

RE: P240395-01 - Roof - WO Lot 130

Site Information:

Project Customer: Clayton Properties Project Name: Sheffield - Modern Prairie Subdivision: Woodside Ridge Lot/Block: 130 Model:

MiTek, Inc. 16023 Swingley Ridge Rd. Chesterfield, MO 63017 314.434.1200

Address: 2135 NW Killamey

City: Lee's Summit

State: MO

General Truss Engineering Criteria & Design Loads (Individual Truss Design Drawings Show Special Loading Conditions):

Design Code: IRC2018/TPI2014 Wind Code: ASCE 7-16 Wind Speed: 115 mph Roof Load: 45.0 psf

Design Program: MiTek 20/20 8.6 Design Method: MWFRS (Envelope)/C-C hybrid Wind ASCE 7-16 Floor Load: N/A psf

Mean Roof Height (feet): 35

Exposure Category: C

No.	Seal#	Truss Name	Date	No.	Seal#	Truss Name	Date
No. 1234567891012345678901222222222222222222222222222222222222	Seal# 165082234 165082235 165082238 165082239 165082243 165082241 165082242 165082243 165082243 165082243 165082245 165082246 165082247 165082248 165082248 165082251 165082251 165082252 165082253 165082253 165082256 165082256 165082256 165082256 165082257 165082256 165082258 165082258 165082258 165082259 165082260 165082261 165082261 165082263 165082263 165082263 165082263 165082263 165082264 165082263 165082263 165082264 165082263 165082264 165082265 165082264 165082265 165082265 165082263 165082264 165082263 165082264 165082263 165082263 165082263 165082263 165082263 165082263 165082263 165082263 165082263 165082263 165082263 165082263 16508265 165085 165085 165085 165085 165085 165085 165085 165085 165085 165085 165085	Truss Name A01 A02 AG01 B01 B02 BG01 C01 C02 C02A C03 C04 C05 C06 C07 C08 C09 C10 CJ01 CJ02 CJ02 CJ04 D01 D02 D03 D04 D05 D06 D07 D08 D09 D11	Date 4/23/24 4/23/2	No. $3567890123678901233678901233678901233456789012334567890123345567890612345666666666666666666666666666666666666$	Seal# I65082268 I65082270 I65082271 I65082272 I65082273 I65082273 I65082275 I65082276 I65082276 I65082277 I65082280 I65082280 I65082283 I65082283 I65082283 I65082285 I65082285 I65082290 I65082290 I65082291 I65082292 I65082293 I65082293 I65082293 I65082294 I65082295 I65082295 I65082296 I65082296 I65082297 I65082296 I65082297 I65082298 I65082297 I65082298 I65082298 I65082296 I65082297 I65082298 I65082298 I65082297	Truss Name D14 D15 F03 H1 H2 H5 H6 H7 J01 J1 J02 J2 J03 J3 J04 J4 J05 J06 J07 J08 J09 LG01 LG02 LG03 LG05 LG06 LG05 LG06 LG07 V01 V02 V03 V04 V05	Date 4/23/24 2/23/24 4/23/24 2
27 28 29 30 31 32 33 34	165082260 165082261 165082262 165082263 165082263 165082265 165082265 165082266 165082267	D05 D06 D07 D08 D09 D11 D12 D13	4/23/24 4/23/24 4/23/24 4/23/24 4/23/24 4/23/24 4/23/24 4/23/24	61 62 63 64 65 66 67 68	165082294 165082295 165082295 165082296 165082297 165082298 165082299 165082300 165082301	LG07 V01 V02 V03 V04 V05 V06 V07	4/23/2 4/23/2 4/23/2 4/23/2 4/23/2 4/23/2 4/23/2 4/23/2

The truss drawing(s) referenced above have been prepared by MiTek USA, Inc. under my direct supervision based on the parameters provided by Premier Building Supply (Springhill, KS)20300 W 207th Street.

Truss Design Engineer's Name: Sevier, Scott

My license renewal date for the state of Missouri is December 31, 2025.

IMPORTANT NOTE: The seal on these truss component designs is a certification that the engineer named is licensed in the jurisdiction(s) identified and that the designs comply with ANSI/TPI 1. These designs are based upon parameters shown (e.g., loads, supports, dimensions, shapes and design codes), which were given to MiTek or TRENCO. Any project specific information included is for MiTek's or TRENCO's customers file reference purpose only, and was not taken into account in the preparation of these designs. MiTek or TRENCO has not independently verified the applicability of the design parameters or the designs for any particular building. Before use, the building designer should verify applicability of design parameters and properly incorporate these designs into the overall building design per ANSI/TPI 1, Chapter 2.

Sevier, Scott

April 23,2024

RE: P240395-01 - Roof - WO Lot 130

MiTek, Inc. 16023 Swingley Ridge Rd. Chesterfield, MO 63017 314.434.1200

No.	Seal#	Truss Name	Date
69	l65082302	V08	4/23/24
70	l65082303	V09	4/23/24

Job	Truss	Truss Type	Qty	Ply	Roof - WO Lot 130	
P240395-01	A01	Roof Special Supported Gable	1	1	Job Reference (optional)	165082234

Run: 8.63 S Apr 5 2024 Print: 8.630 S Apr 5 2024 MiTek Industries, Inc. Mon Apr 22 15:25:44 ID:hR7vMzJ2Qmd5?FPBXe_M?NywCJy-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Scale = 1:54.6

Plate Offsets (X V).	[2.0-0-13 0-1-8]	[15.Edge 0-2-8]
	12.0 0 10,0 1 0 <u>[</u> ,	110.Lugo,0 Z 01

Loading TCLL (roof) TCDL BCLL BCDL		(psf) 25.0 10.0 0.0 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC201	8/TPI2014	CSI TC BC WB Matrix-R	0.58 0.38 0.26	DEFL Vert(LL) Vert(CT) Horz(CT)	in n/a n/a 0.01	(loc) - - 17	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 MT18HS Weight: 116 lb	GRIP 244/190 197/144 FT = 20%	
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD WEBS REACTIONS	2x4 SP N 2x4 SP N 2x4 SP N 2x3 SPF I Structural 6-0-0 oc p Rigid ceill bracing. 1 Row at (size)	o.2 o.2 *Excep No.2 I wood shea purlins, exc ing directly midpt 17=21-6-0	t* 15-17:2x3 SPF No athing directly applie cept end verticals. applied or 6-0-0 oc 2-30 0, 18=21-6-0, 19=21	T(5.2 ed or B(-6-0,	DP CHORD	2-30=-162/266, 3-4=-153/162, 4 5-7=-265/205, 7 9-11=-374/240, 12-13=-447/264 14-15=-601/33 15-17=-420/24 29-30=-291/53 27-28=-291/53 22-23=-291/53 22-23=-291/53 20-21=-291/53	, 1-2=-23/0, : 4-5=-194/18: 7-8=-302/21: , 11-12=-411 4, 13-14=-48 5, 15-16=0/2 3 9, 28-29=-22 9, 28-29=-22 9, 28-29=-22 9, 28-29=-22 9, 23-24=-25 9, 21-22=-25 9, 12-22=-25 9, 12-22=-25 9, 12-22=-25 9, 12-22=-25 9, 12-22=-25	2-3=-103/102 3, 5-6=-229/1 5, 8-9=-338/2 /252, 12/275, 2, 11/539, 11/539, 11/539, 11/539, 11/539, 11/539,), 93, 228,	9) All I cap 10) Pro bea join Ib u join 11) This Inte R80	bearings acity of s vide mee ring plat t 30, 49 plift at jo t 28, 65 plift at jo t 19 and s truss is rnationa 02.10.2 a	are as 565 ps chanica e capa lb uplif int 25, lb uplif int 21, 404 lb desig l Resic and ref	ssumed to be SP i. al connection (by ble of withstandii t at joint 23, 49 lb 55 lb uplift at joint t at joint 29, 49 lb 52 lb uplift at joint 28 lb uplift at joint 18. ned in accordanc gential Code sect erenced standard	No.2 crushing others) of truss to ng 136 lb uplift at uplift at joint 24, 4 t 27, 31 lb uplift a uplift at joint 22, 4 t 20, 39 lb uplift a e with the 2018 ons R502.11.1 ar ANSI/TPI 1.	2 48 at 48 at
	Max Horiz Max Uplift	20=21-6-C 23=21-6-C 27=21-6-C 30=21-6-C 30=-390 (18=-404 (20=-52 (L 22=-49 (L 22=-49 (L 24=-49 (L 24=-49 (L 24=-55 (L)	(), 21=21-6-0, 22=21) (), 24=21-6-0, 25=21) (), 28=21-6-0, 29=21) () (), 28=21-6-0, 29=21) () (), 28=-39 (LC 9) (), 28=-39 (LC 9) (), 28=-31 (LC 8) (), C 9), 38=-36 (LC 8)), W), N(), N(), 1)),	EBS OTES Wind: ASCE Vasd=91mpl Ke=1.00; Ca exterior zone	18-19=-291/53 3-23=-140/91, ; 5-27=-141/101, 3-29=-183/133, 11-21=-140/91, 13-19=-146/92, 7-16; Vult=115 n; TCDL=6.0ps t. II; Exp C; En- and C-C Corr	9, 17-18=-25 7-24=-140/9 , 4-28=-140/ , 9-22=-140// , 12-20=-138 , 14-18=-229 5mph (3-sec f; BCDL=6.0 closed; MWI ter(3E) -0-10	17/539 1, 6-25=-140, 105, 91, //370 ond gust) psf; h=35ft; FRS (envelop I-8 to 4-1-8,	/91, be)		CASE(S)) Star	ndard		
FORCES	Max Grav (lb) - Max Tension	17=463 (L 19=187 (L 21=180 (L 23=180 (L 25=180 (L 28=181 (L 30=111 (L	C 8), 18=93 (LC 1), C 1), 20=178 (LC 1), C 1), 22=180 (LC 1), C 1), 24=180 (LC 1), C 1), 27=181 (LC 1), C 1), 29=150 (LC 1), C 1), gression/Maximum),), 2)), 2) 9), 3) 4) 5) 6) 7)	Exterior(2N) right expose for members Lumber DOL Truss design only. For stu see Standard or consult qu All plates are Gable requir Truss to be f braced again Gable studs	4-1-8 to 22-4-8 d; end vertical and forces & M =1.60 plate gri ned for wind loa uds exposed to d Industry Gabl alified building MT20 plates u a 1.5x4 MT20 u es continuous l ully sheathed fi ist lateral move spaced at 2-0-1	3 zone; canti left and righ WWFRS for 1 p DOL=1.60 ads in the pla wind (normale End Detai designer as unless other bottom chorr rom one face ement (i.e. di 0 oc.	lever left and t exposed;C- reactions sho ane of the tru al to the face) Is as applicat per ANSI/TF wise indicate d bearing. e or securely agonal web).	C wm;), ole, Pl 1. d. J.		-		STE OF M SCOTT SEVI DE 20010 PE-20010	MISSOLA ER DI8807	

 This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

April 23,2024

JULO

Page: 1

Job	Truss	Truss Type	Qty	Ply	Roof - WO Lot 130	
P240395-01	A02	Jack-Closed	11	1	Job Reference (optional)	165082235

Run: 8.63 S Apr 5 2024 Print: 8.630 S Apr 5 2024 MiTek Industries, Inc. Mon Apr 22 15:25:45 ID:80iA2gDVy5A5j3X8bOVbIdzP8a5-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Plate Offsets (X, Y): [6:0-3-0,Edge], [12:Edge,0-7-8]

Scale = 1:57.2

Loading TCLL (roof) TCDL BCLL	(psf) 25.0 10.0 0.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr	2-0-0 1.15 1.15 YES		CSI TC BC WB	0.63 0.58 0.75	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.07 -0.16 -0.17	(loc) 9-10 10-12 13	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 MT18HS	GRIP 244/190 197/144	
BCDL	10.0	Code	IRC2018	3/TPI2014	Matrix-S							Weight: 107 lb	FT = 20%	
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD WEBS REACTIONS	2x4 SP No.2 2x4 SP No.2 2x3 SPF No.2 *Exce 2x4 SP No.2 Structural wood shea 3-10-12 oc purlins, of Rigid ceiling directly bracing. 1 Row at midpt (size) 7= Mecha Max Horiz 12=383 (L Max Uplift 7=-167 (L 13=-300 (L Max Grav 7=147 (LC 13=1199)	pt* 12-2:2x4 SP No.2 athing directly applie except end verticals. applied or 7-6-1 oc 3-9, 5-8 nical, 12=0-3-8, 13= .C 9) C 1), 12=-219 (LC 8) LC 9) C 11), 12=1005 (LC 1 (LC 1)	4) 2 5) 6) ^{d or} 7) 0-3-8 8)), LC	Bearings are capacity of 5 of 565 psi. Refer to girde Bearing at jo using ANSI/T designer sho Provide mecl bearing plate joint 12, 167 13. This truss is International R802.10.2 ar	assumed to be: Jo 65 psi, Joint 13 SP er(s) for truss to trus int(s) 13 considers IPI 1 angle to grain uld verify capacity of hanical connection capable of withstan lb uplift at joint 7 ar designed in accorda Residential Code s nd referenced stance Standard	int 12 \$ No.2 c ss conr parallel formula of beari (by oth nding 2 nd 300 1 ance w ections dard AN	BP No.2 crush rushing capac to grain valu a. Building ng surface. ers) of truss t 19 lb uplift at b uplift at joir th the 2018 .R502.11.1 a ISI/TPI 1.	ning city o nt						
FORCES	(lb) - Maximum Com	pression/Maximum												
TOP CHORD	2-12=-933/358, 1-2= 3-5=-958/276, 5-6=-2 8-13=-145/721, 6-13	:0/23, 2-3=-1656/379 203/185, 6-7=-81/66, ⊨-478/399), ,											
BOT CHORD	10-12=-611/625, 9-1 8-9=-296/836	0=-516/1496,										and a	age -	
WEBS	2-10=-99/1067, 3-10 5-9=-17/498, 5-8=-10	=0/208, 3-9=-722/24 064/299	1,									TE OF A	IISSO	
NOTES											B	SCOTT	B. C.	
 Wind: ASG Vasd=91n Ke=1.00; exterior (1) right expo for membe Lumber D All plates This truss 	CE 7-16; Vult=115mph nph; TCDL=6.0psf; BC Cat. II; Exp C; Enclose one and C-C Exterior(2) 4-1-8 to 22-2-12 zone sed ; end vertical left a ers and forces & MWFf /OL=1.60 plate grip DO are MT20 plates unless has been designed for	(3-second gust) DL=6.0psf; h=35ft; d; MWFRS (envelop E) -0-10-8 to 4-1-8, c; cantilever left and nd right exposed;C-C RS for reactions show L=1.60 s otherwise indicated a 10.0 psf bottom	e) C wn; I.									SUT SEVI	ER DI8807	P

- All plates are MT20 plates unless otherwise indicated. 2)
- 3) This truss has been designed for a 10.0 psf bottom
- chord live load nonconcurrent with any other live loads.

April 23,2024

Job	Truss	Truss Type	Qty	Ply	Roof - WO Lot 130	
P240395-01	AG01	Flat Girder	1	2	Job Reference (optional)	165082236

Run: 8.63 S Apr 5 2024 Print: 8.630 S Apr 5 2024 MiTek Industries, Inc. Mon Apr 22 15:25:45 ID:yyZHCQIzFfk27CofV0vHWTywCG5-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

	5-2-14	10-4-0	15-5-2	20-8-0
	5-2-14	5-1-2	5-1-2	5-2-14
Scale = 1:41.3				

Plate Offsets (X, Y): [2:0-2-8,0-3-0], [5:0-2-8,0-3-0], [7:Edge,0-3-8], [8:0-2-8,0-2-8], [11:0-2-8,0-2-8]

Loading TCLL (roof) TCDL BCLL BCDL	(psf) 25.0 10.0 0.0 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 NO IRC201	8/TPI2014	CSI TC BC WB Matrix-S	0.73 0.43 0.95	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.23 -0.39 0.04	(loc) 9 9 7	l/defl >999 >625 n/a	L/d 240 180 n/a	PLATES MT18HS MT20 Weight: 263 lb	GRIP 244/190 197/144 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD REACTIONS	2x8 SPF No.2 2x6 SP 2400F 2.0E 2x3 SPF No.2 *Exce No.2, 11-1,8-6:2x4 S 2-0-0 oc purlins (3-9 end verticals. Rigid ceiling directly bracing. (size) 7=0-3-8, 1 Max Horiz 12=-101 (pt* 12-1,6-7:2x4 SP SP 1650F 1.5E -8 max.): 1-6, excep applied or 10-0-0 oc I2=0-3-8 LC 30)	2) 3) ot	All loads are except if note CASE(S) sec provided to d unless othern. Wind: ASCE Vasd=91mpr Ke=1.00; Cat exterior zone and right exp exposed;C-C reactions sho DOL=1.60	considered equall ad as front (F) or b ttion. Ply to ply coi istribute only load vise indicated. 7-16; Vult=115mp ; TCDL=6.0psf; B ; II; Exp C; Enclos and C-C Corner osed ; end vertica for members and own; Lumber DOL	y applie ack (B) nnectior s noted h (3-sec CDL=6. sed; MW 3) zone l left and forces =1.60 pl	d to all plies, face in the LC is have been as (F) or (B), cond gust) 0psf; h=35ft; /FRS (envelog ; cantilever le d right & MWFRS for ate grip	DAD pe) ft	11) Har pro' lb d lb u 112 and 10-I lb d 270 18-I top dev	nger(s) c vided su own and p at 2-0 9 lb dow 1 270 lb t 0-12, 11 own and 0-12, an 0-12, an chord. ice(s) is	r other fficient 199 ll 112, 1 112, 1 12, 1 12, 1 29 lb d 1270 ll 1270 ll 1270 ll 16-0- d 1148 The de the res	connection devi to support conce o up at 0-1-12, 1 129 lb down and 270 lb up at 6-0 9-0-12, 1129 lb do own and 270 lb u o up at 14-0-12, 12, and 1129 lb do lb down and 277 sign/selection of sponsibility of oth odard	ce(s) shall be entrated load(s) 199 129 lb down and 270 270 lb up at 4-0-12, -12, 1129 lb down own and 270 lb up at up at 12-0-12, 1129 1129 lb down and down and 270 lb up at 7 lb up at 20-0-12 on such connection ners.
FORCES	Max Uplift 7=-1654 (Max Grav 7=6994 (L (lb) - Maximum Com	LC 9), 12=-1475 (LC .C 1), 12=6090 (LC 1 pression/Maximum	: 8) 4) 1) 5) 6)	Provide adec All plates are This truss ha	uate drainage to p MT20 plates unle s been designed f	orevent ss othe or a 10.	water ponding rwise indicate 0 psf bottom	g. d.	1) De Pli Ur	ead + Ro ate Incre hiform Lo	of Live ase=1 bads (II	(balanced): Lun .15 p/ft)	nber Increase=1.15,
TOP CHORD	1-12=-5946/1636, 1- 2-3=-13740/3571, 3- 5-6=-10705/2809, 6-	2=-10589/2781, 5=-13740/3571, 7=-6845/1816	7) 8)	All bearings a capacity of 8 Provide mech	Chord live load nonconcurrent with any other live loads. All bearings are assumed to be SP 2400F 2.0E crushing capacity of 805 psi.					Vert: 1-6=-70, 7-12=-20 Concentrated Loads (lb) Vert: 1=55 (F), 4=-1129, 3=-1129, 13=-1129,			
BOT CHORD	11-12=-180/211, 9-1 8-9=-2834/10705 7-	1=-2852/10589, 8=-92/221	0)	bearing plate	capable of withst	anding 1	1475 lb uplift a	at		14=-112 19=-112	29, 15= 29, 20=	-1129, 16=-1129 -1148	9, 17=-1129, 18=-1129,
WEBS	1-11=-3022/11533, 2 2-9=-924/3501, 3-9= 5-9=-898/3372, 5-8= 6-8=-3047/11651	-2973/851, -5040/1419,	9)	This truss is International R802.10.2 ar	designed in accord Residential Code ad referenced star	dance w sections idard Al	rith the 2018 s R502.11.1 a NSI/TPI 1.	ind				OF N	ALS C
NOTES				or the orienta	ition of the purlin a	along the	e top and/or				1	TIE	
1) 2-ply truss (0.131"x3" Top chord oc, 2x8 - 2 Bottom ch staggered	s to be connected toget ') nails as follows: Is connected as follows 2 rows staggered at 0-S 10 rows connected as follows at 0-9-0 oc.	ther with 10d s: 2x4 - 1 row at 0-9-0 9-0 oc. ows: 2x6 - 2 rows	0	bottom chord	l.							SCOT SEVI	I M. E

Web connected as follows: 2x4 - 1 row at 0-9-0 oc, 2x3 - 1 row at 0-9-0 oc.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

16023 Swingley Ridge Rd. Chesterfield, MO 63017 314.434.1200 / MITEk-US.com

E

April 23,2024

PE-200101880

ONAL

Page: 1

Job	Truss	Truss Type	Qty	Ply	Roof - WO Lot 130	
P240395-01	B01	Monopitch Supported Gable	1	1	Job Reference (optional)	165082237

Run: 8.63 S Apr 5 2024 Print: 8.630 S Apr 5 2024 MiTek Industries, Inc. Mon Apr 22 15:25:46 ID:MAbH_NJYZSPgIcWuhoR2BAywCHN-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC?f Page: 1

Scale = 1:47.5 Plate Offsets (X, Y): [7:Edge,0-2-8]

1 1010 0 110010 ((,,, ,). [::=age;e = e]													
Loading	(psf)	Spacing	2-0-0		CSI	0.50	DEFL	in n/n	(loc)	l/defl	L/d	PLATES	GRIP	
	25.0	Plate Grip DOL	1.15			0.59	Vert(LL)	n/a	-	n/a	999	WI 20	197/144	
	10.0	Lumber DOL Bon Stroop Inor	1.15 VES			0.15		11/a	- 7	n/a	999			
BULL	0.0	Rep Stress Incr	TEO		VVB	0.19	HONZ(IL)	0.00	1	n/a	n/a	Mainh to 04 lb		
BCDL	10.0	Code	IRC2018	3/TPI2014	Matrix-S		-					weight: 61 lb	FT = 20%	
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x4 SP No.2 2x3 SPF No.2 *Exce 2x3 SPF No.2 *Exce Structural wood she 6-0-0 oc purlins, ex Rigid ceiling directly bracing, Except: 8-2-4 oc bracing: 11 (size) 7=10-6-0 10=10-6- Max Horiz 12=272 (I Max Uplift 7=-26 (LC (LC 12), (LC 9) Max Grav 7=86 (LC	apt* 12-1:2x4 SP No.: apt* 13-6:2x4 SP No.: athing directly applie cept end verticals. applied or 10-0-0 oc -12. 8=10-6-0, 9=10-6-0, 0, 11=10-6-0, 12=10- LC 9) 2 9), 8=-45 (LC 12), 9 10=-50 (LC 8), 11=-20 1), 8=205 (LC 1), 9=	2) 2 3) 4) d or 5) 6) 7) 6-0 8) 1=-48 98 9) 175	Truss design only. For stu see Standard or consult qu Gable requirn Truss to be f braced again Gable studs This truss ha chord live logarity All bearings a capacity of 5 Provide mec bearing plate 7, 298 lb upli uplift at joint This truss is International	ned for wind load dis exposed to wi d Industry Gable lalified building de es continuous boully sheathed from spaced at 2-0-0 of s been designed ad nonconcurrent are assumed to b 65 psi. hanical connection capable of withs ft at joint 11, 50 ll 9 and 45 lb uplift designed in acco Residential Code	s in the pl ind (norm End Detai ssigner as ttom chor m one fac ent (i.e. d oc. for a 10.0 with any se SP No. on (by oth tsanding 2 b uplift at at joint 8. rdance wi	ane of the tru al to the face ils as applical s per ANSI/TF d bearing. e or securely iagonal web) 0 psf bottom other live loa 2 crushing ers) of truss t 6 lb uplift at j joint 10, 48 lk ith the 2018 R502,11.1 a	iss), ble, PI 1. ds. ds. oint o nd						
FORCES	(LC 1), 10 1), 12=32 (lb) - Maximum Con	0=180 (LC 1), 11=190 24 (LC 9) apression/Maximum	^{) (LC} LC	DAD CASE(S)	Standard									
	Tension													
TOP CHORD	1-2=-363/217, 2-3=- 4-5=-193/174, 5-6=- 1-12=-698/415	307/203, 3-4=-247/18 120/136, 6-7=-69/84	85, ,									OF M	AISC	
BOT CHORD WEBS	11-12=-519/383, 10 9-10=-117/155, 8-9= 2-11=-145/172, 3-10 4-9=-137/172, 5-8=-	-11=-117/155, =-117/155, 7-8=-117/)=-140/167, -163/221, 1-11=-468/	155 780									STATE SCOTT	ſM. ER	Ø
NOTES											80		0 *	3
1) Wind: ASC Vasd=91n Ke=1.00; (exterior zc Exterior(21 right expo- for membe Lumber D	CE 7-16; Vult=115mpf nph; TCDL=6.0psf; BC Cat. II; Exp C; Enclose one and C-C Corner(3) N) 14-1-12 to 19-2-8 z sed ; end vertical left a ers and forces & MWF OL=1.60 plate grip DC	n (3-second gust) DL=6.0psf; h=35ft; d; MWFRS (envelop E) 9-1-12 to 14-1-12, one; cantilever left ar and right exposed;C-C RS for reactions show JL=1.60							-	A State	PE-2001	L ENGLES	P	

April 23,2024

Job	Truss	Truss Type	Qty	Ply	Roof - WO Lot 130	
P240395-01	B02	Jack-Closed	10	1	Job Reference (optional)	165082238

5-2-1

5-2-1

Premier Building Supply (Springhill, KS), Spring Hills, KS - 66083,

Run: 8,63 S Apr 5 2024 Print: 8,630 S Apr 5 2024 MiTek Industries, Inc. Mon Apr 22 15:25:46 ID:bAA6SGdrRSh_PcWuDFv8EfywCGz-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

> 10-6-0 5-3-15

Page: 1

Scale = 1:51												
Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15	TC	0.40	Vert(LL)	-0.02	4-5	>999	240	MT20	197/144
TCDL	10.0	Lumber DOL	1.15	BC	0.25	Vert(CT)	-0.04	4-5	>999	180		
BCLL	0.0	Rep Stress Incr	YES	WB	0.42	Horz(CT)	0.11	8	n/a	n/a		
BCDL	10.0	Code	IRC2018/TPI2014	Matrix-S							Weight: 58 lb	FT = 20%

LUMBER		
TOP CHORD	2x4 SP N	0.2
BOT CHORD	2x4 SP N	0.2
WEBS	2x3 SPF I	No.2 *Except* 6-1:2x4 SP No.2
OTHERS	2x4 SP N	0.2
BRACING		
TOP CHORD	Structura	I wood sheathing directly applied
	6-0-0 oc p	ourlins, except end verticals.
BOT CHORD	Rigid ceil	ing directly applied or 9-11-5 oc
	bracing.	
REACTIONS	(size)	6=0-3-8, 8=0-3-2
	Max Horiz	6=213 (LC 9)
	Max Uplift	6=-54 (LC 8), 8=-144 (LC 12)
	Max Grav	6=460 (LC 1), 8=436 (LC 1)
FORCES	(lb) - Max	imum Compression/Maximum
	Tension	
TOP CHORD	1-2=-382/	/110, 2-3=-96/21, 4-7=-181/308,
	3-7=-181/	/308, 1-6=-413/209
BOT CHORD	5-6=-347/	/241, 4-5=-293/349
WEBS	1-5=-64/3	33, 2-4=-390/298, 2-5=-54/123,
	3-8=-439/	/280

NOTES

.

- Wind: ASCE 7-16; Vult=115mph (3-second gust) 1) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=35ft; Ke=1.00; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) 9-1-12 to 14-2-1, Interior (1) 14-2-1 to 19-1-4 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 3) All bearings are assumed to be SP No.2 crushing
- capacity of 565 psi. Bearing at joint(s) 8 considers parallel to grain value 4)
- using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.

5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 54 lb uplift at joint 6 and 144 lb uplift at joint 8.

This truss is designed in accordance with the 2018 6) International Residential Code sections R502.11.1 and

R802.10.2 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard

or

April 23,2024

16023 Swingley Ridge Rd. Chesterfield MO 63017 314.434.1200 / MiTek-US.com

Job	Truss	Truss Type	Qty	Ply	Roof - WO Lot 130	
P240395-01	BG01	Flat Girder	1	2	Job Reference (optional)	165082239

Run: 8.63 S Apr 5 2024 Print: 8.630 S Apr 5 2024 MiTek Industries, Inc. Mon Apr 22 15:25:46 ID:7XgaNY0YfbrJtgXEfh?t4dywCGS-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

I	5-2-14	10-4-0	15-5-2	20-8-0
ſ	5-2-14	5-1-2	5-1-2	5-2-14

	5-2-14	10-4-0	15-5-2	20-8-0
	5-2-14	5-1-2	5-1-2	5-2-14
Scalo - 1:40 6				

Plate Offsets (X, Y): [7:Edge,0-2-8], [8:0-2-8,0-2-8], [11:0-2-8,0-2-8]

Loading TCLL (roof) TCDL BCLL BCDL	(psf) 25.0 10.0 0.0 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 NO IRC2018	3/TPI2014	CSI TC BC WB Matrix-S	0.38 0.50 0.83	DEFL Vert(LL) Vert(CT) Horz(CT)	in 0.12 -0.21 0.02	(loc) 9 9 7	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT18HS MT20 Weight: 200 lb	GRIP 197/144 197/144 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD	2x6 SPF No.2 2x6 SPF No.2 2x3 SPF No.2 2-0-0 oc purlins (6-0 end verticals. Rigid ceiling directly bracing	3) t 4)	Wind: ASCE Vasd=91mph Ke=1.00; Cat exterior zone and right exp exposed;C-C reactions sho DOL=1.60 Provide adeq	cond gust) Dpsf; h=35ft; FRS (envelop cantilever lef d right & MWFRS for ate grip water ponding	Co	oncentra Vert: 4= 16=-366	ed Loa -366, 3 - 17=-3	ads (lb) }≕-366, 13≕-366, 366, 18≕-366, 19:	14=-366, 15=-366, =-366, 20=-384				
REACTIONS	(size) 7=0-3-8, Max Horiz 12=-104 (Max Uplift 7=-816 (L Max Grav 7=2904 (1	12=0-3-8 (LC 8) .C 9), 12=-727 (LC 8) LC 1), 12=2619 (LC 1	5) 6)) 7)	 4) Provide adequate drainage to prevent water ponding. 5) All plates are MT20 plates unless otherwise indicated. 6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 7) All bearings are assumed to be SPF No.2 crushing 									
FORCES	(lb) - Maximum Con Tension 1-12=-2535/918, 1-2	2=-4363/1498,	8)	Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 727 lb uplift at joint 12 and 816 lb uplift at joint 7.									
BOT CHORD WEBS	2-3=-5/19/1926, 3- 5-6=-4406/1510, 6- 11-12=-149/156, 9- 8-9=-1536/4406, 7-{ 1-11=-1640/4803, 2 2-9=-527/1515, 3-9= 5-9=-517/1467, 5-8: 6-8=-1650/4847	9) 10 11) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. 0) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord. 1) Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 366 							and the			
 NOTES 1) 2-ply truss to be connected together with 10d (0.131"x3") nails as follows: Top chords connected as follows: 2x3 - 1 row at 0-9-0 oc. 2x6 - 2 rows staggered at 0-9-0 oc. Bottom chords connected as follows: 2x6 - 2 rows staggered at 0-9-0 oc. Web connected as follows: 2x3 - 1 row at 0-9-0 oc. 2) All loads are considered equally applied to all plies, except if noted as front (F) or back (B) face in the LOAD CASE(S) section. Ply to ply connections have been provided to distribute only loads noted as (F) or (B), unless otherwise indicated. 				ib down and 3 lb up at 4-0-3 366 lb down a 133 lb up at 12-0-12, 366 down and 13 133 lb up at 20-0-12 on to connection du PAD CASE(S) Dead + Rooo Plate Increa Uniform Loa Vert: 1-6=	133 lb up at 2-0-12 12, 366 lb down an and 133 lb up at 8 10-0-12, 366 lb dow lb down and 133 lb 3 lb up at 16-0-12, 18-0-12, and 384 ll p chord. The desi avice(s) is the resp Standard f Live (balanced): l se=1.15 ds (lb/ft) 70, 7-12=-20	2, 366 I d 133 I -0-12, 3 wn and b up at , and 36 b down gn/sele onsibili	b down and 1 50 up at 6-0-1: 866 lb down a 133 lb up at 14-0-12, 366 56 lb down an and 126 lb up ction of such ty of others.	33 2, nd b d o at 5,				COLOMA PE-20010	118807

April 23,2024

Page: 1

Job	Truss	Truss Type	Qty	Ply	Roof - WO Lot 130	
P240395-01	C01	Half Hip Girder	1	1	Job Reference (optional)	165082240

Run: 8.63 S Apr 5 2024 Print: 8.630 S Apr 5 2024 MiTek Industries, Inc. Mon Apr 22 15:25:46 ID:73jRVBRtf17Uyv7meqcsSoywCFw-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Job	Truss	Truss Type	Qty	Ply	Roof - WO Lot 130	
P240395-01	C02	Half Hip	1	1	Job Reference (optional)	165082241

Run: 8.63 S Apr 5 2024 Print: 8.630 S Apr 5 2024 MiTek Industries, Inc. Mon Apr 22 15:25:46 ID:yD4imEVeFtudgqbw?4jGi3ywCFq-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:35.7

Plate Offsets (X, Y): [2:0-2-0,0-1-12]

Loading TCLL (roof) TCDL BCLL BCDL	(psf) 25.0 10.0 0.0 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC201	8/TPI2014	CSI TC BC WB Matrix-S	0.32 0.37 0.46	DEFL Vert(LL) Vert(CT) Horz(CT)	in 0.08 -0.14 0.07	(loc) 8-9 8-9 7	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 51 lb	GRIP 197/144 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD	LUMBER TOP CHORD 2x4 SP No.2 SOT CHORD 2x4 SP No.2 SOT CHORD 2x3 SPF No.2 BRACING TOP CHORD Structural wood sheathing directly applied of 4-4-12 oc purlins, except end verticals, and 2-0-0 oc purlins, (6-0-0 max.): 4-6. SOT CHORD Rigid ceiling directly applied or 7-5-12 oc bracing. REACTIONS (size) 7=0-3-8, 10=0-3-8 Max Horiz 10=137 (LC 9)				are assumed to 65 psi. int(s) 10, 7 con TPI 1 angle to g ould verify capa ihanical connec e capable of wit 116 lb uplift at j designed in acc	b be SP No. Insiders paral grain formula city of beari citon (by othe thstanding 1 joint 7. cordance wi	2 crushing lel to grain va a. Building ng surface. ers) of truss t 51 lb uplift at th the 2018	alue to					
REACTIONS	OT CHORD Rigid ceiling directly applied or 7-5-12 oc bracing. SEACTIONS (size) 7=0-3-8, 10=0-3-8 Max Horiz 10=137 (LC 9) Max Uplift 7=-116 (LC 8), 10=-151 (LC 8) Max Grav 7=505 (LC 1), 10=580 (LC 1)				Residential Co nd referenced s Irlin representat ation of the purl d.	ode sections standard AN tion does no lin along the	R502.11.1 a SI/TPI 1. It depict the stop and/or	and size					
FORCES	(lb) - Maximum Com	pression/Maximum	L	OAD CASE(S)	Standard								
TOP CHORD	2-10=-569/396, 1-2= 3-4=-1536/1093, 4-5 5-6=-658/404, 6-7=-4	:0/22, 2-3=-1559/10 i=-658/404, 484/344	13,										
BOT CHORD WEBS	9-10=-342/252, 8-9= 2-9=-822/1340, 3-9= 4-8=-172/188, 5-8=-	618/780, 7-8=-61/6 121/172, 4-9=-608 184/163, 6-8=-511/7	68 8/751, 756										
 NOTES Unbalanced roof live loads have been considered for this design. Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=35ft; Ke=1.00; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone and C/C Exterior(2E) 0-10.8 to 4-1.8 												STATE OF I	MISSOUR I M. ER

- exterior zone and C-C Exterior(2E) -0-10-8 to 4-1-8, Interior (1) 4-1-8 to 6-7-4, Exterior(2E) 6-7-4 to 11-4-12 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- Provide adequate drainage to prevent water ponding. 3) This truss has been designed for a 10.0 psf bottom 4)
- chord live load nonconcurrent with any other live loads.

