

RE: B240082 - L Site Information: Project Customer: Lot/Block: 184 Model: Charlotte Address: 1609 SV City: Lee's Summ General Truss En Drawings Show S Design Code: IRC Wind Code: ASCE Roof Load: 45.0 ps	: Summit Ho - Craftsman W Arborway it gineering C Special Load C2018/TPI20 7-16 [IWin R	Terr riteria & ing Cone 14	Si Desig ditions	ubdivision tate: MO n Loads (s): I F	Design Program Design Method: Floor Load: N/A	I ss Design : MiTek 20/ MWFRS (E A psf	MiTek, Inc. 16023 Swingley Ridge Rd. Chesterfield, MO 63017 314.434.1200 20 8.7 Envelope) ASCE 7-16 [Low Rise]
Mean Roof Height	(feet): 15			1	Exposure Categ	ory: C	
$ \begin{array}{ccccc} 1 & 165090777\\ 2 & 165090778\\ 3 & 165090778\\ 3 & 165090780\\ 5 & 165090781\\ 6 & 165090782\\ 7 & 165090783\\ 8 & 165090784\\ 9 & 165090785\\ 10 & 165090786\\ 11 & 165090786\\ 11 & 165090787\\ 12 & 165090788\\ 13 & 165090789\\ 14 & 165090790\\ 15 & 165090791\\ 16 & 165090792\\ 17 & 165090793\\ 18 & 165090794\\ 19 & 165090795\\ 20 & 165090796\\ 21 & 165090796\\ 21 & 165090796\\ 21 & 165090796\\ 21 & 165090796\\ 21 & 165090796\\ 21 & 165090796\\ 21 & 165090796\\ 21 & 165090796\\ 21 & 165090796\\ 21 & 165090796\\ 21 & 165090796\\ 21 & 165090796\\ 21 & 165090796\\ 21 & 165090796\\ 23 & 165090801\\ 26 & 165090801\\ 26 & 165090802\\ 27 & 165090803\\ 28 & 165090804\\ 29 & 165090804\\ 29 & 165090806\\ 31 & 165090807\\ 32 & 165090806\\ 33 & 165090809\\ \end{array} $	Truss Name A1 A2 A3 B1 B2 B3 B4 B5 B6 B7 B8 B9 B10 B11 B12 B13 B14 B15 C1 C2 D1 D2 D3 E1 E2 E3 V1 V2 V3 V4 V5 V6 V7 V8	4/24/24 4/24/24	No. 35 36 37 38 39 40 41 42 43 44 45 46	165090811 165090812 165090813 165090814 165090815 165090816 165090819 165090820 165090822	V10 V11 V12 V13 V14 V15 V16 V17 V18 V19 V19 V20	Date 4/24/24 4/24/24 4/24/24 4/24/24 4/24/24 4/24/24 4/24/24 4/24/24 4/24/24 4/24/24 4/24/24	

The truss drawing(s) referenced above have been prepared by MiTek USA, Inc. under my direct supervision based on the parameters provided by Wheeler - Waverly.

Truss Design Engineer's Name: Sevier, Scott

My license renewal date for the state of Missouri is December 31, 2025.

IMPORTANT NOTE: The seal on these truss component designs is a certification that the engineer named is licensed in the jurisdiction(s) identified and that the designs comply with ANSI/TPI 1. These designs are based upon parameters shown (e.g., loads, supports, dimensions, shapes and design codes), which were given to MiTek or TRENCO. Any project specific information included is for MiTek's or TRENCO's customers file reference purpose only, and was not taken into account in the preparation of these designs. MiTek or TRENCO has not independently verified the applicability of the design parameters or the designs for any particular building. Before use, the building designer should verify applicability of design parameters and properly incorporate these designs into the overall building design per ANSI/TPI 1, Chapter 2.

Sevier, Scott

April 24,2024

									RELEASE	FOR CONSTRUCTIO	N
Job	Tr	russ	Truss Type		Qty	Ply	Lot 184 HT			D FOR PLAN REVIEW OPMENT SERVICES 165090777	V
B240082	A	1	Common Supported C	Gable	1	1	Job Reference (op	tional		I65090777 SUMMIT, MISSOURI	
Wheeler Lumbe	er, Waverly, KS - 6687	71,					2024 MiTek Industries, I PsB70Hq3NSgPqnL8w3	nc. Tu)7/2024	4
				ID.GIIF000R40HWXDL	o coopiiz	ZINV4U-RIC?I	rsb70nqsinsgrqiiLowa		SKWICDON J42JC ?!		_
		-0-10-8	<u> </u>				<u>20-8-0</u> 10-4-0			21-6-8	
		0-10-8	10-4-0				10-4-0	,		Ó-10-8	
					4x5 =						
T	\pm				7						
			12	6		8					
			1 <u>2</u> 6 [5	P		B	9				
			26				27				
5-11-3	5-10-0		4					10			
ָר. בי	ц.	3						P	11		
		e									
	-	2								12	
	0-8-0	25									
		346 24	4 23 22	21	20	<u>*******</u> 19	18 1	<u>*****</u> 716	<u>*************************************</u>	××××	
		3x6 II 24	+ <u>20</u> 22	21	20	15		3x4 =	10	3x6 II	
								574 -			
Scale = 1:44.1					20-8-0						
_oading	(ps	sf) Spacing	2-0-0	CSI	DEF	·····	in (loc) l/defl	L/d	PLATES	GRIP	
TCLL (roof)	25	.0 Plate Grip DOL	1.15	FC 0.0	07 Vert	(LL)	n/a - n/a	999	MT20	197/144	
Snow (Pf/Pg) TCDL	15.4/20 10			3C 0.0 WB 0.0		. ,	n/a - n/a .00 14 n/a	999 n/a			
BCLL BCDL	0 10	.0* Code	IRC2018/TPI2014	Matrix-R					Weight: 84 lb	FT = 20%	
	10	.0				4.45/00	(4) Davids as a			-	
LUMBER TOP CHORD	2x4 SPF No.2			20=-129/0, 6-21=-173 23=-140/62, 3-24=-14	,	,				others) of truss to ng 23 lb uplift at joint	t
BOT CHORD	2x4 SPF No.2 2x4 SPF No.2		9-1 NOTES	8=-145/69, 10-16=-1	40/63, 11	1-15=-143/8				at joint 21, 46 lb upli Ib uplift at joint 24,	ift
OTHERS	2x4 SPF No.2		1) Unbalanced roo	of live loads have be	en consid	lered for			19, 46 lb uplift at uplift at joint 15.	joint 18, 38 lb uplift a	at
BRACING TOP CHORD	Structural wood	I sheathing directly applie		16; Vult=115mph (3-			15) This truss is	desig	ned in accordance		
BOT CHORD		ectly applied or 6-0-0 oc		TCDL=6.0psf; BCDL osed; MWFRS (envel					erenced standard	ions R502.11.1 and I ANSI/TPI 1.	
	bracing.		cantilever left a	nd right exposed ; er Lumber DOL=1.60 p	nd vertica	l left and	LOAD CASE(S)	Sta	ndard		
REACTIONS	18=2	0-8-0, 15=20-8-0, 16=20 0-8-0, 19=20-8-0, 20=20	.8-0, 3) Truss designed	d for wind loads in th	e plane o	f the truss					
		0-8-0, 22=20-8-0, 23=20 0-8-0, 25=20-8-0	see Standard I	s exposed to wind (no ndustry Gable End D	etails as	applicable,					
	Max Horiz 25=8	0 (LC 11) 9 (LC 12), 15=-64 (LC 13		ified building designe -16; Pr=25.0 psf (roo							
	16=-3	38 (LC 13), 18=-46 (LC 1	3), Plate DOL=1.1	5); Pg=20.0 psf; Pf=´ e DOL=1.15); Is=1.0							
	22=-4	44 (LC 13), 21=-45 (LC 1 46 (LC 12), 23=-36 (LC 1	2), Partially Exp.; (Ce=1.0; Cs=1.00; Ct=	=1.10	,					
		70 (LC 12), 25=-23 (LC 1 76 (LC 2), 15=187 (LC 3	3), design.	ow loads have been							
		79 (LC 2), 18=186 (LC 2) 13 (LC 20), 20=169 (LC 2)	^{//,} lood of 12.0 poi	been designed for gr f or 1.00 times flat ro							
	21=2	13 (LC 19), 22=186 (LC	19), overhangs non	-concurrent with othe x4 MT20 unless othe					0000	ADD	
		79 (LC 2), 24=187 (LC 3 76 (LC 2)	8) Gable requires	continuous bottom c	hord bea	ring.			FE OF M	AISSO	
ORCES	(lb) - Maximum Tension	Compression/Maximum		y sheathed from one lateral movement (i.				B	ST SCOT	N S	
OP CHORD	2-25=-156/33, 1	1-2=0/32, 2-3=-83/54,	10) Gable studs sp 11) This truss has I	aced at 2-0-0 oc.	10.0 psf b	oottom		R	SEVI		
	6-7=-48/138, 7-	=-45/93, 5-6=-42/117, 8=-48/131, 8-9=-42/96,	chord live load	nonconcurrent with a sbeen designed for a	any other	live loads.		61		0 +*1	
	9-10=-39/72, 10 12-13=0/32, 12)-11=-39/49, 11-12=-66/3 -14=-156/21	on the bottom of	chord in all areas whe	ere a rect	angle			cott	Server	
BOT CHORD	24-25=-17/67, 2	23-24=-17/67, 22-23=-17/ 20-21=-17/67, 19-20=-17/	chord and any	2-00-00 wide will fit b other members.	etween t	ne bottom		N	PE-2001		
	18-19=-17/67, 1	16-18=-17/67, 15-16=-17/		e assumed to be SPF	No.2 .			Ŷ	Ser.	OF B	
	14-15=-17/67								SSIONA	LER	
									and	24,2024	
									, ,pri	,	

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

16023 Swingley Ridge Rd. Chesterfield, MO 63017 314.434.1200 / MITek-US.com

									RELEAS	E FOR CONSTRUCTION
Job	Truss		Truss Type		Qty	Ply	Lot 184 H	т		ED FOR PLAN REVIEW
B240082	A2		Common		4	1	Job Refer	ence (optional)		LOPMENT SERVICES 165090778 S SUMMIT, MISSOURI
Wheeler Lumber, Waverly, KS	- 66871,		•	Run: 8.73 S Apr 3 2	024 Print: 8	.730 S Apr 3	2024 MiTek In	ndustries, Inc. Tu	Apr 23 07 5 - 19	07/2024
				ID:pYrbhwRTICj0TW	DMRnDX?E	sznv3R-RfC?	PsB70Hq3NSg	gPqnL8w3u11Xb	5KWrCDon JazJC	
		-0-10-8 0-10-8	5-3-4 5-3-4	10-4-0 5-0-12		<u>15-4-</u> 5-0-1		+	20-8-0 5-3-4	21-6-8
		0-10-8	5-5-4	5-0-12		5-0-	12		5-5-4	0-10-8
					4x8 = 4					
ТТ			1 <u>2</u> 6 Г							
			2x4 、			\searrow		2x4 #		
			13		/			14		
5-11-3 5-10-0			3 10	~ //				5		
5-1				/	19-5-8		/		<u> </u>	
		2								6
	0-8-0	1					\checkmark			7
	Ğ⊥_			11		10	9		~	8
		8x8 ≠		3x4 =		3x4 =	5		٤	3x8 👟
							3x4 =			
		I	7-4-6	I	13-3-10		I	20-8-0	1	1
Scale = 1:47.8			7-4-6		5-11-3		1	7-4-6		
Plate Offsets (X, Y): [8:0-3	3-2,0-6-8]	, [12:0-1-10,0-3-4]								
Loading	(psf)	Spacing	2-0-0	CSI	DEF		in (loc)	l/defl L/d	PLATES	GRIP
TCLL (roof) Snow (Pf/Pg) 15	25.0 .4/20.0	Plate Grip DOL Lumber DOL	1.15 1.15		.80 Vert .56 Vert	. ,	.12 9-11 .21 9-11	>999 360 >999 240	MT20	197/144
TCDL BCLL	10.0 0.0*	Rep Stress Incr Code	YES IRC2018/TPI2014	WB 0 Matrix-S		. ,	.03 8 .06 9-11	n/a n/a >999 240		
BCDL	10.0					u(LL) 0		2000 210	Weight: 70 lb	FT = 20%
LUMBER TOP CHORD 2x4 SPF N				as been designed for g psf or 1.00 times flat r						
BOT CHORD 2x4 SPF N	lo.2		overhangs n	on-concurrent with oth as been designed for a	ner live loa	ds.				
2400F 2.0		ept* 12-2,8-6:2x8 SP	chord live loa	ad nonconcurrent with	any other	live loads.				
BRACING TOP CHORD Structural	wood she	eathing directly applied	on the bottor	has been designed for m chord in all areas w by 2-00-00 wide will fit	nere a rect	angle				
		ccept end verticals.	chord and ar	ny other members.		ne bollom				
bracing. REACTIONS (size)	8=0-3-8.	12=0-3-8	9) Provide med	are assumed to be SF chanical connection (b	/ others) o					
Max Horiz	12=82 (L		12 and 99 lb	e capable of withstand uplift at joint 8.	•					
Max Grav	8=985 (L	C 2), 12=985 (LC 2)	International	designed in accordan Residential Code sec	tions R502	2.11.1 and				
Tension		npression/Maximum	LOAD CASE(S)	nd referenced standar Standard	d ANSI/TF	ขา.				
4-5=-1171	/138, 5-6=	4/138, 3-4=-1171/138 =-1364/139, 6-7=0/37								
2-12=-895 BOT CHORD 11-12=-12		=-895/138 -11=-5/822, 8-9=-56/1	118							
WEBS 4-9=-57/36 3-11=-264	,	264/164, 4-11=-57/368	3,						~	C
NOTES 1) Unbalanced roof live lo	ads have	been considered for							OF OF	MISSO
this design.Wind: ASCE 7-16; Vul								E	122	N SS
Vasd=91mph; TCDL=6	6.0psf; BC	DL=6.0psf; h=15ft; C						<i>A</i>	SCOT	TER Y
II; Exp C; Enclosed; M cantilever left and righ	exposed	; end vertical left and						60		P
right exposed; Lumber 3) TCLL: ASCE 7-16; Pr=	25.0 psf ((roof LL: Lum DOL=1.							OUN NUN	Jerren
Plate DOL=1.15); Pg= DOL=1.15 Plate DOL=								Ø.	PE-200	1018807
Partially Exp.; Ce=1.0;4) Unbalanced snow load			6					V	18ssin	ENGI
, design.									SION	AL D.
										il 24,2024
							195			

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

											RELEASE		N
Job	Truss		Truss T	уре		Qty	Ply	Lot 184	I HT			D FOR PLAN REVIEW OPMENT SERVICES 165090779	V
B240082	A3		Comm	on Girder		1	2	Job Re	ference (opti	onal		I65090779 SUMMIT, MISSOURI	
Wheeler Lumber, Waverly, H	(S - 66871,				Run: 8.73 S Apr 32 ID:BgsuH88v5XU?u			3 2024 MiTe	k Industries, In	nc. Tue		07/2024	4
		-0-10-8	5-3-4	1	10-4-0		ı 1	5-4-12	1		20-8-0		
		0-10-8	5-3-4	1	5-0-12		T g	5-0-12	I		5-3-4		
							4x8 <mark>॥</mark> 4						
5-11-3	0-8-0	1 2 13 4x8 =	14 5-3-4 5-3-4	3 ¹¹ • • 15 10	16 17 10 II 10-4-0 5-0-12		12x12 = 6x8	18 3= <u>5-4-12</u> 5-0-12	4x8 \$ 12 5 12 5 19 7 3x10 #	20	21 20-8-0 5-3-4	6 4x8	
$\frac{\text{Scale} = 1:47.8}{\text{Plate Offsets (X, Y): [2:1]}}$	0-1-0,0-2-0]												
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 25.0 15.4/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 NO IRC2018	3/TPI2014	BC	0.38	. ,	-0.20 7 0.04	-9 >999 -9 >999 6 n/a	L/d 360 240 n/a 240	PLATES MT20 Weight: 216 lb	GRIP 197/144 FT = 20%	
WEBS 2x3 SPF BRACING TOP CHORD Structur 3-9-0 oc BOT CHORD Rigid ce bracing. REACTIONS (size) Max Hori: Max Uplif Max Grav	2400F 2.0E No.2 al wood she purlins. iling directly 2=0-3-8, z 2=92 (LC t 2=-556 (L 2=55816 (I ximum Com		d or 5) 6) 7)	Vasd=91mpł II; Exp C; En cantilever lef right exposed TCLL: ASCE Plate DOL=1 DOL=1.15 Pl Partially Exp Unbalanced design. This truss ha load of 12.0 overhangs n This truss ha	7-16; Vult=115mph (;; TCDL=6.0psf; BCC closed; MWFRS (env and right exposed ; d; Lumber DOL=1.60 7-16; Pr=25.0 psf (rr .15); Pg=20.0 psf; Pf ate DOL=1.15); Is=1 ; Ce=1.0; Cs=1.00; C snow loads have bee s been designed for on-concurrent with ot s been designed for id nonconcurrent with	DL=6.0 velope) end ve plate g oof LL: =15.4 .0; Rou Ct=1.1(en cons greate roof loa her live a 10.0	psf; h=15ft; Ca exterior zone ertical left and grip DOL=1.6(Lum DOL=1.16(Lum DOL=1.7) psf (Lum ugh Cat C;) sidered for this r of min roof lin ad of 15.4 psf o loads. psf bottom	at. 1) ; 15 7e on	Increase=1. Uniform Loa Vert: 1-4 Concentrate Vert: 9=-4 (F), 16=-4	ow (ba .15 ads (lb =-51, 4 ed Loa 524 (F 503 (F	lanced): Lumber b/ft) 4-6=-51, 2-6=-20 ads (Ib) F), 13=-705 (F), 1	Increase=1.15, Plate 4=-700 (F), 15=-700 8=-384 (F), 19=-384)

- * This truss has been designed for a live load of 20.0psf 9) on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
 - 10) All bearings are assumed to be SP 2400F 2.0E .
 - 11) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 623 lb uplift at joint 6 and 556 lb uplift at joint 2.
 - 12) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
 - 13) Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 1026 Ib down and 36 lb up at $\,$ 0-7-4, 1021 lb down and 40 lb $\,$ up at 2-7-4, 1021 lb down and 40 lb up at 4-7-4, 784 lb down and 136 lb up at 6-7-4, 784 lb down and 136 lb up at 8-7-4, 702 lb down and 141 lb up at 10-7-4, 997 lb down and 119 lb up at 12-7-4, 997 lb down and 119 lb up at 14-7-4, and 997 lb down and 119 lb up at 16-7-4, and 997 lb down and 119 lb up at 18-7-4 on bottom chord. The design/selection of such connection device (s) is the responsibility of others.

PE-2 PH-SSIONAL EN PE-2001018807

OF MISSOL

SCOTT M.

SEVIER

NUMBE

TATE

April 24,2024

 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.
 Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not beigh valid for use only with with with sets outputs into design is based only door parameters shown, and is for an individual dualing component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria**, and **DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcscomponents.com)

TOP CHORD

BOT CHORD

WEBS

NOTES

oc.

1)

2)

3)

1-2=0/16, 2-3=-8367/950, 3-4=-5850/785,

4-5=-5849/785, 5-6=-8502/1051

2-10=-852/7323, 9-10=-852/7323,

7-9=-859/7395, 6-7=-859/7395

5-9=-2554/388, 5-7=-216/2458,

Top chords connected as follows: 2x4 - 1 row at 0-6-0

Bottom chords connected as follows: 2x8 - 2 rows

Web connected as follows: 2x3 - 1 row at 0-9-0 oc.

All loads are considered equally applied to all plies,

CASE(S) section. Ply to ply connections have been

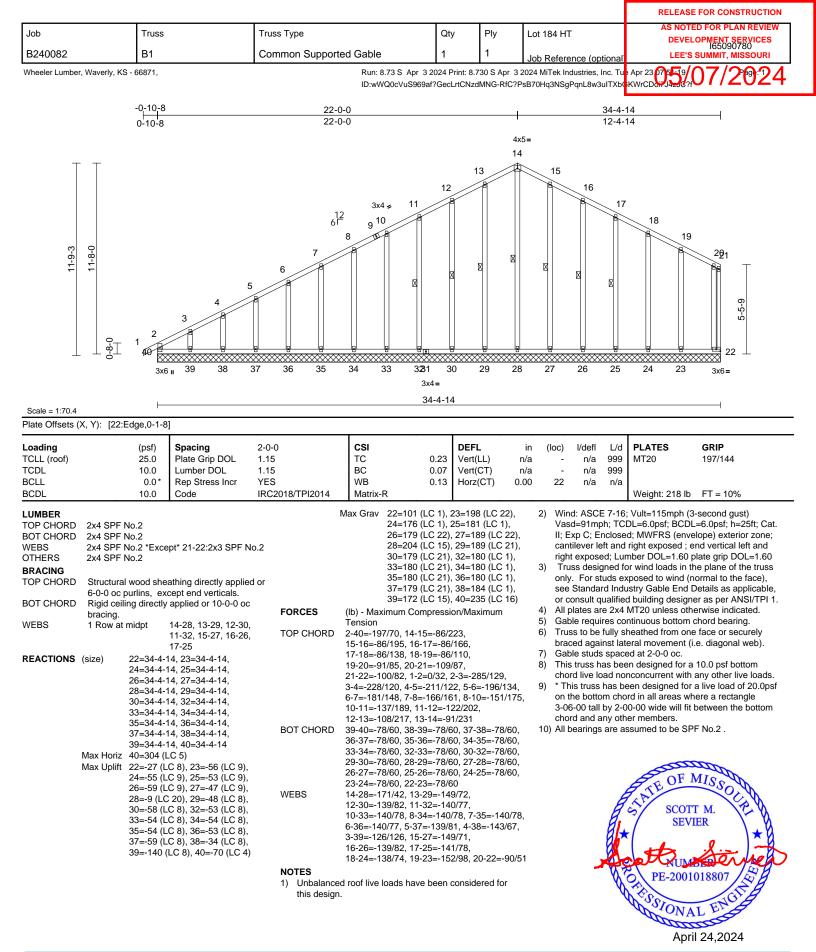
provided to distribute only loads noted as (F) or (B),

Unbalanced roof live loads have been considered for

except if noted as front (F) or back (B) face in the LOAD

3-9=-2419/284

(0.131"x3") nails as follows:


staggered at 0-6-0 oc.

unless otherwise indicated.

this design.

2-ply truss to be connected together with 10d

4-9=-607/4897, 3-10=-123/2324,

Continued on page 2

Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE WAR Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponent.com)

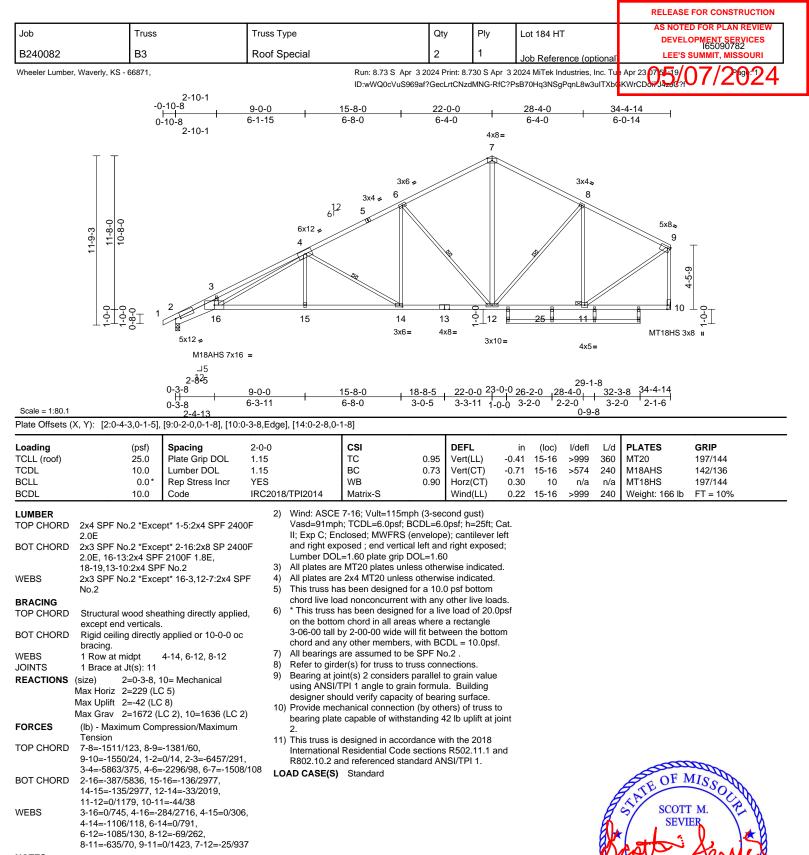
						RELEASE FOR CONSTRUCTION
Job	Truss	Truss Type	Qty	Ply	Lot 184 HT	
B240082	B1	Common Supported Gable	1	1	Job Reference (optional	DEVELOPMENT SERVICES 165090780 LEE'S SUMMIT, MISSOURI
Wheeler Lumber, Waverly, KS -	66871,				2024 MiTek Industries, Inc. Tu sB70Hq3NSgPqnL8w3uITXb(

11) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 70 lb uplift at joint 40, 27 lb uplift at joint 22, 9 lb uplift at joint 28, 48 lb uplift at joint 29, 58 lb uplift at joint 30, 53 lb uplift at joint 32, 54 lb uplift at joint 33, 54 lb uplift at joint 34, 54 lb uplift at joint 35, 53 lb uplift at joint 36, 59 lb uplift at joint 37, 34 lb uplift at joint 38, 140 lb uplift at joint 37, 59 lb uplift at joint 27, 59 lb uplift at joint 26, 53 lb uplift at joint 25, 55 lb uplift at joint 24 and 56 lb uplift at joint 23.

12) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent oulgase with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TPI1 Quality Criteria, and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcscomponents.com)



								RELEAS	E FOR CONSTRUCTION	
Job	т	russ	Truss Type		Qty	Ply	Lot 184 HT		ED FOR PLAN REVIEW	٦
B240082	E	32	Roof Special		2	1		1 5 5 10	OPMENT SERVICES 165090781 SUMMIT, MISSOURI	
	, Waverly, KS - 668			Run: 8.73 S Apr 3		: 8.730 S Apr 3	Job Reference (option 2024 MiTek Industries, Inc.		07/202/	1
		0.40.4		ID:wWQ0cVuS969a	af?GecLrtC	NzdMNG-RfC?	PsB70Hq3NSgPqnL8w3ulT	XbGKWrCDoirJ4=JC?f	01/2024	ł
		2-10-1 -0-10-8	9-0-0 1	5-8-8	22-0-0	23-1-12	28-4-0 32-2-4	34-4-14		
		0-10-8 2-10-1	6-1-15 6	6-8-8	6-3-8	1-1-12	5-2-4 3-10-4	2-2-10		
		2 10 1				2x4 I 4x8=				
						7				
							<			
				^{3x6} = _{3x4} = 6			3x4 . 9	6x6		
			12 61	5				2x4 II		
	ς - Ο		6x12 =					10		
	<u>11-9-3</u> 11-8-0		4							
		2x4 II		<u></u>				8-0		
		3						4-10		
	0	- 1 ²				<u></u>	1		Ξ-1- 2	
		□ ' 20	19 2x4 u	18 17 3x6=	21			[#] 14 5 [±] 5	I63	
		5x12 ≽ M18AHS 7x16		3x6=		8x12=		4x8 u 6x12=		
		_ 5	=			4x5 I		MT18HS 3x8 ॥		
		2-825 0-3-8	9-0-0 1	5-8-8	23-0-0		32-3-8	34-4-14		
Scale = 1:83.8		0-3-8		5-8-8	7-3-8		9-3-8	2-1-6		
	X, Y): [2:0-4-3,0)-1-5], [11:0-2-0,0-1-8], [1	2:Edge,0-2-8], [14:0-3-8,	Edge], [16:0-6-0,0-2-8	3], [18:0-2	2-8,0-1-8]				_
Loading	(p	osf) Spacing	2-0-0	CSI	D	EFL	in (loc) l/defl L	./d PLATES	GRIP	
TCLL (roof) TCDL	2	5.0 Plate Grip DOL	1.15			. ,		60 MT20 40 M18AHS	197/144 142/136	
BCLL		0.0 Lumber DOL 0.0* Rep Stress Incr	1.15 YES			. ,		/a MT18HS	197/144	
BCDL	10	0.0 Code	IRC2018/TPI2014	Matrix-S	W	/ind(LL) 0	.31 19-20 >999 2	40 Weight: 178 lb	FT = 10%	—
LUMBER TOP CHORD	2x4 SPF No 2	*Except* 1-5:2x4 SPF 24	·	I roof live loads have I	been con	sidered for				
	2.0E		2) Wind: ASCI	E 7-16; Vult=115mph h; TCDL=6.0psf; BCI						
BOT CHORD	2.0E, 20-17:2x	*Except* 2-20:2x8 SP 24 4 SPF 2100F 1.8E, 14-10	:2x3 II; Exp C; E	nclosed; MWFRS (en	velope) e	xterior zone;				
WEBS	,	12:2x6 SPF No.2 *Except* 16-6:2x4 SPF N	o.2, right expose	eft and right exposed ; ed; Lumber DOL=1.60) plate gri	p DOL=1.60				
BRACING	20-3:2x4 SP N	0.3		e MT20 plates unless as been designed for						
TOP CHORD		d sheathing directly appli		bad nonconcurrent wit has been designed for						
BOT CHORD		rectly applied or 10-0-0 o	c on the botto	om chord in all areas v	vhere a re	ectangle				
1 Row at midpt	bracing. Exce 8-16	pt:	chord and a	by 2-00-00 wide will f iny other members, w	ith BCDL	= 10.0psf.				
WEBS REACTIONS	1 Row at midp	t 4-18, 6-16, 9-13 -3-8, 12= Mechanical	, .	are assumed to be S der(s) for truss to truss						
	Max Horiz 2=2	85 (LC 5)		oint(s) 2 considers pa /TPI 1 angle to grain f						
		238 (LC 8), 12=-152 (LC 9 665 (LC 2), 12=1605 (LC	designer sh	ould verify capacity of	f bearing	surface.				
FORCES		Compression/Maximum	bearing plat	chanical connection (lice capable of withstan			nt			
TOP CHORD	1-2=0/14, 2-3=	-6324/1094, 3-4=-5737/1		o uplift at joint 12. s designed in accorda	nce with	the 2018				
		7, 6-7=-1371/260, 2, 8-9=-1469/293,		I Residential Code se and referenced standa				- COM	alle	
	9-10=-687/157 11-12=-1558/1	, 10-11=-672/119, 58	LOAD CASE(S					SE OF	MISSO	
BOT CHORD	2-20=-1181/56	94, 19-20=-515/2896,						SCOT	Nov N	
	15-16=0/187, 8	95, 16-18=-257/1976, 3-16=-238/138, 14-15=0/1					ł	SEV SEV		
WEBS	13-14=0/175, 4-20=-699/265	10-13=-199/121, 12-13=-6 7, 4-19=0/289,	64/50				4	X ++.	8	ר
	4-18=-1060/29	18, 6-18=-51/831, 16, 13-16=-161/897,						NUM	BER	/
	9-16=-2/392, 9	-13=-1026/134,	0.705				Y	PE-2001		
	11-13=-124/13	47, 7-16=-182/938, 3-20=	:0/735					N TSC	OF A	
NOTES								SIONA	LET	
									il 24.2024	

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

MiTek[®] 16023 Swingley Ridge Rd. Chesterfield, MO 63017 314.434.1200 / MiTek-US.com

April 24,2024

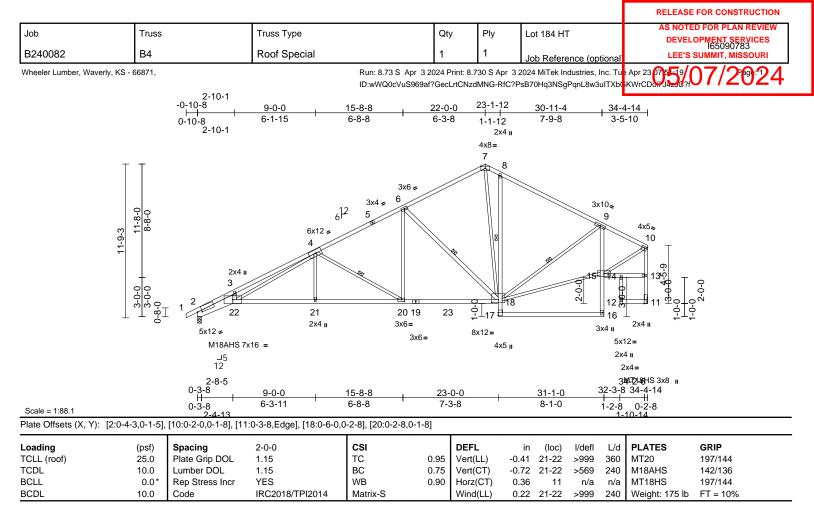
NOTES

1) Unbalanced roof live loads have been considered for this design.

April 24,2024

E

NIIM


SIONAL

0

PE-2001018807

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANS/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

LU	8/	D	-	D
LU	IVI	D		R.

TOP CHORD	2x4 SPF No.2 *Except* 1-5:2x4 SPF 2400F 2.0E	2
BOT CHORD	2x4 SPF No.2 *Except* 2-22:2x8 SP 2400F 2.0E, 22-19:2x4 SPF 2100F 1.8E, 14-12:2x3	,
WEBS	SPF No.2 2x3 SPF No.2 *Except* 22-3,18-6:2x4 SPF No.2	3)
BRACING		4)

TOP CHORD	Structural except en		eathing directly applied, s.
BOT CHORD	Rigid ceili bracing.		y applied or 10-0-0 oc
1 Row at midp	t 8-18		
WEBS	1 Row at	midpt	4-20, 6-18, 9-18
REACTIONS	(size)	2=0-3-8,	11= Mechanical
	Max Horiz	2=229 (L	.C 5)

	Max Uplift 2=-42 (LC 8)
	Max Grav 2=1666 (LC 2), 11=1633 (LC 2)
FORCES	(lb) - Maximum Compression/Maximum
	Tension
TOP CHORD	1-2=0/14, 2-3=-6438/289, 3-4=-5845/373,
	4-6=-2289/95, 6-7=-1375/103,
	7-8=-1465/136, 8-9=-1527/110,
	9-10=-1473/24, 11-13=-1595/10,
	10-13=-1533/18
BOT CHORD	2-22=-385/5819, 21-22=-137/2959,
	20-21=-137/2958, 18-20=-30/2011,
	17-18=0/159, 8-18=-486/168, 16-17=0/49,
	15-16=0/153, 9-15=-400/78, 14-15=-75/64,
	13-14=-67/57, 12-14=0/35, 11-12=-8/8
WEBS	3-22=0/744, 4-22=-280/2718, 4-21=0/290,
	4-20=-1092/123, 6-20=0/841,
	6 10- 1155/101 15 10- 55/1010

6-18=-1155/121. 15-18=-55/1313. 9-18=-193/106, 10-15=-6/1530, 7-18=-114/1081

NOTES

1) Unbalanced roof live loads have been considered for this design

- Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope); cantilever left and right exposed; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
- All plates are MT20 plates unless otherwise indicated. This truss has been designed for a 10.0 psf bottom
- chord live load nonconcurrent with any other live loads. * This truss has been designed for a live load of 20.0psf 5) on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- All bearings are assumed to be SPF No.2 . 6)
- Refer to girder(s) for truss to truss connections. 7)
- Bearing at joint(s) 2 considers parallel to grain value 8) using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface. Provide mechanical connection (by others) of truss to 9)
- bearing plate capable of withstanding 42 lb uplift at joint
- 10) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. LOAD CASE(S) Standard

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITEk® connectors. This design is based only upon parameters shown, and is for an individual building component, not and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponent.com)

										RELEAS	E FOR CONSTRUCTION	
Job	Truss		Truss Type		Qty	Ply	L	ot 184 HT				٦
B240082	B5		Roof Special		3	1			<i>.</i>		LOPMENT SERVICES 165090784 SUMMIT, MISSOURI	
	r, Waverly, KS - 66871,			Run: 8.73 S Apr 3		nt: 8.730 S A			<u>nce (optional</u> dustries. Inc. Tu		07/2021	
	,,,,			ID:wWQ0cVuS969							01/2024	F
	-0-	2-11-15 10-8	9-9-9	17-9-9	. 22	2-0-0	26-2-0	6.	34-8-0) .		
	- 0-	10.0	6-9-10	8-0-0		-2-7	4-2-6		8-5-10			
		2-11-15				4x8 7	I					
	11-9-3 0-8-0 11-8-0	6x12 = 3 2 15 5x12 = M18AHS 6x14 =	6 ¹² 3x4 = 4 14 4x8=	3x10 = 5	2x4 II 6 1 1 13 1 5x8=		17	2x4 # 8 7 11 4x8=		6x6 × 9 9 10 3x6=	-0-0 -0-0 	
Scale = 1:80		_15 2-825 0-3-8	9-9-9 7-1-4	<u>17-9-9</u> 8-0-0	-1	<u>26-2-</u> 8-4-13			<u>34-8-(</u> 8-5-1(
	X, Y): [2:0-4-3,0-1-5]	<u>2-4-13</u> , [9:Edge,0-1-12], [10:E	Edge,0-1-8], [14:0-2-8,0	-2-0]								—
Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl L/d	PLATES	GRIP	—
TCLL (roof)	25.0	Plate Grip DOL	1.15	тс	0.72	Vert(LL)	-0.38	14-15	>999 360	MT20	197/144	
TCDL BCLL	10.0 0.0*	Lumber DOL Rep Stress Incr	1.15 YES	BC WB		Vert(CT) Horz(CT)	-0.68 0.28	14-15 10	>610 240 n/a n/a	M18AHS	142/136	
BCDL	10.0	Code	IRC2018/TPI2014	Matrix-S		Wind(LL)		14-15	>999 240	Weight: 159 lb	FT = 10%	_
LUMBER TOP CHORD	2v4 SPE 2100E 1 8	E *Except* 5-7:2x4 SP	· · · · · · ·	7-16; Vult=115mph n; TCDL=6.0psf; BC			Cat.					
	No.2		II; Exp C; En	closed; MWFRS (er t and right exposed	velope)	exterior zor	ne;					
BOT CHORD	2x8 SP 2400F 2.0E 2100F 1.8E, 12-10:2	*Except* 15-12:2x4 SI 2x4 SPF No.2	right expose	d; Lumber DOL=1.6	0 plate g	grip DOL=1.	60					
WEBS	2x3 SPF No.2 *Exce 2.0E, 13-7,11-7,10-9	ept* 15-3:2x8 SP 2400 9 [.] 2x4 SPF No 2		MT20 plates unles to been designed for			d.					
BRACING			F) * This trues h	ad nonconcurrent wi has been designed f								
TOP CHORD	2-5-1 oc purlins, ex	eathing directly applied acept end verticals.	on the bottor	n chord in all areas	where a	rectangle						
BOT CHORD	Rigid ceiling directly bracing, Except:	applied or 10-0-0 oc		by 2-00-00 wide will by other members, v								
WEBS	7-6-1 oc bracing: 14		Z) Deering of is	are assumed to be s int(s) 2 considers pa								
WEDS	1 Row at midpt	3-14, 4-13, 6-13, 7-11 8-11	' using ANSI/1	[PI 1 angle to grain	formula.	Building						
REACTIONS	(size) 2=0-3-8, Max Horiz 2=277 (Le		 8) Provide mec 	ould verify capacity of hanical connection	(by othe	rs) of truss t						
	Max Uplift 2=-239 (L	C 8), 10=-153 (LC 9)	2 and 153 lb	 capable of withstar uplift at joint 10. 	nding 23	9 lb uplift at	joint					
FORCES	Max Grav 2=1677 ((lb) - Maximum Con	LC 2), 10=1638 (LC 2)	This truss is	designed in accorda			nd					
	Tension		R802.10.2 a	Residential Code sond referenced stand			uiu					
TOP CHORD	4-6=-2085/318, 6-7=		, LOAD CASE(S)	Standard						~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		
	7-8=-1577/320, 8-9= 9-10=-1515/194	=-1589/234,								OF	MISSO	
BOT CHORD	2-15=-1333/6439, 1 13-14=-496/2803, 1								4	THEOF	13000	
	10-11=-50/62								A	SCOT		
WEBS	3-15=-429/2596, 3-7 4-14=0/536, 4-13=-7	14=-2282/603, 1163/333, 6-13=-463/2	64,						EA.	SEV		
	7-13=-346/1342, 7-1	11=-190/348,	,						X	att3	Xanlin	7
NOTES	8-11=-558/316, 9-1	1=-111/1426							R	NUM		·
1) Unbalance	ed roof live loads have	been considered for							Ø	PE-2001	018807	
this desigr	٦.								Y	ESSIONA	LENGI	
										A NA	L L'EST	
										Apr	il 24,2024	

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

liTek° Μ 16023 Swingley Ridge Rd. Chesterfield, MO 63017 314.434.1200 / MiTek-US.com

							RELEASE FOR CONSTRUCTION
Job	Truss	Truss Type	Qty	Ply	Lot 184 HT		AS NOTED FOR PLAN REVIEW DEVELOPMENT SERVICES 165090785
B240082	B6	Roof Special	1	1	Job Reference (or	otional	165090785 LEE'S SUMMIT, MISSOURI
Wheeler Lumber, Waverly, KS -	66871,		Run: 8.73 S Apr 3 2024 Prin ID:wWQ0cVuS969af?GecLrt0		3 2024 MiTek Industries,	Inc. Tue Ap	
	1 10 0						
	-1-10-8 2-11-15 1-10-8 2-11-15	9-9-9 6-9-10		-0-0 -2-7	<u>26-2-6</u> 4-2-6	34-8-0 8-5-10	I
				4x8 ။ 7			
12-3-3 11-8-0	6x12 3 1 15 5x12 =	3x4 = 5 4	2x4 II 6 1 13 1 5x8 =		2x4 II 8 17 11 4x8=		$ \begin{array}{c} 6x6 \\ 9 \\ 07 \\ 10 \\ 3x6 = \end{array} $
	M18AHS 6> 5 2.8 ² 5 0-3-8	14 = <u>9-9-9</u> 7-1-4	17-9-9 8-0-0	<u>26-2-6</u> 8-4-13		<u>34-8-0</u> 8-5-10	
Scale = 1:80.3	0-3-8 2-4-13			8-4-13	•	8-3-10	
, .		0:Edge,0-1-8], [14:0-2-8,0-2-0	-		in (lan) 1/da f l		
_oading FCLL (roof)	(psf)Spacing25.0Plate Grip DOL	1.15 T	C 0.75 V	. ,	in (loc) l/defl -0.37 14-15 >999	360 N	LATES GRIP 1T20 197/144
FCDL BCLL	10.0 Lumber DOL 0.0* Rep Stress Incr	1.15 B YES W		. ,	-0.67 14-15 >620 0.27 10 n/a	240 N n/a	118AHS 142/136
BCDL	10.0 Code	IRC2018/TPI2014 M	latrix-S V	ind(LL)	0.27 14-15 >999	240 W	Veight: 160 lb FT = 10%
No.2 30T CHORD 2x8 SP 240 2100F 1.8E 2100F 1.8E 2100F 1.8E 2x3 SPF No. 2.0E, 13-7, BRACING FOP CHORD Structural V 2-5-12 oc p 7-8-0 oc br. WEBS 1 Row at m REACTIONS (size) 2 Max Horiz 2 Max Horiz 2 Max Uplift 2 Max Grav 2 FORCES (b) - Maxim Tension FOP CHORD 1-2=0/46, 2 4-6=-2080/ 7-8=-1574/ 9-10=-1513 30T CHORD 2-15=-388/ NEBS 3-15=-388/ NEBS 3-15=-388/ NEBS 3-15=-388/ NOTES	acing: 14-15. idpt 3-14, 4-13, 6-13, 7 8-11 2=0-3-8, 10=0-3-8 2=286 (LC 5) 2=-263 (LC 8), 10=-153 (LC 2=1737 (LC 2), 10=1635 (LC 1171, 3-4=-3138/- 315, 6-7=-2042/453, 319, 8-9=-1586/233, //94 /6310, 14-15=-1049/4984, //2790, 11-13=-70/1270,	 SPF Vasd=91mph; T II; Exp C; Enclos cantilever left ar right exposed; L 400F 3) All plates are M 4) This truss has b chord live load r 5) * This truss has on the bottom cl 6) All bearings are -11, 7) Bearing at joint(using ANSI/TPI designer should 8) Provide mechar bearing plate ca 2 and 153 lb upi 9) This truss is des International Re R802.10.2 and r 449, LOAD CASE(S) S 	signed in accordance with sidential Code sections R referenced standard ANSI	f; $h=25$ ft; Ca xterior zone cal left and p DOL=1.60 e indicated. sf bottom er live loads vad of 20.0ps cactangle n the bottom = 10.0psf. rain value Building surface. o ft russ to lb uplift at jo the 2018 502.11.1 and	; sf	S C R OR OF C R	THE OF MISSO SCOTT M. SEVIER NUMBER PE-2001018807

NOTES

April 24,2024

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

								RELEASE FOR CO	NSTRUCTION
Job	Truss		Truss Type		Qty	Ply	Lot 184 HT	AS NOTED FOR P DEVELOPMENT	
B240082	B7		Roof Special		1	1	Job Reference (option	DEVELOPMENT 16509 LEE'S SUMMIT,	
Wheeler Lumber	, Waverly, KS - 66871,			Run: 8.73 S Apr 3	3 2024 Print: 8	3.730 S Apr 3	3 2024 MiTek Industries, Inc. ⁻ PsB70Hq3NSgPqnL8w3uITX	Tue Apr 23 07 5 20/07/	2024
		1 10 9							
		- <u>1-10-8 2-11-1</u> 1-10-8 2-11-1	5 9-9-9 5 6-9-10		17-9-9 5-5-14	4-2-7		<u>0-3-8</u> I-1-2	
							4х8 II 7		
	ΤT					2x4 II	2x4 II		
					e	3		6x6=	
				6 ¹² 3x6 =				9	
	-3-3 11-8-0 10-8-0			3x4 = 5					
	<u>12-3-3</u> 11-8 10-8		_		I	× //			
			4x10 =					7-6-4	
			3						
			18	17			14 1 12 2x4 13		
	T	∑ ⊠ 5x12 ₂		3x10=		5x8= 3x4=	2x4 u 11 4x8=	⊠ 3x6=	
		M18 يال	BAHS 6x14 =				2x4 II		
		2-8-25 0-3-8		17-9	0	21-1(18-8-5)-0 26-1-2 ²⁶⁻²⁻⁶ 3	0.2.0	
Scale = 1:80.3		0-3-8	7-1-4	8-0-	-	-10-12 3-1-	4-3-2 0-1-4 4	i-1-2	
Plate Offsets (X, Y): [2:0-4-3,0-1-5]	, [9:0-2-8,Edge], [13:0)-2-4,0-2-0], [17:0-2-8,	0-1-8]		<u> </u>		-	
Loading TCLL (roof)	(psf) 25.0	Spacing Plate Grip DOL	2-0-0 1.15	CSI TC	0.97 Ver		in (loc) l/defl L/ 0.29 17-18 >999 36		4
TCDL	10.0	Lumber DOL	1.15	BC	0.69 Vei	rt(CT) -	0.56 17-18 >639 24	0 M18AHS 142/13	
BCLL BCDL	0.0* 10.0	Rep Stress Incr Code	YES IRC2018/TPI2014	WB Matrix-S		. ,	0.26 10 n/a n/ 0.26 17-18 >999 24		0%
				CE 7-16; Vult=115mph ph; TCDL=6.0psf; BC					
BOT CHORD		ept* 2-18:2x8 SP 240	0F II; Exp C; I	Enclosed; MWFRS (el left and right exposed	nvelope) ex	terior zone;			
WEBS	SPF No.2	F 2100F 1.8E, 14-12:: ept* 18-3:2x8 SP 2400	right expos	sed; Lumber DOL=1.6 are MT20 plates unles	50 plate grip	DOL=1.60			
	2.0E, 16-7,13-7:2x4		4) This truss	has been designed fo load nonconcurrent w	or a 10.0 psf	bottom			
BRACING TOP CHORD		athing directly applied	d or 5) * This trus	s has been designed to com chord in all areas	for a live loa	nd of 20.0ps			
BOT CHORD		cept end verticals. applied or 10-0-0 oc	3-06-00 ta	Il by 2-00-00 wide will any other members.		0			
	bracing, Except: 8-0-1 oc bracing: 17		All bearing	s are assumed to be joint(s) 2 considers p		ain value			
WEBS	6-0-0 oc bracing: 11 1 Row at midpt	3-17, 7-13, 9-10, 4-1	6. using ANS	I/TPI 1 angle to grain	formula. B	uilding			
REACTIONS	· · · ·		8) Provide m	echanical connection ate capable of withsta	(by others)	of truss to	int		
	Max Horiz 2=367 (Le Max Uplift 2=-241 (L	C 8), 10=-166 (LC 8)	2 and 166 9) This truss	Ib uplift at joint 10. is designed in accord	•				
FORCES	Max Grav 2=1498 (I (Ib) - Maximum Con) Internation	al Residential Code s and referenced stand	ections R50)2.11.1 and			
TOP CHORD		6/1059, 3-4=-2502/39	LOAD CASE(- / -				
		702/175, 9-10=-1315	/177					SE OF MISS	Dr.
BOT CHORD	2-18=-1152/5117, 1 16-17=-422/2188, 1							HAVI	C.S.
	13-14=-91/750, 12- 10-11=-7/35	14=0/45, 11-12=-16/1	8,				E.	SCOTT M. SEVIER	128
WEBS	3-18=-341/1960, 3-7 7-16=-333/1231, 7-7	17=-1918/544, 13=-516/101, 4-17=0/	466,				- AS	* to it.	
	4-16=-1083/321, 6-1							NUMBER	15A
NOTES	9-13=-98/1083						Ŷ	PE-2001018807	NE A
	ed roof live loads have n.	been considered for						CSSIONAL EN	S'H
								and	24
								April 24,20	24

