	2x4 SPF No.2 *Exce	ont* 4-5:2x6 SPF No			h; TCDL=6.0ps			Cat.					
T CHORD	2x4 SPF 2100F 1.8E				nclosed; MWFR								
	No.2, 14-12,14-16:2		011		ft and right exp								
EBS	2x3 SPF No.2 *Exce		00F		ed; Lumber DOL								
	2.0E, 12-10:2x6 SP		3		quate drainage								
	,		4		as been designe			-					
P CHORD	Structural wood she	athing directly applie	ed or		ad nonconcurre			ids.					
	3-6-12 oc purlins, e				has been desig								
	2-0-0 oc purlins (3-9		anu		m chord in all a								
T CHORD			r.	3-06-00 tall	by 2-00-00 wide	e will fit betv	een the bott	om					
	bracing, Except:		0	chord and a	ny other member	ers.							
	6-0-0 oc bracing: 15	-16	6	Bearings ar	e assumed to be	e: Joint 21 S	SPF 2100F 1	.8E ,					
BS	•	5-17		Joint 17 SP	F 2100F 1.8E , ,	Joint 12 SP	F No.2 .						
ACTIONS		, 17=0-3-8, 21=0-3-8	, 7		chanical connec								
	Max Horiz 21=101 (L	· · ·	,		e capable of wit								
	Max Uplift 12=-176 (,	0)	21, 176 lb u	plift at joint 12 a	nd 286 lb u	plift at joint 1	7.					
	21=-136 ((),	9),										
	Max Grav 12=890 (L		×1) 8		designed in ac								
	21=936 (L		<i>,</i> ,		I Residential Co			and					
RCES	,	,			and referenced s								
RUES	(lb) - Maximum Com Tension	pression/waximum	ç		urlin representa			size					
P CHORD		1465 2 A 022/127			tation of the pur	lin along the	top and/or						
	4-5=-896/141, 5-6=0	,	, A	bottom cho									The
	8-9=-1396/305, 9-10	· .	· · · ·	OAD CASE(S	Standard							OFA	ALC D
	2-21=-820/170, 10-1		-0/30,									TE OF M	ISS W
T CHORD											6		N.S.
1 OHORD	17-19=-70/777, 16-1										A	SCOT	ГM. VP.V
	6-16=-1055/291, 15-										K	SEVI	
	13-15=-170/1159, 12										94		
EBS	3-20=-28/63, 3-19=-		113.								NX	L at a	χ, ε
	5-19=-84/141, 5-17=		,									ROUS	KONNI
	6-15=-296/1662, 8-1											NUM	
	9-15=-72/251, 9-13=										N	O PE-2001	018807
TES	, - ,										N	ALL - SOL	12 B
	ed roof live loads have	been considered for	r								Y	SSION A	JO'B
Chicalano												Nh Slow	THAT

Unbalanced roof live loads have been considered for this design.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent toulsable personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

April 30,2024


JONAL

Page: 1

Job	Truss	Truss Type	Qty	Ply	Lot 179 HT	
B240092	C5	Roof Special	1	1	Job Reference (optional)	165199411

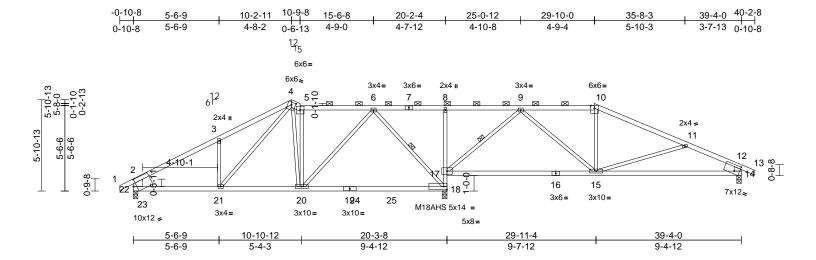
Run: 8.73 S Apr 3 2024 Print: 8.730 S Apr 3 2024 MiTek Industries, Inc. Fri Apr 26 13:54:28 ID:Lek3CAANj_gYbKvtCQHtmQzKvNM-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:74.5

Plate Offsets (2	X, Y): [4:0-3-15,0-3-0), [12:Edge,0-5-8], [2	21:0-4-5,0-	2-8]									
Loading TCLL (roof) TCDL BCLL BCDL	(psf) 25.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018	8/TPI2014	CSI TC BC WB Matrix-S	0.96 0.64 0.78	DEFL Vert(LL) Vert(CT) Horz(CT) Wind(LL)		(loc) 17-19 17-19 17 19-20	l/defl >978 >473 n/a >999	L/d 360 240 n/a 240	PLATES MT20 Weight: 168 lb	GRIP 197/144 FT = 10%
UMBER TOP CHORD 30T CHORD WEBS BRACING TOP CHORD BOT CHORD WEBS REACTIONS	2x4 SP No.2 *Excep 2x4 SP No.1 *Excep 14-12,14-16:2x4 SP 2x3 SPF No.2 *Exce 2400F 2.0E Structural wood she except end verticals (5-7-10 max.): 5-9. Rigid ceiling directly bracing, Except: 6-0-0 oc bracing: 15 1 Row at midpt	t* 4-5:2x6 SPF No.2 t* 17-6:2x4 SPF No. No.2 ept* 21-2,12-10:2x6 \$ athing directly applie , and 2-0-0 oc purlin applied or 10-0-0 oc i-16. 5-17 , 17=0-3-8, 21=0-3-8 _C 8) (LC 9), 17=-285 (LC LC 8) _C 22), 17=1886 (LC	2) 2, 3P 3) 4) 4, 5 5) 5; 6) 7) 9), 8)	Wind: ASCE Vasd=91mpl II; Exp C; En cantilever lef right expose Provide adee This truss ha chord live loa * This truss f on the bottor 3-06-00 tall b chord and ar Bearings are SP No.1, Jo Provide mec bearing plate 21, 178 lb up This truss is International	7-16; Vult=115m n; TCDL=6.0psf; closed; MWFRS it and right expos d; Lumber DOL= quate drainage to ts been designed ad nonconcurreni nas been designed n chord in all are by 2-00-00 wide v by other member: int 12 SP No.2 . hanical connection capable of withs blift at joint 12 and designed in accor Residential Codi	BCDL=6. (envelope ed; end v 1.60 plate prevent ' for a 10. with any ed for a liv as where vill fit betw s. Joint 21 \$ bon (by oth standing 1 d 285 lb u vrdance w e sections	cond gust) Opsf; h=25ft; a) exterior zc vertical left a grip DOL=1 water pondir D psf bottom other live loa other live loa other live loa other live loa other live loa other live loa of 20. a rectangle veen the bot SP No.1, Joi ers) of truss 37 lb uplift a plift at joint 1 ith the 2018 s R502.11.1	Cat. one; nd .60 g. ads. .0psf tom int 17 to to to joint 17.					
FORCES TOP CHORD	(lb) - Maximum Com Tension 1-2=0/35, 2-3=-1172 4-5=-830/153, 5-6=(8-9=-843/239, 9-10=	2/170, 3-4=-880/132, 0/212, 6-8=-840/237, 1210/243, 10-11=0	LC	Graphical pu		n does n	ot depict the	size				THE OF M	MISSO
BOT CHORD	2-21=-801/171, 10-1 20-21=-176/948, 19- 17-19=-66/759, 16-1 6-16=-1147/314, 15- 13-15=-139/1011, 12	-20=-176/948, 17=-1215/283, -16=-293/78,										STAT SCOT	ГМ. ХСУ УЛ
WEBS	3-20=-7/80, 4-19=-5 6-15=-209/1265, 8-1 9-15=-221/35, 9-13= 5-19=-147/163	7/436, 5-17=-1133/1 15=-413/169,	,							•	Ø	NUM PE-2001	
NOTES 1) Unbalance this design	ed roof live loads have	been considered for									Ø	RESSIONA	LENGI

NOTES


 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.
 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not besign value to dury with with where outputs into design is based only door parameters shown, and is for an individual building design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members and property incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TPH1 Quality Criteria**, and **DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcscomponents.com)

April 30,2024

Job	Truss	Truss Type	Qty	Ply	Lot 179 HT	
B240092	C6	Roof Special	1	1	Job Reference (optional)	165199412

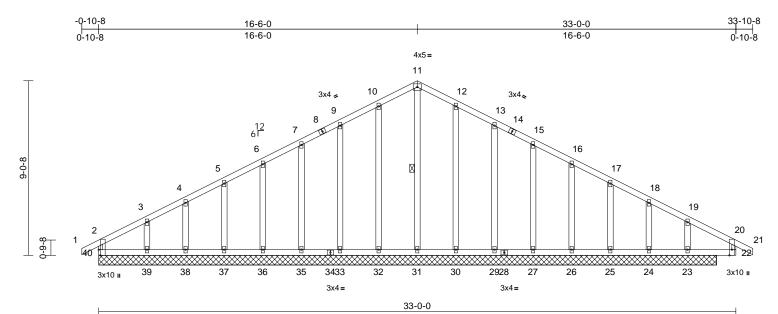
Run: 8.73 S Apr 3 2024 Print: 8.730 S Apr 3 2024 MiTek Industries, Inc. Fri Apr 26 13:54:28 ID:Lek3CAANj_gYbKvtCQHtmQzKvNM-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Scale = 1:74.5

Plate Offsets (X, Y):	[4:0-3-3,0-2-2], [14:0-3-15,0-4-14], [22:0-2-7,0-4-14]	

			-											
Loading	(psf)	Spacing	2-0-0		csi		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP	
TCLL (roof)	25.0	Plate Grip DOL	1.15		тс	0.96	Vert(LL)		18-20	>960	360	MT20	197/144	
TCDL	10.0	Lumber DOL	1.15		BC	0.84	Vert(CT)	-0.44	18-20	>539	240	M18AHS	142/136	
BCLL	0.0*	Rep Stress Incr	YES		WB	0.45	Horz(CT)	-0.03	14	n/a	n/a			
BCDL	10.0	Code	IRC201	8/TPI2014	Matrix-S		Wind(LL)	0.06	15-17	>999	240	Weight: 147 lb	FT = 10%	
	10.0 2x4 SPF No.2 *Exce 2x4 SPF 2100F 1.8 No.2, 16-14,16-17:2 2x3 SPF No.2 *Exce 2.0E, 14-12:2x6 SP Structural wood she except end verticals (5-11-2 max.): 5-10. Rigid ceiling directly bracing. 1 Row at midpt (size) 14=0-3-8, Max Horiz 22=101 (I Max Uplift 14=-186 (22=-143 (I Max Grav 14=887 (I 22=937 (I (Ib) - Maximum Com Tension 1-2=0/37, 2-3=-1204 4-5=-884/179, 5-6= 8-9=0/219, 9-10=-93 11-12=-1309/344, 1 2-22=-809/175, 12-1	Code pt* 4-5:2x6 SPF No.: = *Except* 18-8:2x3 \$ x4 SPF No.2 pt* 22-2:2x8 SP 240 2400F 2.0E athing directly applie , and 2-0-0 oc purlins applied or 10-0-0 oc 9-17, 6-18 18=0-3-8, 22=0-3-8 C 8) LC 9), 18=-268 (LC 9 LC 9), 18=-268 (LC 9 LC 24), 18=1934 (LC C 24), 18=1934 (LC C 24), 18=1934 (LC C 24), 18=1934 (LC C 24), 18=1934 (LC S8/246, 10-11=-1061/ 2-13=0/30, 14=-782/228 -21=-54/789, 18=-1083/225, 7=-91/548,	IRC201 2) 2 SPF 0F 3) 4) 4, 5) 6) 7) 3 6) 7) 8) 7) 8) 7) 9), 8) 9), 8) 9), 9), 10 2), 9) , 11 2), 9)	 Wind: ASCE Vasd=91mp II; Exp C; Er cantilever le right expose Provide ade All plates are This truss ha chord live lo * This truss is on the bottoo 3-06-00 tall 1 chord and ar Bearings are Joint 18 SPF Provide med bearing plate 22, 186 lb up This truss is International R802.10.2 a Graphical put 	Matrix-S T-16; Vult=115m h; TCDL=6.0psf; B iclosed; MWFRS ft and right expose d; Lumber DOL=1 quate drainage to e MT20 plates unl as been designed an onconcurrent has been designed m chord in all aree by 2-00-00 wide w hy other members a assumed to be: - 5 2100F 1.8E, Job chanical connection e capable of withs olift at joint 14 and designed in accool Residential Code nd referenced sta urlin representation ation of the purlin d.	ph (3-sec 3CDL=6. (enveloped; enveloped; enveloped ed; end v. .60 plate prevent ess othere for a 10. with any d for a liva as where ill fit betw. , with BC Joint 22 \$ nt 14 SP n (by oth tanding 1 268 lb u vrdance w e sections ndard AN n does no	Wind(LL) wond gust) Opsf; h=25ft; a) exterior zo vertical left ar grip DOL=1. water pondin wise indicate D psf bottom other live loa e load of 20. a rectangle veen the bott CDL = 10.0ps SPF 2100F 1. F No.2. ers) of truss : 43 lb uplift at joint 1 ith the 2018 is R502.11.1 at SI/TP1 1. bt depict the si	0.06 Cat. ne; nd 60 g. dd. dds. Opsf om f. .8E , to t joint 8. and				Weight: 147 lb	MISSOURI T M.	
	10-15=-29/156, 5-20	15/570, 9-17=-976/2)=-438/146, 5=-266/190, 9-15=0/									K.	PE-2001		Ø
NOTES	5 10- 550/141, 11-1	200/100, 0 10-0/	020								N	-2001		1
	ed roof live loads have n.	been considered for									Y	ESSIONA	L ENGLIS	
													120 2024	

April 30,2024


Page: 1

6023 Swingley Ridge Rd. Chesterfield, MO 63017 314.434.1200 / MiTek-US.com

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent toulsable personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

Job	Truss	Truss Type Q		Ply	Lot 179 HT				
B240092	D1	GABLE	1	1	Job Reference (optional)	165199413			

Run: 8.73 S Apr 3 2024 Print: 8.730 S Apr 3 2024 MiTek Industries, Inc. Fri Apr 26 13:54:28 ID:Lek3CAANj_gYbKvtCQHtrnQzKvNM-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

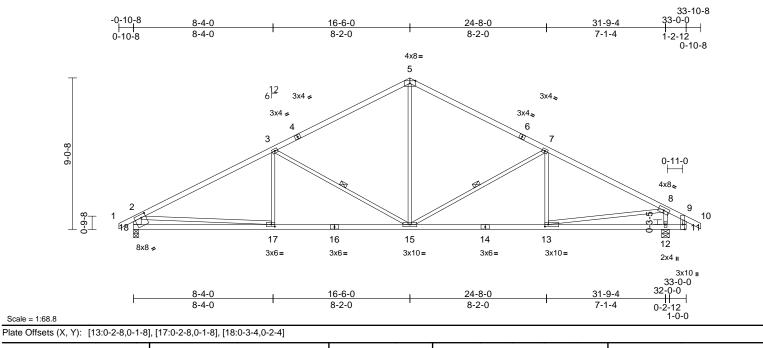
Scale = 1:59.7

Plate Offsets (X, Y): [40:0-3-8,Edge]

	(, .). [-1											
Loading	(psf)	Spacing	2-0-0		csi		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15		TC	0.23	Vert(LL)	n/a	()		999	MT20	197/144
TCDL	10.0	Lumber DOL	1.15		BC	0.18	Vert(CT)	n/a	-		999		
BCLL	0.0*	Rep Stress Incr	YES		WB	0.17	Horz(CT)	-0.01	23		n/a		
BCDL	10.0	Code	IRC2018/T	PI2014	Matrix-R	0		0.01	20	1.704		Weight: 164 lb	FT = 10%
		0000			mannet							rioigini io i io	
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD WEBS REACTIONS	2x4 SPF No.2 2x3 SPF No.2 2x4 SPF No.2 Structural wood she 10-0-0 oc purlins, of Rigid ceiling directly bracing. 1 Row at midpt (size) 23=32-0- 26=32-0- 33=32-0- 37=32-0- 40=32-0- Max Horiz 40=-135 Max Uplift 23=-74 (l 25=-53 (l	(LC 9)	^{d or} BOT 0-0, 0-0, 0-0, 0-0, 0-0, WEB	CHORD S	$\begin{array}{c} 2\text{-40}\text{118/69, 1-2}\\ 3\text{-4}\text{88/222, 4-5}\text{=}\\ 6\text{-7}\text{=}0/256, 7\text{-9}\text{=}0/\\ 10\text{-11}\text{=}0/277, 11\text{-1}\\ 13\text{-15}\text{=}0/228, 15\text{-1}\\ 17\text{-18}\text{=}0/208, 18\text{-1}\\ 20\text{-21}\text{=}0/31, 20\text{-22}\\ 39\text{-40}\text{153/86, 36}\\ 35\text{-36}\text{153/86, 36}\\ 35\text{-36}\text{153/86, 31}\\ 30\text{-31}\text{=}153/86, 26\\ 27\text{-29}\text{=}153/86, 26\\ 23\text{-24}\text{=}153/86, 22\\ 23\text{-24}\text{=}153/86, 23\\ 23\text{-24}\text{=}153/86, 33\\ 23\text{-24}\text{=}153/86, 33\\ 12\text{-30}\text{=}157/71, 13\\ 15\text{-27}\text{=}141/77, 16\\ 17\text{-25}\text{=}-154/78, 18\\ 15\text{-27}\text{=}154/78, 18\\ 15\text{-27}\text{=}154/78, 18\\ 15\text{-27}\text{=}154/78, 18\\ 15\text{-27}\text{=}154/78, 18\\ 15\text{-28}\text{=}126/78, 18\\ 18\text{-28}\text{=}126/78, 186/78, 186/78, 186/78, 186/78, 186/78, 186/78, 186/78, 186/78, 186$	-52/238, 265, 9-11 2=0/269 6=0/205 9=-13/11 2=-28/20 -339=-15; -32=-15; -32=-15; -32=-15; -32=-15; -32=-15; -32=-15; -32=-15; -32=-15; -32=-15; -32=-15; -23=-15; -23=-15; -23=-13; -24=-13; -25=-15; -25	5-6=-23/246,)=0/277, , 12-13=0/253, , 16-17=0/200 11, 19-20=-68 3/86, 3	5, 2, 3/230, /7/81, /81,	on 3-i ch 9) All 10) Pr be 40 up 37 up 27 up 11) No 12) Th Int R&	the bottc botto	om cho by 2-0 any oth s are as chanic te capa blift at ju t 35, 5 blift at ju t 30, 5 blift at ju t 24 an ard bea s desigg al Resid and ref	rd in all areas wh 0-00 wide will fit l er members. ssumed to be SP al connection (by able of withstandi oint 32, 57 lb upli 3 lb uplift at joint 3 oint 38, 120 lb up 8 lb uplift at joint 3 oint 26, 53 lb uplift d 74 lb uplift at joint 1 oint 26, 53 lb uplift d 74 lb uplift at joint 3 oint accordance dential Code sect erenced standard	between the bottom F No.2 . y others) of truss to ng 67 lb uplift at joint ft at joint 33, 54 lb 36, 59 lb uplift at joint lift at joint 39, 47 lb 29, 53 lb uplift at joint ft at joint 25, 56 lb bint 23. Review required. se with the 2018 tions R502.11.1 and
FORCES	30=-47 (1 33=-57 (1 36=-53 (1 38=-34 (1 40=-67 (1 40=-67 (1 25=212 (27=183 (30=197 (32=195 (1 37=187 (39=265 (1)))	_C 9), 32=-51 (LC 8), _C 8), 35=-54 (LC 8), _C 8), 37=-59 (LC 8), _C 8), 37=-59 (LC 8), _C 8), 39=-120 (LC 8) _C 4)	, 2) V , 2) V , 11 , 2), c , c , c , c , c , c , c , c , c , c	Inbalanced nis design. Vind: ASCI (asd=91m; ; Exp C; E ght expose rruss designly. Fruss designly. For si ee Standa r consult q Il plates au russ to be raced aga able studk his truss h	d roof live loads have E 7-16; Vult=115mp bh; TCDL=6.0psf; E nclosed; MWFRS (eft and right expose ed; Lumber DOL=1 gned for wind loads tuds exposed to wii rd Industry Gable E qualified building de re 2x4 MT20 unless fully sheathed from inst lateral movement s spaced at 2-0-0 o has been designed bad nonconcurrent	bh (3-sec 3CDL=6.1 envelope d; end v .60 plate s in the p nd (norm End Deta signer as s otherwin a one fac ent (i.e. d c. for a 10.1	cond gust) Dpsf; h=25ft; (a) exterior zor vertical left an grip DOL=1. lane of the tr. al to the face b per ANSI/TF se indicated. e or securely iagonal web) D psf bottom	Cat. ne; d 60 uss), ble, PI 1.				STATE OF M SCOT SEVI OF B STONA	L ENGL

