

RE: B240067 - Lot 166 HT Site Information: Project Customer: Summit Homes Project Name: Lot/Block: 166 Subdivision: Hawt Model: Somerset - Tuscan Address: 1632 SW Buckthorn Dr Citate MO	MiTek, Inc. 16023 Swingley Ridge Rd. Chesterfield, MO 63017 314.434.1200											
City: Lee's Summit State: MO General Truss Engineering Criteria & Design Loads (Individ	ual Truss Design											
Drawings Show Special Loading Conditions):Design Code:IRC2018/TPI2014Wind Code:ASCE 7-16 [IWind Right]ed:Roof Load:45.0 psfDesign Program:MiTek 20/20 8.7Design Method:MWFRS (Envelope) ASCE 7-16 [Low Rise]Floor Load:N/A psf												
Mean Roof Height (feet): 25Exposure Category: C												
No.Seal#Truss NameDateNo.Seal#Truss1 164780418 A1 $4/10/24$ 35 164780452 $V13$ 2 164780420 A3 $4/10/24$ 36 164780453 $V14$ 3 164780421 A4 $4/10/24$ 38 164780455 $V16$ 5 164780422 A5 $4/10/24$ 39 164780455 $V16$ 6 164780423 A6 $4/10/24$ 40 164780457 $V18$ 7 164780425 A8 $4/10/24$ 41 164780457 $V18$ 8 164780426 A9 $4/10/24$ 41 164780458 $V19$ 9 164780427 A10 $4/10/24$ 41 164780458 $V19$ 1 164780428 B1 $4/10/24$ 41 164780458 $V19$ 1 164780431 B4 $4/10/24$ 41 164780432 85 $4/10/24$ 13 164780433 B6 $4/10/24$ 41 164780437 12 $4/10/24$ 14 164780438 D3 $4/10/24$ 41 164780438 12 $4/10/24$ 16 164780438 D3 $4/10/24$ $410/24$ 41 164780443 $410/24$ 16 164780443 V1 $4/10/24$ $410/24$ $410/24$ $410/24$ 16 164780443 V1 $4/10/24$ $410/24$ 16 164780443 V2 $4/10/24$ 16 164780444 V5 $4/10/24$ 16<	Name Date 4/10/24 4/10/24 4/10/24 4/10/24 4/10/24 4/10/24											
The truss drawing(s) referenced above have been prepared by MiTek USA, Inc. under my direct supervision based on the parameter provided by Wheeler Wayerly	TS OF MIC											

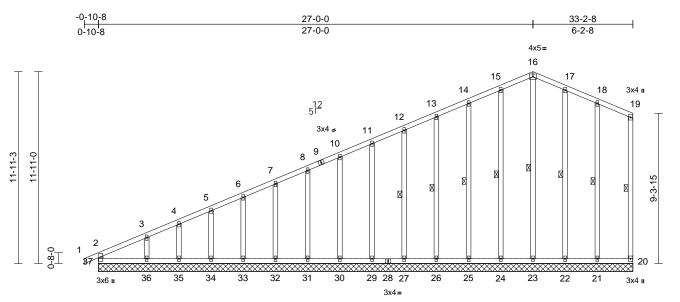
provided by Wheeler - Waverly.

Truss Design Engineer's Name: Sevier, Scott

My license renewal date for the state of Missouri is December 31, 2025.

IMPORTANT NOTE: The seal on these truss component designs is a certification that the engineer named is licensed in the jurisdiction(s) identified and that the designs comply with ANSI/TPI 1. These designs are based upon parameters shown (e.g., loads, supports, dimensions, shapes and design codes), which were given to MiTek or TRENCO. Any project specific information included is for MiTek's or TRENCO's customers file reference purpose only, and was not taken into account in the preparation of these designs. MiTek or TRENCO has not independently verified the applicability of the design parameters or the designs for any particular building. Before use, the building designer should verify applicability of design parameters and properly incorporate these designs into the overall building design per ANSI/TPI 1, Chapter 2.

1 of 1


April 10,2024

Job	Truss	Truss Type	e Qty Ply Lot 166 HT		Lot 166 HT	
B240067	A1	Common Supported Gable	2	1	Job Reference (optional)	l64780418

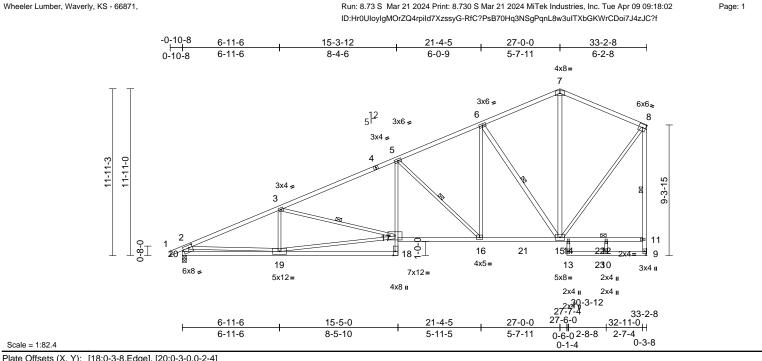
Scale - 1.71.6

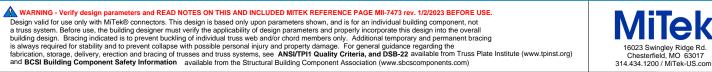
Run: 8.73 S Mar 21 2024 Print: 8.730 S Mar 21 2024 MiTek Industries, Inc. Tue Apr 09 09:18:01 ID:Hr0UloyIgMOrZQ4rpild7XzssyG-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC?f

Page: 1

2	2	\mathbf{c}	0

Scale = 1:71.6												
Loading TCLL (roof) TCDL BCLL BCDL	(psf) 25.0 10.0 0.0 10.0	Plate Grip DOL Lumber DOL * Rep Stress Incr	2-0-0 1.15 1.15 YES IRC2018/TPI201	CSI TC BC WB 4 Matrix-R	0.39 0.16 0.14	DEFL Vert(LL) Vert(CT) Horz(CT)	in n/a n/a -0.01	(loc) - - 20	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 208 lb	GRIP 197/144 FT = 10%
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD WEBS	6-0-0 oc purlins,	heathing directly applie except end verticals. tly applied or 10-0-0 oc 19-20, 16-23, 15-24 14-25, 13-26, 12-27 17-22, 18-21	BOT CHOP	3-4=-279/35, 4-5= 6-7=-216/28, 7-8= 10-11=-174/39, 11 12-13=-147/92, 13 14-15=-120/146, 1 16-17=-104/171, 1 18-19=-163/140, 1 RD 36-37=-130/98, 35 34-35=-130/98, 31 30-31=-130/98, 25 27-29=-130/98, 26	-262/35, -202/27, -12=-16 -14=-13 5-16=-1 7-18=-1 9-20=-1 -36=-13 -34=-13 -32=-13 0-30=-13 0-27=-13	5-6=-237/31, 8-10=-188/27 1/65, 3/118, 05/170, 18/145, 24/106 3/98, 0/98, 0/98, 0/98, 0/98,	7,	chc 9) * T on 3-0 chc 10) All 11) Prc bea 20, upl 27, upl	ord live lo his truss the botto 6-00 tall ord and a bearing vide me aring plat 18 lb up ift at join 48 lb up ift at join	bad no has be om che by 2-0 any oth are as chanic te capa blift at j t 25, 4 blift at j t 31, 4	een designed for ord in all areas wh 00-00 wide will fit i her members. ssumed to be SP cal connection (by able of withstandi oint 23, 44 lb upli 7 lb uplift at joint 2 oint 29, 48 lb upli 8 lb uplift at joint 3	any other live loads. a live load of 20.0psf lere a rectangle between the bottom F No.2 . others) of truss to ng 43 lb uplift at joint ft at joint 24, 51 lb 26, 48 lb uplift at joint ft at joint 30, 48 lb 32, 46 lb uplift at joint
	23=33 26=33 30=33 33=33 36=33 36=33 36=33 Max Horiz 37=39 Max Uplift 20=-42 22=-56 24=-44 26=-47 29=-48 31=-48 31=-48 35=-11 Max Grav 20=88 22=18	2-8, $21=33-2-8$, $22=33-2-8$, $24=33-2-8$, $25=33-2-8$, $25=33-2-8$, $22=33-2-8$, $31=33-2-8$, $32=33-2-8$, $31=33-2-8$, $35=33-2-8$, $34=33-2-8$, $35=33-2-8$, $31=2-8$, $37=33-2-8$ 3 (LC 5) 4 (LC 4), $21=-45$ (LC 9), 5 (LC 9), $23=-18$ (LC 7), 6 (LC 8), $25=-51$ (LC 8), 7 (LC 8), $30=-48$ (LC 8), 7 (LC 8), $32=-48$ (LC 8), 8 (LC 8), $32=-48$ (LC 8), 9 (LC 8), $34=-57$ (LC 8), 9 (LC 8), $36=-148$ (LC 8), 10 (LC 8), $36=-148$ (LC 8), 10 (LC 8), $36=-148$ (LC 8), 10 (LC 16), $21=200$ (LC 22), 10 (LC 21), $25=179$ (LC 2), 10 (LC 21), $25=179$ (LC 2)	2-28, 2-8, 2-8, 2-8, 2-8, 2-8, 2-8, 1) Unbala this de 2) Wind: . Vasd= 2), II; Exp 1), cantile 21), right ex	AŠCE 7-16; Vult=115mp 91mph; TCDL=6.0psf; E C; Enclosed; MWFRS (ver left and right expose xposed; Lumber DOL=1	2-23=-13 -21=-13 -24=-14 -26=-14 -29=-14 31=-140 4=-1437 -22=-14 ve been veloped -CDL=6. enveloped -GCDL=6. enveloped -6. envelo	0/98, 0/98, 0/98, 0/71, 0/72, 72, 7-32=-144 8, 4-35=-126, 7/66, considered for considered for consid	/46, r Cat. ne; d 60	upi joir 12) Thi Inte R8	ift at join it 21. s truss is ernationa	t 36, 5 s desig al Resid and ref) Sta	6 lb uplift at joint 2 gned in accordanc dential Code sect ferenced standard	INSI/TPI 1.
FORCES	29=18 31=18 33=17 35=15 37=24	0 (LC 1), 27=180 (LC 2' 0 (LC 1), 30=180 (LC 2' 0 (LC 1), 32=180 (LC 2' 9 (LC 1), 34=185 (LC 2' 9 (LC 1), 36=242 (LC 2' 5 (LC 16) ompression/Maximum	1), only. F 1), see St 1), or cons 1), 4) 1), 5) 6) Truss t	designed for wind loads for studs exposed to win andard Industry Gable E sult qualified building de es are 2x4 MT20 unless requires continuous bot o be fully sheathed from against lateral movements studs spaced at 2-0-0 o	nd (norm End Deta signer as otherwi tom chor n one fac ent (i.e. c	al to the face) ils as applicat s per ANSI/TF se indicated. d bearing. e or securely), ble, Pl 1.		-	and the second	NUM PE-2001	018807


April 10,2024


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

Job	Truss	Truss Type	Qty	Ply	Lot 166 HT	
B240067	A2	Roof Special	1	1	Job Reference (optional)	164780419

Scale = 1:82.4

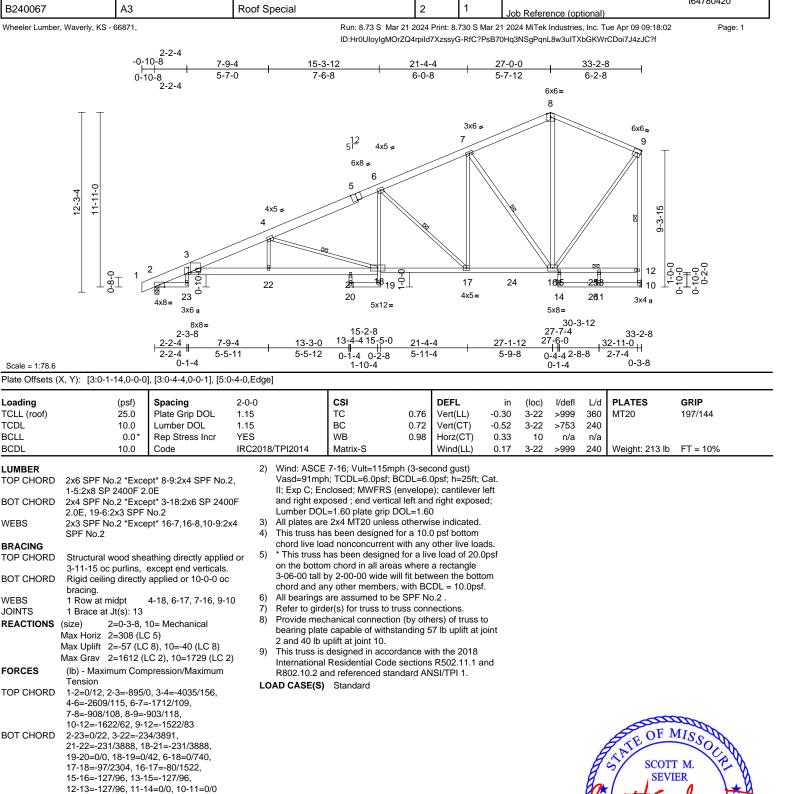


Plate Offsets (X, Y): [18:0-3-8,Edge], [20:0-3-0,0-2-4]													
Loading TCLL (roof) TCDL BCLL BCDL	(psf) 25.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC201	8/TPI2014	CSI TC BC WB Matrix-S	0.76 0.79 0.98	DEFL Vert(LL) Vert(CT) Horz(CT) Wind(LL)	-0.51 0.15		l/defl >999 >769 n/a >999	L/d 360 240 n/a 240	PLATES MT20 Weight: 168 lb	GRIP 197/144 FT = 10%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD WEBS JOINTS	2x4 SPF No.2 *Exce 1.8E 2x4 SPF No.2 *Exce 2x3 SPF No.2 *Exce SPF No.2, 20-2:2x6 Structural wood she 3-3-6 oc purlins, exx Rigid ceiling directly bracing. 1 Row at midpt 1 Brace at Jt(s): 12	ppt* 1-4:2x4 SPF 210 ppt* 18-5:2x3 SPF No ppt* 15-6,15-7,9-8:2x SPF No.2 athing directly applie cept end verticals. applied or 9-2-14 oc 3-17, 5-16, 6-15, 8-5 nical, 20=0-3-8 C 5) C 8), 20=-251 (LC 8)	2) 00F 2).2 4 3) d or 4) 5 5 6 6 7) 8 8 7) 8 8 8 7) 8 8 8 7) 8 8 8 7) 8 8 8 7 7 9 8 7 7 8 8 8 7 7 8 8 7 7 8 7 8	 Wind: ASCE Vasd=91mpl Exp C; En cantilever lef right expose This truss ha chord live loa * This truss f on the bottor 3-06-00 tall b chord and ar All bearings Refer to gird Provide mec bearing plate 20 and 219 I This truss is 	7-16; Vult=115mp h; TCDL=6.0psf; B (closed; MWFRS (it and right expose d; Lumber DOL=1 as been designed ad nonconcurrent has been designed or chord in all area by 2-00-00 wide wi y other members, are assumed to be er(s) for truss to tr hanical connection e capable of withst b uplift at joint 9. designed in accor Residential Code	CDL=6. enveloped d; end v .60 plate for a 10. with any d for a liv s where ill fit betw, with BC e SPF N- uss conr h (by oth anding 2 dance w	cond gust) opps; h=25ft; exterior zor vertical left ar grip DOL=1. 0 psf bottom other live load of 20.1 a rectangle veen the bott CDL = 10.0psi o.2. nections. ers) of truss t 251 lb uplift at ith the 2018	Cat. ne; id .60 ads. Opsf om f. t joint					
FORCES	(lb) - Maximum Com Tension 1-2=0/30, 2-3=-2961 5-6=-1679/313, 6-7= 2-20=-1499/282, 9-1 8-11=-1501/267	/429, 3-5=-2606/430 906/226, 7-8=-906/),		nd referenced star								
BOT CHORD	19-20=-381/802, 18- 5-17=-44/715, 16-17 15-16=-213/1482, 14 12-14=-151/115, 11- 9-10=0/0	/=-406/2327, 4-15=-151/115,	,								Å	SCOT	
WEBS NOTES 1) Unbalance this design	13-14=0/95, 3-19=-3 17-19=-548/2534, 3- 5-16=-1162/309, 6-1 6-15=-1260/320, 7-1 8-15=-179/1262, 2-1 10-12=0/77 ed roof live loads have	-17=-367/141, 6=-126/1002, 5=-66/389, 9=-178/1865,										SEVI NUMI PE-20010	BER 018807

tour April 10,2024

Job	Truss	Truss Type	Qty	Ply	Lot 166 HT	
B240067	A3	Roof Special	2	1	Job Reference (optional)	164780420

NOTES

WEBS

TCDL

BCLL

BCDL

WEBS

WEBS

1) Unbalanced roof live loads have been considered for this design.

3-23=0/81, 20-21=0/37, 14-15=0/91, 4-22=0/224, 4-18=-1668/150,

6-17=-1067/111, 7-17=0/1006,

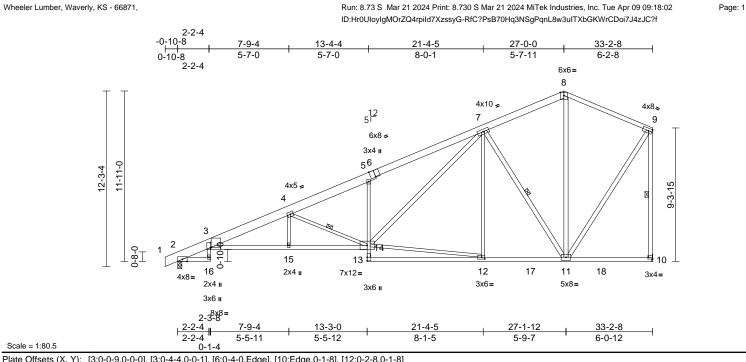
7-16=-1308/128, 8-16=-23/397, 9-16=-29/1286, 11-13=0/83

> 16023 Swingley Ridge Rd. Chesterfield MO 63017 314.434.1200 / MiTek-US.com

NUMBER

PE-200101880

F

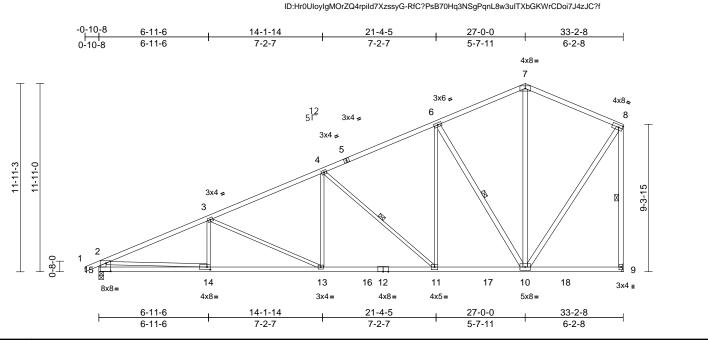

April 10,2024

SSIONAL

ro.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITEk® connectors. This design is based only upon parameters shown, and is for an individual building component, not and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponent.com)

Job	Truss	Truss Type	Qty	Ply	Lot 166 HT	
B240067	A4	Roof Special	2	1	Job Reference (optional)	164780421


Plate Offsets (X, Y): [3:0-0-9,0-0-0],	[3:0-4-4,0-0-1], [6:0	-4-0,Edge]	, [10:Edge,0-1	-8], [12:0-2-8,0-1-	3]						-	
Loading TCLL (roof) TCDL BCLL BCDL	(psf) 25.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC201	8/TPI2014	CSI TC BC WB Matrix-S	0.78 0.63 0.67	DEFL Vert(LL) Vert(CT) Horz(CT) Wind(LL)		(loc) 14-15 12-13 10 3-15	l/defl >999 >694 n/a >999	L/d 360 240 n/a 240	PLATES MT20 Weight: 205 lb	GRIP 197/144 FT = 10%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD WEBS REACTIONS	1-6:2x8 SP 2400F 2. 2x4 SPF No.2 *Exce 1.8E, 5-13:2x3 SPF 2x3 SPF No.2 *Exce 14-7,11-7,11-8,11-9, Structural wood she 3-8-11 oc purlins, e Rigid ceiling directly bracing. 1 Row at midpt	.0E ppt* 3-14:2x4 SPF 21 No.2 ppt* 10-9:2x4 SPF No.2 athing directly applie xcept end verticals. applied or 10-0-0 oc 4-14, 7-11, 9-10 10= Mechanical C 5) 2 8), 10=-39 (LC 8)	.2, 4) 100F 5) 6) 6d or 7) 2 8)	chord live loa * This truss I on the bottoo 3-06-00 tall I chord and at All bearings Refer to gird Provide mec bearing plate 2 and 39 Ib o This truss is International	as been designed ad nonconcurrent has been designed m chord in all area by 2-00-00 wide w ny other members are assumed to be ler(s) for truss to tr chanical connectio e capable of withst uplift at joint 10. designed in accor Residential Code nd referenced stat Standard	with any d for a liv s where ill fit betw , with BC e SPF No uss conr n (by oth anding 5 dance w sections	other live loa e load of 20.0 a rectangle yeen the botto DL = 10.0psf 5.2. ers) of truss t 55 lb uplift at j ith the 2018 s R502.11.1 a	Opsf om f. to oint					
FORCES	(Ib) - Maximum Com Tension 1-2=0/12, 2-3=-883/ 4-5=-2798/132, 5-7=	, 3-4=-3833/143,											
BOT CHORD	7-8=-813/116, 8-9=-	802/125, 9-10=-1478 //3719, 14-15=-218/3 -412/149, 12-13=0/1	3710,									OF I	
WEBS	3-16=0/71, 4-15=-50 12-14=-91/1155, 7-1 7-12=0/270, 7-11=-1 9-11=-17/1234)/133, 4-14=-1334/10 4=-170/1661,									ł	STATE OF I	IM. YEY
this design 2) Wind: ASC Vasd=91n II; Exp C; and right e	ed roof live loads have	Cat. eft							ې بر		NUM PE-2001	Serven 018807	

16023 Swingley Ridge Rd. Chesterfield, MO 63017 314.434.1200 / MiTek-US.com

April 10,2024

Job	Truss	Truss Type	Qty	Ply	Lot 166 HT	
B240067	A5	Common	1	1	Job Reference (optional)	164780422

Run: 8.73 S Mar 21 2024 Print: 8.730 S Mar 21 2024 MiTek Industries, Inc. Tue Apr 09 09:18:02

Page: 1

Plate Offsets (X, Y): [14:0-2-8,0-2-0], [15:0-3-8,0-6-4]

Scale = 1:73

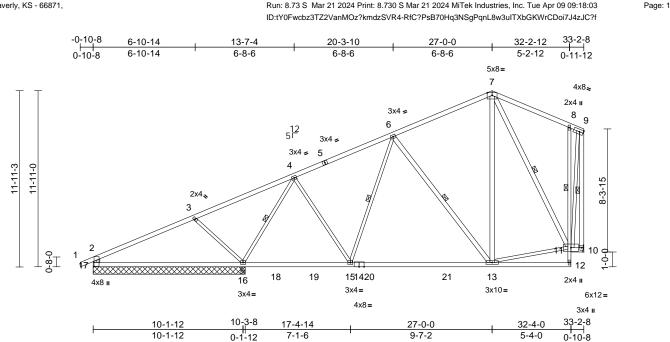
		-											
Loading	(psf)	Spacing	2-0-0		csi		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15		тс	0.68	Vert(LL)		11-13	>999	360	MT20	197/144
TCDL	10.0	Lumber DOL	1.15		BC	0.91	Vert(CT)	-0.34	11-13	>999	240		
BCLL	0.0*	Rep Stress Incr	YES		WB	0.94	Horz(CT)	0.08	9	n/a	n/a		
BCDL	10.0	Code	IRC201	8/TPI2014	Matrix-S		Wind(LL)	0.09	13-14	>999	240	Weight: 161 lb	FT = 10%
			4)) * This truck	nas been designe	d for a liv	a load of 20	Onof					
LUMBER TOP CHORD	2x4 SPF No.2		4)		n chord in all area			opsi					
BOT CHORD					y 2-00-00 wide w		0	om					
WEBS	2x3 SPF No.2 *Exce	•nt*			y other members								
WEbb	10-8,9-8,10-6,10-7:2		2x6 5)		are assumed to b								
	SPF No.2 6) Refer to girder(s) for truss to truss connections.												
BRACING			7)) Provide mec	hanical connectio	n (by oth	ers) of truss	to					
TOP CHORD	O Structural wood she	athing directly applie	ed or		e capable of withs	tanding 3	84 lb uplift at j	joint					
	2-8-10 oc purlins, e				uplift at joint 9.								
BOT CHORD	Rigid ceiling directly	applied or 10-0-0 or	c ⁸⁾		designed in accor								
	bracing.				Residential Code nd referenced sta			and					
WEBS		8-9, 4-11, 6-10				nuaru Ar	NOI/TELT.						
REACTIONS	()	anical, 15=0-3-8	L	OAD CASE(S)	Standard								
	Max Horiz 15=278 (I												
	Max Uplift 9=-59 (LC	,. (<i>)</i>											
	Max Grav 9=1621 (I	<i>.</i>	2)										
FORCES	(lb) - Maximum Com	npression/Maximum											
TODOUODD	Tension												
TOP CHORD													
	2-15=-1503/72, 8-9=	·830/67, 7-8=-824/74 1404/80	Ι,										
BOT CHORD	,												
bor onord	11-13=-183/2103, 1												
	9-10=-2/12	oo <u>_</u> ,.co,,										2000	all
WEBS		4=0/1810, 3-14=0/20	0,									TATE OF M	Also
	3-13=-610/89, 4-13=	=0/553, 4-11=-1015/*	107,									450	-20 M
	6-11=0/927, 6-10=-1	1231/131, 7-10=0/34	2								R	NY SCOT	New York
NOTES											4	S/ BCOI.	
1) Unbalanc	ced roof live loads have	been considered for	r								b.	SEVI	
this desig										80			
	SCE 7-16; Vult=115mph		-									Lat K	
	mph; TCDL=6.0psf; BC									-		NUM	SERVING
	; Enclosed; MWFRS (er									127	PE-2001	018807	
	exposed ; end vertical	ien exposed; Lumbe	ſ								N	PE-2001	128
	0 plate grip DOL=1.60 s has been designed fo	r a 10.0 psf hottom									Y	1ºSe	S B

