

MiTek, Inc. 16023 Swingley Ridge Rd. Chesterfield, MO 63017 314.434.1200

Re: 230872 Lot 17 TCR

The truss drawing(s) referenced below have been prepared by MiTek USA, Inc. under my direct supervision based on the parameters provided by Wheeler - Waverly.

Pages or sheets covered by this seal: I63476752 thru I63476869

My license renewal date for the state of Missouri is December 31, 2025.

Missouri COA: Engineering 001193

February 8,2024

IMPORTANT NOTE: The seal on these truss component designs is a certification that the engineer named is licensed in the jurisdiction(s) identified and that the designs comply with ANSI/TPI 1. These designs are based upon parameters shown (e.g., loads, supports, dimensions, shapes and design codes), which were given to MiTek or TRENCO. Any project specific information included is for MiTek's or TRENCO's customers file reference purpose only, and was not taken into account in the preparation of these designs. MiTek or TRENCO has not independently verified the applicability of the design parameters or the designs for any particular building. Before use, the building designer should verify applicability of design parameters and properly incorporate these designs into the overall building design per ANSI/TPI 1, Chapter 2.

,Engineer

Job	Truss	Truss Type	Qty	Ply	Lot 17 TCR	
230872	A1	Hip Girder	3	1	Job Reference (optional)	163476752

4) design.

1)

2)

3)

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponent.com)

Concentrated Loads (lb)

February 8,2024

Job	Truss	Truss Type	Qty	Ply	Lot 17 TCR	
230872	A2	Hip	3	1	Job Reference (optional)	163476753

3-<u>6</u>-8

Scale = 1:33.3

Plate Offsets (X, Y): [7:Edge,0-5-8]

Loading (ps) Spacing 2-0-0 CSI DEFL in (loc) V/del Ld Now (PT/P) 2.0.4/200 Plate Grip DOL 1.15 TC 0.62 VeriLL -0.03 8-9 9-999 260 TCDL 10.00 Reg Stress Incr YES WB 0.06 Horz(CT) 0.02 7 n/a n/a BCLL 10.00 Reg Stress Incr YES WB 0.06 Horz(CT) 0.02 7 n/a n/a BCDL 10.00 Reg Stress Incr YES XS Notation 100 Weight: 48 lb FT = 10% LUMBER TOC HORR Zx4 SPF No.2 Ft = 10% Structural wood sheathing directly applied or 100.0 times flat cool load of 15.4 psl on overhangs non-concurrent with other live loads. Notation to five loads															
LUMBER 2x4 SPF No.2 TOP CHORD 2x4 SPF No.2 BOT CHORD 2x4 SPF No.2 WEBS 2x3 SPF No.2 * Except* 10-2,7-5:2x6 SPF No.2 Structural wood sheathing directly applied or 5:3-15 oc puritins, except end verticals, and 2-0-0 oc puritins (e-0-0 max): 3-4. BOT CHORD Structural wood sheathing directly applied or 5:3-15 oc puritins, except end verticals, and 2-0-0 oc puritins (e-0-0 max): 3-4. BOT CHORD Reactions BOT CHORD Structural wood sheathing directly applied or 5:3-15 oc puritins, except end verticals, and 2-0-0 oc puritins (e-0-0 max): 3-4. BOT CHORD Rigid celling directly applied or 10-0-0 max.): 3-4. BOT CHORD Structural wood sheathing directly applied or 5:3-15 oc puritins, except end verticals, and 2-0-00 oc puritins (e-0-0 max): 3-4. BOT CHORD Size 7-16:2 (LC 37), 10=-752 (LC 37), 10=-75	Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 25.0 20.4/20.0 10.0 10.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC201	8/TPI2014	CSI TC BC WB Matrix-S	0.62 0.44 0.06	DEFL Vert(LL) Vert(CT) Horz(CT) Wind(LL)	in -0.07 -0.13 0.02 0.04	(loc) 8-9 8-9 7 8-9	l/defl >999 >999 n/a >999	L/d 360 240 n/a 240	PLATES MT20 Weight: 48 lb	GRIP 197/144 FT = 10%	
 bracing. bracing. bracing. bracing. bracing. bracing. bracing. constraint of the purphysic of the purphy	LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD	2x4 SPF No.2 2x4 SPF No.2 2x3 SPF No.2 *Exce No.2 Structural wood shea 5-3-15 oc purlins, ei 2-0-0 oc purlins (6-0 Riaid ceilina directly	pt* 10-2,7-5:2x6 SP athing directly applie xcept end verticals, a -0 max.): 3-4. applied or 10-0 or	5) F 6) 7) ed or 8) and	This truss ha load of 12.0 overhangs n Provide aded This truss ha chord live loa * This truss h on the bottor 3-06-00 tall b chord and ar	s been designed osf or 1.00 times on-concurrent wit quate drainage to s been designed ad nonconcurrent has been designe n chord in all area by 2-00-00 wide w ny other members	for greate flat roof lo h other liv prevent v for a 10.0 with any d for a liv as where <i>i</i> ll fit betw s, with BC	er of min roof bad of 15.4 p ve loads. vater ponding. o psf bottom other live loa e load of 20.0 a rectangle veen the botto DL = 10.0psi	f live sf on g. dds. 0psf om f.						
 TOP CHORD 1-2=0/43, 2-3=-869/71, 3-4=-695/104, 4-5=-869/70, 5-6=0/43, 2-10=-684/128, 5-7=-685/128 BOT CHORD 9-10=-39/699, 8-9=-41/694, 7-8=-7/699 BOT CHORD 9-10=-39/699, 8-9=-41/694, 7-8=-7/699 WEBS 3-9=0/168, 3-8=-96/97, 4-8=0/177 NOTES 1) Unbalanced roof live loads have been considered for this design. 2) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed; cumber DOL=1.60 pattern of the distribution of the purime presentation of the purime presentation of the purime and/or bottom chord. LOAD CASE(S) Standard 	REACTIONS	bracing. (size) 7=0-3-8, 1 Max Horiz 10=64 (LC Max Uplift 7=-89 (LC Max Grav 7=752 (LC (lb) - Maximum Com Tension	10=0-3-8 C 11) C 13), 10=-89 (LC 12 C 37), 10=752 (LC 3 pression/Maximum	9) 10 () 7) 11	All bearings () Provide mec bearing plate 10 and 89 lb) This truss is International R802.10.2 and Carabiac build	are assumed to b hanical connectio capable of withs uplift at joint 7. designed in acco Residential Code nd referenced sta	e SPF No on (by othe tanding 8 rdance wi e sections ndard AN	0.2 . ers) of truss t 9 lb uplift at j th the 2018 R502.11.1 a ISI/TPI 1.	to joint and						
BOT CHORD 9-10=-39/699, 8-9=-41/694, 7-8=-7/699 WEBS 3-9=0/168, 3-8=-96/97, 4-8=0/177 NOTES 1) Unbalanced roof live loads have been considered for this design. 2) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60 3) TCLL: ASCE 7-16; Pr=25.0 psf (roof LL: lum DOL=1.15 Plate DOL=1.15; Pr=200, psf: Pf=204 psf (lum	TOP CHORD	1-2=0/43, 2-3=-869/7 4-5=-869/70, 5-6=0/4 5-7=-685/128	71, 3-4=-695/104, 43, 2-10=-684/128,	12	or the orienta bottom chore	ation of the purlin I. Standard	along the	top and/or	SIZE						
NOTES 1) Unbalanced roof live loads have been considered for this design. 2) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60 3) TCLL: ASCE 7-16; Pr=25.0 psf (roof LL: Lum DOL=1.15 Plate DOL = 1.15; Pr=20.0 psf; Pr=20.4 psf (Jum	BOT CHORD WEBS	9-10=-39/699, 8-9=-4 3-9=0/168, 3-8=-96/§	41/694, 7-8=-7/699 97, 4-8=0/177	2		Clandard								100	
Trate DOL - 1.10), 1 g=20.0 pai, 1 = 20.4 pai (Luin	NOTES 1) Unbalance this design 2) Wind: ASC Vasd=91m II; Exp C; I cantilever right expos 3) TCLL: ASC Plate DOL	ed roof live loads have 1. 2E 7-16; Vult=115mph nph; TCDL=6.0psf; BCI Enclosed; MWFRS (en left and right exposed sed; Lumber DOL=1.6(CE 7-16; Pr=25.0 psf (r _=1.15); Pg=20.0 psf; F	been considered for (3-second gust) DL=6.0psf; h=25ft; C ivelope) exterior zon ; end vertical left and 0 plate grip DOL=1.6 roof LL: Lum DOL=1 2f=20.4 psf (Lum	r Cat. he; d 60 I.15								E T	STATE OF I SCOT SEV	MISSOUR ER BER DISSOT	

Plate DOL=1.15); rg=20.0 ps; Pl=20.4 ps; (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat C; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10, Lu=50-0-0
Unbalanced snow loads have been considered for this

4) Unbalanced snow loads have been considered for this design.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent oulgapee with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

February 8,2024

E

ESSIONAL

Job	Truss	Truss Type	Qty	Ply	Lot 17 TCR	
230872	A3	Common	3	1	Job Reference (optional)	163476754

Run: 8.73 S Jan 4 2024 Print: 8.730 S Jan 4 2024 MiTek Industries, Inc. Tue Feb 06 14:22:11 ID:ableAzDRhwr9aLpXBgehQSy6jdq-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:37.9

Plate Offsets (X, Y): [4:0-3-15, Edge]

			1			1								
Loading	g	(psf)	Spacing	2-0-0		csi		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (r	oof)	25.0	Plate Grip DOL	1.15		тс	0.71	Vert(LL)	-0.08	7-8	>999	360	MT20	197/144
Snow (F	Pf/Pg)	15.4/20.0	Lumber DOL	1.15		BC	0.42	Vert(CT)	-0.16	7-8	>999	240		
TCDL		10.0	Rep Stress Incr	YES		WB	0.09	Horz(CT)	0.01	6	n/a	n/a		
BCLL		10.0*	Code	IRC201	8/TPI2014	Matrix-R		Wind(LL)	0.03	7-8	>999	240		
BCDL		10.0											Weight: 43 lb	FT = 10%
LUMBE TOP CH BOT CH WEBS BRACIN TOP CH BOT CH REACT	R HORD HORD HORD HORD HORD	2x4 SPF No.2 2x4 SPF No.2 2x6 SPF No.2 *Exce Structural wood she: 5-6-13 oc purlins, e: Rigid ceiling directly bracing. (size) 6=0-3-8, 8 Max Horiz 8=80 (LC Max Uplift 6=-108 (L Max Gray, 6=732 (10)	ept* 7-3:2x3 SPF No athing directly applie xcept end verticals. applied or 10-0-0 or 3=0-3-8 11) C 13), 8=-104 (LC 1 23), 8=-118 (LC 3)	6) 7) .2 ed or 8) 5 9) 10 2)	This truss ha chord live loa * This truss h on the bottor 3-06-00 tall b chord and ar All bearings a Provide mec bearing plate 8 and 108 lb)) This truss is International R802.10.2 ar	is been designed for ad nonconcurrent w has been designed in chord in all areas by 2-00-00 wide will by other members, are assumed to be hanical connection capable of withsta uplift at joint 6. designed in accorrc Residential Code and referenced stan	or a 10.0 with any for a liv s where II fit betw with BC SPF No a (by oth anding 1 dance w sections idard AN) psf bottom other live loa e load of 20. a rectangle veen the bott DL = 10.0ps 2.2. ers) of truss 04 lb uplift a ith the 2018 R502.11.1 a ISI/TPI 1.	ads. Opsf tom f. to t joint					
FORCE	S	(lb) - Maximum Com	pression/Maximum	L	DAD CASE(S)	Standard								
TOP CH	IORD	1-2=0/35, 2-3=-773/ 4-5=0/41 2-8=-647/	109, 3-4=-774/112, 157, 4-6=-660/158											
вот сн	IORD	7-8=-18/603. 6-7=-18	8/603											
WEBS		3-7=0/297												
NOTES														
1) Unb this	alance desigr	ed roof live loads have n.	been considered fo	r										AL.
2) Win	d: AS	CE 7-16; Vult=115mph	(3-second gust)	2-4									OF N	ALSO
Vas II; E cant righ 3) TCL Plat DOI Part	a=91n xp C; tilever t expo L: AS L: AS te DOL L=1.15 tially E	npn; 1CDL=6.095; BC Enclosed; MWFRS (er left and right exposed sed; Lumber DOL=1.60 CE 7-16; Pr=25.0 psf (_=1.15); Pg=20.0 psf; F 6 Plate DOL=1.15); Is= xp.; Ce=1.0; Cs=1.00;	DL=0.Upst; h=25tt; (ivelope) exterior zor ; end vertical left an 0 plate grip DOL=1. roof LL: Lum DOL=' 2f=15.4 pst (Lum 1.0; Rough Cat C; Ct=1.10	Jat. ne; d 60 1.15							Ę		STATE SCOTT	Servier

- 4) Unbalanced snow loads have been considered for this design.
- 5) This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 15.4 psf on overhangs non-concurrent with other live loads.

February 8,2024

PE-200101880

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

Job	Truss	Truss Type	Qty	Ply	Lot 17 TCR	
230872	A4	Common	5	1	Job Reference (optional)	163476755

Scale = 1:37.9 Plate Offsets (X, Y): [4:0-5-3,0-2-0]

overhangs non-concurrent with other live loads.

Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 25.0 15.4/20.0 10.0 10.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018	/TPI2014	CSI TC BC WB Matrix-R	0.71 0.49 0.09	DEFL Vert(LL) Vert(CT) Horz(CT) Wind(LL)	in -0.09 -0.18 0.01 0.04	(loc) 6-7 6-7 5 6-7	l/defl >999 >957 n/a >999	L/d 360 240 n/a 240	PLATES MT20 Weight: 42 lb	GRIP 197/144 FT = 10%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD REACTIONS FORCES TOP CHORD BOT CHORD BOT CHORD WEBS NOTES 1) Unbalance this design 2) Wind: ASC Vasd=91m II; Exp C; E cantilever I right expos 3) TCLL: ASC Plate DOL DOL=1.15 Partially E: 4) Unbalance design. 5) This truss I load of 12.	2x4 SPF No.2 2x4 SPF No.2 2x6 SPF No.2 *Exce Structural wood she 5-0-8 oc purlins, exx Rigid ceiling directly bracing. (size) 5=0-3-8, 7 Max Horiz 7=84 (LC Max Uplift 5=-77 (LC Max Grav 5=653 (LC (lb) - Maximum Com Tension 1-2=0/35, 2-3=-775/ 2-7=-646/156, 4-5=- 6-7=-29/600, 5-6=-2 3-6=0/288 ed roof live loads have bph; TCDL=6.0psf; BC Enclosed; MWFRS (er left and right exposed sed; Lumber DOL=1.6; DE 7-16; Pr=25.0 psf (DE 7-16; Pr=25.0 psf; F Plate DOL=1.15); Is= xp; Ce=1.0; Cs=1.00; d snow loads have be has been designed for 0 psf or 1.00 times flat	pt* 6-3:2x3 SPF No. athing directly applie cept end verticals. applied or 10-0-0 oc 7=0-3-8 9) : 13), 7=-104 (LC 12 C 3), 7=721 (LC 3) pression/Maximum 109, 3-4=-769/110, 551/124 9/600 been considered for (3-second gust) DL=6.0psf; h=25ft; C welope) exterior zon ; end vertical left and 0 plate grip DOL=1.6 roof LL: Lum DOL=1 ?=15.4 psf (Lum 1.0; Rough Cat C; Ct=1.10 een considered for th r greater of min roof t roof load of 15.4 ps	6) 7) 2 d or 8) 9) 10) LO LO LO LO	This truss ha chord live loa * This truss h on the bottor 3-06-00 tall k chord and ar All bearings. Provide mec bearing plate 7 and 77 lb u This truss is International R802.10.2 at AD CASE(S)	s been designed as been designe nas been designe n chord in all area y 2-00-00 wide w ny other members are assumed to b hanical connectic e capable of withs uplift at joint 5. designed in acco Residential Code nd referenced sta Standard	for a 10.0 with any d for a liv as where vill fit betw s, with BC be SPF Nd on (by oth standing 1 rdance wi e sections andard AN	D) psf bottom other live loz e load of 20. a rectangle veen the bott DL = 10.0ps o.2. ers) of truss i 04 lb uplift ai th the 2018 R502.11.1 a ISI/TPI 1.	ads. Opsf f. to t joint and				STATE OF J STATE OF J SCOT SEV PE-2001	MISSOLA T M. ER 018807

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

February 8,2024

Job	Truss	Truss Type	Qty	Ply	Lot 17 TCR	
230872	A5	Common	1	1	Job Reference (optional)	163476756

Run: 8.73 S Jan 4 2024 Print: 8.730 S Jan 4 2024 MiTek Industries, Inc. Tue Feb 06 14:22:12 ID:WzQPbfFiCX5tqfzwJ4h9Wty6jdo-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

Scale =	1:39
---------	------

Plate Offsets (X, Y): [1:0-5-3,0-2-0], [3:0-5-3,0-2-0]

														_
Loading FCLL (roof) Snow (Pf/Pg) FCDL BCLL BCDL	(psf) 25.0 15.4/20.0 10.0 10.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018	3/TPI2014	CSI TC BC WB Matrix-R	0.72 0.48 0.09	DEFL Vert(LL) Vert(CT) Horz(CT) Wind(LL)	in -0.08 -0.15 0.01 0.03	(loc) 4-5 4-5 4 5-6	l/defl >999 >999 n/a >999	L/d 360 240 n/a 240	PLATES MT20 Weight: 40 lb	GRIP 197/144 FT = 10%	
LUMBER TOP CHORD 30T CHORD WEBS BRACING TOP CHORD BOT CHORD FORCES TOP CHORD 30T CHORD	2x4 SPF No.2 2x4 SPF No.2 2x6 SPF No.2 *Exce Structural wood shea 5-0-13 oc purlins, ei Rigid ceiling directly bracing. (size) 4=0-3-8, 6 Max Horiz 6=-73 (LC Max Uplift 4=-76 (LC Max Grav 4=646 (LC (lb) - Maximum Com Tension 1-2=-745/107, 2-3=- 3-4=-540/123 5-6=-26/579, 4-5=-20	pt* 5-2:2x3 SPF No. athing directly applie xcept end verticals. applied or 10-0-0 oc 3=0-3-8 : 13), 6=-76 (LC 12) C 3), 6=646 (LC 3) pression/Maximum 745/107, 1-6=-540/1 6/579	6) 2 7) d or 8) ; 9) LC 23,	* This truss h on the bottor 3-06-00 tall b chord and ar All bearings Provide mec bearing plate 6 and 76 lb u This truss is International R802.10.2 ar DAD CASE(S)	has been designed in chord in all areas by 2-00-00 wide wi by other members, are assumed to be hanical connectior e capable of withsta uplift at joint 4. designed in accord Residential Code ind referenced stan Standard	I for a liv s where II fit betw with BC SPF No and SPF No anding 7 dance wi sections idard AN	e load of 20. a rectangle reen the bott DL = 10.0ps .2. ers) of truss 6 lb uplift at th the 2018 R502.11.1 a SI/TPI 1.	Opsf tom f. to joint						
WEBS	2-5=0/271													
 VOTES Unbalance this design Wind: ASC Vasd=91m II; Exp C; I cantilever right exposition TCLL: ASC Plate DOL DOL =1 15 	ed roof live loads have DE 7-16; Vult=115mph ph; TCDL=6.0psf; BC Enclosed; MWFRS (er left and right exposed sed; Lumber DOL=1.66 CE 7-16; Pr=25.0 psf (=1.15); Pg=20.0 psf; F Plate DOL=1.15); Is=	been considered for (3-second gust) DL=6.0psf; h=25ft; C ivelope) exterior zon ; end vertical left and 0 plate grip DOL=1.6 roof LL: Lum DOL=1 Pf=15.4 psf (Lum 1 0. Rough Cat C:	Cat. e; d 60 .15								a d	STATE OF M STATE OF M SEVI	AISSOUR ER	

Plate DOL=1.15); Pg=20.0 psf; Pf=15.4 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat C; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
4) Unbalanced snow loads have been considered for this

Unbalanced show loads have been considered for this design.

5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

Job	Truss	Truss Type	Qty	Ply	Lot 17 TCR	
230872	B1	Roof Special Girder	1	2	Job Reference (optional)	163476757

Run: 8.73 E Jan 4 2024 Print: 8.730 E Jan 4 2024 MiTek Industries, Inc. Wed Feb 07 11:10:45 ID:183_hGailKyG0ZN3lBfyz3y6jo4-djhaUarX1e_G33SS_nVVLMshXh50RDR22p5VKAznYPi

Scale = 1:63.1

Plate Offsets	(X, Y): [2:Edge,0-2-7]	, [3:0-2-0,0-1-10], [7	':0-4-9,Edg	e], [16:0-3-8,	0-2-0], [19:0-3-8,0-	2-0]										
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 25.0 20.4/20.0 10.0 10.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 NO IRC201	8/TPI2014	CSI TC BC WB Matrix-S	0.70 0.70 0.57	DEFL Vert(LL) Vert(CT) Horz(CT) Wind(LL)	in -0.27 -0.46 0.21 0.29	(loc) 17 17 12 17	l/defl >999 >865 n/a >999	L/d 360 240 n/a 240	PLATES MT20 Weight: 382	GRIP 197/144 lb FT = 10%			
LUMBER TOP CHORD BOT CHORD WEBS WEDGE BRACING TOP CHORD BOT CHORD	2x4 SPF No.2 *Exc 2.0E 2x6 SPF No.2 *Exc 2.0E, 6-17:2x4 SPF 2x4 SPF No.2 Left: 2x3 SPF No.2 Structural wood she 4-0-3 oc purlins, ex 2-0-0 oc purlins (4-6 Rigid ceiling directly bracing Except	ept* 1-4:2x6 SP 240 ept* 3-18:2x6 SP 24 No.2 eathing directly appli ccept end verticals, a 5-3 max.): 4-5, 7-11. y applied or 10-0 o	B OF OOF ied or and oc W	OT CHORD	2-20=-193/45, 3- 19-32=-3292/987 18-33=-3292/987 6-18=-159/445, 1 34-35=-339/961, 16-36=-1522/432 37-38=-1522/432 15-39=-1548/427 14-40=-1548/427 13-41=-1548/427 42-43=-67/58, 43 3-20=-69/292, 4 5-19=-2711/915,	19=-2447/ 74, 32-33= 74, 17-18= 17-34=-33 16-35=-33 17, 36-37= 17, 15-38= 76, 39-40= 76, 14-41= 76, 13-42= 3-44=-67/5 19=-843/2 5-18=-33	7422, -3292/9874, -96/265, 9/961, 39/961, -1522/4347, -1522/4347, -1548/4276, -1548/4276, -67/58, 8, 12-44=-67 .751, 29/1116,	/58	 b) FOLL. AGCE 7-15); Pg=20.0 psf (106 TL: Lum DOL=1.15); Pg=20.0 psf; Pf=20.4 psf (Lum DOL=1.15); Is=1.0; Rough Cat C Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10, Lu=50-(Min. flat roof snow load governs. Rain surcharge applied to all exposed surfaces with slopes less th 0.500/12 in accordance with IBC 1608.3.4. c) Unbalanced snow loads have been considered for design. This truss has been designed for greater of min rc load of 12.0 psf or 1.00 times flat roof load of 15.4 overhangs non-concurrent with other live loads. Provide adequate drainage to prevent water pond 9) This truss has been designed for a 10.0 psf bottor 							
REACTIONS	6-0-0 oc bracing: 2- (Ib/size) 2=2495/0 Max Horiz 2=237 (L Max Uplift 2=-929 (I Max Grav 2=3028 (12:11g, Licept. 16-18=-1213/3471, 7-18=-1706/4950, -0-0 oc bracing: 2-20. 16-18=-1213/3471, 7-18=-1706/4950, 'size) 2=2495/0-3-8, 12=2124/0-3-8 7-16=-324/184, 7-15=-371/147, 8-15=-2/586, ix Horiz 2=237 (LC 9) 8-13=-1854/638, 10-13=-757/472, ix Uplift 2=-929 (LC 12), 12=-1028 (LC 9) NOTES Nores Notes 11-13=-1307/3759							9) Th ch 10) * T on 3-(ch	is truss h ord live lo his truss the botto 06-00 tall ord and a	as bee bad noi has be om cho by 2-0	en designed for nconcurrent wi een designed for rd in all areas 10-00 wide will er members w	a 10.0 psf bottom th any other live load or a live load of 20.0p where a rectangle fit between the bottor with BCDL = 10 0psf	ls. osf m		
FORCES TOP CHORD	(lb) - Maximum Con Tension 1-21=0/5, 2-21=0/8, 3-4=-8015/2603, 4- 5-22=-7609/2512, 5 6-7=-8633/2951, 7- 23-24=-4365/1477, 8 9-26=-2954/1028, 9-26=-2954/1028, 10-29=-2954/1028, 10-29=-2954/1028, 11-12=-2737/1026	npression/Maximum , 2-3=-2019/546, 22=-7612/2512, -6=-8931/2970, 23=-4363/1476, 24-25=-4365/1477, -9=-2954/1028, 26-27=-2954/1028, 10-28=-2954/1028, 29-30=-2954/1028, 11-31=-2954/1028,	2, 3, 4,	 2-ply truss (0.131"x3" Top chords staggered Bottom chu staggered Web connet Veb connet All loads a except if nu CASE(S) s provided tc unless othi Unbalance this design Wind: ASC 	to be connected to) nails as follows: s connected as follows: ords connected as follows: at 0-9-0 oc, 2x4 ords connected as at 0-9-0 oc, 2x4 ords connected as acted as follows: 2 re considered equi bed as front (F) or ection. Ply to ply co or distribute only loa envise indicated. d roof live loads ha E 7-16; Vult=115n ph; TCDI = 6 0pcf	ogether wi ows: 2x6 - 1 row at 0- follows: 2 1 row at 0- x4 - 1 row ally applie- back (B) bonnection ds noted ave been onph (3-sec	th 10d 2 rows 6-0 oc. x6 - 2 rows 9-0 oc. at 0-9-0 oc. at 0-9-0 oc. d to all plies, face in the LC s have been as (F) or (B), considered for cond gust) port, b-2 fett ()AD r	tin 11) All ca	bearings pacity of	are as 425 ps	sumed to be S i.	MISSOL = 10.0psl. SPF No.2 crushing MISSOL TT M. VIER MBER 1018807			

II; Exp C; Enclosed; MWFRS (envelope) exterior zone;

cantilever left and right exposed ; end vertical left and

right exposed; Lumber DOL=1.60 plate grip DOL=1.60

February 8,2024

E

SSIONAL

Page: 1

Continued on page 2

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality** Criteria, and DSE-22 available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcscomponents.com)

Job	Truss	Truss Type	Qty	Ply	Lot 17 TCR	
230872	B1	Roof Special Girder	1	2	Job Reference (optional)	163476757

12) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 1028 lb uplift at joint 12 and 929 lb uplift at joint 2.

13) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

14) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

15) Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 127 Ib down and 92 lb up at 14-4-0, 131 lb down and 92 lb up at 16-4-0, 131 lb down and 92 lb up at 18-4-0, 131 Ib down and 92 lb up at 20-4-0, 131 lb down and 92 lb up at 22-4-0, 131 lb down and 92 lb up at 24-4-0, 131 Ib down and 92 lb up at 26-4-0, 131 lb down and 92 lb up at 28-4-0, and 131 lb down and 92 lb up at 30-4-0, and 131 lb down and 92 lb up at 32-4-0 on top chord, and 519 lb down and 171 lb up at 4-9-8, 187 lb down and 66 lb up at 6-4-12, 187 lb down and 83 lb up at 8-4-12, 197 lb down and 105 lb up at 10-4-0, 255 lb down and 131 lb up at 12-4-0, 63 lb down and 17 lb up at 14-4-0, 63 lb down and 17 lb up at 16-4-0, 63 lb down and 17 lb up at 18-4-0, 63 lb down and 17 lb up at 20-4-0, 63 lb down and 17 lb up at 22-4-0, 63 lb down and 17 lb up at 24-4-0, 63 lb down and 17 lb up at 26-4-0, 63 lb down and 17 lb up at 28-4-0, and 63 lb down and 17 lb up at $\,$ 30-4-0, and 63 lb down and 17 lb up at 32-4-0 on bottom chord. The design/selection of such connection device(s) is the responsibility of others.

LOAD CASE(S) Standard

) Dead + Snow (balanced): Lumber Increase=1.15, Plate Increase=1.15

Uniform Loads (lb/ft)

- Vert: 1-4=-51, 4-5=-61, 5-7=-51, 7-11=-61, 2-20=-20, 3-18=-20, 12-17=-20
- Concentrated Loads (lb)
- Vert: 19=-492 (F), 15=-33 (F), 8=-43 (F), 23=-44 (F), 24=-43 (F), 25=-43 (F), 26=-43 (F), 27=-43 (F), 28=-43 (F), 29=-43 (F), 30=-43 (F), 31=-43 (F), 32=-162 (F), 33=-153 (F), 34=-183 (F), 35=-209 (F), 36=-33 (F), 37=-33 (F), 38=-33 (F), 39=-33 (F), 40=-33 (F), 41=-33 (F), 42=-33 (F), 43=-33 (F),
- 44=-33 (F)

Run: 8.73 E Jan 4 2024 Print: 8.730 E Jan 4 2024 MiTek Industries, Inc. Wed Feb 07 11:10:45 ID:I83_hGailKyG0ZN3lBfyz3y6jc4-djhaUarX1e_G33SS_nVVLMshXh50RDR22p5VKAznYPi Page: 2

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSITPTI Quality Criteria**, and **DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcscomponents.com)

Job	Truss	Truss Type	Qty	Ply	Lot 17 TCR	
230872	B2	Roof Special	1	1	Job Reference (optional)	163476758

🙏 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a trust system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria**, and **DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

16023 Swingley Ridge Rd. Chesterfield MO 63017

314.434.1200 / MiTek-US.com

Job	Truss	Truss Type	Qty	Ply	Lot 17 TCR	
230872	B3	Roof Special	1	1	Job Reference (optional)	163476759

16023 Swingley Ridge Rd. Chesterfield MO 63017

314.434.1200 / MiTek-US.com

🙏 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a trust system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria**, and **DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

Job	Truss	Truss Type	Qty	Ply	Lot 17 TCR	
230872	B4	Roof Special	1	1	Job Reference (optional)	163476760

Run: 8.73 S Jan 4 2024 Print: 8.730 S Jan 4 2024 MiTek Industries, Inc. Tue Feb 06 14:22:17 ID:mW24BAzK4zfM0tYSqhmDxWy6jcs-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?

Page: 1

9-10=-138/366 WEBS 2-14=-161/90, 2-13=-336/145, 3-13=-33/940, 4-11=-967/226, 5-11=-84/1172, 5-10=-1507/329. 6-10=-61/259. 7-10=-233/1610 7-9=-1667/265 1-14=-218/2241, 4-13=-446/40

NOTES

Loading

TCDL

BCLL

BCDL

WEBS

WEBS

WEBS

1) Unbalanced roof live loads have been considered for this design.

> 16023 Swingley Ridge Rd. Chesterfield MO 63017 314.434.1200 / MiTek-US.com

February 8,2024

PE-200101880'

SSIONAL

OFF

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponent.com)

Job	Truss	Truss Type	Qty	Ply	Lot 17 TCR	
230872	C1	Roof Special	1	1	Job Reference (optional)	163476761

Run: 8,73 S Jan 4 2024 Print: 8,730 S Jan 4 2024 MiTek Industries, Inc. Tue Feb 06 14:22:17 ID:Aen3yqQYMKJ6yZtZUywvxKy6jcH-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Plate Offsets (X, Y): [3:0-6-0,0-2-3], [10:0-2-8,0-1-8]

Scale = 1:66.3

												-	
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 25.0 20.4/20.0 10.0 10.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018	3/TPI2014	CSI TC BC WB Matrix-S	0.69 0.60 0.88	DEFL Vert(LL) Vert(CT) Horz(CT) Wind(LL)	in -0.32 -0.50 0.03 0.05	(loc) 10-11 10-11 7 10-11	l/defl >915 >583 n/a >999	L/d 360 240 n/a 240	PLATES MT20 Weight: 114 lb	GRIP 197/144 FT = 10%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD	2x4 SPF No.2 2x4 SPF 2100F 1.8E No.2 2x3 SPF No.2 *Excep No.2 Structural wood shea 3-9-1 oc purlins, exc 2-0-0 oc purlins (5-4- Rigid ceiling directly bracing, Except: 6-0-0 oc bracing: 11-	*Except* 9-7:2x4 S pt* 7-6,12-1:2x4 SP athing directly applie cept end verticals, a -1 max.): 2-3. applied or 10-0-0 oc -12	3) SPF 4) 5) ed or 6) nd 7) c	TCLL: ASCE Plate DOL=1 DOL=1.15 P Partially Exp Unbalanced design. Provide adec This truss ha chord live loa * This truss ha chord live loa * This truss ha chord ale bottor 3-06-00 tall b chord and ar	7-16; Pr=25.0 psf .15); Pg=20.0 psf; ate DOL=1.15); Is ; Ce=1.0; Cs=1.00 snow loads have b guate drainage to p s been designed f ad nonconcurrent v has been designed n chord in all area: y 2-00-00 wide wi y other members,	f (roof LL ; Pf=20.4 =1.0; Rc 0; Ct=1.1 been cor prevent v for a 10.0 with any d for a liv s where ill fit betw with BC	: Lum DOL= a psf (Lum bugh Cat C; 0, Lu=50-0-(asidered for the water ponding 0 psf bottom other live loa e load of 20.0 a rectangle DL = 10.0psi	1.15) his g. ds. 0psf om f.					
WEBS REACTIONS	1 Row at midpt (size) 7=0-3-8, 1 Max Horiz 12=342 (L Max Uplift 7=-160 (LC Max Grav 7=1370 (L	6-7, 4-8 2=0-5-8 C 11) C 12), 12=-159 (LC C 3), 12=1355 (LC	8) 9) 12) 10 46)	All bearings a Provide mec bearing plate 12 and 160 ll This truss is	are assumed to be hanical connection capable of withsta o uplift at joint 7. designed in accord	e SPF No n (by oth anding 1 dance w	0.2 . ers) of truss t 59 lb uplift at ith the 2018	to t joint					
FORCES	(lb) - Maximum Comp Tension 1-2=-1335/135, 2-3= 3-4=-1492/190, 4-5=	pression/Maximum -1139/150, -741/175, 5-6=-693,	11 /197,	R802.10.2 ar Graphical pu or the orienta bottom chore	rd referenced star rlin representation ation of the purlin a	Idard AN Idoes no along the	ISI/TPI 1. ot depict the set top and/or	size					
BOT CHORD	6-7=-1225/197, 1-12 11-12=-333/144, 10- 8-10=-142/1264, 7-8	=-1360/153 11=-297/1667, =-104/81	LC	AD CASE(S)	Standard							TE OF A	AISSO
WEBS	2-11=0/418, 6-8=-10 5-8=-61/378, 4-8=-11 3-10=-510/184, 3-11	1/976, 1-11=-88/132 101/248, 4-10=0/719 =-843/160	20, 9,									SCOTI SEVI	ER CHE
NOTES											8*		1*8
 Unbalance 	ed roof live loads have	been considered for	r								2	0	0 1 0

this design.

Wind: ASCE 7-16; Vult=115mph (3-second gust) 2) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

16023 Swingley Ridge Rd. Chesterfield, MO 63017 314.434.1200 / MiTek-US.com

February 8,2024

E

PE-200101880

RSSIONAL

C

Job	Truss	Truss Type	Qty	Ply	Lot 17 TCR	
230872	C2	Roof Special	1	1	Job Reference (optional)	163476762

Run: 8,73 S Jan 4 2024 Print: 8,730 S Jan 4 2024 MiTek Industries, Inc. Tue Feb 06 14:22:18 ID:fqLS9ARA7eRzajSl2gR8UXy6jcG-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:66.3 Plate Offsets (X, Y): [1:Edge,0-2-4], [2:0-4-0,0-1-15], [10:0-2-8,0-1-8]

4		1											
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 25.0 20.4/20.0 10.0 10.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC201	8/TPI2014	CSI TC BC WB Matrix-S	0.62 0.77 0.83	DEFL Vert(LL) Vert(CT) Horz(CT) Wind(LL)	in -0.17 -0.28 0.03 0.05	(loc) 10-11 10-11 7 10-11	l/defl >999 >999 n/a >999	L/d 360 240 n/a 240	PLATES MT20 Weight: 117 lb	GRIP 197/144 FT = 10%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD WEBS REACTIONS	2x4 SPF No.2 2x4 SPF No.2 2x3 SPF No.2 *Exce No.2 Structural wood she 3-11-8 oc purlins, e 2-0-0 oc purlins (5-1 Rigid ceiling directly bracing. 1 Row at midpt (size) 7=0-3-8, 7 Max Horiz 12=342 (I Max Uplift 7=-160 (L Max Uplift 7=-160 (L	ept* 7-6,12-1:2x4 SPF athing directly applied xcept end verticals, a -5 max.): 2-3. applied or 10-0-0 oc 6-7, 4-8 12=0-5-8 _C 9) C 12), 12=-159 (LC 1 _C 3), 12=1370 (LC 4	3) 	TCLL: ASCE Plate DOL=1 DOL=1.15 Pl Partially Exp. Unbalanced: design. Provide adec This truss ha chord live loa * This truss ha chord live loa * This truss ha on the bottom 3-06-00 tall b chord and an All bearings a Provide mecl bearing plate 12 and 160 li	7-16; Pr=25.0 ps 15); Pg=20.0 psf ate DOL=1.15); Is ; Ce=1.0; Cs=1.0 snow loads have I quate drainage to s been designed i d nonconcurrent has been designed n chord in all area y 2-00-00 wide w y 2-00-00 wide w y other members are assumed to be hanical connection capable of withst	f (roof LL ; Pf=20.4 s=1.0; Rc 0; Ct=1.4 been cor prevent to for a 10.4 with any d for a liv is where ill fit betw , with BC e SPF No n (by oth tranding 1	: Lum DOL= 4 psf (Lum bugh Cat C; 10, Lu=50-0-(10, Lu=	1.15) his g. ds. Opsf om f. to t joint					
FORCES TOP CHORD BOT CHORD WEBS NOTES 1) Unbalance this design	(lb) - Maximum Com Tension 1-2=-1485/176, 2-3= 3-4=-1403/202, 4-5= 6-7=-1231/196, 1-12 11-12=-328/179, 10- 8-10=-142/1222, 7-8 2-11=0/395, 3-11=-5 1-11=-84/1258, 5-8= 4-10=-25/730, 3-10= ed roof live loads have	Pression/Maximum 1246/202, 744/171, 5-6=-696/1 1261/182 -11=-243/1524, 105/81 523/64, 6-8=-101/983 50/349, 4-8=-1036/2 481/156 been considered for	10 197, 11 , LC 244,	 This truss is a International R802.10.2 ar Graphical pu or the orienta bottom chord DAD CASE(S) 	designed in accor Residential Code Id referenced star rlin representatior tion of the purlin a Standard	dance w sections ndard AN n does no along the	ith the 2018 \$ R502.11.1 a ISI/TPI 1. bt depict the s top and/or	and				STATE OF M	MISSOLURI I M. ER

2) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60

PE-20010188 SSIONAL E

February 8,2024

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent colleges with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

16023 Swingley Ridge Rd. Chesterfield, MO 63017 314.434.1200 / MiTek-US.com

Job	Truss	Truss Type	Qty	Ply	Lot 17 TCR	
230872	C3	Roof Special	1	1	Job Reference (optional)	163476763

Run: 8.73 S Jan 4 2024 Print: 8.730 S Jan 4 2024 MiTek Industries, Inc. Tue Feb 06 14:22:18 ID:ivArcs?bcav4GBiqx6oh0xy6jcq-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Plate Offsets (X, Y): [1:Edge,0-2-4], [2:0-3-0,0-2-4], [10:0-2-8,0-1-8]

Scale = 1:66.3

Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 25.0 20.4/20.0 10.0 10.0* 10.0*	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018	3/TPI2014	CSI TC BC WB Matrix-S	0.55 0.74 0.81	DEFL Vert(LL) Vert(CT) Horz(CT) Wind(LL)	in -0.16 -0.26 0.03 0.04	(loc) 10-11 10-11 7 10-11	l/defl >999 >999 n/a >999	L/d 360 240 n/a 240	PLATES MT20 Weight: 116 lb	GRIP 197/144 FT = 10%	
LUMBER TOP CHORD BOT CHORD WEBS	2x4 SPF No.2 2x4 SPF No.2 2x3 SPF No.2 *Exce No.2	pt* 7-6,12-1:2x4 SPF	3) - 4)	TCLL: ASCE Plate DOL=1 DOL=1.15 P Partially Exp Unbalanced	7-16; Pr=25.0 psi .15); Pg=20.0 psf; late DOL=1.15); ls .; Ce=1.0; Cs=1.00 snow loads have b	f (roof LL ; Pf=20.4 ;=1.0; Ro 0; Ct=1.7 ; been cor	Lum DOL= psf (Lum bugh Cat C; 0, Lu=50-0-0 nsidered for t	:1.15 0 :his						
BRACING TOP CHORD	Structural wood shea 4-1-4 oc purlins, exc 2-0-0 oc purlins, (5-2)	athing directly applied cept end verticals, an -13 max): 2-3	dor 5) d 6)	Provide adeo This truss ha chord live loa	quate drainage to p is been designed f ad nonconcurrent	prevent for a 10.0 with any	vater pondin) psf bottom other live loa	g. ads.						
BOT CHORD WEBS REACTIONS	Rigid ceiling directly bracing. 1 Row at midpt (size) 7=0-3-8, 1 Max Horiz 12=342 (L Max Uplift 7=-157 (Lt	applied or 10-0-0 oc 6-7, 4-8 12= Mechanical .C 9) C 12), 12=-157 (LC 1	7) 8) 2) 10	* This truss h on the bottor 3-06-00 tall h chord and ar All bearings Refer to gird) Provide mec	has been designed in chord in all area by 2-00-00 wide wi by other members, are assumed to be er(s) for truss to tru hanical connection	for a liv s where ill fit betw with BC SPF No uss conr o (by oth	e load of 20. a rectangle veen the bott DL = 10.0ps b.2. nections. ers) of truss	Opsf tom .f. to						
FORCES	Max Grav 7=1359 (L (lb) - Maximum Com Tension 1-2=-1418/171, 2-3= 3-4=-1373/199, 4-5= 6-7=-1221/193, 1-12	.C 3), 12=1355 (LC 4 pression/Maximum 1198/193, 738/170, 5-6=-691/′ -=-1247/180	6) 11 195,	bearing plate 12 and 157 l) This truss is International R802.10.2 at	e capable of withst b uplift at joint 7. designed in accorr Residential Code nd referenced star	anding 1 dance w sections dard AN	57 lb uplift a ith the 2018 R502.11.1 a ISI/TPI 1.	t joint and						
BOT CHORD WEBS	11-12=-324/169, 10- 8-10=-143/1205, 7-8 2-11=0/388, 3-11=-5 1-11=-87/1216, 5-8=	-11=-233/1466, =-105/81 :31/70, 6-8=-99/973, -49/344, 4-8=-1014/2	LC 241,	or the orienta bottom chorc DAD CASE(S)	ation of the purlin a d. Standard	along the	top and/or	SIZE			Å	ATE OF M	AISSOL	
NOTES	4-10=-19/688, 3-10=	-421/140									A	SCOTI	M.	6

Unbalanced roof live loads have been considered for 1) this design.

2) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent colleges with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

Chesterfield, MO 63017 314.434.1200 / MiTek-US.com

UMBE

PE-200101880

Job	Truss	Truss Type	Qty	Ply	Lot 17 TCR	
230872	C4	Common	3	1	Job Reference (optional)	163476764

Run: 8.73 S Jan 4 2024 Print: 8.730 S Jan 4 2024 MiTek Industries, Inc. Tue Feb 06 14:22:19 ID:ivArcs?bcav4GBiqx6oh0xy6jcq-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:66.3

Plate Offsets	(Х,	Y):	[11:0-2-8,0-1-8]
---------------	-----	-----	------------------

Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 25.0 15.4/20.0 10.0 10.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018	3/TPI2014	CSI TC BC WB Matrix-S	0.66 0.87 0.80	DEFL Vert(LL) Vert(CT) Horz(CT) Wind(LL)	in -0.20 -0.34 0.04 0.06	(loc) 10-11 10-11 7 10-11	l/defl >999 >863 n/a >999	L/d 360 240 n/a 240	PLATES MT20 Weight: 110 lb	GRIP 197/144 FT = 10%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD WEBS REACTIONS	2x4 SPF No.2 2x4 SPF No.2 2x3 SPF No.2 *Excep No.2 Structural wood shea 3-7-11 oc purlins, ex Rigid ceiling directly bracing. 1 Row at midpt (size) 7=0-3-8, 1 Max Horiz 12=347 (L Max Uplift 7=-162 (L0 Max Grav 7=1359 (L	pt* 7-6,12-1:2x4 SPI athing directly applie coept end verticals. applied or 10-0-0 oc 6-7, 4-8, 2-10 2= Mechanical C 9) C 12), 12=-152 (LC C C 3), 12=1316 (LC C	4) 5) F 6) d or : 7) 8) 9) 12) 10	Unbalanced design. This truss ha chord live loa * This truss h on the botton 3-06-00 tall b chord and an All bearings a Refer to girdd Provide mecl bearing plate 12 and 162 ll) This truss is International	snow loads have s been designed i d nonconcurrent as been designed y 2-00-00 wide w y other members are assumed to be er(s) for truss to tr nanical connection capable of withst o uplift at joint 7. designed in accor Residential Code	been cor for a 10.0 with any d for a liv is where ill fit betw , with BC e SPF No russ conr n (by oth tanding 1 dance wi sections	sidered for t opsf bottom other live load e load of 20.1 DL = 10.0ps 0.2. ections. ers) of truss i 52 lb uplift at th the 2018 R502.11.1 a	his Dpsf om to to tjoint					
FORCES	(lb) - Maximum Com	pression/Maximum	LC	AD CASE(S)	Standard		0/1111.						
TOP CHORD	1-2=-2013/240, 2-4= 4-5=-723/178, 5-6=-6 1-12=-1215/171	-1415/198, 689/198, 6-7=-1219/	198,										
BOT CHORD	11-12=-326/256, 10- 8-10=-150/1212, 7-8	11=-338/1796, =-105/81											
WEBS	6-8=-102/981, 1-11= 4-8=-993/265, 2-11= 4-10=0/657	-147/1597, 5-8=-66/ -54/255, 2-10=-631/	329, 205,								E	TE OF M	AISSO
NOTES											8	SCOTT	M NON
1) Unbalance	ed roof live loads have	been considered for									R		
 this design Wind: ASO Vasd=91n II; Exp C; cantilever right export TCLL: ASO Plate DOL DOL=1.15 	n. CE 7-16; Vult=115mph nph; TCDL=6.0psf; BCI Enclosed; MWFRS (en left and right exposed ; sed; Lumber DOL=1.60 CE 7-16; Pr=25.0 psf; P =1.15); Pg=20.0 psf; P i Plate DOL=1.15); Is=1	(3-second gust) DL=6.0psf; h=25ft; C velope) exterior zon ; end vertical left and 0 plate grip DOL=1.6 oof LL: Lum DOL=1 f=15.4 psf (Lum 1.0; Rough Cat C;	Cat. e; d 50 .15							-	A STATE	NUME PE-20010	DIRROT ENCIDENT

Plate DOL=1.15); Pg=20.0 psf; Pf=15.4 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat C; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

February 8,2024

Job	Truss	Truss Type	Qty	Ply	Lot 17 TCR	
230872	C5	Common	2	1	Job Reference (optional)	163476765

Run: 8,73 S Jan 4 2024 Print: 8,730 S Jan 4 2024 MiTek Industries, Inc. Tue Feb 06 14:22:19 ID:A5jDpC0DNu1wtLH0VpJwZ9y6jcp-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

	5-2-9	13-2-9	19-1-0	<u>24-11-7</u>	31-3-4	38-5-0	39-3-8
-9-0- -11-8 -11-8 -11-8 -12	5-2-9 5-2-9 6x6 = 1 3x4 =	13-2-9 8-0-1 61 ² 3x4 = 20 4x8=	$ \begin{array}{c} 19-1-(\\ 5-10-7 \\ 3x6 = 22 \\ 3 \\ 4 \\ 3x6 = 22 \\ 19 \\ 19 \\ 3x4 = 3x6 $	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	31-3-4 6-3-13 3x4 23 6 3x6 7 7 7 15 4x8 =	6x6 \$ 6x6 \$ 8 14 ¹⁰ ₁₃ 12 4x5 =	9 0-10-8 9 10 5 8x8=
Scale = 1:68.4	5-2-9 5-2-9	<u> </u>		<u>) 24-11-7</u> 7 5-10-7	<u>31-1-8</u> 6-2-1	0-1-12 7-1-12	
Plate Offsets (X	, Y): [11:Edge,0-5	-13], [15:0-2-8,0-2-0], [20:0-2-	8,0-2-0]				

			-										
Loading	(psf)	Spacing	2-0-0		CSI	0.00	DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
ICLL (roof)	25.0	Plate Grip DOL	1.15		IC	0.69	Vert(LL)	-0.25	19-20	>999	360	M120	197/144
Snow (Pf/Pg)	15.4/20.0	Lumber DOL	1.15		BC	0.97	Vert(CT)	-0.40	19-20	>927	240		
TCDL	10.0	Rep Stress Incr	YES		WB	0.93	Horz(CT)	0.05	13	n/a	n/a		
BCLL	10.0*	Code	IRC2018	3/TPI2014	Matrix-S		Wind(LL)	0.08	19-20	>999	240		
BCDL	10.0											Weight: 158 lb	FT = 10%
LUMBER			3)	Wind: ASCE	7-16; Vult=115mp	h (3-sec	cond gust)						
TOP CHORD	2x4 SPF No.2			Vasd=91mph	; TCDL=6.0psf; B	CDL=6.	Opsf; h=25ft; (Cat.					
BOT CHORD	2x4 SPF No.2			II; Exp C; En	closed; MWFRS (e	envelope	e) exterior zor	ne;					
WEBS	2x3 SPE No 2 *Exce	nt* 21-1 11-9 2x4 SP	F	cantilever lef	t and right expose	d;end	ertical left an	d					
	No 2	pr =: .,	-	right exposed	d; Lumber DOL=1.	60 plate	grip DOL=1.	60					
BRACING			4)	TCLL: ASCE	7-16; Pr=25.0 psf	(roof LL	.: Lum DOL=	1.15					
TOP CHORD	Structural wood she	athing directly applied	1 or	Plate DOL=1	.15); Pg=20.0 psf;	Pf=15.4	l psf (Lum						
		acting unectly applied	101	DOL=1.15 PI	ate DOL=1.15); Is	=1.0; Ro	ough Cat C;						
BOT CHORD	Rigid ceiling directly	applied or 2-2-0 oc		Partially Exp.	; Ce=1.0; Cs=1.00); Ct=1. [^]	10						
Bor chord	bracing		5)	Unbalanced	snow loads have b	een cor	nsidered for th	nis					
WEBS	1 Row at midpt	9-13 4-17 2-19		design.									
PEACTIONS	(cizo) 12_(0.2.9	L boaring block) (ro	a 6)	This truss ha	s been designed f	or great	er of min roof	live					
REACTIONS	(SIZE) 13=(0-3-0	- Mechanical	ч .	load of 12.0	osf or 1.00 times fl	at roof le	oad of 15.4 p	sf on					
	Max Horiz 21167 (overhangs no	on-concurrent with	other liv	/e loads.						
	Max Holiz 21=-107 (1013	12) 7)	This truss ha	s been designed f	or a 10.0) psf bottom						
	Max Opint 13=-291 ((1 C 2) 21 - 190 (LC	1 <i>2)</i>	chord live loa	ad nonconcurrent v	vith any	other live loa	ds.					
		(LC 3), 21=1000 (LC	3) 8)	* This truss h	as been designed	for a liv	e load of 20.0	Opsf					
FORCES	(Ib) - Maximum Com	pression/Maximum		on the botton	n chord in all areas	s where	a rectangle						
		4000/075		3-06-00 tall b	y 2-00-00 wide wi	l fit betv	veen the botto	om					
TOP CHORD	1-2=-2516/307, 2-4=	-1999/275,		chord and an	ly other members,	with BC	DL = 10.0psf						
	4-5=-1310/250, 5-0=	-1300/2/3,	9)	All bearings a	are assumed to be	SPF N	0.2.						
	1 21 - 1502/200 0 1	1_ 29/190, 9-10=0/32,	[,] 10) Refer to girde	er(s) for truss to tru	iss conr	nections.						
	20-21-166/307 10-	-20/104	11) Provide meci	nanical connection	(by oth	ers) of truss t	0				200	m
BOT CHOILD	17-19-186/1749 1	5_171 <u>4/</u> 030		bearing plate	capable of withsta	anding 1	90 ib uplift at	joint				8. OF M	AIG D
	13-15=-629/186 11-	13=-131/335	10	ZT and 29T in	o upilit at joint 13.		ith the 2010					BAE	000
WEBS	1-20=-202/2022 9-1	3=-968/318	12) This truss is	Designed in accord	ance w	100 me 2018	nd			6	AN	NON
WEbo	5-17=-130/810 8-13	=-2172/346						ina			R	SCOT	M. VEV
	4-17969/262 2-20	-103/204		R802.10.2 ar	la referencea stan	dard Ar	151/TPLT.				a	7 SEVI	ER \V
	2-19-559/194 4-10		₇ LC	DAD CASE(S)	Standard						MJ_	-	\ \
	6-15=-717/118 8-15	=-81/1831	• ,								100		
NOTES										_	X .	dall>>	(Lerren)
	No 2 boaring block 12"	long at it 12 attached	d to								W.	NUM	BER /
front face	with 2 rows of 10d (0	131"v3") naile encode	1.2"								N'	O PE-2001	018807
	al fasteners Rearing is	assumed to be SDF									N	m)	12A
No 2	a lasteners. Dealing is										X	1050	O'A
2) Unhalano	ed roof live loads have	heen considered for										ONA	LENS
this desig	n.											Que	The second

- front face with 2 rows of 10d (0.131"x3") nails spaced 3" o.c. 8 Total fasteners. Bearing is assumed to be SPF No.2.
- 2) Unbalanced roof live loads have been considered for this design.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

February 8,2024

Job	Truss	Truss Type	Qty	Ply	Lot 17 TCR	
230872	C6	Common	6	1	Job Reference (optional)	163476766

Run: 8,73 S Jan 4 2024 Print: 8,730 S Jan 4 2024 MiTek Industries, Inc. Tue Feb 06 14:22:20 ID:6UrzEu1TvVHe7eRPcELOeay6jcn-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 25.0 15.4/20.0 10.0 10.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018/TPI2014	CSI TC BC WB Matrix-S	0.69 1.00 0.94	DEFL Vert(LL) Vert(CT) Horz(CT) Wind(LL)	in -0.26 -0.42 0.05 0.08	(loc) 19-20 19-20 13 19-20	l/defl >999 >903 n/a >999	L/d 360 240 n/a 240	PLATES MT20 Weight: 159 lb	GRIP 197/144 FT = 10%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD WEBS FORCES TOP CHORD BOT CHORD BOT CHORD WEBS NOTES 1) 2x4 SPF N front face o.c. 8 Tota No.2. 2) Unbalance	2x4 SPF No.2 2x3 SPF No.2 *Exce No.2 Structural wood she 2-9-12 oc purlins, e Rigid ceiling directly bracing. 1 Row at midpt (size) 13=(0-3-8 0-4-2), 21 Max Horiz 21=-167 (Max Uplift 13=-291 (Max Uplift 13=-291 (Max Grav 13=2642 (lb) - Maximum Com Tension 1-2=-2633/321, 2-4= 4-5=-1330/258, 5-6 6-8=-1113/190, 8-9= 1-21=-1504/213, 9-1 20-21=-184/400, 19 17-19=-190/1777, 11 3-15=-629/186, 11 1-20=-196/2018, 9-1 5-17=-132/822, 6-17 6-15=-723/118, 8-15 8-13=-2183/346, 4-1 2-20=-55/254, 2-19= lo.2 bearing block 12" with 2 rows of 10d (0. I fasteners. Bearing is	ept* 21-1,11-9:2x4 SF athing directly applie- xcept end verticals. applied or 2-2-0 oc 9-13, 4-17, 2-19 8 + bearing block), (re =0-5-8 LC 13) LC 13), 21=-192 (LC (LC 3), 21=-192 (LC (LC 3), 21=-192 (LC (LC 3), 21=-192 (LC (LC 3), 21=-192 (LC -138)/798, 9-10=0/32 132-277, =-138/798, 9-10=0/32 132-287, =-138/798, 9-10=0/32 132-381/335 133=-967/318, 'z=-41/342, i33=-967/318, 'z=-41/342, i33=-967/318, 'z=-41/342, i33=-967/318, 'z=-41/342, i33=-967/318, 'z=-41/342, i33=-967/318, 'z=-41/342, i33=-967/318, 'z=-634/205, 4-19=0/65 long at jt. 13 attache 131*x3") nails spacer assumed to be SPF been considered for	 3) Wind: ASC Vasd=91n II; Exp C; cantilever right expo 4) TCLL: AS Plate DOL DOL=1.15 9 Partially E 5) Unbalance design. 6) This truss load of 12 3) 8) * This truss chord live 8) * This truss on the bot 3-06-00 ta chord and 9) All bearing pl 21 and 29 11) This truss Internation R802.10.2 LOAD CASE(E 7-16; Vult=115 ph; TCDL=6.0psf Enclosed; MWFRS left and right expo- sed; Lumber DOL- DE 7-16; Pr=25.0 [=1.15); Pg=20.0 p Plate DOL=1.15); qp.; Ce=1.0; Cs=1 d snow loads hav has been designe 0 psf or 1.00 time: non-concurrent w has been designe ind nonconcurrent s has been designe om chord in all ar- l by 2-00-00 wide any other membe s are assumed to achanical connect tate capable of with 1 lb uplift at joint 1 is designed in acc and referenced si 5) Standard	mph (3-see ; BCDL=6. S (envelopiesed; end v sed; end v esed; end v sf; Pf=15.4 ; Is=1.0; Re .00; Ct=1.7 re been cor ed for great s flat roof le vith other li d for a 10. nt with any need for a 110. nt with any need for a 110. nt with any eas where will fit betw rs, with BC be SPF Ne ion (by oth hstanding 1 3. cordance w de sections tandard AN	cond gust) 0psf; h=25ft; a) exterior zo vertical left ar grip DOL=1. f grip DOL=1. f un DOL= 4 psf (Lum) ugh Cat C; 10 10 10 is sidered for the order of the	Cat. ne; d 60 1.15 live sf on ds. Dpsf om ; joint				STATE OF M SCOTT SEVI PE-20010 PE-20010	MISSOLLE FM. ER SER O18807 L ENGINE

- No.2.
- 2) Unbalanced roof live loads have been considered for this design.

February 8,2024

16023 Swingley Ridge Rd. Chesterfield, MO 63017 314.434.1200 / MiTek-US.com

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent toulsable personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcscomponents.com)

Job	Truss	Truss Type	Qty	Ply	Lot 17 TCR	
230872	C7	Roof Special	2	1	Job Reference (optional)	163476767

Scale = 1:66.3

Run: 8.73 S Jan 4 2024 Print: 8.730 S Jan 4 2024 MiTek Industries, Inc. Tue Feb 06 14:22:20 ID:70vqNWSouyZqCt1xcNyN0ly6jcF-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

Plate Offsets (X, Y): [3:0-3-12,0-2-0], [10:0-2-8,0-1-8], [11:0-2-8,0-2-0]

						-							
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 25.0 20.4/20.0 10.0 10.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC20	118/TPI2014	CSI TC BC WB Matrix-S	0.94 0.82 0.88	DEFL Vert(LL) Vert(CT) Horz(CT) Wind(LL)	in -0.17 -0.28 0.04 0.06	(loc) 10-11 10-11 7 10-11	l/defl >999 >999 n/a >999	L/d 360 240 n/a 240	PLATES MT20 Weight: 114 lb	GRIP 197/144 FT = 10%
TOP CHORD BOT CHORD WEBS BRACING TOP CHORD	2x4 SPF No.2 2x4 SPF No.2 2x3 SPF No.2 *Exce Structural wood she except end verticals (3-11-12 max.): 2-3.	ept* 7-6:2x4 SPF No.2 athing directly applied , and 2-0-0 oc purlins	2 (2 (d,	 design. Provide adec This truss ha chord live loa * This truss f on the bottor 3-06-00 tall b 	quate drainage to as been designed ad nonconcurrent has been designe n chord in all are by 2-00-00 wide v	prevent for a 10. t with any ed for a liv as where will fit betw	water pondin 0 psf bottom other live loa re load of 20. a rectangle ween the bott	g. ads. Opsf					
BOT CHORD WEBS REACTIONS	Rigid ceiling directly bracing. 1 Row at midpt (size) 7=0-3-8, 7 Max Horiz 12=342 (I Max Uplift 7=-160 (L Max Grav 7=1372 (I	applied or 10-0-0 oc 6-7, 4-8, 3-10 12=0-5-8 _C 9) C 12), 12=-159 (LC 1 _C 3), 12=1345 (LC 4	(2) (6)	 Chord and ar All bearings Provide mec bearing plate 7 and 159 lb 10) This truss is International R802 10 2 a 	Ny other members are assumed to b hanical connection e capable of withs uplift at joint 12. designed in acco Residential Code and referenced sta	s, with BC be SPF N on (by oth standing 1 ordance w e sections andard AN	DL = 10.0ps o.2 . lers) of truss 160 lb uplift a vith the 2018 s R502.11.1 a vSI/TPI 1	to t joint and					
FORCES	(lb) - Maximum Com Tension 1-2=-108/46, 2-3=-1	pression/Maximum 882/232, 3-4=-1497/1	192,	11) Graphical pu or the orienta bottom chore	rlin representation ation of the purlin	along the	ot depict the set top and/or	size					
BOT CHORD WEBS	4-5=-738/177, 5-6=- 1-12=-137/43 11-12=-262/951, 10 8-10=-149/1259, 7-6 2-11=-120/1417, 3-6 2-12=-1430/180, 5-6 4-8=-1093/265, 4-10	697/197, 6-7=-1233/1 -11=-294/1861, 3=-105/81 1=-704/179, 6-8=-99 3=-68/408,)=0/671, 3-10=-699/1	196, ₁ /985, 60	LOAD CASE(S)	Standard							TE OF I	MISSOL
NOTES 1) Unbalance this design 2) Wind: ASC Vasd=91m II; Exp C; E	d roof live loads have E 7-16; Vult=115mph ph; TCDL=6.0psf; BC Enclosed; MWFRS (er	been considered for (3-second gust) DL=6.0psf; h=25ft; C nvelope) exterior zone	at. e;							~	R C	SCOT SEVI	I M. P.

 Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
 TCLL: ASCE 7-16; Pr=25.0 psf (roof LL: Lum DOL=1.15

3) TCLL: ASCE 7-16; PT=25.0 pst (root LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf; Pf=20.4 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat C; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10, Lu=50-0-0 February 8,2024

16023 Swingley Ridge Rd. Chesterfield, MO 63017 314.434.1200 / MiTek-US.com

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent colleges with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

Job	Truss	Truss Type	Qty	Ply	Lot 17 TCR	
230872	C8	Roof Special	2	1	Job Reference (optional)	163476768

Run: 8.73 S Jan 4 2024 Print: 8.730 S Jan 4 2024 MiTek Industries, Inc. Tue Feb 06 14:22:21 ID:bDTCasSQfFhgp1c8A5UcZyy6jcE-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

CDoi7J4zJC?f

Scale = 1:66.3

Plate Offsets (X, Y): [1:Edge,0-2-11], [3:0-3-6,Edge], [10:0-2-8,0-1-8]

Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10, Lu=50-0-0

Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 25.0 20.4/20.0 10.0 10.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018	3/TPI2014	CSI TC BC WB Matrix-S	0.57 0.92 0.86	DEFL Vert(LL) Vert(CT) Horz(CT) Wind(LL)	in -0.27 -0.43 0.04 0.05	(loc) 10-11 10-11 7 10-11	l/defl >999 >676 n/a >999	L/d 360 240 n/a 240	PLATES MT20 Weight: 115 lb	GRIP 197/144 FT = 10%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD WEBS REACTIONS	2x4 SPF No.2 2x4 SPF No.2 2x3 SPF No.2 *Exce Structural wood shea 4-3-10 oc purlins, e: 2-0-0 oc purlins (5-2 Rigid ceiling directly bracing. 1 Row at midpt (size) 7=0-3-8, 1 Max Horiz 12=342 (L Max Uplift 7=-160 (Li Max Grav 7=1372 (L	pt* 7-6:2x4 SPF No. athing directly applie xcept end verticals, a -13 max.): 2-3. applied or 2-2-0 oc 6-7, 4-8 2=0-5-8 .C 9) C 12), 12=-159 (LC C 12), 12=-159 (LC	4) 2 5) 6) 2 7) and 7) 8) 9) 12) 10	Unbalanced design. Provide adec This truss ha chord live loa * This truss h on the bottom 3-06-00 tall b chord and ar All bearings a Provide mech bearing plate 12 and 160 ll) This truss is International R802 10 2 ar	snow loads have to uate drainage to p s been designed f d nonconcurrent as been designed n chord in all areas y 2-00-00 wide wi y other members, are assumed to be nanical connection capable of withsto o uplift at joint 7. designed in accorr Residential Code of referenced star	been cor prevent to or a 10.0 with any for a liv s where Il fit betw with BC SPF NG SPF NG (by oth anding 1 dance w sections idard AD	vater ponding by state ponding by psf bottom other live loa e load of 20.0 a rectangle veen the botto DL = 10.0psf o.2. ers) of truss t 59 lb uplift at ith the 2018 R502.11.1 a ISJ/TPI 1	nis g. ds. Dpsf om joint nd					
FORCES	(lb) - Maximum Com Tension 1-2=-1440/161, 2-3= 3-4=-1463/197, 4-5=	pression/Maximum 1221/183, 748/173, 5-6=-696/	11 ^{197,} LC) Graphical pu or the orienta bottom chord DAD CASE(S)	rlin representation tion of the purlin a Standard	does no along the	ot depict the s top and/or	ize					
BOT CHORD	6-7=-1230/197, 1-12 11-12=-328/146, 10- 8-10141/1250, 7-8	=-1305/170 11=-271/1610, 104/81											
WEBS	2-11=0/412, 6-8=-10 5-8=-55/357, 4-8=-10 3-10=-499/170, 3-11	104/81 2/987, 1-11=-97/131 071/246, 4-10=-7/72 =-670/107	l6, 6,								E	TE OF M	AISSOL
NOTES											B	SCOTT	M
1) Unbalance	ed roof live loads have	been considered for									A	/ SEVI	ER Y
this design 2) Wind: ASC Vasd=91n II; Exp C; cantilever right expo: 3) TCLL: AS Plate DOL DOL=1.15	h. CE 7-16; Vult=115mph ph; TCDL=6.0psf; BCI Enclosed; MWFRS (en left and right exposed sed; Lumber DOL=1.6(CE 7-16; Pr=25.0 psf; (=1.15); Pg=20.0 psf; P Plate DOL=1.15); Is=	(3-second gust) DL=6.0psf; h=25ft; C velope) exterior zon ; end vertical left and 0 plate grip DOL=1.6 roof LL: Lum DOL=1 Y=20.4 psf (Lum 1.0; Rough Cat C;	Cat. e; d .00 .15							د م	A PILO	PE-20010	L ENGINE

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent toulsable personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcscomponents.com)

February 8,2024

Job	Truss	Truss Type	Qty	Ply	Lot 17 TCR	
230872	C9	Roof Special	2	1	Job Reference (optional)	163476769

Scale = 1:66.3

Run: 8,73 S Jan 4 2024 Print: 8,730 S Jan 4 2024 MiTek Industries, Inc. Tue Feb 06 14:22:21 ID:6UrzEu1TvVHe7eRPcELOeay6jcn-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Plate Offsets (X, Y): [1:Edge,0-1-12], [2:0-4-0,0-1-15], [10:0-2-8,0-1-8]

					1								
Loading	(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15		тс	0.82	Vert(LL)	-0.11	10-11	>999	360	MT20	197/144
Snow (Pf/Pg)	20.4/20.0	Lumber DOL	1.15		BC	0.67	Vert(CT)	-0.18	10-11	>999	240		
TCDL	10.0	Rep Stress Incr	YES		WB	0.79	Horz(CT)	0.03	7	n/a	n/a		
BCLL	10.0*	Code	IRC2018	3/TPI2014	Matrix-S		Wind(LL)	0.04	10-11	>999	240		
BCDL	10.0											Weight: 117 lb	FT = 10%
LUMBER TOP CHORD	2x4 SPF No.2		3)	TCLL: ASCE Plate DOL=1	7-16; Pr=25.0 psf .15); Pg=20.0 psf;	(roof LL Pf=20.4	.: Lum DOL= l psf (Lum	1.15					
WEBS	2x4 SPF No.2 2x3 SPF No.2 *Excep No.2	ot* 7-6,12-1:2x4 SPF	= 4)	Partially Exp Unbalanced	.; Ce=1.0; Cs=1.00 snow loads have b	; Ct=1. een cor	10, Lu=50-0-0 nsidered for t	0 his					
BRACING			C)	aesign.	u oto ducine na te n		unter nondin	~					
TOP CHORD	Structural wood shea 2-2-0 oc purlins, exc 2-0-0 oc purlins (5-0-	athing directly applie ept end verticals, ar 8 max.): 2-3.	dor 5) nd 6)	This truss ha	quate drainage to p is been designed fo ad nonconcurrent w	or a 10.0 vith any	other live loa	g. ads.					
BOT CHORD	Rigid ceiling directly a bracing.	applied or 10-0-0 oc	()	on the bottor	nas been designed n chord in all areas	tor a liv where	e load of 20.1 a rectangle	Upst					
WEBS	1 Row at midpt 4	4-8, 6-7		3-06-00 tall t	by 2-00-00 wide wil	I fit betv	veen the bott	om					
REACTIONS	(size) 7=0-3-8, 12	2= Mechanical	•	chord and ar	ny other members,	with BC	DL = 10.0ps	t.					
	Max Horiz 12=342 (L0	C 9)	8)	All bearings	are assumed to be	SPF N	5.2.						
	Max Uplift 7=-157 (LC	C 12), 12=-157 (LC ²	12) 9)	Refer to gird	er(s) for truss to tru	ISS CON	ections.	4.0					
	Max Grav 7=1359 (L0	C 3), 12=1361 (LC 4	16)) Provide med		(by Oiri andina 1	57 lb uplift of	lU t ioint					
FORCES	(lb) - Maximum Comr	pression/Maximum		12 and 157 l	b unlift at joint 7	inung i	57 ib upint a	t joint					
	Tension		11) This truss is	designed in accord	lance w	ith the 2018						
TOP CHORD	1-2=-1457/178, 2-3=-	-1213/210,		International	Residential Code	sections	R502.11.1 a	and					
	3-4=-1346/204, 4-5=-	735/169, 5-6=-692/	195,	R802.10.2 a	nd referenced stan	dard AN	ISI/TPI 1.						
	6-7=-1223/193, 1-12=	=-1222/187	12) Graphical pu	rlin representation	does no	ot depict the	size					
BOT CHORD	11-12=-326/202, 10-1	11=-211/1409,		or the orienta	ation of the purlin a	long the	top and/or						m
	8-10=-143/1184, 7-8=	=-105/81		bottom chore	l.	0						O TI	A A A A A A A A A A A A A A A A A A A
WEBS	2-11=0/356, 3-11=-41	14/28, 4-8=-989/241	· LC	DAD CASE(S)	Standard							FE OF M	IISS A
	5-8=-46/339, 6-8=-99	9/974, 1-11=-73/119	2,								4	N	NS
	3-10=-446/138, 4-10=	=-36/714									H	SCOTT	MNEN
NOTES											u		N N

Unbalanced roof live loads have been considered for 1) this design.

Wind: ASCE 7-16; Vult=115mph (3-second gust) 2) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60

 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.
 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not besign value to dury with with where outputs into design is based only door parameters shown, and is for an individual building design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members and property incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TPH1 Quality Criteria**, and **DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcscomponents.com)

Job	Truss	Truss Type	Qty	Ply	Lot 17 TCR	
230872	C10	Roof Special	2	1	Job Reference (optional)	163476770

Run: 8,73 S Jan 4 2024 Print: 8,730 S Jan 4 2024 MiTek Industries, Inc. Tue Feb 06 14:22:21 ID:EicSOW_yrHnDe17eNOHSUky6jcr-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:66.3

Plate Offsets	(X,	Y):	[10:0-2-	-8,0-1-8
---------------	-----	-----	----------	----------

Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 25.0 20.4/20.0 10.0 10.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018	3/TPI2014	CSI TC BC WB Matrix-S	0.57 0.88 0.84	DEFL Vert(LL) Vert(CT) Horz(CT) Wind(LL)	in -0.25 -0.40 0.03 0.04	(loc) 10-11 10-11 7 10-11	l/defl >999 >726 n/a >999	L/d 360 240 n/a 240	PLATES MT20 Weight: 115 lb	GRIP 197/144 FT = 10%	
LUMBER TOP CHORD BOT CHORD WEBS	2x4 SPF No.2 2x4 SPF No.2 2x3 SPF No.2 *Exce No.2	pt* 7-6,12-1:2x4 SPI	3) = 4)	TCLL: ASCE Plate DOL=1 DOL=1.15 Pl Partially Exp Unbalanced design	7-16; Pr=25.0 ps .15); Pg=20.0 ps ate DOL=1.15); I ;; Ce=1.0; Cs=1.0 snow loads have	sf (roof LL sf; Pf=20.4 ls=1.0; Rc 00; Ct=1.1 been con	: Lum DOL= psf (Lum pugh Cat C; 0, Lu=50-0-0 usidered for th	1.15) his						
TOP CHORD	Structural wood sheat 4-4-14 oc purlins, ex 2-0-0 oc purlins, (5-4-	athing directly applie xcept end verticals, a	d or 5) and 6)	Provide adec This truss ha chord live loa	uate drainage to s been designed ad nonconcurrent	prevent v for a 10.0 t with any	vater ponding) psf bottom other live loa	g. Ids.						
BOT CHORD WEBS REACTIONS	Rigid ceiling directly bracing. 1 Row at midpt (size) 7=0-3-8, 1 Max Horiz 12=342 (I	applied or 10-0-0 oc 6-7, 4-8 2= Mechanical (- 11)	7) 8)	* This truss h on the bottor 3-06-00 tall b chord and an All bearings	as been designe n chord in all area by 2-00-00 wide w ay other members are assumed to b	ed for a live as where vill fit betw s, with BC be SPF No	e load of 20.0 a rectangle veen the botto DL = 10.0ps o.2.	Opsf om f.						
	Max Uplift 7=-157 (L Max Grav 7=1359 (L	C 12), 12=-157 (LC - .C 3), 12=1350 (LC -	12) 9) 16) 10)	Refer to girde Provide mec bearing plate	er(s) for truss to t hanical connectic capable of withs	truss conn on (by othe standing 1	ections. ers) of truss t 57 lb uplift at	to t joint						
FORCES TOP CHORD	(lb) - Maximum Com Tension 1-2=-1357/154, 2-3= 3-4=-1430/193, 4-5=	pression/Maximum -1159/171, -742/171, 5-6=-689/	11) 196,	12 and 157 ll) This truss is International R802.10.2 ar	o uplift at joint 7. designed in acco Residential Code nd referenced sta	ordance wi e sections andard AN	th the 2018 R502.11.1 a	ind						
BOT CHORD	6-7=-1217/194, 1-12 11-12=-327/149, 10- 8-10=-143/1229, 7-8 2-11=0/405, 6-8=-99	=-1290/168 11=-258/1532, =-104/81 /977, 1-11=-92/1245	12)) Graphical pu or the orienta bottom chore	rlin representatio ation of the purlin I.	n does no along the	ot depict the s top and/or	size				OF M		
NOTES	5-8=-53/351, 4-8=-10 3-10=-433/158, 3-11	045/242, 4-10=-1/68 =-679/113	2, LO	AD CASE(S)	Siandard						B	STATE SCOTT	M. M.	

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60

 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.
 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not besign value for use only with with twit even connectors. This design is based only upon parameters shown, and is for an individual building designer must verify the applicability of design parameters and properly incorporate this design into the overall building designer must verify the applicability of design parameters and properly incorporate this design into the overall building designer. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcscomponents.com)

Job	Truss	Truss Type	Qty	Ply	Lot 17 TCR	
230872	D1	Piggyback Base	2	1	Job Reference (optional)	163476771

Run: 8.73 S Jan 4 2024 Print: 8.730 S Jan 4 2024 MiTek Industries, Inc. Tue Feb 06 14:22:22 ID:WFyq9TSMCIESMGmBo9U8iSy6jdX-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

Scale = 1:72.4

Plate Offsets (X, Y): [2:Edge,0-3-8]	, [6:0-4-4,0-2-8], [9:0	-4-0,0-2	2-8], [11:Edge,0	-3-8], [13:Edge,0-2	2-8]								
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 25.0 20.4/20.0 10.0 10.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-(1.15 1.15 YES IRC2) 018/TPI2014	CSI TC BC WB Matrix-S	0.71 0.83 0.77	DEFL Vert(LL) Vert(CT) Horz(CT) Wind(LL)	in -0.39 -0.58 0.16 0.07	(loc) 16-18 16-18 21 16-18	l/defl >999 >770 n/a >999	L/d 360 240 n/a 240	PLATES MT20 Weight: 182 I	GRIP 197/144 b FT = 10%	
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD 1 Row at midp WEBS REACTIONS FORCES TOP CHORD BOT CHORD	2x4 SPF No.2 2x4 SPF 2100F 1.8I SPF No.2, 14-13,12 2x3 SPF No.2 *Exce 1.8E, 11-9,19-3:2x4 No.2 2x4 SPF No.2 Structural wood she 2-9-3 oc purlins, ex 2-0-0 oc purlins (3-6 Rigid ceiling directly bracing, Except: 6-0-0 oc bracing: 15 t 7-14 1 Row at midpt (size) 19=0-3-8. Max Horiz 19=218 (I Max Uplift 19=-22 (L Max Grav 19=2112 (Ib) - Maximum Corr Tension 1-2=0/35, 2-3=-850/ 5-6=-2329/59, 6-7=- 8-9=-1806/43, 9-10= 10-20=0/1799, 2-19 18-19=-155/2842, 1 15-16=-62/5, 14-15= 13-14=0/44, 12-13= 11-12=-42/1360	E *Except* 15-7,13- -11:2x4 SPF No.2 apt* 11-10:2x4 SPF No.2 SPF No.2, 19-2:2x6 Pathing directly applie coept end verticals, a 5-12 max.): 6-9. 4 applied or 10-0-0 o 5-16. 6-16, 7-12, 9-11, 3- 5-16 , 21=0-3-2 LC 9) .C 12) (LC 3), 21=2027 (LC npression/Maximum /92, 3-5=-3198/49, -2221/62, 7-8=-1802 =-290/55, 11-20=0/1 =-603/94 6-18=-87/2521, =0/72, 7-14=-307/29 0/207, 8-12=-486/98	3:2x3 2100F 3 SPF ed or ind c 19, (45, 799, 5, 3,	WEBS NOTES 1) Unbalancı this desigi 2) Wind: ASG Vasd=91r II; Exp C; and right a Lumber D 3) TCLL: AS Plate DOL DOL=1.15 Partially E 4) Unbalancı design. 5) This truss load of 12 overhangi 6) Provide ar 7) This truss chord live 8) * This trus on the bot 3-06-00 ta chord and 9) WARNING than input 10) All bearing 11) Bearing an generation of the second	6-16=-23/542, 1 6-14=-65/549, 1 7-12=-621/35, 9 9-11=-1977/44, 3-18=-187/134, 10-21=-2083/0 ad roof live loads h 227-16; Vult=1150; 227-16; Vult=1150; 227-16; Vult=1150; 227-16; Vult=1150; 227-16; Pr=25.0 p Plate DOL=1.150; Pg=20.0 p Plate DOL=1.150; 27-16; Pr=25.0 p Plate DOL=1.150; 27-16; 2	4-16=-40/2 2-14=-76/2 -12=-49/16 3-19=-253 5-18=0/66 ave been of mph (3-sec BCDL=6. 6 (envelope cal left and 0 DCL=1.60 0 (c1=1.1) sf; Pf=20.4 (ls=1.0; Rt 0.0) (c1=1.1) e been con d for great s flat roof I is flat roof I is flat roof I is flat roof I with other li o prevent of d for a 10. nt with any ed for a 10. nt with any ed for a 10. the with BC g size at jc be SPF N ers paralle rain formul ity of bear	2135, 2233, 327, 8/0, 2, 5-16=-887/ considered for considered for sond gust) 0psf; h=25ft; a); cantilever b; cantilever considered for the ter of min roof pough Cat C; 10, Lu=50-0-6 nsidered for the er of min roof pou	(133, or Cat. left ed; 1.15) his f live sf on g. ds. Opsf om f. atter	12) Pro bea 19. 13) This Inte R80 14) Gra or t bott LOAD (vide me tring plat s truss is rnationa 02.10.2 a phical p he orien tom chor CASE(S)	chanic te capa s desig al Resi and red urlin re tation o rd.) Sta	cal connection (able of withstam gned in accorda dential Code se ferenced standa epresentation d of the purlin alo indard	by others) of truss to ding 22 lb uplift at joint nce with the 2018 ctions R502.11.1 and ard ANSI/TPI 1. bes not depict the size ng the top and/or MISSOLUTI MISSOLUTI TT M. VIER 1018807	

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent colleges with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

16023 Swingley Ridge Rd. Chesterfield, MO 63017 314.434.1200 / MiTek-US.com

February 8,2024

Job	Truss	Truss Type	Qty	Ply	Lot 17 TCR	
230872	D2	Piggyback Base	2	1	Job Reference (optional)	163476772

Run: 8.73 S Jan 4 2024 Print: 8.730 S Jan 4 2024 MiTek Industries, Inc. Tue Feb 06 14:22:23 ID:dy36VbxO3V_WxwNTp6bmcGy6mwe-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

plift at joint

2018 .11.1 and יו 1.

ict the size nd/or

16023 Swingley Ridge Rd. Chesterfield, MO 63017 314.434.1200 / MiTek-US.com

TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	25.0 20.4/20.0 10.0 10.0* 10.0	Plate Grip DOL Lumber DOL Rep Stress Incr Code	1.15 1.15 YES IRC2018	3/TPI2014	TC BC WB Matrix-S	0.99 0.83 0.76	Vert(LL) Vert(CT) Horz(CT) Wind(LL)	-0.33 -0.53 0.31 0.12	(100) 14-15 14-15 23 6	>999 >852 n/a >999	360 240 n/a 240	MT20 Weight: 239 lb	197/144 FT = 10
LUMBER TOP CHORD BOT CHORD WEBS	2x4 SPF No.2 *Exce 2.0E 2x3 SPF No.2 *Exce 3-19:2x4 SPF 2100F 18-16,15-14,13-12:2 2x3 SPF No.2 *Exce	pt* 1-5:2x6 SP 2400F pt* 2-21:2x6 SPF No 1.8E, x4 SPF No.2 pt* 21-3:2x6 SPF No	.2, .2, .2, NC	EBS D TES	3-21=0/151, 4- 17-19=-64/1859 7-17=-621/102, 7-15=-61/574, 8-13=-607/35, 10-12=-1961/43	19=-1244/1 9, 7-19=-15 15-17=-44 13-15=-74/2 10-13=-48/1 3, 4-20=0/3	05, 6/1754, /2072, 2209, 1614, 87, 11-23=-20)70/0	12) Bea usir des 13) Pro bea 2. 14) This	aring at j ng ANSI iigner sh vide me iring pla s truss is	oint(s) /TPI 1 ould vo chanic te capa s desig	23 considers para angle to grain forr erify capacity of b al connection (by able of withstandir ned in accordanc	allel to gra nula. Bui earing sui others) of ng 12 lb ui re with the
OTHERS LBR SCAB WEDGE BRACING TOP CHORD BOT CHORD	19-7,12-10:2x4 SPF 2100F 1.8E 2x4 SPF No.2 1-5 SP 2400F 2.0E Left: 2x4 SPF No.2 Structural wood shee except end verticals, (3-7-2 max.): 7-10. Rigid ceiling directly bracing, Except: 6-0-0 oc bracing: 2-2	No.2, 12-11:2x4 SPF one side athing directly applied and 2-0-0 oc purlins applied or 10-0-0 oc 21,16-17.	- 1) 2) 1, 3) 4)	Attached 1 2.0E with 2 o.c.except row(s) at 4 Unbalance this design Wind: ASC Vasd=91m II; Exp C; I and right e Lumber DO TCLL: ASC	4-0-0 scab 1 to 5 2 row(s) of 10d (0 : starting at 0-2-1 " o.c. for 3-5-2. d roof live loads L E 7-16; Vult=115 E 7-16; Vult=16.0ps Enclosed; MWFR exposed; end ver DL=1.60 plate gri DE 7-16; Pr=25.0	i, front face 1.131"x3") n 14 from end have been 5mph (3-see f; BCDL=6.1 S (envelope tical left and p DCL=1.6 psf (roof LL psf (roof LL	(s) 2x6 SP 24 ails spaced 9 l at joint 1, nai considered fo cond gust) Opsf; h=25ft; (e); cantilever d right expose 0 :: Lum DOL= l pof (lum	00F " il 2 r Cat. left ed; 1.15	Inte R8(15) Gra or t bott	rnationa)2.10.2 : Iphical p he orien tom cho CASE(S	al Resid and ref urlin re tation o rd.) Sta	Jential Code sect erenced standarc presentation doe of the purlin along ndard	ons R502 ANSI/TP s not depi the top a
Reactions	1 Row at midpt (size) 2=0-3-8, 2 Max Horiz 2=211 (LC Max Uplift 2=-12 (LC Max Grav 2=2115 (L	4-19, 7-17, 8-13, 10- 3=0-3-2 5 9) 12) C 3), 23=2013 (LC 3	12 5)) 6)	DOL=1.15 Partially E: Unbalance design. This truss load of 12.	Plate DOL=1.15 xp.; Ce=1.0; Cs= id snow loads have has been designe 0 psf or 1.00 time	ed for great es flat roof l	er of min roof oad of 15.4 ps) his live sf on				NIE OF M	AISSO
TOP CHORD	(lb) - Maximum Com Tension 1-2=0/6, 2-3=-1297/(4-6=-3376/66, 6-7=-3 8-9=-1788/44, 9-10= 10-11=-289/55, 12-2	pression/Maximum), 3-4=-4328/58, 3335/158, 7-8=-2197, -1792/42, 2=0/1786, 11-22=0/1	7) 8) /60, ⁹⁾	overhangs Provide ad This truss chord live * This truss	non-concurrent v lequate drainage has been designe load nonconcurre s has been desig	with other line to prevent y ed for a 10. ant with any ned for a live	ve loads. water ponding 0 psf bottom other live loa ve load of 20.0	g. ds. Opsf			*	SCOTI SEVI	I M. ER
BOT CHORD	2-21=-99/0, 3-20=-1(19-20=-166/3966, 18 6-19=-443/131, 17-1 15-16=0/113, 8-15=- 13-14=0/208, 9-13=-	56/3967, 3-19=0/159, 8=0/141, 16-17=-38/ 303/289, 14-15=0/44 487/98, 12-13=-41/13	^{13,} 10 , ³⁵⁰ 11	3-06-00 ta chord and) WARNING than input) All bearing	Il by 2-00-00 wide any other membe B: Required bearing bearing size. Is are assumed to	will fit betw ers, with BC ng size at jo be SPF No	ween the botto CDL = 10.0psf bint(s) 23 great	om 1. ater			AN A	PE-20010)18807 L ENC

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent colleges with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

Job	Truss	Truss Type	Qty	Ply	Lot 17 TCR	
230872	D3	Piggyback Base	6	1	Job Reference (optional)	163476773

Run: 8.73 S Jan 4 2024 Print: 8.730 S Jan 4 2024 MiTek Industries, Inc. Tue Feb 06 14:22:23 ID:P0BL?rVtG_kuru3y1?Z4sIy6jdT-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

February 8,2024

16023 Swingley Ridge Rd. Chesterfield, MO 63017 314.434.1200 / MiTek-US.com

Scale = 1:73.3

Plate Offsets (X	, Y): [2:0-1-0,0-2-0],	[5:0-4-0,Edge], [7:0-	-4-8,0-1-12], [10:0-3-8,0	-2-4], [14:0-8-0),0-3-8], [22:0	-7-7,0-2-6]							
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 25.0 20.4/20.0 10.0 10.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018	3/TPI2014	CSI TC BC WB Matrix-S	0.99 0.92 0.89	DEFL Vert(LL) Vert(CT) Horz(CT) Wind(LL)	in -0.39 -0.61 0.40 0.13	(loc) 14-15 14-15 24 6	l/defl >999 >731 n/a >999	L/d 360 240 n/a 240	PLATES MT20 Weight: 260 II	GRIP 197/144 p FT = 10%	
LUMBER TOP CHORD BOT CHORD WEBS OTHERS LBR SCAB BRACING TOP CHORD 1 Row at midpt WEBS REACTIONS (6 N FORCES TOP CHORD	2x4 SPF No.2 *Excep 2.0E 2x4 SPF No.2 *Excep 2.0E, 3-19:2x4 SPF 2 2x3 SPF No.2 2x3 SPF No.2 *Excep 2:-21,19-7,15-9,12-1 12-11:2x4 SPF 2100 2x4 SPF No.2 1-5 SP 2400F 2.0E of Structural wood sheat except end verticals, (3-2-5 max.): 7-10. Rigid ceiling directly bracing, Except: 6-0-0 oc bracing: 16- 2-2-0 oc bracing: 14- 8-15, 9-14 1 Row at midpt 2 Rows at 1/3 pts size) 2=0-3-8, 2 Aax Horiz 2=248 (LC Aax Oplift 2=-24 (LC Aax Grav 2=2095 (L (lb) - Maximum Comp Tension 1-2=0/11, 2-3=-1339, 4-6=-3389/61, 6-7=-3 8-9=-2235/62, 9-10= 10-11=-199/88, 12-2: 11-23=-8/1868	pt* 1-5:2x6 SP 2400 pt* 2-22:2x8 SP 240 2100F 1.8E, 6-18:2x pt* 10:2x4 SPF No.2, F 1.8E one side athing directly applie and 2-0-0 oc purlins applied or 10-0-0 oc -17 -15. 4-19, 7-17 10-12 -29 -12) C 3), 24=2021 (LC 3 pression/Maximum /0, 3-4=-4373/52, 3349/155, 7-8=-2221 -1436/32, 3=-8/1868,	BC IF BC BC BC BC BC BC BC BC BC BC	DT CHORD T CHORD EBS DTES Attached 14 2.0E with 2 o.c.except : row(s) at 3" Unbalancet this design. Wind: ASCI Vasd=91mp II; Exp C; E and right ex Lumber DO TCLL: ASCI Plate DOL= DOL=1.15 I Partially Ex Unbalancet design. This truss h load of 12.0 overhangs I Provide add This truss h	2-22=0/0, 3-2 19-20=-161/33 6-19=-444/13 15-16=0/116, 14-15=-83/144 9-14=-1167/13 21-22=-23/33 17-19=-96/184 7-17=-620/116 7-15=-45/601, 12-14=-70/100 10-12=-2163/6 1-0-0 scab 1 to row(s) of 10d (starting at 0-3 o.c. for 3-5-9. I roof live loads 57-16; Vult=11 bh; TCDL=6.0p nclosed; MWF posed; end ve L=1.60 plate g E 7-16; Pr=255. 1.15); Pg=20.0 Plate DOL=1.1 b; Ce=1.0; Cs a so been design psf or 1.00 tim non-concurrent guate drainag	1=-161/3983, 983, 18-19=0, 5, 17-18=0/14 8-15=-591/11 56, 13-14=0/1 36, 12-13=-2/ 5, 4-19=-1252 5, 4-19=-1252 64, 7-19=-144 6, 15-17=-76/ , 9-15=-44/11 68, 10-14=-65 66, 4-20=0/43 5, front face((0.131"x3") na -0 from end a s have been co 15mph (3-sec sf; BCDL=6.0 0 psf; CP1=20.4 (0 psf; Pf=20.4 5); Is=1.0; Rc entical left and rip DOL=1.60 0 psf; CP1=0.0; Rc =1.00; Ct=1.1 ave been con ned for greate nes flat roof lc t with other live e to prevent w	20-21=-161, /161, 99, 16-17=-3: 13, 195, 39 2/96, 1/1754, 2076, 94, 5/1814, 94, 11-24=-2: s) 2x6 SP 2/ ails spaced 9 t joint 1, nail considered for ond gust) 0psf; h=25ft; b); cantilever r right expose); cantilever r sf (Lum pugh Cat C; 0, Lu=50-0-(isidered for t er of min rool and of 15.4 p re loads. vater pondin.	/3983, 9/32, 072/0 400F " 2 or Cat. left ed; 1.15 0 his f live sf on g.	9) * Tr on t 3-00 cho 10) WA thau 11) All I 12) Bee usir des 13) Pro bea 2. 14) This Inte R80 15) Gra or tt bott LOAD (his truss he botto 5-00 tall rd and a RNING: n input b bearings ing ANSI/ igner sh vide mer ring plat s truss is rnationa 02.10.2 a phical p phe orient om chor CASE(S)	has be m choo by 2-0 ny oth Requi are as joint(s) TPI 1 ; ould vc chanic(e capa desig I Resic und ref d. Star	en designed for rd in all areas v 0-00 wide will fi er members, w red bearing size size. ssumed to be S 24 considers p angle to grain fi erify capacity of able of withstan- ned in accordal dential Code se erenced standa presentation du of the purlin aloo ndard	r a live load of 20.0ps where a rectangle t between the bottom th BCDL = 10.0psf. a at joint(s) 24 greate PF No.2. arallel to grain value ormula. Building bearing surface. by others) of truss to ding 24 lb uplift at join nce with the 2018 ctions R502.11.1 and rd ANSI/TPI 1. beas not depict the size ng the top and/or MISSOUT M. TER 1018807	sf 1 r nt 1 e

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent colleges with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

Job	Truss	Truss Type	Qty	Ply	Lot 17 TCR	
230872	D4	Piggyback Base	2	1	Job Reference (optional)	163476774

Run: 8.73 S Jan 4 2024 Print: 8.730 S Jan 4 2024 MiTek Industries, Inc. Tue Feb 06 14:22:24 ID:pbtTdsYIZv6TiLoXj76nUxy6jdQ-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

32-4-0 6-3-0 12-3-8 18-4-0 23-4-8 30-7-8 37-8-0 6-3-0 6-0-8 6-0-8 5-0-8 7-3-0 1-8-8 5-4-0 6x6= 2x4 II 4x8= 6x6= 7 ⊠ 6 23 24 8 9 3x4 🧔 6x6 II 3x6 🞜 10 5 21 1-4-0 12 6 4 10-0-0 4x8 ≠ 322 3x6= 0-0-9 4-6-0 10x12= 2 1-6-0 1-6-0 0-10-0 27 П 15 12 ۲ 11 26 17 18 25 16 2x4 🛛 3x6 II 8x8= 3x4= 4x8= 5x12= 6x12= 7x12= 37-8-0 || 0-3-8 9-3-4 18-5-4 23-6-4 30-5-12 37-4-8 5-1-0 9-3-4 9-2-0 6-11-8 6-10-12

Scale = 1:69.8

Plate Offsets (X, Y): [2:Edge,0-3-8], [6:0-4-4,0-2-8], [9:0-3-8,0-2-4], [13:0-8-0,0-3-8]

Loading	(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15		тс	0.86	Vert(LL)	-0.40	16-18	>999	360	MT20	197/144
Snow (Pf/Pg)	20.4/20.0	Lumber DOL	1.15		BC	0.92	Vert(CT)	-0.59	16-18	>756	240		
TCDL	10.0	Rep Stress Incr	YES		WB	0.90	Horz(CT)	0.27	21	n/a	n/a		
BCLL	10.0*	Code	IRC2018	3/TPI2014	Matrix-S		Wind(LL)	0.08	7-14	>999	240		
BCDL	10.0											Weight: 201 lb	FT = 10%
LUMBER			1)	Unbalanced	roof live loads have	e been o	considered fo	or	LOAD	CASE(S)	Sta	ndard	
TOP CHORD	2x4 SPF No.2			this design.									
BOT CHORD	2x4 SPF No.2 *Exc 2100F 1.8E	ept* 19-17,17-15:2x4	SPF 2)	Wind: ASCE Vasd=91mph	7-16; Vult=115mpl ; TCDL=6.0psf; B0	h (3-seo CDL=6.0	ond gust))psf; h=25ft; (Cat.					
WEBS	2x3 SPF No.2 *Exc	ept* 14-8,11-9,19-3:2:	x4	II; Exp C; En	closed; MWFRS (e	envelope); cantilever	left					
	SPF No.2, 11-10:2x	4 SPF 2100F 1.8E,		and right exp	osed ; end vertical	left and	I right expose	ed;					
	19-2:2x6 SPF No.2			Lumber DOL	=1.60 plate grip D0	OL=1.60)						
OTHERS	2x4 SPF No.2		3)	TCLL: ASCE	7-16; Pr=25.0 psf	(roof LL	: Lum DOL=	1.15					
BRACING				Plate DOL=1	.15); Pg=20.0 pst;	Pt=20.4	pst (Lum						
TOP CHORD	Structural wood she	eathing directly applie	d or	DOL=1.15 PI	ale DOL=1.15); IS=	= 1.0; K0							
	2-9-1 oc purlins, ex	cept end verticals, ar	nd (1)	Unbalanced	, Ce=1.0, CS=1.00 snow loads have b	een cor	sidered for th	his					
	2-0-0 oc purlins (3-2	2-0 max.): 6-9.	•,	design.		0011 001							
BOT CHORD	bracing Except	applied of 2-2-0 oc	5)	This truss ha	s been designed fo	or great	er of min roof	live					
1 Row at midp	t 7-14 8-13			load of 12.0 p	osf or 1.00 times fla	at roof le	oad of 15.4 p	sf on					
WEBS	1 Row at midpt	5-16, 6-16, 3-19		overhangs no	on-concurrent with	other liv	/e loads.						
WEBS	2 Rows at 1/3 pts	9-11	6)	Provide adec	uate drainage to p	revent	vater ponding	g.					
REACTIONS	(size) 19=0-3-8	. 21=0-3-2. (reg. 0-3-3	3) 7)	This truss ha	s been designed fo	or a 10.0) psf bottom						
	Max Horiz 19=255 (LC 9)	, 	* This truce h	a nonconcurrent w	for a liv	other live loa	ias. Doof					
	Max Uplift 19=-24 (I	_C 12)	0)	on the botton	as been designed	where	e ioau oi 20.0 a rectande	Jpsi					
	Max Grav 19=2121	(LC 3), 21=2035 (LC	3)	3-06-00 tall b	v 2-00-00 wide wil	l fit betv	een the bott	om					
FORCES	(lb) - Maximum Cor	npression/Maximum		chord and an	y other members,	with BC	DL = 10.0psf	f.					5
	Tension		9)	WARNING: F	Required bearing s	ize at jo	int(s) 21 grea	ater				A DE	APR -
TOP CHORD	1-2=0/35, 2-3=-846	/87, 3-5=-3210/50,		than input be	aring size.							F. OF M	AISS OF
	5-6=-2346/62, 6-7=	-2248/64, 7-8=-2261/	64, 10) All bearings a	are assumed to be	SPF No	o.2 .				4	N	1.5
	8-9=-1448/33, 9-10	=-200/88, 11-20=-9/18	882, 11) Bearing at joi	nt(s) 21 considers	paralle	to grain valu	le			A	SCOTI	M. VEN
	10-20=-9/1882, 2-1	9=-099/91		using ANSI/I	PI 1 angle to grain	formul	a. Building				U	SEVI	ER VY
BOTCHORD	15-16=-69/22 14-1	5=0/75 7-14=-593/11	3 12) Browido mod	uid verify capacity	(by oth	ng sunace.	0			1 at		
	13-14=-84/1468 12	2-13=0/194	0, 12	hearing plate	canable of withsta	andina 2	4 lh unlift at i	oint			ale		Xereit
	8-13=-1181/137, 11	-12=-2/39		19		anding 2	- ib upint at j	onn		_		Jon S	givin
WEBS	3-18=-182/133, 5-1	8=0/651, 5-16=-893/1	32, 13) This truss is	designed in accord	lance w	ith the 2018				23	NUMI	SER ES
	6-16=-25/519, 14-1	6=-72/2147,		International	Residential Code	sections	R502.11.1 a	nd			N.	OX PE-2001(018807
	6-14=-48/570, 8-14	=-46/1215,		R802.10.2 ar	nd referenced stan	dard AN	ISI/TPI 1.				V	(P)	154
	11-13=-71/1076, 9-	13=-67/1830,	14) Graphical pu	rlin representation	does no	ot depict the s	size				A SION	ENG
	9-11=-2181/67, 3-1	9=-2552/0, 10-21=-20	0/00/	or the orienta	tion of the purlin a	long the	top and/or					WNA	
NOTES				pottom chord								un	

February 8,2024

Page: 1

A Swingley Ridge Rd. Chesterfield, MO 63017 314.434.1200 / MITek-US.com

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent toulsable personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcscomponents.com)

Job	Truss	Truss Type	Qty	Ply	Lot 17 TCR	
230872	D5	Piggyback Base Supported Gable	2	1	Job Reference (optional)	163476775

Run: 8 73 S. Jan. 4 2024 Print: 8 730 S. Jan. 4 2024 MiTek Industries. Inc. Tue Feb 06 14:22:25

1-4-0

0-0-9

1-44=-192/41, 1-2=-312/80, 2-3=-250/74,

6-7=-164/90 7-9=-149/104 9-10=-134/117

43-44=-81/61, 42-43=-81/61, 41-42=-81/61,

40-41=-81/61, 39-40=-81/61, 38-39=-81/61,

37-38=-81/61, 36-37=-81/61, 35-36=-81/61,

34-35=-81/61, 32-34=-81/61, 31-32=-81/61,

30-31=-81/61, 29-30=-81/61, 28-29=-81/61,

27-28=-81/61, 26-27=-81/61, 25-26=-81/61,

3-4=-226/74, 4-5=-197/76, 5-6=-179/81

10-11=-122/133, 11-12=-95/128,

12-13=-85/125, 13-14=-85/125,

14-15=-85/125, 15-16=-85/125,

16-17=-85/125, 17-18=-85/125,

18-19=-85/125, 19-20=-85/125,

20-21=-92/126, 21-22=-105/117

22-23=-112/96, 24-45=-186/257,

23-45=-186/257

24-25=-81/61

2) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60

Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

ontinued on page 2

1 Row at midpt

Max Horiz 44=309 (LC 9)

REACTIONS (size)

14-32, 15-31, 16-30,

17-29, 18-28, 19-27,

21-26, 22-25

24=37-5-8, 25=37-5-8, 26=37-5-8

27=37-5-8, 28=37-5-8, 29=37-5-8,

30=37-5-8, 31=37-5-8, 32=37-5-8,

34=37-5-8, 35=37-5-8, 36=37-5-8,

37=37-5-8, 38=37-5-8, 39=37-5-8,

40=37-5-8, 41=37-5-8, 42=37-5-8,

43=37-5-8, 44=37-5-8, 46=0-3-2

26=-31 (LC 13), 27=-35 (LC 9),

28=-41 (LC 8), 29=-34 (LC 9),

30=-34 (LC 8), 31=-34 (LC 9),

32=-43 (LC 8), 34=-39 (LC 9),

35=-22 (LC 9), 36=-62 (LC 12)

37=-53 (LC 12), 38=-54 (LC 12),

39=-54 (LC 12), 40=-53 (LC 12),

41=-59 (LC 12), 42=-34 (LC 12),

43=-222 (LC 12), 44=-57 (LC 10),

Max Uplift 24=-270 (LC 17), 25=-54 (LC 13),

46=-250 (LC 8)

WAR Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a trust system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria**, and **DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

TOP CHORD

BOT CHORD

Job	Truss	Truss Type	Qty	Ply	Lot 17 TCR				
230872	D5	Piggyback Base Supported Gable	2	1	Job Reference (optional)	163476775			

- 4) TCLL: ASCE 7-16; Pr=25.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf; Pf=20.4 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat C; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10, Lu=50-0-0
- Unbalanced snow loads have been considered for this design.
- 6) Provide adequate drainage to prevent water ponding.
- 7) All plates are 2x4 MT20 unless otherwise indicated.
- Truss to be fully sheathed from one face or securely braced against lateral movement (i.e. diagonal web).
- 9) Gable studs spaced at 2-0-0 oc.
 10) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 11) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle
 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- 12) All bearings are assumed to be SPF No.2.
 13) Bearing at joint(s) 46 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building
- designer should verify capacity of bearing surface.
 14) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 57 lb uplift at joint 44, 270 lb uplift at joint 24, 222 lb uplift at joint 43, 34 lb uplift at joint 42, 59 lb uplift at joint 41, 53 lb uplift at joint 40, 54 lb uplift at joint 39, 54 lb uplift at joint 38, 53 lb uplift at joint 37, 62 lb uplift at joint 36, 22 lb uplift at joint 35, 39 lb uplift at joint 34, 43 lb uplift at joint 32, 34 lb uplift at joint 31, 34 lb uplift at joint 30, 34 lb uplift at joint 29, 41 lb uplift at joint 28, 35 lb uplift at joint 27, 31 lb uplift at joint 26, 54 lb uplift at joint 25 and 250 lb uplift at joint 46.
- 15) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 16) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

LOAD CASE(S) Standard

Run: 8.73 S Jan 4 2024 Print: 8.730 S Jan 4 2024 MiTek Industries, Inc. Tue Feb 06 14:22:25 ID:HnRrrCYNKDEKKVNjGqd008y6jdP-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 2

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSITPTI Quality Criteria**, and **DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcscomponents.com)

Job	Truss	Truss Type	Qty	Ply	Lot 17 TCR	
230872	E1	Piggyback Base Supported Gable	2	1	Job Reference (optional)	163476776

Run: 8.73 S Jan 4 2024 Print: 8.730 S Jan 4 2024 MiTek Industries, Inc. Tue Feb 06 14:22:26 ID:bgPLSD25gpPVko0bAytdBny6jcm-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

6-7=-222/70, 7-9=-207/81, 9-10=-192/94,

10-11=-181/110. 11-12=-148/108.

12-13=-137/104, 13-14=-137/104,

14-15=-137/104, 15-16=-137/104,

16-17=-137/104 17-18=-137/104

18-19=-137/104, 19-20=-108/100

36-37=-139/105. 35-36=-139/105.

34-35=-139/105, 33-34=-139/105,

32-33=-139/105. 31-32=-139/105

30-31=-139/105, 29-30=-139/105,

27-29=-139/105, 26-27=-139/105,

25-26=-139/105, 24-25=-139/105,

23-24=-139/105, 22-23=-139/105,

21-22=-139/105, 20-21=-139/105

9-30=-175/77, 10-29=-177/85,

11-27=-165/62, 13-26=-161/83 14-25=-177/66, 15-24=-175/58,

16-23=-174/58, 17-22=-182/63,

2-36=-123/153, 3-35=-144/70, 4-34=-139/80,

5-33=-162/78, 6-32=-177/78, 7-31=-174/78,

Provide adequate drainage to prevent water ponding. All plates are 2x4 MT20 unless otherwise indicated.

7) 8) Gable requires continuous bottom chord bearing.

5)

6)

design

- 9) Truss to be fully sheathed from one face or securely
- braced against lateral movement (i.e. diagonal web). 10) Gable studs spaced at 2-0-0 oc.

NOTES

WEBS

BOT CHORD

16-23, 17-22, 18-21

20=30-8-0, 21=30-8-0, 22=30-8-0,

23=30-8-0, 24=30-8-0, 25=30-8-0,

26=30-8-0, 27=30-8-0, 29=30-8-0,

30=30-8-0, 31=30-8-0, 32=30-8-0,

33=30-8-0, 34=30-8-0, 35=30-8-0,

22=-47 (LC 9), 23=-39 (LC 8),

24=-35 (LC 9), 25=-42 (LC 8),

26=-59 (LC 9), 27=-38 (LC 9),

29=-61 (LC 12), 30=-53 (LC 12),

31=-54 (LC 12), 32=-54 (LC 12),

33=-53 (LC 12), 34=-60 (LC 12),

35=-32 (LC 12), 36=-226 (LC 12),

36=30-8-0, 37=30-8-0

Max Uplift 20=-23 (LC 9), 21=-52 (LC 8),

37=-39 (LC 10)

Max Horiz 37=402 (LC 11)

Unbalanced roof live loads have been considered for 1) this desian.

18-21=-150/133

ontinued on page 2

REACTIONS (size)

Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE WAR Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a trust system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria**, and **DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

Job	Truss	Truss Type	Qty	Ply	Lot 17 TCR	
230872	E1	Piggyback Base Supported Gable	2	1	Job Reference (optional)	163476776

- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 12) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- 13) All bearings are assumed to be SPF No.2.
 14) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 39 lb uplift at joint 37, 23 lb uplift at joint 20, 226 lb uplift at joint 36, 32 lb uplift at joint 36, 60 lb uplift at joint 34, 53 lb uplift at joint 33, 54 lb uplift at joint 32, 54 lb uplift at joint 31, 53 lb uplift at joint 30, 61 lb uplift at joint 29, 38 lb uplift at joint 27, 59 lb uplift at joint 26, 42 lb uplift at joint 25, 35 lb uplift at joint 24, 39 lb uplift at joint 23, 47 lb uplift at joint 22 and 52 lb uplift at joint 21.
- This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 16) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

LOAD CASE(S) Standard

Run: 8.73 S Jan 4 2024 Print: 8.730 S Jan 4 2024 MiTek Industries, Inc. Tue Feb 06 14:22:26 ID:bgPLSD25gpPVko0bAytdBny6jcm-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 2

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSITPTI Quality Criteria, and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcscomponents.com)

Job	Truss	Truss Type	Qty	Ply	Lot 17 TCR	
230872	E2	Piggyback Base Girder	2	1	Job Reference (optional)	163476777

Provide adequate drainage to prevent water ponding.

All plates are MT20 plates unless otherwise indicated.

chord live load nonconcurrent with any other live loads.

* This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.

bearing plate capable of withstanding 233 lb uplift at joint

International Residential Code sections R502.11.1 and

provided sufficient to support concentrated load(s) 121 Ib down and 69 lb up at 1-9-8 on top chord, and 11 lb

down and 8 lb up at 1-9-8 on bottom chord. The design/selection of such connection device(s) is the

This truss has been designed for a 10.0 psf bottom

All bearings are assumed to be SPF No.2 10) Provide mechanical connection (by others) of truss to

11) This truss is designed in accordance with the 2018

R802.10.2 and referenced standard ANSI/TPI 1. 12) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or

13) Hanger(s) or other connection device(s) shall be

10 and 237 lb uplift at joint 18.

		8-11, 4-17
REACTIONS	(size)	10=0-3-8, 18=0-3-8
	Max Horiz	18=413 (LC 60)
	Max Uplift	10=-233 (LC 9), 18=-237 (LC 12)
	Max Grav	10=1901 (LC 3), 18=1911 (LC 48)
FORCES	(lb) - Max	imum Compression/Maximum
	Tension	
TOP CHORD	1-2=0/40,	2-3=-2377/274, 3-4=-2075/257,
	4-5=-4150)/450, 5-6=-2884/334,
	6-7=-1798	3/252, 7-8=-1005/181,
	8-9=-1004	4/181, 9-10=-1736/252,
	2-18=-189	94/244
BOT CHORD	17-18=-38	35/209, 16-17=-748/5431,
	15-16=-75	52/5428, 14-15=-506/3684,
	12-14=-29	97/2504, 11-12=-246/1535,
	10-11=-13	37/103
WEBS	3-17=-94/	873, 4-15=-1877/258,
	5-15=-24/	886, 5-14=-1352/244,
	6-14=-40/	1017, 6-12=-1446/302,
	7-12=-131	1/1359, 7-11=-1066/167,
	8-11=-611	1/217, 9-11=-226/1873,
	2-17=-234	4/2144, 4-17=-3665/383,
	4-16=-42/	105
NOTES		

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponent.com)

responsibility of others.

bottom chord.

5)

6)

7)

8)

9)

OF MISS SCOTT M. SEVIER NUMBER 20 PE-2001018807 SSIONAL February 8,2024

> 16023 Swingley Ridge Rd. Chesterfield MO 63017 314.434.1200 / MiTek-US.com

Job	Truss	Truss Type	Qty	Ply	Lot 17 TCR	
230872	E3	Piggyback Base	2	1	Job Reference (optional)	163476778

🙏 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponent.com)

16023 Swingley Ridge Rd. Chesterfield MO 63017 314.434.1200 / MiTek-US.com

Job	Truss	Truss Type	Qty	Ply	Lot 17 TCR	
230872	E4	Piggyback Base	2	1	Ich Reference (ontional)	163476779

a trust system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria**, and **DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

16023 Swingley Ridge Rd. Chesterfield MO 63017

314.434.1200 / MiTek-US.com

Job	-	Truss	Truss Type		Qty	Ply	Lot 17 TCR		00470700
230872	1	E5	Piggyback Base		2	1	Job Reference (optional))	63476780
Wheeler Lumber	, Waverly, KS - 66	6871,		Run: 8.73 S Jan 4 ID:E_7uzKBdrVwoE	2024 Print: 8.7 3ewvtT4SqJy6i	/30 S Jan 42 ca-RfC?PsB7	2024 MiTek Industries, Inc. Tu 70Hq3NSgPqnL8w3uITXbGKV	ie Feb 06 14:22:28 WrCDoi7J4zJC?f	Page: 1
	-(C	1-11-11 0-10-8 7-9 0-10-8 5-9- 1-11-11	8 9-1-410-9-8 13 1-3-121-8-4	<u>16-5-10</u> 5-8-2		4-0 0-6 4x	27-5-8 6-1-8 8= 2x4	33-8-0 6-2-8 4 II 2784	
10-3-6	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	61 ² 3 20 3 4x8= 19 7x12=	5) $2x4 \parallel$ 8x8= 5 - 6 4 - 5 - 6 4 - 5 - 6 4 - 5 - 6 4 - 5 - 6 4 - 7 18_{16} $3x6 \parallel$ 7x12 =	⁶⁸ = 21	4x5 = 7 22 7 1 1 1 1 2 2 2 1 2 5 26 x12=	8 0 0 14 6x6	13 12 5= 3x6= 6x6	2224 2224 2 2 2 2 2 27 8=	0-0-01 11 3x6=
Scale = 1:68.7		2x4 2-4-0 -11-11 7-1(-11-11 5-6 0-4-5	4x8 u 1-12 9-0-0 -12 1-1-4	<u>16-5-10</u> 7-5-10	<u>- 21-</u> 4-1	5-4 -10	27-5-8 6-0-4	<u>33-8-0</u> 6-2-8	
Plate Offsets ()	X, Y): [3:0-4-5,0	,0-3-8], [4:0-4-10,Edge], [6	0-4-0,0-2-3], [8:0-4-8,0-1	1-12], [11:Edge,0-1-8]	, [14:0-2-8,0	-3-0], [15:0-	2-11,0-2-0]		
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	() 2 20.4/2 1 1 1	(psf) Spacing 25.0 Plate Grip DOL 20.0 Lumber DOL 10.0 Rep Stress Incr 10.0* Code	2-0-0 1.15 1.15 YES IRC2018/TPI2014	CSI TC BC WB Matrix-S	0.66 Vert(0.90 Vert(0.91 Horz Wind	- LL) -0.: CT) -0.: (CT) 0.: (LL) 0.	in (loc) l/defl L/d 37 15-16 >999 360 60 15-16 >670 240 29 11 n/a n/a 18 16 >999 240	PLATES GF MT20 19 Weight: 190 lb FT	RIP 7/144
LUMBER TOP CHORD BOT CHORD WEBS	2x4 SPF No.2 2.0E 2x4 SPF No.2 1.8E, 5-16:2x3 2x3 SPF No.2 1.8E, 19-3.15	2 *Except* 1-4:2x8 SP 240 2 *Except* 3-17:2x4 SPF 2 3 SPF No.2 2 *Except* 10-11:2x4 SPF -17.12-8.12-10:2x4 SPF N	WEBS 0F 100F 2100F	3-19=0/81, 4-18=0/5 15-17=-508/3299, 6 6-15=-1816/360, 7-1 7-14=-1269/276, 8-1 8-12=-1015/167, 9-1 10-12=-223/1877	59, 4-17=-83 17=-218/48, 5=-72/1032, 4=-165/1354 2=-624/220,	/342, ,	LOAD CASE(S) Sta	andard	
BRACING TOP CHORD BOT CHORD	Structural woo 3-0-1 oc purlir 2-0-0 oc purlir Rigid ceiling d bracing. Exc	od sheathing directly appli ns, except end verticals, a ns (2-7-5 max.): 4-6, 8-10. directly applied or 10-0-0 o sept:	1) Wind: ASCI Vasd=91mp ad or II; Exp C; E nd cantilever le right expose c 2) TCLL: ASC Plate DOL=	E 7-16; Vult=115mph bh; TCDL=6.0psf; BCI nclosed; MWFRS (en ff and right exposed ; ed; Lumber DOL=1.60 E 7-16; Pr=25.0 psf (r 1.15); Pg=20.0 psf; P	(3-second gu DL=6.0psf; h velope) exte end vertical) plate grip D oof LL: Lum f=20.4 psf (L	ust) =25ft; Cat. rior zone; left and OL=1.60 DOL=1.15 um			
WEBS	6-0-0 oc braci 1 Row at midp	ing: 2-19. pt 10-11, 6-15, 7-14, 8 9-12	DOL=1.15 F Partially Exp 3) Unbalanced	Plate DOL=1.15); ls=1 p.; Ce=1.0; Cs=1.00; l snow loads have be	I.0; Rough C Ct=1.10, Lu=	at C; 50-0-0 d for this			
REACTIONS	(size) 2=0 Max Horiz 2=4 Max Uplift 2=- Max Grav 2=1	9-12 0-3-8, 11=0-3-8 406 (LC 11) -228 (LC 12), 11=-231 (LC 1959 (LC 48), 11=1901 (LC	 a) Unibalanced design. 4) This truss h load of 12.0 b) overhangs h 	as been designed for psf or 1.00 times flat non-concurrent with o	greater of m roof load of ther live load	in roof live 15.4 psf on s.			
FORCES	(lb) - Maximur Tension	m Compression/Maximum	 Frovide ade This truss h 	equate drainage to pre as been designed for	event water p a 10.0 psf b	onding.		and	Dr.
 ToP CHORD 1-2=0/8, 2-3=-1268/52, 3-4=-3758/442, 4-5=-3589/477, 5-6=-3577/476, 6-7=-2568/311, 7-8=-1756/266, 8-9=-1005/181, 10-11=-1737/248 BOT CHORD 2-19=-40/0, 3-18=-503/3455, 17-18=-500/3469, 16-17=0/198, 5-17=-47/243, 15-16=-10/371, 14-15=-277/2183, 12-14=-243/1520, 11-12=-137/103 6) This truss has been designed for a 10.0 pst bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf. 8) All bearings are assumed to be SPF No.2. 9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 231 lb uplift at joint 11 and 228 lb uplift at joint 2. 10) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. 11) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord. 							807 807 807 807 807 807 807 807 807 807		

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

* Millek Ridge Rid. Chesterfield, MO 63017 314.434.1200 / MITek-US.com

Job	Truss	Truss Type	Qty	Ply	Lot 17 TCR	
230872	E6	Piggyback Base	2	1	Job Reference (optional)	163476781

Run: 8,73 S Jan 4 2024 Print: 8,730 S Jan 4 2024 MiTek Industries, Inc. Tue Feb 06 14:22:29

Page: 1

Wheeler Lumber, Waverly, KS - 66871,

Loading	(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP	
TCLL (roof)	25.0	Plate Grip DOL	1.15		TC	0.78	Vert(LL)	-0.32	11-13	>999	360	MT20	197/144	
Snow (Pf/Pg)	20.4/20.0	Lumber DOL	1.15		BC	0.64	Vert(CT)	-0.51	11-13	>784	240			
TCDL	10.0	Rep Stress Incr	YES		WB	0.81	Horz(CT)	0.07	9	n/a	n/a			
BCLL	10.0*	Code	IRC2018	3/TPI2014	Matrix-S		Wind(LL)	0.10	11-13	>999	240			
BCDL	10.0											Weight: 175 lb	FT = 10%	
			1)	Wind: ASCE	7-16: Vult=115n	mph (3-sec	ond aust)							
	2v/ SPE No 2 *Exce	nt* 5-6.2v6 SPE No	2 '/	Vasd=91mph	TCDI = 6.0 nsf	BCDI =6 (nsf: h=25ft	Cat						
BOT CHORD	2x4 SPE 2100E 1 8E	=	. 2	II: Exp C: En	closed: MWFRS	(envelope	exterior zo	ne:						
WEBS	2x3 SPE No 2 *Exce	- nt* 8-9·2x4 SPF 21(00F	cantilever left	and right expos	sed ; end v	ertical left ar	nd						
WEB0	1.8E. 10-6.10-8.5-11	2x4 SPF No.2. 16-2	2:2x6	right exposed	l; Lumber DOL=	1.60 plate	grip DOL=1.	.60						
	SPF No.2	, -	2)	TCLL: ASCE	7-16; Pr=25.0 p	osf (roof LL	: Lum DOL=	1.15						
OTHERS	2x3 SPF No.2			Plate DOL=1	.15); Pg=20.0 ps	sf; Pf=20.4	psf (Lum							
BRACING				DOL=1.15 PI	ate DOL=1.15);	Is=1.0; Ro	ugh Cat C;							
TOP CHORD	Structural wood shea	athing directly applie	ed or	Partially Exp.	; Ce=1.0; Cs=1.	.00; Ct=1.1	0, Lu=50-0-0)						
	2-11-9 oc purlins, ex	xcept end verticals,	and 3)	Unbalanced	snow loads have	e been con	sidered for t	his						
	2-0-0 oc purlins (3-7-	-13 max.): 4-5, 6-8.	4	design.										
BOT CHORD	Rigid ceiling directly	applied or 10-0-0 or	c 4)	Inis truss na	s been designed	a for greate		live of on						
	bracing.			overbangs n	DSI OF 1.00 times	ith other liv	au or 15.4 p	SLOU						
WEBS	1 Row at midpt	8-9, 6-10, 7-10, 5-1	1 5)	Provide adec	uate drainage to	n nrevent v	vater nondin	a						
REACTIONS	(size) 9=0-3-8, 1	16=0-3-8	6)	This truss ha	s heen designed	d for a 10 (ater perian	g.						
	Max Horiz 16=413 (L	_C 9)	0)	chord live loa	d nonconcurren	it with any	other live loa	ids.						
	Max Uplift 9=-231 (Le	C 9), 16=-237 (LC 1	2) 7)	* This truss h	as been designe	ed for a liv	e load of 20.	Opsf						
	Max Grav 9=1892 (L	_C 3), 16=1942 (LC	48) ′	on the botton	n chord in all are	eas where	a rectangle							
FORCES	(lb) - Maximum Com	pression/Maximum		3-06-00 tall b	y 2-00-00 wide	will fit betw	een the bott	om						
	Tension			chord and an	y other member	rs, with BC	DL = 10.0ps	f.						
TOP CHORD	1-2=0/43, 2-3=-2920)/340, 3-4=-2680/353	3, 8)	All bearings a	are assumed to I	be SPF No	.2 .							
	4-5=-2342/342, 5-6=	-1821/227,	9)	Provide mech	nanical connecti	on (by othe	ers) of truss	to				000	TIL	
	6-7=-996/181, 7-8=-	994/181, 8-9=-1722/	/249,	bearing plate	capable of with	standing 2	31 lb uplift a	t joint				OFM	ALC D	
	2-10=-1/98/204	15 414/2526		9 and 237 lb	uplift at joint 16.	·						Fre	JUSS W	
BOT CHORD	13-10=-405/590, 14- 13-14=-344/2706, 11	-15=-414/2520, 1-13346/2788	10) I his truss is (designed in acco	ordance wi	th the 2018	اممر			6	AN .	N.S.	
	10-11242/1539 9-	-10138/104		Peop 10.2 or	Residential Cou	e sections		and			R	SCOT	M. YEY	
WEBS	3-14=-306/109 4-14	l=-86/1001	11	Rouz. 10.2 al	rlin representatio	anuaru An	JI/IFI I.	azizo			8	/ SEVI	ER \ V	
	5-14=-904/36. 5-13=	=0/495. 6-11=-68/122	20.	or the orients	ition of the nurlin	along the	ton and/or	5120		<	"let		0 +	
	6-10=-1060/169, 7-1	0=-606/213,		bottom chord		. siong alo				_	MA.	44	J. J.	7
	8-10=-222/1855, 2-1	5=-136/2024,	LC	AD CASE(S)	Standard					2		to U	-ener	<i>•</i>
	5-11=-1504/315, 3-1	5=-123/112			Clanding					_	27	NUMI	SER EA	
NOTES											N	ON PE-2001	J18807 / SP	

NOTES

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent touls be personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANS/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

February 8,2024

ESSIONAL ET

Job	Truss	Truss Type	Qty	Ply	Lot 17 TCR	
230872	G1	Flat	3	1	Job Reference (optional)	163476782

Run: 8.73 S Jan 4 2024 Print: 8.730 S Jan 4 2024 MiTek Industries, Inc. Tue Feb 06 14:22:30 ID:S4f0E_H1fqNGlezcFKhqOwznrFY-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Scale = 1:42

[8:0-6-0,0-2-0], [10:0-3-0,Edge], [11:0-6-0,0-2-0], [15:0-1-3,0-1-0], [18:0-1-3,0-1-0], [25:0-1-4,0-1-0], [28:0-1-4,0-1-0], [31:0-1-4,0-1-0], [38:0-1-3,0-1-0], [41:0-1-3,0-1-0], Plate Offsets (X, Y): [48:0-1-4,0-1-0], [51:0-1-4,0-1-0], [54:0-1-4,0-1-4,0-1-4,0-1-0], [56:0-1-4,0-1-4,0-1-0], [56:0-1-4,0-1-4,0-1-4,0-1-4,0-1-4,0-1-4,0-1-4,0-1-4,0-1-4,0-1-4,0-1-4,0-1-4,0-1-4,0-1-4,0-1-4,0-1-4,0-1-4,0-1-4,0-1-4,

Loading	(psf)	Spacing	2-0-0	CSI	0.50	DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (root)	25.0	Plate Grip DOL	1.15		0.52	Vert(LL)	-0.18	9-11	>999	360	MT20	197/144
Snow (Pt/Pg)	20.4/20.0	Lumber DOL	1.15 VEC	BC	0.77		-0.33	9-11	>886	240		
	10.0	Rep Stress Incr		VVB Matrix C	0.76	Horz(CT)	0.05	/	n/a	n/a		
BOLL	10.0*	Code	IRC2018/1PI2014	Matrix-S		vvind(LL)	0.14	9	>999	240		FT 400/
BCDL	10.0										Weight: 129 lb	FI = 10%
UMBER			3) TCLL: ASCE	E 7-16: Pr=25.0 psf	(roof Ll	.: Lum DOL=	1.15					
TOP CHORD	2x4 SPF No.2		Plate DOL=	1.15); Pg=20.0 psf;	.¥Pf=20.	l psf (Lum						
BOT CHORD	2x4 SPF No.2		DOL=1.15 F	Plate DOL=1.15); Is	=1.0; Ro	ough Cat C;						
WEBS	2x3 SPF No.2 *Exce	pt* 12-1,6-7:2x4 SPF	 Partially Exp 	o.; Ce=1.0; Cs=1.00); Ct=1. ⁻	10, Lu=50-0-0	0					
	No.2	•	Provide ade	quate drainage to p	orevent	water pondin	g.					
OTHERS	2x4 SPF No.2		All plates are	e 2x4 MT20 unless	otherwi	se indicated.						
BRACING			Truss to be	fully sheathed from	one fac	e or securely	Y					
TOP CHORD	2-0-0 oc purlins (3-7	-5 max.): 1-6, excep	t braced agai	nst lateral moveme	nt (i.e. c	lagonal web).					
	end verticals.		 Gable studs This trues have 	spaced at 1-4-0 oc). 							
BOT CHORD	Rigid ceiling directly	applied or 8-1-7 oc	8) This truss ha	as been designed fo	or a 10.	J pst bottom	ada					
	bracing.		a) * This trues	au nonconcurrent v	for a liv	e load of 20	aus. Onef					
REACTIONS	(size) 7=0-3-8, 1	2=0-5-8	on the botto	m chord in all areas	s where	a rectande	opsi					
	Max Horiz 12=-103 (LC 8)	3-06-00 tall	by 2-00-00 wide wi	ll fit betv	veen the bott	tom					
	Max Uplift 7=-211 (L	C 7), 12=-211 (LC 6)	chord and a	ny other members,	with BC	DL = 10.0ps	f.					
	Max Grav 7=1127 (L	-C 3), 12=1127 (LC 3) 10) All bearings	are assumed to be	SPF N	o.2 .						
FORCES	(lb) - Maximum Com	pression/Maximum	11) Provide med	chanical connection	n (by oth	ers) of truss	to					
	Tension		bearing plate	e capable of withsta	anding 2	11 lb uplift a	t joint					
FOP CHORD	1-12=-1036/239, 1-2	2=-1998/379,	12 and 211	lb uplift at joint 7.								
	2-3=-1998/379, 3-5=	-1998/379,	12) This truss is	designed in accord	dance w	ith the 2018						
	5-6=-1998/3/9, 6-7=	-1036/239	Internationa	Residential Code	sections	R502.11.1 a	and					
BOTCHORD	8-0-525/2623 7-8-	-32/5/2023,	R802.10.2 a	nd referenced stan	idard Ar	ISI/TPI1.					000	TIC
WEBS	6-8-401/2120 2-11		13) Graphical pu	urlin representation	does no	ot depict the	size				OFM	ALC D
WEBO	1-11=-400/2129 3-1	1 = -684/140 $3 - 9 = 0/2$	37 bettem ober	ation of the punin a	along the	e top and/or					Fre	JSS W
	3-8=-684/139. 5-8=-4	455/190		u. Ota a da ad						6	AN IN	N.S.Y
NOTES			LUAD CASE(S)	Stanuaru						B	SCOT	M. YZY
1) Wind: AS	CE 7-16: Vult=115mph	(3-second gust)								R	/ SEVI	ER \ Y
Vasd=91r	nph; TCDL=6.0psf: BC	DL=6.0psf; h=25ft: C	at.							2×	1	
II; Exp C;	Enclosed; MWFRS (en	velope) exterior zone	9;							NN	1	
cantilever	left and right exposed	; end vertical left and									VOI Z	ZUMUN
right expo	sed; Lumber DOL=1.6	0 plate grip DOL=1.6	0						-	27		
2) Truss de	signed for wind loads in	the plane of the true	8							1 11	ON PE-2001	018807 / ASH

2) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

February 8,2024

E

PSSIONAL

Page: 1

Job	Truss	Truss Type	Qty	Ply	Lot 17 TCR	
230872	H1	Piggyback Base	1	1	Job Reference (optional)	163476783

Run: 8.73 S Jan 4 2024 Print: 8.730 S Jan 4 2024 MiTek Industries, Inc. Tue Feb 06 14:22:30 ID:MUQohnLnnUZyEeQP8ipVi3y6jcN-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC?f Page: 1

45-6-8 0-10-8 37-6-4 7-5-9 14-6-12 19-0-8 36-1-4 44-8-0 23-5-0 29-9-12 7-5-9 7-1-3 4-5-12 4-4-8 6-4-12 6-3-8 1-5-0 7-1-12 4x5= 2x4 II 3x6= 2x4 II 5x8= 3x6= 6x6= 4 5 25 6 7 8 9 P 12 6 10 3x4 ≠ Ø 3 8-1-6 11 24 12 17 Я 73 図 14 16 15 3-0-0 8x8 6x12= 5x8= 0-10-0 3x6= T. 18 21 20 19 6x12= 8x12= 4x8= 6x12= 3x6= 3x6 II 37-8-0 7-5-9 14-8-0 23-6-4 29-9-12 37-6-4 44-8-0 7-5-9 7-2-7 8-10-4 6-3-8 7-8-8 0-1-12 7-0-0

Scale = 1:77.9

Plate Offsets (X, Y): [4:0-5-8,0-2-4], [9:0-3-8,0-2-4], [13:0-1-4,0-2-0], [18:Edge,0-2-8], [20:0-5-4,0-3-0], [21:0-2-8,0-2-0], [22:Edge,0-6-13]										_				
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 25.0 20.4/20.0 10.0 10.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018	3/TPI2014	CSI TC BC WB Matrix-S	0.88 0.96 0.94	DEFL Vert(LL) Vert(CT) Horz(CT) Wind(LL)	in -0.34 -0.65 0.14 0.16	(loc) 18-20 18-20 14 18	l/defl >999 >686 n/a >999	L/d 360 240 n/a 240	PLATES MT20 Weight: 185 lb	GRIP 197/144 FT = 10%	
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD	2x4 SPF No.2 2x4 SPF No.2 *Exce 2x3 SPF No.2 *Exce 13-11:2x8 SP 2400F Structural wood she except end verticals (3-1-0 max.): 4-9. Rigid ceiling directly bracing	ept* 18-7:2x3 SPF No opt* 22-2:2x6 SPF No = 2.0E athing directly applied , and 2-0-0 oc purlins • applied or 2-2-0 oc	2) .2, .2, 3) d, 4)	Wind: ASCE Vasd=91mph II; Exp C; Enc cantilever leff right exposed TCLL: ASCE Plate DOL=1 DOL=1.15 Pl Partially Exp. Unbalanced design.	7-16; Vult=115n ;; TCDL=6.0psf; closed; MWFRS and right expos d; Lumber DOL= 7-16; Pr=25.0 p 15); Pg=20.0 ps ate DOL=1.15); ; Ce=1.0; Cs=1. snow loads have	nph (3-sec BCDL=6.((envelope sed ; end v 1.60 plate sf (roof LL sf; Pf=20.4 Is=1.0; Rc 00; Ct=1.1	ond gust))psf; h=25ft;) exterior zo ertical left ar grip DOL=1. : Lum DOL= psf (Lum ugh Cat C; 0, Lu=50-0-0 sidered for th	Cat. ne; nd 60 1.15) his						
WEBS REACTIONS	(size) 14=0-3-8, Max Horiz 22=184 (I Max Uplift 14=-318 (Max Grav. 14=2496	3-20, 5-20, 11-14, 9- 7-16 , (req. 0-3-15), 22=0-3 _C 12) (LC 9), 22=-197 (LC 1 (LC 3), 22=1749 (LC	14, 5) 3-8 6) 2) 7) 54) 0)	This truss ha load of 12.0 p overhangs no Provide adeo This truss ha chord live loa	s been designed osf or 1.00 times on-concurrent wi juate drainage to s been designed id nonconcurren	for greate flat roof lo th other liv prevent v for a 10.0 t with any	er of min roof pad of 15.4 p re loads. vater ponding psf bottom other live loa	f live sf on g. ads.						
FORCES	(lb) - Maximum Compression/Maximum		8)	I his truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle										
TOP CHORD	1-2=0/35, 2-3=-2748 4-5=-1920/280, 5-7= 7-8=-2130/332, 8-9= 9-10=-57/701, 10-11 2-22=-1647/238, 11	3/275, 3-4=-2234/285 =-3026/478, =-2130/332, =-145/908, 11-12=0/ -13=-30/114	, 9) 46, 10 11	3-06-00 tall b chord and an WARNING: F than input be All bearings a Provide meet	y 2-00-00 wide v y other member Required bearing aring size. are assumed to b nanical connection	will fit betw s, with BC g size at jo pe SPF No on (by oth	veen the both DL = 10.0psi int(s) 14 grea 0.2 . ers) of truss t	om f. ater				OF M	AISS	
BOT CHORD	21-22=-326/640, 20 18-20=0/39, 17-18= 16-17=-424/3040, 1 13-14=-137/349	-21=-331/2372, 0/153, 7-17=0/508, 4-16=-336/342,	12	bearing plate 22 and 318 lt) This truss is (capable of with o uplift at joint 14 designed in acco	standing 1 I. ordance wi	97 lb uplift at th the 2018	t joint			A	STATE SCOTT SEVI	M. ER	
WEBS	3-21=-23/176, 3-20= 5-20=-1254/250, 17 5-17=-121/971, 9-16 2-21=-78/1760, 11-1 9-14=-1905/338, 10 8-16=-610/202, 7-16	709/236, 4-20=-17/6 -20=-367/2488, 5=-344/2400, 14=-1045/333, -14=-572/242, 5=-1245/184	60, 13 LC	R802.10.2 ar) Graphical pu or the orienta bottom chord	nd referenced sta rlin representation ation of the purlin Standard	andard AN on does no along the	SI/TPI 1. t depict the s top and/or	size		0	No.	NUME PE-20010	JER DI8807)
NOTES 1) Unbalance	ed roof live loads have	been considered for										S'SIONA	L ENG	

 Unbalanced roof live loads have been considered for this design.

