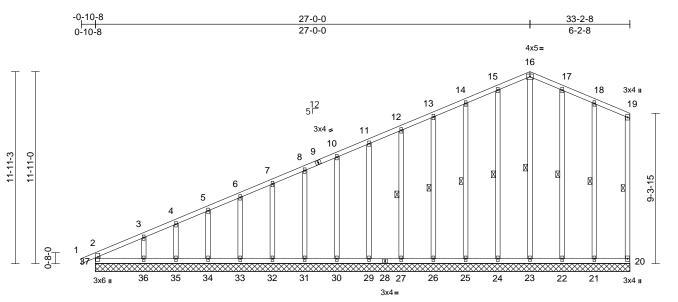


MiTek, Inc. RE: B240067 - Lot 166 HT 16023 Swingley Ridge Rd. Site Information: Chesterfield, MO 63017 Project Customer: Summit Homes Project Name: 314.434.1200 Lot/Block: 166 Subdivision: Hawthorn Ridge Model: Somerset - Tuscan Address: 1632 SW Buckthorn Dr City: Lee's Summit State: MO General Truss Engineering Criteria & Design Loads (Individual Truss Design Drawings Show Special Loading Conditions): Design Code: IRC2018/TPI2014 Design Program: MiTek 20/20 8.7 Wind Code: ASCE 7-16 [IV/indRSpeced: 115 mph Design Method: MWFRS (Envelope) ASCE 7-16 [Low Rise] Roof Load: 45.0 psf Floor Load: N/A psf Mean Roof Height (feet): 25 Exposure Category: C No. Seal# Truss Name Date No. Seal# Truss Name Date 164780418 4/10/24 35 36 37 38 39 40 164780452 4/10/24 $\begin{array}{c}123456789101123456789\\11123456789\end{array}$ V13 A1 164780419 A2 4/10/24 4/10/24 4/10/24 164780453 V14 4/10/24 164780420 A3 A4 164780454 V15 4/10/24 V16 V17 164780421 164780455 4/10/24 A5 A6 A7 164780456 164780457 164780422 4/10/24 4/10/24 164780423 V18 4/10/24 164780424 164780425 4ĭ 164780458 V19 4/10/24 4/10/24 A8 4/10/24 164780426 A9 4/10/24 A10 B1 164780427 4/10/24 164780428 4/10/24 164780429 B2 4/10/24 B3 B4 164780430 4/10/24 164780431 4/10/24 164780432 B5 4/10/24 164780433 B6 C1 C2 164780434 164780435 19 20 21 22 23 24 25 26 27 29 30 32 33 33 33 164780436 D1 164780437 D2 D3 E1 164780438 164780439 164780440 V2 V3 164780441 164780442 V4 164780443 V5 V6 164780444 164780445 164780446 V7 V8 V9 164780447 164780448 164780449 V10 V11 164780450 164780451 V12 The truss drawing(s) referenced above have been prepared by MiTek USA, Inc. under my direct supervision based on the parameters OF MISSOL provided by Wheeler - Waverly.

Truss Design Engineer's Name: Sevier, Scott My license renewal date for the state of Missouri is December 31, 2025.

IMPORTANT NOTE: The seal on these truss component designs is a certification that the engineer named is licensed in the jurisdiction(s) identified and that the designs comply with ANSI/TPI 1. These designs are based upon parameters shown (e.g., loads, supports, dimensions, shapes and design codes), which were given to MiTek or TRENCO. Any project specific information included is for MiTek's or TRENCO's customers file reference purpose only, and was not taken into account in the preparation of these designs. MiTek or TRENCO has not independently verified the applicability of the design parameters or the designs for any particular building. Before use, the building designer should verify applicability of design parameters and properly incorporate these designs into the overall building design per ANSI/TPI 1, Chapter 2.



SCOTT M.

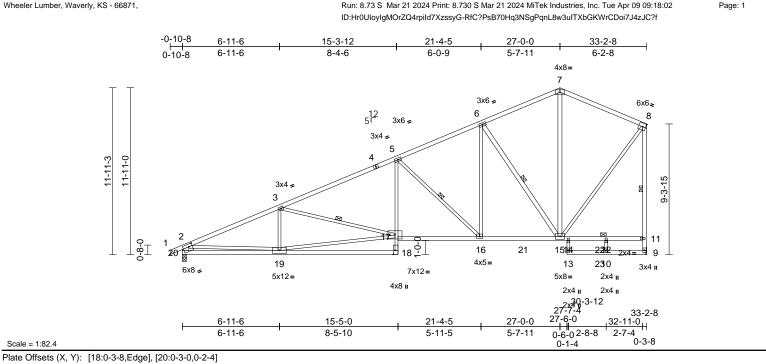
Job	Truss	Truss Type	Qty	Ply	Lot 166 HT	
B240067	A1	Common Supported Gable	2	1	Job Reference (optional)	l64780418

Run: 8.73 S Mar 21 2024 Print: 8.730 S Mar 21 2024 MiTek Industries, Inc. Tue Apr 09 09:18:01 ID:Hr0UloyIgMOrZQ4rpild7XzssyG-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

 22	2	0

			L				33-2-8							
Scale = 1:71.6			-											_
Loading TCLL (roof) TCDL BCLL		(psf) 25.0 10.0 0.0*	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr	2-0-0 1.15 1.15 YES		CSI TC BC WB	0.39 0.16 0.14	DEFL Vert(LL) Vert(CT) Horz(CT)	in n/a n/a -0.01	(loc) - - 20	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20	GRIP 197/144
BCDL		10.0	Code	IRC20)18/TPI2014	Matrix-R							Weight: 208 lb	FT = 10%
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD WEBS	2x4 SPF No. 2x4 SPF No. 2x4 SPF No. Structural we 6-0-0 oc pur	.2 .2 ood shea rlins, exc g directly dpt	athing directly applie cept end verticals. applied or 10-0-0 or 19-20, 16-23, 15-24 14-25, 13-26, 12-27	ed or c	BOT CHORD	2-37=-206/0, 1-2 3-4=-279/35, 4-5 6-7=-216/28, 7-8 10-11=-174/39, 1 12-13=-147/92, 1 14-15=-120/146, 16-17=-104/171, 18-19=-163/140, 36-37=-130/98, 3 32-33=-130/98, 3 30-31=-130/98, 3 30-31=-130, 4 30-30=-120, 4 30-30=-120, 4 30-50=-120, 4 30-50=-12	=-262/35, =-202/27, 1-12=-16 13-14=-13: 15-16=-11 17-18=-1 19-20=-1: 35-36=-13: 33-34=-13: 31-32=-13: 29-30=-13:	5-6=-237/31, 8-10=-188/27 1/65, 3/118, 05/170, 18/145, 24/106 0/98, 0/98, 0/98, 0/98,	,	cho 9) * Th 3-0 cho 10) All I 11) Pro bea 20, upli 27,	rd live k his truss the botto 6-00 tall rd and a bearings vide me ring pla 18 lb up ft at join 48 lb up	bad nor has be om cho by 2-0 any oth s are as chanic te capa olift at jo t 25, 47 olift at jo	een designed for rd in all areas wh 0-00 wide will fit 1 er members. ssumed to be SP al connection (by able of withstandi bint 23, 44 lb uplii 7 lb uplift at joint 2 bint 29, 48 lb uplii	any other live loads. a live load of 20.0psf ere a rectangle between the bottom F No.2 . others) of truss to ng 43 lb uplift at joint ft at joint 24, 51 lb 26, 48 lb uplift at joint ft at joint 30, 48 lb
REACTIONS	23 26 30 33 Max Horiz 37 Max Uplift 22 24	0=33-2-8 3=33-2-8 0=33-2-8 3=33-2-8 6=33-2-8 7=398 (L 0=-43 (L 2=-56 (L 4=-44 (L)	17-22, 18-21 3, 21=33-2-8, 22=33 3, 24=33-2-8, 25=33 3, 27=33-2-8, 29=33 3, 31=33-2-8, 32=33 3, 34=33-2-8, 35=33 3, 37=33-2-8	-2-8, -2-8, -2-8, -2-8, -2-8,	WEBS NOTES	27-29=-130/98, 2 25-26=-130/98, 2 23-24=-130/98, 2 21-22=-130/98, 2 16-23=-128/65, 1 14-25=-139/74, 1 12-27=-140/72, 8 6-33=-139/70, 5- 3-36=-182/145, 1 18-21=-155/117	24-25=-13 22-23=-13 20-21=-13 15-24=-14 13-26=-14 1-29=-14 3-31=-140, 34=-143/7 17-22=-14	0/98, 0/98, 0/98, 0/69, 0/71, 0/72, 72, 7-32=-14/ 8, 4-35=-126, 7/66,	0/72, /46,	33, upli join 12) This Inte	57 lb up ft at join t 21. s truss is rnationa 02.10.2	blift at jo t 36, 56 s desig al Resio and ref	bint 34, 11 lb upli 6 lb uplift at joint 2 ned in accordanc dential Code sect erenced standard	ions R502.11.1 and
FORCES	31 33 34 Max Grav 20 22 24 26 29 31 33 35 35 37	1=-48 (L) 3=-46 (L) 5=-11 (L) 0=88 (LC 2=185 (L 4=189 (L 6=180 (L 9=180 (L 1=180 (L 3=179 (L 5=159 (L 7=245 (L	C 8), 30=-48 (LC 8), C 8), 32=-48 (LC 8), C 8), 34=-57 (LC 8), C 8), 36=-148 (LC 8), C 8), 36=-148 (LC 8), C 8), 36=-148 (LC 2), C 22), 23=168 (LC 2), C 21), 25=179 (LC 2), C 1), 27=180 (LC 2), C 1), 30=180 (LC 2), C 1), 32=180 (LC 2), C 1), 34=185 (LC 2), C 1), 36=242 (LC 2), C 16) pression/Maximum) 2), 1), 21), 1), 1), 1), 1), 1),	 this design. this design. Wind: ASCE Vasd=91mp II; Exp C; Er cantilever le right expose Truss desig only. For stisee Standar or consult qu All plates arr Gable requii Truss to be braced again 	roof live loads ha 7-16; Vult=115m h; TCDL=6.0psf; hclosed; MWFRS ft and right expose d; Lumber DOL= ned for wind loac uds exposed to w d Industry Gable ualified building e 2x4 MT20 unless res continuous bc fully sheathed fro nst lateral mover spaced at 2-0-0	nph (3-sec BCDL=6.0 (envelope sed; end v 1.60 plate ds in the p <i>v</i> ind (norm End Deta lesigner as ss otherwi tottom chor m one fac nent (i.e. d	cond gust) Dps; h=25ft; (e) exterior zor ertical left an grip DOL=1.(ane of the tru al to the face) ils as applicat s per ANSI/TF se indicated. d bearing. e or securely	Cat. he; d 50 ss b, ple, PI 1.			Ele	STE OF M SCOT: SEVI NUM PE-2001	ER DISSO7

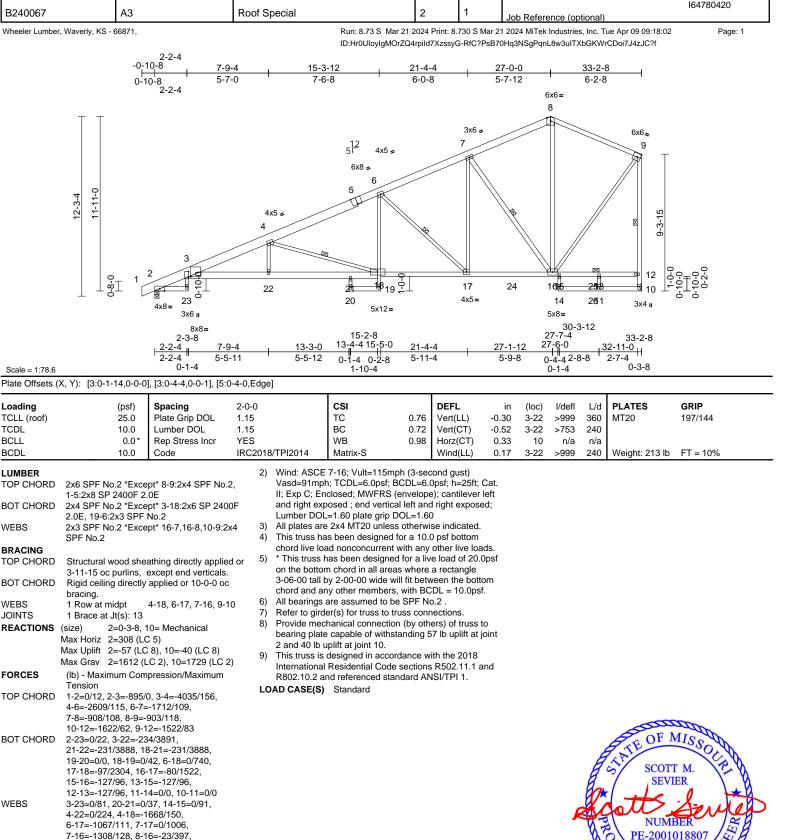

April 10,2024

TION IEW DEVELOPMENT SERVICES LEE'S' SUMMIT'S MISSOURI 05/06/2024 4:15:37

Job	Truss	Truss Type	Qty	Ply	Lot 166 HT	
B240067	A2	Roof Special	1	1	Job Reference (optional)	164780419

Scale = 1:82.4

Run: 8.73 S Mar 21 2024 Print: 8.730 S Mar 21 2024 MiTek Industries, Inc. Tue Apr 09 09:18:02


Plate Olisets ((X, Y): [18:0-3-8,Edge], [20:0-3-0,0-2-4]											
Loading TCLL (roof) TCDL BCLL BCDL	(psf) 25.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC201	8/TPI2014	CSI TC BC WB Matrix-S	0.76 0.79 0.98	DEFL Vert(LL) Vert(CT) Horz(CT) Wind(LL)	-0.51 0.15	(loc) 18-19 18-19 9 16-17	l/defl >999 >769 n/a >999	L/d 360 240 n/a 240	PLATES MT20 Weight: 168 lb	GRIP 197/144 FT = 10%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD WEBS JOINTS REACTIONS	1.8E 2x4 SPF No.2 *Exce 2x3 SPF No.2 *Exce SPF No.2, 20-2:2x6 Structural wood shea 3-3-6 oc purlins, exc Rigid ceiling directly bracing. 1 Row at midpt 1 Brace at Jt(s): 12	, pt* 18-5:2x3 SPF No pt* 15-6,15-7,9-8:2x4 SPF No.2 athing directly applied cept end verticals. applied or 9-2-14 oc 3-17, 5-16, 6-15, 8-9 nical, 20=0-3-8 In C 5) C 8), 20=-251 (LC 8)	.2 4 3) d or 4) 5) 6) 7)	Vasd=91mpl II; Exp C; En cantilever lef right exposed This truss ha chord live loa * This truss h on the bottor 3-06-00 tall b chord and ar All bearings Refer to gird Provide mec bearing plate 20 and 219 I This truss is	7-16; Vult=115mp h; TCDL=6.0psf; B closed; MWFRS (ef t and right expose- d; Lumber DOL=1. as been designed f ad nonconcurrent va- has been designed n chord in all areas- by 2-00-00 wide win hy other members, are assumed to be er(s) for truss to tru- hanical connection- be capable of withsta- b uplift at joint 9. designed in accorr	CDL=6. enveloped d; end v 60 plate or a 10. with any l for a liv s where II fit betv with BC e SPF N uss cont h (by oth anding 2 dance w	Dpsf; h=25ft; exterior zon vertical left an grip DOL=1.) psf bottom other live loa e load of 20.0 a rectangle veen the botto DL = 10.0psf DL = 10.0psf DL = 10.0psf c.2. ers) of truss t 51 lb uplift at	ne; nd 60 nds. 0psf om f. to t joint					
FORCES	(lb) - Maximum Com Tension		,	R802.10.2 a	Residential Code nd referenced stan			and					
TOP CHORD	1-2=0/30, 2-3=-2961	-906/226, 7-8=-906/2	,	DAD CASE(S)	Standard								
BOT CHORD	5-17=-44/715, 16-17 15-16=-213/1482, 14	′=-406/2327,	,								Å	STATE OF M	AISSOLR M.
WEBS NOTES 1) Unbalance this design	13-14=0/95, 3-19=-3 17-19=-548/2534, 3- 5-16=-1162/309, 6-1 6-15=-1260/320, 7-1 8-15=-179/1262, 2-1 10-12=0/77 ed roof live loads have	17=-367/141, 6=-126/1002, 5=-66/389, 9=-178/1865,										SEVI NUMI PE-20010	BER D18807
												an	

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent colleges with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

April 10,2024

Job	Truss	Truss Type	Qty	Ply	Lot 166 HT	
B240067	A3	Roof Special	2	1	Job Reference (optional)	164780420

NOTES

WEBS

TCDL

BCLL

BCDL

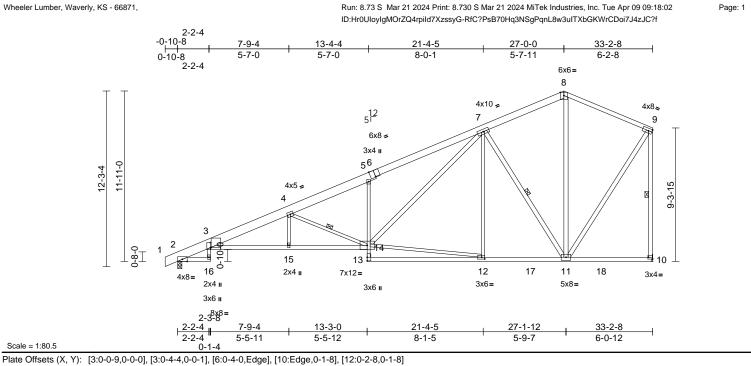
WEBS

WEBS

1) Unbalanced roof live loads have been considered for this design.

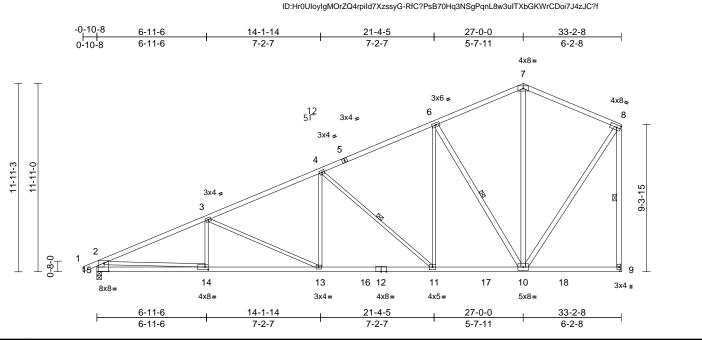
9-16=-29/1286, 11-13=0/83

April 10,2024


E

SIONAL

Job	Truss	Truss Type	Qty	Ply	Lot 166 HT	
B240067	A4	Roof Special	2	1	Job Reference (optional)	164780421


	(X, 1): [0:0 0 0;0 0 0];	[0.0 + +,0 0 1], [0.0	, + 0,Eugo], [10.⊑uge,o 1	0], [12.0 2 0,0 1	0]							
Loading TCLL (roof) TCDL BCLL BCDL	(psf) 25.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC201	8/TPI2014	CSI TC BC WB Matrix-S	0.78 0.63 0.67	DEFL Vert(LL) Vert(CT) Horz(CT) Wind(LL)		(loc) 14-15 12-13 10 3-15	l/defl >999 >694 n/a >999	L/d 360 240 n/a 240	PLATES MT20 Weight: 205 lb	GRIP 197/144 FT = 10%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD WEBS REACTIONS	1-6:2x8 SP 2400F 2 2x4 SPF No.2 *Exce 1.8E, 5-13:2x3 SPF 2x3 SPF No.2 *Exce 14-7,11-7,11-8,11-9, Structural wood she 3-8-11 oc purlins, e Rigid ceiling directly bracing, 1 Row at midpt	.0E pt* 3-14:2x4 SPF 2' No.2 pt* 10-9:2x4 SPF No.2 athing directly applie xcept end verticals. applied or 10-0-0 or 4-14, 7-11, 9-10 10= Mechanical C 5) 2 8), 10=-39 (LC 8)	.2, 4; 100F 5; 6; ed or 7; c 8;	chord live loa * This truss h on the bottoo 3-06-00 tall h chord and an All bearings Refer to gird Provide mec bearing plate 2 and 39 ho (This truss is International	is been designed ad nonconcurrent has been designe n chord in all area by 2-00-00 wide w hy other members are assumed to b er(s) for truss to th hanical connectio e capable of without polifit at joint 10. designed in accoo Residential Code nd referenced sta Standard	with any d for a liv as where vill fit betw s, with BC e SPF No russ conr on (by oth tanding 5 rdance w e sections	other live load e load of 20.0 a rectangle ween the botti DL = 10.0psi c.2. ers) of truss i 55 lb uplift at j ith the 2018 s R502.11.1 a	Opsf om f. to joint					
FORCES	(lb) - Maximum Com Tension	<i>,,</i>	,										
TOP CHORD		-2777/229,	8/80										
BOT CHORD		/3719, 14-15=-218/3 -412/149, 12-13=0/1	3710,									OF M	AISSO
WEBS	3-16=0/71, 4-15=-50 12-14=-91/1155, 7-1 7-12=0/270, 7-11=-1 9-11=-17/1234)/133, 4-14=-1334/10 4=-170/1661,	,									STATE SCOTT	Г M.
this design 2) Wind: ASC Vasd=91n II; Exp C; and right e	ed roof live loads have n. CE 7-16; Vult=115mph nph; TCDL=6.0psf; BC Enclosed; MWFRS (er exposed ; end vertical l OL=1.60 plate grip DC	(3-second gust) DL=6.0psf; h=25ft; (nvelope); cantilever l left and right expose	Cat. left									NUM PE-20010	018807

Conne April 10,2024

Job	Truss	Truss Type	Qty	Ply	Lot 166 HT	
B240067	A5	Common	1	1	Job Reference (optional)	164780422