 This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

April 10,2024

E

JONAL


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent colleges with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

Job	Truss	Truss Type	Qty	Ply	Lot 166 HT	
B240067	A6	Roof Special	1	1	Job Reference (optional)	164780423

Run: 8.73 S Mar 21 2024 Print: 8.730 S Mar 21 2024 MiTek Industries. Inc. Tue Apr 09 09:18:03

Wheeler Lumber, Waverly, KS - 66871,

Scale =	= 1:78	

Plate Offsets (X, Y): [1	17:0-4-11,0-2-	0]	
Looding	(nof)	Specing	200

Loading TCLL (roof) TCDL BCLL BCDL	(psf) 25.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018/TPI2014	CSI TC BC WB Matrix-S	0.76	DEFL Vert(LL) Vert(CT) Horz(CT) Wind(LL)		(loc) 13-15 13-15 10 13-15	l/defl >851 >530 n/a >999	L/d 360 240 n/a 240	PLATES MT20 Weight: 168 lb	GRIP 197/144
LUMBER TOP CHORD BOT CHORD	MBER P CHORD 2x4 SPF No.2		2) Wind: ASCE Vasd=91mp II; Exp C; En	7-16; Vult=115 h; TCDL=6.0ps closed; MWFR t and right exp	f; BCDL=6.0 S (envelope	ond gust) Dpsf; h=25ft; e) exterior zo	Cat. ne;	13-13		240	Weight. 100 lb	11 - 1078

BOT CHORD	2x4 SPF	No.2 *Ex	cept* 17-14:2x4 SPF
	2100F 1.8	BE, 12-8:	2x3 SPF No.2
WEBS	2x3 SPF I	No.2 *Ex	cept*
	13-6,13-7	,11-7,10-	9:2x4 SPF No.2, 17-2:2x6
	SPF No.2		
BRACING			
TOP CHORD	Structura	wood sh	neathing directly applied or
			except end verticals.
BOT CHORD			ly applied or 10-0-0 oc
	bracing.	0	.,
1 Row at midp	0		
WEBS	1 Row at	midpt	4-16, 6-15, 6-13, 7-11,
		mapt	9-10
REACTIONS	(size)	10= Me	chanical, 16=10-3-8,
	. ,	17=10-3	3-8
	Max Horiz	17=382	(LC 5)
	Max Uplift	10=-143	3 (LC 8), 16=-252 (LC 8),
		17=-75	(LC 8)
	Max Grav	10=110	9 (LC 2), 16=1573 (LC 2),
		17=540	(LC 23)
FORCES	(lb) - Max	imum Co	mpression/Maximum
	Tension		
TOP CHORD	1-2=0/30.	2-3=-47	8/74. 3-4=-185/95.
	4-6=-914	183. 6-7	=-586/172, 7-8=-219/154,
			0=-910/211, 2-17=-439/135
BOT CHORD		,	5-16=-216/604,
			2-13=-21/106, 11-12=0/57,
)-11=-114/87
WEBS	3-16=-50	1/254.4-	16=-1094/208, 4-15=0/338,
			3=-489/229, 7-13=-84/665,
		, -	11=-816/101,
	0 4 4 4 5		

NOTES

1) Unbalanced roof live loads have been considered for this design.

9-11=-159/896

right exposed; Lumber DOL=1.60 plate grip DOL=1.60 This truss has been designed for a 10.0 psf bottom 3) chord live load nonconcurrent with any other live loads. * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf. Bearings are assumed to be: Joint 16 SPF 2100F 1.8E , Joint 10 SPF No.2 , Joint 16 SPF 2100F 1.8E Refer to girder(s) for truss to truss connections. Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 75 lb uplift at joint 17, 143 lb uplift at joint 10 and 252 lb uplift at joint 16.

8) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard

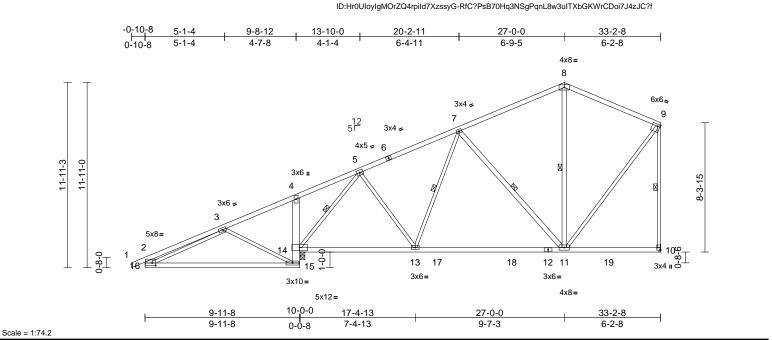
4)

5)

6)

7)

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not beigh valid for use only with with with sets outputs into design is based only door parameters shown, and is for an individual dualing component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria**, and **DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcscomponents.com)



Job	Truss	Truss Type	Qty	Ply	Lot 166 HT	
B240067	A7	Roof Special	3	1	Job Reference (optional)	164780424

Run: 8.73 S Mar 21 2024 Print: 8.730 S Mar 21 2024 MiTek Industries, Inc. Tue Apr 09 09:18:03

Page: 1

Wheeler Lumber, Waverly, KS - 66871,

Plate Offsets (X, Y): [2:0-2-12,0-2-0], [9:0-2-0,0-1-8], [10:Edge,0-2-8]

Loading	(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15		TC	0.98	Vert(LL)	-0.25	11-13	>999	360	MT20	197/144
TCDL	10.0	Lumber DOL	1.15		BC	0.70	Vert(CT)	-0.53	15-16	>215	120		
BCLL	0.0*	Rep Stress Incr	YES		WB	0.88	Horz(CT)	0.01	10	n/a	n/a		
BCDL	10.0	Code	IRC201	8/TPI2014	Matrix-S		Wind(LL)	-0.03	10-11	>999	240	Weight: 153 lb	FT = 10%
LUMBER TOP CHORD BOT CHORD	2x4 SPF No.2 2x4 SPF 2100F 1.8E	= *Event* 15 1.9ve		chord live loa	is been designed f ad nonconcurrent v nas been designed	with any	other live loa						
BUICHURD	2400F 2.0E, 12-10:2		5P 7		n chord in all areas			opsi					
WEBS	2x3 SPF No.2 *Exce No.2, 16-2:2x6 SPF	ept* 11-8,7-11:2x4 S	PF	chord and ar	by 2-00-00 wide wing other members,	with BC	DL = 10.0ps	f.					
BRACING			5		assumed to be: J	oint 14 S	SPF 2100F 1	.8E,					
TOP CHORD	Structural wood she 6-0-0 oc purlins, ex		ed or 6		er(s) for truss to tru								
BOT CHORD	Rigid ceiling directly bracing.	applied or 6-0-0 oc	7	bearing plate	hanical connectior capable of withst								
WEBS		8-11, 9-10, 5-14, 7- 7-11	13, 8		uplift at joint 10. designed in accore	dance w	ith the 2018						
	Max Horiz 14=298 (I Max Uplift 10=-20 (L	.C 9), 14=-180 (LC 4	•)		Residential Code nd referenced star Standard			and					
	Max Grav 10=956 (I	,, (2)										
FORCES	(lb) - Maximum Corr Tension	pression/maximum											
TOP CHORD	1-2=0/30, 2-3=-333/	84. 3-4=-208/1192.											
	4-5=-273/1531, 5-7=		35,										
	8-9=-509/100, 2-16=	-301/69, 9-10=-855	/45										
BOT CHORD	15-16=-615/165, 14	-15=-78/367,										~	
	4-14=-175/76, 13-14	1=-207/209,										and	m
	11-13=-116/554, 10	-11=-96/72										A OF I	MIS.C.
WEBS	3-15=-505/117, 8-11										1	STATE OF M	- SOLA
	3-16=-230/1004, 9-1	,									R	N SCOT	New Mar
	5-13=-14/770, 5-14=										4	S SCOL	I MI. YAY
	7-13=-406/140, 7-11	1=-206/109									Ø .	SEVI	
NOTES											8		
,	ed roof live loads have	been considered fo	r								XX.		· Kan ITA
this design													Fermen
 Wind: ASC 	E 7-16: Vult-115mph	(3-second quet)									YI m		

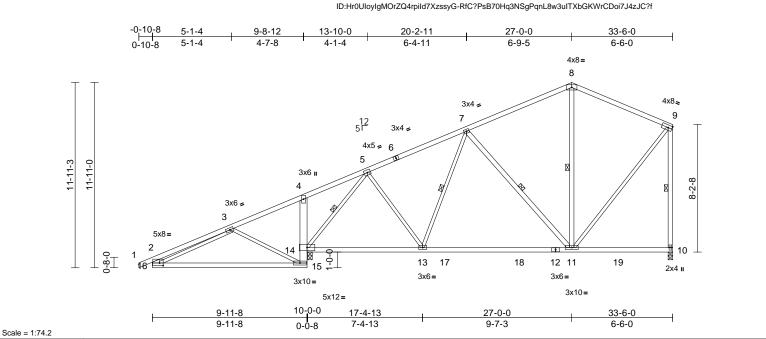
 Wind: ASCE 7-16; Vult=115mph (3-second gust)
 Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope); cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent colleges with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

E

April 10,2024

PE-200101880


SSIONAL

0

Job	Truss	Truss Type	Qty	Ply	Lot 166 HT	
B240067	A8	Roof Special	4	1	Job Reference (optional)	164780425

Run: 8.73 S Mar 21 2024 Print: 8.730 S Mar 21 2024 MiTek Industries, Inc. Tue Apr 09 09:18:03

Wheeler Lumber, Waverly, KS - 66871,

Plate Offsets (X, Y): [2:0-2-12,0-2-0]

Loading TCLL (roof) TCDL BCLL BCDL	(psf) 25.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC201	8/TPI2014	CSI TC BC WB Matrix-S	0.62 0.71 0.89	DEFL Vert(LL) Vert(CT) Horz(CT) Wind(LL)	in -0.25 -0.53 -0.01 0.03	(loc) 11-13 15-16 10 11-13	l/defl >999 >215 n/a >999	L/d 360 120 n/a 240	PLATES MT20 Weight: 156 lb	GRIP 197/144 FT = 10%
	2x4 SPF 2100F 1.8E 2400F 2.0E, 12-10:2 2x3 SPF No.2 *Exce 10-9,11-8,7-11:2x4 \$ Structural wood she 6-0-0 oc purlins, ex Rigid ceiling directly bracing. 1 Row at midpt	2x4 SPF No.2 pt* 16-2:2x6 SPF No.2 athing directly applie cept end verticals. applied or 6-0-0 oc 9-10, 8-11, 5-14, 7-1 7-11 14=0-3-8 LC 5) LC 9), 14=-382 (LC -	SP 4) 5).2, 5) d or 6) 13, 7) 13, 20	 chord live loa * This truss live on the bottoo 3-06-00 tall live chord and at Bearings are Joint 10 SPF Provide mec bearing plate 10 and 382 live This truss is International 	chanical connection e capable of withst b uplift at joint 14. designed in accor Residential Code nd referenced star	with any d for a liv is where ill fit betw , with BC loint 14 \$ n (by oth canding 1 dance w sections	other live load e load of 20.0 a rectangle veen the bott DL = 10.0psi SPF 2100F 1. ers) of truss i 17 lb uplift al ith the 2018 s R502.11.1 a	Opsf f. .8E , to t joint					
FORCES	(lb) - Maximum Com		-)										
TOP CHORD	Tension 1-2=0/30, 2-3=-333/ 4-5=-400/1531, 5-7= 8-9=-523/172, 2-16=	-547/102, 7-8=-538/											
BOT CHORD	15-16=-615/227, 14 4-14=-175/116, 13-1 11-13=-186/539, 10-	-15=-108/367, 4=-250/200,										OF M	
WEBS	8-11=-145/127, 9-11 5-14=-2152/342, 7-1 7-11=-202/175, 3-15 3-16=-309/1004	=-75/655, 5-13=-54/ 3=-411/176,	776,									STATE OF M	
this desigr 2) Wind: ASC	ed roof live loads have	(3-second gust)								-		PE-2001	

II; Exp C; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60

April 10,2024

BSSIONAL E

Page: 1

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent colleges with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

Job	Truss	Truss Type	Qty	Ply	Lot 166 HT	
B240067	A9	Roof Special	2	1	Job Reference (optional)	164780426

Scale = 1:81.3

Run: 8.73 S Mar 21 2024 Print: 8.730 S Mar 21 2024 MiTek Industries. Inc. Tue Apr 09 09:18:03 ID:Hr0UloyIgMOrZQ4rpild7XzssyG-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

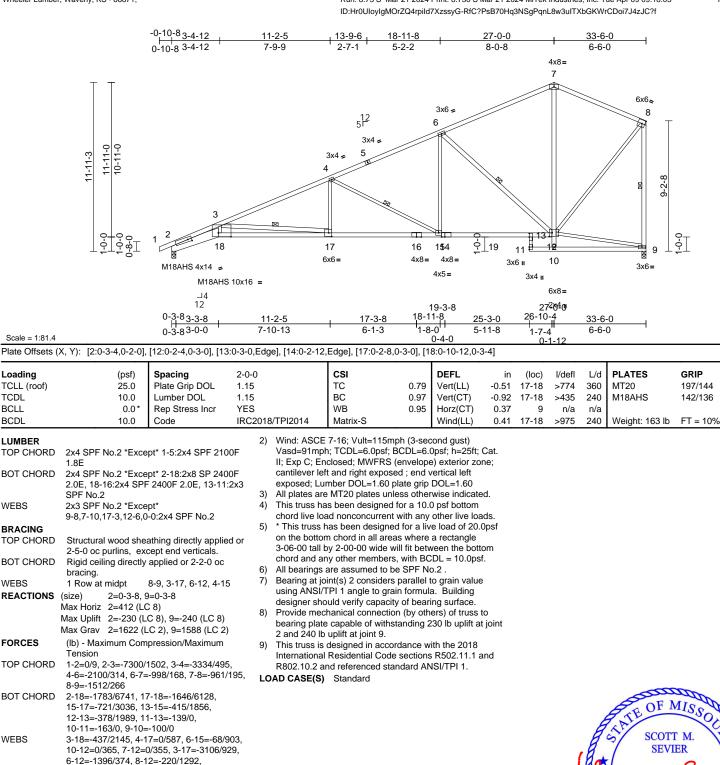
Page: 1

Loading (p	osf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof) 25	5.0	Plate Grip DOL	1.15	тс	0.80	Vert(LL)	-0.52	18-19	>772	360	MT20	197/144
TCDL 10	0.0	Lumber DOL	1.15	BC	0.88	Vert(CT)	-0.92	18-19	>434	240	M18AHS	142/136
BCLL	0.0*	Rep Stress Incr	YES	WB	0.95	Horz(CT)	0.36	9	n/a	n/a		
BCDL 10	0.0	Code	IRC2018/TPI2014	Matrix-S		Wind(LL)	0.41	18-19	>982	240	Weight: 166 lb	FT = 10%

	2x4 SPF No.2 *Except* 1-5:2x4 SPF 2100F 1.8E 2x8 SP 2400F 2.0E *Except* 19-17:2x4 SPF 2400F 2.0E, 14-13:2x3 SPF No.2, 13-9:2x4 SPF No.2, 17-11:2x4 SPF 2100F 1.8E 2x4 SPF No.2 *Except* 19-3,4-18,6-16,16-4,10-12:2x3 SPF No.2 Structural wood sheathing directly applied or 2-4-13 oc purlins, except end verticals. Rigid ceiling directly applied or 6-0-0 oc bracing. 1 Row at midpt 8-9, 4-16, 3-18, 6-15 1 Brace at Jt(s): 12 (size) 2=0-3-8, 9=0-3-8 Max Horiz 2=412 (LC 8) Max Uplift 2=-230 (LC 8), 9=-240 (LC 8) Max Grav 2=1629 (LC 2), 9=1744 (LC 2) ((b) - Maximum Compression/Maximum Tension 1-2=0/9, 2-3=-7339/1501, 3-4=-3356/496, 4-6=-2124/312, 6-7=-996/169, 7-8=-965/195, 9-11=-1641/260, 8-11=-1537/269 2-19=-1781/6778, 18-19=-1645/6161, 16-18=-721/3056, 15-16=-413/1879, 14-15=-7/16, 12-14=-94/16, 11-12=-94/16, 13-14=0/96, 10-13=-1/102, 9-10=-1/102 3-19=-436/2157, 4-18=0/584, 6-16=-61/918, 4-16=-1326/347, 7-15=0/356, 3-18=-3119/927, 6-15=-1418/369,	3) 4) 5) 6) 7) 8) 9)	 Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed; end vertical left exposed; Lumber DOL=1.60 plate grip DOL=1.60 All plates are MT20 plates unless otherwise indicated. This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf. Bearings are assumed to be: Joint 2 SP 2400F 2.0E, Joint 9 SPF No.2. Bearing at joint(s) 2 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface. Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 230 lb uplift at join 2 and 240 lb uplift at joint 9. This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. AD CASE(S) Standard
	4-16=-1326/347, 7-15=0/356,		
NOTES 1) Unbalance	d roof live loads have been considered for		
., crisciantee			

- been designed for a 10.0 psf bottom
- nonconcurrent with any other live loads. s been designed for a live load of 20.0psf chord in all areas where a rectangle 2-00-00 wide will fit between the bottom other members, with BCDL = 10.0psf.
- ssumed to be: Joint 2 SP 2400F 2.0E, .2 t(s) 2 considers parallel to grain value Pl 1 angle to grain formula. Building
- d verify capacity of bearing surface. anical connection (by others) of truss to
- apable of withstanding 230 lb uplift at joint plift at joint 9. esigned in accordance with the 2018
- OF MISS SCOTT M. SEVIER NUMBER PE-2001018807 C SSIONAL E

this design.


Chesterfield MO 63017 314.434.1200 / MiTek-US.com

 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.
 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not beigh valid for use only with with with sets outputs into design is based only door parameters shown, and is for an individual dualing component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria**, and **DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcscomponents.com)

Job	Truss	Truss Type	Qty	Ply	Lot 166 HT	
B240067	A10	Roof Special	3	1	Job Reference (optional)	164780427

Run: 8.73 S Mar 21 2024 Print: 8.730 S Mar 21 2024 MiTek Industries, Inc. Tue Apr 09 09:18:03

Page: 1

NOTES

WEBS

Loading

TCDL

BCLL

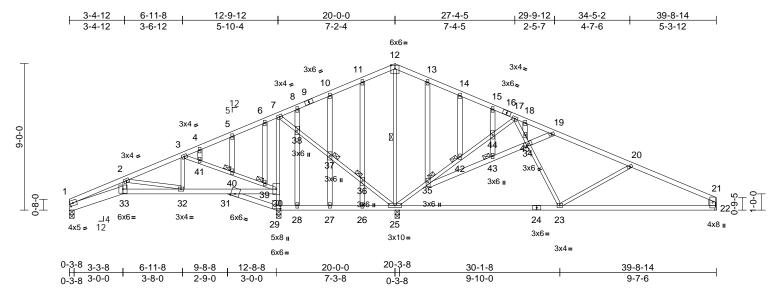
BCDL

WEBS

WEBS

Unbalanced roof live loads have been considered for 1) this design.

4-15=-1329/344, 9-12=0/108


MIMB PE-200101880' 0 SIONAL April 10,2024

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponent.com)

Job	Truss	Truss Type	Qty	Ply	Lot 166 HT	
B240067	B1	Roof Special Structural Gable	1	1	Job Reference (optional)	164780428

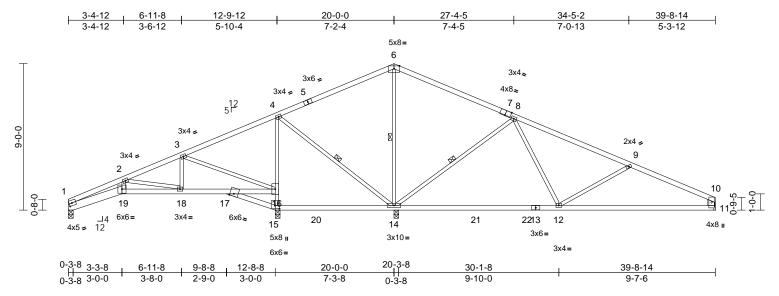
Run: 8.73 S Mar 21 2024 Print: 8.730 S Mar 21 2024 MiTek Industries, Inc. Tue Apr 09 09:18:03 ID:Hr0UloyIgMOrZQ4rpild7XzssyG-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC?f

Scale = 1:70.8

Plate Offsets (X, Y): [1:0-2-0,0-2-0], [29:0-3-0,0-2-8]

		-											
Loading	(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15		TC	0.62	Vert(LL)	-0.15	23-25	>999	360	MT20	197/144
TCDL	10.0	Lumber DOL	1.15		BC	0.69	Vert(CT)	-0.30	22-23	>770	240		
BCLL	0.0*	Rep Stress Incr	YES		WB	0.65	Horz(CT)	0.03	29	n/a	n/a		
BCDL	10.0	Code	IRC2018	3/TPI2014	Matrix-S		Wind(LL)	0.07	26-27	>999	240	Weight: 202 lb	FT = 10%
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD WEBS	2x4 SPF No.2 *Exc 2x3 SPF No.2 *Exc 19-34,34-35:2x4 SF 2x4 SPF No.2	eathing directly applie cept end verticals.	0.2 Io.2,		2-33=-92/400, 29- 7-30=-528/275, 7- 37-38=-470/298, 3 25-36=-479/304, 1 20-23=-350/187, 3 25-35=-1116/367, 42-44=-644/136, 1 17-45=0/384, 34-4 3-41=-638/185, 40 39-40=-638/185, 19 35-43=-354/179, 3 400-400	38=-477, 36-37=-4 2-25=-9 3-32=0/20 35-42=-1 17-44=-62 15=0/526 0-41=-62 30-39=-62 0-34=-48 34-43=-3	/303, 79/298, 17/110, 00, 655/147, 89/150, , 23-34=0/51 2/179, 36/183, 0/226, 41/174,		10) Bea usin des 11) Pro bea 1, 1 lb u 12) Thi Inte R80	aring at j ng ANSI signer sh ovide me aring pla aring pla 198 lb up uplift at jo s truss is ernationa	joint(s) /TPI 1 hould ve chanic te capa olift at jo oint 25. s desig al Resid and ref	angle to grain for erify capacity of the al connection (by able of withstandi joint 29, 87 lb upli ned in accordance dential Code sect erenced standard	Illel to grain value mula. Building bearing surface. or others) of truss to ng 44 lb uplift at joint ft at joint 22 and 431 ce with the 2018 tions R502.11.1 and
JOINTS	1 Brace at Jt(s): 35, 36, 37, 39, 40, 42, 43			2	11-36=-109/17, 26 27-37=-30/59, 8-3 6-39=-19/17, 5-40 13-35=-197/78, 14	8=-27/90 =-52/25,), 28-38=-15/5 4-41=-17/45,	58,		,			
	25=0-3-8 Max Horiz 1=154 (L Max Uplift 1=-44 (LC 25=-431 Max Grav 1=354 (L	C 8), 22=-87 (LC 9), (LC 9), 29=-198 (LC 8	1) 3) 2), 2)	DTES Unbalanced this design. Wind: ASCE Vasd=91mpl	43-44=-34/14, 18- roof live loads hav 7-16; Vult=115mp h; TCDL=6.0psf; E	45=-168 ve been o ph (3-sec 3CDL=6.0	/398 considered fo cond gust) 0psf; h=25ft; (r Cat.					
FORCES	(lb) - Maximum Con Tension		.,	cantilever lef	closed; MWFRS (ft and right expose	d; end \	, vertical left an	d					APP
TOP CHORD	1-2=-1137/289, 2-3 4-5=-72/590, 5-6=-5	56/867, 10-11=-31/8 13=-31/902, 15=-86/868, 18=-145/350, -20=-379/70, -22=-444/133 -33=-351/896, -31=-181/645, 29=-523/87, 27=-523/87,	3) 95, 4) 5) 6)	Truss desig only. For stu- see Standarr or consult qu All plates are Gable studs This truss ha chord live loa * This truss ha chord live loa * This truss tho on the bottor 3-06-00 tall b chord and ar Bearings are	d; Lumber DOL=1 ned for wind loads uds exposed to wind d Industry Gable E alified building de e 2x4 MT20 unless spaced at 2-0-0 o as been designed ad nonconcurrent has been designed m chord in all area by 2-00-00 wide w hy other members a assumed to be: J loint 25 SPF No.2	s in the p and (norm End Deta signer as otherwi c. for a 10.0 with any d for a liv s where ill fit betv Joint 1 SI	ane of the tru al to the face) ills as applicat s per ANSI/TF se indicated. D psf bottom other live loar e load of 20.0 a rectangle veen the botto PF No.2, Joir	ss), ble, Pl 1. ds. 0psf om				STATE OF I SCOT SEVI NUM PE-2001	ER 018807