April 30,2024

Page: 1



WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent toulsable personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

Job	Truss	Truss Type	Qty	Ply	Lot 179 HT	
B240092	D2	Common	7	1	Job Reference (optional)	165199414

Run: 8.73 S Apr 3 2024 Print: 8.730 S Apr 3 2024 MiTek Industries, Inc. Fri Apr 26 13:54:28 ID:Lek3CAANj_gYbKvtCQHtmQzKvNM-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15	тс	0.98	Vert(LL)	-0.11	15-17	>999	360	MT20	197/144
TCDL	10.0	Lumber DOL	1.15	BC	0.65	Vert(CT)	-0.26	13-15	>999	240		
BCLL	0.0*	Rep Stress Incr	YES	WB	0.62	Horz(CT)	0.06	12	n/a	n/a		
BCDL	10.0	Code	IRC2018/TPI2014	Matrix-S		Wind(LL)	0.08	15-17	>999	240	Weight: 125 lb	FT = 10%
LUMBER TOP CHORD	2x4 SPF No.2			has been desig m chord in all a			0psf					

В

NOTES

this design.

1)

2)

3)

BOT CHORD	2x4 SPF No.2
WEBS	2x3 SPF No.2 *Except* 18-2:2x6 SPF No.2
BRACING	
TOP CHORD	Structural wood sheathing directly applied,
	except end verticals.
BOT CHORD	Rigid ceiling directly applied or 10-0-0 oc
	bracing.
WEBS	1 Row at midpt 3-15, 7-15
REACTIONS	(size) 12=0-5-8, 18=0-3-8
	Max Horiz 18=-134 (LC 13)
	Max Uplift 12=-213 (LC 9), 18=-204 (LC 8)
	Max Grav 12=1593 (LC 1), 18=1493 (LC 1)
FORCES	(lb) - Maximum Compression/Maximum
	Tension
TOP CHORD	1-2=0/35, 2-3=-2285/286, 3-5=-1600/249,
	5-7=-1599/256, 7-8=-2058/256, 8-9=-148/1,
	9-10=0/31, 2-18=-1413/249, 9-11=-84/0
BOT CHORD	17-18=-329/724, 15-17=-281/1931,
	13-15=-114/1750, 12-13=-10/144,
	11-12=-10/144
WEBS	3-17=0/273, 3-15=-762/268, 5-15=-50/780,

7-15=-581/240, 7-13=-104/146,

Unbalanced roof live loads have been considered for

Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone;

cantilever left and right exposed ; end vertical left and

right exposed; Lumber DOL=1.60 plate grip DOL=1.60 This truss has been designed for a 10.0 psf bottom

chord live load nonconcurrent with any other live loads.

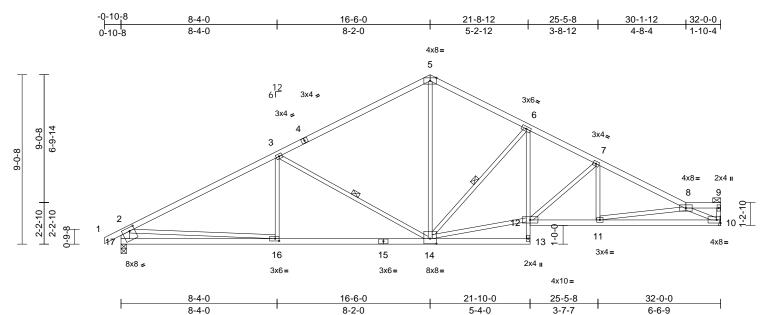
Wind: ASCE 7-16; Vult=115mph (3-second gust)

2-17=0/1211

8-13=-105/1625, 8-12=-1457/301,

- 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- 5) All bearings are assumed to be SPF No.2 .
- Provide mechanical connection (by others) of truss to 6)
- bearing plate capable of withstanding 204 lb uplift at joint 18 and 213 lb uplift at joint 12. This truss is designed in accordance with the 2018 7)
- International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard


 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.
 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not beigh valid for use only with with with sets outputs into design is based only door parameters shown, and is for an individual dualing component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria**, and **DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcscomponents.com)

Job	Truss	Truss Type	Qty	Ply	Lot 179 HT	
B240092	D3	Roof Special	5	1	Job Reference (optional)	l65199415

Run: 8.73 S Apr 3 2024 Print: 8.730 S Apr 3 2024 MiTek Industries, Inc. Fri Apr 26 13:54:28 ID:Lek3CAANj_gYbKvtCQHtmQzKvNM-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:61.5

FORCES

TOP CHORD

BOT CHORD

WEBS

NOTES

this design.

1)

2)

3)

4)

Plate Offsets (X, Y): [14:0-4-0,0-3-4], [16:0-2-8,0-1-8], [17:0-3-4,0-2-4]

Max Horiz 17=135 (LC 5)

Tension

2-16=0/1242

Lumber DOL=1.60 plate grip DOL=1.60

Max Uplift 10=-15 (LC 9), 17=-29 (LC 8)

(lb) - Maximum Compression/Maximum

1-2=0/35, 2-3=-2310/46, 3-5=-1617/74, 5-6=-1548/84, 6-7=-2218/52, 7-8=-2610/22, 8-9=-87/0, 9-10=-77/9, 2-17=-1425/74

3-16=0/281, 3-14=-765/125, 5-14=0/865,

12-14=0/1854, 6-14=-932/89, 7-12=-483/42, 7-11=0/265, 8-11=-248/89, 8-10=-2768/102,

16-17=-187/715, 14-16=-61/1954, 13-14=0/103, 12-13=0/79, 6-12=0/720, 11-12=0/2293, 10-11=-72/2510

Unbalanced roof live loads have been considered for

II; Exp C; Enclosed; MWFRS (envelope); cantilever left

and right exposed ; end vertical left and right exposed;

Provide adequate drainage to prevent water ponding.

This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

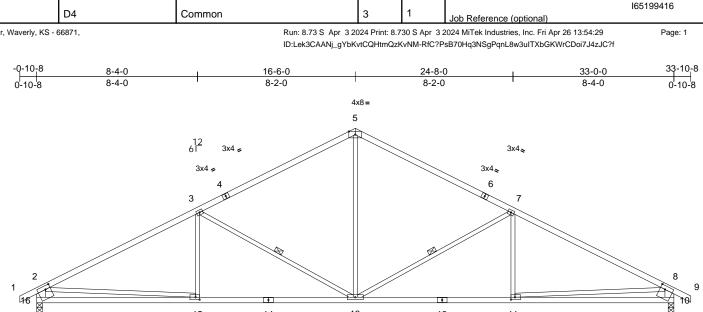
Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat.

Max Grav 10=1424 (LC 1), 17=1504 (LC 1)

Loading	(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15		TC	0.99	Vert(LL)	-0.15	11-12	>999	360	MT20	197/144
TCDL	10.0	Lumber DOL	1.15		BC	0.73	Vert(CT)	-0.31	14-16	>999	240		
BCLL	0.0*	Rep Stress Incr	YES		WB	0.64	Horz(CT)	0.10	10	n/a	n/a		
				3/TPI2014	Matrix-S		Wind(LL)	0.07	11-12	>999	240	Weight: 130 lb	FT = 10%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD	2x4 SPF No.2 2x4 SPF No.2 *Exce 2x3 SPF No.2 *Exce Structural wood she except end verticals, (6-0-0 max.): 8-9.	pt* 17-2:2x6 SPF N athing directly appli , and 2-0-0 oc purlir	o.2 6) ed, 7) is 8)	on the botto 3-06-00 tall chord and a All bearings Refer to girc Provide med bearing plate	has been desig m chord in all al by 2-00-00 wide ny other member are assumed to ler(s) for truss to chanical connect e capable of wit uplift at joint 17	eas where will fit betwers. be SPF No truss conr tion (by oth hstanding 1	a rectangle veen the bott 0.2. vections. ers) of truss	to					
BOT CHORD WEBS REACTIONS		applied or 10-0-0 o 3-14, 6-14 anical, 17=0-3-8	c 9)	This truss is Internationa	designed in ac Residential Co nd referenced s	cordance w de sections	R502.11.1 a	and					

10) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

LOAD CASE(S) Standard



April 30,2024

~
3)

Job	Truss	Truss Type	Qty	Ply	Lot 179 HT	
B240092	D4	Common	3	1	Job Reference (optional)	165199416

6-0-8 13 15 14 12 11 8x8 🚽 8x8. 3x6= 3x6= 3x10= 3x6= 3x6= 8-4-0 16-6-0 24-8-0 33-0-0 8-4-0 8-2-0 8-2-0 8-4-0

Scale = 1:59.7

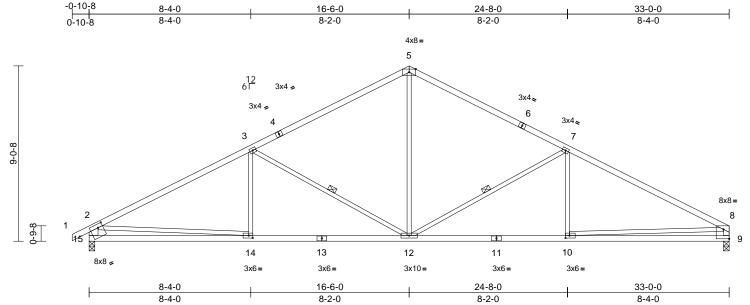
9-0-8

Plate Offsets (X, Y): [10:0-3-0,0-2-4], [11:0-2-8,0-1-8], [15:0-2-8,0-1-8], [16:0-3-0,0-2-4]

					, .								
Loading	(psf)	Spacing	2-0-0		csi		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15		TC	1.00	Vert(LL)	-0.12	13-15	>999	360	MT20	197/144
TCDL	10.0	Lumber DOL	1.15		BC	0.66	Vert(CT)	-0.27	13-15	>999	240		
BCLL	0.0*	Rep Stress Incr	YES		WB	0.62	Horz(CT)	0.07	10	n/a	n/a		
BCDL	10.0	Code	IRC201	8/TPI2014	Matrix-S		Wind(LL)	0.08	13-15	>999	240	Weight: 125 lb	FT = 10%
	2x4 SPF No.2 2x4 SPF No.2 2x3 SPF No.2 *Exce No.2 Structural wood she except end verticals Rigid ceiling directly bracing. 1 Row at midpt (size) 10=0-3-8, Max Horiz 10=1362 (Max Grav 10=1542)	athing directly applie applied or 10-0-0 or 7-13, 3-13 16=0-3-8 .C 7) LC 9), 16=-207 (LC	5) 6) ed, 7) L(8)	on the botto 3-06-00 tall chord and a All bearings Provide me bearing plat 16 and 207 This truss is Internationa	has been desigr m chord in all ar by 2-00-00 wide ny other membe are assumed to chanical connect e capable of with b uplift at joint 1 designed in acc I Residential Co and referenced s Standard	reas where will fit betw ers. be SPF No tion (by oth hstanding 2 0. cordance wi de sections	a rectangle veen the bott o.2 . ers) of truss 07 lb uplift a ith the 2018 R502.11.1 a	to t joint					
FORCES	(lb) - Maximum Com	pression/Maximum	,										
TOP CHORD	Tension 1-2=0/35, 2-3=-2380 5-7=-1701/263, 7-8= 2-16=-1462/251, 8-1	-2380/291, 8-9=0/35											
BOT CHORD	15-16=-328/733, 13-	15=-284/2016,											
, this desigr	11-13=-151/2016, 10 5-13=-56/873, 7-13= 3-13=-759/267, 3-15 8-11=-14/1287 ed roof live loads have 1. CE 7-16: Vult=115mph	759/267, 7-11=0/27 =0/271, 2-15=-4/128 been considered for	37,									STATE OF M	MISSOLA MISSOLA ER

Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60

3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.


 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.
 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not besign value for use only with with twit even connectors. This design is based only upon parameters shown, and is for an individual building designer must verify the applicability of design parameters and properly incorporate this design into the overall building designer must verify the applicability of design parameters and properly incorporate this design into the overall building designer. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcscomponents.com)

PE-200101880 SSIONAL E April 30,2024

Job	Truss	Truss Type	Qty	Ply	Lot 179 HT	
B240092	D5	Common	2	1	Job Reference (optional)	165199417

Run: 8.73 S Apr 3 2024 Print: 8.730 S Apr 3 2024 MiTek Industries, Inc. Fri Apr 26 13:54:29 ID:Lek3CAANj_gYbKvtCQHtmQzKvNM-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Scale = 1:59.4

Plate Offsets (X, Y): [8:Edge,0-5-13], [10:0-2-8,0-1-8], [14:0-2-8,0-1-8], [15:0-3-0,0-2-4]

Loading	(psf)	Spacing	2-0-0		csi		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15		TC	0.97	Vert(LL)	-0.12	10-12	>999	360	MT20	197/144
TCDL	10.0	Lumber DOL	1.15		BC	0.67	Vert(CT)	-0.27	10-12	>999	240		
BCLL	0.0*	Rep Stress Incr	YES		WB	0.65	Horz(CT)	0.07	9	n/a	n/a		
BCDL	10.0	Code	IRC201	8/TPI2014	Matrix-S		Wind(LL)	0.08	10-12	>999	240	Weight: 124 lb	FT = 10%
LUMBER TOP CHORD	2x4 SPF 2100F 1.8E	E *Except* 4-5,6-5:2	4) x4	on the bottor	as been designed n chord in all area	s where	a rectangle	•					
	SPF No.2				y 2-00-00 wide w		veen the bott	om					
BOT CHORD	2x4 SPF No.2				y other members								
WEBS	2x3 SPF No.2 *Exce				are assumed to be								
	9-8:2x4 SPF 2400F	2.0E	6)		hanical connection								
BRACING					capable of withst o uplift at joint 9.	anuing 2	to r ib upilit a	t joint					
TOP CHORD	Structural wood she except end verticals		ed, 7)	This truss is	designed in accor								
BOT CHORD	Rigid ceiling directly bracing.			R802.10.2 ar	Residential Code nd referenced star			and					
WEBS	1 Row at midpt	7-12, 3-12	LO	DAD CASE(S)	Standard								
REACTIONS	(size) 9=0-3-8, *	15=0-3-8											
	Max Horiz 15=142 (L	_C 12)											
	Max Uplift 9=-182 (L	C 9), 15=-207 (LC 8)										
	Max Grav 9=1467 (L	_C 1), 15=1547 (LC	1)										
FORCES	(lb) - Maximum Com	pression/Maximum											
TODOUODD	Tension												
TOP CHORD	1-2=0/35, 2-3=-2394 5-7=-1714/264, 7-8=		4,										
	2-15=-1467/251, 8-9	,											
BOT CHORD	14-15=-321/728, 12-												
201 0110112	10-12=-179/2057.9	,											
WEBS	5-12=-64/895, 7-12=		75,									and	TOP
	3-12=-766/271, 3-14	=0/272, 2-14=-12/13	306,									A OF I	MISCO
	8-10=-74/1477										1	750	-00 W
NOTES											R	STATE OF M	Nes In
1) Unbalance	ed roof live loads have	been considered for	r								A	S/ SCOT	
, this desigr	۱.										a.	SEVI	
2) Wind: ASC	CE 7-16; Vult=115mph	(3-second gust)									19 1	1	*

 Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60

 This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

April 30,2024

Chesterfield, MO 63017 314.434.1200 / MiTek-US.com

PE-2001018807

Page: 1

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPH Claulity Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

Job	Truss	Truss Type	Qty	Ply	Lot 179 HT	
B240092	D6	Roof Special	4	1	Job Reference (optional)	165199418

Run: 8.73 S Apr 3 2024 Print: 8.730 S Apr 3 2024 MiTek Industries, Inc. Fri Apr 26 13:54:29 ID:Lek3CAANj_gYbKvtCQHtmQzKvNM-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