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

											RELEAS	E FOR CONSTRUCTION
Job	Truss		Truss Ty	/pe		Qty	,	Ply	Lot 184 H	т		ED FOR PLAN REVIEW
B240082	B8		Roof S	pecial		2		1	lob Pofo	ence (optiona		ELOPMENT SERVICES 165090787 S SUMMIT, MISSOURI
Wheeler Lumbe	r, Waverly, KS - 66871,				Run: 8.73 S	Apr 3 2024 P	rint: 8.73	0 S Apr 3 2			al Fue Apr 23 07 5 20	/07/วดฺว/
	,,, ,										bGKWrCDoii J4zJC	JU1/2024
		2-11-15 -0-10-8		9-9-9	13-3-11	17-9-9		22-0-0	26-2	-6 . 30-	3-8	
		0-10-8	1 (6-9-10	3-6-1	4-5-14		4-2-7	4-2-		1-2	
		2-11-15							4x8 u 7			
	ТТ						0.1		/ #~	0.1		
							2x4 II		\mathbb{Z}	2x4 II		
					10 3X	10 =	1				6x6=	
					12 ^{3x} 6						9 _	
	<u>1-9-3</u> 11-8-0 10-8-0				3x4 =	The second s			1/2			
	<u>11-9-3</u> 11-8- 10-8-				4		R		//			
							_ ا	//	\		7	
			4x10 =					/		$\mathbb{N} \parallel \mathbb{Z}$	7-6-4	
			3	X			$\sim V/$					
		$2_{T} 1^{2}$	⊒	E	≝			0 14	Ê			Г
			18		17 x10=		16 15 5x8=	~-12	^{el} 2x4 ⊪	<u>18</u> 11	10 ⊥ –	L
		5x12 ≠					3x		2x4 II	4x8=	3x6=	
		M18A ⊒5	HS 6x14 =							2x4 II		
		2-8 ² 5						21-10-0				
		0-3-8		<u>9-9-9</u> 7-1-4		7-9-9	18-8-		<u>26-1-</u> 4-3-2	2 26-2-6 30-	3-8	
Scale = 1:80		0-3-8 2-4-13		7-1-4	8	-0-0	0-10-1	2 <u>3-1-11</u>	4-3-2	2 0-1-4 4-1	1-2	
'late Offsets (X, Y): [2:0-4-3,0-1-5],	[9:0-2-8,Edge], [13:	0-2-4,0-2-0], [17:0-2-8,0-	1-8]						_	
Loading	(psf)	Spacing	2-0-0		CSI		DEFL		in (loc)	l/defl L/		GRIP
FCLL (roof) FCDL	25.0 10.0	Plate Grip DOL Lumber DOL	1.15 1.15		TC BC	0.97 0.71	Vert(LI Vert(C	,	30 17-18 58 17-18	>999 36 >623 24		197/144 142/136
BCLL	0.0*	Rep Stress Incr	YES		WB	0.71	Horz(C			>023 24 n/a n/		142/130
BCDL	10.0	Code	IRC2018	3/TPI2014	Matrix-S		Wind(L	L) 0.	26 17-18	>999 24	0 Weight: 158 lb	FT = 10%
UMBER			2)		7-16; Vult=11							
FOP CHORD		50+* 2 10·2v9 SD 240	0E		h; TCDL=6.0ps iclosed; MWFF							
	2.0E, 18-15:2x4 SPF			cantilever let	ft and right exp	osèd ; end v	értical le	eft and				
WEBS	SPF No.2 2x3 SPF No.2 *Exce	nt* 18-3·2x8 SP 240	0F 3)		d; Lumber DOI e MT20 plates							
	2.0E, 16-7,13-7:2x4		4)	This truss ha	as been design	ed for a 10.0	psf bot	tom				
BRACING	Structural wood abo	athing directly applie	dor 5)		ad nonconcurre nas been desig							
	Structural wood she 2-1-5 oc purlins, ex			on the bottor	m chord in all a	reas where a	a rectan	gle .				
BOT CHORD	Rigid ceiling directly	applied or 10-0-0 oc	;		by 2-00-00 wide ny other memb		een the	bottom				
	bracing, Except: 7-9-13 oc bracing: 1	7-18	6)		are assumed to		.2 .					

chord and any other members. 6) All bearings are assumed to be SPF No.2 . 7) Bearing at joint(s) 2 considers parallel to grain value

using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface. Provide mechanical connection (by others) of truss to 8)

bearing plate capable of withstanding 217 lb uplift at joint 2 and 167 lb uplift at joint 10. This truss is designed in accordance with the 2018 9)

International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. LOAD CASE(S) Standard

April 24,2024

0 16023 Swingley Ridge Rd. Chesterfield MO 63017 314.434.1200 / MiTek-US.com

 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.
 Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not beigh valid for use only with with with sets outputs into design is based only door parameters shown, and is for an individual dualing component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria**, and **DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcscomponents.com)

NOTES

WEBS

WEBS

FORCES

TOP CHORD

BOT CHORD

REACTIONS (size)

Unbalanced roof live loads have been considered for 1)

7-9-13 oc bracing: 17-18

6-0-0 oc bracing: 11-12.

Max Horiz 2=357 (LC 7)

1 Row at midpt

Tension

10-11=-7/35

10-13=-112/73

3-17, 4-16, 6-16, 7-13,

8-11.9-10

2=0-3-8, 10=0-3-8

Max Uplift 2=-217 (LC 8), 10=-167 (LC 8)

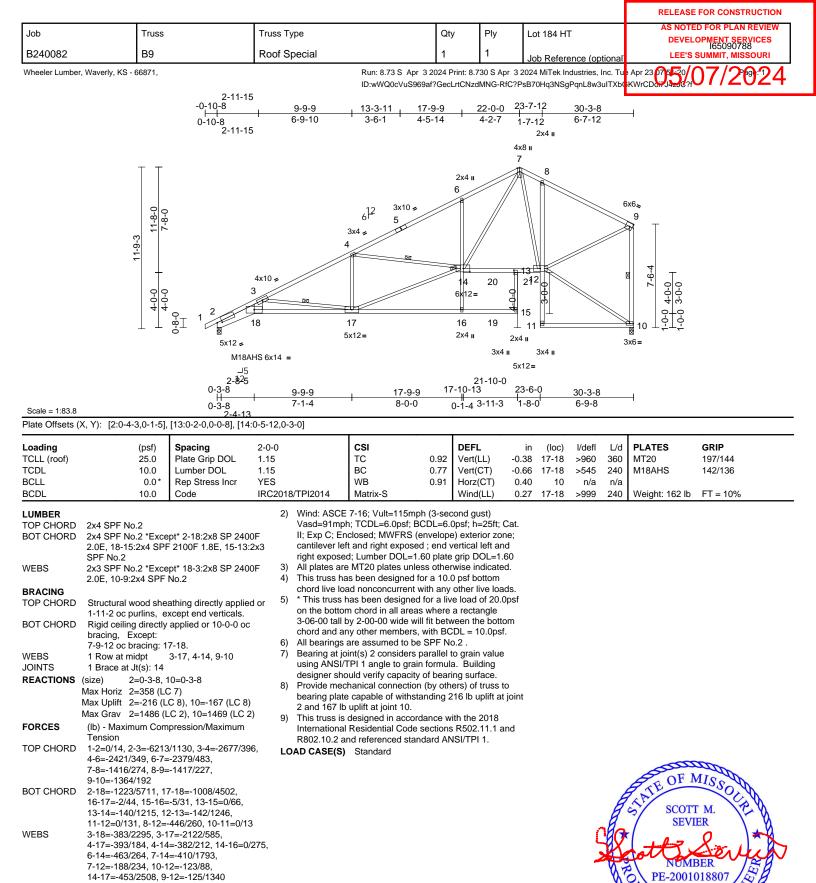
Max Grav 2=1425 (LC 1), 10=1351 (LC 1)

(lb) - Maximum Compression/Maximum

2-18=-1220/5287, 17-18=-1007/4202, 16-17=-429/2205, 14-16=-103/771,

3-18=-381/2059, 3-17=-2012/582, 4-17=0/470, 4-16=-1098/327, 6-16=-469/265,

7-16=-336/1237, 7-13=-519/102,


1-2=0/14, 2-3=-5867/1128, 3-4=-2521/398, 4-6=-1516/262, 6-7=-1472/403,

13-14=-92/753, 12-14=0/45, 11-12=-16/18,

11-13=0/242, 8-13=-337/202, 9-13=-98/1086,

7-8=-738/226, 8-9=-704/176, 9-10=-1318/178

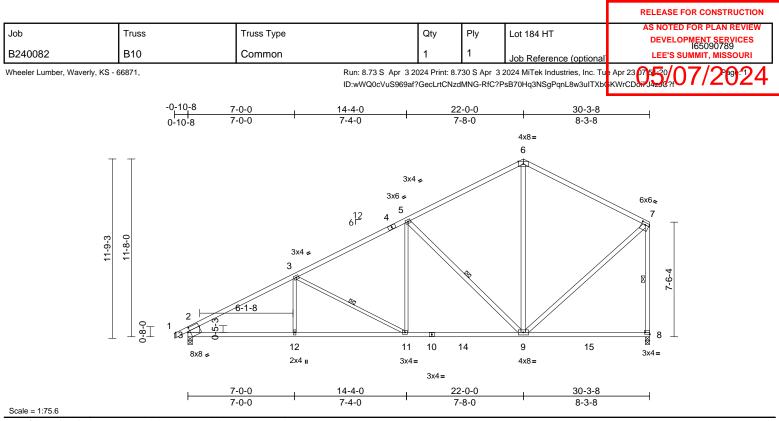
this design.

NOTES

 Unbalanced roof live loads have been considered for this design.

> Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, and DSE-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcscomponents.com)

🙏 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE

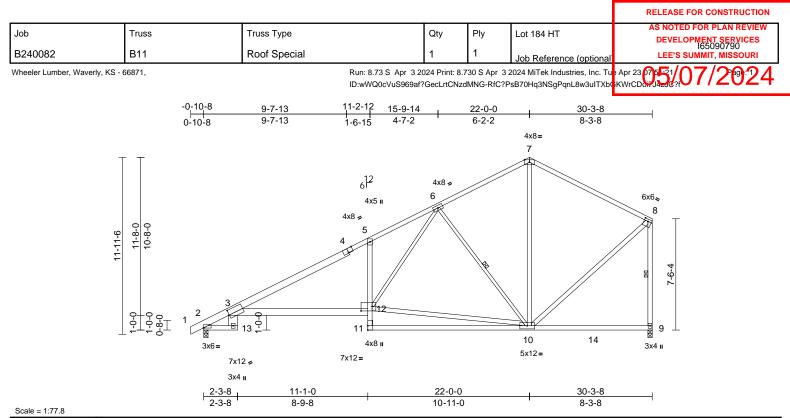

Mitek®

Chesterfield, MO 63017 314.434.1200 / MiTek-US.com

April 24,2024

E

SSIONAL


Plate Offsets (X, Y): [7:Edge,0-1-12], [8:Edge,0-1-8], [13:0-1-13,0-3-4]

	7, 1). [7.Edge,0 1 12	.], [0.⊑090,0 1 0], [10	0.0 1 10,0	54]									
Loading TCLL (roof) TCDL BCLL BCDL	(psf) 25.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC201	8/TPI2014	CSI TC BC WB Matrix-S	0.81 0.78 0.53	DEFL Vert(LL) Vert(CT) Horz(CT) Wind(LL)	-0.36 0.05	(loc) 11-12 11-12 8 11-12	l/defl >999 >999 n/a >999	L/d 360 240 n/a 240	PLATES MT20 Weight: 136 lb	GRIP 197/144 FT = 10%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD WEBS	2x4 SPF 2100F 1.8E No.2 2x4 SPF 2100F 1.8E No.2 2x4 SPF No.2 *Exce SPF No.2, 13-2:2x1(Structural wood she 3-4-13 oc purlins, e Rigid ceiling directly bracing. 1 Row at midpt (size) 8=0-3-8, ' Max Horiz 13=366 (L Max Uplift 8=-166 (L Max Grav 8=1458 (I	E *Except* 4-6:2x4 S E *Except* 10-8:2x4 ept* 3-12,11-3,5-11:2 0 SP 2400F 2.0E athing directly applie xcept end verticals. applied or 10-0-0 or 3-11, 5-9, 7-8 13=0-3-8 -C 5) C 8), 13=-219 (LC 8	4 SPF 5 2x3 6 ed or 7 c L	 * This truss h on the bottor 3-06-00 tall b chord and ar Bearings are Joint 8 SPF Provide mec bearing plate 13 and 166 l This truss is International 	has been designer in chord in all area by 2-00-00 wide w by other members assumed to be: No.2. hanical connectio e capable of withs b uplift at joint 8. designed in accor Residential Code in dreferenced star	as where vill fit betw , with BC Joint 13 S n (by oth tanding 2 rdance w s sections	e load of 20.0 a rectangle veen the bott DL = 10.0psi SPF 2100F 1. ers) of truss t 219 lb uplift al ith the 2018 s R502.11.1 a	0psf om f. .8E , to t joint					
FORCES	(lb) - Maximum Com Tension 1-2=0/39, 2-3=-2248 5-6=-982/217, 6-7=- 2-13=-1310/253	3/307, 3-5=-1712/27											
this design 2) Wind: ASC Vasd=91m II; Exp C; I cantilever right expos 3) This truss	12-13=-393/1934, 1 9-11=-223/1513, 8-9 3-12=0/238, 3-11=-4 5-9=-990/302, 6-9=-	99-94/75 176/191, 5-11=-1/54/ 42/416, 7-9=-105/10 been considered fo (3-second gust) DL=6.0psf; h=25ft; (ivelope) exterior zor ; end vertical left an 0 plate grip DOL=1. r a 10.0 psf bottom	024 r Cat. ne; id 60							-		STATE OF M SCOTT SEVI NUM PE-20010 PE-20010	ER Server 018807

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent toulsable personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

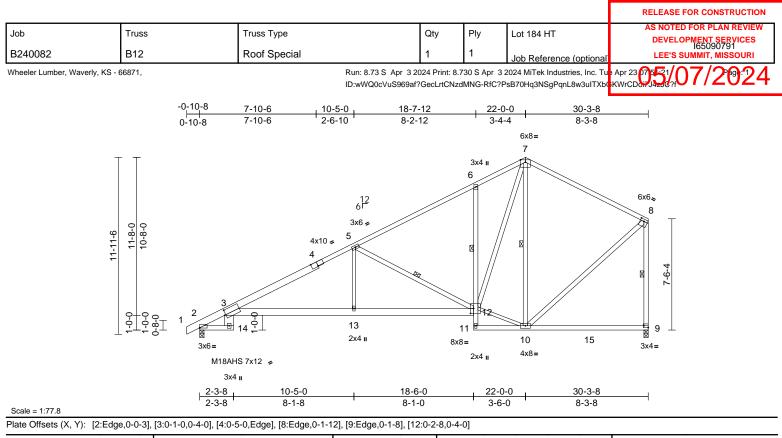
6023 Swingley Ridge Rd. Chesterfield, MO 63017 314.434.1200 / MITek-US.com

April 24,2024

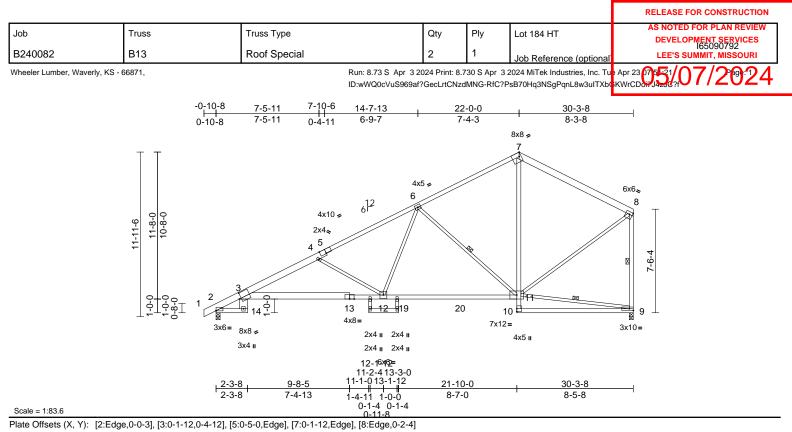
Plate Offsets (X, Y): [2:Edge,0-0-3], [3:0-0-8,0-4-0], [4:0-4-0,Edge], [8:Edge,0-1-12], [12:0-9-0,0-3-12]

						-							
Loading TCLL (roof) TCDL BCLL BCDL	(psf) 25.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC201	8/TPI2014	CSI TC BC WB Matrix-S	0.78 0.58 0.98	DEFL Vert(LL) Vert(CT) Horz(CT) Wind(LL)	in -0.41 -0.73 0.37 0.34	(loc) 3-12 3-12 9 3-12	l/defl >883 >491 n/a >999	L/d 360 240 n/a 240	PLATES MT20 Weight: 169 lb	GRIP 197/144 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS BRACING	2x4 SPF 2100F 1.8E 2400F 2.0E 2x4 SPF No.2 *Exce 2.0E, 3-12:2x6 SP 2 2100F 1.8E 2x4 SPF No.2 *Exce No.2	ept* 13-3:2x8 SP 240 400F 2.0E, 11-9:2x4	6P 4) 00F 4 SPF	chord live loa * This truss I on the bottor 3-06-00 tall I chord and an Bearings are SPF 2100F	as been designed ad nonconcurren nas been design n chord in all are by 2-00-00 wide y other member e assumed to be: 1.8E. hanical connecti	t with any ed for a liv eas where will fit betw s, with BC Joint 2 Sl	other live loa e load of 20. a rectangle veen the bott :DL = 10.0ps PF No.2 , Joi	Opsf tom .f. int 9					
TOP CHORD	Structural wood she 4-3-12 oc purlins, e Rigid ceiling directly bracing, Except: 6-0-0 oc bracing: 2-	xcept end verticals. applied or 10-0-0 oc	7)	2 and 168 lb This truss is International	e capable of with uplift at joint 9. designed in accor Residential Coo nd referenced st	ordance w le sections	ith the 2018 R502.11.1 a						
		6-10, 8-9 9=0-3-8 C 5) C 8), 9=-168 (LC 8)		DAD CASE(S)	Standard								
FORCES	(lb) - Maximum Com Tension	pression/Maximum											
TOP CHORD	1-2=0/12, 2-3=-988/ 5-6=-2491/526, 6-7= 8-9=-1289/208		/241,									5000	all a
BOT CHORD	2-13=-6/0, 3-13=-4/9 11-12=0/193, 5-12=- 9-10=-97/74		00,								b	TATE OF M	AISSOL
WEBS	10-12=-235/1309, 6- 6-10=-1003/350, 7-1 8-10=-99/1025	,									to	SCOTT SEVI	
this design	ed roof live loads have h. CE 7-16; Vult=115mph		r								A	PE-2001	Je viet 018807

2) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60


SIONAL

 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.
 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not besign value to dury with with where outputs into design is based only door parameters shown, and is for an individual building design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members and property incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TPH1 Quality Criteria**, and **DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcscomponents.com)


E

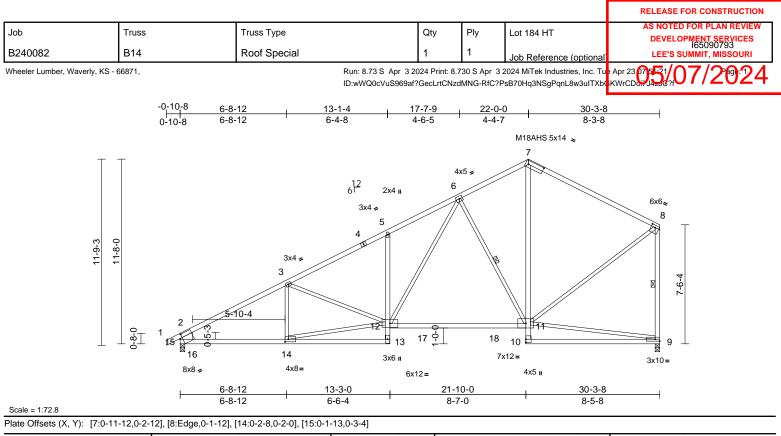
April 24,2024

	(x, i). [2::::::::::::::::::::::::::::::::::::	, [0.0 + 0,0 + 0], [1.0	0 0,Edg0], [0.	- 490,0 1 12	-j, [0.2090,0 1 0	J, [12.0 Z	0,0 1 0]							
Loading	(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP	
TCLL (roof)	25.0	Plate Grip DOL	1.15		TC	0.87	Vert(LL)	-0.32	3-13	>999	360	MT20	197/144	
TCDL	10.0	Lumber DOL	1.15		BC	0.57	Vert(CT)	-0.57	3-13	>629	240	M18AHS	186/179	
BCLL	0.0*	Rep Stress Incr	YES		WB	0.69	· · ·	0.33	9	n/a	n/a		100/110	
BCDL	10.0	Code	IRC2018/TP		Matrix-S	0.00	Wind(LL)	0.28	3-13	>999	240	Weight: 181 lb	FT = 20%	
BODE	10.0	Obac	11(02010/11	12014			WING(EE)	0.20	0 10	2000	240	Weight. Tor ib	11 = 2070	
LUMBER					s been designed									
TOP CHORD	2x4 SPF 2100F 1.8	E *Except* 1-4:2x6 S			d nonconcurrent									
	2400F 2.0E		,		as been designe			0psf						
BOT CHORD					chord in all are		0							
	2.0E, 3-12:2x6 SP 2				y 2-00-00 wide v									
WEBS	2x4 SPF No.2 *Exce	ept* 5-13,10-12:2x3			y other member			t.						
	No.2		,		re assumed to b			4.0						
BRACING	.		, ha		anical connection capable of withe									
TOP CHORD		athing directly applie			uplift at joint 9.	stanung z		t joint						
	2-2-0 oc purlins, ex				lesigned in acco	ordance w	ith the 2018							
BOT CHORD	Rigid ceiling directly bracing. Except:	applied of 6-0-0 oc			Residential Code			and						
1 Row at midp					d referenced sta									
WEBS	1 Row at midpt	5-12, 7-10, 8-9	LOAD	CASE(S)	Standard									
	REACTIONS (size) 2=0-3-8, 9=0-3-8													
REACTIONS	EACTIONS (size) 2=0-3-8, 9=0-3-8 Max Horiz 2=359 (LC 5)													
	Max Uplift 2=-212 (L	,												
	Max Grav 2=1462 (I	,, , , , ,)											
FORCES	(lb) - Maximum Corr	<i>,</i>	/											
1011020	Tension													
TOP CHORD		24, 3-5=-2603/386,												
	5-6=-1430/260, 6-7=	, ,												
	7-8=-960/245, 8-9=-	1275/216										~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~	
BOT CHORD	2-14=-6/0, 3-14=-4/9	95, 3-13=-429/2353,										and	all	
	12-13=-429/2353, 1	,										TATE OF A	AISS	
		11=-55/89, 9-10=-93									6	7 11	N.O.	
WEBS		1304/351, 10-12=-38	8/789,								B	SCOTT	N. C.	
	7-12=-353/1286, 7-1	10=-685/143,									R	SEVI		
	8-10=-103/1000										8.			
NOTES											0		1~0	
,	ed roof live loads have	been considered to	r								0	1 + 1	· line and the	
this design	n. CE 7-16; Vult=115mph	(2 accord such)									Y A	CONTR	and a	
			` at								-W.	O PE-20010	018807	
	Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone;													
	left and right exposed										۲		O'A	
	sed; Lumber DOL=1.6											SSIONA	LER	
	are MT20 plates unles											an	and a	
, ,													24,2024	
												Арп	27,2027	