April 10,2024


Page: 1

Antitek Bandwick Chesterfield, MO 63017 314.434.1200 / MITek-US.com

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent toulsable personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

Job	Truss	Truss Type	Qty	Ply	Lot 166 HT	
B240067	B2	Roof Special	3	1	Job Reference (optional)	164780429

Run: 8.73 S Mar 21 2024 Print: 8.730 S Mar 21 2024 MiTek Industries, Inc. Tue Apr 09 09:18:03 ID:Hr0UloyIgMOrZQ4rpild7XzssyG-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Scale = 1:70.8

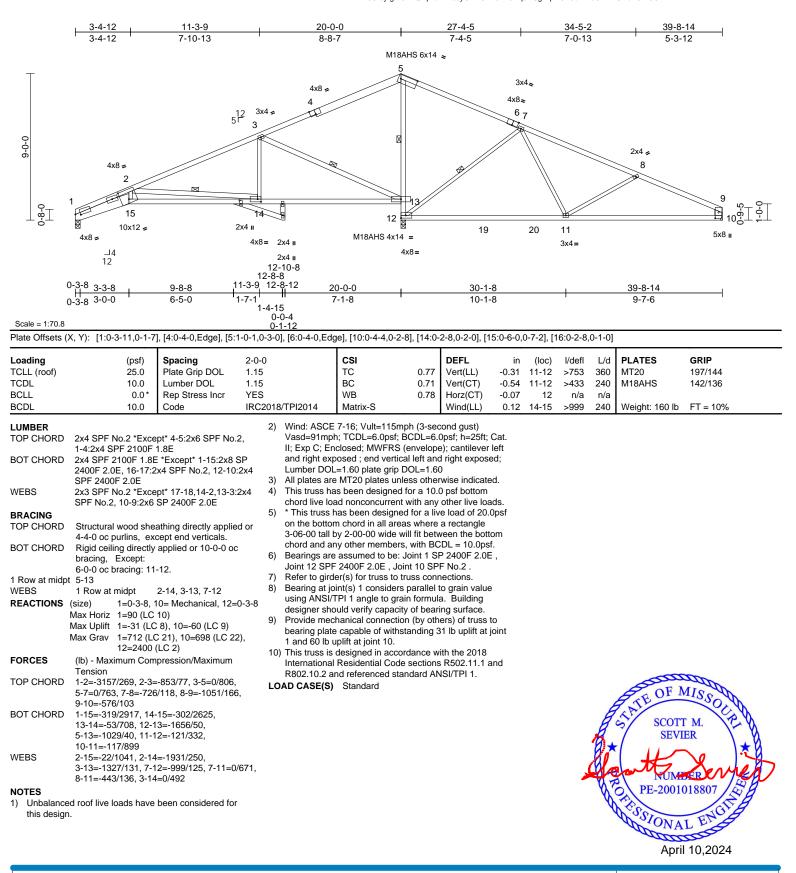
Plate Offsets (X, Y): [1:0-2-0,0-2-0], [7:0-4-0,Edge], [15:0-3-0,0-2-8]

Loading TCLL (roof) TCDL BCLL BCDL	(psf) 25.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC201	8/TPI2014	CSI TC BC WB Matrix-S	0.87 0.76 0.81	DEFL Vert(LL) Vert(CT) Horz(CT) Wind(LL)	in -0.27 -0.44 0.02 0.05	(loc) 12-14 12-14 15 18-19	l/defl >866 >537 n/a >999	L/d 360 240 n/a 240	MT20	GRIP 197/144 FT = 10%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD WEBS REACTIONS FORCES TOP CHORD	2x4 SPF No.2 2x4 SPF No.2 *Exce 2x3 SPF No.2 *Exce Structural wood she 5-4-14 oc purlins, e Rigid ceiling directly bracing. 1 Row at midpt (size) 1=0-3-8, 1 1=0-3-8, 1 4=0-3-8, 1 Max Uplift 1=-38 (LC 14=-460 (Max Grav 1=345 (LC 14=2211 ((b) - Maximum Com Tension	pt* 1-19:2x6 SPF No pt* 11-10:2x6 SPF No athing directly applie xcept end verticals. applied or 6-0-0 oc 4-14, 6-14, 8-14 11= Mechanical, 15=0-3-8 5 (12), 11=-78 (LC 9), LC 9), 15=-204 (LC 22) (LC 2), 15=1060 (LC pression/Maximum	2) 2,2 10.2 d or 3) 4) 5) 6) 3) 7) 1), 23) 8)	Wind: ASCE Vasd=91mp II; Exp C; Er cantilever le right expose This truss ha chord live lo * This truss l on the bottoo 3-06-00 tall I chord and an Bearings are SPF No.2, Refer to gird Bearing at jo using ANSI/ designer sho Provide med bearing plate	57-16; Vult=115m h; TCDL=6.0psf; E iclosed; MWFRS (ft and right expose d; Lumber DOL=1 as been designed ad nonconcurrent has been designed by 2-00-00 wide w hy other members a assumed to be: J Joint 14 SPF No.2 ler(s) for truss to tr bint(s) 1 considers TPI 1 angle to grai buld verify capacity shanical connection e capable of withst ift at joint 15, 460	CDL=6. (enveloped (enveloped) (.60 plate for a 10. with any d for a liv as where vill fit betv s, with BC Joint 1 Si y Joint 1 Si y Joint 1 Si y Joint 1 Si y of bear n (by oth tanding 3	cond gust) Opsf; h=25ft; a) exterior zo vertical left ar grip DOL=1. D psf bottom other live load of 20. a rectangle veen the bott DL = 10.0ps PF No.2., Joi 1 SPF No.2. a Building ng surface. ers) of truss 8 lb uplift at	Cat. ine; ind .60 ads. Opsf om f. nt 15 o to joint	10-13	~333	240	weight. 140 lb	PT = 10%
BOT CHORD	4-6=-75/991, 6-8=-9 9-10=-711/158, 10-1	8/991, 8-9=-378/46, 1=-424/123 9=-331/863, 17=-173/646, 15=-607/93, 2=-104/601 -731/264, 6=-579/352, =-1153/184, 2=0/648, 9-12=-463/2	9) LC	This truss is International	designed in accor Residential Code nd referenced star	sections	R502.11.1 a	and		7		STATE OF M	MISSOLINI F M. ER

NOTES

1) Unbalanced roof live loads have been considered for this design.

16023 Swingley Ridge Rd. Chesterfield, MO 63017 314.434.1200 / MiTek-US.com


Page: 1

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent oulgase with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TPI1 Quality Criteria, and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcscomponents.com)

Job	Truss	Truss Type	Qty	Ply	Lot 166 HT	
B240067	B3	Roof Special	2	1	Job Reference (optional)	164780430

Run: 8.73 S Mar 21 2024 Print: 8.730 S Mar 21 2024 MiTek Industries. Inc. Tue Apr 09 09:18:04 ID:Hr0UloyIgMOrZQ4rpild7XzssyG-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponent.com)

Job	Truss	Truss Type	Qty	Ply	Lot 166 HT	
B240067	B4	Roof Special	1	1	Job Reference (optional)	164780431

Run: 8.73 S Mar 21 2024 Print: 8.730 S Mar 21 2024 MiTek Industries, Inc. Tue Apr 09 09:18:04 ID:Hr0UloyIgMOrZQ4rpild7XzssyG-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

<u>27-4-5</u> 14-1-14 20-0-0 39-8-14 4-6-11 8-1-10 34-5-2 -4-6-11 3-6-15 6-0-4 5-10-2 7-4-5 7-0-13 5-3-12 M18AHS 6x14 👟 6 4x8 🚅 3x6 **≈** 3x4 🚅 4 5 7 3x4 👟 12 5 8 4x8 🚽 0-0-6 3 2x4 🞜 3x4 🚅 9 2 10 ې۔ 11 0-8-∏ Ģ 6 15 19 17 13 X 3x4= 18 20 21 12 6x8= 5x8 II 6x8= 5x12= 3x10= 3x4= 3x10= 2x4 🛛 20-0-0 30-1-8 39-8-14 4-6-11 8-3-6 14-1-14 4-6-11 3-8-11 5-10-8 5-10-2 10-1-8 9-7-6

Scale = 1:69

Plate Offsets (X, Y): [5:0-4-0,Edge], [6:1-0-1,0-3-0], [11:0-4-4,0-2-8], [19:Edge,0-3-11]

			-										
Loading	(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15		тс	0.75	Vert(LL)	-0.31	12-13	>752	360	MT20	197/144
TCDL	10.0	Lumber DOL	1.15		BC	0.78	Vert(CT)	-0.54	12-13	>430	240	M18AHS	142/136
BCLL	0.0*	Rep Stress Incr	YES		WB	1.00	Horz(CT)	-0.10	13	n/a	n/a		
BCDL	10.0	Code	IRC201	8/TPI2014	Matrix-S		Wind(LL)	0.09	12-13	>999	240	Weight: 155 lb	FT = 10%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD 1 Row at midp WEBS REACTIONS	2x4 SPF No.2 *Exce 2x4 SPF No.2 *Exce 2.0E 2x3 SPF No.2 *Exce 11-10:2x6 SP 2400F Structural wood she 4-6-6 oc purlins, ex Rigid ceiling directly bracing, Except: 6-0-0 oc bracing: 14 t 6-14 1 Row at midpt	2pt* 5-6:2x6 SPF No. 2pt* 13-11:2x4 SPF 2 2pt* 19-1:2x4 SPF No 2 .0E 2 .	2) 2400F 5.2, 3) 4) 6d or 5) 5 6) 7) 8) 7) 8) 22, 9)	Wind: ASCE Vasd=91mpi II; Exp C; Er and right exp Lumber DOL All plates are This truss ha chord live loa * This truss I on the bottor 3-06-00 tall I chord and ar Bearings are 13 SPF 2400 Refer to gird Provide mec bearing platt 19 and 51 lb This truss is International	7-16; Vult=115mp h; TCDL=6.0psf; B iclosed; MWFRS (posed; end vertica =1.60 plate grip D a MT20 plates unle as been designed fad nonconcurrent has been designed m chord in all area by 2-00-00 wide win y other members, a assumed to be: J DF 2.0E, Joint 113 er(s) for truss to tri hanical connection a capable of withst uplift at joint 11. designed in accore Residential Code nd referenced star	CDL=6.0 enveloped I left and OL=1.60 ss other or a 10.0 with any I for a liv s where II fit betw with BC oint 19 S SPF No. uss conr h (by oth anding 3 dance w sections	cond gust) Opsf; h=25ft; a); cantilever d right expose by wise indicate 0 psf bottom other live load e load of 20.1 a rectangle ween the bott CDL = 10.0ps SPF No.2, Jo 2. hections. ers) of truss i b lb uplift at j ith the 2018 s R502.11.1 a	Cat. left ed; ed. ads. Opsf f. om f. oint to joint				110gm 100 12	
TOP CHORD	1-2=-1370/70, 2-3=- 4-6=0/540, 6-8=0/53 9-10=-1173/147, 1-1 10-11=-619/94	34, 8-9=-873/97, 19=-736/58,									4	TATE OF M	AISSOL
BOT CHORD	18-19=-94/354, 17-1 3-16=0/449, 15-16= 14-15=-44/485, 13-1 6-14=-765/5, 12-13= 11-12=-100/1018	-113/1337, I4=-1473/41,	,00,									S SCOT	
WEBS	1-18=-16/880, 4-15= 8-12=0/640, 9-12=-4 16-18=-92/1175, 8-1 2-16=-60/84, 3-15=-	418/138, 2-18=-327/8 13=-988/127,	,									PE-2001	12 A
NOTES												NºSION -	ENUE
 Unbalance this design 	ed roof live loads have	been considered for										C'SSIONA	L

1) Unbalanced roof live loads have been considered for this design.

April 10,2024

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent oulgase with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TPI1 Quality Criteria, and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcscomponents.com)

Job	Truss	Truss Type	Qty	Ply	Lot 166 HT	
B240067	B5	Roof Special	3	1	Job Reference (optional)	164780432

Run: 8.73 S Mar 21 2024 Print: 8.730 S Mar 21 2024 MiTek Industries, Inc. Tue Apr 09 09:18:04 ID:Hr0UloyIgMOrZQ4rpild7XzssyG-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

4-6-11 14-1-14 20-0-0 27-4-5 39-8-14 9-7-4 34-5-2 5-10-2 4-6-11 5-0-9 4-6-10 7-4-5 7-0-13 5-3-12 M18AHS 6x14 👟 6 4x5 ≠ 3x4 👟 4x8 🚅 4x8 👟 12 5 5 7 ₈ 4 4x5 🚅 Ś 3 0-0-6 2x4 🞜 3x4 🚅 9 2 10 16 8-1 ې 11-10-11 è 15 19 17 13 X 3x4= 18 20 21 12 6x8= 5x8 II 6x8= 5x12= 4x8= 3x4= 3x10= 2x4 🛛 20-0-0 30-1-8 39-8-14 4-6-11 9-8-8 14-1-14 4-6-11 5-1-13 4-5-6 5-10-2 10-1-8 9-7-6

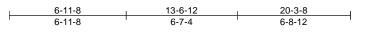
Scale = 1:69

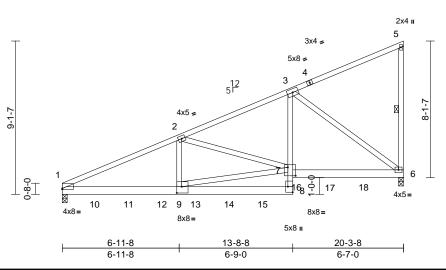
oading	(20)	Cupating	2-0-0		CSI		DEFL	in	(aa)	l/defl	L/d	PLATES	GRIP
CLL (roof)	(psf) 25.0	Spacing Plate Grip DOL	2-0-0 1.15		TC	0.74	Vert(LL)	in -0 31	(loc) 12-13	>751	360	MT20	197/144
CDL	10.0	Lumber DOL	1.15		BC	0.74	Vert(CT)		12-13	>431	240	M18AHS	142/136
CLL	0.0*	Rep Stress Incr	YES		WB	0.77	Horz(CT)	-0.10	13	n/a	n/a		112/100
CDL	10.0	Code		8/TPI2014	Matrix-S	0	Wind(LL)	0.09	12-13	>999	240	Weight: 157 lb	FT = 10%
JMBER DP CHORD DT CHORD EBS	2x4 SPF No.2 *Exce 2x4 SPF No.2 *Exce 13-11:2x4 SPF 2400 2x3 SPF No.2 *Exce 11-10:2x6 SP 2400F	ppt* 4-6:2x6 SPF No. ppt* 17-3:2x3 SPF No)F 2.0E ppt* 19-1:2x4 SPF No	2) .2 o.2, o.2, o.2, 3)	Wind: ASCE Vasd=91mp II; Exp C; Er and right exp Lumber DOI All plates are	i 7-16; Vult=115mp h; TCDL=6.0psf; E lclosed; MWFRS (bosed ; end vertica L=1.60 plate grip E e MT20 plates unle as been designed	CDL=6. envelope al left and ODL=1.6 ess other	ond gust) Opsf; h=25ft; e); cantilever l right expose) wise indicate	Cat. · left .ed; ed.			2.0		
		athing disactly applie	,		ad nonconcurrent								
OP CHORD	Structural wood shea 4-6-6 oc purlins, exc		5)	* This truss	has been designed	d for a liv	e load of 20.						
BOT CHORD	Rigid ceiling directly bracing, Except: 6-0-0 oc bracing: 14	applied or 10-0-0 or		3-06-00 tall chord and a	m chord in all area by 2-00-00 wide w ny other members	ill fit betv , with BC	veen the bott DL = 10.0ps	sf.					
Row at midp	•		6)		assumed to be: J			oint					
EBS		5-14, 8-13	7)		0F 2.0E , Joint 11 ler(s) for truss to tr								
ACTIONS	19=0-3-8 Max Horiz 19=77 (LC Max Uplift 11=-50 (L	C 9), 19=-35 (LC 8)	, 8) 9)	Provide med bearing plate 19 and 50 lb	chanical connection capable of withst uplift at joint 11. designed in accor	n (by oth anding 3	ers) of truss 5 lb uplift at						
	Max Grav 11=766 (L 19=813 (L		; 2),		Residential Code			and					
ORCES	(lb) - Maximum Com Tension	,	L	R802.10.2 a DAD CASE(S)	nd referenced star Standard	ndard Ar	ISI/TPI 1.						
OP CHORD		9, 8-9=-874/97,	/94,									TATE OF M	AISSO
OT CHORD	18-19=-91/327, 17-1 3-16=0/418, 15-16=- 13-14=-1468/40, 6-1 12-13=-13/467, 11-1	-85/1071, 14-15=-50 4=-772/5,										ST SCOTT SEVI	
EBS	2-16=-242/29, 3-15= 5-14=-991/100, 8-13 9-12=-418/138, 1-18 16-18=-118/1198	-722/81, 5-15=0/622 8=-987/127, 8-12=0/6	640,								E C	PE-2001	Servera 18807
DTES											N	The second	12A
Unbalance	ed roof live loads have	been considered for	r								1	SSIONA	ENO'S
مامم مامل												NE TINTA	TIN

Unbalanced roof live loads have been considered for this design.

April 10,2024

STONAL


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent oulgase with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)



Page: 1

Job	Truss	Truss Type	Qty	Ply	Lot 166 HT	
B240067	B6	Monopitch Girder	1	4	Job Reference (optional)	164780433

Run: 8.73 S Mar 21 2024 Print: 8.730 S Mar 21 2024 MiTek Industries, Inc. Tue Apr 09 09:18:04 ID:Hr0UloyIgMOrZQ4rpild7XzssyG-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Scale = 1:68.5

Plate Offsets (X, Y): [1:Edge,0-0-10], [7:0-5-8,0-6-0], [8:Edge,0-3-8], [9:0-3-8,0-4-8]

	(, .). [=.9=,= =	,,,,,, .		-],[,	-1								
Loading	(psf)	Spacing	2-0-0		csi		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15		тс	0.79	Vert(LL)	-0.14	1-9	>999	360	MT20	197/144
TCDL	10.0	Lumber DOL	1.15		BC	0.97	Vert(CT)	-0.24	8-9	>999	240		
BCLL	0.0*	Rep Stress Incr	NO		WB	0.88	Horz(CT)	0.06	6	n/a	n/a		
BCDL	10.0	Code	IRC201	8/TPI2014	Matrix-S		Wind(LL)	0.07	1-9	>999	240	Weight: 443 lb	FT = 10%
LUMBER TOP CHORD		pt* 1-4:2x4 SPF 210	2) 00F	except if not	e considered equa ed as front (F) or	back (B)	face in the LO				-833 (I	B), 10=-1456 (B),	
BOT CHORD			F	provided to a	ction. Ply to ply c distribute only loa							13=-1460 (B), 14 (B), 17=-825 (B),	I=-1460 (B), 15=-145 , 18=-825 (B)
	No.2, 7-6:2x6 SPF N	lo.2	3)		wise indicated.	nh (2 ag	and quat)						
WEBS	2x4 SPF No.2		3)		7-16; Vult=115m h; TCDL=6.0psf;			Cat					
	Other strengthere and all a	- the second			iclosed; MWFRS								
TOP CHORD	Structural wood sheat 6-0-0 oc purlins, exe		a or		posed ; end vertic								
BOT CHORD					_=1.60 plate grip			,					
	bracing.	applied of 10-0-0 00	, 	This truss ha	as been designed	for a 10.	0 psf bottom						
NEBS		5-6		chord live lo	ad nonconcurrent	t with any	other live loa	ads.					
REACTIONS			5)		has been designe			0psf					
	Max Horiz 1=278 (LC				m chord in all are								
	Max Uplift 1=-452 (L	,			by 2-00-00 wide v		veen the bott	om					
	Max Grav 1=8429 (L	,, , , ,	13)		ny other member								
ORCES	(lb) - Maximum Com	<i>,.</i>	· 0)		are assumed to b			4.0					
ONCLO	Tension	pression/maximum	7)		chanical connection e capable of withe								
TOP CHORD		=-8383/442			uplift at joint 1.	stanuing a	bog in uplin a	t joint					
	3-5=-214/59, 5-6=-18		8)		designed in acco	rdance w	ith the 2018						
BOT CHORD					Residential Code			and					
	3-7=-385/8539, 6-7=		- ,		nd referenced sta								
WEBS	2-9=-85/4563, 7-9=-	636/12921,	9)		r other connection								~
	2-7=-6279/279, 3-6=	-9588/570	- /		ficient to support			1798				Con	ADD
NOTES				Ib down and	231 lb up at 1-1	1-4, 1812	Ib down and	52				A OF I	MIS C
1) 4-ply truss	s to be connected toget	ther with 10d		lb up at 3-1	1-4, 1812 lb dowr	n and 52 l	bupat 5-11-	-4,			1	TATE OF M	N.O.
(0.131"x3	") nails as follows:				n and 51 lb up at			and			B	SCOT	N CAN
Top chord	is connected as follows	: 2x4 - 1 row at 0-6-0	0		9-11-4, 1710 lb do						R	S DOOL	
OC.					61 lb down and 18						6	SEVI	
	nords connected as follo				2 lb up at 15-11-4						N IX		
	at 0-4-0 oc, 2x4 - 1 ro				11-4, and 1003 lb						ad	h H	$\mathbf{X} = \mathbf{X}$
	nected as follows: 2x4 -				ottom chord. Th			such		_	×	NON INA	K Perul
	w/ 1/2" diam. bolts (As				device(s) is the re	sponsibili	ty of others.				17	PE-2001	018807 188
center of t	the member w/washers	at 4-0-0 oc.	L	DAD CASE(S)	Standard						N.	-2001	10001 59

LOAD CASE(S) Standard Dead + Roof Live (balanced): Lumber Increase=1.15, 1) Plate Increase=1.15 Uniform Loads (lb/ft)

Vert: 1-5=-70, 1-8=-20, 6-7=-20

SIONAL April 10,2024

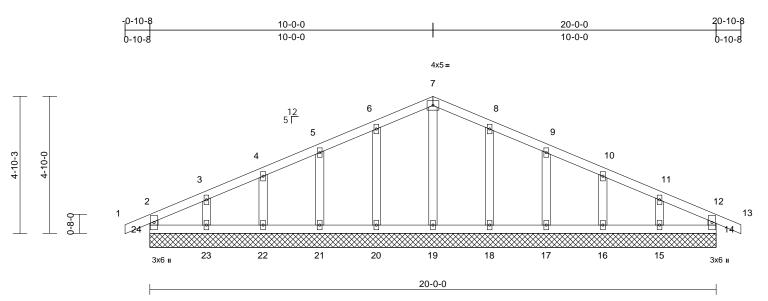
E

Page: 1

16023 Swingley Ridge Rd. Chesterfield, MO 63017 314.434.1200 / MiTek-US.com

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent colleges with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

Job	Truss	Truss Type	Qty	Ply	Lot 166 HT	
B240067	C1	Common Supported Gable	1	1	Job Reference (optional)	164780434