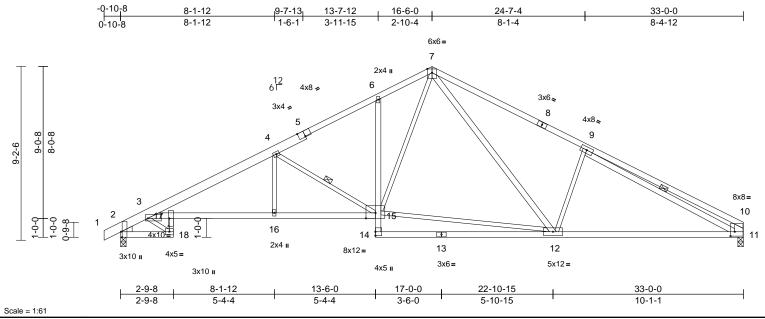
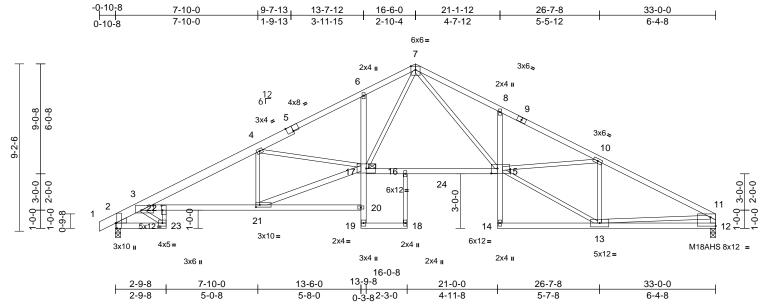


Plate Offsets (X, Y): [2:0-3-8,Edge], [3:0-8-8,0-2-6], [5:0-4-0,Edge], [10:0-2-12,0-2-12], [17:0-5-0,0-0-8]

LUMBER TOP CHORD 2x4 SPF 2100F 1.8E *Except* 5-7:2x4 SPF No.2, 1-5:2x6 SPF No.2 2) Wind: ASCE 7-16; Vult=115mph (3-second gust) BOT CHORD 2x4 SPF Xo.2 *Except* 18-17:2x3 SPF No.2, 3-15:2x4 SPF 200F 2.0E 2) Wind: ASCE 7-16; Vult=115mph (3-second gust) WEBS 2x3 SPF No.2 *Except* 18-17:2x3 SPF No.2, No.2, 11-10:2x6 SPF No.2 2) Wind: ASCE 7-16; Vult=115mph (3-second gust) WEBS 2x3 SPF No.2 *Except* 12-7,11-9:2x4 SPF No.2, 11-10:2x6 SPF No.2 2) Wind: ASCE 7-16; Vult=115mph (3-second gust) WEDGE Left: 2x4 SPF No.2 2) Wind: ASCE 7-16; Vult=115mph (3-second gust) WEDG Left: 2x4 SPF No.2 2) Wind: ASCE 7-16; Vult=115mph (3-second gust) BRACING 7) This truss has been designed for a 10-0 psf bottom chord live load nonconcurrent with any other live loads. 4) BOT CHORD Structural wood sheathing directly applied or 1-8-10 oc purlins, except end verticals. 5) All bearings are assumed to be SPF No.2. BOT CHORD Size 2-0-3-8, 11=0-3-8 Max Horiz 2=154 (LC 7) Max Uplift 2=-28 (LC 8), 11=-17 (LC 9) Max Grav 2=154/40, 6-7=-2033/11.1 7) This truss is designed in accordance with the 2018 International Residential Code sections RS02.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. FORCES (b) · Maximum Compression/Maximum Tension -22-232/124, 9-10=-756/94, 10-11=-543/88	
BCDL10.0CodeIRC2018/TPI2014Matrix-SWind(LL)0.1816-17>999240Weight: 14LUMBER TOP CHORD2x4 SPF 2100F 1.8 "Except" 5-7:2x4 SPF No.2, 15:2x6 SPF No.22Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0pst; BCDL=6.0pst; BCDL=6.0pst; BCDL=6.0pst; Cat. II; Exp C; Enclosed; MWFRS (envelope); cantilever left and right exposed; end vertical left and right exposed; Lumber DOL=1.602BOT CHORD2x4 SPF No.2 "Except" 18-17:2x3 SPF No.2, 3-15:2x4 SPF 2400F 2.0E2Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0pst; BCDL=6.0pst; BCDL=6.0pst; Cat. II; Exp C; Enclosed; MWFRS (envelope); cantilever left and right exposed; end vertical left and right exposed; Lumber DOL=1.602WEBS2x3 SPF No.2 "Except" 12-7,11-9:2x4 SPF No.2, 11-10:2x6 SPF No.27This truss has been designed for a 10.0 pst bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.BOT CHORDStructural wood sheathing directly applied or 1-8-10 oc purlins, except end verticals. Bracing.**WEBS1 Row at midpt Max Upitf 2=-28 (LC 8), 11=-17 (LC 9) Max Grav 2=1541 (LC 1), 11=-1467 (LC 1) Max Upitf 2=-28 (LC 8), 11=-17 (LC 9) Max Grav 2=1541 (LC 1), 11=-1467 (LC 1) Max Upitf 2=-232/21/24, 9-10=-756/94, 10-11=-543/88Vind LASCE 7-16; Vult=115mph (3-second gust) Vasd=91mp; Vasdes ProceTOP CHORD1-2=0/3, 2-3=-1716/48, 3-4=-3077/63, 4-6=-2184/64, 6-7=2033/117, 7-9=-2232/124, 9-10=-756/94, 10-11=-543/88Vind Assec 7-16; Vult=10 Max Upitf 2=-223/21/24, 9-10=-756/94, 10-11=-543/88	GRIP 197/144
LUMBER TOP CHORD 2x4 SPF 2100F 1.8E *Except* 5-7:2x4 SPF No.2, 1-5:2x6 SPF No.2 2) Wind: ASCE 7-16; Vult=115mph (3-second gust) BOT CHORD 2x4 SPF Xo.2 *Except* 18-17:2x3 SPF No.2, 3-15:2x4 SPF 200F 2.0E 2) Wind: ASCE 7-16; Vult=115mph (3-second gust) WEBS 2x3 SPF No.2 *Except* 18-17:2x3 SPF No.2, No.2, 11-10:2x6 SPF No.2 2) Wind: ASCE 7-16; Vult=115mph (3-second gust) WEBS 2x3 SPF No.2 *Except* 12-7,11-9:2x4 SPF No.2, 11-10:2x6 SPF No.2 2) Wind: ASCE 7-16; Vult=115mph (3-second gust) WEDGE Left: 2x4 SPF No.2 2) Wind: ASCE 7-16; Vult=115mph (3-second gust) WEDG Left: 2x4 SPF No.2 2) Wind: ASCE 7-16; Vult=115mph (3-second gust) BRACING 7) This truss has been designed for a 10-0 psf bottom chord live load nonconcurrent with any other live loads. 4) BOT CHORD Structural wood sheathing directly applied or 1-8-10 oc purlins, except end verticals. 5) All bearings are assumed to be SPF No.2. BOT CHORD Size 2-0-3-8, 11=0-3-8 Max Horiz 2=154 (LC 7) Max Uplift 2=-28 (LC 8), 11=-17 (LC 9) Max Grav 2=154/40, 6-7=-2033/11.1 7) This truss is designed in accordance with the 2018 International Residential Code sections RS02.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. FORCES (b) · Maximum Compression/Maximum Tension -22-232/124, 9-10=-756/94, 10-11=-543/88	9 lb FT = 10%
FORCES (lb) - Maximum Compression/Maximum Tension TOP CHORD 1-2=0/3, 2-3=-1716/48, 3-4=-3077/63, 4-6=-2184/64, 6-7=-2033/117, 7-9=-2232/124, 9-10=-756/94, 10-11=-543/88	<u>2 IU</u> I ⁻ I = IU70
TOP CHORD 1-2=0/3, 2-3=-1716/48, 3-4=-3077/63, 4-6=-2184/64, 6-7=-2033/117, 7-9=-2232/124, 9-10=-756/94, 10-11=-543/88	
12-14=0/230 11-12=0/2025	FMISSOL
WEBS 3-18=-1070/131, 4-16=0/394, 4-15=-1084/115, 12-15=0/1255, 7-15=-67/965, 7-12=-87/730, 9-12=-502/200, 9-11=-1673/0 NOTES 1) Unbalanced roof live loads have been considered for	SEVIER

this design.

PE-200101880


ONAL

E

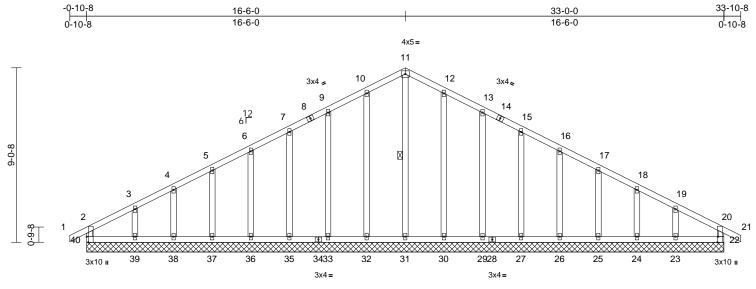
April 30,2024

 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.
 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not besign value for use only with with twit even connectors. This design is based only upon parameters shown, and is for an individual building designer must verify the applicability of design parameters and properly incorporate this design into the overall building designer must verify the applicability of design parameters and properly incorporate this design into the overall building designer. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcscomponents.com)

Job	Truss	Truss Type	Qty	Ply	Lot 179 HT	
B240092	D7	Roof Special	1	1	Job Reference (optional)	165199419
Wheeler Lumber, Waverly, KS -	66871,	-		•	2024 MiTek Industries, Inc. Fri Apr 26 13:54:29 sB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f	Page: 1

Scale = 1:63.3

00010 = 1.00.0													
Plate Offsets (2	X, Y): [2:0-3-8,Edge], [[3:0-8-0,0-3-2], [5:0-4	4-0,Edge	e], [12:Edge,0-5	-13], [15:0-4-0,0-	3-4], [21:0)-2-8,0-1-8], [2	22:0-3-0),0-0-8]				
Loading TCLL (roof) TCDL BCLL BCDL	(psf) 25.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC20 ⁷	18/TPI2014	CSI TC BC WB Matrix-S	0.64 0.88 0.85	DEFL Vert(LL) Vert(CT) Horz(CT) Wind(LL)	-0.76 0.45	(loc) 15-16 15-16 12 15-16	l/defl >895 >514 n/a >999	L/d 360 240 n/a 240	PLATES MT20 M18AHS Weight: 161 lb	GRIP 197/144 142/136 FT = 10%
LUMBER TOP CHORD BOT CHORD WEBS WEDGE BRACING TOP CHORD	2x4 SPF No.2 *Excep 2.0E 2x4 SPF No.2 *Excep No.2, 3-20:2x4 SPF 2 2x3 SPF No.2 *Excep No.2 Left: 2x4 SPF No.2 Structural wood shea	pt* 23-22,18-16:2x3 5 2400F 2.0E pt* 21-17,12-11:2x4 5 athing directly applied	2 SPF SPF 3 4	 this design. Wind: ASCE Vasd=91mpl II; Exp C; En and right exp Lumber DOL All plates are chord live loa 	roof live loads ha 7-16; Vult=115m n; TCDL=6.0psf; closed; MWFRS bosed ; end vertic =1.60 plate grip e MT20 plates un as been designed ad nonconcurren has been designed	nph (3-sec BCDL=6. (envelope cal left and DOL=1.6 less other f for a 10. t with any	cond gust) Dpsf; h=25ft; (e); cantilever I d right expose) wise indicated D psf bottom other live load	Cat. eft d; d.					
	Max Horiz 2=112 (LC Max Uplift 2=-28 (LC	applied or 10-0-0 oc 21,18-19. 2=0-3-8 5) 8), 12=-17 (LC 9)	6 7	 on the bottor 3-06-00 tall the chord and are All bearings Provide mechanism plate 2 and 17 lb the 	n chord in all are by 2-00-00 wide v by other member are assumed to be hanical connective capable of withe uplift at joint 12. designed in acco	as where will fit betw s, with BC be SPF No on (by oth standing 2	a rectangle ween the botto DL = 10.0psf. 0.2 . ers) of truss to 8 lb uplift at jo	om					
FORCES	Max Grav 2=1625 (L0 (lb) - Maximum Comp Tension	pression/Maximum			Residential Cod nd referenced sta Standard			nd					
TOP CHORD	1-2=0/3, 2-3=-1652/3 4-6=-3387/31, 6-7=-3 11-12=-1432/51, 7-8= 8-10=-3938/0, 10-11= 2-23=-99/868, 22-23= 3-22=-60/2887, 21-22 20-21=-77/8, 19-20= 6-17=-207/94, 18-19= 16-17=0/2262, 15-16 8-15=-356/119, 13-14	3297/84, =-3956/56, =-2540/38 =-58/644, 2=-67/3001, 0/93, 17-20=0/178, =-22/0, 16-18=-1/15, =0/2249, 14-15=0/95								·	80	STATE OF M	
WEBS NOTES	4-21=-680/81, 4-17=- 17-21=-47/3219, 7-15 7-17=-60/1615, 13-15 10-13=-1164/66, 11-1 3-23=-929/115	-239/135, 5=-75/1989, 5=0/2478, 10-15=0/12									A A A A A A A A A A A A A A A A A A A	PE-2001	LENGIL


April 30,2024

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent oulgase with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TPI1 Quality Criteria, and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcscomponents.com)

Job	Truss	Truss Type	Qty	Ply	Lot 179 HT	
B240092	D8	GABLE	1	1	Job Reference (optional)	165199420

Run: 8.73 S Apr 3 2024 Print: 8.730 S Apr 3 2024 MiTek Industries, Inc. Fri Apr 26 13:54:29 ID:Lek3CAANj_gYbKvtCQHtmQzKvNM-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

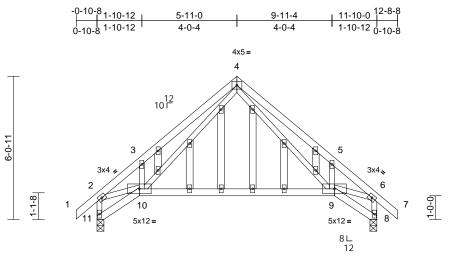
33-0-0	
--------	--

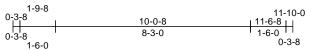
Scale = 1:59.7

Plate Offsets (X, Y): [22:0-3-8,Edge], [40:0-3-8,Edge]

		1	-									
Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15	TC	0.07		n/a	()	n/a	999	MT20	197/144
TCDL	10.0	Lumber DOL	1.15	BC	0.06		n/a	-	n/a	999	-	
BCLL	0.0*	Rep Stress Incr	YES	WB	0.16	· · /	0.01	22	n/a	n/a		
BCDL	10.0	Code	IRC2018/TPI2014	Matrix-R		- (- ,					Weight: 164 lb	FT = 10%
											- 5	
LUMBER			TOP CHOR								ed at 2-0-0 oc.	
TOP CHORD	2x4 SPF No.2			3-4=-91/95, 4-5	,	,						a 10.0 psf bottom
BOT CHORD	2x4 SPF No.2			6-7=-50/173, 7-			,					any other live loads.
WEBS	2x4 SPF No.2			10-11=-45/248,								a live load of 20.0psf
OTHERS	2x4 SPF No.2			12-13=-42/196,		,					ord in all areas wi	
BRACING				15-16=-42/138,		,	4/40					between the bottom
TOP CHORD		athing directly applied	d or	17-18=-46/86, 1		,	,				ner members.	
	6-0-0 oc purlins, ex		BOT CHOR	20-21=0/32, 20- D 39-40=-33/113,							ssumed to be SF	v others) of truss to
BOT CHORD	0 0 ,	applied or 10-0-0 oc	BOTCHOR	37-38=-33/113,								ing 42 lb uplift at joint
	bracing.			35-36=-33/113,								ift at joint 32, 57 lb
WEBS	1 Row at midpt	11-31		32-33=-33/113,								35, 53 lb uplift at joint
REACTIONS		0, 23=33-0-0, 24=33-		30-31=-33/113,								ift at joint 38, 116 lb
		0, 26=33-0-0, 27=33-		27-29=-33/113,								30, 58 lb uplift at joint
		0, 30=33-0-0, 31=33-		25-26=-33/113,	24-25=-33	/113,						ift at joint 26, 58 lb
		0, 33=33-0-0, 35=33-		23-24=-33/113,	22-23=-33	/113		up	lift at join	it 25, 3	9 lb uplift at joint	24 and 103 lb uplift at
		0, 37=33-0-0, 38=33- 0, 40=33-0-0	^{U-U,} WEBS	11-31=-169/0, 1	0-32=-150	/74, 9-33=-139	9/81,	joir	nt 23.			
	Max Horiz 40=-134 (,		7-35=-140/78, 6			′81,				gned in accordan	
	Max Uplift 22=-17 (L			4-38=-137/66, 3								tions R502.11.1 and
		.C 9), 25=-58 (LC 9),	,	12-30=-150/73,		,					ferenced standar	d ANSI/TPI 1.
		.C 9), 27=-53 (LC 9),		15-27=-140/77,		,		LOAD	CASE(S	5) Sta	andard	
		C 9), 30=-49 (LC 9),		17-25=-141/80,		7/68,						
		.C 8), 33=-57 (LC 8),		19-23=-151/112	<u></u>							
		C 8), 36=-53 (LC 8),	NOTES								000	1000
		C 8), 38=-35 (LC 8),	,	nced roof live loads h	have been	considered for					8 OF	MIC
	39=-116 ((LC 8), 40=-42 (LC 9)	this des	0						-	TATE OF	MISSO
	Max Grav 22=184 (I	LC 1), 23=199 (LC 22		SCE 7-16; Vult=115			N -4			E		
		LC 1), 25=181 (LC 22	·/, IL Exe (1mph; TCDL=6.0psf C; Enclosed; MWFR						B	SCOT	TM. YEY
		LC 1), 27=180 (LC 1),	oontilou	er left and right expo						R	SEV	IER \ Y
		LC 1), 30=190 (LC 22), simulatav	oosed; Lumber DOL						21		1 * 8
		LC 18), 32=190 (LC 2	1), or T	lesigned for wind loa						И	di	
	,	LC 1), 35=180 (LC 1),	, only E	or studs exposed to						N.S	The	in a la la la
		LC 1), 37=181 (LC 21 LC 1), 39=199 (LC 21),	ndard Industry Gable							INUN	
	40=184 (I			ult qualified building						N	O PE-2001	018807
FORCES	(Ib) - Maximum Corr	,		s are 2x4 MT20 unle						X	A CAN	15H
FURGES	(ID) - Maximum Corr Tension	ipression/iviaximum		equires continuous b							WSI0	FNUA
	1013011			be fully sheathed fr							PE-2001	
			braced	against lateral move	ment (i.e. o	liagonal web).					aller a	TUR
						,					Apr	1 20 2024