RE

E

April 23,2024

PE-2001018807

SSIONAL

Job	Truss	Truss Type	Qty	Ply	Roof - WO Lot 130	
P240395-01	C02A	Half Hip	1	1	Job Reference (optional)	165082242

2-6-7

2-4-13

1-0-0

Run: 8.63 S Apr 5 2024 Print: 8.630 S Apr 5 2024 MiTek Industries, Inc. Mon Apr 22 15:25:46 ID:EpfUgEYYastjtatnb6ZNjxynCaj-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:35.4

Plate Offsets (X, Y): [2:0-2-0,0-1-12]

2-6-7

	(psf) 25.0	Spacing Plate Grip DOI	2-0-0		CSI								
	25.0	Plate Grip DOI			001		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
	100	1 1410 0110 2 02	1.15		TC	0.25	Vert(LL)	0.07	8-9	>999	240	MT20	197/144
	10.0	Lumber DOL	1.15		BC	0.44	Vert(CT)	-0.14	8-9	>999	180		
	0.0	Rep Stress Incr	YES		WB	0.45	Horz(CT)	0.07	7	n/a	n/a		
	10.0	Code	IRC20	8/TPI2014	Matrix-S							Weight: 49 lb	FT = 20%
2x4 SP No.2 2x4 SP No.2 2x3 SPF No Structural w 4-5-13 oc pu 2-0-0 oc pur	2 2 .2 vood shea urlins, ex rlins (5-4-	thing directly applie cept end verticals, 11 max.): 4-6.	ed or ⁷ and	 All bearings capacity of 5 Bearing at jo using ANSI/ designer sho Provide mec bearing plate joint 10 and This truss is 	are assumed to t 65 psi. int(s) 10, 7 consi IPI 1 angle to gra uld verify capaci hanical connectit e capable of within 113 lb uplift at joi designed in acco	be SP No. iders paral ain formula ity of beari on (by oth standing 1 int 7. ordance wi	2 crushing lel to grain v a. Building ng surface. ers) of truss f 54 lb uplift at th the 2018	alue to t					
Rigid ceiling bracing.	directly	applied or 6-8-11 of	c	International	Residential Cod	e sections	R502.11.1 a	and					
(size) 7= Max Horiz 10 Max Uplift 7= Max Grav 7= (Ib) - Maximu Tension	=0-3-8, 1 0=105 (L =-113 (L0 =505 (LC um Comp	0=0-3-8 C 11) C 8), 10=-154 (LC 8 : 1), 10=580 (LC 1) pression/Maximum	9 3) L	R802.10.2 a Graphical pu or the orienta bottom chore OAD CASE(S)	nd referenced sta rlin representatic ation of the purlin d. Standard	andard AN on does no a along the	SI/TPI 1. t depict the s top and/or	size					
2-10=-576/4 3-4=-1461/9 5-6=-1064/6 9-10=-273/2	00, 1-2= 30, 4-5≕ 21, 6-7≕ 218, 8-9≕	0/22, 2-3=-1536/89 -1067/624, -480/312 -775/1136, 7-8=-45	8, 5/56										
2-9=-710/13 4-8=-80/108	809, 3-9= 8, 5-8=-27	0/108, 4-9=-246/33 /3/251, 6-8=-675/11	7, 122										
4-8=-80/108, 5-8=-273/251, 6-8=-675/1122													50
 Unbalanced roof live loads have been considered for this design. Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=35ft; 											ŧ.	TATE OF M	AISSOUR
	2x4 SP No.2 2x4 SP No.2 2x3 SPF No Structural w 4-5-13 oc pu Rigid ceiling bracing. (size) 7 Max Horiz 1 Max Uplift 7 Max Grav 7 (lb) - Maxim Tension 2-10=-576/4 3-4=-1461/5 5-6=-1064/6 9-10=-273/2 2-9=-710/13 4-8=-80/108 ed roof live Ioa n. CE 7-16; Vult=	0.0 10.0 10.0 2x4 SP No.2 2x3 SPF No.2 Structural wood sheat 4-5-13 oc purlins, ex 2-0-0 oc purlins, (5-4- Rigid ceiling directly bracing. (size) 7=0-3-8, 1 Max Horiz 10=105 (L Max Uplift 7=-113 (LC Max Grav 7=505 (LC (lb) - Maximum Com, Tension 2-10=-576/400, 1-2=1 3-4=-1461/930, 4-5=- 5-6=-1064/621, 6-7=- 5-6=-1064/621, 6-7=- 2-9=-710/1309, 3-9=1 4-8=-80/108, 5-8=-27 ed roof live loads have In. CE 7-16; Vult=115mph hph; TCDL=6.0psf; BCI	0.0 Rep Stress Incr 0.0 Rep Stress Incr 2x4 SP No.2 2x4 SP No.2 2x3 SPF No.2 2x3 SPF No.2 Structural wood sheathing directly appli 4-5-13 oc purlins, except end verticals, 2-0-0 oc purlins (5-4-11 max.): 4-6. Rigid ceiling directly applied or 6-8-11 or bracing. (size) 7=0-3-8, 10=0-3-8 Max Horiz 10=105 (LC 11) Max Uplift 7=-113 (LC 8), 10=-154 (LC 8) Max Grav 7=505 (LC 1), 10=580 (LC 1) (b) - Maximum Compression/Maximum Tension 2-10=-576/400, 1-2=0/22, 2-3=-1536/89 3-4=-1461/930, 4-5=-1067/624, 5-6=-1064/621, 6-7=-480/312 9-10=-273/218, 8-9=-775/1136, 7-8=-45 2-9=-710/1309, 3-9=0/108, 4-9=-246/33 4-8=-80/108, 5-8=-273/251, 6-8=-675/1 ed roof live loads have been considered for h. CE 7-16; Vult=115mph (3-second gust) hph; TCDL=6.0psf; BCDL=6.0psf; h=35ft;	0.0 Rep Stress Incr YES 10.0 Rep Stress Incr YES 2x4 SP No.2 5 2x4 SP No.2 6 2x3 SPF No.2 6 Structural wood sheathing directly applied or 4-5-13 oc purlins, except end verticals, and 2-0-0 oc purlins (5-4-11 max.): 4-6. 7 Rigid ceiling directly applied or 6-8-11 oc bracing. 8 (size) 7=0-3-8, 10=0-3-8 9 Max Horiz 10=105 (LC 11) 9 Max Grav 7=505 (LC 1), 10=580 (LC 1) 10 (b) - Maximum Compression/Maximum Tension 2-10=-576/400, 1-2=0/22, 2-3=-1536/898, 3-4=-1461/930, 4-5=-1067/624, 5-6=-1064/621, 6-7=-480/312 9-10=-273/218, 8-9=-775/1136, 7-8=-45/56 2-9=-710/1309, 3-9=0/108, 4-9=-246/337, 4-8=-80/108, 5-8=-273/251, 6-8=-675/1122 ed roof live loads have been considered for n. CE 7-16; Vult=115mph (3-second gust) mph; TCDL=6.0psf; BCDL=6.0psf; h=35ft; 9	0.0Rep Stress IncrYES10.0CodeIRC2018/TPI20142x4 SP No.25) All bearings i capacity of 52x4 SP No.25) Bearing at jo using ANSI/ designer sho2x3 SPF No.25) Bearing at jo using ANSI/ designer shoStructural wood sheathing directly applied or 4-5-13 oc purlins, except end verticals, and 2-0-0 oc purlins (5-4-11 max.): 4-6.7) Provide mec bearing plate joint 10 and(size)7=0-3-8, 10=0-3-87) Brovide mec bearing plate joint 10 and8) This truss is International R802.10.2 at 9) Graphical pu or the orienta bottom chore(size)7=0-3-8, 10=0-3-89) Graphical pu or the orienta bottom chore(size)7=0-3-8, 10=0-3-89) Graphical pu or the orienta bottom chore(size)7=0-55 (LC 1), 10=580 (LC 1) (lb) - Maximum Compression/Maximum Tension 2-10=-576/400, 1-2=0/22, 2-3=-1536/898, 3-4=-1461/330, 4-5=-1067/624, 5-6=-1064/621, 6-7=-480/3129-10=-273/218, 8-9=-775/1136, 7-8=-45/56 2-9=-710/1309, 3-9=0/108, 4-9=-246/337, 4-8=-80/108, 5-8=-273/251, 6-8=-675/1122ed roof live loads have been considered for h.DE 7-16; Vult=115mph (3-second gust) mph; TCDL=6.0psf; BCDL=6.0psf; h=35ft;	0.0 Rep Stress Incr YES WB 10.0 Code IRC2018/TPI2014 Matrix-S 2x4 SP No.2 2x4 SP No.2 5) All bearings are assumed to I capacity of 565 psi. 2x4 SP No.2 5) Structural wood sheathing directly applied or 4-5-13 oc purlins, except end verticals, and 2-0-0 oc purlins (5-4-11 max.): 4-6. Bearing at joint(s) 10, 7 cons using ANSI/TPI 1 angle to gradesigner should verify capacitor of the capable of with joint 10 and 113 lb uplift at jo (size) 7=0-3-8, 10=0-3-8 70 Provide mechanical connective and referenced st (size) 7=0-3-8, 10=0-3-8 802.10.2 and referenced st 9) Max Grav 7=505 (LC 1), 10=580 (LC 1) 802.10.2 and referenced st 9) Max Grav 7=505 (LC 1), 10=580 (LC 1) 9) Graphical purlin representation of the purlin bottom chord. LOAD CASE(S) Standard 9) 10=-273/218, 8-9=-775/1136, 7-8=-45/56 2-9=-710/1309, 3-9=0/108, 4-9=-246/337, 4-8=-80/108, 5-8=-273/251, 6-8=-675/1122 ed roof live loads have been considered for h. 10 10 10-20-60, 56; BCDL=6.0psf; h=35ft;	10.0 Rep Stress Incr YES WB 0.45 10.0 Code IRC2018/TPI2014 Matrix-S 2x4 SP No.2 2x4 SP No.2 capacity of 565 psi. 2x3 SPF No.2 5) All bearings are assumed to be SP No.: capacity of 565 psi. Structural wood sheathing directly applied or 4-5-13 oc purlins, except end verticals, and 2-0-0 oc purlins (5-4-11 max.): 4-6. Bearing at joint(s) 10, 7 considers paral using ANSI/TPI 1 angle to grain formula designer should verify capacity of bearing plate capable of withstanding 1 joint 10 and 113 lb uplift at joint 7. (size) 7=0-3-8, 10=0-3-8 Max Horiz 10=105 (LC 11) Max Grav 7=505 (LC 1), 10=580 (LC 1) Max Grav 7=505 (LC 1), 10=580 (LC 1) Graphical purlin representation does no or the orientation of the purlin along the bottom chord. LOAD CASE(S) Standard 9:10=-273/218, 8-9=-775/1136, 7-8=-45/56 2-9=-710/1309, 3-9=0/108, 4-9=-246/337, 4-8=-80/108, 5-8=-273/251, 6-8=-675/1122 ed roof live loads have been considered for h. CE 7-16; Vult=115mph (3-second gust) mph; TCDL=6.0psf; BCDL=6.0psf; h=35ft;	10.0Rep Stress IncrYESWB0.45Horz(CT)10.0CodeIRC2018/TPI2014Matrix-SHorz(CT)2x4 SP No.22x4 SP No.25All bearings are assumed to be SP No.2 crushing capacity of 565 psi.2x4 SP No.22x3 SPF No.25All bearings are assumed to be SP No.2 crushing capacity of 565 psi.Structural wood sheathing directly applied or 4-5-13 oc purlins, except end verticals, and 2-0-0 oc purlins (5-4-11 max.): 4-6. Rigid ceiling directly applied or 6-8-11 oc bracing.6Rigid ceiling directly applied or 6-8-11 oc bracing.7=0-3-8, 10=0-3-8Max Horiz 10=105 (LC 11) Max Uplift 7=-113 (LC 8), 10=-154 (LC 8) Max Grav 7=505 (LC 1), 10=580 (LC 1) (Ib) - Maximum Compression/Maximum Tension82:10=-576/400, 1-2=0/22, 2-3=-1536/898, 3-4=-1461/930, 4-5=-1067/624, 5-6=-1064/621, 6-7=-480/312 9-10=-273/218, 8-9=-775/1136, 7-8=-45/56 2-9=-710/1309, 3-9=0/108, 4-9=-246/337, 4-8=-80/108, 5-8=-273/251, 6-8=-675/1122ICAD CASE(S)ad roof live loads have been considered for h.72F7-16; Vult=115mph (3-second gust) mph; TCDL=6.0psf; BCDL=6.0psf; h=35ft;	10.011.011.011.011.011.010	10.0 Rep Stress incr Code YES IRC2018/TPI2014 WB Matrix-S 0.45 Horz(CT) Horz(CT) 0.07 7 2x4 SP No.2 2x4 SP No.2 5 All bearings are assumed to be SP No.2 crushing capacity of 565 psi. 6 7	10.0 Rep Stress incr YES WB 0.45 Horz(CT) 0.07 7 n/a 2x4 SP No.2 2x3 SPF No.2 5) All bearings are assumed to be SP No.2 crushing capacity of 565 psi. 6) Bearing at joint(3) 10, 7 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface. 2x4 SP No.2 5) All bearings are assumed to be SP No.2 crushing capacity of 565 psi. Structural wood sheathing directly applied or 6-8-11 oc bracing. 6) Bearing plate capable of withstanding 154 lb uplift at joint 10 and 113 lb uplift at point 10 and 113 lb uplift at point 10 and 113 lb uplift at joint 10 and 113 lb uplift 3 lb uplift 3 and 10 and 113 lb uplift 3 lb uplift 3 and 10	10.0 Rep Stress Incr YES WB 0.45 Horz(CT) 0.07 7 n/a 2x4 SP No.2 2x3 SPF No.2 5 All bearings are assumed to be SP No.2 crushing capacity of 565 psi. 6 Bearing at joint(s) 10, 7 considers parallel to grain value using ANSI/TP1 1 angle to grain formula. Building designer should verify capacity of bearing surface. 2x4 SP No.2 5 All bearings are assumed to be SP No.2 crushing capacity of 565 psi. 2x3 SPF No.2 6 Bearing at joint(s) 10, 7 considers parallel to grain value using ANSI/TP1 1 angle to grain formula. Building designer should verify capacity of bearing surface. 7 Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 154 lb uplift at joint 10 and 113 lb uplift at joint 10 and 113 lb uplift at joint 10 and 113 lb uplift at joint 20.2 and referenced standard ANSI/TP1 1. (size) 7=05/400, 1-2=0/22, 2-3=-1536/898, 3-4=-11667/624, 5-6=-1064/621, 6-7=-480/312 9 3-10=-756/400, 1-2=0/22, 2-3=-1536/898, 3-4=-1161/930, 4-5=-273/218, 8-9=-775/1136, 7-8=-45/56 9=-710/1309, 3-9=0/108, 5-8=-273/218, 6-8=-675/1122 ed for of live loads have been considered for here. 1 7 Fr-16; Vult=115mph (3-second gust) ph, TCDL=6.0psf, BCDL=6.0psf, h=35ft;	0.0 Rep Stress Incr YES WB 0.45 Horz(CT) 0.07 7 n/a Meight: 49 lb 2x4 SP No.2 Structural wood sheathing directly applied or 4-513 oc purlins, except end verticals, and 2-0-0 oc purlins (5-4-11 max): 4-6. Siglid celling directly applied or 6-8-11 oc bracing. 5) All bearings are assumed to be SP No.2 crushing capacity of 56 psi. (size) 7=0-3-8, 10=0-3-8 Max Horiz 10-105 (LC 11) 6 Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 154 lb uplift at joint 7. 6) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANS/TP1 1. (size) 7=0-3-8, 10=0-3-8 Max Horiz 10-105 (LC 1) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or botom chord. (b) Max Mumm Compression/Maximum Tension 2-00-77/01308, 3-9=-775/1136, 7-8=-45/56 2-9=-710/1308, 3-9=-775/1136, 7-8=-45/56 2-9=-710/1309, 3-9=-01/08, 4-9=-246/337, 4-8=-80/108, 5-8=-273/251, 6-8=-675/1122 Standard LOAD CASE(S) ad roof live loads have been considered for hpt, TCDL-6-6.0psf; BCDL=6.0psf; BCDL

- Ke=1.00; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) -0-10-8 to 4-1-8, Interior (1) 4-1-8 to 4-7-4, Exterior(2E) 4-7-4 to 11-4-12 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- Provide adequate drainage to prevent water ponding. 3) This truss has been designed for a 10.0 psf bottom 4)
- chord live load nonconcurrent with any other live loads.

 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.
 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not besign value to dury with with where outputs into design is based only door parameters shown, and is for an individual building design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members and property incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TPH1 Quality Criteria**, and **DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcscomponents.com)

Job	Truss	Truss Type	Qty	Ply	Roof - WO Lot 130	
P240395-01	C03	Half Hip	1	1	Job Reference (optional)	165082243

Run: 8.63 S Apr 5 2024 Print: 8.630 S Apr 5 2024 MiTek Industries, Inc. Mon Apr 22 15:25:46 ID:v8GJKYxDmxQW_MLr6eMi9eywCFG-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

<u> </u>	4 0 - 0	
Scale	= 1:37.3	

Loading TCLL (roof) TCDL BCLL BCDL	(psf) 25.0 10.0 0.0 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC20	18/TPI2014	CSI TC BC WB Matrix-S	0.51 0.55 0.78	DEFL Vert(LL) Vert(CT) Horz(CT)	in 0.10 -0.16 0.08	(loc) 7-8 7-8 6	l/defl >999 >862 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 52 lb	GRIP 197/144 FT = 20%	
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x4 SP No.2 2x3 SPF No.2 Structural wood shea 4-6-0 oc purlins, exa 2-0-0 oc purlins (6-0 Rigid ceiling directly bracing. (size) 6=0-3-8, 9	athing directly applie cept end verticals, ar -0 max.): 4-5. applied or 5-2-8 oc 9=0-3-8	d or nd s	 Bearing at jo using ANSI/1 designer sho /> Provide meci bearing plate joint 9 and 1 This truss is International R802.10.2 ar /> Graphical pu or the orientat bottom chorce 	int(s) 9, 6 consider PI 1 angle to grain uld verify capacity hanical connectior a capable of withsta 19 lb uplift at joint 1 designed in accord Residential Code nd referenced star rlin representation ation of the purlin a 1	rs paralle of formula of bearin (by oth anding 1 6. dance w sections idard AN does no ilong the	el to grain va a. Building ng surface. ers) of truss i 47 lb uplift a' th the 2018 R502.11.1 a SI/TPI 1. ot depict the s top and/or	lue to and size						
FORCES TOP CHORD	Max Horiz 9=168 (LC Max Uplift 6=-119 (L Max Grav 6=505 (LC (lb) - Maximum Com Tension 2-9=-556/352, 1-2=0 3-4=-569/259, 4-5=-4 8-9=-373/273 7-8=-7	C 9) C 8), 9=-147 (LC 8) C 1), 9=580 (LC 1) pression/Maximum //22, 2-3=-1668/1086 496/308, 5-6=-488/3 1968/1521 6-7=-77/	L 3, 56 86	OAD CASE(S)	. Standard									

1)	Unbalanced roof live loads have been considered for
	this design.

2-8=-937/1479, 3-8=-130/268,

3-7=-1044/881, 4-7=-162/209, 5-7=-463/643

- Wind: ASCE 7-16; Vult=115mph (3-second gust) 2) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=35ft; Ke=1.00; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) -0-10-8 to 4-1-8, Interior (1) 4-1-8 to 8-7-4, Exterior(2E) 8-7-4 to 11-4-12 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- Provide adequate drainage to prevent water ponding. 3)
- 4) This truss has been designed for a 10.0 psf bottom
- chord live load nonconcurrent with any other live loads. 5) All bearings are assumed to be SP No.2 crushing
- capacity of 565 psi.

Job	Truss	Truss Type	Qty	Ply	Roof - WO Lot 130	
P240395-01	C04	Half Hip	1	1	Job Reference (optional)	165082244

0-10-8

Run: 8.63 S Apr 5 2024 Print: 8.630 S Apr 5 2024 MiTek Industries, Inc. Mon Apr 22 15:25:46 ID:nwVq9v_kqAwyTzecLUReJUywCFC-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

11-2-8

Page: 1

Scale = 1:43.5	· · · · ·												
Loading TCLL (roof) TCDL BCLL BCDL	(psf) 25.0 10.0 0.0 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018	8/TPI2014	CSI TC BC WB Matrix-S	0.39 0.53 0.68	DEFL Vert(LL) Vert(CT) Horz(CT)	in 0.09 -0.15 0.08	(loc) 8-9 8-9 7	l/defl >999 >889 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 55 lb	GRIP 197/144 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x4 SP No.2 2x3 SPF No.2 Structural wood sheat 4-7-10 oc purlins, exi 2-0-0 oc purlins (6-0-0 Rigid ceiling directly a bracing. (size) 7= Mechan Max Horiz 10=199 (LC Max Uplift 7=-122 (LC Max Grav 7=492 (LC	thing directly applied cept end verticals, a 0 max.): 5-6. applied or 5-5-0 oc hical, 10=0-3-8 C 9) S 8), 10=-140 (LC 8) 1), 10=567 (LC 1)	5) 6) 7) d or 8) 9) 10	Bearings are capacity of 5 Refer to gird Bearing at jo using ANSI/7 designer sho Provide mec bearing plate joint 10 and 1 This truss is International R802.10.2 ai	assumed to be: . 65 psi. er(s) for truss to t int(s) 10 consider IPI 1 angle to gra uld verify capacit hanical connectio capable of withs 122 lb uplift at join designed in acco Residential Code nd referenced sta rlin representatio to of the purlin	Joint 10 \$ russ conr rs parallel in formula y of bear n (by oth tanding 1 nt 7. rdance w e sections indard AN n does nd along the	SP No.2 crus nections. I to grain valu a. Building ing surface. ers) of truss 40 lb uplift a th the 2018 SR502.11.1 a USI/TPI 1. ot depict the to pand/or	hing Je to t and size					
FORCES	(lb) - Maximum Comp Tension	pression/Maximum	LC	DAD CASE(S)	Standard								
TOP CHORD	2-10=-547/350, 1-2=0 3-4=-553/221, 4-5=-5 6-7=-114/116)/22, 2-3=-1572/937 25/289, 5-6=-86/93,	,										
BOT CHORD	9-10=-429/313, 8-9=- 7-8=-107/130	1178/1427,											
WEBS	2-9=-796/1378, 3-9=- 4-8=-347/338, 5-8=-5	140/266, 3-8=-958/7 16/728, 5-7=-416/34	780, 47										
NOTES													
1) Unbalance	ed roof live loads have b	peen considered for										an	Aller

- this design.
- Wind: ASCE 7-16; Vult=115mph (3-second gust) 2) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=35ft; Ke=1.00; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) -0-10-8 to 4-1-8, Interior (1) 4-1-8 to 10-7-4, Exterior(2E) 10-7-4 to 11-1-4 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- Provide adequate drainage to prevent water ponding. 3)
- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.
 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not besign value to dury with with where outputs into design is based only door parameters shown, and is for an individual building design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members and property incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TPH1 Quality Criteria**, and **DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcscomponents.com)

Job	Truss	Truss Type	Qty	Ply	Roof - WO Lot 130	
P240395-01	C05	Jack-Closed	1	1	Job Reference (optional)	165082245

Run: 8.63 S Apr 5 2024 Print: 8.630 S Apr 5 2024 MiTek Industries, Inc. Mon Apr 22 15:25:47 ID:jIdaab0_MnAgiHo_SvT6PvywCFA-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

. .

Scale = 1:41.2												
₋oading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15	тс	0.39	Vert(LL)	0.09	7-8	>999	240	MT20	197/144
TCDL	10.0	Lumber DOL	1.15	BC	0.53	Vert(CT)	-0.15	7-8	>877	180		
BCLL	0.0	Rep Stress Incr	YES	WB	0.69	Horz(CT)	0.08	6	n/a	n/a		
BCDL	10.0	Code	IRC2018/TPI2014	Matrix-S							Weight: 52 lb	FT = 20%
	-	-										

	184		-	n
_L.	ועונ	ъ	с.	ĸ
_		_	_	••

L

LOWIDER		
TOP CHORD	2x4 SP No.2	
BOT CHORD	2x4 SP No.2	
WEBS	2x3 SPF No.2	
BRACING		
TOP CHORD	Structural wood sl 4-7-8 oc purlins, e	neathing directly applied or except end verticals.
BOT CHORD	Rigid ceiling direc bracing.	lly applied or 5-5-3 oc
REACTIONS	(size) 6= Mec	hanical, 9=0-3-8
	Max Horiz 9=213 (LC 9)
	Max Uplift 6=-126	(LC 12), 9=-137 (LC 8)
	Max Grav 6=492 (LC 1), 9=567 (LC 1)
FORCES	(lb) - Maximum Co Tension	mpression/Maximum
TOP CHORD	2-9=-547/349, 1-2	=0/22, 2-3=-1575/903,
	3-4=-539/214, 4-5	=-534/289, 5-6=-477/361
BOT CHORD	8-9=-456/329, 7-8	=-1171/1430, 6-7=-95/105

WEBS 2-8=-765/1381, 3-8=-147/269, 3-7=-964/774, 4-7=-360/352, 5-7=-536/752

NOTES

- Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=35ft; Ke=1.00; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) -0-10-8 to 4-1-8, Interior (1) 4-1-8 to 11-1-4 zone; cantilever left and right exposed; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- Bearings are assumed to be: Joint 9 SP No.2 crushing capacity of 565 psi.
- 4) Refer to girder(s) for truss to truss connections.
- Bearing at joint(s) 9 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.

 Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 137 lb uplift at joint 9 and 126 lb uplift at joint 6.

7) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and

R802.10.2 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard

April 23,2024

16023 Swingley Ridge Rd. Chesterfield, MO 63017 314.434.1200 / MiTek-US.com

Job	Truss	Truss Type	Qty	Ply	Roof - WO Lot 130	
P240395-01	C06	Jack-Closed	8	1	Job Reference (optional)	165082246

Run: 8.63 S Apr 5 2024 Print: 8.630 S Apr 5 2024 MiTek Industries, Inc. Mon Apr 22 15:25:47 ID:YS_rre5lxdxpQCG8p9aWeAywCF4-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

5-7-4	11-2-8	
5-7-4	5-7-4	

	<i>(</i>) <i>(</i>)			
Plate Offsets	i (X,	Y):	[7:Edge,0-7-2]	l

Scale = 1:39.7

					_							
Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15	TC	0.45	Vert(LL)	-0.03	5-6	>999	240	MT20	197/144
TCDL	10.0	Lumber DOL	1.15	BC	0.34	Vert(CT)	-0.06	5-6	>999	180		
BCLL	0.0	Rep Stress Incr	YES	WB	0.62	Horz(CT)	0.01	5	n/a	n/a		
BCDL	10.0	Code	IRC2018/TPI2014	Matrix-S							Weight: 50 lb	FT = 20%
			6) This truss	is designed in acc	ordance wi	ith the 2018						
TOP CHORD	2x4 SP No 2		Internation	al Residential Coc	de sections	R502.11.1	and					
BOT CHORD	2x4 SP No.2		R802.10.2	and referenced st	andard AN	ISI/TPI 1.						
WEBS	2x3 SPF No.2		LOAD CASE	S) Standard								
BRACING			(,								
TOP CHORD	Structural wood she	athing directly appli	ed or									
	6-0-0 oc purlins, ex	cept end verticals.										
BOT CHORD	Rigid ceiling directly	applied or 8-6-4 oc										
	bracing.											
REACTIONS	(size) 5= Mecha	anical, 7=0-3-8										
	Max Horiz 7=212 (LC	C 9)										
	Max Uplift 5=-126 (L	.C 12), 7=-138 (LC 8	3)									
	Max Grav 5=492 (L0	C 1), 7=567 (LC 1)										
FORCES	(lb) - Maximum Corr	pression/Maximum										
	Tension											
TOP CHORD	2-7=-514/345, 1-2=0)/22, 2-3=-716/285,										
	3-4=-128/93, 4-5=-1	56/168										
BOT CHORD	6-7=-441/348, 5-6=-	468/626										
WEBS	2-6=-70/463, 3-6=0/	212, 3-5=-678/439										
NOTES												
1) Wind: AS	CE 7-16; Vult=115mph	(3-second gust)										
Vasd=91r	nph; TCDL=6.0psf; BC	DL=6.0psf; h=35ft;										
Ke=1.00;	Cat. II; Exp C; Enclose	ed; MWFRS (envelo	pe)								000	an
exterior zo	one and C-C Exterior(2	2E) -0-10-8 to 4-1-8,	d and a d								OF J	MISSIN
Interior (1) 4-1-8 to 11-1-4 zone;	cantilever left and i	ight							- 2	A SE	-0.0.0
exposed;	and forces & MW/EPS	for reactions shown								A	N/	New
Lumber D	OI = 1.60 plate grip DC		ι,							H	SCOT	IM. YON
 This truss 	has been designed fo	r a 10.0 psf bottom								B	/ SEV	IER \ Y
chord live	load nonconcurrent wi	ith any other live loa	ids.							10		

- 3) Bearings are assumed to be: Joint 7 SP No.2 crushing capacity of 565 psi.
- 4) Refer to girder(s) for truss to truss connections.
- Provide mechanical connection (by others) of truss to 5) bearing plate capable of withstanding 138 lb uplift at joint 7 and 126 lb uplift at joint 5.

Job	Truss	Truss Type	Qty	Ply	Roof - WO Lot 130				
P240395-01	C07	Half Hip Girder	1	1	Job Reference (optional)	165082247			

Run: 8,63 S Apr 5 2024 Print: 8,630 S Apr 5 2024 MiTek Industries, Inc. Mon Apr 22 15:25:47 ID:J?TtWNBm34xhOQthHrjOzsywCEy-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

WEBS

LUMBER

Scale = 1:34.9 Loading

TCLL (roof)

TCDI

BCLL

BCDL

- TOP CHORD
- BOT CHORD

BRACING TOP CHORD 2-0-0 oc purlins (5-5-14 max.): 3-5. Rigid ceiling directly applied or 8-8-11 oc BOT CHORD bracing. **REACTIONS** (size)

- Max Uplift 6=-167 (LC 9), 9=-227 (LC 8) Max Grav 6=627 (LC 1), 9=732 (LC 1) FORCES (Ib) - Maximum Compression/Maximum Tension TOP CHORD 1-2=0/23, 2-3=-1014/440, 3-4=-1043/477, 4-5=-1052/482, 5-6=-570/299, 2-9=-697/408 BOT CHORD 8-9=-198/153, 7-8=-455/930, 6-7=-48/52
- 5-7=-473/1085, 2-8=-320/861, 3-8=-2/107, WEBS 3-7=-28/172, 4-7=-376/268

NOTES

- 1) Unbalanced roof live loads have been considered for this design
- 2) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=35ft; Ke=1.00; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) -0-10-8 to 3-3-4, Exterior(2R) 3-3-4 to 10-4-2, Interior (1) 10-4-2 to 11-0-12 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- Provide adequate drainage to prevent water ponding. 3)
- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) Bearings are assumed to be: Joint 9 SP No.2 crushing capacity of 565 psi.
- 6) Refer to girder(s) for truss to truss connections.

- Plate Increase=1.15 Uniform Loads (lb/ft) Vert: 1-2=-70, 2-3=-70, 3-5=-70, 6-9=-20

 - Concentrated Loads (lb)
 - Vert: 8=-150 (B), 10=-26 (B), 11=-26 (B), 12=-26 (B), 13=-26 (B), 15=-13 (B), 16=-13 (B), 17=-13 (B), 18=-13 (B)

16023 Swingley Ridge Rd. Chesterfield MO 63017

314.434.1200 / MiTek-US.com

Job	Truss Truss Type Qty Ply Roof - W		Roof - WO Lot 130			
P240395-01	C08	Half Hip	1	1	Job Reference (optional)	165082248

-0-10-8.