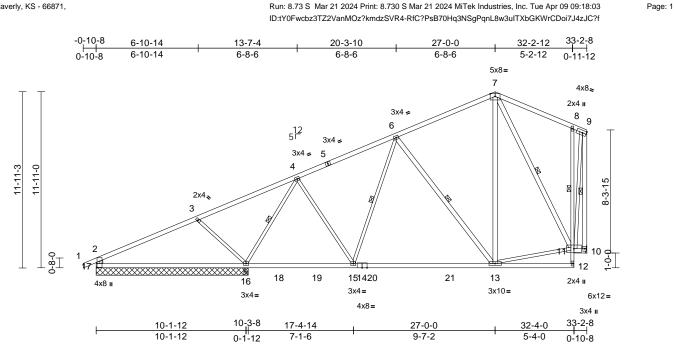
Run: 8.73 S Mar 21 2024 Print: 8.730 S Mar 21 2024 MiTek Industries, Inc. Tue Apr 09 09:18:02

Plate Offsets (X, Y): [14:0-2-8,0-2-0], [15:0-3-8,0-6-4]

Scale = 1:73

Loading	(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15		TC	0.68	Vert(LL)	-0.19	11-13	>999	360	MT20	197/144
TCDL	10.0	Lumber DOL	1.15		BC	0.91	Vert(CT)	-0.34	11-13	>999	240		
BCLL	0.0*	Rep Stress Incr	YES		WB	0.94	Horz(CT)	0.08	9	n/a	n/a		
BCDL	10.0	Code	IRC2018/	/TPI2014	Matrix-S		Wind(LL)	0.09	13-14	>999	240	Weight: 161 lb	FT = 10%
LUMBER			4)	* This truss h	as been designe	ed for a liv	e load of 20.0	0psf					
TOP CHORD	2x4 SPF No.2		,	on the bottor	n chord in all are	as where	a rectangle	•					
BOT CHORD	2x4 SPF No.2				y 2-00-00 wide v								
WEBS	2x3 SPF No.2 *Exce	ept*			y other members			f.					
	10-8,9-8,10-6,10-7:2	2x4 SPF No.2, 15-2:		0	are assumed to b								
	SPF No.2				er(s) for truss to t								
BRACING			,		hanical connectio								
TOP CHORD			eu ui		capable of withs uplift at joint 9.	standing a	4 ib uplift at j	joint					
DOTOUDEE	2-8-10 oc purlins, e		0)		designed in acco	rdance w	ith the 2018						
BOT CHORD	Rigid ceiling directly bracing.	applied or 10-0-0 o	ic 0)		Residential Code			and					
WEBS	1 Row at midpt	8-9, 4-11, 6-10			nd referenced sta								
REACTIONS		anical, 15=0-3-8	LO	AD CASE(S)	Standard								
REACTIONS	Max Horiz 15=278 (I	,		.,									
	Max Uplift 9=-59 (LC	,											
	Max Grav 9=1621 (I		2)										
FORCES	(lb) - Maximum Com	npression/Maximum											
	Tension												
TOP CHORD													
	4-6=-1531/59, 6-7=-		4,										
BOT CHORD	2-15=-1503/72, 8-9= 14-15=-313/848, 13												
BOT CHORD	11-13=-183/2103, 1												
	9-10=-2/12	0 11- 102/1001,										0000	TOP
WEBS	8-10=-61/1243, 2-14	4=0/1810, 3-14=0/20	00.									OF N	d'szlh
	3-13=-610/89, 4-13=	,	,									450	100
	6-11=0/927, 6-10=-1	1231/131, 7-10=0/34	42								A	TATE OF M	New /
NOTES											A	S/ DCOI	
1) Unbalance	ed roof live loads have	been considered fo	or								b.	SEVI	
this design											87		0
	CE 7-16; Vult=115mph										2	1 th	a la
	nph; TCDL=6.0psf; BC									-		NON	
	Enclosed; MWFRS (er										177	PE-2001	
	exposed ; end vertical	ien exposed; Lumbe	er								N	PE-2001	128
	0 plate grip DOL=1.60 s has been designed fo	r a 10.0 pef hottom									Y	1ºSa	SON B
J 1115 11 USS	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	a 10.0 psi bollon										Nh With	CN-L

 This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent colleges with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

April 10,2024

ONAL EN

Job	Truss	Truss Type	Qty	Ply	Lot 166 HT	
B240067	A6	Roof Special	1	1	Job Reference (optional)	164780423

Scale = 1:78 Plate Offsets (X, Y): [17:0-4-11.0-2-0]

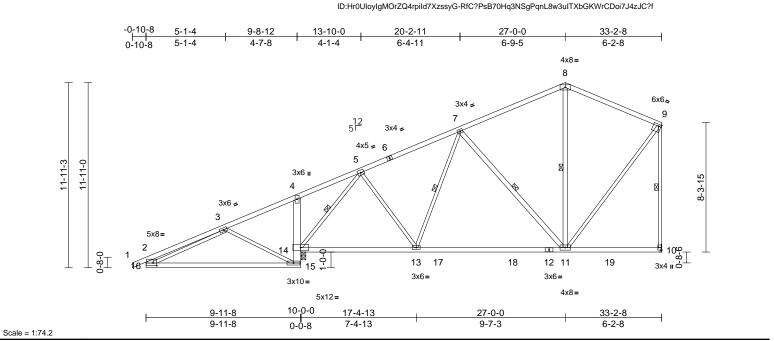
	X, Y): [17:0-4-11,0-2-												
Loading TCLL (roof) TCDL BCLL	(psf) 25.0 10.0 0.0*	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr	2-0-0 1.15 1.15 YES	P/TDI2014	CSI TC BC WB	0.55 0.76 0.51	DEFL Vert(LL) Vert(CT) Horz(CT)	-0.52 0.02	(loc) 13-15 13-15 10	l/defl >851 >530 n/a	L/d 360 240 n/a	PLATES MT20	GRIP 197/144
BCDL LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD 1 Row at midpl WEBS	1 Row at midpt	3 SPF No.2 pt* 2x4 SPF No.2, 17-2 athing directly applie xcept end verticals.	2) :2x6 3) 4) ed or ; 5)	Vasd=91mp II; Exp C; Er cantilever le right expose This truss ha chord live lo * This truss on the botto 3-06-00 tall chord and a Bearings are Joint 10 SPI Refer to girc	Matrix-S 7-16; Vult=115r h; TCDL=6.0psf; nclosed; MWFRS ft and right expod d; Lumber DOL= as been designe ad nonconcurrer has been designe by 2-00-00 wide hy other membe assumed to be = No.2, Joint 4 ler(s) for truss to chanical connect	; BCDL=6.(S (envelope sed; end v =1.60 plate d for a 10.0 nt with any ned for a liv eas where will fit betw rs, with BC : Joint 16 S SPF 2100 truss conr	Desf; $h=25ft$; e) exterior zo ertical left ar grip DOL=1) psf bottom other live loz e load of 20. a rectangle veen the bott DL = 10.0ps DF 2100F 1 F 1.8E . ections.	Cat. ne; nd .60 ads. 0psf rom f. .8E ,	13-15	>999	240	Weight: 168 lb	FT = 10%
		anical, 16=10-3-8, 3 LC 5) LC 8), 16=-252 (LC 6 C 8) (LC 2), 16=1573 (LC		17, 143 lb up This truss is International	e capable of with plift at joint 10 ar designed in acc I Residential Coo nd referenced st Standard	nd 252 lb u ordance wi de sections	olift at joint 1 th the 2018 R502.11.1 a	6.					
FORCES	(lb) - Maximum Com Tension 1-2=0/30, 2-3=-478/ 4-6=-914/183, 6-7=-	74, 3-4=-185/95, 586/172, 7-8=-219/1										STATE OF M	MISSOL
BOT CHORD	8-9=-208/131, 9-10= 16-17=-292/373, 15- 13-15=-178/748, 12- 8-11=-347/244, 10-1	-16=-216/604, -13=-21/106, 11-12=									.	S SCOT	F M.
WEBS	3-16=-501/254, 4-16 6-15=-47/214, 6-13= 11-13=-92/371, 7-11 9-11=-159/896	5=-1094/208, 4-15=0, -489/229, 7-13=-84/								ł	N.	PE-2001	

NOTES

1) Unbalanced roof live loads have been considered for this design.

SIONAL April 10,2024

E


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent colleges with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

Job	Truss	Truss Type	Qty	Ply	Lot 166 HT	
B240067	A7	Roof Special	3	1	Job Reference (optional)	164780424

Run: 8.73 S Mar 21 2024 Print: 8.730 S Mar 21 2024 MiTek Industries, Inc. Tue Apr 09 09:18:03

Wheeler Lumber, Waverly, KS - 66871,

Plate Offsets (X, Y): [2:0-2-12,0-2-0], [9:0-2-0,0-1-8], [10:Edge,0-2-8]

						-							
Loading TCLL (roof) TCDL BCLL BCDL	(psf) 25.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC201	8/TPI2014	CSI TC BC WB Matrix-S	0.98 0.70 0.88	DEFL Vert(LL) Vert(CT) Horz(CT) Wind(LL)	in -0.25 -0.53 0.01 -0.03	(loc) 11-13 15-16 10 10-11	l/defl >999 >215 n/a >999	L/d 360 120 n/a 240	PLATES MT20 Weight: 153 lb	GRIP 197/144 FT = 10%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD WEBS	2x4 SPF 2100F 1.8E 2400F 2.0E, 12-10:2 2x3 SPF No.2 *Exce No.2, 16-2:2x6 SPF Structural wood she 6-0-0 oc purlins, ex Rigid ceiling directly bracing. 1 Row at midpt	2x4 SPF No.2 pt* 11-8,7-11:2x4 S No.2 athing directly appli cept end verticals.	5) ed or 6) 7)	chord live loa * This truss h on the bottor 3-06-00 tall b chord and ar Bearings are Joint 10 SPF Refer to gird Provide mec bearing plate 14 and 20 lb	Is been designed ad nonconcurrent nas been designe n chord in all area by 2-00-00 wide w y other members assumed to be: . No.2. er(s) for truss to th hanical connectio c capable of withs uplift at joint 10. designed in accord	with any d for a liv as where vill fit betw s, with BC Joint 14 S russ conr n (by oth tanding 1	other live loa e load of 20.0 a rectangle veen the botto DL = 10.0psf SPF 2100F 1. nections. ers) of truss t 80 lb uplift at	Opsf om f. 8E ,					
		anical, 14=0-3-8 _C 5) C 9), 14=-180 (LC 4	+)		Residential Code nd referenced sta Standard			Ind					
FORCES	(lb) - Maximum Com	<i>,,</i>	,										
	Tension												
TOP CHORD	1-2=0/30, 2-3=-333/ 4-5=-273/1531, 5-7= 8-9=-509/100, 2-16=	-567/49, 7-8=-525/8											
BOT CHORD	,	-15=-78/367, =-207/209,										OF I	
this desigr	3-15=-505/117, 8-11 3-16=-230/1004, 9-1 5-13=-14/770, 5-14= 7-13=-406/140, 7-11 ed roof live loads have	=-155/118, 1=-24/661, 2139/160, =-206/109 been considered fo	ır									STATE OF I	гм.

 Wind: ASCE 7-16; Vult=115mph (3-second gust)
 Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope); cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPH Claulity Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

E

April 10,2024

PE-200101880

SIONAL

Job	Truss	Truss Type	Qty	Ply	Lot 166 HT	
B240067	A8	Roof Special	4	1	Job Reference (optional)	164780425

Run: 8.73 S Mar 21 2024 Print: 8.730 S Mar 21 2024 MiTek Industries, Inc. Tue Apr 09 09:18:03

Wheeler Lumber, Waverly, KS - 66871,

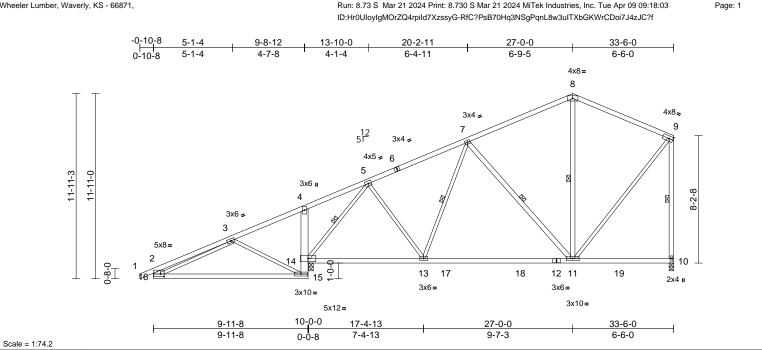
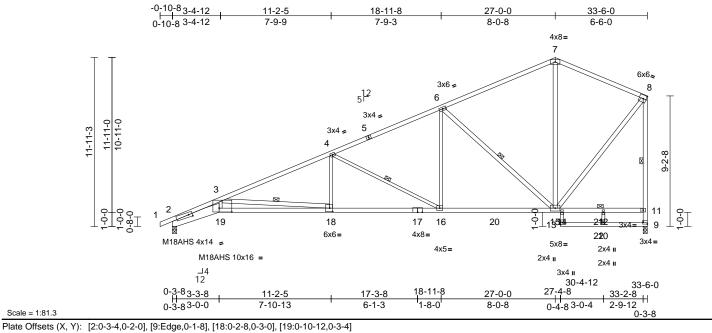


Plate Offsets (X, Y): [2:0-2-12,0-2-0]

	() L =) = -:												
Loading TCLL (roof) TCDL BCLL BCDL	(psf) 25.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC201	8/TPI2014	CSI TC BC WB Matrix-S	0.62 0.71 0.89	DEFL Vert(LL) Vert(CT) Horz(CT) Wind(LL)	-0.53 -0.01	(loc) 11-13 15-16 10 11-13	l/defl >999 >215 n/a >999	L/d 360 120 n/a 240	PLATES MT20 Weight: 156 lb	GRIP 197/144 FT = 10%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD WEBS REACTIONS	2x4 SPF No.2 2x4 SPF 2100F 1.8E 2400F 2.0E, 12-10:2 2x3 SPF No.2 *Exce 10-9,11-8,7-11:2x4 S Structural wood shea 6-0-0 oc purlins, exx Rigid ceiling directly bracing. 1 Row at midpt	E *Except* 15-4:2x6 ex4 SPF No.2 ept* 16-2:2x6 SPF No SPF No.2 athing directly applie cept end verticals. applied or 6-0-0 oc 9-10, 8-11, 5-14, 7- 7-11 14=0-3-8 .C 5) LC 9), 14=-382 (LC	3) SP 4) 5.2, 5) ed or 6) 13, 7) L(4)	This truss ha chord live loa * This truss h on the bottor 3-06-00 tall h chord and ar Bearings are Joint 10 SPF Provide mec bearing plate 10 and 382 l This truss is International	Is been designed ad nonconcurrent nas been designe n chord in all area by 2-00-00 wide w y other members assumed to be: No.2. hanical connectio e capable of withs b uplift at joint 14. designed in accour Residential Code nd referenced sta	with any d for a liv as where rill fit betw , with BC Joint 14 S n (by oth tanding 1 rdance w s sections	D) psf bottom other live loze e load of 20. a rectangle veen the bott DL = 10.0ps SPF 2100F 1. ers) of truss 17 lb uplift a ith the 2018 R502.11.1 a	ads. Opsf om f. .8E , to t joint					
FORCES	(lb) - Maximum Com Tension	pression/Maximum	,										
TOP CHORD	4-5=-400/1531, 5-7= 8-9=-523/172, 2-16= 15-16=-615/227, 14-	547/102, 7-8=-538/ 301/105, 9-10=-860 -15=-108/367,	,										<i>T</i>
this design 2) Wind: ASC Vasd=91n II; Exp C; cantilever	4-14=-175/116, 13-1 11-13=-186/539, 10- 8-11=-145/127, 9-11 5-14=-2152/342, 7-1 7-11=-202/175, 3-15 3-16=-309/1004 ed roof live loads have n. CE 7-16; Vult=115mph nph; TCDL=6.0psf; BC Enclosed; MWFRS (er left and right exposed sed; Lumber DOL=1.6	-11=-112/84 =-75/655, 5-13=-54/ 3=-411/176, i=-505/214, been considered for (3-second gust) DL=6.0psf; h=25ff; C welope) exterior zon ; end vertical left and	Cat. e; d									STATE OF M SCOTT SEVI SEVI PE-20010 PE-20010	ER DER D18807

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent colleges with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)


April 10,2024

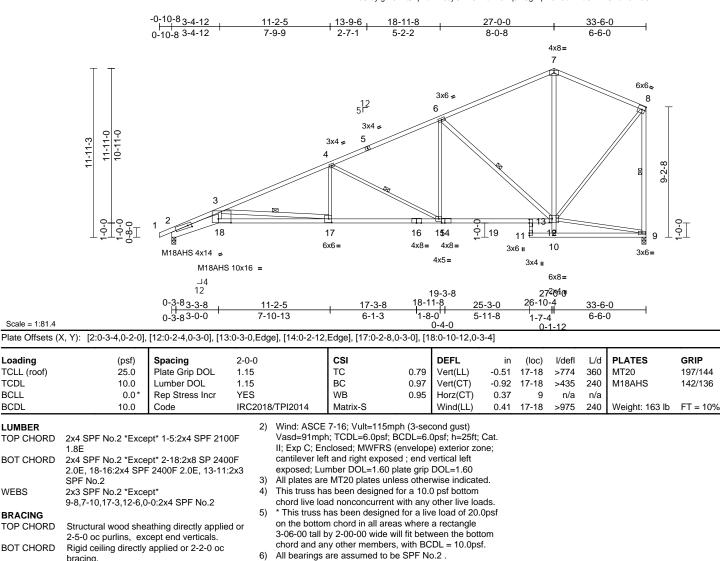
Job	Truss	Truss Type	Qty	Ply	Lot 166 HT	
B240067	A9	Roof Special	2	1	Job Reference (optional)	164780426

Scale = 1:81.3

Run: 8.73 S Mar 21 2024 Print: 8.730 S Mar 21 2024 MiTek Industries, Inc. Tue Apr 09 09:18:03 ID:Hr0UloyIgMOrZQ4rpild7XzssyG-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Loading TCLL (roof) TCDL BCLL BCDL	(psf) 25.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC201	8/TPI2014	CSI TC BC WB Matrix-S	0.80 0.88 0.95	DEFL Vert(LL) Vert(CT) Horz(CT) Wind(LL)	-0.92 0.36	(loc) 18-19 18-19 9 18-19	l/defl >772 >434 n/a >982	L/d 360 240 n/a 240	PLATES MT20 M18AHS Weight: 166 lb	GRIP 197/144 142/136 FT = 10%
FORCES TOP CHORD BOT CHORD WEBS NOTES	$\begin{array}{llllllllllllllllllllllllllllllllllll$	*Except* 19-17:2x4 : xx3 SPF No.2, 13-9:2 4 SPF 2100F 1.8E pt* 10-12:2x3 SPF No.2 athing directly applie xcept end verticals. applied or 6-0-0 oc 8-9, 4-16, 3-18, 6-19 9=0-3-8 C 8), 9=-240 (LC 8) .C 2), 9=1744 (LC 2) pression/Maximum 1501, 3-4=-3356/496 -996/169, 7-8=-965/ 1=-1537/269 8-19=-1645/6161, 5-16=-413/1879, -94/16, 11-12=-94/10 11/102, 9-10=-1/102 8=0/584, 6-16=-61/5 5=-1418/369, -12=0/100	SPF 2x4 3 4 2 5 d or 6 5 7 8 9 9 3, 195, L 6, 918,	Vasd=91mpl II; Exp C; En cantilever lef exposed; Lui All plates are This truss ha chord live loa * This truss h on the bottor 3-06-00 tall b chord and ar Bearings are Joint 9 SPF Bearing ANSI/ designer shc Provide mec bearing plate 2 and 240 lb This truss is International	nt(s) 2 considers PI 1 angle to gra uld verify capacit annical connections capable of without uplift at joint 9. designed in acco Residential Code and referenced sta	BCDL=6. (envelope ed; end v plate grip less other for a 10. with any d for a liv as where vill fit betw s, with BC Joint 2 SI s parallel t in formuli ty of bear on (by oth standing 2 vrdance w e sections	Dipsf; h=25ft; (exterior zon ertical left DOL=1.60 wise indicate p psf bottom other live loa e load of 20.0 a rectangle e content bottt DL = 10.0psf 2400F 2.0E o grain value a. Building ng surface. ers) of truss t 30 lb uplift at th the 2018 R502.11.1 a	ne; ed. ads. 0psf f. 5, to t joint		~	B	STATE OF M SCOTT SEVI SEVI PE-20010 NUMI PE-20010	ER BER D18807


April 10,2024

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent colleges with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

Job	Truss	Truss Type	Qty	Ply	Lot 166 HT	
B240067	A10	Roof Special	3	1	Job Reference (optional)	164780427

Run: 8.73 S Mar 21 2024 Print: 8.730 S Mar 21 2024 MiTek Industries. Inc. Tue Apr 09 09:18:03 ID:Hr0UloyIgMOrZQ4rpild7XzssyG-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

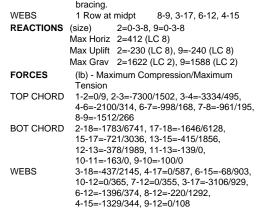
Bearing at joint(s) 2 considers parallel to grain value

using ANSI/TPI 1 angle to grain formula. Building

designer should verify capacity of bearing surface.

This truss is designed in accordance with the 2018

R802.10.2 and referenced standard ANSI/TPI 1.


2 and 240 lb uplift at joint 9.

LOAD CASE(S) Standard

Provide mechanical connection (by others) of truss to

bearing plate capable of withstanding 230 lb uplift at joint

International Residential Code sections R502.11.1 and

NOTES

Loading

TCDL

BCLL

BCDL

WEBS

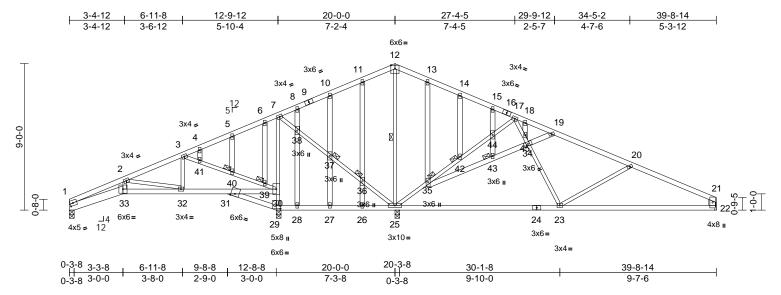
BRACING

LUMBER

Unbalanced roof live loads have been considered for 1) this design.