February 8,2024

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent toulsable personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcscomponents.com)

16023 Swingley Ridge Rd. Chesterfield, MO 63017 314.434.1200 / MiTek-US.com
Job	Truss	Truss Type	Qty	Ply	Lot 17 TCR	
230872	H2	Piggyback Base	2	1	Job Reference (optional)	163476784

Run: 8.73 E Jan 4 2024 Print: 8.730 E Jan 4 2024 MiTek Industries, Inc. Wed Feb 07 11:13:10 ID:EAYcGuaerqU1ZpX6OFgU6Zy6jdN-HBeWYBeNB6dGpomuft9DLa_wVLXm62hq4rxKWbznYNO

2-1-11 -0-10-8 0-10-8 2-1-11 37-8-0 19-0-8 7-4-0 14-6-12 23-5-0 30-4-8 36-1-4 6-11-8 5-2-5 4-5-12 7-2-12 4-4-8 5-8-12 1-6-12 4x5= 4x8= 8x8= 4x8= 3x6= 2x4 II 6x6= ___27 5 6 10 7 28 8 9 11 6¹² 2-1-0 4x5 🚽 24 8 25 4 8-4-12 8-1-6 <u>H</u> 12 1-6-0 26 6x8= 1-6-0 3x6= 0-10-0 3x6 II 2 ģ 22 0 16 5x12= 23 19 18 17 2x4 II 4x8: 10x12 🞜 2x4 II 6x12= 5x12= 5x12= 2x4 II ^{2x4} " ^{2x4} " 14-6-12 12-5-4 14-8-0 2-4-0 37-8-0 || 0-3-8 14-8-0 7-4-0 12-4-0 19-0-8 23-6-4 30-5-12 37-4-8 2-1-11¹¹ 0-2-5 5-0-0 6-10-12 5-0-0 4-4-8 4-5-12 6-11-8 0-1-4 0-1-4 2-1-8

Scale = 1:72.3

Plate Offsets ((X, Y): [3:0-6-0,0-6-8],	, [5:0-6-0,0-2-8], [10	:0-4-0,0-2	-8], [14:Edge,	,0-2-8], [20:0-6-0,0-	3-12]							
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 25.0 20.4/20.0 10.0 10.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC20	18/TPI2014	CSI TC BC WB Matrix-S	0.87 0.94 0.98	DEFL Vert(LL) Vert(CT) Horz(CT) Wind(LL)	in -0.26 -0.49 0.28 0.17	(loc) 14-15 14-15 25 20	l/defl >999 >912 n/a >999	L/d 360 240 n/a 240	PLATES MT20 Weight: 216	GRIP 197/144 lb FT = 10%
LUMBER TOP CHORD BOT CHORD WEBS OTHERS WEDGE BRACING TOP CHORD BOT CHORD WEBS JOINTS REACTIONS	2x4 SPF No.2 *Exce 2.0E 2x4 SPF No.2 *Exce 16-8,14-9:2x3 SPF No.2 *Exce No.2 2x4 SPF No.2 Left: 2x3 SPF No.2 Structural wood she 4-9-2 oc purlins, ex 2-0-0 oc purlins (3-0 Rigid ceiling directly bracing. 1 Row at midpt 1 Brace at Jt(s): 20 (lb/size) 2=1459/0 Max Horiz 2=265 (L0 Max Uplift 2=-180 (L) Max Gray 2=1810 (J)	ept* 1-5:2x8 SP 240 ept* 3-20:2x6 SPF N No.2 ept* 23-3,12-11:2x4 eathing directly appli cept end verticals, a)-11 max.): 5-10. r applied or 2-2-0 oc 4-20, 8-13, 6-17 -3-8, 25=1447/0-3-2 C 12), 25=-256 (LC C 3) 25=1773 (LC	10F No.2, SPF ied or and 2 ; 2 ; 2 ; 9) (42)	VEBS) Unbalance this design 2) Wind: ASC Vasd=91n II; Exp C; 1 cantilever right expos 3) TCLL: ASC Plate DOL DOL=1.15 Partially E Min. flat rc	3-23=0/60, 19-21 18-20=0/163, 5-2 13-15=-416/2497 10-13=-351/2233 4-22=0/324, 6-17 17-20=-354/2121 6-15=-128/748, 6 11-25=-1792/255 ed roof live loads ha CE 7-16; Vult=115n rph; TCDL=6.0psf; Enclosed; MWFRS left and right expos sed; Lumber DOL= CE 7-16; Pr=25.0 p =1.15); Pg=20.0 ps Plate DOL=1.15); xp; Ce=1.0; Cs=1. tof snow load gover	=0/14, 4- 20=-43/86 7, 8-13=-3 4, 10-12=- 2-1081/2 1, 10-12=- 2-1081/2 1, 10-12=- 2-1081/2 1, 10-12=- 2-1081/2 4, 10-12=- 3, 10-12=- 1, 1	20=-1466/36 4, 95/67, 1701/340, 50, 339/2200, /550, considered fc cond gust) 0psf; h=25ft; 9) exterior zo vertical left ar grip DOL=1. .: Lum DOL=1 4 psf (Lum Dugh Cat C; 10, Lu=50-0-(surcharge	7, or Cat. ne; d 60 1.15 0;	 10) Bea usir des 11) Pro bea 2 aa 12) This Inte R80 13) Gra ort bott LOAD (aring at ji ng ANSI/ igner sh vide me- tring plat nd 256 ll s truss is rnationa 02.10.2 a phical p he orient com chor CASE(S)	bint(s) TPI 1 ould vichanic e capage o uplift desig I Resid and ref furlin re tation (d.) Stal	25 considers p angle to grain t erify capacity of al connection (able of withstar at joint 25. ned in accorda dential Code s ferenced stand opresentation of of the purlin alo	arallel to grain value ormula. Building f bearing surface. by others) of truss to iding 180 lb uplift at joint nce with the 2018 actions R502.11.1 and ard ANSI/TPI 1. oes not depict the size ing the top and/or
	(lb) - Maximum Com Tension	npression/Maximum	2	applied to 0.500/12 ii) Unbalance	all exposed surface n accordance with ed snow loads have	es with slo BC 1608. been coi	opes less that 3.4. nsidered for t	n his				OF	MISC
BOT CHORD	4-26=-3886/412, 4-5 5-6=-2325/334, 6-27 7-27=-2502/387, 7-5 8-9=-2235/358, 9-25 10-28=-2243/356, 11 12-25=-294/1742, 1 2-23=-30/0, 3-22=-5 21-22=-553/3605, 2 18-19=0/0, 17-18=0, 15-16=0/75, 8-15=-5 13-14=0/141, 9-13=	5, 22, 27, 346, 7=-2502/387, 3=-2502/387, 3=-2243/356, 0-11=-162/25, 1-25=-294/1742 154/3602, 0-21=-553/3605, /30, 16-17=-22/26, 342/168, 14-15=-9/7 -612/202, 12-13=-1	e 7 8 70, 15/532	design. i) This truss load of 12. overhangs) Provide ac) This truss chord live i* This trus on the bot 3-06-00 ta chord and All bearing capacity o	has been designed 0 psf or 1.00 times a non-concurrent wi dequate drainage to has been designed load nonconcurren s has been designed tom chord in all are II by 2-00-00 wide v any other member s are assumed to I f 425 psi.	I for great flat roof I th other I i p prevent I for a 10. t with any ed for a liv as where will fit betv s, with BC be SPF N	er of min rool oad of 15.4 p ve loads. water pondin 0 psf bottom other live loa re load of 20. a rectangle veen the bott CDL = 10.0ps o.2 crushing	f live sf on g. ads. Opsf om f.)		SCO SE NUI PE-200	TT M. VIER DIO18807

February 8,2024

Page: 1

Antite Ride Rd. Chesterfield, MO 63017 314.434.1200 / MITek-US.com

Job	Truss	Truss Type	Qty	Ply	Lot 17 TCR	
230872	H3	Нір	1	1	Job Reference (optional)	163476785

Run: 8,73 S Jan 4 2024 Print: 8,730 S Jan 4 2024 MiTek Industries, Inc. Tue Feb 06 14:22:32 ID:elEkuwcW8ltcQGFh3ODBjCy6jdK-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

February 8,2024

16023 Swingley Ridge Rd. Chesterfield, MO 63017 314.434.1200 / MiTek-US.com

Scale = 1:73

Plate Offsets (X, Y): [3:0-4-5,0-3-8], [10:0-7-12,Edge], [20:0-5-8,0-2-8]

Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 25.0 20.4/20.0 10.0 10.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC20 ⁻	8/TPI2014	CSI TC BC WB Matrix-S	0.97 0.70 0.90	DEFL Vert(LL) Vert(CT) Horz(CT) Wind(LL)	in -0.36 -0.57 0.35 0.15	(loc) 14-15 14-15 25 20	l/defl >999 >785 n/a >999	L/d 360 240 n/a 240	PLATES MT20 M18AHS Weight: 255 lb	GRIP 197/144 142/136 FT = 10%	
LUMBER TOP CHORD BOT CHORD WEBS OTHERS LBR SCAB WEDGE BRACING TOP CHORD BOT CHORD WEBS REACTIONS	2x4 SPF No.2 *Exce 2.0E 2x4 SPF No.2 *Exce 2100F 1.8E, 16-8,9- 2x3 SPF No.2 *Exce 23-3,14-8,12-10,12- 2x4 SPF No.2 1-4 SP 2400F 2.0E Left: 2x4 SPF No.2 Structural wood shee 6-0-0 oc purlins, exc 2-0-0 oc purlins, exc 2-0-0 oc purlins (3-0 Rigid ceiling directly bracing. 1 Row at midpt (size) 2=0-3-8, 2 Max Horiz 2=281 (LC	pt* 1-5:2x8 SP 24001 pt* 3-20,15-14:2x4 S 13:2x3 SPF No.2 pt* 11:2x4 SPF No.2 one side athing directly applied copt end verticals, an -12 max.): 5-10. applied or 6-0-0 oc 4-20, 8-14, 10-12, 6- 25=0-3-2, (req. 0-3-3) 29)	V F PF 1 dor 1 dor 3 17	/EBS 3 1 8 1 1 8 1 1 1 1 1 1 1 2.0E with 2 rr 0.C.except : s row(s) at 7" c 0.C.except : s row(s	-23=0/72, 19-21=0 8-20=0/273, 5-20= -14=-1359/170, 12 0-14=-326/2347, 1 -22=0/426, 6-17=- 5-17=-375/2622, 1 -20=-116/638, 11-2 0-0 scab 1 to 4, from tarting at 0-3-13 from c. for 3-9-2. roof live loads have 7-16; Vult=115mph ; TCDL=6.0psf; BC closed; MWFRS (er and right exposed I; Lumber DOL=1.6 7-16: Pr=25 0, nsf (/35, 4-: -44/100 -14=-1: 0-12=- 1273/2 7-20=-: 25=-200 nt face "x3") n om end been o (3-sec DL=6.1 nvelope ; end v 0 plate	20=-1441/312 21, 6-15=-150 35/526, 1988/367, 70, 387/2473, 387/2473, 34/247 s) 2x8 SP 244 ails spaced 9° at joint 1, nail considered for cond gust) Dpsf; h=25ft; (C) exterior zon retrical left an grip DDL=1.6 -1 um DDL=1.6	, //879, //879, // / / / / / / / / / / / / / / / / /	12) All t 13) Bea usir des 14) Pro bea 2 ar 15) This Inte R80 16) Gra or tf bott	bearings iring at jo ig ANSI/ igner shivide meering plat nd 247 Ik s truss is rnationa 02.10.2 a phical p phical p phical p CASE(S)	are as point(s) TPI 1 chanicc e capae uplift desig I Resid desig I Resid desid design	ssumed to be SF 25 considers pa angle to grain fo erify capacity of I al connection (b) able of withstand at joint 25. ned in accordan Jential Code sec erenced standar presentation don of the purlin alon ndard	'F No.2 . rallel to grain value rmula. Building bearing surface. γ others) of truss to ing 188 lb uplift at joint ce with the 2018 tions R502.11.1 and d ANSI/TPI 1. es not depict the size g the top and/or	
FORCES TOP CHORD BOT CHORD	Max Grav 2=2140 (L (lb) - Maximum Com Tension 1-2=0/6, 2-3=-1265// 4-5=-3131/330, 5-6= 6-8=-2901/373, 8-9= 9-10=-1927/252, 10- 12-24=-300/2009, 1' 2-23=-35/0, 3-22=-5 21-22=-512/3909, 2(18-19=0/0, 17-18=0/ 15-16=0/105, 8-15=(13-14=0/185, 9-14=-	C 12), 25=244 (LC 4 pression/Maximum 22, 3-4=-4250/353, -2705/317, -1931/248, 11=-212/85, 1-24=-301/2003 14/3909, -21=-512/3909, 44, 16-17=-39/23,)/645, 14-15=-455/25 643/204, 12-13=-7/1	9) (2) 5 6 7 8 9 9 014, 1 3 1	 Plate DOL=1 DOL=1.15 Pl Partially Exp. Unbalanced si design. This truss hai load of 12.0 p overhangs no Provide adeq All plates are This truss hai chord live loa * This truss hai on the bottom 3-06-00 tall b chord and an WARNING: F 	15); Pg=20.0 psf, I ate DOL=1.15); Is= ; Ce=1.0; Cs=1.00; snow loads have be s been designed fo usf or 1.00 times fla on-concurrent with o uate drainage to pr MT20 plates unles s been designed fo d nonconcurrent w as been designed fo d nonconcurrent w as been designed fo chord in all areas y 2-00-00 wide will y other members, v Required bearing si	P=20.2 1.0; Rc Ct=1.7 een cor r great t roof k other liv revent v s other r a 10.0 ith any ior a liv where fit betw with BC ze at jo	psf (Lum ugh Cat C; 0, Lu=50-0-0 isidered for th er of min roof bad of 15.4 ps ve loads. water ponding wise indicated 0 psf bottom other live load e load of 20.0 a rectangle veen the botto DL = 10.0psf. int(s) 25 grea	live sf on J. d. ds. opsf om ter				PE-2001	MISSOLIE T M. IER 018807	

 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.
 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not besign value to dury with with where outputs into design is based only door parameters shown, and is for an individual building design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members and property incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TPH1 Quality Criteria**, and **DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcscomponents.com)

than input bearing size.

Job	Truss	Truss Type	Qty	Ply	Lot 17 TCR	
230872	H4	Half Hip	1	1	Job Reference (optional)	163476786

Run: 8,73 S Jan 4 2024 Print: 8,730 S Jan 4 2024 MiTek Industries, Inc. Tue Feb 06 14:22:33 ID:WWTFkHf1C_N2vuZSIDI7u2y6jdG-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

Scale = 1:72.4

Plate Offsets (X, Y): [3:0-4-5,0-3-8], [20:0-2-8,0-1-8]

														_
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL	(psf) 25.0 20.4/20.0 10.0 10.0*	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018/T	PI2014	CSI TC BC WB Matrix-S	0.95 0.61 0.99	DEFL Vert(LL) Vert(CT) Horz(CT) Wind(LL)	in -0.33 -0.60 0.38 0.23	(loc) 14-15 14-15 12 16	l/defl >999 >739 n/a >999	L/d 360 240 n/a 240	PLATES MT20	GRIP 197/144	-
BCDL	10.0											Weight: 196 lb	FI = 10%	-
LUMBER TOP CHORD BOT CHORD WEBS	2x4 SPF No.2 *Exce 2.0E 2x4 SPF 2100F 1.8E 2-22,18-16:2x4 SPF 6-18,16-9,10-13:2x3 2x3 SPF No.2 *Exce	pt* 1-5:2x8 SP 2400 : *Except* No.2, SPF No.2 pt* 11-12,22-3,14-9:2	WEB F 2x4 NOT	2S 3 1 9 1 1 4 FS	-22=0/60, 7-19=-8 5-17=-522/2880, 7 -14=-1588/270, 12 1-14=-499/2748, 5 7-19=-500/2605, 4 -20=-1059/229, 5-	2/323, 7 -15=-2 -14=-8 -19=-1 -21=0/ 20=-84/	7-17=-1175/3; 23/1096, 9/68, 94/756, 180, 794	24,	13) Gra or ti bott LOAD (phical prine orient om chor CASE(S)	urlin re ation c d. Star	presentation doe f the purlin along ndard	s not depict the size the top and/or	
	SPF No.2	•	1) l	Jnbalanced i	oof live loads have	been o	considered for	r						
BRACING TOP CHORD	Structural wood shea 4-7-10 oc purlins, ex 2-0-0 oc purlins (2-2-	athing directly applied xcept end verticals, a -0 max): 5-11	t dor 2) \ ind \	his design. Wind: ASCE /asd=91mph I: Exp C: Fng	7-16; Vult=115mpl ; TCDL=6.0psf; BC closed: MWFRS (e	n (3-sec CDL=6.0	ond gust))psf; h=25ft; (Cat. ne:						
BOT CHORD	Rigid ceiling directly	applied or 6-0-0 oc	C	cantilever left	and right exposed	; end v	ertical left and arip DOI =1 6	id 60						
NEBS	1 Row at midpt	11-12, 7-17, 9-14	3) 1	ICLL: ASCE	7-16; Pr=25.0 psf	(roof LL	: Lum DOL=1	1.15						
REACTIONS	(size) 2=0-3-8, 1 Max Horiz 2=249 (LC Max Uplift 2=-157 (L Max Grav 2=1797 (L	2= Mechanical C 11) C 12), 12=-305 (LC 9 .C 3), 12=1843 (LC 3	e) F (5) 4) U	Plate DOL=1 DOL=1.15 Pl Partially Exp. Jnbalanced s	.15); Pg=20.0 psf; ate DOL=1.15); Is= ; Ce=1.0; Cs=1.00 snow loads have b	Pf=20.4 =1.0; Ro ; Ct=1.1 een cor	psf (Lum ough Cat C; 0, Lu=50-0-0 sidered for th) nis						
FORCES	(lb) - Maximum Com	pression/Maximum	5) 1	This truss ha	s been designed fo	r great	er of min roof	live						
FOP CHORD	1-2=0/8, 2-3=-1085/9 4-5=-3102/455, 5-6= 6-7=-2841/451, 7-9= 9-10=-2326/372, 10- 11-12=-1770/353	93, 3-4=-3808/469, 2843/450, 3654/595, 11=-2313/373,	6) F 7) T	oad of 12.0 p overhangs no Provide adeq This truss ha chord live loa	osf or 1.00 times fla on-concurrent with uate drainage to p s been designed fo d nonconcurrent w	it roof lo other liv revent v or a 10.0 ith any	oad of 15.4 ps ve loads. vater ponding) psf bottom other live load	sf on g. ds.			A	TATE OF M	AISSOL	
3OT CHORD	2-22=-29/0, 3-21=-62 20-21=-629/3538, 19 18-19=0/99, 6-19=-3 16-17=-19/48, 15-16 14-15=-697/3676, 13 10-14=-659/226, 12-	31/3539, -20=-513/2705, 70/130, 17-18=-27/2 =0/94, 9-15=0/484, 3-14=0/133, 13=-5/17	31, 3 9) / 10) F 11) F 11) F 11) C 11) C 11	Anis truss for bon the bottom 3-06-00 tall b chord and an All bearings a Refer to girde Provide mech bearing plate 12 and 157 lk Fhis truss is o nternational	as been designed a chord in all areas y 2-00-00 wide will y other members, , are assumed to be er(s) for truss to tru nanical connection capable of withsta o uplift at joint 2. Jesigned in accord Residential Code s	where fit betw with BC SPF No ss conr (by oth nding 3 ance w sections	e load of 20:0 a rectangle veen the botto DL = 10.0psf o.2. ections. ers) of truss to 05 lb uplift at th the 2018 R502.11.1 a	om joint				NUMH PE-20010	ER DISSO7	

12) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.
 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not besign value to dury with with where outputs into design is based only door parameters shown, and is for an individual building design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members and property incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TPH1 Quality Criteria**, and **DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcscomponents.com)

February 8,2024

Job	Truss	Truss Type	Qty	Ply	Lot 17 TCR	
230872	H5	Half Hip Girder	1	2	Job Reference (optional)	163476787

Run: 8,73 E Jan 4 2024 Print: 8,730 E Jan 4 2024 MiTek Industries. Inc. Wed Feb 07 11:13:38 ID:psOvCgIQY7F2EyboCCwmgWy6jd9-TaK6Qm_xbj9IA6vHIIfnUU8nad6kgn3yWCjpVzznYMy

Page: 1

Scale = 1:72.2

Plate Offsets (X, Y); [3:0-2-0.0-1-10], [7:0-4-0.0-4-0], [13:0-8-4.0-4-12]

		-9.6 9.6	,	<u> </u>									
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf 25.0 20.4/20.0 10.0 10.0 10.0	 Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code 	2-0-0 1.15 1.15 NO IRC201	8/TPI2014	CSI TC BC WB Matrix-S	0.54 0.85 0.69	DEFL Vert(LL) Vert(CT) Horz(CT) Wind(LL)	in -0.34 -0.60 0.32 0.43	(loc) 15 15 11 15	l/defl >999 >741 n/a >999	L/d 360 240 n/a 240	PLATES MT20 Weight: 444 lb	GRIP 197/144 FT = 10%
LUMBER TOP CHORD BOT CHORD WEBS WEDGE BRACING TOP CHORD BOT CHORD	2x6 SPF No.2 *E 2.0E 2x6 SPF No.2 *E SPF No.2 2x4 SPF No.2 Left: 2x3 SPF No Structural wood : 6-0-0 oc purlins, 2-0-0 oc purlins (Rigid ceiling dire bracing, Except 6-0-0 oc bracing 9-11-10 oc braci	xcept* 1-4:2x6 SP 24 xcept* 5-17,15-8,9-12 .2 sheathing directly app except end verticals, 5-3-13 max.): 4-10. ctly applied or 10-0-0 : 2-20 ng: 13-14.	B4 00F 2:2x4 lied or and oc W	OT CHORD	2-20=-157/45, 3- 19-33=-2234/50: 18-34=-2234/50: 5-18=-482/335, 35-36=-311/733, 38-39=-148/370, 15-40=-148/370, 8-14=-392/212, 13-41=-2534/62: 9-13=-1298/632; 42-43=-44/159, 11-44=-44/159 3-20=-68/237, 4 4-18=-866/2104	-19=-2244/ -19, 33-34= 91, 17-18= 17-35=-31 , 36-37=-3 , 16-38=-1 , 39-40=-1 , 14-15=-2 14-41=-25 21, 12-13= , 12-42=-4 43-44=-44/ -19=-207/7 , 16-18=-22	(5129, -2234/5091, -25/180, 1/733, 11/733, 48/370, 48/370, 3/171, 31/6212, 0/155, 4/159, (159, 70, 097/5071,		4) Wir Vas II; E car rigf 5) TC Pla DC Pa Mir app 0.5 6) Unl des 7) Thi	nd: ASC sd=91m Exp C; E titilever let te expose LL: ASC te DOL= L=1.15 titially Ex 0. flat roco blied to a 00/12 in balanced sign. s truss h	E 7-16; ph; TCI inclose eft and ed; Lund E 7-16 =1.15); Plate D p.; Ce= of snow all expo accord d snow	Vult=115mph (3 DL=6.0psf; BCDL d; MWFRS (enve right exposed ; e nber DOL=1.60 p ; Pr=25.0 psf (roo Pg=20.0 psf; Pf= OL=1.15); Is=1.0 =1.0; Cs=1.00; Ct load governs. R sed surfaces with lance with IBC 16 loads have been en designed for g	-second gust) =6.0psf; h=25ft; Cat. Iope) exterior zone; nd vertical left and vertical left and late grip DOL=1.60 of LL: Lum DOL=1.15 20.4 psf (Lum ; Rough Cat C; =1.10, Lu=50-0-0; tain surcharge n slopes less than 508.3.4. to considered for this reater of min roof live
REACTIONS	(lb/size) 2=186 Mecha Max Horiz 2=162 Max Uplift 2=-839 Max Grav 2=243	3/0-3-8, 11=1759/ nical (LC 9) 9 (LC 9), 11=-930 (LC 6 (LC 29), 11=2380 (L	9) _C 43) N	OTES	6-18=-596/1219 14-16=-2308/55 9-14=-994/2480 10-13=-2533/62	, 6-16=-220 55, 6-14=- , 11-13=-14 34	1148/2783, 49/67,		ove 8) Prc 9) Thi chc	erhangs wide ade s truss h ord live le	non-co equate has bee oad nor	ncurrent with other drainage to preve en designed for a nconcurrent with	er live loads. ent water ponding. 10.0 psf bottom any other live loads.
FORCES TOP CHORD	(lb) - Maximum C Tension 1-2=0/8, 2-3=-15 4-21=-6902/887 23-24=-6823/283 6-27=-8295/3362 7-28=-8295/3362 8-29=-8437/341 ⁺ 9-30=-6007/240 31-32=-6007/240 10-11=-2181/937	Compression/Maximur 95/553, 3-4=-5727/23 , 21-22=-6903/2872, , 5-23=-6823/2836, 66, 6-26=-6823/2836, 27-28=-8295/3362, , 9-29=-8437/3411, , 30-31=-6007/2401, 1, 10-32=-6007/2401	n 1) 41, , 2) , 3)	2-pi) truss i (0.131"x3") Top chords staggered a Bottom cho staggered a Web conne All loads an except if no CASE(S) sc provided to unless othe Unbalanced this design.	o be connected t nails as follows: connected as fol tt 0-9-0 oc, 2x4 - rds connected as tt 0-9-0 oc, 2x4 - rds connected as tt 0-9-0 oc, 2x4 - cted as follows: 2 e considered equ ted as front (F) of cation. Ply to ply of distribute only los trwise indicated. I roof live loads h	lows: 2x6 - 1 row at 0- s follows: 2 1 row at 0- 1 row at 0- 2x4 - 1 row ally applied r back (B) f connection ads noted a nave been of	rr 10d • 2 rows 9-0 oc. x6 - 2 rows 9-0 oc. at 0-9-0 oc. d to all plies, face in the LC s have been as (F) or (B), considered fo	DAD		1		STONA	MISSOLP FM. ER DISSOT

Continued on page 2 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not besign value to dury with with where outputs into design is based only door parameters shown, and is for an individual building design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members and property incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TPH1 Quality Criteria**, and **DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcscomponents.com)

16023 Swingley Ridge Rd. Chesterfield, MO 63017 314.434.1200 / MiTek-US.com

February 8,2024

Job	Truss	Truss Type	Qty	Ply	Lot 17 TCR	
230872	H5	Half Hip Girder	1	2	Job Reference (optional)	163476787

Run: 8 73 E. Jan. 4 2024 Print: 8 730 E. Jan. 4 2024 MiTek Industries. Inc. Wed Feb 07 11:13:38

ID:psOvCgIQY7F2EyboCCwmgWy6jd9-TaK6Qm_xbj9IA6vHIIfnUU8nad6kgn3yWCjpVzznYMy

Page: 2

Wheeler Lumber, Waverly, KS - 66871,

- 10) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- 11) All bearings are assumed to be SPF No.2 crushing capacity of 425 psi.
- 12) Refer to girder(s) for truss to truss connections.
- 13) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 930 lb uplift at joint 11 and 839 lb uplift at joint 2.
- 14) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 15) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

16) Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 124 Ib down and 121 lb up at 7-2-0, 142 lb down and 121 lb up at 9-0-0. 142 lb down and 121 lb up at 11-0-0. 84 lb down and 66 lb up at 13-0-0, 84 lb down and 66 lb up at 15-0-0, 84 lb down and 66 lb up at 17-0-0, 84 lb down and 66 lb up at 19-0-0, 84 lb down and 66 lb up at 21-0-0, 84 lb down and 66 lb up at 23-0-0, 84 lb down and 66 lb up at 30-7-0, 84 lb down and 66 lb up at 32-7-0, and 84 lb down and 66 lb up at 34-7-0, and 84 Ib down and 64 lb up at 36-7-0 on top chord, and 277 lb down and 170 lb up at 7-2-0, at 9-0-0, at 11-0-0, 27 lb down and 18 lb up at 13-0-0, 27 lb down and 18 lb up at 15-0-0, 27 lb down and 18 lb up at 17-0-0, 27 lb down and 18 lb up at 19-0-0, 27 lb down and 18 lb up at 21-0-0, 27 lb down and 18 lb up at 23-0-0, 128 lb down and 140 lb up at 27-0-0, 27 lb down and 18 lb up at 30-7-8, 27 lb down and 18 lb up at 32-7-0, and 27 lb down and 18 lb up at 34-7-0, and 33 lb down and 16 lb up at 36-7-0 on bottom chord. The design/selection of such connection device(s) is the responsibility of others.

LOAD CASE(S) Standard

1) Dead + Snow (balanced): Lumber Increase=1.15, Plate Increase=1.15

Uniform Loads (lb/ft)

Vert: 1-4=-51, 4-10=-61, 2-20=-20, 3-18=-20, 15-17=-20, 13-14=-20, 11-12=-20

Concentrated Loads (lb)

Vert: 4=-34 (B), 7=-6 (B), 9=-6 (B), 19=-242 (B), 13=-10 (B), 21=-30 (B), 22=-30 (B), 23=-6 (B), 25=-6 (B), 26=-6 (B), 27=-6 (B), 28=-6 (B), 30=-6 (B), 31=-6 (B), 32=-13 (B), 35=-10 (B), 36=-10 (B), 37=-10 (B), 38=-10 (B), 39=-10 (B), 40=-10 (B), 41=-112 (B), 42=-10 (B), 43=-10 (B), 44=-14 (B)

Job	Truss	Truss Type	Qty	Ply	Lot 17 TCR	
230872	J1	Diagonal Hip Girder	6	1	Job Reference (optional)	163476788

Run: 8.73 S Jan 4 2024 Print: 8.730 S Jan 4 2024 MiTek Industries, Inc. Tue Feb 06 14:22:37 ID:psOvCgIQY7F2EyboCCwmgWy6jd9-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

NAILED

4-8-8

Scale = 1:34.6

Plate Offsets (X, Y): [5:0-5-7,0-1-8]

Loading	(psf)	Spacing	2-0-0		csi		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP	_
TCLL (roof)	25.0	Plate Grip DOL	1.15		TC	0.36	Vert(LL)	-0.02	4-5	>999	360	MT20	197/144	
Snow (Pf/Pg)	15.4/20.0	Lumber DOL	1.15		BC	0.23	Vert(CT)	-0.05	4-5	>999	240			
TCDL	10.0	Rep Stress Incr	NO		WB	0.00	Horz(CT)	0.02	3	n/a	n/a			
BCLL	10.0*	Code	IRC2018	3/TPI2014	Matrix-R		Wind(LL)	0.02	4-5	>999	240			
BCDL	10.0											Weight: 13 lb	FT = 10%	
			6)	* This truss h	as been designed	d for a liv	e load of 20.0	Opsf						
TOP CHORD	2x4 SPF No.2		- /	on the botton	n chord in all area	s where	a rectangle							
BOT CHORD	2x4 SPF No.2			3-06-00 tall b	y 2-00-00 wide wi	ill fit betw	een the bott	om						
WEBS	2x4 SPF No.2			chord and an	y other members,	, with BC	DL = 10.0pst	f.						
BRACING			7)	All bearings a	are assumed to be	e SPF No	0.2 .							
TOP CHORD	Structural wood shea	athing directly applie	dor ⁸⁾	Refer to girde	er(s) for truss to t	russ con	nections.							
	4-8-8 oc purlins, exc	cept end verticals.	9)	Provide meci	nanical connection	n (by oth	ers) of truss f	0						
BOT CHORD	Rigid ceiling directly	applied or 10-0-0 oc		E and 69 lb u	capable of withst	anding 9	z ib upilit at j	oint						
	bracing.		10) This truss is	plint at joint 3. designed in accor	dance wi	th the 2018							
REACTIONS	(size) 3= Mecha	nical, 4= Mechanical	, 10	International	Residential Code	sections	R502 11 1 a	nd						
	5=0-4-9	0		R802.10.2 ar	nd referenced star	ndard AN	ISI/TPI 1.							
	Max Horiz 5=82 (LC	8) (10) E 00 (10 0)	11) "NAILED" inc	dicates 3-10d (0.14	48"x3") c	r 2-12d							
	Max Opint $3=-68$ (LC	- 12), 5=-92 (LC 8)	222	(0.148"x3.25	") toe-nails per NE	DS guidli	nes.							
	(LC 19)	5 19), 4=04 (LC 7), 5	=322 12) In the LOAD	CASE(S) section,	loads ap	plied to the	face						
FORCES	(lb) - Maximum Com	pression/Maximum	IC	OF the truss a	Standard	(F) or ba	СК (В).							
	Tension		1)	Dead + Sno	w (balanced): Lur	mber Inc	ease=1.15.	Plate						
TOP CHORD	2-5=-286/122, 1-2=0	/32, 2-3=-82/38	,	Increase=1.	.15									
	4-5=0/0			Uniform Loa	ads (lb/ft)									
NOTES		(2 1)		Vert: 1-2:	=-51, 2-3=-51, 4-5	5=-20								
1) Wind: ASC	CE 7-16; Vult=115mph	(3-second gust)	ot	Concentrate	ed Loads (lb)									
II: Exp C: I	Enclosed: MWERS (en	velope) exterior zon	aı. 	Vert: 8=2	: (F=1, B=1)							CON	m	
cantilever	left and right exposed	end vertical left and	, 									A OF M	AIS C	
right expos	sed; Lumber DOL=1.60	0 plate grip DOL=1.6	0								E	7 210	N'OC	
2) TČLL: ÁS	CE 7-16; Pr=25.0 psf (I	roof LL: Lum DOL=1	.15								B	SCOTT	N. YAN	
Plate DOL	.=1.15); Pg=20.0 psf; P	Pf=15.4 psf (Lum									8	SEVI	FR VY	(
DOL=1.15	Plate DOL=1.15); Is=	1.0; Rough Cat C;									R +			1
Partially E	xp.; Ce=1.0; Cs=1.00;	Ct=1.10									200		. 2	8
 Unbalance dooign 	ed snow loads have be	en considered for thi	S								LO.		Servie	
4) This trues	has been designed for	areater of min roof l	ivo								1	NUMI	BER A	1
load of 12.	.0 psf or 1.00 times flat	t roof load of 15.4 ps	on								N	OX PE-2001	018807	
overhangs	non-concurrent with o	other live loads.									V	TA	158	
5) This truss	has been designed for	a 10.0 psf bottom										WSID:	ENOR	
chord live	load nonconcurrent wit	th any other live load	s.									WNA	L	
												- MOD		
												Februai	y 8,2024	

Job	Truss	Truss Type	Qty	Ply	Lot 17 TCR	
230872	J2	Jack-Open	12	1	Job Reference (optional)	163476789

-0-10-8

0-10-8

1-3-15

1-3-15

Wheeler Lumber, Waverly, KS - 66871,

1)

2)

3)

4)

5)

Run: 8 73 S. Jan. 4 2024 Print: 8 730 S. Jan. 4 2024 MiTek Industries. Inc. Tue Feb 06 14:22:37 ID:_A_no?GKzrDjRpY6soCO24y6jdn-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Job	Truss	Truss Type	Qty	Ply	Lot 17 TCR	
230872	J3	Jack-Open	15	1	Job Reference (optional)	163476790

2-6-8

0-10-0

Run: 8.73 S Jan 4 2024 Print: 8.730 S Jan 4 2024 MiTek Industries, Inc. Tue Feb 06 14:22:37 ID:_A_no?GKzrDjRpY6soCO24y6jdn-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

4

2-6-8

Page: 1

5

 $\stackrel{\sim}{\nearrow}$

3x10 "

3-5-0

Scale = 1:25 Plate Offsets (X, Y): [5:0-5-9,0-1-8]

Loading TCLL (roof)	(psf) 25.0	Spacing Plate Grip DOL	2-0-0 1.15	CSI TC	0.15	DEFL Vert(LL)	in -0.01	(loc) 4-5	l/defl >999	L/d 360	PLATES MT20	GRIP 197/144
Snow (Pf/Pg)	15.4/20.0	Lumber DOL	1.15	BC	0.10	Vert(CT)	-0.01	4-5	>999	240		
TCDL	10.0	Rep Stress Incr	YES	WB	0.00	Horz(CT)	-0.01	3	n/a	n/a		
BCLL	10.0*	Code	IRC2018/TPI2014	Matrix-R		Wind(LL)	0.01	4-5	>999	240		
BCDL	10.0		1								Weight: 10 lb	FT = 10%
			6) * This truss	s has been desigr	ned for a liv	e load of 20.	.0psf					
BOT CHORD	2x4 SPF N0.2 2x4 SPF No 2		3-06-00 tal	l by 2-00-00 wide	will fit bety	veen the bott	tom					
WEBS	2x4 SPF No 2		chord and	any other membe	ers, with BC	DL = 10.0ps	sf.					
BRACING			All bearing	s are assumed to	be SPF No	o.2 .						
TOP CHORD	Structural wood she	athing directly applie	ed or 8) Refer to gi	rder(s) for truss to	o truss con	nections.						
	3-5-0 oc purlins, ex	cept end verticals.	9) Provide me	echanical connect	tion (by oth	ers) of truss	to					
BOT CHORD	Rigid ceiling directly bracing.	applied or 10-0-0 oc	bearing pla 5 and 58 lk	ate capable of with o uplift at joint 3.	nstanding 2	4 ID uplift at	joint					
REACTIONS	(size) 3= Mecha 5=0-3-8	anical, 4= Mechanica	I, Internation	al Residential Co	de sections	s R502.11.1	and					
	Max Horiz 5=75 (LC	12)		anu reierenced s	anuaru Ar	NOI/TPLT.						
	Max Uplift 3=-58 (LC	C 12), 5=-24 (LC 12)	LUAD CASE(S	siandard								
	Max Grav 3=107 (LC (LC 19)	C 19), 4=60 (LC 7), 5	5=248									
FORCES	(lb) - Maximum Com Tension	pression/Maximum										
TOP CHORD BOT CHORD	2-5=-220/58, 1-2=0/ 4-5=0/0	35, 2-3=-63/37										
NOTES												
1) Wind: AS	CE 7-16; Vult=115mph	(3-second gust)										
Vasd=91r II; Exp C; cantilever	nph; TCDL=6.0psf; BC Enclosed; MWFRS (er left and right exposed	DL=6.0psf; h=25ft; C nvelope) exterior zon ; end vertical left and	Cat. le; d								FE OF I	MISSO
2) TCLL: AS Plate DOI DOL=1.15 Partially E	sed; Lumber DOL=1.6 GE 7-16; Pr=25.0 psf (L=1.15); Pg=20.0 psf; F 5 Plate DOL=1.15); Is= Exp.; Ce=1.0; Cs=1.00;	0 plate grip DOL=1.6 roof LL: Lum DOL=1 Pf=15.4 psf (Lum 1.0; Rough Cat C; Ct=1.10	60 I.15								SCOT SEV	T M.
3) Unbalanced show loads have been considered for this												
design.									/		NUM	Service
 This truss load of 12 	has been designed for 2.0 psf or 1.00 times fla	r greater of min roof t roof load of 15.4 ps	live if on							Nº.	PE-2001	018807
5) This truss chord live	s non-concurrent with c has been designed for load nonconcurrent wi	other live loads. r a 10.0 psf bottom th any other live load	ds.							y	ESSIONA	IL ENGLAS
											Februa	ry 8,2024

Job	Truss	Truss Type	Qty	Ply	Lot 17 TCR	
230872	J4	Diagonal Hip Girder	2	1	Job Reference (optional)	163476791

Run: 8.73 S Jan 4 2024 Print: 8.730 S Jan 4 2024 MiTek Industries, Inc. Tue Feb 06 14:22:37 ID:_A_no?GKzrDjRpY6soCO24y6jdn-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

2-4-14

3x10 ш

Scale = 1:23.2

Plate Offsets (X, Y): [5:0-5-7,0-1-8]

(psf)	Spacing	2-0-0		0 15	DEFL	in 0.00	(loc)	l/defl	L/d	PLATES	GRIP 197/144
15 4/20 0	Lumber DOI	1.15	BC	0.13	Vert(CT)	0.00	4-5	>999	240	WI120	10//144
10.0	Rep Stress Incr	NO	WB	0.00	Horz(CT)	0.00	. 3	n/a	n/a		
10.0*	Code	IRC2018/TPI2014	Matrix-R		Wind(LL)	0.00	4-5	>999	240		
10.0										Weight: 8 lb	FT = 10%
2x4 SPF No.2 2x4 SPF No.2 2x4 SPF No.2 Structural wood shea 2-4-14 oc purlins, ex Rigid ceiling directly bracing. (size) 3= Mecha 5=0-4-9 Max Horiz 5=49 (LC Max Uplift 3=-31 (LC Max Grav 3=54 (LC	athing directly applie xcept end verticals. applied or 10-0-0 oc nical, 4= Mechanical 8) 12), 5=-79 (LC 8) 19), 4=39 (LC 7), 5=	 6) * This truss on the botto 3-06-00 tall chord and a 7) All bearings 8) Refer to gim 9) Provide me bearing plat 5 and 31 lb 10) This truss is Internationa R802.10.2 a LOAD CASE(S) 	has been designed m chord in all area by 2-00-00 wide w ny other members are assumed to be der(s) for truss to t chanical connection e capable of withst uplift at joint 3. designed in accor I Residential Code and referenced star) Standard	d for a live is where ill fit betw , with BC e SPF No russ conn n (by oth tanding 7 dance wi sections ndard AN	e load of 20.0 a rectangle reen the botto DL = 10.0psf 0.2. hections. ers) of truss t 9 lb uplift at ju th the 2018 R502.11.1 a SI/TPI 1.	opsf om o ooint nd					
(LC 19)											
(ID) - Maximum Com Tension	pression/iviaximum										
2-5=-202/96, 1-2=0/3	33, 2-3=-34/13										
4-5=0/0											
CE 7-16; Vult=115mph nph; TCDL=6.0psf; BCI Enclosed; MWFRS (en left and right exposed sed; Lumber DOL=1.6(CE 7-16; Pr=25.0 psf (r =1.15); Pg=20.0 psf; P Plate DOL=1.15); Is=' xp.; Ce=1.0; Cs=1.00; ad snow loads have be has been designed for 0 psf or 1.00 times flat a non-concurrent with o has been designed for load nonconcurrent wit	(3-second gust) DL=6.0psf; h=25ft; C velope) exterior zone; ; end vertical left and 0 plate grip DOL=1.6 foroof LL: Lum DOL=1. /f=15.4 psf (Lum 1.0; Rough Cat C; Ct=1.10 en considered for thi greater of min roof I roof load of 15.4 pst ther live loads. a 10.0 psf bottom th any other live loads	at. e; I 0 .15 s ive f on								TE OF M SCOT SEVI PE-2001 PE-2001	MISSOLA T.M. ER 018807
	(psf) 25.0 15.4/20.0 10.0 10.0* 10.0 2x4 SPF No.2 2x4 SPF No.2 2x4 SPF No.2 2x4 SPF No.2 2x4 SPF No.2 Structural wood sheat 2-4-14 oc purlins, et: Rigid ceiling directly bracing. (size) 3= Mecha 5=0-4-9 Max Horiz 5=49 (LC Max Uplift 3=-31 (LC Max Uplift 3=-31 (LC Max Grav 3=54 (LC (LC 19) (lb) - Maximum Com Tension 2-5=-202/96, 1-2=0/2 4-5=0/0 2E 7-16; Vult=115mph ph; TCDL=6.0psf; BC Enclosed; MWFRS (err left and right exposed 2E 7-16; Pr=25.0 psf (=1.15); Pg=20.0 psf; F. Plate DOL=1.15); Is= xp.; Ce=1.0; Cs=1.00; ad snow loads have be has been designed for 0 psf or 1.00 times flat a non-concurrent with c	(psf) 25.0Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code10.0* 10.0*Rep Stress Incr Code2x4 SPF No.2 2x4 SPF No.2Structural wood sheathing directly applie 2-4-14 oc purlins, except end verticals. Rigid ceiling directly applied or 10-0-0 oc bracing.(size) 3 = Mechanical, 4= Mechanical 5=0-4-9Second and a second a secon	(psf) 25.0 15.4/20.0 10.0* 10.0*Spacing Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr Code2-0-0 Plate Grip DOL 1.15 Rep Stress Incr NO Code2x4 SPF No.2 2x4 SPF No.26)* This truss on the botto 3-06-00 tall chord and a 7) All bearings 8) Refer to gird 9) Provide met bearing plat 5 and 31 lbStructural wood sheathing directly applied or 2-4-14 oc purlins, except end verticals. Rigid ceiling directly applied or 10-0-0 oc bracing.6)* This truss on the botto 3-06-00 tall chord and a 7) All bearings 8) Refer to gird 9) Provide met bearing plat 5 and 31 lb(size) (size) 3 = Mechanical, 4= Mechanical, 5=0-4-96)* This truss is (htterationa E0-4-9Max Horiz (size) 3 = Mechanical, 4= Mechanical, 5=0-4-95 and 31 lb 10) This truss is Internationa R802.10.2 at BA32 (LC 19)(lb) - Maximum Compression/Maximum Tension 2-5=-202/96, 1-2=0/33, 2-3=-34/13 4-5=0/0Call C 19)(lb) - Maximum Compression/Maximum Tension 2-5=-202/96, 1-2=0/33, 2-3=-34/13 4-5=0/0LOAD CASE(S)2E 7-16; Vult=115mph (3-second gust) ph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. Enclosed; MWFRS (envelope) exterior zone; left and right exposed ; end vertical left and seciel to DL=1.15; ls=1.0; Rough Cat C; xp; Ce=1.0; Cs=1.00; Ci=1.10 ad snow loads have been considered for thishas been designed for greater of min roof live .0 psf or 1.00 times flat roof loads. as non-concurrent with other live loads. has been designed for a 10.0 psf bottom load nonconcurrent with any other live loads.	(psf) 25.0 15.4/20.0 10.0Spacing Plate Grip DOL 1.15 Rep Stress Incr NOCSI TC BC WB Watrix-R2x4 SPF No.2 2x4 SPF No.26)* This truss has been designed on the bottom chord in all area 3-06-00 tall by 2-00-00 wide w chord and any other members 7)6)* This truss has been designed on the bottom chord in all area 3-06-00 tall by 2-00-00 wide w chord and any other members 7)(size) 3 = Mechanical, 4= Mechanical, 5=0-4-96)* This truss has been designed or chord and any other members 7)(size) 3 = Mechanical, 4= Mechanical, 5=0-4-93= Mechanical, 4= Mechanical, 5=0-4-98Max Horiz (LC 19)3= M(LC 12), 5=-79 (LC 8)80Max Grav 2-5=-202/96, 1-2=0/33, 2-3=-34/13 4-5=0/010This truss is designed in accord late rapable of withs 5 and 31 lb uplif at joint 3.10)Maximum Compression/Maximum Tension 2-5=-202/96, 1-2=0/33, 2-3=-34/13 4-5=0/0Call by 2-00-00 wide w chord and any other members 5 and 31 lb uplif at joint 3.2F 7-16; Vult=115mph (3-second gust) ph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. Enclosed; MWFRS (envelope) exterior zone; left and right exposed ; end vertical left and sed; Lumber DOL=1.602F 7-16; Pr=25.0 psf (roof LL: Lum DOL=1.15) r=1.50; psf (roof LL: Lum DOL=1.15) r=1.50; cs=1.00; Cs=1.10 ed snow loads have been considered for this has been designed for greater of min roof live .0 psf or 1.00 times flat roof load of 15.4 psf on s non-concurrent with other live loads.has been designed for greater of min roof live .0 psf or 1.00 times flat roof load of 15.4 psf on s non-concurrent with any other live loads. <td>(psf) 25.0 15.4/20.0Spacing Plate Grip DOL 1.152-0.0 TCCSI TC10.0 10.0* 10.0Rep Stress Incr NO CodeIRC2018/TPI2014Matrix-R2x4 SPF No.2 2x4 SPF No.26)* This truss has been designed for a live on the bottom chord in all areas where - 3-06-00 tall by 2-00-00 wide will fit betw chord and any other members, with BC 7) All bearings are assumed to be SPF No.23a Mechanical, 4= Mechanical, 5=0-4-96)* This truss has been designed for a live on the bottom chord in all areas where - 3-06-00 tall by 2-00-00 wide will fit betw chord and any other members, with BC 7) All bearings are assumed to be SPF No.2(size) 3a Mechanical, 4= Mechanical, 5=0-4-9Structural wood sheathing directly applied or 10-0-0 oc bracing.6)* This truss has been designed for a live on the bottom chord in all areas where - 3-06-00 bial by 2-00-00 wide will fit betw chord and any other members, with BC 7) All bearing plate capable of withstanding 7 5 and 31 lb uplift at joint 3.(b)Max Uplift 3=-31 (LC 12), 5=-79 (LC 8) Max Grav 3=54 (LC 19), 4=39 (LC 7), 5=230 (LC 19)10) This truss is designed in accordance will liternational Residential Code sections R802.10.2 and referenced standard AN LOAD CASE(S) StandardLOAD CASE(S)Standard25 7-16; Vult=115mph (3-second gust) (ph; TCDL=6.0psf; BcDL=6.0psf; h=25t; Cat. Enclosed; MWFRS (envelope) exterior zone; left and right exposed ; end vertical left and set, Lumber DOL=1.16) 1=1.15); Pg=20.0 psf; Pf=15.4 psf (lum Plate DDL=1.16) at snow loads have been considered for this has been designed for greater of min roof live .0 psf or 1.00 times flat roof load of 15.4 psf on<b< td=""><td>(psf) 25.0Spacing Plate Grip DOL 11.52-0-0 TC CCSI TC C O.15DEFL Vert(LL) Vert(CT)10.0 10.0* 10.0Rep Stress Incr CodeNO (RC2018/TPI2014WB WB Matrix-RDOL Horz(CT) Wind(LL)2x4 SPF No.2 2x4 SPF No.2</td><td></td><td>(psf) 25.0 Plate Grip DOL 115.4/20.0 10.0°Spacing Plate Grip DOL 1.15 Rep Stress Incr NO CodeCSI TC TC NO WB WB Matrix-RDEFL vert(L1) 0.00 4.5 Vert(L1) 0.00(loc) Vert(L1) 0.00 4.52x4 SPF No.2 2x4 SPF No.2$7$ This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle $3-06-00$ tall by 2-0-0-00 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf. 7 All bearings are assumed to be SPF No.2.2x4 SPF No.2 2x4 SPF No.26) $2-4+14$ oc purlins, except end verticals. Rigid celling directly applied or 10-0-00 bracing.Structural wood sheathing directly applied or toracing.6) $3-06-00$ all by 2-0-00 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf. 7 7 All bearings are assumed to be SPF No.2. 8(size) $3=$ Mechanical, 4= Mechanical, $5-0-4-9$0)(ize) $3=-49$ (LC 12), 5=-79 (LC 8) Max Upit1 $3=-31$ (LC 12), 5=-79 (LC 8) (LC 19)Max Horiz $5-49$ (LC 10)0.10, 5-230 (LC 19)(b) - Maximum Tension $2-5=202/96$, 1-2=0/33, 2-3=-34/13 $4-5=0/0$25=7-16; Vult=115mph (3-second gust) (ph; TCDL=6.0psf; BCDL=6.0psf; h=25f; Cat. Enclosed; MWFRS (envelope) exterior zone; eith an dright exposed ; end vertical left and adst exposed ; end vertical left and sect exposed ; end vertical left and color on-oncurrent with any other live loads.25=7-16; Vult=115mph (Gase of 10, 0 psd of 15, 4 psf on eno</br></br></br></br></br></br></br></br></br></br></br></br></br></br></br></br></br></br></br></br></td><td>(psf) Spacing 2-0-0 CSI DEFL in (loc) //deft 15.4.72.0 Lumber DOL 1.15 TC 0.15 BC 0.04 Vert(L) 0.00 4.5 >999 10.0 10.0 Code IRC2018/TP12014 WB 0.00 Wind(LL) 0.00 4.5 >999 2x4 SPF No.2 Zx4 SPF No.2 Spr No.2</td><td>(psf) 25.0 15.4.200 10.0 10.0*Spacing Plate Grip DDL 1.152-0-0 TCCSI TCDEFL inin(loc) ideftL/d (loc) 4-510.0 10.0* 10.0Rep Stress Incr RopNO CodeWB0.00WBVert(CT)0.004-5>9992402x4 SPF No.2 2x4 SPF No.2 2x4 SPF No.2</td><td>(psf) 25:0Spacing 2:0:02:0:0CSI TCDEFLin(loc)l/deftL/dPLATES MT2010:010:0Rep Stress IncNO10:0Rep Stress IncNO10:0CodeIRC2018/TPI2014WB0:004:5>:999240Horz(CT)0:004:5:>9992402x4 SPF No.2::::::2x4 SPF No.2:::::::2x4 SPF No.2::::::::2x4 SPF No.2::::::::2x4 SPF No.2:::::::::2x4 SPF No.2:::::::::::2x4 SPF No.2:::<</td></b<></td>	(psf) 25.0 15.4/20.0Spacing Plate Grip DOL 1.152-0.0 TCCSI TC10.0 10.0* 10.0Rep Stress Incr NO CodeIRC2018/TPI2014Matrix-R2x4 SPF No.2 2x4 SPF No.26)* This truss has been designed for a live on the bottom chord in all areas where - 3-06-00 tall by 2-00-00 wide will fit betw chord and any other members, with BC 7) All bearings are assumed to be SPF No.23a Mechanical, 4= Mechanical, 5=0-4-96)* This truss has been designed for a live on the bottom chord in all areas where - 3-06-00 tall by 2-00-00 wide will fit betw chord and any other members, with BC 7) All bearings are assumed to be SPF No.2(size) 3a Mechanical, 4= Mechanical, 5=0-4-9Structural wood sheathing directly applied or 10-0-0 oc bracing.6)* This truss has been designed for a live on the bottom chord in all areas where - 3-06-00 bial by 2-00-00 wide will fit betw chord and any other members, with BC 7) All bearing plate capable of withstanding 7 5 and 31 lb uplift at joint 3.(b)Max Uplift 3=-31 (LC 12), 5=-79 (LC 8) Max Grav 3=54 (LC 19), 4=39 (LC 7), 5=230 (LC 19)10) This truss is designed in accordance will liternational Residential Code sections R802.10.2 and referenced standard AN LOAD CASE(S) StandardLOAD CASE(S)Standard25 7-16; Vult=115mph (3-second gust) (ph; TCDL=6.0psf; BcDL=6.0psf; h=25t; Cat. Enclosed; MWFRS (envelope) exterior zone; left and right exposed ; end vertical left and set, Lumber DOL=1.16) 1=1.15); Pg=20.0 psf; Pf=15.4 psf (lum Plate DDL=1.16) at snow loads have been considered for this has been designed for greater of min roof live .0 psf or 1.00 times flat roof load of 15.4 psf on <b< td=""><td>(psf) 25.0Spacing Plate Grip DOL 11.52-0-0 TC CCSI TC C O.15DEFL Vert(LL) Vert(CT)10.0 10.0* 10.0Rep Stress Incr CodeNO (RC2018/TPI2014WB WB Matrix-RDOL Horz(CT) Wind(LL)2x4 SPF No.2 2x4 SPF No.2</td><td></td><td>(psf) 25.0 Plate Grip DOL 115.4/20.0 10.0°Spacing Plate Grip DOL 1.15 Rep Stress Incr NO CodeCSI TC TC NO WB WB Matrix-RDEFL vert(L1) 0.00 4.5 Vert(L1) 0.00(loc) Vert(L1) 0.00 4.52x4 SPF No.2 2x4 SPF No.2$7$ This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle $3-06-00$ tall by 2-0-0-00 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf. 7 All bearings are assumed to be SPF No.2.2x4 SPF No.2 2x4 SPF No.26) $2-4+14$ oc purlins, except end verticals. Rigid celling directly applied or 10-0-00 bracing.Structural wood sheathing directly applied or toracing.6) $3-06-00$ all by 2-0-00 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf. 7 7 All bearings are assumed to be SPF No.2. 8(size) $3=$ Mechanical, 4= Mechanical, $5-0-4-9$0)(ize) $3=-49$ (LC 12), 5=-79 (LC 8) Max Upit1 $3=-31$ (LC 12), 5=-79 (LC 8) (LC 19)Max Horiz $5-49$ (LC 10)0.10, 5-230 (LC 19)(b) - Maximum Tension $2-5=202/96$, 1-2=0/33, 2-3=-34/13 $4-5=0/0$25=7-16; Vult=115mph (3-second gust) (ph; TCDL=6.0psf; BCDL=6.0psf; h=25f; Cat. Enclosed; MWFRS (envelope) exterior zone; eith an dright exposed ; end vertical left and adst exposed ; end vertical left and sect exposed ; end vertical left and color on-oncurrent with any other live loads.25=7-16; Vult=115mph (Gase of 10, 0 psd of 15, 4 psf on eno</br></br></br></br></br></br></br></br></br></br></br></br></br></br></br></br></br></br></br></br></td><td>(psf) Spacing 2-0-0 CSI DEFL in (loc) //deft 15.4.72.0 Lumber DOL 1.15 TC 0.15 BC 0.04 Vert(L) 0.00 4.5 >999 10.0 10.0 Code IRC2018/TP12014 WB 0.00 Wind(LL) 0.00 4.5 >999 2x4 SPF No.2 Zx4 SPF No.2 Spr No.2</td><td>(psf) 25.0 15.4.200 10.0 10.0*Spacing Plate Grip DDL 1.152-0-0 TCCSI TCDEFL inin(loc) ideftL/d (loc) 4-510.0 10.0* 10.0Rep Stress Incr RopNO CodeWB0.00WBVert(CT)0.004-5>9992402x4 SPF No.2 2x4 SPF No.2 2x4 SPF No.2</td><td>(psf) 25:0Spacing 2:0:02:0:0CSI TCDEFLin(loc)l/deftL/dPLATES MT2010:010:0Rep Stress IncNO10:0Rep Stress IncNO10:0CodeIRC2018/TPI2014WB0:004:5>:999240Horz(CT)0:004:5:>9992402x4 SPF No.2::::::2x4 SPF No.2:::::::2x4 SPF No.2::::::::2x4 SPF No.2::::::::2x4 SPF No.2:::::::::2x4 SPF No.2:::::::::::2x4 SPF No.2:::<</td></b<>	(psf) 25.0Spacing Plate Grip DOL 11.52-0-0 TC CCSI TC C O.15DEFL Vert(LL) Vert(CT)10.0 10.0* 10.0Rep Stress Incr CodeNO (RC2018/TPI2014WB WB Matrix-RDOL Horz(CT) Wind(LL)2x4 SPF No.2 2x4 SPF No.2		(psf) 25.0 Plate Grip DOL 115.4/20.0 10.0°Spacing Plate Grip DOL 1.15 Rep Stress Incr NO CodeCSI TC TC NO WB WB Matrix-RDEFL vert(L1) 0.00 4.5 Vert(L1) 0.00 (loc) Vert(L1) 0.00 4.52x4 SPF No.2 2x4 SPF No.2 7 This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle $3-06-00$ tall by 2-0-0-00 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf. 7 All bearings are assumed to be SPF No.2.2x4 SPF No.2 2x4 SPF No.26) $2-4+14$ oc purlins, except end verticals. Rigid celling directly applied or 10-0-00 bracing.Structural wood sheathing directly applied or toracing.6) $3-06-00$ all by 2-0-00 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf. 7 7 All bearings are assumed to be SPF No.2. 8(size) $3=$ Mechanical, 4= Mechanical, 	(psf) Spacing 2-0-0 CSI DEFL in (loc) //deft 15.4.72.0 Lumber DOL 1.15 TC 0.15 BC 0.04 Vert(L) 0.00 4.5 >999 10.0 10.0 Code IRC2018/TP12014 WB 0.00 Wind(LL) 0.00 4.5 >999 2x4 SPF No.2 Zx4 SPF No.2 Spr No.2	(psf) 25.0 15.4.200 10.0 10.0*Spacing Plate Grip DDL 1.152-0-0 TCCSI TCDEFL inin(loc) ideftL/d (loc) 4-510.0 10.0* 10.0Rep Stress Incr RopNO CodeWB0.00WBVert(CT)0.004-5>9992402x4 SPF No.2 2x4 SPF No.2 2x4 SPF No.2	(psf) 25:0Spacing 2:0:02:0:0CSI TCDEFLin(loc)l/deftL/dPLATES MT2010:010:0Rep Stress IncNO10:0Rep Stress IncNO10:0CodeIRC2018/TPI2014WB0:004:5>:999240Horz(CT)0:004:5:>9992402x4 SPF No.2::::::2x4 SPF No.2:::::::2x4 SPF No.2::::::::2x4 SPF No.2::::::::2x4 SPF No.2:::::::::2x4 SPF No.2:::::::::::2x4 SPF No.2:::<

February 8,2024

Page: 1

Job	Truss	Truss Type	Qty	Ply	Lot 17 TCR	
230872	J5	Jack-Open	2	1	Job Reference (optional)	163476792

Run: 8.73 S Jan 4 2024 Print: 8.730 S Jan 4 2024 MiTek Industries, Inc. Tue Feb 06 14:22:38 ID:_A_no?GKzrDjRpY6soCO24y6jdn-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

1-9-8

Scale = 1:23.3

Plate Offsets (X, Y): [5:0-5-9,0-1-8]

														-
Loading	(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP	
TCLL (roof)	25.0	Plate Grip DOL	1.15		TC	0.07	Vert(LL)	0.00	4-5	>999	360	MT20	197/144	
Snow (Pf/Pg)	15.4/20.0	Lumber DOL	1.15		BC	0.02	Vert(CT)	0.00	4-5	>999	240			
TCDL	10.0	Rep Stress Incr	YES		WB	0.00	Horz(CT)	0.00	3	n/a	n/a			
BCLL	10.0*	Code	IRC2018/1	PI2014	Matrix-R		Wind(LL)	0.00	4-5	>999	240	Waisht Clh	FT 400/	
BCDL	10.0											weight: 6 lb	FI = 10%	-
LUMBER			6) *	* This truss h	as been designed	d for a live	e load of 20.0)psf						
TOP CHORD	2x4 SPF No.2		0	on the bottom	chord in all area	s where	a rectangle							
BOT CHORD	2x4 SPF No.2		č	3-06-00 tall b	y 2-00-00 wide wi	with BC	een the botto	om						
	2X4 SPF N0.2		7) /	All bearings a	re assumed to be	e SPF No).2 .	•						
	Structural wood she	athing directly applie	dor 8) F	Refer to girde	er(s) for truss to the	russ conr	nections.							
	1-9-8 oc purlins, exc	cept end verticals.	9) F	Provide mech	nanical connection	n (by othe	ers) of truss to	0						
BOT CHORD	Rigid ceiling directly	applied or 10-0-0 oc	, t	bearing plate	capable of withst	anding 2	2 lb uplift at jo	oint						
	bracing.		10) T	o and 30 ib u This truss is c	plift at joint 3. designed in accord	dance wi	th the 2018							
REACTIONS	(size) 3= Mecha	nical, 4= Mechanica	I, IO)	nternational	Residential Code	sections	R502.11.1 a	nd						
	0=0-3-8 Max Horiz 5=43 (LC	9)	F	R802.10.2 an	d referenced star	ndard AN	SI/TPI 1.							
	Max Uplift 3=-30 (LC	(LC 12)	LOA	D CASE(S)	Standard									
	Max Grav 3=40 (LC	19), 4=29 (LC 7), 5=	:171											
	(LC 19)													
FORCES	(lb) - Maximum Com	pression/Maximum												
	Tension	22 2 2 25/12												
BOT CHORD	2-5=151/40, 1-2=0/3 4-5=0/0	55, 2-5=-55/15												
NOTES	10-0/0													
 Wind: AS(CE 7-16; Vult=115mph	(3-second gust)												
Vasd=91n	nph; TCDL=6.0psf; BC	DL=6.0psf; h=25ft; C	Cat.									000	an	
II; Exp C;	Enclosed; MWFRS (en	velope) exterior zon	e;									S. OF M	MICON	
cantilever	left and right exposed	; end vertical left and									1	TE	0.0	
2) TCLL AS	CE 7-16: Pr=25.0 nsf (i	roof 11 \cdot 1 um DOL=1.0	15								A	AV COM	New Y	
Plate DOL	_=1.15); Pg=20.0 psf; P	Pf=15.4 psf (Lum	.10								A	S SCOT	\mathbf{M}	
DOL=1.15	Plate DOL=1.15); Is=	1.0; Rough Cat C;									n.	SEVI		
Partially E	xp.; Ce=1.0; Cs=1.00;	Ct=1.10									DX	44	·	
 Unbalance design 	ed snow loads have be	en considered for th	IS								K	ott -	Server	
 4) This truss 	has been designed for	greater of min roof	live							-	83	NUM	BER /	
load of 12	.0 psf or 1.00 times flat	roof load of 15.4 ps	fon								N.	PE-2001	018807	
overhangs	s non-concurrent with o	other live loads.									Y	Pe	1.SA	
This truss	has been designed for	a 10.0 psf bottom									0	SIONIA	LENA	
chora live	ioau nonconcurrent wi	in any other live load	15.									Chin A		

February 8,2024

Page: 1

Millek Ride Rd. Chosterfield, MO 63017 314.434.1200 / Millek-US.com

Job	Truss	Truss Type	Qty	Ply	Lot 17 TCR	
230872	J6	Diagonal Hip Girder	1	1	Job Reference (optional)	163476793

Run: 8,73 S Jan 4 2024 Print: 8,730 S Jan 4 2024 MiTek Industries, Inc. Tue Feb 06 14:22:38 ID:Xbay?XUgBtxO3KmWHVW4eNy6jcC-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:36.3

Plate Offsets (X, Y): [8:0-5-7,0-1-8]

Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 25.0 15.4/20.0 10.0 10.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 NO IRC2018	3/TPI2014	CSI TC BC WB Matrix-S	0.33 0.39 0.27	DEFL Vert(LL) Vert(CT) Horz(CT) Wind(LL)	in -0.04 -0.07 0.03 0.03	(loc) 5-6 5-6 5 5-6	l/defl >999 >999 n/a >999	L/d 360 240 n/a 240	PLATES MT20 Weight: 23 lb	GRIP 197/144 FT = 10%	
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD	2x4 SPF No.2 2x4 SPF No.2 *Exce 1.8E 2x3 SPF No.2 *Exce Structural wood shea 6-0-0 oc purlins, exc	pt* 7-3:2x4 SPF 210 pt* 8-2:2x4 SPF No athing directly applie cept end verticals.	5) 0F 6) 2 d or 7) 8) 9)	This truss ha chord live loa * This truss h on the bottor 3-06-00 tall b chord and ar All bearings a Refer to gird Provide med	s been designed f ad nonconcurrent v aas been designed n chord in all areas by 2-00-00 wide wi by other members, are assumed to be er(s) for truss to tru banical connection	or a 10.0 with any for a liv s where Il fit betv with BC SPF No uss conr) psf bottom other live loa e load of 20.1 a rectangle veen the botti DL = 10.0psi b.2. iections. ers) of truss t	nds. Opsf om f.						
REACTIONS FORCES	kijd celling directly bracing. (size) 5= Mecha Max Horiz 8=118 (LC Max Uplift 5=-87 (LC Max Grav 5=335 (LC (b) - Maximum Com	applied of 10-0-0 oc nical, 8=0-4-9 2 9) 12), 8=-121 (LC 8) 2 5), 8=414 (LC 2) pression/Maximum	10 11	bearing plate 8 and 87 lb u) This truss is International R802.10.2 ar) "NAILED" ind (0.148"x3.25	e capable of withsta plift at joint 5. designed in accorr Residential Code nd referenced stan dicates 3-10d (0.14 ") toe-nails per ND	dance w sections dard AN 18"x3") c 9S guidli	21 lb uplift at ith the 2018 . R502.11.1 a ISI/TPI 1. or 2-12d nes.	t joint						
TOP CHORD BOT CHORD WEBS	Tension 2-8=-372/139, 1-2=0 3-4=-99/20, 4-5=-12: 7-8=-91/284, 6-7=0/5 5-6=-251/842 3-5=-825/265	/32, 2-3=-379/70, 1/47 52, 3-6=0/145,	12 LC 1)) In the LOAD of the truss a DAD CASE(S) Dead + Sno Increase=1	CASE(S) section, ire noted as front (Standard bw (balanced): Lun 15 ads (lb/ft)	loads a F) or ba nber Inc	oplied to the t ck (B). rease=1.15, l	face Plate						
NOTES 1) Wind: AS(Vasd=91n II; Exp C; cantilever	CE 7-16; Vult=115mph nph; TCDL=6.0psf; BCI Enclosed; MWFRS (en left and right exposed	(3-second gust) DL=6.0psf; h=25ft; C ivelope) exterior zon ; end vertical left and	at. e;	Vert: 1-2 Concentrate Vert: 10=	=-51, 2-4=-51, 7-8 ed Loads (lb) -3 (F=-1, B=-1), 1	=-20, 5- 1=-48 (F	5=-20 =-24, B=-24)	I			Å	TATE OF N	MISSOLA	

right exposed; Lumber DOL=1.60 plate grip DOL=1.60 TCLL: ASCE 7-16; Pr=25.0 psf (roof LL: Lum DOL=1.15 2) Plate DOL=1.15); Pg=20.0 psf; Pf=15.4 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat C; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10

- 3) Unbalanced snow loads have been considered for this design.
- 4) This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 15.4 psf on overhangs non-concurrent with other live loads.