April 30,2024


Page: 1



WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

Job	Truss	Truss Type	Qty	Ply	Lot 179 HT	
B240092	E1	GABLE	1	1	Job Reference (optional)	165199421

Run: 8.73 S Apr 3 2024 Print: 8.730 S Apr 3 2024 MiTek Industries, Inc. Fri Apr 26 13:54:29 ID:p4_c7DvQapVS5sHzVsjKN5yiJAW-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

Scale = 1:48.7

FORCES

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15	TC	0.22	Vert(LL)	-0.15	9-10	>913	360	MT20	197/144
TCDL	10.0	Lumber DOL	1.15	BC	0.51	Vert(CT)	-0.32	9-10	>441	240		
BCLL	0.0*	Rep Stress Incr	YES	WB	0.22	Horz(CT)	0.04	8	n/a	n/a		
BCDL	10.0	Code	IRC2018/TPI2014	Matrix-S		Wind(LL)	0.02	9-10	>999	240	Weight: 66 lb	FT = 10%
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SPF No.2 2x3 SPF No.2 2x4 SPF No.2 Structural wood she 5-9-10 oc purlins, e Rigid ceiling directly bracing.	(LC 6) C 9), 11=-71 (LC 8)	d or 9) All bearings 10) Provide mec bearing plate 11) Provide mec bearing plate 12) This truss is	as been designed f ad nonconcurrent has been designed n chord in all area by 2-00-00 wide w ny other members. are assumed to be int(s) 11, 8 consid TPI 1 angle to grai build verify capacity thanical connection e capable of withst uplift at joint 8. designed in accor Residential Code	with any d for a liv s where ill fit betv e SPF No ers para n formuli o of beari n (by oth anding 7 dance w	other live loa e load of 20.0 a rectangle veen the botto 0.2. Illel to grain va a. Building ng surface. ers) of truss t '1 lb uplift at j ith the 2018	0psf om alue to joint					

International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

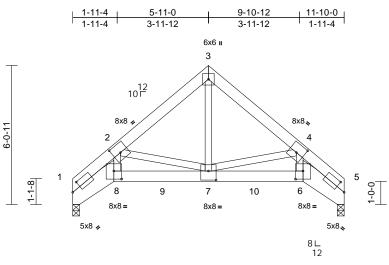
LOAD CASE(S) Standard

CANTE OF MISSOUR SCOTT M. SEVIER PE-2001018807 PE-2001018807

April 30,2024

16023 Swingley Ridge Rd. Chesterfield, MO 63017 314.434.1200/ MITek-US.com

	Tension
TOP CHORD	1-2=0/44, 2-3=-860/115, 3-4=-943/273,
	4-5=-896/208, 5-6=-844/48, 6-7=0/44,
	2-11=-602/98, 6-8=-597/58
BOT CHORD	10-11=-199/216, 9-10=-27/344, 8-9=-20/45
WEBS	4-9=-155/511, 5-9=-239/202, 4-10=-208/622,
	3-10=-233/198, 2-10=-51/633, 6-9=-1/633
NOTES	
1) Unbalance	d roof live loads have been considered for


(lb) - Maximum Compression/Maximum

- this design.
 Wind: ASCE 7-16; Vult=115mph (3-second gust)
 Viad: 01mph TCDL = 0 0pt fr DCDL = 0 0pt fr 25th C
- Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
- Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- All plates are 2x4 MT20 unless otherwise indicated.
 Truss to be fully sheathed from one face or securely
- braced against lateral movement (i.e. diagonal web).
- 6) Gable studs spaced at 1-4-0 oc.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPH Claulity Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

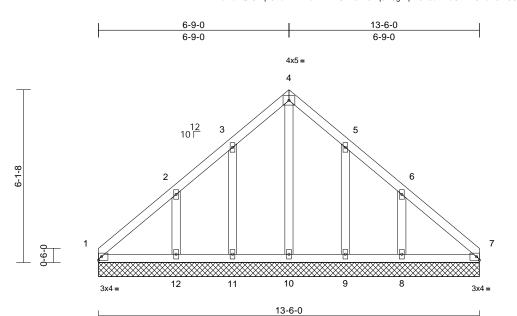
Job	Truss	Truss Type	Qty	Ply	Lot 179 HT	
B240092	E2	Roof Special Girder	1	2	Job Reference (optional)	165199422

Run: 8.73 S Apr 3 2024 Print: 8.730 S Apr 3 2024 MiTek Industries, Inc. Fri Apr 26 13:54:29 ID:Lek3CAANj_gYbKvtCQHtmQzKvNM-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Scale = 1:50.2

	3,0-3-0], [2:0-4-0,0-4-8], [4:0	0-4-0,0-4-	8], [5:0-4-13,0-	3-0], [6:0-4-0,0-	4-4], [7:0-4	-0,0-4-12], [8	8:0-4-0,0-4	4-4]				
Loading	(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15		тс	0.51	Vert(LL)	-0.07	6-7	>999	360	MT20	197/144
TCDL	10.0	Lumber DOL	1.15		BC	0.43	Vert(CT)	-0.12	6-7	>999	240		
BCLL	0.0*	Rep Stress Incr	NO		WB	0.61	Horz(CT)	0.12	5	n/a	n/a		
BCDL	10.0	Code	IRC201	8/TPI2014	Matrix-S		Wind(LL)	0.04	7-8	>999	240	Weight: 167 lb	FT = 10%
LUMBER TOP CHORD 2x6 SPF No 30T CHORD 2x10 SP 24(2400F 2.0E WEBS 2x4 SPF No BRACING TOP CHORD Structural w 4-9-13 oc pu 30T CHORD Rigid ceiling bracing. REACTIONS (size) 1: Max Horiz 1: Max Horiz 1: Max Grav 1: FORCES (lb) - Maximu Tension TOP CHORD 1-2=-9213/3 3-4=-4195/1 30T CHORD 1-8=-322/66 6-7=-125/52	2 OF 2.0E 2 2 0-3-8, { -141 (L -118 (L -4029 (L IM Com 43, 2-3= 32, 4-5= 49, 7-8= 49, 7-8= 59, 4-7= 32, 2-8= ed toge vs: 5 follows d as folli 6 - 2 ro s: 2x4 - equally 7) or baa only conr	E *Except* 8-6:2x6 SI athing directly applie applied or 10-0-0 oc 5=0-3-8 C 6) C 8), 5=-118 (LC 9) C 1), 5=4029 (LC 1) pression/Maximum -4195/157, -9213/243 -267/5249, -151/6649 -2098/191, 4-6=-64/- -140/4960 ther with 10d s: 2x6 - 2 rows ows: 2x10 - 2 rows ws staggered at 0-4- 1 row at 0-9-0 oc. applied to all plies, ck (B) face in the LO. nections have been	4) P d or 6) ; 7) 8) 9) 1(4960, 1 ⁻¹ 4960, 1 ⁻¹	 Wind: ASCE Vasd=91mpi Lyap C; Er cantilever let right expose This truss ha chord live loo * This truss I on the botton 3-06-00 tall I chord and ar All bearings Bearing at jousing ANSI/ designer shot Provide mec bearing plate 5 and 118 lb This truss is International R802.10.2 a Hanger(s) on provided suf lb down and up at 3-11-0 1404 lb down and 27 lb up selection of responsibility OAD CASE(S) Dead + Rop Plate Increa: Uniform Lo Vert: 1-3 Concentrat 	7-16; Vult=115 h; TCDL=6.0psf (closed; MWFR8 t and right expcd d; Lumber DOL- is been designer n chord in all ar by 2-00-00 wide my other member are assumed to int(s) 5, 1 consi FPI 1 angle to g puld verify capad hanical connect e capable of with uplift at joint 1. designed in acc Residential Connection ficient to suppor 27 lb up at 1-9 h, 1404 lb down n and 27 lb up at at 10-0-8 on busch connection y of others. Standard of Live (balance ase=1.15	; BCDL=6.(S (envelope osed ; end v, esed	cond gust) cond gust) pops(; h=25ft; a) exterior zo vertical left ar grip DOL=1) psf bottom other live load e load of 20. a rectangle veen the bott c.2. el to grain va a. Building ng surface. ers) of truss 18 lb uplift a ith the 2018 is R502.11.1 a ISI/TPI 1.) shall be ated load(s) 1 down and 22 up at 5-11-0, and 1404 lb of J. The desig is the Increase=1. B=-20, 5-6=-2	Cat. ne; nd .60 ads. Opsf om lue to t joint and l404 7 lb and lown n/ 15,	7-8	>999		Weight: 167 lb	MISSOLIP T M. ER BER 018807

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)


Afford Swingley Ridge Rd. Chesterfield, MO 63017 314.434.1200 / MiTek-US.com

Page: 1

Job	Truss	Truss Type	Qty	Ply	Lot 179 HT	
B240092	F1	Common Supported Gable	1	1	Job Reference (optional)	165199423

Run: 8.73 S Apr 3 2024 Print: 8.730 S Apr 3 2024 MiTek Industries, Inc. Fri Apr 26 13:54:29 ID:Pomu?Q1CBqIf6DcAIErxilzahw1-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

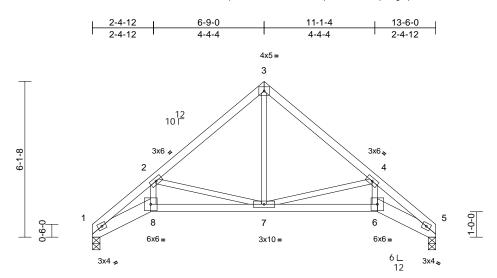
Page: 1

Scale = 1:40.8

Loading	(psf)	Spacing	2-0-0	csi		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15	TC	0.08	Vert(LL)	n/a	-	n/a	999	MT20	197/144
TCDL	10.0	Lumber DOL	1.15	BC	0.05	Vert(TL)	n/a	-	n/a	999		
BCLL	0.0*	Rep Stress Incr	YES	WB	0.07	Horiz(TL)	0.00	7	n/a	n/a		
BCDL	10.0	Code	IRC2018/TPI2014	Matrix-S							Weight: 56 lb	FT = 10%
	2x4 SPF No.2 2x4 SPF No.2 Structural wood she 6-0-0 oc purlins. Rigid ceiling directly bracing. (size) 1=13-6-0, 9=13-6-0, 12=13-6-(Max Horiz 1=-151 (L Max Uplift 1=-24 (LC (LC 9), 11 8) Max Grav 1=145 (LC 8=276 (LC	C 4) : 4), 8=-139 (LC 9), 9= =-80 (LC 8), 12=-140 C 16), 7=123 (LC 15), C 16), 9=173 (LC 16), LC 18), 11=174 (LC 15	only. Fc see Star or consu 4) All plate 5) Gable rc 6) Gable st 7) This trus chord liv 8) * This tru on the b 3-06-00 chord ar 9) All beari 10) Provide bearing 1, 80 lb uplift at j 5), 11) This trus internati	esigned for wind load rstuds exposed to w dard Industry Gable It qualified building d a are 2x4 MT20 unles quires continuous bc uds spaced at 2-0-0 s has been designed to back at 2-0-0 wide v s has been designed to any other member ngs are assumed to b mechanical connection loate capable of with uplift at joint 11, 140 bint 9 and 139 Ib uplis s is designed in acco onal Residential Cod .2 and referenced st	vind (norm End Deta esigner as so otherwisi totom chor oc. I for a 10.0 t with any ed for a liv ed for a liv as where will fit betw so on (by oth standing 2 lb uplift at iff at joint a ordance w e sections	al to the face ils as applical is per ANSI/TK se indicated. d bearing. D psf bottom other live loa e load of 20.0 a rectangle veen the botto D.2. ers) of truss t 4 lb uplift at j joint 12, 79 lb 3. ith the 2018 i R502.11.1 a), ble, bl 1. ds. ppsf pm o pint p					
FORCES	(lb) - Maximum Corr Tension		LOAD CASI	(S) Standard								
TOP CHORD	1-2=-143/120, 2-3=- 4-5=-76/113, 5-6=-8	116/86, 3-4=-92/130, 3/56, 6-7=-117/81										
BOT CHORD	1-12=-56/121, 11-12 9-10=-56/121, 8-9=-	2=-56/121, 10-11=-56/1 56/121, 7-8=-56/121	121,								TATE OF J	MISSO
WEBS	4-10=-126/3, 3-11=- 5-9=-143/103, 6-8=-	144/104, 2-12=-210/16 209/163	64,							B	STA SCOT	TM
this design 2) Wind: ASC Vasd=91m II; Exp C; I	ed roof live loads have n. CE 7-16; Vult=115mph nph; TCDL=6.0psf; BC Enclosed; MWFRS (er left and right exposed	(3-second gust) DL=6.0psf; h=25ft; Ca ivelope) exterior zone;							۵	A A	SEV NUM PE-2001	iseret

right exposed; Lumber DOL=1.60 plate grip DOL=1.60

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)


April 30,2024

ESSIONAL E

Job	Truss	Truss Type Qty Ply Lot 179 HT		Lot 179 HT		
B240092	F2	Roof Special	5	1	Job Reference (optional)	165199424

Run: 8.73 S Apr 3 2024 Print: 8.730 S Apr 3 2024 MiTek Industries, Inc. Fri Apr 26 13:54:30 ID:F6Lap_IHISBV82TS33OFShzahtp-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15	тс	0.24	Vert(LL)	-0.04	7-8	>999	360	MT20	197/144
TCDL	10.0	Lumber DOL	1.15	BC	0.34	Vert(CT)	-0.08	7-8	>999	240		
BCLL	0.0*	Rep Stress Incr	YES	WB	0.34	Horz(CT)	0.08	5	n/a	n/a		
BCDL	10.0	Code	IRC2018/TPI2014	Matrix-S		Wind(LL)	0.03	7-8	>999	240	Weight: 53 lb	FT = 10%

TOP CHORD	2x4 SPF I	No.2
BOT CHORD	2x6 SPF I	No.2 *Except* 8-6:2x4 SPF No.2
WEBS	2x3 SPF I	No.2
BRACING		
TOP CHORD	Structural	wood sheathing directly applied or
	4-8-14 oc	purlins.
BOT CHORD	Rigid ceili	ing directly applied or 10-0-0 oc
	bracing.	
REACTIONS	(size)	1=0-3-8, 5=0-3-8
	Max Horiz	1=-150 (LC 6)
	Max Uplift	1=-60 (LC 8), 5=-60 (LC 9)
	Max Grav	1=594 (LC 1), 5=594 (LC 1)
FORCES	(lb) - Max	imum Compression/Maximum
	Tension	
TOP CHORD	1-2=-1507	7/259, 2-3=-667/96, 3-4=-667/122,
	4-5=-1507	7/131
BOT CHORD	1-8=-285/	1277 7-8=-250/1099

- 1-8=-285/1277, 7-8=-250/1099, BOT CHORD 6-7=-67/1027, 5-6=-76/1194
- WEBS 4-7=-608/204, 4-6=0/555, 3-7=-30/419, 2-8=-76/591. 2-7=-672/268

NOTES

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
- 3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. * This truss has been designed for a live load of 20.0psf
- 4) on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- All bearings are assumed to be SPF No.2 . 5)
- 6) Bearing at joint(s) 1, 5 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.

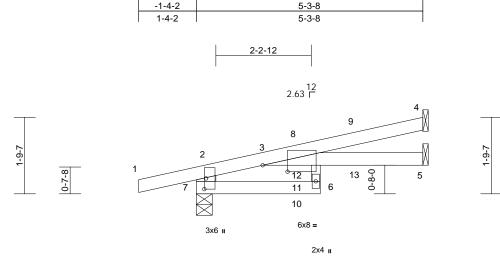
1 and 60 lb uplift at joint 5.

8) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and

R802.10.2 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard

April 30,2024


 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.
 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not beigh valid for use only with with with with the contractions. This design is based only door parameters shown, and is for an individual dualing component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria**, and **DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcscomponents.com)

Job	Truss	Truss Type	Qty	Ply	Lot 179 HT	
B240092	J1	Diagonal Hip Girder	2	1	Job Reference (optional)	165199425

Run: 8.73 S Apr 3 2024 Print: 8.730 S Apr 3 2024 MiTek Industries, Inc. Fri Apr 26 13:54:30 ID:t5IN2KQdAXrK8QE5zqsszuzjI_A-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Pa

Scale = 1:26.9

Plate Offsets (X, Y): [3:0-7-0,0-1-13], [7:0-3-0,0-0-8]

	(7, 1). [0.0 1 0,0 1 10], [1:0 0 0,0 0 0]											-
Loading	(psf)	Spacing	2-0-0		csi		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15		тс	0.38	Vert(LL)	-0.06	6	>999	360	MT20	197/144
TCDL	10.0	Lumber DOL	1.15		BC	0.33	Vert(CT)	-0.13	6	>456	240		
BCLL	0.0*	Rep Stress Incr	NO		WB	0.00	Horz(CT)	0.04	5	n/a	n/a		
BCDL	10.0	Code	IRC201	8/TPI2014	Matrix-R	-	Wind(LL)	0.06	6	>999	240	Weight: 16 lb	FT = 10%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SPF No.2 *Exce 2x6 SPF No.2 Structural wood she 5-3-8 oc purlins, ex Rigid ceiling directly bracing.	athing directly applie cept end verticals. applied or 6-0-0 oc anical, 5= Mechanica 4) 2 8), 7=-101 (LC 4)	8) ed or al, 9) L(1)	International R802.10.2 a Hanger(s) o provided suf down and 33 up at 3-8-5 at 3-8-5 on connection o In the LOAD of the truss a	of Live (balanced ase=1.15	le sections andard AN in device(s t concentra and 64 lb d at 2-4-3 he design/ esponsibili in, loads a it (F) or ba	R502.11.1 a ISI/TPI 1.) shall be ted load(s) 7 down and 30 8, and 16 bc selection of s ty of others. oplied to the ck (B).	71 lb lb down such face					
FORCES	(lb) - Maximum Com Tension	pression/Maximum		Concentrat	e=-70, 2-3=-70, 3 ed Loads (lb)	-4=-70, 6-	7=-20, 3-5=-2	20					
TOP CHORD)/24, 2-3=-21/60,		Vert: 13	=-4 (B)								
BOT CHORD	6-7=-89/0, 3-6=0/10	9, 3-5=0/0											
NOTES													
Vasd=91r II; Exp C; cantilever right expo 2) This truss chord live	CE 7-16; Vult=115mph mph; TCDL=6.0psf; BC Enclosed; MWFRS (er left and right exposed osed; Lumber DOL=1.6 s has been designed foi e load nonconcurrent wi ss has been designed f	DL=6.0psf; h=25ft; (nvelope) exterior zor ; end vertical left an 0 plate grip DOL=1.0 r a 10.0 psf bottom th any other live load	ne; d 60 ds.									STATE OF SCOT	TM. $\bigvee \bigvee \bigvee$

- This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- 4) All bearings are assumed to be SPF No.2.
- 5) Refer to girder(s) for truss to truss connections.
- Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 101 lb uplift at joint 7 and 49 lb uplift at joint 4.