OF MISS SCOTT M. SEVIER **MIMB** PE-200101880' SIONAL E

April 10,2024


LEE'S' SUMMIT'S MISSOURI 05/06/2024 4:15:38

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponent.com)

7)

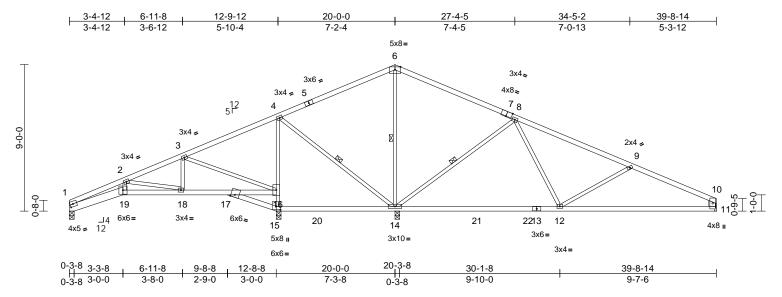
Job	Truss	Truss Type	Qty	Ply	Lot 166 HT	
B240067	B1	Roof Special Structural Gable	1	1	Job Reference (optional)	164780428

Run: 8.73 S Mar 21 2024 Print: 8.730 S Mar 21 2024 MiTek Industries, Inc. Tue Apr 09 09:18:03 ID:Hr0UloyIgMOrZQ4rpild7XzssyG-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC?f

Scale = 1:70.8

Plate Offsets (X, Y): [1:0-2-0,0-2-0], [29:0-3-0,0-2-8]

Loading	(psf)	Spacing	2-0-0		csi		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15		тс	0.62	Vert(LL)		23-25	>999	360	MT20	197/144
TCDL	10.0	Lumber DOL	1.15		BC	0.69	Vert(CT)	-0.30	22-23	>770	240		
BCLL	0.0*	Rep Stress Incr	YES		WB	0.65	Horz(CT)	0.03	29	n/a	n/a		
BCDL	10.0	Code	IRC2018	3/TPI2014	Matrix-S		Wind(LL)	0.07	26-27	>999	240	Weight: 202 lb	FT = 10%
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD WEBS JOINTS	2x4 SPF No.2 2x4 SPF No.2 *Exce 2x3 SPF No.2 *Exce 19:34;34:35:2x4 SP 2x4 SPF No.2 Structural wood she 5-3-8 oc purlins, ex Rigid ceiling directly bracing. 1 Row at midpt 1 Brace at Jt(s): 35,	ept* 1-33:2x6 SPF No pt* 22-21:2x6 SPF N F No.2 athing directly applie cept end verticals.	WI 0.2 Io.2,	EBS	2-33=-92/400, 29-3 7-30=-528/275, 7-3 37-38=-470/298, 3 25-36=-479/304, 1 20-23=-350/187, 3 25-35=-1116/367, 4 22-44=-638/185, 40 39-40=-638/188, 3 2-32=-733/265, 19 35-43=-354/179, 3 11-36=-109/17, 26	38=-477, 6-37=-4 2-25=-9 -32=0/20 35-42=-1 7-44=-6 5=0/526 -41=-62 0-39=-6 -34=-48 4-43=-3 -36=-11	(214, (303, 79/298, 17/110, 00, 555/147, 39/150, 22-139, 36/183, 0/226, 41/174, 4/9, 10-37=-6	9, 7/68,	9) Ref 10) Bea usii des 11) Pro bea 1, 1 lb u 12) Thi Inte R80	fer to gind aring at j ang ANSI, signer sh vvide me aring plat 198 lb up plift at jo s truss is ernationa	der(s) joint(s) /TPI 1 nould vischanic te capa blift at ju point 25. s desig al Resid and ref	for truss to truss of 1 considers para angle to grain for erify capacity of b al connection (by able of withstandi oint 29, 87 lb upli ind in accordance dential Code sect ferenced standard	connections. Ilel to grain value mula. Building earing surface. others) of truss to ng 44 lb uplift at joint ft at joint 22 and 431 ee with the 2018 ions R502.11.1 and
	25=0-3-8, Max Horiz 1=154 (LC Max Uplift 1=-44 (LC 25=-431 (Max Grav 1=354 (LC	2 8), 22=-87 (LC 9), (LC 9), 29=-198 (LC 5	1) 8) 2), 2)	DTES Unbalanced this design. Wind: ASCE Vasd=91mpl	27-37=-30/59, 8-34 6-39=-19/17, 5-40: 13-35=-197/78, 14 43-44=-34/14, 18-4 roof live loads hav 7-16; Vult=115mp n; TCDL=6.0psf; B	52/25, -42=-20, 45=-168, re been o bh (3-sec CDL=6.0	4-41=-17/45, (19, 15-44=-8, (398 considered fo cond gust) Dpsf; h=25ft; (/42, r Cat.					
FORCES	(lb) - Maximum Com Tension	pression/Maximum		cantilever lef	closed; MWFRS (t and right expose	d;endv	vertical left an	d				000	ADC.
TOP CHORD	$\begin{array}{l} 1\text{-}2\text{=-}1137/289, 2\text{-}3\text{=}\\ 4\text{-}5\text{=-}72/590, 5\text{-}6\text{=-}5\\ 7\text{-}8\text{=-}54/783, 8\text{-}10\text{=-}\\ 11\text{-}12\text{=-}26/915, 12\text{-}1\\ 13\text{-}14\text{=-}70/919, 14\text{-}1\\ 5\text{-}17\text{=-}90/803, 17\text{-}1\\ 18\text{-}19\text{=-}179/189, 19\\ 20\text{-}21\text{=-}712/160, 21\\ 1\text{-}33\text{=-}388/1008, 32\\ 31\text{-}32\text{=-}157/179, 30\\ 31\text{-}32\text{=-}157/179, 28\text{-}2\\ 27\text{-}28\text{=-}523/87, 26\text{-}2\\ 25\text{-}26\text{=-}523/87, 23\text{-}2\\ 22\text{-}23\text{=-}102/587\\ \end{array}$	4/629, 6-7=-48/658, 56/867, 10-11=-31/8 13=-31/902, 15=-86/868, 8=-145/350, -20=-379/70, -22=-444/133 -33=-351/896, -31=-181/645, 19=-523/87, 27=-523/87,	3) 95, 4) 5) 6)	Truss design only. For stu- see Standard All plates are Gable studs This truss ha chord live loa * This truss ha chord live loa * This truss ha chord of live loa * This truss ha chord and are Bearings are	d; Lumber DOL=1. ned for wind loads uds exposed to wird d Industry Gable E alified building det e 2x4 MT20 unless spaced at 2-0-0 or is been designed f ad nonconcurrent i has been designed n chord in all area by 2-00-00 wide wi hy other members. assumed to be: J loint 25 SPF No.2	in the p ad (norm nd Deta signer a: otherwi c. or a 10.0 with any l for a liv s where Il fit betv oint 1 SI	ane of the tru al to the face) ills as applicat s per ANSI/TF se indicated. 0 psf bottom other live loar e load of 20.0 a rectangle veen the botto PF No.2, Joir	ss ole, ole, il 1. ds. om		٩		STATE OF M SCOT SEVI SEVI NUM PE-20010 FBS/IONA	ER DIS807


April 10,2024

RELEASE FOR CONSTRUCTION AS NOTED ON PLANS REVIEW DEVELORMENT SERVICES LEE'S'SUMMIT'S MISSOURI 05/06/2024 4:15:38

Job	Truss	Truss Type	Qty	Ply	Lot 166 HT	
B240067	B2	Roof Special	3	1	Job Reference (optional)	164780429

Run: 8.73 S Mar 21 2024 Print: 8.730 S Mar 21 2024 MiTek Industries, Inc. Tue Apr 09 09:18:03 ID:Hr0UloyIgMOrZQ4rpild7XzssyG-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC?f

Scale = 1:70.8

Plate Offsets (X, Y): [1:0-2-0,0-2-0], [7:0-4-0,Edge], [15:0-3-0,0-2-8]

Loading TCLL (roof) TCDL BCLL BCDL	(psf) 25.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC201	8/TPI2014	CSI TC BC WB Matrix-S	0.87 0.76 0.81	DEFL Vert(LL) Vert(CT) Horz(CT) Wind(LL)	-0.44 0.02	(loc) 12-14 12-14 15 18-19	l/defl >866 >537 n/a >999	L/d 360 240 n/a 240	PLATES MT20 Weight: 146 lb	GRIP 197/144 FT = 10%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD WEBS REACTIONS FORCES TOP CHORD BOT CHORD	2x4 SPF No.2 2x4 SPF No.2 *Exce 2x3 SPF No.2 *Exce Structural wood she 5-4-14 oc purlins, e Rigid ceiling directly bracing. 1 Row at midpt (size) 1=0-3-8, 1 14=0-3-8, Max Horiz 1=154 (LC Max Uplift 1=-38 (LC 14=2401 (Max Grav 1=345 (LC 14=2211 ((lb) - Maximum Com Tension 1-2=-1096/264, 2-3= 4-6=-75/991, 6-8=-9 9-10=-711/158, 10-1 1-19=-365/971, 18-1	ept* 1-19:2x6 SPF Ne pt* 11-10:2x6 SPF Ne athing directly applie xcept end verticals. applied or 6-0-0 oc 4-14, 6-14, 8-14 11= Mechanical, 15=0-3-8 C 12) r 8), 11=-78 (LC 9), LC 9), 15=-204 (LC 2), 11=545 (LC 2) (LC 2), 15=1060 (LC pression/Maximum e-188/198, 3-4=-84/7 8/991, 8-9=-378/46, 1=-424/123 9=-331/863,	2) 5.2 10.2 1d or 3) 4) 5) 6) 8) 7) 4), 23) 8)	Wind: ASCE Vasd=91mp II; Exp C; Er cantilever le right expose This truss ha chord live lo * This truss on the botto 3-06-00 tall II chord and a Bearings are SPF No.2, , Refer to girc Bearing at ji using ANSI/ designer she Provide mee bearing plate 1, 204 lb up Ib uplift at jo This truss is International	7-16; Vult=115mp h; TCDL=6.0psf; B iclosed; MWFRS (e it and right expose d; Lumber DOL=1. as been designed fad nonconcurrent has been designed m chord in all areas by 2-00-00 wide wi hy other members, assumed to be: J Joint 14 SPF No.2. er(s) for truss to tru- int(s) 1 considers j TPI 1 angle to grain puld verify capacity thanical connection e capable of withsts ift at joint 15, 460 ll	CDL=6. enveloped; end % 60 plate of a 10. with any I for a liv s where II fit betw with BC oint 1 S , Joint 1 uss com parallel n formul of bear h (by oth anding 3 b uplift a dance w sections	cond gust) cond gust) opps; h=25ft; a) exterior zo vertical left ar grip DOL=1 D psf bottom other live loze e load of 20. a rectangle veen the bott CDL = 10.0ps PF No.2, Joi 1 SPF No.2, Joi 1 SPF No.2, Joi 1 SPF No.2, Joi 1 SPF No.2, sections. to grain value a. Building ing surface. ers) of truss 18 lb uplift at it joint 14 and ith the 2018 s R502.11.1 at	Cat. ne; nd .60 ads. 0psf f. nt 15 c to joint 178					
WEBS	17-18=-167/149, 16- 15-17=-680/107, 14- 12-14=-65/101, 11-1 2-19=-84/399, 2-18= 15-16=-776/286, 4-1 4-14=-512/319, 6-14 8-14=-996/305, 8-12 3-16=-633/170, 3-18	.15=-607/93, 2=-104/601 731/264, 6=-579/352, I=-1153/184, 2=0/648, 9-12=-463/2		DAD CASE(S)	Standard					(STATE OF M	AISSOLDE ER +

NOTES

1) Unbalanced roof live loads have been considered for this design.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent to large with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

E

April 10,2024

NUMB

PE-20010188

SSIONAL

0

Job	Truss	Truss Type	Qty	Ply	Lot 166 HT	
B240067	B3	Roof Special	2	1	Job Reference (optional)	164780430

Run: 8.73 S Mar 21 2024 Print: 8.730 S Mar 21 2024 MiTek Industries. Inc. Tue Apr 09 09:18:04

Page: 1 ID:Hr0UloyIgMOrZQ4rpild7XzssyG-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f 3-4-12 11-3-9 20-0-0 27-4-5 34-5-2 39-8-14 3-4-12 7-10-13 8-8-7 7-4-5 7-0-13 5-3-12 M18AHS 6x14 3x4. 4x8 🚅 4x8 👟 4 12 51 6 ₇ 3x4 -3 0-0-6 2x4 🎜 4x8 **₌** 8 2 0-8-0 15 10 학 12 2x4 II 10x12 19 20 11 5x8 II 4x8 = M18AHS 4x14 = 4x8= 2x4 II 3x4= 4x8= $\square 4$ 2x4 II 12 12-10-8 12-8-8 0-<u>3-8</u>3-<u>3-8</u> H <u>3-3-8</u> 0-<u>3-8</u> 3-0-0 11-3-9 12-8-12 9-8-8 20-0-0 30-1-8 39-8-14 6-5-0 1-7-1 7-1-8 10-1-8 9-7-6 1-4-15 0-0-4 Scale = 1:70.8 0-1-12 Plate Offsets (X, Y): [1:0-3-11,0-1-7], [4:0-4-0,Edge], [5:1-0-1,0-3-0], [6:0-4-0,Edge], [10:0-4-4,0-2-8], [14:0-2-8,0-2-0], [15:0-6-0,0-7-2], [16:0-2-8,0-1-0] 2-0-0 CSI DEFL l/defl L/d PLATES GRIP Loading (psf) Spacing in (loc) TCLL (roof) 25.0 Plate Grip DOL 1.15 тс 0.77 Vert(LL) -0.31 11-12 >753 360 MT20 197/144 TCDL 10.0 Lumber DOL 1.15 BC 0.71 Vert(CT) -0.54 11-12 >433 240 M18AHS 142/136 BCLL Rep Stress Incr WB Horz(CT) 0.0 YES 0.78 -0.07 12 n/a n/a BCDL 10.0 Code IRC2018/TPI2014 Matrix-S Wind(LL) 0.12 14-15 >999 240 Weight: 160 lb FT = 10% LUMBER 2) Wind: ASCE 7-16; Vult=115mph (3-second gust) 2x4 SPF No.2 *Except* 4-5:2x6 SPF No.2, Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. TOP CHORD II; Exp C; Enclosed; MWFRS (envelope); cantilever left 1-4:2x4 SPF 2100F 1.8E BOT CHORD 2x4 SPF 2100F 1.8E *Except* 1-15:2x8 SP and right exposed ; end vertical left and right exposed; 2400F 2.0E, 16-17:2x4 SPF No.2, 12-10:2x4 Lumber DOL=1.60 plate grip DOL=1.60 All plates are MT20 plates unless otherwise indicated. SPF 2400F 2.0E 3)

WEBS 2x3 SPF No.2 *Except* 17-18.14-2.13-3:2x4 SPF No.2, 10-9:2x6 SP 2400F 2.0E BRACING TOP CHORD Structural wood sheathing directly applied or

4-4-0 oc purlins, except end verticals. BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing, Except: 6-0-0 oc bracing: 11-12. 1 Row at midpt 5-13 WFBS 1 Row at midpt 2-14, 3-13, 7-12 REACTIONS 1=0-3-8, 10= Mechanical, 12=0-3-8 (size) Max Horiz 1=90 (LC 10) Max Uplift 1=-31 (LC 8), 10=-60 (LC 9) 1=712 (LC 21), 10=698 (LC 22), Max Grav 12=2400 (LC 2) FORCES (Ib) - Maximum Compression/Maximum Tension TOP CHORD 1-2=-3157/269, 2-3=-853/77, 3-5=0/806, 5-7=0/763, 7-8=-726/118, 8-9=-1051/166, 9-10=-576/103 BOT CHORD 1-15=-319/2917, 14-15=-302/2625, 13-14=-53/708, 12-13=-1656/50, 5-13=-1029/40, 11-12=-121/332, 10-11=-117/899

WEBS 2-15=-22/1041, 2-14=-1931/250, 3-13=-1327/131, 7-12=-999/125, 7-11=0/671, 8-11=-443/136, 3-14=0/492

NOTES

1) Unbalanced roof live loads have been considered for this design.

4) This truss has been designed for a 10.0 psf bottom

- chord live load nonconcurrent with any other live loads. 5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf. 6) Bearings are assumed to be: Joint 1 SP 2400F 2.0E ,
- Joint 12 SPF 2400F 2.0E , Joint 10 SPF No.2
- 7) Refer to girder(s) for truss to truss connections.

Bearing at joint(s) 1 considers parallel to grain value 8) using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.

Provide mechanical connection (by others) of truss to 9) bearing plate capable of withstanding 31 lb uplift at joint 1 and 60 lb uplift at joint 10.

10) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. LOAD CASE(S) Standard

OF MISS SCOTT M. SEVIER ER PE-2001018807 C SSIONAL E April 10,2024

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponent.com)

LEE'S' SUMMIT'S MISSOURI 05/06/2024 4:15:39

è

Job	Truss	Truss Type	Qty	Ply	Lot 166 HT	
B240067	B4	Roof Special	1	1	Job Reference (optional)	164780431

Run: 8.73 S Mar 21 2024 Print: 8.730 S Mar 21 2024 MiTek Industries, Inc. Tue Apr 09 09:18:04 ID:Hr0UloyIgMOrZQ4rpild7XzssyG-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

14-1-14 20-0-0 4-6-11 8-1-10 27-4-5 34-5-2 39-8-14 -4-6-11 3-6-15 6-0-4 5-10-2 7-4-5 7-0-13 5-3-12 M18AHS 6x14 👟 6 4x8 🚅 3x6 **≈** 3x4 🚅 4 5 7 3x4 👟 12 5 8 4x8 🚽 0-0-6 3 2x4 🚽 3x4 🚅 9 2 10 0-8-∏ 11⁶⁻¹ Ģ 6 15 19 17 13 X 3x4= 18 20 21 12 6x8= 5x8 II 6x8= 5x12= 3x10= 3x4= 3x10= 2x4 II 20-0-0 30-1-8 39-8-14 4-6-11 8-3-6 14-1-14 4-6-11 3-8-11 5-10-8 5-10-2 10-1-8 9-7-6

Scale = 1:69

Plate Offsets (X, Y): [5:0-4-0,Edge], [6:1-0-1,0-3-0], [11:0-4-4,0-2-8], [19:Edge,0-3-11]

					i								
Loading	(psf)	Spacing	2-0-0		csi		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15		TC	0.75	Vert(LL)	-0.31	12-13	>752	360	MT20	197/144
TCDL	10.0	Lumber DOL	1.15		BC	0.78	Vert(CT)	-0.54	12-13	>430	240	M18AHS	142/136
BCLL	0.0*	Rep Stress Incr	YES		WB	1.00	Horz(CT)	-0.10	13	n/a	n/a		
BCDL	10.0	Code	IRC201	8/TPI2014	Matrix-S		Wind(LL)	0.09	12-13	>999	240	Weight: 155 lb	FT = 10%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD 1 Row at midp WEBS REACTIONS	2x4 SPF No.2 *Exce 2x4 SPF No.2 *Exce 2.0E 2x3 SPF No.2 *Exce 11-10:2x6 SP 2400F Structural wood she 4-6-6 oc purlins, ex Rigid ceiling directly bracing, Except: 6-0-0 oc bracing: 14 t 6-14 1 Row at midpt	2007 * 5-6:2x6 SPF No 2017 * 13-11:2x4 SPF 2 2017 * 19-1:2x4 SPF N 2018 * 19-1:2x4 SPF N 2019 * 19-1:2x4 SPF N	2) 2400F 2400F 5) 2, 3) 4) 3d or 5) 5 6) 7) 8)	Wind: ASCE Vasd=91mp II; Exp C; Er and right exp Lumber DOI All plates arr This truss ha chord live lo. * This truss I on the botton 3-06-00 tall I chord and al Bearings are 13 SPF 2400 Refer to gird Provide mec bearing plate 19 and 51 lb This truss is	7-16; Vult=115m h; TCD=6.0psf; E lclosed; MWFRS i oosed; end vertici =1.60 plate grip I a MT20 plates unl as been designed m chord in all area oy 2-00-00 wide w ny other members assumed to be: o 2-00-00 wide w ny other members o 2-00-00 w ny other member	BCDL=6. (enveloped al left and DOL=1.6 ess otheir south any d for a 10. with any d for a liv as where vill fit betw south any d for a liv as where vill fit betw south any south	cond gust) opps; h=25ft; s); cantilever d right expose o psf bottom ofter live loz e load of 20. a rectangle veen the bott DL = 10.0ps PFF No.2, Jo 2. nections. ers) of truss i5 lb uplift at	Cat. left ed; ed. ads. 0psf tom if. oint to joint					
FORCES	(lb) - Maximum Com	,	L	R802.10.2 a DAD CASE(S)	nd referenced sta Standard	Indard AN	ISI/TPI 1.						
TOP CHORD	Tension 1-2=-1370/70, 2-3=- 4-6=0/540, 6-8=0/53 9-10=-1173/147, 1-1 10-11=-619/94	84, 8-9=-873/97,	/85,									TATE OF M	AISSO
BOT CHORD	18-19=-94/354, 17-1 3-16=0/449, 15-16= 14-15=-44/485, 13-1 6-14=-765/5, 12-13= 11-12=-100/1018	-113/1337, 4=-1473/41,	66,								80	STATI SCOTT	
WEBS	1-18=-16/880, 4-15= 8-12=0/640, 9-12=-4 16-18=-92/1175, 8-1 2-16=-60/84, 3-15=-	418/138, 2-18=-327/ 3=-988/127,	,									PE-2001	018807
NOTES												0.50	NO'A
1) Unbalance	ed roof live loads have	been considered fo	r									SIONA	LEN

Unbalanced roof live loads have been considered for 1) this design.