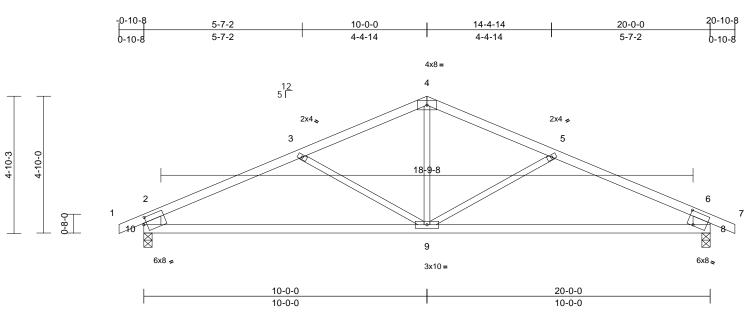

Run: 8.73 S Mar 21 2024 Print: 8.730 S Mar 21 2024 MiTek Industries, Inc. Tue Apr 09 09:18:04 ID:Hr0UloyIgMOrZQ4rpild7XzssyG-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

liTo

16023 Swingley Ridge Rd. Chesterfield, MO 63017 314.434.1200 / MiTek-US.com

M


Scale = 1:40.7

						-								
Loading TCLL (roof) TCDL BCLL BCDL		(psf) 25.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC201	8/TPI2014	CSI TC BC WB Matrix-R	0.07 0.02 0.05	DEFL Vert(LL) Vert(CT) Horz(CT)	in n/a n/a 0.00	(loc) - - 14	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 75 lb	GRIP 197/144 FT = 10%
	6-0-0 oc Rigid ceil bracing. (size) Max Horiz Max Uplift	No.2 No.2 No.2 I wood she purlins, ex ing directly 14=20-0-(20=20-0-(20=20-0-(23=20-0-(24=65 (L(14=-31 (L 18=-50 (L 23=-67 (L 14=-161 (L 16=184 (L 18=191 (L 18=191 (L 20=191 (L	C 5), 15=-60 (LC 9), C 9), 17=-49 (LC 9), C 9), 20=-51 (LC 8), C 8), 22=-43 (LC 8), C 8), 24=-31 (LC 4), C 22), 15=165 (LC 1), C 22), 17=177 (LC 1), C 22), 19=168 (LC 1), C 21), 21=177 (LC 1), C 21), 23=165 (LC 1), C 21), 23=165 (LC 1),	1) 2) d or 3) 0-0, 4) 0-0, 5) 6) 7) 8) 9)), 1)), 1) (), 1(), 11	 this design. Wind: ASCE Vasd=91mpl II; Exp C; En cantilever lef right exposed Truss design on truss design on consult qu All plates are Gable requir Truss to be f braced agair Gable studs This truss ha chord live loa * This truss ha on the bottor 3-06-00 tall b chord and ar All bearings Provide mec bearing plate 	roof live loads have 7-16; Vult=115r n; TCDL=6.0psf; closed; MWFRS t and right exposed t umber DOL= ned for wind loar dis exposed to with a lifted building control 2x4 MT20 unle es continuous bo 2x4 MT20 unle es continuous bo a landustry Gable talified building control paced at 2-0-0 is been designed an onconcurrent as been designed no chord in all are by 2-00-00 wide yo other member are assumed to hanical connection e capable of with the state of the state	nph (3-sec BCDL=6. 5 (envelope sed; end vi- 1.60 plate ds in the p vind (norm End Deta designer a: ss otherwi- bttom choro orm one fac nent (i.e. c oc. d for a 10. tt with any ed for a liv as where will fit betw 's. be SPF N: on (by oth standing 3	cond gust) Opsf; h=25ft; (e) exterior zor vertical left an or grip DOL=1. lane of the tr. al to the face is as applical is as a applical is a a a a a a a a a a a a a a a a a a a	Cat. ne; d 60 sss), ble, PI 1.					
FORCES	Tension 2-24=-14 3-4=-42/6 6-7=-30/1 9-10=-27	kimum Com 2/42, 1-2=0 60, 4-5=-27 122, 7-8=-3	pression/Maximum //27, 2-3=-64/49, /81, 5-6=-26/102, 0/116, 8-9=-26/83, 27/44, 11-12=-48/33	3,	uplift at joint 23, 50 lb upli uplift at joint 2) This truss is International R802.10.2 at	ift at joint 14, 51 21, 43 lb uplift a ft at joint 18, 49 16 and 60 lb upl designed in acco Residential Cod nd referenced st	t joint 22, (lb uplift at ift at joint ordance w le sections	67 lb uplift at j joint 17, 45 lk 15. ith the 2018 \$ R502.11.1 a	joint D				STATE OF A	
BOT CHORD	23-24=-1 20-21=-1	0/58, 22-23 0/58, 19-20 0/58, 16-17	=-10/58, 21-22=-10/5 =-10/58, 18-19=-10/5 =-10/58, 15-16=-10/5	58, 58,	OAD CASE(S)	Standard						No.	PE-2001	15B
WEBS	4-22=-14	4/70, 3-23=	151/75, 5-21=-137/72 -126/82, 8-18=-151/7 =-144/70, 11-15=-12	74,									Apri	L EN022

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcscomponents.com)

Job	Truss	Truss Type	Qty	Ply	Lot 166 HT	
B240067	C2	Common	1	1	Job Reference (optional)	164780435

Run: 8.73 S Mar 21 2024 Print: 8.730 S Mar 21 2024 MiTek Industries. Inc. Tue Apr 09 09:18:04 ID:Hr0UloyIgMOrZQ4rpild7XzssyG-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Scale = 1:40.7

Plate Offsets (X, Y): [8:0-2-10,0-5-10], [10:0-1-5,0-2-13]

	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	oj, [1010 1 0,0 2 10]										
Loading	(psf)	Spacing	2-0-0	csi		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15	TC	0.84	Vert(LL)	-0.17	9-10	>999	360	MT20	197/144
TCDL	10.0	Lumber DOL	1.15	BC	0.78	Vert(CT)	-0.36	9-10	>642	240		
BCLL	0.0*	Rep Stress Incr	YES	WB	0.21	Horz(CT)	0.04	8	n/a	n/a		
BCDL	10.0	Code	IRC2018/TPI2	014 Matrix-S		Wind(LL)	0.07	9	>999	240	Weight: 63 lb	FT = 10%
LUMBER TOP CHORD BOT CHORD WEBS	2x4 SPF No.2 2x4 SPF No.2 2x3 SPF No.2 *Exce	pt* 10-2,8-6:2x8 SP	bear 10 a 7) This	ide mechanical connecti ing plate capable of with nd 139 lb uplift at joint 8 truss is designed in acc	nstanding 1 ordance w	39 lb uplift a ith the 2018	t joint					
	2400F 2.0E			national Residential Coc			and					
BRACING				2.10.2 and referenced st	tandard AN	ISI/TPI 1.						
TOP CHORD	Structural wood she 3-4-15 oc purlins, et	xcept end verticals.		ASE(S) Standard								
BOT CHORD	Rigid ceiling directly bracing.	applied or 10-0-0 or										
	(size) 8=0-3-8, 1 Max Horiz 10=63 (LC Max Uplift 8=-139 (L Max Grav 8=955 (LC	C 12) C 9), 10=-139 (LC 8)									
FORCES	(lb) - Maximum Com	pression/Maximum										
TOP CHORD	Tension 1-2=0/32, 2-3=-1412 4-5=-1096/128, 5-6= 2-10=-854/187, 6-8=	-1412/214, 6-7=0/32	,									
BOT CHORD	,											
WEBS	4-9=0/473, 5-9=-317	7/199, 3-9=-317/199										
NOTES												
1) Unbalance	ed roof live loads have	been considered for	r									an
 Wind: ASC Vasd=91m II; Exp C; I cantilever right exposite 	this design. Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60											

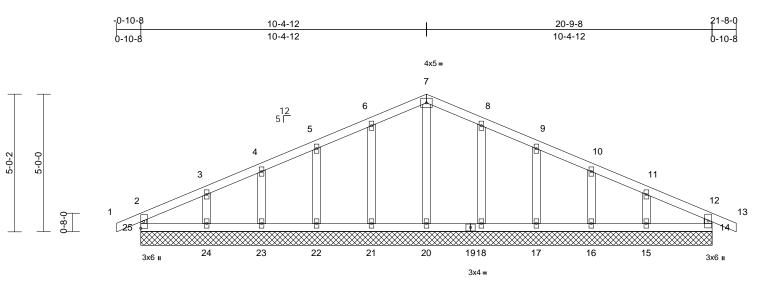
- 3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 4) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- 5) All bearings are assumed to be SPF No.2 .

April 10,2024

NUMBER

PE-2001018807

SSIONAL E


C

Page: 1

 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.
 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not besign value for use only with with twit even connectors. This design is based only upon parameters shown, and is for an individual building designer must verify the applicability of design parameters and properly incorporate this design into the overall building designer must verify the applicability of design parameters and properly incorporate this design into the overall building designer. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcscomponents.com)

Job	Truss	Truss Type	Qty	Ply	Lot 166 HT	
B240067	D1	Common Supported Gable	1	1	Job Reference (optional)	164780436

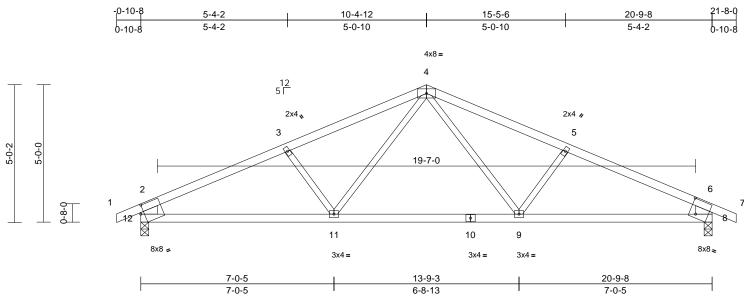
Run: 8.73 S Mar 21 2024 Print: 8.730 S Mar 21 2024 MiTek Industries, Inc. Tue Apr 09 09:18:04 ID:Hr0UloyIgMOrZQ4rpild7XzssyG-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

20-9-8

Loading	(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15		TC	0.07	Vert(LL)	n/a	-	n/a	999	MT20	197/144
TCDL	10.0	Lumber DOL	1.15		BC	0.03	Vert(CT)	n/a	-	n/a	999		
BCLL	0.0*	Rep Stress Incr	YES		WB	0.05	Horz(CT)	0.00	14	n/a	n/a		
BCDL	10.0	Code		18/TPI2014	Matrix-R		- (-)					Weight: 79 lb	FT = 10%
LUMBER		•		WEBS	7-20=-121/0, 6-2 ⁻	1 1 5 1 / 7 /	5 00 100/	70					
	2v4 CDE No 2				4-23=-138/66, 3-2								
TOP CHORD BOT CHORD	2x4 SPF No.2 2x4 SPF No.2				9-17=-139/73, 10								
WEBS	2x3 SPF No.2 *Exce	DE 14 10:0v4 CDE		NOTES	5 17 - 100/10, 10	10= 100	07, 11 10- 1	40/01					
WEDS	2400F 2.0E	ept 14-12.2x4 SFF	-		and the lands have			-					
OTHERS	2x4 SPF No.2			,	roof live loads ha	ave been	considered to	or					
	2X4 3FF NU.2			this design.	7-16; Vult=115m	anh (2 ag	and quat)						
BRACING	Other strengthere and all a	a da ba an albara a da si ana a ba a d			h; TCDL=6.0psf;			Cat					
TOP CHORD		athing directly applied	or		closed; MWFRS								
BOT CHORD	6-0-0 oc purlins, ex	applied or 10-0-0 oc			t and right expos								
BUT CHURD	bracing.	applied of 10-0-0 oc			d; Lumber DOL=								
DEACTIONS	0				ned for wind load								
REACTIONS		8, 15=20-9-8, 16=20-9 8, 18=20-9-8, 20=20-9	-0,		ids exposed to w								
		8, 22=20-9-8, 23=20-9 8, 22=20-9-8, 23=20-9	·		d Industry Gable								
		8, 22=20-9-8, 23=20-9 8, 25=20-9-8	-0,		alified building d								
	Max Horiz 25=69 (L0		4		2x4 MT20 unles								
	Max Uplift 14=-34 (L				es continuous bo								
		.C 9), 17=-49 (LC 9),	(5) Truss to be f	ully sheathed fro	m one fac	e or securely	,					
		.C 9), 21=-50 (LC 8),		braced agair	nst lateral movem	nent (i.e. c	iagonal web)						
		.C 8), 23=-41 (LC 8),		7) Gable studs	spaced at 2-0-0	oc.	с ,						
		.C 8), 25=-32 (LC 4)	8	This truss has	as been designed	for a 10.	0 psf bottom						
		LC 1), 15=192 (LC 22)		chord live loa	ad nonconcurrent	t with any	other live loa	ids.					
		LC 1), 17=179 (LC 1),		 This truss I 	nas been designe	ed for a liv	e load of 20.0	Opsf					
	18=191 (l	LC 22), 20=161 (LC 1)	,		n chord in all are		0						
	21=191 (l	LC 21), 22=179 (LC 1)	,		oy 2-00-00 wide v		veen the bott	om					The
	23=176 (l	LC 21), 24=197 (LC 2'	1),		ny other member		_					OF I	ALL ALL
	25=175 (l	LC 1)			are assumed to b							A FUTI	VIIS'S
FORCES	(lb) - Maximum Corr	npression/Maximum			hanical connection						4	THE OF I	N.S.
	Tension				capable of with						H	SCOT	TM YEN
TOP CHORD	2-25=-155/46, 1-2=0	0/26, 2-3=-71/49,			ift at joint 14, 50 l						H	SEV	
	3-4=-44/67, 4-5=-35				22, 41 lb uplift at						Re		
	6-7=-37/129, 7-8=-3				ift at joint 18, 49 l			0			X	1	
		=-35/52, 11-12=-59/36	, ,		16 and 66 lb upli designed in acco						K	cott .	Server?
	12-13=0/27, 12-14=				Residential Code			nd		-	4-	NUM	BER A
BOT CHORD	24-25=-8/58, 23-24=	, , ,			nd referenced sta			inu			N2	PE-2001	018807
	21-22=-8/58, 20-21=	, , ,				anuaru Ar	SUIFII.				N	The second secon	120
	17-18=-8/58, 16-17=	=-8/58, 15-16=-8/58,		LOAD CASE(S)	Sianuaru						Y	23.04	NON B
	14-15=-8/58											UNIONIA	IENA
												ESSIONA	

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com) April 10,2024

Comme


Page: 1

Job	Truss	Truss Type	Qty	Ply	Lot 166 HT	
B240067	D2	Common	4	1	Job Reference (optional)	164780437

Run: 8.73 S Mar 21 2024 Print: 8.730 S Mar 21 2024 MiTek Industries, Inc. Tue Apr 09 09:18:05 ID:Hr0UloyIgMOrZQ4rpild7XzssyG-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

05 Page: 1

Scale = 1:41.9

Plate Offsets (X, Y): [8:0-2-13,0-6-6], [12:0-1-8,0-3-9]

- 1010 0110010 (1],[:=:0 : 0,0 0 0]											
Loading TCLL (roof)	(psf) 25.0	Spacing Plate Grip DOL	2-0-0 1.15		CSI TC	0.91	DEFL Vert(LL)	in -0.16	(loc) 9-11	l/defl >999	L/d 360	PLATES MT20	GRIP 197/144
TCDL	10.0	Lumber DOL	1.15		BC	0.63	Vert(CT)	-0.30	9-11	>811	240		
BCLL	0.0*	Rep Stress Incr	YES		WB	0.14	Horz(CT)	0.04	8	n/a	n/a		
BCDL	10.0	Code	IRC2018	B/TPI2014	Matrix-S		Wind(LL)	0.10	9-11	>999	240	Weight: 67 lb	FT = 10%
LUMBER TOP CHORD BOT CHORD WEBS	2x4 SPF No.2 2x4 SPF No.2 2x3 SPF No.2 *Exce 2400F 2.0E	pt* 12-2,8-6:2x8 SP	6) 9 7)	bearing plate 12 and 143 I This truss is International	hanical connecti capable of with b uplift at joint 8. designed in acco Residential Coc	standing 1 ordance wi le sections	43 lb uplift a ith the 2018 R502.11.1 a	t joint					
BRACING				R802.10.2 a	nd referenced st	andard AN	ISI/TPI 1.						
TOP CHORD	Structural wood she	athing directly applie	ed or LC	DAD CASE(S)	Standard								
BOT CHORD	2-2-0 oc purlins, ex Rigid ceiling directly bracing.		с										
	(size) 8=0-3-8, 1 Max Horiz 12=66 (LC Max Uplift 8=-143 (L Max Grav 8=991 (LC	C 12) C 9), 12=-143 (LC 8											
FORCES	(lb) - Maximum Com Tension	pression/Maximum											
TOP CHORD	1-2=0/32, 2-3=-1526 4-5=-1332/196, 5-6= 2-12=-900/177, 6-8=	-1526/209, 6-7=0/3	,										
BOT CHORD	11-12=-195/1312, 9- 8-9=-129/1312	11=-54/975,											
WEBS	4-9=-70/403, 5-9=-2 3-11=-260/176	60/176, 4-11=-70/40	03,										
NOTES												A	- Den
this design 2) Wind: ASC Vasd=91m II; Exp C; I cantilever	NOTES 1) Unbalanced roof live loads have been considered for this design. 2) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed ; end vertical left and right exposed; i end vertical left and												

- cantilever left and right exposed; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
 3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- 5) All bearings are assumed to be SPF No.2.

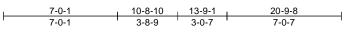
April 10,2024

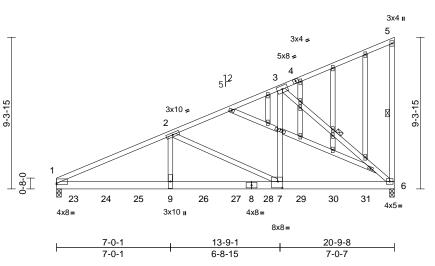
E

NUMBER

PE-200101880

SSIONAL


0


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSITPTI Quality Criteria, and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcscomponents.com)

Job	b	Truss	Truss Type	Qty	Ply	Lot 166 HT	
B2	240067	D3	GABLE	1	2	Job Reference (optional)	164780438

Run: 8.73 S Mar 21 2024 Print: 8.730 S Mar 21 2024 MiTek Industries, Inc. Tue Apr 09 09:18:05 ID:Hr0UloyIgMOrZQ4rpild7XzssyG-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Scale = 1:70.9 Plate Offsets (X, Y): [1:Edge,0-0-14], [7:0-3-8,0-4-12], [11:0-1-13,0-1-0]

CASE(S) section. Ply to ply connections have been

provided to distribute only loads noted as (F) or (B),

unless otherwise indicated.

Loading TCLL (roof)	(psf) 25.0	Spacing Plate Grip DOL	2-0-0 1.15		CSI TC	0.76	DEFL Vert(LL)	in -0.11	(loc) 6-7	l/defl >999	L/d 360	PLATES MT20	GRIP 197/144
TCDL	10.0	Lumber DOL	1.15		BC	0.58	Vert(CT)	-0.19	6-7	>999	240	-	
BCLL	0.0*	Rep Stress Incr	NO		WB	0.70	Horz(CT)	0.04	6	n/a	n/a		
BCDL	10.0	Code	IRC201	8/TPI2014	Matrix-S		Wind(LL)	0.08	1-9	>999	240	Weight: 265 lb	FT = 10%
LUMBER TOP CHORD BOT CHORD WEBS DTHERS BRACING TOP CHORD BOT CHORD WEBS REACTIONS	1.8E 2x6 SP 2400F 2.0E 2x4 SPF No.2 2x4 SPF No.2 Structural wood shea 5-8-7 oc purlins, exi Rigid ceiling directly bracing. 1 Row at midpt	athing directly applie cept end verticals. applied or 10-0-0 oc 5-6, 3-6 j=0-3-8 2 22) C 8), 6=-545 (LC 8)	4) ed or ; 5) 6) 7) 8)	Vasd=91mpl II; Exp C; En cantilever lef right expose Truss desig only. For stu see Standarr or consult qu All plates are Gable studs This truss ha chord live loa * This truss h on the bottor 3-06-00 tall b	7-16; Vult=115mp 1; TCDL=6.0psf; B closed; MWFRS (it t and right expose 4; Lumber DOL=1. 1ed for wind loads 1ds exposed to wind 1 Industry Gable E alified building des 2x4 MT20 unless spaced at 2-0-0 or is been designed fad nonconcurrent vas been designed n chord in all areas by 2-00-00 wide wi by other members.	CDL=6.0 envelope d; end v 60 plate in the p id (norm nd Deta signer a: otherwi c. or a 10.0 with any l for a liv s where	Opsf; h=25ft; a) exterior zor vertical left ar grip DOL=1. ane of the tru al to the face ils as applica s per ANSI/TI se indicated. O psf bottom other live loa a rectangle	ne; id 60 Jss), ble, Pl 1. Dpsf	Co	oncentra Vert: 9= (B), 26=	5=-70, ited Lo: -497 (I -657 (I	1-6=-20 ads (lb) B), 23=-516 (B), 2	24=-497 (B), 25=-497 28=-703 (B), 29=-703
FORCES TOP CHORD	(lb) - Maximum Com Tension 1-2=-7229/905, 2-3= 5-6=-197/78			All bearings Provide mec bearing plate	are assumed to be hanical connection capable of withsta uplift at joint 1.	n (by oth	ers) of truss t						
BOT CHORD	1-9=-931/6306, 7-9= 6-7=-447/3712	,	11) This truss is	designed in accord Residential Code			ind					
WEBS	2-9=-235/2323, 2-7= 3-7=-403/4435, 3-6=		12		nd referenced star							0000	100
NOTES	3-7=-403/4435, 3-6=-4917/678 12) Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 516											B.F. OF M	AISS D
(0.131"x3 Top chorc oc. Bottom ch staggered Web conr 2) All loads a	s to be connected toget ") nails as follows: is connected as follows nords connected as follows at 0-9-0 oc. hected as follows: 2x4 - are considered equally noted as front (F) or bar	s: 2x4 - 1 row at 0-9-(ows: 2x6 - 2 rows 1 row at 0-9-0 oc. applied to all plies,		up at 3-0-12 lb down and up at 9-0-12 lb down and up at 15-0-1 17-0-12, and bottom chore	99 lb up at 1-0-12 , 564 lb down and 90 lb up at 7-0-12 , 734 lb down and 63 lb up at 13-0-1 2, and 806 lb dow 806 lb down and 1. The design/sele he responsibility o	90 lb up 2, 734 lb 72 lb up 2, 806 ll n and 62 62 lb up ection of	at 5-0-12, 5 down and 72 at 11-0-12, b down and 6 2 lb up at at 19-0-12 c such connect	564 2 lb 806 52 lb 50				STATE OF M SCOTT SEVI	Renter

13) Studding applied to ply: 1(Front)

LOAD CASE(S) Standard

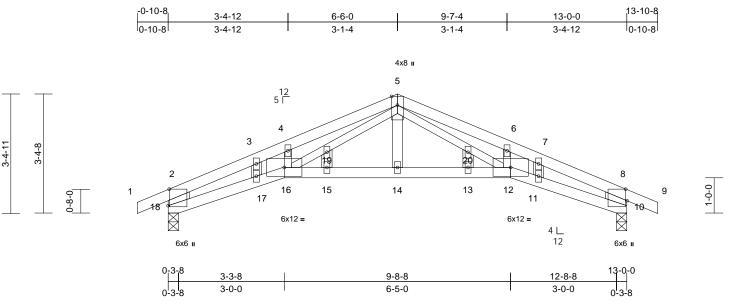
1) Dead + Roof Live (balanced): Lumber Increase=1.15, Plate Increase=1.15

April 10,2024

E

SSIONAL

Page: 1



WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSITPTI Quality Criteria, and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcscomponents.com)

Job	Truss	Truss Type	Qty	Ply	Lot 166 HT	
B240067	E1	GABLE	1	1	Job Reference (optional)	164780439

Run: 8.73 S Mar 21 2024 Print: 8.730 S Mar 21 2024 MiTek Industries, Inc. Tue Apr 09 09:18:05 ID:Hr0UloyIgMOrZQ4rpild7XzssyG-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

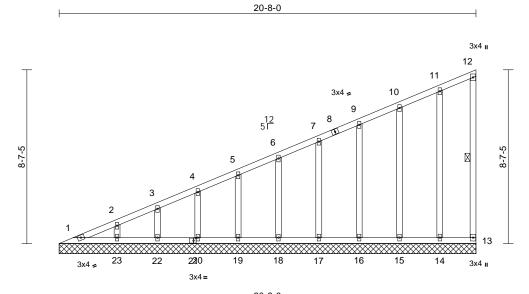
Scale = 1:32.7

Plate Offsets (X, Y): [10:0-3-15,Edge], [18:0-5-10,Edge]

-			-		1								
Loading TCLL (roof) TCDL BCLL	(psf) 25.0 10.0 0.0*	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr	2-0-0 1.15 1.15 YES		CSI TC BC WB	0.81 0.69 0.24	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.13 -0.24 0.17	(loc) 13 13 10	l/defl >999 >630 n/a	L/d 360 240 n/a	PLATES MT20	GRIP 197/144
BCDL	10.0	Code	IRC201	8/TPI2014	Matrix-S		Wind(LL)	0.08	15-16	>999	240	Weight: 47 lb	FT = 10%
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SPF No.2 2x3 SPF No.2 *Exce 2400F 2.0E 2x4 SPF No.2 Structural wood she 3-2-15 oc purlins, e Rigid ceiling directly bracing.	athing directly applie xcept end verticals. applied or 10-0-0 oc 18=0-3-8 C 8) C 9), 18=-98 (LC 8)	4) 5) d or 6) 7) 8) 9)	only. For sti see Standar, or consult qu All plates are Truss to be f braced again Gable studs This truss ha chord live loa * This truss f on the bottoo 3-06-00 tall is chord and an All bearings	ned for wind load: dis exposed to wi d Industry Gable I alified building de 2x4 MT20 unles ully sheathed fror sst lateral movern spaced at 2-0-0 c is been designed ad nonconcurrent nas been designe n chord in all arer by 2-00-00 wide w ay other members are assumed to b int(s) 18, 10 cons	nd (norm End Deta asigner a s otherwin n one face ent (i.e. coc. for a 10. with any d for a liv as where vill fit betw. e SPF N	al to the face ils as applica s per ANSI/T se indicated. e or securely liagonal web 0 psf bottom other live loa e load of 20. a rectangle ween the bott 0.2.	e), able, PI 1. v). ads. 0psf					
FORCES	(lb) - Maximum Com	pression/Maximum			ANSI/TPI 1 angle			lding					
TOP CHORD	Tension 1-2=0/32, 2-3=-1417 4-5=-1301/233, 5-6= 6-7=-1319/142, 7-8= 2-18=-899/146, 8-10	=-1301/202, =-1422/132, 8-9=0/32	· · · ·	 Provide mec bearing plate 18 and 99 lb 	buld verify capacit hanical connectio capable of withs uplift at joint 10. designed in accord	n (by oth tanding §	ers) of truss 8 lb uplift at						
BOT CHORD		6-17=-150/1202, 5=-33/902, 3=-32/907,		International	Residential Code nd referenced sta	sections	s R502.11.1 a	and				OF OF	MIS C
this desigr	5-20=-139/414, 12-2 6-12=-71/92, 16-19= 5-19=-153/421, 4-16 15-19=-15/70, 3-17= 7-11=0/106 ed roof live loads have	20=-134/384, =-145/384, =-78/86, 5-14=0/213 =0/102, 13-20=-9/60, been considered for								-	8	Strife OF J Strife OF J SEV SEV NUM PE-2001	BER LEL

- Wind: ASCE 7-16; Vult=115mph (3-second gust) 2) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)


April 10,2024

ESSIONAL ET

Job	Truss	Truss Type	Qty	Ply	Lot 166 HT	
B240067	V1	Valley	1	1	Job Reference (optional)	164780440

Run: 8.73 S Mar 21 2024 Print: 8.730 S Mar 21 2024 MiTek Industries, Inc. Tue Apr 09 09:18:05 ID:Hr0UloyIgMOrZQ4rpild7XzssyG-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC?f

. .