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent toulsible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbsccomponents.com)

			, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,									
Loading	(psf)	Spacing	2-0-0	csi		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15	TC	0.83	Vert(LL)	-0.36	11-12	>999	360	MT20	197/144
TCDL	10.0	Lumber DOL	1.15	BC	0.97	Vert(CT)	-0.63	11-12	>576	240		
BCLL	0.0*	Rep Stress Incr	YES	WB	0.97	Horz(CT)	0.31	9	n/a	n/a		
BCDL	10.0	Code	IRC2018/TPI2014	Matrix-S		Wind(LL)	0.24	3-12	>999	240	Weight: 157 lb	FT = 20%
LUMBER				ss has been design			Opsf					
TOP CHORD	2x6 SP 2400F 2.0E No.2, 5-7:2x4 SPF N		•	ottom chord in all are all by 2-00-00 wide		0	om					
BOT CHORD	2x4 SPF No.2 *Exce			d any other member			f.					
	2.0E, 3-13:2x6 SPF 2100F 1.8E	No.2, 13-11:2x4 SPI		igs are assumed to nechanical connecti								
WEBS	2x3 SPF No.2 *Exce	ept* 9-8:2x4 SPF No.	,	late capable of with								
BRACING			2 and 16	8 lb uplift at joint 9.			•					
TOP CHORD	Structural wood she 2-2-0 oc purlins, ex			s is designed in acco nal Residential Cod			ind					
BOT CHORD	Rigid ceiling directly			2 and referenced st (S) Standard	tandard AN	ISI/TPI 1.						
WEBS	bracing. 1 Row at midpt	8-9, 9-11, 6-11	LOAD GAGE	(5) Standard								
	(size) 2=0-3-8, 9											
	(SIZE) 2=0-3-8, S Max Horiz 2=356 (LC											
	Max Uplift 2=-212 (L	,										
	Max Grav 2=1488 (L	,, , , ,)									
FORCES	(lb) - Maximum Com	,, ()	/									
	Tension											
TOP CHORD	1-2=0/12, 2-3=-1002											
	4-6=-2297/353, 6-7=											
BOT CHORD	7-8=-1037/250, 8-9=											
BUICHORD	2-14=-6/0, 3-14=-4/9 11-12=-258/1680, 10										000	TOP
	7-11=-50/473, 9-10=	,									8. OF A	ALC: A
WEBS	9-11=-108/76, 6-11=		6/935,								A SE	AISSO
	4-12=-864/372, 8-11	=-105/1061	,							A	184	N N
										H	S SCOIL	
NOTES										En.	SEVI	
,	ed roof live loads have	been considered for	r							W		V. 1
this design		(0 1 0)								W	ATION	RONNIN
	CE 7-16; Vult=115mph nph: TCDI =6 0psf: BC		Cat							N	NUM	

- Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.


E

April 24,2024

PE-20010188

SSIONAL

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSITPTI Quality Criteria, and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcscomponents.com)

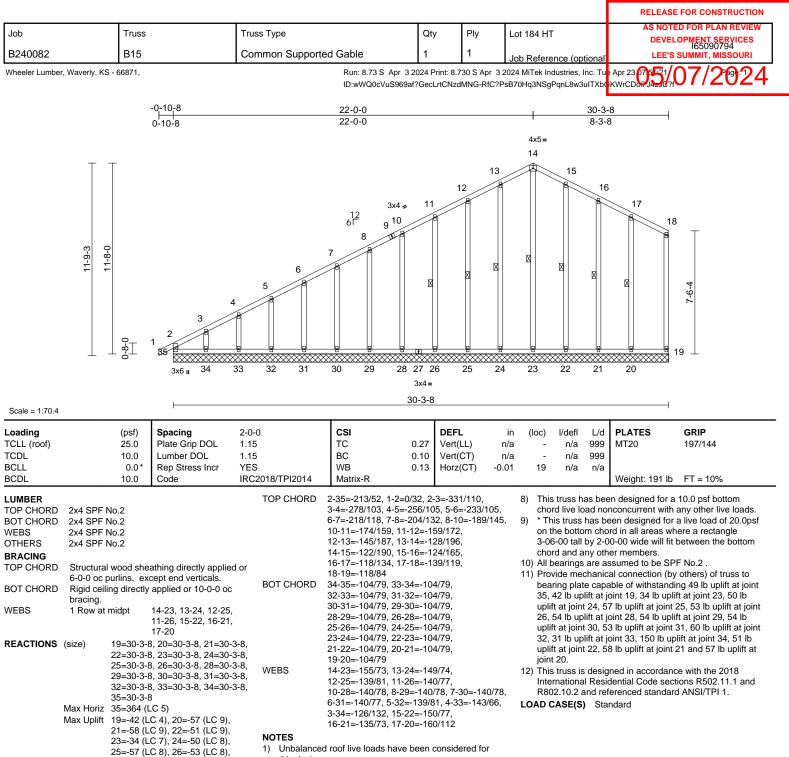
													-
Loading TCLL (roof) TCDL BCLL BCDL LUMBER TOP CHORD BOT CHORD	(psf) 25.0 10.0 0.0* 10.0 2x4 SPF 2100F 1.8E No.2 2x4 SPF No.2 *Exce 2100F 1.8E 2x3 SPE No.2 *Exce	pt* 15-13,12-11:2x4	2) SPF SPF	Vasd=91mp II; Exp C; Er cantilever le right expose		BCDL=6. (envelope ed ; end v 1.60 plate	Vert(CT) Horz(CT) Wind(LL) cond gust) Opsf; h=25ft; e) exterior zoi vertical left ar grip DOL=1.	-0.59 0.08 0.12 Cat. ne; nd .60	(loc) 11-12 11-12 9 13-14	l/defl >999 >601 n/a >999	L/d 360 240 n/a 240		GRIP 197/144 142/136 FT = 10%
 WEBS 2x3 SPF No.2 *Except* 15-2:2x10 SP 2400F 2.0E, 9-8:2x4 SPF No.2 BRACING TOP CHORD Structural wood sheathing directly applied or 3-5-10 oc purlins, except end verticals. BOT CHORD Rigid ceiling directly applied or 6-0-0 oc bracing. WEBS 1 Row at midpt 6-11, 8-9 REACTIONS (size) 9=0-3-8, 15=0-3-8 Max Horiz 15=366 (LC 8), 15=-219 (LC 8) Max Grav 9=1414 (LC 2), 15=1473 (LC 2) FORCES (b) - Maximum Compression/Maximum Tension WEBS 2x3 SPF No.2 *Except* 15-2:2x10 SP 2400F 3.6-00 tall by 2-00-00 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf. Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 219 lb uplift at joint 15 and 166 lb uplift at joint 9. WEBS (b) - Maximum Compression/Maximum Tension 													
TOP CHORD	1-2=0/39, 2-3=-2240 5-6=-2088/441, 6-7= 7-8=-1053/247, 2-15 8-9=-1285/209 14-15=-395/1927, 13	998/240, 5=-1308/249, 3-14=-47/103,	^{5,} L(nd referenced sta			-				STORE N	age .
	12-13=0/133, 5-12=- 11-12=-152/1286, 10 7-11=-98/546, 9-10=	0-11=0/170,									6	STATE OF M	AISSOL
WEBS	3-14=-222/147, 12-1 3-12=-150/124, 6-11 8-11=-101/1051, 9-1 6-12=-263/1155	4=-352/1899, =-862/302,									it.	S SCOTI SEVI	
NOTES 1) Unbalance	ed roof live loads have	been considered for	r							-		NUM	STREW STREW

NOTES

1) Unbalanced roof live loads have been considered for this design.

PE-20010188

SIONAL


E

April 24,2024

16023 Swingley Ridge Rd. Chesterfield, MO 63017 314.434.1200 / MiTek-US.com

Or

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent colleges with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

- this design 28=-54 (LC 8), 29=-54 (LC 8), Wind: ASCE 7-16; Vult=115mph (3-second gust) 2) 30=-54 (LC 8), 31=-53 (LC 8), Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. 32=-60 (LC 8), 33=-31 (LC 8), II; Exp C; Enclosed; MWFRS (envelope) exterior zone; 34=-150 (LC 8), 35=-49 (LC 4) cantilever left and right exposed ; end vertical left and 19=105 (LC 16), 20=206 (LC 22) right exposed; Lumber DOL=1.60 plate grip DOL=1.60 21=173 (LC 22), 22=190 (LC 22), Truss designed for wind loads in the plane of the truss 3) 23=195 (LC 15), 24=189 (LC 21), only. For studs exposed to wind (normal to the face), 25=179 (LC 21), 26=180 (LC 1), see Standard Industry Gable End Details as applicable, 28=180 (LC 21), 29=180 (LC 1),
 - or consult qualified building designer as per ANSI/TPI 1. All plates are 2x4 MT20 unless otherwise indicated. 4)
 - Gable requires continuous bottom chord bearing. 5)
 - Truss to be fully sheathed from one face or securely 6)
 - braced against lateral movement (i.e. diagonal web). 7) Gable studs spaced at 2-0-0 oc.

🙏 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponent.com)

Max Grav

Tension

FORCES

30=180 (LC 21), 31=180 (LC 1),

32=179 (LC 21), 33=184 (LC 1),

(lb) - Maximum Compression/Maximum

34=168 (LC 15), 35=254 (LC 16)

16023 Swingley Ridge Rd. Chesterfield MO 63017 314.434.1200 / MiTek-US.com

						RELEASE FOR CONSTRUCTION							
Job	Truss	Truss Type	Qty	Ply	Lot 184 HT	AS NOTED FOR PLAN REVIEW DEVELOPMENT SERVICES							
B240082	C1	Common Supported Gable	1	1	Job Reference (optional	DEVELOPMENT SERVICES 165090795 LEE'S SUMMIT, MISSOURI							
Wheeler Lumber, Waverly, KS -	66871,				2024 MiTek Industries, Inc. Tu PsB70Hq3NSgPqnL8w3uITXb								
		D.www.doc.v.d3909/	al / Geochionz		rsb/unqsinsgrqnLowsuiTAb								
	-0-10-8 0-10-8	<u> </u>			20-8-0	21-6-8							
	0 10 0		4x5 =			0100							
			7										
$\begin{array}{c c c c c c c c c c c c c c c c c c c $													
TCDL BCLL	10.0 Lumber DOL 0.0* Rep Stress Incr	1.15 BC YES WB	0.04 Ver	(CT)	n/a - n/a 999								
TCDL 10.0 Lumber DOL 1.15 BC 0.04 Vert(CT) n/a - n/a 999 BCLL 0.0* Rep Stress Incr YES WB 0.11 Horz(CT) 0.00 14 n/a n/a													

 Mitchew
 ®

 16023 Swingley Ridge Rd.
 Chesterfield, MO 63017

 314.434.1200 / MiTek-US.com

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

									RELEASI	E FOR CONSTRUCTION	
Job	Tr	russ	Truss Type		Qty	Ply	Lot 184 HT	r		ED FOR PLAN REVIEW	7
B240082	С	2	Common		5	1	Job Refere	ence (optional)		OPMENT SERVICES 165090796 SUMMIT, MISSOURI	
Wheeler Lumber	r, Waverly, KS - 6687	71,		Run: 8.73 S Apr 3 2			2024 MiTek In	dustries, Inc. Tu		07/2024	
				ID:wWQ0cVuS969af	?GecLrtCN	zdMNG-RfC?F	sB70Hq3NSg	PqnL8w3uITXb0	KWrCDoirJ4zJC?f	0172021	
		-0-10-8	5-3-12	10-4-0		15-			20-8-0		
		d-10-8	5-3-12	5-0-4	I	5-0)-4	ļ	5-3-12	,	
					4x8	=					
	ΤT				4						
			7	12 Г		$\langle \rangle$					
				2x4,		\mathbb{N}	\searrow	2x4 🏿			
	ο Δ		3					5			
	6-10-8 6-9-5	L	/	£ //	19-9-(<u> </u>				1	
		I					、 //			 8x8 ₅	
		2				\	$\langle \rangle$			6	
				10 12	>	139	8			7	
		8x8 ≠		3x4 =	-	3x4=	3x4 =				
		1	6-11-13	I.	13-8-3	3	1	20-8	8-0		
Scale = 1:48.9			6-11-13		6-8-5		1	6-11			
	X, Y): [6:Edge,0-	·5-11], [11:0-1-11,0-2-15]									_
Loading	(ps		2-0-0	CSI	DEI		in (loc)	l/defl L/d	PLATES	GRIP	
TCLL (roof) TCDL	25 10		1.15 1.15			. ,	.19 8-10 .31 8-10	>999 360 >777 240	MT20	197/144	
BCLL BCDL	0	.0* Rep Stress Incr	YES IRC2018/TPI2014	WB C	.16 Hor	z(CT) 0	.03 7	n/a n/a	Waight: 72 lb	ET _ 10%	
	10	.0 Code		Matrix-S echanical connection (b			.08 8-10	>999 240	Weight: 72 lb	FT = 10%	_
TOP CHORD	2x4 SPF No.2		bearing pla	ate capable of withstand			t				
BOT CHORD WEBS		Except* 11-2,7-6:2x6 SP	This truss	7 lb uplift at joint 7. is designed in accordan							
BRACING	2400F 2.0E			al Residential Code sec and referenced standa							
TOP CHORD		sheathing directly applied	or LOAD CASE	S) Standard							
BOT CHORD	Rigid ceiling dir	ns, except end verticals. rectly applied or 10-0-0 oc									
REACTIONS	bracing. (size) 7=0-3	3-8, 11=0-3-8									
	Max Horiz 11=1 Max Uplift 7=-10	87 (LC 5) 07 (LC 9), 11=-133 (LC 8)									
	Max Grav 7=99	95 (LC 16), 11=1069 (LC 1	5)								
FORCES	(lb) - Maximum Tension	Compression/Maximum									
TOP CHORD		1346/167, 3-4=-1217/211, 5-6=-1344/168,	,								
BOT CHORD	2-11=-940/170, 10-11=-166/117	6-7=-850/142 71, 8-10=-25/819,									
WEBS	7-8=-84/1050	5-8=-282/207, 4-10=-111/5	28								
	3-10=-261/203	202/201, + 10111/6	,							an	
NOTES 1) Unbalance	ed roof live loads h	have been considered for							ATEOF	MISS	
this desigr	า.	imph (3-second gust)						A	AN CONT	N SEN	
Vasd=91m	nph; TCDL=6.0psf	f; BCDL=6.0psf; h=25ft; Ca S (envelope) exterior zone						A	SCOT SEV		

- II; Exp C; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60 3) This truss has been designed for a 10.0 psf bottom
- chord live load nonconcurrent with any other live loads. 4) * This truss has been designed for a live load of 20.0psf
- on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf. 5) All bearings are assumed to be SPF No.2.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent colleges with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

									RELEASE	FOR CONSTRUCTION	
Job	Truss		Truss Type		Qty	Ply	Lot 184 I	нт		ED FOR PLAN REVIEW	
B240082	D1		Roof Special Str	uctural Gable	1	1	lob Refe	rence (optional	1 5510	OPMENT SERVICES 165090797 SUMMIT, MISSOURI	
Wheeler Lumbe	r, Waverly, KS - 66871,						3 2024 MiTek	Industries, Inc. Tu	19 Apr 23 07 5 22	07/2024	
				ID:wWQ0cVuS969	9af?GecLrtCl	NzdMNG-RfC?	PsB70Hq3NS	SgPqnL8w3uITXb	GKWrCDoir J4zJC?f	0172021	
	3-4-12	8-7-4	11-9-12 15-	8-0 20-6-0		25-4-0	29-8-	0 34	-8-12	40-0-0	
	3-4-12	5-2-8	3-2-8 3-1	0-4 4-10-0 _{6x8 II}		4-10-0	4-4-() 5-	0-12	5-3-4	
				8							
ن 1		12 71	7	9							
<u>9-10-11</u> 3-1-5			3x4 = 6		10			5x8 ။ 17			
		4	5				16		18		
<u>9-10-11</u> + <u>6-9-5</u> + 2-6-5		3					5x8= 10		19		
6 +		3x4 ≠							20		
4-3-0 4-3-0	2 3x6 II		3×10 u	10 u 3x10 u		51	53			22 4x8 II	
	。 1	47			49 50	3х6 и		3×	10 n 55	23 or	
$\perp \perp$	3⊥ 44 📈	Sv6 -	42_{41}	9 38 37 ₃	₩ <u>3%</u> 36 35		52 52 32 31	30 29	9 2827 26	25	
	_⊥4 12	:	5x12= 40 39 5x8=		x10=	3x6=	JZ J1	50 23	3x4=	23	
				10	3x6 II		3x4=		Зх10 ш		
	0- <u>3-8 3-3-8</u> 	+ 8-8-8 5-5-0	11-8-8	10012 To 1		5-4-0 5-8-8		<u>33-0-4</u> 7-8-4		1-0-0	
Scale = 1:72				-							
Plate Offsets ((X, Y): [23:0-4-6,0-2-	0], [40:0-5-0,0-2-8]							1		
Loading TCLL (roof)	(psf) 25.0	Spacing Plate Grip DOL	2-0-0 1.15	CSI TC	0.38 DEFL 0.38 Vert(LL) -0			l/defl L/d >999 360		GRIP 197/144	
TCDL BCLL	10.0 0.0*	Lumber DOL Rep Stress Incr	1.15 YES	BC WB	0.58 Ve	ert(CT) -0	0.08 26-27 0.03 24	′ >999 240			
BCDL	10.0	Code	IRC2018/TPI2014	Matrix-S).03 25-26			FT = 10%	
LUMBER TOP CHORD	2x4 SPF No.2		BOT CHORD	43-44=-269/387, 42 41-42=-390/183, 40						ne plane of the truss formal to the face),	
BOT CHORD	2x4 SPF No.2			39-40=-388/215, 38 37-38=-386/215, 36	-39=-388/2	215,	se	e Standard Ind	lustry Gable End	Details as applicable, er as per ANSI/TPI 1.	
WEBS	24-23:2x6 SPF No.	ept* 44-1:2x4 SPF No 2	J.Z,	35-36=-21/305, 34- 32-34=-21/305, 31-	35=-21/305	5,	4) P	rovide adequate	• •	ent water ponding.	
OTHERS BRACING	2x4 SPF No.2			29-30=0/437, 28-29 26-27=-96/715, 25-2	=0/437, 27	-28=-96/715	, 6) Ti	uss to be fully s	sheathed from one ateral movement (i	e face or securely	
TOP CHORD	5-6-9 oc purlins, e	eathing directly applie xcept end verticals.	d or WEBS	24-25=-96/715 2-43=-27/208, 2-47			7) G	able studs space	ced at 2-0-0 oc.		
BOT CHORD	Rigid ceiling directl bracing.	y applied or 6-0-0 oc	WEBS	42-47=-624/248, 4- 4-46=-416/148, 40-	42=-27/206	б,	cł	ord live load no		any other live loads.	
JOINTS	1 Brace at Jt(s): 45 46, 48, 50, 51, 53,	5		6-40=-238/110, 40-	45=-520/47	7,	or	n the bottom ch	ord in all areas wh	0	
REACTIONS	54 (size) 24= Mec	hanical, 36=0-3-8,		8-45=-565/51, 8-48 36-49=-296/132, 11	-49=-229/9	97,	ch	nord and any ot	her members.	between the bottom	
	40=0-3-8 Max Horiz 44=256	3, 44=0-3-8 (LC 7)		36-50=-943/246, 50 14-51=-936/244, 14	-32=-4/411	١,	11) R	efer to girder(s)	assumed to be SP for truss to truss	connections.	
		(LC 11), 36=-331 (LC (LC 10), 44=-36 (LC		32-52=-298/0, 52-5 17-54=-148/421, 28	-54=-154/4	141,	us	sing ANSI/TPI 1	angle to grain for		
		(LC 25), 36=1630 (LC 8 (LC 24), 44=221 (LC		28-55=-227/118, 20 8-38=-1/154, 7-45=	-30/54, 39-	45=-73/55,	de	esigner should	verify capacity of t	bearing surface.	
FORCES		mpression/Maximum	,	5-46=0/17, 41-46=- 9-48=-139/72, 37-4	8=-112/69,	10-49=-70/3	6,				
TOP CHORD	1-2=-338/60, 2-3=-	111/488, 3-4=-69/494 60/696, 6-7=-6/629,	,	12-50=-8/50, 35-50 34-51=-62/56, 15-5	2=0/60, 16-	-53=-80/72,	4		A DE L	A DE	
	7-8=0/669, 8-9=0/7		270	31-53=-82/68, 17-3 29-54=-110/72, 19-	55=-88/39,			TEOT	MISSO		
	13-14=-74/644, 14-	15=-436/166,	NOTES	21-26=0/72, 22-25=	-83/71		SCOTT M.				
	15-16=-400/178, 16 17-18=-733/288, 18 19-20=-765/213, 20	8-19=-769/245,	 Unbalanced roof live loads have been considered for this design. 					SEVIER			
	19-20=-765/213, 20 21-22=-869/192, 22	2-23=-911/144,	2) Wind: AS	Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat.					at. NUMBER		
	1-44=-251/58, 23-2	4=-302/113	II; Exp C;	II; Exp C; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed ; end vertical left and				e; PE-2001018807			
				osed; Lumber DOL=1.6				Y	Stree -	NOT	
									ONA	LE	
									Apri	124.2024	

Continued on page 2 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, reaction and tracing of trusses and truss systems, see AMSI/TP11 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

April 24,2024

						RELEASE FOR CONSTRUCTION
Job	Truss	Truss Type	Qty	Ply	Lot 184 HT	AS NOTED FOR PLAN REVIEW DEVELOPMENT SERVICES
B240082	D1	Roof Special Structural Gable	1	1	Job Reference (optional	DEVELOPMENT SERVICES 165090797 LEE'S SUMMIT, MISSOURI
Wheeler Lumber, Waverly, KS -	66871,				2024 MiTek Industries, Inc. Tu sB70Hq3NSgPqnL8w3uITXb(

 Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 283 lb uplift at joint 40, 331 lb uplift at joint 36, 129 lb uplift at joint 24 and 36 lb uplift at joint 44.