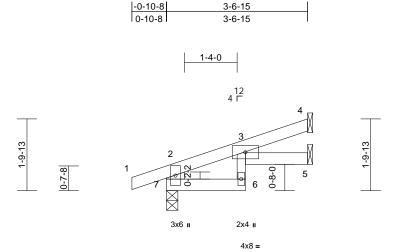
WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permenter is always required for stability and to prevent colleges with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcscomponents.com)

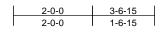
E

April 30,2024

NUMBER

PE-2001018807


SSIONAL


C

Job	Truss	Truss Type	Qty	Ply	Lot 179 HT	
B240092	J2	Jack-Open	2	1	Job Reference (optional)	165199426

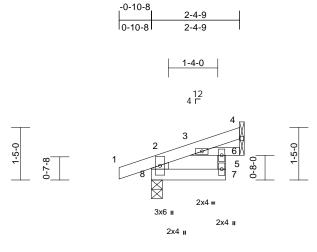
Run: 8.73 S Apr 3 2024 Print: 8.730 S Apr 3 2024 MiTek Industries, Inc. Fri Apr 26 13:54:30 ID:hR3McxtOmiAjFWISqtZleOzjI_t-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:29.2

Loading	(psf)	Spacing	2-0-0	csi		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15	TC	0.18	Vert(LL)	-0.01	6	>999	360	MT20	197/144
TCDL	10.0	Lumber DOL	1.15	BC	0.11	Vert(CT)	-0.02	6	>999	240		
BCLL	0.0*	Rep Stress Incr	YES	WB	0.00	Horz(CT)	0.01	5	n/a	n/a		
BCDL	10.0	Code	IRC2018/TPI2014	Matrix-R		Wind(LL)	0.01	6	>999	240	Weight: 10 lb	FT = 10%
LUMBER			7) This true	s is designed in acco	ordance wi	th the 2018						
TOP CHORD	2x4 SPF No.2			onal Residential Cod			and					
BOT CHORD	2x4 SPF No.2 *Exce	ept* 6-3:2x3 SPF No	.2 R802.10	.2 and referenced sta	andard AN	ISI/TPI 1.						
WEBS	2x6 SPF No.2		LOAD CAS	E(S) Standard								
BRACING												
TOP CHORD	Structural wood she		ed or									
	3-6-15 oc purlins, e											
BOT CHORD	DT CHORD Rigid ceiling directly applied or 6-0-0 oc											
REACTIONS	bracing. EACTIONS (size) 4= Mechanical, 5= Mechanical,											
REACTIONS	(size) 4= Mecha 7=0-3-8		ai,									
	Max Horiz 7=58 (LC	4)										
	Max Uplift 4=-32 (LC	2 8), 5=-5 (LC 8), 7=	-68									
	(LC 4)											
	Max Grav 4=82 (LC	1), 5=54 (LC 3), 7=2	238									
	(LC 1)											
FORCES	(lb) - Maximum Corr Tension	pression/Maximum										
TOP CHORD	2-7=-233/87, 1-2=0/	24 2-356/0 3-4	16/22									
BOT CHORD	6-7=-4/10, 3-6=-4/44		10/22									
NOTES	,	,										
	E 7-16; Vult=115mph	(3-second gust)										
	ph; TCDL=6.0psf; BC		Cat.									
II; Exp C; E	Enclosed; MWFRS (er	velope) exterior zor	ne;									-
	left and right exposed	,									COOL	alle
	sed; Lumber DOL=1.6		60								B F OF I	MISS

- This truss has been designed for a 10.0 psf bottom 2) chord live load nonconcurrent with any other live loads.
- 3) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- All bearings are assumed to be SPF No.2 . 4)
- 5) Refer to girder(s) for truss to truss connections.
- 6) Provide mechanical connection (by others) of truss to
- bearing plate capable of withstanding 68 lb uplift at joint 7, 32 lb uplift at joint 4 and 5 lb uplift at joint 5.

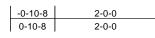

April 30,2024

 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.
 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not besign value for use only with with twit even connectors. This design is based only upon parameters shown, and is for an individual building designer must verify the applicability of design parameters and properly incorporate this design into the overall building designer must verify the applicability of design parameters and properly incorporate this design into the overall building designer. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcscomponents.com)

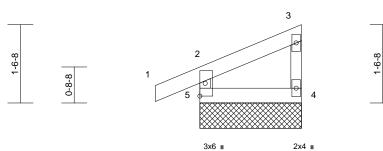
Job	Truss	uss Truss Type Qty Ply		Ply	Lot 179 HT	
B240092	J3	Jack-Open	2	1	Job Reference (optional)	165199427

Run: 8.73 S Apr 3 2024 Print: 8.730 S Apr 3 2024 MiTek Industries, Inc. Fri Apr 26 13:54:30 ID:oaj8VJ?Eja6xcSocclGQjDzjl0?-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

Scale = 1:31.1


Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15	TC	0.08	Vert(LL)	0.00	6	>999	360	MT20	197/144
TCDL	10.0	Lumber DOL	1.15	BC	0.06	Vert(CT)	0.00	3-6	>999	240		
BCLL	0.0*	Rep Stress Incr	YES	WB	0.00	Horz(CT)	0.00	5	n/a	n/a		
BCDL	10.0	Code	IRC2018/TPI2014	Matrix-R		Wind(LL)	0.00	3	>999	240	Weight: 8 lb	FT = 10%
LUMBER			LOAD CASE(S)	Standard								
TOP CHORD	2x4 SPF No.2		()									
BOT CHORD	2x3 SPF No.2 *Exc	ept* 8-7:2x4 SPF No.	2									
WEBS	2x6 SPF No.2											
BRACING												
TOP CHORD		eathing directly applie	ed or									
BOT CHORD	2-4-9 oc purlins, ex	v applied or 6-0-0 oc										
BOT CHORD	bracing.	y applied of 6-0-0 oc										
REACTIONS	0	anical, 5= Mechanica	d.									
	8=0-3-8		,									
	Max Horiz 8=42 (LC	,										
	Max Uplift 4=-22 (L											
	Max Grav 4=53 (LC (LC 1)	C 1), 5=54 (LC 3), 8=1	199									
FORCES	()	npression/Maximum										
TORGES	Tension	npression/maximum										
TOP CHORD	2-8=-178/72, 1-2=0	/24, 2-3=-40/0, 3-4=-	13/15									
BOT CHORD	7-8=-6/24, 6-7=0/32	2, 3-6=-24/6, 5-6=0/0										
NOTES												
	CE 7-16; Vult=115mp											
	nph; TCDL=6.0psf; B											
	Enclosed; MWFRS (e left and right exposed											
	sed; Lumber DOL=1.0										an	TOP
	has been designed for										OF J	MISSO
	load nonconcurrent w		ds.							1	TEOF	-050
,	s has been designed		psf							R		New Y
	tom chord in all areas									A	SCOT	
	Il by 2-00-00 wide wil any other members.	I fit between the botto	m							2	SEV	
	are assumed to be	SPF No 2								MY	142	
, 0	irder(s) for truss to tr								_	XY	au ,	SMAN
	echanical connection								-	5	NUM	
	ate capable of withsta	inding 61 lb uplift at jo	pint							N	OX PE-2001	018807
	b uplift at joint 4.									V	PE-2001	158
	is designed in accord al Residential Code s		od								SIONA	FNO
	and referenced stan		nu								UNA	L
											all a	
											Apr	il 30,2024

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)



Job	Truss	Truss Type	Qty	Ply	Lot 179 HT	
B240092	J4	Jack-Closed Supported Gable	1	1	Job Reference (optional)	165199428

Run: 8.73 S Apr 3 2024 Print: 8.730 S Apr 3 2024 MiTek Industries, Inc. Fri Apr 26 13:54:30 ID:Lek3CAANj_gYbKvtCQHtmQzKvNM-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

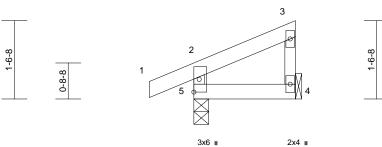
2-0-0

Scale = 1:22.7

Scale = 1:22.7									 		
Loading TCLL (roof) TCDL BCLL BCDL	10.0 Lumbe	Grip DOL 1 er DOL 1 Stress Incr Y	-0-0 15 15 ES RC2018/TPI2014	BC	0.06 0.02 0.00	Vert(CT)	in (n/a n/a 0.00	(loc) - - 4	L/d 999 999 n/a	PLATES MT20 Weight: 7 lb	GRIP 197/144 FT = 10%
LUMBER TOP CHORD 2x4 SPF BOT CHORD 2x4 SPF BOT CHORD 2x3 SPF BRACING TOP CHORD Structura 2-0-0 oc BOT CHORD Rigid ceil bracing. REACTIONS (size) Max Horiz Max Uplift Max Grav FORCES (lb) - Max Tension TOP CHORD 2-5=-149 BOT CHORD 4-5=-19/1 NOTES 1) Wind: ASCE 7-16; VU Vasd=91mph; TCDL= II; Exp C; Enclosed; A cantilever left and right right exposed; Lumber 2) Truss designed for w only. For studs expoosesee Standard Industry or consult qualified bu 3) Gable requires contin 4) Truss to be fully shead braced against lateral 5) Gable studs spaced at 6) This truss has been of chord live load nonco 7) * This truss has been of chord live load nonco 7) * This truss has been of chord live load nonco 7) * This truss has been of chord live load nonco	No.2 No.2 No.2 I wood sheathing dii ourlins, except end ing directly applied 4=2-0-0, 5=2-0-0 5=58 (LC 5) 4=-19 (LC 5), 5=-4 4=62 (LC 1), 5=16 imum Compression /52, 1-2=0/26, 2-3=- 2 It=115mph (3-secor 6.0psf; BCDL=6.0p MWFRS (envelope) - nt exposed; end ver r DOL=1.60 plate g ind loads in the plar sed to wind (normal / Gable End Details iliding designer as p uous bottom chord I thed from one face movement (i.e. dia t 2-0-0 cc. esigned for a 10.0 p nourrent with any ot designed for a 10.0 p	lirectly applied or d verticals. I or 10-0-0 oc 40 (LC 4) 68 (LC 1) n/Maximum =-43/9, 3-4=-45/2 ond gust) psf; h=25ft; Cat. exterior zone; ertical left and grip DCL=1.60 ane of the truss i to the face), s as applicable, per ANSI/TPI 1. bearing. e or securely agonal web). psf bottom other live loads. bload of 20.0psf a rectangle	 9) Provide mech bearing plate 5 and 19 lb u 10) This truss is of International R802.10.2 an LOAD CASE(S) 	nanical connection (capable of withstan plift at joint 4. designed in accorda Residential Code se Id referenced standa	nce wi	0 lb uplift at joint th the 2018 R502.11.1 and			5	STATE OF I STATE OF I SEVI	MISSOUR TM. ER BER 018807
chord and any other r 8) All bearings are assu		.2 .								SSIONA	LENG

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

and April 30,2024



Job	Truss	Truss Type	Qty	Ply	Lot 179 HT	
B240092	J5	Jack-Closed	5	1	Job Reference (optional)	165199429

Run: 8.73 S Apr 3 2024 Print: 8.730 S Apr 3 2024 MiTek Industries, Inc. Fri Apr 26 13:54:30 ID:Lek3CAANj_gYbKvtCQHtmQzKvNM-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

-0-10-8 2-0-0 0-10-8 2-0-0

2x4 🛛

2-0-0

Scale = 1:22.7

Scale = 1:22.7												
Loading TCLL (roof) TCDL BCLL BCDL	(psf) 25.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018/TPI2014	CSI TC BC WB Matrix-R	0.06 0.02 0.00	DEFL Vert(LL) Vert(CT) Horz(CT) Wind(LL)	in 0.00 0.00 0.00 0.00	(loc) 4-5 4-5 4 4-5	l/defl >999 >999 n/a >999	L/d 360 240 n/a 240	PLATES MT20 Weight: 7 lb	GRIP 197/144 FT = 10%
	Max Horiz 5=58 (LC Max Uplift 4=-19 (LC	cept end verticals. applied or 10-0-0 or anical, 5=0-3-8 5) 5 5), 5=-40 (LC 4)										
FORCES TOP CHORD BOT CHORD	Max Grav 4=62 (LC (lb) - Maximum Com Tension 2-5=-149/52, 1-2=0/ 4-5=-19/12	pression/Maximum	45/24									
 Vasd=91m II; Exp C; E cantilever I right expos 2) This truss I chord live I 3) * This truss on the bott 3-06-00 tal chord and 4) All bearing 5) Refer to gii 6) Provide me bearing pla 5 and 19 lb 7) This truss i Internation 	E 7-16; Vult=115mph ph; TCDL=6.0psf; BC Enclosed; MWFRS (er eft and right exposed sed; Lumber DOL=1.6 has been designed fo oad nonconcurrent wi is has been designed fo om chord in all areas I by 2-00-00 wide will any other members. s are assumed to be S rder(s) for truss to tru echanical connection (ate capable of withstar o uplift at joint 4. is designed in accorda al Residential Code so and referenced stand 5) Standard	DL=6.0psf; h=25ft; (ivelope) exterior zor ; end vertical left an 0 plate grip DOL=1.0 ra 10.0 psf bottom th any other live load or a live load of 20.0 where a rectangle fit between the botto SPF No.2 . ss connections. (by others) of truss to ance with the 2018 ections R502.11.1 a	ne; d 60 ds. opsf om o						4 	R*	STATE OF SEV SEV DE SEV DE SEV SEV SEV SEV SEV SEV	BER 018807

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

Course April 30,2024

Page: 1

Job	Truss	Truss Type	Qty	Ply	Lot 179 HT	
B240092	J6	Jack-Open	2	1	Job Reference (optional)	165199430

Run: 8.73 S Apr 3 2024 Print: 8.730 S Apr 3 2024 MiTek Industries, Inc. Fri Apr 26 13:54:30 ID:gpvoC3ePoMKB0rVrrSkOWuzjI0T-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

3

1-1-8

Page: 1

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSUTP11 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

Scale = 1:21.6						1-10-0							
Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP	
TCLL (roof) TCDL	25.0 10.0	Plate Grip DOL Lumber DOL	1.15 1.15	TC BC	0.05 0.03	Vert(LL) Vert(CT)	0.00 0.00	2-4 2-4	>999 >999	360 240	MT20	197/144	
BCLL	0.0*	Rep Stress Incr	YES	WB	0.03	``'	0.00	2-4	>999 n/a	240 n/a			
BCDL	10.0	Code	IRC2018/TPI2014	Matrix-P	0.00	11012(01)	0.00	Ũ	n/a	n/a	Weight: 6 lb	FT = 10%	
UMBER			LOAD CASE(S) Standard								·	
	2x4 SPF No.2			,									
	2x4 SPF No.2												
	Left: 2x3 SPF No.2												
	o												
TOP CHORD	Structural wood she 1-10-0 oc purlins.	athing directly applie	ed or										
BOT CHORD	Rigid ceiling directly bracing.	applied or 10-0-0 o	c										
REACTIONS (•	3= Mechanical, 4=											
(Mechanic												
	Max Horiz 2=32 (LC												
	Max Uplift 2=-55 (LC		20										
r	Max Grav 2=160 (L0 (LC 3)	5 1), 3=47 (LC 1), 4	=36										
FORCES	(Ib) - Maximum Com	pression/Maximum											
	Tension												
	1-2=-2/0, 2-3=-34/14	4											
BOT CHORD	2-4=0/0												
NOTES		(a 1 - 5											
	E 7-16; Vult=115mph oh; TCDL=6.0psf; BC		Cat.										
	nclosed; MWFRS (er												
	eft and right exposed											and the second s	
	ed; Lumber DOL=1.6		60								OF OF	MIGH	
,	as been designed for	r a 10.0 psr bottom									H.F. UF	MISS	

1-1-8

chord live load nonconcurrent with any other live loads. * This truss has been designed for a live load of 20.0psf

3-06-00 tall by 2-00-00 wide will fit between the bottom

Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 55 lb uplift at joint

This truss is designed in accordance with the 2018

International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

on the bottom chord in all areas where a rectangle

Refer to girder(s) for truss to truss connections.

chord and any other members.

2 and 28 lb uplift at joint 3.