February 8,2024

SCOTT M.

SEVIER

NUMBER

PE-2001018807

E

SSIONAL

C

 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.
 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not besign value to dury with with where outputs into design is based only door parameters shown, and is for an individual building design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members and property incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TPH1 Quality Criteria**, and **DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcscomponents.com)

Job	Truss	Truss Type	Qty	Ply	Lot 17 TCR	
230872	J7	Jack-Open	2	1	Job Reference (optional)	163476794

-0-10-8

Wheeler Lumber, Waverly, KS - 66871,

Run: 8.73 S Jan 4 2024 Print: 8.730 S Jan 4 2024 MiTek Industries, Inc. Tue Feb 06 14:22:38 ID:3P0aoBT2QZpXRBBKjo?r6Ay6jcD-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

2x4 II

Scale = 1:32.4

Plate Offsets (X, Y): [8:0-5-9,0-1-8]

Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 25.0 15.4/20.0 10.0 10.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018	/TPI2014	CSI TC BC WB Matrix-R	0.08 0.07 0.00	DEFL Vert(LL) Vert(CT) Horz(CT) Wind(LL)	in 0.00 0.00 0.00 0.00	(loc) 3-6 3-6 5 3	l/defl >999 >999 n/a >999	L/d 360 240 n/a 240	PLATES MT20 Weight: 10 lb	GRIP 197/144 FT = 10%	
3CDL LUMBER TOP CHORD 3OT CHORD WEBS BRACING TOP CHORD 3OT CHORD 3OT CHORD REACTIONS FORCES TOP CHORD BOT CHORD NOTES 1) Wind: AS Vasd=91r II; Exp C; cantilever right expc 2) TCLL: AS Plate DOD DOL = 1.41	10.0 2x4 SPF No.2 2x4 SPF No.2 *Exce 2x4 SPF No.2 *Exce 2x4 SPF No.2 Structural wood she 2-8-7 oc purlins, exi Rigid ceiling directly bracing. (size) 4= Mecha 8=0-3-8 Max Horiz 8=60 (LC (LC 12) Max Grav 4=65 (LC (LC 19) (lb) - Maximum Com Tension 2-8=-201/38, 1-2=0// 7-8=-16/26, 6-7=0/4 CE 7-16; Vult=115mph nph; TCDL=6.0psf; BC Enclosed; MWFRS (er Enclosed; MWFRS (er 2-115); Pg=20.0 psf; [2-115); Pg=20.0 psf;	pt* 7-6:2x3 SPF No. athing directly applie cept end verticals. applied or 6-0-0 oc unical, 5= Mechanica 12) (12), 5=-2 (LC 12), 8 19), 5=77 (LC 26), 8 pression/Maximum 34, 2-3=-74/0, 3-4=-2 2, 3-6=-26/16, 5-6=0 (3-second gust) DL=6.0psf; h=25ft; C ivelope) exterior zon ; end vertical left and 0 plate grip DOL=1.6 roof LL: Lum DOL=1 Y=15.4 psf (Lum	6) 2 4 or 8) 9) 1, 10) 3=-17 LO 3=221 25/24 /0 Cat. e; 50 .15	* This truss h on the botton 3-06-00 tall b chord and ar All bearings a Refer to girdd Provide mecl bearing plate 8, 31 lb uplift This truss is International R802.10.2 ar AD CASE(S)	as been designed n chord in all areas y 2-00-00 wide wil y other members, are assumed to be er(s) for truss to tr nanical connection capable of withsta at joint 4 and 2 lb designed in accord Residential Code s do referenced stan Standard	for a liv s where Il fit betw with BC s SPF No uss conn (by oth- anding 1 uplift at dance w sections dard AN	e load of 20.0 a rectangle reen the botto DL = 10.0psf 0.2 . nections. ers) of truss to 7 lb uplift at ju joint 5. th the 2018 R502.11.1 a SI/TPI 1.	Dpsf om o o oint nd				Weight: 10 lb	FT = 10%	
 Partially E Partially E Unbalanc design. This truss load of 12 overhang This truss chord live 	ixp.; Ce=1.0; Cs=1.00; ed snow loads have be has been designed for .0 psf or 1.00 times flat s non-concurrent with c has been designed for load nonconcurrent wi	The result of th	is live f on ds.									PE-2001	L ENGINE	
												Februa	ry 8,2024	

Job	Truss	Truss Type	Qty	Ply	Lot 17 TCR	
230872	J8	Diagonal Hip Girder	1	1	Job Reference (optional)	163476795

Run: 8,73 S Jan 4 2024 Print: 8,730 S Jan 4 2024 MiTek Industries, Inc. Tue Feb 06 14:22:39 ID:_A_no?GKzrDjRpY6soCO24y6jdn-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:30.3

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15	TC	0.31	Vert(LL)	0.00	5	>999	360	MT20	197/144
Snow (Pf/Pg)	15.4/20.0	Lumber DOL	1.15	BC	0.05	Vert(CT)	0.00	4-5	>999	240		
TCDL	10.0	Rep Stress Incr	YES	WB	0.00	Horz(CT)	-0.01	3	n/a	n/a		
BCLL	10.0*	Code	IRC2018/TPI2014	Matrix-R		Wind(LL)	0.00	5	>999	240		
BCDL	10.0										Weight: 5 lb	FT = 10%
LUMBER			6) * This truss	has been designe	d for a liv	e load of 20.0	Opsf					
TOP CHORD	2x4 SPF No.2		on the botto	m chord in all area	as where	a rectangle						
BOT CHORD	2x4 SPF No.2		3-06-00 tal	by 2-00-00 wide w	vill fit betw	een the bott	om					
WEBS	2x4 SPF No.2		chord and a	iny other members	s, with BC	DL = 10.0pst						
BRACING			 All bearings Defende air 	are assumed to b	DE SPF NO).2 .						
TOP CHORD	Structural wood sheat 0-8-12 oc purlins, ex	athing directly applie xcept end verticals.	d or 8) Refer to gir 9) Provide me	chanical connectio	truss con	nections. ers) of truss t	0					
BOT CHORD	Rigid ceiling directly bracing.	applied or 10-0-0 oc	bearing pla 4, 209 lb up	e capable of withs lift at joint 3 and 1	standing 3 13 lb uplif	9 lb uplift at j t at joint 5.	oint					
REACTIONS	(size) 3= Mecha	nical, 4= Mechanica	I, 10) This truss in Internationa	designed in acco Residential Code	rdance wi e sections	th the 2018 R502.11.1 a	ind					
	Max Horiz 5=49 (LC	9)	R802.10.2	and referenced sta	andard AN	ISI/TPI 1.						
	Max Uplift 3=-209 (L	C 19), 4=-39 (LC 19)), LOAD CASE(S	Standard								
	5=-113 (L	C 8)	, , , , , , , , , , , , , , , , , , ,									
	Max Grav 3=68 (LC	8), 4=8 (LC 30), 5=4	48									
	(LC 19)											
FORCES	(lb) - Maximum Com Tension	pression/Maximum										
TOP CHORD	1-2=0/61, 2-3=-102/2	28, 2-5=-398/126										
BOT CHORD	4-5=0/0											
NOTES												
1) Wind: AS	CE 7-16; Vult=115mph	(3-second gust)										
Vasd=91r	mph; TCDL=6.0psf; BC	DL=6.0pst; h=25ft; C	jat.									an
II; EXP C;	Enclosed; IVIVVERS (en	ivelope) exterior zon	e; •								OF	MIG
right expo	sed: Lumber DOI –1.6	, end ventical left and 0 plate grip DOI –1 6	0								FELL	15S
2) TCLL · AS	CF 7-16: Pr=25.0 psf (roof $11 \cdot 1$ um DOI = 1	15							6	A. T.	N.S.
Plate DOI	L=1.15); Pg=20.0 psf; F	Pf=15.4 psf (Lum								B	SCOT	TM. YZY
DOL=1.1	5 Plate DOL=1.15); Is=	1.0; Rough Cat C;								R	SEV	IER \ Y
Partially E	Exp.; Ce=1.0; Cs=1.00;	Ct=1.10								10th	1	0 *
 Unbalanc 	ed snow loads have be	en considered for th	is							XX.	hatt	· Driles
design.	haa haan daalaa - If	analog of min	live								NIM	BER
4) I DIS Truss load of 12	onas been designed for 0 psf or 1 00 times flat	roof load of 15.4 ps	live f on							37	PE-2001	018807 188
overhand	s non-concurrent with c	ther live loads.								N.	-2001	1000/28
5) This truss	has been designed for	a 10.0 psf bottom								Y	233	NOV B
chord live	load nonconcurrent wi	th any other live load	ls.								NONA	LET

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

16023 Swingley Ridge Rd. Chesterfield, MO 63017 314.434.1200 / MiTek-US.com

February 8,2024

Job	Truss	Truss Type	Qty	Ply	Lot 17 TCR	
230872	J9	Jack-Closed Girder	1	1	Job Reference (optional)	163476796

Run: 8,73 S Jan 4 2024 Print: 8,730 S Jan 4 2024 MiTek Industries, Inc. Tue Feb 06 14:22:39 ID:xAG5dZWZUoJzwoU5ye3nG0y6jc9-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

Scale = 1:44.4

4)

Plate Offsets (X, Y): [4:0-3-0,0-2-0], [7:0-2-0,0-0-8]

This truss has been designed for greater of min roof live

load of 12.0 psf or 1.00 times flat roof load of 15.4 psf on overhangs non-concurrent with other live loads.

Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 25.0 20.4/20.0 10.0 10.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 NO IRC201	8/TPI2014	CSI TC BC WB Matrix-S	0.21 0.31 0.05	DEFL Vert(LL) Vert(CT) Horz(CT) Wind(LL)	in -0.03 -0.05 0.02 0.03	(loc) 6-7 6-7 6 9	l/defl >999 >999 n/a >999	L/d 360 240 n/a 240	PLATES MT20 Weight: 21 lb	GRIP 197/144 FT = 10%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD	2x4 SPF No.2 *Exce 2x4 SPF No.2 *Exce 2x3 SPF No.2 *Exce Structural wood she 4-9-8 oc purlins, exx 2-0-0 oc purlins: 3-4 Rigid ceiling directly bracing, Except:	ept* 1-3:2x6 SPF No pt* 9-7:2x3 SPF No opt* 11-2:2x4 SPF N athing directly applie cept end verticals, a applied or 10-0-0 or	5 .2 6 .2 o.2 7 ed or nd 8 c 9 1	Provide aded This truss ha chord live loa * This truss h on the bottor 3-06-00 tall t chord and ar All bearings Refer to gird)) Provide med	quate drainage to as been designed ad nonconcurren has been designed n chord in all are by 2-00-00 wide to yo other member are assumed to I er(s) for truss to thanical connection	b prevent y d for a 10.0 t with any ed for a liv eas where will fit betw s, with BC be SPF No truss conr on (by oth	water ponding of psf bottom other live load e load of 20.0 a rectangle veen the botto DL = 10.0psf b.2. nections. ers) of truss t	g. Ids. Dpsf om f.					
REACTIONS	6-0-0 oc bracing: 7-8 (size) 6= Mecha Max Horiz 11=114 (L Max Uplift 6=-54 (LC Max Grav 6=219 (LC	3. ınical, 11=0-3-8 LC 9) \$ 75), 11=-150 (LC 5 \$ 45), 11=314 (LC 4	1 59) 7)	6 and 150 lb 1) This truss is International R802.10.2 a	uplift at joint 11. designed in acco Residential Cod nd referenced sta	ordance w e sections andard AN	ith the 2018 R502.11.1 a ISI/TPI 1.	and					
FORCES	(lb) - Maximum Com	pression/Maximum	· 1	or the orienta	ation of the purlir	n does no along the	top and/or	size					
TOP CHORD	1-2=0/73, 2-3=-130/2	22, 3-4=-110/13, 9/49, 2-11=-255/130	1:	B) "NAILED" in	dicates 3-10d (0.	148"x3") (or 2-12d						
BOT CHORD	10-11=-85/55, 9-10= 7-8=-50/39, 6-7=-22	-32/86, 7-9=-113/29 /43	, 90, 1,	(0.148 x3.25) Hanger(s) or provided suf	other connection	n device(s concentra) shall be ated load(s) 1	08					
WEBS	3-10=-13/128, 8-10=	-350/122, 4-8=-118	/51	lb down and	285 lb up at 0-4	-12 on top	o chord, and §	5 lb					ADD
NOTES				down and 52	2 lb up at 0-1-12	on botton	h chord. The					OF I	MICON
 Wind: ASC Vasd=91n II; Exp C; cantilever right expo 	CE 7-16; Vult=115mph hph; TCDL=6.0psf; BC Enclosed; MWFRS (er left and right exposed sed; Lumber DOL=1.6	(3-second gust) DL=6.0psf; h=25ft; (ivelope) exterior zor ; end vertical left an 0 plate grip DOL=1.0	Cat. ne; 14 d 60 L	oresponsibility of the LOAD of the truss a DAD CASE(S)	of others. CASE(S) section are noted as from Standard	n, loads a t (F) or ba	oplied to the t ck (B).	face				STATE SCOT	T M. IER
 TCLL: ASⁱ Plate DOL DOL=1.15 Partially E Unbalance design. 	CE 7-16; Pr=25.0 psf (.=1.15); Pg=20.0 psf; F 5 Plate DOL=1.15); Is= xp.; Ce=1.0; Cs=1.00; ed snow loads have be	roof LL: Lum DOL=1 2f=20.4 psf (Lum 1.0; Rough Cat C; Ct=1.10, Lu=50-0-0 ten considered for th	1.15 1) nis	Dead + Sno Increase=1 Uniform Lo Vert: 1-2 6-7=-20 Concentrat	ow (balanced): Li .15 ads (lb/ft) =-51, 2-3=-51, 3- ed Loads (lb)	umber Inc -4=-61, 4-	rease=1.15, I 5=-51, 9-11=∙	Plate -20,		-		PE-2001	018807

Concentrated Loads (lb) Vert: 11=18 (B), 2=58 (B)

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.
 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not

Design value for use only with with every connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcscomponents.com)

February 8,2024

E

SIONAL

Job	Truss	Truss Type	Qty	Ply	Lot 17 TCR	
230872	J10	Jack-Closed	1	1	Job Reference (optional)	163476797

Run: 8.73 S Jan 4 2024 Print: 8.730 S Jan 4 2024 MiTek Industries, Inc. Tue Feb 06 14:22:39 ID:WzQPbfFiCX5tqfzwJ4h9Wty6jdo-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Scale = 1:36.3

Plate Offsets (X, Y): [3:0-4-1,0-3-0]

Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 25.0 20.4/20.0 10.0 10.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018	8/TPI2014	CSI TC BC WB Matrix-S	0.13 0.27 0.04	DEFL Vert(LL) Vert(CT) Horz(CT) Wind(LL)	in -0.01 -0.01 0.02 0.01	(loc) 8 7-8 7 9	l/defl >999 >999 n/a >999	L/d 360 240 n/a 240	PLATES MT20 Weight: 23 lb	GRIP 197/144 FT = 10%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD	2x4 SPF No.2 2x4 SPF No.2 *Exce 2x3 SPF No.2 *Exce Structural wood shea 4-9-8 oc purlins, ex 2-0-0 oc purlins; 3-5 Pioid ceiling directly	pt* 9-4:2x3 SPF No pt* 10-2:2x4 SPF N athing directly applie cept end verticals, a	4) 2 0.2 5) 6) ed or nd 7)	This truss ha load of 12.0 j overhangs n Provide adec This truss ha chord live loa * This truss h on the bottor 3-06-00 tall b	s been designed psf or 1.00 times on-concurrent wit quate drainage to s been designed ad nonconcurrent has been designe n chord in all are: yy 2-00-00 wide v	for greate flat roof lo th other liv prevent v for a 10.0 with any of for a live as where vill fit betw	er of min rook vad of 15.4 p ve loads. vater pondin) psf bottom other live loa e load of 20. a rectangle veen the bott	f live osf on g. ads. Opsf					
REACTIONS	(size) 7= Mecha Max Horiz 10=115 (L Max Uplift 7=-54 (LC Max Grav 7=203 (LC	nical, 10=0-3-8 .C 9) : 12), 10=-46 (LC 12 C 3), 10=307 (LC 37	8) 9) 10)	chord and ar All bearings a Refer to gird Provide mec bearing plate 10 and 54 lb	y other members are assumed to b er(s) for truss to t hanical connection capable of withs uplift at joint 7.	s, with BC be SPF No truss conn on (by othe standing 4	DL = 10.0ps o.2 . ections. ers) of truss 6 lb uplift at j	f. to joint					
FORCES TOP CHORD BOT CHORD	(lb) - Maximum Com Tension 2-10=-181/80, 1-2=0 3-4=-114/32, 4-5=-1 6-7=-54/18 9-10=-64/93, 8-9=-5:	pression/Maximum /74, 2-3=-67/55, 78/46, 5-6=-54/22, 2/43, 4-8=-24/71,	11 12) This truss is International R802.10.2 at Craphical pu or the orienta bottom chore	designed in acco Residential Code nd referenced sta rlin representatio ation of the purlin	rdance wi e sections andard AN on does no along the	th the 2018 R502.11.1 a SI/TPI 1. It depict the stop and/or	and size					
WEBS	7-8=-48/162 3-10=-197/27, 3-9=-2 5-8=-20/35	29/88, 5-7=-206/75,	LC	DAD CASE(S)	Standard							50000	alle
NOTES 1) Wind: AS(Vasd=91n II; Exp C; cantilever right expo 2) TCLL: AS	CE 7-16; Vult=115mph nph; TCDL=6.0psf; BC Enclosed; MWFRS (er left and right exposed sed; Lumber DOL=1.6i CE 7-16; Pr=25.0 psf ((3-second gust) DL=6.0psf; h=25ft; (ivelope) exterior zor ; end vertical left an 0 plate grip DOL=1. roof LL: Lum DOL=*	Cat. ne; d 60 I.15									STATE OF A SCOT SEVI	MISSOLA T.M. ER

Plate DOL=1.15; Pg=20.0 psf; Pf=20.4 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat C; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10, Lu=50-0-0

3) Unbalanced snow loads have been considered for this design.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent oulgase with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TPI1 Quality Criteria, and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcscomponents.com)

February 8,2024

E

NUMBER

PE-200101880

SSIONAL

ROFF

Page: 1

Job	Truss	Truss Type	Qty	Ply	Lot 17 TCR	
230872	J11	Jack-Closed	1	1	Job Reference (optional)	163476798

2-2-0

2-2-0

12 12 Г

10⁄-0

0-10-8

0-10-8

Wheeler Lumber, Waverly, KS - 66871,

Scale = 1:35

Loading

TCDL

BCLL

BCDL

WEBS

BRACING

LUMBER

TOP CHORD

BOT CHORD

TOP CHORD

BOT CHORD

FORCES

TOP CHORD

BOT CHORD

this design.

WEBS

NOTES 1)

2)

3)

4١

5)

TCLL (roof)

Snow (Pf/Pg)

Run: 8 73 S. Jan. 4 2024 Print: 8 730 S. Jan. 4 2024 MiTek Industries. Inc. Tue Feb 06 14:22:40 ID:Xn?hI5shCCWdRVMjoI564dy6jd?-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

2x4 II

4-9-8

2-7-8

 \bigtriangledown

6x6 =

3

Page: 1

Job	Truss	Truss Type	Qty	Ply	Lot 17 TCR	
230872	J12	Jack-Closed	1	1	Job Reference (optional)	163476799

3-1-10

0-10-8

Wheeler Lumber, Waverly, KS - 66871,

Run: 8.73 S Jan 4 2024 Print: 8.730 S Jan 4 2024 MiTek Industries, Inc. Tue Feb 06 14:22:40 ID:Xn?hl5shCCWdRVMjol564dy6jd?-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

4-9-8

Scale = 1:34.7

Plate Offsets (X, Y): [3:0-4-1,0-3-0]

Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 25.0 20.4/20.0 10.0 10.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018	3/TPI2014	CSI TC BC WB Matrix-S	0.17 0.08 0.10	DEFL Vert(LL) Vert(CT) Horz(CT)	in 0.00 -0.01 0.00	(loc) 5-6 6-7 5	l/defl >999 >999 n/a	L/d 240 240 n/a	PLATES MT20 Weight: 25 lb	GRIP 197/144 FT = 10%	
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD	2x4 SPF No.2 2x4 SPF No.2 2x3 SPF No.2 *Exce Structural wood shea 4-9-8 oc purlins, exc 2-0-0 oc purlins: 3-4 Rigid ceiling directly bracing.	Provide adec This truss ha chord live loa * This truss h on the bottor 3-06-00 tall b chord and ar All bearings) Refer to gird) Provide mec	juate drainage to p s been designed for d nonconcurrent w has been designed n chord in all areas y 2-00-00 wide wil by other members, are assumed to be er(s) for truss to tru- hanical connection	orevent v or a 10.0 vith any for a liv s where Il fit betw with BC SPF No uss conr (by oth	water pondin.) psf bottom other live loz e load of 20. a rectangle veen the bott DL = 10.0ps 0.2. nections. ers) of truss i	g. ads. Opsf om f. to								
REACTIONS	(size) 5= Mecha Max Horiz 7=176 (LC Max Uplift 5=-93 (LC Max Grav 5=227 (LC	nical, 7=0-3-8 C 9) : 9), 7=-24 (LC 12) C 37), 7=376 (LC 34)	12	 bearing plate capable of withstanding 24 lb uplift at joint 7 and 93 lb uplift at joint 5. 12) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802 10 2 and referenced standard ANSI/TPL1 										
FORCES	(lb) - Maximum Com	pression/Maximum	13) Graphical pu	rlin representation	does no	ot depict the	size						
TOP CHORD	2-7=-339/68, 1-2=0/3	74, 2-3=-220/42,		bottom chord	ation of the purlin a I.	liong the	top and/or							
BOT CHORD WEBS	3-4=-58/45, 4-5=-77/ 6-7=-80/97, 5-6=-81/ 3-6=-25/100, 3-5=-2:	/43 /94 22/123	LC	OAD CASE(S)	Standard									
NOTES														
 Unbalance this design 	ed roof live loads have n.	been considered for										OF		
 Wind: ASC Vasd=91n II; Exp C; cantilever right expo: TCLL: ASC Plate DOL DOL =1 15 	CE 7-16; Vult=115mph nph; TCDL=6.0psf; BC Enclosed; MWFRS (er left and right exposed sed; Lumber DOL=1.6 CE 7-16; Pr=25.0 psf (.=1.15); Pg=20.0 psf; F Plate D0 I=1 15 ¹ Is=	(3-second gust) DL=6.0psf; h=25ft; C ivelope) exterior zon ; end vertical left and 0 plate grip DOL=1.6 roof LL: Lum DOL=1 ½=20.4 psf (Lum 1.0: Rough Cat C:	cat. e; l :0 .15								R	STATE OF T	M. BER	

Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10, Lu=50-0-0
4) Unbalanced snow loads have been considered for this design.
5) This was been designed for spectra of this rest.

5) This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 15.4 psf on overhangs non-concurrent with other live loads.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to preven toukling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

February 8,2024

E

PE-200101880'

SIONAL

Job	Truss	Truss Type	Qty	Ply	Lot 17 TCR	
230872	J13	Jack-Closed	1	1	Job Reference (optional)	163476800

Run: 8.73 S Jan 4 2024 Print: 8.730 S Jan 4 2024 MiTek Industries, Inc. Tue Feb 06 14:22:41 ID:Xn?hl5shCCWdRVMjol564dy6jd?-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC?f Page: 1

Scale = 1:52.1

	(,,, ,): [ele :];e e e];	[0:2090;0 2 0]												
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 25.0 20.4/20.0 10.0 10.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC201	8/TPI2014	CSI TC BC WB Matrix-R	0.33 0.23 0.09	DEFL Vert(LL) Vert(CT) Horz(CT) Wind(LL)	in -0.03 -0.05 0.00 0.04	(loc) 6-7 6-7 5 6-7	l/defl >999 >999 n/a >999	L/d 360 240 n/a 240	PLATES MT20 Weight: 23 lb	GRIP 197/144 FT = 10%	
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD	2x4 SPF No.2 2x4 SPF No.2 2x3 SPF No.2 *Exce Structural wood shea 4-9-8 oc purlins, exc 2-0-0 oc purlins: 3-4. Rigid ceiling directly bracing	pt* 7-2:2x4 SPF No. athing directly applie cept end verticals, au applied or 10-0-0 oc	6, 7, 2 8, ed or nd 9, 11, 2 11	 Provide adec This truss ha chord live loa This truss f on the bottor 3-06-00 tall b chord and ar All bearings a Refer to girdd Provide mec 	uate drainage to s been designed ad nonconcurrent has been designe n chord in all area by 2-00-00 wide w hy other members are assumed to b er(s) for truss to tr hanical connectio	prevent v for a 10.0 with any d for a liv as where vill fit betw s, with BC e SPF No russ conr on (by oth)	vater ponding) psf bottom other live loa e load of 20.0 a rectangle veen the bott DL = 10.0psf 0.2. ections. ers) of truss t	g. ds. Dpsf om						
REACTIONS	(size) 5= Mecha Max Horiz 7=216 (LC Max Uplift 5=-119 (LC Max Grav 5=290 (LC	nical, 7=0-3-8 C 11) C 9), 7=-9 (LC 8) C 38), 7=407 (LC 40)	1:	bearing plate and 119 lb u 2) This truss is International P802 10 2 a	e capable of withs plift at joint 5. designed in account Residential Code	rdance with sections	th the 2018 R502.11.1 a	int 7 Ind						
FORCES	(lb) - Maximum Com Tension	pression/Maximum	1;	3) Graphical pu	rlin representation	n does no	ot depict the s	size						
TOP CHORD	2-7=-340/46, 1-2=0/7	74, 2-3=-242/118, /34		bottom chord		along the								
BOT CHORD WEBS	6-7=-74/62, 5-6=-77/ 3-6=-141/145	/63	L	UAD CASE(S)	Standard									
NOTES														
 Unbalance this design 	ed roof live loads have n.	been considered for										OF	de sin	
 Wind: ASG Vasd=91r II; Exp C; cantilever right expo TCLL: AS Plate DOI DOL=1.15 Partially E 	CE 7-16; Vult=115mph mph; TCDL=6.0psf; BCI Enclosed; MWFRS (en left and right exposed sed; Lumber DOL=1.60 CE 7-16; Pr=25.0 psf (=1.15); Pg=20.0 psf; P 5 Plate DOL=1.15); Is= xp.; Ce=1.0; Cs=1.00;	(3-second gust) DL=6.0psf; h=25f; C welope) exterior zon ; end vertical left and 0 plate grip DOL=1.6 roof LL: Lum DOL=1 f=20.4 psf (Lum 1.0; Rough Cat C; Ct=1.10, Lu=50-0-0	Cat. e; d .00 .15								A STATE	SCOT SEVI	I M. ER Serve	
A)	and an according a day to according to	and a superior of the set of the	1 - C									1 1 1 2001		

- Unbalanced snow loads have been considered for this design.
- 5) This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 15.4 psf on overhangs non-concurrent with other live loads.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TP11 Quality Criteria**, and **DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcscomponents.com)

February 8,2024

E

5

SIONAL

Job	Truss	Truss Type	Qty	Ply	Lot 17 TCR	
230872	J14	Jack-Open	10	1	Job Reference (optional)	163476801

Run: 8.73 S Jan 4 2024 Print: 8.730 S Jan 4 2024 MiTek Industries, Inc. Tue Feb 06 14:22:41 ID:WzQPbfFiCX5tqfzwJ4h9Wty6jdo-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:36.8

Loading TCLL (roof) Snow (Pf/Pg TCDL BCLL BCDL	(psf) 25.0 15.4/20.0 10.0 10.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018/TP	912014	CSI TC BC WB Matrix-R	0.33 0.24 0.00	DEFL Vert(LL) Vert(CT) Horz(CT) Wind(LL)	in -0.03 -0.05 -0.08 0.05	(loc) 4-5 4-5 3 4-5	l/defl >999 >999 n/a >999	L/d 360 240 n/a 240	PLATES MT20 Weight: 16 lb	GRIP 197/144 FT = 10%	
LUMBER TOP CHORE BOT CHORE WEBS BRACING TOP CHORE BOT CHORE REACTIONS	 2x4 SPF No.2 2x4 SPF No.2 2x4 SPF No.2 Structural wood she 4-9-8 oc purlins, ex Rigid ceiling directly bracing. (size) 3= Mecha 5=0-3-8 	athing directly applie cept end verticals. applied or 10-0-0 oc inical, 4= Mechanica	6) All 7) Re 8) Pr be 3 a 3 a 4 or 9) Th Int : Re LOAD	I bearings a efer to girde ovide mecl earing plate and 5 lb up nis truss is (ternational 802.10.2 ar	are assumed to be er(s) for truss to tr hanical connection capable of withsta lift at joint 4. designed in accorr Residential Code hd referenced stan Standard	SPF No uss coni (by othe anding 1 dance wi sections dard AN	0.2. nections. ers) of truss 03 lb uplift a th the 2018 R502.11.1 a ISI/TPI 1.	to t joint and				Wogne To ib		
FORCES TOP CHORE	Max Horiz 5=145 (LC Max Uplift 3=-103 (L Max Grav 3=164 (LC 5=286 (LC (Ib) - Maximum Com Tension 2-5=-251/0, 1-2=0/5 4-5=0/0	C 10) C 10), 4=-5 (LC 10) C 20), 4=98 (LC 20), C 2) pression/Maximum 1, 2-3=-141/97												
NOTES 1) Wind: AS Vasd=91 II; Exp C and right Lumber I 2) TCLL: AS Plate DC DOL=1.1	SCE 7-16; Vult=115mph mph; TCDL=6.0psf; BC ; Enclosed; MWFRS (er exposed ; end vertical 1 OCL=1.60 plate grip DC SCE 7-16; Pr=25.0 psf (DL=1.15); Pg=20.0 psf; F 5 Plate DOL=1.15); Is=	(3-second gust) DL=6.0psf; h=25ft; C ivelope); cantilever l left and right expose l_=1.60 roof LL: Lum DOL=1 Pf=15.4 psf (Lum 1.0; Rough Cat C;	Cat. eft d; .15								E.	STATE OF M	AISSOLDE	8
Partially 3) This trus load of 1 overhang 4) This trus chord live 5) * This tru on the bo 3-06-00 chord an	Exp.; Ce=1.0; Cs=1.00; s has been designed for 2.0 psf or 1.00 times fla so non-concurrent with o s has been designed for e load nonconcurrent wi iss has been designed f bottom chord in all areas tall by 2-00-00 wide will d any other members, v	Ct=1.10 greater of min roof troof load of 15.4 ps ther live loads. r a 10.0 psf bottom th any other live load or a live load of 20.0 where a rectangle fit between the botto vith BCDL = 10.0psf.	live f on Is. psf m							ė		NUMI PE-20010 PE-20010	ER JISS07	

February 8,2024

BAITERK 16023 Swingley Ridge Rd. Chesterfield, MO 63017 314.434.1200 / MiTek-US.com

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.
Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not
a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall
building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing
is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the
fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org)
and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

Job	Truss	Truss Type	Qty	Ply	Lot 17 TCR	
230872	J15	Jack-Open	1	1	Job Reference (optional)	163476802

Run: 8.73 S Jan 4 2024 Print: 8.730 S Jan 4 2024 MiTek Industries, Inc. Tue Feb 06 14:22:41 ID:KfQKSi9HSXQ?IWr?5z0x7Zy45cZ-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

3-0-5

Scale = 1:24.6

Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 25.0 15.4/20.0 10.0 10.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018/T	PI2014	CSI TC BC WB Matrix-R	0.12 0.07 0.00	DEFL Vert(LL) Vert(CT) Horz(CT) Wind(LL)	in 0.00 -0.01 -0.01 0.00	(loc) 4-5 4-5 3 4-5	l/defl >999 >999 n/a >999	L/d 360 240 n/a 240	PLATES MT20 Weight: 9 lb	GRIP 197/144 FT = 10%	
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD REACTIONS	$\begin{array}{llllllllllllllllllllllllllllllllllll$	athing directly applie cept end verticals. applied or 10-0-0 oc anical, 4= Mechanica 12) 2 12), 5=-23 (LC 12) 19), 4=55 (LC 7), 5=	6) * c 3 7) A 8) F 9) F 5 1, 10) T F LOA	This truss h on the bottom 3-06-00 tall b shord and an All bearings a Refer to girdæ Provide mech bearing plate 5 and 54 lb u Chis truss is of nternational R802.10.2 an D CASE(S)	as been designed a chord in all areas y 2-00-00 wide wil y other members, ire assumed to be er(s) for truss to tr nanical connection capable of withsta plift at joint 3. Jesigned in accord Residential Code s d referenced stan Standard	for a liv s where I fit betw with BC SPF Nc uss con (by oth- anding 2 lance wi sections dard AN	e load of 20. a rectangle veen the bott DL = 10.0ps 0.2. nections. ers) of truss 3 lb uplift at R502.11.1 a ISI/TPI 1.	Opsf om f. to joint and						
FORCES	(lb) - Maximum Com Tension	pression/Maximum												
TOP CHORD BOT CHORD	2-5=-198/51, 1-2=0/ 4-5=0/0	33, 2-3=-57/32												
NOTES														
 Wind: ASC Vasd=91n II; Exp C; cantilever right expor TCLL: ASC Plate DOL DOL=1.15 Partially E Unbalance design. This truss 	CE 7-16; Vult=115mph hph; TCDL=6.0psf; BC Enclosed; MWFRS (er left and right exposed sed; Lumber DOL=1.6 CE 7-16; Pr=25.0 psf (.=1.15); Pg=20.0 psf; F Plate DOL=1.15); Is= xp.; Ce=1.0; Cs=1.00; ed snow loads have be has been designed fo	(3-second gust) iDL=6.0psf; h=25ft; C ivelope) exterior zon ; end vertical left and 0 plate grip DOL=1.6 iroof LL: Lum DOL=1 Pf=15.4 psf (Lum 1.0; Rough Cat C; Ct=1.10 seen considered for th r greater of min roof I	at. e; d 00 .15 is ive									STATE OF J	MISSOUR I M. HER	
load of 12 overhangs	.0 psf or 1.00 times fla s non-concurrent with o	t roof load of 15.4 ps other live loads.	fon							-	K7	PE-2001	018807	T

overhangs non-concurrent with other live loads.5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

16023 Swingley Ridge Rd. Chesterfield, MO 63017 314.434.1200 / MITek-US.com

February 8,2024

SIONAL ET

Page: 1

Job	Truss	Truss Type	Qty	Ply	Lot 17 TCR	
230872	J16	Jack-Open	10	1	Job Reference (optional)	163476803

Run: 8.73 S Jan 4 2024 Print: 8.730 S Jan 4 2024 MiTek Industries, Inc. Tue Feb 06 14:22:42 ID:ZNTkLnGwKIYjtu1k7Mg2?Ty45cQ-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

3-1-0

Scale = 1:29.9

Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 25.0 15.4/20.0 10.0 10.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018/T	PI2014	CSI TC BC WB Matrix-R	0.18 0.10 0.00	DEFL Vert(LL) Vert(CT) Horz(CT) Wind(LL)	in 0.00 -0.01 -0.03 0.01	(loc) 4-5 4-5 3 4-5	l/defl >999 >999 n/a >999	L/d 360 240 n/a 240	PLATES MT20 Weight: 11 lb	GRIP 197/144 FT = 10%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD	2x4 SPF No.2 2x4 SPF No.2 2x3 SPF No.2 Structural wood she 3-1-0 oc purlins, ex Rigid ceiling directly bracing.	athing directly appli cept end verticals. applied or 10-0-0 o	6) A 7) R 8) P b 3 ed or 9) T Ir c R LOAI	All bearings a Refer to girde Provide mech earing plate and 6 lb up This truss is of nternational R802.10.2 ar D CASE(S)	are assumed to be er(s) for truss to tru- nanical connection capable of withsta lift at joint 4. designed in accord Residential Code s nd referenced stan Standard	SPF No uss con (by oth anding 7 dance wi sections dard AN	0.2. nections. ers) of truss t 4 lb uplift at j th the 2018 R502.11.1 a SI/TPI 1.	o oint nd					
REACTIONS	(size) 3= Mecha 5=0-3-8 Max Horiz 5=97 (LC Max Uplift 3=-74 (LC Max Grav 3=106 (LC 5=211 (LC	nncal, 4= Mechanica 10) 2 10), 4=-6 (LC 10) 2 20), 4=62 (LC 20), 2 2)	al, ,										
FORCES	(lb) - Maximum Com Tension 2-5=-184/0, 1-2=0/4 4-5=0/0	pression/Maximum 8, 2-3=-93/63											
NOTES	E 7 16: Vult 115mm	(2 accord quat)											
 Wind, ASC Vasd=91m II; Exp C; E and right e Lumber DQ TCLL: ASC Plate DOL=0.15 Partially Ex This truss I load of 12. overhangs This truss I chord live I * This truss I chord live I * This truss I chord of tall * This truss I chord live I * This truss I chord live I 	ph; TCDL=6.0psf; BC Enclosed; MWFRS (er exposed; end vertical I DL=1.60 plate grip DC CE 7-16; Pr=25.0 psf; (Plate DOL=1.15); Is= xp.; Ce=1.0; Cs=1.00; has been designed foi 0 psf or 1.00 times flat non-concurrent with of has been designed foi load nonconcurrent with s has been designed foi load nonconcurrent with to m chord in all areas II by 2-00-00 wide will any other members, v	(J-second gust) DL=6.0psf; h=25ft; velope); cantilever left and right expose $J_{L}=1.60$ roof LL: Lum DOL=' 7[=15.4 psf (Lum 1.0; Rough Cat C; Ct=1.10 r greater of min roof t roof load of 15.4 ps ther live loads. r a 10.0 psf bottom th any other live load or a live load of 20.0 where a rectangle fit between the bottt vith BCDL = 10.0psf	Cat. left bd; 1.15 live sf on ds. ppsf									STATE OF M SCOTT SEVI SEVI NUM PE-20010 Februar	MISSOLA ER BER 018807 L ENGINE

st.org) Mitchevel St.org) St.org)

Job	Truss	Truss Type	Qty	Ply	Lot 17 TCR	
230872	J17	Diagonal Hip Girder	2	1	Job Reference (optional)	163476804

Run: 8.73 S Jan 4 2024 Print: 8.730 S Jan 4 2024 MiTek Industries, Inc. Tue Feb 06 14:22:42 ID:s?wpN_ZzggaJlatLXP6gzXy45c2-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

-1-11-8	2-8-13
1-11-8	2-8-13

Page: 1

Scale = 1:26.8

Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 25.0 15.4/20.0 10.0 10.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 NO IRC2018/TPI2	CSI TC BC WB Matrix-R	0.39 0.10 0.00	DEFL Vert(LL) Vert(CT) Horz(CT) Wind(LL)	in 0.00 0.00 -0.02 0.00	(loc) 4-5 4-5 3 4-5	l/defl >999 >999 n/a >999	L/d 360 240 n/a 240	PLATES MT20 Weight: 10 lb	GRIP 197/144 FT = 10%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SPF No.2 2x4 SPF No.2 2x4 SPF No.2 2x4 SPF No.2 Structural wood sh 2-8-13 oc purlins, Rigid ceiling direct bracing. (size) 3= Mecl 5=0-6-5 Max Horiz 5=71 (L Max Uplift 3=-58 (L (LC 16) Max Grav 3=26 (L	eathing directly applie except end verticals. y applied or 10-0-0 or anical, 4= Mechanica C 11) C 16), 4=-9 (LC 30), 4 C 8), 4=17 (LC 21), 5=	6) * Th on t 3-00 choi ed or 8) Refe 9) Prov bea c 5,5 al, 10) This inte R80 55=-63 0110 In th of t =284 LOAD C	is truss has been des he bottom chord in all b-00 tall by 2-00-00 wi rd and any other mem earings are assumed er to girder(s) for trus: vide mechanical conne- ring plate capable of v 8 lb uplift at joint 3 and truss is designed in a mational Residential (2.10.2 and referenced the LOAD CASE(S) set the truss are noted as f cASE(S) Standard ad + Snow (balanced	igned for a liv areas where de will fit betw bers, with BC to be SPF Nd s to truss con ection (by oth vithstanding 6 d 9 lb uplift at accordance w Code sections d standard AN ction, loads ap ront (F) or ba	e load of 20. a rectangle veen the bott DL = 10.0ps 0.2. nections. ers) of truss 3 lb uplift at joint 4. ith the 2018 R502.11.1 a ISI/TPI 1. oplied to the ck (B).	Opsf om f. to joint and face Plate					
FORCES TOP CHORD BOT CHORD NOTES 1) Wind: ASG Vasd=91n II; Exp C; cantilever right expo: 2) TCLL: AS Plate DOL DOL=1.15 Partially E 3) Unbalance design. 4) This truss load of 12 overhangs 5) This truss chord live	(Ib) - Maximum Co Tension 2-5=-261/85, 1-2= 4-5=0/0 CE 7-16; Vult=115mp ph; TCDL=6.0psf; B Enclosed; MWFRS (left and right expose sed; Lumber DOL=1 CE 7-16; Pr=25.0 psf; - Flate DOL=1.15); Ib xp.; Ce=1.0; Cs=1.00 ad snow loads have I has been designed 1 0.0 psf or 1.00 times f s non-concurrent with has been designed 1 load nonconcurrent with	mpression/Maximum //66, 2-3=-40/10 h (3-second gust) CDL=6.0psf; h=25ft; (anvelope) exterior zor d; end vertical left an 60 plate grip DOL=1.1 (roof LL: Lum DOL=7 Pf=15.4 psf (Lum =1.0; Rough Cat C;); Ct=1.10 ween considered for the or greater of min roof at roof load of 15.4 ps other live loads. or a 10.0 psf bottom vith any other live loads	Cat. le; d 60 1.15 live sf on ds.	rease=1.15 iform Loads (lb/ft) Vert: 1-2=-51 apezoidal Loads (lb/ft) Vert: 2=-2 (F=24, B=2 (F=10, B=10)-to-4=-14	4)-to-3=-35 (f 4 (F=3, B=3)	F=8, B=8), 5=	=0				STATE OF STATE OF SEV SEV NUM PE-2001	MISSOLUTION

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

February 8,2024

Job	Truss	Truss Type	Qty	Ply	Lot 17 TCR	
230872	J18	Half Hip Girder	1	1	Job Reference (optional)	163476805

Run: 8.73 S Jan 4 2024 Print: 8.730 S Jan 4 2024 MiTek Industries, Inc. Tue Feb 06 14:22:42 ID:G7fo8e?By2E3iGCSBgGLzKy45bT-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

Scale = 1:41.6

Plate Offsets (X, Y): [3:0-4-8,0-2-0]

Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 25.0 20.4/20.0 10.0 10.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 NO IRC2018	J/TPI2014	CSI TC BC WB Matrix-P	0.12 0.09 0.03	DEFL Vert(LL) Vert(CT) Horz(CT) Wind(LL)	in 0.00 -0.01 0.00 0.00	(loc) 5-6 5-6 5 5-6	l/defl >999 >999 n/a >999	L/d 360 240 n/a 240	PLATES MT20 Weight: 16 lb	GRIP 197/144 FT = 10%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD	2x4 SPF No.2 2x4 SPF No.2 2x3 SPF No.2 Structural wood shea 3-1-0 oc purlins, exo 2-0-0 oc purlins: 3-4	athing directly applie	6) 7) d or 8) nd 9)	This truss ha chord live loa * This truss h on the bottor 3-06-00 tall b chord and ar All bearings a Refer to girde	is been designed ad nonconcurrent has been designed in chord in all area by 2-00-00 wide w any other members are assumed to be er(s) for truss to tr	for a 10.0 with any d for a live s where ill fit betw , with BC e SPF No uss conn) psf bottom other live loa e load of 20.0 a rectangle /een the botto DL = 10.0pst 0.2.	ads. Opsf om f.					
BOT CHORD REACTIONS FORCES	Rigid ceiling directly bracing. (size) 5= Mecha Max Horiz 6=109 (LC Max Uplift 5=-136 (LI Max Grav 5=156 (LC (lb) - Maximum Com Tension	applied or 6-0-0 oc nical, 6=0-3-8 2 9) C 9), 6=-134 (LC 12) 2 37), 6=260 (LC 40) pression/Maximum	10) 11) 12)	 Provide mec bearing plate 5 and 134 lb This truss is International R802.10.2 ar Graphical pu or the orienta 	hanical connection capable of withst uplift at joint 6. designed in accor Residential Code nd referenced star rlin representation attion of the purlin a	n (by othe anding 1 dance wi sections ndard AN n does no along the	ers) of truss t 36 lb uplift at th the 2018 R502.11.1 a ISI/TPI 1. ot depict the s top and/or	to t joint and size					
TOP CHORD BOT CHORD WEBS	1-2=0/71, 2-3=-98/94 4-5=-87/25, 2-6=-200 5-6=-97/56 3-5=-59/130, 3-6=-14	4, 3-4=-34/25, 6/116 45/139	13) 14)	0.148"x3.25 In the LOAD	i. dicates 3-10d (0.1- ") toe-nails per NE CASE(S) section, are noted as front i	48"x3") o DS guidlir loads ap (F) or bag	r 2-12d nes. oplied to the t ck (B).	face					
NOTES 1) Wind: AS Vasd=911 II; Exp C; cantilever right expo 2) TCLL: AS	CE 7-16; Vult=115mph nph; TCDL=6.0psf; BC Enclosed; MWFRS (en left and right exposed sed; Lumber DOL=1.6(CE 7-16; Pr=25.0 psf ((3-second gust) DL=6.0psf; h=25ft; C velope) exterior zono ; end vertical left and 0 plate grip DOL=1.6 roof LL: Lum DOL=1.	LO 1) at. e; 1 0 .15	AD CASE(S) Dead + Sno Increase=1 Uniform Loa Vert: 1-2 Concentrate Vert: 3=4	Standard bw (balanced): Lui 15 ads (lb/ft) =-51, 2-3=-51, 3-4 ed Loads (lb) 15 (F=22, B=22), 7	mber Inci =-61, 5-6 /=7 (F=4,	ease=1.15, 6=-20 B=4)	Plate				STATE OF M	MISSOUR MISSOUR FM. ER

- Plate DOL=1.15); Pg=20.0 psf; Pf=20.4 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat C; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10, Lu=50-0-0
- 3) Unbalanced snow loads have been considered for this design.
- 4) This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 15.4 psf on overhangs non-concurrent with other live loads.
- 5) Provide adequate drainage to prevent water ponding.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSITPTI Quality Criteria, and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcscomponents.com)

February 8,2024

E

NUMBER

PE-200101880'

SSIONAL

0

Job	Truss	Truss Type	Qty	Ply	Lot 17 TCR	
230872	J19	Jack-Open	3	1	Job Reference (optional)	163476806

Run: 8.73 S Jan 4 2024 Print: 8.730 S Jan 4 2024 MiTek Industries, Inc. Tue Feb 06 14:22:43 ID:?U?QMNzQa7nxlJ9nEPha4iy45Yw-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

<u>2-7-8</u> 2-7-8 0-5-8

Scale = 1:37.3

Plate Offsets (X,	Y):	[2:0-3-0,0-1-4]
-------------------	-----	-----------------

Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 25.0 15.4/20.0 10.0 10.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018/TPI2014 5) * This trus	CSI TC BC WB Matrix-S	0.22 0.12 0.02 ed for a liv	DEFL Vert(LL) Vert(CT) Horz(CT)	in 0.02 0.02 -0.07	(loc) 7 7 4	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 14 lb	GRIP 197/144 FT = 10%	
TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SPF No.2 2x3 SPF No.2 2x3 SPF No.2 Structural wood shea 3-1-0 oc purlins, exa Rigid ceiling directly bracing. (size) 4= Mecha 8=0-3-8 Max Horiz 8=138 (LC Max Uplift 4=-132 (L Max Grav 4=165 (LC (LC 2)	athing directly applied cept end verticals. applied or 10-0-0 oc inical, 5= Mechanical C 10) C 10) C 22), 5=10 (LC 5), 8:	on the bot 3-06-00 ta chord and 6) All bearing 7) Refer to gi 8) Provide m bearing pla 4. 9) This truss Internatior R802.10.2 LOAD CASE(tom chord in all are Il by 2-00-00 wide v any other member is are assumed to I irder(s) for truss to echanical connecti- ate capable of with: is designed in acco- al Residential Cod and referenced sta S) Standard	eas where will fit betw be SPF No truss com on (by oth standing 1 ordance wi le sections andard AN	a rectangle veen the bott DL = 10.0psi 0.2 . nections. ers) of truss I 32 lb uplift at ith the 2018 R502.11.1 <i>a</i> ISI/TPI 1.	om f. i joint i joint						
FORCES TOP CHORD	(Ib) - Maximum Com Tension 2-8=-189/0, 1-2=0/4{	pression/Maximum 8, 2-3=-120/41,											
BOT CHORD WEBS NOTES 1) Wind: ASC Vasd=91m II; Exp C; I cantilever right expos 2) TCLL: ASC Plate DOL DOL=1.15 Partially E 3) This truss load of 12. overhangs 4) This truss chord live	7-8=0/0, 5-6=0/0 6-7=-21/56, 3-6=-18/ CE 7-16; Vult=115mph nph; TCDL=6.0psf; BC Enclosed; MWFRS (en left and right exposed sed; Lumber DOL=1.60 CE 7-16; Pr=25.0 psf (=1.15); Pg=20.0 psf; F Plate DOL=1.15); Is= xp.; Ce=1.0; Cs=1.00; has been designed for .0 psf or 1.00 times flat s non-concurrent with c has been designed for load nonconcurrent wi	(3-second gust) DL=6.0psf; h=25ft; C ivelope) exterior zone; end vertical left and 0 plate grip DOL=1.6 roof LL: Lum DOL=1. Pf=15.4 psf (Lum 1.0; Rough Cat C; Ct=1.10 r greater of min roof lit t roof load of 15.4 psf other live loads. r a 10.0 psf bottom th any other live load	at. e; I 0 .15 ive f on								STATE OF M SCOT SEVI DE 2001 PE-2001 Februa	AISSOLP M. ER DISSO7 L ENGINE L ENGINE TY 8,2024	

16023 Swingley Ridge Rd. Chesterfield, MO 63017 314.434.1200 / MITek-US.com

Job	Truss	Truss Type	Qty	Ply	Lot 17 TCR	
230872	J20	Jack-Open	1	1	Job Reference (optional)	163476807

2-0-3

Wheeler Lumber, Waverly, KS - 66871,

Run: 8,73 S Jan 4 2024 Print: 8,730 S Jan 4 2024 MiTek Industries, Inc. Tue Feb 06 14:22:43 ID:?03GU?OIZZ36qYIJEYIYSty45YO-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:27.6

Plate Offsets (X, Y): [2:0-2-0,0-1-4]

Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 25.0 15.4/20.0 10.0 10.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018	3/TPI2014	CSI TC BC WB Matrix-R	0.15 0.08 0.00	DEFL Vert(LL) Vert(CT) Horz(CT)	in 0.00 0.00 -0.02	(loc) 4-5 4-5 3	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 8 lb	GRIP 197/144 FT = 10%	
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SPF No.2 2x4 SPF No.2 2x3 SPF No.2 Structural wood she 2-0-3 oc purlins, ex Rigid ceiling directly bracing. (size) $3=$ Mecha 5=0-3-8 Max Horiz $5=$ 94 (LC Max Uplift $3=$ -77 (LC Max Grav $3=$ 66 (LC (LC 2) (lb) - Maximum Com Tension	athing directly applie cept end verticals. applied or 10-0-0 oc inical, 4= Mechanica 10) : 10), 4=-21 (LC 10) 22), 4=44 (LC 18), 5 ipression/Maximum	5) d or 7) s l, 9) LC =170	* This truss I on the bottor 3-06-00 tall I chord and ar All bearings Refer to gird Provide mec bearing plate 3 and 21 lb u This truss is International R802.10.2 a	has been design n chord in all ar by 2-00-00 wide ny other membe are assumed to er(s) for truss t hanical connec e capable of witi uplift at joint 4. designed in ac Residential Co nd referenced s Standard	ned for a live reas where a will fit betw ers, with BC to truss conr tion (by othe hstanding 7 coordance wi standard AN	e load of 20. a rectangle reen the bott DL = 10.0ps .2. mections. ers) of truss i 7 lb uplift at j th the 2018 R502.11.1 a SI/TPI 1.	Opsf om f. to joint						
TOP CHORD BOT CHORD	2-5=-150/0, 1-2=0/4 4-5=0/0	8, 2-3=-78/39												
 Wind: AS(Vasd=91n II; Exp C; cantilever right expo TCLL: AS Plate DOL DOL=1.15 Partially E This truss load of 12 overhangs This truss chord live 	CE 7-16; Vult=115mph mph; TCDL=6.0psf; BC Enclosed; MWFRS (er left and right exposed used; Lumber DOL=1.6 CE 7-16; Pr=25.0 psf (CE 7-16; Pr=25.0 psf (CE 7-16; Pr=25.0 psf; F 5 Plate DOL=1.15); Is= ixp.; Ce=1.0; Cs=1.00; has been designed for load nonconcurrent with load nonconcurrent with	(3-second gust) DL=6.0psf; h=25ft; C ivelope) exterior zon ; end vertical left and 0 plate grip DOL=1.6 roof LL: Lum DOL=1 Pf=15.4 psf (Lum 1.0; Rough Cat C; Ct=1.10 r greater of min roof t roof load of 15.4 ps other live loads. r a 10.0 psf bottom th any other live load	Cat. e; b 00 .15 ive f on ds.							_		NUM PE-2001	MISSOLUT ER DISSOT	

the February 8,2024

Job	Truss	Truss Type	Qty	Ply	Lot 17 TCR	
230872	J21	Jack-Open	1	1	Job Reference (optional)	163476808

Run: 8.73 S Jan 4 2024 Print: 8.730 S Jan 4 2024 MiTek Industries, Inc. Tue Feb 06 14:22:43 ID: El6gN4VPSKBrPwx2GxzfJmy45YF-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC?ff

Page: 1

1-0-3

					1-0-3	3						
Scale = 1:31.1						-						
Loading TCLL (roof) Snow (Pf/Pg) TCDL	(psf) 25.0 15.4/20.0 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr	2-0-0 1.15 1.15 YES	CSI TC BC WB	0.10 0.04 0.00	DEFL Vert(LL) Vert(CT) Horz(CT)	in 0.00 0.00 -0.01	(loc) 4-5 4-5 3	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20	GRIP 197/144
BCDL	10.0	Code	IRC2018/1PI2014	Matrix-R							Weight: 5 lb	FT = 10%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SPF No.2 2x4 SPF No.2 2x3 SPF No.2 Structural wood shea 1-0-3 oc purlins, exc Rigid ceiling directly bracing. (size) 3= Mecha 5=0-3-8 Max Horiz 5=61 (LC Max Uplift 3=-41 (LC	athing directly applied cept end verticals. applied or 10-0-0 oc nical, 4= Mechanical 7) : 10), 4=-30 (LC 10)	 All bearin 7) Refer to g 8) Provide n bearing p 4 and 41 9) This truss Internatio R802.10. LOAD CASE 	gs are assumed to irder(s) for truss t techanical connec late capable of with b uplift at joint 3. is designed in acc nal Residential Co 2 and referenced s S) Standard	be SPF N o truss con tion (by oth hstanding 3 cordance w de sections tandard AN	o.2 . nections. ers) of truss i 80 lb uplift at j ith the 2018 s R502.11.1 a NSI/TPI 1.	to joint and					
FORCES	(LC 2) (Ib) - Maximum Com Tension 2-5=-133/7 1-2=0/48	pression/Maximum	40									
BOT CHORD	4-5=0/0	5, 2 5= 45/15										
NOTES 1) Wind: ASC Vasd=91m II; Exp C; E cantilever I right expos 2) TCLL: ASC Plate DOL- DOL=1.15 Partially Ex 3) This truss H load of 12. overhangs 4) This truss S chord live I 5) * This truss on the botto 3-06-00 tal	E 7-16; Vult=115mph iph; TCDL=6.0psf; BCI Enclosed; MWFRS (en left and right exposed sed; Lumber DOL=1.6(DE 7-16; Pr=25.0 psf (r Plate DOL=1.15); Is= xp; Ce=1.0; Cs=1.00; has been designed for load nonconcurrent with o has been designed for load nonconcurrent with s has been designed with f	(3-second gust) DL=6.0psf; h=25ft; C welope) exterior zone ; end vertical left and 0 plate grip DOL=1.6 roof LL: Lum DOL=1. ?f=15.4 psf (Lum 1.0; Rough Cat C; Ct=1.10 greater of min roof li troof load of 15.4 psf ther live loads. • a 10.0 psf bottom th any other live load or a live load of 20.0p where a rectangle fit between the bottor	iat. e; 0 .15 ive f on is. osf						æ		STATE OF STATE OF SEV SEV PE-2007	MISSOLUE T.M. TER 1018807

February 8,2024

👠 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.
Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not
a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall
building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing
is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the
fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org)
and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

Job	Truss	Truss Type	Qty	Ply	Lot 17 TCR	
230872	J22	Diagonal Hip Girder	1	1	Job Reference (optional)	163476809

Run: 8,73 S Jan 4 2024 Print: 8,730 S Jan 4 2024 MiTek Industries, Inc. Tue Feb 06 14:22:43 ID:MWw0gKsDNYza0XEp0EVhX5y45Xn-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

6-7-12 1-1-9 -1-11-8 5-6-3 1-11-8 5-6-3 0-9-13 12 5.37 NAILED 3x4 II NAILED 3x4 u 4 NAILED 3 11 ۴ 111 2-2-13 10 4-3-11 4-3-11 9 5x8 ≠ ΠŪ 2 6 1-4-0 Π 54 -0-0 8 <mark>₽</mark> ПП -54 пп 7 12 13 4x5 = 3x4 II 3x6 = 3x4 II NAILED NAILED NAILED 0-0-12 6-7-12 5-7-7 1-0-5 5-6-11 0-0-12

Scale = 1:45

Plate Offsets (X, Y):	[2:0-2-0,0-1-8], [5:Edge,0-2-8]
-----------------------	---------------------------------

	()) [)]	,[
Loading	(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15		TC	0.36	Vert(LL)	-0.04	7-8	>999	360	MT20	197/144
Snow (Pf/Pg)	15.4/20.0	Lumber DOL	1.15		BC	0.40	Vert(CT)	-0.08	7-8	>999	240		
TCDL	10.0	Rep Stress Incr	NO		WB	0.03	Horz(CT)	-0.01	5	n/a	n/a		
BCLL	10.0*	Code	IRC201	8/TPI2014	Matrix-S		Wind(LL)	0.04	7-8	>999	240		
BCDL	10.0											Weight: 28 lb	FT = 10%
LUMBER			6) * This truss I	nas been designe	ed for a liv	e load of 20.	0psf					
FOP CHORD	2x4 SPF No.2			on the bottor	n chord in all are	as where	a rectangle	•					
3OT CHORD	2x4 SPF No.2 *Exce	ept* 7-3:2x3 SPF No	.2	3-06-00 tall I	by 2-00-00 wide v	will fit betw	veen the bott	om					
NEBS	2x3 SPF No.2			chord and a	ny other member	s, with BC	DL = 10.0ps	f.					
BRACING			7) All bearings	are assumed to b	be SPF No	o.2 .						
FOP CHORD	Structural wood she	athing directly applie	ed or ⁸) Refer to gird	er(s) for truss to	truss con	nections.						
	6-0-0 oc purlins, ex	cept end verticals.	9) Provide med	hanical connection	on (by oth	ers) of truss	to					
BOT CHORD	Rigid ceiling directly	applied or 6-0-0 oc		bearing plate	e capable of with	standing 1	40 lb uplift a	t joint					
	bracing.		4	8 and 143 lb	uplift at joint 5.		the the 2010						
REACTIONS	(size) 5= Mecha	anical, 8=0-6-5	1	J) This truss is	Designed in acco	o oootiono	DE02 11 1	and					
	Max Horiz 8=167 (Le	C 9)		R802 10 2 a	nd referenced st	e sections		anu					
	Max Uplift 5=-143 (L	C 9), 8=-140 (LC 12) 1	1) "NAII ED" in	dicates 2-12d (0	148"v3 25	") toe-nails n	or					
	Max Grav 5=314 (L	C 26), 8=470 (LC 29) '	NDS guidling	25	140 70.20) 100 114113 p						
FORCES	(lb) - Maximum Con	pression/Maximum	1	2) In the LOAD	CASE(S) section	n. loads ai	oplied to the	face					
	Tension			of the truss a	are noted as front	t (F) or ba	ck (B).						
TOP CHORD	2-8=-387/145, 1-2=0	0/59, 2-3=-261/66,	L	OAD CASE(S)	Standard	()	. ,						
	3-4=-56/39, 4-5=-94	/26	1	Dead + Sno	ow (balanced): Lu	umber Inc	rease=1.15.	Plate					
BOT CHORD	7-8=-195/114, 6-7=-	34/113, 3-6=-144/10)7,	Increase=1	.15								
	5-6=-41/45			Uniform Lo	ads (lb/ft)								
NEBS	2-7=-22/124			Vert: 1-2	=-51, 2-4=-51, 7-	-8=-20, 5-6	6=-20						
NOTES				Concentrat	ed Loads (lb)								
 Wind: AS 	CE 7-16; Vult=115mph	(3-second gust)		Vert: 10=	=23 (B), 12=-1 (F	=-3, B=2),	13=0 (B)					an	all
Vasd=91r	nph; TCDL=6.0psf; BC	DL=6.0psf; h=25ft; (Cat.									8 OF	MICON
II; Exp C;	Enclosed; MWFRS (er	nvelope) exterior zor	ne;								- 1	9 TE	10.00
cantilever	left and right exposed	; end vertical left an	d								6	N	NSY
	Sed; Lumber DOL=1.6	o plate grip DOL=1.	00 L 4 E								B	SCOT	TM. YEY
2) TOLL: AS	LE 7-16; PI=25.0 pSI (De 15 4 por (Lum	1.15								R	/ SEV	IER \ Y
	5 Plate DOI -1 15); Is-	1 0: Rough Cat C:									ant	1 4-	
Partially F	$x_{\rm D} \cdot C_{\rm e} = 1.0 \cdot C_{\rm s} = 1.00$	Ct=1 10									ØX.		XANNIA.
3) Unbalanc	ed snow loads have be	een considered for th	nis							4			DED LOUN
design.			-								27	NUM	DER A
4) This truss	has been designed fo	r greater of min roof	live								N.	ON PE-2001	01880/
load of 12	.0 psf or 1.00 times fla	t roof load of 15.4 ps	sf on								V	NON NON	154
overhang	s non-concurrent with	other live loads.										SID.	FN
This truss	has been designed fo	r a 10.0 psf bottom										WNA	
chord live	load nonconcurrent w	ith any other live loa	ds.									1000	202

This truss has been designed for a 10.0 psf bottom 5) chord live load nonconcurrent with any other live loads.