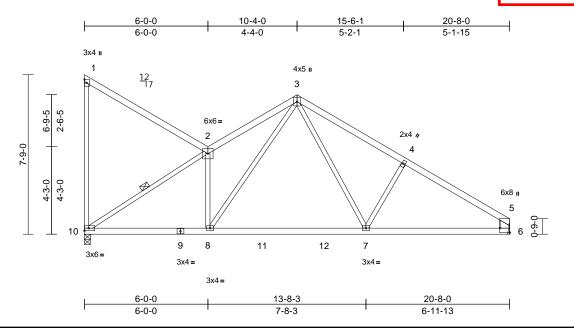
 a) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

												RELE	ASE FOR CONS	TRUCTION
Job		Truss		Truss Type			Qty	Ply	L	ot 184 HT	-		OTED FOR PLA	
B240082		D2		Roof Spec	cial		2	1		h Refere	ence (optiona		VELOPMENT SE 1650907 E'S SUMMIT, MI	
Wheeler Lumber, W	averly, KS - 6	6871,							3 202	4 MiTek Ind	dustries, Inc. T	ue Apr 23 07 5 -2		P74
					IE	D:wWQ0cVuS969	af?GecLrtCN	IzdMNG-Rf0	C?PsB7	70Hq3NSgl	PqnL8w3ulTX	oGKWrCDoii J4zJ	0?f 0 7 7 2	
	2	4 10	074	15	9.0	21.0.0		25 4 0		20.9.0		101	40.0.0	
		4-12 4-12	8-7-4 5-2-8		- <u>8-0</u>)-12	<u>21-0-0</u> 5-4-0		<u>25-4-0</u> 4-4-0		<u>29-8-0</u> 4-4-0		4-8-4 5-0-4	40-0-0 5-3-12	—
					6> 4	<6 =								
ΤT					4									
<u>9-10-11</u> 3-1-5			12 71				0.4				6x6=			
6 Ó				x4 #		$\langle \rangle >$	2x4 / 5				7			
-2-1-2-1-			3				1		6x6=			<		
<u>9-10-11</u> + <u>6-9-5</u> 2-6-5				1	\$	Þ			6		/ \\ `	2x4	7	
۰ T		3x4 ≠ 2							Ť			8		
4-3-0	3x6 II						// ,	\sim			\			4x8 II
	1				//			·		//				> ⁹ •⊤
	18	17 6x6=	10	5 12= 15	10	<u>}</u>	<u> </u>	40	12		22			
		4 12	0,		* 19 8=	²⁰ 1		13 3x6=		21	22	11 3x4=		
				U.	-				3x4=					
	0-3-8 <u>3</u> 	-3-8 -0-0	<u>8-8-8</u> 5-5-0	11-8-8 3-0-0	<u>19-5</u> 7-9			9-12	-	3	2-11-9 7-6-5		40-0-0 7-0-7	
Scale = 1:72	000					01	12 -							
Plate Offsets (X, Y	Y): [9:0-4-6	6,0-2-0], [15:0	0-4-0,0-2-3]											
Loading			acing	2-0-0	cs			FL	in	. ,	l/defl L/		GRIP	
TCLL (roof) TCDL			te Grip DOL nber DOL	1.15 1.15	TC BC			rt(LL) rt(CT)	-0.19 -0.28	14-15 14-15	>488 36 >328 24		197/144	
BCLL BCDL			p Stress Incr	YES	WE		0.82 Ho	rz(CT)	0.02	10	n/a n/a >999 24	a	Ib ET _ 109/	
		10.0 00	ue	IRC2018/TF	ind: ASCE 7-16			nd(LL)	0.05	11-12	>999 24	Weight: 159	lb FT = 10%	
TOP CHORD 2	x4 SPF No.			. Va	asd=91mph; TC	DL=6.0psf; BC	DL=6.0psf	h=25ft; C						
	x4 SPF No. x3 SPF No.		8-1:2x4 SPF No.	2, ca	Exp C; Enclose antilever left and	I right exposed	; end vertion	al left and						
10 BRACING	0-9:2x6 SP	F No.2			ht exposed; Lu ovide adequate									
TOP CHORD S			g directly appliec end verticals.		his truss has be hord live load no				s.					
BOT CHORD R	Rigid ceiling	directly appl	ied or 6-0-0 oc	5) * 7	This truss has b the bottom cho	een designed f	or a live loa	ad of 20.0p						
1		acing: 11-12,		3-	06-00 tall by 2-0 ord and any oth	00-00 wide will	fit betweer	the bottor	n					
WEBS 1 REACTIONS (siz	Row at mic ze) 10	dpt 4-15)= Mechanica	, 4-14, 6-14 al, 14=0-3-8,	6) Al	I bearings are a	ssumed to be	SPF No.2 .							
· ·		5=0-3-8, 18=0 3=258 (LC 7)		8) Be	efer to girder(s) earing at joint(s)	18 considers	parallel to g	rain value						
	ax Uplift 10)=-124 (LC 1	1), 14=-348 (LC	^{11),} de	sing ANSI/TPI 1									
Ma	ax Grav 10)=784 (LC 19	0), 18=-37 (LC 1 9), 14=2008 (LC	19), ³⁾ 11	ovide mechanic earing plate cap									
FORCES (I			8), 18=226 (LC : sion/Maximum	²⁴⁾ 15	5, 348 lb uplift a uplift at joint 18	t joint 14, 124 ll								
Ť	ension	·	9, 3-4=-34/872,	10) Tł	nis truss is desig	gned in accorda								
4	-5=0/914, 5	-6=-59/859,	6-7=-295/169, /192, 1-18=-255/	R	ternational Resi 802.10.2 and re				a			~	ann	
9	-10=-659/1	55		^{00,} LOAD	CASE(S) Sta	andard						E OI	MISSO	6
1	5-16=-488/	384, 16-17=- 171, 14-15=-	510/216,									4.51	10	R
			372, 10-11=-104 /197, 3-16=-34/1								ä	so su	OTT M. N EVIER	(~ X)
		60, 4-15=-58 28 5-14=-35	0/107, 7/211, 6-12=0/59	33							a di	*	.t o	*8
7		8, 7-11=-91/5	599, 8-11=-297/2								g	Icat	5 lev	1010
NOTES	-14=-1022/.	203									× v	0 PE-20	01018807	EB
 Unbalanced r this design. 	oof live load	ds have beer	o considered for									S. S.S.	JGI	A
												STON STON	IAL EF	7

April 24,2024



WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

						RELEASE FOR CONSTRUCTION
Job	Truss	Truss Type	Qty	Ply	Lot 184 HT	AS NOTED FOR PLAN REVIEW
B240082	Da	Doof Crossial		1		DEVELOPMENT SERVICES 165090799
B240082	D3	Roof Special	3	1	Job Reference (optional	LEE'S SUMMIT, MISSOURI
	(0, 00074	P	0.70.0 A		A ARRAY THE HARMAN AND T	

Wheeler Lumber, Waverly, KS - 66871,

Run: 8.73 S Apr 3 2024 Print: 8.730 S Apr 3 2024 MiTek Industries, Inc. Tuk Apr 23 175 22/07/2024 ID:wWQ0cVuS969af?GecLrtCNzdMNG-RfC?PsB70Hq3NSgPqnL8w3uITXbgKWrCDor 0.2007/2024

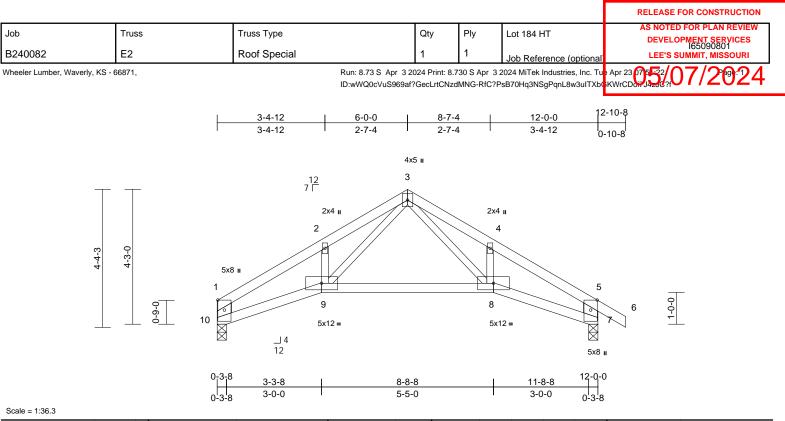
Scale = 1:56

Plate Offsets	(X, Y):	[5:Edge,0-5-8]
---------------	---------	----------------

Loading	(psf)	Spacing	2-0-0	csi		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15	TC	0.60	Vert(LL)	-0.21	7-8	>999	360	MT20	197/144
TCDL	10.0	Lumber DOL	1.15	BC	0.73	Vert(CT)	-0.34	7-8	>709	240		
BCLL	0.0*	Rep Stress Incr	YES	WB	0.67	Horz(CT)	0.03	6	n/a	n/a		
BCDL	10.0	Code	IRC2018/TPI2014	Matrix-S		Wind(LL)	0.06	7-8	>999	240	Weight: 81 lb	FT = 10%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD WEBS REACTIONS	2x4 SPF No.2 2x3 SPF No.2 *Exce 2.0E Structural wood she 4-1-9 oc purlins, ex Rigid ceiling directly bracing. 1 Row at midpt (size) 6= Mecha Max Horiz 10=-237 (Max Uplift 6=-28 (LC	athing directly applie cept end verticals. applied or 10-0-0 oc 2-10 nical, 10=0-3-8 LC 6) : 11), 10=-62 (LC 11)	bearing plate 10 and 28 lb F 8) This truss is International R802.10.2 a d or LOAD CASE(S)	hanical connection e capable of withsta uplift at joint 6. designed in accord Residential Code s nd referenced stand Standard	anding 6 lance w sections	2 lb uplift at j ith the 2018 5 R502.11.1 a	joint					
	Max Grav 6=1041 (L		17)									
FORCES	(lb) - Maximum Com	pression/Maximum										
TOP CHORD	Tension 1-10=-199/60, 1-2=- 3-4=-1301/105, 4-5=											
BOT CHORD WEBS		779, 6-7=-16/1130 -297/82, 3-8=-1/696										
NOTES	,											-
 Wind: ASC Vasd=91n II; Exp C; and right e Lumber D Provide ac This truss chord live * This truss on the bot 3-06-00 ta chord and All bearing 	CE 7-16; Vult=115mph nph; TCDL=6.0psf; BC Enclosed; MWFRS (er exposed; end vertical I OL=1.60 plate grip DO dequate drainage to pr has been designed for load nonconcurrent wi ss has been designed for tom chord in all areas ill by 2-00-00 wide will any other members, w as are assumed to be s irder(s) for truss to trus	DL=6.0psf; h=25ft; C welope); cantilever le eft and right exposed L=1.60 event water ponding a 10.0 psf bottom th any other live load or a live load of 20.0 where a rectangle fit between the botto vith BCDL = 10.0psf. SPF No.2.	eft d; Is. psf m						-		STATE OF I SCOT SEV. DE LOUIN PE-2001	DIS807

- 5) All bearings are assumed to be SPF No.2 .
- 6) Refer to girder(s) for truss to truss connections.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)



April 24,2024

								RELEASE FOR CONSTRUCTION
Job	Truss	Truss Type		Qty	Ply	Lot 184 HT		AS NOTED FOR PLAN REVIEW DEVELOPMENT SERVICES
B240082	E1	Common Su	pported Gable	1	1	Job Reference	(ontional)	DEVELOPMENT SERVICES 165090800 LEE'S SUMMIT, MISSOURI
Wheeler Lumber, V	Waverly, KS - 66871,		Run: 8.73 S Apr	3 2024 Print: 8	.730 S Apr 3	2024 MiTek Indust	ies, Inc. Tu	
			ID:wWQ0cVuS96	9af?GecLrtCNz	dMNG-RfC?	PsB70Hq3NSgPqnl	.8w3ulTXb0	KWrCD077J42027fU1/2024
		1	6-0-0	1		12-0-0		12-10-8
			6-0-0			6-0-0		0-10-8
				4x5 =				
	<u> </u>			4				
			12 7 [
			3		\searrow	5		
			P					
	4-4-3	2					6	
		3x10 "						<
		- 1						
	0-6-0	15		•			0	8
	\perp \perp $_{2}$							ž 🗸
		1	4 13	12		11	10	3x10 II
				12-0-0				
Scale = 1:33.8				12 0 0				
Plate Offsets (X,	, Y): [1:0-3-8,Edge], [9:0-3-8,	,Edge]						
Loading	(psf) Spacin	-	CSI	DEF		. ,	lefl L/d	PLATES GRIP
TCLL (roof) TCDL	25.0 Plate G 10.0 Lumbe		TC BC	0.07 Vert 0.03 Vert	. ,		n/a 999 n/a 999	MT20 197/144
BCLL BCDL	0.0* Rep St 10.0 Code	ress Incr YES IRC2018/TPI20	WB 014 Matrix-R	0.03 Hor	z(CT) 0	0.00 9	n/a n/a	Weight: 45 lb FT = 10%
BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD REACTIONS (S M M FORCES TOP CHORD	2x4 SPF No.2 2x4 SPF No.2 2x4 SPF No.2 2x4 SPF No.2 Structural wood sheathing dii 6-0-0 cc purlins, except end Rigid ceiling directly applied of bracing. size) 9=12-0-0, 10=12-0 12=12-0-0, 13=12-15=12-0-0 12=12-0-0, 13=12-15=12-0-0 fax Horiz 15=-119 (LC 8), 10=-11=-62 (LC 9), 13=-14=-82 (LC 8), 15=-14=-82 (LC 8), 15=-14=-82 (LC 2), 12=-15=5(LC 22), 1	see S or co 4) All pl 5) Gable 6) Truss brace or 10-0-0 oc 7) Gable 8) This brace or 10-0-0 oc 7) Gable 8) This chore chore chore 75 (LC 9), 82 (LC 9), 82 (LC 16), 122 (LC 16), 10) All be chore 11) Provi beari 122 (LC 15), 7 (Maximum) -56/106, 10) All be chore 10) All be 11) Provi 10, 11=12-0-0, 10) All be 10, 11=12-0-0, 10) All be 10, 11=12-0-0, 10) All be 10, 11=12-0-0, 10) All be 10, 11=12-0-0, 10) All be 11) Provi 10, 11=12-0-0, 10) All be 10, 11=12-0-0, 10) All be 11) Provi 10, 11=12-0-0, 10) All be 10, 11=12-0-0, 10) All be 10, 11=12-0-0, 10) All be 10, 11=12-0-0, 10) All be 11) Provi 10, 11=12-0-0, 10) All be 10, 11=12-0-0, 10) All be 10, 11=12-0-0, 10) All be 10, 11=12-0-0, 10) All be 10, 11=12-0, 10) All be 10, 11=12-0, 10) All be 10, 10=12-0, 10, 11=12-0, 10) All be 10, 10=12-0, 10, 11=12-0, 10) All be 10, 10=12-0, 10, 11=12-0, 10) All be 10, 10=12-0, 10, 10=12-0,	For studs exposed to win Standard Industry Gable E nsult qualified building des ates are 2x4 MT20 unless e requires continuous both s to be fully sheathed from ed against lateral moveme e studs spaced at 2-0-0 oc truss has been designed fi d live load nonconcurrent w s truss has been designed e bottom chord in all areas -00 tall by 2-00-00 wide wil d and any other members. earings are assumed to be ide mechanical connection ng plate capable of withsta 6 lb uplift at joint 9, 60 lb u int 14, 62 lb uplift at joint 1 ⁻¹ truss is designed in accord national Residential Code 2.10.2 and referenced stan ASE(S) Standard	nd Details as signer as per otherwise inc om chord bea one face or s nt (i.e. diagon c or a 10.0 psf I with any other for a live load s where a rec Il fit between 1 SPF No.2. (by others) c anding 23 lb u pplift at joint 13 1 and 75 lb up dance with the sections R502	applicable, ANSI/TPI 1 licated. ring. eccurely al web). bottom live loads. to of 20.0psf tangle the bottom of truss to uplift at joint 3, 82 lb upli ulift at joint 2018 2.11.1 and			Ste OF MISSO
BOT CHORD WEBS NOTES 1) Unbalanced this design. 2) Wind: ASCE Vasd=91mpl	7-8=0/36, 1-15=-69/30, 7-9=- 14-15=-54/66, 13-14=-54/66, 11-12=-54/66, 10-11=-54/66, 4-12=-116/0, 3-13=-151/87, 2 5-11=-156/88, 6-10=-137/91 roof live loads have been con 7-16; Vult=115mph (3-secor h; TCDL=6.0psf; BCDL=6.0p	150/35 12-13=-54/66, 9-10=-54/66 2-14=-157/97, nsidered for nd gust) sf; h=25ft; Cat.						SCOTT M. SEVIER NUMBER PE-2001018807
cantilever lef	nclosed; MWFRS (envelope) of ft and right exposed ; end ver id; Lumber DOL=1.60 plate go IG - Verify design parameters and RI	rtical left and rip DOL=1.60	ED MITEK REFERENCE PAGE M	II-7473 rev. 1/2/2	023 BEFORE I	JSE.		April 24,2024
Design valid a truss syste building des	I for use only with MiTek® connectors em. Before use, the building designer sign. Bracing indicated is to prevent b quired for stability and to prevent coll	s. This design is based only upon pair must verify the applicability of desig puckling of individual truss web and/o	rameters shown, and is for an ind n parameters and properly incorp or chord members only. Additiona	ividual building co orate this design al temporary and	omponent, not into the overa permanent bra	II		16023 Swingley Ridge Rd

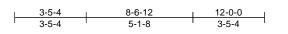
Design valid for use only with MTeKe connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcscomponents.com)

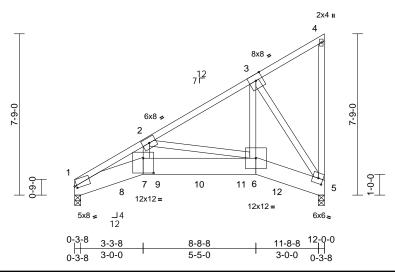
16023 Swingley Ridge Rd. Chesterfield, MO 63017 314.434.1200 / MiTek-US.com

Loading TCLL (roof) TCDL BCLL BCDL	(psf) 25.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC20	18/TPI2014	CSI TC BC WB Matrix-S	0.69 0.61 0.14	DEFL Vert(LL) Vert(CT) Horz(CT) Wind(LL)	in -0.10 -0.21 0.10 0.06	(loc) 8-9 8-9 7 8-9	l/defl >999 >662 n/a >999	L/d 360 240 n/a 240	PLATES MT20 Weight: 41 lb	GRIP 197/144 FT = 10%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD	2x4 SPF No.2 2x4 SPF No.2 2x3 SPF No.2 *Exce No.2 Structural wood she 4-6-6 oc purlins, ex Rigid ceiling directly bracing.	athing directly applic	ed or ⁸ c	using ANSI/ designer sho Provide mec bearing plate 10 and 86 lb This truss is International	int(s) 10, 7 cons TPI 1 angle to gra- buld verify capaci- chanical connecti- a capable of with uplift at joint 7. designed in accor Residential Cod nd referenced sta Standard	ain formula ity of bear on (by oth standing 6 ordance w le sections	a. Building ng surface. ers) of truss 0 lb uplift at ith the 2018 R502.11.1 a	to joint					
	(size) 7=0-3-8, 7 Max Horiz 10=-121 (Max Uplift 7=-86 (LC Max Grav 7=600 (LC	LC 4) C 9), 10=-60 (LC 8)											
FORCES	(lb) - Maximum Com Tension	pression/Maximum											
TOP CHORD	1-2=-986/117, 2-3=- 4-5=-997/76, 5-6=0/ 5-7=-765/104		170,										
BOT CHORD WEBS	ORD 9-10=-98/819, 8-9=-6/495, 7-8=-11/786 3-8=-117/400, 4-8=-44/139, 3-9=-141/445, 2-9=-75/134												
this design 2) Wind: ASC Vasd=91m	ed roof live loads have n. CE 7-16; Vult=115mph nph; TCDL=6.0psf; BC	(3-second gust) DL=6.0psf; h=25ft; (E	ATE OF I	MISSO

- Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60 3) This truss has been designed for a 10.0 psf bottom
- chord live load nonconcurrent with any other live loads.
- 4) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- All bearings are assumed to be SPF No.2. 5)

 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.
 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not besign value to dury with with where outputs into design is based only door parameters shown, and is for an individual building design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members and property incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TPH1 Quality Criteria**, and **DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcscomponents.com)




16023 Swingley Ridge Rd. Chesterfield MO 63017 314.434.1200 / MiTek-US.com

						RELEASE FOR CONSTRUCTION
Job	Truss	Truss Type	Qty	Plv	Lot 184 HT	AS NOTED FOR PLAN REVIEW
305	11035	Truss Type	Quy	i iy	201104111	DEVELOPMENT SERVICES 165090802
B240082	E3	Monopitch Girder	1	2	Job Reference (optional)	

Wheeler Lumber, Waverly, KS - 66871,

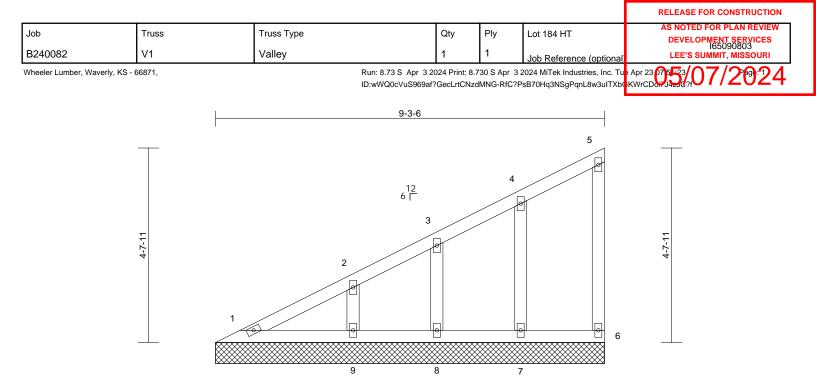
Run: 8.73 S Apr 3 2024 Print: 8.730 S Apr 3 2024 MiTek Industries, Inc. Tu Apr 23 75 52/07/29:24 ID:wWQ0cVuS969af?GecLrtCNzdMNG-RfC?PsB70Hq3NSgPqnL8w3uITXbgKWrCDwJ320?i

Scale = 1:55.4

Plate Offsets (X, Y): [1:0-1-4,0-1-5], [5:0-2-11,0-3-0], [7:0-6-0,0-8-8]

				-								-	
Loading	(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15		TC	0.96	Vert(LL)	-0.13	6-7	>999	360	MT20	197/144
TCDL	10.0	Lumber DOL	1.15		BC	0.48	Vert(CT)	-0.22	6-7	>646	240		
BCLL	0.0*	Rep Stress Incr	NO		WB	0.83	Horz(CT)	0.12	5	n/a	n/a		
BCDL	10.0	Code	IRC201	8/TPI2014	Matrix-S		Wind(LL)	0.03	6-7	>999	240	Weight: 182 lb	FT = 10%
LUMBER			4	This truss ha	as been designed	d for a 10.) psf bottom						
TOP CHORD	2x4 SPF No.2				ad nonconcurren								
BOT CHORD		=	5		has been designe			0psf					
WEBS	2x4 SPF No.2				m chord in all are								
BRACING					by 2-00-00 wide		een the bott	om					
TOP CHORD			ed or		ny other member		005405						
	3-3-1 oc purlins, ex		6		are assumed to I			lu a					
BOT CHORD	Rigid ceiling directly bracing.	applied or 10-0-0 o	c 7		pint(s) 1, 5 consid TPI 1 angle to gra			lue					
REACTIONS	•	5-0-3-8			ould verify capaci								
	Max Horiz 1=284 (L0		8		designed in acco								
	Max Grav 1=4736 (L	,	15)		Residential Cod			and					
FORCES	(lb) - Maximum Corr	<i>,,</i> (,		nd referenced sta								
FUNCES	Tension	ipression/iviaximum	9		r other connection			C05					
TOP CHORD		3623/0 3-4=-158/84	1		ficient to support 164 lb up at 2-0								
	4-5=-79/45	0020/0, 0 1- 100/0	,		n at 6-0-0, and 1								
BOT CHORD	1-7=0/9881, 6-7=0/8	3633, 5-6=0/3926			n and 164 lb up a								
WEBS	2-7=0/5503, 2-6=-56	626/0, 3-6=0/6712,			selection of such								
	3-5=-6260/0			responsibilit									
NOTES		L	OAD CASE(S)	Standard									
1) 2-ply truss	s to be connected toge	ther with 10d	1	Dead + Ro	of Live (balanced	d): Lumber	Increase=1.	15,					
(0.131"x3'	") nails as follows:			Plate Incre		,							
	is connected as follows	s: 2x4 - 2 rows		Uniform Lo	ads (lb/ft)								The
	taggered at 0-9-0 oc. Bottom chords connected as follows: 2x10 - 2 rows taggered at 0-5-0 oc.				=-70, 1-7=-20, 6-	-7=-20, 5-	6=-20					TATE OF M	ALC D
					ed Loads (lb)							Fre	JUSS W
		1			·1516 (B), 9=-151		₌-1516 (B),				6	AN'	N.S.Y
	ected as follows: 2x4 - are considered equally			11=-151	6 (B), 12=-1516 ((B)					B	SCOT	M. YZY
	noted as front (F) or ba		חאר								a	SEVI	ER \Y
	section. Ply to ply conr										20		
	o distribute only loads											A HK	Andrea
	nerwise indicated.									-		NUM	Jerry
	CE 7-16; Vult=115mph	(3-second gust)									8	al INOM	
	nph; TCDL=6.0psf; BC		Cat.								N.	O PE-2001	018807
II: Exd C:	Enclosed: MWFRS (er	nvelope) exterior zor	ne;								V V	100	158