All bearings are assumed to be SPF No.2

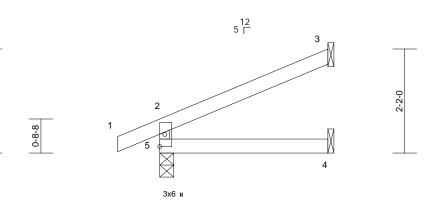
3)

4)

5)

6)

7)


-0-10-8 1-10-0 0-10-8 1-10-0

12 3.5 ┌

Job	Truss	Truss Type	Qty	Ply	Lot 179 HT	
B240092	J7	Jack-Open	8	1	Job Reference (optional)	165199431

Run: 8.73 S Apr 3 2024 Print: 8.730 S Apr 3 2024 MiTek Industries, Inc. Fri Apr 26 13:54:30 ID:Lek3CAANj_gYbKvtCQHtmQzKvNM-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Scale = 1:24					3-	-6-0		+				
Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15	TC	0.16	Vert(LL)	-0.01	4-5	>999	360	MT20	197/144
TCDL	10.0	Lumber DOL	1.15	BC	0.10	Vert(CT)	-0.01	4-5	>999	240		
BCLL	0.0*	Rep Stress Incr	YES	WB	0.00	Horz(CT)	0.01	3	n/a	n/a		
BCDL	10.0	Code	IRC2018/TPI2014	Matrix-R		Wind(LL)	0.01	4-5	>999	240	Weight: 10 lb	FT = 10%

BOT CHORD WEBS BRACING	2x4 SPF No.2 2x4 SPF No.2 2x3 SPF No.2	LOAD CASE(S)	Standard
TOP CHORD BOT CHORD	3-6-0 oc purlins, except end verticals.		
REACTIONS	5		
FORCES	(Ib) - Maximum Compression/Maximum Tension		
TOP CHORD BOT CHORD	2-5=-199/64, 1-2=0/26, 2-3=-56/31		
Vasd=91r II; Exp C; cantilever right expo 2) This truss chord live 3) * This truss on the bol 3-06-00 ta chord and 4) All bearing 5) Refer to g 6) Provide m bearing pl 5 and 55 I 7) This truss Internation	CE 7-16; Vult=115mph (3-second gust) mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. Enclosed; MWFRS (envelope) exterior zone; left and right exposed ; end vertical left and used; Lumber DOL=1.60 plate grip DOL=1.60 is has been designed for a 10.0 psf bottom load nonconcurrent with any other live loads. ss has been designed for a live load of 20.0psf ttom chord in all areas where a rectangle all by 2-00-00 wide will fit between the bottom d any other members. gs are assumed to be SPF No.2. jurder(s) for truss to truss connections. hechanical connection (by others) of truss to late capable of withstanding 34 lb uplift at joint lb uplift at joint 3. is designed in accordance with the 2018 nal Residential Code sections R502.11.1 and 2 and referenced standard ANSI/TPI 1.		

2-2-0

Page: 1

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

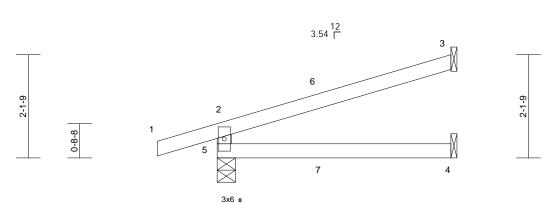
Job	Truss	Truss Type	Qty	Ply	Lot 179 HT	
B240092	J8	Diagonal Hip Girder	1	1	Job Reference (optional)	165199432

-1-2-14

1-2-14

Wheeler Lumber, Waverly, KS - 66871,

Run: 8.73 S Apr 3 2024 Print: 8.730 S Apr 3 2024 MiTek Industries, Inc. Fri Apr 26 13:54:30 ID:Lek3CAANj_gYbKvtCQHtmQzKvNM-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f


4-9-14

4-9-14

4-9-14

гa

Scal	le –	: 1.23	8 8

30ale = 1.23.0													
Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP	
TCLL (roof)	25.0	Plate Grip DOL	1.15	TC	0.35	Vert(LL)	-0.02	4-5	>999	360	MT20	197/144	
TCDL	10.0	Lumber DOL	1.15	BC	0.21	Vert(CT)	-0.05	4-5	>999	240			
BCLL	0.0*	Rep Stress Incr	NO	WB	0.00	Horz(CT)	0.01	3	n/a	n/a			
BCDL	10.0	Code	IRC2018/TPI20	014 Matrix-R		Wind(LL)	0.02	4-5	>999	240	Weight: 13 lb	FT = 10%	
	2x4 SPF No.2 2x4 SPF No.2 2x4 SPF No.2 Structural wood she: 4-9-14 oc purlins, e Rigid ceiling directly bracing. (size) 3= Mecha 5=0-4-9 Max Horiz 5=70 (LC Max Uplift 3=-64 (LC Max Grav 3=140 (LC	xcept end verticals. applied or 10-0-0 or inical, 4= Mechanica 4) 5 8), 5=-92 (LC 4)	provi down up at 2-1-0 cd or (s) is 9) In the of the 1) Dea Plat Unif -316 V	er(s) or other connect ded sufficient to support and 22 lb up at 2-1-(2-1-0 on top chord, a , and 2 lb down and 2 d. The design/selection the responsibility of o e LOAD CASE(S) sect e truss are noted as fra ASE(S) Standard d + Roof Live (balance e Increase=1.15 orm Loads (lb/ft) ert: 1-2=-70, 2-3=-70, (balance (lb)	ort concentra D, and 66 lb and 2 lb dow 1 lb up at 2- ⁻ n of such co thers. tion, loads a ont (F) or ba ared): Lumber	ated load(s) 6 down and 22 n and 2 lb up -0 on botton onnection dev oplied to the ck (B).	2 lb o at n vice face						

Concentrated Loads (lb)

Vert: 7=5 (F=2, B=2)

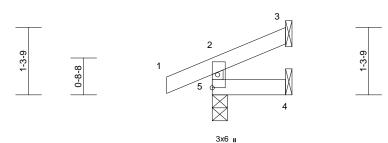
(LC 1) FORCES (Ib) - Maximum Compression/Maximum Tension

TOP CHORD 2-5=-280/130, 1-2=0/27, 2-3=-70/30 BOT CHORD 4-5=0/0

NOTES

- Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
 * This truss has been designed for a live load of 20.0psf
- This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- 4) All bearings are assumed to be SPF No.2 .
- Refer to girder(s) for truss to truss connections.
 Provide mechanical connection (by others) of truss to
- bearing plate capable of withstanding 92 lb uplift at joint 5 and 64 lb uplift at joint 3.
- 7) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPH Claulity Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

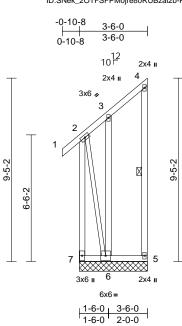

Job	Truss	Truss Type	Qty	Ply	Lot 179 HT	
B240092	Jə	Jack-Open	2	1	Job Reference (optional)	165199433

Run: 8.73 S Apr 3 2024 Print: 8.730 S Apr 3 2024 MiTek Industries, Inc. Fri Apr 26 13:54:30 ID:Lek3CAANj_gYbKvtCQHtmQzKvNM-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

1-4-15

Scale =	1:22.2
---------	--------

Loading (psf) Spacing 2-0-0 CSI DEFL in (loc) I/defl L/d PLATES GRIF	п
	F
TCLL (roof) 25.0 Plate Grip DOL 1.15 TC 0.06 Vert(LL) 0.00 4-5 >999 360 MT20 197/	
TCDL 10.0 Lumber DOL 1.15 BC 0.01 Vert(CT) 0.00 4-5 >999 240	
BCLL 0.0* Rep Stress Incr YES WB 0.00 Horz(CT) 0.00 3 n/a n/a	
BCDL 10.0 Code IRC2018/TPI2014 Matrix-R Wind(LL) 0.00 4-5 >999 240 Weight: 5 lb FT =	= 10%
LUMBER LOAD CASE(S) Standard	
TOP CHORD 2x4 SPF No.2 BOT CHORD 2x4 SPF No.2	
WEBS 2x3 SPF No.2	
BRACING	
TOP CHORD Structural wood sheathing directly applied or 1-4-15 oc purlins, except end verticals.	
BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing.	
REACTIONS (size) 3= Mechanical, 4= Mechanical, 5=0-3-8	
Max Horiz 5=33 (LC 5)	
Max Uplift 3=-19 (LC 8), 5=-34 (LC 4)	
Max Grav 3=23 (LC 1), 4=24 (LC 3), 5=153 (LC 1)	
FORCES (Ib) - Maximum Compression/Maximum Tension	
TOP CHORD 2-5=-136/45, 1-2=0/26, 2-3=-26/6	
BOT CHORD 4-5=0/0	
NOTES	
1) Wind: ASCE 7-16; Vult=115mph (3-second gust)	
Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone;	
an Lab C, Lindised MW R Kosed : end vertical left and	
	Th
right exposed; Lumber DOL=1.60 plate grip DOL=1.60 2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 3) * This truss has been designed for a live load of 20.0psf	A 2
chord live load nonconcurrent with any other live loads. 3) * This truss has been designed for a live load of 20.0psf	N'SON
on the bottom chord in all areas where a rectangle SCOTT M.	NSI
3-06-00 tall by 2-00-00 wide will fit between the bottom SEVIER	N X
chord and any other members.	··· +* 1
4) All bearings are assumed to be SPF No.2.	MAR
 5) Refer to girder(s) for truss to truss connections. 6) Provide mechanical connection (by others) of truss to NUMBER 	[ZA
 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 34 lb uplift at joint 5 and 19 lb uplift at joint 3. 	07 124
5 and 19 lb uplift at joint 3.	128
7) This truss is designed in accordance with the 2018	NOIS
7) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.	-
April 30,2	2024


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

Job	Truss	Truss Type	Qty	Ply	Lot 179 HT	
B240092	K1	Monopitch Supported Gable	2	1	Job Reference (optional)	165199434

Run: 8.73 S Apr 3 2024 Print: 8.730 S Apr 3 2024 MiTek Industries, Inc. Fri Apr 26 13:54:30 ID:SNek_20TFSFPM0jre80RUBzai2b-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

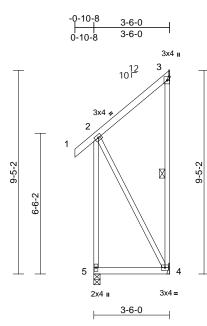
Page: 1

Scale = 1:59.2

Loading	(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15		TC	0.79	Vert(LL)	n/a	-	n/a	999	MT20	197/144
TCDL	10.0	Lumber DOL	1.15		BC	0.04	Vert(CT)	n/a	-	n/a	999		
BCLL	0.0*	Rep Stress Incr	YES		WB	0.89	Horz(CT)	0.00	5	n/a	n/a		
BCDL	10.0	Code	IRC201	8/TPI2014	Matrix-P							Weight: 41 lb	FT = 10%
		athing directly applie cept end verticals. applied or 10-0-0 or 4-5 5=3-6-0, 7=3-6-0 C 5) C 7), 6=-1010 (LC 5 C 6) C 15), 6=926 (LC 6),	8) 9) ed or c 1(C	on the bottor 3-06-00 tall b chord and ar All bearings Provide mec bearing plate 7, 103 lb upl 0) This truss is International	has been design, n chord in all are by 2-00-00 wide by other member are assumed to hanical connecti capable of with ft at joint 5 and ' designed in accor Residential Coo nd referenced st Standard	eas where will fit betw rs. be SPF No ion (by oth standing 8 1010 lb up ordance w le sections	a rectangle veen the bott c.2. ers) of truss t 19 lb uplift at lift at joint 6. ith the 2018 5 R502.11.1 a	om to t joint					
FORCES	(lb) - Maximum Com Tension	pression/Maximum											
TOP CHORD	2-7=-1090/827, 1-2= 3-4=-197/138, 4-5=-	,	,										
BOT CHORD	6-7=-331/244, 5-6=-												
WEBS	3-6=-106/86, 2-6=-8	57/1042											
NOTES													
Vasd=91m II; Exp C; I cantilever	CE 7-16; Vult=115mph nph; TCDL=6.0psf; BC Enclosed; MWFRS (er left and right exposed	DL=6.0psf; h=25ft; (velope) exterior zor ; end vertical left an	ne; d								B	TATE OF I	MISSOLA

- right exposed; Lumber DOL=1.60 plate grip DOL=1.60 2) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- Gable requires continuous bottom chord bearing. 3)
- Truss to be fully sheathed from one face or securely 4)
- braced against lateral movement (i.e. diagonal web). 5)
- Gable studs spaced at 2-0-0 oc. 6)
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

16023 Swingley Ridge Rd. Chesterfield MO 63017 314.434.1200 / MiTek-US.com


SCOTT M.

SEVIER

 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.
 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not besign value to dury with with where outputs into design is based only door parameters shown, and is for an individual building design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members and property incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TPH1 Quality Criteria**, and **DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcscomponents.com)

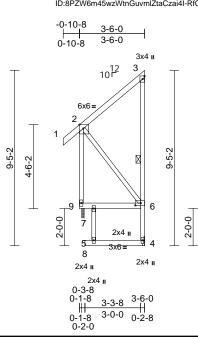
Job	Truss	Truss Type	Qty	Ply	Lot 179 HT				
B240092	К2	Monopitch	6	1	Job Reference (optional)	165199435			

Run: 8.73 S Apr 3 2024 Print: 8.730 S Apr 3 2024 MiTek Industries, Inc. Fri Apr 26 13:54:30 ID:Lek3CAANj_gYbKvtCQHtmQzKvNM-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

Scale = 1:53.3

Loading TCLL (roof) TCDL BCLL BCDL	(psf) 25.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018	8/TPI2014	CSI TC BC WB Matrix-P	0.58 0.11 0.36	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.01 -0.01 -0.02	(loc) 4-5 4-5 3	l/defl >999 >999 n/a	L/d 360 240 n/a	PLATES MT20 Weight: 28 lb	GRIP 197/144 FT = 10%
		cept end verticals. applied or 10-0-0 or 3-4 inical, 4= Mechanica C 6) 8), 4=-256 (LC 5), C 6) C 15), 4=292 (LC 6),	8) ; LC	bearing plate 3, 256 lb upli This truss is o International R802.10.2 ar Gap betweer	nanical connectior capable of withsta ft at joint 4 and 15 designed in accord Residential Code nd referenced stan i inside of top chor ertical web shall n Standard	anding 8 3 lb upli dance w sections idard AN rd bearir	87 lb uplift at ft at joint 5. ith the 2018 8 R502.11.1 a ISI/TPI 1. ng and first	joint					
FORCES	(lb) - Maximum Com Tension												
TOP CHORD	1-2=0/44, 2-3=-101/ 2-5=-276/186	62, 3-4=0/0,											
BOT CHORD WEBS	4-5=-145/136 2-4=-293/312												
NOTES												~	~

- Wind: ASCE 7-16; Vult=115mph (3-second gust) 1) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed ; end vertical left exposed; Lumber DOL=1.60 plate grip DOL=1.60
- 2) This truss has been designed for a 10.0 psf bottom
- chord live load nonconcurrent with any other live loads. * This truss has been designed for a live load of 20.0psf 3) on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- All bearings are assumed to be SPF No.2 4)
- 5) Refer to girder(s) for truss to truss connections.


April 30,2024

 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.
 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not besign value to dury with with where outputs into design is based only door parameters shown, and is for an individual building design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members and property incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TPH1 Quality Criteria**, and **DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcscomponents.com)

Job	Truss	Truss Type	Qty	Ply	Lot 179 HT	105400400
B240092	КЗ	Monopitch	4	1	Job Reference (optional)	165199436

Run: 8.73 S Apr 3 2024 Print: 8.730 S Apr 3 2024 MiTek Industries, Inc. Fri Apr 26 13:54:31 ID:8PZW6m45wzWtnGuvmlZtaCzai4I-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC?ff Page: 1

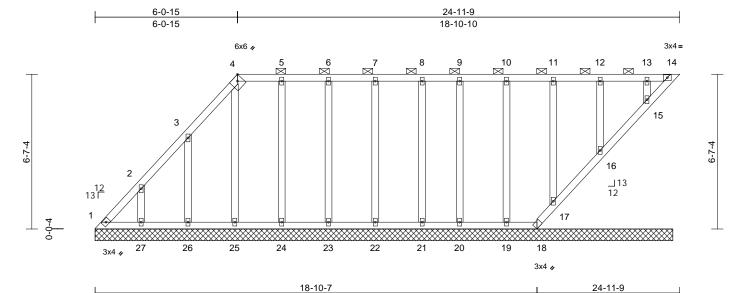
Scale = 1:62

Plate Offsets (X, Y):	[2:0-2-8,Edge],	[6:0-3-8,0-1-8]
-----------------------	-----------------	-----------------

	X, Y): [2:0-2-8,Edge],	[0.0-3-0,0-1-0]	_										
Loading TCLL (roof) TCDL BCLL BCDL	(psf) 25.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018	3/TPI2014	CSI TC BC WB Matrix-S	0.41 0.13 0.16	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.01 -0.01 0.01	(loc) 6-7 6-7 4	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 30 lb	GRIP 197/144 FT = 10%
	(size) 4= Mecha Max Horiz 9=343 (LC Max Uplift 4=-296 (L	athing directly applie cept end verticals. applied or 10-0-0 oc 7. 3-4 nical, 9=0-1-8 27) C 5), 9=-146 (LC 4)	2 8) d or LO	bearing plate 4 and 146 lb This truss is International	nanical connectio capable of withs uplift at joint 9. designed in acco Residential Code nd referenced sta Standard	tanding 2 rdance w sections	96 lb uplift at ith the 2018 R502.11.1 a	joint					
FORCES	Max Grav 4=310 (LC 6), 9=391 (LC 16) (lb) - Maximum Compression/Maximum Tension												
TOP CHORD	1-2=0/44, 2-3=-158/9 3-6=-122/69, 2-9=-3												
BOT CHORD	7-9=-321/230, 6-7=- 5-8=0/0, 4-5=-3/11												
WEBS	2-6=-228/286												
NOTES												000	ADD
Vasd=91m II; Exp C; I cantilever right expos 2) This truss chord live 3) * This truss on the bott 3-06-00 ta chord and 4) All bearing 5) Refer to gi 6) Provide m	CE 7-16; Vult=115mph ph; TCDL=6.0psf; BC Enclosed; MWFRS (er left and right exposed sed; Lumber DOL=1.6 has been designed for load nonconcurrent wi s has been designed f tom chord in all areas i ll by 2-00-00 wide will any other members. Is are assumed to be S irder(s) for truss to trus echanical connection (ate at joint(s) 9.	DL=6.0psf; h=25ff; C ivelope) exterior zon ; end vertical left and 0 plate grip DOL=1.6 • a 10.0 psf bottom th any other live load or a live load of 20.0 where a rectangle fit between the botto SPF No.2. is connections.	e; d 50 ds. psf m							ç		STATE OF I SEV	I M. ER Server DI8807

April 30,2024

16023 Swingley Ridge Rd. Chesterfield, MO 63017 314.434.1200 / MiTek-US.com ww.tpinst.org)


WARNING - Verify of	esign parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.
Design valid for use on	y with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not
a truss system. Before	se, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall
building design. Bracir	g indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing
is always required for s	ability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the
fabrication, storage, de	very, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (ww
and BCSI Building Co	nponent Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)
5	