> 16023 Swingley Ridge Rd. Chesterfield, MO 63017 314.434.1200 / MiTek-US.com

February 8,2024

Job	Truss	Truss Type	Qty	Ply	Lot 17 TCR	
230872	K1	Common Supported Gable	3	1	Job Reference (optional)	163476810

Run: 8,73 S Jan 4 2024 Print: 8,730 S Jan 4 2024 MiTek Industries, Inc. Tue Feb 06 14:22:44 ID:_A_no?GKzrDjRpY6soCO24y6jdn-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

20-0-0

Scale = 1:68.9												1				
Plate Offsets ((X, Y): [7:0-	-2-0,Edge],	[14:Edge,0-1-8]													
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	1:	(psf) 25.0 5.4/20.0 10.0 10.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2	018/	/TPI2014	CSI TC BC WB Matrix-R	0.24 0.26 0.13	DEFL Vert(LL) Vert(CT) Horz(CT)	in n/a n/a 0.01	(loc) - - 14	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 113 lb	GRIP 197/144 FT = 10%	
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD WEBS REACTIONS	2x4 SPF 2x4 SPF 2x4 SPF 2x4 SPF Structural 6-0-0 oc p Rigid ceili bracing. 1 Row at (size) Max Horiz Max Uplift Max Grav	No.2 No.2 No.2 No.2 I wood she purlins, ex ing directly midpt 14=20-0-(20=20-0-(24=20-0-(24=20-0-(24=-327 (14=-139 (16=-41 (L 20=-191 (21=-344 (16=257 (18=397 (18=397 (20=209 (20=20) (20=209 (20=20) (20=209 (20=20) (20=2	athing directly appli cept end verticals. applied or 10-0-0 c 8-18, 6-19 0, 15=20-0-0, 16=20 0, 15=20-0-0, 19=20 0, 22=20-0-0, 23=20 0 LC 8) LC 9), 15=-381 (LC C 10), 22=-41 (LC LC 10), 22=-41 (LC LC 10), 22=-41 (LC LC 10), 24=-149 (L C 23), 17=211 (LC C 23), 19=404 (LC	ed or -0-0-0, -0-0, -0-0, -0-0, (11), (11), (11), (23), (23), (22),	WE NO 1) 2) 3) 4) 5) 6) 7)	BS TES Unbalance this design Wind: ASC Vasd=91r II; Exp C; cantilever right expo Truss des only. For see Stanc or consult TCLL: AS Plate DOL DOL=1.15 Partially E Partially E This truss load of 12 overhangs All plates Cable reo	8-18=-183/24, 1 10-16=-155/99, 6-19=-190/33, 1 3-23=-186/275 ed roof live loads n. CE 7-16; Vult=11f mph; TCDL=6.0ps Enclosed; MWFR left and right exp sed; Lumber DOL signed for wind loa studs exposed to lard Industry Gabi qualified building CE 7-16; Pr=25.0 =1.15); Pg=20.0 5 Plate DOL=1.15 ixp.; Ce=1.0; Cs= has been design .0 psf or 1.00 time s non-concurrent are 2x4 MT20 unl	p-17=-152/2 , 11-15=-18 5-20=-149/ ⁻¹ have been 5-20=-149/ ⁻¹ have been 9-20=-149/ ⁻¹ have be	201, 4/274, 99, 4-22=-15 considered for cond gust) 0psf, h=25ft; e) exterior zoo vertical left ar grip DOL=1. lane of the tru al to the face ills as applica s per ANSI/TI :: Lum DOL= 4 psf (Lum ough Cat C; 10 er of min roof oad of 15.4 p ve loads. se indicated.	55/99, or Cat. ne; id 60 JSS), ble, PI 1. 1.15	 13) Probe bea 14, upli join 23. 14) This Inte R80 LOAD (vide me ring pla 149 lb u ft at join t 20, 41 s truss is rnationa 02.10.2 ; CASE(S	chanic te capa plift at t 16, 38 Ib uplif s desig al Resic and ref) Star	al connection (by able of withstandi joint 24, 193 lb u 81 lb uplift at join t at joint 22 and 3 ned in accordand dential Code sect erenced standard ndard	others) of truss to ng 139 lb uplift at join plift at joint 17, 41 lb i 15, 191 lb uplift at i 84 lb uplift at joint with the 2018 ions R502.11.1 and d ANSI/TPI 1.	nt

23=326 (LC 22), 24=425 (LC 24) 8) FORCES (lb) - Maximum Compression/Maximum Tension 9) TOP CHORD 12-14=-311/101, 7-8=-131/100, 8-9=-129/122, 9-10=-163/86, 10-11=-211/118, 11-12=-420/204, 12-13=0/51, 1-2=0/51, 2-3=-425/214, 3-4=-215/126, 4-5=-169/94 5-6=-137/127, 6-7=-131/102, 2-24=-313/110 BOT CHORD 23-24=-162/292, 22-23=-162/292,

20-22=-162/292, 19-20=-162/292, 18-19=-162/292, 17-18=-162/292, 16-17=-162/292, 15-16=-162/292, 14-15=-162/292

- Truss to be fully sheathed from one face or securely braced against lateral movement (i.e. diagonal web). Gable studs spaced at 2-0-0 oc.
- 10) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 11) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- 12) All bearings are assumed to be SPF No.2 .

Page: 1

16023 Swingley Ridge Rd. Chesterfield MO 63017 314.434.1200 / MiTek-US.com

Job	Truss	Truss Type	Qty	Ply	Lot 17 TCR	
230872	К2	Common	7	1	Job Reference (optional)	163476811

Run: 8.73 S Jan 4 2024 Print: 8.730 S Jan 4 2024 MiTek Industries, Inc. Tue Feb 06 14:22:44 ID:SMY90LHyk8La3z6IQVjdbly6jdm-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Scale = 1:70.2

Plate Offsets (X, Y):	[2:0-2-12,0-1-8], [6:0-2-12,	,0-1-8]
-----------------------	------------------------------	---------

Loa TCL Sno TCL BCL BCL BCL	Nating LL (roof) W (Pf/Pg) DL LL DL MBER PC CHORD	(psf) 25.0 15.4/20.0 10.0 10.0* 10.0 2x4 SPE No 2	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC201	8/TPI2014 This truss ha	CSI TC BC WB Matrix-S	0.29 0.26 0.55 or greate	DEFL Vert(LL) Vert(CT) Horz(CT) Wind(LL)	in -0.03 -0.05 0.01 0.02	(loc) 9-10 9-10 8 10-11	l/defl >999 >999 n/a >999	L/d 360 240 n/a 240	PLATES MT20 Weight: 103 lb	GRIP 197/144 FT = 10%
BOT	T CHORD BS	2x4 SPF No.2 2x4 SPF No.2 2x3 SPF No.2 *Exce SPF No.2	pt* 12-2,8-6,10-4:2x4	4 5)	overhangs n This truss ha chord live loa	on-concurrent with s been designed for ad nonconcurrent v	other liv or a 10.0 vith any	ve loads.) psf bottom other live loa	ids.					
BR/ TOF	ACING P CHORD	Structural wood sheat 5-10-8 oc purlins, ex	athing directly applie	b) d or	on the bottor 3-06-00 tall b	nas been designed n chord in all areas by 2-00-00 wide wil	s where Il fit betv	e load of 20.0 a rectangle veen the botto	om					
BO	T CHORD	Rigid ceiling directly bracing.	applied or 10-0-0 oc	7)	chord and ar All bearings	iy other members, are assumed to be	with BC	DL = 10.0psf b.2 .	f.					
REA	ACTIONS	(size) 8=0-3-8, 1 Max Horiz 12=-327 (Max Uplift 8=-93 (LC Max Grav 8=981 (LC	2=0-3-8 LC 8) 11), 12=-93 (LC 10) 222), 12=981 (LC 23	8) 3) 9)	Provide mec bearing plate 12 and 93 lb This truss is	hanical connection capable of withsta uplift at joint 8. designed in accord	i (by oth anding 9 dance w	ers) of truss t 3 lb uplift at j ith the 2018	io oint					
FOF	RCES	(lb) - Maximum Com	pression/Maximum	,	R802.10.2 a	nd referenced stan	dard AN	ISI/TPI 1.	inu					
TOF	P CHORD	Tension 1-2=0/51, 2-3=-961/ ⁻ 4-5=-735/247, 5-6=- 2-12=-908/120, 6-8=	154, 3-4=-735/247, 961/154, 6-7=0/51, -908/120	LC	DAD CASE(S)	Standard								
BO	T CHORD	11-12=-314/386, 10- 9-10=0/649, 8-9=-76	11=-107/760, /127											
WE	BS	2-11=0/551, 6-9=0/5 5-9=0/142, 3-10=-37 5-10=-371/245	56, 3-11=0/142, 1/245, 4-10=-211/60	6,									SE OF M	AISS
NO ⁻ 1) 2) 3)	TES Unbalance this design Wind: ASC Vasd=91n II; Exp C; I cantilever right expos TCLL: ASC Plate DOL DOL=1.15 Partially E	ed roof live loads have h. CE 7-16; Vult=115mph nph; TCDL=6.0psf; BC Enclosed; MWFRS (er left and right exposed sed; Lumber DOL=1.6 CE 7-16; Pr=25.0 psf (_=1.15); Pg=20.0 psf; F 5 Plate DOL=1.15); Is= xp.; Ce=1.0; Cs=1.00;	been considered for (3-second gust) DL=6.0psf; h=25ft; C velope) exterior zon; ; end vertical left and 0 plate grip DOL=1.6 roof LL: Lum DOL=1 ff=15.4 psf (Lum 1.0; Rough Cat C; Ct=1.10	eat. e; l 0 .15							ر		SCOTT SEVI NUM PE-20010	ER BER D18807

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

February 8,2024

Page: 1

Job	Truss	Truss Type	Qty	Ply	Lot 17 TCR	
230872	КЗ	Common	7	1	Job Reference (optional)	163476812

Run: 8.73 S Jan 4 2024 Print: 8.730 S Jan 4 2024 MiTek Industries, Inc. Tue Feb 06 14:22:45 ID:qg_Bv6MPYohpso?biPKkEGy6jcM-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

Scale = 1	70.2
-----------	------

Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 25.0 15.4/20.0 10.0 10.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC201	8/TPI2014	CSI TC BC WB Matrix-S	0.32 0.26 0.56	DEFL Vert(LL) Vert(CT) Horz(CT) Wind(LL)	in -0.03 -0.05 0.01 0.02	(loc) 8-9 9-10 7 9-10	l/defl >999 >999 n/a >999	L/d 360 240 n/a 240	PLATES MT20 Weight: 101 lb	GRIP 197/144 FT = 10%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SPF No.2 2x4 SPF No.2 2x3 SPF No.2 *Exce No.2 Structural wood shea 5-8-10 oc purlins, ex Rigid ceiling directly bracing. (size) 7=0-3-8, 1 Max Horiz 11=318 (L	pt* 11-2,7-6,9-4:2x4 athing directly applie xcept end verticals. applied or 10-0-0 or 1=0-3-8 .C 7)	4) 4 SPF 5) ed or c 7) 8)	This truss ha load of 12.0 overhangs n This truss ha chord live loo * This truss l on the bottor 3-06-00 tall l chord and an All bearings Provide mec bearing plate 11 and 88 lb	as been designed psf or 1.00 times ion-concurrent w as been designed ad nonconcurrent has been designed m chord in all are by 2-00-00 wide ny other member are assumed to chanical connecti e capable of with uplift at joint 7.	d for greate s flat roof lo ith other liv d for a 10.0 it with any ed for a live eas where will fit betw rs, with BC be SPF No ion (by othe standing 9	er of min root aad of 15.4 p re loads.) psf bottom other live loa e load of 20. a rectangle reen the bott DL = 10.0ps 0.2. ers) of truss 3 lb uplift at	f live sf on ads. Opsf om f. to joint					
FORCES TOP CHORD	Max Uplift 7=-88 (LC Max Grav 7=934 (LC (lb) - Maximum Com Tension 1-2=0/51, 2-3=-963/ 4-5=-739/248, 5-6=-9	10), 11=-93 (LC 10 22), 11=983 (LC 2 pression/Maximum 153, 3-4=-737/247, 962/150, 2-11=-910)) 9) (3) L(/120,	This truss is International R802.10.2 a DAD CASE(S)	designed in acco Residential Cod nd referenced st Standard	ordance wi le sections andard AN	th the 2018 R502.11.1 a ISI/TPI 1.	and					
BOT CHORD WEBS	10-11=-324/369, 9-1 7-8=-59/103 2-10=0/553, 6-8=-2/5 3-9=-371/245, 4-9=-2 5-8=-4/140	0=-117/748, 8-9=-1 566, 3-10=0/142, 213/612, 5-9=-379/2	3/641, 247,									OF M	
NOTES 1) Unbalance this design 2) Wind: ASG Vasd=91n II; Exp C; cantilever right expo: 3) TCLL: ASI Plate DOL DOL=1.15 Partially E	ed roof live loads have n. CE 7-16; Vult=115mph nph; TCDL=6.0psf; BCI Enclosed; MWFRS (en left and right exposed sed; Lumber DOL=1.6(CE 7-16; Pr=25.0 psf; [I- :1.15); Pg=20.0 psf; [I- :1.15); Is= xp.; Ce=1.0; Cs=1.00;	been considered fo (3-second gust) DL=6.0psf; h=25ft; 0 vielope) exterior zor ; end vertical left an 0 plate grip DOL=1.0 roof LL: Lum DOL= if=15.4 psf (Lum 1.0; Rough Cat C; Ct=1.10	r Cat. he; d 60 1.15									SCOTT SEVI SEVI NUM PE-20010	M. ER D18807

February 8,2024

ww.tpinst.org) With the second second

4	WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.
	Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not
	a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall
	building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing
	is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the
	fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpin
	and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

Job	Truss	Truss Type	Qty	Ply	Lot 17 TCR	
230872	L1	Monopitch	2	1	Job Reference (optional)	163476813

Run: 8.73 S Jan 4 2024 Print: 8.730 S Jan 4 2024 MiTek Industries, Inc. Tue Feb 06 14:22:45 ID:xY5XDhHaVSTRh7hU_DEs7Vy6jdl-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

Scale = 1:79.8

Plate Offsets (X, Y): [2:0-2-8,Edge], [9:0-2-7,Edge], [14:0-1-7,Edge]

Loading	(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15		тс	0.50	Vert(LL)	-0.14	13	>999	360	MT20	197/144
Snow (Pf/Pg)	15.4/20.0	Lumber DOL	1.15		BC	0.34	Vert(CT)	-0.25	13-14	>601	240		
TCDL	10.0	Rep Stress Incr	YES		WB	0.93	Horz(CT)	0.48	9	n/a	n/a		
BCLL	10.0*	Code	IRC2018	3/TPI2014	Matrix-S		Wind(LL)	0.21	13	>697	240		
BCDL	10.0											Weight: 95 lb	FT = 10%
LUMBER		-	2)	Truss desia	ned for wind load	ds in the p	ane of the tr	uss					
TOP CHORD	2x4 SPF No 2		,	only. For stu	ids exposed to w	ind (norm	al to the face	e).					
BOT CHORD	2x4 SPF No 2			see Standard	d Industry Gable	End Deta	ils as applica	ible,					
WEBS	2x3 SPE No 2 *Exce	ent* 8-9·2x4 SPF No 2	,	or consult qu	alified building d	lesigner as	s per ANSI/T	PI 1.					
OTHERS	2x4 SPF No 2		- 3)	TCLL: ASCE	7-16; Pr=25.0 p	sf (roof LL	.: Lum DOL=	1.15					
BRACING	2/1 01 1 11012		,	Plate DOL=1	.15); Pg=20.0 ps	sf; Pf=15.4	psf (Lum						
	Structural wood she	athing directly applied	tor	DOL=1.15 P	late DOL=1.15);	Is=1.0; Ro	ough Cat C;						
		cont and vorticals	101	Partially Exp	; Ce=1.0; Cs=1.	00; Ct=1.1	0						
BOT CHORD	Rigid ceiling directly	applied or 5-7-2 oc	4)	This truss ha	is been designed	d for greate	er of min root	f live					
BOT ONORD	bracing			load of 12.0	psf or 1.00 times	flat roof lo	oad of 15.4 p	sf on					
WEBS	1 Row at midpt	8-9 7-17		overhangs n	on-concurrent wi	ith other liv	/e loads.						
JOINTS	1 Brace at Jt(s): 16	00,111	5)	Truss to be f	ully sheathed fro	m one fac	e or securely	/					
001110	17			braced agair	nst lateral mover	nent (i.e. d	iagonal web)).					
REACTIONS	(size) 9-0-3-8	14-0-3-8	6)	Gable studs	spaced at 2-0-0	oc.							
READIIONO	(320) 3=0 0 0, Max Horiz 14=526 (I		7)	This truss ha	is been designed	d for a 10.0) psf bottom						
	Max Holift 0 400 (I	C 10)		chord live loa	ad nonconcurren	t with any	other live loa	ads.					
	Max Opint $9=-409$ (L	C 22) 14_625 (I C 24)	、 8)	* This truss h	nas been designe	ed for a liv	e load of 20.	0psf					
		0 22), 14=035 (LC 24)	on the bottor	n chord in all are	as where	a rectangle						
FORCES	(Ib) - Maximum Con	npression/Maximum		3-06-00 tall t	by 2-00-00 wide v	will fit betw	veen the bott	om					
	2-14861/451 1-2-	-0/48 2-32513/112	1 0)	All boorings	iy other member	S, WIIII BU	DL = 10.0ps	1.					
	3-4-1059/357 4-5-	905/277 5-6240/5	1, 9) 52 10	All Dearings	int(c) 14 0 conci	idore para	J.Z.	alua					
	6-7=-188/80 7-8=-7	1/78 8-9=-114/80	2, 10		TPI 1 angle to ar	ain formul	Building	aiue					
BOT CHORD	13-14=-872/533 12	-13=-1103/1682		designer sho	uld verify capaci	ity of beari	na surface					2000	ADD.
Ber energy	11-12=-711/1205 1	0-11=-710/1202	11) Provide mec	hanical connecti	on (hy oth	ers) of truss	to				POF I	Also
	9-10=-684/1161	o		hearing plate	canable of with	standing 4	09 lb unlift a	t ioint			1	7.50	
WEBS	2-13=-705/1813. 3-1	13=-934/1507.		9		stantaing 4		, joint			A	NY and	New
	3-15=-1197/852, 12	-15=-1097/777.	12) This truss is	designed in acco	ordance w	ith the 2018				B	SCOT	IM. YON
	5-12=-971/1576, 5-1	16=-1429/850,	.2	International	Residential Cod	e sections	R502.11.1 a	and			И	/ SEVI	ER \ Y
	16-17=-1468/874, 9	-17=-1585/941,		R802.10.2 a	nd referenced sta	andard AN	ISI/TPI 1.			1		1 10 0	
	4-15=-123/163, 6-16	6=-16/55, 11-16=0/64,	, IC	AD CASE(S)	Standard						N	1 #5	XALAN
	7-17=-134/141, 10-1	17=-14/62			Clandara					_	D	nu la	
NOTES										_	127	J NUM	BER EA
1) Wind AS	CE 7-16: Vult=115mph	(3-second dust)									N	OX PE-2001	018807

 Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed; end vertical left exposed; Lumber DOL=1.60 plate grip DOL=1.60

February 8,2024

ESSIONAL E

Job	Truss	Truss Type	Qty	Ply	Lot 17 TCR	
230872	L2	Monopitch	6	1	Job Reference (optional)	163476814

Run: 8.73 S Jan 4 2024 Print: 8.730 S Jan 4 2024 MiTek Industries, Inc. Tue Feb 06 14:22:46 ID:xY5XDhHaVSTRh7hU_DEs7Vy6jdl-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

Scale = 1:76.9

Plate Offsets (X, Y): [2:0-2-8,Edge], [6:0-2-7,Edge], [9:0-1-7,Edge]

				-									
Loading	(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15		тс	0.52	Vert(LL)	-0.14	8-9	>999	360	MT20	197/144
Snow (Pf/Pg)) 15.4/20.0	Lumber DOL	1.15		BC	0.43	Vert(CT)	-0.25	8-9	>605	240		
TCDL	10.0	Rep Stress Incr	YES		WB	0.89	Horz(CT)	0.47	6	n/a	n/a		
BCLL	10.0*	Code	IRC20	18/TPI2014	Matrix-S		Wind(LL)	0.21	8	>713	240		
BCDL	10.0						· · ·					Weight: 79 lb	FT = 10%
LUMBER			4) This truss ha	as been designed	d for a 10.0) psf bottom						
TOP CHORE	2x4 SPF No.2			chord live lo	ad nonconcurren	t with any	other live loa	ads.					
BOT CHORE	2x4 SPF No.2		5) * This truss	has been designe	ed for a liv	e load of 20.	0psf					
WEBS	2x3 SPF No.2 *Exce	pt* 5-6,6-4:2x4 SPF	No.2	on the botto	m chord in all are	eas where	a rectangle						
RRACING				chord and a	ny other member	s, with BC	DL = 10.0ps	f.					
TOP CHORE) Structural wood she	athing directly applie	ed or 6) All bearings	are assumed to I	be SPF No							
	3-1-13 oc purlins, et	xcept end verticals.	7) Bearing at jo	pint(s) 9, 6 consid	lers paralle	el to grain va	lue					
BOT CHORE	Rigid ceiling directly	applied or 5-7-9 oc		using ANSI/	I PI 1 angle to gra	ain formula ity of beari	a. Building						
WEBS	bracing. 1 Row at midot	5-6 4-6	8) Provide med	hanical connecti	on (by oth	ers) of truss	to					
REACTIONS		00,40		bearing plate	e capable of with	standing 4	09 lb uplift a	t joint					
REACTIONS	Max Horiz 9-526 (10)=0-3-0 ~ 10)		6.									
	Max 1 Inlift 6-409 (LC	C 10)	g) This truss is	designed in acco	ordance w	th the 2018						
	Max Grav 6=726 (LC	C 10) C 22), 9=635 (LC 24	-)	Internationa	Residential Cod	le sections	R502.11.1 a	and					
FORCES	(lb) - Maximum Com	pression/Maximum		R802.10.2 a	nd referenced sta	andard AN	ISI/TPI 1.						
	Tension		L	UAD CASE(S)	Standard								
TOP CHORE	2-9=-866/456, 1-2=0	/48, 2-3=-2494/110	2,										
	3-4=-999/305, 4-5=-	199/126, 5-6=-185/1	162										
BOT CHORE	0 8-9=-879/540, 7-8=-	1086/1667,											
	6-7=-745/1275	0.40/4.400											
WEBS	2-8=-6/9/1/8/, 3-8=	-946/1492, 061/1706										an	ADD
	4-6=-1555/942	-901/1700,										OF I	MISC
NOTES											6	TE	W Oce
1) Wind: AS	SCE 7-16; Vult=115mph	(3-second gust)									H	SCOT	TM YEN
Vasd=91	mph; TCDL=6.0psf; BC	DL=6.0psf; h=25ft; (Cat.								B	SEV	
II; Exp C	; Enclosed; MWFRS (en	velope) exterior zor	ne;								8 +		
cantileve	r left and right exposed	; end vertical left									80		0 24
exposed	; Lumber DOL=1.60 plat	te grip DOL=1.60	4 45								A	hatts	Service >
2) TOLL: A	SCE 7-16; PI=25.0 pSI (1	Pf=15 4 pcf (Lum	1.15							-	N	NUM	DER A
DOI = 1.1	5 Plate DOI =1 15); Fg=20.0 psi; F	1 0: Rough Cat C:									N	ON PE-2001	018807
Partially	Exp.: Ce=1.0: Cs=1.00:	Ct=1.10									N.	The last	188
3) This trus	s has been designed for	greater of min roof	live									SSIC	ENUR
load of 1	2.0 psf or 1.00 times flat	roof load of 15.4 ps	sf on									WNA	LEY
overhang	gs non-concurrent with c	other live loads.										1000	555

February 8,2024

rg) Mittek-US.com

Job	Truss	Truss Type	Qty	Ply	Lot 17 TCR	
230872	L3	Monopitch	6	1	Job Reference (optional)	163476815

7-2-0 1-7-8

12 12 4x8 🅢

3x10 🖋 3

5x8≈

7-3-4

1-10-0

12∟ 12

12-5-0

5-1-12

2 A 7 6 6x6 🚅

12-8-8

5-6-8

5-6-8

5-6-8

Wheeler Lumber, Waverly, KS - 66871,

Run: 8,73 S Jan 4 2024 Print: 8,730 S Jan 4 2024 MiTek Industries, Inc. Tue Feb 06 14:22:46 ID:qg_Bv6MPYohpso?biPKkEGy6jcM-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

-

3х4 **н** 4

5

6x6💊

12-8-8 || 0-3-8

Page: 1

14-0-8 5-1-12

Scale = 1:81.3

14-0-8

1-4-0

6x6=

3x6 II

5-5-4

5-1-12

8

Plate Offsets ((X, Y): [1:Edge,0-2-7],	[5:0-2-7,Edge], [8:0	-1-7,Edge]										
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 25.0 15.4/20.0 10.0 10.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC201	8/TPI2014	CSI TC BC WB Matrix-S	0.74 0.43 0.99	DEFL Vert(LL) Vert(CT) Horz(CT) Wind(LL)	in -0.14 -0.25 0.48 0.21	(loc) 7 7-8 5 7	l/defl >999 >593 n/a >698	L/d 360 240 n/a 240	PLATES MT20 Weight: 78 lb	GRIP 197/144 FT = 10%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD WEBS REACTIONS	2x4 SPF No.2 2x4 SPF No.2 2x3 SPF No.2 *Exce Structural wood shea 2-2-0 oc purlins, exc Rigid ceiling directly bracing. 1 Row at midpt (size) 5=0-3-8, 8 Max Horiz 8=491 (LC Max Uplift 5=-407 (LL Max Grav 5=728 (LC	pt* 4-5,5-3:2x4 SPF athing directly applie cept end verticals. applied or 5-7-5 oc 4-5, 3-5 3=0-3-8 2 10) C 10) 2 21). 8=601 (LC 23	4) No.2 5) 6) ed or 7) 8)	* This truss h on the bottor 3-06-00 tall h chord and ar All bearings i Bearing at jo using ANSI/7 designer sho Provide mec bearing plate 5. This truss is International R802.10.2 ar DAD CASE(S)	has been designe m chord in all area by 2-00-00 wide w by other members are assumed to b int(s) 8, 5 conside (FPI 1 angle to gra vuld verify capacit hanical connectic e capable of withs designed in acco Residential Code nd referenced sta Standard	d for a liv as where vill fit betw ill fit betw s, with BC e SPF Ne ers parall- in formula y of bear on (by oth tanding 4 rdance w e sections indard AN	e load of 20. a rectangle veen the bott CDL = 10.0ps 5.2. el to grain va a. Building ing surface. ers) of truss 1 07 lb uplift ar ith the 2018 s R502.11.1 a ISI/TPI 1.	Opsf om f. lue to t joint					
FORCES	(lb) - Maximum Com	pression/Maximum	/										
TOP CHORD	1-8=-762/384, 1-2=-2	2523/1102,	400										
BOT CHORD	2-3=-1014/309, 3-4= 7-8=-807/485, 6-7=-1	-199/127, 4-5=-185/ 1093/1695,	162										
WEBS	5-6=-741/1279 1-7=-751/1873, 2-7= 2-6=-1132/773, 3-6= 3-5=-1560/937	938/1505, 966/1730,										GER OF I	MISS
NOTES											6	7.21	N.V.
 Wind: ASC Vasd=91n II; Exp C; cantilever exposed; TCLL: AS Plate DOL DOL =1 15 	CE 7-16; Vult=115mph nph; TCDL=6.0psf; BCI Enclosed; MWFRS (en left and right exposed Lumber DOL=1.60 plat CE 7-16; Pr=25.0 psf (r =1.15); Pg=20.0 psf; P 2 Plate DOI=1.15 ¹ ls=1	(3-second gust) DL=6.0psf; h=25ft; C ivelope) exterior zor ; end vertical left te grip DOL=1.60 roof LL: Lum DOL=1 2f=15.4 psf (Lum 1 0: Rough Cat C:	Cat. ne; I.15							e		SCOT SEVI	F M. ER DI8807
Partially E 3) This truss chord live	ixp.; Ce=1.0; Cs=1.00; has been designed for load nonconcurrent with	Ct=1.10 a 10.0 psf bottom th any other live load	ds.								Q	FRSSIONA	L ENGINE

16023 Swingley Ridge Rd. Chesterfield, MO 63017 314.434.1200 / MiTek-US.com

Job	Truss	Truss Type	Qty	Ply	Lot 17 TCR	
230872	LAY1	Lay-In Gable	3	1	Job Reference (optional)	163476816

Run: 8.73 S Jan 4 2024 Print: 8.730 S Jan 4 2024 MiTek Industries, Inc. Tue Feb 06 14:22:46 ID:xY5XDhHaVSTRh7hU_DEs7Vy6jdl-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC?f

Scale = 1:34.4

Loading	(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15		TC	0.06	Vert(LL)	n/a	-	n/a	999	MT20	197/144
Snow (Pf/Pg)	15.4/20.0	Lumber DOL	1.15		BC	0.03	Vert(TL)	n/a	-	n/a	999		
TCDL	10.0	Rep Stress Incr	YES		WB	0.03	Horiz(TL)	0.00	5	n/a	n/a		
BCLL	10.0*	Code	IRC201	8/TPI2014	Matrix-P								
BCDL	10.0											Weight: 29 lb	FT = 10%
LUMBER TOP CHORD BOT CHORD OTHERS BRACING TOP CHORD BOT CHORD	2x4 SPF No.2 2x4 SPF No.2 2x4 SPF No.2 Structural wood shea 6-0-0 oc purlins. Rigid ceiling directly	athing directly applie applied or 10-0-0 oc	4 5 ed or 6 7	TCLL: ASCE Plate DOL= DOL=1.15 F Partially Exp Gable requil Gable studs This truss ha chord live lo	E 7-16; Pr=25. 1.15); Pg=20.0 Plate DOL=1.1! 0.; Ce=1.0; Cs= res continuous spaced at 2-0 as been design ad nonconcurr has been design	0 psf (roof LL 0 psf; Pf=15.4 5); Is=1.0; Rc =1.00; Ct=1.1 bottom chor -0 oc. hed for a 10.0 rent with any gned for a liv	L: Lum DOL= 4 psf (Lum bugh Cat C; 10 rd bearing. 0 psf bottom other live loa re load of 20	1.15 ads. Opsf					
REACTIONS	(size) 1=7-9-8, 5 8=7-9-8 Max Horiz 1=108 (LC Max Uplift 1=-27 (LC (LC 11), 8 Max Grav 1=108 (LC 6=258 (LC 8=259 (LC	5=7-9-8, 6=7-9-8, 7= 5 9) 5 6), 5=-10 (LC 7), 6= 5 -154 (LC 10) 2 23), 5=100 (LC 24) 2 22), 7=152 (LC 24) 2 21)	7-9-8, =-154 9),),	on the botto 3-06-00 tall chord and a All bearings D) Provide med bearing plate 1, 10 lb uplif uplift at joint	m chord in all a by 2-00-00 wic ny other membrane assumed chanical conne e capable of w t at joint 5, 154 6.	areas where le will fit betw bers, with BC to be SPF No ection (by oth ithstanding 2 4 lb uplift at jo	a rectangle veen the bott DL = 10.0ps o.2 . ers) of truss t point 8 and 15	om f. to joint 4 lb					
FORCES	(lb) - Maximum Com Tension	pression/Maximum	1	 I his truss is International 	designed in a I Residential C	ccordance w ode sections	ith the 2018 R502.11.1 a	and					
TOP CHORD	1-2=-121/92, 2-3=-10 4-5=-106/69	01/79, 3-4=-92/64,	L	OAD CASE(S)	Standard	stanuard AN	NOI/IFI I.						
BOT CHORD	1-8=-45/94, 7-8=-45/ 5-6=-45/94	/94, 6-7=-45/94,											
WEBS	3-7=-82/0, 2-8=-189/	/178, 4-6=-189/178										and a	ADD
NOTES												8 OF	MICON
1) Unbalance this design	ed roof live loads have n.	been considered for									A	TATE	-0500

 Wind: AŠCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60

3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

Job	Truss	Truss Type	Qty	Ply	Lot 17 TCR	
230872	LAY2	Lay-In Gable	1	1	Job Reference (optional)	163476817

Run: 8,73 S Jan 4 2024 Print: 8,730 S Jan 4 2024 MiTek Industries, Inc. Tue Feb 06 14:22:47 ID:xY5XDhHaVSTRh7hU_DEs7Vy6jdl-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

Plate Offsets (X, Y): [13:Edge,0-2-8], [14:Edge,0-2-8]

Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCLL	(psf) 25.0 20.4/20.0 10.0 10.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018	3/TPI2014	CSI TC BC WB Matrix-S	0.42 0.10 0.13	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 14	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 116 lb	GRIP 197/144 FT = 10%	
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD WEBS REACTIONS	2x4 SPF No.2 2x4 SPF No.2 2x3 SPF No.2 2x3 SPF No.2 2x4 SPF No.2 2x4 SPF No.2 Structural wood she 6-0-0 oc purlins, ep 2-0-0 oc purlins, (6-1 Rigid ceiling directly bracing. 1 Row at midpt (size) 1=19-9-1 15=19-9- 20=19-9- 22=19-9- 24=19-9- 24=19-9- Max Horiz 1=355 (L Max Uplift 1=-101 (l 15=-70 (l 24=-86 (l Max Grav 1=201 (L 15=230 (18=244 (20=215 (22=220 (24=252 (l)	eathing directly applied coept end verticals, and)-0 max.): 12-13. / applied or 10-0-0 oc 9-18, 8-19, 10-16 1, 14=19-9-11, 11, 19=19-9-11, 11, 21=19-9-11, 11, 21=19-9-11, 11, 21=19-9-11, 11, 21=19-9-11, 11, 21=0-9-11, 11, 21=0-9-11, 12, 21=0-9-1	TC BC lor d WE NC 1) 2)), 3) , 4) 2), 1), 5) (), 5) (), 6) ()	DT CHORD DT CHORD EBS Unbalanced this design. Wind: ASCE Vasd=31mpl II; Exp C; En cantilever lef right expose Truss desig only. For stu see Standar or consult qu TCLL: ASCE Plate DOL=1 DOL=1.15 P Partially Exp Provide ader All plates are	1-2=-351/265, 2-3=- 4-5=-256/202, 5-6=- 8-9=-192/180, 9-10= 10-11=-146/123, 11 12-13=-98/74, 13-14 1-24=-98/75, 23-24= 21-22=-98/75, 20-21 18-19=-98/75, 16-18 14-15=-98/75 9-18=-187/150, 8-19 6-20=-145/101, 5-21 3-23=-143/96, 2-24= 10-16=-159/102, 11 roof live loads have 7-16; Vult=115mph n; TCDL=6.0p5; BC closed; MWFRS (er t and right exposed d; Lumber DOL=1.6 ned for wind loads in uds exposed to wind d Industry Gable En ealified building desi ; 7-16; Pr=25.0 psf (1.15); Pg=20.0 psf; IS is; Ce=1.0; Cs=1.00; uate drainage to pr a 2x4 MT20 unless of	308/23 235/19 =-174/1 -12=-1: =-70/6 =-98/75 =-98/75 =-98/7 =-161, =-148, =-167/1 =-148, =-167/1 =-148, =-167/1 (3-see 0 plate n the p 0 plate n the pull (0 plate n the pull (0 plate n the pull (1.0; Rc Ct=1.' event u	4, 3-4=-275/2 6, 6-8=-218/1 63, 24/93, 2 2, 22-23=-98/7 5, 19-20=-98/ 5, 15-16=-98/ 96, 98, 4-22=-145 08, 20/84 considered for word gust) 0psf; h=25ft; C ane of the true al to the face) be exterior zon retrical left and grip DOL=1.6 ane of the true al to the face) be per ANSI/TP .: Lum DOL=1 psf (Lum pugh Cat C; 0, Lu=50-0-0 water ponding se indicated.	10, 94, 75, 75, 75, 9/99, - - - - - - - - - - - - - - - - - -	 10) * Theorem of the second second	is truss he botto 5-00 tall rd and a evenings vide mec- ring plat 101 lb up t at joint 15. truss is rnationa 2.10.2 a phical pu- he orient om chor : ASE(S)	has be m choo by 2-0 ny othi- are as chanic: e capap plift at jc 24, 84 desigg I Resic Ind refi- urlin re ation c d. Star	een designed for rd in all areas wi 0-00 wide will fit er members, wit ssumed to be SF al connection (by able of withstand joint 1, 107 lb up 8 lb uplift at joint int 22, 71 lb upl 4 lb uplift at joint int 22, 71 lb upl 4 lb uplift at joint ned in accordan dential Code sec erenced standar presentation do of the purlin alon indard	a live load of 20.0 here a rectangle between the botto h BCDL = 10.0psf. F No.2. y others) of truss to ing 9 lb uplift at joint 18, 71 l 20, 74 lb uplift at j ift at joint 23, 86 lb 16 and 70 lb uplift tions R502.11.1 and d ANSI/TPI 1. es not depict the s g the top and/or MISSOUTH T M. IER	Dpsf om ont lb coint t at nd .ize
FORCES	(lb) - Maximum Cor Tension	npression/Maximum	7) 8) 9)	Gable requir Gable studs This truss ha chord live loa	es continuous botto spaced at 2-0-0 oc. is been designed fo ad nonconcurrent wi	PE-2001018807								

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

16023 Swingley Ridge Rd. Chesterfield, MO 63017 314.434.1200 / MiTek-US.com

February 8,2024

Job	Truss	Truss Type	Qty	Ply	Lot 17 TCR	
230872	LAY3	Lay-In Gable	1	1	Job Reference (optional)	163476818

Run: 8.73 S Jan 4 2024 Print: 8.730 S Jan 4 2024 MiTek Industries, Inc. Tue Feb 06 14:22:47 ID:PlfvR1ICGmbIIHGhYwl5gjy6jdk-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:67.3

Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL	(psf) 25.0 15.4/20.0 10.0 10.0*	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018	/TPI2014	CSI TC BC WB Matrix-S	0.40 0.29 0.16	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 10	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20	GRIP 197/144	
BCDL	10.0					-						weight: 108 lb	FT = 10%	
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD	2x4 SPF No.2 2x4 SPF No.2 2x4 SPF 2400F 2. 2x4 SPF No.2 Structural wood sh 6-0-0 oc purlins, e	DE eathing directly applie xcept end verticals.	WE NO 1) ed or	BS 2 7 TES Wind: ASCE Vasd=91mph II; Exp C; End cantilever left	2-17=-228/147, 3 I-15=-155/102, 5 7-12=-136/117, 8 7-16; Vult=115m h; TCDL=6.0psf; closed; MWFRS t and right expos	3-16=-120/ 5-14=-146/ 3-11=-204/ nph (3-sec BCDL=6.0 (envelope sed ; end v	82, 98, 6-13=-15 130 ond gust) 0psf; h=25ft; (•) exterior zor ertical left an	0/96, Cat. ne; d						
BOT CHORD	Rigid ceiling direct	ly applied or 10-0-0 or	b	right exposed	th exposed; Lumber DOL=1.60 plate grip DOL=1.60									
WERE	bracing.	0 10 7 10 9 11	2)	Truss design	ned for wind load	ds in the pl	ane of the tru	ISS \						
		9-10, 7-12, 8-11		see Standard	ndard Industry Gable End Details as applicable.									
REACTIONS	(size) 1=17-10 11=17-1 13=17-1 15=17-1 17=17-1 Max Horiz 1=488 (Max Uplift 1=-90 (I 11=-97 13=-80 15=-78 17=-115	I-11, 10=17-10-11, 0-11, 12=17-10-11, 0-11, 14=17-10-11, 0-11, 16=17-10-11, 0-11 LC 7) CC 8), 10=-113 (LC 9), (LC 10), 10=-113 (LC 9), (LC 10), 14=-72 (LC 1) (LC 10), 16=-59 (LC 1) (LC 10), 16=-59 (LC 1)	3) 4) 0), 5) 0), 6) 0), 7)	or consult qu TCLL: ASCE Plate DOL=1 DOL=1.15 Pl Partially Exp. All plates are Gable require Gable studs s This truss ha chord live loa	 sult qualified building designer as per ANSI/TPI 1. ASCE 7-16; Pr=25.0 psf (roof LL: Lum DOL=1.15) IOL=1.15); Pg=20.0 psf; Pf=15.4 psf (Lum									
	Max Grav 1=268 (11=247 13=218 15=230 17=349	LC 22), 10=136 (LC 2 (LC 21), 12=215 (LC 2 (LC 21), 14=216 (LC 2 (LC 21), 16=170 (LC 2 (LC 21), 16=170 (LC 2)	* This truss h on the botton 3-06-00 tall b chord and an All bearings a	Iss has been designed for a live load of 20.0psf ottom chord in all areas where a rectangle tall by 2-00-00 wide will fit between the bottom id any other members, with BCDL = 10.0psf. ngs are assumed to be SPF No.2.										
FORCES	(lb) - Maximum Co	mpression/Maximum	10)	10) Provide mechanical connection (by others) of truss to										1
TOP CHORD	Tension 1-2=-452/296, 2-3: 4-5=-315/201, 5-6: 8-9=-174/122, 9-1	=-392/244, 3-4=-356/2 =-295/186, 6-8=-270/1)=-73/36	228, 87,	10, 90 lb uplift at joint 1, 119 lb uplift at joint 17, 59 lb uplift at joint 10, 78 lb uplift at joint 15, 72 lb uplift at joint 14, 80 lb uplift at joint 13, 63 lb uplift at joint 12 and 97 lb uplift at joint 14									Some	5
BOT CHORD	1-17=-175/133, 16 15-16=-175/133, 1 13-14=-175/133, 1 11-12=-175/133, 1	-17=-175/133, 4-15=-175/133, 2-13=-175/133, 0-11=-175/133	This truss is o International R802.10.2 ar AD CASE(S)	s is designed in accordance with the 2018 onal Residential Code sections R502.11.1 and 0.2 and referenced standard ANSI/TPI 1. E(S) Standard										

amo February 8,2024

16023 Swingley Ridge Rd. Chesterfield, MO 63017 314.434.1200 / MiTek-US.com
Job	Truss	Truss Type	Qty	Ply	Lot 17 TCR	
230872	LAY4	Lay-In Gable	1	1	Job Reference (optional)	163476819

Run: 8.73 S Jan 4 2024 Print: 8.730 S Jan 4 2024 MiTek Industries, Inc. Tue Feb 06 14:22:47 ID:PlfvR1ICGmbIIHGhYwl5gjy6jdk-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:71

Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 25.0 15.4/20.0 10.0 10.0 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr * Code	2-0-0 1.15 1.15 YES IRC201	8/TPI2014	CSI TC BC WB Matrix-S	0.05 0.02 0.15	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 8	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 100 lb	GRIP 197/144 FT = 10%	
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD WEBS REACTIONS	2x4 SPF 2100F 1 2x4 SPF 2400F 2 2x4 SPF 2100F 1 No.2, 13-1:2x3 S 2x4 SPF No.2 Structural wood s 6-0-0 oc purlins, Rigid ceiling dire- bracing. 1 Row at midpt (size) 8=12-0 11=12 14=12 Max Horiz 14=33 Max Uplift 8=-25 10=-66 12=-7 14=-15 Max Grav 8=64 (10=19 12=20 14=70	.8E .0E .8E *Except* 7-8:2x4 PF No.2 heathing directly applie except end verticals. trly applied or 10-0-0 c 7-8, 6-9, 5-10, 4-17 -6, 9=12-0-6, 10=12-0 0-6, 12=12-0-6, 13=12 0-6 9 (LC 10), 9=-66 (LC 10 (LC 10), 9=-66 (LC 10 (LC 10), 11=-65 (LC (LC 10), 13=-601 (LC 8 (LC 8) 	1) SPF 2) ied or 2) 2) 2) 2) 3) 2) 3) 3) 3) 3) 3) 3) 3) 3) 3) 3) 3) 3) 3)	Wind: ASCE Vasd=91mpł II; Exp C; En cantilever lef plate grip DC Truss design only. For stu see Standarc or consult qu TCLL: ASCE Plate DOL=1 DOL=1.15 Pl Partially Exp All plates are Gable requir Truss to be f braced again Gable studs This truss ha chord live loa * This truss f on the bottor 3-06-00 tall t chord and ar	7-16; Vult=115mp n; TCDL=6.0psf; B0 closed; MWFRS (et t and right exposed bL=1.60 hed for wind loads ids exposed to wind d Industry Gable Er alified building des 7-16; Pr=25.0 psf; 15); Pg=20.0 psf; late DOL=1.15); Is: ; Ce=1.0; Cs=1.00 e 2x4 MT20 unless es continuous bott ully sheathed from ist lateral movement spaced at 2-0-0 oc is been designed for ad nonconcurrent w has been designed with the control in all areas by 2-00-00 wide will by other members, are assumed to be	h (3-sec CDL=6.1 nivelope d; Lumb in the p d (norm hd Deta iigner as (roof LL Pf=15.4 =1.0; Rc ; Ct=1.2 otherwi pon chor one fac oth (i.e. d c or a 10.1 yith any for a liv ; where l fit betw with BC SPF NG	cond gust) Dpsf; h=25ft; a) exterior zo ber DOL=1.60 lane of the tri al to the face ils as applicas s per ANSI/T s; per ANSI/T i: Lum DOL= bpsf (Lum bugh Cat C; 10 se indicated. d bearing. te or securely liagonal web) D psf bottom other live loa te load of 20.1 a rectangle veen the bott CDL = 10.0ps b.2.	Cat. ne; 0 uss e), ble, PI 1. 1.15 / ads. 0psf om f.					J. M.	
FORCES	(lb) - Maximum C Tension 1-14=-683/220, 1	ompression/Maximum -2=-380/151, 2-3=-289	¹ 1 ⁷ 9/111,) Provide med bearing plate	hanical connection capable of withsta ft at joint 8, 601 lb	(by oth anding 1	ers) of truss 98 lb uplift at	to t joint			Å	ATE OF M	AISSOL	
	3-4=-221/90, 4-5 6-7=-42/20, 7-8=	=-157/67, 5-6=-94/56, 44/30		uplift at joint 10 and 65 lb	12, 66 lb uplift at jo uplift at joint 11.	oint 9, 69	9 lb uplift at jo	oint			A	SCOTI	ER	
BOT CHORD	13-14=-338/124, 10-11=0/0, 9-10=	12-13=0/0, 11-12=0/0 0/0, 8-9=0/0	, 12	 This truss is International 	designed in accord Residential Code	lance w sections	ith the 2018 8 R502.11.1 a	and			Ø	TR	8 12	_
WEBS	2-13=-193/128, 3 5-10=-135/90, 4-	-12=-139/94, 6-9=-139 11=-131/87, 1-13=-221	^{9/92,} ^{1/604} L0	R802.10.2 a CAD CASE(S)	nd referenced stan Standard	dard AN	ISI/TPI 1.			-		NUM	JER EN)
NOTES											XX 1	ON PE-20010	J18807 / SP	

February 8,2024

Job	Truss	Truss Type	Qty	Ply	Lot 17 TCR	
230872	LAY5	Lay-In Gable	1	1	Job Reference (optional)	163476820

Run: 8.73 S Jan 4 2024 Print: 8.730 S Jan 4 2024 MiTek Industries, Inc. Tue Feb 06 14:22:48 ID:PlfvR1ICGmbIIHGhYwl5gjy6jdk-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

Scale = 1:73.4 Plate Offsets (X, Y): [7:0-1-9,Edge]

							_							
Loading		(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)		25.0	Plate Grip DOL	1.15			0.06	Vert(LL)	n/a	-	n/a	999	M120	197/144
Snow (Pt/Pg)	20.4	4/20.0	Lumber DOL	1.15		BC	0.03	Vert(IL)	n/a	-	n/a	999		
TCDL		10.0	Rep Stress Incr	TES		WB	0.03	Horiz(TL)	-0.01	9	n/a	n/a		
BCDL		10.0 ^ 10.0	Code	IRC2	018/TPI2014	Matrix-S							Weight: 58 lb	FT = 10%
				-	WEBS	2-16=-147/136	3-14=-172	/164		13) This	s truss is	desia	ned in accordanc	e with the 2018
TOP CHORD	2x4 SPF No	12				4-13=-166/157. 5	5-12=-171	/167.		Inte	rnationa	l Resid	dential Code sect	ions R502.11.1 and
BOT CHORD	2x4 SPF No	0.2			(6-11=-158/137, 8	3-10=-148	/48		R80	2.10.2 a	and ref	erenced standard	ANSI/TPI 1.
OTHERS	2x4 SPF No	b.2			NOTES					14) Gra	phical p	urlin re	presentation doe	s not depict the size
BRACING					1) Unbalanced	roof live loads ha	ave been	considered fo	r	or th	ne orient	ation of	of the purlin along	the top and/or
TOP CHORD	Structural w	vood she	athing directly applied	d or	this design.					bott	om chor	d.		
	6-0-0 oc pu	rlins, exc	ept	u 0.	2) Wind: ASCE	7-16; Vult=115r	nph (3-seo	cond gust)		LOAD	CASE(S)	Sta	ndard	
	2-0-0 oc pu	rlins (6-0	-0 max.): 7-9.		Vasd=91mpl	n; TCDL=6.0psf;	BCDL=6.	0psf; h=25ft; (Cat.					
BOT CHORD	Rigid ceiling	g directly	applied or 10-0-0 oc		II; Exp C; En	closed; MWFRS	(envelope	e) exterior zor	ne;					
	bracing, E	xcept:			cantilever lef	t and right expos	sed ; end v	ertical left an	d					
	6-0-0 oc bra	acing: 9-1	0.		right expose	d; Lumber DOL=	1.60 plate	grip DOL=1.	60					
REACTIONS	(size) 1	=13-5-13	8, 9=13-5-13, 10=13-	5-13,	 I russ desig 	ned for wind load	ds in the p	lane of the tru	ISS					
	1	1=13-5-1	3, 12=13-5-13,		only. For stu	ids exposed to v	und (norm	al to the face), 					
	1	3=13-5-1	3, 14=13-5-13,		see Standard	a industry Gable	End Dela	ns as applicat						
	1	5=13-5-1	3, 16=13-5-13			7-16. Pr-25.0 r	esigner a		1 15					
	Max Horiz 1	=488 (LC	, 10) 0 0) 0 100 (LO 10)		Plate DOI =1	15) Pa=20.0 p	sf: Pf=204	1 nsf (Lum	1.10					
		=-134 (L	C 8), 9=-120 (LC 10)	,	DOL=1.15 P	late DOL=1.15):	ls=1.0: R	bugh Cat C:						
	1	0=-24 (L) 2=-1/3 (C 0), TI=-TI3 (LC TC), 10)	Partially Exp	.; Ce=1.0; Cs=1.	00; Ct=1.	10, Lu=50-0-0)					
	1	4 = -154	LC 10), 15=-40 (LC 8	3)	5) Provide adeo	quate drainage to	prevent	water ponding	j .					
	1	6=-122 (LC 10), 102 10 (LC C	,,	6) All plates are	2x4 MT20 unle	ss otherwi	se indicated.						
	Max Grav 1	=409 (LC	2 10), 9=95 (LC 21).		7) Gable studs	spaced at 2-0-0	oc.							
	1	0=218 (L	C 23), 11=226 (LC 2	21),	8) This truss ha	is been designed	d for a 10.	0 psf bottom					000	TO
	1	2=241 (L	.C 21), 13=239 (LC 2	21),	chord live loa	ad nonconcurren	t with any	other live loa	ds.				OF M	Alson
	1	4=232 (L	C 21), 15=129 (LC 1	0),	This truss I	has been design	ed for a liv	e load of 20.0)psf				A SE	-0.0
	1	6=203 (L	.C 21)		on the bottor	n chord in all are	eas where	a rectangle				a	SI	New
FORCES	(lb) - Maxim	num Com	pression/Maximum		3-06-00 tall t	by 2-00-00 wide	will fit betw	veen the botto	om			H	SCOTT	M. YON
	Tension				10) All boorings	iy other member	S, WILL BU	DL = 10.0psi				BC	/ SEVI	ER \ Y
TOP CHORD	1-2=-556/21	19, 2-3=-4	444/177, 3-4=-303/12	23,	10) All Dealings	hanical connecti	on (by oth	J.Z.	•			0.4		1*1
	4-5=-169/79	9, 5-6=-6	4/41, 6-7=-81/108,		hearing plate	canable of with	standing 1	34 lb unlift at	ioint			8	1 Les	0 ~ 0
	7-8=-42/101	1, 8-9=-42	2/101		1, 120 lb upl	ft at joint 9, 40 lt	o uplift at i	oint 15, 122 lt)			1	hatting	Soon Martin
BOT CHORD	1-16=-101/4	42, 15-16 VZZ 42 4	=-101/42,		uplift at joint	16, 154 lb uplift	at joint 14	132 lb uplift	at			17	DE 2001	10007 YAY
	12-13-161	/70 11 1	4=-100/81, 2160/80		joint 13, 143	Ib uplift at joint 1	2, 113 lb	uplift at joint 1	1			N	PE-20010	1000/ 29
	10-11161	/81 0-10	160/00, 160/76		and 24 lb up	lift at joint 10.						Y	h Po	1. SA
	10 11 - 101	, 51, 510	- 100/10		12) Non Standar	d bearing condit	ion. Revie	ew required.				8	SIONA	LEN

February 8,2024

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

Job	Truss	Truss Type	Qty	Ply	Lot 17 TCR	
230872	LAY6	Lay-In Gable	2	1	Job Reference (optional)	163476821

Run: 8.73 S Jan 4 2024 Print: 8.730 S Jan 4 2024 MiTek Industries, Inc. Tue Feb 06 14:22:48 ID:PlfvR1ICGmbIIHGhYwl5gjy6jdk-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

Scale = 1:89.2 Plate Offsets (X, Y): [8:0-1-9,Edge]