 Wind: ASCE 7-16; Vull=115mpn (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60

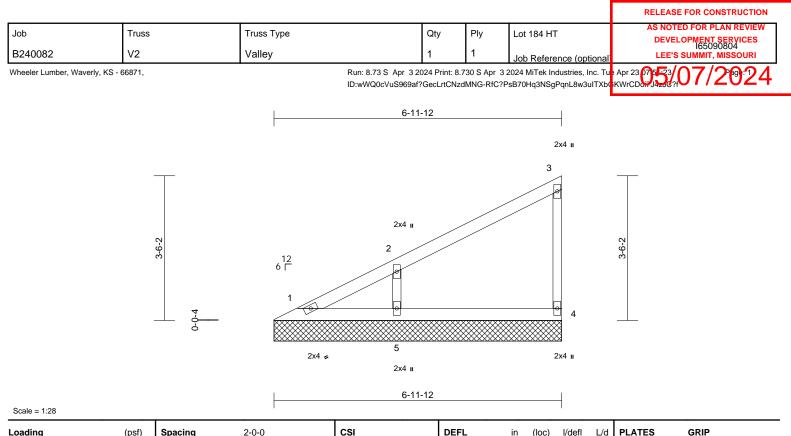

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITeK® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and property incorporate this design into the overall building design. Bracing indicated is to preven thuckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

E

April 24,2024

SSIONAL

9-3-6


Scale - 1.27 5

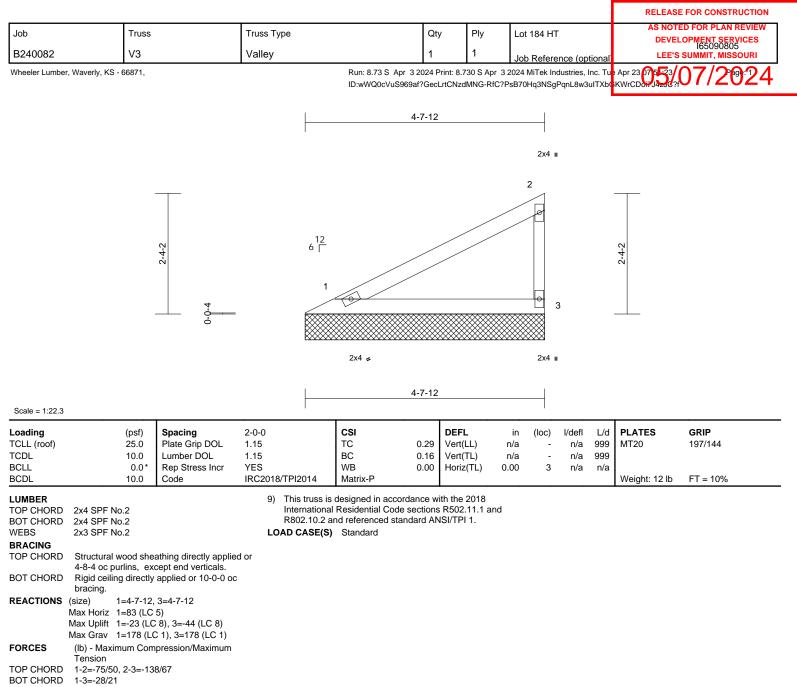
Scale = 1:27.5											·		
Loading TCLL (roof) TCDL BCLL BCDL	(psf) 25.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES	8/TPI2014	CSI TC BC WB Matrix-S	0.09 0.04 0.03	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 6	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 33 lb	GRIP 197/144 FT = 10%
		0000				d for a liv		Doof				Troigini oo ib	
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	9=9-3-6 Max Horiz 1=177 (LC Max Uplift 6=-24 (LC	cept end verticals. applied or 10-0-0 od 3=9-3-6, 7=9-3-6, 8= 2 5) 2 5), 7=-57 (LC 8), 8: -75 (LC 8)	8) 9) ed or 2 10 9-3-6, LC =-47	on the bottor 3-06-00 tall b chord and an All bearings a Provide mec bearing plate 6, 57 lb uplift uplift at joint) This truss is International	designed in acco Residential Code nd referenced sta	as where vill fit betw e SPF Ne on (by oth standing 2 uplift at joi rdance w e sections	a rectangle veen the botto o.2. ers) of truss t 4 lb uplift at j nt 8 and 75 lk ith the 2018 R502.11.1 a	o oint					
FORCES	(LC 1), 8= (Ib) - Maximum Com	=155 (LC 1), 9=251 (pression/Maximum	LC 1)										
TOP CHORD	Tension 1-2=-147/54, 2-3=-1 4-5=-79/45, 5-6=-52/												
BOT CHORD	1-9=-61/46, 8-9=-61/ 6-7=-61/46	/46, 7-8=-61/46,											
WEBS	4-7=-150/71, 3-8=-12	24/73, 2-9=-188/102	2										
 Vasd=91rr II; Exp C; I cantilever right expos 2) Truss des only. For see Stand or consult 3) All plates a 4) Gable req 5) Gable stuc 6) This truss 	CE 7-16; Vult=115mph pph; TCDL=6.0psf; BC Enclosed; MWFRS (er left and right exposed sed; Lumber DOL=1.6(signed for wind loads in studs exposed to wind ard Industry Gable End qualified building desig are 2x4 MT20 unless o uires continuous bottor ds spaced at 2-0-0 oc. has been designed for load nonconcurrent wi	DL=6.0psf; h=25ff; (velope) exterior zor ; end vertical left an 0 plate grip DOL=1.6 n the plane of the tru (normal to the face) d Details as applicat gner as per ANSI/TF otherwise indicated. m chord bearing. r a 10.0 psf bottom	ne; d 60 iss i, ble, PI 1.							A	Ø	STATE OF I SCOT SEV. DO NOM PE-2001	LER 018807

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent oulgase with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TPI1 Quality Criteria, and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcscomponents.com)

16023 Swingley Ridge Rd. Chesterfield MO 63017 314.434.1200 / MiTek-US.com

April 24,2024

					_							
Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15	TC	0.19	Vert(LL)	n/a	-	n/a	999	MT20	197/144
TCDL	10.0	Lumber DOL	1.15	BC	0.10	Vert(TL)	n/a	-	n/a	999		
BCLL	0.0*	Rep Stress Incr	YES	WB	0.05	Horiz(TL)	0.00	4	n/a	n/a		
BCDL	10.0	Code	IRC2018/TPI2014	Matrix-P		. ,					Weight: 19 lb	FT = 10%
		!									0	
LUMBER			Provide r	nechanical connection	on (by oth	ers) of truss to	0					
TOP CHORD	2x4 SPF No.2		bearing p	late capable of withs	standing 2	27 lb uplift at jo	oint					
BOT CHORD	2x4 SPF No.2			1 lb uplift at joint 5.								
WEBS	2x3 SPF No.2			s is designed in acco								
OTHERS	2x3 SPF No.2			nal Residential Code			nd					
BRACING			R802.10	2 and referenced sta	andard AN	ISI/TPI 1.						
TOP CHORD	Structural wood she	athing directly applie	ed or LOAD CASE	(S) Standard								
	6-0-0 oc purlins, ex											
BOT CHORD			с									
	bracing.											
REACTIONS	•	2, 4=6-11-12, 5=6-1	1-12									
	Max Horiz 1=131 (L0		=									
	Max Uplift 4=-27 (LC	,										
	Max Grav 1=71 (LC		5=370									
	(LC 1)	10), 1-112 (20 1),	5-010									
FORCES	(lb) - Maximum Corr	nression/Maximum										
1011020	Tension	procolon/maximum										
TOP CHORD		06/43 3-4=-111/46										
BOT CHORD	,	,										
WEBS	2-5=-288/161	/0 1										
	2 5= 200/101											
NOTES		(2)										
	SCE 7-16; Vult=115mph		a /									
	mph; TCDL=6.0psf; BC											
	; Enclosed; MWFRS (er											100
	r left and right exposed										OFI	MIG
	osed; Lumber DOL=1.6 esigned for wind loads in										TATE OF I	ISS W
	r studs exposed to wind									A		N.S.
	dard Industry Gable En									A	SCOT	TM. P.V.
	It qualified building desi									H.	SEV	
	quires continuous botto		-11.							84		
	uds spaced at 4-0-0 oc.	in chora bearing.								10	1	0
	s has been designed fo	r a 10.0 pcf bottom								SA.	TK .	~~~~~
	e load nonconcurrent wi		de						,		NUM	BER
	iss has been designed f									N7	PE-2001	
	ottom chord in all areas		,poi							N	1 2001	158
	all by 2-00-00 wide will		m							Y		NON B
	d any other members.	in sourcon the boll	200								SIONA	TENA
	a any other members.	SPF No 2									WINA	


chord and any other members. 7) All bearings are assumed to be SPF No.2 .

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

16023 Swingley Ridge Rd.

Chesterfield MO 63017 314.434.1200 / MiTek-US.com

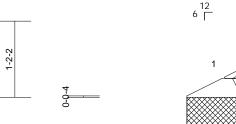
JULO April 24,2024

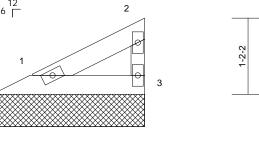
NOTES

- Wind: ASCE 7-16; Vult=115mph (3-second gust) 1) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
- 2) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable or consult qualified building designer as per ANSI/TPI 1.
- Gable requires continuous bottom chord bearing. 3) 4)
- Gable studs spaced at 4-0-0 oc.
- 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 6) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- All bearings are assumed to be SPF No.2 . 7)
- 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 23 lb uplift at joint 1 and 44 lb uplift at joint 3.

OF MISS SCOTT M. SEVIER PE-200101880 SIONAL E April 24,2024

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITEk® connectors. This design is based only upon parameters shown, and is for an individual building component, not and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponent.com)


						RELEASE FOR CONSTRUCTION
Job	Truss	Truss Type	Qty	DIV	Lot 184 HT	AS NOTED FOR PLAN REVIEW
300	11035	Truss Type	Quy	i iy	201 104 111	DEVELOPMENT SERVICES 165090806
B240082	V4	Valley	1	1	Job Reference (optional	
	-					


Wheeler Lumber, Waverly, KS - 66871,

Run: 8.73 S Apr 3 2024 Print: 8.730 S Apr 3 2024 MiTek Industries, Inc. Tu Apr 23 75 53/07/20:24 ID:wWQ0cVuS969af?GecLrtCNzdMNG-RfC?PsB70Hq3NSgPqnL8w3uITXbgKWrCDor 32.27

2x4 II

2x4 🥫

Scale = 1:17.8				1			I				_	
Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15	TC	0.04	Vert(LL)	n/a	-	n/a	999	MT20	197/144
TCDL	10.0	Lumber DOL	1.15	BC	0.02	Vert(TL)	n/a	-	n/a	999		
BCLL	0.0*	Rep Stress Incr	YES	WB	0.00	Horiz(TL)	0.00	3	n/a	n/a		
BCDL	10.0	Code	IRC2018/TPI2014	Matrix-P							Weight: 5 lb	FT = 10%

9) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard

LUMBER

2x4 SPF I	No.2								
2x4 SPF I	No.2								
2x3 SPF I	No.2								
Structural	wood sheathing directly applied or								
2-4-4 oc p	ourlins, except end verticals.								
Rigid ceili	Rigid ceiling directly applied or 10-0-0 oc								
bracing.									
(size)	1=2-3-12, 3=2-3-12								
Max Horiz	1=34 (LC 5)								
Max Uplift	1=-9 (LC 8), 3=-18 (LC 8)								
Max Grav	1=73 (LC 1), 3=73 (LC 1)								
(lb) - Max	imum Compression/Maximum								
	2x4 SPF I 2x3 SPF I Structural 2-4-4 oc p Rigid ceili bracing. (size) Max Horiz Max Uplift Max Grav								

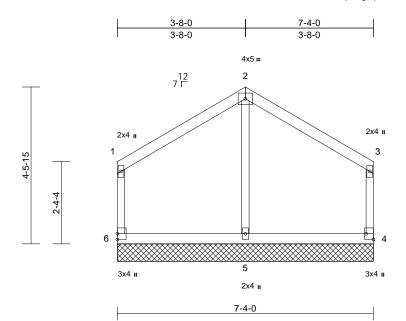
IONOLO	
	Tension
TOP CHORD	1-2=-31/20, 2-3=-57/28
BOT CHORD	1-3=-12/9

NOTES

- Wind: ASCE 7-16; Vult=115mph (3-second gust) 1) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
- 2) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable or consult qualified building designer as per ANSI/TPI 1.
- Gable requires continuous bottom chord bearing. 3)
- Gable studs spaced at 2-0-0 oc. 4)
- 5) This truss has been designed for a 10.0 psf bottom
- chord live load nonconcurrent with any other live loads. * This truss has been designed for a live load of 20.0psf 6) on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom
- chord and any other members.

All bearings are assumed to be SPF No.2 . 7)

Provide mechanical connection (by others) of truss to 8) bearing plate capable of withstanding 9 lb uplift at joint 1 and 18 lb uplift at joint 3.


 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.
 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not beigh valid for use only with with with sets outputs into design is based only door parameters shown, and is for an individual dualing component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria**, and **DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcscomponents.com)

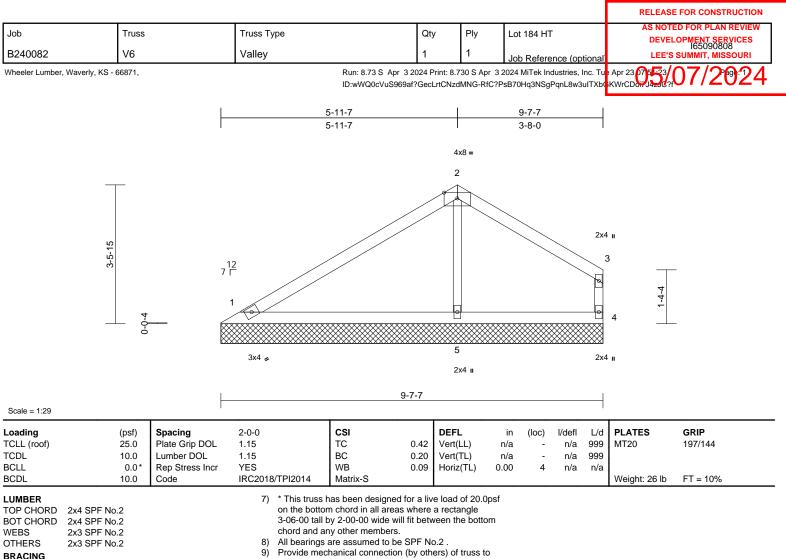
						RELEASE FOR CONSTRUCTION
Job	Truss	Truss Type	Qty	Plv	Lot 184 HT	AS NOTED FOR PLAN REVIEW
000	11035		Qty	i iy	201104111	DEVELOPMENT SERVICES 165090807
B240082	V5	Valley	1	1	Job Reference (optional)	LEFTS SUMMIT MISSOURI

Wheeler Lumber, Waverly, KS - 66871,

Run: 8.73 S Apr 3 2024 Print: 8.730 S Apr 3 2024 MiTek Industries, Inc. Tu Apr 23 75 53/07/20:24 ID:wWQ0cVuS969af?GecLrtCNzdMNG-RfC?PsB70Hq3NSgPqnL8w3uITXbgKWrCDor 32.27

Scale = 1:33

Flate Olisets (, T). [3.0-0-0,Euge],	[4.Euge,0-2-6]									-	
Loading TCLL (roof) TCDL BCLL BCDL	(psf) 25.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018/TPI2014	CSI TC BC WB Matrix-R	0.20 0.10 0.11	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 4	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 25 lb	GRIP 197/144 FT = 10%
	2x4 SPF No.2 2x3 SPF No.2 2x3 SPF No.2 2x3 SPF No.2 Structural wood shea 6-0-0 oc purlins, exx Rigid ceiling directly bracing. (size) 4=7-4-0, 5 Max Horiz 6=134 (LC Max Uplift 4=-48 (LC Max Grav 4=154 (LC 6=154 (LC	cept end verticals. applied or 10-0-0 o 5=7-4-0, 6=7-4-0 C 5) S 9), 6=-48 (LC 8) C 22), 5=334 (LC 1)	chord live 8) * This trus on the boil 3-06-00 ta chord and 9) All bearing 10) Provide m c 6 and 48 11) This truss Internation R802.10.2 LOAD CASE/	has been designed load nonconcurrent s has been designe tom chord in all are: any other members any other members are assumed to b echanical connection ate capable of withs b uplift at joint 4. is designed in acco al Residential Code and referenced sta S) Standard	with any ed for a liv as where vill fit betv s. be SPF No on (by oth standing 4 wrdance w e sections	other live load e load of 20.1 a rectangle veen the botti c.2. ers) of truss t 8 lb uplift at j ith the 2018 s R502.11.1 a	0psf om to joint					
FORCES	(lb) - Maximum Com Tension	pression/Maximum										
TOP CHORD	1-6=-125/64, 1-2=-8 3-4=-125/64	8/65, 2-3=-88/65,										
BOT CHORD WEBS	5-6=-71/71, 4-5=-71/ 2-5=-252/34	/71										
NOTES 1) Unbalance this design 2) Wind: ASC Vasd=91m	ed roof live loads have	(3-second gust) DL=6.0psf; h=25ft;	Cat.							B	THE OF I	MISSOL


- II; Exp C; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60 Truss designed for wind loads in the plane of the truss 3)
- only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- Gable requires continuous bottom chord bearing. 4)
- 5) Truss to be fully sheathed from one face or securely
- braced against lateral movement (i.e. diagonal web).
- 6) Gable studs spaced at 0-0-0 oc.

April 24,2024

 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.
 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not besign value for use only with with twit even connectors. This design is based only upon parameters shown, and is for an individual building designer must verify the applicability of design parameters and properly incorporate this design into the overall building designer must verify the applicability of design parameters and properly incorporate this design into the overall building designer. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcscomponents.com)

- bearing plate capable of withstanding 36 lb uplift at joint
- 1, 60 lb uplift at joint 4 and 43 lb uplift at joint 5. 10) This truss is designed in accordance with the 2018
- International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- LOAD CASE(S) Standard

WEBS NOTES

FORCES

TOP CHORD

BOT CHORD

TOP CHORD

BOT CHORD

REACTIONS

bracing.

Max Uplift

Max Grav

Tension

2-5=-320/96

Max Horiz 1=98 (LC 5)

(LC 8)

5=454 (LC 15)

(lb) - Maximum Compression/Maximum

1-2=-161/113, 2-3=-102/63, 3-4=-138/74

(size)

1) Unbalanced roof live loads have been considered for this design

1-5=-21/31, 4-5=-21/31

Structural wood sheathing directly applied or

1=9-7-7, 4=9-7-7, 5=9-7-7

1=-36 (LC 8), 4=-60 (LC 9), 5=-43

1=227 (LC 1), 4=159 (LC 22),

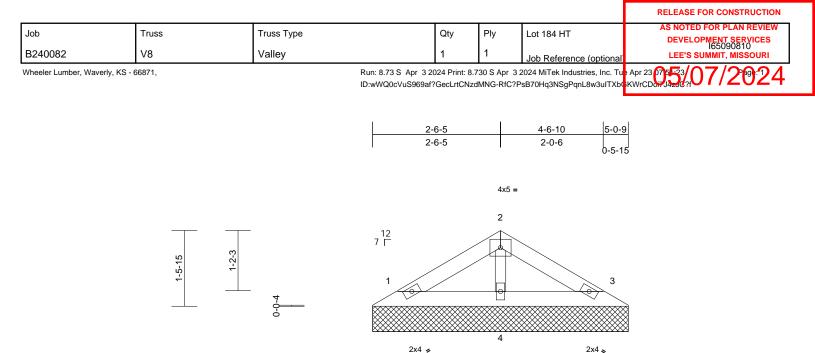
6-0-0 oc purlins, except end verticals.

Rigid ceiling directly applied or 6-0-0 oc

- 2) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- Gable requires continuous bottom chord bearing. 4)
- Gable studs spaced at 4-0-0 oc. 5)
- 6) This truss has been designed for a 10.0 psf bottom
- chord live load nonconcurrent with any other live loads.

16023 Swingley Ridge Rd. Chesterfield MO 63017 314.434.1200 / MiTek-US.com

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponent.com)


										RELEASE	FOR CONSTRUCTION	
Job	Truss		Truss Type		Qty	Qty Ply		г		AS NOTED FOR PLAN REVIEW DEVELOPMENT SERVICES 165090809]
B240082	V7		Valley		1	1	Job Refere	ence (optio	onali		SUMMIT, MISSOURI	
Wheeler Lumber	r, Waverly, KS - 66871,			Run: 8.73 S Apr 32 ID:wWQ0cVuS969af	2024 Print: 8	3.730 S Apr 3	2024 MiTek In	dustries, In	c. Tu		07/2024	-
				10.000000000000000000000000000000000000	GeoLiton		FSD/01iq0ia0g	Гүнсөтөа				
			4-	2-14		7-	10-12	7-10-	-14			
			4-	2-14		3-	7-15	0-0-	-1			I
					4x5 =							
					4x5 = 2							
	2-5-15		12 7 Г									I
	Ň						\searrow		-			
		4	1						3	4-5		
		¢ 0								ġ		I
			2x4 🍫	~~~~~	4	~~~~		2x4 =				
					2x4 II							
2 1 4 00 0				7-10	0-12							
Scale = 1:26.8	(nef)	Spacing	2-0-0	CSI	DE		in (loc)	l/defl	L/d	PLATES	GRIP	—
TCLL (roof)	(psf) 25.0	Spacing Plate Grip DOL	1.15	TC (0.26 Ve	rt(LL)	n/a -	n/a	999	MT20	197/144	
TCDL BCLL	10.0 0.0*	Lumber DOL Rep Stress Incr	1.15 YES	WB (rt(TL) riz(TL) (n/a -).00 3		999 n/a			
BCDL	10.0	Code	IRC2018/TPI2014	Matrix-P						Weight: 20 lb	FT = 10%	_
	2x4 SPF No.2		 Provide mech 	are assumed to be SI nanical connection (b capable of withstand	y others)	of truss to	L.					
OTHERS												
BRACING TOP CHORD	OP CHORD Structural wood sheathing directly applied or International Residential Code sections R502.11.1 and											
BOT CHORD	6-0-0 oc purlins. R802.10.2 and referenced standard ANSI/TPI 1.											
REACTIONS		2, 3=7-10-12, 4=7-10-	12									
	Max Horiz 1=57 (LC Max Uplift 1=-41 (LC	8), 3=-48 (LC 9)	,									
Max Grav 1=182 (LC 1), 3=179 (LC 1), 4=304 (LC 1)												
FORCES	(lb) - Maximum Com Tension											
WEBS NOTES	2-4=-211/55											
	ed roof live loads have n.	been considered for										
	CE 7-16: \/ult-115mph	(2 cocond quist)										

- Wind: ASCE 7-16; Vult=115mph (3-second gust)
 Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
- Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
 Gable requires continuous bottom chord bearing.
- 5) Gable studs spaced at 4-0-0 oc.
- 6) This truss has been designed for a 10.0 psf bottom
- chord live load nonconcurrent with any other live loads.
- This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.