April 10,2024

 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.
 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not besign value for use only with with twit even connectors. This design is based only upon parameters shown, and is for an individual building designer must verify the applicability of design parameters and properly incorporate this design into the overall building designer must verify the applicability of design parameters and properly incorporate this design into the overall building designer. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcscomponents.com)

TION IEW DEVELORMENT SERVICES LEE'S'SUMMIT'SMISSOURI 05/06/2024 4:15:39

Job	Truss	Truss Type	Qty	Ply	Lot 166 HT	
B240067	B5	Roof Special	3	1	Job Reference (optional)	164780432

Run: 8.73 S Mar 21 2024 Print: 8.730 S Mar 21 2024 MiTek Industries, Inc. Tue Apr 09 09:18:04 ID:Hr0UloyIgMOrZQ4rpild7XzssyG-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

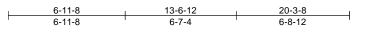
4-6-11 14-1-14 20-0-0 9-7-4 27-4-5 34-5-2 39-8-14 4-6-11 5-0-9 4-6-10 5-10-2 7-4-5 7-0-13 5-3-12 M18AHS 6x14 👟 6 4x5 ≠ 3x4 👟 4x8 🚅 4x8≈ 12 5 5 7 ₈ 4 4x5 ≠ Ś 3 0-0-6 2x4 🍬 3x4 🚅 9 2 10 16 ې 116-1 0-8-0 è 6 15 19 17 13 X 3x4= 18 20 21 12 6x8= 5x8 II 6x8= 5x12= 4x8= 3x4= 3x10= 2x4 🛛 30-1-8 39-8-14 4-6-11 9-8-8 14-1-14 20-0-0 4-6-11 5-1-13 4-5-6 5-10-2 10-1-8 9-7-6

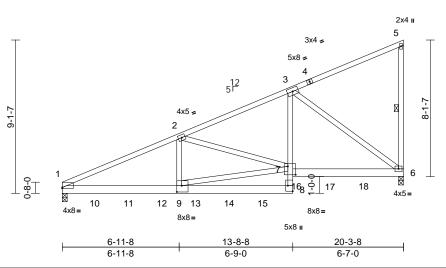
Scale = 1:69

						-							
oading	(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
FCLL (roof)	25.0	Plate Grip DOL	1.15		TC	0.74	Vert(LL)	-0.31	12-13	>751	360	MT20	197/144
FCDL	10.0	Lumber DOL	1.15		BC	0.78	Vert(CT)	-0.54	12-13	>431	240	M18AHS	142/136
BCLL	0.0*	Rep Stress Incr	YES		WB	0.77	Horz(CT)	-0.10	13	n/a	n/a		
BCDL	10.0	Code	IRC20	18/TPI2014	Matrix-S		Wind(LL)	0.09	12-13	>999	240	Weight: 157 lb	FT = 10%
UMBER			2) Wind: ASCE	7-16; Vult=115n	nph (3-sec	cond gust)						
FOP CHORD	2x4 SPF No.2 *Exce	ept* 4-6:2x6 SPF No.:	2	Vasd=91mp	h; TCDL=6.0psf;	BCDL=6.	0psf; h=25ft;	Cat.					
BOT CHORD		ept* 17-3:2x3 SPF No			closed; MWFRS								
WEBS		ept* 19-1:2x4 SPF No		Lumber DOL	=1.60 plate grip	DOL=1.60) .						
	11-10:2x6 SP 2400	= 2.0E			e MT20 plates un			ed.					
BRACING			4		as been designed								
FOP CHORD		athing directly applie	d or 5		ad nonconcurren has been designe								
BOT CHORD	4-6-6 oc purlins, ex Rigid ceiling directly	cept end verticals.		on the bottor	m chord in all are	as where	a rectangle						
	bracing, Except:				by 2-00-00 wide v ny other member								
	6-0-0 oc bracing: 14	l-15.	6		assumed to be:								
Row at midp			Ŭ		OF 2.0E, Joint 11			Jint					
NEBS	1 Row at midpt	5-14, 8-13	7		er(s) for truss to								
REACTIONS		nanical, 13=0-3-8,	. 8	, 0	hanical connecti			to					
	19=0-3-8				e capable of with								
	Max Horiz 19=77 (Le Max Uplift 11=-50 (L			19 and 50 lb	uplift at joint 11.	-	-	-					
		,, ()	2) 9		designed in acco								
	Max Grav 11=766 (19=813 (Z),		Residential Cod nd referenced sta			and					
ORCES	(lb) - Maximum Con Tension	npression/Maximum	L	OAD CASE(S)			0//////						
FOP CHORD		-1213/109, 3-5=-580/	٩ <i>4</i>										
	5-6=0/540, 6-8=0/52	,	01,									200	TOP
	9-10=-1175/146, 1-1											SOFA	AISSO
	10-11=-619/94											BIE	1000
BOT CHORD		18=0/78, 16-17=0/94,									6	184	N N
	3-16=0/418, 15-16=	-85/1071, 14-15=-50/	491,								B	SCOT	TM. Yry
	13-14=-1468/40, 6-	14=-772/5,									R	SEVI	ER \ Y
	12-13=-13/467, 11-1	12=-99/1019									2 *	1	1 * 1
NEBS		=-722/81, 5-15=0/622									81	2	0 14
	,	3=-987/127, 8-12=0/6	,								Res	hother in	SALLA
		8=-23/945, 2-18=-230)/92,								12 7	STOR STOR	
	16-18=-118/1198										N.	PE-2001	018807
NOTES											V	2	158
 Unbalance 	ed roof live loads have	been considered for										SSION .	ENUS

 Unbalanced roof live loads have been considered for this design.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANS/JTP11 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)




April 10,2024

JONAL E

Job	Truss	Truss Type	Qty	Ply	Lot 166 HT	
B240067	B6	Monopitch Girder	1	4	Job Reference (optional)	164780433

Run: 8.73 S Mar 21 2024 Print: 8.730 S Mar 21 2024 MiTek Industries, Inc. Tue Apr 09 09:18:04 ID:Hr0UloyIgMOrZQ4rpild7XzssyG-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC?f

Scale = 1:68.5

Plate Offsets (X, Y): [1:Edge,0-0-10], [7:0-5-8,0-6-0], [8:Edge,0-3-8], [9:0-3-8,0-4-8]

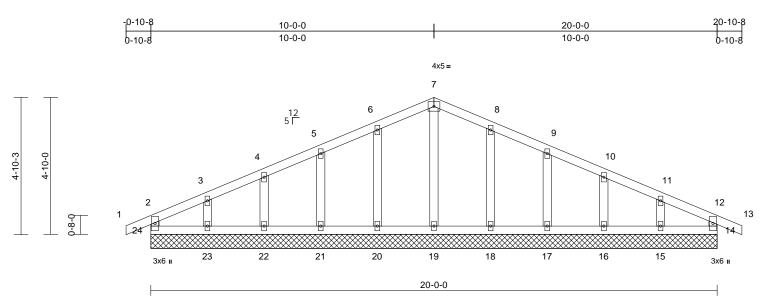
		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	J.,	, <u>,</u> , , , , , , , , , , , , , , , , ,	-,	-							
Loading	(psf)	Spacing	2-0-0		csi		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15		тс	0.79	Vert(LL)	-0.14	1-9	>999	360	MT20	197/144
TCDL	10.0	Lumber DOL	1.15		BC	0.97	Vert(CT)	-0.24	8-9	>999	240		
BCLL	0.0*	Rep Stress Incr	NO		WB	0.88	Horz(CT)	0.06	6	n/a	n/a		
BCDL	10.0	Code	IRC201	8/TPI2014	Matrix-S		Wind(LL)	0.07	1-9	>999	240	Weight: 443 lb	FT = 10%
LUMBER TOP CHORD	1.8E			except if not CASE(S) se	considered equa ed as front (F) or ction. Ply to ply c	back (B) onnectior	face in the LO s have been			12=-14	=-833 (l 60 (B),	B), 10=-1456 (B), 13=-1460 (B), 14	4=-1460 (B), 15=-145
BOT CHORD	2x6 SP 2400F 2.0E * No.2, 7-6:2x6 SPF N		-		distribute only loa wise indicated.	as noted	as (F) or (B),			(B), 16=	-1009	(B), 17=-825 (B),	, 18=-825 (B)
WEBS	2x4 SPF No.2	0.2	3)		7-16; Vult=115m			_					
BRACING					h; TCDL=6.0psf;								
TOP CHORD	 Structural wood sheat 6-0-0 oc purlins, exc 		dor		closed; MWFRS								
BOT CHORD	Rigid ceiling directly		4)		=1.60 plate grip as been designed								
	bracing.		4)		ad nonconcurrent			ada					
VEBS		5-6	5)		nas been designe								
REACTIONS			0)		m chord in all are			000.					
	Max Horiz 1=278 (LC	,			by 2-00-00 wide v			om					
	Max Uplift 1=-452 (LC		•	chord and a	ny other members	s.							
	Max Grav 1=8429 (L	<i>,</i>	³⁾ 6)	All bearings	are assumed to b	be SPF N	o.2 .						
ORCES	(lb) - Maximum Com	pression/Maximum	7)	Provide med	hanical connection	on (by oth	ers) of truss t	to					
	Tension			bearing plate	e capable of with	standing 3	89 lb uplift at	t joint					
FOP CHORD				6 and 452 lb	uplift at joint 1.								
	3-5=-214/59, 5-6=-18		8)	This truss is	designed in acco	ordance w	ith the 2018						
BOT CHORD			922,		Residential Code			and					
	3-7=-385/8539, 6-7=			R802.10.2 a	nd referenced sta	andard Al	ISI/TPI 1.						
NEBS	2-9=-85/4563, 7-9=-6		9)		other connection								The second
	2-7=-6279/279, 3-6=	-9588/570			ficient to support							O TE	and the second
NOTES					231 lb up at 1-1							B.F. OF I	MISS C
 4-ply truss 	s to be connected toget	her with 10d			1-4, 1812 lb dowr						4	THE OF I	N.V.
(0.131"x3	B") nails as follows:				n and 51 lb up at			and			B		TM XXX
Top chore	ds connected as follows	: 2x4 - 1 row at 0-6-0)		9-11-4, 1710 lb do						R	~/	
OC.					51 lb down and 15						a.	SEVI	
	hords connected as follo				2 lb up at 15-11-4			32			ИМ		
staggered	d at 0-4-0 oc, 2x4 - 1 rov	<i>w</i> at 0-9-0 oc.			11-4, and 1003 lb						aD	1 Here	X = 1.3
	nected as follows: 2x4 -				ottom chord. Th			uch		_	X	CONTIN	Kterne
	C w/ 1/2" diam. bolts (AS				levice(s) is the re	sponsibili	ty of others.			_	17	DE 2001	010007 /AN
center of t	the member w/washers	at 4-0-0 oc.	LC	DAD CASE(S)	Standard						N	O PE-2001	01000/ 10001
			4)	Deed De	مقانية المعاممهما		La concerta d	45			A N	112	154

 Dead + Roof Live (balanced): Lumber Increase=1.15, Plate Increase=1.15 Uniform Loads (lb/ft)

Vert: 1-5=-70, 1-8=-20, 6-7=-20

April 10,2024

E

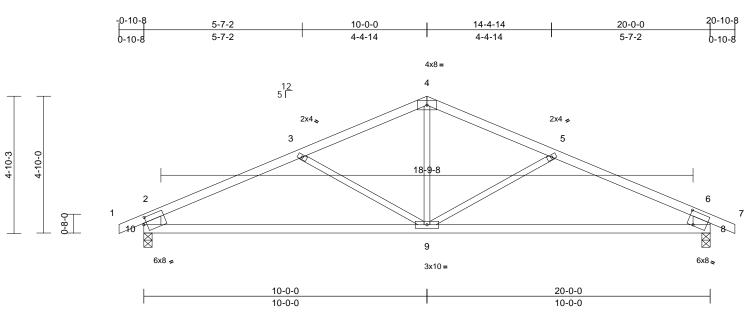

ONAL

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

Job	Truss	Truss Type	Qty	Ply	Lot 166 HT	
B240067	C1	Common Supported Gable	1	1	Job Reference (optional)	164780434

Run: 8.73 S Mar 21 2024 Print: 8.730 S Mar 21 2024 MiTek Industries, Inc. Tue Apr 09 09:18:04 ID:Hr0UloyIgMOrZQ4rpild7XzssyG-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC?f

Scale = 1:40.7


Loading	(psf)	Spacing	2-0-0		CSI	0.07		in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	· ·	1.15		TC	0.07	Vert(LL)	n/a		n/a	999	MT20	197/144
TCDL	10.0		1.15		BC WB	0.02	Vert(CT)	n/a	-	n/a	999		
BCLL	0.0*		YES			0.05	Horz(CT)	0.00	14	n/a	n/a		FT 400/
BCDL	10.0	Code	IRC2018	3/TPI2014	Matrix-R							Weight: 75 lb	FT = 10%
LUMBER			NC	DTES									
TOP CHORD	2x4 SPF No.2		1)	Unbalanced	roof live loads ha	ve been	considered for	•					
BOT CHORD				this design.									
WEBS	2x4 SPF No.2		2)		7-16; Vult=115m	• •	0 /	_					
OTHERS	2x4 SPF No.2				n; TCDL=6.0psf; E								
BRACING					closed; MWFRS								
TOP CHORD		athing directly applied	or		t and right expose								
	6-0-0 oc purlins, ex			0 1	d; Lumber DOL=1		01						
BOT CHORD	Rigid ceiling directly	applied or 6-0-0 oc	3)		ned for wind loads								
	bracing.				ds exposed to wi Industry Gable I								
REACTIONS		0, 15=20-0-0, 16=20-0			alified building de								
		0, 18=20-0-0, 19=20-0	· 4)		2x4 MT20 unles								
		0, 21=20-0-0, 22=20-0	^{-0, 1} , 5)		es continuous bot								
		0, 24=20-0-0	6)		ully sheathed fror		0						
	Max Horiz 24=65 (LC		0)		st lateral movem		,						
	Max Uplift 14=-31 (L	,, ,, ,,	7)		spaced at 2-0-0 c		lagena nez,						
		C 9), 17=-49 (LC 9),	8)		s been designed		0 psf bottom						
	,	.C 9), 20=-51 (LC 8),	- /		ad nonconcurrent			ds.					
		C 8), 22=-43 (LC 8),	9)	* This truss h	as been designe	d for a liv	e load of 20.0	psf					
		C 8), 24=-31 (LC 4)		on the bottor	n chord in all area	as where	a rectangle						
	Max Grav 14=161 (L	_C 22), 15=165 (LC 1) _C 22), 17=177 (LC 1)	,	3-06-00 tall b	y 2-00-00 wide w	/ill fit betv	veen the botto	m					
	10=104 (L 18-101 (l	_C 22), 17=177 (LC 1)	,	chord and ar	y other members	5.							
		_C 21), 21=177 (LC 1)) All bearings	are assumed to b	e SPF N	o.2 .						
		_C 21), 23=165 (LC 1)			hanical connectio							~	~
	24=161 (L		,	01	capable of withs	0						and	and the
FORCES	(lb) - Maximum Com Tension	,		uplift at joint	ft at joint 14, 51 lt 21, 43 lb uplift at	joint 22, (67 lb uplift at j	oint				TATE OF I	MISSO
TOP CHORD)/27 2-364/49			ft at joint 18, 49 lt						R	SCOT	N N
	3-4=-42/60, 4-5=-27	. ,,			16 and 60 lb uplif						A	S DCOI	
	6-7=-30/122. 7-8=-3		12		designed in acco						И.	SEVI	
		=-27/44, 11-12=-48/33,			Residential Code			nd			И 🔰	1	
	12-13=0/27, 12-14=-				nd referenced sta	ndard Ar	NSI/TPI 1.				28	++7	
BOT CHORD	,	3=-10/58, 21-22=-10/58	_{3.} LC	DAD CASE(S)	Standard						44	COUM	SIMM
	,)=-10/58, 18-19=-10/58	,								67	DE 2001	010007 159
	,	7=-10/58, 15-16=-10/58	,								N	PE-2001	01880/ 108810
	14-15=-10/58	,	,								Y	N.P.	154
WEBS	7-19=-128/0, 6-20=-	151/75, 5-21=-137/72,										SID.	FNO
	4-22=-144/70, 3-23=	-126/82, 8-18=-151/74	4,									SIONA	L
	9-17=-137/72, 10-16	6=-144/70, 11-15=-126	/78									alla	500
												Apri	l 10,2024
												F	,

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent toulsible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

RELEASE OR CONTRUCTION AS NOTED ON PLANS REVIEW DEVELORMENT: SERVICES LEE'S SUMMIT: MISSOURI 05/06/2024 4:15:39

Job	Truss	Truss Type Qty Ply Lot 166 HT		Lot 166 HT		
B240067	C2	Common	1	1	Job Reference (optional)	164780435

Run: 8.73 S Mar 21 2024 Print: 8.730 S Mar 21 2024 MiTek Industries, Inc. Tue Apr 09 09:18:04 ID:Hr0UloyIgMOrZQ4rpild7XzssyG-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Scale = 1:40.7

Plate Offsets (X, Y): [8:0-2-10,0-5-10], [10:0-1-5,0-2-13]

	(, , ,): [ele = lete e :	o]; [: 0:0 : 0;0 = :0]										
Loading	(psf)	Spacing	2-0-0	csi		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15	TC	0.84	Vert(LL)	-0.17	9-10	>999	360	MT20	197/144
TCDL	10.0	Lumber DOL	1.15	BC	0.78	Vert(CT)	-0.36	9-10	>642	240		
BCLL	0.0*	Rep Stress Incr	YES	WB	0.21	Horz(CT)	0.04	8	n/a	n/a		
BCDL	10.0	Code	IRC2018/TPI2014	Matrix-S		Wind(LL)	0.07	9	>999	240	Weight: 63 lb	FT = 10%
LUMBER TOP CHORD BOT CHORD WEBS		pt* 10-2,8-6:2x8 SP	bearing pla 10 and 139 7) This truss i	chanical connectio te capable of withs Ib uplift at joint 8. s designed in accor al Residential Code	tanding 1 rdance w	39 Ib uplift at ith the 2018	t joint					
BRACING	2400F 2.0E			and referenced star								
TOP CHORD	Structural wood shea	athing directly applie										
TOP CHORD	3-4-15 oc purlins, ex			, otandara								
BOT CHORD	Rigid ceiling directly bracing.		2									
REACTIONS	(size) 8=0-3-8, 1 Max Horiz 10=63 (LC Max Uplift 8=-139 (L Max Grav 8=955 (LC	C 12) C 9), 10=-139 (LC 8))									
FORCES	(lb) - Maximum Com Tension	pression/Maximum										
TOP CHORD		-1412/214, 6-7=0/32	,									
BOT CHORD WEBS	9-10=-192/1208, 8-9 4-9=0/473, 5-9=-317											
NOTES												
	ed roof live loads have	been considered for	r									The
Vasd=91m II; Exp C; I cantilever right expos	n. CE 7-16; Vult=115mph nph; TCDL=6.0psf; BC Enclosed; MWFRS (en left and right exposed sed; Lumber DOL=1.60 has been designed for	DL=6.0psf; h=25ft; C ivelope) exterior zon ; end vertical left and 0 plate grip DOL=1.6	ne; d								STATE OF M SCOTT	MISSOUR ER ER

chord live load nonconcurrent with any other live loads.
* This truss has been designed for a live load of 20.0psf

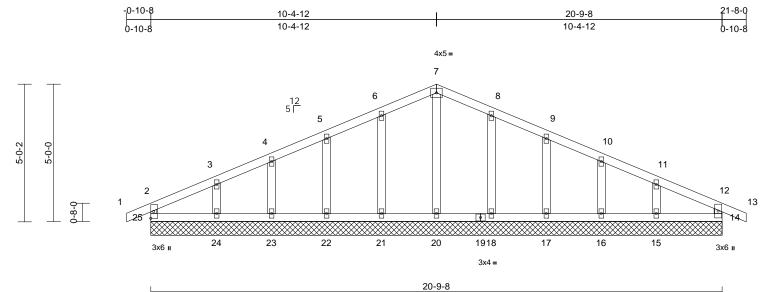
on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.

5) All bearings are assumed to be SPF No.2 .