Run: 8.63 S Apr 5 2024 Print: 8.630 S Apr 5 2024 MiTek Industries, Inc. Mon Apr 22 15:25:47 ID:89q8nRFXewhq6LKrd6qoC7ywCEs-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

5-2-0	11-2-8
5-2-0	6-0-8

Scale = 1:32 Plate Offsets (X, Y): [4:Edge.0-2-8]

	(/, //. [+.Luge,0-2-0]											
Loading TCLL (roof)	(psf) 25.0	Spacing Plate Grip DOL	2-0-0 1.15	CSI TC	0.61	DEFL Vert(LL)	in -0.04	(loc) 5-6	l/defl >999	L/d 240	PLATES MT20	GRIP 197/144
TCDL	10.0	Lumber DOL	1.15	BC	0.35	Vert(CT)	-0.08	5-6	>999	180		
BCLL	0.0	Rep Stress Incr	YES	WB	0.62	Horz(CT)	0.01	5	n/a	n/a		
BCDL	10.0	Code	IRC2018/TF	PI2014 Matrix-S					-		Weight: 48 lb	FT = 20%
LUMBER			7) Pr	rovide mechanical co	nnection (by oth	ers) of truss	to					
TOP CHORD	2x4 SP No.2		DE	earing plate capable of	of withstanding 1	a miqu di Ur	at joint					
BOICHORD	2x4 SP No.2		5 8) TH	and 152 ib upint at ju his truss is designed i	n accordance w	ith the 2018						
WEBS	2X3 SPF NO.2 EXCE	ept 7-2:2x4 SP No.	<u>2</u> 0, 11 In	ternational Residentia	al Code sections	R502 11 1	and					
BRACING		othing discotly appli	adar R	802.10.2 and referen	ced standard AN	NSI/TPI 1.	unu					
TOP CHORD	6-0-0 oc purlins, exe 2-0-0 oc purlins (6-0	cept end verticals, a -0 max.): 3-4.	ind 9) Gi or	raphical purlin repres the orientation of the	entation does no purlin along the	ot depict the e top and/or	size					
BOT CHORD	Rigid ceiling directly bracing.	applied or 9-1-3 oc	bo LOAD	ottom chord. CASE(S) Standard	1							
REACTIONS	(size) 5= Mecha Max Horiz 7=113 (LC Max Uplift 5=-110 (L Max Grav 5=490 (LC	anical, 7=0-3-8 C 11) C 8), 7=-152 (LC 8) C 1), 7=568 (LC 1)										
FORCES	(lb) - Maximum Com Tension	pression/Maximum										
TOP CHORD	1-2=0/23, 2-3=-709/3 4-5=-203/184, 2-7=-	361, 3-4=-79/82, 521/382										
BOT CHORD	6-7=-348/271, 5-6=-	413/618										
WEBS	3-6=0/202, 3-5=-620)/380, 2-6=-116/425										
NOTES												
1) Unbalanc	ed roof live loads have	been considered for	r									
this desig	n.											TO
2) Wind: AS	CE 7-16; Vult=115mph	(3-second gust)									OFI	MIG. D
Vasd=91r	nph; TCDL=6.0psf; BC	DL=6.0psf; h=35ft;									BAR	J. oscim
Ke=1.00;	Cat. II; Exp C; Enclose	d; MWFRS (envelo	pe)							6	AN	NON
exterior zo	one and C-C Exterior(2	(2) -0-10-8 to 4-1-8,								B	SCOT	TM. YZY
) 4-1-8 to 5-3-4, Exterio	Dr(2E) 5-3-4 to 11-1	-4 loft							RI	SEV	IER \ Y
and right	exposed C-C for memb	posed, end ventical	ien							10 M		∧ \★ Ø
MWFRS f	for reactions shown: Lu	mber DOL=1.60 pla	ate							NX	-14-	
grip DOL=	=1.60										Callyn	Some
3) Provide a	dequate drainage to pr	event water ponding	g.							57	DE 2001	010007 191

- 4) This truss has been designed for a 10.0 psf bottom
- chord live load nonconcurrent with any other live loads. Bearings are assumed to be: Joint 7 SP No.2 crushing 5) capacity of 565 psi.
- 6) Refer to girder(s) for truss to truss connections.

Job	Truss	Truss Type	Qty	Ply	Roof - WO Lot 130	
P240395-01	C09	Half Hip	1	1	Job Reference (optional)	165082249

Run: 8.63 S Apr 5 2024 Print: 8.630 S Apr 5 2024 MiTek Industries, Inc. Mon Apr 22 15:25:47 ID:JG?I5BOQ2J4Gw2gymvXN9SywCEh-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC?f

rage

Scale = 1:34.1

Plate Offsets (X,	Y):	[7:Edge,0-7-8]
-------------------	-----	----------------

Loading TCLL (roof) TCDL BCLL BCDL	(psf) 25.0 10.0 0.0 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018	3/TPI2014	CSI TC BC WB Matrix-S	0.71 0.31 0.32	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.03 -0.06 0.01	(loc) 5-6 5-6 5	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 49 lb	GRIP 197/144 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD	2x4 SP No.2 2x4 SP No.2 2x3 SPF No.2 *Exce Structural wood she 5-10-4 oc purlins, e 2-0-0 oc purlins (6-0 Rigid ceiling directly	ept* 7-2:2x4 SP No.2 athing directly applied xcept end verticals, a I-0 max.): 3-4. applied or 7-5-9 oc	7) 8) 1 or 9)	Provide mech bearing plate 5 and 149 lb This truss is of International R802.10.2 ar Graphical pu or the orienta bottom chord	nanical connection capable of withsta uplift at joint 7. designed in accord Residential Code s d referenced stand tion of the purlin al	(by oth inding 1 ance w sections dard AN does no long the	ers) of truss t 13 lb uplift at th the 2018 R502.11.1 a ISI/TPI 1. ot depict the s top and/or	o ; joint ind size					
REACTIONS	bracing. (size) 5= Mecha Max Horiz 7=145 (LC Max Uplift 5=-113 (L Max Grav 5=490 (LC	anical, 7=0-3-8 C 9) C 8), 7=-149 (LC 8) C 1), 7=568 (LC 1)	LC	AD CASE(S)	Standard								
FORCES	(lb) - Maximum Com	pression/Maximum											
TOP CHORD	1-2=0/23, 2-3=-606/ 4-5=-127/104, 2-7=-	243, 3-4=-71/73, 520/369											
WEBS	6-7=-622/447, 5-6=- 3-6=0/257, 3-5=-538	360/431 3/403, 2-6=-8/288											
NOTES	· · · · · · ·												
 Unbalance this design Wind: ASC Vasd=91rr Ke=1.00; (exterior zo Interior (1) zone; cant and right e MWFRS fr grip DOL= Provide ac This truss 	a root live loads have h. CE 7-16; Vult=115mph hph; TCDL=6.0psf; BC Cat. II; Exp C; Enclose one and C-C Exterior(2 4-1.8 to 7-3-4, Exteri tilever left and right exp exposed;C-C for memb or reactions shown; Lu 1.60 dequate drainage to pr has been designed fo	been considered for (3-second gust) DL=6.0psf; h=35ft; d; MWFRS (envelope E) -0-10-8 to 4-1-8, or(2E) 7-3-4 to 11-1-4 posed ; end vertical le bers and forces & imber DOL=1.60 plate event water ponding. r a 10.0 psf bottom	e) oft							C		ATE OF M SCOTT SEVI OT VUMP PE-20010	MISSOUR M. ER M. ER

- chord live load nonconcurrent with any other live loads.5) Bearings are assumed to be: Joint 7 SP No.2 crushing capacity of 565 psi.
- 6) Refer to girder(s) for truss to truss connections.

April 23,2024

SSIONAL E

Job	Truss	Truss Type	Qty	Ply	Roof - WO Lot 130	
P240395-01	C10	Half Hip	1	1	Job Reference (optional)	165082250

Run: 8.63 S Apr 5 2024 Print: 8.630 S Apr 5 2024 MiTek Industries, Inc. Mon Apr 22 15:25:47 ID:8QMZLFTBe9rQfz767AenPjywCEb-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

rag

ICLL (roof)	25.0	Plate Grip DOL	1.15		IC	0.27	Vert(LL)	-0.03	6-7	>999	240	M120	197/144
TCDL	10.0	Lumber DOL	1.15		BC	0.33	Vert(CT)	-0.06	6-7	>999	180		
BCLL	0.0	Rep Stress Incr	YES		WB	0.34	Horz(CT)	0.01	6	n/a	n/a		
BCDL	10.0	Code	IRC2	018/TPI2014	Matrix-S							Weight: 52 lb	FT = 20%
LUMBER				7) Provide med	hanical conne	ection (by oth	ers) of truss	to					
TOP CHORD	2x4 SP No.2			bearing plate	e capable of w	ithstanding 1	18 lb uplift a	at joint					
BOT CHORD	2x4 SP No.2			6 and 145 lb	uplift at joint	В.							
WEBS	2x3 SPF No.2 *Exce	pt* 8-2:2x4 SP No.2		This truss is	designed in a	ccordance w	ith the 2018						
BRACING				International	Residential C	ode sections	8 R502.11.1	and					
TOP CHORD	Structural wood she	athing directly applie	d or	R802.10.2 a	nd referenced	standard AN	ISI/TPI 1.						
	6-0-0 oc purlins, exe	cept end verticals, a	nd	Graphical pu	Irlin represent	ation does no	ot depict the	size					
	2-0-0 oc purlins (6-0	-0 max.): 4-5.		or the orient	ation of the pu	irlin along the	e top and/or						
BOT CHORD	Rigid ceiling directly	applied or 8-3-0 oc		bottom chore	3.								
	bracing.			LOAD CASE(S)	Standard								
REACTIONS	(size) 6= Mecha	nical, 8=0-3-8											
	Max Horiz 8=177 (LC	C 9)											
	Max Uplift 6=-118 (L	C 8), 8=-145 (LC 8)											
	Max Grav 6=490 (LC	C 1), 8=568 (LC 1)											
FORCES	(lb) - Maximum Com	pression/Maximum											
	Tension												
TOP CHORD	1-2=0/23, 2-3=-211/	168, 3-4=-619/328,											
	4-5=-83/86, 5-6=-57/	62, 2-8=-279/283											
BOT CHORD	7-8=-505/629, 6-7=-2	212/216											
WEBS	3-7=-239/293, 4-7=-2	260/479, 4-6=-450/3	66,										
	3-8=-532/162												
NOTES													

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=35ft; Ke=1.00; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) -0-10-8 to 4-1-8, Interior (1) 4-1-8 to 9-3-4, Exterior(2E) 9-3-4 to 11-1-4 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Provide adequate drainage to prevent water ponding.
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- Bearings are assumed to be: Joint 8 SP No.2 crushing capacity of 565 psi.
- 6) Refer to girder(s) for truss to truss connections.

16023 Swingley Ridge Rd. Chesterfield, MO 63017 314.434.1200 / MiTek-US.com

OF MISSO

SCOTT M.

SEVIER

TE

Job	Truss	Truss Type	Qty	Ply	Roof - WO Lot 130	
P240395-01	CJ01	Diagonal Hip Girder	1	1	Job Reference (optional)	165082251

Run: 8.63 S Apr 5 2024 Print: 8.630 S Apr 5 2024 MiTek Industries, Inc. Mon Apr 22 15:25:47 ID:kzvRg1T7vFo0bV3kQxkx9dywCL2-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

Scale = 1:38.5

-

joint 5 and 42 lb uplift at joint 4.

Loading TCLL (roof) TCDL BCLL BCDL	(psf) 25.0 10.0 0.0 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 NO IRC2018/TF	PI2014	CSI TC BC WB Matrix-P	0.32 0.21 0.03	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.02 -0.03 0.00	(loc) 4-5 4-5 4	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 19 lb	GRIP 197/144 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD	2x4 SP No.2 2x4 SP No.2 2x3 SPF No.2 Structural wood shea 4-2-8 oc purlins, exc Rigid ceiling directly bracing.	athing directly applied cept end verticals. applied or 6-0-0 oc nical 5-0-3-7	7) Th In Ri 8) "N pe d or 9) In of LOAD 1) [F	his truss is c ternational I 802.10.2 an VAILED" ind er NDS guid the LOAD (f the truss an D CASE(S) Dead + Roo Plate Increa	designed in accord Residential Code s d referenced stand icates Girder: 3-10 lelines. CASE(S) section, I re noted as front (F Standard f Live (balanced): I se=1.15	ance wi ections lard AN d (0.14 oads ap) or ba	th the 2018 R502.11.1 a ISI/TPI 1. 8" x 3") toe-r oplied to the f ck (B). Increase=1.1	nd nails face 15,					
REACTIONS	Max Horiz 5=63 (LC Max Uplift 4=-42 (LC Max Grav 4=164 (LC	9) : 12), 5=-103 (LC 8) : 1), 5=289 (LC 1)	i c	Uniform Loa Vert: 1-2= Concentrate	ids (lb/ft) 70, 2-3=-70, 4-5= id Loads (lb) (E=0, R=0)	-20							
FORCES	(lb) - Maximum Com	pression/Maximum		ven: /=1	(F=U, B=U)								
TOP CHORD	1 ension 2-5=-250/355, 1-2=0 3-4=-124/151 4-5=-158/68	/22, 2-3=-57/31,											
WEBS	2-4=-48/139												
NOTES													
1) Wind: ASC Vasd=91n Ke=1.00; (exterior zc and right e exposed;C reactions s DOL=1.60	NOTES 1) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=35ft; Ke=1.00; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone and C-C Corner (3) zone; cantilever left and right exposed; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip										AISSOLU		
2) This truss	has been designed for	a 10.0 psf bottom									A	>/ SCOTI	M. YY
 chord live Bearings a capacity o Refer to gi Bearing at 	load nonconcurrent with are assumed to be: Join f 565 psi. irder(s) for truss to trus t joint(s) 5 considers pa	th any other live loads nt 5 SP No.2 crushing ss connections. arallel to grain value	s. J							C	R.	ott	Service
using ANS designer s 6) Provide m bearing pla	SI/TPI 1 angle to grain f should verify capacity o echanical connection (ate capable of withstan	formula. Building f bearing surface. by others) of truss to iding 103 lb uplift at									A.	PE-20010	LENGING

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

human April 23,2024

Job	Truss	Truss Type	Qty	Ply	Roof - WO Lot 130	
P240395-01	CJ1	Diagonal Hip Girder	1	1	Job Reference (optional)	165082252

Run: 8.63 S Apr 5 2024 Print: 8.630 S Apr 5 2024 MiTek Industries, Inc. Mon Apr 22 15:25:47 ID:qqJcwsdhQtBLhiTgJx5JuKzP7Oh-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:38.3

Plate Offsets (X, Y): [5:Edge,0-9-0]

Loading TCLL (roof) TCDL BCLL BCDL	(psf) 25.0 10.0 0.0 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 NO IRC2018	3/TPI2014	CSI TC BC WB Matrix-P	0.87 0.51 0.06	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.20 -0.41 0.00	(loc) 4-5 4-5 4	l/defl >476 >238 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 36 lb	GRIP 197/144 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD WEBS REACTIONS	2x4 SP 2400F 2.0E 2x4 SP 2400F 2.0E 2x3 SPF No.2 Structural wood shea 6-0-0 oc purlins, exc Rigid ceiling directly bracing. 1 Row at midpt (size) 4= Mecha Max Horiz 5=123 (LC Max Uplift 4=-101 (LC Max Gray, 4=391 (LC	athing directly applied cept end verticals. applied or 10-0-0 oc 2-4 nical, 5=0-4-9 : 9) C 12), 5=-146 (LC 8) : 1), 5=-484 (I C 1)	6) 7) I or 8) LO 1)	This truss is of International R802.10.2 ar "NAILED" inc per NDS guid In the LOAD of the truss a DAD CASE(S) Dead + Roc Plate Increa Uniform Loa Vert: 1-2= Concentrate Vert: 7=-	designed in accord Residential Code s ad referenced stand licates Girder: 3-10 felines. CASE(S) section, I re noted as front (f Standard of Live (balanced): ise=1.15 ids (lb/ft) =-70, 2-3=-70, 4-5= id Loads (lb) 37 (F=-18, B=-18),	lance wi sections dard AN 0d (0.14 loads ap -) or bar Lumber =-20 9=1 (F=	th the 2018 R502.11.1 a ISI/TPI 1. 8" x 3") toe- oplied to the ck (B). Increase=1.	and nails face 15, =-17					
FORCES TOP CHORD BOT CHORD WEBS NOTES 1) Wind: ASC Vasd=91m Ke=1.00; C exterior 20 Exterior (2F right expos for membe Lumber DC 2) This truss I chord live I 3) Bearings a grusbing c	(Ib) - Maximum Com Tension 2-5=-396/425, 1-2=0 3-4=-299/292 4-5=-266/142 2-4=-100/229 E 7-16; Vult=115mph ph; TCDL=6.0psf; BCI cat. II; Exp C; Enclosed ne and C-C Corner (3) 8) 5-10-0 to 8-2-0 zone red; end vertical left a rs and forces & MWFF DL=1.60 plate grip DO has been designed for oad nonconcurrent wit re assumed to be: Joi panacity of 805 psi	(3-second gust) DL=6.0psf; h=35ft; d; MWFRS (envelope -1-2-14 to 5-10-0, cantilever left and nd right exposed;C-C Stor reactions show L=1.60 a 10.0 psf bottom th any other live loads at 5 SP 2400F 2.0E	:) /n; 5.	(1 - 0, 2 -								SUTE OF M SCOTT SEVI	AISSOUR M. ER Server
 4) Refer to gir 5) Provide me bearing pla joint 5 and 	apacity of 805 psi. rder(s) for truss to trus echanical connection (tte capable of withstan 101 lb uplift at joint 4.	s connections. by others) of truss to ding 146 lb uplift at									A.	PE-20010	LENGI

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com) MiTak

April 23,2024

Job	Truss	Truss Type	Qty	Ply	Roof - WO Lot 130	
P240395-01	CJ02	Diagonal Hip Girder	1	1	Job Reference (optional)	165082253

4-6-0 4-6-0

-1-2-14 1-2-14

Premier Building Supply (Springhill, KS), Spring Hills, KS - 66083,

Run: 8.63 S Apr 5 2024 Print: 8.630 S Apr 5 2024 MiTek Industries, Inc. Mon Apr 22 15:25:48 ID:5wiKjkXGjoRJiGxhDUJ6sgywCKz-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

NAILED

1	4-6-0	

Scale = 1:37.5

Loading	(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15		TC	0.38	Vert(LL)	-0.02	4-5	>999	240	MT20	197/144
TCDL	10.0	Lumber DOL	1.15		BC	0.25	Vert(CT)	-0.04	4-5	>999	180		
BCLL	0.0	Rep Stress Incr	NO		WB	0.04	Horz(CT)	0.00	4	n/a	n/a		
BCDL	10.0	Code	IRC201	B/TPI2014	Matrix-P							Weight: 20 lb	FT = 20%
LUMBER			7)	"NAILED" inc	dicates Girder: 3-10	0d (0.14	8" x 3") toe-	-nails					
TOP CHORD	2x4 SP No.2			per NDS gui	delines.								
BOT CHORD	2x4 SP No.2		8)	In the LOAD	CASE(S) section,	loads a	oplied to the	face					
WEBS	2x3 SPF No.2			of the truss a	re noted as front (F) or ba	ck (B).						
BRACING			LC	DAD CASE(S)	Standard								
TOP CHORD	Structural wood she	athing directly applie	ed or 1)	Dead + Roo	of Live (balanced):	Lumber	Increase=1	.15,					
	Rigid ceiling directly	applied or 10-0-0 or		Uniform Loa	ads (lb/ft)								
BOT CHOILD	bracing.		,	Vert: 1-2	=-70, 2-3=-70, 4-5=	=-20							
REACTIONS	(size) 4= Mecha	anical, 5=0-7-6		Concentrate	ed Loads (lb)								
	Max Horiz 5=83 (LC	9)		Vert: 7=1	(F=0, B=0)								
	Max Uplift 4=-43 (LC	(LC 8), 5=-108											
	Max Grav 4=178 (L0	C 1), 5=301 (LC 1)											
FORCES	(lb) - Maximum Com Tension	pression/Maximum											
TOP CHORD	2-5=-259/348, 1-2=0 3-4=-136/168	0/22, 2-3=-77/50,											
BOT CHORD	4-5=-184/94												
WEBS	2-4=-67/161												
NOTES													
1) Wind: AS	CE 7-16; Vult=115mph	(3-second gust)											
Vasd=91r	nph; TCDL=6.0psf; BC	DL=6.0psf; h=35ft;											
Ke=1.00;	Cat. II; Exp C; Enclose	d; MWFRS (envelop	e)										
and right	exposed : end vertical	left and right	L									000	ADD
exposed (C-C for members and f	orces & MWFRS for										8 OF I	MISSIN
reactions	shown: Lumber DOL=	1.60 plate grip										A TE	0.0
DOL=1.60	0	51									A	N/ man	New Y
2) This truss	has been designed fo	r a 10.0 psf bottom									A	S/ SCOT	IM. YAY
chord live	load nonconcurrent w	ith any other live loa	ds.								И.	SEVI	
 Bearings capacity c 	are assumed to be: Jo of 565 psi.	int 5 SP No.2 crushii	ng								8*	\mathbf{I}	
4) Refer to g	irder(s) for truss to tru	ss connections.									8-	12 notten	Contentor 8
5) Provide m	nechanical connection	(by others) of truss to	C								87	DE 2001	010007 189
pearing pl	iate capaple of withstai	naina 108 lb ublift at										CIN PE-2001	

y 6)

joint 5 and 43 lb uplift at joint 4. This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

16023 Swingley Ridge Rd. Chesterfield, MO 63017 314.434.1200 / MiTek-US.com

Job	Truss	Truss Type	Qty	Ply	Roof - WO Lot 130	
P240395-01	CJ2	Diagonal Hip Girder	2	1	Job Reference (optional)	165082254

Run: 8.63 S Apr 5 2024 Print: 8.630 S Apr 5 2024 MiTek Industries, Inc. Mon Apr 22 15:25:47 ID:qqJcwsdhQtBLhiTgJx5JuKzP7Oh-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

5-5-5

Scale = 1:35

Plate Offsets (X, Y): [2:0-2-0,0-2-8]

-													
Loading	(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15		TC	0.63	Vert(LL)	-0.05	4-5	>999	240	MT20	197/144
TCDL	10.0	Lumber DOL	1.15		BC	0.38	Vert(CT)	-0.09	4-5	>697	180		
BCLL	0.0	Rep Stress Incr	NO		WB	0.05	Horz(CT)	0.00	4	n/a	n/a		
BCDL	10.0	Code	IRC201	18/TPI2014	Matrix-P							Weight: 24 lb	FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x4 SP No.2 2x3 SPF No.2 Structural wood she 5-5-5 oc purlins, ex Rigid ceiling directly bracing. (size) 4= Mecha Max Horiz 5=93 (LC Max Uplift 4=-54 (LC Max Uplift 4=-54 (LC	athing directly applie cept end verticals. applied or 10-0-0 oc anical, 5=0-4-9 9) 212), 5=-115 (LC 8)	6 rd or 8 ; L 1	 This truss is International R802.10.2 ar "NAILED" inc per NDS guid In the LOAD of the truss a OAD CASE(S) Dead + Roc Plate Increa Uniform Loo Vert: 1-2: Concentrate 	designed in accorr Residential Code nd referenced star dicates Girder: 3-1 delines. CASE(S) section, ire noted as front (Standard of Live (balanced): ase=1.15 ads (lb/ft) =-70, 2-3=-70, 4-5 ed Loads (lb)	dance w sections idard AN Od (0.14 loads aj F) or ba Lumber =-20	ith the 2018 R502.11.1 a ISI/TPI 1. 8" x 3") toe- oplied to the ck (B). Increase=1.	and nails face 15,					
FORCES	(lb) Maximum Com	D 1), 5=341 (LC 1)		Vert: 7=1	(F=1, B=1)								
IONOLO	Tension	ipression/maximum											
TOP CHORD	2-5=-289/377, 1-2=0	0/22, 2-3=-93/59,											
	3-4=-171/200 4-5=-208/108												
WEBS	2-477/182												
NOTES	2 4= 11/102												
 Wind: ASt Vasd=91r Ke=1.00; exterior zz and right exposed; reactions DOL=1.60 This truss chord live Bearings capacity c 	CE 7-16; Vult=115mph mph; TCDL=6.0psf; BC Cat. II; Exp C; Enclose one and C-C Corner (3 exposed ; end vertical I C-C for members and fi shown; Lumber DOL=) has been designed for load nonconcurrent wi are assumed to be: Joi of 565 psi.	(3-second gust) :DL=6.0psf; h=35ft; :d; MWFRS (envelop) zone; cantilever left left and right orcces & MWFRS for 1.60 plate grip r a 10.0 psf bottom ith any other live loac int 5 SP No.2 crushin	e) t ds. ng							(STATE OF I SCOT SEVI	MISSOLIE T.M. ER
Reter to a	irder(s) for truss to trus	ss connections.									117	×	ALL

 Frovide mechanical connection (by others) of truss to bearing plate capable of withstanding 115 lb uplift at joint 5 and 54 lb uplift at joint 4.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

16023 Swingley Ridge Rd. Chesterfield, MO 63017 314.434.1200 / MiTek-US.com

Job	Truss	Truss Type	Qty	Ply	Roof - WO Lot 130	
P240395-01	CJ04	Diagonal Hip Girder	1	1	Job Reference (optional)	165082255

Run: 8.63 S Apr 5 2024 Print: 8.630 S Apr 5 2024 MiTek Industries, Inc. Mon Apr 22 15:25:48 ID:Si5VTuCOX?UMQtDSVFKF8UywCK5-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:41

Plate Offsets (X, Y): [3:1-0-4,0-2-8], [7:Edge,0-3-0]

Loading TCLL (roof) TCDL BCLL BCDL	(psf) 25.0 10.0 0.0 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 NO IRC2018	3/TPI2014	CSI TC BC WB Matrix-S	0.67 0.50 0.05	DEFL Vert(LL) Vert(CT) Horz(CT)	in 0.20 -0.26 0.10	(loc) 6 6 5	l/defl >494 >375 n/a	L/d 240 180 n/a	PLATES MT20 MT18HS Weight: 36 lb	GRIP 197/144 197/144 FT = 20%
LUMBER TOP CHORD 2x4 BOT CHORD 2x4 WEBS 2x4 OTHERS 2x4 BRACING TOP CHORD Still FOP CHORD Still COT CHORD Still TOP CHORD 2-7 STOP CHORD 2-7 STOP CHORD 2-7 STOP CHORD 6-7 WEBS 3-7 NOTES 1) Wind: ASCE 7- Vasd=91mph; Ke=1.00; Cat. 1 exterior zone a Exterior(2R) 5- right exposed ; for members au Lumber DOL=1 2) All plates are M 3) This truss has la chord live load 4) Bearings are a: capacity of 565 5) Refer to girder(6) Provide mecha bearing plate c joint 7 and 118	6 SPF No.2 4 SP No.2 *Excep 4 SP No.2 *Excep 4 SP No.2 *Excep 4 SP No.2 ructural wood shea 0-0 oc purlins, exc gid ceiling directly acing. a) 5= Mecha 4 Horiz 7=103 (LC 5 Uplift 5=-118 (LC 5 Grav 5=412 (LC) - Maximum Com nsion 7=-545/466, 1-2=0 4=-206/87, 4-5==22 7=-46/0, 3-6=0/71, 7=-282/217 -16; Vult=115mph TCDL=6.0psf; BC I; Exp C; Enclose I CC Corner (3) 10-0 to 8-2-9 zone end vertical left a nd forces & MWFF 1.60 plate grip DO (T20 plates unless been designed for nonconcurrent wi ssumed to be: Joi 5 psi. (s) for truss to trus inical connection (apable of withstar Ib uplift at joint 5.	t* 6-3:2x3 SPF No.2 t* 7-3:2x3 SPF No.2 athing directly applied cept end verticals. applied or 6-0-0 oc nical, 7=0-4-9 C 9) C 12), 7=-147 (LC 8) C 1), 7=507 (LC 1) pression/Maximum V22, 2-3=-191/145, 97/270 , 3-5=-138/184 (3-second gust) DL=6.0psf; h=35ft; d; MWFRS (envelope) -1-2-14 to 5-10-0, a; cantilever left and nd right exposed;C-C RS for reactions show L=1.60 s otherwise indicated. a 10.0 psf bottom th any other live loads nt 7 SP No.2 crushing is connections. by others) of truss to nding 147 lb uplift at	7) 8) 9) 1 or LO 1) *) *) */ *	This truss is a International R802.10.2 ar "NAILED" ind per NDS guid In the LOAD of the truss a AD CASE(S) Dead + Roo Plate Increa Uniform Loa Vert: 1-2: Concentrate Vert: 6=0 B=-27)	designed in accord Residential Code s Id referenced stand licates Girder: 3-10 lelines. CASE(S) section, I re noted as front (F Standard f Live (balanced): I se=1.15 ids (lb/ft) 70, 2-3=-70, 3-4= id Loads (lb) (B), 9=-22 (F=-11,	ance wi ections lard AN d (0.14 oads ap) or bad .umber -70, 6-7 B=-11)	th the 2018 R502.11.1 a SI/TPI 1. "x 3") toe-r plied to the f k (B). Increase=1. "=-20, 3-5=-2 , 11=-53 (F=	and face 15, 20 -27,				STATE OF M SCOTT SEVI SEVI PE-20010 RESSIONA April	MISSOLUTION M. ER BER DI8807 Solution S

Job	Truss	Truss Type	Qty	Ply	Roof - WO Lot 130	
P240395-01	D01	Half Hip Girder	1	3	Job Reference (optional)	165082256

Run: 8.63 S Apr 5 2024 Print: 8.630 S Apr 5 2024 MiTek Industries, Inc. Mon Apr 22 15:25:48 ID:MHnPwqGDQWRGNhCqCMAGM1ywC3E-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

16023 Swingley Ridge Rd. Chesterfield MO 63017

314.434.1200 / MiTek-US.com

Continued on page 2

Job	Truss	Truss Type	Qty	Ply	Roof - WO Lot 130	
P240395-01	D01	Half Hip Girder	1	3	Job Reference (optional)	165082256

Run: 8.63 S Apr 5 2024 Print: 8.630 S Apr 5 2024 MiTek Industries, Inc. Mon Apr 22 15:25:48 ID:MHnPwqGDQWRGNhCqCMAGM1ywC3E-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 2

Uniform Loads (lb/ft)

Vert: 1-7=-70, 7-10=-70, 17-19=-20, 8-16=-20, 9-11=-20

Concentrated Loads (lb)

Vert: 18=-145 (F), 2=-21 (F), 12=-568 (F), 15=-177 (F), 20=-23 (F), 21=-21 (F), 22=-21 (F), 26=-127 (F), 32=-146 (F), 33=-145 (F), 34=-145 (F), 35=-177 (F), 36=-177 (F), 37=-184 (F), 38=-184 (F), 39=-184 (F), 40=-197 (F)

Job	Truss	Truss Type	Qty	Ply	Roof - WO Lot 130	
P240395-01	D02	Half Hip	1	1	Job Reference (optional)	165082257

Run: 8.63 S Apr 5 2024 Print: 8.630 S Apr 5 2024 MiTek Industries, Inc. Mon Apr 22 15:25:48 ID:AEpzzqTVTRHu7ApibRQtTPywBzo-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

VERTICAL SUPPORT OF FREE END OF CHORD IS REQUIRED.

Scale = 1:56.9

Plate Offsets ((X, Y): [2:0-2-8,0-2-0],	, [4:0-2-0,Edge], [7:0	-4-9,0-5-8]	, [13:0-4-0,Edg	e], [14:Edge,0-2	2-8], [15:0-3	3-4,0-2-0]						
Loading TCLL (roof) TCDL BCLL BCDL	(psf) 25.0 10.0 0.0 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC201	8/TPI2014	CSI TC BC WB Matrix-S	0.97 0.99 0.87	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.49 -1.01 0.37	(loc) 11-13 11-13 8	l/defl >754 >366 n/a	L/d 240 180 n/a	PLATES MT20 MT18HS Weight: 144 lb	GRIP 197/144 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD	2x4 SP No.2 *Excep 2.0E, 4-6:2x4 SP 16 2x4 SP 1650F 1.5E No.2, 14-3:2x3 SPF 2x3 SPF No.2 Structural wood she 4-5-0 oc purlins, ex 2-0-0 oc purlins, ex	ot* 6-9:2x8 SP 2400F 50F 1.5E *Except* 16-14:2x4 : No.2, 10-8:2x8 SPF athing directly applie cept end verticals, at -0 max.): 1-6.	1) SP No.2 ed or nd 2)	Wind: ASCE Vasd=91mpt Ke=1.00; Cat exterior zone Interior (1) 5- 30-2-6, Interi and right exp exposed;C-C reactions shot DOL=1.60 Provide adec	7-16; Vult=115n n; TCDL=6.0psf; t. II; Exp C; Encl and C-C Exteric 4-0 to 23-1-8, E or (1) 30-2-6 to 3 osed ; end vertic for members ar own; Lumber DC quate drainage to	nph (3-sec BCDL=6.C osed; MWI or(2E) 0-1- xterior(2R) 32-0-0 zon cal left and nd forces & 0L=1.60 pla	ond gust) ppsf; h=35ft; FRS (envelog 4 to 5-4-0, 23-1-8 to e; cantilever right t MWFRS for the grip vater ponding	pe) left r					
REACTIONS	kigla comig anothy bracing. (size) 8=0-3-8, Max Horiz 16=-150 (Max Uplift 8=-343 (L Max Grav 8=1469 (I	16=0-3-8 (LC 10) .C 9), 16=-306 (LC 9 .C 1), 16=1389 (LC	3) 4)) 1)	 Provide adequate drainage to prevent water ponding. All plates are MT20 plates unless otherwise indicated. This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. Bearings are assumed to be: Joint 16 SP No.2 crushing capacity of 565 psi, Joint 8 SPF No.2 crushing capacity of 405 psi. 									
FORCES	(lb) - Maximum Com Tension 1-16=-1337/375, 1-2 2-3=-4245/989, 3-5= 5-6=-4464/1028, 6-7 7-8=-579/169, 8-9=-	npression/Maximum 2=-1923/485, =-4321/996, 7=-3847/970, 6/0	6) 7)	of 425 psi. Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 306 lb uplift at joint 16 and 343 lb uplift at joint 8. This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and D000 4.0 and extended AUC/CEL 4.									
BOT CHORD	15-16=-91/191, 14-1 3-13=-380/174, 11-1 7-11=-835/3674, 8-1 1-15=-530/2237, 2-1 13-15=-295/1817, 2- 5-13=-527/248, 5-11	15=-53/141, 13-14=0 13=-1087/4819, 10=0/0 15=-1433/404, -13=-552/2544, 1=-453/271, 6-11=-75	/88, 8) LG 5/936	Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord. OAD CASE(S) Standard							AISSOLDA M.		
NOTES											4	/ SEVI	ER \V

NOTES

16023 Swingley Ridge Rd. Chesterfield, MO 63017 314.434.1200 / MiTek-US.com

Job	Truss	Truss Type	Qty	Ply	Roof - WO Lot 130	
P240395-01	D03	Half Hip	1	1	Job Reference (optional)	165082258

Run: 8.63 S Apr 5 2024 Print: 8.630 S Apr 5 2024 MiTek Industries, Inc. Mon Apr 22 15:25:48 ID:349B4RLgWZLgIEJYpZjmObywByg-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

6-1-13 12-1-3 17-11-4 21-1-8 24-11-15 31-1-8 6-1-13 5-11-5 5-10-1 3-2-4 3-10-7 6-1-9 4x8= 4x4 =4x4 = 4x4= 1.5x4 **I** 8x8= 12 14 5 ≥2 20 3 <u>6</u> ඉ 0-1-9 21 4 \bowtie \boxtimes \bowtie \boxtimes 4x6≈ Y 7 22 <u>4-2-7</u> 4-2-7 4-2-7 to 23 8 4∟ 12 è 13 12 19 15 • 3x4= 3х4 **п** 18 17 16 11 3x4 II 3x4 II ⊿3.32

	10									
3x4 II	3x4=	4x8 =		7x8=		3x4 II	⊥3.32 12		7x8≈ 7	/x8=
						8x8 =	12			
I.	6-1-13	1	12-1-3	1	18-0-8	21-2-12	24-11-15	28-10-0	31-1-8	5
	6-1-13	T	5-11-5	T	5-11-5	3-2-4	3-9-3	3-10-1	2-3-8	

VERTICAL SUPPORT OF FREE END OF CHORD IS REQUIRED.