Job	Truss	Truss Type	Qty	Ply	Lot 179 HT	
B240092	LAY1	Lay-In Gable	1	1	Job Reference (optional)	165199437

Run: 8.73 S Apr 3 2024 Print: 8.730 S Apr 3 2024 MiTek Industries, Inc. Fri Apr 26 13:54:31 ID:u6CM_qu5i7BdkiVAQD8cgWzjl2j-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

6-1-3

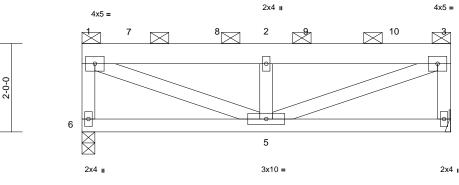
Scale = 1:49.2

Plate Offsets (X, Y): [4:0-2-9,Edge]

Loading	(psf)	Spacing	2-0-0		csi		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15		тс	0.05	Vert(LL)	n/a	-	n/a	999	MT20	197/144
TCDL	10.0	Lumber DOL	1.15		BC	0.03	Vert(TL)	n/a	-	n/a	999		
BCLL	0.0		YES		WB	0.10	. ,	0.00	14	n/a	n/a		
BCDL	10.0	Code		18/TPI2014	Matrix-S							Weight: 127 lb	FT = 10%
LUMBER			Т		1-2=-285/117, 2-3								y others) of truss to
TOP CHORD	2x4 SPF No.2				4-5=-20/37, 5-6=-1	,	,						ling 42 lb uplift at joint
BOT CHORD	2x4 SPF No.2				7-8=-18/37, 8-9=-1								t at joint 18, 127 lb
OTHERS	2x4 SPF No.2				10-11=-18/37, 11-	12=-18/3	37, 12-13=-18/	37,					nt 26, 26 lb uplift at
BRACING			_		13-14=-18/37			_					b uplift at joint 23, 34
TOP CHORD	Structural wood s	neathing directly applie	dor ^B		1-27=-37/17, 26-2								int 21, 29 lb uplift at
	6-0-0 oc purlins, e	xcept			24-25=-37/18, 23-		,	,					b uplift at joint 17, 34
	2-0-0 oc purlins (6	6-0-0 max.): 4-14.			21-22=-37/18, 20-		,	,				and 30 lb uplift a	
BOT CHORD	Rigid ceiling direc	tly applied or 10-0-0 oc			18-19=-37/18, 17-		,	43,				aring condition. F	
	bracing, Except:				15-16=-65/41, 14-							ned in accordan	
	6-0-0 oc bracing:	14-15.	v	VEBS	2-27=-158/145, 3-		,	50					tions R502.11.1 and
REACTIONS	(size) 1=24-8	0, 14=24-8-0, 15=24-8	-0,		4-25=-117/49, 5-2 7-22=-143/59, 8-2		,	,				ferenced standar	
	16=24-	8-0, 17=24-8-0, 18=24-	8-0,		10-19=-143/59, 11			51,				of the purlin alon	es not depict the size
	19=24-	8-0, 20=24-8-0, 21=24-	8-0,		12-16=-144/59, 13					om cho		or the putilit alon	g the top and/or
	22=24-	8-0, 23=24-8-0, 24=24-	8-0,		12-10-144/03, 10	-13-12	1/50					a do rd	
		3-0, 26=24-8-0, 27=24-	0-0	IOTES					LOAD	ASE(S) 518	indard	
	Max Horiz 1=257		1	,	roof live loads hav	/e been	considered for						
		LC 6), 14=-40 (LC 8),	2	this design.	7 16. Vult 115m	ah (2 aa)	and quat)						
		(LC 4), 16=-34 (LC 5),			E 7-16; Vult=115mp h; TCDL=6.0psf; E			Not.					
		(LC 5), 18=-12 (LC 15)	,		nclosed; MWFRS (
		(LC 4), 20=-29 (LC 5),			ft and right expose								
		(LC 5), 22=-34 (LC 4),			ed; Lumber DOL=1								
		(LC 5), 24=-38 (LC 4),	3		ned for wind loads							~	
		(LC 8), 26=-147 (LC 8)	, 0		uds exposed to will							an	Aller
		7 (LC 8)			d Industry Gable E							TATE OF	MISC
		LC 8), 14=39 (LC 1), (LC 22), 16=187 (LC 1	1		ualified building de						1	9 50	
), 4		quate drainage to						B	SCOT	M CAN
		(LC 1), 18=48 (LC 8), (LC 22), 20=160 (LC 1	-		e 2x4 MT20 unless			-			R	~ /	
		(LC 1), 22=184 (LC 22	"		spaced at 0-0-0 o						1	SEV	
		(LC 1), 22=184 (LC 22 (LC 1), 24=185 (LC 22	-/, _		as been designed		0 psf bottom				N V		1×0
		(LC 1), 24=103 (LC 22)			ad nonconcurrent			ds.			8 (7 -	· los
		(LC 15)	.,		has been designed						MA A	A ATA	AMAN
FORCES		ompression/Maximum			m chord in all area			•			M	DE 2001	010007
FURGES	(ib) - Maximum Co Tension	mpression/maximum			by 2-00-00 wide w			m			N	O PE-2001	01000/ 201
					ny other members						Y	N Po	154
			9) All bearings	are assumed to be	e SPF N	o.2 .					V SION	FNUA
												SSIONA	IL VIE
												-un	
												^	100000

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com) Affo23 Swingley Ridge Rd. Chesterfield, MO 63017 314.434.1200 / MITek-US.com

April 30,2024


Job	Truss	Truss Type	Qty	Ply	Lot 179 HT	
B240092	R1	Flat Girder	1	1	Job Reference (optional)	165199438

Run: 8.73 S Apr 3 2024 Print: 8.730 S Apr 3 2024 MiTek Industries, Inc. Fri Apr 26 13:54:31 ID:Lek3CAANj_gYbKvtCQHtrnQzKvNM-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

4

Page: 1

Scale = 1:26.1

Scale = 1.20.1													
Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP	
TCLL (roof)	25.0	Plate Grip DOL	1.15	TC	0.28	Vert(LL)	-0.02	5	>999	360	MT20	197/144	
TCDL	10.0	Lumber DOL	1.15	BC	0.12	Vert(CT)	-0.03	5-6	>999	240			
BCLL	0.0*	Rep Stress Incr	NO	WB	0.27	Horz(CT)	0.00	4	n/a	n/a			
BCDL	10.0	Code	IRC2018/TPI2014	Matrix-P		Wind(LL)	0.02	5	>999	240	Weight: 38 lb	FT = 10%	
BOT CHORD WEBS BRACING TOP CHORD BOT CHORD REACTIONS (S M FORCES TOP CHORD	end verticals. Rigid ceiling directly bracing. size) 4= Mecha Max Horiz 6=62 (LC Max Uplift 4=-302 (L	C ⁵ 5), 6=-314 (LC 4) C 15), 6=959 (LC 16) pression/Maximum 1374/445, 881/318 /18	Internat R802.1(9) Graphic or the o bottom (10) Hanger(provided Ib down Ib up at 5-0-12, chord. (s) is the LOAD CAS 1) Dead - Plate I Uniforr Vert	ss is designed in acc onal Residential Co 0.2 and referenced s al purlin representat rientation of the purl chord. s) or other connectid sufficient to support and 379 lb down am. The design/selectior e responsibility of ott E(S) Standard + Roof Live (balance ncrease=1.15 n Loads (lb/ft) : 1-3=-70, 4-6=-20 ntrated Loads (lb)	de sections tandard AN tion does n in along the on device(s rt concentra 0-12, 379 I down and * d 152 Ib up n of such co hers.	S R502.11.1 a NSI/TPI 1. ot depict the s e top and/or s) shall be ated load(s) 3 b down and 1 152 lb up at at 7-0-12 or nnnection dev	size 379 152 n top <i>v</i> ice						

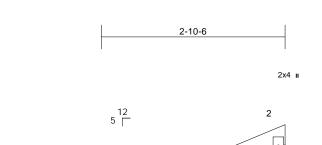
Vert: 7=-168, 8=-165, 9=-165, 10=-165

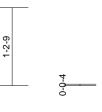
WEBS 1-5=-494/1489, 2-5=-1024/424, 3-5=-494/1489

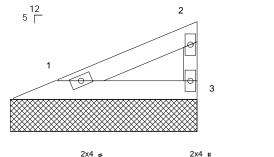
NOTES

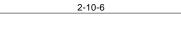
- Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
- 2) Provide adequate drainage to prevent water ponding.
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- 5) All bearings are assumed to be SPF No.2 .
- 6) Refer to girder(s) for truss to truss connections.
- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 314 lb uplift at joint 6 and 302 lb uplift at joint 4.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPH Claulity Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)



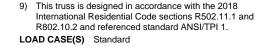

Job	Truss	Truss Type	Qty	Ply	Lot 179 HT	
B240092	V1	Valley	1	1	Job Reference (optional)	165199439


Run: 8.73 S Apr 3 2024 Print: 8.730 S Apr 3 2024 MiTek Industries. Inc. Fri Apr 26 13:54:31 ID:Lek3CAANj_gYbKvtCQHtmQzKvNM-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f


Page: 1

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15	TC	0.07	Vert(LL)	n/a	-	n/a	999	MT20	197/144
TCDL	10.0	Lumber DOL	1.15	BC	0.04	Vert(TL)	n/a	-	n/a	999		
BCLL	0.0*	Rep Stress Incr	YES	WB	0.00	Horiz(TL)	0.00	3	n/a	n/a		
BCDL	10.0	Code	IRC2018/TPI2014	Matrix-P							Weight: 6 lb	FT = 10%

L	U	M	в	Ε	R


Scale - 1.18

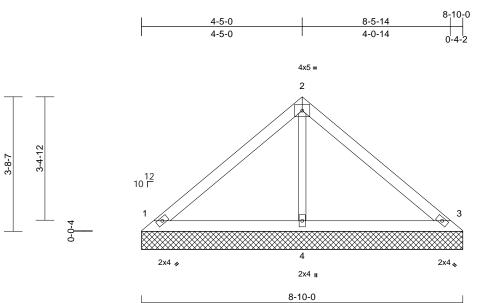
TOP CHORD	2x4 SPF I	No.2
BOT CHORD	2x4 SPF I	No.2
WEBS	2x3 SPF I	No.2
BRACING		
TOP CHORD	Structural	wood sheathing directly applied or
	2-11-0 oc	purlins, except end verticals.
BOT CHORD	Rigid ceili	ng directly applied or 10-0-0 oc
	bracing.	
REACTIONS	(size)	1=2-11-0, 3=2-11-0
	Max Horiz	1=38 (LC 5)
	Max Uplift	1=-13 (LC 8), 3=-21 (LC 8)
	Max Grav	1=93 (LC 1), 3=93 (LC 1)
FORCES	(lb) - Max	imum Compression/Maximum
	Tension	·

TOP CHORD 1-2=-34/22, 2-3=-72/33 BOT CHORD 1-3=-12/9

NOTES

- Wind: ASCE 7-16; Vult=115mph (3-second gust) 1) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
- 2) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- Gable requires continuous bottom chord bearing. 3) 4)
- Gable studs spaced at 2-0-0 oc.
- 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf 6) on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- All bearings are assumed to be SPF No.2 . 7)
- Provide mechanical connection (by others) of truss to 8) bearing plate capable of withstanding 13 lb uplift at joint 1 and 21 lb uplift at joint 3.

 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.
 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not beigh valid for use only with with with with the contractions. This design is based only door parameters shown, and is for an individual dualing component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria**, and **DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcscomponents.com)



Job	Truss	Truss Type	Qty	Ply	Lot 179 HT	
B240092	V2	Valley	1	1	Job Reference (optional)	165199440

Run: 8.73 S Apr 3 2024 Print: 8.730 S Apr 3 2024 MiTek Industries, Inc. Fri Apr 26 13:54:31 ID:Lek3CAANj_gYbKvtCQHtmQzKvNM-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

WrCDoi7J4zJC?f

Scale = 1:31.7

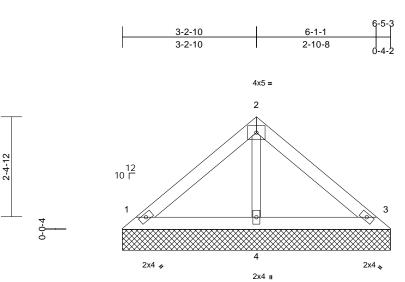
Loading	(psf)	Spacing	2-0-0	CSI	DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL Lumber DOL	1.15	TC 0.3		n/a	-	n/a	999	MT20	197/144
TCDL BCLL	10.0 0.0*		1.15 YES	BC 0.14 WB 0.00		n/a 0.00	- 3	n/a n/a	999 n/a		
BCDL	10.0	Rep Stress Incr Code	IRC2018/TPI2014	Matrix-P	6 Horiz(TL)	0.00	3	n/a	n/a	Weight: 25 lb	FT = 10%
		0000		mannet						Troigita 2010	
LUMBER			All bearings	are assumed to be SPF	No.2 .						
TOP CHORD				chanical connection (by o							
BOT CHORD				e capable of withstanding	45 lb uplift at	joint					
OTHERS	2x3 SPF No.2			uplift at joint 3.							
BRACING	.		Internetione	designed in accordance Residential Code sectio		and					
TOP CHORD		athing directly applie		and referenced standard A		anu					
BOT CHORD	6-0-0 oc purlins.	applied or 10-0-0 oc									
BOT CHORD	bracing.	applied of 10-0-0 oc		Olandara							
REACTIONS	U	3=8-10-0, 4=8-10-0)								
	Max Horiz 1=-88 (LC										
	Max Uplift 1=-45 (LC	/									
	Max Grav 1=219 (L0		4=289								
	(LC 1)										
FORCES	(lb) - Maximum Corr	pression/Maximum									
	Tension										
TOP CHORD											
BOT CHORD WEBS	1-4=-20/72, 3-4=-20 2-4=-188/45	//2									
	2-4=-100/43										
NOTES	ed roof live loads have	been considered for	r								
this desig		Deen considered for	I								
	CE 7-16; Vult=115mph	(3-second gust)									
	mph; TCDL=6.0psf; BC		Cat.								
II; Exp C;	Enclosed; MWFRS (er	velope) exterior zon	ne;							CON	Jon
	r left and right exposed									B.F. OF	MISS
	osed; Lumber DOL=1.6								4	TATE OF	N'SON
	signed for wind loads in								B	SCOT	TM YEN
	r studs exposed to wind dard Industry Gable En								H	SEV	
see stand	uaru muusuy Gable En	u Details as applicad	JIC,					•	12		

- or consult qualified building designer as per ANSI/TPI 1. 4) Gable requires continuous bottom chord bearing.
- 5) Gable studs spaced at 4-0-0 oc.

chord and any other members.

- 6) This truss has been designed for a 10.0 psf bottom
- chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom

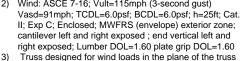
WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent oulgase with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)



Job	Truss	Truss Type	Qty	Ply	Lot 179 HT	
B240092	V3	Valley	1	1	Job Reference (optional)	165199441

2-8-7

Run: 8.73 S Apr 3 2024 Print: 8.730 S Apr 3 2024 MiTek Industries, Inc. Fri Apr 26 13:54:31 ID:Lek3CAANj_gYbKvtCQHtmQzKvNM-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

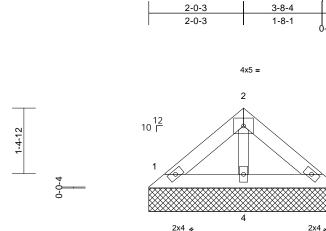


6-5-3

Scale = 1:	27.6
------------	------

Loading TCLL (roof) TCDL BCLL BCDL	(psf) 25.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC20	18/TPI2014	CSI TC BC WB Matrix-P	0.15 0.07 0.03	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 3	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 18 lb	GRIP 197/144 FT = 10%
LUMBER TOP CHORD BOT CHORD OTHERS BRACING TOP CHORD BOT CHORD	2x4 SPF No.2 2x4 SPF No.2 2x3 SPF No.2 Structural wood she: 6-0-0 oc purlins. Rigid ceiling directly bracing.		ed or	 Provide mec bearing plate 1 and 39 lb u This truss is International 	Residential Cond referenced	tion (by oth hstanding 3 cordance w ode sections	ers) of truss t 2 lb uplift at j ith the 2018 5 R502.11.1 a	joint					
REACTIONS	(size) 1=6-5-3, 3 Max Horiz 1=62 (LC Max Uplift 1=-32 (LC Max Grav 1=154 (LC (LC 1)	8), 3=-39 (LC 9)	4=203										
FORCES	(lb) - Maximum Com Tension	pression/Maximum											
TOP CHORD BOT CHORD WEBS	1-2=-107/53, 2-3=-10 1-4=-14/51, 3-4=-14/ 2-4=-132/32												
NOTES 1) Unbalance this design	ed roof live loads have		r										

- Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1. Gable requires continuous bottom chord bearing. 4)
- 5) Gable studs spaced at 2-0-0 oc.
- This truss has been designed for a 10.0 psf bottom 6)
- chord live load nonconcurrent with any other live loads.
- 7) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.