SCOTT M. SEVIER NUMBER PE-2001018807

April 10,2024

Page: 1


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPH Claulity Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

Job	Truss	Truss Type	Qty	Ply	Lot 166 HT	
B240067	D1	Common Supported Gable	1	1	Job Reference (optional)	164780436

Run: 8.73 S Mar 21 2024 Print: 8.730 S Mar 21 2024 MiTek Industries, Inc. Tue Apr 09 09:18:04 ID:Hr0UloyIgMOrZQ4rpild7XzssyG-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

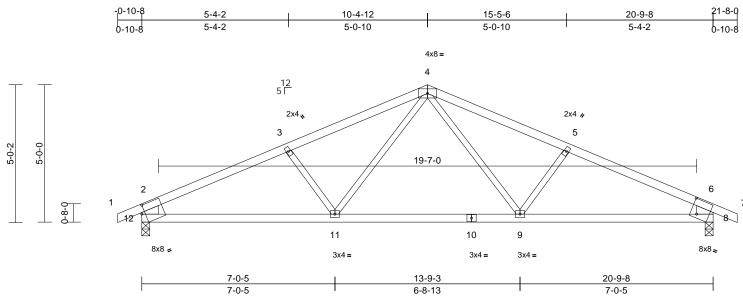
c. Tue Apr 09 09:18:04 Page: 1 KWrCDoi7J4zJC?f

Scale = 1:41.9

		1			1		.						
Loading	(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15		TC	0.07	Vert(LL)	n/a	-	n/a	999	MT20	197/144
TCDL	10.0	Lumber DOL	1.15		BC	0.03	Vert(CT)	n/a	-	n/a	999	1	
BCLL	0.0*	Rep Stress Incr	YES		WB	0.05	Horz(CT)	0.00	14	n/a	n/a		
BCDL	10.0	Code	IRC20	18/TPI2014	Matrix-R							Weight: 79 lb	FT = 10%
LUMBER			v	VEBS	7-20=-121/0, 6-2	21=-151/74	5-22=-139/	73					
TOP CHORD	2x4 SPF No.2		•	1200	4-23=-138/66, 3								
BOT CHORD					9-17=-139/73, 10		,	,					
WEBS	2x3 SPF No.2 *Exce	ent* 14-12·2x4 SPF	N	IOTES	,		- ,						
	2400F 2.0E				l roof live loads h	ave heen	considered fo	٦r					
OTHERS	2x4 SPF No.2			this design.									
BRACING			2		E 7-16; Vult=115r	nph (3-seo	cond aust)						
TOP CHORD	Structural wood she	athing directly applie			h; TCDL=6.0psf;			Cat.					
. Sr Griend	6-0-0 oc purlins, ex				nclosed; MWFRS								
BOT CHORD		applied or 10-0-0 oc	;	cantilever le	ft and right expo	sed ; end	, vertical left ar	าป่					
	bracing.			right expose	ed; Lumber DOL=	=1.60 plate	grip DOL=1	.60					
REACTIONS	(size) 14=20-9-	8, 15=20-9-8, 16=20-	.9-8. 3) Truss desig	ned for wind loa	ds in the p	lane of the tr	uss					
	()	8, 18=20-9-8, 20=20-	,		uds exposed to v								
	21=20-9-	8, 22=20-9-8, 23=20-	9-8,		rd Industry Gable								
	24=20-9-	8, 25=20-9-8			ualified building o								
	Max Horiz 25=69 (Le	C 8)	4		e 2x4 MT20 unle								
	Max Uplift 14=-34 (L	_C 5), 15=-66 (LC 9),			res continuous b								
	16=-42 (L	_C 9), 17=-49 (LC 9),	6		fully sheathed fro								
		_C 9), 21=-50 (LC 8),			nst lateral mover		liagonal web).					
		_C 8), 23=-41 (LC 8),			spaced at 2-0-0								
		_C 8), 25=-32 (LC 4)	8		as been designe ad nonconcurrer								
	Max Grav 14=178 (has been design								
		LC 1), 17=179 (LC 1)	, -		m chord in all are			opsi					
		LC 22), 20=161 (LC 1			by 2-00-00 wide			om					
		LC 21), 22=179 (LC ² LC 21), 24=197 (LC 2			ny other member		veen me bou	om				San	alle
	25=176 (^{21),} 1		are assumed to		o.2 .					P OF I	MISS
FORCES	(lb) - Maximum Con	,			chanical connecti			to				TATE OF J	
FURGES	Tension	npression/maximum			e capable of with						A	NY accom	New
TOP CHORD		0/26 2 2- 71/40			lift at joint 14, 50						H	S/ SCOI	
	3-4=-44/67, 4-5=-35	, ,		uplift at joint	t 22, 41 lb uplift a	t joint 23,	72 lb uplift at	joint			8	SEV.	IER \ Y
	6-7=-37/129, 7-8=-3	, ,			lift at joint 18, 49			b			00		
	,	=-35/52, 11-12=-59/3	6.		t 16 and 66 lb up							ant to	Aprile
	12-13=0/27, 12-14=		· 1		designed in acc					-	W-	NUM	BER
BOT CHORD					I Residential Coo			and			27		
		=-8/58, 18-20=-8/58,			and referenced st	andard Al	ISI/TPI 1.				N	PE-2001	01000/ 201
	17-18=-8/58, 16-17=	=-8/58, 15-16=-8/58,	L	OAD CASE(S)	Standard						Y	1 Pa	1.SA
	14-15=-8/58											A STONE	FN
												UNA	
												ALL.	

April 10,2024

DEVELORMENT: SERVICES LEE'S'SUMMIT'SMISSOURI 05/06/2024 4:15:39


TION IEW

Job	Truss	Truss Type	Qty	Ply	Lot 166 HT	
B240067	D2	Common	4	1	Job Reference (optional)	164780437

Run: 8.73 S Mar 21 2024 Print: 8.730 S Mar 21 2024 MiTek Industries, Inc. Tue Apr 09 09:18:05 ID:Hr0UloyIgMOrZQ4rpild7XzssyG-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

:05 Page: 1

Scale = 1:41.9

Plate Offsets (X, Y): [8:0-2-13,0-6-6], [12:0-1-8,0-3-9]

	7, 1): [0:0 2 10,0 0 0	j, [12.0 1 0,0 0 0]											
Loading TCLL (roof)	(psf) 25.0	Spacing Plate Grip DOL	2-0-0 1.15		CSI TC	0.91	DEFL Vert(LL)	in -0.16	(loc) 9-11	l/defl >999	L/d 360	PLATES MT20	GRIP 197/144
TCDL	10.0	Lumber DOL	1.15		BC	0.63	Vert(CT)	-0.30	9-11	>811	240		
BCLL	0.0*	Rep Stress Incr	YES		WB	0.14	Horz(CT)	0.04	8	n/a	n/a		
BCDL	10.0	Code	IRC2018	/TPI2014	Matrix-S		Wind(LL)	0.10	9-11	>999	240	Weight: 67 lb	FT = 10%
LUMBER TOP CHORD BOT CHORD WEBS	2x4 SPF No.2 2x4 SPF No.2 2x3 SPF No.2 *Exce 2400F 2.0E	ept* 12-2,8-6:2x8 SP	6) 7)	bearing plate 12 and 143 I This truss is	hanical connection capable of withst b uplift at joint 8. designed in accor Residential Code	anding 1 dance w	43 lb uplift a ith the 2018	t joint					
BRACING	24001 2.02				nd referenced star								
TOP CHORD	Structural wood she 2-2-0 oc purlins, ex		ed or LO	AD CASE(S)	Standard								
BOT CHORD			C										
REACTIONS	(size) 8=0-3-8, Max Horiz 12=66 (LC Max Uplift 8=-143 (L Max Grav 8=991 (LC	C 12) .C 9), 12=-143 (LC 8)										
FORCES	(lb) - Maximum Com Tension	pression/Maximum											
TOP CHORD		-1526/209, 6-7=0/3	,										
BOT CHORD	11-12=-195/1312, 9- 8-9=-129/1312												
WEBS	4-9=-70/403, 5-9=-2 3-11=-260/176	60/176, 4-11=-70/40)3,										
NOTES												COLOR	ADDA
 Unbalance this design Wind: ASC Vasd=91m 	ed roof live loads have h. CE 7-16; Vult=115mph nph; TCDL=6.0psf; BC Enclosed; MWFRS (er	(3-second gust) DL=6.0psf; h=25ft; (Cat.									STATE OF M	MISSOUR I M. ER
	left and right exposed sed; Lumber DOL=1.6										Sl	att	Service

- 3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
 4) This trues have designed for a live load of 20 Oral
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- 5) All bearings are assumed to be SPF No.2 .

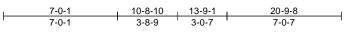
April 10,2024

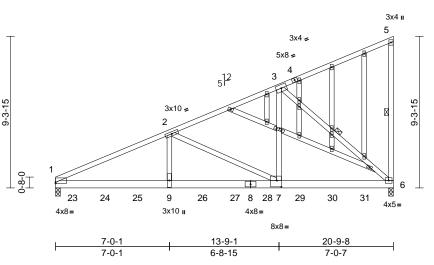
E

NUMBER

PE-200101880

SSIONAL


0


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPH Claulity Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

Job	Truss	Truss Type	Qty	Ply	Lot 166 HT	
B240067	D3	GABLE	1	2	Job Reference (optional)	164780438

Run: 8.73 S Mar 21 2024 Print: 8.730 S Mar 21 2024 MiTek Industries, Inc. Tue Apr 09 09:18:05 ID:Hr0UloyIgMOrZQ4rpild7XzssyG-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Scale = 1:70.9 Plate Offsets (X, Y): [1:Edge,0-0-14], [7:0-3-8,0-4-12], [11:0-1-13,0-1-0]

unless otherwise indicated.

	(X, T). [1.Euge,0 0 14], [1.0 0 0,0 1 1 ∠], [1	11.0 1 10,0	, , ,		_							
Loading	(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15		TC	0.76	Vert(LL)	-0.11	6-7	>999	360	MT20	197/144
TCDL	10.0	Lumber DOL	1.15		BC	0.58	Vert(CT)	-0.19	6-7	>999	240		
BCLL	0.0*	Rep Stress Incr	NO		WB	0.70	Horz(CT)	0.04	6	n/a	n/a		
BCDL	10.0	Code	IRC201	8/TPI2014	Matrix-S		Wind(LL)	0.08	1-9	>999	240	Weight: 265 lb	FT = 10%
LUMBER TOP CHORE BOT CHORE WEBS OTHERS BRACING TOP CHORE BOT CHORE WEBS REACTIONS	 1.8E 2x6 SP 2400F 2.0E 2x4 SPF No.2 2x4 SPF No.2 Structural wood sheat 5-8-7 oc purlins, exit Rigid ceiling directly bracing. 1 Row at midpt 	athing directly applic cept end verticals. applied or 10-0-0 or 5-6, 3-6 ≒=0-3-8 5 22) C 8), 6=-545 (LC 8)	4) ed or c 5) 6) 7) 8)	Vasd=91mpi II; Exp C; Er cantilever leil right expose Truss desig only. For stu see Standar or consult qu All plates are Gable studs This truss ha chord live loo * This truss h on the bottoo 3-06-00 tall h	7-16; Vult=115m h; TCDL=6.0psf; E iclosed; MWFRS (ft and right expose d; Lumber DOL=1 ned for wind loads uds exposed to wi d Industry Gable E ialified building de e 2x4 MT20 unles: spaced at 2-0-0 o as been designed ad nonconcurrent has been designed m chord in all area by 2-00-00 wide w hy other members?	CDL=6. (enveloped; end to 1.60 plate s in the p nd (norm End Detate esigner a s otherwith c. for a 10. with any d for a liv as where vill fit betw	Opsf; h=25ft; a) exterior zo vertical left ar grip DOL=1. lane of the tr al to the face ils as applicas s per ANSI/T se indicated. 0 psf bottom other live loa a rectangle	ne; nd .60 uss s), ible, PI 1. PI 1. ads. 0psf	Co	oncentra Vert: 9= (B), 26=	5=-70, ited Lo: -497 (I -657 (I	1-6=-20 ads (lb) 3), 23=-516 (B), 2	24=-497 (B), 25=-497 28=-703 (B), 29=-703
FORCES	,		10	All bearings) Provide mec bearing plate	are assumed to b hanical connectio capable of withs	e SPF N n (by oth	ers) of truss						
BOT CHORD	5-6=-197/78 1-9=-931/6306, 7-9= 6-7=-447/3712	-931/6306,	11) This truss is	uplift at joint 1. designed in accor Residential Code			and					
WEBS	2-9=-235/2323, 2-7= 3-7=-403/4435, 3-6=		12		nd referenced sta							A STORE	and
NOTES					ficient to support of							E.F. OF I	AISSO
(0.131"x3 Top chor oc. Bottom c staggere Web con 2) All loads	ss to be connected toget ") nails as follows: ds connected as follows: hords connected as follows hords connected as follows: at 0-9-0 oc. nected as follows: 2x4 - are considered equally noted as front (F) or bac	:: 2x4 - 1 row at 0-9- ows: 2x6 - 2 rows 1 row at 0-9-0 oc. applied to all plies,		up at 3-0-12 lb down and up at 9-0-12 lb down and up at 15-0-1 17-0-12, and bottom chore device(s) is it	99 lb up at 1-0-1. 2, 564 lb down and 90 lb up at 7-0-1. 2, 734 lb down and 63 lb up at 13-0- 2, and 806 lb down 806 lb down and d. The design/sel- the responsibility of	d 90 lb up 2, 734 lb d 72 lb up 12, 806 l vn and 6 l 62 lb up ection of	at 5-0-12, 5 down and 72 at 11-0-12, b down and 6 2 lb up at at 19-0-12 o such connec	564 2 lb 806 52 lb 50				STE OF I SEVI	ER Sentes

13) Studding applied to ply: 1(Front) CASE(S) section. Ply to ply connections have been provided to distribute only loads noted as (F) or (B),

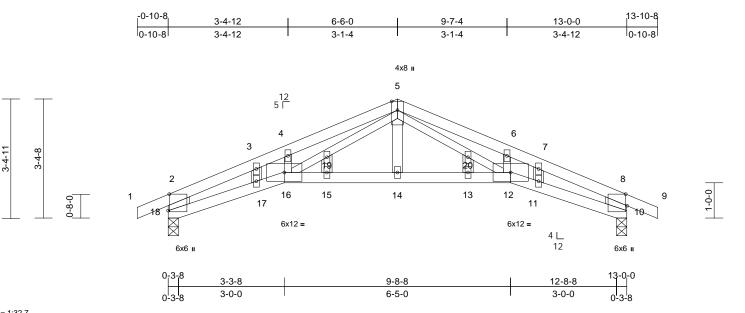
- LOAD CASE(S) Standard
- Dead + Roof Live (balanced): Lumber Increase=1.15, 1) Plate Increase=1.15

April 10,2024

ΓΙΟΝ

SIONAL E

Page: 1


 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.
 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not besign value to dury with with where outputs into design is based only door parameters shown, and is for an individual building design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members and property incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TPH1 Quality Criteria**, and **DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcscomponents.com) DEVELORMENT SERVICES LEE'S'SUMMIT'SMISSOURI 05/06/2024 4:15:39

Job	Truss	Truss Type	Qty	Ply	Lot 166 HT	
B240067	E1	GABLE	1	1	Job Reference (optional)	164780439

Run: 8.73 S Mar 21 2024 Print: 8.730 S Mar 21 2024 MiTek Industries, Inc. Tue Apr 09 09:18:05 ID:Hr0UloyIgMOrZQ4rpild7XzssyG-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

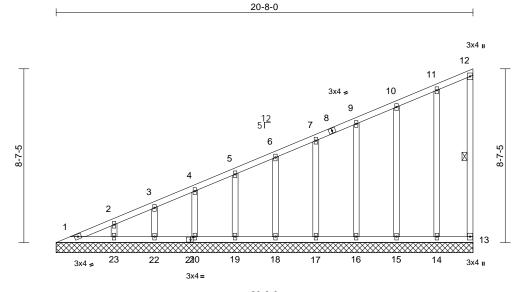
Scale = 1:32.7

Plate Offsets (X, Y): [10:0-3-15,Edge], [18:0-5-10,Edge]

	(,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,												
Loading	(psf)	Spacing	2-0-0		csi		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15		тс	0.81	Vert(LL)	-0.13	13	>999	360	MT20	197/144
TCDL	10.0	Lumber DOL	1.15		BC	0.69	Vert(CT)	-0.24	13	>630	240		
BCLL	0.0*	Rep Stress Incr	YES		WB	0.24	Horz(CT)	0.17	10	n/a	n/a		
BCDL	10.0	Code	IRC201	8/TPI2014	Matrix-S		Wind(LL)	0.08	15-16	>999	240	Weight: 47 lb	FT = 10%
							· · ·						
LUMBER			3)		ned for wind load								
TOP CHORD					ids exposed to w								
BOT CHORD			_		d Industry Gable alified building d								
NEBS	2x3 SPF No.2 *Exce	ept* 18-2,10-8:2x8 S	iP 4)		2x4 MT20 unles								
	2400F 2.0E		4) 5)		ully sheathed fro								
OTHERS	2x4 SPF No.2		5)		ist lateral movem								
	o , , , , , , ,		. 6)		spaced at 2-0-0		lagonal web)						
TOP CHORD	Structural wood she				s been designed) psf bottom						
BOT CHORD	3-2-15 oc purlins, e Rigid ceiling directly		,		ad nonconcurren			ads.					
SOT CHORD	bracing.	applied of 10-0-0 0	8)		as been designe								
	0	10 0 0 0	- /		n chord in all are								
REACTIONS				3-06-00 tall b	y 2-00-00 wide	will fit betw	een the bott	om					
	Max Horiz 18=38 (LC	,		chord and ar	y other member	s.							
	Max Uplift 10=-99 (L Max Grav 10=640 (L		, 9)		are assumed to I								
	•		·		int(s) 18, 10 con								
FORCES	(lb) - Maximum Com	pression/Maximum			NSI/TPI 1 angle			ding					
TOP CHORD	Tension 1-2=0/32, 2-3=-1417	1/1CC 2 1- 121C/17	г ,		uld verify capaci								
IOP CHORD	4-5=-1301/233, 5-6=		o, 1'		hanical connecti								
	6-7=-1319/142, 7-8=		2		capable of with		B ib uplift at	joint					
	2-18=-899/146, 8-10		,		uplift at joint 10.		the the 2010						
BOT CHORD			14		designed in acco Residential Cod			and					
	15-16=-33/902, 14-1				nd referenced sta			anu					
	13-14=-32/907, 12-1						101/1111.					200	alle
	11-12=-81/1206, 10-		L	DAD CASE(S)	Stanuaru							P OF	MISCO
WEBS	5-20=-139/414, 12-2										1	THTE OF	MISSO
	6-12=-71/92, 16-19=	-145/384,									A	AV I	1 CAN
	5-19=-153/421, 4-16	6=-78/86, 5-14=0/21	3,								H	S/ SCUI	
	15-19=-15/70, 3-17=	=0/102, 13-20=-9/60	,								B	SEV	TER \ Y
	7-11=0/106										Rot.	j l	
NOTES											NX.	1.75	
1) Unbalance	ed roof live loads have	been considered fo	r							-	AR I	NUM	
this desigr	n.										27		
	CE 7-16; Vult=115mph										N.	O PE-2001	101880/ 24
	nph; TCDL=6.0psf; BC										Y	N. Pol	154
	Enclosed; MWFRS (er											C'SSIONA	FNUA
	left and right exposed											ANA NA	IL VIE
right expo	sed; Lumber DOL=1.6	0 plate grip DOL=1.	60									Car	TOO .

- II; Exp C; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent colleges with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)



April 10,2024

Job	Truss	Truss Type	Qty	Ply	Lot 166 HT	
B240067	V1	Valley	1	1	Job Reference (optional)	164780440

Run: 8.73 S Mar 21 2024 Print: 8.730 S Mar 21 2024 MiTek Industries, Inc. Tue Apr 09 09:18:05 ID:Hr0UloyIgMOrZQ4rpild7XzssyG-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

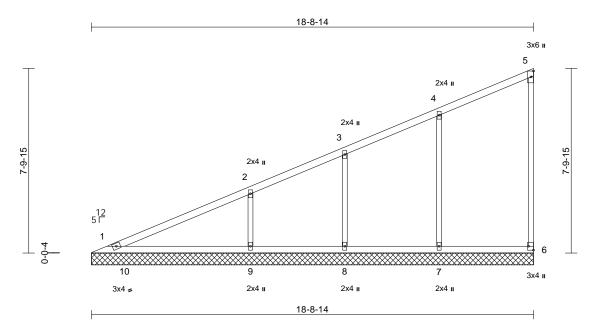
гaų

20-8-0

Scale = 1:57.1

Plate Offsets (X, Y): [21:0-1-8,0-1-8]

Loading	(psf)	Spacing	2-0-0		csi		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15		тс	0.30	Vert(LL)	n/a	-	n/a	999	MT20	197/144
TCDL	10.0	Lumber DOL	1.15		BC	0.13	Vert(TL)	n/a	-	n/a	999		
BCLL	0.0*	Rep Stress Incr	YES		WB	0.14	Horiz(TL)	0.00	13	n/a	n/a		
BCDL	10.0	Code	IRC2018/TPI2	014	Matrix-S							Weight: 98 lb	FT = 10%
BCDL LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD WEBS REACTIONS	2x4 SPF No.2 2x4 SPF No.2 2x4 SPF No.2 2x4 SPF No.2 Structural wood sh 6-0-0 oc purlins, e Rigid ceiling direct bracing. 1 Row at midpt (size) 1=20-8-	Code eathing directly applied xcept end verticals. y applied or 10-0-0 oc 12-13 0, 13=20-8-0, 14=20-8- 0, 16=20-8-0, 17=20-1	WEBS NOTES 1) Win Vas d or II; E can righ 2) Tru only -0, see 8-0. or c	d: ASCE d=91mph xp C; En ilever lef c exposed ss design . For stu Standard onsult qu	2-23=-161/81, 3-2 5-19=-140/72, 6-1 3-16=-140/70, 10- 7-16; Vult=115m 1; TCDL=6.0psf; E closed; MWFRS (t and right expose d; Lumber DOL=1 ned for wind loads uds exposed to wii d Industry Gable E valified building de	8=-140/7 15=-142/ ph (3-sec 3CDL=6.0 (envelope ed ; end v .60 plate s in the pl nd (norm End Deta esigner as	2, 7-17=-14(%1, 11-14=-1 cond gust) Opsf; h=25ft; a) exterior zo vertical left ar grip DOL=1 lane of the frre al to the face is as applica s per ANS/T	0/72, 37/83 Cat. ne; nd 60 uss e), ble,				Weight: 98 lb	FT = 10%
	18=20-8 22=20-8 Max Horiz 1=360 (I 13=-40 15=-44 17=-47 19=-48 22=-45 Max Grav 1=131 (I 14=177 16=180 18=180	-0, 19=20-8-0, 20=20-4 -0, 23=20-8-0 .C 5) LC 7), 14=-51 (LC 8), LC 8), 16=-50 (LC 8), LC 8), 18=-48 (LC 8), LC 8), 20=-48 (LC 8), LC 8), 23=-57 (LC 8) .C 16), 13=59 (LC 1), (LC 1), 15=182 (LC 1), (LC 1), 19=179 (LC 1), (LC 1), 22=171 (LC 1),	8-0, 3) All p 8-0, 4) Gat 5) Gat 5) Gat 6) This 7) * Th on t 3-06 cho 8) All p 9) Prov bea 13,	lates are le require le studs truss ha d live loa is truss h he botton 6-00 tall b d and ar earings a vide mecl ring plate 57 lb upli	2x4 MT20 unless es continuous bot spaced at 2-0-0 o is been designed ad nonconcurrent nas been designed n chord in all area by 2-00-00 wide w hy other members are assumed to b hanical connectio e capable of withsi ft at joint 23, 45 lb 20, 48 lb uplift at j	s otherwi tom chor bc. for a 10.0 with any d for a liv as where vill fit betw s. e SPF No n (by oth tanding 4 o uplift at	se indicated. d bearing.) psf bottom other live load e load of 20. a rectangle ween the bott c.2. ers) of truss i 0 lb uplift at j joint 22, 48 ll	ads. Opsf om to joint b			Å	THE OF I	MISSOL
FORCES		mpression/Maximum			ift at joint 17, 50 lb 15 and 51 lb uplif			b			A	SCOT SEV	
TOP CHORD	1-2=-308/33, 2-3=- 4-5=-233/26, 5-6=-	281/28, 3-4=-257/27, 208/27, 6-7=-194/27, 166/39, 10-11=-156/6 -13=-46/36	Inte 68. R80	national 2.10.2 ar	designed in accor Residential Code nd referenced star Standard	sections	R502.11.1 a	and		>	R.	tt	Jon the
BOT CHORD	,	23=-117/89, 20-22=-11 -19=-117/89, -17=-117/89,	7/89,								A.	PE-2001	L ENGINE