Loading (ps) pspecing 2-0-0 CSI (n) (ps) (ps)<															
TCLL (rod) 25.0 Pitte Grip DOL 1.15 TC 0.10 Vert(LL) n/a 999 MT20 197/144 Now (PI/Pg) 20.4/20.0 Reg Stress Incr YES Well 0.03 Vert(LL) n/a n/a 999 MT20 197/144 BCL 10.0 Code IRC2018/TPI2014 Matrix-S Vert(LL) n/a n/a n/a 999 MT20 197/144 LUMBER 10.0 Code IRC2018/TPI2014 Matrix-S Vert(LL) n/a	Loading		(psf)	Spacing	2-0-0		csi		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
Snow (PI/Pg) 20.4/20.0 Lumber DOL 1.15 BC 0.03 Wer(TL) n/a - n/a 999 BCLL 10.0 Rep Stress Incr YES Matrix-S Wer(TL) -0.01 10 n/a n/a BCLL 10.0 Image: Construction of the stress of the	TCLL (roof)		25.0	Plate Grip DOL	1.15		тс	0.10	Vert(LL)	n/a	-	n/a	999	MT20	197/144
TCDL 10.0 Rep Stress Incr YES WB 0.03 Horiz(TL) -0.01 10 n/a n/a BCDL 10.0 Code IRC2018/TP12014 Matrix-S Matrix-S Matrix-S Weight: 73 lb FT = 10% LUMBER TOP CHORD 2x4 SPF No.2 SPF No.2 Set No.2 SPF No.2 WEBS 9-11=-144/53, 7-12=-144/100, -2.18=-206/190 10 n/a n/a TOP CHORD 2x4 SPF No.2 WEBS 9-11=-144/56, 5-12.5(-15.16)/156, 5-13.5(-15.6)/156, 5-13.5(-15.6)/156, 5-13.5(-15.6)/156, 5-13.5(-15.6)/156, 5-13.5(-15.6)/156, 5-13.5(-15.6)/156, 5-13.5(-16.6)/15, 1-26.5(-13.1)/156, 1-25.1(-10.1)/156, 1-25.1(-10.1)/156, 1-25.1(-10.1)/156, 1-25.1(-10.1)/156, 1-25.1(-10.1)/157, 1-25.1(-10.1)/157, 1-25.1(-10.1)/157, 1-25.1(-10.1)/157, 1-25.1(-10.1)/157, 1-25.1(-10.1)/157, 1-25.1(-10.1)/157, 1-25.1(-10.1)/157, 1-25.1(-10.1)/157, 1-25.1(-10.1)/157, 1-25.1(-10.1)/157, 1-25.1(-10.1)/157, 1-25.1(-10.1)/157, 1-25.1(-10.1)/156, 1-25.1(-10.1)/156, 1-25.1(-10.1)/156, 1-25.1(-10.1)/156, 1-25.1(-10.1)/156, 1-25.1(-10.1)/156, 1-25.1(-10.1)/156, 1-25.1(-10.1)/156, 1-25.1(-10.1)/156, 1-25.1(-10.1)/156, 1-25.1(-10.1)/156, 1-25.1(-10.1)/156, 1-25.1(-10.1)/156, 1-25.1(-10.1)/156, 1-25.1(-10.1)/156, 1-25.1(-10.1)/156, 1-25.1(-10.1)/156, 1-25.1(-10.1)/156, 1-25.1(-10.1)/156, 1-25.1(-10.1)/166, 1-25.1(-2.10)/156, 1-26.100, 1-26.10	Snow (Pf/Pg)	20.4/	/20.0	Lumber DOL	1.15		BC	0.05	Vert(TL)	n/a	-	n/a	999		
BCLL 10.0° Code IRC2018/TPI2014 Matrix-S Weight: 73 ib FT = 10% BCDL 10.0° Code IRC2018/TPI2014 Matrix-S Weigh: 73 ib FT = 10% DOP CHORD 2x4 SPF No.2 Structural wood sheathing directly applied or TOP CHORD WEBS 9-11=-144/53, 7-12=-144/100, 6-14=-175/166, 5-175, 5-15=-151/146, 5-12=-151/146, 5-12=-152/146, 5-12=-152/146, 5-12=-152/146, 5-12=-152/146, 5-12=-152/146, 5-12=-152/146, 5-12=-152/146, 5-12=-152/146, 5-12=-152/146, 5-12=-152/146, 5-13, 10=16-5-13, 11=16-5-13, 10=16-5-13, 11=16, 11=-10, 11=-2, 11=-	TCDL		10.0	Rep Stress Incr	YES		WB	0.03	Horiz(TL)	-0.01	10	n/a	n/a		
BCDL 10.0 Weight 73 lb FT = 10% LUMBER TOP CHORD 2x4 SPF No.2 Structural wood sheathing directly applied or DTP CHORD 9:11=:144/53, 7:12=:141/400, 4:16:56, 4:16=:175/166, 3:17:15:146, 2:18=:206/190 12) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 15:01 buplit at joint 11, 75 lb uplit at joint 12, 152 buplit at joint 13, 101 buplit at joint 11, 75 lb uplit at joint 15, 125 lb uplit at joint 16, 125 lb uplit at joint 17, 130 lb uplit at joint 16, 125 lb uplit at joint 17, 130 lb uplit at joint 16, 125 lb uplit at joint 17, 130 lb uplit at joint 16, 125 lb uplit at joint 17, 130 lb uplit at joint 16, 125 lb uplit at joint 16, 125 lb uplit at joint 16, 125 lb uplit at joint 17, 130 lb uplit at joint 16, 130 lb uplit at joint 16, 125 lb uplit at joint 17, 130 lb uplit at joint 16, 130 lb uplit at joint 16, 125 lb uplit at joint 17, 130 lb uplit at joint 17, 130 lb uplit at joint 16, 125 lb uplit at joint 17, 130 lb uplit at joint 16, 125 lb uplit at joint 17, 130 lb uplit at joint 16, 125 lb uplit at joint 17, 130 lb uplit at joint 16, 125 lb uplit at joint 17, 130 lb uplit at joint 16, 125 lb uplit at joint 17, 130 lb uplit at joint 16, 125 lb uplit at joint 16, 125 lb uplit at joint 16, 125 lb uplit at joint 17, 130 lb uplit at joint 16, 125 lb uplit	BCLL		10.0*	Code	IRC2	018/TPI2014	Matrix-S								
LUMBER TOP CHORD SCT CHORD 2x4 SPF No.2 2x4 SPF No.2 WEBS 9-11=-144/53, 7-12=-144/100, 6-14=-174/176, 515=-165/156, 2-18=-206/190 12) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 150 bu glift at joint 10, 133 bu glift at joint 11, 75 bu 2-18=-206/190 BRACING OTHERS Structural wood sheathing directly applied or 6-0-0 oc purifins, except -0-0 oc purifins, except -0-0 oc bracing; 12-14, 10-11. NOTES BOT CHORD Reacting OT CHORD Rigit ceiling directly applied or 10-0-0 oc bracing; 12-14, 10-11. NOTES 10 Inbalanced roof live loads have been considered find season. 21) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 150 bu glift at joint 10, 133 bu glift at joint 12, 152 bu glift at joint 11, 75 bu 10, 153 bu glift at joint 11, 75 bu 10, 153 bu glift at joint 11, 75 bu 10, 153 bu glift at joint 12, 152 bu glift at joint 11, 75 bu 10, 155 bu glift at joint 12, 152 bu glift at joint 11, 75 bu 10, 155 bu glift at joint 12, 124 bu glift at joint 16, 125 bu glift at joint 17, 130 bu glift at joint 17, 130 bu glift at joint 14, 130 bu glift at joint 16, 125 bu glift	BCDL		10.0											Weight: 73 lb	FT = 10%
 2x4 SPF No.2 2x4 SPF No.2<	LUMBER TOP CHORD BOT CHORD	2x4 SPF No. 2x4 SPF No	.2			WEBS	9-11=-144/53, 7-1 6-14=-174/176, 5- 4-16=-175/166, 3-	2=-144/1 ·15=-165 ·17=-151	100, /155, /146,		12) Pro bea 10,	vide me tring plat 133 lb ι	chanic te capa iplift at	al connection (b able of withstand joint 1, 30 lb up	y others) of truss to ling 150 lb uplift at joint lift at joint 11, 75 lb
 BRACING BRACING BRACING BACING BACING BACING BACING BACING BACING BACING COP CHORD Structural wood sheathing directly applied or 2-0-0 oc puritins (6-00 max.): 8-10. BOT CHORD D Rigid ceiling directly applied or 10-0-0 oc bracing. Except: 6-0-0 oc bracing: 12-14, 10-11. REACTIONS (size) 1=16-5-13, 12=16-5-13, 11=16-5-13, 12=16-5-13, 11=16-5-13, 12=16-5-13, 11=6-15-13, 12=16-5-13, 11=6-15-13, 12=16-5-13, 11=6-15-13, 12=16-5-13, 11=6-15-13, 12=16-5-13, 11=6-15-13, 12=16-5-13, 11=6-15-13, 12=16-5-13, 11=6-15-13, 12=16-5-13, 11=-15-15, 12=16-5-13, 11=-15-15, 12=16-5-13, 11=-15-15, 12=16-5-13, 11=-15-15, 12=16-5-13, 11=-15-15, 12=16-5-13, 11=-15-15, 12=16-5-13, 11=-15-15, 12=16-5-13, 11=-15-16, 12=15, 12=10, 12=15, 12=10, 12=10, 12=15, 12=10, 12=10, 12=15, 12=10, 12=10, 12=15, 12=10, 12=1	OTHERS	2x4 SPF No	2			:	2-18=-206/190		,		upli	ft at join	t 12, 1	52 lb uplift at joir	nt 14, 130 lb uplift at
 TOP CHORD Structural wood sheathing directly applied of 10-00 cc purins, except 20-00 cc purins, except 20-00 cc purins, except 20-00 cc purins, except 20-00 cc purins, except 40-00 cc purins, except 41-16-5-13, 10=16-5-13, 11=16-5-13, 11=16-5-13, 11=16-5-13, 11=16-5-13, 12=16-5-13, 11=16-5-13, 12=16-5-13, 11=16-5-13, 12=16-5-13, 11=16-5-13, 12=16-5-13, 11=16-5-13, 12=16-5-13, 11=16-5-13, 12=16-5-13, 11=16-5-13, 12=16-5-13, 11=16-5-13, 12=16-5-13, 11=16-5-13, 12=16-5-13, 11=16-5-13, 12=16-5-13, 11=16-5-13, 12=16-5-13, 11=16-5-13, 12=16-5-13, 11=16-5-13, 12=16-5-13, 11=16-5-13, 12=16-5-13, 11=16-5-13, 12=16-5-13, 11=16-5-13, 12=16-5-13, 11=16-5-13, 12=16-5-12, 12=16-5-12, 12=16-5-12, 12=16-5-13, 12=16-5-12, 12=16-5-13, 12=16-5-12, 12=16-5-12, 12=16-5-13, 12=16-5-13, 12=16-5-13, 12=16-5-12, 12=16-5-12, 12=16-5-12, 12=16-5-12, 12=16-5-13, 12=16-5-13, 12=16-5-12, 12=16-5-13, 12=16-5-12	BRACING	221 011 110.				NOTES					join	t 15, 14	2 lb up	lift at joint 16, 12	25 lb uplift at joint 17
 101 Of ICND Bill of ICND Bill of ICDL and IND Experting the total of ICDL and IND Experiments and IND INDUCED INSTITUTE of INSTITUTE and INDUCED INSTITUTE AND INSTITUTE AND INTO INSTITUTE AND INTO INSTITUTE AND INTO INSTITUTE AND INSTITUTE A		Structural we	ood shos	thing directly applied	d or	1) Unbalanced	roof live loads ha	ve heen	considered fo	nr	and	34 lb u	plift at	joint 18.	
 20-0 co purlins (60-0 max.): 8-10. BOT CHORD BOT CHORD Rigid ceiling directly applied or 10-0-0 co bracing. Except: 6-0-0 co bracing: 12-14,10-11. REACTIONS (size) 1=16-5-13, 12=16-5-13, 11=16-5-13, 12=16-5-13, 16=16-5-13, 15=16-5-13, 16=16-5-13, 15=16-5-13, 16=16-5-13, 15=16-5-13, 16=16-5-13, 15=16-5-13, 16=16-5-13, 15=16-5-13, 16=16-5-13, 12=16-5-13, 16=16-5-13, 15=16-5-13, 16=16-5-13, 12=16-5-13, 16=16-5-13, 12=16-5-13, 11=20 (LC 0), 11=20 (LC 10), 11=20 (LC 0), 11=20 (LC 10)	TOP CHORD	6-0-0 oc purl	lins exce	aning unecity applied	101	this design.		ve been		,,	13) Nor	n Standa	ard bea	aring condition.	Review required.
 BOT CHORD BOT CHORD Rigid ceiling directly applied or 10-0 oc bracing: 12-14,10-11. REACTIONS (size) 1=16-513, 10=16-513, 15=16-513, 11=16-513, 15=10, Call partially Exp. Ce-10, 15; Is=25, 0. Cell, 10, 12=-71, 15; Is=25, 0. Cell, 10, 12=4, 12, 20, 12=7, 12, 12, 12=10, 12=14, 12, 20, 12=27, 12=16,		2-0-0 oc purl	lins (6-0-	0 max) [.] 8-10		2) Wind: ASCE	7-16: Vult=115m	ph (3-sed	cond aust)		14) This	s truss is	s desig	ned in accordan	ce with the 2018
 bracing, Except: 6-0-0 cb tracing: 12-14,10-11. REACTIONS (size) 1=16-5-13, 12=16-5-13, 14=16-5-13, 16=10, 15], 15=1-0, Rough Cab Cab Cab Cab Cab Cab Cab Cab Cab Cab	BOT CHORD	Riaid ceilina	directly	applied or 10-0-0 oc		Vasd=91mpl	n; TCDL=6.0psf; E	BCDL=6.	0psf; h=25ft; (Cat.	Inte	rnationa	al Resi	dential Code sec	tions R502.11.1 and
 6-0-0 oc bracing: 12-14,10-11. REACTIONS (ize) 1=16-5-13, 10=16-5-13, 11=16-5-13, 14=16-5-13, 15=16-5-13, 16=15-12, 16=15-12, 16=15-12, 16=15-12, 16=15-12, 16=15-13, 16=16-15, 16=16-16-16-16-16=16-16-16-16-16-16-16-16-16-16-16-16-16-1		bracing, Ex	cept:			II; Exp C; En	closed; MWFRS	(envelope	e) exterior zor	ne;	R80)2.10.2 a	and ref	erenced standa	rd ANSI/TPI 1.
 REACTIONS (size) 1=16-5-13, 10=16-5-13, 11=16-5-13, 11=16-5-13, 11=16-5-13, 15=16-5-13, 16=16-5-13, 16=16-5-13, 16=16-5-13, 16=15-513, 16=15-513, 16=15-513, 16=15-513, 16=15-513, 16=15-513, 16=15-513, 16=15-513, 16=15-513, 16=15-513, 16=15-513, 16=15-513, 16=15-513, 16=15-513, 16=15-513, 16=152, 16=119/88. Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TP1 1. Truss Pas Dead Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TP1 1. Truss Pas Dead Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TP1 1. Truss Pas Dead Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TP1 1. Truss Pas Dead Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TP1 1. Truss Pas Dead Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TP1 1. Truss Pas Dead Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TP1 1. angle to grain formula. Building designer should verify capacity of bearing surface. 		6-0-0 oc brad	cing: 12-	14,10-11.		cantilever lef	t and right expose	ed;end	ertical left an	nd	15) Gra	phical p	urlin re	epresentation do	es not depict the size
 Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), 14=16-5-13, 17=16-5-13, 17=16-5-13, 18=16-5-16-16-1	REACTIONS	(size) 1=	=16-5-13	. 10=16-5-13.		right expose	d; Lumber DOL=1	.60 plate	grip DOL=1.	.60	or ti	he orien	tation	of the purlin alon	ig the top and/or
 14=16-5-13, 15=16-5-13, 16=16-5-13, 16=16-5-13, 16=16-5-13, 17=16-5-13, 16=16-5-13, 17=16-5-13, 16=16-5-13, 17=16-5-13, 16=16-5-13, 17=16-5-13, 16=16-5-13, 17=16-5-13, 16=16-5-13, 17=16-5-13, 16=16-5-13, 17=16-5-13, 16=16-5-13, 17=16-78-78, 16=16-5-13, 17=16-78-78, 16=16-78, 16=1		11	1=16-5-1	3, 12=16-5-13,		Truss desig	ned for wind loads	s in the p	lane of the tru	uss	bott	om cho	rd.		
 H8=16-5-13, 17=16-5-13, 18=16-5-5, 18=16-5-13, 18=16-5-5, 18=16-5-5, 18=16-		14	4=16-5-1	3, 15=16-5-13,		only. For stu	ids exposed to wi	nd (norm	al to the face	e),	LOAD	CASE(S) Sta	ndard	
18=16-5-13 or consult qualified building designer as per ANS/TPT 1. Max Horiz 1=625 (LC 10) 4) Max Uplift 1=-133 (LC 8), 10=-150 (LC 10), 11=-30 (LC 6), 12=-75 (LC 10), 14=-152 (LC 10), 15=-130 (LC 10), 16=-142 (LC 10), 17=-125 (LC 10), 18=-34 (LC 10), 17=-125 (LC 10), 18=-34 (LC 10), 10=94 (LC 21), 11=-214 (LC 23), 12=-214 (LC 21), 14=-244 (LC 21), 15=235 (LC 21), 16=244 (LC 21), 15=235 (LC 21), 16=245 (LC 21), 17=224 (LC 21), 18=244 (LC 21) 7) For Cess (b) - Maximum Compression/Maximum Tension FORCES (b) - Maximum Compression/Maximum Tension 1 1 2 2 2 4 5 TOP CHORD 1-2=-683/275, 2-4=-521/206, 6-7=-67/51, 7-8=-87/131, 8-9=-47/120, 9-10=-47/120 1 2 2 5 From Cess 10) All bearings are assumed to be SPF No.2. BOT CHORD 1-18=-128/58, 15-16=-1189/88, 15-16=-18		16	6=16-5-1	3, 17=16-5-13,		see Standar	d Industry Gable I	End Deta	ils as applica	ble,					
Max Horiz 1=625 (LC 10) 4) 1011: ASCE 7-16; Pf=22.0 psf (Fort L1: Lum DUC=1.15) Max Uplift 1=-133 (LC 8), 10=-150 (LC 10), 11=-30 (LC 6), 12=-75 (LC 10), 14=-152 (LC 10), 15=-130 (LC 10), 16=-142 (LC 10), 17=-125 (LC 10), 18=-34 (LC 10) 4) 1012: ASCE 7-16; Pf=22.0 psf (Fort L1: Lum DUC=1.15) Max Grav 1=493 (LC 10), 10=94 (LC 21), 11=214 (LC 23), 12=214 (LC 21), 16=244 (LC 21), 15=235 (LC 21), 16=244 (LC 21), 15=235 (LC 21), 18=244 (LC 21), 17=224 (LC 21), 18=244 (LC 21), 17=224 (LC 21), 18=244 (LC 21), 17=224 (LC 21), 18=244 (LC 21) 5) Privide adequate drainage to prevent water ponding. FORCES (b) - Maximum Compression/Maximum Tension * This truss has been designed for a 10.0 psf bottom chord ine load nonconcurrent with any other live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf. TOP CHORD 1.18=-126/65, 17-18=-191/92, 16-17=-189/88, 15-16=-189/88. 10) All bearings are assumed to be SPF No.2. BOT CHORD 1.18=-126/52, 17-18=-191/92, 16-17=-189/88, 15-16=-189/88. 10) All bearings updict(s) 10, 11, 12 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface. PE-2001018807		18	3=16-5-1	3		or consult qu	alified building de	esigner a	s per ANSI/1	PI 1.					
 Max Uplifi 1=-133 (LC 8), 10=-150 (LC 10), 11=-30 (LC 6), 12=-75 (LC 10), 14=-152 (LC 10), 15=-130 (LC 10), 16=-142 (LC 10), 17=-125 (LC 10), 18=-34 (LC 10) Max Grav 1=493 (LC 10), 10=94 (LC 21), 11=214 (LC 23), 12=214 (LC 21), 14=244 (LC 21), 15=235 (LC 21), 16=245 (LC 21), 17=224 (LC 21), 18=244 (LC 21) FORCES (lb) - Maximum Compression/Maximum Tension TOP CHORD 1-2=-683/275, 2-4=-521/205, 4-5=-255/107, 5-6=-122/66, 6-7=-67/51, 7-8=-87/131, 8-9=-47/120, 9-10=-47/120 BOT CHORD 1-18=-126/52, 17-18=-189/88, 5-16=-189/88, Max Uplifi 1=-150 (LC 8), 10=-150 (LC 9), 16=142 (LC 9), 17=224 (LC 9), 18=244 (LC 9) This truss has been designed for a 10.0 psf bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf. All bearings are assumed to be SPF No.2. Bearing at joint(s) 10, 11, 12 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface. 		Max Horiz 1=	=625 (LC	; 10)		4) TCLL: ASCE	(15), Pr=25.0 ps	st (root Ll	_: Lum DOL=	1.15					
 11=-30 (LC 6), 12=-75 (LC 10), 14=-152 (LC 10), 15=-130 (LC 10), 16=-142 (LC 10), 17=-125 (LC 10), 18=-34 (LC 10) Max Grav 1=493 (LC 10), 10=94 (LC 21), 11=214 (LC 23), 12=214 (LC 21), 14=244 (LC 21), 15=235 (LC 21), 16=245 (LC 21), 17=224 (LC 21), 18=244 (LC 21) FORCES (lb) - Maximum Compression/Maximum Tension TOP CHORD 1-2=-683/275, 2-4=-521/205, 4-5=-255/107, 5-6=-122/66, 6-7=-67/51, 7-8=-87/131, 8-9=-47/120, 9-10=-47/120 BOT CHORD 1-18=-189/88, 5-16=-1		Max Uplift 1=	=-133 (LC	C 8), 10=-150 (LC 10)),		.15); Pg=20.0 ps	1; PI=20.4	+ psi (Lum						
 14=-152 (LC 10), 15=-130 (LC 10), 16=-142 (LC 10), 17=-125 (LC 10), 18=-34 (LC 10) Max Grav 1=493 (LC 10), 10=94 (LC 21), 11=214 (LC 23), 12=214 (LC 21), 14=244 (LC 21), 15=235 (LC 21), 16=245 (LC 21), 17=224 (LC 21), 18=244 (LC 21) FORCES (b) - Maximum Compression/Maximum Tension TOP CHORD 1-2=-683/275, 2-4=-521/205, 4-5=-255/107, 5-6=-122/66, 6-7=-67/51, 7-8=-87/131, 8-9=-47/120, 9-10=-47/120 BOT CHORD 1-18=-189/88, 5-16=-189/8		11	1=-30 (LC	C 6), 12=-75 (LC 10)	,	DOL=1.15 P	$C_{0}=1.0$	5=1.0, K0		h					
 16=-142 (LC 10), 17=-125 (LC 10), 18=-34 (LC 10) All plates are 2x4 MT20 unless otherwise indicated. All plates are 2x4 MT20 unless otherwise indicated. All plates are 2x4 MT20 unless otherwise indicated. Gable studs spaced at 2-0-0 oc. This truss has been designed for a 10.0 psf bottom chord live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf. TOP CHORD 1-2=-683/275, 2-4=-521/205, 4-5=-255/107, 5-6=-122/66, 6-7=-67/51, 7-8=-87/131, 8-9=-47/120, 9-10=-47/120 BOT CHORD 1-18=-126/52, 17-18=-181/92, 16-17=-189/88, 15-16=-189/88. 		14	4=-152 (L	_C 10), 15=-130 (LC	10),	5) Provide ade	., Ce-1.0, C3-1.0	nrevent	water popding	, ,					
 The plate study spaced at 2-0-0 oc. This truss has been designed for a 10.0 psf bottom chord live load of 20.0 psf on the bottom chord live load of 20.0 psf on the bottom chord live load of 20.0 psf on the bottom chord live load of 20.0 psf on the bottom chord live load of 20.0 psf on the bottom chord live load of 20.0 psf on the bottom chord live load of 20.0 psf on the bottom chord live load of 20.0 psf on the bottom chord live load of 20.0 psf on the bottom chord live load of 20.0 psf on the bottom chord live load of 20.0 psf on the bottom chord live load of 20.0 psf on the bottom chord and any other members, with BCDL = 10.0 psf. TOP CHORD 1-2=-683/275, 2-4=-521/205, 4-5=-255/107, 5-6=-122/66, 6-7=-67/51, 7-8=-87/131, 8-9=-47/120, 9-10=-47/120, 9-		16	5=-142 (L	LC 10), 17=-125 (LC	10),	 6) All plates are 	2v4 MT20 unles	s otherwi	se indicated	y.					
 Max Grav 1=493 (LC 10), 10=94 (LC 21), 11=214 (LC 23), 12=214 (LC 21), 14=244 (LC 21), 15=235 (LC 21), 16=245 (LC 21), 17=224 (LC 21), 18=244 (LC 21) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. * This truss has been designed for a live load of 20.0 psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members, with BCDL = 10.0 psf. TOP CHORD 1-2=-683/275, 2-4=-521/205, 4-5=-255/107, 5-6=-122/66, 6-7=-67/51, 7-8=-87/131, 8-9=-47/120, 9-10=-47/120 BOT CHORD 1-18=-126/52, 17-18=-191/92, 16-17=-189/88, 15-16=-189/88. 		18	3=-34 (LC	(10)		7) Gable studs	spaced at 2-0-0 c		se maleatea.						m
 FORCES (lb) - Maximum Compression/Maximum Tension TOP CHORD 1-2=-683/275, 2-4=-521/205, 4-5=-255/107, 8-9=-47/120, 9-10=-47/120, 9		Max Grav 1=	=493 (LU	- 10), 10=94 (LC 21), C 22) 12-214 (LC 2	1)	 This truss has 	is been designed	for a 10	0 psf bottom					GOF	MIL
 interpretation (interpretation) interpre		14	1=214 (L 1-244 (L	C 23), 12=214 (LC 2 C 21), 15=225 (LC 2	1), 1)	chord live loa	ad nonconcurrent	with any	other live loa	ids.				A.F. OF	MISS
 INCLEAT (LC 21), INCLEAT (LC 21		14	+=244 (L 3-245 (l	C 21), 15=235 (LC 2 C 21), 17=224 (LC 2	·1), ·1)	9) * This truss h	nas been designe	d for a liv	e load of 20.0	Opsf			4		N.S.
FORCES (b) - Maximum Compression/Maximum Tension 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf. TOP CHORD 1-2=-683/275, 2-4=-521/205, 4-5=-255/107, 5-6=-122/66, 6-7=-67/51, 7-8=-87/131, 8-9=-47/120, 9-10=-47/120 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf. BOT CHORD 1-2=-683/275, 2-4=-521/205, 4-5=-255/107, 5-6=-122/66, 6-7=-67/51, 7-8=-87/131, 8-9=-47/120, 9-10=-47/120 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf. BOT CHORD 1-2=-683/275, 2-4=-521/205, 4-5=-255/107, 5-6=-122/66, 6-7=-67/51, 7-8=-87/131, 8-9=-47/120, 9-10=-47/120 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf. BOT CHORD 1-18=-126/52, 17-18=-191/92, 16-17=-189/88, 15-16=-189/88, Bearing at joint(s) 10, 11, 12 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface. PE-2001018807		18	S=243 (L R=244 (I	C 21), 17–224 (LO 2 C 21)	1),	on the bottor	n chord in all area	as where	a rectangle				H	SCOT	TM XPN
TOP CHORD 1-2=-683/275, 2-4=-521/205, 4-5=-255/107, 5-6=-122/66, 6-7=-67/51, 7-8=-87/131, 8-9=-47/120, 9-10=-47/120 BOT CHORD 1-18=-126/52, 17-18=-191/92, 16-17=-189/88, 15-16=-189/88.	FORCES	(lb) Movimu		o 21)		3-06-00 tall b	y 2-00-00 wide w	vill fit betw	veen the botto	om			B	SEV	
TOP CHORD 1-2=-683/275, 2-4=-521/205, 4-5=-255/107, 5-6=-122/66, 6-7=-67/51, 7-8=-87/131, 8-9=-47/120 10) All bearings are assumed to be SPF No.2. BOT CHORD 1-18=-126/52, 17-18=-87/131, 8-9=-47/120 10) All bearings are assumed to be SPF No.2. BOT CHORD 1-18=-126/52, 17-18=-191/92, 16-17=-189/88, 5 10) All bearings are assumed to be SPF No.2.	FURCES	(ID) - Maximu		pression/waximum		chord and ar	y other members	, with BC	DL = 10.0psf	f.			8		
11) Bearing at joint(s) 10, 11, 12 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface. BOT CHORD 1-18=-126/52, 17-18=-191/92, 16-17=-189/88, 5-16=-189/88, 5-1		1-2683/27	5 2-15	521/205 1-5-255/10	17	10) All bearings	are assumed to b	e SPF N	0.2 .				12 1		
8-9=-47/120, 9-10=-47/120 BOT CHORD 1-18=-126/52, 17-18=-191/92, 16-17=-189/88, 15-16=-189/88,		5-6=-122/66	6-7=-67	7/51 7-8=-87/131	л,	11) Bearing at jo	int(s) 10, 11, 12 c	onsiders	parallel to gra	ain			NK	L.TR	
BOT CHORD 1-18=-126/52, 17-18=-191/92, designer should verify capacity of bearing surface. PE-2001018807		8-9=-47/120	, 9-10=-4	17/120		value using /	ANSI/TPI 1 angle	to grain f	ormula. Build	ding			No.	CONUM	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
16-17=-189/88, 15-16=-189/88,	BOT CHORD	1-18=-126/52	2. 17-18	=-191/92.		designer sho	uld verify capacit	y of bear	ing surface.				N	PE-2001	1018807
		16-17=-189/8	88, 15-10	6=-189/88,									N	The second	128
14-15=-189/88, 12-14=-188/88,		14-15=-189/8	88, 12-14	4=-188/88,									Y	10'50	SON H
11-12=-189/88, 10-11=-186/79		11-12=-189/8	88, 10-1	1=-186/79										UNION/	TETA
A MAD STATES														Con	The second

February 8,2024

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

Job	Truss	Truss Type	Qty	Ply	Lot 17 TCR	
230872	LAY7	Lay-In Gable	1	1	Job Reference (optional)	163476822

Run: 8,73 S Jan 4 2024 Print: 8,730 S Jan 4 2024 MiTek Industries, Inc. Tue Feb 06 14:22:48 ID:txDIeNJq13j9wQrt5eGKDwy6jdj-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Scale = 1:58.6

Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	1:	(psf) 25.0 5.4/20.0 10.0 10.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC20	18/TPI2014	CSI TC BC WB Matrix-P	0.23 0.08 0.10	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.01	(loc) - - 3	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 29 lb	GRIP 197/144 FT = 10%
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SPF 1 2x4 SPF 1 2x4 SPF 1 2x4 SPF 1 2x4 SPF 1 Structural 4-3-14 oc Rigid ceili bracing. (size) Max Horiz Max Uplift Max Grav	No.2 No.2 No.2 No.2 I wood she purlins, e ing directly 3=4-3-12, 6=4-3-12 6=-290 (L 3=-339 (L 5=-531 (L 5=432 (LC	athing directly applie xcept end verticals. applied or 6-0-0 oc 4=4-3-12, 5=4-3-12 C 6) C 9), 4=-351 (LC 11 C 11), 6=-74 (LC 9), C 11), 4=268 (LC 9), C 22), 6=329 (LC 11	ed or { };,,	 This truss ha chord live loc * This truss h on the bottoo 3-06-00 tall h chord and at All bearings Provide mec bearing platte 6, 339 lb upl uplift at joint Beveled plat surface with This truss is International R802.10.2 a CAD CASE(S) 	as been designed ad nonconcurrent has been designe n chord in all are by 2-00-00 wide v y other members are assumed to b hanical connectic e capable of withs if at joint 3, 351 I 5. e or shim require truss chord at joi designed in acco Residential Code nd referenced sta Standard	I for a 10.1 t with any ed for a liv as where will fit betv s, with BC se SPF No on (by oth standing 7 lb uplift at ed to provi int(s) 6, 5. ordance w e sections andard AN	 a) psf bottom other live loa e load of 20.0 a rectangle yeen the botto DL = 10.0psf b.2. ars) of truss t duplift at ji joint 4 and 53 de full bearing th the 2018 R502.11.1 a ISI/TPI 1. 	ds. Dpsf om oint 31 lb g nd					
FORCES TOP CHORD BOT CHORD WEBS NOTES 1) Wind: AS Vasd=91r II; Exp C; cantilever right expo 2) Truss de	(lb) - Max Tension 1-6=-174/ 5-6=-335/ 2-5=-376/ CE 7-16; Vu mph; TCDL= Enclosed; M · left and righ ssed; Lumbe signed for w	imum Com (201, 1-2=- (464, 4-5=- (573) It=115mph 6.0psf; BC 1WFRS (er t exposed r DOL=1.6 ind loads ir	pression/Maximum 248/181, 2-3=-561/4 333/481, 3-4=-213/3 (3-second gust) DL=6.0psf; h=25ft; (ivelope) exterior zor ; end vertical left and 0 plate grip DOL=1.6 the plane of the tru	145 306 Cat. ne; d 60 iss									STATE OF I	MISSOLAR T M. ER

- 2 only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1. TCLL: ASCE 7-16; Pr=25.0 psf (roof LL: Lum DOL=1.15 3)
- Plate DOL=1.15); Pg=20.0 psf; Pf=15.4 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat C; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- Gable requires continuous bottom chord bearing. 4)
- 5) Gable studs spaced at 2-0-0 oc.

February 8,2024

E

NUMBER

PE-2001018807

PESSIONAL

C

Page: 1

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent colleges with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

Job	Truss	Truss Type	Qty	Ply	Lot 17 TCR	
230872	M1	Piggyback Base Structural Gable	2	1	Job Reference (optional)	163476823

Run: 8,73 S Jan 4 2024 Print: 8,730 S Jan 4 2024 MiTek Industries, Inc. Tue Feb 06 14:22:49 ID:IsXZ6SN1J6pgUyanF6sznUy6jcL-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Scale = 1:77.2			
Plate Offsets (X	V١٠	[2.0-1-12 0-1-8]	[4.0-6-4 0-1-12]

Plate Olisets (X, Y): [2:0-1-12,0-1-8], [4:0-6-4,0-1-12]											
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 25.0 20.4/20.0 10.0 10.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018	3/TPI2014	CSI TC BC WB Matrix-S	0.58 0.41 0.54	DEFL Vert(LL) Vert(CT) Horz(CT) Wind(LL)	in -0.06 -0.10 0.01 0.02	(loc) 10-11 10-11 7 10-11	l/defl >999 >999 n/a >999	L/d 360 240 n/a 240	PLATES MT20 Weight: 174 lb	GRIP 197/144 FT = 10%
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD WEBS REACTIONS	2x4 SPF No.2 2x4 SPF No.2 2x4 SPF No.2 *Exce SPF No.2 2x4 SPF No.2 Structural wood she 5-4-3 oc purlins, exi 2-0-0 oc purlins, (6-0 Rigid ceiling directly bracing, Except: 8-3-10 oc bracing: 1 1 Row at midpt (size) 7=0-3-8, 1 Max Horiz 12=451 (L Max Uplift 7=-197 (L Max Grav 7=1139 (L	athing directly applied cept end verticals, ar -0 max.): 4-6. applied or 10-0-0 oc 1-12. 6-7, 3-10, 5-8, 4-8 12=0-3-8 C 10) C 7), 12=-11 (LC 10). C 3), 12=1170 (LC 2)	2) (3 3) d or (d 4) 5) 6) 7) 8) 9) (2) 10	Truss design only. For stu see Standard or consult qu TCLL: ASCE Plate DOL=1 DOL=1.15 Pl Partially Exp This truss ha load of 12.0 overhangs n Provide aded All plates are Truss to be f braced again Gable studs This truss ha chord live loa	ned for wind loads ds exposed to wird a Industry Gable E alified building de 7-16; Pr=25.0 ps 1.5); Pg=20.0 ps ate DOL=1.15); Is ; Ce=1.0; Cs=1.0; s been designed bosf or 1.00 times f on-concurrent with uate drainage to 2x4 MT20 unless ully sheathed from st lateral moveme spaced at 2-0-0 o s been designed f d nonconcurrent i	in the pi ad (norm ind Deta signer as f (roof LL; F=20.4; F=20.4; Ct=1.1; for greate lat roof k (at roof k other with o other lin prevent (i.e. d c. for a 10.6; with any t for a line	ane of the tru al to the face ils as applical s per ANSI/TF :: Lum DOL= psf (Lum uugh Cat C; 0, Lu=50-0-0 er of min roof pad of 15.4 p; re loads. water ponding se indicated. e or securely iagonal web) 0 psf bottom other live load	uss), ble, Pl 1. 1.15 I live sf on J.					
FORCES	(lb) - Maximum Com Tension	pression/Maximum		on the bottor 3-06-00 tall b	n chord in all area by 2-00-00 wide wi	s where	a rectangle	om					
I OF CHORD	4-5=-355/70, 5-6=-3 2-12=-1058/38	54/70, 6-7=-1015/21	9, 11 12	chord and ar) All bearings :) Provide mec	ly other members, are assumed to be hanical connectior	with BC SPF No (by oth	DL = 10.0psf b.2 . ers) of truss t	o					don and
BOT CHORD	11-12=-507/269, 10- 8-10=-148/502, 7-8=	-11=-327/803, 1/4		bearing plate 7 and 11 lb u	capable of withst	anding 1	97 Ib uplift at	joint			1	TEOFA	AISSO A
WEBS	3-11=0/277, 3-10=-4 6-8=-194/972, 2-11= 4-8=-447/212	166/272, 4-10=-144/6 10/651, 5-8=-363/164	34, 13 ,) This truss is International R802.10.2 ar	designed in accor Residential Code nd referenced star	dance w sections ndard AN	ith the 2018 R502.11.1 a ISI/TPI 1.	nd				SCOTI SEVI	ER
NOTES			14) Graphical pu	rlin representation	does no	ot depict the s	ize			87	1	
1) Wind: ASC Vasd=91m	CE 7-16; Vult=115mph hph; TCDL=6.0psf; BC	(3-second gust) DL=6.0psf; h=25ft; C	at.	or the orienta bottom chore	ation of the purlin a I.	along the	top and/or				K	bett?	Enter

II; Exp C; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed ; end vertical left exposed; Lumber DOL=1.60 plate grip DOL=1.60

LOAD CASE(S) Standard

Page: 1

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent toulsable personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcscomponents.com)

Job	Truss	Truss Type	Qty	Ply	Lot 17 TCR	
230872	M2	Piggyback Base	6	1	Job Reference (optional)	163476824

Run: 8.73 S Jan 4 2024 Print: 8.730 S Jan 4 2024 MiTek Industries, Inc. Tue Feb 06 14:22:49 ID:IsXZ6SN1J6pgUyanF6sznUy6jcL-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Scale = 1:77.	2
---------------	---

Plate Offsets (X, Y): [2:0-1-12,0-1-8], [4:0-6-4,0-1-12], [7:Edge,0-1-8]

				-										
Loading	(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP	
TCLL (roof)	25.0	Plate Grip DOL	1.15		тс	0.44	Vert(LL)	-0.06	10-11	>999	360	MT20	197/144	
Snow (Pf/Pa)	20.4/20.0	Lumber DOL	1.15		BC	0.41	Vert(CT)	-0.09	10-11	>999	240	-		
TCDL	10.0	Rep Stress Incr	YES		WB	0.66	Horz(CT)	-0.01	7	n/a	n/a			
BCU	10.0*	Code	IRC2018	R/TPI2014	Matrix-S		Wind(LL)	-0.03	7-8	>999	240			
BCDL	10.0	0000	1102010	5/11/2011			TTING(LL)	0.00	10	2000	210	Weight: 136 lb	FT = 10%	
												0		
LUMBER			3)	This truss ha	is been designed	for greate	er of min roo	flive						
TOP CHORD	2x4 SPF No.2			load of 12.0	psf or 1.00 times	flat roof lo	bad of 15.4 p	osf on						
BOT CHORD	2x4 SPF No.2			overhangs n	on-concurrent wit	h other liv	/e loads.							
WEBS	2x4 SPF No.2 *Exce	pt* 6-7:2x4 SPF 240	0F 4)	Provide adeo	quate drainage to	prevent	vater pondin	ıg.						
	2.0E, 3-11,10-3,11-2	2:2x3 SPF No.2	5)	I his truss ha	is been designed	tor a 10.0) pst bottom							
BRACING				chord live loa	ad nonconcurrent	with any	other live loa	ads.						
TOP CHORD	Structural wood shea	athing directly applie	dor 6)	an the better	has been designe	a lor a liv	e 10aŭ 01 20.	opsi						
	5-4-3 oc purlins, exc	cept end verticals, ar	nd			ill fit boty	a reclarigie	tom						
	2-0-0 oc purlins (6-0	-0 max.): 4-6.		chord and ar	by 2-00-00 wide w	with BC		-f						
BOT CHORD	Rigid ceiling directly	applied or 10-0-0 oc	; 7)	All hearings	are assumed to b	e SPF No	0L = 10.0p3							
	bracing, Except:	4.40	8)	Provide med	hanical connectio	n (by oth	ers) of truss	to						
VEDQ	1 Pow at midat	1-12. 67 2 10 5 9 4 9	-,	bearing plate	capable of withs	tanding 2	55 lb uplift a	it ioint						
		0-7, 3-10, 3-0, 4-0		7 and 80 lb u	plift at joint 12.	5								
REACTIONS	(SIZE) /=0-3-8, 1 Mox Horiz 12-492 (I	12=0-3-8	9)	This truss is	designed in acco	rdance w	ith the 2018							
	Max Horiz 12=483 (L	.07) 07) 40, 90 (LC 40)		International	Residential Code	e sections	R502.11.1 a	and						
	Max Opilit 7=-255 (L Max Grov 7-1120 (L	C(7), $12=-60$ (LC 10))	R802.10.2 a	nd referenced sta	ndard AN	ISI/TPI 1.							
		LC 3), 12=1103 (LC C	^y 10) Graphical pu	Irlin representation	n does no	ot depict the	size						
FORCES	(Ib) - Maximum Com	pression/Maximum		or the orienta	ation of the purlin	along the	top and/or							
	1 2 0/51 2 2 1142	00 2 4 024/170		bottom chore	d.									
	1-2=0/51, 2-3=-1145	/09, 3-4=-034/179, /0//160_6_71015/	251 LC	DAD CASE(S)	Standard									
	2-12=-1051/107	+0+/100, 0-7=-1013/.	201,											
BOT CHORD	11-12=-485/359 10-	11=-318/868										2000	1000	
	8-10=-238/565. 7-8=	-166/126										A OF M	Also	
WEBS	3-11=0/277, 3-10=-4	69/263, 4-10=-128/6	639,								1	750	NOS-	
	6-8=-239/970, 2-11=	-6/681, 5-8=-361/17	9,								R	N/ SCOTT	New Yar	
	4-8=-475/146										A	s scori	M. YAY	1
NOTES											VI.	SEVI	ER \ Y	۵
1) Wind: ASC	CE 7-16; Vult=115mph	(3-second gust)									N 🛪			2
Vasd=91n	nph; TCDL=6.0psf; BC	DL=6.0psf; h=25ft; C	Cat.								ax	- day	X	4
II; Exp C;	Enclosed; MWFRS (en	velope) exterior zon	e;								1	Collinia	Some	2
cantilever	left and right exposed	; end vertical left and	ł								117	DE_20010	118807 188	1
right expo	sed; Lumber DOL=1.6	0 plate grip DOL=1.6	50								N	-200II	15B	
2) TCLL: AS	CE 7-16; Pr=25.0 psf (root LL: Lum DOL=1	.15								Y	1990	NON B	
Plate DOL	= 1.15); Pg=20.0 pst; F	1=20.4 pst (Lum 1 0: Rough Cot C:										UNIA ONIA	LENA	
DUL=1.15	FIALE DUL=1.15); IS=	1.0, Rough Cal C;										QUA	-	
Failially E	xp., Ce=1.0, Cs=1.00;	CI=1.10, Lu=50-0-0										un		

February 8,2024

Page: 1

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

Job	Truss	Truss Type	Qty	Ply	Lot 17 TCR	
230872	М3	Piggyback Base	14	1	Job Reference (optional)	163476825

Run: 8,73 S Jan 4 2024 Print: 8,730 S Jan 4 2024 MiTek Industries, Inc. Tue Feb 06 14:22:50 ID:IsXZ6SN1J6pgUyanF6sznUy6jcL-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Plate Offsets (X, Y):	[1:0-2-0,0-1-8], [3:0-6-4,0-1-12]

Scale - 1.77 2

Plate Offsets	ate Offsets (X, Y): [1:0-2-0,0-1-8], [3:0-6-4,0-1-12], [6:Edge,0-1-8]												
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 25.0 20.4/20.0 10.0 10.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC20	018/TPI2014	CSI TC BC WB Matrix-S	0.44 0.41 0.67	DEFL Vert(LL) Vert(CT) Horz(CT) Wind(LL)	in -0.06 -0.09 -0.01 -0.03	(loc) 9-10 9-10 6 6-7	l/defl >999 >999 n/a >999	L/d 360 240 n/a 240	PLATES MT20 Weight: 134 lb	GRIP 197/144 FT = 10%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD WEBS REACTIONS FORCES TOP CHORD BOT CHORD BOT CHORD WEBS NOTES 1) Wind: ASV Vasd=91r II; Exp C; cantilever	2x4 SPF No.2 2x4 SPF No.2 2x4 SPF No.2 2x4 SPF No.2 2x4 SPF No.2 *Exce 2.0E, 2-10,9-2,10-1:2 Structural wood shea 5-3-8 oc purlins, exc 2-0-0 oc purlins (6-0 Rigid ceiling directly bracing, Except: 8-8-5 oc bracing: 10- 1 Row at midpt (size) 6=0-3-8, 1 Max Horiz 11=465 (L Max Grav 6=1141 (L (lb) - Maximum Com Tension 1-2=-1145/82, 2-3=-{ 4-5=-409/161, 5-6= 10-11=-462/339, 9-1 7-9=-238/566, 6-7=- 2-10=0/276, 2-9=-47 5-7=-238/967, 1-10= 3-7=-467/144 CE 7-16; Vult=115mph mph; TCDL=6.0psf; BCI Enclosed; MWFRS (en left and right exposed	L pt* 5-6:2x4 SPF 24(2x3 SPF No.2 athing directly applie cept end verticals, a -0 max.): 3-5. applied or 10-0-0 oc -11. 5-6, 2-9, 4-7, 3-7 1=0-3-8 C 9) C 7), 11=-57 (LC 10 C, 3), 11=1116 (LC 10 C, 3), 11=1116 (LC 10 C, 3), 11=1116 (LC 10 C, 3), 11=1116 (LC 10 0, 3), 11=1116 (LC 10 pression/Maximum 836/180, 3-4=-410/1 1013/252, 1-11=-100 0=-318/874, 166/126 7/265, 3-9=-130/64 -4/690, 4-7=-361/17 (3-second gust) DL=6.0psf; h=25ff; C velope) exterior zor ; end vertical left an 0 plate grip DQ1 = 16	200F ed or nd c 24) 24) 61, 04/83 1, '9, Cat. ne; d	 4) This truss ha chord live lo 5) * This truss l on the bottoi 3-06-00 tall l chord and an 6) All bearings 7) Provide mec bearing plate 6 and 57 lb o 8) This truss is International R802-10-2 4) Graphical pu or the orient bottom chord LOAD CASE(S) 	As been designe an onconcurrer nas been design m chord in all arn by 2-00-00 wide ny other membe are assumed to thanical connect e capable of with uplift at joint 11. designed in acc Residential Con nd referenced si urlin representati ation of the purli d. Standard	d for a 10.0 nt with any led for a livi- eas where will fit betw rs, with BC be SPF No ion (by othe sstanding 2 cordance wide sections tandard AN ion does no n along the) psf bottom other live loz e load of 20. a rectangle veen the bott DL = 10.0ps .2. ers) of truss i 55 lb uplift at the 2018 R502.11.1 a ISI/TPI 1. t depict the st top and/or	ds. Opsf om f. to t joint and size		Ĩ		STATE OF M SCOTT SEVI	AISSOLUTION M. ER ER
 2) TČLL: ASCE 7-16; Pr=25.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf; Pf=20.4 psf (Lum DOL=1.15) Plate DOL=1.15); Is=1.0; Rough Cat C; Partially Exp.; Ce=1.0; Ct=1.00; Ct=1.10, Lu=50-0-0 3) Provide adequate drainage to prevent water ponding. February 8,2024 									L ENGL V 8.2024				

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent toulsable personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcscomponents.com) 16023 Swingley Ridge Rd. Chesterfield, MO 63017 314.434.1200 / MiTek-US.com

Job	Truss	Truss Type	Qty	Ply	Lot 17 TCR	
230872	N1	Roof Special	4	1	Job Reference (optional)	163476826

Run: 8.73 S Jan 4 2024 Print: 8.730 S Jan 4 2024 MiTek Industries, Inc. Tue Feb 06 14:22:50 ID:HWvQGOLjK_5knuaSnmq1qZy6jdg-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Scale =	1:51.1
---------	--------

Plate Offsets (X, Y): [2:0-2-8,Edge], [4:0-2-8,Edge]

														_
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 25.0 15.4/20.0 10.0 10.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018	3/TPI2014	CSI TC BC WB Matrix-S	0.62 0.25 0.28	DEFL Vert(LL) Vert(CT) Horz(CT) Wind(LL)	in -0.04 -0.09 0.01 -0.01	(loc) 6-7 6-7 6 6-7	l/defl >999 >755 n/a >999	L/d 360 240 n/a 240	PLATES MT20 Weight: 62 lb	GRIP 197/144 FT = 10%	
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD	2x4 SPF No.2 2x4 SPF No.2 2x3 SPF No.2 Structural wood shee 6-0-0 oc purlins, exe Rigid ceiling directly bracing.	athing directly applie cept end verticals. applied or 9-2-14 oc	4) 5) d or 6)	This truss ha load of 12.0 j overhangs n This truss ha chord live loa * This truss h on the bottor 3-06-00 tall b chord and an	is been designed psf or 1.00 times f pn-concurrent with s been designed ad nonconcurrent has been designed n chord in all area by 2-00-00 wide w by other members	for greate flat roof lo n other liv for a 10.0 with any d for a liv us where ill fit betw , with BC	er of min roo bad of 15.4 p ve loads.) psf bottom other live loa e load of 20. a rectangle veen the bott DL = 10.0ps	f live osf on ads. Opsf tom if.						_
REACTIONS	(size) 6=13-0-0, 9=13-0-0 Max Horiz 9=-239 (L Max Uplift 6=-202 (L 9=-193 (L) Max Grav 6=425 (LC 8=366 (LC	7=13-0-0, 8=13-0-0 C 8) C 11), 7=-71 (LC 7), C 11) C 23), 7=449 (LC 22) C 22), 9=422 (LC 23)	, 7) 8) 9)	All bearings a Provide mec bearing plate 9, 202 lb upli This truss is International R802.10.2 a	are assumed to be hanical connection capable of withst ft at joint 6 and 71 designed in accor Residential Code nd referenced star	e SPF No n (by oth tanding 1 I Ib uplift dance wi sections ndard AN	0.2 . ers) of truss 93 lb uplift a at joint 7. th the 2018 R502.11.1 a ISI/TPI 1.	to It joint and						
FORCES	(lb) - Maximum Com Tension	pression/Maximum	LC	OAD CASE(S)	Standard									
TOP CHORD	2-9=-505/362, 1-2=0 3-4=-272/173, 4-5=0	/48, 2-3=-272/170, /48, 4-6=-511/364												
BOT CHORD WEBS	8-9=-398/572, 7-8=- 3-7=-227/119, 4-7=- 2-8=-204/231	82/201, 6-7=-205/32 205/232, 3-8=-222/1	7 12,									655000	ADD	
NOTES 1) Unbalance this design 2) Wind: ASC Vasd=91n II; Exp C;	ed roof live loads have n. CE 7-16; Vult=115mph nph; TCDL=6.0psf; BC Enclosed; MWFRS (er	been considered for (3-second gust) DL=6.0psf; h=25ft; C velope) exterior zon	cat. e;									STATE OF A SCOT	AISSOLA M. ER	

Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat.
 II; Exp C; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
 TCLL: ASCE 7-16; Pr=25.0 psf (roof LL: Lum DOL=1.15

Plate DOL=1.15); Pg=20.0 psf; Pf=15.4 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat C; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10 February 8,2024

Page: 1

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permenter is always required for stability and to prevent colleges with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcscomponents.com)

Job	Truss	Truss Type	Qty	Ply	Lot 17 TCR	
230872	N2	Roof Special	4	1	Job Reference (optional)	163476827

Run: 8.73 S Jan 4 2024 Print: 8.730 S Jan 4 2024 MiTek Industries, Inc. Tue Feb 06 14:22:51 ID:IRDhIUPwb1BFLPIMxFPgP6y6jcI-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:51

Plate Offsets (X, Y): [2:0-2-8,Edge], [4:0-2-8,Edge], [8:0-1-7,Edge]

Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 25.0 15.4/20.0 10.0 10.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018/	/TPI2014	CSI TC BC WB Matrix-S	0.65 0.29 0.54	DEFL Vert(LL) Vert(CT) Horz(CT) Wind(LL)	in -0.18 -0.31 0.63 0.11	(loc) 6-7 6-7 5 6-7	l/defl >875 >492 n/a >999	L/d 360 240 n/a 240	PLATES MT20 Weight: 60 lb	GRIP 197/144 FT = 10%	
LUMBER TOP CHORD 30T CHORD WEBS BRACING TOP CHORD 30T CHORD REACTIONS	2x4 SPF 2100F 1.8E 2x4 SPF No.2 2x3 SPF No.2 Structural wood shea 3-10-15 oc purlins, of Rigid ceiling directly bracing. (size) 5=0-3-8, 8 Max Horiz 8=230 (LC Max Uplift 5=-61 (LC Max Grav 5=611 (LC	athing directly applie except end verticals applied or 9-2-3 oc 3=0-3-8 2 7) 10), 8=-64 (LC 11) 2 22), 8=659 (LC 23)	6) 7) 8) 9) 10)	* This truss h on the botton 3-06-00 tall b chord and an All bearings ; Bearing at jo using ANSI/T designer sho Provide mecl bearing plate 8 and 61 lb u This truss is International R802.10.2 ar	has been designe n chord in all area by 2-00-00 wide w by other members are assumed to b int(s) 8, 5 conside IPI 1 angle to gra uld verify capacit hanical connection o capable of withs plift at joint 5. designed in accoo Residential Code do referenced sta	d for a live as where e vill fit betw s, with BC es SPF Nc ers paralle in formula y of bearin y of bearin to (by othet standing 6 rdance wi e sections ndard AN	e load of 20. a rectangle reen the bott DL = 10.0ps .2. el to grain va a. Building ng surface. ers) of truss i 4 lb uplift at j th the 2018 R502.11.1 a SI/TPI 1.	Opsf om f. lue to joint						
F ORCES TOP CHORD BOT CHORD WEBS	(lb) - Maximum Com Tension 2-8=-923/309, 1-2=0 3-4=-2558/215, 4-5= 7-8=-404/590, 6-7=- 3-6=-83/1611, 4-6=-2 3-7=-195/1702 2-7=	pression/Maximum /48, 2-3=-2536/172, -657/156 138/1130, 5-6=-135/ 253/2031, .0/1762	LO/ 281	AD CASE(S)	Standard									
NOTES 1) Unbalance this desig 2) Wind: AS Vasd=911 II; Exp C; cantilever right expo 3) TCLL: AS	ed roof live loads have n. CE 7-16; Vult=115mph mph; TCDL=6.0psf; BCI Enclosed; MWFRS (en left and right exposed sed; Lumber DOL=1.6(iCE 7-16; Pr=25.0 psf (i	been considered for (3-second gust) DL=6.0psf; h=25ft; C ivelope) exterior zon ; end vertical left an 0 plate grip DOL=1.6 roof LL: Lum DOL=1	cat. ce; d 50 .15									STATE OF M	AISSOUR M. ER	

- 3) TCLL: ASCE 7-16; Pr=25.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf; Pf=15.4 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat C; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
 4) This truss has been designed for greater of min roof live
- 4) This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 15.4 psf on overhangs non-concurrent with other live loads.
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

February 8,2024

PE-20010188

SSIONAL

E

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent colleges with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

Job	Truss	Truss Type	Qty	Ply	Lot 17 TCR	
230872	P1	Piggyback	2	1	Job Reference (optional)	163476828

5-3-5

Wheeler Lumber, Waverly, KS - 66871,

Run: 8.73 S Jan 4 2024 Print: 8.730 S Jan 4 2024 MiTek Industries, Inc. Tue Feb 06 14:22:51 ID:L7ngsiKToNr0YaQ3fLoZl8y6jdi-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

8-9-5

Page: 1

-0-6-11 0-6-11 5-3-5 3-6-0 4x5 = 5 12 12 ⊏ 6 4 5-10-0 5-8-8 7 0 3 2-2-8 0-5-3 8 12 11 10 9 8-9-5 5-3-5 5-3-5 3-6-0

Scale = 1:38.7

Plate Offsets (X, Y): [2:0-2-6,0-1-0]

Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 25.0 15.4/20.0 10.0 10.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC201	8/TPI2014	CSI TC BC WB Matrix-P	0.07 0.02 0.09	DEFL Vert(LL) Vert(CT) Horz(CT)	in n/a n/a 0.00	(loc) - - 8	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 42 lb	GRIP 197/144 FT = 10%
LUMBER TOP CHORD 30T CHORD WEBS DTHERS BRACING TOP CHORD 30T CHORD REACTIONS	2x4 SPF No.2 2x4 SPF No.2 2x4 SPF No.2 2x4 SPF No.2 2x4 SPF No.2 Structural wood shee 6-0-0 oc purlins, exe Rigid ceiling directly bracing. (size) 2=8-9-5, 8 10=8-9-5, Max Horiz 2=172 (LC Max Uplift 2=-109 (L 9=-122 (L 11=-133 (Max Grav 2=160 (LC 9=233 (LC 11=255 (L	athing directly applie cept end verticals. applied or 10-0-0 oc 3=8-9-5, 9=8-9-5, 11=8-9-5, 12=8-9-5 7) C 6), 8=-32 (LC 6), C 11), 10=-75 (LC 9) LC 10), 12=-107 (LC 2 3), 8=71 (LC 23), 2 23), 10=238 (LC 22 C 22), 12=204 (LC 2	3) 4) d or 5) 6) 7) 8) 9) , 9) 10) 10) 10 2),	Truss design only. For stu see Standarc or consult qu TCLL: ASCE Plate DOL=1 DOL=1.15 Pl Partially Exp. This truss ha load of 12.0 µ overhangs nn All plates are Gable requiri Gable studs 3 This truss ha chord live loa 0) * This truss h on the bottom 3-06-00 tall b chord and an	ned for wind loads ds exposed to wind l Industry Gable Ei alified building des 7-16; Pr=25.0 psf; .15); Pg=20.0 psf; ate DOL=1.15); Is: ; Ce=1.0; Cs=1.00 s been designed for sof or 1.00 times fit on-concurrent with 2x4 MT20 unless es continuous botts spaced at 2-0-0 oc s been designed for d nonconcurrent v has been designed in chord in all areas y 2-00-00 wide will we other members	in the p d (norm nd Deta signer as (roof LL Pf=15.2 =1.0; Rc); Ct=1.2 or great at roof k other lin other wit or a 10.4 with ac s where ll fit betw	lane of the tru al to the face ills as applica as s per ANSI/TI s per ANSI/TI t Lum DOL= 4 psf (Lum bugh Cat C; 10 er of min roof boad of 15.4 p: ve loads. se indicated. d bearing. D psf bottom other live loa e load of 20.0 a rectangle veen the bott DL = 10 oppl	uss), ble, Pl 1. 1.15 f live sf on dds. Opsf om f					
FORCES	(lb) - Maximum Com Tension	pression/Maximum	11 12) All bearings a 2) Provide mec	are assumed to be	SPF No	o.2. ers) of truss t	to					
TOP CHORD	1-2=0/15, 2-3=-206/ 4-5=-141/152, 5-6=- 7-8=-55/38	186, 3-4=-173/163, 117/131, 6-7=-54/55,	12	bearing plate 8, 109 lb upli uplift at joint	capable of withsta ft at joint 2, 75 lb u 11 107 lb uplift at	anding 3 plift at joint 12	2 lb uplift at j pint 10, 133 ll and 122 lb ui	joint b plift				OF N	MISS
BOT CHORD	2-12=-28/22, 11-12= 9-10=-28/22, 8-9=-2	-28/22, 10-11=-28/23 8/22	2, 13	at joint 9. 3) This truss is	designed in accord	dance w	ith the 2018	F			B	AND SCOT	A SOLA
NEBS	5-10=-182/116, 4-11 3-12=-141/129, 6-9=	=-184/157, 168/144		International R802.10.2 ar	Residential Code and referenced stan	sections	s R502.11.1 a NSI/TPI 1.	and			B.	SEVI	
NOTES	od roof live loads have	been considered for	14	 See Standard Detail for Control 	d Industry Piggyba	ick Trus	s Connection				W^	1 HK	· Can I have
this design	n.			consult quali	fied building design	uss as a ner.	applicable, or			1		an?	Jenne
2) Wind: AS	CE 7-16; Vult=115mph	(3-second gust)	L	DAD CASE(S)	Standard						8T	PE-2001	018807

Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent colleges with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

February 8,2024

E

SIONAL

Job	Truss	Truss Type	Qty	Ply	Lot 17 TCR	
230872	P2	Piggyback	16	1	Job Reference (optional)	163476829

Run: 8,73 S Jan 4 2024 Print: 8,730 S Jan 4 2024 MiTek Industries, Inc. Tue Feb 06 14:22:51 ID:pJL232K5Zhzt9k?GD3JoILy6jdh-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:40.2

Loading		(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)		25.0	Plate Grip DOL	1.15		TC	0.23	Vert(LL)	n/a	-	n/a	999	MT20	197/144
Snow (Pf/Pg)	1	5.4/20.0	Lumber DOL	1.15		BC	0.10	Vert(TL)	n/a	-	n/a	999		
TCDL		10.0	Rep Stress Incr	YES		WB	0.18	Horiz(TL)	0.00	6	n/a	n/a		
BCLL		10.0*	Code	IRC201	8/TPI2014	Matrix-P								
BCDL		10.0											Weight: 32 lb	FT = 10%
LUMBER				4)	TCLL: ASC	E 7-16; Pr=25.0) psf (roof LL	.: Lum DOL=	1.15					
TOP CHORD	2x4 SPF	No.2			Plate DOL=	1.15); Pg=20.0	psf; Pf=15.4	1 psf (Lum						
BOT CHORD	2x4 SPF	No.2			DOL=1.15 F	Plate DOL=1.15	5); ls=1.0; Ro	ough Cat C;						
WEBS	2x3 SPF	No.2			Partially Ex	p.; Ce=1.0; Cs=	=1.00; Ct=1.1	10						
OTHERS	2x3 SPF	No.2		5)	Gable requi	res continuous	bottom chor	d bearing.						
BRACING				6)	Gable studs	spaced at 4-0	-0 oc.							
TOP CHORD	Structura	I wood she	athing directly applie	dor 7)	This truss h	as been design	ned for a 10.0	0 psf bottom						
	6-0-0 oc	purlins, ex	cept end verticals.	•	chord live lo	ad nonconcurr	ent with any	other live loa	ads.					
BOT CHORD	Rigid ceil	ing directly	applied or 10-0-0 or	; 8)	" I NIS TRUSS	nas been desig	gned for a liv	e load of 20.	upst					
	bracing.				2 06 00 tall	by 2 00 00 wid	areas where	a reclangle	om					
REACTIONS	(size)	1=9-4-0, 2	2=9-4-0, 6=9-4-0, 7=	9-4-0,	chord and a	by 2-00-00 wid			6					
		8=9-4-0		a)		are assumed t	o he SPF N	DL = 10.005						
	Max Horiz	1=173 (LC	C 7)	10) Rearing at i	nint(s) 1 2 cons	siders parall	el to grain va	lue					
	Max Uplift	1=-81 (LC	; 6), 2=-169 (LC 22),	10	using ANSI	TPI 1 angle to	arain formula	a Building	100					
		6=-89 (LC	2 11), 7=-26 (LC 7),		designer sh	ould verify capa	acity of bear	ing surface.						
		8=-284 (L	C 10)	11) Provide me	chanical conne	ction (by oth	ers) of truss	to					
	Max Grav	1=157 (LC	23), 2=173 (LC 10)	,	bearing plat	e capable of wi	ithstanding 8	31 lb uplift at	joint					
		6=200 (LC	23, 7=417 (LC 22)	,	1, 89 lb upli	ft at joint 6, 169) Ib uplift at jo	oint 2, 26 lb i	Iplift					
		8=487 (LC			at joint 7 an	d 284 lb uplift a	at joint 8.							
FORCES	(lb) - Max	umum Com	pression/Maximum	12	?) This truss is	designed in ad	ccordance w	ith the 2018						
	I ension	404 0 0	040/045 0 4 400/4	50	Internationa	I Residential C	ode sections	s R502.11.1 a	and					
TOP CHORD	1-2=-210/	/164, 2-3=-	240/245, 3-4=-199/1 56/104	58,	R802.10.2 a	and referenced	standard AN	ISI/TPI 1.						
	4-3=-111/	/97, 5-0=-1: 01 7 0_ 00	00/104 /01 6 7_ 00/01	13	 See Standa 	rd Industry Pig	gyback Trus	s Connectior	1					and the second s
WERS	2-0=-20/2 1-7260	/77 3-83	71/32/		Detail for Co	onnection to ba	se truss as a	applicable, or					A	1 million
NOTEO	203/		11/024		consult qua	lified building d	esigner.						F.OF	WIISS~
NOTES			have see the set	LC	DAD CASE(S) Standard						4	Y. M	~0
1) Unbalanc	ea root live l	loads have	been considered for									B	SCOT	тм \
	11. CE 7 46: \/u	ut 11Emph	(2 accord quat)									Я	SEV	TEP

Wind: ASCE 7-16; Vult=115mph (3-second gust Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60

Truss designed for wind loads in the plane of the truss 3) only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

February 8,2024

E

PE-200101880'

SSIONAL

 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.
 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not besign value for use only with with twit even connectors. This design is based only upon parameters shown, and is for an individual building designer must verify the applicability of design parameters and properly incorporate this design into the overall building designer must verify the applicability of design parameters and properly incorporate this design into the overall building designer. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcscomponents.com)

Job	Truss	Truss Type	Qty	Ply	Lot 17 TCR	
230872	P3	Piggyback	2	1	Job Reference (optional)	163476830

Run: 8,73 S Jan 4 2024 Print: 8,730 S Jan 4 2024 MiTek Industries, Inc. Tue Feb 06 14:22:52 ID:pJL232K5Zhzt9k?GD3JoILy6jdh-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

5-8-1

Page: 1

Scale = 1:41

Plate Offsets (X, Y): [2:0-2-6,0-1-0], [4:0-1-11,Edge], [5:0-3-8,0-2-0]

Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 25.0 20.4/20.0 10.0 10.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018	3/TPI2014	CSI TC BC WB Matrix-S	0.19 0.09 0.14	DEFL Vert(LL) Vert(CT) Horz(CT)	in n/a n/a 0.00	(loc) - - 7	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 31 lb	GRIP 197/144 FT = 10%	-
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SPF No.2 2x4 SPF No.2 2x3 SPF No.2 2x3 SPF No.2 2x3 SPF No.2 Structural wood shea 6-0-0 oc purlins, exi 2-0-0 oc purlins (6-0 Rigid ceiling directly bracing. (size) 2=8-9-5, 7 Max Horiz 2=161 (LC Max Uplift 2=-120 (L 8=-20 (LC Max Grav 2=152 (LC 8=352 (LC (lb) - Maximum Com	athing directly applied cept end verticals, an -0 max.): 4-5. applied or 10-0-0 oc 7=8-9-5, 8=8-9-5, 9=8 C 7) C 6), 7=-77 (LC 11), 7), 9=-191 (LC 10) C 9), 7=188 (LC 23), C 22), 9=424 (LC 22) pression/Maximum	4) 5) d or 6) 7) 8) 9) 3-9-5 10 11 12	TCLL: ASCE Plate DOL=1 DOL=1.15 Pl Partially Exp. This truss ha load of 12.0 ţ overhangs ne Provide adec Gable require Gable studs i This truss ha chord live loa) * This truss h on the bottom 3-06-00 tall tb chord and an All bearings a provide mecl bearing plate	7-16; Pr=25.0 ps .15); Pg=20.0 psf ate DOL=1.15); ls ; Ce=1.0; Cs=1.0 s been designed 1 obsf or 1.00 times f on-concurrent with uate drainage to es continuous bott spaced at 4-0-0 o s been designed id nonconcurrent tas been designed in chord in all area y 2-00-00 wide w y other members are assumed to be nanical connection capable of withst	f (roof LL ; Pf=20.4; s=1.0; Rc 0; Ct=1.1 for greate ilat roof lc n other lix prevent V tom chor c. for a 10.0 with any d for a liv us where ill fit betw , with BC e SPF Nc n (by oth tanding 7	: Lum DOL= psf (Lum nugh Cat C; 0, Lu=50-0-C er of min roof pad of 15.4 pr e loads. vater ponding d bearing. 0 psf bottom other live loa e load of 20.0 a rectangle veen the bottt DL = 10.0psf 0.2. ers) of truss t 7 lb uplift at j	ds. p ds. ppsf om oint						
TOP CHORD BOT CHORD WEBS NOTES 1) Unbalanc this desig 2) Wind: AS Vasd=91r II; Exp C; cantilever right expc 3) Truss de	Tension 1-2=0/15, 2-3=-204/ 4-5=-69/111, 5-6=-1: 2-9=-29/27, 8-9=-29/ 5-8=-222/74, 3-9=-3 ed roof live loads have n. CE 7-16; Vult=115mph mph; TCDL=6.0psf; BC Enclosed; MWFRS (er left and right exposed bsed; Lumber DOL=1.60 signed for wind loads ir	187, 3-4=-181/124, 28/94, 6-7=-148/92 /27, 7-8=-30/30 11/236 been considered for (3-second gust) DL=6.0psf; h=25ft; C ivelope) exterior zone; end vertical left and 0 plate grip DOL=1.6i the plane of the trus	13 14 15 at. 2; LC 0 s	7, 120 lb upli uplift at joint ' This truss is International R802.10.2 ar See Standard Detail for Con consult qualifi Graphical pu or the orienta bottom chorce PAD CASE(S)	ta joint 2, 20 lb 19, designed in accor Residential Code nd referenced star Industry Piggybi nnection to base t fied building desig rlin representation tition of the purlin a l. Standard	Induiting 7 Induiting 7 Induities and and ack Truss Induities as a gner. In does no along the	th the 2018 R502.11.1 a ISI/TPI 1. s Connection applicable, or ot depict the s top and/or	nd size			*	STE OF M SCOTT SEVI	MISSOLIP T.M. ER Server DI8807	

only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

16023 Swingley Ridge Rd. Chesterfield, MO 63017 314.434.1200 / MiTek-US.com

February 8,2024

E

SIONAL

Job	Truss	Truss Type	Qty	Ply	Lot 17 TCR	
230872	P4	Piggyback	2	1	Job Reference (optional)	163476831

Run: 8.73 S Jan 4 2024 Print: 8.730 S Jan 4 2024 MiTek Industries, Inc. Tue Feb 06 14:22:52 ID:pJL232K5Zhzt9k?GD3JoILy6jdh-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

Scale = 1:34.3

Plate Offsets (X, Y): [2:0-2-6,0-1-0], [4:0-0-11,Edge], [5:0-3-8,0-2-0]

Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 25.0 20.4/20.0 10.0 10.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018	3/TPI2014	CSI TC BC WB Matrix-S	0.18 0.14 0.08	DEFL Vert(LL) Vert(CT) Horz(CT)	in n/a n/a 0.00	(loc) - - 7	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 30 lb	GRIP 197/144 FT = 10%	
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SPF No.2 2x3 SPF No.2 2x3 SPF No.2 2x3 SPF No.2 2x3 SPF No.2 Structural wood shee 6-0-0 oc purlins, ext 2-0-0 oc purlins (6-0 Rigid ceiling directly bracing. (size) 2=8-9-5, 7 Max Horiz 2=135 (LC Max Uplift 2=-56 (LC 9=-107 (L Max Grav 2=176 (LC	athing directly applie cept end verticals, an -0 max.): 4-5. applied or 10-0-0 oc 7=8-9-5, 8=8-9-5, 9=8 : 6), 7=-41 (LC 10), C 7) : 23), 7=121 (LC 23).	4) 5) d or (d 6) 7) 8) 9) 3-9-5 10	TCLL: ASCE Plate DOL=1 DOL=1.15 Pl Partially Exp. This truss ha load of 12.0 p overhangs no Provide adec Gable require Gable studs This truss ha chord live loa chord live loa 3-06-00 tall b chord and an	7-16; Pr=25.0 psi .15); Pg=20.0 psi .15); Pg=20.0 psi .ate DOL=1.15); IS .; Ce=1.0; Cs=1.00 s been designed f pon-concurrent with quate drainage to p es continuous bott spaced at 4-0-0 or s been designed ful nonconcurrent as been designed n chord in all area by 2-00-00 wide with a concurrent second to be	f (roof LL Pf=20.4 =1.0; Rc 0; Ct=1.1 or great lat roof lo other liv prevent to om chor c. for a 10.0 with any l for a liv s where Il fit betw with BC	: Lum DOL= psf (Lum ough Cat C; 0, Lu=50-0-0 er of min roof pad of 15.4 p: ve loads. vater ponding d bearing. 0) psf bottom other live loa e load of 20.0 a rectangle veen the botto DL = 10.0psf	1.15) live sf on g. ds. Opsf om						
FORCES	8=356 (LC (lb) - Maximum Com Tension	C 31), 9=489 (LC 22) pression/Maximum	12) Provide mech bearing plate	hanical connection capable of withst	n (by oth anding 4	ers) of truss t 1 lb uplift at j	o oint						
TOP CHORD BOT CHORD WEBS	1-2=0/15, 2-3=-146/ 4-5=-48/66, 5-6=-91/ 2-9=-37/25, 8-9=-37/ 5-8=-185/53, 3-9=-2	134, 3-4=-128/77, /64, 6-7=-101/51 /25, 7-8=-37/25 77/150	13 14	7, 56 lb uplift) This truss is International R802.10.2 ar) See Standard	at joint 2 and 107 designed in accord Residential Code nd referenced star d Industry Piggyba	ID uplift dance w sections idard AN ack Trus	at joint 9. th the 2018 R502.11.1 a ISI/TPI 1. s Connection	ind				Contraction of the	Joseph Land	
NOTES 1) Unbalanc this desig 2) Wind: AS Vasd=91r II; Exp C; cantilever right expc	ed roof live loads have n. CE 7-16; Vult=115mph nph; TCDL=6.0psf; BC Enclosed; MWFRS (er left and right exposed sed; Lumber DOL=1.6	been considered for (3-second gust) DL=6.0psf; h=25ft; C ivelope) exterior zone ; end vertical left and 0 plate grip DOL=1.6	15 at. ; LC	Detail for Cor consult qualit) Graphical pu or the orienta bottom chorc DAD CASE(S)	nnection to base ti fied building desig rlin representation ation of the purlin a l. Standard	russ as a ner. does no along the	pplicable, or of depict the s top and/or	size		¢		STATE OF I SCOT	MISSOLA MER BER	

 Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

February 8,2024

E

PE-200101880

SIONAL

Job	Truss	Truss Type	Qty	Ply	Lot 17 TCR	
230872	P8	Piggyback	12	1	Job Reference (optional)	163476832