 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.
 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not besign value for use only with with twit even connectors. This design is based only upon parameters shown, and is for an individual building designer must verify the applicability of design parameters and properly incorporate this design into the overall building designer must verify the applicability of design parameters and properly incorporate this design into the overall building designer. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcscomponents.com)

Job	Truss	Truss Type	Qty	Ply	Lot 179 HT	
B240092	V4	Valley	1	1	Job Reference (optional)	l65199442

1-8-7

Run: 8.73 S Apr 3 2024 Print: 8.730 S Apr 3 2024 MiTek Industries, Inc. Fri Apr 26 13:54:31 ID:Lek3CAANj_gYbKvtCQHtmQzKvNM-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

4-0-6

3

Scale = 1:24.5

		1										
Loading	(psf)	Spacing	2-0-0	csi		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15	TC	0.04	Vert(LL)	n/a	-	n/a	999	MT20	197/144
TCDL	10.0	Lumber DOL	1.15	BC	0.02	Vert(TL)	n/a	-	n/a	999		
BCLL	0.0*	Rep Stress Incr	YES	WB	0.01	Horiz(TL)	0.00	3	n/a	n/a		
BCDL	10.0	Code	IRC2018/TP	I2014 Matrix-P							Weight: 10 lb	FT = 10%
LUMBER			8) Al	bearings are assumed to	he SPF No	12						
TOP CHORD	2x4 SPF No.2			ovide mechanical connect			to					
BOT CHORD	2x4 SPF No.2			aring plate capable of wit								
OTHERS	2x3 SPF No.2			and 23 lb uplift at joint 3.								
BRACING				is truss is designed in ac								
TOP CHORD	Structural wood sh 4-1-0 oc purlins.	eathing directly appli	ed or	ernational Residential Co 302.10.2 and referenced s			and					
BOT CHORD		y applied or 10-0-0 o	c LOAD	CASE(S) Standard								
REACTIONS	(size) 1=4-0-6,	3=4-0-6, 4=4-0-6										
	Max Horiz 1=36 (LC	C 5)										
	Max Uplift 1=-18 (L	,, , , ,										
	Max Grav 1=89 (L0 (LC 1)	C 1), 3=89 (LC 1), 4=	117									
FORCES	(lb) - Maximum Co Tension	mpression/Maximum										
TOP CHORD	1-2=-62/31, 2-3=-5	9/24										
BOT CHORD	1-4=-8/29, 3-4=-8/2											
WEBS	2-4=-76/18											
NOTES												
	ed roof live loads hav	e been considered fo	or									

- 2) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1. Gable requires continuous bottom chord bearing.
- 4) 5) Gable studs spaced at 2-0-0 oc.
- This truss has been designed for a 10.0 psf bottom 6) chord live load nonconcurrent with any other live loads.
- 7) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle
- 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.

Page: 1

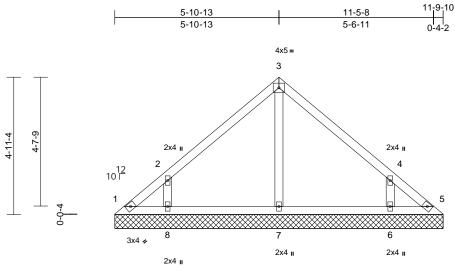
 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.
 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not besign value to dury with with where outputs into design is based only door parameters shown, and is for an individual building design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members and property incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TPH1 Quality Criteria**, and **DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcscomponents.com)

16023 Swingley Ridge Rd. Chesterfield MO 63017 314.434.1200 / MiTek-US.com

Job	Truss	Truss Type	Qty	Ply	Lot 179 HT	
B240092	V5	Valley	1	1	Job Reference (optional)	165199443

Scale = Loadin

NOTES


2)

3)

4) 5) this design.

Run: 8.73 S Apr 3 2024 Print: 8.730 S Apr 3 2024 MiTek Industries, Inc. Fri Apr 26 13:54:31 ID:Lek3CAANj_gYbKvtCQHtmQzKvNM-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Scale = 1:41.4												
Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15	TC	0.37	Vert(LL)	n/a	-	n/a	999	MT20	244/190
TCDL	10.0	Lumber DOL	1.15	BC	0.21	Vert(TL)	n/a	-	n/a	999		
BCLL	0.0*	Rep Stress Incr	YES	WB	0.08	Horiz(TL)	0.00	5	n/a	n/a		
BCDL	10.0	Code	IRC2018/TPI2014	Matrix-S							Weight: 49 lb	FT = 10%

11-9-10

LUMBER TOP CHORD BOT CHORD OTHERS BRACING TOP CHORD BOT CHORD	2x4 SP N 2x4 SP N Structural 6-0-0 oc p	o.3 o.3 I wood sheathing directly applied or
BOT CHORD	bracing.	ing directly applied of 10-0-0 00
REACTIONS	Max Uplift	1=11-9-10, 5=11-9-10, 6=11-9-10, 7=11-9-10, 8=11-9-10 1=-120 (LC 4) 1=-57 (LC 6), 5=-34 (LC 7), 6=-177 (LC 9), 8=-177 (LC 8) 1=89 (LC 8), 5=73 (LC 9), 6=353 (LC 16), 7=275 (LC 1), 8=354 (LC 15)
FORCES	(lb) - Max Tension	imum Compression/Maximum
TOP CHORD		(108, 2-3=-159/104, 3-4=-153/80,
BOT CHORD	1-8=-36/8 5-6=-36/8	0, 7-8=-36/80, 6-7=-36/80, 0
WEBS	3-7=-189/	/12, 2-8=-294/222, 4-6=-294/221

1) Unbalanced roof live loads have been considered for

Wind: ASCE 7-16; Vult=115mph (3-second gust)

Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone;

cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60

Truss designed for wind loads in the plane of the truss

or consult qualified building designer as per ANSI/TPI 1.

only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable,

Gable requires continuous bottom chord bearing.

Gable studs spaced at 4-0-0 oc.

6) This truss has been designed for a 10.0 psf bottom

chord live load nonconcurrent with any other live loads. * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.

All bearings are assumed to be SP No.3 . 8)

- Provide mechanical connection (by others) of truss to 9) bearing plate capable of withstanding 57 lb uplift at joint 1, 34 lb uplift at joint 5, 177 lb uplift at joint 8 and 177 lb uplift at joint 6.
- 10) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard

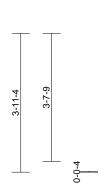
7)

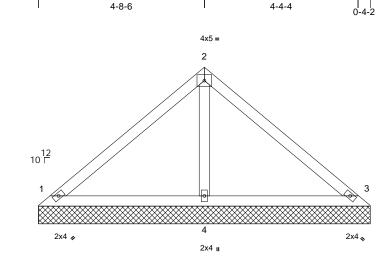
OF MISS SCOTT M. SEVIER NUMBER PE-2001018807 C SSIONAL E April 30,2024

16023 Swingley Ridge Rd. Chesterfield MO 63017 314.434.1200 / MiTek-US.com

 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.
 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not beigh valid for use only with with with with the contractions. This design is based only door parameters shown, and is for an individual dualing component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria**, and **DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcscomponents.com)

Job	Truss	Truss Type	Qty	Ply	Lot 179 HT	
B240092	V6	Valley	1	1	Job Reference (optional)	165199444


4-8-6


Wheeler Lumber, Waverly, KS - 66871,

Run: 8.73 S Apr 3 2024 Print: 8.730 S Apr 3 2024 MiTek Industries, Inc. Fri Apr 26 13:54:31 ID:Lek3CAANj_gYbKvtCQHtmQzKvNM-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

9-0-11 9-4-13

9-4-13

Scale = 1:32.6

Loading TCLL (roof) TCDL BCLL BCDL	(psf) 25.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018/TPI2014	BC C).52).32).07	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 3	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 36 lb	GRIP 244/190 FT = 10%
LUMBER TOP CHORD BOT CHORD OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.3 2x4 SP No.3 Structural wood sh 6-0-0 oc purlins. Rigid ceiling direct bracing. (size) 1=9-4-13 Max Horiz 1=94 (LC Max Uplift 1=-34 (LC (LC 8) Max Grav 1=206 (I (LC 1)	eathing directly applied y applied or 10-0-0 oc 3, 3=9-4-13, 4=9-4-13 C 9), 3=-46 (LC 9), 4= -C 1), 3=206 (LC 1), 4= mpression/Maximum	on the bottor 3-06-00 tall l chord and ar 8) All bearings 9) Provide mec bearing plate 1, 46 lb uplif 10) This truss is International R802.10.2 a LOAD CASE(S)	has been designed for m chord in all areas w by 2-00-00 wide will fit ny other members. are assumed to be SF chanical connection (b e capable of withstand t at joint 3 and 14 lb u designed in accordan Residential Code sec nd referenced standar Standard	here t betw P No. y oth ding 3 plift a nce w ctions	a rectangle veen the botto 3 . ers) of truss to 4 lb uplift at jo tt joint 4. ith the 2018 5 R502.11.1 au	om o Doint					

 TOP CHORD
 1-2=-165/81, 2-3=-161/62

 BOT CHORD
 1-4=-21/72, 3-4=-21/72

 WEBS
 2-4=-234/58

NOTES

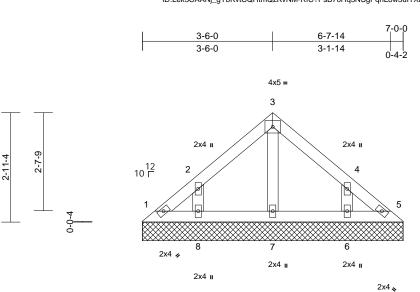
 Unbalanced roof live loads have been considered for this design.

- Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

4) Gable requires continuous bottom chord bearing.

5) Gable studs spaced at 4-0-0 oc.6) This truss has been designed for

6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and property incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSUTPIT Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

Job	Truss	Truss Type	Qty	Ply	Lot 179 HT	
B240092	V7	Valley	1	1	Job Reference (optional)	165199445

Run: 8.73 S Apr 3 2024 Print: 8.730 S Apr 3 2024 MiTek Industries, Inc. Fri Apr 26 13:54:31 ID:Lek3CAANj_gYbKvtCQHtmQzKvNM-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

7-0-0

Scale		1.20 0
Scale	=	1:30.9

Loading TCLL (roof) TCDL BCLL BCDL	(psf) 25.0 10.0 0.0 10.0	Plate Grip DOL Lumber DOL * Rep Stress Incr	2-0-0 1.15 1.15 YES IRC20	18/TPI2014	CSI TC BC WB Matrix-P	0.09 0.05 0.03	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 5	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 28 lb	GRIP 244/190 FT = 10%
LUMBER TOP CHORD BOT CHORD OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	6-0-0 oc purlins. Rigid ceiling direct bracing. (size) 1=7-0- 8=7-0- Max Horiz 1=68 (Max Uplift 1=-17 (LC 9), Max Grav 1=54 (-	ec =7-0-0, 96 6=192 L	 chord live loa; * This truss I on the bottoo 3-06-00 tall I chord and at All bearings Provide mechaering platet A I buptift at joint 6. This truss is International 	Residential Conductor	ent with any gned for a liv areas where e will fit betw ors. o be SP No. ction (by oth thstanding 1 o uplift at join ecordance wi ode sections	other live loa e load of 20.0 a rectangle veen the bottu 3. ers) of truss t 7 lb uplift at j t 8 and 96 lb th the 2018 R502.11.1 a	Opsf om to oint uplift					
FORCES	(lb) - Maximum C Tension	ompression/Maximum											
TOP CHORD		81/58, 3-4=-77/44,											
BOT CHORD		22/50, 6-7=-22/50,											

WEBS NOTES

1) Unbalanced roof live loads have been considered for this design.

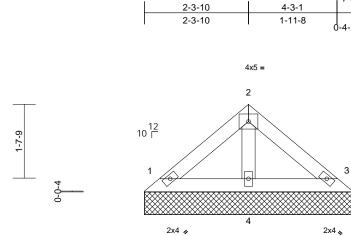
3-7=-84/0, 2-8=-158/117, 4-6=-158/117

5-6=-22/50

- Wind: ASCE 7-16; Vult=115mph (3-second gust) 2) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) Gable requires continuous bottom chord bearing. 5)
- Gable studs spaced at 2-0-0 oc.

Page: 1

April 30,2024



 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.
 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not besign value to dury with with where outputs into design is based only door parameters shown, and is for an individual building design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members and property incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TPH1 Quality Criteria**, and **DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcscomponents.com)

Job	Truss	Truss Type	Qty	Ply	Lot 179 HT	
B240092	V8	Valley	1	1	Job Reference (optional)	165199446

1-11-4

Run: 8.73 S Apr 3 2024 Print: 8.730 S Apr 3 2024 MiTek Industries, Inc. Fri Apr 26 13:54:32 ID:Lek3CAANj_gYbKvtCQHtmQzKvNM-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

4-7-3

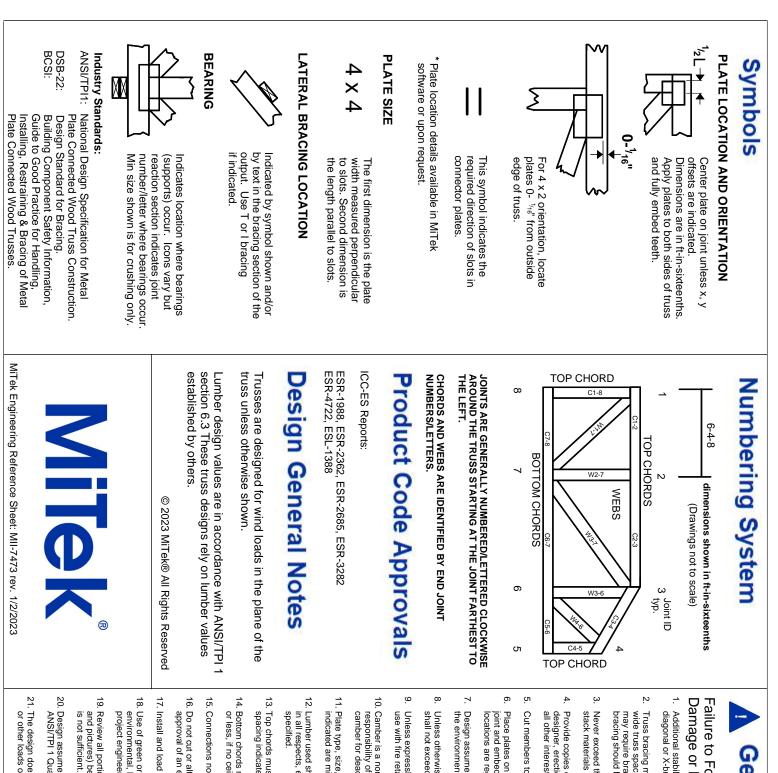
Scale = 1:25.5

Ocale = 1.20.0												
Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15	TC	0.13	Vert(LL)	n/a	-	n/a	999	MT20	244/190
TCDL	10.0	Lumber DOL	1.15	BC	0.06	Vert(TL)	n/a	-	n/a	999		
BCLL	0.0*	Rep Stress Incr	YES	WB	0.02	Horiz(TL)	0.00	3	n/a	n/a		
BCDL	10.0	Code	IRC2018/TPI2014	Matrix-P							Weight: 16 lb	FT = 10%
UMBER			8) All beari	ngs are assumed to b	be SP No.	3.						
TOP CHORD	2x4 SP No.3		9) Provide	mechanical connection	on (by oth	ers) of truss t	0					
BOT CHORD	2x4 SP No.3			plate capable of with	standing 2	1 lb uplift at j	oint					
DTHERS	2x4 SP No.3			3 lb uplift at joint 3.								
BRACING				s is designed in acco								
TOP CHORD	Structural wood she 4-7-13 oc purlins.	athing directly appli		onal Residential Cod 0.2 and referenced sta			ina					
BOT CHORD	Rigid ceiling directly bracing.	applied or 10-0-0 o	c LOAD CAS	E(S) Standard								
REACTIONS	0	3=4-7-3, 4=4-7-3										
	Max Horiz 1=-42 (LC	34)										
	Max Uplift 1=-21 (LC	9), 3=-26 (LC 9)										
	Max Grav 1=100 (LC (LC 1)	C 1), 3=100 (LC 1),	4=147									
ORCES	(lb) - Maximum Com	pression/Maximum										
	Tension	100										
OP CHORD	1-2=-67/35, 2-3=-62											
SOT CHORD	1-4=-11/30, 3-4=-11, 2-4=-99/24	/30										
NOTES	2-4=-99/24											
	ed roof live loads have	been considered fo	r									
this design												
	CE 7-16; Vult=115mph	(3-second gust)										
	nph; TCDL=6.0psf; BC											CT.
	Enclosed; MWFRS (er										A	and
	left and right exposed										THEOF	VIISS W
	sed; Lumber DOL=1.6									4	Z. M	NS
) Truss des	signed for wind loads in	i the plane of the tru	JSS							H	~/ ~~~	Nov.

3) Truss designed for wind loads in the pla ane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1. 4) Gable requires continuous bottom chord bearing.

5) Gable studs spaced at 2-0-0 oc.

- 6)
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 7) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle
- 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.


SCOTT M. SEVIER NUMBER PE-2001018807 SSIONAL E

Page: 1

16023 Swingley Ridge Rd. Chesterfield MO 63017 314.434.1200 / MiTek-US.com

 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.
 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not besign value for use only with with twit even connectors. This design is based only upon parameters shown, and is for an individual building designer must verify the applicability of design parameters and properly incorporate this design into the overall building designer must verify the applicability of design parameters and properly incorporate this design into the overall building designer. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcscomponents.com)

General Safety Notes

Failure to Follow Could Cause Property Damage or Personal Injury

- 1. Additional stability bracing for truss system, e.g. diagonal or X-bracing, is always required. See BCSI.
- Truss bracing must be designed by an engineer. For wide truss spacing, individual lateral braces themselves may require bracing, or alternative Tor1 bracing should be considered.
- Never exceed the design loading shown and never stack materials on inadequately braced trusses.
- Provide copies of this truss design to the building designer, erection supervisor, property owner and all other interested parties.
- 5. Cut members to bear tightly against each other
- Place plates on each face of truss at each joint and embed fully. Knots and wane at joint locations are regulated by ANSI/TPI 1.
- Design assumes trusses will be suitably protected from the environment in accord with ANSI/TPI 1.
- Unless otherwise noted, moisture content of lumber shall not exceed 19% at time of fabrication.
- Unless expressly noted, this design is not applicable for use with fire retardant, preservative treated, or green lumber.
- Camber is a non-structural consideration and is the responsibility of truss fabricator. General practice is to camber for dead load deflection.
- 11. Plate type, size, orientation and location dimensions indicated are minimum plating requirements.
- Lumber used shall be of the species and size, and in all respects, equal to or better than that specified.
- 13. Top chords must be sheathed or purlins provided at spacing indicated on design.
- Bottom chords require lateral bracing at 10 ft. spacing, or less, if no ceiling is installed, unless otherwise noted.
- 15. Connections not shown are the responsibility of others.
- Do not cut or alter truss member or plate without prior approval of an engineer.
- 17. Install and load vertically unless indicated otherwise.
- Use of green or treated lumber may pose unacceptable environmental, health or performance risks. Consult with project engineer before use.
- Review all portions of this design (front, back, words and pictures) before use. Reviewing pictures alone is not sufficient.
- 20. Design assumes manufacture in accordance with ANSI/TPI 1 Quality Criteria.
- 21. The design does not take into account any dynamic or other loads other than those expressly stated.