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent toulsable personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

Job	Truss	Truss Type	Qty	Ply	Lot 166 HT	
B240067	V2	Valley	1	1	Job Reference (optional)	164780441

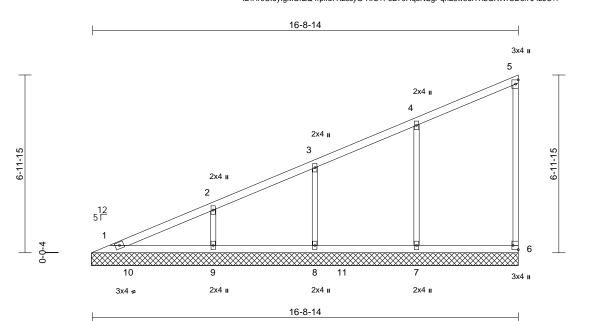
Run: 8.73 S Mar 21 2024 Print: 8.730 S Mar 21 2024 MiTek Industries, Inc. Tue Apr 09 09:18:05 ID:Hr0UloyIgMOrZQ4rpild7XzssyG-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:48.8

Plate Offsets (X, Y): [6:Edge,0-2-8]

	() [- 3-,]				-							
Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15	тс	0.51	Vert(LL)	n/a	-	n/a	999	MT20	197/144
TCDL	10.0	Lumber DOL	1.15	BC	0.27	Vert(TL)	n/a	-	n/a	999		
BCLL	0.0*	Rep Stress Incr	YES	WB	0.27	Horiz(TL)	0.00	6	n/a	n/a		
BCDL	10.0	Code	IRC2018/TPI2014	Matrix-S							Weight: 59 lb	FT = 10%
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SPF No.2 2x3 SPF No.2 2x3 SPF No.2 2x3 SPF No.2 2x3 SPF No.2 Structural wood she 6-0-0 oc purlins, ex Rigid ceiling directly bracing. (size) 1=18-8-14 8=18-8-14 Max Horiz 1=327 (LC Max Uplift 6=-38 (LC (LC 8), 9= Max Grav 1=255 (LC	athing directly applie cept end verticals. applied or 10-0-0 oc 4, 6=18-8-14, 7=18-8 4, 9=18-8-14 C 5) 5 5, 7=-110 (LC 8), 8 149 (LC 8)	5) This truss chord live 6) * This trus on the bott 3-06-00 ta chord and d or 7) All bearing 8) Provide m bearing pla 6, 110 lb u uplift at joi 9) This truss Internation R802.10.2 LOAD CASE(5)	has been designed load nonconcurrent o has been designe om chord in all are Il by 2-00-00 wide v any other members s are assumed to be echanical connectic ate capable of withs plift at joint 7, 74 lb tt 9. is designed in acco al Residential Code and referenced sta	t with any ed for a liv as where will fit betw s, with BC be SPF No bon (by oth standing 3 b uplift at jo brdance w e sections	other live loa e load of 20.0 a rectangle veen the botto DL = 10.0psf 5.2. ers) of truss t 8 lb uplift at j bint 8 and 145 ith the 2018 i R502.11.1 a	Opsf om oint Ə Ib				, riegn. or is	
FORCES	(lb) - Maximum Com Tension	pression/Maximum										
TOP CHORD												
BOT CHORD	6-7=-106/80	, ,									COLOR	alle
WEBS	4-7=-320/142, 3-8=-	223/122, 2-9=-421/2	09								F. OF	MISSO
Vasd=911 II; Exp C; cantilever right expc 2) Truss de only. For see Stand or consul 3) Gable red	CE 7-16; Vult=115mph mph; TCDL=6.0psf; BC Enclosed; MWFRS (er r left and right exposed osed; Lumber DOL=1.6 signed for wind loads ir s studs exposed to wind dard Industry Gable En- t qualified building desig quires continuous botton ids spaced at 4-0-0 oc.	DL=6.0psf; h=25ft; C nvelope) exterior zon ; end vertical left and 0 plate grip DDL=1.6 h the plane of the tru: l (normal to the face) d Details as applicab gner as per ANSI/TP	e; d SS ss le,							R	SCOT SEV SEV NUM PE-2001	T M. HER DIRROT



Job	Truss	Truss Type	Qty	Ply	Lot 166 HT	
B240067	V3	Valley	1	1	Job Reference (optional)	164780442

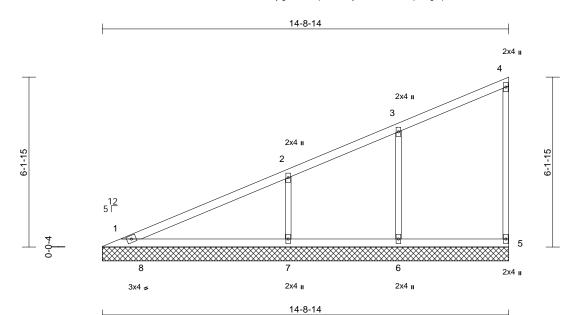
Run: 8.73 S Mar 21 2024 Print: 8.730 S Mar 21 2024 MiTek Industries, Inc. Tue Apr 09 09:18:05 ID:Hr0UloyIgMOrZQ4rpild7XzssyG-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:45.3

Plate Offsets (X, Y): [6:Edge,0-2-8]

Flate Olisets ((A, T). [0.Euge,0-2-0]												
Loading TCLL (roof) TCDL BCLL BCDL	(psf) 25.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018/TF	912014	CSI TC BC WB Matrix-S	0.39 0.16 0.19	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 6	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 52 lb	GRIP 197/144 FT = 10%
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SPF No.2 2x3 SPF No.2 2x3 SPF No.2 Structural wood she 6-0-0 oc purlins, ex Rigid ceiling directly bracing. (size) 1=16-9-8, 8=16-9-8, Max Horiz 1=290 (LC Max Uplift 6=-36 (LC (LC 8), 9= Max Grav 1=179 (LC	cept end verticals. applied or 10-0-0 oc 6=16-9-8, 7=16-9-8 9=16-9-8 2 5), 7=-106 (LC 8), 8 110 (LC 8)	ch 6) * - or 3- ch 6) 4 7) Al 8) Pr 5 6, 0 7) Al 8) Pr 6, 0 8) Pr 8 8 9) Tr 10 8 8 9 10 10 10 10 10 10 10 10 10 10	nord live loa This truss h in the bottom 06-00 tall b ord and an Il bearings a rovide mecle earing plate 106 lb upli plift at joint tis truss is ternational 802.10.2 ar	s been designed ad nonconcurrent has been designed n chord in all area y 2-00-00 wide w ny other members are assumed to b hanical connectio capable of withsi ft at joint 7, 90 lb 9. designed in accor Residential Code nd referenced star Standard	with any d for a liv as where rill fit betw , with BC e SPF N n (by oth tanding 3 uplift at j rdance w s sections	other live loa e load of 20.0 a rectangle veen the botto DL = 10.0psf 5.2. ers) of truss t 6 lb uplift at ju pint 8 and 110 ith the 2018 s R502.11.1 a	Opsf om oint O Ib					
FORCES	(lb) - Maximum Com Tension												
BOT CHORD	4-5=-133/59, 5-6=-1	09/43											
WEBS	6-7=-94/71 4-7=-310/142, 3-8=-		57									OF	A SIN
NOTES 1) Wind: AS(Vasd=91n II; Exp C; cantilever right expo 2) Truss des only. For see Stand or consult 3) Gable req	CE 7-16; Vult=115mph nph; TCDL=6.0psf; BC Enclosed; MWFRS (er left and right exposed sed; Lumber DOL=1.6 signed for wind loads ir studs exposed to wind lard Industry Gable En qualified building desi uires continuous bottoo ds spaced at 4-0-0 oc.	(3-second gust) DL=6.0psf; h=25ff; (nvelope) exterior zon ; end vertical left and 0 plate grip DOL=1.6 n the plane of the tru l (normal to the face) d Details as applicat gner as per ANSI/TF									CHIE OF J SCOT SEV PE-2001 PE-2001		


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent toulsable personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

RELEASE AS NOTE TRUCTION 'IEW DEVELOPMEN SERVICES LEE'S' SUMMIT'S MISSOURI 05/06/2024 4:15:40

Job	Truss	Truss Type	Qty	Ply	Lot 166 HT	
B240067	V4	Valley	1	1	Job Reference (optional)	164780443

Run: 8.73 S Mar 21 2024 Print: 8.730 S Mar 21 2024 MiTek Industries, Inc. Tue Apr 09 09:18:05 ID:Hr0UloyIgMOrZQ4rpild7XzssyG-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:41.8

	-												
Loading TCLL (roof) TCDL BCLL BCDL	(psf) 25.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC201	8/TPI2014	CSI TC BC WB Matrix-S	0.46 0.27 0.12	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 5	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 44 lb	GRIP 197/144 FT = 10%
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	 2x4 SPF No.2 2x4 SPF No.2 2x3 SPF No.2 2x3 SPF No.2 Structural wood sheat 6-0-0 oc purlins, exc Rigid ceiling directly bracing. 	athing directly applic cept end verticals. applied or 10-0-0 or 4, 5=14-8-14, 6=14-8 4 5), 6=-86 (LC 8), 7:	6 7 8 eed or c 9 8-14, L =-147	 * This truss ł on the bottor 3-06-00 tall ł chord and ar All bearings Provide mec bearing plate 5, 86 lb uplifi This truss is International 	has been designe n chord in all are by 2-00-00 wide v y other members are assumed to b hanical connection e capable of withs t at joint 6 and 14 designed in accor Residential Code nd referenced sta	as where will fit betw s, with BC be SPF No on (by oth standing 3 P Ib uplift ordance w e sections	a rectangle veen the botto DL = 10.0psl D.2 . ers) of truss t 44 lb uplift at j at joint 7. ith the 2018 5 R502.11.1 a	om f. to joint					
FORCES	6=369 (LC (lb) - Maximum Com Tension	C 2), 7=562 (LC 2) pression/Maximum											
TOP CHORD		55/37, 3-4=-123/49,											
BOT CHORD WEBS	1-7=-82/62, 6-7=-82/ 3-6=-258/122, 2-7=-4	,											
Vasd=91 II; Exp C; cantilever right expo 2) Truss de only. For see Stan- or consul 3) Gable red	SCE 7-16; Vult=115mph mph; TCDL=6.0psf; BCI ; Enclosed; MWFRS (en r left and right exposed i sosed; Lumber DOL=1.6(ssigned for wind loads in r studs exposed to wind dard Industry Gable Enc It qualified building desig quires continuous bottor uds spaced at 4-0-0 oc.	DL=6.0psf; h=25ft; (velope) exterior zor ; end vertical left an 0 plate grip DOL=1. h the plane of the tru (normal to the face) d Details as applicat gner as per ANSI/TF	ne; d 60 iss), ble,									STATE OF J SCOT SEV	en vier

5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

ONAL EN April 10,2024

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent touls be personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

Job	Truss	Truss Type	Qty	Ply	Lot 166 HT	
B240067	V5	Valley	1	1	Job Reference (optional)	164780444

2x4 🛛

2

12-8-14

Wheeler Lumber, Waverly, KS - 66871,

Scale = 1:38.3 Loading

TCLL (roof)

TCDI

BCLL

BCDL

WEBS

OTHERS

BRACING

TOP CHORD

BOT CHORD

FORCES

TOP CHORD

BOT CHORD

WEBS

NOTES

1)

2)

3)

4)

LUMBER

TOP CHORD

BOT CHORD

5-3-15

12 5 Г

Run: 8.73 S Mar 21 2024 Print: 8.730 S Mar 21 2024 MiTek Industries, Inc. Tue Apr 09 09:18:05 ID:Hr0UloyIgMOrZQ4rpild7XzssyG-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

> 2x4 II 3

2x4 II 4

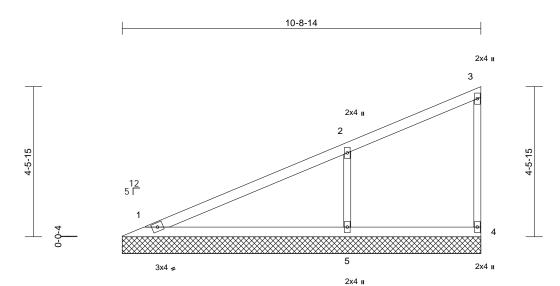
15

3

5 ę 8 7 6 9 2x4 II 2x4 🛛 2x4 🛛 3x4 🚽 12-8-14 Spacing 2-0-0 CSI DEFL l/defl L/d PLATES GRIP (psf) in (loc) 25.0 Plate Grip DOL 1.15 TC 0.22 Vert(LL) n/a 999 MT20 197/144 n/a 10.0 Lumber DOL 1 15 BC 0.14 Vert(TL) n/a n/a 999 0.0* Rep Stress Incr YES WB 0.09 Horiz(TL) 0.00 5 n/a n/a 10.0 Code IRC2018/TPI2014 Matrix-S Weight: 37 lb FT = 10% * This truss has been designed for a live load of 20.0psf 6) 2x4 SPF No.2 on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom 2x4 SPF No.2 chord and any other members, with BCDL = 10.0psf. 2x3 SPF No.2 All bearings are assumed to be SPF No.2 2x3 SPF No.2 Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 30 lb uplift at joint Structural wood sheathing directly applied or 5, 101 lb uplift at joint 6 and 107 lb uplift at joint 7. 6-0-0 oc purlins, except end verticals. This truss is designed in accordance with the 2018 9) Rigid ceiling directly applied or 10-0-0 oc International Residential Code sections R502.11.1 and bracing. R802.10.2 and referenced standard ANSI/TPI 1. **REACTIONS** (size) 1=12-8-14, 5=12-8-14, 6=12-8-14, LOAD CASE(S) Standard 7=12-8-14 Max Horiz 1=218 (LC 5) Max Uplift 5=-30 (LC 5), 6=-101 (LC 8), 7=-107 (LC 8) Max Grav 1=166 (LC 16), 5=173 (LC 2), 6=413 (LC 2), 7=408 (LC 2) (lb) - Maximum Compression/Maximum Tension 1-2=-176/59, 2-3=-137/49, 3-4=-117/42, 4-5=-111/44 1-7=-70/53, 6-7=-70/53, 5-6=-70/53 3-6=-299/145, 2-7=-305/156 Wind: ASCE 7-16; Vult=115mph (3-second gust) OF MISSO Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed ; end vertical left and SCOTT M. right exposed; Lumber DOL=1.60 plate grip DOL=1.60 SEVIER Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable or consult qualified building designer as per ANSI/TPI 1. Gable requires continuous bottom chord bearing. Gable studs spaced at 4-0-0 oc. PE-200101880

5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

E


April 10,2024

SIONAL

Job	Truss	Truss Type	Qty	Ply	Lot 166 HT	
B240067	V6	Valley	1	1	Job Reference (optional)	164780445

Run: 8.73 S Mar 21 2024 Print: 8.730 S Mar 21 2024 MiTek Industries. Inc. Tue Apr 09 09:18:05 ID:Hr0UloyIgMOrZQ4rpild7XzssyG-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale	_	1.3/	5

oading	(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
CLL (roof)	25.0	Plate Grip DOL	1.15		тс	0.46	Vert(LL)	n/a	-	n/a	999	MT20	197/144
CDL	10.0	Lumber DOL	1.15		BC	0.25	Vert(TL)	n/a	-	n/a	999		
BCLL	0.0*	Rep Stress Incr	YES		WB	0.10	Horiz(TL)	0.00	4	n/a	n/a		
BCDL	10.0	Code	IRC201	8/TPI2014	Matrix-S							Weight: 30 lb	FT = 10%
OP CHORD 30T CHORD VEBS DTHERS BRACING OP CHORD 30T CHORD	2x4 SPF No.2 2x3 SPF No.2 2x3 SPF No.2 Structural wood shee 6-0-0 oc purlins, exe Rigid ceiling directly bracing.	cept end verticals.	LC	bearing plat 23 lb uplift a This truss is Internationa	chanical connect e capable of wit t joint 4 and 152 designed in act I Residential Co nd referenced s Standard	hstanding 5 I lb uplift at cordance w de sections	b uplift at jo joint 5. ith the 2018 R502.11.1 a	pint 1,					

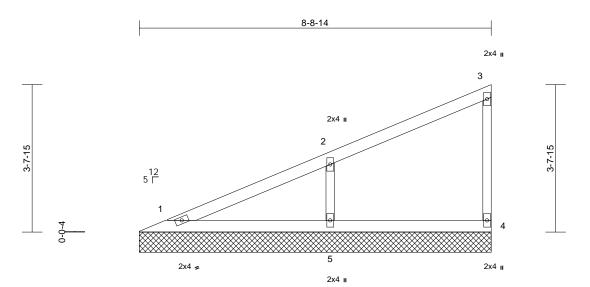
10-8-14

	bracing.	
REACTIONS	(size)	1=10-8-14, 4=10-8-14, 5=10-8-14
	Max Horiz	1=181 (LC 5)
	Max Uplift	1=-5 (LC 8), 4=-23 (LC 5), 5=-154
		(LC 8)
	Max Grav	1=220 (LC 1), 4=95 (LC 1), 5=579
		(LC 1)
FORCES	(lb) - Max	imum Compression/Maximum
	Tension	

	Tension
TOP CHORD	1-2=-138/92, 2-3=-114/36, 3-4=-78/34
BOT CHORD	1-5=-59/45, 4-5=-59/45
WEBS	2-5=-436/213

NOTES

- Wind: ASCE 7-16; Vult=115mph (3-second gust) 1) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
- 2) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1. Gable requires continuous bottom chord bearing.
- 3) Gable studs spaced at 4-0-0 oc. 4)
- This truss has been designed for a 10.0 psf bottom 5)
- chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf 6) on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not beigh valid for use only with with with sets outputs into design is based only door parameters shown, and is for an individual dualing component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria**, and **DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcscomponents.com)

TION DEVELORMENT SERVICES LEE'S'SUMMIT'SMISSOURI 05/06/2024 4:15:40

Job	Truss	Truss Type	Qty	Ply	Lot 166 HT	
B240067	V7	Valley	1	1	Job Reference (optional)	164780446

Run: 8.73 S Mar 21 2024 Print: 8.730 S Mar 21 2024 MiTek Industries. Inc. Tue Apr 09 09:18:05 ID:Hr0UloyIgMOrZQ4rpild7XzssyG-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Scale	=	1:28.6
ocale	_	1.20.0

Loading

TCDL

BCLL

BCDL

TCLL (roof)

Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl
Plate Grip DOL	1.15	TC	0.25	Vert(LL)	n/a	-	n/a
Lumber DOL	1.15	BC	0.13	Vert(TL)	n/a	-	n/a
Rep Stress Incr	YES	WB	0.07	Horiz(TL)	0.00	4	n/a
Code	IRC2018/TPI2014	Matrix-P					

8-8-14

LUMBER
TOP CHORD
BOT CHORD

BOT CHORD	2x4 SPF I	N0.2
WEBS	2x3 SPF I	No.2
OTHERS	2x3 SPF I	No.2
BRACING		
TOP CHORD	Structura	wood sheathing directly applied or
	6-0-0 oc p	ourlins, except end verticals.
BOT CHORD	Rigid ceil	ing directly applied or 10-0-0 oc
	bracing.	
REACTIONS	(size)	1=8-8-14, 4=8-8-14, 5=8-8-14
	Max Horiz	1=145 (LC 5)
	Max Uplift	4=-23 (LC 5), 5=-119 (LC 8)
	Max Grav	1=138 (LC 1), 4=130 (LC 1), 5=446
		(LC 1)

(psf)

25.0

10.0

0.0*

10.0

2x4 SPF No.2

FORCES (lb) - Maximum Compression/Maximum Tension

TOP CHORD 1-2=-114/68, 2-3=-100/28, 3-4=-101/40 BOT CHORD 1-5=-47/36, 4-5=-47/36 2-5=-347/178 WEBS

NOTES

- 1) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
- Truss designed for wind loads in the plane of the truss 2) only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- Gable requires continuous bottom chord bearing. 3)
- Gable studs spaced at 4-0-0 oc. 4)
- This truss has been designed for a 10.0 psf bottom 5) chord live load nonconcurrent with any other live loads. 6)
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- All bearings are assumed to be SPF No.2 . 7)

8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 23 lb uplift at joint 4 and 119 lb uplift at joint 5.