Run: 8.73 S Jan 4 2024 Print: 8.730 S Jan 4 2024 MiTek Industries, Inc. Tue Feb 06 14:22:53 ID:asq4InR6g8_k7zcohkSgc1y6jdZ-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

bi7J4zJC?f

12-1-6

Scale = 1:31.7

Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 25.0 15.4/20.0 10.0 10.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC201	8/TPI2014	CSI TC BC WB Matrix-S	0.19 0.10 0.06	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 7	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 35 lb	GRIP 197/144 FT = 10%
LUMBER TOP CHORD BOT CHORD OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	$\begin{array}{l} 2x4 \; {\rm SPF} \; {\rm No.2} \\ 2x4 \; {\rm SPF} \; {\rm No.2} \\ 2x3 \; {\rm SPF} \; {\rm No.2} \\ 3x3 \; {\rm SPF} \; {\rm No.2} \\ {\rm Structural wood she} \\ 6-0-0 \; {\rm cc} \; {\rm purlins.} \\ {\rm Rigid \; ceiling \; directly} \\ {\rm bracing.} \\ (size) & 1=14-0-0, \\ 7=14-0-0, \\ 1=59 \; ({\rm LC} \\ {\rm Max \; Horiz} \; 1=59 \; ({\rm LC} \\ {\rm Max \; Grav} \; 1=42 \; ({\rm LC} \\ ({\rm LC} \; 2), 7=122 \; ({\rm LC} \\ {\rm Ch} \; 2), 7=122 \; ({\rm LC} \\ {\rm Ch} \; 2), 7=122 \; ({\rm LC} \\ {\rm Ch} \; 2), 7=122 \; ({\rm LC} \\ {\rm Ch} \; 2), 7=122 \; ({\rm LC} \\ {\rm Ch} \; 2), 7=122 \; ({\rm LC} \\ {\rm Ch} \; 2), 7=122 \; ({\rm LC} \; 2), 7=122 \; ({\rm Ch} \; 2), 7=122 \; ({\rm LC} \; 2), 7=122 \; ({$	athing directly applied applied or 10-0-0 oc 2=14-0-0, 6=14-0-0, 8=14-0-0, 9=14-0-0, 12) 2 13), 2=-3 (LC 12), 7 3=-111 (LC 13), 10=-7 19), 2=84 (LC 2), 6= 42 (LC 20), 8=366 (L	4) 5) d or 6) 7) 8) 9) =-10 10 112 11 84 .C	TCLL: ASCE Plate DOL=7 DOL=1.15 P Partially Exp Unbalanced design. Gable requir Gable studs This truss la chord live lot * This truss l on the botton 3-06-00 tall l chord and an) All bearings) Provide mec bearing plate 1, 10 apd	E 7-16; Pr=25.0 1.15); Pg=20.0 late DOL=1.15) .; Ce=1.0; Cs=' snow loads hav es continuous b spaced at 4-0-(as been design ad nonconcurre has been design m chord in all ar by 2-00-00 wide are assumed to chanical connect e capable of witt t at joint 7, 3 lb	psf (roof LL psf; Pf=15.4); Is=1.0; Rc 1.00; Ct=1.1 ve been cor bottom chor 0 oc. ed for a 10.0 ont with any need for a liv reas where e will fit betw ers, with BC b be SPF No tion (by oth hstanding 2 uplift at join	L: Lum DOL= 4 psf (Lum bugh Cat C; 10 10 10 10 10 10 10 10 10 10	1.15 his ds. opsf om f. to joint Jlift at					
FORCES	20), 9=33 (Ib) - Maximum Com Tension	6 (LC 3), 10=366 (LC ppression/Maximum	; 19) 12) This truss is International	designed in acc Residential Co	cordance wi	ith the 2018 R502.11.1 a	and					
TOP CHORD	1-2=-63/70, 2-3=-73	/40, 3-4=-110/84, 5/29, 6-715/12	13	s) See Standar	d Industry Pigg	yback Trus	s Connectior	1					
BOT CHORD WEBS	2-10=0/55, 9-10=0/5 4-9=-227/38, 3-10=-	55, 8-9=0/55, 6-8=0/5 300/153, 5-8=-300/1	5 52 LO	Detail for Co consult quali DAD CASE(S)	nnection to bas fied building de Standard	e truss as a signer.	applicable, or					G E OF	MISSO
NOTES 1) Unbalance this design 2) Wind: AS(Visad 21	ed roof live loads have n. CE 7-16; Vult=115mph	been considered for (3-second gust)	_1									STATUSCOT	T M. IER

Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat.
 II; Exp C; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
 Truss designed for wind loads in the plane of the truss

only. For studs exposed to wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent colleges with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

February 8,2024

E

MAR

PE-2001018807

SSIONAL

Job	Truss	Truss Type	Qty	Ply	Lot 17 TCR	
230872	P9	Piggyback	2	1	Job Reference (optional)	163476833

16023 Swingley Ridge Rd. Chesterfield MO 63017

314.434.1200 / MiTek-US.com

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANS/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

Job	Truss	Truss Type	Qty	Ply	Lot 17 TCR	
230872	P10	Piggyback	2	1	Job Reference (optional)	163476834

Run: 8.73 S Jan 4 2024 Print: 8.730 S Jan 4 2024 MiTek Industries, Inc. Tue Feb 06 14:22:53 ID:L7ngsiKToNr0YaQ3fLoZl8y6jdi-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:33.7

Plate Offsets (X, Y): [6:0-2-0,0-2-8]

Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 25.0 20.4/20.0 10.0 10.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018	3/TPI2014	CSI TC BC WB Matrix-S	0.06 0.03 0.05	DEFL Vert(LL) Vert(CT) Horz(CT)	in n/a n/a 0.00	(loc) - - 10	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 47 lb	GRIP 197/144 FT = 10%
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SPF No.2 2x4 SPF No.2 2x4 SPF No.2 2x4 SPF No.2 2x4 SPF No.2 Structural wood she 6-0-0 oc purlins, ex 2-0-0 oc purlins (6-0 Rigid ceiling directly bracing. (size) 2=11-4-1 12=11-4-1 14=11-4-1 Max Horiz 2=168 (L0 Max Uplift 2=-1 (LC (LC 8), 12 12), 14=-1 12) Max Grav 2=156 (L0 11=199 (L) 13=221 (L) 15=230 (L)	athing directly applied cept end verticals, and -0 max.): 6-9. applied or 10-0-0 oc 1, 10=11-4-11, 11=11- 11, 13=11-4-11, 11, 15=11-4-11 29) 8), 10=-10 (LC 9), 11= 2=-44 (LC 9), 13=-59 (LC 33 (LC 12), 15=-59 (LC 2 40), 10=45 (LC 33), .C 33), 12=188 (LC 3) .C 34), 14=210 (LC 34- .C 34)	2) i or d 4) -4-11, 5) -37 6) LC C 7) 8) 9) 10 4), 11	Wind: ASCE Vasd=91mph II; Exp C; Enc cantilever leff right exposed Truss design only. For stu see Standard or consult qu TCLL: ASCE Plate DOL=1 DOL=1.15 Pl Partially Exp. Unbalanced design. This truss ha load of 12.0 p overhangs no Provide adeq All plates are Gable require Gable studs s) This truss ha	7-16; Vult=115mph ; TCDL=6.0psf; BC closed; MWFRS (er and right exposed d; Lumber DOL=1.6 ed for wind loads i ds exposed to wind l Industry Gable En alified building desi 7-16; Pr=25.0 psf 1.5); Pg=20.0 psf 1.5); Pg=20.0 psf 1.5); Pg=20.0 psf 1.5); Pg=20.0 psf 3.5); Ce=1.0; Cs=1.00; snow loads have be s been designed for psf or 1.00 times fla on-concurrent with uate drainage to p 2x4 MT20 unless of s continuous botto paced at 2-0-0 oc. s been designed for d popconcurrent with	n (3-sec CDL=6.0 nvelope ; end v 60 plate n the pl d (norm d Deta gner as (roof LL Pf=20.4 c1.0; Rc ; Ct=1.1 een cor or greate to roof k other lin revent v other wi m chor r a 10.0	ond gust) psf; h=25f; () exterior zor rertical left an- grip DOL=1.(ane of the tru al to the face) ils as applicat s per ANSI/TF : Lum DOL=1 psf (Lum bugh Cat C; 0, Lu=50-0-0 isidered for th er of min roof bad of 15.4 ps re loads. water ponding se indicated. d bearing. 0 psf bottom	Cat. ne; d 60 sss), pole, PI 1. I.15 live sf on J.	16) See Deta cons 17) Grap or th botto LOAD C	Standa ail for Co sult qual phical p be orient pom chor chor chor chor chor	rd Indu iffied b urlin re ation o d. Star	ustry Piggyback T ion to base truss uilding designer. presentation doe of the purlin along ndard	russ Connection as applicable, or is not depict the size the top and/or
FORCES TOP CHORD BOT CHORD WEBS NOTES 1) Unbalance this design	(lb) - Maximum Corr Tension 1-2=0/22, 2-3=-138/ 4-5=-93/48, 5-6=-84 7-8=-55/42, 8-9=-55 2-15=-56/42, 14-15= 12-13=-56/42, 14-15= 12-14=-56/42, 14-15= 12-14=	pression/Maximum 50, 3-4=-108/46, /44, 6-7=-55/42, /42, 9-10=-37/25 56/42, 13-14=-56/42 2=-56/42, 10-11=-56/4 172/78, 5-13=-181/7 163/62 been considered for	12 , 13 2 8, 15	chord live loa) * This truss h on the botton 3-06-00 tall b chord and an) All bearings a) Provide mech bearing plate 10, 1 lb uplift at joint 14, 55 and 37 lb upl) This truss is of International R802.10.2 ar	d nonconcurrent w as been designed in a chord in all areas y 2-00-00 wide will y other members, v are assumed to be nanical connection capable of withsta at joint 2, 59 lb upl b lb uplift at joint 13 iff at joint 11. designed in accord: Residential Code s ad referenced stance	ith any for a liv where fit betw with BC SPF No (by oth nding 1 ift at joi , 44 lb o ance w sections dard AN	other live load e load of 20.0 DL = 10.0psf. .2. ers) of truss to 0 lb uplift at joint 1 ith the 2018 R502.11.1 a ISI/TPI 1.	ds. Jpsf om o point plift 2 nd		-		STE OF M SCOT SEVI NUM PE-2001	AISSOLD T.M. ER DEPUTE DISSO7

February 8,2024

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

Job	Truss	Truss Type	Qty	Ply	Lot 17 TCR	
230872	P11	Piggyback	4	1	Job Reference (optional)	163476835

6-2-0

Run: 8,73 S Jan 4 2024 Print: 8,730 S Jan 4 2024 MiTek Industries, Inc. Tue Feb 06 14:22:54 ID:L7ngsiKToNr0YaQ3fLoZl8y6jdi-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:42.8

Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 25.0 15.4/20.0 10.0 10.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC201	8/TPI2014	CSI TC BC WB Matrix-S	0.28 0.19 0.11	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 6	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 37 lb	GRIP 197/144 FT = 10%
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SPF No.2 2x4 SPF No.2 2x3 SPF No.2 2x3 SPF No.2 2x3 SPF No.2 Structural wood shea 6-0-0 oc purlins, exx Rigid ceiling directly bracing. (size) 1=12-4-0, 7=12-4-0, 7=12-4-0, Max Horiz 1=243 (LC 6=-35 (LC 8=-101 (L) Max Grav 1=120 (LC 6=209 (LC (LC 3)	athing directly applied cept end verticals. applied or 10-0-0 oc 2=12-4-0, 6=12-4-0, 8=12-4-0 29) 26), 2=-51 (LC 12), 9), 7=-120 (LC 12), C 12) 29), 2=292 (LC 26), C 12) 29), 7=516 (LC 5), 8=-	3) or 5) 6) 7) 8) 9) 10 401 1-	TCLL: ASCE Plate DOL=1 DOL=1.15 Pl Partially Exp Unbalanced design. Gable requiri Gable studs This truss ha chord live loa * This truss h on the bottor 3-06-00 tall b chord and ar All bearing at jo using ANSI/1 designer sho) Provide mec	7-16; Pr=25.0 ps .15); Pg=20.0 ps late DOL=1.15); I .; Ce=1.0; Cs=1.0; snow loads have es continuous bol spaced at 4-0-0 c s been designed ad nonconcurrent nas been designed n chord in all area by 2-00-00 wide w at assumed to b int(s) 1, 2 conside TP[1 a angle to gra uld verify capacit hanical connectio	of (roof LL f; Pf=15.4 s=1.0; Rc 0; Ct=1.4 been cor tom chor c. for a 10.4 with any d for a liv as where e SPF Ne res paralli in formuli y of bear n (by oth topding 2	: Lum DOL= psf (Lum pugh Cat C; 0 usidered for th d bearing.) psf bottom other live loa e load of 20.0 a rectangle veen the botto DL = 10.0psf b.2. el to grain val a. Building ng surface. ers) of truss t	1.15 his ds. Dpsf om t ue					
FORCES	(lb) - Maximum Com Tension	pression/Maximum		1, 35 lb uplift	at joint 6, 51 lb u	plift at joi	nt 2, 120 lb u	plift					
TOP CHORD	1-2=-270/92, 2-3=-1 4-5=-135/61, 5-6=-12	97/65, 3-4=-154/73, 28/46	12	at joint 7 and 101 to uplint at joint 8. 12) This truss is designed in accordance with the 2018 International Residential Code sections R502 11 1 and									
BOT CHORD	2-8=-80/62, 7-8=-80/	/62, 6-7=-80/62 258/179		R802.10.2 a	nd referenced sta	ndard AN	ISI/TPI 1.						an
NOTES	+-1	200/143	13	 See Standar Detail for Co. 	d Industry Piggyb	ack Trus	s Connection					FE OF I	ISS D
1) Wind ASC	F 7-16 [,] Vult=115mph	(3-second gust)		consult quali	fied building desig	nuss as a mer.	applicable, 01				B	AN	N.SY
//asd_01m	nh: TCDI _6 Onef: BC	10 -6 Onef: h=25ft: Ca	+ 14	LOAD CASE (C) choose dard									

II; Exp C; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60

2) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1. LOAD CASE(S) Standard

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent colleges with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

Job	Truss	Truss Type	Qty	Ply	Lot 17 TCR	
230872	P12	Piggyback	2	1	Job Reference (optional)	163476836

Run: 8,73 S Jan 4 2024 Print: 8,730 S Jan 4 2024 MiTek Industries, Inc. Tue Feb 06 14:22:54 ID:Xn?hI5shCCWdRVMjoI564dy6jd?-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Scale = 1:40.1

Plate Offsets (X, Y): [5:0-2-0,0-2-8]

						-		-						
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	20	(psf) 25.0).4/20.0 10.0 10.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC201	8/TPI2014	CSI TC BC WB Matrix-S	0.25 0.19 0.13	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 7	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 36 lb	GRIP 197/144 FT = 10%
LUMBER TOP CHORD BOT CHORD WEBS DTHERS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SPF N 2x4 SPF N 2x3 SPF N 2x3 SPF N Structural 6-0-0 oc p Rigid ceili bracing. (size)	No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2	athing directly applied cept end verticals, an -0 max.): 5-6. applied or 10-0-0 oc 2=12-4-0, 7=12-4-0, 9=12-4-0	3, 4, d or d 5, 6, 7, 8, 9, 9, 9,	Truss desig only. For stu see Standari or consult qu TCLL: ASCE Plate DOL=1 DOL=1.15 P Partially Exp Unbalanced design. Provide adee Gable requir Gable studs This truss ha	ned for wind loads ids exposed to wind d Industry Gable Er lalified building des 7-16; Pr=25.0 psf .15); Pg=20.0 psf; late DOL=1.15); Is ; Ce=1.0; Cs=1.00 snow loads have b quate drainage to p es continuous botto spaced at 4-0-0 oc is been designed f	in the p d (norm nd Deta iigner a (roof LI Pf=20.4 =1.0; Re ; Ct=1. een cou prevent om chou or a 10.	lane of the tru al to the face ils as applical s per ANSI/Tf 2: Lum DOL= 4 psf (Lum ough Cat C; 10, Lu=50-0-C nsidered for th water ponding d bearing.	uss), ble, PI 1. 1.15) nis g.					
FORCES	 8=12-4-0, 9=12-4-0 8=12-4-0, 9=12-4-0 8=12-4-0, 9=12-4-0 9) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 10) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf. 11) All bearings are assumed to be SPF No.2. 12) Bearing at joint(s) 1, 2 considers parallel to grain value 													
TOP CHORD BOT CHORD WEBS	Tension 1-2=-240/ 4-5=-122/ 2-9=-72/5 4-8=-367/	93, 2-3=-1 54, 5-6=-7 4, 8-9=-72 141, 3-9=-	69/72, 3-4=-153/80, 0/53, 6-7=-109/46 /54, 7-8=-72/54 326/154	1:	 using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface. 13) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 95 lb uplift at joint 1, 35 lb uplift at joint 7, 51 lb uplift at joint 2, 96 lb uplift at joint 8 and 107 lb uplift at joint 9. 								MISSOLAN MISSOLAN	
 NOTES NOTES 1) Unbalanced roof live loads have been considered for this design. 2) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60 					 14) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. 15) See Standard Industry Piggyback Truss Connection Detail for Connection to base truss as applicable, or consult qualified building designer. 16) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or 									

or the orientation of the purlin along the top and/or bottom chord.

LOAD CASE(S) Standard

February 8,2024

E

SIONAL

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

Job	Truss Truss Type		Qty	Ply	Lot 17 TCR	
230872	P13	Piggyback	4	1	Job Reference (optional)	163476837

1)

2)

3)

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponent.com)

Job	Truss	Truss Type	Qty	Ply	Lot 17 TCR	R		162/70000
230872	P18	Piggyback	1	1	Job Refere	nce (op	tional)	163476838
Wheeler Lumber, Waverly, KS - 6	66871,	Run: 8.73 S	Jan 4 2024 Print: 8.	730 S Jan 4	2024 MiTek Ind	dustries, l	Inc. Tue	e Feb 06 14:22:55 Page: 1
		ID:pJL232K	əznztək (GD3J0ILy6jü	III-KIC?PSB7	omqaNSgPqnL	.ow3uHX	JGKWI	IGD01/J42JG?I
	-0-11-5	9-9-15	1			19-7	<u>'-1</u> 4	20-7-3
	0-11-5	9-9-15				9-9-	-15	0-11-5
			4x5 =					
			5					
\top \top				_				
		1 <u>2</u> 6		\searrow				
		4			\sim	6		
0 7		15				10	6	
5-3-							\geq	
	3							7
4 6	1	•	•			•		9

	3x4 = 14	13 17	12		18	11		10 3x4 =
	1		19-7-14					
Scale = 1:40.4								
Loading	(psf) Spacing	2-0-0 CSI	DEF		in (loc)	l/defl	L/d	PLATES GRIP
TCLL (roof) Spow (Pf/Pg) 15.4	25.0 Plate Grip DOL	1.15 TC	0.21 Vert	LL) I	n/a -	n/a n/a	999 999	MT20 197/144
TCDL	10.0 Rep Stress Incr	YES WB	0.13 Horz	(CT) 0.	00 8	n/a	n/a	
BCDL	10.0* Code 10.0	IRC2018/TPI2014 Matrix-S						Weight: 59 lb FT = 10%
LUMBER TOP CHORD 2x4 SPF No BOT CHORD 2x4 SPF No OTHERS 2x3 SPF No BRACING TOP CHORD Structural w 6-0-0 oc pur BOT CHORD Rigid ceiling bracing. REACTIONS (size) 2= 11 12 Max Horiz 2= Max Uplift 2= Max Uplift 2= (L Max Grav 2= 12 12 FORCES (lb) - Maximu Tension TOP CHORD 1-2=0/17, 2- 4-5=-109/13 7-8=-80/20, BOT CHORD 2-14=-2/81, 11-12=-2/81	.2 .2 .2 .2 .2 .2 .2 .2 .2 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0	 a) Truss designed for wind i only. For studs exposed t see Standard Industry Gal or consult qualified buildin 4) TCLL: ASCE 7-16; Pr=25. Plate DOL=1.15; Pg=20.0 DOL=1.15 Plate DOL=1.1 Partially Exp.; Ce=1.0; Cs 5) Unbalanced snow loads h design. 6) This truss has been desigi load of 12.0 psf or 1.00 tin overhangs non-concurrent 7) All plates are 2x4 MT20 u 8) Gable requires continuous 9) Gable studs spaced at 4-C 10) This truss has been desigi chord live load nonconcurrent 11) * This truss has been desigi on the bottom chord in all 3-06-00 tall by 2-00-00 wit chord and any other memi 12) All bearings are assumed 13) Provide mechanical connet bearing plate capable of w 2, 4 lb uplift at joint 8, 124 at joint 14, 124 lb uplift at joint 28, 10. 14) This truss is designed in a International Residential CR802.10.2 and referenced 15) See Standard Industry Pig Detail for Connection to be consult qualified building cat. LOAD CASE(S) Standard 	backs in the plane of bowind (normal to the plane of the plane of plane	r the truss he face), applicable, NSI/TPI 1. DOL=1.15 Jum cat C; ad for this hin roof live 15.4 psf on ds. icated. ing. ottom live loads. of 20.0psf angle he bottom 10.0psf. f truss to oblift at joint 85 lb uplift plift at joint 2018 .11.1 and I 1. hection able, or				SCOTT M. SEVIER NUMBER PE-2001018807 FESSIONAL ENGINE
								1 6610ary 0,2024

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

Job	Truss	Truss Type	Qty	Ply	Lot 17 TCR	
230872	P19	Piggyback	1	1	Job Reference (optional)	163476839

Run: 8.73 S Jan 4 2024 Print: 8.730 S Jan 4 2024 MiTek Industries, Inc. Tue Feb 06 14:22:55 ID:6gGhXSQUvqstVp1c71xR4qy6jda-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

16023 Swingley Ridge Rd. Chesterfield MO 63017 314.434.1200 / MiTek-US.com

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponent.com)

Job	Truss	Truss Type	Qty	Ply	Lot 17 TCR	
230872	P20	Piggyback	1	1	Job Reference (optional)	163476840

Run: 8.73 S Jan 4 2024 Print: 8.730 S Jan 4 2024 MiTek Industries, Inc. Tue Feb 06 14:22:56 ID:asq4InR6g8_k7zcohkSgc1y6jdZ-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Scale = 1:41.1

Plate Offsets (X, Y): [3:0-2-0,Edge]

Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 25.0 20.4/20.0 10.0 10.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC201	8/TPI2014	CSI TC BC WB Matrix-S	0.24 0.14 0.07	DEFL Vert(LL) Vert(CT) Horz(CT)	in n/a n/a 0.00	(loc) - - 8	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 53 lb	GRIP 197/144 FT = 10%	
LUMBER TOP CHORD BOT CHORD OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SPF No.2 2x4 SPF No.2 2x3 SPF No.2 Structural wood shee 6-0-0 oc purlins, exc 2-0-0 oc purlins (6-0 Rigid ceiling directly bracing. (size) 2=19-7-14 11=19-7-1 13=19-7-1 Max Horiz 2=-36 (LC	athing directly applied of max.): 3-7. applied or 6-0-0 oc t, 8=19-7-14, 10=19- 4, 12=19-7-14, 13)	3) 4) d or 5) 7-14, 6) 7)	Truss design only. For stu see Standard or consult qu TCLL: ASCE Plate DOL=1 DOL=1.15 P Partially Exp Unbalanced design. This truss ha load of 12.0 J overhangs n Provide adec	hed for wind loads dids exposed to wind d Industry Gable E alified building des 7-16; Pr=25.0 psf; ate DOL=1.15); IS ; Ce=1.0; Cs=1.00 snow loads have b s been designed fr bsf or 1.00 times fl on-concurrent with uate drainage to p	in the p d (norm nd Deta signer a (roof Ll Pf=20.4 =1.0; Rt =1.0; Ct=1. or great at roof l other li orevent	lane of the tru al to the face; ils as applicat s per ANSI/TF L sum DOL=' l psf (Lum Jough Cat C; l0, Lu=50-0-0 sidered for th er of min roof pad of 15.4 ps /e loads. water ponding	iss), ble, Pl 1. 1.15 his live sf on g.						
	Max Uplift 2=-52 (LC 10=-38 (L 12=-77 (L Max Grav 2=277 (L 10=375 (L 12=437 (L	: 12), 8=-49 (LC 13), C 8), 11=-76 (LC 9), C 8), 13=-45 (LC 9) C 37), 8=262 (LC 37), C 55), 11=448 (LC 3 C 36), 13=402 (LC 5	 a) Gable requires continuous bottom find betaining. b) Gable studs spaced at 4-0-0 oc. c) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. c) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 											
FORCES TOP CHORD	(lb) - Maximum Com Tension 1-2=0/22, 2-3=-154/3 4-5=-74/51, 5-6=-74, 7-8=-142/89, 8-9-0/	pression/Maximum 55, 3-4=-94/58, /51, 6-7=-75/52, 22	, 1: 1:	 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf. 12) All bearings are assumed to be SPF No.2. 13) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 52 lb uplift at joint 										
BOT CHORD WEBS	2-13=-19/83, 12-13= 10-11=-19/83, 8-10= 7-10=-270/83, 6-11= 5-12=-360/123, 4-13	19/83, 11-12=-19/83 29/78 369/124, 286/94	3, 14	2, 49 lb uplift at joint 11, 77 13. 4) This truss is	at joint 8, 38 lb up 7 lb uplift at joint 12 designed in accord	lift at jo 2 and 4 dance w	nt 10, 76 lb u i lb uplift at joi ith the 2018	plift int			Ba	STAT SCOT	r M. ER	
 5-10=-270/83, 6-11=-369/124, 5-12=-360/123, 4-13=-286/94 NOTES 1) Unbalanced roof live loads have been considered for this design. 2) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60 				 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. 15) See Standard Industry Piggyback Truss Connection Detail for Connection to base truss as applicable, or consult qualified building designer. 16) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord. LOAD CASE(5) Standard 										

February 8,2024

Page: 1

And the second s

🛦 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.
Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not
a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall
building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing
is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the
fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org)
and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

Job	Truss	Truss Type	Qty	Ply	Lot 17 TCR	
230872	R1	Roof Special Girder	1	2	Job Reference (optional)	163476841

Run: 8.73 S Jan 4 2024 Print: 8.730 S Jan 4 2024 MiTek Industries, Inc. Tue Feb 06 14:22:56 ID:m35xKoOf4PxX569_pqNCJhy6jcK-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Scale = 1:45.8

Plate Offsets	(X,	Y):	[5:0-5-8,Edge]
---------------	-----	-----	----------------

Loading TCLL (roo Snow (Pf/ TCDL BCLL BCLL BCDL	() 29) 20.4/2 1 1 1	psf) 25.0 20.0 10.0 10.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 NO IRC201	8/TPI2014	CSI TC BC WB Matrix-S	0.80 0.35 0.82	DEFL Vert(LL) Vert(CT) Horz(CT) Wind(LL)	in -0.08 -0.13 0.04 -0.01	(loc) 2 2 5 2	l/defl >999 >999 n/a >999	L/d 360 240 n/a 240	PLATES M18AHS MT20 Weight: 221 lb	GRIP 142/136 197/144 FT = 10%	
LUMBER TOP CHO BOT CHO WEBS BRACING TOP CHO BOT CHO REACTIO FORCES TOP CHO BOT CHO WEBS NOTES	 RD 2x8 SP 2400F RD 2x6 SPF No.2 2x4 SPF No.2 9-1:2x4 SPF 2 9-1:2x4 SPF 2 RD 2-0-0 oc purlir end verticals. RD Rigid ceiling d bracing. NS (size) 5=(0-5 Max Horiz 10= Max Grav 5=6 (lb) - Maximur Tension RD 1-10=-6941/0, 3-4=-3641/0, 4 RD 9-10=-20/417, 7-8=0/139, 5- 1-9=0/8916, 7 3-7=-7346/0, 4 	² 2.0E ² *Excep ² *Excep ² *Excep ² *Excep ² *Excep ² *Excep ² *Excep ³ *Excep ³ *Excep ⁴ *-2), 10= ² *-2)	pt* 2-8:2x4 SPF No.2 pt* 10-1:2x6 SPF No 1.8E -0 max.): 1-4, excep applied or 10-0-0 oc - bearing block), (req =0-6-0 C 9) C 19), 10=7162 (LC pression/Maximum 7937/0, 2-3=-7963/0, 430/0 (141, 2-9=-4764/0, 50 (07, 3-9=0/4908, 5344	3, 2, 4, 1, 20) 6, 7, 8, 9, 9, 1, 1, 1, 1,	 2x6 SPF No each face wit 3" o.c. 12 Toi to be SPF Nd. Wind: ASCE Vasd=91mph II; Exp C; End and right exp Lumber DOL TCLL: ASCE Plate DOL=1 DOL=1.15 PI Partially Exp. Provide adec All plates are This truss ha chord live load * This truss ha on the botton 3-06-00 tall b chord and an This truss is a International 	2 bearing block 12 th 3 rows of 10d (tal fasteners per b .2. 7-16; Vult=115mp ; TCDL=6.0psf; B closed; MWFRS (osed; end vertica =1.60 plate grip D 7-16; Pr=25.0 psf; ate DOL=1.15); Is ; Ce=1.0; Cs=1.00 juate drainage to p international products of tal ponconcurrent is been designed in chord in all areas by 2-00-00 wide wi yo ther members, are assumed to be designed in accorr Residential Code	2" long a 0.131"x3 lock. Be cDL=6.0 cDL=6.0 cDL=1.60 (for cof LL Pf=20.4 =1.0; Rc 0; Ct=1.1 or event 1 viss other or a 10.0 with any f for a liv s where ll fit betw with BC e SPT Ne dance w dance w sections	t jt. 5 attache y") nails space aring is assu- tond gust) ppsf; h=25ft; aright expose); cantilever f right expose); cum DOL= bpsf (Lum pugh Cat C; 0, Lu=50-0-1; water pondin wise indicate 0 psf bottom other live loa e load of 20. a rectangle veen the bott DL = 10.0ps o.2. that the the 2018 R502.11.1 a	ed to sed med Cat. left ed; 1.15 0 g. ed. opsf om f. and	C	oncentra Vert: 3= 14=-135	ted Lo. -1393, 33, 15=	ads (lb) 11=-1396, 12=-1 -1390	394, 13=-1393,	
 2-ply t (0.131 Top cl stagge oc, 2x Bottor stagge Web c All loa excep CASE provid unless 	russ to be connecte "x3") nails as follow: hords connected as red at 0-9-0 cc, 2x8 4 - 1 row at 0-9-0 cc, 2x8 4 - 1 row at 0-9-0 cc, 2x4 on chords connected red at 0-9-0 cc, 2x4 onnected as follows ds are considered e t if noted as front (F) (S) section. Ply to pl ed to distribute only otherwise indicated	ed toget rs: follows 3 - 2 rov c. as follo 4 - 1 rov s: 2x4 - equally a) or bac ly conn r loads r d.	her with 10d : 2x6 - 2 rows ws staggered at 0-9-1 ws: 2x6 - 2 rows v at 0-9-0 oc. 1 row at 0-9-0 oc. applied to all plies, k (B) face in the LO, ections have been hoted as (F) or (B),	1: 0 1: AD L 1;	 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. 12) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord. 13) Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 338 lb down and 238 lb up at 12-9-4 on top chord. The design/selection of such connection device(s) is the responsibility of others. LOAD CASE(S) Standard 1) Dead + Snow (balanced): Lumber Increase=1.15, Plate Increase=1.15 Uniform Loads (lb/ft) 										

February 8,2024

Page: 1

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

Additional and the second strength of the sec

Job	Truss	Truss Type	Qty	Ply	Lot 17 TCR	
230872	R2	Roof Special Girder	1	2	Job Reference (optional)	163476842

Run: 8.73 S Jan 4 2024 Print: 8.730 S Jan 4 2024 MiTek Industries, Inc. Tue Feb 06 14:22:57 ID:m35xKoOf4PxX569_pqNCJhy6jcK-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:45.8 Plate Offsets (X, Y): [5:0-5-8,Edge]

Loa TCL Snc TCL BCL BCL	i ding LL (roof) ww (Pf/Pg) DL LL DL	(psf) 25.0 20.4/20.0 10.0 10.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 NO IRC201	8/TPI2014	CSI TC BC WB Matrix-S	0.80 0.35 0.82	DEFL Vert(LL) Vert(CT) Horz(CT) Wind(LL)	in -0.08 -0.13 0.04 -0.01	(loc) 2 2 5 2	l/defl >999 >999 n/a >999	L/d 360 240 n/a 240	PLATES M18AHS MT20 Weight: 221 lb	GRIP 142/136 197/144 FT = 10%	
LUI TOF BO WE BR/ BO TOF BO	MBER P CHORD T CHORD BS ACING P CHORD T CHORD	2x8 SP 2400F 2.0E 2x6 SPF No.2 *Exce 2x4 SPF No.2 *Exce 9-1:2x4 SPF 2100F 2-0-0 oc purlins (6-0- end verticals. Rigid ceiling directly bracing.	pt* 2-8:2x4 SPF No. pt* 10-1:2x6 SPF No 1.8E -0 max.): 1-4, excep applied or 10-0-0 oc	3) 2 0.2, 4) ot 5)	2x6 SPF No. each face wii 3" o.c. 12 To to be SPF Nd Wind: ASCE Vasd=91mph II; Exp C; En and right exp Lumber DOL TCLL: ASCE Plate DOL=1	2 bearing block 12 h 3 rows of 10d (0 al fasteners per bl).2. 7-16; Vult=115mpl ; TCDL=6.0psf; BC closed; MWFRS (e osed ; end vertical =1.60 plate grip D0 7-16; Pr=25.0 psf; 15); Pg=20.0 psf;	" long a 0.131"x3 ock. Be h (3-sec CDL=6.0 envelope left and DL=1.60 (roof LL Pf=20.4	t jt. 5 attache ") nails spac aring is assu ond gust))psf; h=25ft;); cantilever I right expose) : Lum DOL= psf (Lum	ed to red med Cat. left ed; 1.15	Cc	oncentra Vert: 3= 14=-139	ted Loa -1393, 93, 15=	ads (lb) 11=-1396, 12=-1 -1390	394, 13=-1393,	
re <i>i</i> Foi bo ⁻ we	ACTIONS RCES P CHORD T CHORD BS	(size) 5=(0-3-8 + 0-5-2), 10: Max Horiz 10=147 (L Max Grav 5=6552 (L (lb) - Maximum Com, Tension 1-10=-6941/0, 1-2=-7 3-4=-3641/0, 4-5=-6 9-10=-20/417, 8-9=0 7-8=0/139, 5-7=-51/6 1-9=0/8916, 7-9=0/4 3-7=-7346/0, 4-7=0/6	 bearing block), (rec =0-6-0. C 9) C 19), 10=7162 (LC pression/Maximum 7937/0, 2-3=-7963/0 430/0 /141, 2-9=-4764/0, 51 067, 3-9=0/4908, 5344 	1. 20) 6) 7) 8) , 9) 1(1	DOL=1.15 Pl Partially Exp. Provide adec All plates are This truss ha chord live loa * This truss h on the botton 3-06-00 tall b chord and ar 0) All bearings a	ate DOL=1.15); Is; ; Ce=1.0; Cs=1.00 juate drainage to p MT20 plates unlet s been designed for d nonconcurrent w as been designed n chord in all areas y 2-00-00 wide will y other members, are assumed to be designed in accord	=1.0; Rc ; Ct=1.1 vrevent v ss other or a 10.0 vith any for a liv s where I fit betw with BC SPF No lance w	ugh Cat C; 0, Lu=50-0-0 vater pondin wise indicate 0 psf bottom other live load e load of 20. a rectangle veen the bott DL = 10.0ps 0.2. th the 2018	0 g. ed. ads. 0psf om f.						
NO 1) 2)	TES 2-ply truss (0.131"x3" Top chord oc, 2x4 - 1 Bottom ch staggered Web conn All loads a except if n CASE(S) s provided to unless oth	to be connected toget) nails as follows: s connected as follows at 0-9-0 oc, 2x8 - 2 rov row at 0-9-0 oc. ords connected as follo at 0-9-0 oc, 2x4 - 1 rov ected as follows: 2x4 - re considered equally a oted as front (F) or bac section. Ply to ply conn o distribute only loads r erwise indicated.	her with 10d :: 2x6 - 2 rows ws staggered at 0-9- ows: 2x6 - 2 rows w at 0-9-0 oc. applied to all plies, ck (B) face in the LO lections have been noted as (F) or (B),	12 0 13 AD LC 1)	 International R802.10.2 ar Graphical pu or the orienta bottom chorce Hanger(s) or provided suff lb down and design/select responsibility DAD CASE(S) Dead + Snc Increase=1. Uniform Loa Vert: 1-4: 	Residential Codes and referenced stan- rlin representation tion of the purlin a other connection of cicient to support co 238 lb up at 12-9 ion of such connect of others. Standard w (balanced): Lurr 15 ads (lb/ft) -61, 9-10=-20, 5-5	dard AN does no long the device(s oncentra 4 on top ction de	R502.11.1 a (SI/TPI 1. top and/or) shall be (ted load(s) 3 c chord. The vice(s) is the rease=1.15,	and size 338 Plate		Å		PE-20010	L ENGL	

February 8,2024

Not the second s

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

Job	Truss	Truss Type	Qty	Ply	Lot 17 TCR	
230872	R3	Half Hip Girder	1	2	Job Reference (optional)	163476843

Run: 8.73 S Jan 4 2024 Print: 8.730 S Jan 4 2024 MiTek Industries, Inc. Tue Feb 06 14:22:57 ID:iRDhIUPwb1BFLPIMxFPgP6y6jcI-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

	4-0-12	9-2-4	13-1-0
	4-0-12	5-1-8	3-10-12
Scale = 1:42.2			

Plate Offsets (X, Y): [3:0-9-8,0-3-0], [5:Edge,0-3-8], [7:0-8-12,0-3-8], [9:0-2-0,0-4-8]

Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 25.0 20.4/20.0 10.0 10.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 NO IRC201	8/TPI2014	CSI TC BC WB Matrix-S	0.66 0.59 0.96	DEFL Vert(LL) Vert(CT) Horz(CT) Wind(LL)	in -0.12 -0.19 0.11 0.08	(loc) 8 8 6 8	l/defl >999 >785 n/a >999	L/d 360 240 n/a 240	PLATES MT20 M18AHS Weight: 196 lb	GRIP 197/144 142/136 FT = 10%	
LUMBER TOP CHORD BOT CHORD WEBS	2x6 SPF No.2 *Exc 2.0E 2x6 SP 2400F 2.0E No.2 2x4 SPF No.2 *Exc	ept* 3-5:2x6 SP 2400 *Except* 8-4:2x4 SF ept* 10-2:2x6 SPF N	2) 0F PF lo.2 3)	All loads are except if note CASE(S) see provided to c unless other Wind: ASCE Vasd=91mpl	considered equ ed as front (F) or ction. Ply to ply of distribute only loa wise indicated. 7-16; Vult=115f ; TCDL=6.0psf;	ally applied r back (B) f connections ads noted a mph (3-sec BCDL=6.0	t to all plies, ace in the LC s have been as (F) or (B), ond gust) Dosf: h=25ft; (DAD Cat.	15) Use 8-1 con 16) Use Tru con 17) Fill	e Simpso Od Truss nect trus e Simpso ss) or eo nect trus all nail h	on Stro s) or eq ss(es) t on Stro quivale ss(es) t oles w	ng-Tie HGUS26- juivalent at 3-2-9 to front face of bo ng-Tie HUS26 (1 nt at 5-1-12 from to front face of bo here hanger is in	2 (20-10d Girder, from the left end ittom chord. 4-10d Girder, 6-1 the left end to ottom chord. contact with lum	, l to 10d nber.
TOP CHORD	Structural wood she 6-0-0 oc purlins, ex 2-0-0 oc purlins (5- Rigid ceiling directly bracing.	eathing directly applie (cept end verticals, a 4-14 max.): 3-5. y applied or 10-0-0 o	ed or and c 4)	II; Exp C; En and right exp Lumber DOL TCLL: ASCE Plate DOL=1	closed; MWFRS posed ; end verti =1.60 plate grip : 7-16; Pr=25.0 p .15); Pg=20.0 p	S (envelope cal left and DOL=1.60 osf (roof LL sf; Pf=20.4); cantilever right expose : Lum DOL= psf (Lum	left ed; 1.15	18) Har pro Ib d 250 11-	nger(s) o vided su own and Ib up at 1-12 on t	fficient 241 lt 9-1-1 top cho	to support conce to support conce o up at 7-1-12, a 2, and 1828 lb d ord. The design/	ce(s) shall be entrated load(s) 2 nd 1828 lb down own and 250 lb u selection of such	2098 and ip at
REACTIONS	(size) 6=0-4-8, Max Horiz 10=132 (Max Uplift 6=-890 (I Max Grav 6=5782 (10=0-3-8, (req. 0-4-4 LC 7) _C 7), 10=-1127 (LC LC 16), 10=5405 (LC	4) 10) ⁵⁾ C 16)	DOL=1.15 P Partially Exp This truss ha load of 12.0 overhangs n	late DOL=1.15); .; Ce=1.0; Cs=1 is been designed psf or 1.00 times on-concurrent w	Is=1.0; Ro .00; Ct=1.1 d for greate s flat roof Ic rith other liv	ugh Cat C; 0, Lu=50-0-0 er of min roof pad of 15.4 ps re loads.) ⁻ live sf on	con LOAD (1) De Inc	nection CASE(S) ead + Sn crease=1	device) Star low (ba 1.15 pads (ll	(s) is the respons ndard alanced): Lumber o/ft)	ibility of others. Increase=1.15, F	Plate
FORCES TOP CHORD	(lb) - Maximum Cor Tension 1-2=0/55, 2-3=-566 4-5=-413/73, 5-6=-'	npression/Maximum 0/1134, 3-4=-11340/ 1085/172, 2-10=-502	6) 7) (1803, 8) (7/983	Provide adeo All plates are This truss ha	quate drainage to MT20 plates un s been designed	o prevent v nless other d for a 10.0	vater ponding wise indicate) psf bottom	g. :d.	Co	Vert: 1-2 oncentra Vert: 4=	2=-51, ted Loa -1689,	2-3=-51, 3-5=-61 ads (lb) 11=-1637, 12=-1	, 8-10=-20, 6-7=- 689, 13=-2064 ([!]	-20 F),
BOT CHORD WEBS	9-10=-269/487, 8-9 4-7=-243/829, 6-7= 3-9=-381/719, 7-9= 3-7=-1010/7676, 4- 2-9=-682/3722	=-31/219, 7-8=0/280 -1779/11077 -982/4515, 6=-11744/1878,	l, 9)	* This truss h on the bottor 3-06-00 tall b chord and ar	nas been design n chord in all are by 2-00-00 wide ny other member	ed for a live eas where a will fit betw rs, with BC	e load of 20.0 a rectangle veen the botto DL = 10.0psf	om f.		14=-181	8 (F)	STE OF I	AISSO	
NOTES 1) 2-ply truss (0.131"x3" Top chord	s to be connected toge ') nails as follows: s connected as follow	ether with 10d s: 2x6 - 2 rows	11 12) All bearings Provide mec bearing plate	input bearing size are assumed to hanical connection capable of with	be SPF No ion (by othe istanding 8	o.2 . ers) of truss t 90 lb uplift at	to t joint			80	SCOT SEVI		

Top chords connected as follows: 2x6 - 2 rows staggered at 0-9-0 oc, 2x4 - 1 row at 0-9-0 oc. Bottom chords connected as follows: 2x6 - 2 rows staggered at 0-5-0 oc, 2x4 - 1 row at 0-9-0 oc. Web connected as follows: 2x4 - 1 row at 0-9-0 oc.

- 6 and 1127 lb uplift at joint 10.
 13) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 14) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSITPTI Quality Criteria**, and **DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcscomponents.com)

February 8,2024

E

NUMBE

PE-200101880

SSIONAL

C

Job	Truss	Truss Type	Qty	Ply	Lot 17 TCR	
230872	V3	Valley	3	1	Job Reference (optional)	163476844

5-7-0

5-7-0

Wheeler Lumber, Waverly, KS - 66871,

Run: 8.73 S Jan 4 2024 Print: 8.730 S Jan 4 2024 MiTek Industries, Inc. Tue Feb 06 14:22:58 ID:Du0Bh4NzscLS0CkruBsVw_y6jde-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

5-10-0

0-3-0

8-1-1

2-3-1

Page: 1

8-8-0

-6-15

Scale = 1:29.5

Load TCLI Snow TCD BCLI BCD	ling _ (roof) v (Pf/Pg) L _ L	15	(psf) 25.0 5.4/20.0 10.0 10.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC201	8/TPI2014	CSI TC BC WB Matrix-P	0.21 0.26 0.21	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 4	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 22 lb	GRIP 197/144 FT = 10%
LUM TOP BOT OTH BRA TOP BOT REA	BER CHORD ERS CING CHORD CHORD CHORD	2x4 SPF 2 No.2 2x4 SPF 1 2x3 SPF 1 Structural 6-0-0 oc p Rigid ceili bracing. (size) Max Horiz Max Uplift Max Grav	2100F 1.8E No.2 *Exce No.2 wood shea ourlins. ng directly 1=8-9-0, 4 7=8-9-0 1=81 (LC 1=-7 (LC 1 5=-543 (L1 1=202 (LC 7=100 (LC	*Except* 3-4:2x4 Si pt* 7-2:2x3 SPF No. athing directly applie applied or 6-0-0 oc =8-9-0, 5=8-9-0, 6=4 12) 2), 4=-32 (LC 13), C 31), 6=-511 (LC 12) ; 33), 6=-511 (LC 19) ; 12), 6=837 (LC 2), ; 7)	4) PF 2 5) d or 6) 7) 8) 8-9-0, 9) 8, 8-9-0, 9) 2) 1(1 ,	TCLL: ASCE Plate DOL=1 DOL=1.15 Pl Partially Exp Unbalanced design. Gable requiri Gable studs This truss ha chord live loa * This truss h on the bottor 3-06-00 tall b chord and ar D) All bearing at jo using ANSI/T designer sho	7-16; Pr=25.0 psf .15); Pg=20.0 psf; ate DOL=1.15); Isa; ; Ce=1.0; Cs=1.00 snow loads have b es continuous botto spaced at 4-0-0 oc s been designed for an onconcurrent w as been designed n chord in all areas y 2-00-00 wide will y other members, are assumed to be int(s) 6 considers p PI 1 angle to grain uld verify capacity	(roof LI Pf=15.4 =1.0; R(); Ct=1.); ct=1.); ct=1.); ct=1.); or a 10.); or a 10.); o	: Lum DOL= + psf (Lum bugh Cat C; 10 nsidered for th d bearing. D psf bottom other live loa e load of 20.0 a rectangle ween the botts DL = 10.0psf b.2. to grain value a. Building ing surface.	1.15 nis ds. Opsf om					
FOR TOP BOT WEB NOT 1) L 2) V 2) V 3)	CES CHORD CHORD S ES Jubalance his desigr Vind: ASC /asd=91n I; Exp C; :antilever ight expo: Truss des only. For	(Ib) - Max Tension 1-2=-66/9 1-7=-4/3, 4-5=-11/6 3-5=-362/ ed roof live In CE 7-16; Vu nph; TCDL= Enclosed; M left and righ sed; Lumbe signed for wi studs expos	imum Com 8, 2-3=-29(6-7=0/0, 2- 618 bads have tt=115mph 6.0psf; BCI WFRS (en t exposed 5 r DOL=1.6(nd loads in ed to wind	been considered for (3-second gust) DL=6.0psf; h=25ft; C velope) exterior zon end vertical left and plate grip DOL=1.6 the plane of the trus (normal to the face)	1/6, 1; 1/ 14 14 14 15 16 16 16 16 16 16 16 16 16 16 16 16 16	 2) Provide mecc bearing plate 32 Ib uplift at uplift at joint 33) Beveled platt surface with 43) This truss is International R802.10.2 at DAD CASE(S) 	anical connection capable of withsta joint 4, 511 lb uplil 5. e or shim required truss chord at joint designed in accorc Residential Code s ad referenced stan Standard	(by oth anding 7 ft at join to provi (s) 4, 5. lance w sections dard AN	ers) of truss t / Ib uplift at jo t 6 and 543 lt de full bearing ith the 2018 \$ R502.11.1 a ISI/TPI 1.	o int 1, o g ind		7		STE OF M SCOTT SEVI NUM PE-20010	MISSOLA T.M. ER Server 018807

see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

February 8,2024

ESSIONAL E

16023 Swingley Ridge Rd. Chesterfield, MO 63017 314.434.1200 / MiTek-US.com

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

Job	Truss	Truss Type	Qty	Ply	Lot 17 TCR	
230872	V4	Valley	3	1	Job Reference (optional)	163476845

3-10-0

Wheeler Lumber, Waverly, KS - 66871,

Run: 8,73 S Jan 4 2024 Print: 8,730 S Jan 4 2024 MiTek Industries, Inc. Tue Feb 06 14:22:58 ID:Du0Bh4NzscLS0CkruBsVw_y6jde-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

3-10-0

Scolo - 1.20 9

Scale = 1.20.0												
Loading TCLL (roof) Snow (Pf/Pg)	(psf) 25.0 15.4/20.0	Spacing Plate Grip DOL Lumber DOL	2-0-0 1.15 1.15	CSI TC BC	0.19 0.10	DEFL Vert(LL) Vert(TL)	in n/a n/a	(loc) - -	l/defl n/a n/a	L/d 999 999	PLATES MT20	GRIP 197/144
TCDL	10.0	Rep Stress Incr	YES	WB	0.00	Horiz(TL)	0.00	3	n/a	n/a		
BCLL	10.0*	Code	IRC2018/TPI2	2014 Matrix-P								
BCDL	10.0										Weight: 10 lb	FT = 10%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SPF No.2 2x4 SPF No.2 2x3 SPF No.2 Structural wood shee 3-10-8 oc purlins, e: Rigid ceiling directly bracing. (size) 1=3-10-8, Max Horiz 1=66 (LC Max Uplift 1=-18 (LC Max Grav 1=150 (LC (b) Maximum Com	athing directly applie xcept end verticals. applied or 10-0-0 oc 3=3-10-8 9) : 12), 3=-35 (LC 12) C 5), 3=-150 (LC 5)	8) * Th on ti 3-06 choi 9) All b d or 10) Prov beau 1 ar 11) This Inter R80 LOAD C	is truss has been design he bottom chord in all are 5-00 tall by 2-00-00 wide d and any other member bearings are assumed to vide mechanical connecti ing plate capable of with d 35 lb uplift at joint 3. truss is designed in acc mational Residential Coc 2.10.2 and referenced st ASE(S) Standard	eed for a liv eas where will fit betw rs, with BC be SPF No ion (by oth istanding 1 ordance wi de sections tandard AN	e load of 20.0 a rectangle veen the bottc DL = 10.0psf. .2. ers) of truss tr 8 lb uplift at jo ith the 2018 R502.11.1 a ISI/TPI 1.	Dpsf om o o oint nd					
	Tension											
TOP CHORD	1-2=-60/41, 2-3=-116	6/54										
BOTCHORD	1-3=-22/17											
 Wind: ASt Vasd=91n II; Exp C; cantilever right expo Truss dee only. For see Stand or consult TCLL: AS Plate DOL DOL=1.15 	CE 7-16; Vult=115mph nph; TCDL=6.0psf; BCI Enclosed; MWFRS (en left and right exposed sed; Lumber DOL=1.6(signed for wind loads in studs exposed to wind lard Industry Gable End qualified building desig CE 7-16; Pr=25.0 psf (_=1.15); Pg=20.0 psf; P 5 Plate DOL=1.15); Is=	(3-second gust) DL=6.0psf; h=25ft; C ivelope) exterior zon ; end vertical left and 0 plate grip DOL=1.6 the plane of the tru: (normal to the face) d Details as applicab gner as per ANSI/TP roof LL: Lum DOL=1 ?f=15.4 psf (Lum 1.0: Rough Cat C;	Cat. e; 50 ss le, I 1. .15								STATE OF M STATE SCOTT SEVI	MISSOUR MISSOUR ER

- Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10 Unbalanced snow loads have been considered for this 4)
- design. Gable requires continuous bottom chord bearing. 5)
- Gable studs spaced at 4-0-0 oc.
- 6) 7)
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

NUMBER PE-2001018807 SSIONAL E February 8,2024

> 16023 Swingley Ridge Rd. Chesterfield, MO 63017 314.434.1200 / MiTek-US.com

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

Job	Truss	Truss Type	Qty	Ply	Lot 17 TCR	
230872	V5	Valley	2	1	Job Reference (optional)	163476846

Run: 8.73 S Jan 4 2024 Print: 8.730 S Jan 4 2024 MiTek Industries, Inc. Tue Feb 06 14:22:58 ID:Du0Bh4NzscLS0CkruBsVw_y6jde-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

2-2-0

Scale = 1:17.5

00010 - 1.17.0												
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 25.0 15.4/20.0 10.0 10.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018/TPI2014	CSI TC BC WB Matrix-P	0.03 0.02 0.00	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 3	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 5 lb	GRIP 197/144 FT = 10%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD BOT CHORD BOT CHORD BOT CHORD BOT CHORD BOT CHORD NOTES 1) Wind: ASC Vasd=91n II; Exp C; cantilever right expo: 2) Truss des only. For see Stand or consult 3) TCLL: ASC Plate DOL DOL=1.15 Partially E 4) Unbalance design. 5) Gable reqi 6) Gable stud 7) This truss chord live	2x4 SPF No.2 2x3 SPF No.2 2x3 SPF No.2 Structural wood she 2-2-8 oc purlins, exx Rigid ceiling directly bracing. (size) 1=2-2-0, 3 Max Horiz 1=31 (LC Max Uplift 1=-8 (LC (Max Grav 1=68 (LC (lb) - Maximum Com Tension 1-2=-28/19, 2-3=-52: 1-3=-11/8 CE 7-16; Vult=115mph nph; TCDL=6.0psf; BC Enclosed; MWFRS (er left and right exposed sed; Lumber DOL=1.6 signed for wind loads ir studs exposed to wind lard Industry Gable En- qualified building desig CE 7-16; Pr=25.0 psf (=-1.15); Pg=20.0 psf; F 5 Plate DOL=1.15); Is= xp.; Ce=1.0; Cs=1.00; ed snow loads have be uires continuous bottor ds spaced at 4-0-0 oc. has been designed for load nonconcurrent wi	athing directly applie cept end verticals. applied or 10-0-0 or 3=2-2-0 9) 12), 3=-16 (LC 12) 3), 3=69 (LC 25) pression/Maximum /25 (3-second gust) DL=6.0psf; h=25ft; 0 velope) exterior zor ; end vertical left an 0 plate grip DOL=1.0 the plane of the tru (normal to the face) d Details as applicat gner as per ANSI/TF roof LL: Lum DOL=1 ?f=15.4 psf (Lum 1.0; Rough Cat C; Ct=1.10 then considered for the m chord bearing. r a 10.0 psf bottom th any other live load	8) * This tru on the bo 3-06-00 t chord an 9) All bearing p c and 16 lb 11) This trust Internatic R802.10. LOAD CASE	ss has been desigr ttom chord in all ar all by 2-00-00 wide d any other membe gs are assumed to nechanical connect late capable of with uplift at joint 3. s is designed in acc nal Residential Co 2 and referenced s (S) Standard	hed for a liv reas where will fit betw ars, with BC be SPF Na tion (by oth hstanding 8 cordance w de sections tandard AN	e load of 20.0 a rectangle veen the bottc DL = 10.0psf).2. ers) of truss t Ib uplift at join ith the 2018 R502.11.1 a ISI/TPI 1.	opsf om nt 1 nd		ç		NUM PE-2001	MISSOLUTION

February 8,2024

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent buckling of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

Job	Truss	Truss Type	Qty	Ply	Lot 17 TCR	
230872	V6	Valley	1	1	Job Reference (optional)	163476847

Run: 8.73 S Jan 4 2024 Print: 8.730 S Jan 4 2024 MiTek Industries, Inc. Tue Feb 06 14:22:59 ID:Du0Bh4NzscLS0CkruBsVw_y6jde-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

3-2-0

1-5-4

S 4.04.0

Scale = 1:21.6	0											
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 25.0 15.4/20.0 10.0 10.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018/TPI2014	CSI TC BC WB Matrix-P	0.11 0.06 0.00	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 3	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 8 lb	GRIP 197/144 FT = 10%
BCLL BCDL LUMBER TOP CHORD BOT CHORD BOT CHORD BOT CHORD BOT CHORD REACTIONS FORCES TOP CHORD BOT CHORD REACTIONS	10.0 12.24 SPF No.2 2x3 SPF No.2 12.2x3 SPF No.2 12.2x4 SPF No.2 12.2x4 SPF No.2	athing directly applie cept end verticals. applied or 10-0-0 oc 3=3-2-0 11) 12), 3=-27 (LC 12) C 5), 3=116 (LC 25) ipression/Maximum /42 (3-second gust) DL=6.0psf; h=25ft; C ivelope) exterior zon ; end vertical left an	9) * This trus on the bot 3-06-00 ta chord and 10) All bearing pl tand 27 l 12) This truss Internation R802.10.2 LOAD CASE(s has been design tom chord in all are il by 2-00-00 wide to any other member is are assumed to l echanical connecti ate capable of with o uplift at joint 3. is designed in acco and referenced str S) Standard	ed for a live eas where will fit betw be SPF No on (by oth standing 1 ordance w le sections andard AN	e load of 20.0 a rectangle veen the bottc DL = 10.0psf 5.2. ers) of truss tr 4 lb uplift at jc ith the 2018 R502.11.1 a ISI/TPI 1.)psf om o o oint nd				Weight: 8 lb	FT = 10%
 right expc Truss de only. For see Stand or consuli TCLL: AS Plate DO DOL=1.1: Partially E Unbalanco design. Provide a Gable rec Gable struss chord live 	osed; Lumber DOL=1.61 esigned for wind loads ir r studs exposed to wind dard Industry Gable End t qualified building desig SCE 7-16; Pr=25.0 psf (r L=1.15); Pg=20.0 psf; F 5 Plate DOL=1.15); Is= Exp.; Ce=1.0; Cs=1.00; ced snow loads have be adequate drainage to pri quires continuous bottor Jds spaced at 4-0-0 oc. s has been designed for e load nonconcurrent wi	0 plate grip DOL=1.6 the plane of the tru (normal to the face) d Details as applicat gner as per ANSI/TF roof LL: Lum DOL=1 Pf=15.4 psf (Lum 1.0; Rough Cat C; Ct=1.10 even considered for the event water ponding m chord bearing. r a 10.0 psf bottom th any other live load	50 ss ole, ole, ol 1. 1.15 is i.								PE-2001 Februar	MISSOLA T.M. ER 018807

Page: 1

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

Job	Truss	Truss Type	Qty	Ply	Lot 17 TCR	
230872	V7	Valley	1	1	Job Reference (optional)	163476848

4-6-8

4-6-8

Wheeler Lumber, Waverly, KS - 66871,

Run: 8.73 S Jan 4 2024 Print: 8.730 S Jan 4 2024 MiTek Industries, Inc. Tue Feb 06 14:22:59 ID:i5aZvQNbdvTJeLI1SuNkSBy6jdd-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

•

Scale = 1:22.1

Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 25.0 15.4/20.0 10.0 10.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018/TPI2014	CSI TC BC WB Matrix-P	0.30 0.15 0.00	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 3	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 12 lb	GRIP 197/144 FT = 10%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SPF No.2 2x4 SPF No.2 2x3 SPF No.2 Structural wood she 4-7-0 oc purlins, ex Rigid ceiling directly bracing. (size) 1=4-7-0, 3 Max Horiz 1=80 (LC Max Uplift 1=-22 (LC Max Grav 1=187 (LC	athing directly applie cept end verticals. applied or 10-0-0 oc 3=4-7-0 9) ; 12), 3=-42 (LC 12) C 5), 3=187 (LC 5)	8) * This truss on the botto 3-06-00 tall chord and a 9) All bearings 10) Provide me bearing plat 1 and 42 lb 11) This truss is Internationa R802.10.2 a LOAD CASE(S)	has been designe m chord in all area by 2-00-00 wide w ny other members are assumed to b chanical connectio e capable of withs uplift at joint 3. designed in acco I Residential Code and referenced sta Standard	ed for a liv as where vill fit betv s, with BC ve SPF Nc standing 2 rdance w e sections indard AN	e load of 20.0 a rectangle veen the bottt DL = 10.0psf 5.2. ers) of truss t 12 lb uplift at jo ith the 2018 s R502.11.1 a ISI/TPI 1.	Dpsf om o o oint nd					
FORCES	(lb) - Maximum Com Tension 1-2=-73/53, 2-3=-14	pression/Maximum 6/66										
BOT CHORD	1-3=-27/21											
 Wind: ASI Vasd=91r II; Exp C; cantilever right expo Truss dee only. For see Stanc or consult TCLL: AS 	CE 7-16; Vult=115mph nph; TCDL=6.0psf; BC Enclosed; MWFRS (er left and right exposed sed; Lumber DOL=1.6 signed for wind loads in studs exposed to wind lard Industry Gable En qualified building desi CE 7-16; Pr=25.0 psf ((3-second gust) DL=6.0psf; h=25ft; C velope) exterior zon ; end vertical left and 0 plate grip DOL=1.6 h the plane of the tru I (normal to the face) d Details as applicat gner as per ANSI/TP roof LL: Lum DOL=1	Cat. e; 50 ss , le, le, 15								STATE OF A	MISSOLUR

Plate DOL=1.15); Pg=20.0 psf; Pf=15.4 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat C; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
4) Unbalanced snow loads have been considered for this

design.

5) Gable requires continuous bottom chord bearing.

6) Gable studs spaced at 4-0-0 oc.