20-8-0

Scale = 1:57.1

Plate Offsets (X, Y): [21:0-1-8,0-1-8]


					1	-							
Loading	(psf)	Spacing	2-0-0		csi		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0		1.15		TC	0.30	Vert(LL)	n/a	-	n/a	999	MT20	197/144
TCDL	10.0	Lumber DOL	1.15		BC	0.13	Vert(TL)	n/a	-	n/a	999		
BCLL	0.0	 Rep Stress Incr 	YES		WB	0.14	Horiz(TL)	0.00	13	n/a	n/a		
BCDL	10.0	Code	IRC201	18/TPI2014	Matrix-S	-						Weight: 98 lb	FT = 10%
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD WEBS REACTIONS	2x4 SPF No.2 2x4 SPF No.2 2x4 SPF No.2 2x4 SPF No.2 Structural wood s 6-0-0 oc purlins, Rigid ceiling direc bracing. 1 Row at midpt (size) 1=20-8 15=20- 18=20- 22=20- Max Horiz 1=360 Max Uplift 13=-44 17=-47 19=-48 22=-45 Max Grav 1=131 14=17: 16=18(18=180 20=18: 23=21-	heathing directly applie except end verticals. tly applied or 10-0-0 oc 12-13 -0, 13=20-8-0, 14=20-8 8-0, 16=20-8-0, 17=20- 8-0, 19=20-8-0, 20=20- 8-0, 23=20-8-0 (LC 5) (LC 7), 14=-51 (LC 8), (LC 8), 16=-50 (LC 8), (LC 8), 16=-50 (LC 8), (LC 8), 23=-57 (LC 8) (LC 16), 13=59 (LC 1), (LC 1), 15=182 (LC 1) 0 (LC 1), 15=182 (LC 1) 0 (LC 1), 19=179 (LC 1) 2 (LC 1), 22=171 (LC 1) 4 (LC 1)	N 1 -0, 2 8-0, 3 8-0, 3 8-0, 3 5 6 7 , 8 , 9	IOTES) Wind: ASCE Vasd=91mpl II; Exp C; En cantilever lef right expose) Truss desigg only. For stu see Standard or consult qu) All plates are or dable studs) This truss ha chord live loa) This truss ha chord and ar) All bearings) Provide mec bearing plate 13, 57 lb upli uplift at joint	2-23=-161/81, 3- 5-19=-140/72, 6- 9-16=-140/70, 10 7-16; Vult=115n; n; TCD=6.0p8; closed; MWFRS t and right exposed d; Lumber DOL= ned for wind load ds exposed to w d Industry Gable ualified building d e 2x4 MT20 unless es continuous bo spaced at 2-0-0 as been designed n chord in all are by 200-00 wide w hy other member are assumed to I hanical connectifie capable of with ift at joint 23, 45 20, 48 lb uplift at ff at joint 17, 50	18=-140/7)-15=-142/ nph (3-sec BCDL=6. (envelope sed; end \ 1.60 plate ds in the p vind (norm End Deta lesigner as so therwi totom chor oc. d for a 10. t with any def or a live as where will fit betw s. be SPF N. on (by oth standing 4 Ib upilif at t joint 19, 4	 '2, 7-17=-140 '81, 11-14=-1 cond gust) Oppsf; h=25ft; exterior zon vertical left an grip DOL=1. lane of the tru at to the face ils as applica s per ANSI/TI se indicated. d bearing. Opsf bottom other live loae load of 20.0 a rectangle veen the botto c.2. ers) of truss t to Ib uplift at j joint 22, 48 li 48 lb uplift at 	D/72, 37/83 Cat. ne; nd 60 uss ble, PI 1. Dpsf oom to joint b b			ł.	STATE OF M	MISSOLA
TOROLO	Tension	ompression/maximum			15 and 51 lb upli						A	SEVI	
TOP CHORD	4-5=-233/26, 5-6= 7-9=-180/27, 9-10 11-12=-113/71, 1		68, L	International	designed in acco Residential Cod nd referenced sta Standard	e sections	s R502.11.1 a	and		>	R.	tto NUM	
BOT CHORD	1-23=-117/89, 22 19-20=-117/89, 1 17-18=-117/89, 1 15-16=-117/89, 1 13-14=-117/89	6-17=-117/89,	7/89,								W.	PE-2001	L ENGINE

.org) Milek-US.com

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

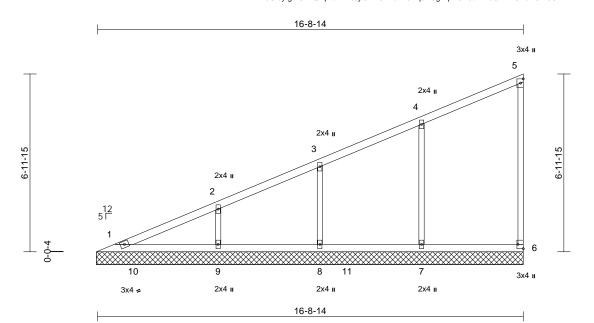
Job	Truss	Truss Type	Qty	Ply	Lot 166 HT	
B240067	V2	Valley	1	1	Job Reference (optional)	164780441

Run: 8.73 S Mar 21 2024 Print: 8.730 S Mar 21 2024 MiTek Industries, Inc. Tue Apr 09 09:18:05 ID:Hr0UloyIgMOrZQ4rpild7XzssyG-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

Scale = 1:48.8

Plate Offsets (X, Y): [6:Edge,0-2-8]

		-										
Loading	(psf)	Spacing	2-0-0	csi		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15	TC	0.51	Vert(LL)	n/a		n/a	999	MT20	197/144
TCDL	10.0	Lumber DOL	1.15	BC	0.27	Vert(TL)	n/a	-	n/a	999		
BCLL	0.0*	Rep Stress Incr	YES	WB	0.27	Horiz(TL)	0.00	6	n/a	n/a		
BCDL	10.0	Code	IRC2018/TPI20	14 Matrix-S							Weight: 59 lb	FT = 10%
	2x4 SPF No.2 2x3 SPF No.2 2x3 SPF No.2 Structural wood she 6-0-0 oc purlins, ex Rigid ceiling directly bracing. (size) 1=18-8-1 8=18-8-1 Max Horiz 1=327 (LU Max Uplift 6=-38 (LC (LC 8), 9: Max Grav 1=255 (LU	y applied or 10-0-0 od 4, 6=18-8-14, 7=18-8 4, 9=18-8-14 C 5) C 5), 7=-110 (LC 8), 8 149 (LC 8)	chorc 6) * This on th 3-06- chorc 8) Provi bearin 6, 111 uplift 9) This t Interr 8802 3=-74 LOAD CA	russ has been designed live load nonconcurrer a truss has been design a bottom chord in all are 00 tall by 2-00-00 wide and any other member arings are assumed to de mechanical connecti- ng plate capable of with 0 b uplift at joint 7, 74 lb at joint 9. russ is designed in accu- tational Residential Coo .10.2 and referenced st ASE(S) Standard	nt with any ed for a liv eas where will fit betv rs, with BC be SPF N ion (by oth standing 3 b uplift at j ordance w de sections	other live load of 20.1 a rectangle ween the bott OL = 10.0psi o.2. wers) of truss t 88 lb uplift at j oint 8 and 14: ith the 2018 s R502.11.1 a	Opsf om o oint Ə Ib					
FORCES	(lb) - Maximum Con	npression/Maximum										
TOP CHORD	Tension 1-2=-265/91, 2-3=-1 4-5=-141/67, 5-6=-1	, , ,										
BOT CHORD	1-9=-106/80, 8-9=-1 6-7=-106/80											ADD
WEBS	4-7=-320/142, 3-8=-	223/122, 2-9=-421/2	09								OF OF	MISSO
NOTES										1	TE OF	1,0°
 Wind: ASC Vasd=91m II; Exp C; I cantilever right expo: Truss des only. For : see Stand or consult Gable requ 	CE 7-16; Vult=115mph hph; TCDL=6.0psf; BC Enclosed; MWFRS (ei left and right exposed sed; Lumber DOL=1.6 signed for wind loads i studs exposed to wind ard Industry Gable En qualified building desi uires continuous botto ds spaced at 4-0-0 oc.	EDL=6.0psf; h=25ff; (nvelope) exterior zor ; end vertical left an 0 plate grip DOL=1.6 n the plane of the tru 4 (normal to the face) d Details as applicat gner as per ANSI/TF m chord bearing.	ne; d 50 ss , ble,								SCOT SEV SEV NUM PE-2001	T M. HER 018807



WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent toulsable personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

Job	Truss	Truss Type	Qty	Ply	Lot 166 HT	
B240067	V3	Valley	1	1	Job Reference (optional)	164780442

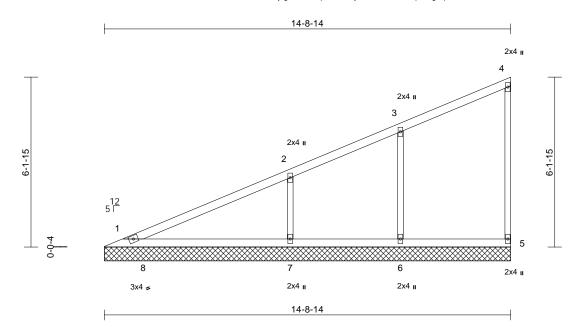
Run: 8.73 S Mar 21 2024 Print: 8.730 S Mar 21 2024 MiTek Industries, Inc. Tue Apr 09 09:18:05 ID:Hr0UloyIgMOrZQ4rpild7XzssyG-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:45.3

Plate Offsets (X, Y): [6:Edge,0-2-8]

(psf) 25.0 10.0 0.0* 10.0 2x4 SPF No.2	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018/TI	T B W	C	0.39 0.16	DEFL Vert(LL)	in n/a	(loc)	l/defl n/a	L/d 999	PLATES	GRIP
0.0* 10.0 2x4 SPF No.2	Rep Stress Incr	YES	W		0.16				17/04	333	MT20	197/144
10.0 2x4 SPF No.2					0.10	Vert(TL)	n/a	-	n/a	999		
2x4 SPF No.2	Code	IRC2018/T			0.19	Horiz(TL)	0.00	6	n/a	n/a		
			F12014 IV	latrix-S							Weight: 52 lb	FT = 10%
6-0-0 oc purlins, exe Rigid ceiling directly bracing. (size) 1=16-9-8, 8=16-9-8, Max Horiz 1=290 (LC Max Uplift 6=-36 (LC (LC 8), 9= Max Grav 1=179 (LC 7=477 (LC	cept end verticals. applied or 10-0-0 o 9=16-9-8, 7=16-9-8 2 5) 5 5), 7=-106 (LC 8), -110 (LC 8) 2 16), 6=168 (LC 2),	c ci 6) * 3- c c bi c 6, 7) A 8) P c 6, 4, 9) T Ir 8=-90 R 8=-90 LOAL	hord live load r This truss has n the bottom cl -06-00 tall by 2 hord and any co Il bearings are rovide mechar earing plate ca , 106 lb uplift a plift at joint 9 his truss is des ternational Re 802.10.2 and r	other members, wi assumed to be S nical connection (b apable of withstand t joint 7, 90 lb upli signed in accordar isidential Code se referenced standa	h any or a live where a it betw ith BC PF No by othe ding 3 ift at jo nce wi actions	other live load e load of 20.0 a rectangle even the botto DL = 10.0psf. a.2. ers) of truss to 6 lb uplift at joint 8 and 110 th the 2018 R502.11.1 a	psf m o pint Ib					
(lb) - Maximum Com Tension	pression/Maximum											
6-7=-94/71	, ,										Canada	1000
4-7=-310/142, 3-8=-	265/141, 2-9=-313/	157									F. OF I	MIS SOL
nph; TCDL=6.0psf; BC Enclosed; MWFRS (er left and right exposed sed; Lumber DOL=1.6 signed for wind loads ir studs exposed to wind lard Industry Gable En- qualified building desig	DL=6.0psf; h=25ft; (velope) exterior zor ; end vertical left an 0 plate grip DOL=1. n the plane of the tru (normal to the face d Details as applical gner as per ANSI/TF	ne; d 60 Jss), ble,) ,	ł	PE-2001	
	2x3 SPF No.2 Structural wood she 6-0-0 oc purlins, exx Rigid ceiling directly bracing. (size) 1=16-9-8, 8=16-9-8, Max Horiz 1=290 (LC (LC 8), 9= Max Grav 1=179 (LC 7=477 (LC (LC 2) (lb) - Maximum Com Tension 1-2=-241/62, 2-3=-11 4-5=-133/59, 5-6=-11 1-9=-94/71, 8-9=-94, 6-7=-94/71 4-7=-310/142, 3-8=- CE 7-16; Vult=115mph nph; TCDL=6.0psf; BC Enclosed; MWFRS (er Enclosed; MWFRS (er studs exposed to wind ard Industry Gable Em gualified building desig uires continuous botto	2x3 SPF No.2 Structural wood sheathing directly applia 6-0-0 oc purlins, except end verticals. Rigid ceiling directly applied or 10-0-0 o bracing. (size) $1=16-9-8, 6=16-9-8, 7=16-9-8$ 8=16-9-8, 9=16-9-8 Max Horiz $1=290$ (LC 5) Max Uplift 6=-36 (LC 5), 7=-106 (LC 8), (LC 8), 9=-110 (LC 8) Max Grav $1=179$ (LC 16), 6=168 (LC 2), 7=477 (LC 2), 8=361 (LC 2), (LC 2) (lb) - Maximum Compression/Maximum Tension 1-2=-241/62, 2-3=-189/49, 3-4=-160/54, 4-5=-133/59, 5-6=-109/43 1-9=-94/71, 8-9=-94/71, 7-8=-94/71, 6-7=-94/71 4-7=-310/142, 3-8=-265/141, 2-9=-313/-2000 CE 7-16; Vult=115mph (3-second gust) nph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; 1 Enclosed; MWFRS (envolepe) exterior zool left and right exposed ; end vertical left and sed; Lumber DOL=1.60 plate grip DOL=1. signed for wind loads in the plane of the trustuds exposed to wind (normal to the face ard Industry Gable End Details as applica qualified building designer as per ANSI/TI uires continuous bottom chord bearing.	2x3 SPF No.2 3x3 SPF No.2 Structural wood sheathing directly applied or 6-0-0 oc purlins, except end verticals. Rigid ceiling directly applied or 10-0-0 oc bracing. (size) $1=16-9-8$, $6=16-9-8$, $7=16-9-8$, 8=16-9-8, $9=16-9-8Max Horiz 1=290 (LC 5)Max Uplift 6=-36 (LC 5), 7=-106 (LC 8), 8=-90(LC 8), 9=-110 (LC 8)Max Grav 1=179 (LC 16), 6=168 (LC 2),7=477$ (LC 2), $8=361$ (LC 2), $9=420(LC 2)(lb) - Maximum Compression/MaximumTension1-2=-241/62$, $2-3=-189/49$, $3-4=-160/54$, 4-5=-133/59, $5-6=-109/431-9=-94/71$, $8-9=-94/71$, $7-8=-94/71$, 6-7=-94/71 4-7=-310/142, $3-8=-265/141$, $2-9=-313/157CE 7-16; Vult=115mph (3-second gust)nph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat.Enclosed; MWFRS (envelope) exterior zone;left and right exposed ; end vertical left andsed; Lumber DOL=1.60 plate grip DOL=1.60signed for wind loads in the plane of the trussstuds exposed to wind (normal to the face),ard Industry Gable End Details as applicable,qualified building designer as per ANSI/TPI 1.uires continuous bottom chord bearing.$	 2x3 SPF No.2 2x3 SPF No.2 3-06-00 tall by 2 chord and any c 3-06-00 tall by	 2x3 SPF No.2 3-06-00 clall by 2-00-00 wide will f chord and any other members, w 7) All bearings are assumed to be S 8) Provide mechanical connection (I bearing plate capable of withstan 6, 106 lb uplift at joint 7, 90 lb upl uplift at joint 9. 9) This truss is designed in accorda International Residential Code se R802.10.2 and referenced stands (LC 8), 9=-110 (LC 8) 8) Max Horiz 1=290 (LC 5), Max Uplift 6=-36 (LC 5), 7=-106 (LC 8), 8=-90 (LC 8), 9=-110 (LC 8) 9) This truss is designed in accorda International Residential Code se R802.10.2 and referenced stands (LC 2) (lb) - Maximum Compression/Maximum Tension 1-2=-241/62, 2-3=-189/49, 3-4=-160/54, 4-5=-133/59, 5-6=-109/43 1-9=-94/71, 8-9=-94/71, 7-8=-94/71, 6-7=-94/71 4-7=-310/142, 3-8=-265/141, 2-9=-313/157 CE 7-16; Vult=115mph (3-second gust) nph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. Enclosed; MWFRS (envelope) exterior zone; left and right exposed ; end vertical left and sed; Lumber DOL=1.60 plate grip DOL=1.60 signed for wind loads in the plane of the truss studs exposed to wind (normal to the face), ard Industry Gable End Details as applicable, qualified building designer as per ANSI/TPI 1. uires continuous bottom chord bearing. 	 2x3 SPF No.2 3-06-00 tall by 2-00-00 wide will fit betw chord and any other members, with BC All bearings are assumed to be SPF No.2 3-06-00 tall by 2-00-00 wide will fit betw chord and any other members, with BC All bearings are assumed to be SPF No.2 3-06-00 tall by 2-00-00 wide will fit betw chord and any other members, with BC All bearings are assumed to be SPF No.2 3-06-00 tall by 2-00-00 wide will fit betw chord and any other members, with BC All bearings are assumed to be SPF No.2 This truss is designed in accordance wi International Residential Code sections R802.10.2 and referenced standard AN LOAD CASE(S) Standard 	 2x3 SPF No.2 3-06-00 tall by 2-00-00 wide will fit between the botto chord and any other members, with BCDL = 10.0pst. 3-06-00 c purlins, except end verticals. Rigid ceiling directly applied or 10-0-0 oc bracing. (size) 1=16-9.8, 6=16-9.8, 7=16-9.8, 8=16-9.8, 8=16-9.8, 9=16-9.8, 9=16-9.8, 9=16-9.8, 9=16-9.8, 9=16-9.8, 9=16-9.8, 0.10 km standing 36 lb uplift at joint 9. (size) 1=16-9.8, 6=16-9.8, 7=16-9.8, 8=16-9.8, 8=16-9.8, 9=16-9.8, 9=1-10 (LC 8), 9=-110 (LC 8), 8=-90 (LC 2), 7=-477 (LC 2), 8=361 (LC 2), 7=477 (LC 12), 8=361 (LC 2), 9=420 (LC 2) (lb) - Maximum Compression/Maximum Tension 1-2=-241/62, 2-3=-189/49, 3-4=-160/54, 4-5=-1335/59, 5-6=-109/43 1-9=-94/71, 8-9=-94/71, 8-9=-94/71, 6-7=-94/71 4-7=-310/142, 3-8=-265/141, 2-9=-313/157 CE 7-16; Vult=115mph (3-second gust) ph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. Enclosed; MWFRS (envelope) exterior zone; left and right exposed ; end vertical left and sed; Lumber DOL=1.60 plate grip DOL=1.60 igned for wind loads in the plane of the truss studs exposed to wind (normal to the face), ard Industry Gable End Details as applicable, qualified building designer as per ANSI/TPI 1. 	 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members, with BCDL = 10.0pst. 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members, with BCDL = 10.0pst. 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members, with BCDL = 10.0pst. 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members, with BCDL = 10.0pst. 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members, with BCDL = 10.0pst. 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members, with BCDL = 10.0pst. 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members, with BCDL = 10.0pst. 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members, with BCDL = 10.0pst. 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members, with BCDL = 10.0pst. 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members, with BCDL = 10.0pst. 3-06-00 tall by 2-00-00 wide will fit between the bottom chord bearing. 3-06-00 tall by 2-00-00 wide will fit between the bottom chord bearing. 3-06-00 tall by 2-00-00 wide will fit between the bottom chord bearing. 3-06-00 tall by 2-00-00 wide will fit between the bottom chord bearing. 3-06-00 tall by 2-00-00 wide will fit between the bottom chord bearing. 3-06-00 tall by 2-00-00 wide will fit between the bottom chord bearing. 3-06-00 tall by 2-00-00 wide will fit between the bottom chord bearing. 3-06-00 tall by 2-00-00 wide will fit between the bottom chord bearing. 3-06-00 tall by 2-00-00 wide will fit between the bottom chord bearing. 3-06-00 tall by 2-00-00 wide will fit between the bottom chord bearing. 3-06-00 tall by 2-00-00 wide will fit between the bottom chord bear	 2x3 SPF No.2 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf. All bearings are assumed to be SPF No.2. Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 36 lb uplift at joint 6, 106 lb uplift at joint 7, 90 lb uplift at joint 8 and 110 lb uplift at joint 7, 90 lb uplift at joint 8 and 110 lb uplift at joint 1, 90 lb uplift at joint 8, 100 lb uplift at joint 1, 90 lb uplift at joint 8, 100 lb uplift at joint 8, 100 lb uplift at joint 9, 100 lb uplift at joint 8, 100 lb uplift at joint 9, 100 lb uplift 10	 2x3 SPF No.2 3x3 SPF No.2 3x0 Ge-00 tall by 2-00-00 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf. All bearings are assumed to be SPF No.2. Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 36 ib uplift at joint 6, 106 ib uplift at joint 7, 90 lb uplift at joint 6, 106 ib uplift at joint 7, 90 lb uplift at joint 6, 106 ib uplift at joint 6, 106 ib uplift at joint 7, 90 lb uplift at joint 6, 106 ib uplift at joint 8, 916-98, 9=16-98, 9=16-98, 9=16-98, 9=16-98, 9=16-98, 9=16-98, 9=16-98, 9=16-98, 9=110 (LC 8), 9=-110 (LC 8), 8=-90 (LC 8), 9=-110 (LC 8), 9=-110 (LC 2), r-7477 (LC 2), 8=361 (LC 2), 9=420 (LC 2) (b) - Maximum Compression/Maximum Tension 1-2=-241/62, 2-3=-189/49, 3-4=-160/54, 4-5=-133/59, 5-6=-109/43 1-9=-94/71, 8-9=-94/71, 7-8=-94/71, 6-7=-94/71 4-7=-310/142, 3-8=-265/141, 2-9=-313/157 2E 7-16; Vult=115mph (3-second gust) ph; TCDL=6.0psf; BCDL=6.0ps; h=25ft; Cat. Enclosed; MWFRS (envelope) exterior zone; left and right exposed : end vertical left and sed; Lumber DOL=1.60 plate grip DOL=1.60 igned for wind loads in the plane of the truss studs exposed to wind (normal to the face), ard Industry Gable End Details as applicable, qualified building designer as per ANSI/TPI 1. 	 2x3 SPF No.2 3x3 SPF No.2 3crossing directly applied or conditional to the parameter of the parame	 2x3 SPF No.2 2x3 SPF No.2 3x3 SPF No.2 3x4 SPF No.2<


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

Job	Truss	Truss Type	Qty	Ply	Lot 166 HT	
B240067	V4	Valley	1	1	Job Reference (optional)	164780443

Run: 8.73 S Mar 21 2024 Print: 8.730 S Mar 21 2024 MiTek Industries, Inc. Tue Apr 09 09:18:05 ID:Hr0UloyIgMOrZQ4rpild7XzssyG-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:41.8

00010 = 111110													
Loading TCLL (roof) TCDL BCLL BCDL	(psf) 25.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018	8/TPI2014	CSI TC BC WB Matrix-S	0.46 0.27 0.12	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 5	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 44 lb	GRIP 197/144 FT = 10%
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SPF No.2 2x3 SPF No.2 2x3 SPF No.2 2x3 SPF No.2 Structural wood she 6-0-0 oc purlins, ex Rigid ceiling directly bracing. (size) 1=14-8-14 7=14-8-14 Max Horiz 1=254 (LC Max Uplift 5=-34 (LC (LC 8) Max Grav 1=241 (LC	cept end verticals. applied or 10-0-0 or 4, 5=14-8-14, 6=14-4 2 5) 5 5), 6=-86 (LC 8), 7	6) 7) 8) ed or c 9) 8-14, LC =-147	* This truss I on the bottor 3-06-00 tall I chord and ar All bearings Provide mec bearing plate 5, 86 Ib uplift This truss is International	has been designe n chord in all are: y 2-00-00 wide v hy other members are assumed to b chanical connection e capable of withs t at joint 6 and 14 designed in acco Residential Code nd referenced sta Standard	as where will fit betw s, with BC be SPF No on (by oth standing 3 P Ib uplift ordance w e sections	a rectangle veen the both CDL = 10.0psi c.2. ers) of truss t 4 lb uplift at j at joint 7. ith the 2018 5 R502.11.1 a	om f. to joint					
FORCES	(lb) - Maximum Com Tension												
TOP CHORD BOT CHORD WEBS	1-2=-201/89, 2-3=-1 4-5=-118/46	/62, 5-6=-82/62											
NOTES 1) Wind: ASC Vasd=91n II; Exp C; cantilever right expo 2) Truss des only. For see Stand or consult 3) Gable req	CE 7-16; Vult=115mph mph; TCDL=6.0psf; BC Enclosed; MWFRS (er left and right exposed signed for wind loads ir studs exposed to wind dard Industry Gable En t qualified building desi- quires continuous bottoo	(3-second gust) DL=6.0psf; h=25ft; (nvelope) exterior zor ; end vertical left an 0 plate grip DOL=1. h the plane of the tru (normal to the face) d Details as applical gner as per ANSI/TF	ne; d 60 iss), ble,									STATE OF SCOT SEV	MISSOLIE T.M. IER

4) Gable studs spaced at 4-0-0 oc.