Scale = 1:57

4-4-0

4-4-0

Plate Offsets ((X, Y): [4:0-2-0,Edge],	, [8:0-5-5,0-5-4], [14:	:0-2-0,0-5-4	4], [15:Edge,0-	2-8], [17:0-2-8,0-2	2-0]							
Loading TCLL (roof) TCDL BCLL BCDL	(psf) 25.0 10.0 0.0 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC201	8/TPI2014	CSI TC BC WB Matrix-S	0.69 0.80 0.84	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.30 -0.53 0.22	(loc) 5-14 5-14 9	l/defl >999 >695 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 167 lb	GRIP 197/144 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD JOINTS REACTIONS	2x4 SP No.2 *Excep 2.0E 2x4 SP No.2 *Excep 14-8:2x6 SP 2400F 2x3 SPF No.2 Structural wood she 4-7-12 oc purlins, e 2-0-0 oc purlins, e 2-0-0 oc purlins (2-5 Rigid ceiling directly bracing. 1 Brace at Jt(s): 1, 12 (size) 9=0-3-8, Max Horiz 19=-181 (Max Uplift 9=-342 (L Max Grav 9=1469 (I	ot* 6-10:2x8 SP 2400 ot* 15-5:2x3 SPF No 2.0E, 11-9:2x8 SPF eathing directly applie except end verticals, 5-8 max.): 1-6. applied or 10-0-0 or 19=0-3-8 (LC 10) .C 9), 19=-307 (LC 9 LC 1), 19=1389 (LC	1) DF No.2 ed or and c 2) 3) 4) 0) 5) 1)	Wind: ASCE Vasd=91mpl Ke=1.00; Ca exterior zone Interior (1) 5 28-2-6, Inter and right exp exposed;C-C reactions she DOL=1.60 Provide adee This truss ha chord live loa Bearings are capacity of 5 of 425 psi. Provide mec bearing plate ioint 19 and	7-16; Vult=115m ,; TCDL=6.0psf; 1 t. II; Exp C; Enclo e and C-C Exterior 1-4 to 21-1-8, Ex to (1) 28-26 to 3 bosed ; end vertic c for members an bown; Lumber DOI quate drainage to the second second second quate drainage to the second second second assumed to be: 65 psi, Joint 9 SF hanical connective e capable of withs 342 lb uplift at join	ph (3-sec BCDL=6.0 sed; MW r(2E) 0-1. terior(2R) 2-0-0 zor al left and d forces & _=1.60 pl: prevent to for a 10.0 with any Joint 19 S PF No.2 c on (by oth tanding 3 t 9	cond gust) Dpsf; h=35ft; FRS (envelop 4 to 5-1-4,) 21-1-8 to e; cantilever 4 right & MWFRS for ate grip water ponding 0 psf bottom other live loa SP No.2 crush rushing capar ers) of truss t i07 lb uplift at	be) left					
FORCES TOP CHORD	(lb) - Maximum Com Tension 1-19=-1333/389, 1-2 2-3=-2664/702, 3-5= 5-6=-3662/957, 6-7= 7-8=-4526/1066, 8-5	npression/Maximum 2=-1803/484, =-3665/962, =-3583/887, 2=-624/181 9-106	6) 7)	This truss is International R802.10.2 a Graphical pu or the orienta	designed in acco Residential Code nd referenced sta rlin representatio ation of the purlin	rdance w e sections indard AN n does no along the	ith the 2018 R502.11.1 a ISI/TPI 1. ot depict the s top and/or	nd size					an
BOT CHORD	17-19=-114/226, 16 15-16=-41/263, 14-1 13-14=-682/3336, 11 8-12=-949/4356, 9-1 3-14=-289/1112, 6-1 2-17=-1024/365, 1-1 2-16=-261/1031, 3-1 14-16=-498/2441, 6 7-13=-1073/330, 7-1		,, L (7/192,	Dottom chord	ı. Standard							STATE OF M	MISSOLUT T.M. ER Secures
NOTES											11.	ON PE-2001	01880/ 120 4

ESSIONAL ET April 23,2024

Page: 1

32-0-0

0-10-8

9

Ø

10

Job	Truss	Truss Type	Qty	Ply	Roof - WO Lot 130	
P240395-01	D04	Half Hip	1	1	Job Reference (optional)	165082259

Run: 8.63 S Apr 5 2024 Print: 8.630 S Apr 5 2024 MiTek Industries, Inc. Mon Apr 22 15:25:49 ID:b97ERwXiIUMPghXdlw?W1zywByQ-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

Scale = 1:57.8

Plate Offsets (X, Y): [8:Edge,0-1-8], [9:0-2-8,0-2-0], [14:0-2-8,0-2-0]

Loading	(psf)	Spacing	2-0-0		csi		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP	
TCLL (roof)	25.0	Plate Grip DOL	1.15		тс	0.94	Vert(LL)	-0.17	10-13	>999	240	MT20	197/144	
TCDL	10.0	Lumber DOL	1.15		BC	0.71	Vert(CT)	-0.33	10-13	>999	180			
BCLL	0.0	Rep Stress Incr	YES		WB	0.76	Horz(CT)	0.07	8	n/a	n/a			
BCDL	10.0	Code	IRC20	18/TPI2014	Matrix-S							Weight: 138 lb	FT = 20%	
			2) Wind: ASCE	7-16: Vult=115m	nh (3-sec	ond aust)							
	2x4 SP No 2		-	Vasd=91mpl	n: TCDL=6.0psf:	BCDL=6.0)psf: h=35ft:							
BOT CHORD	2x4 SP No 2			Ke=1.00; Ca	t. II; Exp C; Enclo	osed; MW	FRS (envelo	ce)						
WEBS	2x3 SPF No.2 *Exce	ot* 8-7:2x4 SP No.2		exterior zone	and C-C Exterio	or(2E) 0-1-	4 to 5-1-4,	,						
BRACING				Interior (1) 5-	-1-4 to 19-1-8, Ex	kterior(2R)	19-1-8 to							
TOP CHORD	Structural wood she	athing directly applie	ed or	26-2-6, Interi	ior (1) 26-2-6 to 3	30-11-12 z	one; cantilev	er						
	2-10-11 oc purlins,	except end verticals.	and	left and right	exposed ; end ve	ertical left	and right							
	2-0-0 oc purlins (2-2	-0 max.): 1-5.		exposed;C-C	for members an	nd forces &	MWFRS for	•						
BOT CHORD	Rigid ceiling directly	applied or 7-6-9 oc		reactions sho	own; Lumber DO	L=1.60 pla	ate grip							
	bracing.			DOL=1.60	nucto droinago to	nrovent	votor ponding							
REACTIONS	(size) 8=0-3-8, 1	15=0-5-8) This trues ha	uale urainaye lu	for a 10 (valer portuiri	J.						
	Max Horiz 15=-212 (LC 8)		chord live lo	ad nonconcurrent	t with any	other live loa	eh						
	Max Uplift 8=-297 (L	C 9), 15=-310 (LC 9) 5) All bearings	are assumed to b	be SP No.	2 crushina							
	Max Grav 8=1389 (L	_C 1), 15=1389 (LC [·]	1)	capacity of 5	65 psi.		j							
FORCES	(lb) - Maximum Com	pression/Maximum	6) Provide mec	hanical connectio	on (by othe	ers) of truss t	0						
	Tension			bearing plate	capable of withs	standing 3	10 lb uplift at							
TOP CHORD	1-15=-1332/401, 1-2	2=-1606/465,		joint 15 and 2	297 lb uplift at joi	nt 8.								
	2-3=-2341/671, 3-5=	=-2227/639,	7) This truss is	designed in acco	ordance wi	th the 2018							
	5-6=-2415/647, 6-7=	-2721/682,		International	Residential Code	e sections	R502.11.1 a	nd						
	1/ 15- 157/27/ 12	14- 207/1606		R802.10.2 a	nd referenced sta	andard AN	ISI/TPL1.							
BOTCHORD	10-13-513/23/1 0	-14=-307/1000,	5) Graphical pu	riin representatio	on does no	ton and/or	size						
	8-9=-117/314	10- 000/2022,		bottom chore	alion of the putilit	along the	top anu/or							
WEBS	7-9=-492/2225. 5-10	=-15/382. 3-10=-342	2/65. ı		standard							2000	TOP	
	2-14=-1006/382, 1-1	4=-495/1957,	,	0AD 0A32(3)	Stanuaru							FOF M	11So D	
	2-13=-253/903, 3-13	8=-403/226,									1	750	NO S	
	6-10=-318/187, 6-9=	-182/143									B	NY scor	N Star	
NOTES											A	S/ SCOT	M. VY	(
												A SEVI	HK V	1.

Unbalanced roof live loads have been considered for 1) this design.

E

April 23,2024

PE-200101880

SSIONAL

 \mathbf{C}

Job	Truss	Truss Type	Qty	Ply	Roof - WO Lot 130	
P240395-01	D05	Half Hip	1	1	Job Reference (optional)	165082260

Run: 8.63 S Apr 5 2024 Print: 8.630 S Apr 5 2024 MiTek Industries, Inc. Mon Apr 22 15:25:49 ID:f2Xva2j6D5FHz?BV7am187ywByB-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:57.8

Plate Offsets (X, Y): [6:0-6-0,0-1-11], [9:0-3-4,0-2-0]

Loading TCLL (roof) TCDL BCLL	(psf) 25.0 10.0 0.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr	2-0-0 1.15 1.15 YES		CSI TC BC WB	0.72 0.79 0.93	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.24 -0.52 0.17	(loc) 10-11 10-11 9	l/defl >999 >712 n/a	L/d 240 180 n/a	PLATES MT20	GRIP 197/144
BCDL	10.0	Code	IRC2018	8/TPI2014	Matrix-S							Weight: 142 lb	FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD	2x4 SP No.2 *Excep 2.0E 2x4 SP No.2 *Excep 1.5E 2x3 SPF No.2 *Excep Structural wood shea 3-11-7 oc purlins, ea 2-0-0 oc purlins (3-4 Rigid ceiling directly bracing.	t* 5-8:2x4 SP 2400F t* 10-9:2x4 SP 1650 ppt* 9-8,9-7:2x4 SP 1 athing directly applie xcept end verticals, -8 max.): 1-5. applied or 7-7-12 or 7 0 2 12	1) F No.2 ed or and c 2) 3)	Wind: ASCE Vasd=91mpl Ke=1.00; Ca exterior zone Interior (1) 5 24-1-2, Inter left and right exposed;C-C reactions shi DOL=1.60 Provide adee This truss ha chord live log	7-16; Vult=115m ; TCDL=6.0psf; t. II; Exp C; Enclo and C-C Exteric :1-4 to 17-1-8, E5 ior (1) 24-1-2 to 3 exposed ; end vo c for members an pown; Lumber DO quate drainage to is been designed ad nonconcurrent	nph (3-sec BCDL=6.(bosed; MW br(2E) 0-1- kterior(2R) 30-11-12 z ertical left d forces & L=1.60 pla p prevent v l for a 10.0 t with any	ond gust) psf; h=35ft; FRS (envelo 4 to 5-1-4, 17-1-8 to one; cantilev and right 4 MWFRS fo ate grip vater pondin. 0 psf bottom other live loa	pe) /er r g. ads.					
REACTIONS	(size) 9= Mecha Max Horiz 13=-245 (Max Uplift 9=-295 (L Max Grav 9=1389 (L	r-9, 2-13 inical, 13=0-5-8 LC 8) C 9), 13=-312 (LC 9 -C 1), 13=1389 (LC	4)) 5) 1)	Bearings are capacity of 5 Refer to gird Provide mec	assumed to be: 65 psi. er(s) for truss to thanical connection	Joint 13 S truss conr on (by oth	P No.2 crust ections. ers) of truss	hing to					
FORCES	(lb) - Maximum Com Tension	pression/Maximum	7)	joint 13 and	295 lb uplift at joi	nt 9. ordance wi	th the 2018	L					
TOP CHORD	1-13=-69/46, 1-2=-1 4-5=-2039/590, 5-6= 6-7=-3696/960, 7-8=	15/117, 2-4=-1502/4 1904/538, 556/188, 8-9=-395/	42, ⁷⁷ 194 8)	International R802.10.2 a	Residential Code nd referenced sta	e sections andard AN	R502.11.1 a ISI/TPI 1.	and					
BOT CHORD	12-13=-156/931, 11- 10-11=-456/2163, 9-	-12=-421/1951, -10=-852/3532	0)	or the orienta	ation of the purlin	along the	top and/or	0.20				CONT	1000
WEBS	6-11=-266/172, 6-10 7-10=-127/223, 7-9= 2-12=-169/979, 2-13 4-12=-769/293, 4-11)=-385/1628, 3327/779, 3=-1561/474, =-48/194	LC	DAD CASE(S)	Standard							STATE OF M	MISSOLA M. ER
NOTES											U A	1	

16023 Swingley Ridge Rd. Chesterfield, MO 63017 314.434.1200 / MiTek-US.com

Job	Truss	Truss Type	Qty	Ply	Roof - WO Lot 130	
P240395-01	D06	Roof Special	3	1	Job Reference (optional)	165082261

7-8-0

Run: 8.63 S Apr 5 2024 Print: 8.630 S Apr 5 2024 MiTek Industries, Inc. Mon Apr 22 15:25:49 ID:RZpdWj4QI?pctzb_21mmYFywBv8-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

7-9-8

Page: 1

7

0-3-8

7-9-8

Or .

PE-2001018807

SSIONAL ET

April 23,2024

16023 Swingley Ridge Rd. Chesterfield, MO 63017 314.434.1200 / MiTek-US.com

8

0-0-

7-7-0

Scale = 1	:53.9
-----------	-------

Plate Offsets ((X, Y): [4:0-2-8,0-2-11]], [5:0-2-8,0-3-0], [7:	0-3-0,0-1-8	3], [8:0-0-3,0-1-	-8], [9:0-3-8,0-4-0	0], [10:0-4	-0,0-3-0]						
Loading TCLL (roof) TCDL BCLL BCDL	(psf) 25.0 10.0 0.0 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC201	8/TPI2014	CSI TC BC WB Matrix-S	0.66 0.74 0.90	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.24 -0.51 0.15	(loc) 9-10 9-10 8	l/defl >999 >725 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 152 lb	GRIP 197/144 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD	2x4 SP No.2 *Excep 1.5E, 5-7:2x4 SP 24 2x4 SP No.2 *Excep 1.5E 2x3 SPF No.2 *Exce No.2 Structural wood shea 3-4-0 oc purlins, ex 2-0-0 oc purlins (4-1 Rigid ceiling directly	t* 4-5:2x4 SP 1650F 00F 2.0E t* 10-9:2x4 SP 1650 pt* 10-6,8-7,9-7:2x4 athing directly applie cept end verticals, ai -10 max.): 1-4. applied or 10-0-0 oc	1) ∋ 	Wind: ASCE Vasd=91mph Ke=1.00; Car exterior zone Interior (1) 5- 20-1-8, Interi left and right exposed;C-C reactions sho DOL=1.60 Provide adec This truss ha chord live los	7-16; Vult=115n n; TCDL=6.0psf; t. II; Exp C; Encl e and C-C Exterior -1-12 to 15-1-8, I or (1) 20-1-8 to 3 exposed ; end v for members ar own; Lumber DO quate drainage to s been designed	nph (3-sec BCDL=6.0 osed; MW pr(2E) 0-1- Exterior(2F 30-11-12 z ertical left nd forces & UL=1.60 pla p prevent v d for a 10.0	word gust) Opsf; h=35ft; FRS (envelo -4 to 5-1-12, R) 15-1-8 to 	pe) ver r g.					
WEBS REACTIONS FORCES	bracing, Except: 7-10-3 oc bracing: 9 1 Row at midpt (size) 8= Mecha Max Horiz 12=-283 (Max Uplift 8=-292 (L Max Grav 8=1389 (L (lb) - Maximum Com	-10. 6-10, 2-12 nical, 12=0-5-8 LC 8) C 9), 12=-315 (LC 9 .C 1), 12=1389 (LC pression/Maximum	4) 5) 6) 1) 7)	 Bearings are assumed to be: Joint 12 SP No.2 crushing capacity of 565 psi. Refer to girder(s) for truss to truss connections. Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 315 lb uplift at joint 12 and 292 lb uplift at joint 8. This truss is designed in accordance with the 2018 International Residential Code sections R502 11 1 and 									
TOP CHORD	Tension 1-12=-146/79, 1-2=- 3-4=-1815/546, 4-6= 6-7=-3877/915, 7-8=	130/135, 2-3=-1320/ 2015/540, 1357/415	/413, 8)	R802.10.2 ar Graphical pu or the orienta	nd referenced sta rlin representatio ation of the purlin	andard AN on does no along the	ISI/TPI 1. ot depict the top and/or	size					an .
BOT CHORD WEBS NOTES	6-7=-3877/915, 7-8=-1357/415 bottom chord. 11-12=-139/992, 10-11=-287/1577, LOAD CASE(S) Standard 9-10=-821/3632, 8-9=-153/468 4-10=-0/278, 6-10=-1937/527, 6-9=-44/762, 7-9=-664/3147, 2-11=-142/852, 2-12=-1537/451, 3-11=-667/254, 3-10=-148/371									AISSOUR ER ER			

Job	Truss	Truss Type	Qty	Ply	Roof - WO Lot 130	
P240395-01	D07	Roof Special	2	1	Job Reference (optional)	165082262

15-3-0

4-1-8

4x4 II

3

Premier Building Supply (Springhill, KS), Spring Hills, KS - 66083,

3x4 II

1

12

5-8-3

5-8-3

12 4 Г

13 ^{2 14}

3x4 =

11-1-8

5-5-5

Run: 8.63 S Apr 5 2024 Print: 8.630 S Apr 5 2024 MiTek Industries, Inc. Mon Apr 22 15:25:49

Page: 1 ID:KcbZwvKbLSTduBi0nxehuhywBup-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f 23-1-0 31-1-8 7-10-0 8-0-8 1.5x4 **I** 4 15 3x6 **≈** 5 4x4 🕿 6 16 Fet 1-0-0 9

8x8 II

	⊠ 5x5=	11 3×4-	11 3×4=		_11.54 12	8x8 II		MT18HS 10x18 =
	7-1-5		15-3-0		23-0-8		30-10-0	31-1-8
e = 1:55.7	7-1-5	•	8-1-11	,	7-9-8	,	7-9-8	0-'3-8

Scale

7-8-0

3-11-8

Plate Offsets (X, Y): [8:0-3-4,0-8-0], [9:0-3-8,0-4-0], [10:0-4-0,0-3-0]

TCLL (roof) TCDL BCLL BCDL	(psi) 25.0 10.0 0.0 10.0	Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC201	8/TPI2014	TC BC WB Matrix-S	0.75 0.74 0.92	Vert(LL) Vert(CT) Horz(CT)	-0.24 -0.51 0.15	9-10 9-10 9-10 8	>999 >725 n/a	240 180 n/a	MT20 MT18HS Weight: 155 lb	244/190 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD	2x4 SP No.2 *Excep 2.0E 2x4 SP No.2 *Excep 1.5E 2x3 SPF No.2 *Excep SP No.2 Structural wood shea 2-7-4 oc purlins, exc Rigid ceiling directly bracing, Except	t* 5-7:2x4 SP 2400F t* 10-9:2x4 SP 1650l ept* 10-6,12-1,8-7,9-7 athing directly applie cept end verticals. applied or 10-0-0 oc	2) F C:2x4 d or 3) 4)	Wind: ASCE Vasd=91mpl Ke=1.00; Car exterior zone Interior (1) 14 25-0-0, Interi and right exp exposed;C-C reactions sho DOL=1.60 All plates are This truss ha abord live loc	7-16; Vult=115mp n; TCDL=6.0psf; Bt t. II; Exp C; Enclos and C-C Exterior(4-0-4 to 20-0-0, Ex or (1) 25-0-0 to 39 osed ; end vertical for members and own; Lumber DOL= MT20 plates unle s been designed fu	h (3-sec CDL=6.0 ed; MW 2E) 9-0- terior(2F -10-4 zc l left and forces 8 =1.60 pla ss other or a 10.0	ond gust))psf; h=35ft; FRS (envelo) 4 to 14-0-4, 1 20-0-0 to ne; cantilevel I right & MWFRS foi ate grip wise indicate 0 psf bottom	pe) r left r ed.					
WEBS REACTIONS FORCES	7-11-0 oc bracing: 9 1 Row at midpt (size) 8= Mecha Max Horiz 12=-121 (Max Uplift 8=-263 (L Max Grav 8=1388 (L (Ib) - Maximum Com Toporio	-10. 3-11, 6-10, 2-12 Inical, 12=0-3-8 LC 8) C 9), 12=-216 (LC 8) .C 1), 12=1388 (LC 1 Ipression/Maximum	5) 6) 7)) 8)	Bearings are capacity of 5 Refer to girde Provide mecl bearing plate joint 8 and 2 ^o This truss is	assumed to be: Jo 65 psi. er(s) for truss to tru- hanical connection capable of withsta 16 lb uplift at joint 1 designed in accord	iss conr (by oth anding 2 2. Jance w	P No.2 crush ections. ers) of truss t 63 lb uplift at th the 2018	hing to					
TOP CHORD	1-2=-131/137, 2-3=- 3-4=-1997/613, 4-6= 6-7=-3860/900, 1-12 7-8=-1356/411	1392/457, 2028/533, 2=-174/106,	LC	International R802.10.2 ar DAD CASE(S)	Residential Code : nd referenced stan Standard	sections dard AN	R502.11.1 a SI/TPI 1.	ind					an .
BOT CHORD	11-12=-213/1174, 10 9-10=-808/3637 8-9	0-11=-204/1329, 9=-153/476										TE OF M	AISSO
WEBS NOTES	3-11=-258/109, 3-10 4-10=-461/250, 6-10 6-9=-42/762, 2-12=- 7-9=-650/3121, 2-11)=-284/1065,)=-1917/514, 1627/427, =0/409										STAT SCOTT SEVI	ER X

1) Unbalanced roof live loads have been considered for this design.

UNDMPK PE-200101880 \mathbf{C} SSIONAL EN April 23,2024

Job	Truss	Truss Type	Qty	Ply	Roof - WO Lot 130	
P240395-01	D08	Roof Special	2	1	Job Reference (optional)	165082263

Run: 8.63 S Apr 5 2024 Print: 8.630 S Apr 5 2024 MiTek Industries, Inc. Mon Apr 22 15:25:49 ID:zvJ5R?U7X8_wK1cKUSsVODywBud-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Unbalanced roof live loads have been considered for 1) this design.

April 23,2024

E

SSIONAL

Page: 1

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponent.com)

Job	Truss	Truss Type	Qty	Ply	Roof - WO Lot 130	
P240395-01	D09	Hip	1	1	Job Reference (optional)	165082264

Run: 8.63 S Apr 5 2024 Print: 8.630 S Apr 5 2024 MiTek Industries, Inc. Mon Apr 22 15:25:49 ID:9r3XSCE0wBn7mZME7Uz2uHywBtf-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

April 23,2024

Job	Truss	Truss Type	Qty	Ply	Roof - WO Lot 130	
P240395-01	D11	Нір	1	1	Job Reference (optional)	165082265

Run: 8.63 S Apr 5 2024 Print: 8.630 S Apr 5 2024 MiTek Industries, Inc. Mon Apr 22 15:25:49 ID:IXvqO_OodVY8SjQxxQDKTEywBtR-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC?f

+ 1-10-4 1-10-4 13-3-0 1-8-4 2-0-0 9-0-0 11-6-12 5-5-9 23-1-0 31-1-8 3-7-5 3-6-7 2-6-12 7-10-0 8-0-8 12 4 Г 4x4 = 3x4= 6x6= 5 ⊠ 3x4 🕿 6 0-1-9 4 ၐ 6-11-8 3x4 🛥 7 21³ 1.5x4 II 3x4 🕿 5x5 ≠ 22₈ 2 4x4 🕿 9 6-11-8 6-9-15 6-9-15 23 3-11-8 10 A16 Į۴ --1 17 12 20 15 19 Ĭ 11 Ø 4x8= 8x8 II ∟1.54 12 14 13 7x8= 1.5x4 II 6x6= MT18HS 10x18 = 6x6= 7x8= 5x10= 1.5x4 **I** 31-1-8 || 0-3-8 + 1-11-8 1-11-8 13-4-4 15-3-0 1-10-12 1-10-12 8-10-12 11-5-8 23-0-8 30-10-0 2-6-12 7-9-8 7-9-8 6-11-4

Scale = 1:57.7

Plate Offsets (X, Y): [11:0-3-4,0-8-8], [12:0-3-8,0-4-0], [16:0-5-0,0-3-8], [18:0-2-4,0-3-4]

Loading TCLL (roof) TCDL BCLL BCDL	(psf) 25.0 10.0 0.0 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018	3/TPI2014	CSI TC BC WB Matrix-S	0.69 0.75 0.85	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.25 -0.53 0.19	(loc) 12-13 12-13 11	l/defl >999 >692 n/a	L/d 240 180 n/a	PLATES MT20 MT18HS Weight: 177 lb	GRIP 197/144 244/190 FT = 20%	
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD WEBS REACTIONS FORCES TOP CHORD BOT CHORD	2x4 SP No.2 *Except 2.0E 2x4 SP No.2 *Except No.2, 13-12:2x4 SP 2x3 SPF No.2 *Except 13-9,20-1,11-10,12-1 Structural wood sheat 2-11-4 oc purlins, ex 2-0-0 oc purlins, (4-2: Rigid ceiling directly bracing, 1 Row at midpt (size) 11=0-3-8, Max Horiz 20=-132 (I Max Grav 11=1388 ((Ib) - Maximum Com 1-2=-750/269, 2-3=-7 4-5=-1580/534, 5-6= 6-7=-1736/597, 7-9= 9-10=-3863/952, 1-2 10-11=-1357/425 19-20=-52/0, 18-19= 17-18=-306/1365, 16=-8 13-14=-366/1842, 12 11-12=-155/474	t* 8-10:2x4 SP 24001 t* 19-2,5-15:2x3 SPF 1650F 1.5E pt* 10:2x4 SP No.2 athing directly applie xcept end verticals, a -15 max.): 4-6. applied or 6-0-0 oc 9-13 20=0-3-8 LC 8) LC 9), 20=-236 (LC 8 (LC 1), 20=1388 (LC pression/Maximum 789/316, 3-4=-1701/8 -1865/605, -2031/594, 0=-1371/357, -6/26, 2-18=-207/16 5-17=-368/1867, 8/395, 14-15=-6/67, 2-13=-858/3640,	1) F 2) - and 3) 4) 5) 3) 6) 1) 7) 541, 8) 9) 4, 10 LC	Unbalanced this design. Wind: ASCE Vasd=91mpf Ke=1.00; Car exterior zone Interior (1) 14 22-1-8, Exter to 39-10-4 zc vertical left a forces & MW DOL=1.60 pl Provide adec All plates are This truss ha chord live loa All bearings a capacity of 5 Bearing at jo using ANSI/T designer sho Provide mecl bearing plate joint 11 and 2 This truss is International R802.10.2 ar) Graphical pu or the orienta bottom chorc	roof live loads have 7-16; Vult=115mph ; TCDL=6.0psf; BC : II; Exp C; Enclose and C-C Exterior(2 I-0-4 to 17-10-8, Eb ior(2R) 22-1-8 to 25 ine; cantilever left a nd right exposed;C- FRS for reactions s ate grip DOL=1.60 juate drainage to pr MT20 plates unless s been designed fo di nonconcurrent w are assumed to be 65 psi. Int(s) 11 considers PI 1 angle to grain uld verify capacity of hanical connection capable of withstat 236 lb uplift at joint 2 designed in accorda Residential Code s nd referenced stance rlin representation of tion of the purlin al- Standard	been of (3-sec CDL=6.0 CDL=6.1 (3-sec CDL=6.1 (3-sec (3	considered fo ond gust))psf; h=35ft; FRS (envelop; 4 to 14-0-4, 2E) 17-10-8 td texposed; e hembers and Lumber vater ponding wise indicate 0 psf bottom other live loa 2 crushing to grain valu a. Building ng surface. ers) of truss t 74 lb uplift at th the 2018 R502.11.1 a ISI/TPI 1. t depict the s to p and/or	r pe) p-2-6 end d. ds. e so size				STATE OF M STATE SCOTT SEVI	MISSOUR M. ER	
NOTES	18-20=-12//262, 1-1 4-17=-62/316, 5-17= 14-16=-359/1855, 6- 6-14=-374/0, 7-14=-{ 9-13=-1916/522, 9-1 10-12=-724/3126, 3- 3-18=-1041/348	8=-293/1299, -714/231, 16=-200/863, 816/287, 7-13=-31/4 2=-49/764, 17=-55/446,	29,									PE-20010	L ENGINE	5

April 23,2024

Page: 1

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent colleges with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

OTES

Job	Truss	Truss Type	Qty	Ply	Roof - WO Lot 130	
P240395-01	D12	Нір	1	1	Job Reference (optional)	165082266

Plate Offsets (X, Y): [9:0-3-4,0-8-8], [10:0-3-8,0-4-0], [11:0-3-12,0-2-12], [13:0-5-4,0-3-8], [15:0-4-8,0-3-12]

Run: 8.63 S Apr 5 2024 Print: 8.630 S Apr 5 2024 MiTek Industries, Inc. Mon Apr 22 15:25:50 ID:PNhD2jyfodLcznxme426KxywBsj-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale =	1:57.5
---------	--------

Loading	(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15		TC	0.65	Vert(LL)	-0.24	10-11	>999	240	MT20	197/144
TCDL	10.0	Lumber DOL	1.15		BC	0.74	Vert(CT)	-0.52	10-11	>706	180	MT18HS	244/190
BCLL	0.0	Rep Stress Incr	YES		WB	0.86	Horz(CT)	0.18	9	n/a	n/a		
BCDL	10.0	Code	IRC201	8/TPI2014	Matrix-S							Weight: 164 lb	FT = 20%
			2		7-16: \/ult=115mph	(3-50)	cond quet)						
	2v4 SB No 2 *Excon	+* 5 7 7 9.24 90 24	00E 2,	Vasd=91mpt	TCDI = 6.0 psf BC	DI = 6	Onsf: h=35ft:						
TOP CHORD	2.14 SP NO.2 EXCEP	1 5-7,7-0.2X4 SP 24	006	Ke=1 00. Ca	II Exp C: Enclose	d MW	FRS (envelor	ne)					
BOT CHORD	2x4 SP No 2 *Excen	t* 16-2 4-12·2x3 SPF	F	exterior zone	and C-C Exterior(2	2E) 9-0	-4 to 14-0-4.	,					
Der enerte	No.2. 11-10:2x4 SP	1650F 1.5E		Interior (1) 14-0-4 to 15-10-8, Exterior(2R) 15-10-8 to									
WEBS	2x3 SPF No.2 *Exce	pt*		22-11-6, Inte	rior (1) 22-11-6 to 2	4-1-8,	Exterior(2R)						
	17-1,9-8,10-8,6-11:2	x4 SP No.2		24-1-8 to 31-	2-6, Interior (1) 31-	2-6 to 3	39-10-4 zone;						
BRACING				cantilever lef	t and right exposed	; end \	vertical left an	d					
TOP CHORD	Structural wood she	athing directly applie	d or	right exposed	d;C-C for members	and for	rces & MWFR	S					
	3-3-14 oc purlins, ex	xcept end verticals, a	and	for reactions	shown; Lumber DC	DL=1.60) plate grip						
	2-0-0 oc purlins (3-9	-5 max.): 3-5.		DOL=1.60									
BOT CHORD	Rigid ceiling directly	applied or 6-0-0 oc	3	Provide adec	juate drainage to pr	event	water ponding	<u>.</u>					
	bracing.		4	All plates are	MI20 plates unles	s other	wise indicate	d.					
WEBS	1 Row at midpt	4-14, 6-11	5	I his truss ha	s been designed to	ra 10.0	J pst bottom	do					
REACTIONS	(size) 9=0-3-8, 1	17=0-3-8	6		are assumed to be	SP No	2 crushing	us.					
	Max Horiz 17=-141 (LC 8)	0,	capacity of 5	65 nsi	01 110.	2 crushing						
	Max Uplift 9=-283 (L	C 9), 17=-253 (LC 8)) 7	Bearing at io	int(s) 9 considers p	arallel t	o orain value						
	Max Grav 9=1388 (L	LC 1), 17=1388 (LC 1	1) '	using ANSI/1	PI 1 angle to grain	formula	a. Building						
FORCES	(lb) - Maximum Com	pression/Maximum		designer sho	uld verify capacity of	of bear	ing surface.						
	Tension		8)	Provide mec	nanical connection	(by oth	ers) of truss to	0					
TOP CHORD	1-2=-802/300, 2-3=-	1653/518,		bearing plate	capable of withsta	nding 2	83 lb uplift at						
	3-4=-1517/523, 4-5=	=-2135/679,		joint 9 and 2	53 lb uplift at joint 1	7.							
	5-6=-2024/592, 6-8=	-3864/973,	9)	This truss is	designed in accorda	ance w	ith the 2018						Th
	1-1/=-1361/380, 8-9	1=-1356/432 = 6/28 2 15- 1025/	451	International	Residential Code s	ections	R502.11.1 a	nd				OFA	ALC D
BOT CHORD	1/-1/=-10/10, 15-10	-0/20, 2-15=-1025/ 14468/2142	401,	R802.10.2 a	nd referenced stand	lard AN	NSI/TPL1.					ALEUT	ISS W
	12-13-0/50 4-13-5	5/355 11-1217/52	, 10)) Graphical pu	rlin representation of	does no	ot depict the s	ize			6	T. T.	1.51
	10-11=-877/3626 9-	-10=-156/473	-,	or the orienta	ition of the purlin al	ong the	e top and/or				R	SCOTT	M. NEW
WEBS	15-17=-162/264. 1-1	5=-343/1345.			Ctondord						U.	SEVI	ER \V
	2-14=-266/878, 3-14	=0/245, 4-14=-958/2	274, L	UAD CASE(S)	Standard						16	ēl —	1 * 8
	11-13=-380/1872, 5-	-13=-141/559,									NO.		
	5-11=-180/89, 8-10=	-762/3128,									W	South .	Den Abar
	6-10=-52/762, 6-11=	-1911/532									1	STON	
NOTES											N.	OX PE-2001(118807
1) Unbalance	ed roof live loads have	been considered for									0	AT 1	158
this desig	n.											W SIG	ENUS
												WNA	L