 This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

PE-2001018807

February 8,2024

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permenter is always required for stability and to prevent colleges with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcscomponents.com)

Job	Truss	Truss Type	Qty	Ply	Lot 17 TCR	
230872	V8	Valley	1	1	Job Reference (optional)	163476849

Run: 8.73 S Jan 4 2024 Print: 8.730 S Jan 4 2024 MiTek Industries, Inc. Tue Feb 06 14:22:59 ID:i5aZvQNbdvTJeLI1SuNkSBy6jdd-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

```
Page: 1
```


8-6-8

Scale = 1:31.1

Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 25.0 15.4/20.0 10.0 10.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018/TPI2014	CSI TC BC WB Matrix-P	0.25 0.13 0.07	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 4	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 24 lb	GRIP 197/144 FT = 10%
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SPF No.2 2x4 SPF No.2 2x3 SPF No.2 2x3 SPF No.2 Structural wood shea 6-0-0 oc purlins, exa Rigid ceiling directly bracing. (size) 1=8-7-0, 4 Max Horiz 1=164 (LC Max Grav 1=160 (LC 5=453 (LC	athing directly applie cept end verticals. applied or 10-0-0 oc 4=8-7-0, 5=8-7-0 C 11) : 9), 5=-132 (LC 12) 2 26), 4=152 (LC 18) C 3)	7) This tru chord lin 8) * This tr 3-06-00 chord a 9) All bear 10) Provide bearing 4 and 1 11) This tru Internat R802.10 LOAD CAS	tes has been designed te load nonconcurrent uss has been designe ottom chord in all area tall by 2-00-00 wide w and any other members mes are assumed to b mechanical connectio plate capable of withs 32 Ib uplift at joint 5. ss is designed in accou onal Residential Code 0.2 and referenced sta E(S) Standard	for a 10. with any d for a liv as where vill fit betw s, with BC e SPF No on (by oth tanding 2 rdance w e sections indard AN) psf bottom other live loa e load of 20. a rectangle veen the bott :DL = 10.0ps .2. ers) of truss :7 lb uplift at :R502.11.1 a ISI/TPI 1.	ads. Opsf om f. to joint and					
FORCES	(lb) - Maximum Com Tension	pression/Maximum										
TOP CHORD BOT CHORD WEBS	1-2=-131/79, 2-3=-1 1-5=-56/42, 4-5=-56/ 2-5=-343/191	18/43, 3-4=-123/44 /42										
NOTES												
 Wind: ASC Vasd=91rr II; Exp C; I cantilever right exposize only. For see Stand- or consult TCLL: ASC Plate DOL DOL=1.15 Partially E: Unbalance design. Gable requ Gable requ Gable stud 	CE 7-16; Vult=115mph hph; TCDL=6.0psf; BC Enclosed; MWFRS (en left and right exposed sed; Lumber DOL=1.60 istuds exposed to wind ard Industry Gable End qualified building desig CE 7-16; Pr=25.0 psf (=1.15); Pg=20.0 psf; F Plate DOL=1.15); Is= xp.; Ce=1.0; Cs=1.00; ad snow loads have be uires continuous bottor is spaced at 4-0-0 oc.	(3-second gust) DL=6.0psf; h=25ft; C ivelope) exterior zone; end vertical left and 0 plate grip DOL=1.6 the plane of the trus (normal to the face), d Details as applicab gner as per ANSI/TP roof LL: Lum DOL=1 2f=15.4 psf (Lum 1.0; Rough Cat C; Ct=1.10 een considered for this m chord bearing.	cat. e; d 60 ss , le, l 1. .15						•		STATE OF I SCOT SEVI NUM PE-2001	MISSOLIA T.M. ER BER 018807

February 8,2024

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

Job	Truss	Truss Type	Qty	Ply	Lot 17 TCR	
230872	V9	Valley	1	1	Job Reference (optional)	163476850

Run: 8.73 S Jan 4 2024 Print: 8.730 S Jan 4 2024 MiTek Industries, Inc. Tue Feb 06 14:23:00 ID:i5aZvQNbdvTJeLI1SuNkSBy6jdd-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Scale = 1:42.3

Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 25.0 15.4/20.0 10.0 10.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018/TPI2014	CSI TC BC WB Matrix-S	0.31 0.19 0.13	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 5	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 39 lb	GRIP 197/144 FT = 10%
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SPF No.2 2x4 SPF No.2 2x3 SPF No.2 2x3 SPF No.2 Structural wood she 6-0-0 oc purlins, ex Rigid ceiling directly bracing. (size) 1=12-7-0, 7=12-7-0 Max Horiz 1=247 (LC Max Uplift 5=-37 (LC 7=-119 (LC Max Grav 1=205 (LC 6=502 (LC	athing directly applied cept end verticals. applied or 10-0-0 oc 5=12-7-0, 6=12-7-0, C 9) (2 9), 6=-115 (LC 12), C 12) C 26), 5=212 (LC 5), C 5), 7=467 (LC 3)	 4) Unbalanced design. 5) Gable requir 6) Gable studs 7) This truss ha chord live loa d or 8) * This truss h on the bottor 3-06-00 tall t chord and ar 9) All bearings. 10) Provide mec bearing plate 5, 115 lb upi 11) This truss is International R802.10.2 au 	snow loads have b es continuous botto spaced at 4-0-0 oc is been designed fo ad nonconcurrent w has been designed in chord in all areas by 2-00-00 wide will by other members, are assumed to be hanical connection e capable of withsta ft at joint 6 and 115 designed in accord Residential Code s and referenced stand	een cor or chor or a 10.0 vith any for a liv where l fit betw with BC SPF Nd SPF Nd (by oth anding 3 b lb uplif ance w sections dard AN	bisidered for th d bearing.) psf bottom other live load e load of 20.0 a rectangle veen the botto DL = 10.0psf. .2. ers) of truss ti 7 lb uplift at jo t at joint 7. tith the 2018 .R502.11.1 a ISI/TPI 1.	is ds. psf o pint					
FORCES	(lb) - Maximum Com Tension	pression/Maximum		Standard								
I OP CHORD	1-2=-205/79, 2-3=-1 4-5=-130/46	60/71, 3-4=-137/64,										
BOT CHORD WEBS	1-7=-84/64, 6-7=-84 3-6=-309/155, 2-7=-	/64, 5-6=-84/64 301/168										
NOTES 1) Wind: ASC Vasd=91m II; Exp C; E cantilever right evens	CE 7-16; Vult=115mph hph; TCDL=6.0psf; BC Enclosed; MWFRS (er left and right exposed sed: Lumber DQL=16	(3-second gust) DL=6.0psf; h=25ft; Ci velope) exterior zone ; end vertical left and 0 plate grip DQI =1 6/	at. s;								STATE OF I	MISSOUR

- Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- TCLL: ASCE 7-16; Pr=25.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf; Pf=15.4 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat C; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent oulgase with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

Nitek Rd. 16023 Swingley Ridge Rd. Chesterfield, MO 63017 314.434.1200 / MiTek-US.com

Job	Truss	Truss Type	Qty	Ply	Lot 17 TCR	
230872	V10	Valley	2	1	Job Reference (optional)	163476851

Run: 8,73 S Jan 4 2024 Print: 8,730 S Jan 4 2024 MiTek Industries, Inc. Tue Feb 06 14:23:00 ID:liToUkML5IDbP29eKTLGNmy6jdf-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale =	1:52.5
---------	--------

Plate Offsets (X, Y): [2:0-2-8,0-1-4], [7:Edge,0-2-8]

		1			-								
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 25.0 15.4/20.0 10.0 10.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018	;/TPI2014	CSI TC BC WB Matrix-R	0.55 0.14 0.28	DEFL Vert(LL) Vert(CT) Horz(CT)	in n/a n/a 0.00	(loc) - - 7	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 51 lb	GRIP 197/144 FT = 10%
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD WEBS REACTIONS	2x4 SPF No.2 2x4 SPF 2100F 1.8E 2x3 SPF No.2 2x3 SPF No.2 Structural wood shea 6-0-0 oc purlins, exx Rigid ceiling directly bracing. 1 Row at midpt (size) 7=14-0-0, 10=14-0-0 Max Horiz 11=336 (L Max Uplift 7=-46 (LC 9=-95 (LC 11=-15 (L Max Grav 7=206 (CL 9=463 (LC 11=275 (L	athing directly applied cept end verticals. applied or 10-0-0 oc 6-7 8=14-0-0, 9=14-0-0, 0, 11=14-0-0 C 11) 2 9), 8=-120 (LC 12), 2 12), 10=-229 (LC 12), C 10) C 26), 8=545 (LC 5), C 3), 10=369 (LC 26), C 27)	2) 3) I or 4) 5) 6) 7) 9) 9) 10)	Truss design only. For stu- see Standard TCLL: ASCE Plate DOL=1 DOL=1.15 P Partially Exp Unbalanced design. This truss ha load of 12.0 overhangs n Gable requir Truss to be f braced again Gable studs This truss ha chord live loa * This truss ha	ned for wind load dds exposed to w d Industry Gable alified building d i 7-16; Pr=25.0 p 1.15); Pg=20.0 ps late DOL=1.15); .; Ce=1.0; Cs=1. snow loads have as been designed dps for 1.00 times on-concurrent wi es continuous bc ully sheathed fro nst lateral movern spaced at 4-0-0 is been designed ad nonconcurrent nas been designed ad nonconcurrent packed in all are	Is in the pl ind (norm End Deta esigner as sf (roof LL sf; Pf=15.4 Is=1.0; Rc 00; Ct=1.1 been cor flat roof lc th other line been cor flat roof lc th other line to thother line to the thother line of for a 10.0; t with any defor a living se where	ane of the tru al to the face Is as applica is per ANSI/TI : Lum DOL= psf (Lum ungh Cat C; 0 sidered for the er of min roof pad of 15.4 p re loads. d bearing. e or securely iagonal web) 0 psf bottom other live loa e load of 20.0.	uss)), ble, Pl 1. 1.15 his f live sf on /). ads. Opsf					
FORCES	(lb) - Maximum Com Tension	pression/Maximum		3-06-00 tall t	by 2-00-00 wide v	will fit betv	veen the bott	om f					
TOP CHORD	2-11=-202/20, 1-2=0 3-4=-218/82, 4-5=-19 6-7=-129/47)/31, 2-3=-298/65, 90/83, 5-6=-154/83,	11) 12)	All bearings	are assumed to b hanical connection	oe SPF 21 on (by oth	00F 1.8E . ers) of truss 1	to				TE OF I	MISSO
BOT CHORD	10-11=-114/86, 9-10 7-8=-114/86)=-114/86, 8-9=-114/8	6,	11, 46 lb upli at joint 9 and	ift at joint 7, 120 l	b uplift at	joint 8, 95 lb	uplift			8	S SCOT	ТМ.
WEBS	5-8=-313/147, 4-9=-2	284/157, 3-10=-219/1	97 13)	This truss is	designed in acco	ordance w	th the 2018				B	/ SEV	ER \Y
NOTES			10)	International	Residential Code	e sections	R502.11.1 a	and			24		1 * 1
1) Wind: AS0 Vasd=91n II; Exp C; cantilever	CE 7-16; Vult=115mph nph; TCDL=6.0psf; BC Enclosed; MWFRS (en left and right exposed	(3-second gust) DL=6.0psf; h=25ft; Ca velope) exterior zone ; end vertical left and	at. LO ;;	R802.10.2 and referenced standard ANSI/TPI 1. LOAD CASE(S) Standard PE-2001018807									

right exposed; Lumber DOL=1.60 plate grip DOL=1.60

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

16023 Swingley Ridge Rd. Chesterfield, MO 63017 314.434.1200 / MiTek-US.com

February 8,2024

E

&SSIONAL

Job	Truss	Truss Type	Qty	Ply	Lot 17 TCR	
230872	V11	Valley	2	1	Job Reference (optional)	163476852

Run: 8.73 S Jan 4 2024 Print: 8.730 S Jan 4 2024 MiTek Industries, Inc. Tue Feb 06 14:23:00 ID:IiToUkML5IDbP29eKTLGNmy6jdf-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:34.7

Plate Offsets (X, Y): [2:0-3-0,0-1-4]

					-									
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 25.0 15.4/20.0 10.0 10.0 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr * Code	2-0-0 1.15 1.15 YES IRC2018	3/TPI2014	CSI TC BC WB Matrix-R	0.28 0.14 0.04	DEFL Vert(LL) Vert(CT) Horz(CT)	in n/a n/a 0.00	(loc) - - 6	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 22 lb	GRIP 197/144 FT = 10%	
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SPF No.2 2x3 SPF No.2 2x3 SPF No.2 2x3 SPF No.2 2x3 SPF No.2 Structural wood s 5-5-8 oc purlins, Rigid ceiling direc bracing. (size) 6=5-5- Max Horiz 8=201 Max Uplift 6=-95 8=-14	heathing directly appli except end verticals. tty applied or 6-0-0 oc 3, 7=5-5-8, 8=5-5-8 (LC 9) LC 9), 7=-121 (LC 12) LC 8)	Unbalanced design. This truss ha load of 12.0 overhangs n Gable requir Truss to be f braced agair Gable studs This truss ha chord live loa) * This truss f on the bottor 3-06-00 tall b	snow loads have b so been designed for psf or 1.00 times fit on-concurrent with es continuous botto ully sheathed from ist lateral movemen spaced at 4-0-0 oc is been designed for ad nonconcurrent w has been designed in chord in all areas by 2-00-00 wide will	een cor or great at roof lo other lin or chor one fac or a 10.0 ith any for a liv s where l fit betw	sidered for t er of min roof vad of 15.4 p ve loads. d bearing. e or securely iagonal web) 0 psf bottom other live loa e load of 20.1 a rectangle veen the bott	his f live sf on /). ads. 0psf om							
FORCES TOP CHORD BOT CHORD WEBS NOTES	Max Grav 6=285 8=227 (lb) - Maximum C Tension 2-8=-169/26, 1-2: 3-4=-95/61, 4-5=- 7-8=-60/42, 6-7=- 3-7=-161/121	(LC 19), 7=264 (LC 26 (LC 27) ompression/Maximum =0/31, 2-3=-150/48, 59/0, 4-6=-265/105 60/42	^{5),} 11 12 13 LC	 All bearings Provide mec bearing plate 8, 95 lb uplift This truss is International R802.10.2 ar 	y other members, are assumed to be hanical connection e capable of withsta at joint 6 and 121 designed in accord Residential Code s nd referenced stand Standard	SPF No (by oth Inding 1 Ib uplift lance w sections dard AN	DL = 10.0ps o.2. ers) of truss t 4 lb uplift at j at joint 7. ith the 2018 R502.11.1 a ISI/TPI 1.	to joint and					and the	
1) Wind: ASC	CE 7-16; Vult=115m	ph (3-second gust)										FEOFT	AISS S	

 Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60

- Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
 TCLL: ASCE 7-16; Pr=25.0 psf (roof LL: Lum DOL=1.15
- TCLL: ASCE 7-16; Pr=25.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf; Pf=15.4 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat C; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSITPTI Quality Criteria, and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcscomponents.com)

Job	Truss	Truss Type	Qty	Ply	Lot 17 TCR	
230872	V12	Valley	2	1	Job Reference (optional)	163476853

6-1-8

6-1-8

Wheeler Lumber, Waverly, KS - 66871,

Run: 8,73 S Jan 4 2024 Print: 8,730 S Jan 4 2024 MiTek Industries, Inc. Tue Feb 06 14:23:01 ID:liToUkML5IDbP29eKTLGNmy6jdf-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

3-1-0

2x4 ≠

Loading TCLL (roof) Snow (Pf/Pg) TCDL	(psf) 25.0 15.4/20.0 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr	2-0-0 1.15 1.15 YES		CSI TC BC WB	0.65 0.31 0.00	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 3	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20	GRIP 197/144
BCLL BCDL	10.0* 10.0	Code	IRC201	18/TPI2014	Matrix-P							Weight: 16 lb	FT = 10%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD REACTIONS FORCES TOP CHORD	2x4 SPF No.2 2x4 SPF No.2 2x3 SPF No.2 Structural wood she 6-0-0 oc purlins, ex Rigid ceiling directly bracing. (size) 1=6-2-0,3 Max Horiz 1=113 (LC Max Uplift 1=-31 (LC Max Grav 1=255 (LC (lb) - Maximum Com Tension 1-2=-104/77, 2-3=-2	athing directly applie cept end verticals. applied or 10-0-0 or 3=6-2-0 C 9) C 12), 3=-60 (LC 12) C 5), 3=270 (LC 5) ipression/Maximum 15/92	9 ed or ¹¹	 * This truss I on the bottor 3-06-00 tall II chord and at All bearings Provide mec bearing plate 1 and 60 lb u This truss is International R802.10.2 a OAD CASE(S) 	has been design in chord in all a by 2-00-00 widd hay other memb are assumed to hanical connect e capable of wi uplift at joint 3. designed in act Residential Co nd referenced Standard	ned for a liv reas where e will fit betw ers, with BC to be SPF Nc tion (by oth thstanding 3 ecordance w ode sections standard AN	e load of 20.0 a rectangle veen the bott DL = 10.0ps o.2. ers) of truss t the uplift at j k1 lb uplift at j k502.11.1 a USI/TPI 1.	Opsf f. oon oont					
NOTES	1-3=-39/29												
 Wind: AS(Vasd=91n II; Exp C; cantilever right expo Truss des only. For 	CE 7-16; Vult=115mph nph; TCDL=6.0psf; BC Enclosed; MWFRS (er left and right exposed sed; Lumber DOL=1.6 signed for wind loads ir studs exposed to wind	(3-second gust) DL=6.0psf; h=25ft; (ivelope) exterior zor ; end vertical left an 0 plate grip DOL=1. h the plane of the tru (normal to the face)	Cat. ne; d 60 lss),									FR OF I	MISSO

see Standard Industry Gable End Details as applic or consult qualified building designer as per ANSI/TPI 1. TCLL: ASCE 7-16; Pr=25.0 psf (roof LL: Lum DOL=1.15 3) Plate DOL=1.15); Pg=20.0 psf; Pf=15.4 psf (Lum

DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat C; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10

4) Unbalanced snow loads have been considered for this design.

5) Gable requires continuous bottom chord bearing.

6) Gable studs spaced at 4-0-0 oc.

7) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

SCOTT M. SEVIER NUMBER PE-2001018807 SSIONAL E February 8,2024

 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.
 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not besign value for use only with with twit even connectors. This design is based only upon parameters shown, and is for an individual building designer must verify the applicability of design parameters and properly incorporate this design into the overall building designer must verify the applicability of design parameters and properly incorporate this design into the overall building designer. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcscomponents.com) 16023 Swingley Ridge Rd. Chesterfield MO 63017 314.434.1200 / MiTek-US.com

Job	Truss	Truss Type	Qty	Ply	Lot 17 TCR	
230872	V13	Valley	2	1	Job Reference (optional)	163476854

Run: 8.73 S Jan 4 2024 Print: 8.730 S Jan 4 2024 MiTek Industries, Inc. Tue Feb 06 14:23:01 ID:IiToUkML5IDbP29eKTLGNmy6jdf-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

2-1-8

Scale = 1:17.4

00010 = 1.11.4												
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 25.0 15.4/20.0 10.0 10.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018/TPI2014	CSI TC BC WB Matrix-P	0.03 0.02 0.00	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 3	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 5 lb	GRIP 197/144 FT = 10%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD BOT CHORD REACTIONS FORCES TOP CHORD BOT CHORD BOT CHORD BOT CHORD BOT CHORD NOTES 1) Wind: ASC Vasd=91m II; Exp C; f cantilever right expos 2) Truss des only. For s see Stand: or consult 3) TCLL: ASC Plate DOL DOL=1.15 Partially E: 4) Unbalance design. 5) Gable requ (6) Gable stuc 7) This truss chord live	2x4 SPF No.2 2x4 SPF No.2 2x3 SPF No.2 2x3 SPF No.2 Structural wood she 2-2-0 oc purlins, ex Rigid ceiling directly bracing. (size) 1=2-2-0, 3 Max Horiz 1=30 (LC Max Uplift 1=-8 (LC (Max Uplift 1=-8 (LC (Ib) - Maximum Com Tension 1-2=-27/18, 2-3=-50, 1-3=-10/8 EF 7-16; Vult=115mph ph; TCDL=6.0psf; BC Enclosed; MWFRS (er left and right exposed sed; Lumber DOL=1.6 igned for wind loads ir studs exposed to wind ard Industry Gable En qualified building desig CE 7-16; Pr=25.0 psf (=1.15); Pg=20.0 psf; F Plate DOL=1.15); Is= xp.; Ce=1.0; Cs=1.00; d snow loads have be uires continuous bottor is spaced at 4-0-0 oc. has been designed for load nonconcurrent wi	athing directly applie cept end verticals. applied or 10-0-0 oc 3=2-2-0 9) 12), 3=-16 (LC 12) 3), 3=67 (LC 25) apression/Maximum /24 (3-second gust) DL=6.0psf; h=25ff; C welope) exterior zon ; end vertical left and 0 plate grip DOL=1.6 n the plane of the tru (normal to the face) d Details as applicat gner as per ANSI/TF roof LL: Lum DOL=1 Pf=15.4 psf (Lum 1.0; Rough Cat C; Ct=1.10 een considered for the m chord bearing. r a 10.0 psf bottom th any other live load	8) * This tr on the b 3-06-00 chord a 9) All bear bearing and 16 11) This tru Internat R802.1 LOAD CAS	uss has been design oottom chord in all an tall by 2-00-00 wide and any other member ings are assumed to mechanical connec plate capable of wit b uplift at joint 3. ss is designed in accional Residential Co 0.2 and referenced s E(S) Standard	ned for a liv reas where e will fit betw ers, with BC b be SPF No tion (by oth hstanding 8 cordance w de sections standard AN	e load of 20.0 a rectangle veen the bott DL = 10.0psf .2. Ib uplift at jo ith the 2018 R502.11.1 a ISI/TPI 1.	Dpsf				STATE OF STATE OF SEV SEV PE-2001	MISSOLIE T.M. IER 1018807

February 8,2024

🛕 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.
Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not
a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall
building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing
is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the
fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org)
and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)
Job

230872

Run: 8.73 S Jan 4 2024 Print: 8.730 S Jan 4 2024 MiTek Industries, Inc. Tue Feb 06 14:23:01 ID:IiToUkML5IDbP29eKTLGNmy6jdf-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:40.3

Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 25.0 15.4/20.0 10.0 10.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018/	TPI2014	CSI TC BC WB Matrix-P	0.51 0.19 0.07	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 4	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 24 lb	GRIP 197/144 FT = 10%
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SPF No.2 2x4 SPF No.2 2x3 SPF No.2 2x3 SPF No.2 Structural wood shea 6-0-0 oc purlins, exi Rigid ceiling directly bracing. (size) 1=6-5-12, Max Horiz 1=240 (LC Max Uplift 1=-90 (LC (LC 10) Max Grav 1=181 (LC 5=539 (LC	athing directly applied cept end verticals. applied or 10-0-0 oc 4=6-5-12, 5=6-5-12 2 9) 8), 4=-86 (LC 7), 5= 2 7), 4=248 (LC 21), 2 21)	6) 7) d or 8) 9) 10) -232 LOA	This truss ha chord live loa * This truss h on the botton 3-06-00 tall b chord and an All bearings a Provide mech bearing plate 1, 86 lb uplift This truss is a International R802.10.2 ar AD CASE(S)	s been designed for d nonconcurrent w as been designed a chord in all areas y 2-00-00 wide will y other members, v ire assumed to be banical connection capable of withsta at joint 4 and 232 I designed in accord Residential Code s d referenced stance Standard	or a 10.0 ith any for a liv where fit betw with BC SPF No (by oth nding 9 b uplift ance wisections dard AN) psf bottom other live loa e load of 20.0 a rectangle reen the botto DL = 10.0psf).2. ers) of truss t 0 lb uplift at j at joint 5. th the 2018 R502.11.1 a ISI/TPI 1.	ds. Dpsf om o oint					
FORCES	(lb) - Maximum Com Tension	pression/Maximum	_										
TOP CHORD BOT CHORD WEBS	1-2=-257/189, 2-3=-2 1-5=-86/65, 4-5=-86/ 2-5=-321/280	204/108, 3-4=-148/10 /65)5										
NOTES													
 Wind: ASC Vasd=91m II; Exp C; I cantilever right expos Truss des only. For see Stand or consult TCLL: ASC Plate DOL DOL=1.15 Partially E Gable requis Gable studie 	CE 7-16; Vult=115mph hph; TCDL=6.0psf; BC Enclosed; MWFRS (er left and right exposed sed; Lumber DOL=1.6i igned for wind loads ir studs exposed to wind ard Industry Gable Env qualified building desig (CE 7-16; Pr=25.0 psf; F Plate DOL=1.15); Is= xp.; Ce=1.0; Cs=1.00; uires continuous bottor ds spaced at 4-0-0 oc.	(3-second gust) DL=6.0psf; h=25ft; C ivelope) exterior zone; end vertical left and 0 plate grip DOL=1.6 the plane of the trus (normal to the face), d Details as applicabl gner as per ANSI/TPI roof LL: Lum DOL=1. Y=15.4 psf (Lum 1.0; Rough Cat C; Ct=1.10 n chord bearing.	at. 2; 0 1:s 1. 15									STATE OF M SCOTT SEVI PE-20010 PE-20010	AISSOLATION ER DISSOT

February 8,2024

16023 Swingley Ridge Rd. Chesterfield, MO 63017 314.434.1200 / MITek-US.com

👠 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.
Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not
a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall
building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing
is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the
fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org)
and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

Job	Truss	Truss Type	Qty	Ply	Lot 17 TCR	
230872	V15	Valley	2	1	Job Reference (optional)	163476856

Run: 8.73 S Jan 4 2024 Print: 8.730 S Jan 4 2024 MiTek Industries, Inc. Tue Feb 06 14:23:01 ID:liToUkML5IDbP29eKTLGNmy6jdf-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

5-5-8

Scale = 1:37

Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 25.0 15.4/20.0 10.0 10.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018/TPI2014	CSI TC 0.3 BC 0.7 WB 0.0 Matrix-P	35 V 10 V 07 H	DEFL Vert(LL) r Vert(TL) r Horiz(TL) 0.1	in (l i/a i/a 00	oc) - - 4	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 19 lb	GRIP 197/144 FT = 10%	
LUMBER TOP CHORD BOT CHORD WEBS DTHERS BRACING BOT CHORD BOT CHORD BOT CHORD BOT CHORD BOT CHORD BOT CHORD BOT CHORD WEBS NOTES 1) Wind: ASC Vasd=91n II; Exp C; cantilever right expo: 2) Truss des only. For see Stand or consult 3) TCLL: ASI Plate DOL DOL=1.15 Partially E	2x4 SPF No.2 2x4 SPF No.2 2x3 SPF No.2 2x3 SPF No.2 2x3 SPF No.2 Structural wood sheat 5-5-12 oc purlins, e: Rigid ceiling directly bracing. (size) $1=5-5-12$, Max Horiz $1=200$ (LC Max Uplift $1=-161$ (L 5=-242 (L Max Grav $1=198$ (LC 5=483 (LC (lb) - Maximum Com Tension 1-2=-255/193, 2-3=- 1-5=-71/54, 4-5=-71/ 2-5=-335/293 CE 7-16; Vult=115mph mph; TCDL=6.0psf; BC Enclosed; MWFRS (er left and right exposed sed; Lumber DOL=1.6(signed for wind loads ir studs exposed to wind lard Industry Gable Enc qualified building desig CE 7-16; Pr=25.0 psf (L =1.15); Pg=20.0 psf; Fi Plate DOL=1.15); Is== xp.; Ce=1.0; Cs=1.00;	athing directly applied xcept end verticals. applied or 10-0-0 oc 4=5-5-12, 5=5-5-12 C 21), 4=-77 (LC 7), C 10), 4=198 (LC 21), C 21), 4=198 (LC 21), C 21) (10), 4=198 (LC 21), C 21) pression/Maximum 189/98, 3-4=-143/96 (54 (3-second gust) DL=6.0psf; h=25ft; C twelope) exterior zone ; end vertical left and 0 plate grip DCL=1.6 the plane of the trus (normal to the face), d Details as applicabl gner as per ANSI/TPI roof LL: Lum DCL=1. 7=15.4 psf (Lum 1.0; Rough Cat C; Ct=1.10	 6) This truss h chord live lo 7) * This truss on the botto 3-06-00 tall chord and a 8) All bearings 9) Provide met bearing plat 1, 77 lb uplii 10) This truss is internationa R802.10.2 a LOAD CASE(S) at. a; b at. at.<td>as been designed for a ad nonconcurrent with a has been designed for a m chord in all areas whe by 2-00-00 wide will fit to ny other members, with are assumed to be SPF chanical connection (by e capable of withstandir it at joint 4 and 242 lb up designed in accordance I Residential Code secti and referenced standard Standard</td><td>10.0 p 10.0 p 10.0 p 10.0 c 10.0 c 10</td><td>bosf bottom ther live loads. load of 20.0psf rectangle en the bottom L = 10.0psf. 2. s) of truss to 1 lb uplift at joint t joint 5. n the 2018 5502.11.1 and i//TPI 1.</td><td></td><td></td><td>2</td><td></td><td>STATE OF M STATE OF M SEVI SEVI PE-20010</td><td>MISSOLA T.M. ER SOLATION ER</td><td></td>	as been designed for a ad nonconcurrent with a has been designed for a m chord in all areas whe by 2-00-00 wide will fit to ny other members, with are assumed to be SPF chanical connection (by e capable of withstandir it at joint 4 and 242 lb up designed in accordance I Residential Code secti and referenced standard Standard	10.0 p 10.0 p 10.0 p 10.0 c 10.0 c 10	bosf bottom ther live loads. load of 20.0psf rectangle en the bottom L = 10.0psf. 2. s) of truss to 1 lb uplift at joint t joint 5. n the 2018 5502.11.1 and i//TPI 1.			2		STATE OF M STATE OF M SEVI SEVI PE-20010	MISSOLA T.M. ER SOLATION ER	
5) Gable stud	ds spaced at 4-0-0 oc.	c.lord bournig.									SIONA	L ENSS	

Conce February 8,2024

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

16023 Swingley Ridge Rd. Chesterfield, MO 63017 314.434.1200 / MiTek-US.com

Job	Truss	Truss Type	Qty	Ply	Lot 17 TCR	
230872	V16	Valley	2	1	Job Reference (optional)	163476857

Run: 8.73 S Jan 4 2024 Print: 8.730 S Jan 4 2024 MiTek Industries, Inc. Tue Feb 06 14:23:02 ID:IiToUkML5IDbP29eKTLGNmy6jdf-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

rayt

Scale = 1:30.4

Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 25.0 15.4/20.0 10.0 10.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018/TPI2014	CSI TC 0. BC 0. WB 0. Matrix-P	1 Vert(LL) 6 Vert(TL) 0 Horiz(TL)	in n/a 0.00	(loc) - - 3	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 15 lb	GRIP 197/144 FT = 10%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SPF No.2 2x4 SPF No.2 2x3 SPF No.2 Structural wood she 4-5-12 oc purlins, e Rigid ceiling directly bracing. (size) 1=4-5-12. Max Horiz 1=160 (LI Max Uplift 3=-78 (LC Max Grav 1=229 (LC	athing directly applie xcept end verticals. applied or 10-0-0 oc 3=4-5-12 C 7) C 22), 3=245 (LC 21)	 7) * This truss on the botto 3-06-00 tall chord and a 8) All bearings 9) Provide mer bearing plat 3. 10) This truss is Internationa R802.10.2 a 	has been designed for a m chord in all areas wh by 2-00-00 wide will fit t ny other members, with are assumed to be SPF chanical connection (by e capable of withstandir designed in accordanc I Residential Code secti and referenced standard Standard	live load of 20 re a rectangle etween the bot BCDL = 10.0ps No.2 . others) of truss g 78 lb uplift at e with the 2018 ons R502.11.1 ANSI/TPI 1.	.0psf tom sf. to joint and					
FORCES	(lb) - Maximum Com Tension	pression/Maximum									
TOP CHORD	1-2=-150/118, 2-3=-	175/103									
NOTES	1-3=-37/43										
 Wind: ASC Vasd=91m II; Exp C; E cantilever I right expose Truss des only. For s see Standa or consult TCLL: ASC Plate DOL- DOL=1.15 	E 7-16; Vult=115mph ph; TCDL=6.0psf; BC Enclosed; MWFRS (er left and right exposed sed; Lumber DOL=1.6 igned for wind loads in studs exposed to wind ard Industry Gable En qualified building desi CE 7-16; Pr=25.0 psf; Plate DOL=1.15); Is=	(3-second gust) DL=6.0psf; h=25ft; C tivelope) exterior zon ; end vertical left and 0 plate grip DOL=1.6 n the plane of the true (normal to the face) d Details as applicab gner as per ANSI/TP roof LL: Lum DOL=1 Pf=15.4 psf (Lum 1.0: Rough Cat C;	Cat. e; d 50 ss , le, l 1. .15							STATE OF J	MISSOUR T M. IER

Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10

4) Gable requires continuous bottom chord bearing.

5) Gable studs spaced at 4-0-0 oc.

 This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. PE-2001018807 PE-2001018807 February 8,2024

Job	Truss	Truss Type	Qty	Ply	Lot 17 TCR	
230872	V17	Valley	2	1	Job Reference (optional)	163476858

3-5-8

Wheeler Lumber, Waverly, KS - 66871,

1)

2)

3)

4) 5)

6)

Run: 8 73 S. Jan. 4 2024 Print: 8 730 S. Jan. 4 2024 MiTek Industries. Inc. Tue Feb 06 14:23:02 ID:liToUkML5IDbP29eKTLGNmy6jdf-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

2x4 u

2

Page: 1

Job	Truss	Truss Type	Qty	Ply	Lot 17 TCR	
230872	V18	Valley	2	1	Job Reference (optional)	163476859

2-5-8

Wheeler Lumber, Waverly, KS - 66871,

Run: 8,73 S Jan 4 2024 Print: 8,730 S Jan 4 2024 MiTek Industries, Inc. Tue Feb 06 14:23:02 ID:liToUkML5IDbP29eKTLGNmy6jdf-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

2-5-12

Page: 1

2-5-8

Scale = 1:22.6

Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 25.0 15.4/20.0 10.0 10.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018/TPI2014	CSI TC BC WB Matrix-P	0.07 0.04 0.00	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 3	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 8 lb	GRIP 197/144 FT = 10%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD REACTIONS FORCES TOP CHORD BOT CHORD BOT CHORD NOTES	2x4 SPF No.2 2x4 SPF No.2 2x3 SPF No.2 Structural wood she 2-5-12 oc purlins, e Rigid ceiling directly bracing. (size) 1=2-5-12, Max Horiz 1=81 (LC Max Uplift 3=-39 (LC (lb) - Maximum Com Tension 1-2=-76/59, 2-3=-88 1-3=-29/22	athing directly applie xcept end verticals. applied or 10-0-0 oc 3=2-5-12 7) 5 7) C 22), 3=123 (LC 21) apression/Maximum /52	 7) * This truss on the botto 3-06-00 tall chord and a 8) All bearings 9) Provide met bearing plat 3. 10) This truss is Internationa R802.10.2 a LOAD CASE(S) 	has been designe m chord in all area by 2-00-00 wide w ny other members are assumed to b chanical connectio e capable of withs designed in acco I Residential Code and referenced sta Standard	d for a liv as where vill fit betw, s, with BC be SPF Non (by oth standing 3 rdance w a sections andard AN	e load of 20.0 a rectangle veen the bottc DL = 10.0psf. 5.2. ers) of truss tu 19 lb uplift at jc ith the 2018 s R502.11.1 at JSI/TPI 1.	psf om opint nd					
 Wind: ASC Vasd=91n II; Exp C; cantilever right expo: Truss des only. For see Stand or consult TCLL: ASC Plate DOL DOL=1.15 Partially E 	CE 7-16; Vult=115mph nph; TCDL=6.0psf; BC Enclosed; MWFRS (er left and right exposed sed; Lumber DOL=1.6 signed for wind loads in studs exposed to wind lard Industry Gable En qualified building desi CE 7-16; Pr=25.0 psf (.=1.15); Pg=20.0 psf; F is Plate DOL=1.15); Is= is Plate DOL=1.15); Is=	(3-second gust) DL=6.0psf; h=25ft; C twelope) exterior zonor; end vertical left and; 0 plate grip DOL=1.6 in the plane of the trus (normal to the face); d Details as applicab gner as per ANSI/TP roof LL: Lum DOL=1 Pf=15.4 psf (Lum 1.0; Rough Cat C; Ct=1.10	at. e; 1 0 ss le, 11. .15								STATE OF M SCOT SEVI	MISSOLIR I M. ER 0

- 4) Gable requires continuous bottom chord bearing.
- Gable studs spaced at 4-0-0 oc.
- 5)
- This truss has been designed for a 10.0 psf bottom 6) chord live load nonconcurrent with any other live loads.

Job	Truss	Truss Type	Qty	Ply	Lot 17 TCR	
230872	V19	Valley	2	1	Job Reference (optional)	163476860

Run: 8.73 S Jan 4 2024 Print: 8.730 S Jan 4 2024 MiTek Industries, Inc. Tue Feb 06 14:23:03 ID:liToUkML5IDbP29eKTLGNmy6jdf-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

1-5-12

2x4 🎣

1-5-8

2x4 II

Scale - 1:20.8

00010 - 1.20.0													
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 25.0 15.4/20.0 10.0 10.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018	3/TPI2014	CSI TC BC WB Matrix-P	0.02 0.01 0.00	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 3	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 4 lb	GRIP 197/144 FT = 10%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SPF No.2 2x4 SPF No.2 2x3 SPF No.2 Structural wood she 1-5-12 oc purlins, e Rigid ceiling directly bracing. (size) 1=1-5-12, Max Horiz 1=41 (LC Max Grav 1=58 (LC Max Grav 1=58 (LC	eathing directly applie except end verticals. v applied or 10-0-0 or , 3=1-5-12 7) 27) 22), 3=62 (LC 21)	7) ed or 9) c 10 LC	* This truss I on the botto 3-06-00 tall I chord and an All bearings Provide mec bearing plate 3.) This truss is International R802.10.2 a	has been designer n chord in all are by 2-00-00 wide v ny other member are assumed to 1 hanical connectii e capable of with: designed in accc Residential Cod nd referenced sta Standard	ed for a liv eas where will fit betw s, with BC be SPF No on (by oth standing 2 ordance w le sections andard AN	e load of 20.1 a rectangle veen the bott DL = 10.0ps 0.2. ers) of truss : 00 lb uplift at j th the 2018 a R502.11.1 a ISI/TPI 1.	Opsf om f. to ioint and					
FORCES TOP CHORD BOT CHORD	(lb) - Maximum Con Tension 1-2=-38/30, 2-3=-44 1-3=-15/11	npression/Maximum											
NOTES 1) Wind: AS Vasd=91r II; Exp C; cantilever right expo	CE 7-16; Vult=115mph mph; TCDL=6.0psf; BC Enclosed; MWFRS (er left and right exposed bsed; Lumber DOL=1.6	a (3-second gust) DL=6.0psf; h=25ft; (nvelope) exterior zor ; end vertical left an i0 plate grip DOL=1.0	Cat. ne; d 60										
 Truss de only. For see Stand or consult TCLL: AS Plate DOI 	signed for wind loads in studs exposed to wind dard Industry Gable En t qualified building desi GE 7-16; Pr=25.0 psf (L=1.15); Pg=20.0 psf; I	n the plane of the tru I (normal to the face) d Details as applicat gner as per ANSI/TF (roof LL: Lum DOL=1 Pf=15.4 psf (Lum	iss), ble, PI 1. 1.15									STATE OF SCOT	MISSOLAL T. M. IER
DOL=1.19 Partially E 4) Gable rec 5) Gable stu 6) This truss	b Plate DOL=1.15); Is= Exp.; Ce=1.0; Cs=1.00; Juires continuous botto Ids spaced at 4-0-0 oc. 5 has been designed fo	r a 10.0 psf bottom	de									PE-2001	BER O18807

6 chord live load nonconcurrent with any other live loads.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

February 8,2024

SSIONAL E Con

Page: 1

Job	Truss	Truss Type	Qty	Ply	Lot 17 TCR	
230872	V20	Valley	2	1	Job Reference (optional)	163476861

3-10-0

Wheeler Lumber, Waverly, KS - 66871,

Run: 8,73 S Jan 4 2024 Print: 8,730 S Jan 4 2024 MiTek Industries, Inc. Tue Feb 06 14:23:03 ID:liToUkML5IDbP29eKTLGNmy6jdf-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:28

Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 25.0 15.4/20.0 10.0 10.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018/TF	PI2014	CSI TC BC WB Matrix-P	0.22 0.11 0.00	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 3	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 13 lb	GRIP 197/144 FT = 10%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SPF No.2 2x4 SPF No.2 2x3 SPF No.2 Structural wood shea 3-10-4 oc purlins, e: Rigid ceiling directly bracing. (size) 1=3-10-4, Max Horiz 1=135 (LC Max Gray 1=193 (LC Max Gray 1=193 (LC	athing directly appli xcept end verticals. applied or 10-0-0 o 3=3-10-4 2 7) 2 22), 3=207 (LC 21	7) * or 3. ct 8) A ed or 5 c 10) Ti 10 Ti 8 R R LOAE	This truss h n the bottom -06-00 tall b hord and an Il bearings a rovide mech earing plate his truss is o tternational 802.10.2 ar D CASE(S)	as been designe h chord in all area y 2-00-00 wide w y other members anical connectio capable of withs designed in accoo Residential Code d referenced sta Standard	d for a liv as where vill fit betw s, with BC e SPF No n (by oth tanding 6 rdance w e sections ndard AN	e load of 20.0 a rectangle veen the botto DL = 10.0psf o.2. ers) of truss t 6 lb uplift at j th the 2018 R502.11.1 a SI/TPI 1.	Dpsf om o ooint nd					
FORCES	(lb) - Maximum Com Tension	pression/Maximum											
TOP CHORD BOT CHORD	1-2=-127/99, 2-3=-14 1-3=-48/37	48/87											
NOTES													
 Wind: AS Vasd=91r II; Exp C; cantilever right expc Truss de only. For 	OTES Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed; conducting the problem of the truss only. For studs exposed to wind (normal to the face),												
see Stand or consult 3) TCLL: AS Plate DOI DOL=1.15 Partially E	dard Industry Gable Env t qualified building desig GCE 7-16; Pr=25.0 psf (/ L=1.15); Pg=20.0 psf; P 5 Plate DOL=1.15); Is=: Exp.; Ce=1.0; Cs=1.00;	d Details as applical gner as per ANSI/TF roof LL: Lum DOL= 2f=15.4 psf (Lum 1.0; Rough Cat C; Ct=1.10	ble, Pl 1. 1.15								A D	STAT SCOT SEV.	T M. IER

4) Gable requires continuous bottom chord bearing.

5) Gable studs spaced at 4-0-0 oc.

This truss has been designed for a 10.0 psf bottom 6) chord live load nonconcurrent with any other live loads. OFFSSIONAL ET PE-2001018807 February 8,2024

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

NUMBER

Job	Truss	Truss Type	Qty	Ply	Lot 17 TCR	
230872	V21	Valley	2	1	Job Reference (optional)	163476862

Run: 8.73 S Jan 4 2024 Print: 8.730 S Jan 4 2024 MiTek Industries, Inc. Tue Feb 06 14:23:03 ID:liToUkML5IDbP29eKTLGNmy6jdf-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

2x4 II

1-10-8

Scale = 1:25.7

Plate Offsets (X, Y): [2:0-0-11,Edge]

		-		-									
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 25.0 20.4/20.0 10.0 10.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018/TPI2014	CSI TC BC WB Matrix-R	0.07 0.05 0.00	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 4	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 8 lb	GRIP 197/144 FT = 10%	
BCDL LUMBER TOP CHORD BOT CHORD BRACING TOP CHORD BOT CHORD BOT CHORD REACTIONS FORCES TOP CHORD BOT CHORD BOT CHORD BOT CHORD BOT CHORD NOTES 1) Unbalance this design (2) Wind: ASK Vasd=91n II; Exp C; cantilever right expo only. For see Stand or see Stand	10.0 2x4 SPF No.2 2x4 SPF No.2 2x3 SPF No.2 Structural wood shee 2-10-4 oc purlins, e: 2-0-0 oc purlins; 2-3 Rigid ceiling directly bracing. (size) 1=2-10-0, Max Horiz 1=63 (LC Max Uplift 1=-6 (LC Max Grav 1=115 (LC (lb) - Maximum Com Tension 1-2=-81/22, 2-3=-27/ 1-4=-26/27 ed roof live loads have 1-2=-81/22, 2-3=-27/ 1-4=-26/27	athing directly applie xcept end verticals, a applied or 10-0-0 oc 4=2-10-0 9) 10), 4=-32 (LC 7) 2 24), 4=111 (LC 3) pression/Maximum /24, 3-4=-74/39 been considered for (3-second gust) DL=6.0psf; h=25ft; C welope) exterior zon ; end vertical left and 0 plate grip DOL=1.6 the plane of the trus (normal to the face), d Details as applicab	8) This truss I chord live I 9) * This truss on the bott 3-06-00 tal chord and 10) All bearing 11) Provide me bearing pla and 32 lb u 12) This truss i Internation R802.10.2 13) Graphical I or the orier bottom cho LOAD CASE(S	has been designed bad nonconcurrent has been designer om chord in all area by 2-00-00 wide w any other members is are assumed to be chanical connectio te capable of withst plift at joint 4. Is designed in accord and referenced star jourlin representation utation of the purlin rd. Standard	for a 10.0 with any d for a liv as where ill fit betw , with BC e SPF No n (by oth tanding 6 rdance w sections ndard AN n does n along the	D psf bottom other live load e load of 20.0 a rectangle veen the bottc DL = 10.0psf. 5.2. ers) of truss to b uplift at joi ith the 2018 R502,11.1 at JSI/TPI 1. J depict the s e top and/or	ds. psf m nt 1 nd ize			*	Weight: 8 lb	T M. ER	
 4) TCLL: AS Plate DOL DOL=1.15 Partially E 5) Provide and 6) Gable req 	CE 7-16; Pr=25.0 psf (CE 7-16; Pr=25.0 psf; F Plate DOL=1.15); Is= xp.; Ce=1.0; Cs=1.00; dequate drainage to pro- uires continuous bottor	roof LL: Lum DOL=1 f=20.4 psf (Lum 1.0; Rough Cat C; Ct=1.10, Lu=50-0-0 event water ponding m chord bearing.	.15							Pixed	PE-2001	018807	

- 5) Provide adequate drainage to prevent water ponding.
- 6) Gable requires continuous bottom chord bearing.
- 7) Gable studs spaced at 4-0-0 oc.

February 8,2024

Job	Truss	Truss Type	Qty	Ply	Lot 17 TCR	
230872	V22	Valley	2	1	Job Reference (optional)	163476863

Run: 8,73 S Jan 4 2024 Print: 8,730 S Jan 4 2024 MiTek Industries, Inc. Tue Feb 06 14:23:03 ID:liToUkML5IDbP29eKTLGNmy6jdf-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

1-3-8

Page: 1

Scale = 1:21	Scale	э = '	1:21
--------------	-------	-------	------

Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 25.0 15.4/20.0 10.0 10.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018/TPI2014	CSI TC BC WB Matrix-P	0.06 0.03 0.00	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a 0.00	(loc) - - 3	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 6 lb	GRIP 197/144 FT = 10%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SPF No.2 2x4 SPF No.2 2x3 SPF No.2 Structural wood she 2-7-0 oc purlins, ex Rigid ceiling directly bracing. (size) 1=2-7-0, 3 Max Horiz 1=39 (LC Max Uplift 1=-11 (LC	athing directly applie cept end verticals. applied or 10-0-0 or 3=2-7-0 9) 5 12), 3=-20 (LC 12)	8) * This tr on the b 3-06-00 chord a 9) All bear ed or 10) Provide bearing c 1 and 2 11) This tru Internat R802.10 LOAD CAS	uss has been design oottom chord in all an tall by 2-00-00 wide nd any other membe ings are assumed to mechanical connect plate capable of with 0 lb uplift at joint 3. ss is designed in acc ional Residential Coo 0.2 and referenced st E(S) Standard	ned for a liv eas where will fit betw be SPF No tion (by oth instanding 1 cordance w de sections tandard AN	e load of 20.1 a rectangle veen the bott DL = 10.0ps 0.2 . ers) of truss : 1 lb uplift at j ith the 2018 : R502.11.1 a ISI/TPI 1.	Opsf om f. to joint and					
FORCES	Max Grav 1=86 (LC (lb) - Maximum Com Tension 1-2=-35/23, 2-3=-65,	3), 3=87 (LC 25) pression/Maximum /32										
BOT CHORD	1-3=-13/10											
NOTES												
 Wind: ASS Vasd=91n II; Exp C; cantilever right expo Truss des only. For see Stand or consult TCLL: AS Plate DOL DOL=1.16 DOL=1.15 	CE /-16; Vult=115mph nph; TCDL=6.0psf; BC Enclosed; MWFRS (er left and right exposed sed; Lumber DOL=1.6 signed for wind loads ir studs exposed to wind lard Industry Gable En- qualified building desig CE 7-16; Pr=25.0 psf (_=1.15); Pg=20.0 psf; F 5 Plate DOL=1.15); Is=	(3-second gust) DL=6.0psf; h=25f; (welope) exterior zor ; end vertical left an 0 plate grip DOL=1.0 the plane of the tru (normal to the face) d Details as applicat gner as per ANSI/TF roof LL: Lum DOL=1 2f=15.4 psf (Lum 1.0; Rough Cat C; c t 1.00	Cat. ne; d 60 isss), ble, 1.15								STATE OF STATE SCOT	MISSOLIR T M. TER
 4) Unbalance design. 5) Gable reg 	xp.; Ce=1.0; Cs=1.00; ed snow loads have be uires continuous botto	Ct=1.10 en considered for the chord bearing	nis						d		NUN PE-200	BER 1018807

6) Gable studs spaced at 4-0-0 oc.

This truss has been designed for a 10.0 psf bottom 7) chord live load nonconcurrent with any other live loads.

February 8,2024

16023 Swingley Ridge Rd. Chesterfield, MO 63017 314.434.1200 / MiTek-US.com

BSSIONAL ET

Do

Job	Truss	Truss Type	Qty	Ply	Lot 17 TCR	
230872	V23	Valley	2	1	Job Reference (optional)	163476864

6-6-8

Wheeler Lumber, Waverly, KS - 66871,

Scale = 1:27.1 Loading

TCLL (roof)

TCDL

BCLL

BCDL

WFBS

OTHERS

BRACING

TOP CHORD

BOT CHORD

FORCES

WEBS

NOTES

2)

TOP CHORD

BOT CHORD

REACTIONS (size)

LUMBER

TOP CHORD

BOT CHORD

Snow (Pf/Pg)

3-3-8

Spacing

Code

(psf)

25.0

10.0

10.0

10.0

15.4/20.0

2x4 SPF No.2

2x4 SPF No.2

2x3 SPF No 2

2x3 SPF No.2

Max Horiz 1=122 (LC 9)

1-5=-42/32, 4-5=-42/32

5=391 (LC 5)

bracing

Max Grav

Tension

2-5=-307/157

Run: 8 73 S. Jan. 4 2024 Print: 8 730 S. Jan. 4 2024 MiTek Industries. Inc. Tue Feb 06 14:23:04 ID:liToUkML5IDbP29eKTLGNmy6jdf-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

2x4 u 3 2x4 II 3-3-8 2 12 6 Г 6 4 5 2x4 🚽 2x4 II 2x4 II 6-6-8 2-0-0 CSI DEFL l/defl L/d PLATES GRIP in (loc) Plate Grip DOL 1.15 TC 0.21 Vert(LL) n/a n/a 999 MT20 197/144 BC Lumber DOL 1 15 0.10 Vert(TL) n/a n/a 999 Rep Stress Incr YES WB 0.05 Horiz(TL) 0.00 4 n/a n/a IRC2018/TPI2014 Matrix-P Weight: 18 lb FT = 10%7) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 8) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf. All bearings are assumed to be SPF No.2 . 9) Structural wood sheathing directly applied or 10) Provide mechanical connection (by others) of truss to 6-0-0 oc purlins, except end verticals. bearing plate capable of withstanding 28 lb uplift at joint Rigid ceiling directly applied or 10-0-0 oc 4 and 108 lb uplift at joint 5. 11) This truss is designed in accordance with the 2018 1=6-7-0, 4=6-7-0, 5=6-7-0 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. Max Uplift 4=-28 (LC 12), 5=-108 (LC 12) LOAD CASE(S) Standard 1=50 (LC 26), 4=159 (LC 18), (lb) - Maximum Compression/Maximum 1-2=-106/55, 2-3=-103/43, 3-4=-127/47 1) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone; OF MISS cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60 Truss designed for wind loads in the plane of the truss SCOTT M. only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, SEVIER

- or consult qualified building designer as per ANSI/TPI 1. TCLL: ASCE 7-16; Pr=25.0 psf (roof LL: Lum DOL=1.15 3) Plate DOL=1.15); Pg=20.0 psf; Pf=15.4 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat C; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- 4) Unbalanced snow loads have been considered for this design.
- 5) Gable requires continuous bottom chord bearing.
- 6) Gable studs spaced at 4-0-0 oc.

16023 Swingley Ridge Rd. Chesterfield MO 63017 314.434.1200 / MiTek-US.com

February 8,2024

F

PE-2001018807

SSIONAL

0

Job	Truss	Truss Type	Qty	Ply	Lot 17 TCR	
230872	V24	Valley	2	1	Job Reference (optional)	163476865

Run: 8,73 S Jan 4 2024 Print: 8,730 S Jan 4 2024 MiTek Industries, Inc. Tue Feb 06 14:23:04 ID:liToUkML5IDbP29eKTLGNmy6jdf-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Scale = 1:38.1

Loading TCLL (roof Snow (Pf/F TCDL BCLL BCDL	(p 25 g) 15.4/20 10 10 10	sf) 5.0 0.0 0.0 0.0 * 0.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC20	018/TPI2014	CSI TC BC WB Matrix-S	0.22 0.19 0.08	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 5	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 31 lb	GRIP 197/144 FT = 10%
LUMBER TOP CHOI BOT CHOI WEBS OTHERS BRACING TOP CHOI BOT CHOI	 2x4 SPF No.2 2x4 SPF No.2 2x3 SPF No.2 2x3 SPF No.2 2x3 SPF No.2 RD Structural wood 6-0-0 oc purling Rigid ceiling dii bracing. 	d shea s, exc rectly a	thing directly applie ept end verticals. applied or 10-0-0 oc	d or	 Unbalanced design. Gable require Gable studs This truss ha chord live loa * This truss h on the bottor 3-06-00 tall b chord and ar Unbacting 	snow loads have es continuous bo spaced at 4-0-0 o s been designed di nonconcurrent ias been designe n chord in all area by 2-00-00 wide w by other members	been cor ttom chor oc. for a 10.4 with any d for a liv as where vill fit betw s, with BC	nsidered for the d bearing. D psf bottom other live loa e load of 20.0 a rectangle veen the botto DL = 10.0psf c 2	nis ds. Opsf om					
FORCES TOP CHOI BOT CHOI	IS (size) 1=10 7=10 Max Horiz 1=20 Max Uplift 5=-3 Max Grav 1=94 (LC : (Ib) - Maximum Tension RD 1-2=-178/51, 2: 4-5=-128/44 RD 1-7=-69/54, 6-7)-7-0, !)-7-0)5 (LC 2 (LC 9 (LC 4 (LC 2 5), 7=0 Comp -3=-14 7=-69/!	5=10-7-0, 6=10-7-0, 11) 9), 6=-121 (LC 12), 12) 26), 5=204 (LC 5), 6 347 (LC 3) pression/Maximum 15/70, 3-4=-128/53, 54, 5-6=-69/54	, =502	 Frovide mec bearing plate 5, 121 lb upli 11) This truss is International R802.10.2 at LOAD CASE(S) 	hanical connection capable of withs ft at joint 6 and 8 designed in accoo Residential Code and referenced stat Standard	on (by oth standing 3 9 lb uplift rdance w e sections indard AN	ers) of truss t 12 Ib uplift at j at joint 7. ith the 2018 s R502.11.1 a ISI/TPI 1.	o oint nd					
 WEBS NOTES 1) Wind: Vasd= II; Exp cantile right e. 2) Truss only. I see St or com. 3) TCLL: Plate I DOL= Partial 	3-6=-321/167, : ASCE 7-16; Vult=11! 91mph; TCDL=6.0ps C; Enclosed; MWFR ver left and right exp iposed; Lumber DOI designed for wind lo for studs exposed to andard Industry Gab ult qualified building ASCE 7-16; Pr=25.0 OL=1.15); Pg=20.0 .15 Plate DOL=1.15 y Exp.; Ce=1.0; Cs=	5mph (f; BCE S (env osed ; ==1.60 ads in wind (le End desig psf; Pt); Is=1 1.00; ((3-second gust) DL=6.0psf; h=25ft; C velope) exterior zon- end vertical left anc plate grip DOL=1.6 the plane of the trus (normal to the face), Details as applicab ner as per ANSI/TP oof LL: Lum DOL=1 f=15.4 psf (Lum .0; Rough Cat C; Ct=1.10	Cat. e; 50 50 55 5 5 5 1 1. 15							-		STRE OF M SEVI SEVI PE-20010 PE-20010	AISSOLUTE ER BER D18807

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

February 8,2024

Page: 1

Job	Truss	Truss Type	Qty	Ply	Lot 17 TCR	
230872	V25	Valley	2	1	Job Reference (optional)	163476866

Run: 8.73 S Jan 4 2024 Print: 8.730 S Jan 4 2024 MiTek Industries, Inc. Tue Feb 06 14:23:04 ID:Du0Bh4NzscLS0CkruBsVw_y6jde-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f ____

Page: 1

Scale = 1:46.6

Plate Offsets (X, Y): [6:Edge,0-2-8]

Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL LUMBER	(psf) 25.0 15.4/20.0 10.0 10.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC20 ⁷ 3	18/TPI2014	CSI TC BC WB Matrix-S	0.43 0.21 0.19	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 6	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 46 lb	GRIP 197/144 FT = 10%
TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD	2x4 SPF No.2 2x4 SPF No.2 2x3 SPF No.2 2x3 SPF No.2 Structural wood she 6-0-0 oc purlins, ex Rigid ceiling directly bracing.	athing directly applie cept end verticals. applied or 10-0-0 oc	4 ed or 5 6 c 7	 Plate DOL=1.15); Pg=20.0 psf; Pf=15.4 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat C; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10 4) Unbalanced snow loads have been considered for this design. 5) Gable requires continuous bottom chord bearing. 6) Gable studs spaced at 4-0-0 oc. 7) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 8) * This truss has been designed for a live load of 20.0psf 									
REACTIONS	(size) 1=14-7-0, 8=14-7-0, Max Horiz 1=288 (LC Max Uplift 6=-41 (LC Max Grav 1=113 (LC (LC 5), 8=	, 6=14-7-0, 7=14-7-0 , 9=14-7-0 C 9) C 9), 7=-118 (LC 12), C 12), 9=-94 (LC 12 C 9), 6=208 (LC 5), 7 =439 (LC 3), 9=366 (, 8) 9 7=539 (LC 3)	 * This truss f on the bottor 3-06-00 tall t chord and ar All bearings Provide mec bearing plate 118 lb upit 	has been designe in chord in all are: by 2-00-00 wide w by other members are assumed to b hanical connectic e capable of withs if at ioint 7, 100	d for a liv as where vill fit betw s, with BC be SPF No on (by oth standing 4	e load of 20.0 a rectangle veen the botto CDL = 10.0psf c.2. ers) of truss t 11 b uplift at j iont 8 and 9.	Opsf om o oint					
FORCES	(lb) - Maximum Com Tension	pression/Maximum	1	uplift at joint	9. designed in acco	rdance w	ith the 2018	+ 10					
TOP CHORD	1-2=-253/62, 2-3=-2 4-5=-146/74, 5-6=-1	13/77, 3-4=-174/78, 29/47		International R802 10 2 a	Residential Code	e sections	s R502.11.1 a	ind					
BOT CHORD	1-9=-98/75, 8-9=-98 6-7=-98/75	/75, 7-8=-98/75,	L	OAD CASE(S)	Standard							Contraction of the second	done done
WEBS	4-7=-313/152, 3-8=-	282/162, 2-9=-241/1	33									ALEUT	NIS'S
 NOTES Wind: AS Vasd=91r II; Exp C; cantilever right expc Truss de only. For see Stanc or consult 	CE 7-16; Vult=115mph mph; TCDL=6.0psf; BC Enclosed; MWFRS (er left and right exposed sed; Lumber DOL=1.6 signed for wind loads in studs exposed to wind and Industry Gable En t qualified building desi	(3-second gust) :DL=6.0psf; h=25ft; C velope) exterior zon ; end vertical left and 0 plate grip DOL=1.6 n the plane of the tru I (normal to the face) d Details as applicat gner as per ANS/IT	Cat. he; d 60 hss h, ple, PI 1.							-		SCOT SEV NUM PE-2001	T M. IER BER 018807

February 8,2024

SSIONAL

E

Job	Truss	Truss Type	Qty	Ply	Lot 17 TCR	
230872	V26	Valley	1	1	Job Reference (optional)	163476867

Run: 8,73 S Jan 4 2024 Print: 8,730 S Jan 4 2024 MiTek Industries, Inc. Tue Feb 06 14:23:05 ID:Du0Bh4NzscLS0CkruBsVw_y6jde-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:58.5

Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 25.0 15.4/20.0 10.0 10.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC201	8/TPI2014	CSI TC BC WB Matrix-S	0.38 0.21 0.37	DEFL Vert(LL) Vert(CT) Horz(CT)	in n/a n/a 0.00	(loc) - - 7	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 60 lb	GRIP 197/144 FT = 10%
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD	 2x4 SPF No.2 2x4 SPF No.2 2x3 SPF No.2 *Except* 6-7:2x4 SPF No.2 2x3 SPF No.2 Structural wood sheathing directly applied or 6-0-0 oc purlins, except end verticals. Rigid ceiling directly applied or 10-0-0 oc bracing, Except: 6-0-0 oc bracing: 10-11. 4 Down entering to 7 			Truss desig only. For stu see Standard or consult qu TCLL: ASCE Plate DOL=1 DOL=1.15 P Partially Exp Unbalanced design. This truss ha load of 12.0	ned for wind load uds exposed to w d Industry Gable alified building d 57-16; Pr=25.0 p 1.15); Pg=20.0 ps late DOL=1.15); .; Ce=1.0; Cs=1.1 snow loads have as been designed psf or 1.00 times	Is in the pl rind (norm End Deta esigner as sf (roof LL sf; Pf=15.4 Is=1.0; Rc 00; Ct=1.1 e been cor I for greate flat roof lo	ane of the tru al to the face ils as applica s per ANSI/T :: Lum DOL= psf (Lum ough Cat C; 0 isidered for t er of min roof aad of 15.4 p	uss able, PI 1. :1.15 this f live psf on					
REACTIONS	(size) 7=14-0-0 10=14-0- Max Horiz 11=373 (Max Uplift 7=-50 (LC 9=-110 (L 11=-57 (L Max Grav 7=210 (L 9=493 (L 11=405 (, 8=14-0-0, 9=14-0-0 0, 11=14-0-0 LC 9) C 9), 8=-116 (LC 12), .C 12), 10=-316 (LC 12), .C 10) C 26), 8=532 (LC 5), C 3), 10=410 (LC 26) (C 9)	 overhangs non-concurrent with other live loads. 6) Gable requires continuous bottom chord bearing. 7) Truss to be fully sheathed from one face or securely braced against lateral movement (i.e. diagonal web). 8) Gable studs spaced at 4-0-0 oc. 9) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 10) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 										
FORCES	(lb) - Maximum Con Tension	npression/Maximum	4.4	3-06-00 tall t chord and ar	by 2-00-00 wide wide wide wide wide wide wide wide	s, with BC	DL = 10.0ps	iom if.					
TOP CHORD	2-11=-396/62, 1-2= 3-4=-231/85, 4-5=-2 6-7=-130/50	0/31, 2-3=-269/62, 206/85, 5-6=-166/94,	12	 11) All bearings are assumed to be SPF No.2. 12) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 57 lb uplift at joint 15 OF MIS (Control of the standard of the standa									
BOT CHORD	10-11=-360/114, 9- 7-8=-126/97	10=-126/97, 8-9=-126	6/97, 13	uplift at joint 9 and 316 lb uplift at joint 10.									T M.
WEBS	5-8=-307/141, 4-9=-	285/166, 3-10=-220/	124,	International	Residential Code	e sections	R502 11 1	and			H	/ SEV	IFR \ X

NOTES

1) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60

2-10=-95/400

International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard

February 8,2024

 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.
 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not besign value to dury with with where outputs into design is based only door parameters shown, and is for an individual building design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members and property incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TPH1 Quality Criteria**, and **DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcscomponents.com)

Job	Truss	Truss Type	Qty	Ply	Lot 17 TCR	
230872	V28	Valley	1	1	Job Reference (optional)	163476868

7-0-0

-0-10-8

Wheeler Lumber, Waverly, KS - 66871,

Run: 8.73 S Jan 4 2024 Print: 8.730 S Jan 4 2024 MiTek Industries, Inc. Tue Feb 06 14:23:05 ID:Du0Bh4NzscLS0CkruBsVw_y6jde-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC?f

February 8,2024

Chesterfield, MO 63017 314.434.1200 / MiTek-US.com

Scale = 1:33

Loading	(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15		TC	0.22	Vert(LL)	n/a	-	n/a	999	MT20	197/144
Snow (Pf/Pg)	15.4/20.0	Lumber DOL	1.15		BC	0.10	Vert(CT)	n/a	-	n/a	999		
TCDL	10.0	Rep Stress Incr	YES		WB	0.06	Horz(CT)	0.00	5	n/a	n/a		
BCLL	10.0*	Code	IRC201	8/TPI2014	Matrix-P								FT 400/
BCDL	10.0											Weight: 23 lb	FI = 10%
LUMBER TOP CHORD BOT CHORD WEBS OTHERS WEDGE BRACING TOP CHORD BOT CHORD REACTIONS FORCES TOP CHORD	2x4 SPF No.2 2x3 SPF No.2 2x3 SPF No.2 2x3 SPF No.2 Left: 2x3 SPF No.2 Structural wood she 6-0-0 oc purlins, exi Rigid ceiling directly bracing. (size) 2=7-0-0, 5 Max Horiz 2=158 (LC Max Uplift 2=-4 (LC 3 (LC 12) Max Grav 2=167 (LC 6=404 (LC (lb) - Maximum Com Tension 1-2=0/11, 2-3=-130/	athing directly applic cept end verticals. applied or 10-0-0 o 5=7-0-0, 6=7-0-0 2 9) 8), 5=-27 (LC 9), 6= 2 27), 5=159 (LC 19 2 5) pression/Maximum 70, 3-4=-113/45,	4) 5) ed or 8) c 9) -124 1(1- 1), 12	Unbalanced design. This truss ha load of 12.0 overhangs n Gable requir Gable studs This truss ha chord live loa * This truss ha chord and ar 0) All bearings () Provide mec bearing plate 5, 4 lb uplift 2) This truss is International R802.10.2 a	snow loads ha as been design psf or 1.00 tim on-concurrent es continuous spaced at 4-0- as been design ad nonconcurre has been design m chord in all a by 2-00-00 wid ny other memb are assumed t chanical conner e capable of wi at joint 2 and 1 designed in ac Residential Co nd referenced	ve been cou ed for great es flat roof I bottom choi 0 oc. ed for a 10. ent with any ined for a liv reas where e will fit betv ers, with BC o be SPF N ction (by oth thstanding 2 24 lb upilf a cordance w ode sections standard AN	nsidered for t er of min roo oad of 15.4 p ve loads. d bearing. 0 psf bottom other live loa re load of 20. a rectangle ween the bott CDL = 10.0ps o.2. uers) of truss 27 lb uplift at at joint 6. with the 2018 s R502.11.1 a NSI/TPI 1.	his f live lisf on ads. Opsf com f. to joint					
	4-5=-128/45	40	-	0/10 0/102(0)	otandara								
WEBS	2-b=-53/40, 5-b=-53 3-6307/177	(40											
NOTES	0.0001/111											SIL	an
1) Wind AS(CE 7-16: Vult-115mph	(3-second quist)										8. OF	MIC

- Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
- Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 3) TCLL: ASCE 7-16; Pr=25.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf; Pf=15.4 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat C; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10

Page: 1

Job	Truss	Truss Type	Qty	Ply	Lot 17 TCR	
230872	V29	Valley	1	1	Job Reference (optional)	163476869

4-1-8

Wheeler Lumber, Waverly, KS - 66871,

Run: 8,73 S Jan 4 2024 Print: 8,730 S Jan 4 2024 MiTek Industries, Inc. Tue Feb 06 14:23:05 ID:Du0Bh4NzscLS0CkruBsVw_y6jde-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

4-1-8

Scale = 1:21.3

00010 - 1.21.0												
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 25.0 15.4/20.0 10.0 10.0 * 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018/TPI2	CSI TC BC WB Matrix-P	0.23 0.12 0.00	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 3	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 10 lb	GRIP 197/144 FT = 10%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SPF No.2 2x4 SPF No.2 2x3 SPF No.2 Structural wood she 4-2-0 oc purlins, ex Rigid ceiling directly bracing. (size) 1=4-2-0, 5 Max Horiz 1=72 (LC Max Uplift 1=-20 (LC Max Grav 1=165 (LC (lb) - Maximum Com	athing directly applie cept end verticals. applied or 10-0-0 or 3=4-2-0 9) 2 12), 3=-38 (LC 12) C 5), 3=-165 (LC 5) puression/Maximum	8) * Th on ti 3-06 choi 9) All b beai 2 1 ar 11) This Inter R80 LOAD C	is truss has been designe ne bottom chord in all area 6-00 tall by 2-00-00 wide w d and any other members earings are assumed to b vide mechanical connectio ing plate capable of withs d 38 lb uplift at joint 3. truss is designed in accor national Residential Code 2.10.2 and referenced sta ASE(S) Standard	ed for a liv as where vill fit betw s, with BC be SPF No on (by oth- standing 2 indance wi e sections andard AN	e load of 20.0 a rectangle veen the bottc DL = 10.0psf. 2. ers) of truss tr 0 lb uplift at jo ith the 2018 R502.11.1 at ISI/TPI 1.	Dpsf om o point nd					
TOP CHORD BOT CHORD	(ib) - Maximum Com Tension 1-2=-65/46, 2-3=-12 1-3=-24/19	8/58										
 Wind: ASC Vasd=91n II; Exp C; cantilever right expo Truss des only. For see Stand or consult TCLL: AS Plate DOL DOL=1.15 Partially E Unbalance 	CE 7-16; Vult=115mph nph; TCDL=6.0psf; BC Enclosed; MWFRS (er left and right exposed sed; Lumber DOL=1.6 signed for wind loads ir studs exposed to wind lard Industry Gable En- qualified building desig CE 7-16; Pr=25.0 psf (_=1.15); Pg=20.0 psf; f Plate DOL=1.15); Is= ixp.; Ce=1.0; Cs=1.00; ed snow loads have be	(3-second gust) DL=6.0psf; h=25ft; C rvelope) exterior zon ; end vertical left and 0 plate grip DOL=1.6 h the plane of the tru (normal to the face) d Details as applicat gner as per ANSI/TF roof LL: Lum DOL=1 Pf=15.4 psf (Lum 1.0; Rough Cat C; Ct=1.10 een considered for th	Cat. e; d 30 ss ss vle, .15 is							A STATE	STATE OF J STATE SCOT SEV	MISSOLA T M. ER

design. 5) Gable requires continuous bottom chord bearing.

Gable studs spaced at 4-0-0 oc. 6) 7)

This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

February 8,2024

16023 Swingley Ridge Rd. Chesterfield, MO 63017 314.434.1200 / MiTek-US.com

PE-200101880'

SIONAL ET

General Safety Notes

Failure to Follow Could Cause Property Damage or Personal Injury

- 1. Additional stability bracing for truss system, e.g. diagonal or X-bracing, is always required. See BCSI.
- Truss bracing must be designed by an engineer. For wide truss spacing, individual lateral braces themselves may require bracing, or alternative Tor1 bracing should be considered.
- Never exceed the design loading shown and never stack materials on inadequately braced trusses.
- Provide copies of this truss design to the building designer, erection supervisor, property owner and all other interested parties.
- 5. Cut members to bear tightly against each other
- Place plates on each face of truss at each joint and embed fully. Knots and wane at joint locations are regulated by ANSI/TPI 1.
- Design assumes trusses will be suitably protected from the environment in accord with ANSI/TPI 1.
- Unless otherwise noted, moisture content of lumber shall not exceed 19% at time of fabrication.
- Unless expressly noted, this design is not applicable for use with fire retardant, preservative treated, or green lumber.
- Camber is a non-structural consideration and is the responsibility of truss fabricator. General practice is to camber for dead load deflection.
- 11. Plate type, size, orientation and location dimensions indicated are minimum plating requirements.
- Lumber used shall be of the species and size, and in all respects, equal to or better than that specified.
- Top chords must be sheathed or purlins provided at spacing indicated on design.
- 14. Bottom chords require lateral bracing at 10 ft. spacing, or less, if no ceiling is installed, unless otherwise noted.
- 15. Connections not shown are the responsibility of others.
- Do not cut or alter truss member or plate without prior approval of an engineer.
- 17. Install and load vertically unless indicated otherwise.
- Use of green or treated lumber may pose unacceptable environmental, health or performance risks. Consult with project engineer before use.
- Review all portions of this design (front, back, words and pictures) before use. Reviewing pictures alone is not sufficient.
- 20. Design assumes manufacture in accordance with ANSI/TPI 1 Quality Criteria.
- 21. The design does not take into account any dynamic or other loads other than those expressly stated.