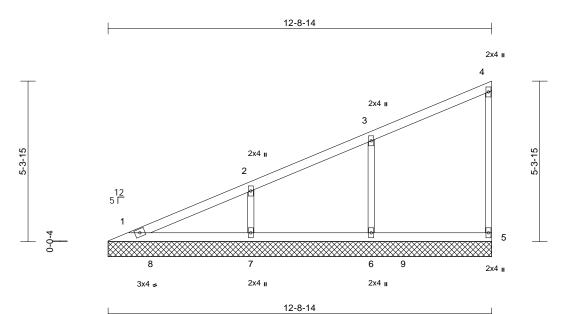
5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

> April 10,2024 16023 Swingley Ridge Rd. Chesterfield, MO 63017

PE-200101880

SIONAL ET

314.434.1200 / MiTek-US.com


O,

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

Job	Truss	Truss Type	Qty	Ply	Lot 166 HT	
B240067	V5	Valley	1	1	Job Reference (optional)	164780444

Run: 8.73 S Mar 21 2024 Print: 8.730 S Mar 21 2024 MiTek Industries, Inc. Tue Apr 09 09:18:05 ID:Hr0UloyIgMOrZQ4rpild7XzssyG-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:38.3

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15	TC	0.22	Vert(LL)	n/a	-	n/a	999	MT20	197/144
TCDL	10.0	Lumber DOL	1.15	BC	0.14	Vert(TL)	n/a	-	n/a	999		
BCLL	0.0*	Rep Stress Incr	YES	WB	0.09	Horiz(TL)	0.00	5	n/a	n/a		
BCDL	10.0	Code	IRC2018/TPI20	4 Matrix-S							Weight: 37 lb	FT = 10%
LUMBER				truss has been design			Opsf					
TOP CHORD				bottom chord in all are								
BOT CHORD				0 tall by 2-00-00 wide								
WEBS	2x3 SPF No.2			and any other member								
OTHERS	2x3 SPF No.2			rings are assumed to								
BRACING			,	e mechanical connecti		,						
TOP CHORD	 Structural wood she 6-0-0 oc purlins, exe 			g plate capable of with Ib uplift at joint 6 and			oint					
BOT CHORD				uss is designed in acco ational Residential Coc			ind					
REACTIONS	0	4, 5=12-8-14, 6=12-	8-14	10.2 and referenced st	tandard AN	ISI/TPI 1.						
	7=12-8-14	1	LOAD CA	SE(S) Standard								
	Max Horiz 1=218 (LC	C 5)										
	Max Uplift 5=-30 (LC	5), 6=-101 (LC 8),										
	7=-107 (L	C 8)										
	Max Grav 1=166 (LC 6=413 (LC	C 16), 5=173 (LC 2), C 2), 7=408 (LC 2)	,									
FORCES	(lb) - Maximum Com	,, ()										
	Tension											
TOP CHORD	1-2=-176/59, 2-3=-1 4-5=-111/44	37/49, 3-4=-117/42,	,									
BOT CHORD	1-7=-70/53, 6-7=-70	/53, 5-6=-70/53										
WEBS	3-6=-299/145, 2-7=-	305/156										
NOTES												
	CE 7-16; Vult=115mph	(3-second dust)									000	alle
	mph; TCDL=6.0psf; BC		Cat								POF	MIG
	Enclosed; MWFRS (er										BAR	JUSS C
	r left and right exposed									6		N.S.Y
	osed; Lumber DOL=1.6									A	STATE OF	TM. VEN
	signed for wind loads in									4	SEV	IER \V V
	studs exposed to wind									14	-1	\★Ŋ
see Stan	dard Industry Gable En	d Details as applical	ble,							NI	0	

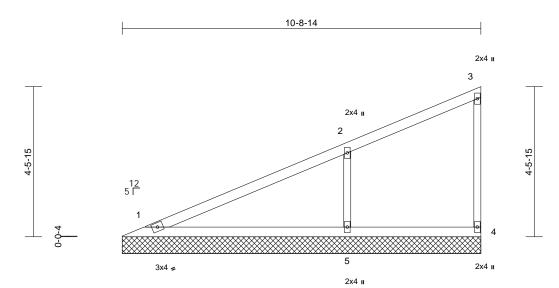
or consult qualified building designer as per ANSI/TPI 1. 3) Gable requires continuous bottom chord bearing.

4) Gable studs spaced at 4-0-0 oc.

5)

This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

Chesterfield, MO 63017 314.434.1200 / MiTek-US.com


PE-200101880'

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

Job	Truss	Truss Type	Qty	Ply	Lot 166 HT	
B240067	V6	Valley	1	1	Job Reference (optional)	164780445

Run: 8.73 S Mar 21 2024 Print: 8.730 S Mar 21 2024 MiTek Industries. Inc. Tue Apr 09 09:18:05 ID:Hr0UloyIgMOrZQ4rpild7XzssyG-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale	- 1	1.3/	5

Scale = 1:34.5													
Loading	(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15		TC	0.46	Vert(LL)	n/a	-	n/a	999	MT20	197/144
FCDL	10.0	Lumber DOL	1.15		BC	0.25	Vert(TL)	n/a	-	n/a	999		
BCLL	0.0*	Rep Stress Incr	YES		WB	0.10	Horiz(TL)	0.00	4	n/a	n/a		
BCDL	10.0	Code	IRC2018	3/TPI2014	Matrix-S							Weight: 30 lb	FT = 10%
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD	2x4 SPF No.2 2x4 SPF No.2 2x3 SPF No.2 2x3 SPF No.2 Structural wood shea 6-0-0 oc purlins, exa Rigid ceiling directly	cept end verticals.	LC	Provide me bearing plat 23 lb uplift a This truss is Internationa	are assumed to chanical connect e capable of wit at joint 4 and 15- of designed in a l Residential Cc and referenced so Standard	tion (by oth hstanding 5 4 lb uplift at cordance w de sections	ers) of truss b uplift at jo joint 5. ith the 2018 R502.11.1 a	pint 1,					

10-8-14

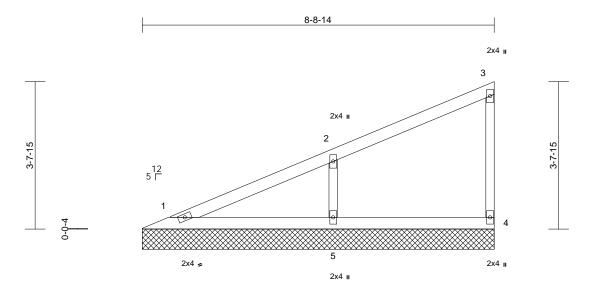
BOICHORD	bracing.	ng directly applied or 10-0-0 oc
REACTIONS	(size)	1=10-8-14, 4=10-8-14, 5=10-8-14
	Max Horiz	1=181 (LC 5)
	Max Uplift	1=-5 (LC 8), 4=-23 (LC 5), 5=-154
		(LC 8)
	Max Grav	1=220 (LC 1), 4=95 (LC 1), 5=579
		(LC 1)
FORCES	(lb) - Max	imum Compression/Maximum
	Tension	
	1 2 120/	00 0 0 - 111/06 0 1 - 70/01

TOP CHORD	1-2=-138/92, 2-3=-114/30, 3-4=-78/34
BOT CHORD	1-5=-59/45, 4-5=-59/45
WEBS	2-5=-436/213

NOTES

- Wind: ASCE 7-16; Vult=115mph (3-second gust) 1) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
- 2) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1. Gable requires continuous bottom chord bearing.
- 3) Gable studs spaced at 4-0-0 oc. 4)
- 5)
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf 6) on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.

April 10,2024


 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.
 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not besign value to dury with with where outputs into design is based only door parameters shown, and is for an individual building design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members and property incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TPH1 Quality Criteria**, and **DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcscomponents.com)

Job	Truss	Truss Type	Qty	Ply	Lot 166 HT	
B240067	V7	Valley	1	1	Job Reference (optional)	164780446

Run: 8.73 S Mar 21 2024 Print: 8.730 S Mar 21 2024 MiTek Industries. Inc. Tue Apr 09 09:18:05 ID:Hr0UloyIgMOrZQ4rpild7XzssyG-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Sca	le =	1:28.6	
-			

Scale = 1:28.6												
Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15	TC	0.25	Vert(LL)	n/a	-	n/a	999	MT20	197/144
TCDL	10.0	Lumber DOL	1.15	BC	0.13	Vert(TL)	n/a	-	n/a	999		
BCLL	0.0*	Rep Stress Incr	YES	WB	0.07	Horiz(TL)	0.00	4	n/a	n/a		
BCDL	10.0	Code	IRC2018/TPI2014	Matrix-P							Weight: 24 lb	FT = 10%
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING	2x4 SPF No.2 2x4 SPF No.2 2x3 SPF No.2 2x3 SPF No.2		bearing plat 4 and 119 lk 9) This truss is Internationa	chanical connec e capable of wit o uplift at joint 5. designed in ac I Residential Co and referenced s	hstanding 2 cordance w ode sections	3 lb uplift at j ith the 2018 R502.11.1 a	joint					
	Structural wood abo	othing directly opplie	d or LOAD CASE(S)	Standard								

8-8-14

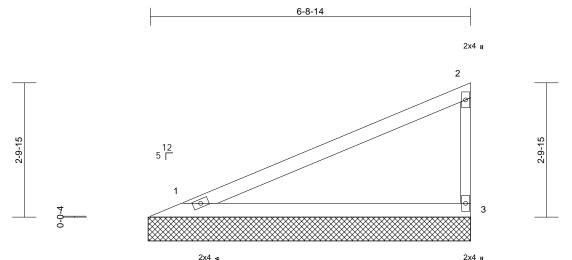
DIVACING		
TOP CHORD		wood sheathing directly applied or
	6-0-0 oc p	ourlins, except end verticals.
BOT CHORD	Rigid ceili bracing.	ing directly applied or 10-0-0 oc
	bracing.	
REACTIONS	(size)	1=8-8-14, 4=8-8-14, 5=8-8-14
	Max Horiz	1=145 (LC 5)

- Max Uplift 4=-23 (LC 5), 5=-119 (LC 8) Max Grav 1=138 (LC 1), 4=130 (LC 1), 5=446 (LC 1) FORCES (lb) - Maximum Compression/Maximum
- Tension TOP CHORD 1-2=-114/68, 2-3=-100/28, 3-4=-101/40 1-5=-47/36, 4-5=-47/36 BOT CHORD 2-5=-347/178 WEBS

NOTES

- 1) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
- Truss designed for wind loads in the plane of the truss 2) only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- Gable requires continuous bottom chord bearing. 3)
- Gable studs spaced at 4-0-0 oc. 4)
- This truss has been designed for a 10.0 psf bottom 5) chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf 6) on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- 7) All bearings are assumed to be SPF No.2 .

LOAD CASE(S) Standard


16023 Swingley Ridge Rd. Chesterfield MO 63017 314.434.1200 / MiTek-US.com

 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.
 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not beigh valid for use only with with with sets outputs into design is based only door parameters shown, and is for an individual dualing component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria**, and **DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcscomponents.com)

Job	Truss	Truss Type	Qty	Ply	Lot 166 HT	
B240067	V8	Valley	1	1	Job Reference (optional)	164780447

Run: 8.73 S Mar 21 2024 Print: 8.730 S Mar 21 2024 MiTek Industries. Inc. Tue Apr 09 09:18:06 ID:Hr0UloyIgMOrZQ4rpild7XzssyG-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

T.

LOAD CASE(S) Standard

I

Scale = 1:24.3			I									
Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15	TC	0.70	Vert(LL)	n/a	-	n/a	999	MT20	197/144
TCDL	10.0	Lumber DOL	1.15	BC	0.38	Vert(TL)	n/a	-	n/a	999		
BCLL	0.0*	Rep Stress Incr	YES	WB	0.00	Horiz(TL)	0.00	3	n/a	n/a		
BCDL	10.0	Code	IRC2018/TPI2014	Matrix-P							Weight: 17 lb	FT = 10%

9) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

6-8-14

BCDL
LUMBER

TOP CHORD	2x4 SPF I	No.2
BOT CHORD	2x4 SPF I	No.2
WEBS	2x3 SPF I	No.2
BRACING		
TOP CHORD	Structural	wood sheathing directly applied or
	6-9-8 oc p	ourlins, except end verticals.
BOT CHORD	Rigid ceili	ng directly applied or 10-0-0 oc
	bracing.	
REACTIONS	(size)	1=6-9-8, 3=6-9-8
	Max Horiz	1=108 (LC 5)
	Max Uplift	1=-39 (LC 8), 3=-61 (LC 8)
	Max Grav	1=267 (LC 1), 3=267 (LC 1)

LC 1), 3=267 (L FORCES (Ib) - Maximum Compression/Maximum Tension TOP CHORD 1-2=-97/64, 2-3=-208/96 BOT CHORD 1-3=-35/27

NOTES

- Wind: ASCE 7-16; Vult=115mph (3-second gust) 1) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
- 2) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- Gable requires continuous bottom chord bearing. 3) Gable studs spaced at 4-0-0 oc. 4)
- 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf 6) on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom

chord and any other members.

All bearings are assumed to be SPF No.2 . 7)

Provide mechanical connection (by others) of truss to 8) bearing plate capable of withstanding 39 lb uplift at joint 1 and 61 lb uplift at joint 3.

April 10,2024

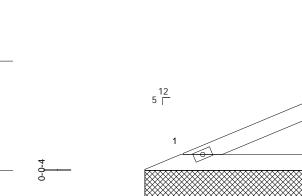
 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.
 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not beigh valid for use only with with with sets outputs into design is based only door parameters shown, and is for an individual dualing component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria**, and **DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcscomponents.com)

Job	Truss	Truss Type	Qty	Ply	Lot 166 HT	
B240067	V9	Valley	1	1	Job Reference (optional)	164780448

4-8-14

Wheeler Lumber, Waverly, KS - 66871,

Run: 8.73 S Mar 21 2024 Print: 8.730 S Mar 21 2024 MiTek Industries. Inc. Tue Apr 09 09:18:06 ID:Hr0UloyIgMOrZQ4rpild7XzssyG-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f


2x4 u

3

2x4 🛛

2

Page: 1

1-11-15

4-8-14	

Loading	(psf)	Spacing	2-0-0	csi		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15	TC	0.29	Vert(LL)	n/a	-	n/a	999	MT20	197/144
TCDL	10.0	Lumber DOL	1.15	BC	0.16	Vert(TL)	n/a	-	n/a	999		
BCLL	0.0*	Rep Stress Incr	YES	WB	0.00	Horiz(TL)	0.00	3	n/a	n/a		
BCDL	10.0	Code	IRC2018/TPI2014	Matrix-P							Weight: 12 lb	FT = 10%

International Residential Code sections R502.11.1 and

9) This truss is designed in accordance with the 2018

R802.10.2 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard

2x4 🚽

LUMBER	
TOP CHORD	

Scale - 1.21

BOT CHORD 2x4 SPF No.2 2x3 SPF No.2 WEBS BRACING TOP CHORD Structural wood sheathing directly applied or 4-9-8 oc purlins, except end verticals. BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing. **REACTIONS** (size) 1=4-8-14, 3=4-8-14 Max Horiz 1=72 (LC 5) Max Uplift 1=-26 (LC 8), 3=-40 (LC 8) Max Grav 1=177 (LC 1), 3=177 (LC 1) FORCES (lb) - Maximum Compression/Maximum Tension

2x4 SPF No.2

TOP CHORD

1-2=-64/43, 2-3=-138/64 BOT CHORD 1-3=-23/18

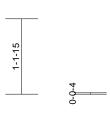
NOTES

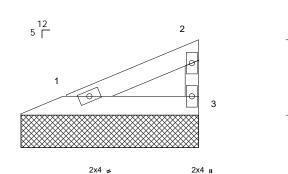
- Wind: ASCE 7-16; Vult=115mph (3-second gust) 1) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
- 2) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable or consult qualified building designer as per ANSI/TPI 1.
- Gable requires continuous bottom chord bearing. 3) 4)
- Gable studs spaced at 4-0-0 oc.
- 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf 6) on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom
- chord and any other members. 7)

All bearings are assumed to be SPF No.2 . 8)

Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 26 lb uplift at joint 1 and 40 lb uplift at joint 3.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not beigh valid for use only with with with sets outputs into design is based only door parameters shown, and is for an individual dualing component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria**, and **DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcscomponents.com)




Job	Truss	Truss Type	Qty	Ply	Lot 166 HT	
B240067	V10	Valley	1	1	Job Reference (optional)	164780449

Run: 8.73 S Mar 21 2024 Print: 8.730 S Mar 21 2024 MiTek Industries, Inc. Tue Apr 09 09:18:06 ID:Hr0UloyIgMOrZQ4rpild7XzssyG-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC?f

2x4 🛚

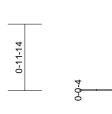
Page: 1

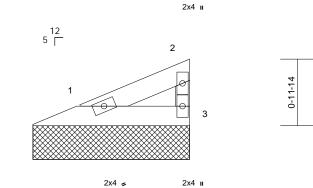
2-8-14

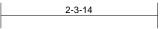
Scale =	1:17.8
---------	--------

Scale = 1:17.8												
Loading TCLL (roof) TCDL BCLL BCDL	(psf) 25.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018/TPI2014	CSI TC BC WB Matrix-P	0.06 0.03 0.00	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 3	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 6 lb	GRIP 197/144 FT = 10%
BOT CHORD WEBS BRACING TOP CHORD BOT CHORD REACTIONS (4 M	2x4 SPF No.2 2x4 SPF No.2 2x3 SPF No.2 Structural wood she 2-9-8 oc purlins, ex Rigid ceiling directly bracing. size) 1=2-8-14, Aax Horiz 1=36 (LC Aax Uplift 1=-13 (LC Aax Grav 1=87 (LC	cept end verticals. applied or 10-0-0 oc 3=2-8-14 5) 2 8), 3=-20 (LC 8)	International R802.10.2 a LOAD CASE(S)	designed in accord Residential Code nd referenced star Standard	sections	8 R502.11.1 a	and					
FORCES	(lb) - Maximum Com Tension 1-2=-32/21, 2-3=-68, 1-3=-12/9	pression/Maximum										
 Vasd=91mp II; Exp C; Er cantilever le right expose 2) Truss desig only. For st see Standar or consult qi 3) Gable requii 4) Gable studs 5) This truss hi chord live lo 6) * This truss on the botto 3-06-00 tall chord and a 7) All bearings 8) Provide med bearing plati 	E 7-16; Vult=115mph bh; TCDL=6.0psf; BC nclosed; MWFRS (er ift and right exposed ed; Lumber DOL=1.6 gned for wind loads ir uds exposed to wind rd Industry Gable En- ualified building desig- res continuous bottoo is spaced at 4-0-0 oc. as been designed for has been designed for ind nocncurrent wi has been designed for whord in all areas by 2-00-00 wide will ny other members. are assumed to be S chanical connection (e capable of withstar uplift at joint 3.	DL=6.0psf; h=25ff; C velope) exterior zon ; end vertical left and 0 plate grip DOL=1.6. In the plane of the tru (normal to the face) d Details as applicat gner as per ANSI/TP m chord bearing. r a 10.0 psf bottom th any other live load or a live load of 20.0 where a rectangle fit between the botto SPF No.2. (by others) of truss to	ie; d 50 ss ole, ole, ole, ole, ole, ole, ole, ole,						(1		STATE OF SCOT SEV OCTO PE-2001 FESSIONA	IER BER 018807

April 10,2024




WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)


Job	Truss	Truss Type	Qty	Ply	Lot 166 HT	
B240067	V11	Valley	1	1	Job Reference (optional)	164780450

Run: 8.73 S Mar 21 2024 Print: 8.730 S Mar 21 2024 MiTek Industries, Inc. Tue Apr 09 09:18:06 ID:Hr0UloyIgMOrZQ4rpild7XzssyG-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

2-3-14

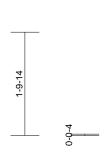
Scale =	1:1	17	.1	
---------	-----	----	----	--

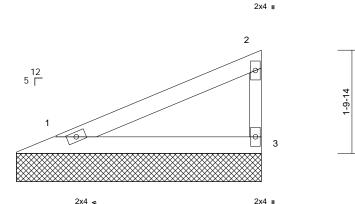
Scale = 1:17.1											
Loading (psf) TCLL (roof) 25.0 TCDL 10.0 BCLL 0.0 BCDL 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018/TPI2014	CSI TC BC WB Matrix-P	0.04 0.02 0.00	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 3	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 5 lb	GRIP 197/144 FT = 10%
LUMBER TOP CHORD 2x4 SPF No.2 BOT CHORD 2x4 SPF No.2 BOT CHORD 2x3 SPF No.2 BRACING TOP CHORD Structural wood sl 2-4-8 oc purlins, e BOT CHORD Rigid ceiling direc bracing. REACTIONS (size) 1=2-3-1 Max Horiz 1=28 (L Max Uplift 1=-10 (I Max Grav 1=68 (L	eathing directly applie except end verticals. ly applied or 10-0-0 o 4, 3=2-3-14 C 5). C 8), 3=-16 (LC 8) C 1), 3=68 (LC 1) mpression/Maximum	9) This truss is Internationa R802.10.2 a LOAD CASE(S	s designed in accord al Residential Code and referenced star	sections	s R502.11.1 a	Ind				vreight. 5 ib	
 NOTES 1) Wind: ASCE 7-16; Vult=115m Vasd=91mph; TCDL=6.0psf; E II; Exp C; Enclosed; MWFRS (cantilever left and right expose right exposed; Lumber DOL=1 2) Truss designed for wind loads only. For studs exposed to win see Standard Industry Gable E or consult qualified building de 3) Gable requires continuous bot 4) Gable studs spaced at 4-0-0 o 5) This truss has been designed chord live load nonconcurrent 6) * This truss has been designed on the bottom chord in all area 3-06-00 tall by 2-00-00 wide w chord and any other members 7) All bearings are assumed to b 8) Provide mechanical connectio bearing plate capable of withst 1 and 16 lb uplift at joint 3. 	CDL=6.0psf; h=25ft; 6 envelope) exterior zor d; end vertical left an 60 plate grip DOL=1. in the plane of the tru dd (normal to the face nd Details as applical signer as per ANSI/TF om chord bearing. c. or a 10.0 psf bottom with any other live loa f for a live load of 20.0 s where a rectangle Il fit between the botto e SPF No.2.	ne; d 60 iss), ole, PI 1. ds. opsf om								PE-2001	T M. IER 018807