This truss is designed in accordance with the 2018 9) International Residential Code sections R502.11.1 and

R802.10.2 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard

L/d

999 n/a

n/a 999

n/a n/a PLATES

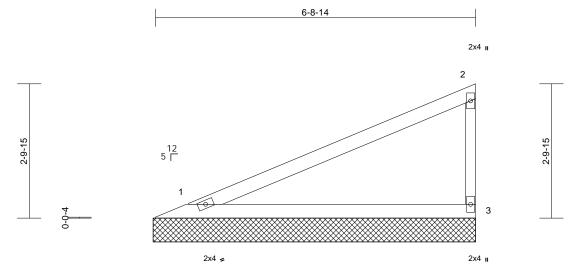
Weight: 24 lb

MT20

GRIP

197/144

FT = 10%


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITEk® connectors. This design is based only upon parameters shown, and is for an individual building component, not and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponent.com)

Job	Truss	Truss Type	Qty	Ply	Lot 166 HT	
B240067	V8	Valley	1	1	Job Reference (optional)	164780447

Run: 8.73 S Mar 21 2024 Print: 8.730 S Mar 21 2024 MiTek Industries, Inc. Tue Apr 09 09:18:06 ID:Hr0UloyIgMOrZQ4rpild7XzssyG-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

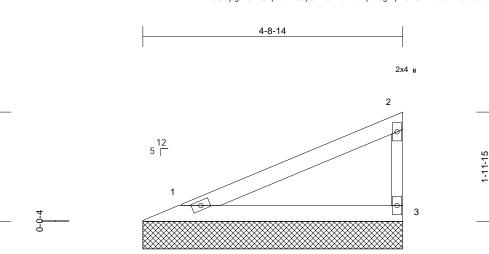
Page: 1

6-8-14

					6-8-14							
Scale = 1:24.3			1									
Loading TCLL (roof) TCDL	(psf) 25.0 10.0	Spacing Plate Grip DOL Lumber DOL	2-0-0 1.15 1.15	CSI TC BC	0.70 0.38	DEFL Vert(LL) Vert(TL)	in n/a n/a	(loc) - -	l/defl n/a n/a	L/d 999 999	PLATES MT20	GRIP 197/144
BCLL BCDL	0.0* 10.0	Rep Stress Incr Code	YES IRC2018/TPI2014	WB Matrix-P	0.00	Horiz(TL)	0.00	3	n/a	n/a	Weight: 17 lb	FT = 10%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD	2x4 SPF No.2 2x3 SPF No.2 Structural wood she 6-9-8 oc purlins, ex Rigid ceiling directly	cept end verticals.	Internationa R802.10.2 a LOAD CASE(S) d or	designed in accord Residential Code s nd referenced stand Standard	sections	R502.11.1 a	nd					
	bracing. (size) 1=6-9-8, 3 Max Horiz 1=108 (L0 Max Uplift 1=-39 (L0 Max Grav 1=267 (L0 (lb) - Maximum Com	C 5) 8), 3=-61 (LC 8) C 1), 3=267 (LC 1)										
TOP CHORD BOT CHORD	Tension 1-2=-97/64, 2-3=-20	8/96										
NOTES	1-3=-33/27											
1) Wind: ASC Vasd=91m II; Exp C; E cantilever I right expos	E 7-16; Vult=115mph ph; TCDL=6.0psf; BC nclosed; MWFRS (er eft and right exposed ed; Lumber DOL=1.6	DL=6.0psf; h=25ft; C ivelope) exterior zono ; end vertical left and 0 plate grip DOL=1.6	e; I O									
only. For s	gned for wind loads in tuds exposed to wind ard Industry Gable En- qualified building desig	(normal to the face), d Details as applicab	le,								THE OF M	MISSO
 Gable required Gable stud This truss I 	ires continuous botto s spaced at 4-0-0 oc. has been designed for	n chord bearing. a 10.0 psf bottom							1	A A	ST SCOT	M. YE Y
6) * This truss on the both 3-06-00 tal chord and	oad nonconcurrent wi has been designed f om chord in all areas I by 2-00-00 wide will any other members.	or a live load of 20.0 where a rectangle fit between the botton	osf							No.	PE-2001	018807
8) Provide me bearing pla	s are assumed to be s echanical connection (ite capable of withstar ouplift at joint 3.	by others) of truss to								Y	ESSIONA	L ENGLAS

April 10,2024

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent toulsible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)



Job	Truss	Truss Type	Qty	Ply	Lot 166 HT	
B240067	V9	Valley	1	1	Job Reference (optional)	164780448

1-11-15

Run: 8.73 S Mar 21 2024 Print: 8.730 S Mar 21 2024 MiTek Industries, Inc. Tue Apr 09 09:18:06 ID:Hr0UloyIgMOrZQ4rpild7XzssyG-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC?f

Page: 1

4-8-14

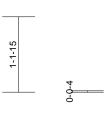
2x4 🚅

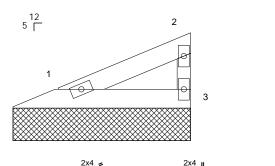
2x4 🛛

Scale		1.01
Scale	=	1:21

Scale = 1:21												
Loading TCLL (roof) TCDL BCLL BCDL	(psf) 25.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018/TPI2014	CSI TC BC WB Matrix-P	0.29 0.16 0.00	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 3	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 12 lb	GRIP 197/144 FT = 10%
BCDL LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD REACTIONS FORCES TOP CHORD BOT CHORD BOT CHORD BOT CHORD NOTES 1) Wind: ASC Vasd=91m II; Exp C; f cantilever right expos 2) Truss des only. For see Stand or consult 3) Gable requ 4) Gable stuc 5) This truss chord live	10.0 2x4 SPF No.2 2x4 SPF No.2 2x3 SPF No.2 Structural wood shee 4-9-8 oc purlins, exx Rigid ceiling directly bracing. (size) 1=4-8-14, Max Horiz 1=72 (LC Max Grav 1=77 (LC (lb) - Maximum Com Tension 1-2=-64/43, 2-3=-13 1-3=-23/18 CE 7-16; Vult=115mph hph; TCDL=6.0psf; BC Enclosed; MWFRS (er left and right exposed sed; Lumber DOL=1.6 signed for wind loads ir studs exposed to wind ard Industry Gable En- qualified building design uires continuous bottor bas been designed for.	Code athing directly applie cept end verticals. applied or 10-0-0 oc 3=4-8-14 5) c 1), 3=-40 (LC 8) C 1), 3=177 (LC 1) pression/Maximum 8/64 (3-second gust) DL=6.0psf; h=25ft; C twelope) exterior zon ; end vertical left and 0 plate grip DOL=1.6 n the plane of the trus (normal to the face) d Details as applicab gner as per ANSI/TP m chord bearing. r a 10.0 psf bottom th any other live load	IRC2018/TPI2014 9) This truss is Internationa R802.10.2 a LOAD CASE(S) d or at. e; 1 0 ss ie, 11.	Matrix-P designed in accord I Residential Code s nd referenced stand	lance w	ith the 2018 R502.11.1 a		3	n/a	n/a	Weight: 12 lb	MISSOUR T M.
on the bott 3-06-00 tal chord and 7) All bearing 8) Provide mo bearing pla	s has been designed f tom chord in all areas i ll by 2-00-00 wide will any other members. gs are assumed to be S echanical connection (ate capable of withstar b uplift at joint 3.	where a rectangle fit between the botto SPF No.2 . (by others) of truss to	m						-	A A A A A A A A A A A A A A A A A A A	PE-2001	018807

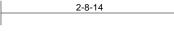
WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent onlapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)




Job	Truss	Truss Type	Qty	Ply	Lot 166 HT	
B240067	V10	Valley	1	1	Job Reference (optional)	164780449

Run: 8.73 S Mar 21 2024 Print: 8.730 S Mar 21 2024 MiTek Industries. Inc. Tue Apr 09 09:18:06 ID:Hr0UloyIgMOrZQ4rpild7XzssyG-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

2x4 II


Page: 1

1-1-15

2-8-14

ecale - IIIIIo												
Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15	TC	0.06	Vert(LL)	n/a	-	n/a	999	MT20	197/144
TCDL	10.0	Lumber DOL	1.15	BC	0.03	Vert(TL)	n/a	-	n/a	999		
BCLL	0.0*	Rep Stress Incr	YES	WB	0.00	Horiz(TL)	0.00	3	n/a	n/a		
BCDL	10.0	Code	IRC2018/TPI2014	Matrix-P							Weight: 6 lb	FT = 10%

International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

9) This truss is designed in accordance with the 2018

LOAD CASE(S) Standard

LUMBER	
	2v4 SDE No 2

Scale - 1.17 8

TOP CHORD	284 325 1	N0.Z
BOT CHORD	2x4 SPF I	No.2
WEBS	2x3 SPF I	No.2
BRACING		
TOP CHORD	Structural	wood sheathing directly applied or
	2-9-8 oc p	ourlins, except end verticals.
BOT CHORD	Rigid ceili	ng directly applied or 10-0-0 oc
	bracing.	
REACTIONS	(size)	1=2-8-14, 3=2-8-14
	Max Horiz	1=36 (LC 5)
	Max Uplift	1=-13 (LC 8), 3=-20 (LC 8)
	Max Grav	1=87 (LC 1), 3=87 (LC 1)
FORCES	(lb) - Max	imum Compression/Maximum
	Tension	-

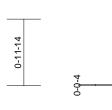
TOP CHORD 1-2=-32/21, 2-3=-68/31 BOT CHORD 1-3=-12/9

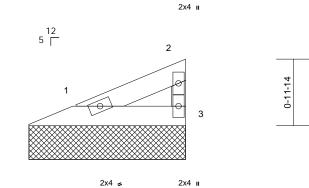
NOTES

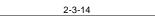
- Wind: ASCE 7-16; Vult=115mph (3-second gust) 1) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
- 2) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable or consult qualified building designer as per ANSI/TPI 1.
- Gable requires continuous bottom chord bearing. 3)
- Gable studs spaced at 4-0-0 oc. 4)
- 5) This truss has been designed for a 10.0 psf bottom
- chord live load nonconcurrent with any other live loads. * This truss has been designed for a live load of 20.0psf 6) on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom
- chord and any other members.

All bearings are assumed to be SPF No.2 . 7)

Provide mechanical connection (by others) of truss to 8) bearing plate capable of withstanding 13 lb uplift at joint 1 and 20 lb uplift at joint 3.


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not beigh valid for use only with with with sets outputs into design is based only door parameters shown, and is for an individual dualing component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria**, and **DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcscomponents.com)




Job	Truss	Truss Type	Qty	Ply	Lot 166 HT	
B240067	V11	Valley	1	1	Job Reference (optional)	164780450

Run: 8.73 S Mar 21 2024 Print: 8.730 S Mar 21 2024 MiTek Industries, Inc. Tue Apr 09 09:18:06 ID:Hr0UloyIgMOrZQ4rpild7XzssyG-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

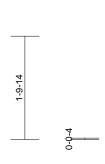
Page: 1

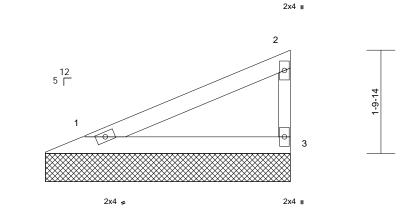
2-3-14

Scale =	1:17.1
---------	--------

Scale = 1:17.1										
TCLL (roof) 25.0 TCDL 10.0 BCLL 0.0*	Spacing2-0-0Plate Grip DOL1.15Lumber DOL1.15Rep Stress IncrYESCodeIRC2018/	CSI TC BC WB Matrix-P	0.04 0.02 0.00	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 3	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 5 lb	GRIP 197/144 FT = 10%
LUMBER TOP CHORD 2x4 SPF No.2 BOT CHORD 2x4 SPF No.2 WEBS 2x3 SPF No.2 BRACING	9) LO/ thing directly applied or ept end verticals. applied or 10-0-0 oc 3=2-3-14 b) 8), 3=-16 (LC 8)), 3=68 (LC 1) ression/Maximum 25 3-second gust) bL=6.0psf; h=25ft; Cat. relope) exterior zone; end vertical left and plate grip DOL=1.60 the plane of the truss inormal to the face), Details as applicable, ner as per ANSI/TPI 1. a chord bearing. a 10.0 psf bottom n any other live loads. r a live load of 20.0psf where a rectangle t between the bottom PF No.2. by others) of truss to	Image: Piezona de la constructional Residential Code R802.10.2 and referenced star D CASE(S)	sections	R502.11.1 a	nd				STATE OF SCOT	MISSOUT T M. IER 018807

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent toulsable personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)


Job	Truss	Truss Type	Qty	Ply	Lot 166 HT	
B240067	V12	Valley	1	1	Job Reference (optional)	164780451


4-3-14

Wheeler Lumber, Waverly, KS - 66871,

Run: 8.73 S Mar 21 2024 Print: 8.730 S Mar 21 2024 MiTek Industries, Inc. Tue Apr 09 09:18:06 ID:Hr0UloyIgMOrZQ4rpild7XzssyG-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Scale = 1.20.3	

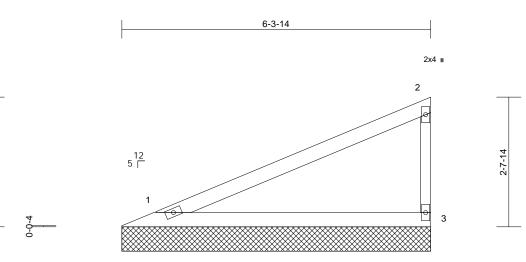
4-3-14	

Loading TCLL (roof) (psf) Spacing 25.0 Spacing Plate Grip DOL 2.0.0 CSI TC DEFL Vert(LL) in (loc) I/defl L/d PLATES MT20 GRIP TCDL 10.0 10.0 Lumber DOL 1.15 BC 0.12 Vert(LL) n/a - n/a 999 MT20 197/144 BCLL 0.0* Rep Stress Incr YES WB 0.00 A n/a n/a 999 Mizo 197/144 BCDL 10.0 Code IRC2018/TPI2014 Matrix-P WB 0.00 3 n/a n/a 999 Weight: 10 lb FT = 10% LUMBER TOP CHORD 2x4 SPF No.2 SP No.2 9) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. LOAD CASE(S) Standard BRACING BCH CHORD Structural wood sheathing directly applied or 4-4-8 oc pulrins, except end verticals. BOT CHORD Structural wood sheathing directly applied or 10-0-0 oc bracing. Structural wood sheathing directly applied or 10-0-0 oc bracing. Structural wood sheathing direc
TCDL 10.0 Lumber DOL 1.15 BC 0.12 Vert(TL) n/a - n/a 999 BCLL 0.0* Rep Stress Incr YES WB 0.00 Matrix-P Weight: 10 lb FT = 10% LUMBER 0.0 2x4 SPF No.2 9) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. Verticit 1.1 and R802.10.2 and referenced standard ANSI/TPI 1. Verticit 1.1 and R802.10.2 and referenced standard ANSI/TPI 1. BRACING BRACING Structural wood sheathing directly applied or 4-4-8 oc purlins, except end verticals. Standard BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing. Standard
BCLL BCDL 0.0* 10.0 Rep Stress Incr Code YES IRC2018/TPI2014 WB Matrix-P 0.00 Matrix-P Horiz(TL) 0.00 3 n/a Weight: 10 lb FT = 10% LUMBER TOP CHORD DC CHORD 2x4 SPF No.2 BOT CHORD 2x3 SPF No.2 9) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. Veight: 10 lb FT = 10% BRACING BRACING TOP CHORD TOP CHORD Structural wood sheathing directly applied or 4-4-8 oc purlins, except end verticals. LOAD CASE(S) Standard BOT CHORD 4-4-8 oc purlins, except end verticals. Structural wood sheathing directly applied or 4-4-8 oc purlins, except end verticals. FT = 10% BOT CHORD bracing. Structural wood sheathing directly applied or 10-0-0 oc bracing. Structural wood sheathing directly applied or 10-0-0 oc bracing. FT = 10%
BCDL 10.0 Code IRC2018/TPI2014 Matrix-P Weight: 10 lb FT = 10% LUMBER TOP CHORD 2x4 SPF No.2 9) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. 9) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. WEBS 2x3 SPF No.2 LOAD CASE(S) Standard BRACING TOP CHORD Structural wood sheathing directly applied or 4-4-8 oc purlins, except end verticals. FT FT BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing. FT FT
LUMBER 9) This truss is designed in accordance with the 2018 TOP CHORD 2x4 SPF No.2 BOT CHORD 2x3 SPF No.2 BOT CHORD LOAD CASE(S) Structural wood sheathing directly applied or 4-4-8 oc purlins, except end verticals. BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing.
TOP CHORD 2x4 SPF No.2 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. BOT CHORD 2x4 SPF No.2 LOAD CASE(S) Standard LOAD CASE(S) Standard Standard BRACING Structural wood sheathing directly applied or 4-4-8 oc purlins, except end verticals. BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing.
TOP CHORD 2x4 SPF No.2 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. BOT CHORD 2x4 SPF No.2 LOAD CASE(S) Standard LOAD CASE(S) Standard Standard BRACING Structural wood sheathing directly applied or 4-4-8 oc purlins, except end verticals. BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing.
BOT CHORD 2x4 SPF No.2 R802.10.2 and referenced standard ANSI/TPI 1. WEBS 2x3 SPF No.2 LOAD CASE(S) Standard BRACING TOP CHORD Structural wood sheathing directly applied or 10-0 oc bracing. Structural wood sheathing directly applied or 10-0 oc bracing. Standard
WEBS 2x3 SPF No.2 LOAD CASE(S) Standard BRACING TOP CHORD Structural wood sheathing directly applied or 4-4-8 oc purlins, except end verticals. Structural wood sheathing directly applied or 6-4-8 oc purlins, except end verticals. Structural wood sheathing directly applied or 8 directly applied or 10-0 oc bracing.
BRACING TOP CHORD Structural wood sheathing directly applied or 4-4-8 oc purlins, except end verticals. BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing.
TOP CHORD Structural wood sheathing directly applied or 4-4-8 oc purlins, except end verticals. BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing.
4-4-8 oc purlins, except end verticals. BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing.
BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing.
bracing.
REACTIONS (size) 1=4-3-14, 3=4-3-14
Max Horiz 1=64 (LC 5)
Max Uplift 1=-23 (LC 8), 3=-36 (LC 8)
Max Grav 1=158 (LC 1), 3=158 (LC 1)
FORCES (Ib) - Maximum Compression/Maximum
Tension
TOP CHORD 1-2=-58/38, 2-3=-123/57
BOT CHORD 1-3=-21/16
NOTES
1) Wind: ASCE 7-16; Vult=115mph (3-second gust)
Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat.
II; Exp C; Enclosed; MWFRS (envelope) exterior zone;
cantilever left and right exposed; end vertical left and
right exposed; Lumber DOL=1.60 plate grip DOL=1.60
 Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face),
only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1. 3) Gable requires continuous bottom chord bearing.
or consult qualified building designer as per ANSI/TPI 1.
3) Gable requires continuous bottom chord bearing.
Gala Stude Stude Spaced at 4-0-0 oc.
5) This truss has been designed for a 10.0 psf bottom
chord live load nonconcurrent with any other live loads.
6) * This truss has been designed for a live load of 20.0psf
on the bottom chord in all areas where a rectangle
3-06-00 tall by 2-00-00 wide will fit between the bottom
3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members. 7) All bearings are assumed to be SPF No.2.
7) All bearings are assumed to be SPF No.2.
8) Provide mechanical connection (by others) of truss to
 7) All bearings are assumed to be SPF No.2. 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 23 lb uplift at joint 1 and 36 lb uplift at joint 3.

1 and 36 lb uplift at joint 3.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

Conne


April 10,2024

Job	Truss	Truss Type	Qty	Ply	Lot 166 HT	
B240067	V13	Valley	1	1	Job Reference (optional)	164780452

Run: 8.73 S Mar 21 2024 Print: 8.730 S Mar 21 2024 MiTek Industries. Inc. Tue Apr 09 09:18:06 ID:Hr0UloyIgMOrZQ4rpild7XzssyG-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

2x4 II

Page: 1

2x4 🚅

LOAD CASE(S) Standard

6-3-14	

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15	тс	0.60	Vert(LL)	n/a	-	n/a	999	MT20	197/144
TCDL	10.0	Lumber DOL	1.15	BC	0.32	Vert(TL)	n/a	-	n/a	999		
BCLL	0.0*	Rep Stress Incr	YES	WB	0.00	Horiz(TL)	0.00	3	n/a	n/a		
BCDL	10.0	Code	IRC2018/TPI2014	Matrix-P							Weight: 16 lb	FT = 10%

International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

9) This truss is designed in accordance with the 2018

L	U	Μ	В	Е	R

TOP CHORD	2x4 SPF I	No.2
BOT CHORD	2x4 SPF I	No.2
WEBS	2x3 SPF I	No.2
BRACING		
TOP CHORD		wood sheathing directly applied or purlins, except end verticals.
BOT CHORD		ing directly applied or 10-0-0 oc
REACTIONS	(size)	1=6-3-14, 3=6-3-14
	Max Horiz	1=101 (LC 5)
	Max Uplift	1=-36 (LC 8), 3=-56 (LC 8)
	Max Grav	1=248 (LC 1), 3=248 (LC 1)

2-7-14

FORCES (lb) - Maximum Compression/Maximum Tension TOP CHORD 1-2=-90/60, 2-3=-193/90 BOT CHORD 1-3=-33/25

NOTES

- Wind: ASCE 7-16; Vult=115mph (3-second gust) 1) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
- 2) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable or consult qualified building designer as per ANSI/TPI 1.
- Gable requires continuous bottom chord bearing. 3) 4)
- Gable studs spaced at 4-0-0 oc.
- 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf 6) on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom

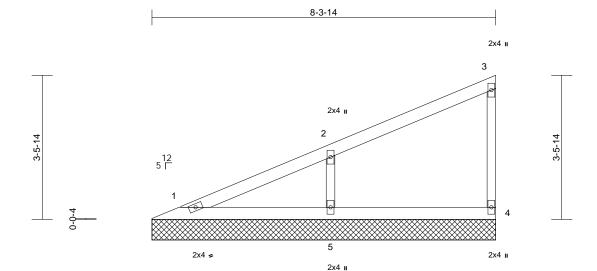
chord and any other members.

All bearings are assumed to be SPF No.2 . 7) 8)

Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 36 lb uplift at joint 1 and 56 lb uplift at joint 3.

