

RE: P240347-01 Roof - Osage Lot 85

## Site Information:

Customer: Clayton Properties Project Name: P240347-01 Lot/Block: 85 Model: Address: 3723/3725 SW Knoxville CT City: Lee's Summit

Subdivision: Osage State: MO

General Truss Engineering Criteria & Design Loads (Individual Truss Design Drawings Show Special Loading Conditions):

No.

21

22

23

24

Seal#

159435163

159435164

159435165

159435166

Design Code: IRC2018/TPI2014 Wind Code: ASCE 7-16 Roof Load: 45.0 psf

Design Program: MiTek 20/20 8.6 Wind Speed: 115 mph Floor Load: N/A psf

This package includes 24 individual, dated Truss Design Drawi

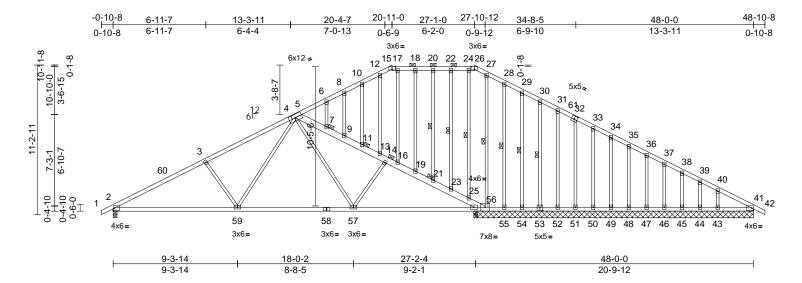
| Nia | <b>C</b> aal# |            | Data      |
|-----|---------------|------------|-----------|
| No. | Seal#         | Truss Name | Date      |
| 1   | 159435143     | A1         | 7/11/2023 |
| 2   | 159435144     | A2         | 7/11/2023 |
| 3   | 159435145     | A3         | 7/11/2023 |
| 4   | 159435146     | A4         | 7/11/2023 |
| 5   | 159435147     | A5         | 7/11/2023 |
| 6   | 159435148     | A6         | 7/11/2023 |
| 7   | 159435149     | B1         | 7/11/2023 |
| 8   | 159435150     | B2         | 7/11/2023 |
| 9   | 159435151     | C1         | 7/11/2023 |
| 10  | 159435152     | C2         | 7/11/2023 |
| 11  | 159435153     | C3         | 7/11/2023 |
| 12  | 159435154     | C4         | 7/11/2023 |
| 13  | 159435155     | D1         | 7/11/2023 |
| 14  | 159435156     | D2         | 7/11/2023 |
| 15  | 159435157     | PB1        | 7/11/2023 |
| 16  | 159435158     | PB2        | 7/11/2023 |
| 17  | 159435159     | V1         | 7/11/2023 |
| 18  | 159435160     | V2         | 7/11/2023 |
| 19  | 159435161     | V3         | 7/11/2023 |
| 20  | 159435162     | V4         | 7/11/2023 |
|     |               |            |           |

| 1001 | Loud  | • • • • • • • |         |        |  |
|------|-------|---------------|---------|--------|--|
| ings | and 0 | Additio       | nal Dra | wings. |  |
|      |       |               |         |        |  |
|      |       |               |         |        |  |

| Truss Name | Date      |
|------------|-----------|
| V5         | 7/11/2023 |
| V6         | 7/11/2023 |
| V7         | 7/11/2023 |
| V8         | 7/11/2023 |

The truss drawing(s) referenced above have been prepared by MiTek USA, Inc under my direct supervision based on the parameters provided by . Truss Design Engineer's Name: Nathan Fox

My license renewal date for the state of Missouri is December 31, 2024. Missouri COA: 001193


IMPORTANT NOTE: The seal on these truss component designs is a certification that the engineer named is licensed in the jurisdiction(s) identified and that the designs comply with ANSI/TPI 1. These designs are based upon parameters shown (e.g., loads, supports, dimensions, shapes and design codes), which were given to MiTek. Any project specific information included is for MiTek customers file reference purpose only, and was not taken into account in the preparation of these designs. MiTek has not independently verified the applicability of the design parameters or the designs for any particular building. Before use, the building designer should verify applicability of design parameters and properly incorporate these designs into the overall building design per ANSI/TPI 1, Chapter 2.