16023 Swingley Ridge Rd. Chesterfield, MO 63017 314.434.1200 / MiTek-US.com

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

Job	Truss	Truss Type	Qty	Ply	Lot 166 HT	
B240067	V12	Valley	1	1	Job Reference (optional)	164780451


4-3-14


4-3-14

Wheeler Lumber, Waverly, KS - 66871,

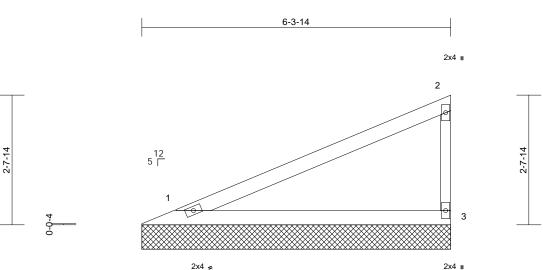
Run: 8.73 S Mar 21 2024 Print: 8.730 S Mar 21 2024 MiTek Industries, Inc. Tue Apr 09 09:18:06 ID:Hr0UloyIgMOrZQ4rpild7XzssyG-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

1-9-14	

Scale	= 1:20.3

Scale = 1:20.3				_	_							
Loading TCLL (roof) TCDL BCLL BCDL	(psf) 25.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018/TPI2014	CSI TC BC WB Matrix-P	0.22 0.12 0.00	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 3	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 10 lb	GRIP 197/144 FT = 10%
FORCES TOP CHORD BOT CHORD NOTES 1) Wind: ASC Vasd=91m II; Exp C; E cantilever I right expos 2) Truss desi only. For s see Standa or consult (3) Gable requ 4) Gable stud 5) This truss on the bott 3-06-00 tal chord and 1 7) All bearing 8) Provide me bearing pla	2x4 SPF No.2 2x3 SPF No.2 2x3 SPF No.2 Structural wood she 4-4-8 oc purlins, ex Rigid ceiling directly bracing. (size) 1=4-3-14, Max Horiz 1=64 (LC Max Uplift 1=-23 (LC Max Grav 1=158 (LC (lb) - Maximum Com Tension 1-2=-58/38, 2-3=-12 1-3=-21/16 E 7-16; Vult=115mph ph; TCDL=6.0psf; BC Enclosed; MWFRS (er eft and right exposed sed; Lumber DOL=1.6 igned for wind loads ir studs exposed to wind ard Industry Gable En qualified building designires continuous bottoo Is spaced at 4-0-0 oc. has been designed for ooad nonconcurrent wi s has been designed for on chord in all areas s are assumed to be S echanical connection (ate capable of withstar to uplift at joint 3.	cept end verticals. applied or 10-0-0 or 3=4-3-14 5) 2 8), 3=-36 (LC 8) C 1), 3=158 (LC 1) apression/Maximum 3/57 (3-second gust) DL=6.0psf; h=25ft; 0 velope) exterior zor ; end vertical left an 0 plate grip DOL=1. h the plane of the tru (normal to the face) d Details as applicat gner as per ANSI/TF m chord bearing. r a 10.0 psf bottom th any other live load or a live load of 20.0 where a rectangle fit between the botto SPF No.2. (by others) of truss to	Cat. LOAD CASE(S) ad or c Cat. ne; d 600 ISS), pole, PI 1. ds. Jpsf om 0	designed in acco l Residential Code and referenced sta Standard	e sections	8 R502.11.1 a	ind			R	STATE OF I STATE OF I SEVI SEVI NUM PE-2001	BER 018807
											m	

April 10,2024


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent buckling of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

Job	Truss	Truss Type	Qty	Ply	Lot 166 HT	
B240067	V13	Valley	1	1	Job Reference (optional)	164780452

Run: 8.73 S Mar 21 2024 Print: 8.730 S Mar 21 2024 MiTek Industries, Inc. Tue Apr 09 09:18:06 ID:Hr0UloyIgMOrZQ4rpild7XzssyG-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

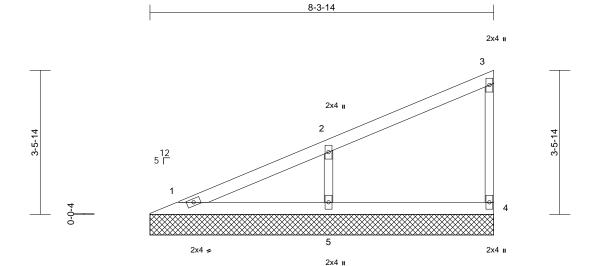
Page: 1

6-3-14

2x4 🚅

Scale = 1:23.6

CLL (roof) 25.0 Plate Grip DOL 1.15 TC 0.60 Vert(LL) n/a - n/a 999 MT20 197/144 CDL 0.0* Rep Stress Incr YES WB 0.00 Matrix-P Vert(LL) n/a - n/a 999 MT20 197/144 CDL 10.0 0.0* Rep Stress Incr YES WB 0.00 Matrix-P Weight: 16.1b FT = 10% UMBER 0.0* Stress Incr YES Natrix-P Natrix-P Weight: 16.1b FT = 10% UMBER 9) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TP11. EAS FT = 10% COP CHORD 2x4 SPF No.2 LOAD CASE(S) Standard RACING OP CHORD Structural wood sheathing directly applied or 6-4-8 oc putrins, except end verticals. COAD CASE(S) Standard OT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing. FT = 0.3 (14, 3=6-3-14, 3=6-3-14 Max Horiz 1=101 (LC 5) Max Horiz 1=248 (LC 1), 3=248 (LC 1) Max Grav 1	Scale = 1:23.6												
CDL 10.0 Lumber DOL 1.15 BC 0.02 Ver(TL) 0.00 3 Na Weight: 16 lb FT = 10% CDL 10.0 Code Nist uss is designed in accordance with He 2018 Nist uss is designed in accordance with He 2018 Nist uss is designed in accordance with He 2018 Nist uss is designed in accordance with He 2018 Nist uss is designed or 10-00 oc Nist uss is uss has been designed or 10-00 oc Nist Uss is uss has been designed or 10-00 oc Nist Uss is uss has been designed or 10-00 oc Nist Uss is uss has been designed or 10 oc 0.0 Nist Uss is uss has been designed or 10 oc 0.0 Nist Uss is Uss i	Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
CLL 0.0° Rep Stress Incr YES WB Matrix-P Weight: 16 b FT = 10% Weight: 16 b FT = 10% PC HORD 2x4 SPF No.2 Code Sections R502.11.1 and R302.02.2 and referenced standard ANS/TPI 1. LOAD CASE(5) Standard PC HORD Structural wood sheathing directly applied or 100-0 oc braining. EACTIONS (size) 1=6-3:14, 3=6-3:14 Max Numm Compression/Maximum Transion DP CHORD 12-3-3025 OT CHORD 12-3-0005 OT CHORD 1	TCLL (roof)	25.0	Plate Grip DOL	1.15	тс	0.60	Vert(LL)	n/a	-	n/a	999	MT20	197/144
CDL 10.0 Code IRC2018/TPI2014 Matrix-P Weight: 16 lb FT = 10% UMBER DO CHORD 2x4 SPF No.2 ************************************	TCDL	10.0	Lumber DOL	1.15	BC	0.32	Vert(TL)	n/a	-	n/a	999		
 9) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R50.10.2 and referenced standard ANS//TP11. 9) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R50.10.2 and referenced standard ANS//TP11. 9) This truss is designed or 10-0-0 c braining. 100 CHORD Structural wood sheathing directly applied or 6-4.3 copting. Excepting directly applied or 10-0-0 c braining. EACTIONS (size) 1 = t-5-14, 3=6-3-14 Max. Uplit 1=-36 (LC 8). Max. Uplit 1=-36 (LC 8). Max. Grav 1=248 (LC 1). 3=248 (LC 1). Max. Uplit 1=-36 (LC 8). Max. Grav 1=248 (LC 1). 3=248 (LC 1). Max. Uplit 1=-36 (LC 8). Max. Grav 1=248 (LC 1). 3=248 (LC 1). Max. Uplit 1=-36 (LC 8). Max. Grav 1=248 (LC 1). 3=248 (LC 1). Max. Uplit 1=-36 (LC 8). Max. Grav 1=248 (LC 1). 3=248 (LC 1). Max. Uplit 1=-36 (LC 8). Max. Grav 1=248 (LC 1). 3=248 (LC 1). Max. Uplit 1=-36 (LC 8). Max. Grav 1=248 (LC 1). 3=248 (LC 1). 3=248 (LC 1). Max. Uplit 1=-36 (LC 8). Max. Grave 1=248 (LC 1). 3=248 (LC 1). Max. Uplit 1=-36 (LC 8). Max. Grave 1=248 (LC 1). 3=248 (LC 1). Max. Uplit 1=-36 (LC 8). Max. Grave 1=248 (LC 1). 3=248 (LC 1). Standard MAS. Max. Uplit 1=-36 (LC 8). Max. U	BCLL	0.0*	Rep Stress Incr	YES	WB	0.00	Horiz(TL)	0.00	3	n/a	n/a		
DP CHORD 2:44 SPF No.2 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANS/ITPI 1. EERS 2:33 SPF No.2 LOAD CASE(S) Standard PC CHORD Structural wood sheathing directly applied or 10-0 oc bracing. EACTIONS [size] 1=6-3-14, 3=6-3-14 Max Horiz 1=101 (LC 5) Max Joint 1=103 (LC 8), 3=-56 (LC 8) Max Joint 1=248 (LC 1), 3=248 (LC 1) ORCESS (I) Maximum Compression/Maximum Tension OT CHORD 1:3=-332/5 OT ES Wind MASCE 7-16; Vull=115mph (3=coond gust) Vade-90 (mph, 1CO)_=60 (JC 1), 5=-56 (LC 8) Max Server 1=248 (LC 1), 3=248 (LC 1) Truss Case 1=6-3-14, 3=6-3-14 Max Foriz 1=201 (LC 5), 3=-56 (LC 8) Max Grav 1=248 (LC 1), 3=248 (LC 1) Max Grav 1=248 (LC 1), 3=248 (LC 1) Tension - OT CHORD 1:3=-332/5 OT ES Wind ASCE 7-16; Vull=115mph (3=coond gust) Vade-90 (mph, 1CO)_=60 (JC 1); 60 (JC 1); 60 (JC 1); 60 (JC 1); 70 (JC	BCDL	10.0	Code	IRC2018/TPI2014	Matrix-P							Weight: 16 lb	FT = 10%
OT CHORD 2x4 SPF No.2 R802.10.2 and referenced standard ANSI/TPI 1. IEBS 2x3 SPF No.2 LOAD CASE(S) Standard RACING Structural wood sheathing directly applied or 6-4-8 oc purines, except end verticals. For CHORD OT CHORD Structural wood sheathing directly applied or 6-0-0 oc braining. For CHORD Reading. In-63-14, 3e-53-14 Max Uplitt 1-36 (LC 8), 3e-56 (LC 8) Max Uplitt 1-36 (LC 1), 3e-244 (LC 1) OP CHORD 1:290/60, 2:3153/90 OF HOR 1:290/60, 2:3153/90 OF HORD 1:290/60, 2:3153/90 OF HORD 1:290/60, 2:3153/90 OF MASCE T-16; Vult=115mph (3-second gust) Vscd-116/70 Second of wind Indiate in the place IO to 10:0 pt the face IO to 10:0 pt the face	LUMBER												
Tess 2x3 SPF No.2 LOAD CASE(S) Standard RACING RACING Structural wood sheathing directly applied or 64-8 oc purlins, except and vericals. For the complexity of the complexity applied or 10-0 oc bracing. OT CHORD Sigle celling directly applied or 10-0 oc bracing. Sigle celling directly applied or 10-0 oc bracing. EACTIONS Size (32.6) 1.6-3-14, 3-6-3-14 Max Horiz 1=101 (LC 5) Max Upplit 1=-36 (LC 8), 3-3-65 (LC 8) Max Grav 1=248 (LC 1), 3-248 (LC 1). PRCES (b) - Maximum Compression/Maximum Tension Dec Hore 1 To CHORD 1.3-3-323/25 OT EHO 1.333/25 OT EHO 1.333/25 OT EHO Wink ASCE 7-16; Vull=115mph (3-second pust) V Wat-9 Impi: TCDL=6.0get; BOLL=6.0get; h=25ft; Cat II; Epp C; Enclosed; MWFRS (envelope) extentor zone; cantilever left and right exposed i vind loads in the plane of the fraze), see Standard Industry Gable End Declina as applicable, or consult qualified building designer as per ANSI/TP1 1. Gable studies spaced at 0-0 c Op Mort Not Status, Status, Status has been designed for a 10.0 pst blotom chord live lad nonconcurrent with any other live loads. * This truss has been designed for a 10.0 pst blotom chord live lad nonconcurrent with any other live loads. Structure PE-2001018807 * This truss has been designed for a 10.0 pst blotom chord live lad nonconcurrent with any other live loads. Structure PE-2001018807	TOP CHORD							and					
RACING OP CHORD Structural wood sheathing directly applied or 6-4-8 oc purins, except end verticals. OT CHOR Rigid calling directly applied or 10-0-0 oc braining. EACTIONS (size) 1=6-3-14, 3=6-3-14 Max Uplit 1=-36 (LC 8), 3=-65 (LC 8) Max Uplit 1=-36 (LC 1), 3=-248 (LC 1) ORCES (h)- Maximum Compression/Maximum Tension OP CHORD 1-200(60, 2-3=-193/90 OT CHORD 1-3=-33/25 OTES 1 Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0pst; BCDL=6.0pst; h=25f; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed; end vertical left and right exposed; Lumber DCL=1.60 palts pip DCL=1.60 Truss designed for wind loads in the place of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANS/IPT 1. Gable requires continuous botom chord bearing. Gable studs spaced at 4-0-0 oc. SUVIER SecUTE M. Gable required for a into log the totom chord and any other members. All bearings are assumed to be SPF No.2. Provide mechanical connection (by others) of truss to bearing plate capable of wintstanding 30 to uplit at joint 1 and SS to uplit at joint 3.						indard Ar	NSI/TPI 1.						
OP CHORD Structural wood sheathing directly applied or 64-80 cp utrins, except and verticals. OT CHORD Rigid ceiling directly applied or 10-0-0 c bracing. EACTIONS (size) 1=6-3-14, 3=6-3-14 Max Horiz 1=101 (LC 5) Max Uplit 1=-36 (LC 8), 3=-56 (LC 8) Max Grav 1=248 (LC 1), 3=248 (LC 1) ORCES (b) - Maximum Compression/Maximum Tension OP CHORD 1: 2=-90/06, 2-3=-1193/90 OT CHOR 1: 3=-3322 OTE UPURE II - 1000 (D) - 100		2x3 SPF No.2		LOAD CASE(S	s) Standard								
6-4-8 oc putlins, except end verticals. OT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing. EACTIONS (size) 1=6-3-14, 3=6-3-14 Max Uplit 1=-30 (LC 8), 3=-56 (LC 8) Max Uplit 1=-30 (LC 9), 3=-58 (LC 1) (Data Value) ORCES (lb) - Maximum Compression/Maximum Tension Development DP CHORD 1-28-90/60, 2-38-193/90 (Data Value) OT CHORD 1-38-332/5 (Data Value) OTES (lb) - Maximum Compression/Maximum Tension (lb) - Maximum Compression/Maximum Tension I: Exp C; Enclosed: MWFRS (envelope) exterior zone; cantilever left and right exposed ; end vertical left and right exposed; clumber DOL-1.60 plate; molton to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSUTP1 1. Scott M. Sco			othing disectly appli										
<pre>OT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing.</pre> EACTIONS (size) 1=6-3-14, 3=6-3-14 Max Horiz 1=101 (LC 5) Max Yolit 1=-36 (LC 8), 3=-56 (LC 8) Max Grav 1=248 (LC 1), 3=-248 (LC 1) ORCES (Ib) - Maximum Compression/Maximum Tension OP CHORD 1:-2=-9060, 2:3=-193/90 OT CHORD 1:-3=-33/25 OTES Wind: ASCE 7-16; Vulk=115mph (3-second gust) Viside SCE 7-16; Vulk=115mph (3-second gust) SCOTT M. SEVIER Viside Wiside Scender 10 A (30 O) pol bottom chord ive load nonconcurrent with any other live loads. * This truss has been designed for a 110 pol bottom chord and any other members. All bearings are assumed to the SPE No 2. Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 36 bu uplift at joint 3.	IOP CHORD			ed or									
EACTIONS (size) 1=6-3-14, 3=6-3-14 Max Horiz 1=101 (LC 5) Max Korav 1=248 (LC 1), 3=-248 (LC 1) ORCES (b) - Maximum Compression/Maximum Tension DP CHORD 1=2e-90/60, 2=3=-133/90 OT CHORD 1=2e-90/60, 2=3=-133/90 OT CHORD 1=2e-90/60, 2=3=-133/90 OT CHORD 1=3=-33/25 OTES I Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25f; Cat. II; Exp C; Enclosed; HWFRS (envelope) exterior zone; cantilever left and right exposed; a underical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60 Truss designed for wind loads in the plane of the truss only. For stude exposed or wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANS/TP1 1. Gable requires continuous bottom chord bearing. Gable studes spaced at 4-0 -0 cc. This truss has been designed for a 10.0 psf bottom chord dive load nonconcurrent with any other live loads. * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 with standing 36 ib uplift at joint 1 and 56 lb uplift at joint 3.	BOT CHORD	Rigid ceiling directly		с									
Max Uplit 136 (i.C. 8), 356 (I.C. 8) Max Grav 1=248 (I.C. 1), 3-248 (I.C. 1) ORCES (Ib) - Maximum Compression/Maximum Tension OP CHORD 1 -2-= 90/60, 2-3=-193/90 OT CHORD 1 -3-= 33/25 OTES (Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; B	REACTIONS	•	, 3=6-3-14										
Max Grav 1=248 (LC 1), 3=248 (LC 1) ORCES (b) - Maximum Compression/Maximum Tension OP CHORD 1-2=-09060, 2-3=-193/90 OT CHORD 1-3=-33/25 OTES 1 Wint: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed i end vertical left and right exposed; Lumber DCDL=160 pletails as applicable, or consult qualified building designer as per ANS/ITP1 1. Gable requires continuous bottom chord hearing. Gable studies spaced at 4-0-0 oc. This truss has been designed for a 10.0 psf bottom chord and any other members. * This truss has been designed for a 10.0 psf bottom chord and any other members. All bearings are assumed to be SFF No.2. Provide mechanical connection (by others) of truss to bearing plate capable of winstanding 36 bu plift at joint 1 and 56 lb uplift at joint 3.													
 ORCES (b) - Maximum Compression/Maximum Tension OP CHORD 1-2=-90(60, 2-3=-193/90) OT CHORD 1-3=-33/25 OTES Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed; clumber DOL=1.60 Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSUTP1 1. Gable requires continuous bottom chord bearing. Gable studs spaced at 4-0-0 oc. This truss has been designed for a live loads. * This truss has been designed for a live loads. * This truss has been designed for a live loads. * This truss has been designed for a live loads. * All bearings are assumed to be SPF No.2. Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 36 lb uplift at joint 3. 													
Tension OP CHORD 1-2=-90/60, 2-3=-193/90 OT CHORD 1-2=-90/60, 2-3=-193/90 OT CHORD 1-3=-33/25 OTES Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25f; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60)Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1. Gable requires continuous bottom chord bearing. Gable studs spaced at 4-0-0 oc. * This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. * This truss has been designed for a 10.0 psf bottom chord and any other members. All bearing sare assumed to be SPF No.2. Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 36 lb uplift at joint 1 and 56 lb uplift at joint 3.		,											
OP CHORD 1-2=-90/60, 2-3=-193/90 OT CHORD 1-3=-33/25 OTES Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25f; Cat. II; Exp C; Enclosed; MWRFS (envelope) exterior zone; cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1. Gable requires continuous bottom chord bearing. Gable studs spaced at 4-0-0 cc. This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. * This truss has been designed for a 10.0 psf bottom chord and any other members. All bearings are assumed to be SPF No.2. Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 36 lb uplift at joint 1 and 56 lb uplift at joint 3.	FORCES	()	pression/Maximum										
OT CHORD 1-3=-33/25 OTES Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25f; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed; Lumber DOL=1.60 Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1. Gable studs spaced at 4-0-0 oc. This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members. All bearings are assumed to be SPF No.2. Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 36 lb uplift at joint 1 and 56 lb uplift at joint 3.	TOP CHORD		3/90										
Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25f; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60 Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TP1 1. Gable requires continuous bottom chord bearing. Gable studs spaced at 4-0-0 oc. This truss has been designed for a 10.0 psf bottom chord live load noncourrent with any other live loads. * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members. All bearings are assumed to be SPF No.2. Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 36 lb uplift at joint 1 and 56 lb uplift at joint 3.	BOT CHORD	,	0,00										
Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25f; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60 Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TP1 1. Gable requires continuous bottom chord bearing. Gable studs spaced at 4-0-0 oc. This truss has been designed for a 10.0 psf bottom chord live load noncourrent with any other live loads. * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members. All bearings are assumed to be SPF No.2. Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 36 lb uplift at joint 1 and 56 lb uplift at joint 3.	NOTES												
II; Exp C; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60 Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1. Gable requires continuous bottom chord bearing. Gable studs spaced at 4-0-0 oc. This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members. All bearings are assumed to be SPF No.2. Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 36 lb uplift at joint 1 and 56 lb uplift at joint 3.		CE 7-16; Vult=115mph	(3-second gust)										
cantilever left and right exposed ; end vertical left and right exposed ; Lumber DOL=1.60 plate grip DOL=1.60 Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1. Gable requires continuous bottom chord bearing. Gable studs spaced at 4-0-0 oc. This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members. All bearings are assumed to be SPF No.2. Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 36 lb uplift at joint 1 and 56 lb uplift at joint 3.													
right exposed; Lumber DÓL=1.60 plate grip DOL=1.60 Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1. Gable requires continuous bottom chord bearing. Gable studs spaced at 4-0-0 oc. This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members. All bearings are assumed to be SPF No.2 . Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 36 lb uplift at joint 1 and 56 lb uplift at joint 3.													
 Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1. Gable requires continuous bottom chord bearing. Gable studs spaced at 4-0-0 oc. This truss has been designed for a 10.0 psf bottom chord live load on concurrent with any other live loads. * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members. All bearings are assumed to be SPF No.2. Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 36 lb uplift at joint 1 and 56 lb uplift at joint 3. 													
 only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1. Gable requires continuous bottom chord bearing. Gable studs spaced at 4-0-0 cc. This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members. All bearings are assumed to be SPF No.2. Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 36 lb uplift at joint 1 and 56 lb uplift at joint 3. 													
see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1. Gable requires continuous bottom chord bearing. Gable studs spaced at 4-0-0 oc. This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord any other members. All bearings are assumed to be SPF No.2. Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 36 lb uplift at joint 1 and 56 lb uplift at joint 3.												000	alle
Gable studs spaced at 4-0-0 oc. This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members. All bearings are assumed to be SPF No.2. Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 36 lb uplift at joint 1 and 56 lb uplift at joint 3.												OF	MISC
Gable studs spaced at 4-0-0 oc. This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members. All bearings are assumed to be SPF No.2. Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 36 lb uplift at joint 1 and 56 lb uplift at joint 3.												450	
 This truss has been designed for a 10.0 psf bottom chord live load for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord any other members. All bearings are assumed to be SPF No.2. Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 36 lb uplift at joint 1 and 56 lb uplift at joint 3. 											A	AN SCOT	Nev Int
 This true had not over the load non-concurrent with any other live loads. * This trues has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord any other members. All bearings are assumed to be SPF No.2. Provide mechanical connection (by others) of trues to bearing plate capable of withstanding 36 lb uplift at joint 1 and 56 lb uplift at joint 3. 											R	~ /	
 * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and yo ther members. All bearings are assumed to be SPF No.2. Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 36 lb uplift at joint 1 and 56 lb uplift at joint 3. 				da							9.	SEV	
on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members. All bearings are assumed to be SPF No.2. Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 36 lb uplift at joint 1 and 56 lb uplift at joint 3. Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 36 lb uplift at joint 1 and 56 lb uplift at joint 3.										•	TRA	9	0
 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members. All bearings are assumed to be SPF No.2. Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 36 lb uplift at joint 1 and 56 lb uplift at joint 3. 				5951							WK.	-+++	· Annular
bearing plate capable of withstanding 36 lb uplift at joint 1 and 56 lb uplift at joint 3.				om								NUM	
bearing plate capable of withstanding 36 lb uplift at joint 1 and 56 lb uplift at joint 3.											N	OX PE-2001	1018807
bearing plate capable of withstanding 36 lb uplift at joint 1 and 56 lb uplift at joint 3.											Ŷ	The last	15H
												Sim	FNO
			inding so is uplint at j	UIII								DUNA	IL LA
April 10,2024	r anu 50	io apint at joint o.										alle	
												Apr	11 10,2024