OF MISS SCOTT M. SEVIER NITA PE-200101880 ONAL F

April 10,2024



Job	Truss	Truss Type	Qty	Ply	Lot 166 HT	
B240067	V14	Valley	1	1	Job Reference (optional)	164780453

Run: 8.73 S Mar 21 2024 Print: 8.730 S Mar 21 2024 MiTek Industries, Inc. Tue Apr 09 09:18:06 ID:Hr0UloyIgMOrZQ4rpild7XzssyG-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

.10.00 i

8-3-14

Scale = 1:27.9

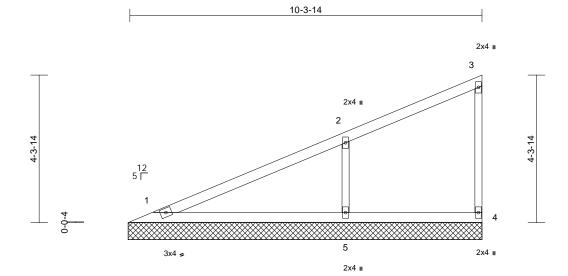
Loading	(psf)	Spacing	2-0-0	csi		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15	TC	0.23	Vert(LL)	n/a	-	n/a	999	MT20	197/144
TCDL	10.0	Lumber DOL	1.15	BC	0.12	Vert(TL)	n/a	-	n/a	999		
BCLL	0.0*	Rep Stress Incr	YES	WB	0.06	Horiz(TL)	0.00	4	n/a	n/a		
BCDL	10.0	Code	IRC2018/TP	I2014 Matrix-P							Weight: 22 lb	FT = 10%
LUMBER			8) Pr	ovide mechanical connect	tion (by oth	ers) of truss to	0					
TOP CHORD	2x4 SPF No.2		be	aring plate capable of with	hstanding 2	3 lb uplift at j	oint					
BOT CHORD	2x4 SPF No.2			and 112 lb uplift at joint 5.								
WEBS	2x3 SPF No.2			is truss is designed in acc								
OTHERS	2x3 SPF No.2			ernational Residential Co			nd					
BRACING				802.10.2 and referenced s	tandard AN	ISI/TPI 1.						
TOP CHORD	Structural wood she		ed or LOAD	CASE(S) Standard								
BOT CHORD	6-0-0 oc purlins, ex Rigid ceiling directly		-									
BUICHORD	bracing.	applied of 10-0-0 o	iC									
REACTIONS	0	, 4=8-3-14, 5=8-3-14	4									
	Max Horiz 1=137 (LO											
	Max Uplift 4=-23 (LC	C 8), 5=-112 (LC 8)										
	Max Grav 1=119 (L0	C 1), 4=135 (LC 1),	5=423									
	(LC 1)											
FORCES	(lb) - Maximum Corr	pression/Maximum										
	Tension											
TOP CHORD	1-2=-109/62, 2-3=-9	,										
BOT CHORD	1-5=-45/34, 4-5=-45	/34										
WEBS	2-5=-329/169											
NOTES		(C) ()										
	CE 7-16; Vult=115mph		0-1									
	nph; TCDL=6.0psf; BC Enclosed; MWFRS (er											
	left and right exposed											alle
	sed; Lumber DOL=1.6										OF	MIGON
	signed for wind loads in									1	TE	-0.0 M
only. For	studs exposed to wind	I (normal to the face	e),							A	AV COOT	New Y
	lard Industry Gable En									A	STATE OF SCOT	IM. YY
	qualified building desi		PI 1.							И.	SEV	
	uires continuous botto									81		
,	ds spaced at 4-0-0 oc.									X		
This truss	has been designed fo	r a 10.0 pst bottom										LYAN INUM /

- 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
 6) * This truss has been designed for a live load of 20.0psf
- This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- 7) All bearings are assumed to be SPF No.2 .

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com) April 10,2024

NUMBER

PE-2001018807


0

Job	Truss	Truss Type	Qty	Ply	Lot 166 HT	
B240067	V15	Valley	1	1	Job Reference (optional)	164780454

Run: 8.73 S Mar 21 2024 Print: 8.730 S Mar 21 2024 MiTek Industries, Inc. Tue Apr 09 09:18:06 ID:Hr0UloyIgMOrZQ4rpild7XzssyG-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

Ра

10-3-14

Scale = 1:33.8

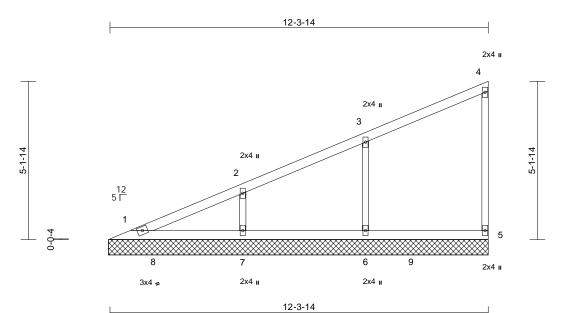
Loading TCLL (roof) TCDL BCLL BCDL	(psf) 25.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC201	8/TPI2014	CSI TC BC WB Matrix-S	0.40 0.21 0.09	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 4	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 28 lb	GRIP 197/144 FT = 10%
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SPF No.2 2x3 SPF No.2 2x3 SPF No.2 Structural wood she 6-0-0 oc purlins, ex Rigid ceiling directly bracing. (size) 1=10-4-8, Max Horiz 1=174 (LC Max Uplift 1=-3 (LC (LC 8)	v applied or 10-0-0 oc , 4=10-4-8, 5=10-4-8 C 5)	L 145	 Provide mec bearing plate 23 lb uplift at This truss is International 	hanical conne capable of w joint 4 and 1 designed in a Residential C nd referenced	ection (by oth vithstanding 3 45 lb uplift at	ers) of truss Ib uplift at jo joint 5. th the 2018 R502.11.1	oint 1,					
FORCES TOP CHORD BOT CHORD	(lb) - Maximum Com Tension 1-2=-133/85, 2-3=-1 1-5=-56/43, 4-5=-56	11/34, 3-4=-85/35											

WEBS NOTES

 Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed; end vertical left and

2-5=-413/202

- right exposed; Lumber DOL=1.60 plate grip DOL=1.60
 2) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 3) Gable requires continuous bottom chord bearing.
- 4) Gable studs spaced at 4-0-0 oc.
- 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 6) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.



WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPH Claulity Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com) RELEASE OR CONSTRUCTION AS NOTED ON PLANS REVIEW DEVELORMAN SERVICES LEESSOMMENTSMISSOURI 05/06/2024 4:15:41

Job	Truss	Truss Type	Qty	Ply	Lot 166 HT	
B240067	V16	Valley	1	1	Job Reference (optional)	164780455

Run: 8.73 S Mar 21 2024 Print: 8.730 S Mar 21 2024 MiTek Industries, Inc. Tue Apr 09 09:18:06 ID:Hr0UloyIgMOrZQ4rpild7XzssyG-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:37.5

00010 - 1.07.0													
Loading TCLL (roof) TCDL BCLL	(psf) 25.0 10.0 0.0*	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr	2-0-0 1.15 1.15 YES		CSI TC BC WB	0.20 0.13 0.09	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 5	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20	GRIP 197/144
BCDL	10.0	Code	IRC201	8/TPI2014	Matrix-S							Weight: 36 lb	FT = 10%
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SPF No.2 2x4 SPF No.2 2x3 SPF No.2 2x3 SPF No.2 Structural wood she 6-0-0 oc purlins, ex Rigid ceiling directly bracing.	eathing directly applie cept end verticals. / applied or 10-0-0 or , 5=12-4-8, 6=12-4-8 C 5) C 5), 6=-103 (LC 8), C 8)	6 7 8 ed or c 9 3, L	 * This truss I on the bottoo 3-06-00 tall I chord and at All bearings Provide mee bearing platt 5, 103 lb upi This truss is International 	has been design m chord in all arr by 2-00-00 wide ny other membe are assumed to chanical connect e capable of with ift at joint 6 and designed in acc Residential Coo nd referenced st	eas where will fit betw rs, with BC be SPF No ion (by oth standing 2 100 lb uplif ordance wi de sections	a rectangle veen the botto DL = 10.0pst o.2. ers) of truss t 9 lb uplift at j t at joint 7. ith the 2018 R502.11.1 a	om f. to joint					
FORCES	6=415 (L0 (lb) - Maximum Com	C 2), 7=382 (LC 2) npression/Maximum											
TOP CHORD	Tension 1-2=-172/54, 2-3=-1 4-5=-110/43	34/51, 3-4=-116/40,											
BOT CHORD WEBS	1-7=-68/51, 6-7=-68 3-6=-304/148, 2-7=-	,											
Vasd=91m II; Exp C; I cantilever right expos	CE 7-16; Vult=115mph nph; TCDL=6.0psf; BC Enclosed; MWFRS (ei left and right exposed sed; Lumber DOL=1.6 signed for wind loads ii	CDL=6.0psf; h=25ft; (nvelope) exterior zor ; end vertical left an 60 plate grip DOL=1.0	ne; Id 60									STATE OF I	MISSOLIA T M. ER

2 only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

3) Gable requires continuous bottom chord bearing.

4) Gable studs spaced at 4-0-0 oc.

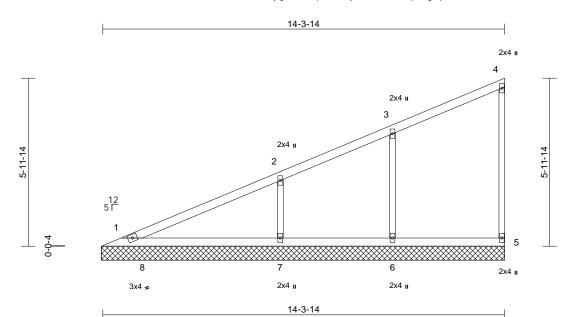
5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent colleges with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com) DEVELOPMENT SERVICES LEE'S'SUMMIT'SMISSOURI 05/06/2024 4:15:41

PE-2001018807

E

TION


April 10,2024

SIONAL

Job	Truss	Truss Type	Qty	Ply	Lot 166 HT	
B240067	V17	Valley	1	1	Job Reference (optional)	164780456

Run: 8.73 S Mar 21 2024 Print: 8.730 S Mar 21 2024 MiTek Industries, Inc. Tue Apr 09 09:18:06 ID:Hr0UloyIgMOrZQ4rpild7XzssyG-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:41.1

Ocale = 1.41.1													
Loading	(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15		TC	0.39	Vert(LL)	n/a	-	n/a	999	MT20	197/144
TCDL	10.0	Lumber DOL	1.15		BC	0.23	Vert(TL)	n/a	-	n/a	999		
BCLL	0.0*	Rep Stress Incr	YES		WB	0.11	Horiz(TL)	0.00	5	n/a	n/a		
BCDL	10.0	Code	IRC2018	3/TPI2014	Matrix-S							Weight: 42 lb	FT = 10%
LUMBER			6)		nas been designed			Opsf					
TOP CHORD					n chord in all areas								
BOT CHORD					oy 2-00-00 wide wi								
WEBS	2x3 SPF No.2				ny other members,			ſ.					
OTHERS	2x3 SPF No.2		7) 8)		are assumed to be			-					
BRACING			-,		hanical connection e capable of withsta								
TOP CHORD	Structural wood she 6-0-0 oc purlins, ex		ed or	5, 90 lb uplif	t at joint 6 and 138	lb uplift	at joint 7.	oint					
BOT CHORD			9)	International	designed in accord Residential Code	sections	s R502.11.1 a	ind					
REACTIONS	(size) 1=14-4-8,	5=14-4-8, 6=14-4-8	[,] LO	R802.10.2 a	nd referenced stan Standard	ndard AN	ISI/TPI 1.						
	7=14-4-8			//D 0//02(0)	Otaridard								
	Max Horiz 1=246 (LC	,	100										
	Max Uplift 5=-33 (LC (LC 8)	5), 6=-90 (LC 8), 7:	=-138										
	Max Grav 1=226 (LC 8)	C 16) 5-182 (I C 2)											
		C 2), 7=527 (LC 2)											
FORCES	(lb) - Maximum Corr	,, (,											
	Tension												
TOP CHORD	1-2=-196/82, 2-3=-1 4-5=-116/46	51/40, 3-4=-122/48,											
BOT CHORD	1-7=-80/60, 6-7=-80	/60, 5-6=-80/60											
WEBS	3-6=-269/128, 2-7=-	389/197											
NOTES													
	CE 7-16; Vult=115mph	(3-second gust)										000	alle
	nph; TCDL=6.0psf; BC		Cat.									ATE OF	MICON
	Enclosed; MWFRS (er										- 3	BIE	-0.0
	left and right exposed										6	N	NST
right expo	sed; Lumber DOL=1.6	0 plate grip DOL=1.0	60								B	SCOT	TM. YEY
	signed for wind loads in										R	/ SEV	IER \ Y
	studs exposed to wind										20+	1 41/	
	dard Industry Gable En										yr.		XXXXX
or consult	qualified building desi	gner as per ANSI/TF	기 1.										C. M. M.

onsult qualified building designer a 3) Gable requires continuous bottom chord bearing.

4) Gable studs spaced at 4-0-0 oc.

- 5) This truss has been designed for a 10.0 psf bottom
- chord live load nonconcurrent with any other live loads.

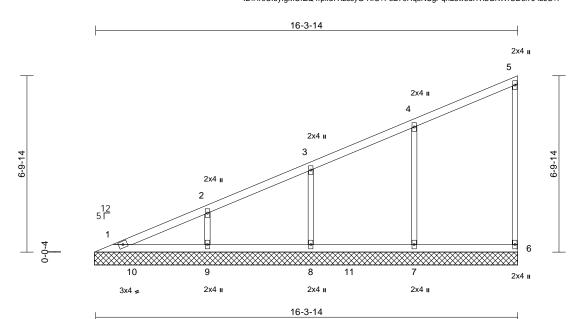
April 10,2024 DEVELOPMENT SERVICES LEE'S'SUMMIT'SMISSOURI

NUMBER

PE-200101880

ONAL

E


05/06/2024 4:15:41

TION

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent colleges with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

Job	Truss	Truss Type	Qty	Ply	Lot 166 HT	
B240067	V18	Valley	1	1	Job Reference (optional)	164780457

Run: 8.73 S Mar 21 2024 Print: 8.730 S Mar 21 2024 MiTek Industries, Inc. Tue Apr 09 09:18:06 ID:Hr0UloyIgMOrZQ4rpild7XzssyG-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

Scale = 1:44.6

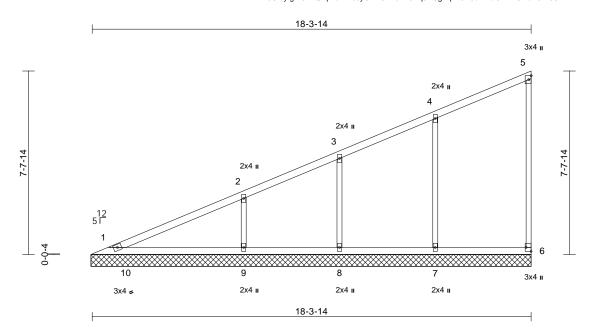
													i	
Loading TCLL (roof)		(psf) 25.0	Spacing Plate Grip DOL	2-0-0 1.15		CSI TC	0.37	DEFL Vert(LL)	in n/a	(loc) -	l/defl n/a	L/d 999	PLATES MT20	GRIP 197/144
TCDL		10.0	Lumber DOL	1.15		BC	0.16	Vert(TL)	n/a	-	n/a	999		
BCLL		0.0*	Rep Stress Incr	YES		WB	0.18	Horiz(TL)	0.00	6	n/a	n/a		
BCDL		10.0	Code	IRC20	18/TPI2014	Matrix-S	-						Weight: 50 lb	FT = 10%
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SPF No. 2x3 SPF No. 2x3 SPF No. 2x3 SPF No. Structural wc 6-0-0 oc purl Rigid ceiling bracing. (size) 1= 8= Max Horiz 1= Max Uplift 6= (L Max Grav 1=	2 2 2 2 2 2 2 2 3 2 3 3 3 3 2 3 3 3 3 3	athing directly applie cept end verticals. applied or 10-0-0 or 6=16-4-8, 7=16-4-8 9=16-4-8 2 5) 5), 7=-105 (LC 8), -103 (LC 8) 2 16), 6=169 (LC 2), 2), 8=364 (LC 2), 2)	7 ed or 5 c 3, 1 8=-92 1	 chord live lo. * This truss I on the bottoo 3-06-00 tall I chord and at All bearings Provide mec bearing plate 6, 105 lb upift at joint O) This truss is International 	designed in acco Residential Code nd referenced sta	t with any ed for a liv as where will fit betw s, with BC be SPF No on (by oth standing 3 uplift at ju ordance w e sections	other live loa e load of 20.0 a rectangle veen the botto DL = 10.0psl c.2. ers) of truss t 55 lb uplift at j boint 8 and 100 ith the 2018 s R502.11.1 a	Opsf om f. ooint 3 Ib					
	· ·	.C 2)												
FORCES		um Com	pression/Maximum											
TOP CHORD	Tension 1-2=-236/56, 4-5=-131/57,	,	87/50, 3-4=-158/54, 10/43											
BOT CHORD			/70, 7-8=-92/70,											
WEBS	4-7=-308/142	2, 3-8=-2	271/143, 2-9=-294/1	148									000	ADD
			(3-second gust)										STATE OF J	MISSO
			DL=6.0psf; h=25ft; (A	N SCOT	New M
			velope) exterior zor									R.	S SEV	

 II; Exp C; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
 Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face),

- see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
 All plates are 2x4 MT20 unless otherwise indicated.
- 4) Gable requires continuous bottom chord bearing.

5) Gable studs spaced at 4-0-0 oc.

April 10,2024


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPH Claulity Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

Job	Truss	Truss Type	Qty	Ply	Lot 166 HT	
B240067	V19	Valley	1	1	Job Reference (optional)	164780458

Run: 8.73 S Mar 21 2024 Print: 8.730 S Mar 21 2024 MiTek Industries, Inc. Tue Apr 09 09:18:06 ID:Hr0UloyIgMOrZQ4rpild7XzssyG-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

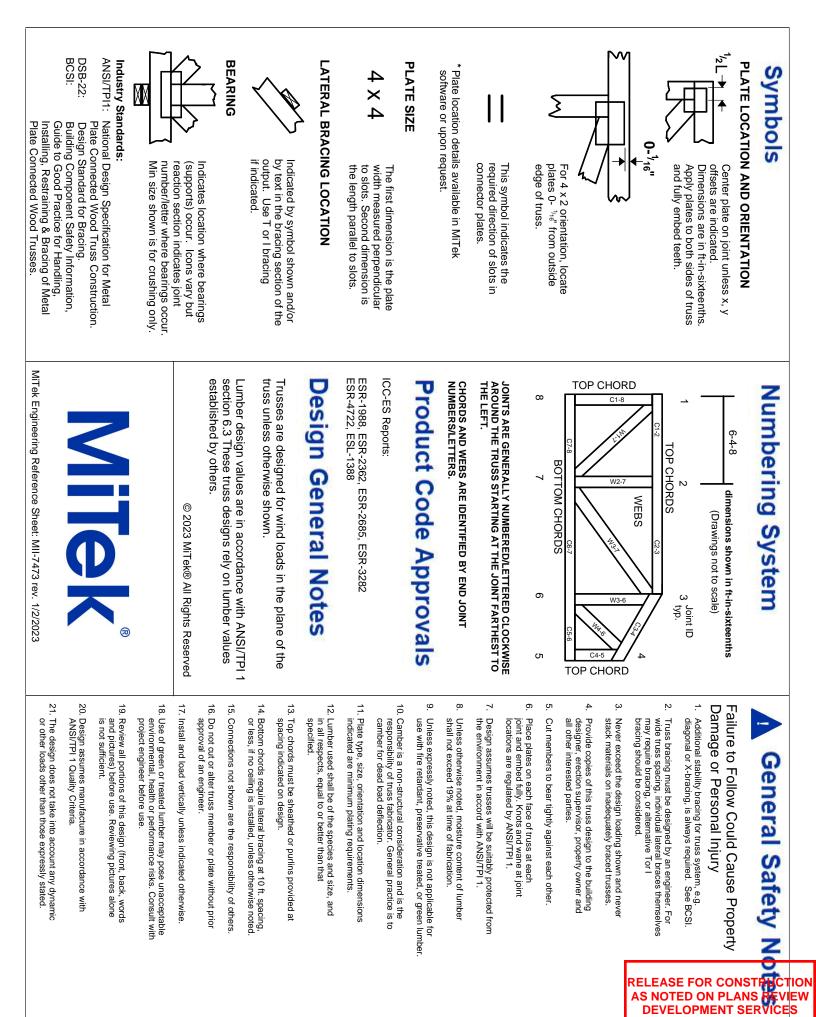

Scale = 1:48.1

Plate Offsets	(X, Y):	[6:Edge,0-2-8]
---------------	---------	----------------

	(X, T). [0.Luge,0-2-0]											-	
Loading TCLL (roof) TCDL BCLL BCDL	(psf) 25.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018/TPI		CSI TC BC WB Matrix-S	0.48 0.23 0.25	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 6	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 58 lb	GRIP 197/144 FT = 10%
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SPF No.2 2x4 SPF No.2 2x3 SPF No.2 2x3 SPF No.2 2x3 SPF No.2 Structural wood she 6-0-0 oc purlins, ex Rigid ceiling directly bracing. (size) 1=18-4-8, 8=18-4-8, Max Horiz 1=319 (LC Max Uplift 6=-38 (LC (LC 8), 9= Max Grav 1=239 (LC 7=491 (LC (LC 2)	athing directly applie cept end verticals. applied or 10-0-0 oc .6=18-4-8, 7=18-4-8 .9=18-4-8 C 5) C 5), 7=-109 (LC 8), 8 -140 (LC 8) C 16), 6=165 (LC 2), 2 C 2), 8=330 (LC 2), 9	5) Thi cha 6) * T on 3-0 cha ed or 7) All 8) Pra bea 6, 7 upl 9) Thi Inte 83=-78 R8	is truss has ord live load his truss has the bottom 6-00 tall by ord and any bearings al ovide mech aring plate 109 lb uplift 1109 lb uplift ift at joint 9 is truss is d ernational F	been designed fo d nonconcurrent w as been designed chord in all areas / 2-00-00 wide will / other members, 1 re assumed to be anical connection capable of withsta at joint 7, 78 lb up esigned in accord Residential Code s d referenced stance	vith any for a liv where I fit betw with BC SPF N (by oth anding 3 plift at j lance w sections	other live loa e load of 20.0 a rectangle veen the botto DL = 10.0psf 5.2. ers) of truss t 8 lb uplift at j boint 8 and 140 ith the 2018 s R502.11.1 a	Opsf om c o oint O Ib					
FORCES TOP CHORD BOT CHORD WEBS	4-5=-139/65, 5-6=-1 1-9=-104/79, 8-9=-1 6-7=-104/79	97/39, 3-4=-171/57, 08/42 04/79, 7-8=-104/79,	07									A STATE	
NOTES 1) Wind: ASC Vasd=91n II; Exp C; cantilever right expo: 2) Truss des only. For see Stand or consult 3) Gable req	4-7=-318/142, 3-8=- CE 7-16; Vult=115mph nph; TCDL=6.0psf; BC Enclosed; MWFRS (er left and right exposed sed; Lumber DOL=1.6 signed for wind loads in studs exposed to wind lard Industry Gable En qualified building desi uires continuous botto ds spaced at 4-0-0 oc.	(3-second gust) DL=6.0psf; h=25ff; (nvelope) exterior zon ; end vertical left and 0 plate grip DOL=1.6 n the plane of the tru I (normal to the face) d Details as applicat gner as per ANSI/TF	Cat. le; d 50 ss , ole,									PE-2001	

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent toulsible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

ASE FOR CONST **OTED ON PLANS** VELOPMENT SER LEE'S SUMMIT, MISSOURI 05/06/2024 4:15:41