April 23,2024

16023 Swingley Ridge Rd. Chesterfield, MO 63017 314.434.1200 / MiTek-US.com
Job	Truss	Truss Type	Qty	Ply	Roof - WO Lot 130	
P240395-01	D13	Нір	1	1	Job Reference (optional)	165082267

Run: 8.63 S Apr 5 2024 Print: 8.630 S Apr 5 2024 MiTek Industries, Inc. Mon Apr 22 15:25:50 ID:2hPIZq5BzJsvPds4LbGwpTywBsX-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

This truss is designed in accordance with the 2018 9) International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

10) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

LOAD CASE(S) Standard

NOTES

WEBS

BOT CHORD

8-9=-1358/434

9-10=-166/506

7-11=-1586/458

17-18=-4/20, 16-17=-4/31, 2-16=-990/392,

5-11=-80/230, 5-14=-122/573, 7-10=-64/731,

13-14=0/78, 4-14=0/304, 12-13=-36/76,

15-16=-144/735, 14-15=-536/2423,

11-12=-454/2072, 10-11=-861/3574,

16-18=-174/248, 1-16=-283/1269, 2-15=-283/920, 3-15=0/193, 4-15=-1296/366, 12-14=-432/2060, 6-11=-112/480, 8-10=-718/3045, 5-12=-764/199,

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponent.com)

Job	Truss	Truss Type	Qty	Ply	Roof - WO Lot 130	
P240395-01	D14	Нір	1	1	Job Reference (optional)	165082268

Run: 8.63 S Apr 5 2024 Print: 8.630 S Apr 5 2024 MiTek Industries, Inc. Mon Apr 22 15:25:50 ID:amNowIIDCEteK549HzYgTrywBsH-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:57.8

Plate Offsets (X, Y): [9:0-3-4,0-8-8]

Loading TCLL (roof) TCDL BCLL BCDL	(psf) 25.0 10.0 0.0 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC201	8/TPI2014	CSI TC BC WB Matrix-S	0.82 0.84 0.78	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.22 -0.40 0.13	(loc) 10-11 9-10 9	l/defl >999 >920 n/a	L/d 240 180 n/a	PLATES MT20 MT18HS Weight: 151 lb	GRIP 197/144 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD	2x4 SP No.2 *Excep 2.0E 2x4 SP No.2 2x3 SPF No.2 *Exce No.2 Structural wood she 2-2-0 oc purlins (3-4 2-0-0 oc purlins (3-4 Piotic celling directly	ot* 6-8:2x4 SP 2400F opt* 15-1,9-8,10-8:2x athing directly applie cept end verticals, ar 1-7 max.): 2-6. applied c 6-4.3 oc	2) 4 SP d or nd 3)	Wind: ASCE Vasd=91mpl Ke=1.00; Ca exterior zone Exterior(2R) 28-1-8, Exter to 39-10-4 zc vertical left a forces & MW DOL=1.60 pl Provide adec	7-16; Vult=115m n; TCDL=6.0psf; E t. II; Exp C; Enclos and C-C Exterior 11-10-8 to 18-11- ior(2R) 28-1-8 to one; cantilever left nd right exposed; FRS for reactions ate grip DOL=1.6 juate drainage to	ph (3-sec 3CDL=6.0 sed; MW r(2E) 9-0 6, Interio 35-2-6, 1 and righ C-C for n shown; 0 prevent 0	ond gust) Dpsf; h=35ft; FRS (envelo -4 to 11-10-8 r (1) 18-11-6 nterior (1) 35 tt exposed ; nembers and Lumber water pondin	ope) 3, 5 to 5-2-6 end d					
REACTIONS	Rigid ceiling directly bracing. (size) 9=0-3-8, Max Horiz 15=-159 (Max Uplift 9=-295 (L Max Grav Max Grav 9=1388 (L	applied or 6-4-3 oc 15=0-3-8 (LC 8) .C 9), 15=-281 (LC 8) .C 1), 15=1388 (LC 7	 I-3 oc 3) Provide adequate drainage to prevent water ponding. 4) All plates are MT20 plates unless otherwise indicated. 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 6) All bearings are assumed to be SP No.2 crushing capacity of 565 psi. 8 (LC 1) 7) Bearing at joint(s) 9 considers parallel to grain value 										
TOP CHORD	(ib) - Maximum Corr Tension 1-2=-848/283, 2-3=- 3-5=-2016/580, 5-6= 6-7=-2679/738, 7-8= 1-15=-1373/397, 8-9	2018/582, 2402/707, 3802/961, 9=-1359/436	8) 9)	 using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface. 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 281 lb uplift at joint 15 and 295 lb uplift at joint 9. 9) This truss is designed in accordance with the 2018 									
BOT CHORD	14-15=-135/217, 13- 12-13=-548/2399, 1 10-11=-859/3556, 9-	-14=-136/810, 1-12=-552/2505, -10=-168/517	1(International R802.10.2 ar)) Graphical pu	Residential Code nd referenced star rlin representation	sections ndard AN	R502.11.1 a ISI/TPI 1. ot depict the	and size				OF M	ALSS
WEBS NOTES	1-14=-368/1309, 2-1 2-13=-396/1520, 3-1 5-13=-487/155, 5-12 6-12=-129/105, 6-11 7-11=-1298/390, 8-1 7-10=-71/711	14=-951/364, 13=-492/248, 2=-234/135, 1=-163/744, 10=-690/3018,	L	or the orienta bottom choro DAD CASE(S)	ation of the purlin a l. Standard	along the	top and/or					SCOTT SEVI	ER BER

this design.

April 23,2024

E

PE-2001018

ONAL

Job	Truss	Truss Type	Qty	Ply	Roof - WO Lot 130	
P240395-01	D15	Hip Girder	1	2	Job Reference (optional)	165082269

Run: 8,63 S Apr 5 2024 Print: 8,630 S Apr 5 2024 MiTek Industries, Inc. Mon Apr 22 15:25:50 ID:7UYHh?pN5S3UD845f3azSQywC9_-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

LUMBER		1)
TOP CHORD	2x4 SP No.2	,
BOT CHORD	2x6 SP 2400F 2.0E	
WEBS	2x3 SPF No.2 *Except* 20-1,11-10,12-10:2x4	
	SP No.2	
BRACING		
TOP CHORD	Structural wood sheathing directly applied or	
	3-6-14 oc purlins, except end verticals, and	2)
	2-0-0 oc purlins (3-11-5 max.): 2-7.	2)
BOT CHORD	Rigid ceiling directly applied or 10-0-0 oc bracing.	
WEBS	1 Row at midpt 3-19	
REACTIONS	(size) 11=0-3-8, 20=0-3-8	2)
	Max Horiz 20=-159 (LC 8)	3)
	Max Uplift 11=-1221 (LC 9), 20=-1290 (LC 8)	4)
	Max Grav 11=4639 (LC 1), 20=4872 (LC 1)	4)
FORCES	(lb) - Maximum Compression/Maximum	
	Tension	
TOP CHORD	1-2=-2657/809, 2-3=-2534/788,	
	3-4=-8429/2410, 4-6=-8429/2410,	
	6-7=-8406/2407, 7-8=-8793/2491,	
	8-9=-9562/2664, 9-10=-8833/2447,	
	1-20=-4/78/1368, 10-11=-4265/1216	
BOT CHORD	19-20=-121/219, 18-19=-1657/6262, 17 18 - 1657/6262, 15 17 - 2404/0202	-
	$17 \cdot 10 = -1037/0202, 13 \cdot 17 = -2494/9202,$ 14.15 = -2404/0202, 13.14 = -2441/0048	5)
	12-13=-2295/8322 11-12=-321/1059	(0) 7)
WEBS	2-19=-156/634_3-19=-5218/1480	()
	3-18=-264/1158, 3-17=-841/3035,	8)
	4-17=-280/130, 6-17=-1086/329,	0)
	6-15=-250/1105, 6-14=-1255/347,	
	7-14=-649/2482, 8-14=-918/307,	9)
	8-13=-155/668, 9-13=-210/873,	,
	9-12=-789/280, 1-19=-1326/4647,	
	10-12=-2006/7378	10)
NOTES		

2-ply truss to be connected together with 10d (0.131"x3") nails as follows:

Top chords connected as follows: 2x4 - 1 row at 0-9-0 oc.

Bottom chords connected as follows: 2x6 - 2 rows staggered at 0-9-0 oc.

Web connected as follows: 2x3 - 1 row at 0-9-0 oc, 2x4 -1 row at 0-9-0 oc.

- All loads are considered equally applied to all plies, except if noted as front (F) or back (B) face in the LOAD CASE(S) section. Ply to ply connections have been provided to distribute only loads noted as (F) or (B), unless otherwise indicated.
- Unbalanced roof live loads have been considered for this design.
- Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=35ft; Ke=1.00; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) 0-1-12 to 2-4-0, Exterior(2R) 2-4-0 to 9-4-14, Interior (1) 9-4-14 to 19-11-0, Exterior(2R) 19-11-0 to 27-3-0, Interior (1) 27-3-0 to 30-11-12 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- Provide adequate drainage to prevent water ponding.
- All plates are MT20 plates unless otherwise indicated. This truss has been designed for a 10.0 psf bottom
- chord live load nonconcurrent with any other live loads.
- Bearings are assumed to be: Joint 20 SP 2400F 2.0E crushing capacity of 805 psi, Joint 11 SP No.2 crushing capacity of 565 psi.
- Bearing at joint(s) 11 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.
- Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 1290 lb uplift at joint 20 and 1221 lb uplift at joint 11.

- 11) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 12) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.
- 13) Use Simpson Strong-Tie LUS24 (4-10d Girder, 2-10d Truss, Single Ply Girder) or equivalent spaced at 2-0-0 oc max. starting at 5-9-8 from the left end to 27-9-8 to connect truss(es) to back face of bottom chord.
- 14) Fill all nail holes where hanger is in contact with lumber.
- 15) Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 472 Ib down and 134 lb up at 1-9-8, and 472 lb down and 138 lb up at 3-9-8 on bottom chord. The design/ selection of such connection device(s) is the responsibility of others.

LOAD CASE(S) Standard

Dead + Roof Live (balanced): Lumber Increase=1.15, 1) Plate Increase=1.15

Uniform Loads (lb/ft) Vert: 1-2=-70, 2-7=-70, 7-10=-70, 11-20=-20 Concentrated Loads (lb)

16023 Swingley Ridge Rd. Chesterfield MO 63017 314.434.1200 / MiTek-US.com

Continued on page 2

WAR Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponent.com)

Job	Truss	Truss Type	Qty	Ply	Roof - WO Lot 130	
P240395-01	D15	Hip Girder	1	2	Job Reference (optional)	165082269

Vert: 14=-472 (B), 13=-470 (B), 24=-472 (B), 25=-472 (B), 26=-472 (B), 27=-472 (B), 28=-472 (B), 29=-472 (B), 30=-472 (B), 31=-472 (B), 32=-472 (B), 33=-470 (B), 34=-470 (B), 35=-607 (B) Run: 8.63 S Apr 5 2024 Print: 8.630 S Apr 5 2024 MiTek Industries, Inc. Mon Apr 22 15:25:50 ID:7UYHh?pN5S3UD845f3azSQywC9_-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 2

Job	Truss	Truss Type	Qty	Ply	Roof - WO Lot 130	
P240395-01	F03	Half Hip Girder	1	2	Job Reference (optional)	165082270

Run: 8.63 S Apr 5 2024 Print: 8.630 S Apr 5 2024 MITek Industries, Inc. Mon Apr 22 15:25:51 ID:PBGVI9aenInNadLa7IT3uhywBrw-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

	4-11-12	9-7-10	12-0-0
	4-11-12	4-7-14	2-4-6
Scale = 1:40.1			

Plate Offsets (X, Y): [1:Edge,0-2-4], [5:0-2-8,Edge], [6:Edge,0-2-8], [7:0-5-0,0-6-0]

-		1											
Loading	(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15		TC	0.73	Vert(LL)	-0.07	7-8	>999	240	MT20	244/190
TCDL	10.0	Lumber DOL	1.15		BC	0.37	Vert(CT)	-0.13	7-8	>999	180		
BCLL	0.0	Rep Stress Incr	NO		WB	0.82	Horz(CT)	0.02	6	n/a	n/a		
BCDL	10.0	Code	IRC201	8/TPI2014	Matrix-S							Weight: 147 lb	FT = 20%
			4)	Wind: ASCE	7-16: Vult=115m	ph (3-sec	cond aust)						
TOP CHORD	2x4 SP 2400F 2 0F	*Excent* 4-5:2x4 SP	.,	Vasd=91mpl	n: TCDL=6.0psf: E	BCDL=6.0	Dpsf: h=35ft:						
	No 2	Excopt + 0.2x+ 01		Ke=1.00: Ca	t. II: Exp C: Enclo	sed: MW	FRS (envelo	pe)					
BOT CHORD	2x8 SP 2400F 2.0E			exterior zone	and C-C Exterio	r(2E) 0-0-	-0 to 4-11-12	,					
WEBS	2x3 SPF No.2			Interior (1) 4-	11-12 to 9-8-14,	Exterior(2	2E) 9-8-14 to						
SLIDER	Left 2x4 SP No.2 2	2-7-3		11-10-12 zor	ne; cantilever left	and right	exposed ; en	nd					
BRACING				vertical left a	nd right exposed;	C-C for n	nembers and						
TOP CHORD	Structural wood she	athing directly applied	dor	forces & MW	FRS for reactions	s shown;	Lumber						
	5-2-11 oc purlins, e	xcept end verticals. a	nd	DOL=1.60 pl	ate grip DOL=1.6	0							
	2-0-0 oc purlins (6-0	-0 max.): 4-5.	5)	Provide adec	quate drainage to	prevent v	water ponding	g.					
BOT CHORD	Rigid ceiling directly	applied or 10-0-0 oc	6)	This truss ha	s been designed	for a 10.0) psf bottom						
	bracing.		-,	chord live loa	ad nonconcurrent	with any	other live loa	ids.					
REACTIONS	(size) 1=0-3-8, 6	6=0-3-8	()	All bearings a	are assumed to b	e SP 240	OF 2.0E Crus	ining					
	Max Horiz 1=174 (LC	C 11)	0)	Provide med	uo psi. hanical connectio	n (hu oth	ore) of truce t	0					
	Max Uplift 1=-1034 (LC 8), 6=-965 (LC 8)	0)	bearing plate	canable of withs	tandina 1	034 lb unlift :	at					
	Max Grav 1=4768 (L	_C 1), 6=4518 (LC 1)		ioint 1 and 9	35 lb unlift at ioint	6							
FORCES	(lb) - Maximum Com	pression/Maximum	9)	This truss is	designed in acco	rdance w	ith the 2018						
	Tension	•	-,	International	Residential Code	sections	R502.11.1 a	and					
TOP CHORD	1-3=-6703/1655, 3-4	=-2673/677,		R802.10.2 ar	nd referenced sta	ndard AN	ISI/TPI 1.						
	4-5=-2522/676, 5-6=	-4166/1100	10)) Graphical pu	rlin representation	n does no	ot depict the s	size					
BOT CHORD	1-8=-1691/6134, 7-8	8=-1691/6134, 6-7=-7	2/86	or the orienta	ation of the purlin	along the	top and/or						
WEBS	4-7=-168/584, 5-7=-	1236/4771,		bottom chord	l.								
	3-7=-3983/1094, 3-8	3=-645/3257	11	11) Use Simpson Strong-Tie LUS28 (6-SD9112 Girder, 4-							The		
NOTES				SD9212 Trus	ss, Single Ply Giro	der) or eq	uivalent space	ced				OF	ALC D
 2-ply trus 	s to be connected toget	ther with 10d		at 2-0-0 oc m	hax. starting at 0-8	8-12 from	the left end	to				ALEUTI	IIS'S
(0.131"x3	3") nails as follows:			10-8-12 to co	onnect truss(es) to	o back fa	ce of bottom				A	T. T.	N.S.
Top chor	ds connected as follows	s: 2x4 - 1 row at 0-9-0	1	CNORD.	lee where herees			h			A	SCOT	TM.
oc, 2x3 -	1 row at 0-9-0 oc.		14		nes where hange	r is in cor	nact with lum	ber.			U	7 SEVI	ER \V
Bottom c	hords connected as follo	ows: 2x8 - 2 rows	L	DAD CASE(S)	Standard					-	19 -		\ ★ ∅
Slaggerer Web een	u al 0-0-0 00.	1 row at 0.0.0 aa	1)	Dead + Roo	Di Live (balanced)	: Lumber	increase=1.	15,			NO	1 th	· l.
2) All loads	are considered equally	applied to all plice		Plate Increa	3Se=1.15					_		hall/>	SOMUN)
except if	noted as front (F) or ba	$\alpha_{\rm PP} = 0$ to all piles, $\alpha_{\rm P} = 0$	D	Vort 1 4	$= 70 \ 1.5 = 70 \ 1.6$	820					VI -	NUM	BER
CASE(S)	section. Ply to ply conr	ections have been		Concentrate	10, 4-5=-10, 1-0 ed Loads (lb)	020					N.	ON PE-2001	018807
provided	to distribute only loads		Vert: 8=-1369 (B) 9=-1372 (B) 10=-1369 (B)								188		
unless ot	herwise indicated.	· · · · · · · · (2),		11=-1360	(B) 12=-1368 (F	3) 13=-1	368 (B)					0.580	ENO'B
3) Unbaland	ced roof live loads have	been considered for		11= 1000	(L), 12= 1000 (L	-,, 10- 1	(E)					WNA	LEY
this desig	jn.											laa	DEC .

April 23,2024

Job	Truss	Truss Type	Qty	Ply	Roof - WO Lot 130	
P240395-01	H1	Roof Special Girder	1	1	Job Reference (optional)	165082271

Run: 8.63 S Apr 5 2024 Print: 8.630 S Apr 5 2024 MiTek Industries, Inc. Mon Apr 22 15:25:51 ID:Y1Spa5yc3AbVRs1sO64eU0zP7OG-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Scale = 1:51.1

Plate Offsets (X, Y): [2:Edge,0-2-0], [5:0-1-12,0-2-0], [10:Edge,0-6-0]

Loading	(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15		TC	0.68	Vert(LL)	-0.04	11	>999	240	MT20	197/144
TCDL	10.0	Lumber DOL	1.15		BC	0.44	Vert(CT)	-0.07	11-12	>999	180		
BCLL	0.0	Rep Stress Incr	NO		WB	0.63	Horz(CT)	0.01	10	n/a	n/a		
BCDL	10.0	Code	IRC201	8/TPI2014	Matrix-S							Weight: 119	b FT = 20%
			2)	Wind: ASCE	7-16: Vult=115mp	h (3-ser	cond quist)		Co	ncentra	ted I c	ads (lb)	
	2v4 SP No 2 *Evo	ent* 5-7·2v4 SP 1650F	= 2,	Vasd=91mpl	n: TCDL=6.0psf: B(CDL=6.0	Opsf: h=35ft:		00	Vert 7=	-116 (B) 11=-411 (B) 19=-116 (B) 20=-116
	1.5F	opt 07.2A+01 10001		Ke=1.00: Ca	t. II: Exp C: Enclos	ed: MW	FRS (envelo	oe)		(B), 22=	-48 (E	b), 23=-48 (B)), 10= 110 (D), 20= 110
BOT CHORD	2x6 SPF No.2			exterior zone	and C-C Exterior(2E) -0-1	0-8 to 4-1-8,	- /		(-,, ==		,, (_)	
WEBS	2x3 SPF No.2 *E>	cept* 16-2,10-8:2x4 S	Р	Interior (1) 4-	1-8 to 7-0-0, Exter	ior(2E)	7-0-0 to 8-0-1	2,					
	No.2	· ,		Interior (1) 8-	0-12 to 19-8-12, E	xterior(2	2E) 19-8-12 to	С					
BRACING				26-6-8 zone;	cantilever left and	right ex	posed ; end						
TOP CHORD	Structural wood s	heathing directly applie	ed or	vertical left a	nd right exposed;C	-C for n	nembers and						
	4-7-4 oc purlins,	except end verticals, a	nd	forces & MW	FRS for reactions	shown;	Lumber						
	2-0-0 oc purlins (6	6-0-0 max.): 5-7.	0)	DOL=1.60 pl	ate grip DOL=1.60								
BOT CHORD	Rigid ceiling direct	tly applied or 10-0-0 or	c 3)	Provide adec	quate drainage to p	revent	water ponding	g.					
	bracing, Except:		4)	chord live los	s been designed it	vith onv	other live log	de					
	6-0-0 oc bracing:	12-14.	5)		are assumed to be	SDE N	2 crushing	us.					
WEBS	1 Row at midpt	7-12	5)	capacity of 4	25 nsi		5.2 crushing						
REACTIONS	(size) 10=0-3	-8, 12=0-3-8, 16=0-3-8	6)	Provide mec	hanical connection	(by oth	ers) of truss t	0					
	Max Horiz 16=25	(LC 12)	- /	bearing plate	capable of withsta	inding 1	57 lb uplift at						
	Max Uplift 10=-24	5 (LC 9), 12=-408 (LC	9),	joint 16, 245	Ib uplift at joint 10	and 408	3 lb uplift at jo	int					
	16=-15 Max Cray 10, 959	7 (LU 31) 5 (LC 26) 12-1925 (LC	1)	12.									
	10=050 16=500	(LC 20), 12 = 1000 (LC 1)	(1), 7)	This truss is	designed in accord	lance w	ith the 2018						
FORCES	(lb) Movimum C	moreceien/Meximum		International	Residential Code s	sections	R502.11.1 a	ind					
FURGES	(ID) - Maximum C	Inpression/waximum	0)	R802.10.2 a	nd referenced stan	dard AN	ISI/TPI 1.						
	1-2=0/23 2-3=-10	6/86 3-4=-591/221	8)	Graphical pu	rlin representation	does no	ot depict the s	size					
	4-5=-571/244, 5-6	=-521/259. 6-7=-10/24	11.	or the orienta	ation of the punin a	iong the	e top and/or						ADDA
	7-8=-1346/384, 8	9=0/23, 2-16=-242/16	5, a)	Lise Simpsor	Strong-Tie TH ΙΔ΄	26 (ТН І	426 on 1 nlv	l oft				6 OF	MISCO
	8-10=-776/325		5)	Hand Hin) or	equivalent at 19-8	-6 from	the left end to					A SE	
BOT CHORD	15-16=-255/682,	14-15=-152/502,		connect trus	s(es) to back face of	of bottor	n chord.	0			4	N/	New
	12-14=-238/132,	11-12=-277/1200,	10) Fill all nail ho	les where hanger i	s in cor	tact with lum	ber.			H	SCO SCO	TT M. Yor V
	10-11=-177/425		11) "NAILED" ind	dicates Girder: 3-10	d (0.14	8" x 3") toe-i	nails			R	/ SE	VIER
WEBS	5-14=-417/99, 7-1	1=0/487, 3-16=-604/2	53,	per NDS guid	delines.		,				10		
	8-11=-1/6//9/, 4	15=-101/220,	12) In the LOAD	CASE(S) section,	loads a	oplied to the f	face				1 TTS	Server7
	5-15=-73/194, 3-1	5=-214/175,		of the truss a	re noted as front (I	F) or ba	ck (B).			_		NUT	MBER
	6-1/220/822	5-12=-900/099,	LC	LOAD CASE(S) Standard						DE 200	101007 188		
NOTES	0-14=-223/022		1)	Dead + Roo	of Live (balanced):	Lumber	Increase=1.	15,			(V	PE-200	101000/29
NUIES	ad reaf live leads is -	in hear annalder - I f-	-	Plate Increa	ase=1.15						Y	1 Co	IN A
this design	eu root live loads ha	ve been considered fo	ſ	Uniform Loa	ads (lb/ft)							USION	AL ENS
unis desig	H.			Vert: 1-2:	=-70, 2-4=-70, 4-5=	-70, 5-	7=-70, 7-8=-7	0.				AP ON	AL S

Vert: 1-2=-70, 2-4=-70, 4-5=-70, 5-7=-70, 7-8=-70, 8-9=-70, 10-16=-20

April 23,2024

Page: 1

Job	Truss	Truss Type	Qty	Ply	Roof - WO Lot 130	
P240395-01	H2	Нір	1	1	Job Reference (optional)	165082272

Run: 8.63 S Apr 5 2024 Print: 8.630 S Apr 5 2024 MiTek Industries, Inc. Mon Apr 22 15:25:51 ID:B3ewXNuUEezDK59ubZUTnzzP7OL-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:50

					-							-	
Loading TCLL (roof) TCDL BCLL BCDL LUMBER	(psf) 25.0 10.0 0.0 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC201 2)	8/TPI2014 Wind: ASCE	CSI TC BC WB Matrix-S 7-16; Vult=115r	0.53 0.51 0.42 nph (3-sec	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.09 -0.19 0.01	(loc) 10-11 10-11 10	l/defl >999 >749 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 112 lb	GRIP 197/144 FT = 20%
TOP CHORD BOT CHORD WEBS BRACING TOP CHORD	2x4 SP No.2 2x4 SP No.2 2x3 SPF No.2 *Ex No.2 Structural wood sh 6-0-0 oc purlins, e	cept* 15-2,10-8:2x4 S reathing directly applie except end verticals, a	P ed or nd	Vasd=91mpl Ke=1.00; Ca exterior zone Interior (1) 3- 15-0-2, Interi 17-8-12 to 24 cantilever lef right expose	h; TCDL=6.0psf; t. II; Exp C; Encl and C-C Exteri -10-11 to 7-11-4 ior (1) 15-0-2 to 4-9-10, Interior (t and right exposed d:C-C for memb	BCDL=6.(losed; MW or(2E) -0-1 , Exterior(2 17-8-12, E 1) 24-9-10 sed ; end v ers and for	Dpsf; h=35ft; FRS (envelop 0-8 to 3-10-1 R) 7-11-4 to xterior(2R) to 26-6-8 zor ertical left an ces & MWFF	(RS (envelope)) -8 to 3-10-11, R) 7-11-4 to terior(2R) o 26-6-8 zone; prtical left and tes & MWFRS plate or in					
BOT CHORD	2-0-0 oc purlins (6 Rigid ceiling direct bracing, Except: 6-0-0 oc bracing: 1	-0-0 max.): 4-6. ly applied or 10-0-0 or 2-14.	c 3)	for reactions DOL=1.60 Provide adec	shown; Lumber quate drainage to	DOL=1.60	plate grip vater ponding	g.					
REACTIONS	(size) 10=0-3- Max Horiz 15=27 (Max Uplift 10=-138 15=-160 Max Grav 10=516 15=619	8, 12=0-3-8, 15=0-3-8 LC 12) 9 (LC 9), 12=-258 (LC 9 (LC 8) (LC 26), 12=1334 (LC (LC 25)	 15=0-3-8 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 258 (LC 9), 5) All bearings are assumed to be SP No.2 crushing capacity of 565 psi. 1334 (LC 1), 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 258 lb uplift at 										
FORCES	(lb) - Maximum Co Tension	mpression/Maximum		Joint 12, 160 lb uplift at joint 15 and 139 lb uplift at joint 10.									
TOP CHORD	1-2=0/23, 2-3=-20 4-5=-521/172, 5-6 7-8=-189/60, 8-9= 8-10=-246/165	3/71, 3-4=-581/156, =-25/309, 6-7=-313/92 D/23, 2-15=-260/173,	7) 2, 8)	Inis truss is International R802.10.2 a Graphical pu or the orients	Residential Coc Residential Coc nd referenced st Irlin representation of the purlin	ordance wi le sections andard AN on does no n along the	R502.11.1 a R502.11.1 a SI/TPI 1. t depict the s top and/or	ind size					
BOT CHORD	14-15=-212/692, 1 11-12=0/245, 10-1	2-14=-307/173, 1=-130/506		bottom chore	d. Oten dend	in along the						COLUMN T	ADD.
WEBS NOTES	4-14=-175/119, 6- 6-11=-12/306, 3-1 7-10=-416/173, 5- 5-14=-223/882, 3- 7-11=-296/217	12=-655/142, 5=-608/204, 12=-828/328, 14=-212/192,	L	JAD GASE(S)	Stanuaru							STATE OF A	M. ER
1) Unbalance this design	ed roof live loads hav n.	e been considered fo	r							-		NUM	any

this design.

S

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent toulsable personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcscomponents.com)

April 23,2024

E

-20010188

ONAL

Job	Truss	Truss Type	Qty	Ply	Roof - WO Lot 130	
P240395-01	H5	Hip Girder	1	1	Job Reference (optional)	165082273

Run: 8.63 S Apr 5 2024 Print: 8.630 S Apr 5 2024 MiTek Industries, Inc. Mon Apr 22 15:25:51

Page: 1

Job	Truss	Truss Type	Qty	Ply	Roof - WO Lot 130	
P240395-01	H6	Hip	1	1	Job Reference (optional)	165082274

5-11-4

5-11-4

Premier Building Supply (Springhill, KS), Spring Hills, KS - 66083,

-0-10-8

Run: 8.63 S Apr 5 2024 Print: 8.630 S Apr 5 2024 MiTek Industries, Inc. Mon Apr 22 15:25:51 ID:fFCIIjv6?y54yFk59G?iKAzP7OK-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

13-11-8

5-10-12

Page: 1

8-0-12

2-1-8

	5-10-0	8-2-0	13-11-8	
	5-10-0	2-4-0	5-9-8	
Scale = 1:33				

Plate Offsets (X, Y): [9:Edge,0-8-8]

					-									
Loading TCLL (roof) TCDL BCLL BCDL	(psf) 25.0 10.0 0.0 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018	B/TPI2014	CSI TC BC WB Matrix-S	0.54 0.28 0.20	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.03 -0.07 0.01	(loc) 8-9 8-9 6	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 61 lb	GRIP 197/144 FT = 20%	
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x4 SP No.2 2x3 SPF No.2 *Exce Structural wood shea 4-9-10 oc purlins, e: 2-0-0 oc purlins (6-0 Rigid ceiling directly bracing. (size) 6=0-3-8, § Max Horiz 9=21 (LC Max Uplift 6=-115 (L)	pt* 9-2,6-5:2x4 SP N athing directly applie xcept end verticals, i -0 max.): 3-4. applied or 9-10-3 oc 9=0-3-8 12) C 9), 9=-163 (LC 8)	6) No.2 7) ed or 8) and 8)	Provide mec bearing plate joint 9 and 1 This truss is International R802.10.2 ai Graphical pu or the orient bottom chore DAD CASE(S)	hanical connection of capable of withs 15 lb uplift at join designed in acco Residential Code and referenced sta- rlin representatio ation of the purlin t. Standard	on (by oth standing 1 t 6. ordance wi e sections andard AN on does no along the	ers) of truss i 63 lb uplift a th the 2018 R502.11.1 a SI/TPI 1. ot depict the s top and/or	to t and size						
FORCES	(lb) - Maximum Com	pression/Maximum												
TOP CHORD	1-2=0/23, 2-3=-925/4	430, 3-4=-820/476, 820/413_5_6=-552/3	30											
BOT CHORD WEBS	4-5=-925/439, 2-9=- 8-9=-249/318, 7-8=- 3-8=0/113, 3-7=-112 2-8=-125/499, 5-7=-	352/813, 6-7=-152/3 //126, 4-7=-84/108, 204/590	35											
NOTES	ed roof live loads have	been considered for											~	
 OriodalICS Wind: ASK Vasd=91n Ke=1.00; exterior zz Interior (1) 13-9-12 zi vertical lef forces & N DOL=1.60 Thovide an 	n. CE 7-16; Vult=115mph nph; TCDL=6.0psf; BC Cat. II; Exp C; Enclose one and C-C Exterior(2) 4-1-8 to 5-11-4, Exter one; cantilever left and ft and right exposed;C- /WFRS for reactions sl) plate grip DOL=1.60 dequate drainage to pro-	(3-second gust) DL=6.0psf; h=35ft; d; MWFRS (envelop E) -0-10-8 to 4-1-8, ior(2E) 5-11-4 to right exposed ; end C for members and hown; Lumber	e)									STE OF M SCOT SEVI	AISSOLA T.M. ER BER 018807	

- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- All bearings are assumed to be SP No.2 crushing 5) capacity of 565 psi.