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent buckling of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

Job	Truss	Truss Type	Qty	Ply	Lot 166 HT	
B240067	V14	Valley	1	1	Job Reference (optional)	164780453

Run: 8.73 S Mar 21 2024 Print: 8.730 S Mar 21 2024 MiTek Industries, Inc. Tue Apr 09 09:18:06 ID:Hr0UloyIgMOrZQ4rpild7XzssyG-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

8-3-14

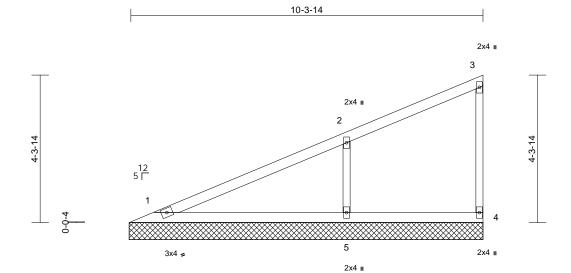
Scale = 1:27.9

		1									•	
Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15	TC	0.23	Vert(LL)	n/a	-	n/a	999	MT20	197/144
TCDL	10.0	Lumber DOL	1.15	BC	0.12	Vert(TL)	n/a	-	n/a	999		
BCLL	0.0*	Rep Stress Incr	YES	WB	0.06	Horiz(TL)	0.00	4	n/a	n/a		
BCDL	10.0	Code	IRC2018/TPI201	4 Matrix-P		()					Weight: 22 lb	FT = 10%
LUMBER			8) Provid	e mechanical connecti	ion (by oth	ers) of truss to	0					
TOP CHORD	2x4 SPF No.2			plate capable of with								
BOT CHORD				12 lb uplift at joint 5.	Ŭ							
WEBS	2x3 SPF No.2			uss is designed in acco								
OTHERS	2x3 SPF No.2			tional Residential Cod			nd					
BRACING			R802.1	0.2 and referenced sta	andard AN	ISI/TPI 1.						
TOP CHORD	Structural wood she	athing directly applie	ed or LOAD CA	SE(S) Standard								
	6-0-0 oc purlins, ex											
BOT CHORD	Rigid ceiling directly	applied or 10-0-0 o	с									
	bracing.											
REACTIONS		, 4=8-3-14, 5=8-3-14	1									
	Max Horiz 1=137 (LC	,										
	Max Uplift 4=-23 (LC											
	Max Grav 1=119 (L0	C 1), 4=135 (LC 1), 5	5=423									
	(LC 1)											
FORCES	(lb) - Maximum Com	pression/Maximum										
	Tension	7/20 2 4 405/44										
TOP CHORD BOT CHORD	1-2=-109/62, 2-3=-9											
WEBS	1-5=-45/34, 4-5=-45 2-5=-329/169	/34										
	2-3=-329/109											
NOTES		(0										
	CE 7-16; Vult=115mph nph; TCDL=6.0psf; BC		Cot									
	Enclosed; MWFRS (er											
	left and right exposed										SIL	ann
	sed; Lumber DOL=1.6										TATE OF	MISC
	signed for wind loads in										4 SE	
only. For	studs exposed to wind	(normal to the face)),							A	NY and	New
	lard Industry Gable En									A	S/ 5001	
	qualified building desi		PI 1.						-	И.	SEV	
	uires continuous botto	m chord bearing.								BA		
	ds spaced at 4-0-0 oc.	10.0 (1.4)								X		
	has been designed fo		da						_			K MAN
	load nonconcurrent wi ss has been designed f									107	PE-2001	018807
o) mis trus	s has been designed t	or a rive road of 20.0	Jhai							XV.	11-2001	01000/ 29

6) This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.

7) All bearings are assumed to be SPF No.2 .

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)


April 10,2024

SSIONAL EN

Job	Truss	Truss Type	Qty	Ply	Lot 166 HT	
B240067	V15	Valley	1	1	Job Reference (optional)	164780454

Run: 8.73 S Mar 21 2024 Print: 8.730 S Mar 21 2024 MiTek Industries. Inc. Tue Apr 09 09:18:06 ID:Hr0UloyIgMOrZQ4rpild7XzssyG-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

10-3-14

Scale	=	1:33.8

Loading TCLL (roof) TCDL BCLL BCDL	(psf) 25.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018	8/TPI2014	CSI TC BC WB Matrix-S	0.40 0.21 0.09	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 4	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 28 lb	GRIP 197/144 FT = 10%
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SPF No.2 2x3 SPF No.2 2x3 SPF No.2 Structural wood she 6-0-0 oc purlins, ex Rigid ceiling directly bracing. (size) 1=10-4-8, Max Horiz 1=174 (LC Max Uplift 1=-3 (LC (LC 8)	cept end verticals. applied or 10-0-0 oc 4=10-4-8, 5=10-4-8 C 5)	LC 145	Provide mec bearing plate 23 lb uplift at This truss is International	are assumed to the are assumed to the capable of withs joint 4 and 145 I designed in accc Residential Code and referenced state Standard	on (by oth standing 3 b uplift at ordance w e sections	ers) of truss b lb uplift at jo joint 5. ith the 2018 5 R502.11.1 a	pint 1,					
FORCES	(LC 1) (Ib) - Maximum Com Tension 1-2=-133/85, 2-3=-1												

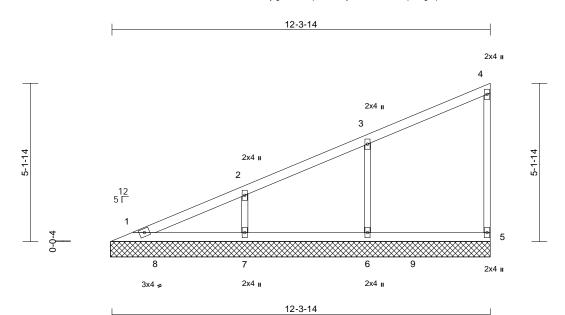
BOT CHORD 1-5=-56/43, 4-5=-56/43 WEBS 2-5=-413/202

NOTES

- 1) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
- 2) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1. Gable requires continuous bottom chord bearing. 3)

Gable studs spaced at 4-0-0 oc. 4)

- This truss has been designed for a 10.0 psf bottom 5)
- chord live load nonconcurrent with any other live loads. * This truss has been designed for a live load of 20.0psf 6)
- on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.


 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.
 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not besign value to dury with with where outputs into design is based only door parameters shown, and is for an individual building design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members and property incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TPH1 Quality Criteria**, and **DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcscomponents.com)

Job	Truss	Truss Type	Qty	Ply	Lot 166 HT	
B240067	V16	Valley	1	1	Job Reference (optional)	164780455

Run: 8.73 S Mar 21 2024 Print: 8.730 S Mar 21 2024 MiTek Industries, Inc. Tue Apr 09 09:18:06 ID:Hr0UloyIgMOrZQ4rpild7XzssyG-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:37.5

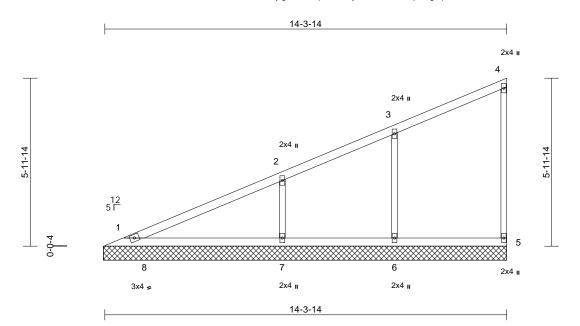
Loading TCLL (roof)	(psf) 25.0	Spacing Plate Grip DOL	2-0-0 1.15		CSI TC	0.20	DEFL Vert(LL)	in n/a	(loc) -	l/defl n/a	L/d 999	PLATES MT20	GRIP 197/144
TCDL	10.0	Lumber DOL	1.15		BC	0.13	Vert(TL)	n/a	-	n/a	999		
BCLL	0.0*	Rep Stress Incr	YES		WB	0.09	Horiz(TL)	0.00	5	n/a	n/a		
BCDL	10.0	Code	IRC201	8/TPI2014	Matrix-S							Weight: 36 lb	FT = 10%
	2x4 SPF No.2 2x4 SPF No.2 2x3 SPF No.2 2x3 SPF No.2 Structural wood she 6-0-0 oc purlins, ex Rigid ceiling directly bracing. (size) 1=12-4-8, 7=12-4-8 Max Horiz 1=210 (L0	cept end verticals. applied or 10-0-0 oc , 5=12-4-8, 6=12-4-8	c 9)	on the botton 3-06-00 tall li chord and an) All bearings Provide mec bearing plate 5, 103 lb upl) This truss is International	has been design in chord in all ar by 2-00-00 wide by other membe are assumed to hanical connect e capable of with fit at joint 6 and designed in acc Residential Coo nd referenced s Standard	eas where will fit betw rrs, with BC be SPF No cion (by oth- nstanding 2 100 lb uplif cordance wi de sections	a rectangle veen the botto DL = 10.0psf o.2. ers) of truss t 9 lb uplift at j t at joint 7. ith the 2018 R502.11.1 a	om : : oo oint					
I	Max Uplift 5=-29 (LC 7=-100 (L	C 5), 6=-103 (LC 8), .C 8)											
ſ	``	C 2), 7=382 (LC 2)											
FORCES	(lb) - Maximum Corr Tension	pression/Maximum											
TOP CHORD	1-2=-172/54, 2-3=-1 4-5=-110/43	34/51, 3-4=-116/40,											
BOT CHORD WEBS	1-7=-68/51, 6-7=-68 3-6=-304/148, 2-7=-	,											
NOTES													
Vasd=91mj II; Exp C; E cantilever le right expos	E 7-16; Vult=115mph ph; TCDL=6.0psf; BC inclosed; MWFRS (er eft and right exposed ed; Lumber DOL=1.6 aned for wind loads in	DL=6.0psf; h=25ft; (nvelope) exterior zor ; end vertical left and 0 plate grip DOL=1.6	ne; d 60									STATE OF I	MISSOLUTI M.

2) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

3) Gable requires continuous bottom chord bearing.

4) Gable studs spaced at 4-0-0 oc.

5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent oulgase with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

Job	Truss	Truss Type	Qty	Ply	Lot 166 HT	
B240067	V17	Valley	1	1	Job Reference (optional)	164780456

Run: 8.73 S Mar 21 2024 Print: 8.730 S Mar 21 2024 MiTek Industries, Inc. Tue Apr 09 09:18:06 ID:Hr0UloyIgMOrZQ4rpild7XzssyG-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:41.1

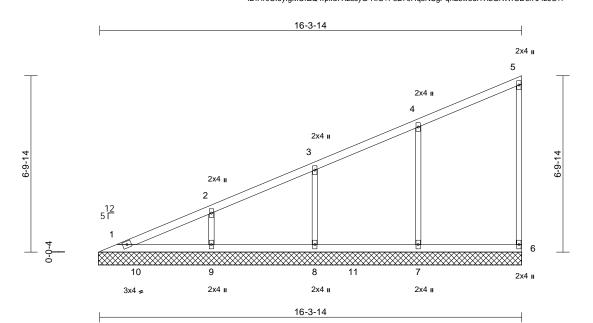
00010 - 11.4111												
Loading TCLL (roof)	(psf) 25.0	Spacing Plate Grip DOL	2-0-0 1.15	CSI TC	0.39	DEFL Vert(LL)	in n/a	(loc)	l/defl n/a	L/d 999	PLATES MT20	GRIP 197/144
TCDL	10.0	Lumber DOL	1.15	BC	0.33	Vert(TL)	n/a	-	n/a	999	101120	137/144
BCLL	0.0*	Rep Stress Incr	YES	WB	0.20	Horiz(TL)	0.00	5	n/a	n/a		
BCDL	10.0	Code	IRC2018/TF		0.11	Tion2(TE)	0.00	0	n/a	n/a	Weight: 42 lb	FT = 10%
LUMBER				This truss has been designed			Opsf					
TOP CHORD	2x4 SPF No.2			the bottom chord in all are								
BOT CHORD	2x4 SPF No.2			06-00 tall by 2-00-00 wide								
WEBS	2x3 SPF No.2			ord and any other member I bearings are assumed to I			•					
OTHERS	2x3 SPF No.2			ovide mechanical connection			0					
BRACING	.		, ha	aring plate capable of with								
TOP CHORD	Structural wood she 6-0-0 oc purlins, ex		5,	90 lb uplift at joint 6 and 13	38 lb uplift	at joint 7.	onn					
BOT CHORD	Rigid ceiling directly bracing.	applied or 10-0-0 o	Íni	nis truss is designed in acco ternational Residential Cod	le sections	s R502.11.1 a	ind					
REACTIONS	(size) 1=14-4-8,	5=14-4-8, 6=14-4-8	ζ	302.10.2 and referenced sta CASE(S) Standard	andard AN	ISI/TPI 1.						
	7=14-4-8		LUAD									
	Max Horiz 1=246 (LC	,	100									
	Max Uplift 5=-33 (LC	5), 6=-90 (LC 8), 7	=-138									
	(LC 8) Max Grav 1=226 (LC	C 16) 5-192 (I C 2)										
		C 2), 7=527 (LC 2)	•									
FORCES	(lb) - Maximum Corr											
	Tension											
TOP CHORD	1-2=-196/82, 2-3=-1 4-5=-116/46	51/40, 3-4=-122/48,										
BOT CHORD WEBS	1-7=-80/60, 6-7=-80 3-6=-269/128, 2-7=-	,										
NOTES												
	CE 7-16; Vult=115mph	(3-second quet)										an
	nph; TCDL=6.0psf; BC		Cat								OF	MIG
	Enclosed; MWFRS (er										BIE	- sold
	left and right exposed									6	TATE OF	N SY
right expo	sed; Lumber DOL=1.6	0 plate grip DOL=1.	60							B	-,	
	signed for wind loads in									R	/ SEV	IER \ Y
	studs exposed to wind									20*	1 41	∂
	lard Industry Gable En									1 Yra		Xing
or consult	qualified building design	oner as per ANSI/TE	기 1									

- or consult qualified building designer as per ANSI/TPI 1. 3) Gable requires continuous bottom chord bearing.
- 4) Gable studs spaced at 4-0-0 oc.

- 5)
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

NUMBER

PE-200101880


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

Job	Truss	Truss Type	Qty Ply Lot 166 HT		Lot 166 HT		
B240067	V18	Valley	1	1	Job Reference (optional)	164780457	

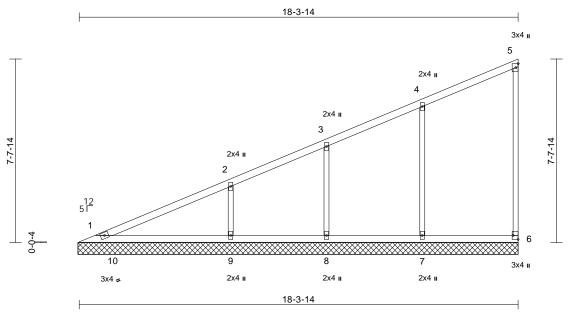
Run: 8.73 S Mar 21 2024 Print: 8.730 S Mar 21 2024 MiTek Industries. Inc. Tue Apr 09 09:18:06 ID:Hr0UloyIgMOrZQ4rpild7XzssyG-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:44.6

Loading TCLL (roof) TCDL BCLL BCDL	(psf) 25.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC201	8/TPI2014	CSI TC BC WB Matrix-S	0.37 0.16 0.18	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 6	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 50 lb	GRIP 197/144 FT = 10%
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SPF No.2 2x4 SPF No.2 2x3 SPF No.2 2x3 SPF No.2 Structural wood she 6-0-0 oc purlins, ex Rigid ceiling directly bracing. (size) 1=16-4-8, 8=16-4-8, Max Horiz 1=283 (LC Max Uplift 6=-35 (LC	athing directly applic cept end verticals. applied or 10-0-0 or , 6=16-4-8, 7=16-4-8 C 5) C 5), 7=-105 (LC 8), -103 (LC 8)	6) 7) ed or 8) 9) c 3, 10 8=-92 LC	This truss ha chord live loa * This truss I on the bottor 3-06-00 tall I chord and ar All bearings Provide mec bearing plate 6, 105 lb upl uplift at joint) This truss is International	as been designed ad nonconcurrent nas been designed or chord in all area by 2-00-00 wide w by other members are assumed to be hanical connectio e capable of withsi fif at joint 7, 92 lb 9. designed in accor Residential Code nd referenced star	with any d for a liv as where rill fit betw , with BC e SPF No n (by oth tanding 3 uplift at ju rdance w e sections	other live load e load of 20.0 a rectangle veen the botto DL = 10.0psf 5.2. ers) of truss to 5 lb uplift at jo bint 8 and 100 ith the 2018 c R502.11.1 a	Opsf om o oint 3 lb				. orgina do lu	
	· · · · ·	C 2), 8=364 (LC 2),											
FORCES	,	87/50, 3-4=-158/54,											
BOT CHORD	4-5=-131/57, 5-6=-1 1-9=-92/70, 8-9=-92 6-7=-92/70												
Vasd=91r II; Exp C;	4-7=-308/142, 3-8=- CE 7-16; Vult=115mph nph; TCDL=6.0psf; BC Enclosed; MWFRS (er	i (3-second gust) DL=6.0psf; h=25ft; (nvelope) exterior zor	Cat. ne;									STATE OF I	MISSOLA

- cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60 2) Truss designed for wind loads in the plane of the truss
- only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 3) All plates are 2x4 MT20 unless otherwise indicated. Gable requires continuous bottom chord bearing.
- 4)
- 5) Gable studs spaced at 4-0-0 oc.

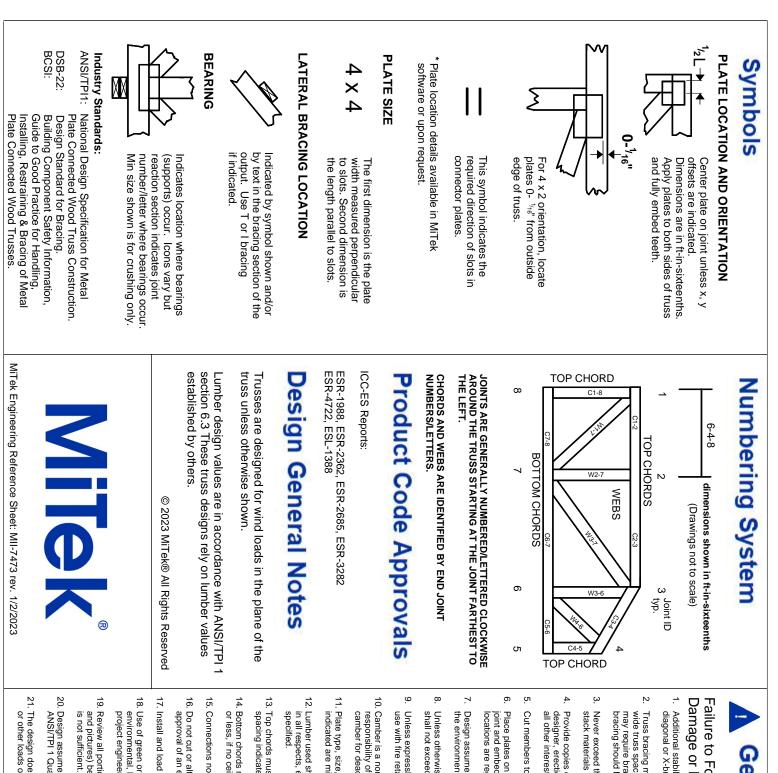

 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.
 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not besign value for use only with with twit even connectors. This design is based only upon parameters shown, and is for an individual building designer must verify the applicability of design parameters and properly incorporate this design into the overall building designer must verify the applicability of design parameters and properly incorporate this design into the overall building designer. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcscomponents.com)

16023 Swingley Ridge Rd. Chesterfield, MO 63017 314.434.1200 / MiTek-US.com

Job	Truss	Truss Type	Qty	Ply Lot 166 HT			
B240067	V19	Valley	1	1	Job Reference (optional)	164780458	

Run: 8.73 S Mar 21 2024 Print: 8.730 S Mar 21 2024 MiTek Industries, Inc. Tue Apr 09 09:18:06 ID:Hr0UloyIgMOrZQ4rpild7XzssyG-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1



Scale = 1:48.1 te Offsets (X Y): [6:Edge 0-2-8] PI

Plate Offsets	(X, Y): [6:Edge,0-2-	8]											
Loading TCLL (roof) TCDL BCLL BCDL	(psf) 25.0 10.0 0.0 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018	3/TPI2014	CSI TC BC WB Matrix-S	0.48 0.23 0.25	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 6	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 58 lb	GRIP 197/144 FT = 10%
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD REACTIONS FORCES TOP CHORD BOT CHORD BOT CHORD WEBS NOTES 1) Wind: AS Vasd=911 II; Exp C;	10.0 2x4 SPF No.2 2x3 SPF No.2 2x3 SPF No.2 2x3 SPF No.2 3 SPF No.	Code heathing directly applied except end verticals. tly applied or 10-0-0 or 8, 6=18-4-8, 7=18-4-8 8, 9=18-4-8 LC 5), 7=-109 (LC 8), 19 9=-140 (LC 8) LC 2), 8=330 (LC 2), 10 pmpression/Maximum -197/39, 3-4=-171/57, -108/42 -104/79, 7-8=-104/79, =-234/127, 2-9=-396/1 bh (3-second gust) 3CDL=6.0psf; h=25ft; (envelope) exterior zor	5) 6) c 3, 9) 8=-78 LC 9=538	This truss ha chord live loa * This truss li on the bottoo 3-06-00 tall I chord and an All bearings Provide mec bearing plate 6, 109 lb upl uplift at joint This truss is International	as been designed ad nonconcurrent has been designee m chord in all area by 2-00-00 wide w ny other members are assumed to b chanical connectio e capable of withs ift at joint 7, 78 lb 9. designed in accor Residential Code nd referenced sta	for a 10. with any d for a liv as where vill fit betw s, with BC e SPF N n (by oth tanding 3 uplift at ju rdance w e sections	D psf bottom other live loa e load of 20.0 a rectangle ween the bott DL = 10.0psf o.2. ers) of truss t 88 lb uplift at j oint 8 and 140 ith the 2018 s R502.11.1 a	Opsf om c o oint O Ib				Weight: 58 lb	MISSOUR T M.
 right expo 2) Truss de only. For see Stand or consult 3) Gable red 	osed; Lumber DOL=1 signed for wind loads studs exposed to wi dard Industry Gable B		60 iss), ole,								and set	PE-2001	LENGI

MiTek® 16023 Swingley Ridge Rd. Chesterfield, MO 63017 314.434.1200 / MiTek-US.com

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

General Safety Notes

Failure to Follow Could Cause Property Damage or Personal Injury

- 1. Additional stability bracing for truss system, e.g. diagonal or X-bracing, is always required. See BCSI.
- Truss bracing must be designed by an engineer. For wide truss spacing, individual lateral braces themselves may require bracing, or alternative Tor1 bracing should be considered.
- Never exceed the design loading shown and never stack materials on inadequately braced trusses.
- Provide copies of this truss design to the building designer, erection supervisor, property owner and all other interested parties.
- 5. Cut members to bear tightly against each other
- Place plates on each face of truss at each joint and embed fully. Knots and wane at joint locations are regulated by ANSI/TPI 1.
- Design assumes trusses will be suitably protected from the environment in accord with ANSI/TPI 1.
- Unless otherwise noted, moisture content of lumber shall not exceed 19% at time of fabrication.
- Unless expressly noted, this design is not applicable for use with fire retardant, preservative treated, or green lumber.
- Camber is a non-structural consideration and is the responsibility of truss fabricator. General practice is to camber for dead load deflection.
- 11. Plate type, size, orientation and location dimensions indicated are minimum plating requirements.
- Lumber used shall be of the species and size, and in all respects, equal to or better than that specified.
- Top chords must be sheathed or purlins provided at spacing indicated on design.
- 14. Bottom chords require lateral bracing at 10 ft. spacing, or less, if no ceiling is installed, unless otherwise noted.
- 15. Connections not shown are the responsibility of others.
- Do not cut or alter truss member or plate without prior approval of an engineer.
- 17. Install and load vertically unless indicated otherwise.
- Use of green or treated lumber may pose unacceptable environmental, health or performance risks. Consult with project engineer before use.
- Review all portions of this design (front, back, words and pictures) before use. Reviewing pictures alone is not sufficient.
- 20. Design assumes manufacture in accordance with ANSI/TPI 1 Quality Criteria.
- 21. The design does not take into account any dynamic or other loads other than those expressly stated.