April 24,2024

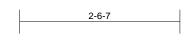
WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSITPTI Quality Criteria, and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcscomponents.com)

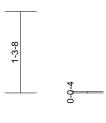
2x4 u

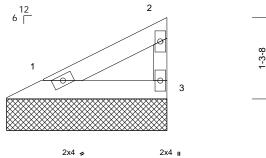
5-0-9

Scale - 1.22.7

Scale = 1:22.7											-	
Loading TCLL (roof) TCDL BCLL	(psf) 25.0 10.0 0.0*	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr	2-0-0 1.15 1.15 YES	CSI TC BC WB	0.07 0.04 0.02	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 3	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20	GRIP 197/144
BCDL	10.0	Code	IRC2018/TPI2014	Matrix-P							Weight: 12 lb	FT = 10%
LUMBER TOP CHORD BOT CHORD OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	5-1-7 oc purlins. Rigid ceiling directly bracing.	C 8), 3=-26 (LC 9)	9) Provide m bearing pl 1 and 26 ll 10) This truss ed or R802.10.2 c LOAD CASE(is are assumed t echanical conner ate capable of wi o uplift at joint 3. is designed in ac al Residential Cd and referenced 5) Standard	ction (by oth thstanding 2 ccordance w ode sections	ers) of truss t 22 lb uplift at j vith the 2018 s R502.11.1 a	oint					
FORCES	(lb) - Maximum Con Tension	npression/Maximum										
this design	1-2=-56/29, 2-3=-54 1-4=-6/26, 3-4=-6/20 2-4=-116/30 ed roof live loads have	6 been considered fo	r									

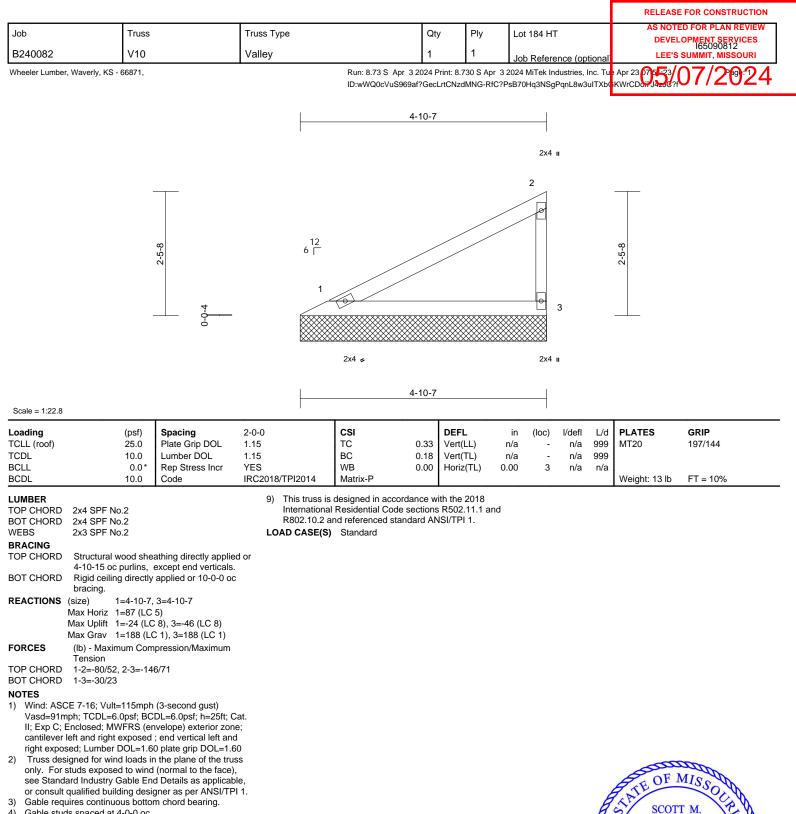

- Wind: ASCE 7-16; Vult=115mph (3-second gust) 2) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1. Gable requires continuous bottom chord bearing. 4)
- Gable studs spaced at 2-0-0 oc. 5)
- 6)
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 7) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle
- 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not beigh valid for use only with with with sets outputs into design is based only door parameters shown, and is for an individual dualing component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria**, and **DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcscomponents.com)



							RELEASE FOR CONSTRUCTION		
Job	Truss	Truss Type		Qty	Ply	Lot 184 HT	AS NOTED FOR PLAN REVIEW		
B240082	V9	Valley		1	1	Job Reference (optional	DEVELOPMENT SERVICES 165090811 LEE'S SUMMIT, MISSOURI		
Wheeler Lumber, Waverly, KS -	Wheeler Lumber, Waverly, KS - 66871, Run: 8.73 S Apr 3 2024 Print: 8.730 S Apr 3 2024 MiTek Industries, Inc. 1 ID:wWQ0cVuS969af?GecLrtcNzdMNG-RfC?PsB70Hq3NSgPqnL8w3uITX								

2-6-7

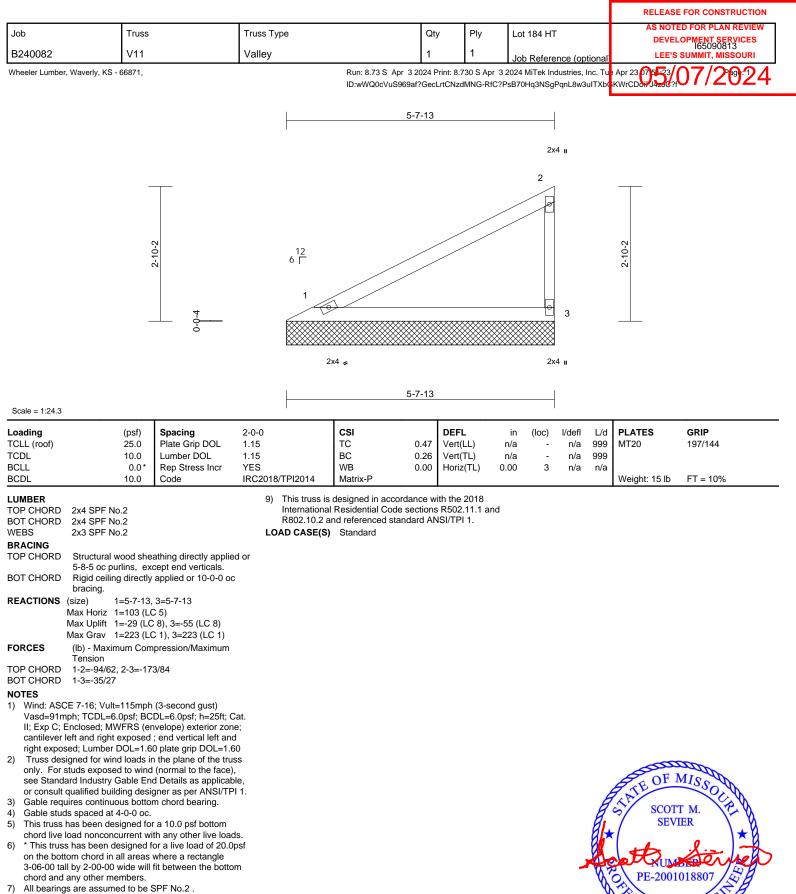

Scale - 1.18.2

Scale = 1:18.2											-	
Loading TCLL (roof) TCDL BCLL BCDL	(psf) 25.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018/TPI2014	CSI TC BC WB Matrix-P	0.06 0.03 0.00	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 3	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 6 lb	GRIP 197/144 FT = 10%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD REACTIONS FORCES TOP CHORD BOT CHORD BOT CHORD NOTES	2x4 SPF No.2 2x4 SPF No.2 2x3 SPF No.2 Structural wood she 2-6-15 oc purlins, e Rigid ceiling directly bracing.	athing directly applie xcept end verticals. applied or 10-0-0 or 3=2-6-7 5) 5 8), 3=-20 (LC 8) 1), 3=83 (LC 1) pression/Maximum /31	9) This truss is Internationa R802.10.2 a LOAD CASE(S)	designed in account I Residential Code and referenced sta	e sections	R502.11.1 a	and				Weight: 6 lb	FT = 10%
 Vasd=91m II; Exp C; E cantilever I right expos Truss desi only. For s see Standa or consult of Gable requ Gable stud This truss I chord live I * This truss on the bott 3-06-00 tal chord and 1 All bearing Provide me bearing pla 	ph; TCDL=6.0psf; BC Enclosed; MWFRS (er eft and right exposed sed; Lumber DOL=1.6 igned for wind loads ir studs exposed to wind ard Industry Gable En- qualified building desig uires continuous bottor is spaced at 2-0-0 oc. has been designed for oad nonconcurrent wi s has been designed for om chord in all areas i I by 2-00-00 wide will any other members. s are assumed to be S echanical connection (ate capable of withstar o uplift at joint 3.	DL=6.0psf; h=25ft; (welope) exterior zor ; end vertical left an 0 plate grip DOL=1. h the plane of the tru, (normal to the face) d Details as applical gner as per ANSI/TF m chord bearing. r a 10.0 psf bottom th any other live loa or a live load of 20.0 where a rectangle fit between the botto SPF No.2. (by others) of truss t	ne; d 60 iss ole, PI 1. ds. opsf om						_		SCOT SEV	IER BEEN 018807

April 24,2024

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent buckling of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

- Gable studs spaced at 4-0-0 oc. 4)
- 5) This truss has been designed for a 10.0 psf bottom
- chord live load nonconcurrent with any other live loads. 6) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle
- 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members. All bearings are assumed to be SPF No.2 . 7)


8)

Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 24 lb uplift at joint 1 and 46 lb uplift at joint 3.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITEk® connectors. This design is based only upon parameters shown, and is for an individual building component, not and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponent.com)

 Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 29 lb uplift at joint 1 and 55 lb uplift at joint 3.

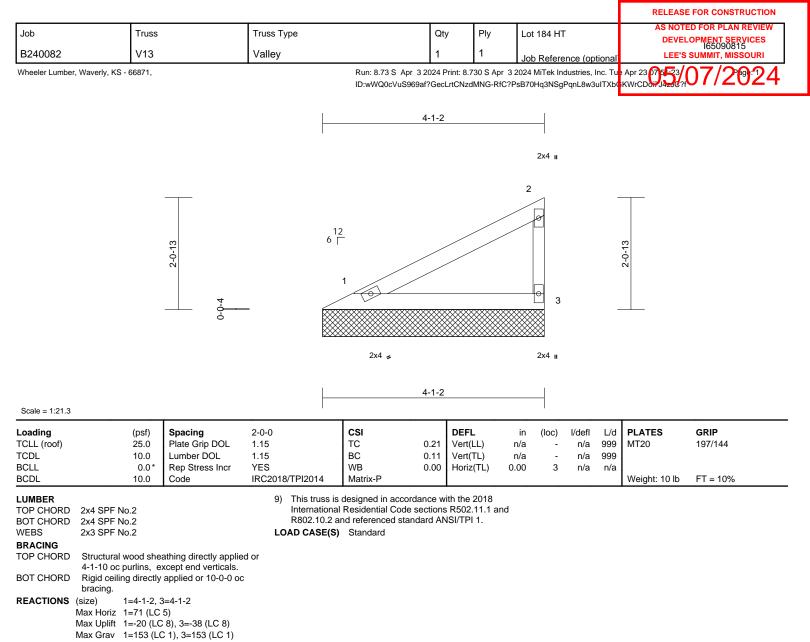
April 24,2024

F

SIONAL

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI Claulity Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

16023 Swingley Ridge Rd. Chesterfield, MO 63017 314.434.1200 / MiTek-US.com


									RELEASE FOR CONSTRUCTION
Job	Truss		Truss Type		Qty	Ply	Lot 184 H	г	AS NOTED FOR PLAN REVIEW DEVELOPMENT SERVICES 165090814
B240082	V12		Valley		1	1		ence (optional	LEE'S SUMMIT, MISSOURI
Wheeler Lumber, Waverly	y, KS - 66871,			Run: 8.73 S Apr 3 2 ID:wWQ0cVuS969af	024 Print: 8 ?GecLrtCN	8.730 S Apr 3	3 2024 MiTek Ir ?PsB70Hq3NSg	idustries, Inc. Tu PqnL8w3uITXb(Apr 23 07653/07/2024 KWrCD07J458270
				3	-3-13				
							2x4 II		
		1-8-2	0-0				2	د م	
				2x4 🝃			2x4 u		
Scale = 1:19.8				3	-3-13				
Loading	(ncf)	Spacing	200	201	DE			l/dofl l/d	

Loading	(psf)	Spacing	2-0-0	csi		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15	тс	0.12	Vert(LL)	n/a	-	n/a	999	MT20	197/144
TCDL	10.0	Lumber DOL	1.15	BC	0.06	Vert(TL)	n/a	-	n/a	999		
BCLL	0.0*	Rep Stress Incr	YES	WB	0.00	Horiz(TL)	0.00	3	n/a	n/a		
BCDL	10.0	Code	IRC2018/TPI2014	Matrix-P							Weight: 8 lb	FT = 10%
LUMBER			This truss is	designed in accord	lance w	ith the 2018						
	2x4 SPF No.2			I Residential Code			nd					
BOT CHORD			R802.10.2 a	and referenced stan	dard AN	ISI/TPI 1.						
WEBS	2x3 SPF No.2		LOAD CASE(S	Standard								
BRACING												
TOP CHORD			ed or									
	3-4-5 oc purlins, ex		_									
BOT CHORD	Rigid ceiling directly bracing.	applied or 10-0-0 o	С									
REACTIONS	0	, 3=3-3-13										
	Max Horiz 1=55 (LC											
	Max Uplift 1=-15 (LC											
	Max Grav 1=118 (L	C 1), 3=118 (LC 1)										
FORCES	(lb) - Maximum Con	npression/Maximum										
	Tension											
TOP CHORD	,	2/45										
BOT CHORD	1-3=-19/14											
NOTES	0	(2 1)										
,	CE 7-16; Vult=115mph		Cat									
	mph; TCDL=6.0psf; BC Enclosed; MWFRS (er											
	left and right exposed											
	sed; Lumber DOL=1.6											
	signed for wind loads i											(m
	studs exposed to wind										TATE OF	All and
	dard Industry Gable En										F.OF	MISS
	t qualified building desi quires continuous botto		ין 1.							6		N.S.
	ids spaced at 2-0-0 oc.									A	SCOT	TM.
	has been designed fo									4	SEV	TER VY
	load nonconcurrent w		ds.							8 *	-/	1*8
6) * This trus	ss has been designed f	for a live load of 20.0								N K		.0
	ttom chord in all areas										teller.	MARIAND
	all by 2-00-00 wide will	fit between the botto	om							W7	PE-2001	1018807 ABA
	d any other members. gs are assumed to be	SPE No 2								N	PE-2001	IUI00U/SB
	nechanical connection		0							Y	1 PPC	ICN B
	late capable of withsta										S'SIONA	LENA
	lb uplift at joint 3.	5 ,,									Con	The second
	-										Apr	1 24 2024

April 24,2024

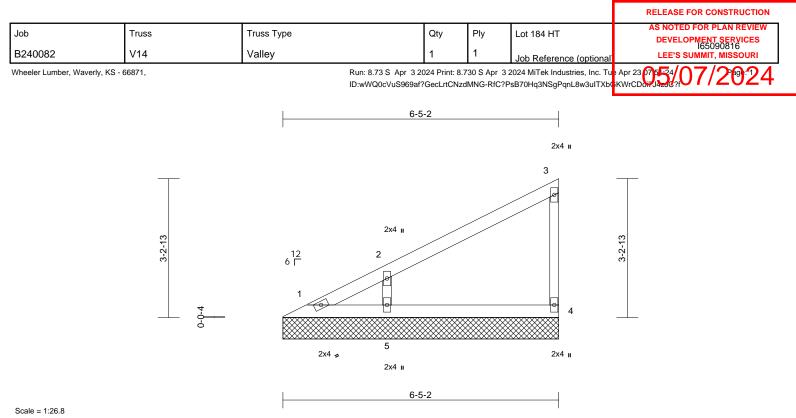
WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent buckling of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

 FORCES
 (lb) - Maximum Compression/Maximum Tension

 TOP CHORD
 1-2=-65/43, 2-3=-119/58

 BOT CHORD
 1-3=-24/18

BOICH


NOTES

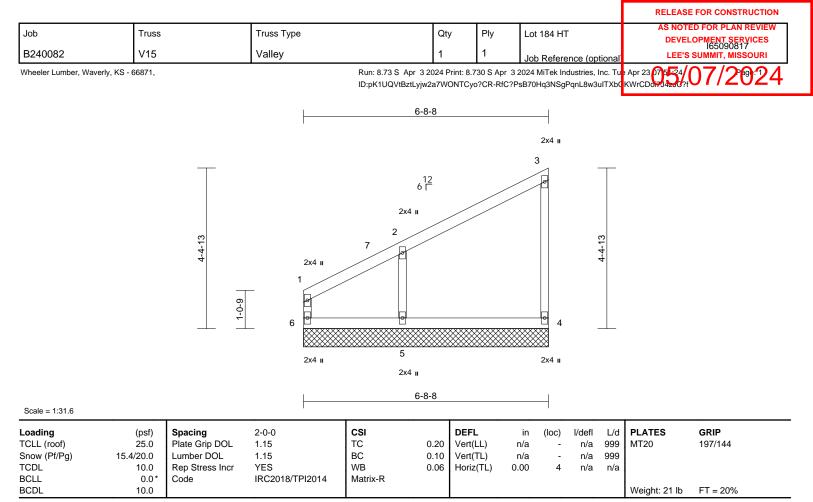
- Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
- Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 3) Gable requires continuous bottom chord bearing.
- 4) Gable studs spaced at 2-0-0 oc.
- 5) This truss has been designed for a 10.0 psf bottom
- chord live load nonconcurrent with any other live loads.
 * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- 7) All bearings are assumed to be SPF No.2.
- Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 20 lb uplift at joint 1 and 38 lb uplift at joint 3.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI Claulity Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

		·			1		i					i	
Loading	(psf)	Spacing	2-0-0		csi		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15		тс	0.19	Vert(LL)	n/a	-	n/a	999	MT20	197/144
TCDL	10.0	Lumber DOL	1.15		BC	0.10	Vert(TL)	n/a	-	n/a	999		
BCLL	0.0*	Rep Stress Incr	YES		WB	0.05	Horiz(TL)	0.00	4	n/a	n/a		
BCDL	10.0	Code	IRC2018	3/TPI2014	Matrix-P							Weight: 17 lb	FT = 10%
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SPF No.2 2x3 SPF No.2 2x3 SPF No.2 Structural wood she 6-0-0 oc purlins, ex Rigid ceiling directly bracing. (size) 1=6-5-2, 4 Max Horiz 1=120 (LC Max Uplift 1=-1 (LC (LC 8)	cept end verticals. • applied or 10-0-0 o 4=6-5-2, 5=6-5-2 C 5) 19), 4=-29 (LC 8), 5	LC c =-108	Provide me bearing plat 29 lb uplift a This truss is Internationa	are assumed to chanical connect e capable of with ti joint 4 and 108 designed in acc I Residential Co and referenced s Standard	tion (by oth nstanding 1 b uplift at cordance w de sections	ers) of truss t I lb uplift at jo joint 5. vith the 2018 s R502.11.1 a	vint 1,					
	Max Grav 1=47 (LC (LC 1)	5), 4=143 (LC 1), 5	=360										
FORCES	(lb) - Maximum Com Tension	pression/Maximum											

TOP CHORD 1-2=-105/55, 2-3=-102/42, 3-4=-111/48 BOT CHORD 1-5=-41/31, 4-5=-41/31 WEBS 2-5=-280/156

NOTES


- Wind: ASCE 7-16; Vult=115mph (3-second gust) 1) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
- 2) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1. Gable requires continuous bottom chord bearing.
- 3) Gable studs spaced at 4-0-0 oc. 4)
- This truss has been designed for a 10.0 psf bottom 5)
- chord live load nonconcurrent with any other live loads. 6) * This truss has been designed for a live load of 20.0psf
- on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.

OF MISSO TE SCOTT M. SEVIER PE-200101880' \mathbf{C} SSIONAL E

April 24,2024

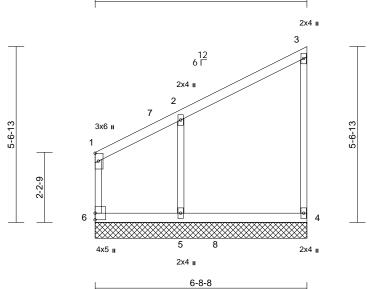
 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.
 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not beigh valid for use only with with with sets outputs into design is based only door parameters shown, and is for an individual dualing component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria**, and **DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcscomponents.com)

LUMBER		
TOP CHORD	2x4 SPF I	No.2
BOT CHORD	2x4 SPF I	No.2
WEBS	2x3 SPF I	No.2
OTHERS	2x3 SPF I	No.2
BRACING		
TOP CHORD	Structura	I wood sheathing directly applied or
	6-0-0 oc p	ourlins, except end verticals.
BOT CHORD	Rigid ceil	ing directly applied or 10-0-0 oc
	bracing.	
REACTIONS	(size)	4=6-8-8, 5=6-8-8, 6=6-8-8
	Max Horiz	6=149 (LC 9)
	Max Uplift	4=-18 (LC 9), 5=-118 (LC 12)
	Max Grav	4=164 (LC 18), 5=380 (LC 18),
		6=113 (LC 26)
FORCES	(lb) - Max	imum Compression/Maximum
	Tension	
TOP CHORD	1-6=-86/6	6, 1-2=-117/57, 2-3=-110/41,
	3-4=-130/	/40
BOT CHORD	5-6=-51/4	0, 4-5=-51/40
WEBS	2-5=-301/	/146
NATES		

NOTES

- 1) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
- Truss designed for wind loads in the plane of the truss 2) only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- TCLL: ASCE 7-16; Pr=25.0 psf (roof LL: Lum DOL=1.15 3) Plate DOL=1.15); Pg=20.0 psf; Pf=15.4 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat C; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- 4) Unbalanced snow loads have been considered for this desian.
- 5) Gable requires continuous bottom chord bearing.

- Truss to be fully sheathed from one face or securely 6) braced against lateral movement (i.e. diagonal web).
- Gable studs spaced at 4-0-0 oc. 7)
- This truss has been designed for a 10.0 psf bottom 8)
- chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf 9)
- on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- 10) All bearings are assumed to be SPF No.2 .
- 11) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 18 lb uplift at joint 4 and 118 lb uplift at joint 5.
- 12) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. LOAD CASE(S) Standard



April 24,2024

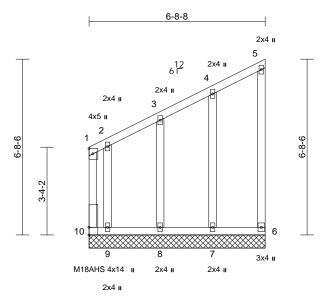
WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITEk® connectors. This design is based only upon parameters shown, and is for an individual building component, not and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponent.com)

						RELEASE FOR CONSTRUCTION
Job	Truss	Truss Type	Qty	Ply	Lot 184 HT	AS NOTED FOR PLAN REVIEW DEVELOPMENT SERVICES 165090818
B240082	V16	Valley	1	1	Job Reference (optional	
Wheeler Lumber, Wave	erly, KS - 66871,		Run: 8.73 S Apr 3 2024 Print: 8 ID:SqAkE9Pj8uQVXwZ5LqBDO_			
		L	6-8-8			

Scale = 1:36.5

Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 25.0 15.4/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018	8/TPI2014	CSI TC BC WB Matrix-R	0.37 0.18 0.09	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 4	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 24 lb	GRIP 197/144 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	6-0-0 oc purlins, ex Rigid ceiling directly bracing.	applied or 10-0-0 oc 5=6-8-8, 6=6-8-8 C 9) C 9), 5=-137 (LC 12), C 9) C 5), 5=425 (LC 25),	10 11	Truss to be f braced again Gable studs This truss ha chord live loa * This truss f on the bottor 3-06-00 tall b chord and ar) All bearings a) Provide mec bearing plate 6, 23 lb uplift) This truss is International	es continuous boti ully sheathed from ist lateral moveme spaced at 4-0-0 o is been designed ad nonconcurrent has been designed n chord in all area by 2-00-00 wide w by other members are assumed to be hanical connection capable of withst at joint 4 and 137 designed in accor Residential Code nd referenced star	one fac ont (i.e. d c. or a 10.0 with any I for a liv s where II fit betw with BC s SPF Ne a (by oth anding 2 I b uplift dance w sections	e or securely liagonal web) D psf bottom other live loa e load of 20.1 a rectangle veen the bott DL = 10.0psi 0.2. ers) of truss t 21 b uplift at j at joint 5. tit the 2018 s R502.11.1 a	ds. Dpsf om o o					
FORCES	(lb) - Maximum Com Tension	pression/Maximum	LC	DAD CASE(S)			Si/1111.						
TOP CHORD	1-6=-113/21, 1-2=-1 3-4=-130/37	35/64, 2-3=-117/49,											
BOT CHORD WEBS	5-6=-72/53, 4-5=-72 2-5=-301/153	/53											
Vasd=91n	CE 7-16; Vult=115mph nph; TCDL=6.0psf; BC	DL=6.0psf; h=15ft; C										FE OF I	MISSO

- Vasa=91mpn; 1CDL=0.0pst; BCDL=6.0pst; n=15f; Cat II; Exp C; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60 Truss designed for wind loads in the plane of the truss
- Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- TCLL: ASCE 7-16; Pr=25.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf; Pf=15.4 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat C; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- 4) Unbalanced snow loads have been considered for this design.