314.434.1200 / MiTek-US.com

April 23,2024

E

SSIONAL

Job	Truss	Truss Type	Qty	Ply	Roof - WO Lot 130	
P240395-01	H7	Common	1	1	Job Reference (optional)	165082275

Run: 8,63 S Apr 5 2024 Print: 8,630 S Apr 5 2024 MiTek Industries, Inc. Mon Apr 22 15:25:51

Page: 1

R802.10.2 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard

or

BRACING		
TOP CHORD	Structural	l wood sheathing directly applied
	3-8-2 oc p	ourlins, except end verticals.
BOT CHORD	Rigid ceili	ing directly applied or 10-0-0 oc
	bracing.	
REACTIONS	(size)	5=0-3-8, 7=0-3-8
	Max Horiz	7=29 (LC 12)
	Max Uplift	5=-107 (LC 9), 7=-155 (LC 8)
	Max Grav	5=612 (LC 1), 7=689 (LC 1)
FORCES	(lb) - Max	imum Compression/Maximum
	Tension	
TOP CHORD	1-2=0/23,	2-3=-890/391, 3-4=-884/397,

2x3 SPF No.2 *Except* 7-2,5-4:2x4 SP No.2

2x4 SP No.2

2-7=-625/401, 4-5=-549/330 BOT CHORD 6-7=-316/420, 5-6=-188/298 WFBS 3-6=0/229, 2-6=-24/427, 4-6=-120/477

NOTES

TCDL

BCLL

BCDL

WEBS

BOT CHORD

- Unbalanced roof live loads have been considered for 1) this design.
- 2) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=35ft; Ke=1.00; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) -0-10-8 to 4-1-8, Interior (1) 4-1-8 to 7-0-0, Exterior(2R) 7-0-0 to 12-0-0, Interior (1) 12-0-0 to 13-9-12 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

This truss has been designed for a 10.0 psf bottom 3) chord live load nonconcurrent with any other live loads.

All bearings are assumed to be SP No.2 crushing 4) capacity of 565 psi.

5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 155 lb uplift at joint 7 and 107 lb uplift at joint 5.

Job	Truss	Truss Type	Qty	Ply	Roof - WO Lot 130	
P240395-01	J01	Jack-Open	2	1	Job Reference (optional)	165082276

-0-10-8 0-10-8

Premier Building Supply (Springhill, KS), Spring Hills, KS - 66083,

Run: 8.63 S Apr 5 2024 Print: 8.630 S Apr 5 2024 MiTek Industries, Inc. Mon Apr 22 15:25:52 $ID: Ymda50 VaV_rEdMWY IrpPSzywCMH-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?ffterford and the second structure of the second$

1-7-10

Page: 1

1-10-15 1-10-15

Scale = 1:29.4

Loading	(psf)	Spacing	2-0-0	CSI	0.12	DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
	25.0	Plate Grip DOL	1.15	BC	0.13	Vert(CT)	0.00	4-5 4-5	>999	240 180	101120	197/144
BCLL	0.0	Ren Stress Incr	YES	WB	0.07	Horz(CT)	0.00		>333 n/a	n/a		
BCDL	10.0	Code	IRC2018/TPI2014	Matrix-R	0.00	11012(01)	0.00	0	n/a	n/a	Weight: 8 lb	FT = 20%
LUMBER			7) This truss is	s designed in accor	rdance w	ith the 2018			-			
TOP CHORD	2x4 SP No.2		Internationa	al Residential Code	e sections	R502.11.1 a	nd					
BOT CHORD	2x4 SP No.2		R802.10.2	and referenced star	ndard AN	ISI/TPI 1.						
WEBS	2x3 SPF No.2		LOAD CASE(S) Standard								
BRACING												
TOP CHORD	1-10-15 oc purlins	except end verticals										
BOT CHORD	Rigid ceiling directly	applied or 6-0-0 oc										
	bracing.											
REACTIONS	(size) 3= Mecha 5=0-3-8	anical, 4= Mechanica	al,									
	Max Horiz 5=44 (LC	: 9)										
	Max Uplift 3=-32 (LC	C 12), 5=-56 (LC 8)										
	Max Grav 3=46 (LC (LC 1)	5 1), 4=34 (LC 3), 5=1	168									
FORCES	(lb) - Maximum Con	npression/Maximum										
	1 ension 2-5149/170 1-2-4	0/22 2-331/16										
BOT CHORD	4-5=-13/9	0/22, 2 0= 01/10										
NOTES	10 10/0											
1) Wind: AS(CE 7-16; Vult=115mph	n (3-second gust)										
Vasd=91n	nph; TCDL=6.0psf; BC	DL=6.0psf; h=35ft;										
Ke=1.00;	Cat. II; Exp C; Enclose	ed; MWFRS (envelop	e)									
exterior zo	one and C-C Exterior(2	2E) zone; cantilever I	eft									an
exposed:(C-C for members and f	forces & MWFRS for									OF I	MICON
reactions	shown; Lumber DOL=	1.60 plate grip									A TE	0.0
DOL=1.60)									A	N SCOT	New York
2) This truss	has been designed fo	or a 10.0 psf bottom	de							R	S SCOT	
3) Bearings	load nonconcurrent w	in any other live load	as. Jina							4.	SEVI	
capacity o	of 565 psi.		ing							20	++	
4) Refer to g	irder(s) for truss to tru	uss connections.								XX	all.	ZIMAN
5) Bearing at	t joint(s) 5 considers p	arallel to grain value							-	N7	S NUM	BER
using ANS	SI/TPL1 angle to grain	formula. Building								N.	Q PE-2001	018807
 6) Provide m 	echanical connection	(by others) of truss to	0							Y	1 Per	IS B
bearing pl	ate capable of withsta	nding 56 lb uplift at jo	pint								SIONA	LENA
5 and 32 l	b uplift at joint 3.										and	TITE
											Apri	123,2024

16023 Swingley Ridge Rd. Chesterfield, MO 63017 314.434.1200 / MiTek-US.com

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.
Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not
a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall
building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing
is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the
fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org)
and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

Job	Truss	Truss Type	Qty	Ply	Roof - WO Lot 130	
P240395-01	J1	Jack-Open	3	1	Job Reference (optional)	165082277

Run: 8.63 S Apr 5 2024 Print: 8.630 S Apr 5 2024 MiTek Industries, Inc. Mon Apr 22 15:25:51 ID:7Smgy3vkmFDxaOJHj_WxsOzP7OJ-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

			1		5-11	-4		1				
Scale = 1:29.5			Γ									
Loading	(psf) 25.0	Spacing Plate Grip DOI	2-0-0 1 15	CSI TC	0.66	DEFL Vert(LL)	in 0.07	(loc) 4-5	l/defl >989	L/d 240	PLATES	GRIP 197/144
TCDL	10.0	Lumber DOL	1.15	BC	0.41	Vert(CT)	-0.12	4-5	>580	180		
BCLL	0.0	Rep Stress Incr	YES	WB	0.00	Horz(CT)	-0.06	3	n/a	n/a		
BCDL	10.0	Code	IRC2018/TPI2014	Matrix-R		, ,					Weight: 20 lb	FT = 20%
LUMBER TOP CHORD	2x4 SP No.2		LOAD CASE(S) Standard								
WEBS	2x4 SP No.2 2x3 SPF No.2											
BRACING TOP CHORD	Structural wood she	athing directly appli	ed or									
BOT CHORD	Rigid ceiling directly bracing.	applied or 10-0-0 o	с									
REACTIONS	(size) 3= Mecha 5=0-3-8	anical, 4= Mechanica	al,									
	Max Horiz 5=90 (LC	8)										
	Max Uplift 3=-98 (LC	2 12), 5=-80 (LC 8)										
	Max Grav 3=186 (LC (LC 1)	C 1), 4=110 (LC 3),	5=334									
FORCES	(lb) - Maximum Com	pression/Maximum										
TOP CHORD	2-5=-287/317, 1-2=0)/22, 2-3=-95/46										
BOT CHORD	4-5=0/0											
NOTES												
1) Wind: AS	CE 7-16; Vult=115mph	(3-second gust)										
Vasd=91r	nph; TCDL=6.0psf; BC	DL=6.0psf; h=35ft;	\									
Ke=1.00;	Cat. II; Exp C; Enclose	2E) -0-10-8 to 4-1-8	pe)									
Interior (1) 4-1-8 to 5-10-8 zone.	cantilever left and r	iaht									TOP
exposed	end vertical left and right	ght exposed;C-C for	.9.1								OF I	MISSIN
members	and forces & MWFRS	for reactions shown	ı;								TE	-0.0
Lumber D	OL=1.60 plate grip DO	DL=1.60								R	AV SCOT	New Yar
2) This truss	has been designed for	r a 10.0 psf bottom	4-							R.	S SCOT	
3) Bearings	are assumed to be: In	ith any other live loa	ids.							86	SEVI	
capacity of	of 565 psi.		iing							N S	0	0
4) Refer to g	irder(s) for truss to trus	s connections.								84	Katt	Servits
5) Provide m	nechanical connection ((by others) of truss t	0							87	DE 2001	010007 141
bearing p 5 and 98	late capable of withstar	naing 80 ib uplift at j	oint							N.	PE-2001	01880/ SA

 This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

16023 Swingley Ridge Rd. Chesterfield, MO 63017 314.434.1200 / MiTek-US.com

Job	Truss	Truss Type	Qty	Ply	Roof - WO Lot 130	
P240395-01	J02	Jack-Open	3	1	Job Reference (optional)	165082278

Run: 8.63 S Apr 5 2024 Print: 8.630 S Apr 5 2024 MiTek Industries, Inc. Mon Apr 22 15:25:52 ID:nVgzz5cDOl_yCkiHKETWKsywCM8-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

12

Scale = 1:30.2

Loading TCLL (roof)		(psf) 25.0	Spacing Plate Grip DOL	2-0-0 1.15	CSI TC	0.22	DEFL Vert(LL)	in 0.01	(loc) 4-5	l/defl >999	L/d 240	PLATES MT20	GRIP 197/144
TCDL		10.0	Lumber DOL	1.15	BC	0.12	Vert(CT)	-0.01	4-5	>999	180		
BCLL		0.0	Rep Stress Incr	YES	WB Mateix D	0.00	Horz(CT)	-0.01	3	n/a	n/a	Mainte 40 lb	FT 00%
BCDL		10.0	Code	IRC2018/1PI2014	Matrix-R							weight: 12 lb	FT = 20%
LUMBER				7) This truss is	designed in accorda	ance w	ith the 2018						
TOP CHORD	2x4 SP No	o.2		International	Residential Code s	ections	8 R502.11.1 a	nd					
BOT CHORD	2x4 SP No	o.2		R802.10.2 a	nd referenced stand	ard AN	ISI/TPI 1.						
WEBS	2x3 SPF N	Vo.2		LOAD CASE(S)	Standard								
BRACING													
TOP CHORD	Structural	wood she	athing directly applie	ed or									
	3-0-12 oc	purlins, e	xcept end verticals.										
BOT CHORD	Rigid ceili bracing.	ng directly	applied or 6-0-0 oc										
REACTIONS	(size)	3= Mecha	inical, 4= Mechanica	al,									
	Max Horiz	5=55 (LC	9)										
	Max Uplift	3=-52 (LC	(LC 8)										
	Max Grav	3=88 (LC	1), 4=55 (LC 3), 5=2	210									
		(LC 1)											
FORCES	(lb) - Maxi Tension	imum Com	pression/Maximum										
TOP CHORD	2-5=-183/	208. 1-2=0)/22. 2-3=-52/24										
BOT CHORD	4-5=-17/1	5	. ,										
NOTES													
1) Wind: ASC	CE 7-16; Vu	lt=115mph	(3-second gust)										
Vasd=91n	nph; TCDL=	6.0psf; BC	DL=6.0psf; h=35ft;										
Ke=1.00; (Cat. II; Exp (C; Enclose	d; MWFRS (envelop	be)									
exterior zo	one and C-C	Exterior(2	E) zone; cantilever l	eft									The second se
and right e	exposed ; er	nd vertical I	left and right									OF A	ALL
exposed;C	-C for mem	bers and to	OFCES & IVIVVERS FOF									ALE OF I	IISS W
DOI = 1.60)	Del DOL-	1.00 plate grip								6	A. P.	N.S
2) This truss	, has been de	esianed for	r a 10.0 psf bottom								R	SCOTT	M. CM
chord live	load noncor	ncurrent wi	th any other live load	ds.							4	SEVI	ER \V
3) Bearings a	are assumed	d to be: , Jo	pint 5 SP No.2 crush	ing							14	1	1 * 13
capacity o	f 565 psi.										8	to here	
 Refer to g 	irder(s) for 1	truss to tru	ss connections.								8	atta	Sourcest
b) Bearing at using ANS	i joint(s) 5 co	onsiders pa	arallel to grain value								17	DE 2001	18807 788
designer s	should verify	canacity c	of hearing surface								N	FE-2001	10001 28
6) Provide m	echanical co	onnection ((by others) of truss to	0							Y	P.P.	NOV B
bearing pl	ate capable	of withstar	nding 60 lb uplift at jo	pint								UNIA ONIA	LENA
5 and 52 l	b uplift at joi	nt 3.	,									Chin A	

April 23,2024

Job	Truss	Truss Type	Qty	Ply	Roof - WO Lot 130	
P240395-01	J2	Jack-Open	2	1	Job Reference (optional)	165082279

-0-10-8 0-10-8

Premier Building Supply (Springhill, KS), Spring Hills, KS - 66083,

Run: 8.63 S Apr 5 2024 Print: 8.630 S Apr 5 2024 MiTek Industries, Inc. Mon Apr 22 15:25:52 ID:7viqpRVPnpxIUAiljrvzUDzP7Or-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

<u>3-10-3</u> 3-10-3

Scale = 1:30.8

Loading TCLL (roof) TCDL BCLL BCDL	(psf) 25.0 10.0 0.0 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018/TPI2014	CSI TC 0.2 BC 0.1 WB 0.0 Matrix-P 0.0	4 Ve 6 Ve 4 Ho	EFL ert(LL) ert(CT) orz(CT)	in -0.01 -0.02 0.00	(loc) 4-5 4-5 3	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 17 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS BRACING	2x4 SP No.2 2x4 SP No.2 2x4 SP No.2 *Except	* 4-2:2x3 SPF No.2	6) This truss is International R802.10.2 a LOAD CASE(S)	designed in accordance Residential Code section nd referenced standard Standard	with tons R5 ANSI/	the 2018 502.11.1 and /TPI 1.	d					
BOT CHORD	3-10-3 oc purlins, ex Rigid ceiling directly bracing.	acting directly applied ccept end verticals. applied or 10-0-0 oc	101									
REACTIONS	(size) 3= Mecha 5=0-3-8 Max Horiz 5=61 (LC Max Uplift 3=-62 (LC Max Grav 3=117 (LC (LC 1)	nical, 4= Mechanical 9) 12), 5=-68 (LC 8) 5 1), 4=74 (LC 3), 5=:	246									
FORCES	(lb) - Maximum Com	pression/Maximum										
TOP CHORD BOT CHORD WEBS	2-5=-209/220, 1-2=0 4-5=-155/44 2-4=-45/158	/23, 2-3=-64/29										
NOTES 1) Wind: ASC Vasd=91m Ke=1.00; C exterior 20 and right e exposed;C reactions s DOL=1.60 2) This truss chord live 3) Bearings a capacity of	CE 7-16; Vult=115mph nph; TCDL=6.0psf; BCI Cat. II; Exp C; Encloser one and C-C Exterior(21 exposed ; end vertical li c-C for members and for shown; Lumber DOL=1 has been designed for load nonconcurrent with are assumed to be: , Joc f 565 psi.	(3-second gust) DL=6.0psf; h=35ft; 4; MWFRS (envelope E) zone; cantilever le eft and right prces & MWFRS for .60 plate grip a 10.0 psf bottom h any other live load int 5 SP No.2 crushi	e) ft s. ng								STATE OF M SCOTT SEVI	AISSOLIE M. ER

4) Refer to girder(s) for truss to truss connections.

 Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 68 lb uplift at joint 5 and 62 lb uplift at joint 3.

> 16023 Swingley Ridge Rd. Chesterfield, MO 63017 314.434.1200 / MiTek-US.com

PE-200101880

E

April 23,2024

SIONAL

Job	Truss	Truss Type	Qty	Ply	Roof - WO Lot 130	
P240395-01	J03	Jack-Open	1	1	Job Reference (optional)	165082280

Run: 8.63 S Apr 5 2024 Print: 8.630 S Apr 5 2024 MiTek Industries, Inc. Mon Apr 22 15:25:52 ID:4rbdRUickvsyYpkdEC5A6KywCM1-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

⊿ 4.4 12

Scale = 1:36.2

Loading TCLL (roof) TCDL BCLL BCDL		(psf) 25.0 10.0 0.0 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018/	TPI2014	CSI TC BC WB Matrix-R	0.22 0.11 0.00	DEFL Vert(LL) Vert(CT) Horz(CT)	in 0.01 -0.01 -0.01	(loc) 5-6 5 3	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 12 lb	GRIP 197/144 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS	2x4 SP N 2x4 SP N 2x3 SPF I	0.2 0.2 No.2		7) LOA	This truss is o International R802.10.2 ar AD CASE(S)	designed in accord Residential Code s nd referenced stan Standard	lance wi sections dard AN	ith the 2018 R502.11.1 a ISI/TPI 1.	and					
TOP CHORD	Structural 3-0-12 oc Rigid ceili bracing.	wood shea purlins, ex ng directly	athing directly applie xcept end verticals. applied or 6-0-0 oc	ed or										
REACTIONS	(size) Max Horiz Max Uplift Max Grav	3= Mecha 6=0-3-8 6=55 (LC 3=-52 (LC 3=88 (LC (LC 1)	nical, 4= Mechanica 9) : 12), 6=-60 (LC 8) 1), 4=55 (LC 3), 6=2	ıl, 210										
FORCES	(lb) - Max	imum Com	pression/Maximum											
TOP CHORD BOT CHORD	1 ension 2-6=-183/ 5-6=-20/2	208, 1-2=0 . 4-5=0/0)/22, 2-3=-52/24											
NOTES		,												
 Wind: ASC Vasd=91n Ke=1.00; (exterior zc and right e exposed;C reactions s DOL=1.60 	CE 7-16; Vu nph; TCDL= Cat. II; Exp one and C-C exposed ; er C-C for mem shown; Lum	It=115mph 6.0psf; BC C; Enclose Exterior(2 nd vertical I bers and fo ber DOL=1	(3-second gust) DL=6.0psf; h=35ft; d; MWFRS (envelop E) zone; cantilever I eft and right porces & MWFRS for I.60 plate grip	oe) eft								<i>b</i>	TATE OF M	AISSOL
This truss chord live	has been d	esigned for	a 10.0 psf bottom	ds.								A	SCOTT SEVI	ER Y
 Bearings a capacity o 	are assume f 565 psi	d to be: , Jo	oint 6 SP No.2 crush	ing								Bet	-	0 12
 Refer to gi 	irder(s) for	truss to tru	ss connections.										ott -	Sente
 Bearing at using ANS designer s 	t joint(s) 6 co SI/TPI 1 ang should verify	onsiders pa le to grain f capacity o	arallel to grain value formula. Building of bearing surface.									AN IN	PE-20010	BER 018807
 Provide m bearing plate 6 and 52 l 	echanical c ate capable b uplift at jo	onnection (of withstar nt 3.	by others) of truss to by others) of truss to by uplift at jo	o pint								X	SSIONA	L ENGLA

April 23,2024

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.	
a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building designer. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing	
is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org)	
and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)	

Job	Truss	Truss Type	Qty	Ply	Roof - WO Lot 130	
P240395-01	J3	Jack-Open	6	1	Job Reference (optional)	165082281

-0-10-8

0-10-8

1-10-3

1-10-3

1-10-3

Premier Building Supply (Springhill, KS), Spring Hills, KS - 66083,

Run: 8.63 S Apr 5 2024 Print: 8.630 S Apr 5 2024 MiTek Industries, Inc. Mon Apr 22 15:25:52 ID:7viqpRVPnpxIUAiljrvzUDzP7Or-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

-			
Scale	i – 1	1.26	6

Loading TCLL (roof) TCDL BCLL BCDL		(psf) 25.0 10.0 0.0 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018/TPI2014	CSI TC 0 BC 0 WB 0 Matrix-R).12).06).00	DEFL Vert(LL) Vert(CT) Horz(CT)	in 0.00 0.00 0.00	(loc) 4-5 4-5 3	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 8 lb	GRIP 197/144 FT = 20%
				LOAD CASE(S)	Standard								
TOP CHORD BOT CHORD WEBS	2x4 SP No.2 2x4 SP No.2 2x3 SPF No	2 2 .2		()									
BRACING													
TOP CHORD	Structural w 1-10-3 oc pu	ood shea urlins, ex	athing directly applie cept end verticals.	ed or									
BOT CHORD	Rigid ceiling bracing.	directly	applied or 10-0-0 oc	>									
REACTIONS	(size) 3: 5:	= Mechai =0-3-8	nical, 4= Mechanica	l,									
	Max Horiz 5	=42 (LC 9	9)										
	Max Uplift 3:	=-30 (LC	12), 5=-57 (LC 8)	00									
	Wax Grav 3	=43 (LC C 1)	1), 4=33 (LC 3), 5=1	00									
FORCES	(lb) - Maxim Tension	um Com	pression/Maximum										
TOP CHORD	2-5=-147/17	0, 1-2=0	/22, 2-3=-29/15										
BOT CHORD	4-5=0/0												
NOTES													
1) Wind: ASC Vasd=91n Ke=1.00; ' exterior zc and right e exposed;C reactions DOL=1.60	CE 7-16; Vult= nph; TCDL=6.0 Cat. II; Exp C; one and C-C E exposed ; end C-C for membe shown; Lumbe	115mph Opsf; BCI Enclosed xterior(21 vertical le ers and fo er DOL=1	(3-second gust) DL=6.0psf; h=35ft; d; MWFRS (envelop E) zone; cantilever I eft and right orces & MWFRS for .60 plate grip	ee) eft							Ä	TATE OF M	MISSOLUS
This truss chord live	has been desi	igned for	a 10.0 psf bottom	de							R	SCOTT	FP Y
 Bearings a capacity o 	are assumed to f 565 psi.	o be: , Jo	int 5 SP No.2 crush	ing									
4) Refer to g	irder(s) for tru	ss to trus	ss connections.								W.	h The	Sen Miller
5) Provide m bearing pl	echanical con ate capable of	nection (l withstan	by others) of truss to ding 57 lb uplift at jo	o bint							W.	PE-20010	18807
6) This truss Internation R802.10.2	is designed in nal Residential 2 and reference	o. accorda Code se ed standa	nce with the 2018 ections R502.11.1 a ard ANSI/TPI 1.	nd							Y	ESSIONA	L ENGL

6 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

314.434.1200 / MiTek-US.com

and April 23,2024

Job	Truss	Truss Type	Qty	Ply	Roof - WO Lot 130	
P240395-01	J04	Jack-Open	4	1	Job Reference (optional)	165082282

-0-10-8

0-10-8

1-10-15 1-10-15

12 4 Г

1.5x4 🛚 2

5

3

Premier Building Supply (Springhill, KS), Spring Hills, KS - 66083,

1-7-10

0-0

Run: 8,63 S Apr 5 2024 Print: 8,630 S Apr 5 2024 MiTek Industries, Inc. Mon Apr 22 15:25:52 ID:NBWGwtn?52lztunz8AjpupywCLw-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC?f

1-7-10

Page: 1

16023 Swingley Ridge Rd. Chesterfield MO 63017

E

314.434.1200 / MiTek-US.com

Job	Truss	Truss Type	Qty	Ply	Roof - WO Lot 130	
P240395-01	J4	Jack-Open	4	1	Job Reference (optional)	165082283

Run: 8.63 S Apr 5 2024 Print: 8.630 S Apr 5 2024 MiTek Industries, Inc. Mon Apr 22 15:25:52 $ID:7Smgy3vkmFDxaOJHj_WxsOzP7OJ-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?ffintered and the second second$ Page: 1

	3-11-4											
Scale = 1:28.1												
Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15	тс	0.30	Vert(LL)	0.01	4-5	>999	240	MT20	197/144
TCDL	10.0	Lumber DOL	1.15	BC	0.18	Vert(CT)	-0.02	4-5	>999	180		
BCLL	0.0	Rep Stress Incr	YES	WB	0.00	Horz(CT)	-0.02	3	n/a	n/a		
BCDL	10.0	Code	IRC2018/TPI2014	Matrix-R							Weight: 14 lb	FT = 20%

16023 Swingley Ridge Rd. Chesterfield, MO 63017 314.434.1200 / MiTek-US.com

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.
Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not
a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall
building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing
is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the
fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org)
and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

Job	Truss	Truss Type	Qty	Ply	Roof - WO Lot 130	
P240395-01	J05	Jack-Open	4	1	Job Reference (optional)	165082284

Run: 8.63 S Apr 5 2024 Print: 8.630 S Apr 5 2024 MiTek Industries, Inc. Mon Apr 22 15:25:52 ID:k9J9zbr8vbNF_ffwxjJ_bsywCLr-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

	3-3											
Scale = 1:27.6												
Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15	тс	0.23	Vert(LL)	0.01	4-5	>999	240	MT20	197/144
TCDL	10.0	Lumber DOL	1.15	BC	0.13	Vert(CT)	-0.01	4-5	>999	180		
BCLL	0.0	Rep Stress Incr	YES	WB	0.00	Horz(CT)	-0.01	3	n/a	n/a		
BCDI	10.0	Code	IPC2018/TPI2014	Matrix-P							Weight 12 lb	FT - 20%

BCDL	10.0	Code	RC2018/1PI2014	Matrix-R		weight: 12 ID $FT = 20\%$
LUMBER			LOAD CASE(S)	Standard		
TOP CHORD	2x4 SP No.2					
BOT CHORD	2x4 SP No.2					
WEBS	2x3 SPF No.2					
BRACING						
TOP CHORD	Structural wood she	athing directly applied o	r			
	3-3-4 oc purlins, ex	cept end verticals.				
BOT CHORD	Rigid ceiling directly	applied or 10-0-0 oc				
	bracing.					
REACTIONS	(size) 3= Mecha	anical, 4= Mechanical,				
	5=0-5-8	,,				
	Max Horiz 5=55 (LC	9)				
	Max Uplift 3=-55 (LC	C 12), 5=-63 (LC 8)				
	Max Grav 3=96 (LC	1), 4=59 (LC 3), 5=219				
	(LC 1)					
FORCES	(lb) - Maximum Com	pression/Maximum				
	Tension					
TOP CHORD	2-5=-190/218, 1-2=0)/22, 2-3=-56/25				
BOT CHORD	4-5=0/0					
NOTES						
1) Wind: ASC Vasd=91m Ke=1.00; C exterior zo	CE 7-16; Vult=115mph hph; TCDL=6.0psf; BC Cat. II; Exp C; Enclose one and C-C Exterior(2	i (3-second gust) DL=6.0psf; h=35ft; d; MWFRS (envelope) PE) zone; cantilever left				
and right e	exposed ; end vertical	left and right				South States
exposed;C	C-C for members and f	orces & MWFRS for				F OF MISS
reactions s	snown; Lumber DOL=	1.60 plate grip				A DE
2) This trues	has been designed for	r a 10.0 pat battam			H	SCOTT M YPA
2) This truss	load popconcurrent wi	ith any other live loads			ß	SEVIER
3) Bearings a	are assumed to be.	oint 5 SP No 2 crushing			BA	
capacity of	f 565 nsi					tto Xault
 Refer to gi 	rder(s) for truss to tru	ss connections				for serve
5) Provide me	echanical connection ((by others) of truss to				NUMBER
bearing pla	ate capable of withstar	nding 63 lb uplift at joint			(A 7	ON PE-2001018807
5 and 55 lt	o uplift at joint 3.	,			<i>N</i>	The A
6) This truss	is designed in accorda	ance with the 2018			X	A 0.50 101 4
Internation	al Residential Code se	ections R502.11.1 and				ONAL ET
R802.10.2	and referenced stand	lard ANSI/TPI 1.				amos
						April 23 2024
						April 23,2024
-						

16023 Swingley Ridge Rd. Chesterfield, MO 63017 314.434.1200 / MiTek-US.com

Job	Truss	Truss Type	Qty	Ply	Roof - WO Lot 130	
P240395-01	J06	Jack-Partial	4	1	Job Reference (optional)	165082285

2-2-4

1-2-7

4-0-6

1-10-2

0-11-13

0-10-80-11-13

-0-10-8

Premier Building Supply (Springhill, KS), Spring Hills, KS - 66083,

Run: 8.63 S Apr 5 2024 Print: 8.630 S Apr 5 2024 MiTek Industries, Inc. Mon Apr 22 15:25:52 ID:R4wx3?zQZferBBQrXqUK?zywCLh-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

6-0-0 1-11-10 Page: 1

Scale = 1:35.1

Plate Offsets	(X)	Y)·	[4.0-1-12 0-2-4]	[11:Edge 0-3-8]

Plate Offsets ((X, Y): [4:0-1-12,0-2-4]], [11:Edge,0-3-8]												
Loading TCLL (roof) TCDL BCLL BCDL	(psf) 25.0 10.0 0.0 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018/	TPI2014	CSI TC BC WB Matrix-P	0.25 0.27 0.12	DEFL Vert(LL) Vert(CT) Horz(CT)	in 0.03 -0.04 0.02	(loc) 10 8-9 7	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 27 lb	GRIP 197/144 FT = 20%	
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x4 SP No.2 *Excep 2x3 SPF No.2 Structural wood shee 6-0-0 oc purlins, exc Rigid ceiling directly bracing. (size) 6= Mecha 11=0-3-8 Max Horiz 11=91 (LC Max Uplift 6=-29 (LC 11=-80 (LI Max Grav 6=53 (LC (LC 1)	t* 10-4:2x3 SPF No.2 athing directly applied cept end verticals. applied or 9-4-14 oc nical, 7= Mechanical C 8) (5 8), 7=-52 (LC 12), C 8) (1), 7=204 (LC 1), 11: pression (Meximum)	5) ² 6) ^{d or} LOA , =337	Provide med bearing plate 11, 29 lb uplit This truss is o International R802.10.2 ar AD CASE(S)	nanical connection capable of withsta it at joint 6 and 52 designed in accorc Residential Code s ad referenced stan Standard	(by oth anding 8 Ib uplift lance w sections dard AN	ers) of truss to 0 lb uplift at jo at joint 7. th the 2018 R502.11.1 ar ISI/TPI 1.	o pint nd						
TOP CHORD BOT CHORD WEBS NOTES 1) Wind: AS(Vasd=91m Ke=1.00; exterior zz Interior (1) exterior zz Interior (2) exterior (2)	(II) 9 Waking Com Tension 2-11=-94/175, 1-2=0 3-4=-453/440, 4-5=-4 10-11=-54/58, 9-10= 8-9=-394/343, 7-8=0 3-11=-525/412, 9-11 5-9=-274/250, 5-8=-3 CE 7-16; Vult=115mph mph; TCDL=6.0psf; BCI Cat. II; Exp C; Enclose one and C-C Exterior(2) 3-10-3 to 5-11-4 zone end vertical left and rig and forces & MWFRS OL=1.60 plate grip DO has been designed for load nonconcurrent wi are assumed to be: , JO spacity of 565 psi. jirder(s) for truss to trus	V22, 2-3=-8/68, 523/550, 5-6=-31/12 0/42, 4-9=-50/125, /0 =-500/383, 385/442 (3-second gust) DL=6.0psf; h=35ft; d; MWFRS (envelop E) -0-10-8 to 3-10-3, c; cantilever left and r pht exposed; C- C for for reactions shown; L=1.60 • a 10.0 psf bottom th any other live load pint 11 SP No.2 es connections.	ə) ight s.									State OF M SCOTT SEVI SEVI PE-20010 PE-20010 PE-20010 ADD	MISSOLUTE M. ER 18807 L ENGT 23,2024	

Job	Truss	Truss Type	Qty	Ply	Roof - WO Lot 130	
P240395-01	J07	Jack-Open	2	1	Job Reference (optional)	165082286

2-2-4

2-2-4

1-10-8

-0-10-8

0-10-8

1.5x4 u

82

0-2-2-

1.5x4 **"**

2

8

2-3-10

1-0-0

Premier Building Supply (Springhill, KS), Spring Hills, KS - 66083,

Run: 8.63 S Apr 5 2024 Print: 8.630 S Apr 5 2024 MiTek Industries, Inc. Mon Apr 22 15:25:52 ID:R4wx3?zQZferBBQrXqUK?zywCLh-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

3-10-15

1-8-11

Page: 1

412 4x8 = 4 3 6 7 7 5 $1.5x4 \parallel$

Scale = 1:33.6	
Plate Offsets (X, Y):	[3:0-2-0,0-2-3]

	(,,, ,). [0.0	2 0,0 2 0]											
Loading		(psf)	Spacing	2-0-0	csi		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)		25.0	Plate Grip DOL	1.15	тс	0.17	Vert(LL)	0.02	7	>999	240	MT20	197/144
TCDL		10.0	Lumber DOL	1.15	BC	0.21	Vert(CT)	-0.02	7	>999	180	-	
BCLL		0.0	Rep Stress Incr	YES	WB	0.00	Horz(CT)	-0.02	5	n/a	n/a		
BCDL		10.0	Code	IRC2018/TPI2014	Matrix-R							Weight: 15 lb	FT = 20%
LUMBER				This truss is	designed in accor	dance w	ith the 2018						
TOP CHORD	2x4 SP No	o.2		Internationa	Residential Code	sections	R502.11.1 a	and					
BOT CHORD	2x4 SP No	o.2 *Excep	t* 7-3:2x3 SPF No.2	R802.10.2 a	and referenced star	ndard AN	ISI/TPI 1.						
WEBS	2x3 SPF No.2 LOAD CASE(S) Standard												
BRACING													
TOP CHORD	ORD Structural wood sheathing directly applied or												
	3-10-15 o	c purlins, e	except end verticals.										
BOT CHORD	Rigid ceili bracing.	ng directly	applied or 10-0-0 oc										
REACTIONS	(size)	4= Mecha 8=0-5-8	nical, 5= Mechanical,										
	Max Horiz	8=62 (LC	9)										
	Max Uplift	4=-44 (LC	(LC 12), 5=-10 (LC 12),										
	-	8=-66 (LC	8)										
	Max Grav	4=105 (LC (LC 1)	C 1), 5=57 (LC 3), 8=2	246									
FORCES	(lb) - Maxi Tension	imum Com	pression/Maximum										
TOP CHORD	2-8=-222/	229, 1-2=0 9	/22, 2-3=-106/42,										
BOT CHORD	7-8=-109/	5 79. 6-7=-12	2/40. 3-6=-4/58. 5-6=	0/0									
NOTES													
1) Wind AS(CE 7-16: Vul	lt–115mph	(3-second quist)										4 (1994) -
 Vasd=91ri Ke=1.00; exterior zc and right exposed; reactions DOL=1.60 2) This truss chord live 3) Bearings a capacity c 4) Refer to g 5) Provide m bearing pl 8.44 lb us 	nph; TCDL= Cat. II; Exp (one and C-C exposed ; en c-C for mem shown; Lum) has been du load noncor are assumed of 565 psi. irder(s) for t echanical cc ate capable jift at ioint 4	6.0psf; BCl C; Enclose Exterior(2 ad vertical I bers and for ber DOL=1 esigned for neurrent wild d to be: , Jo truss to trus ponnection (of withstan and 10 lb	(c) L=6.0psf; h=35ft; d; MWFRS (envelope E) zone; cantilever le eft and right orces & MWFRS for 1.60 plate grip a 10.0 psf bottom th any other live loads oint 8 SP No.2 crushin ss connections. by others) of truss to ading 66 lb uplift at joi uplift at joint 5.	e) ft s. ng						2		State OF M SCOTT SEVI SEVI PE-20010 PE-20010	MISSOLUE T.M. ER 018807
2,	,											Anri	1 23 2024
												Арп	20,2027

Job	Truss	Truss Type	Qty	Ply	Roof - WO Lot 130	
P240395-01	J08	Jack-Partial	4	1	Job Reference (optional)	165082287

-0-10-8

Premier Building Supply (Springhill, KS), Spring Hills, KS - 66083,

Run: 8.63 S Apr 5 2024 Print: 8.630 S Apr 5 2024 MiTek Industries, Inc. Mon Apr 22 15:25:52 ID:n2jq6j1YNCG7HzIpJN4Vi1ywCLc-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

Scale = 1:33.3

Loading TCLL (roof) TCDL	(psf) 25.0 10.0	Spacing Plate Grip DOL Lumber DOL	2-0-0 1.15 1.15	CSI TC BC	0.14	DEFL Vert(LL) Vert(CT)	in -0.07 -0.14	(loc) 6-7 6-7	l/defl >999 >497	L/d 240 180	PLATES MT20	GRIP 197/144
BCDI	0.0 10.0	Code	YES IRC2018/TPI2014	WB Matrix-P	0.08	Horz(CT)	0.00	5	n/a	n/a	Weight: 25 lb	FT = 20%
	10.0	0000		Matrix							Wolght. 20 lb	
LUMBER TOP CHORD BOT CHORD WEBS	2x4 SP No.2 2x4 SP No.2 2x3 SPF No.2		6) This truss Internation R802.10.2 LOAD CASE(\$	is designed in acc al Residential Coc and referenced st S) Standard	ordance wi de sections tandard AN	ith the 2018 R502.11.1 a ISI/TPI 1.	and					
TOP CHORD	Structural wood she 6-0-0 oc purlins, ex Rigid ceiling directly	athing directly appli cept end verticals.	ed or									
Bor onone	bracing.		0									
REACTIONS	(size) 4= Mecha 7=0-3-8 Max Horiz 7=91 (LC Max Uplift 4=-47 (LC 8) Max Grav 4=91 (LC (LC 8)	anical, 5= Mechanica 8) 2 8), 5=-35 (LC 12), 1), 5=165 (LC 1), 7	al, 7=-80 =337									
FORCES	(lb) - Maximum Com Tension	pression/Maximum										
TOP CHORD	2-7=-155/219, 1-2=0 3-4=-46/22	0/22, 2-3=-27/88,										
BOT CHORD WEBS	6-7=-300/199, 5-6=0 3-7=-233/118, 3-6=-)/0 228/342										
NOTES 1) Wind: AS(Vasd=91n Ke=1.00; exterior (2) Interior (2) exposed; members Lumber D	CE 7-16; Vult=115mph nph; TCDL=6.0psf; BC Cat. II; Exp C; Enclose one and C-C Exterior(2)) 4-1-8 to 5-11-4 zone; end vertical left and ri and forces & MWFRS OL=1.60 plate grip DC	(3-second gust) :DL=6.0psf; h=35ft; :d; MWFRS (envelo; :E) -0-10-8 to 4-1-8, cantilever left and r ght exposed;C-C for for reactions showr DL=1.60	pe) ight ;							A.	STATE OF J	MISSOLDE T M. HER

- 2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- Bearings are assumed to be: , Joint 7 SP No.2 crushing capacity of 565 psi.
- 4) Refer to girder(s) for truss to truss connections.
- 5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 80 lb uplift at joint 7, 47 lb uplift at joint 4 and 35 lb uplift at joint 5.

Job	Truss	Truss Type	Qty	Ply	Roof - WO Lot 130	
P240395-01	J09	Jack-Partial	5	1	Job Reference (optional)	165082288

| 2-4-12

1-1-12

3

4-0-5

1-7-9

12 4 Г

3x6 = 5

1-3-0

1-3-0

1.5x4 u

2

Premier Building Supply (Springhill, KS), Spring Hills, KS - 66083,

3-0-0

Run: 8,63 S Apr 5 2024 Print: 8,630 S Apr 5 2024 MiTek Industries, Inc. Mon Apr 22 15:25:53 ID:1mmE?o8CGzPrsLUXLmkcZwywCLT-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

6

3-0-0

6-0-0

1-11-11

GRIP

197/144

142/136

FT = 20%

0-0 c 87 3x4 = 10 M18AHS 6x18 🤞 _16 3x4 12 0-3-8 6-0-0 2-3-8 5-7-15 0-4-2-0-0 3-4-7 0-3-8 Scale = 1:35.1 Plate Offsets (X, Y): [9:1-2-0,0-2-0] PLATES Spacing 2-0-0 CSI DEFL in l/defl L/d (psf) (loc) TCLL (roof) 25.0 Plate Grip DOL 1.15 TC 0.16 Vert(LL) 0.02 9 >999 240 MT20 10.0 Lumber DOL 1.15 BC 0.20 Vert(CT) -0.03 8-9 >999 180 M18AHS Rep Stress Incr YES WB Horz(CT) 0.0 0.11 0.01 7 n/a n/a 10.0 Code IRC2018/TPI2014 Matrix-P Weight: 27 lb 6) Bearing at joint(s) 10 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building TOP CHORD 2x4 SP No.2 2x4 SP No.2 designer should verify capacity of bearing surface. BOT CHORD Provide mechanical connection (by others) of truss to 2x3 SPF No.2 bearing plate capable of withstanding 79 lb uplift at joint 10, 31 lb uplift at joint 6 and 51 lb uplift at joint 7. TOP CHORD Structural wood sheathing directly applied or This truss is designed in accordance with the 2018 8) 6-0-0 oc purlins, except end verticals. International Residential Code sections R502.11.1 and BOT CHORD Rigid ceiling directly applied or 7-9-13 oc R802.10.2 and referenced standard ANSI/TPI 1. bracing. LOAD CASE(S) Standard **REACTIONS** (size) 6= Mechanical, 7= Mechanical, 10=0-3-8 Max Horiz 10=89 (LC 8) Max Uplift 6=-31 (LC 8), 7=-51 (LC 12), 10=-79 (LC 8) 6=60 (LC 1), 7=197 (LC 1), 10=337 Max Grav (LC 1) (lb) - Maximum Compression/Maximum Tension TOP CHORD 2-10=-162/224, 1-2=0/22, 2-3=-29/86, 3-4=-653/605, 4-5=-641/621, 5-6=-31/14 BOT CHORD 9-10=-577/449, 8-9=-386/334, 7-8=0/0 3-10=-490/405, 3-9=-180/250, 4-9=-14/51, 5-9=-365/346, 5-8=-374/432 Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=35ft; Ke=1.00; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) -0-10-8 to 3-10-3, Interior (1) 3-10-3 to 5-11-4 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 All plates are MT20 plates unless otherwise indicated.

- 2) This truss has been designed for a 10.0 psf bottom 3) chord live load nonconcurrent with any other live loads.
- 4) Bearings are assumed to be: , Joint 10 SP No.2 crushing capacity of 565 psi.
- 5)

Loading

TCDL

BCLL

BCDL

WEBS

BRACING

FORCES

WEBS

NOTES

1)

LUMBER

Refer to girder(s) for truss to truss connections.

E

April 23,2024

OF MISS

SCOTT M.

SEVIER

PE-200101880

SSIONAL

TE

Job	Truss	Truss Type	Qty	Ply	Roof - WO Lot 130	
P240395-01	LG01	Lay-In Gable	1	1	Job Reference (optional)	165082289

Run: 8.63 S Apr 5 2024 Print: 8.630 S Apr 5 2024 MiTek Industries, Inc. Mon Apr 22 15:25:53 ID:9achg1Lp88GvtCEZk5mxfsynCcH-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Scale = 1:51

Loading		(psf) 25.0	Spacing Plate Grip DOI	2-0-0 1 15		CSI TC	0.82	DEFL Vert(LL)	in n/a	(loc)	l/defl n/a	L/d 999	PLATES	GRIP 244/190
		10.0		1.15		BC	0.02	Vert(TL)	n/a		n/a	aaa	11120	244/100
BCLL		0.0	Ren Stress Incr	YES		WB	0.00	Horiz(TL)	0.00	6	n/a	n/a		
BCDL		10.0	Code	IRC20	18/TPI2014	Matrix-P	0.20	110112(12)	0.00	Ũ	n/a	n#u	Weight: 51 lb	FT = 20%
			ļ										<u> </u>	· · · · · · · · · · · · · · · · · · ·
LUMBER				2	 Truss desig 	ned for wind loads	in the p	lane of the tru	iss					
TOP CHORD	2x4 SP N	lo.2			only. For stu	ids exposed to win	d (norm	al to the face), blo					
BOICHORD	2X4 SP N	10.2 In 2			or consult a	a industry Gable Er	igner a	ns as applica	DIE, DI 1					
WEBS	2X4 SP N	10.2 No 2			 All plates are 	15x4 MT20 unles	s other	wise indicate	- i i. 4					
DRACING	233 344	INU.2			 Gable requir 	es continuous botto	om choi	d bearing.						
BRACING	Christen	م ما ما م	othing directly applie		 Gable studs 	spaced at 0-0-0 oc		a boaring.						
TOP CHORD	Structura 6-0-0 oc	nurline ex	cent end verticals	a or (This truss has 	s been designed for	or a 10.	0 psf bottom						
BOT CHORD	Rigid ceil bracing.	ling directly	applied or 10-0-0 oc	;	chord live load All bearings	ad nonconcurrent w are assumed to be	vith any SP No.	other live loa 2 crushing	ds.					
WEBS	1 Row at	midpt	5-6		capacity of 5	65 psi.								
REACTIONS	(size)	1=8-0-2, 6	6=8-0-2, 7=8-0-2,	8	 Provide med 	hanical connection	(by oth	ers) of truss t	0					
	()	8=8-0-2, 9	9=8-0-2		bearing plate	e capable of withsta	anding 1	02 lb uplift at	22					
	Max Horiz	1=338 (L0	C 9)		Joint 1, 1201	o upilit at joint 6, 10	ift at ioi	nit at joint 9,	32					
	Max Uplift	1=-102 (L	.C 10), 6=-120 (LC 1	1), ,	1) This truss is	designed in accord	lit at joii lance w	ith the 2018						
		7=-104 (L	.C 12), 8=-132 (LC 12	2), `	International	Residential Code	sections	R502.11.1 a	nd					
		9=-181 (L	.C 12)		R802.10.2 a	nd referenced stan	dard AN	ISI/TPI 1.						
	Max Grav	1=252 (L(C 9), 6=101 (LC 8), 7	$\frac{1}{7}$	OAD CASE(S)	Standard								
		(LC 19), 8	3=193 (LC 19), 9=27	/ (LC	(-)									
FORCES	(lb) Mox	imum Com	nroccion/Movimum											
FORCES	Tension		ipression/iviaximum											
TOP CHORD	1-2=-584	/585. 2-3=-	412/414, 3-4=-290/3	05.										
	4-5=-215	/225, 5-6=-	151/130	,										
BOT CHORD	1-9=-155	/169, 8-9=-	156/169, 7-8=-156/1	70,										an
	6-7=-156	/170											OFI	MIG
WEBS	2-9=-275	/256, 3-8=-	199/187, 4-7=-175/1	43									FIE	ISS W
NOTES												6	N	N SY
1) Wind: AS	CE 7-16; Vu	ult=115mph	(3-second gust)									B	SCOT	ТМ. \У У
Vasd=91r	mph; TCDL=	=6.0psf; BC	DL=6.0psf; h=35ft;									R	/ SEV	ER \Y
Ke=1.00;	Cat. II; Exp	C; Enclose	ed; MWFRS (envelop	e)										
exterior z	one and C-C	Corner (3) 0-4-1 to 7-4-15,									X	totte	Some 7
Exterior(2	(K) 7-4-15 to	0 /-10-10 Z	one; cantilever left ar	าส							-	W.	NIM	HER A
for momb	ore and fore		nu ngni exposed;C-0									27	DE 2001	010007 AB
	ers and 1010	CS & IVIVVF	NO IOI TEACUOUS SHO	vvil,								N.	ON PE-2001	U100U/ 140 H

ctions shown; Lumber DOL=1.60 plate grip DOL=1.60

April 23,2024

C

HESSIONAL ET

Job	Truss	Truss Type	Qty	Ply	Roof - WO Lot 130	
P240395-01	LG02	Lay-In Gable	1	1	Job Reference (optional)	165082290

8-8-4

8-8-4

Premier Building Supply (Springhill, KS), Spring Hills, KS - 66083,

Run: 8.63 S Apr 5 2024 Print: 8.630 S Apr 5 2024 MiTek Industries, Inc. Mon Apr 22 15:25:53 ID:oZkTzAZt3hUg2K76nVZLQizOB6x-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?ff

17-1-4

8-5-0

Page: 1

3x4 =

17-4-8

	 ~
Scale = 1:59.3	

Plate Offsets (X, Y): [6:Edge,0-3-0]		_								
Loading TCLL (roof) TCDL BCLL BCDL	(psf) 25.0 10.0 0.0 10.0	Spacing2Plate Grip DOL1Lumber DOL1Rep Stress IncrYCodeIF	-0-0 .15 .15 /ES RC2018/TPI2014	CSI TC BC WB Matrix-S	0.09 0.05 0.20	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.01	(loc) - - 11	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 91 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x4 SP No.2 2x3 SPF No.2 Structural wood shi 6-0-0 oc purlins. Rigid ceiling directh bracing. (size) 1=17-4-8 13=17-4- 13=17-4- 20=17-4 20=17-4 Max Horiz 1=-250 (Max Uplift 1=-104 (12=-118 14=-155 16=-14 (19=-132 Max Grav 1=283 (L 12=178 (14=213 (16=164 (19=204 (eathing directly applied or y applied or 10-0-0 oc 3, 11=17-4-8, 12=17-4-8, -8, 14=17-4-8, 15=17-4-8 -8, 18=17-4-8, 19=17-4-8 -8 -8 -10, 11=-104 (LC 11), (LC 13), 13=-136 (LC 13), (LC 13), 15=-59 (LC 13), (LC 13), 15=-59 (LC 13), (LC 12), 20=-141 (LC 12), (LC 20), 18=-160 (LC 12), (LC 20), 13=210 (LC 20), (LC 20), 13=210 (LC 20), (LC 20), 18=214 (LC 19), (LC 19), 20=213 (LC 19)	WEBS NOTES r 1) Unbalance this design 2) Wind: ASC Vasd=91m Ke=1.00; C exterior zo i, Interior (1) Interior (1) right expos for membe Lumber DC 3) Truss des only. For s b) see Standa or consult (4) All plates a 5) Gable requ 6) Gable stud 7) This truss	2-20=-188/158, 4-18=-213/183, 8-14=-206/179, 10-12=-159/135 d roof live loads h E 7-16; Vult=115 ph; TCDL=6.0psf cat. II; Exp C; Enc ne and C-C Exter 5-4-1 to 8-88, Ex 13-8-8 to 17-0-15 ed; end vertical I rs and forces & M DL=1.60 plate grig gned for wind by tuds exposed to v ard Industry Gable qualified building re 1.5x4 MT20 ur irres continuous b s spaced at 0-0-0 as been designe	3-19=-184 5-16=-125 9-13=-189 inave been mph (3-see ; BCDL=6. closed; MW ior(2E) 0-4 kterior(2R) 5 zone; car left and rigi IWFRS for 5 DOL=1.6 ids in the p ob DOL=1.6 ids in the p end Deta designer a nless other bottom choi) oc. d for a 10.	/157, /157, /38, 7-15=-13 /161, considered for cond gust) 0psf; h=35ft; /FRS (envelo -1 to 5-4-1, 8-8-8 to 13-8 8-8-8 to 13-8 lane of the transitilever left an the exposed;C reactions sho D lane of the transitilever left an at to the face ills as applica s per ANSI/TI wise indicate d bearing. 0 psf bottom	6/83, r -8, d -C own; uss), ble, PI 1. d.					2000
FORCES TOP CHORD BOT CHORD	(lb) - Maximum Cor Tension 1-2=-409/285, 2-3= 4-5=-117/91, 5-6=- 7-8=-94/35, 8-9=-11 10-11=-407/303 1-20=-212/293, 19- 18-19=-213/293, 12 15-16=-213/293, 12 11-12=-212/292	mpression/Maximum -280/179, 3-4=-152/108, 70/57, 6-7=-91/76, 66/109, 9-10=-300/217, 20=-213/293, 5-18=-213/293, 4-15=-213/293, 2-13=-213/293,	 chord live I All bearing capacity of Provide me bearing pla joint 1, 104 132 Ib uplifu uplift at joir joint 14, 13 12. 10) This truss i Internation R802.10.2 	oad nonconcurrent s are assumed to 565 psi. schanical connect the capable of with lb uplift at joint 1 t at joint 19, 160 l nt 16, 59 lb uplift at 6 lb uplift at joint s designed in acc and referenced	nt with any be SP No tion (by oth nstanding 1 1, 141 lb u b uplift at j at joint 15, 13 and 118 cordance w de sections tandard AN	other live loa 2 crushing ers) of truss i 04 lb uplift at plift at joint 20 oint 18, 14 lb 155 lb uplift at 3 lb uplift at jo ith the 2018 \$ R502.11.1 a VSI/TPI 1.	ds. o), t int nd				STATE OF SEV SEV SEV PE-2001	MISSOUR TM. HER 018807

LOAD CASE(S) Standard

April 23,2024

JULO

Job	Truss	Truss Type	Qty	Ply	Roof - WO Lot 130	
P240395-01	LG03	Lay-In Gable	1	1	Job Reference (optional)	165082291

Run: 8.63 S Apr 5 2024 Print: 8.630 S Apr 5 2024 MiTek Industries, Inc. Mon Apr 22 15:25:53 ID:rFpm93ggcMC3y8jhGghZroywBwy-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

16023 Swingley Ridge Rd. Chesterfield, MO 63017 314.434.1200 / MiTek-US.com

Scale = 1:65 Plate Offsets (X, Y): [9:0-2-9,Edge], [22:0-2-8,0-3-0]

Loading		(psf)	Spacing	2-0-0		csi		DEFL	in	(lo	ic) /	defl	L/d	PLATES	GRIP	_
TCLL (roof)		25.0	Plate Grip DOL	1.15		TC	0.80	Vert(LL)	n/a		-	n/a	999	MT20	244/190	
TCDL		10.0	Lumber DOL	1.15		BC	0.38	Vert(TL)	n/a		-	n/a	999			
BCLL		0.0	Rep Stress Incr	YES		WB	0.30	Horiz(TL)	0.01		14	n/a	n/a			
BCDL		10.0	Code	IRC201	8/TPI2014	Matrix-S								Weight: 175 lb	FT = 20%	
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD	2x4 SP N 2x4 SP N 2x4 SP N 2x3 SPF I Structural 6-0-0 oc p	0.2 0.2 0.2 No.2 I wood shea purlins, exc	athing directly applie sept end verticals, ar 0 may 1-9	T d or B nd	OP CHORD	1-27=-216/225, 1-2i 3-4=-192/209, 4-5= 5-7=-192/210, 7-8= 9-10=-253/265, 10- 11-12=-472/476, 12 13-14=-690/676 26-27=-481/499, 25 24-25=-481/499, 23 21-23=-481/499, 23	=-192/2 -192/21 11=-363 -13=-58 -26=-48 -24=-48 -21=-48	09, 2-3=-192/ 9, 5-6=-192/2 0, 8-9=-192/2 3/378, 35/578, 31/499, 31/499, 31/499,	209, 09, 09,	8) 9)	All bea capaci Provid bearing 27, 18 uplift a 23, 40 uplift a joint 18	arings ty of 5 e mec g plate 1 lb up t joint lb upli t joint 3, 138	are as 65 psi hanica capa olift at 25, 48 ft at jo 20, 13 lb upl	sumed to be SP i. al connection (by ble of withstandii joint 14, 97 lb up 3 lb uplift at joint 2 oint 22, 42 lb uplif 0 lb uplift at joint ift at joint 17, 136	No.2 crushing others) of truss to 1g 65 lb uplift at jo ift at joint 26, 66 i 24, 41 lb uplift at j t at joint 21, 51 lb 19, 139 lb uplift i lb uplift at joint 1	o oint Ib joint o at
BOT CHORD	Rigid ceili bracing.	ing directly	applied or 7-11-5 oc	24		19-20=-481/499, 18 17-18=-480/498, 16 15-16=-479/498, 14	-19=-48 -17=-47 -15=-47	30/498, 79/498, 79/498		10)	and 13 This tri Interna	88 lb u uss is ational	plift at desigi Resic	joint 15. ned in accordanc lential Code sect	e with the 2018 ions R502.11.1 a	ind
WEB0	i now at	mapt	5-23, 6-22, 7-21, 8-2 9-19	20, V	/EBS 2	2-26=-214/161, 3-2 5-23=-140/63, 6-22	5=-148/ =-140/6	77, 4-24=-139 4, 7-21=-139/	9/67, 66,	11)	R802. ⁻ Graphi	10.2 a ical pu	nd refe rlin re	erenced standard presentation doe	ANSI/TPI 1. s not depict the s	size
REACTIONS	5-23, 6-22, 7-21, 8-20, 9-19 (size) 14=24-11-14, 15=24-11-14, 16=24-11-14, 17=24-11-14, 18=24-11-14, 19=24-11-14, 20=24-11-14, 21=24-11-14, 22=24-11-14, 25=24-11-14, 1) Win 24=24-11-14, 25=24-11-14, Vas 26=24-11-14, 27=24-11-14, Ke= Max Horiz 27=-433 (LC 8) external					8-20=-149/74, 9-19=-271/206, 10-18=-194/163, 11-17=-183/162, 12-16=-182/161, 13-15=-176/155 d: ASCE 7-16; Vult=115mph (3-second gust) d=91mph; TCDL=6.0psf; BCDL=6.0psf; h=35ft; 1.00; Cat. II; Exp C; Enclosed; MWFRS (envelope) rior zone and C-C Exterior(2E) 0-1-12 to 5-0-6,							ation c I. Star	of the purlin along	the top and/or	
	Max Uplift	14=-181 (l 16=-136 (l 18=-139 (l 20=-51 (L 22=-40 (L 24=-48 (L 26=-97 (L	LC 11), 15=-138 (LC LC 13), 17=-138 (LC LC 13), 19=-130 (LC C 8), 21=-42 (LC 9), C 8), 23=-41 (LC 8), C 9), 25=-66 (LC 8), C 9), 27=-65 (LC 10)	13), 13), 8), 2	20-1-0, Interi and right exp exposed;C-C reactions sho DOL=1.60 Truss design	or (1) 20-1-0 to 24- oosed ; end vertical for members and to own; Lumber DOL= ned for wind loads i	8-1 zon left and forces & 1.60 pla	e; cantilever le l right & MWFRS for ate grip ane of the true	eft ss				E.	STATE OF M	AISSOLUT	8
FORCES	Max Grav (Ib) - Max Tension	14=342 (L 16=206 (L 18=216 (L 20=189 (L 22=180 (L 24=179 (L 26=168 (L imum Com	C 8), 15=209 (LC 2C C 20), 17=205 (LC 2 C 20), 19=183 (LC 2 C 1), 21=179 (LC 1) C 1), 23=179 (LC 1) C 1), 25=189 (LC 1) C 21), 27=40 (LC 9) pression/Maximum	0), 20), 3 , 4 , 5 , 6 7	only. For stu see Standarr or consult qu Provide adeo All plates are Gable requir Gable studs This truss ha chord live los	Ids exposed to winc d Industry Gable Er ialified building desi quate drainage to p 4.5x4 MT20 unles es continuous botto spaced at 0-0-0 oc. is been designed fo ad nonconcurrent w	d (norm ad Detai igner as revent v s otherv m chor or a 10.0 ith any	al to the face) Is as applicab per ANSI/TP vater ponding vise indicated d bearing.) psf bottom other live load	, Ile, I 1.					PE-20010	DI8807	
														April	23,2024	

Job	Truss	Truss Type	Qty	Ply	Roof - WO Lot 130	
P240395-01	LG05	Lay-In Gable	1	1	Job Reference (optional)	165082292

Run: 8.63 S Apr 5 2024 Print: 8.630 S Apr 5 2024 MiTek Industries, Inc. Mon Apr 22 15:25:53 ID:IGSzdqVbrR1wYMIFZ20DEpynCc3-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

7-9-10

_

Scale = 1:52.8

Loading TCLL (roof) TCDL BCLL BCDL		(psf) 25.0 10.0 0.0 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC20	18/TPI2014	CSI TC BC WB Matrix-P	0.82 0.04 0.19	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 6	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 50 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	JMBER DP CHORD $2x4$ SP No.2 DT CHORD $2x4$ SP No.2 EBS $2x4$ SP No.2 THERS $2x3$ SPF No.2 RACING DP CHORD DP CHORD Structural wood sheathing directly applied of 6-0-0 oc purlins, except end verticals. DT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing. EACTIONS (size) $1=7-9\cdot10, 6=7-9\cdot10, 7=7-9\cdot10, 8=7-9\cdot10, 9=7-9\cdot10$ Max Horiz $1=329$ (LC 9) Max Uplift 1=-105 (LC 10), 6=-117 (LC 11), 7=-106 (LC 12), 8=-137 (LC 12), 9=-167 (LC 12) Max Grav $1=248$ (LC 9, 6=100 (LC 8), 7=1 (LC 19), 8=201 (LC 19), 9=255 (19)					a 1.5x4 MT20 unless es continuous botto spaced at 0-0-0 oc is been designed fo ad nonconcurrent w are assumed to be 65 psi. hanical connection e capable of withsta o uplift at joint 6, 16 nt 8 and 106 lb upli designed in accord Residential Code s and referenced stand Standard	s other or a 10.0 /ith any SP No. (by oth anding 1 7 Ib upl fft at join fance w sections dard AN	wise indicated d bearing. D psf bottom other live load 2 crushing ers) of truss to 05 lb uplift at iff at joint 9, 1 t7. ith the 2018 s R502.11.1 at ISI/TPI 1.	l. ds. 37 nd					
FORCES	(lb) - Max Tension	imum Com	pression/Maximum											
TOP CHORD	1-2=-576/ 4-5=-208/	/575, 2-3=-/ /213, 5-6=-/	417/420, 3-4=-290/3 153/131	04,										
BOT CHORD	1-9=-152/ 6-7=-152/	/165, 8-9=- /165	152/165, 7-8=-152/1	65,										1
WEBS	2-9=-254/	/237, 3-8=-2	206/194, 4-7=-176/1	50									OFA	Also
NOTES 1) Wind: ASC Vasd=91n Ke=1.00; 0 exterior zc and right e exposed;0	CE 7-16; Vu nph; TCDL= Cat. II; Exp one and C-C exposed ; er C-C for mem	It=115mph 6.0psf; BC C; Enclose Corner (3) nd vertical I abers and fo	(3-second gust) DL=6.0psf; h=35ft; d; MWFRS (envelop) zone; cantilever left eft and right orces & MWFRS for	e) t									STATE SCOTT SEVI	ER Server

DOL=1.60 Truss designed for wind loads in the plane of the truss 2) only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

reactions shown; Lumber DOL=1.60 plate grip

 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.
 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not besign value to dury with with where outputs into design is based only door parameters shown, and is for an individual building design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members and property incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TPH1 Quality Criteria**, and **DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcscomponents.com)

April 23,2024

NUMBER

PE-200101880

SSIONAL ET

RO

Job	Truss	Truss Type	Qty	Ply	Roof - WO Lot 130	
P240395-01	LG06	Lay-In Gable	1	1	Job Reference (optional)	165082293

Run: 8.63 S Apr 5 2024 Print: 8.630 S Apr 5 2024 MiTek Industries, Inc. Mon Apr 22 15:25:53 ID:cZY52oAUfU0hEV9OSZzb7_zO7fN-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

Scale = 1:57.5 Plate Offsets (X, Y): [8:Edge.0-1-8]

	(X, I). [0.Luge	,0 i 0]												
Loading TCLL (roof) TCDL BCLL BCDL		(psf) 25.0 10.0 0.0 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018	3/TPI2014	CSI TC BC WB Matrix-S 7-16: Vult=115m	0.08 0.05 0.12	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 8	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 64 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x3 SPF No.2 2x3 SPF No. Structural w 6-0-0 oc pur Rigid ceiling bracing. (size) 1= 10 12 Max Horiz 1= Max Uplift 1= 9= 11 42 Max Grav 1= 9= 11 13 15	2 ood sheat lins. directly =12-6-8, =12-6-8 =190 (LC =-67 (LC =-67 (LC =-167 (LC =-167 (LC =-167 (LC =-167 (LC =-167 (LC =-167 (LC =-173 (LC =-128 (L =-128 (L) (L =-128 (L) (L =-128 (L) (L =-128 (L)	athing directly applie applied or 10-0-0 oc 8=12-6-8, 9=12-6-8, 3, 11=12-6-8, 12=12- 3, 14=12-6-8, 15=12- 2, 9) 10), 8=-115 (LC 11) C 13), 10=-135 (LC C 12), 15=-143 (LC C 12), 15=-143 (LC C 12), 12=147 (LC 2 C 19), 14=135 (LC 1 C 19)	2) d or 6-8, 3) 6-8 1(3), 4) 1(2), 6) 1(2), 6) 1(2), 7) , , , , , , , , , , , , , , , , , , ,	Vasd=91mpl Ke=1.00; Ca exterior zone Interior (1) 5- 11-9-12, Intel left and right exposed;C-C reactions shu DOL=1.60 Truss desig only. For stu see Standaru or consult qu All plates are Gable requiri Gable studs This truss ha chord live loz All bearings capacity of 5 Provide mec	7-16; Vulle 11911 n; TCDL=6.0psf; E t. II; Exp C; Enclose and C-C Exterior 4-1 to 6-9-12, Ext rior (1) 11-9-12 to exposed ; end ve C for members and own; Lumber DOL ned for wind loads uds exposed to wind d Industry Gable E valified building de a 1.5x4 MT20 unle es continuous bot spaced at 0-0-0 o is been designed ad nonconcurrent are assumed to be 65 psi. hanical connection	Signature (2E) of the set of the	Dup dust) ppsf, h=35ft; FRS (envelop -1 to 5-4-1,) 6-9-12 to cone; cantileve and right & MWFRS for ate grip lane of the tru al to the face) ils as applicat s per ANSI/TF d bearing. D psf bottom other live load 2 crushing ers) of truss to 2 lo upilit at in	ee) er ss , ole, el 1. l. ds.					
	(lb) - Maximu Tension		pression/Maximum	4	1, 115 lb upli uplift at joint	e capable of withst ift at joint 8, 167 lb 15, 93 lb uplift at j	o uplift at	joint 9, 143 lb joint 9, 143 lb 96 lb uplift at j	oint				Contraction of the	and the second
TOP CHORD	4-5=-133/12 7-8=-179/11	o, 2-3=-1 1, 5-6=-1 4	149/101, 3-4=-104/7 137/120, 6-7=-114/5	4, 5, 10	 13, 140 lb up Beveled plate surface with 	blift at joint 11 and e or shim required truss chord at join	135 lb u to provi t(s) 8	plift at joint 10 de full bearing). J			6	ATEOFI	VIISSOL
BOT CHORD	1-15=-93/14 13-14=-93/14 11-12=-94/14 9-10=-93/14	8, 14-15 48, 12-1 48, 10-1 8, 8-9=-1	=-93/148, 3=-94/148, 1=-93/148, 152/232	11) This truss is International R802.10.2 a	designed in accor Residential Code nd referenced star	dance w sections	ith the 2018 8 R502.11.1 a NSI/TPI 1.	nd			a.	SCOT SEVI	IER
WEBS	S 2-15=-199/162, 3-14=-136/111, 4-13=-133/112, 5-12=-105/61, 6-11=-198/164, 7-10=-187/154						018807 Z							
NOTES 1) Unbalance this design	ed roof live load n.	ds have	been considered for									Ø	FRSSIONA	L ENGLES

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

16023 Swingley Ridge Rd. Chesterfield, MO 63017 314.434.1200 / MiTek-US.com

April 23,2024

Job	Truss	Truss Type	Qty	Ply	Roof - WO Lot 130	
P240395-01	LG07	Lay-In Gable	1	1	Job Reference (optional)	165082294

Run: 8.63 S Apr 5 2024 Print: 8.630 S Apr 5 2024 MiTek Industries, Inc. Mon Apr 22 15:25:53 ID:h3Q0btMnvUjspd7?SJDeA8zOBem-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Port

Page: 1

Scale = 1:29.5

Plate Offsets (X, Y): [3:Edge,0-3-0]