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent oulgase with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

						RELEASE FOR CONSTRUCTION
lah	Truco	Truce Tures	Qty	Plv	Lot 184 HT	AS NOTED FOR PLAN REVIEW
Job	Truss	Truss Type	Qly	Fiy		DEVELOPMENT SERVICES 165090819
B240082	V17	Valley	1	1	Job Reference (optional	

Wheeler Lumber, Waverly, KS - 66871,

Run: 8.73 S Apr 3 2024 Print: 8.730 S Apr 3 2024 MiTek Industries, Inc. Tue Apr 23 75 54/07/26:24 ID:wWQ0cVuS969af?GecLrtCNzdMNG-RfC?PsB70Hq3NSgPqnL8w3uITXbgKWrCDwJ326?

6-8-8

Scale =	1:43.9
---------	--------

Loading TCLL (root) (pst) 25.00 Bpacing Plate Grip DL 2-0-0 CSI (pst) Ver(TL) (na (pst) Ver(TL) <			•									i	
TCDL 10.0 Rumber DOL 1.15 EC 0.37 HorizTL n/a - n/a 999 MT20 197/144 BCDL 10.0 Rep Stress Incr YES WB 0.07 HorizTL 0.00 6 n/a n	Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
BCLL 0.0 ¹ Rep Stress incr YES WB 0.0 ⁷ Hortz(TL) 0.00 6 n/a n/a BCDL 10.0 Code IRC2018/TPI2014 Matrix-R Matrix-R No 6 n/a Na Na </td <td>TCLL (roof)</td> <td>25.0</td> <td>Plate Grip DOL</td> <td>1.15</td> <td>TC</td> <td>0.43</td> <td>Vert(LL)</td> <td>n/a</td> <td>-</td> <td>n/a</td> <td>999</td> <td>M18AHS</td> <td>142/136</td>	TCLL (roof)	25.0	Plate Grip DOL	1.15	TC	0.43	Vert(LL)	n/a	-	n/a	999	M18AHS	142/136
BCDL 10.0 Code IRC2018/TP12014 Matrix-R Weight: 41 lb FT = 10% LUMBER TOP CHORD 2x4 SPF No.2 5 Truss to be fully sheathed from one face or securely braced agains fateral movement (i.e. diagonal web). 6 6 5 Truss to be fully sheathed from one face or securely braced agains fateral movement (i.e. diagonal web). 6 7 Truss to be fully sheathed from one face or securely braced agains fateral movement (i.e. diagonal web). 6 6 6 7 7 10 6 6 7 7 10 6 7 7 10	TCDL	10.0	Lumber DOL	1.15	BC	0.33	Vert(TL)	n/a	-	n/a	999	MT20	197/144
 LUMBER TOP CHORD 2x4 SPF No.2 SOT CHORD 2x4 SPF No.2 STUSS to be fully sheathed from one face or securely braced against lateral movement (i.e. diagonal web). Gable studies spaced at 2-0-0 cc. This truss has been designed for a 10.0 per bottom chord live load on concurrent with any other live loads. This truss has been designed for a 10.0 per bottom chord live load on concurrent with any other live loads. This truss has been designed for a 10.0 per bottom chord live load on concurrent with any other live loads. This truss has been designed for a 10.0 per bottom chord in due areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members. I all bearings are assumed to be SPF No.2. I provide mechanical connection (by others) of truss to bearing plate capable of withstanding 35 b upfilt at joint 10.9 51 b upfilt at joint 3.0 b upfilt at joint 8 and 859 b upfilt at joint 10.9 51 b upfilt at joint 3.0 b upfilt at joint 8 and 859 b upfilt at joint 10.9 51 b upfilt at joint 3.0 b upfilt at joint 8 and 859 b upfilt at joint 10.9 51 b upfilt at joint 3.0 and reference standard ANSI/TPI 1. LOAD CASE(5) Standard WeBS 4-7-145/39, 3-8-146/95, 2-9=-191/369 NOTES I) Wind: ASCE 7-16; Vull=115mph (3-second gust) Vasd=91mph; TCDL=60pd; BCDL=60pd; h=25ft Cct. II; Exp C; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed : end vertical left and right exposed; Lumber DOL=16.0 plate grip DOL=1.60 20 Truss designed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1. J) All plates are MT20 plates unless otherwise indicated. J) Gable requires continuous bottom chord hearing. 	BCLL	0.0*	Rep Stress Incr	YES	WB	0.07	Horiz(TL)	0.00	6	n/a	n/a		
TOP CHORD 2x4 SPF No.2 braced against lateral movement (ise, diagonal web). BOT CHORD 2x4 SPF No.2 6 Gable stude spaced at 2x4-00 oc. WEBS 2x4 SPF No.2 7 This truss has been designed for a lov load of 20.0 paf OTHERN 2x4 SPF No.2 7 This truss has been designed for a live load of 20.0 paf TOP CHORD Structural wood sheathing directly applied or 10-0-0 c 7 This truss has been designed for a live load of 20.0 paf 6-0-0 cc purptions, except end verticals. 6-6-8, 7-6-8-8, 8-6-8-8, 9-6-8-6, 10-6-8-8 9 Alb beam chore (line) (by others) of truss to beam chore (line) (b, -8-89) (LC 5), 7-33 (LC 8), 8=-60 (LC 8), 7-33 (LC 8), 8=-60 (LC 8), 7-33 (LC 8), 8=-60 (LC 8), 7-33 (LC 8), 8=-65 (LC 8), 7-33 (LC 8), 8=-65 (LC 8), 7-33 (LC 8), 8=-60 (LC 8), 7-33 (LC 8), 8=-60 (LC 8), 7-34 (LC 8), 8=-65 (LC 8), 7-45	BCDL	10.0	Code	IRC2018/TPI201	4 Matrix-R							Weight: 41 lb	FT = 10%
Max Grav 6=91 (LC 15), 7=195 (LC 16), 8=187 (LC 1), 9=447 (LC 6), 10=903 (LC 5) FORCES (lb) - Maximum Compression/Maximum Tension TOP CHORD 1-10=-410/155, 1-2=-287/93, 2-3=-133/47, 3-4=-111/55, 4-5=-98/62, 5-6=-55/48 BOT CHORD 9-10=-105/74, 8-9=-105/74, 6-7=-105/74 6-7=-105/74 WEBS 4-7=-145/39, 3-8=-146/95, 2-9=-191/369 NOTES 1) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=-1.60 2) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANS/TPI 1. 3) All plates are MT20 plates unless otherwise indicated. 4) Gable requires continuous bottom chord bearing.	TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD	2x4 SPF No.2 2x4 SPF No.2 2x4 SPF No.2 Structural wood she 6-0-0 oc purlins, ex Rigid ceiling directly bracing. (size) 6=6-8-8, 10=6-8-8 Max Horiz 10=252 (Max Uplift 6=-95 (LC (LC 8), 9:	ccept end verticals. v applied or 10-0-0 oc 7=6-8-8, 8=6-8-8, 9=4 LC 5) C 5), 7=-33 (LC 8), 8=	e-60 6) Gables 7) This tru chord li 8) * This tru on the l 3-06-00 chord a 9) All bear 10) Provide bearing 10, 95 l at joint 11) This tru on the l 3-06-00 bearing 10, 95 l at joint 11) This tru chord a 9) All bearing 10, 95 l 11) This tru chord a 11) This tru chord a 11) This tru chord a 11) This tru chord a 11) This tru chord a 12) This tru chord a 13) This tru chord a 10) Provide bearing 10, 95 l 11) This tru chord a 11) This tru cho	against lateral movem tuds spaced at 2-0-0 o ss has been designed ve load nonconcurrent uss has been designed bottom chord in all are tall by 2-00-00 wide v ind any other members ings are assumed to b mechanical connection plate capable of withs b uplift at joint 6, 33 lb 8 and 859 lb uplift at jo ss is designed in acco ional Residential Code	ent (i.e. c cc. for a 10. with any d for a liv as where vill fit betv s. be SPF N on (by oth standing 3 uplift at j oint 9. wrdance w e sections	liagonal web). 0 psf bottom other live load re load of 20.0 a rectangle veen the bottc 0.2. ers) of truss to 395 lb uplift at oint 7, 60 lb up ith the 2018 a R502.11.1 ai	ds. Ipsf om joint olift					
Tension TOP CHORD 1-10=-410/155, 1-2=-287/93, 2-3=-133/47, 3-4=-111/55, 4-5=-98/62, 5-6=-55/48 BOT CHORD 9-10=-105/74, 8-9=-105/74, 6-7=-105/74 WEBS 4-7=-145/39, 3-8=-146/95, 2-9=-191/369 NOTES 1) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed : end vertical left and right exposed; Lumber DOL=1.60 2) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TP1 1. 3) All plates are MT20 plates unless otherwise indicated. 4) Gable requires continuous bottom chord bearing.		Max Grav 6=91 (LC 8=187 (L	C 1), 9=447 (LC 6),			andard Af	NSI/TPI 1.						
3-4=-111/55, 4-5=-98/62, 5-6=-55/48 BOT CHORD 9-10=-105/74, 8-9=-105/74, 7-8=-105/74, 6-7=-105/74 WEBS 4-7=-145/39, 3-8=-146/95, 2-9=-191/369 NOTES 1) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60 2) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1. 3) All plates are MT20 plates unless otherwise indicated. 4) Gable requires continuous bottom chord bearing.	FORCES		npression/Maximum										
 6-7=-105/74 WEBS 4-7=-145/39, 3-8=-146/95, 2-9=-191/369 NOTES 1) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60 2) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TP1 1. 3) All plates are MT20 plates unless otherwise indicated. 4) Gable requires continuous bottom chord bearing. 	TOP CHORD	,	,	7,									
 Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60 Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1. All plates are MT20 plates unless otherwise indicated. Gable requires continuous bottom chord bearing. 	BOT CHORD		-105/74, 7-8=-105/74	` ,									400
 Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60 Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1. All plates are MT20 plates unless otherwise indicated. Gable requires continuous bottom chord bearing. 	WEBS	4-7=-145/39, 3-8=-1	46/95, 2-9=-191/369									OF I	AL SIN
 Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60 Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1. All plates are MT20 plates unless otherwise indicated. Gable requires continuous bottom chord bearing. 	NOTES											FIE	10°0
Watterson .	Vasd=91r II; Exp C; cantilever right expc 2) Truss de only. For see Stanc or consult 3) All plates	mph; TCDL=6.0psf; BC Enclosed; MWFRS (e r left and right exposed sed; Lumber DOL=1.6 signed for wind loads i studs exposed to wind dard Industry Gable Er t qualified building des are MT20 plates unles	EDL=6.0psf; h=25ft; C nvelope) exterior zon ; end vertical left and 0 plate grip DOL=1.6 n the plane of the trust d (normal to the face) d Details as applicab gner as per ANSI/TP is otherwise indicated	e; d 30 ss , ole, 11.								SCOT SEVI NUM PE-2001	T M. ER BER 018807

April 24,2024

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

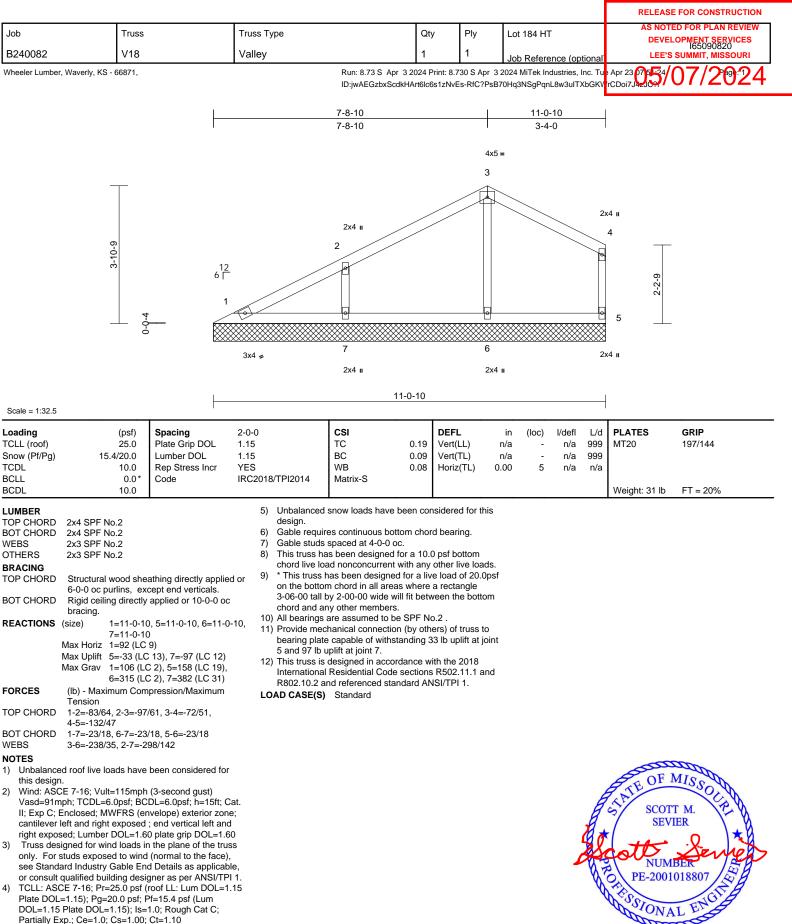
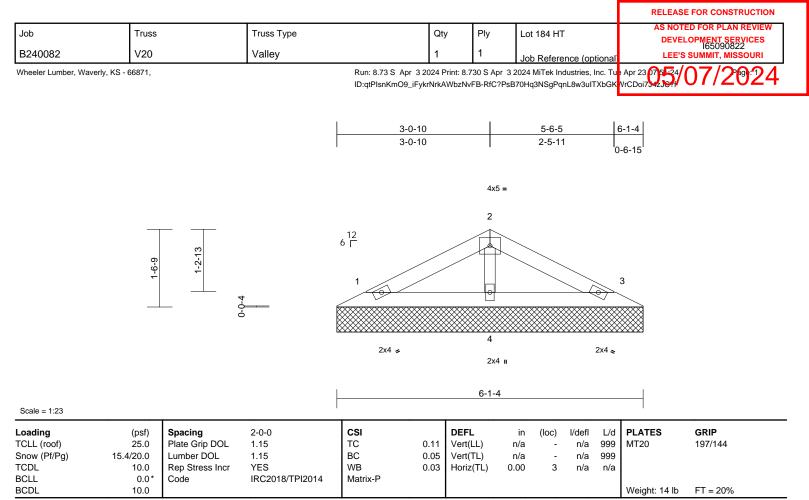


Plate DOL=1.15); Pg=20.0 psf; Pf=15.4 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat C; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponent.com)

16023 Swingley Ridge Rd. Chesterfield MO 63017 314.434.1200 / MiTek-US.com

F


April 24,2024

												RELEAS	E FOR CONSTRUCTION	
Job	Truss		Truss Type			Qty Ply		Lot	Lot 184 HT			AS NOTED FOR PLAN REVIEW DEVELOPMENT SERVICES 165090821		
B240082	V19		Valley			1	1	Jot	Refere	nce (optic	onali		165090821 S SUMMIT, MISSOURI	
Wheeler Lumber, Waverly, KS	- 66871,			Run: 8.73 S Apr 3 2024 Print: 8.73 S Apr 3 2024 MiTek Industries, Inc. Tue								e Apr 23 07 5 - 24	07/2024	
ID:Xo?4zCS11DEISUVmzyvXwizNvF1-RfC?PsB70Hq3NSgPqnL8w3uITXbCKWrCDord42yUfrO112024														
			5-4-10					8-8-10				1		
			5-4-10				3-4-0				l			
		4x5 =												
2														
	\top													
												×4 ш		
2-8-9			6 ¹²								3			
			. /	6									ရ	
4											•	4	1-0-9	
	- 0-0		Í				_				~			
				~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	*****	~~~~	5 5	******	******	*******	~~~	4		
			2x4 ≠				2x4 II				2>	к4 ш		
Scale = 1:25.8					8-8-	10						-		
Loading	(psf)	Spacing	2-0-0	с	SI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP	
TCLL (roof)	25.0	Plate Grip DOL Lumber DOL	1.15	Т	C 0.	.45 \	Vert(LL)	n/a	-	n/a s	999 999	MT20	197/144	
TCDL	.4/20.0 10.0	Rep Stress Incr	1.15 YES	N N	VB 0.		Vert(TL) Horiz(TL)	n/a 0.00	4		n/a			
BCLL BCDL	0.0* 10.0	Code	IRC2018/TF	PI2014 N	1atrix-P							Weight: 23 lb	FT = 20%	
LUMBER					ow loads have been	n consi	idered for thi	is						
TOP CHORD 2x4 SPF N BOT CHORD 2x4 SPF N			6) G		continuous bottom o	chord I	bearing.							
WEBS 2x3 SPF N OTHERS 2x3 SPF N					aced at 4-0-0 oc. been designed for a	10.0 p	osf bottom							
BRACING TOP CHORD Structural	wood she	athing directly apr	olied or ^{9)*}	This truss has	nonconcurrent with been designed for	a live l	load of 20.0							
TOP CHORD       Structural wood sheathing directly applied or 6-0-0 oc purlins, except end verticals.       9)       This truss has been designed for a live load of 20.0psi on the bottom chord in all areas where a rectangle         BOT CHORD       Rigid ceiling directly applied or 10-0-0 oc       3-06-00 tall by 2-00-00 wide will fit between the bottom														
bor chord and any other members.														
REACTIONS (size) 1=8-8-10, 4=8-8-10, 5=8-8-10 Max Horiz 1=48 (LC 9) 11) Provide mechanical connection (by others) of truss to														
Max Uplift 1=-34 (LC 12), 4=-41 (LC 13), 5=-1 (LC 12) 1, 41 Ib uplift at joint 4 and 1 Ib uplift at joint 5.														
Max Grav 1=207 (LC 2), 4=146 (LC 19), 5=384 (LC 2) The traditional Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.														
FORCES (Ib) - Maximum Compression/Maximum Tension LOAD CASE(S) Standard														
TOP CHORD 1-2=-69/68, 2-3=-46/46, 3-4=-128/52 BOT CHORD 1-5=-10/8, 4-5=-10/8														
WEBS 2-5=-281/63 NOTES														
1) Unbalanced roof live loads have been considered for											an			
this design. 2) Wind: ASCE 7-16; Vult=115mph (3-second gust)									FE OF	MISSO				
Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone;										STA SCOT	N S S			
cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60									Ø.		TER			
<ol> <li>Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable,</li> </ol>									K	the	Service	7		
see Standard Industry or consult qualified but											1	NUM		
<ol> <li>TCLL: ASCE 7-16; Pr= Plate DOL=1.15); Pg=</li> </ol>			=1.15								S.	PE-2001	1018807	
DOL=1.15 Plate DOL= Partially Exp.; Ce=1.0;	1.15); ls=	1.0; Rough Cat C	;								X	CSSIONA	IL ENGI	

April 24,2024



WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)



LUMBER								
TOP CHORD	2x4 SPF No.2							
BOT CHORD	2x4 SPF No.2							
OTHERS	2x3 SPF No.2							
BRACING								
TOP CHORD	Structural wood sheathing directly applied or 6-0-0 oc purlins.							
BOT CHORD	Rigid ceiling directly applied or 10-0-0 oc bracing.							
REACTIONS	(size) 1=6-1-4, 3=6-1-4, 4=6-1-4							
	Max Horiz 1=20 (LC 16)							
	Max Uplift 1=-21 (LC 12), 3=-24 (LC 13)							
	Max Grav 1=116 (LC 2), 3=116 (LC 2), 4=212 (LC 2)							
FORCES	(lb) - Maximum Compression/Maximum							
	Tension							
TOP CHORD	1-2=-56/28, 2-3=-56/20							
BOT CHORD	1-4=0/24, 3-4=0/24							
WEBS	2-4=-150/33							
NOTES								
<ol> <li>Unbalanced roof live loads have been considered for this design</li> </ol>								

this design.
Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60

 Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

4) TCLL: ASCE 7-16; Pr=25.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf; Pf=15.4 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat C; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10

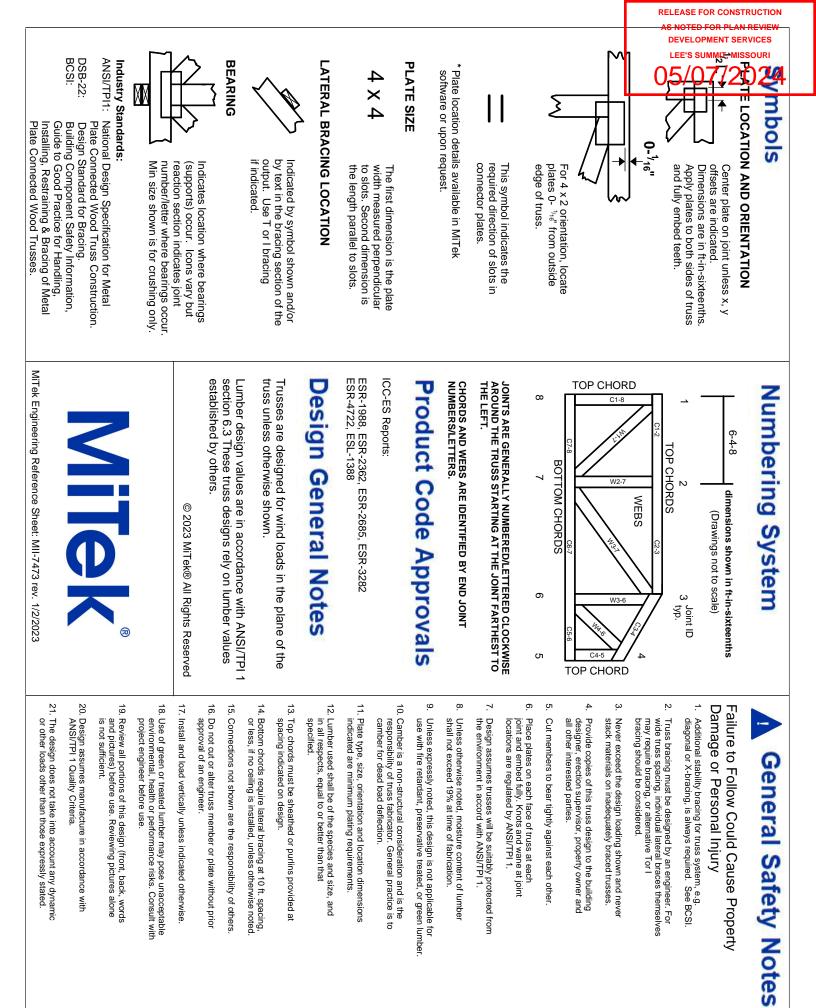
5) Unbalanced snow loads have been considered for this design.

6) Gable requires continuous bottom chord bearing.

## 7) Gable studs spaced at 2-0-0 oc.

8) This truss has been designed for a 10.0 psf bottom

chord live load nonconcurrent with any other live loads.


 9) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.

- 10) All bearings are assumed to be SPF No.2 .
- Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 21 lb uplift at joint 1 and 24 lb uplift at joint 3.
- This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
   LOAD CASE(S) Standard

April 24,2024

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSUTPTI Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)