	Λ, Τ). [Ο.Εάξ	ge,0 0 0]													
Loading		(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP	
TCLL (roof)		25.0	Plate Grip DOI	1 15		TC	0.05	Vert(LL)	n/a	()	n/a	999	MT20	244/190	
		10.0	Lumber DOI	1 15		BC	0.03	Vert(TL)	n/a	-	n/a	999		210,000	
BCU		0.0	Ren Stress Incr	VES		WB	0.00	Horiz(TL)	0.00	5	n/a	n/a			
		10.0	Codo		TDI2014	Motrix P	0.05	TION2(TE)	0.00	5	n/a	n/a	Woight: 22 lb	ET - 20%	
BCDL		10.0	Code	INCZUIG	1712014	IVIAUIX-F							weight. 23 lb	FT = 20.76	
LUMBER				6)	This truss ha	s been designed f	or a 10.0) psf bottom							
TOP CHORD	2x4 SP No.	.2			chord live loa	d nonconcurrent v	with any	other live load	ds.						
BOT CHORD	2x4 SP No.	.2		7)	All bearings a	are assumed to be	SP No.	2 crushing							
OTHERS	2x3 SPF No	o.2			capacity of 5	65 psi.									
BRACING				8)	Provide mecl	nanical connectior	ר (by oth	ers) of truss to	C						
TOP CHORD	Structural v	wood shea	athing directly applied	dor	bearing plate	capable of withst	anding 1	06 lb uplift at							
	5-11-8 oc p	ourlins.	0 , 11		joint 7 and 10	5 lb uplift at joint	6.								
BOT CHORD	Rigid ceilin	g directly	applied or 10-0-0 oc	9)	This truss is	designed in accord	dance w	th the 2018							
	bracing.				Renational	Residential Code	sections	R502.11.1 ai	nd						
REACTIONS	(size)	1=5-11-0,	5=5-11-0, 6=5-11-0,	10	AD CASE(S)	Standard		0/1111.							
		7=5-11-0	0	20		Otandara									
	Max Horiz 1	1=79 (LC	9)												
	Max Uplift 6	o=-105 (L	C 13), 7=-106 (LC 12	.)											
	Max Grav 1	1=90 (LC	21), 5=89 (LC 22), 6=	=180											
	(III-) Maria	LC 20), 7	=181 (LC 19)												
FORCES	(ID) - Maxin Tension	num Com	pression/iviaximum												
TOP CHORD	1-2=-107/8	9 2-3=-6	3/16 3-4=-63/16												
	4-5=-106/8	9	o, i e, e i e eo, i e,												
BOT CHORD	1-7=-82/10	2, 6-7=-82	2/102, 5-6=-82/102												
WEBS	2-7=-173/1	31, 4-6=-	173/131												
NOTES															
1) Unbalance	ed roof live loa	ads have	been considered for											The	
this design	ı.												OF M	ALC ON	
Wind: ASC	CE 7-16; Vult	=115mph	(3-second gust)										ALE OF T	ISS W	
Vasd=91m	nph; TCDL=6	.0psf; BC	DL=6.0psf; h=35ft;									A		100	
Ke=1.00; C	Cat. II; Exp C	; Enclose	d; MWFRS (envelope	e)								A	SCOT	M. P	N V
exterior zo	ne and C-C I	Exterior(2	 E) zone; cantilever le 	ft								.4	7 SEVI	ER V	Y)
and right e	exposed; end	vertical l	ett and right									9+	-1	\.	► Y2
exposed;C		ers and it	CO plata grip									an		0	19
DOI = 1.60			.oo plate grip									X	#	- Da 1	1
 Truss des 	ianed for win	id loads in	the plane of the trus	s							2		NUM		a la
only. For s	studs expose	d to wind	(normal to the face),	-								N	OX PE-2001	018807 🖉	H
see Standa	ard Industry (Gable End	d Details as applicabl	e,								V	The last	15	9
or consult	qualified build	ding desig	gner as per ANSI/TPI	1.									A Sign	ENUS	<u>.</u>
 Gable requ 	uires continuo	ous bottor	n chord bearing.										WNA	L	
Gable stud	is spaced at	0-0-0 oc.											1000		
													Apri	123,2024	

Job	Truss	Truss Type	Qty	Ply	Roof - WO Lot 130	
P240395-01	V01	Valley	1	1	Job Reference (optional)	165082295

5-8-3

Premier Building Supply (Springhill, KS), Spring Hills, KS - 66083,

Run: 8.63 S Apr 5 2024 Print: 8.630 S Apr 5 2024 MiTek Industries, Inc. Mon Apr 22 15:25:53 ID:MNx_CRA05NKCG2N9fzJrK3ywCMj-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

1.5x4 🛚

2

6

6

3

1.5x4 🛚

3x4 🚽

Scolo	 1.20	7

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15	тс	0.50	Vert(LL)	n/a	-	n/a	999	MT20	244/190
TCDL	10.0	Lumber DOL	1.15	BC	0.27	Vert(TL)	n/a	-	n/a	999		
BCLL	0.0	Rep Stress Incr	YES	WB	0.00	Horiz(TL)	0.00	3	n/a	n/a		
BCDL	10.0	Code	IRC2018/TPI2014	Matrix-P							Weight: 17 lb	FT = 20%
			0) This trues is			: :4h 4h e 2010						
LUMBER	Over CD No. 0		6) This truss is	Basigned in acco	lo coctions	10 10 2018	and					
POT CHORD	2X4 SP NO.2		R802 10 2 :	and referenced st	andard AN	ISI/TPI 1	anu					
	2X4 OF INU.2			Ctondord								
WEDS	2X3 3PF NU.2		LUAD CASE(S	Stanuaru								
BRACING												
TOP CHORD	Structural wood she	athing directly applie	ed or									
	5-8-15 oc purlins, e	xcept end verticals.	_									
BOI CHORD	bracing.	applied or 10-0-0 o	C									
REACTIONS	(size) 1=5-8-3, 3	3=5-8-3										
	Max Horiz 1=75 (LC	9)										
	Max Uplift 1=-41 (LC	28), 3=-52 (LC 12)										
	Max Grav 1=211 (LC	C 1), 3=211 (LC 1)										
FORCES	(lb) - Maximum Com Tension	pression/Maximum										
TOP CHORD	1-2=-105/64. 2-3=-1	64/211										
BOT CHORD	1-3=-33/35											
NOTES												
1) Wind AS	CF 7-16: Vult=115mph	(3-second aust)										
Vasd=91r	mph: TCDI =6 0 nsf: BC	DI = 6.0 psf h = 35 ft										
Ke=1.00:	Cat. II: Exp C: Enclose	d: MWFRS (envelor	be)									
exterior z	one and C-C Exterior(2	E) zone; cantilever	left									
and right	exposed ; end vertical l	left and right										
exposed;	C-C for members and f	orces & MWFRS for										
reactions	shown; Lumber DOL="	1.60 plate grip									CON	Jan
DOL=1.60	0										F OF	MISC
2) Truss de	signed for wind loads ir	n the plane of the tru	ISS							1	750	-00, W
only. For	studs exposed to wind	(normal to the face),							A	NY DOOT	Nex Var
see Stand	dard Industry Gable En	d Details as applical	ole,							A	S/ SCOI	IM. YAY
or consult	t qualified building desig	gner as per ANSI/TF	기 1.							B.	/ SEV	IER \ X
Gable rec	uires continuous botto	m chord bearing.								Ø 🖈		a *8
Gable stu	ids spaced at 4-0-0 oc.									N	1-1-	· X 1-4-
5) This truss	has been designed for	r a 10.0 psf bottom							2	K	A a TAIM	Kernen
chord live	load nonconcurrent wi	th any other live loa	ds.						_	The second	DE 0001	010007 AT
6) All bearin	gs are assumed to be S	SP No.2 crushing								N.	OX PE-2001	01880/
capacity o	of 565 psi.	<i></i>								V	1 Al	1SH
Provide m	nechanical connection ((by others) of truss t	0								W SIG	ENUA
bearing p	late capable of withstar	haing 41 lb uplift at j	DINT								WNA	

7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 41 lb uplift at joint 1 and 52 lb uplift at joint 3.

April 23,2024

Job	Truss	Truss Type	Qty	Ply	Roof - WO Lot 130	
P240395-01	V02	Valley	1	1	Job Reference (optional)	165082296

Run: 8,63 S Apr 5 2024 Print: 8,630 S Apr 5 2024 MiTek Industries, Inc. Mon Apr 22 15:25:53 ID:MNx_CRA05NKCG2N9fzJrK3ywCMj-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

1.5x4 u

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15	TC	0.12	Vert(LL)	n/a	-	n/a	999	MT20	244/190
TCDL	10.0	Lumber DOL	1.15	BC	0.07	Vert(TL)	n/a	-	n/a	999		
BCLL	0.0	Rep Stress Incr	YES	WB	0.00	Horiz(TL)	0.00	3	n/a	n/a		
BCDL	10.0	Code	IRC2018/TPI2014	Matrix-P							Weight: 10 lb	FT = 20%

International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

8) This truss is designed in accordance with the 2018

LOAD CASE(S) Standard

LUN	/IBE	ER	
		10	

Scale = 1:17.8

TOP CHORD	2x4 SP No	0.2
BOT CHORD	2x4 SP No	0.2
WEBS	2x3 SPF I	No.2
BRACING		
TOP CHORD	Structural	wood sheathing directly applied or
	3-5-13 oc	purlins, except end verticals.
BOT CHORD	Rigid ceili	ng directly applied or 10-0-0 oc
	bracing.	
REACTIONS	(size)	1=3-5-1, 3=3-5-1
	Max Horiz	1=39 (LC 9)
	Max Uplift	1=-21 (LC 8), 3=-27 (LC 12)

	Max Uplift 1	=-21 (LC 8), 3=-27 (LC 12)
	Max Grav 1	=110 (LC 1), 3=110 (LC 1)
FORCES	(lb) - Maxim	num Compression/Maximum
	Tension	
TOP CHORD	1-2=-56/34,	2-3=-85/112

BOT CHORD 1-3=-17/18

NOTES

- Wind: ASCE 7-16; Vult=115mph (3-second gust) 1) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=35ft; Ke=1.00; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- Truss designed for wind loads in the plane of the truss 2) only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- Gable requires continuous bottom chord bearing. 3)
- Gable studs spaced at 4-0-0 oc. 4)
- This truss has been designed for a 10.0 psf bottom 5) chord live load nonconcurrent with any other live loads. All bearings are assumed to be SP No.2 crushing 6)

capacity of 565 psi. 7)

Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 21 lb uplift at joint 1 and 27 lb uplift at joint 3.

OF MISSO TF. SCOTT M. SEVIER NUMBER PE-2001018807 SSIONAL E April 23,2024

Job	Truss	Truss Type	Qty	Ply	Roof - WO Lot 130	
P240395-01	V03	Valley	5	1	Job Reference (optional)	165082297

5-5-4

5-5-4

Premier Building Supply (Springhill, KS), Spring Hills, KS - 66083,

2-1-8

Run: 8.63 S Apr 5 2024 Print: 8.630 S Apr 5 2024 MiTek Industries, Inc. Mon Apr 22 15:25:54 ID:MNx_CRA05NKCG2N9fzJrK3ywCMj-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

6-3-12

0-10-8

1-10-0

1.5x4 u 3 5 2 12 4 □ 1 0 4 0-0-4 3x4 🚅 1.5x4 🛚

5-5-4

_

Loading TCLL (roof)	(psf) 25.0	Spacing Plate Grip DOL	2-0-0 1.15	CSI TC 0.40	DEFL Vert(LL)	in n/a	(loc)	l/defl n/a	L/d 999	PLATES MT20	GRIP 244/190
TCDL	10.0	Lumber DOL	1.15	BC 0.24	Vert(CT)	n/a	-	n/a	999	-	
BCLL	0.0	Rep Stress Incr	YES	WB 0.00) Horz(CT)	0.00	4	n/a	n/a		
BCDL	10.0	Code	IRC2018/TPI2014	Matrix-P						Weight: 18 lb	FT = 20%
LUMBER			8) This truss is	designed in accordance	with the 2018						
TOP CHORD	2x4 SP No.2		International	Residential Code sectio	ns R502.11.1 a	nd					
BOT CHORD	2x4 SP No.2		R802.10.2 a	nd referenced standard /	ANSI/TPL1.						
WEBS	2x3 SPF No.2		LOAD CASE(S)	Standard							
BRACING TOP CHORD	Structural wood she	athing directly applie	d or								
BOT CHORD	Rigid ceiling directly	applied or 10-0-0 oc	:								
REACTIONS	(size) 1=5-6-0, 4 Max Horiz 1=86 (LC Max Uplift 1=-31 (LC Max Gray 1=193 (LC	4=5-6-0 9) 2 8), 4=-81 (LC 12) 2 1) 4=277 (I C 1)									
FORCES	(lb) - Maximum Com	pression/Maximum									
TOP CHORD BOT CHORD	1-2=-131/52, 2-3=-2 1-4=-31/33	2/0, 2-4=-232/301									
NOTES											
 Wind: ASC Vasd=91n Ke=1.00; (exterior 22 Interior (1) exposed; members Lumber D Truss des only. For see Stand or consult Gable req Gable stud This truss chord live All bearing capacity o Provide m bearing pli 1 and 81 li 	CE 7-16; Vult=115mph nph; TCDL=6.0psf; BC Cat. II; Exp C; Enclose one and C-C Exterior(2 5-11-5 to 6-4-8 zone; end vertical left and rig and forces & MWFRS OL=1.60 plate grip DO signed for wind loads ir studs exposed to wind lard Industry Gable En- qualified building desig uires continuous bottoo ds spaced at 4-0-0 oc. has been designed for load nonconcurrent wi gs are assumed to be S if 565 psi. echanical connection (ate capable of withstar b uplift at joint 4.	(3-second gust) DL=6.0psf; h=35ft; d; MWFRS (envelop E) 0-11-5 to 5-11-5, cantilever left and rig ght exposed;C-C for for reactions shown; JL=1.60 n the plane of the true (normal to the face) d Details as applicab gner as per ANSI/TP m chord bearing. r a 10.0 psf bottom th any other live load SP No.2 crushing (by others) of truss to hding 31 lb uplift at jo	e) ght ss le, l 1. is.					ې م		STATE OF M SCOTT SEVI NUM PE-20010 PE-20010	MISSOLP T.M. ER DI8807
										Apri	23,2024

Job	Truss	Truss Type	Qty	Ply	Roof - WO Lot 130	
P240395-01	V04	Valley	1	1	Job Reference (optional)	165082298

Run: 8,63 S Apr 5 2024 Print: 8,630 S Apr 5 2024 MiTek Industries, Inc. Mon Apr 22 15:25:54 ID:LiUbMH8ErUBoPTna0q0lgzzO7kZ-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

NOTES 1) Unbalanced roof live loads have been considered for this design

TCDL

BCLL

BCDL

WEBS

WEBS

- Wind: ASCE 7-16; Vult=115mph (3-second gust) 2) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=35ft; Ke=1.00; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) 0-11-5 to 5-11-5, Interior (1) 5-11-5 to 9-8-15, Exterior(2E) 9-8-15 to 13-4-7 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
 - WARNING Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponent.com)

16023 Swingley Ridge Rd. Chesterfield MO 63017 314.434.1200 / MiTek-US.com

April 23,2024

SEVIER

PE-2001018807

SIONAL

Job	Truss	Truss Type	Qty	Ply	Roof - WO Lot 130	
P240395-01	V05	Valley	1	1	Job Reference (optional)	165082299

Run: 8.63 S Apr 5 2024 Print: 8.630 S Apr 5 2024 MiTek Industries, Inc. Mon Apr 22 15:25:54 ID:STIxfXW3nizY043Lm8YnuIzO7k5-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

21-1-13

Scale = 1:40.3

Plate Offsets (X, Y): [4:0-2-0,Edge], [6:0-2-0,Edge]

	(,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	-, -, 5-1,	1											
Loading	-	(psf)	Spacing	2-0-0		csi	-	DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)		25.0	Plate Grip DOL	1.15		тс	0.20	Vert(LL)	n/a	-	n/a	999	MT20	244/190
TCDL		10.0	Lumber DOL	1.15		BC	0.11	Vert(TL)	n/a	-	n/a	999		
BCLL		0.0	Rep Stress Incr	YES		WB	0.05	Horiz(TL)	0.00	9	n/a	n/a		
BCDL		10.0	Code	IRC20	8/TPI2014	Matrix-S							Weight: 68 lb	FT = 20%
														-
LUMBER				2) Wind: ASCE	7-16; Vult=115m	ph (3-sec	cond gust)						
TOP CHORD	2x4 SP N	0.2			Vasd=91mpr	n; TCDL=6.0psf; I	BCDL=6.	Jpsf; n=35ft;	\					
BOT CHORD	2x4 SP N	0.2			Ke=1.00; Ca	t. II; Exp C; Enclo	DSECT; MVV	FRS (envelop	pe)					
OTHERS	2x3 SPF	No.2			Interior (1) 5		V(2E) 0 - 1	1-5 10 5-11-5, =\ 0 9 15 to	,					
BRACING					11-6-7 Evto	$r_{11-5} = 0.9-6-15$, E	18-7-4	=) 9-0-13 10 nterior (1) 18.	-7-4					
TOP CHORD	Structura	I wood she	athing directly applied	d or	to 20-4-1 zor	e: cantilever left	and right	exposed · en	- <i>i</i> - -					
	6-0-0 oc	purlins, exc	cept		vertical left a	nd right exposed	·C-C for n	nembers and						
	2-0-0 OC	puriins (6-0	I-U max.): 4-6.		forces & MW	FRS for reactions	s shown;	Lumber						
BOICHORD	kigid celi	ing directly	applied of 10-0-0 oc		DOL=1.60 pl	ate grip DOL=1.6	50							
DEACTIONS		4 04 4 4	0 04 4 40 40 04	4 3) Truss desigr	ned for wind load	s in the p	lane of the tru	JSS					
REACTIONS	(Size)	11_21_1_	5, 9=21-1-15, 10=21- 13 12=21-1-13	1-13,	only. For stu	ids exposed to wi	ind (norm	al to the face),					
		14-21-1-	13, 12-21-1-13,		see Standard	d Industry Gable I	End Deta	ils as applical	ble,					
	Max Horiz	1=-54 (LC	2 13)		or consult qu	alified building de								
	Max Uplift	1=-9 (LC	9), 9=-12 (LC 9), 10=	-100 4) Provide adec	uate drainage to	prevent	water ponding	g.					
		(LC 13), 1	1=-76 (LC 9), 12=-9	(LC 5	All plates are Cable require	1.5x4 M120 unio	ess other	wise indicated	d.					
		8), 14=-78	3 (LC 8), 15=-100 (LC	212) ⁰ 7	Gable require	es continuous por		a bearing.						
	Max Grav	1=105 (LC	C 1), 9=105 (LC 1),	· /) Gable studs	spaceu al 4-0-0 l	JU. for a 10 () nef hottom						
		10=363 (L	_C 1), 11=316 (LC 26	i), ⁰	chord live los	ad nonconcurrent	with any	other live loa	de					
		12=182 (L	_C 1), 14=316 (LC 25	i), g	All bearings	are assumed to b	e SP No	2 crushing	us.					
		15=363 (L	_C 1)	-	capacity of 5	65 psi.								
FORCES	(lb) - Max Tension	kimum Com	pression/Maximum	1	 Provide mechanical connection (by others) of truss to 									
TOP CHORD	1-2=-67/3	38, 2-3=-65	/66, 3-4=-50/107,		1 12 lb unlift	at joint 9 100 lb	uplift at i	oint 15 78 lb	iiit				and	ADDA
	4-5=-41/1	103, 5-6=-4	1/103, 6-7=-50/105,		uplift at joint	14. 100 lb uplift a	at joint 10.	76 lb uplift at	t				OF N	MISCO
	7-8=-65/6	64, 8-9=-49	/26	_	joint 11 and 9	9 lb uplift at joint	12.					1	750	N.OS
BOT CHORD	1-15=-10	/48, 14-15=	=-10/48, 12-14=-10/48	³ , 1	1) This truss is	designed in acco	rdance w	ith the 2018				R	S SCOT	IN NON
	11-12=-1	0/48, 10-11	=-10/48, 9-10=-10/48	5	International	Residential Code	e sections	R502.11.1 a	ind			R	S SCOL	
WEB2	2-15=-27	8/204, 3-14 9/204 7 11	1=-246/166,	0/44	R802.10.2 a	nd referenced sta	andard AN	ISI/TPI 1.				Do.	/ SEVI	
	0-10=-27	0/204, 7-11	1=-240/100, 5-12=-14	0/44 1	Graphical pu	rlin representatio	n does no	ot depict the s	size			<u> // ^</u>	I dude .	0
NOTES					or the orienta	ation of the purlin	along the	e top and/or				ZV	all	Zenne de
1) Unbalance	ed roof live	loads have	been considered for		bottom chord	1.					-	KA-	NUM	BER A
this design	n.			L	OAD CASE(S)	Standard						17	PE-2001	018807
												N	m L 2001	12H
												Y	080	JO'H
													ONA	LEFA
													Que	TITE
													Apri	1 23 2024
													Арп	120,2024

Job	Truss	Truss Type	Qty	Ply	Roof - WO Lot 130	
P240395-01	V06	Valley	1	1	Job Reference (optional)	165082300

Run: 8.63 S Apr 5 2024 Print: 8.630 S Apr 5 2024 MiTek Industries, Inc. Mon Apr 22 15:25:54 ID:N3?AT?c89_6NW5WOtcin6izO8JP-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

16-3-6

7-8-7

17-1-13

0-10-7

3 1.5x4 🛚 11 2 12 4 Г 10 • 6

8-6-15

8-6-15

17-1-13

Scale - 1:32.8

33

2-6-

2-10-9

00010 - 110210														
Loading TCLL (roof) TCDL BCLL BCDL		(psf) 25.0 10.0 0.0 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC20	18/TPI2014	CSI TC BC WB Matrix-S	0.25 0.12 0.06	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 5	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 53 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x4 SP No.2 2x3 SPF No Structural w 6-0-0 oc pu Rigid ceiling bracing. (size) 1 7 Max Horiz 1 Max Uplift 1 1 Max Grav 1	2 2 2 2 3 directly =17-1-13 =17-1-13 =-19 (LC =-18 (LC LC 13), 7 2) =132 (LC C 26), 7	athing directly applie applied or 10-0-0 oc 3, 5=17-1-13, 6=17-1 3, 9=17-1-13 13) 8), 5=-23 (LC 9), 6= =-10 (LC 8), 9=-117 C 1), 5=132 (LC 1), 6 =309 (LC 1), 9=413	ed or 	 Truss desig only. For str see Standar or consult qr Gable requir Gable studs This truss h chord live lo All bearings capacity of £ Provide mec bearing platt 1, 23 lb uplif at joint 9 and This truss is Internationa CASE(5) 	ned for wind load uds exposed to w d Industry Gable Jalified building d res continuous bo spaced at 4-0-0 as been designed an onconcurren are assumed to l 565 psi. chanical connecti e capable of with t at joint 5, 10 lb d 117 lb uplift at j designed in acco Residential Cod nd referenced st Standard	ds in the pi vind (norm End Deta designer as ottom chor oc. d for a 10.0 tt with any be SP No. ion (by oth standing 1 uplift at joi oint 6. ordance w le sections andard AN	ane of the tru al to the face is a spplical s per ANSI/TF d bearing.) psf bottom other live loa 2 crushing ers) of truss t 8 lb uplift at ji nt 7, 117 lb u ith the 2018 R502,11.1 a ISI/TPI 1.	uss), ble, Pl 1. ds. o oint plift nd					
FORCES	2 (Ib) - Maxim Tension	ium Com	pression/Maximum											
TOP CHORD	1-2=-59/50, 4-5=-43/38	2-3=-68/	/96, 3-4=-68/99,											
BOT CHORD WEBS	1-9=-5/34, 7 3-7=-235/90	7-9=-5/34), 2-9=-32	4, 6-7=-5/34, 5-6=-5/3 20/235, 4-6=-320/23	'34 85										
NOTES 1) Unbalance this design	ed roof live loa	ads have	been considered for	r								L	TE OF M	MISSO

2) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=35ft; Ke=1.00; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) 0-11-5 to 5-11-5, Interior (1) 5-11-5 to 8-7-11, Exterior(2R) 8-7-11 to 13-7-11, Interior (1) 13-7-11 to 16-4-1 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

April 23,2024

 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.
 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not besign value for use only with with twit even connectors. This design is based only upon parameters shown, and is for an individual building designer must verify the applicability of design parameters and properly incorporate this design into the overall building designer must verify the applicability of design parameters and properly incorporate this design into the overall building designer. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcscomponents.com)

Job	Truss	Truss Type	Qty	Ply	Roof - WO Lot 130	
P240395-01	V07	Valley	1	1	Job Reference (optional)	l65082301

Run: 8.63 S Apr 5 2024 Print: 8.630 S Apr 5 2024 MiTek Industries, Inc. Mon Apr 22 15:25:54 ID:N3?AT?c89_6NW5WOtcin6izO8JP-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Scale =	1:29
---------	------

13-1-13

Scale = 1:29													
Loading TCLL (roof) TCDL BCLL BCDL	(psf) 25.0 10.0 0.0 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC201	8/TPI2014	CSI TC BC WB Matrix-S	0.55 0.32 0.08	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 3	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 39 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x4 SP No.2 2x3 SPF No.2 Structural wood she 6-0-0 oc purlins. Rigid ceiling directly bracing. (size) 1=13-1-1: Max Horiz 1=36 (LC Max Uplift 1=-56 (LC (LC 8) Max Grav 1=230 (LC 4=581 (LC	eathing directly applie v applied or 10-0-0 or 3, 3=13-1-13, 4=13- 12) 2 8), 3=-60 (LC 13), - C 25), 3=230 (LC 26 C 1)	6) 7) ed or c 9) 1-13 LC 4=-68	This truss ha chord live loz All bearings capacity of 5 Provide mec bearing plate 1, 60 lb uplif This truss is International R802.10.2 a DAD CASE(S)	as been designe ad nonconcurrer are assumed to 65 psi. hanical connect e capable of with a ti joint 3 and 6 designed in acc Residential Coo nd referenced st Standard	d for a 10.0 nt with any be SP No. ion (by oth- standing 5 8 lb uplift a ordance wi de sections tandard AN) psf bottom other live loa 2 crushing ers) of truss t 6 lb uplift at j bolt 4. ith the 2018 R502.11.1 a ISI/TPI 1.	ds. o oint ınd					
FORCES TOP CHORD BOT CHORD WEBS NOTES 1) Unbalanc this desig 2) Wind: AS Vasd=911 Ke=1.00;	(lb) - Maximum Con Tension 1-2=-92/69, 2-3=-92 1-4=-1/36, 3-4=-1/36 2-4=-409/316 ed roof live loads have In. CE 7-16; Vult=115mph mph; TCDL=6.0psf; BC Cat. II; Exp C; Enclose	ppression/Maximum /68 6 been considered for (3-second gust) DL=6.0psf; h=35ft; ed; MWFRS (envelop	r De)									Fre OF I	MISS
exterior z Interior (1 11-7-11, l left and ri exposed:	one and C-C Exterior(2) 5-11-5 to 6-7-11, Exter Interior (1) 11-7-11 to 1 ght exposed; end verti C-C for members and f	2E) 0-11-5 to 5-11-5, erior(2R) 6-7-11 to 2-4-1 zone; cantilev ical left and right orces & MWERS for	er									STATE SCOT	T M. ER

- reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 Truss designed for wind loads in the plane of the truss 3) only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable,
- or consult qualified building designer as per ANSI/TPI 1. Gable requires continuous bottom chord bearing. 4)
- 5) Gable studs spaced at 4-0-0 oc.

April 23,2024

PE-2001018807

SSIONAL E

 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.
 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not besign value for use only with with twit even connectors. This design is based only upon parameters shown, and is for an individual building designer must verify the applicability of design parameters and properly incorporate this design into the overall building designer must verify the applicability of design parameters and properly incorporate this design into the overall building designer. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcscomponents.com)
Job	Truss	Truss Type	Qty	Ply	Roof - WO Lot 130	
P240395-01	V08	Valley	1	1	Job Reference (optional)	165082302

Premier Building Supply (Springhill, KS), Spring Hills, KS - 66083,

1-2-13

1-6-9

Run: 8.63 S Apr 5 2024 Print: 8.630 S Apr 5 2024 MiTek Industries, Inc. Mon Apr 22 15:25:54 ID:N3?AT?c89_6NW5WOtcin6izO8JP-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

9-1-13

Scale = 1:25.5	j												
Loading TCLL (roof) TCDL BCLL BCDL	(psf) 25.0 10.0 0.0 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC201	8/TPI2014	CSI TC BC WB Matrix-S	0.22 0.14 0.06	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 3	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 26 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x3 SPF No.2 2x3 SPF No.2 Structural wood she 6-0-0 oc purlins. Rigid ceiling directly bracing. (size) 1=9-1-13. Max Horiz 1=-24 (LC Max Uplift 1=-36 (LC (LC 8) Max Grav 1=149 (LC 4=377 (LC	eathing directly appli v applied or 10-0-0 o , 3=9-1-13, 4=9-1-1 C 13) C 8), 3=-39 (LC 13), C 25), 3=149 (LC 26 C 1)	7) 8) ed or 9) c L(3 4=-44	All bearings capacity of 5 Provide mec bearing plate 1, 39 lb upliff This truss is International R802.10.2 ar	are assumed t 65 psi. hanical connec capable of wi at joint 3 and designed in ac Residential Cc nd referenced Standard	o be SP No. ction (by oth thstanding 3 44 lb uplift a ccordance wi ode sections standard AN	2 crushing ers) of truss 6 lb uplift at t joint 4. ith the 2018 R502.11.1 a ISI/TPI 1.	to joint and					
FORCES TOP CHORD BOT CHORD WEBS NOTES 1) Unbalanc this desig 2) Wind: AS Vasd=91n Ke=1.00;	(lb) - Maximum Com Tension 1-2=-60/50, 2-3=-60 1-4=-1/23, 3-4=-1/2; 2-4=-265/261 ed roof live loads have n. CE 7-16; Vult=115mph mph; TCDL=6.0psf; BC Cat. II; Exp C; Enclose	hpression/Maximum /52 3 been considered fo (3-second gust) CDL=6.0psf; h=35ft; ed; MWFRS (envelop	or pe)									STE OF J	MISS

- exterior zone and C-C Exterior(2E) zone; cantilever left and right exposed; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face),
- on my. For study exposed to write (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
 4) Gable requires continuous bottom chord bearing.
- 5) Gable studs spaced at 4-0-0 oc.
- 6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

16023 Swingley Ridge Rd. Chesterfield, MO 63017 314.434.1200 / MiTek-US.com

E

April 23,2024

SCOTT M.

SEVIER

NUMBER

PE-2001018807

SSIONAL

0

Page: 1

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSITPTI Quality Criteria, and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcscomponents.com)

Job	Truss	Truss Type	Qty	Ply	Roof - WO Lot 130	
P240395-01	V09	Valley	1	1	Job Reference (optional)	165082303

2-6-15

2-6-15

Premier Building Supply (Springhill, KS), Spring Hills, KS - 66083,

Run: 8.63 S Apr 5 2024 Print: 8.630 S Apr 5 2024 MiTek Industries, Inc. Mon Apr 22 15:25:54 ID:N3?AT?c89_6NW5WOtcin6izO8JP-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

5-1-13

4-3-6

1-8-7

5-1-13

0-10-7

Scale =	1:19.8

Plate Offsets (X, Y): [2:0-2-0,Edge]

		-										
Loading	(psf)	Spacing	2-0-0	csi		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15	TC	0.10	Vert(LL)	n/a	-	n/a	999	MT20	244/190
TCDL	10.0	Lumber DOL	1.15	BC	0.14	Vert(TL)	n/a	-	n/a	999		
BCLL	0.0	Rep Stress Incr	YES	WB	0.00	Horiz(TL)	0.00	3	n/a	n/a		
BCDL	10.0	Code	IRC2018/TPI2014	Matrix-P							Weight: 13 lb	FT = 20%
LUMBER TOP CHORD BOT CHORD BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x4 SP No.2 Structural wood she 5-3-5 oc purlins. Rigid ceiling directly bracing. (size) 1=5-1-13, Max Horiz 1=-11 (LC Max Uplift 1=-27 (LC Max Grav 1=153 (LC (Ib) - Maximum Com Tension	athing directly applie applied or 10-0-0 oc 3=5-1-13 : 13) : 8), 3=-27 (LC 9) 2 1), 3=153 (LC 1) pression/Maximum	8) Provide me bearing pla 1 and 27 lb 9) This truss is Internationa R802.10.2 i LOAD CASE(S	chanical connectior ce capable of withst uplift at joint 3. designed in accor I Residential Code and referenced star Standard	n (by oth anding 2 dance wi sections ndard AN	ers) of truss t 7 lb uplift at j ith the 2018 R502.11.1 a ISI/TPI 1.	o oint nd					
	1-2199/241 2-3	199/245										
BOT CHORD	1-3=-201/174	100/240										
NOTES												
 Unbalance this design Wind: ASC Vasd=91m Ke=1.00; C exterior zo and right e exposed; C reactions zo DOL=1.60 Truss des only. For s see Standa or consult. Gable requisit (able studies) Gable studies This truss chord live I All bearing capacity of 	d roof live loads have L E 7-16; Vult=115mph uph; TCDL=6.0psf; BC Cat. II; Exp C; Enclose ne and C-C Exterior(2 xposed ; end vertical I -C for members and fi shown; Lumber DOL= ⁻ igned for wind loads in studs exposed to wind ard Industry Gable En- qualified building desig uires continuous bottor is spaced at 4-0-0 oc. has been designed for load nonconcurrent wi s are assumed to be S 565 psi.	been considered for (3-second gust) DL=6.0psf; h=35ft; d; MWFRS (envelope E) zone; cantilever le eft and right prces & MWFRS for 1.60 plate grip in the plane of the trus (normal to the face), d Details as applicab gner as per ANSI/TPI in chord bearing. in the not bearing. in the not bear the load SP No.2 crushing	e) st ss le, i 1.								PE-20010	MISSOLH ER 018807

April 23,2024

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent toules with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

General Safety Notes

Failure to Follow Could Cause Property Damage or Personal Injury

- 1. Additional stability bracing for truss system, e.g. diagonal or X-bracing, is always required. See BCSI.
- Truss bracing must be designed by an engineer. For wide truss spacing, individual lateral braces themselves may require bracing, or alternative Tor1 bracing should be considered.
- Never exceed the design loading shown and never stack materials on inadequately braced trusses.
- Provide copies of this truss design to the building designer, erection supervisor, property owner and all other interested parties.
- 5. Cut members to bear tightly against each other
- Place plates on each face of truss at each joint and embed fully. Knots and wane at joint locations are regulated by ANSI/TPI 1.
- Design assumes trusses will be suitably protected from the environment in accord with ANSI/TPI 1.
- Unless otherwise noted, moisture content of lumber shall not exceed 19% at time of fabrication.
- Unless expressly noted, this design is not applicable for use with fire retardant, preservative treated, or green lumber.
- Camber is a non-structural consideration and is the responsibility of truss fabricator. General practice is to camber for dead load deflection.
- 11. Plate type, size, orientation and location dimensions indicated are minimum plating requirements.
- Lumber used shall be of the species and size, and in all respects, equal to or better than that specified.
- Top chords must be sheathed or purlins provided at spacing indicated on design.
- 14. Bottom chords require lateral bracing at 10 ft. spacing, or less, if no ceiling is installed, unless otherwise noted.
- 15. Connections not shown are the responsibility of others.
- Do not cut or alter truss member or plate without prior approval of an engineer.
- 17. Install and load vertically unless indicated otherwise.
- Use of green or treated lumber may pose unacceptable environmental, health or performance risks. Consult with project engineer before use.
- Review all portions of this design (front, back, words and pictures) before use. Reviewing pictures alone is not sufficient.
- 20. Design assumes manufacture in accordance with ANSI/TPI 1 Quality Criteria.
- 21. The design does not take into account any dynamic or other loads other than those expressly stated.