MiTek, Inc. 16023 Swingley Ridge Rd. Chesterfield, MO 63017 314.434.1200

| Job        | Truss | Truss Type                      | Qty | Ply | Roof - Osage Lot 85      |           |
|------------|-------|---------------------------------|-----|-----|--------------------------|-----------|
| P240347-01 | A1    | Piggyback Base Structural Gable | 2   | 1   | Job Reference (optional) | 159435143 |

Run: 8.63 S Apr 6 2023 Print: 8.630 S Apr 6 2023 MiTek Industries, Inc. Mon Jul 10 12:58:34 ID:EmCXOiXYCML5IKd?OVTvI7yGxE5-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f



Scale = 1:86.4

| Plate Offsets (                                                                                 | X, Y): [15:0-3-0,Edg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | e], [26:0-3-0,Edge], [32:0-2                                                                                                                                | 2-8,0-3-0], [53:0-2- | -8,0-3-0]                                                                                                                                                                                                                                    |                                                                                                                                                                                            |                                                                                                                                                                                                  |                                                                            |                             |                                                          |                                                                                                                               |                                                                                                                                                                                                                                                          |                                                                                                                                                                   |
|-------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------|-----------------------------|----------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Loading<br>TCLL (roof)<br>TCDL<br>BCLL<br>BCDL                                                  | (psf)<br>25.0<br>10.0<br>0.0<br>10.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Plate Grip DOL1.7Lumber DOL1.7Rep Stress IncrYE                                                                                                             | 15                   | <b>CSI</b><br>TC<br>BC<br>WB<br>Matrix-S                                                                                                                                                                                                     | 0.75<br>0.95<br>0.35                                                                                                                                                                       | DEFL<br>Vert(LL)<br>Vert(CT)<br>Horz(CT)                                                                                                                                                         | in<br>-0.20<br>-0.43<br>0.07                                               | (loc)<br>2-59<br>2-59<br>56 | l/defl<br>>999<br>>771<br>n/a                            | L/d<br>240<br>180<br>n/a                                                                                                      | PLATES<br>MT20<br>Weight: 312 lb                                                                                                                                                                                                                         | <b>GRIP</b><br>244/190<br>FT = 20%                                                                                                                                |
| LUMBER<br>TOP CHORD<br>BOT CHORD<br>WEBS<br>OTHERS<br>BRACING<br>TOP CHORD<br>BOT CHORD<br>WEBS | 2x4 SP No.2<br>2x3 SPF No.2<br>2x3 SPF No.2<br>Structural wood sh<br>2-2-0 oc purlins, ep<br>2-0-0 oc purlins (10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | )-0 <sup>-</sup> 0 max.): 15-26, 5-56.<br>y applied or 6-0-0 oc<br>: 2-59<br>57-59                                                                          | FORCES<br>TOP CHORD  | 45:<br>47:<br>49:<br>51:<br>53:<br>55:<br>(lb) - Maximu<br>Tension<br>1-2=0/17, 2-3<br>5-6=-43/246,<br>10-12=0/296,<br>17-18=-13/24<br>20-22=-13/24<br>20-22=-13/24                                                                          | =232 (LC 1), 2<br>=128 (LC 26),<br>=120 (LC 1), 2<br>=120 (LC 26),<br>=118 (LC 26),<br>=96 (LC 26), 5<br>=33 (LC 9), 56<br>m Compressio                                                    | I4=81 (LC 1),<br>46=119 (LC 1),<br>48=120 (LC 1)<br>50=123 (LC 52=128 (LC 1),<br>52=128 (LC 1),<br>54=234 (LC 1),<br>55=-1735/35<br>8-10=0/277,<br>19, 15-17=-15<br>242,<br>242,<br>223, 27-28=( | ),<br>1),<br>1),<br>1),<br>1),<br>1),<br>),<br>)<br>9,<br>5/234,<br>0/312, | 2) Wi<br>Va<br>Ke           | balanceo<br>design.<br>nd: ASC<br>sd=91mj<br>=1.00; C    | 14-57<br>22-23<br>28-55<br>31-52<br>34-49<br>37-46<br>40-43<br>16-17<br>10-11<br>d roof li<br>E 7-16;<br>ph; TCI<br>at. II; E | =-551/143, 20-21<br>=-67/38, 24-25=<br>=-12/84, 29-54=<br>=-92/56, 32-51=<br>=-93/57, 38-48=<br>=-93/57, 38-48=<br>=-174/115, 18-19<br>=-169/20, 12-13=<br>=-67/47, 8-9=-73<br>ve loads have be<br>Vult=115mph (3<br>DL=6.0psf; BCDL<br>ixp C; Enclosed; | 49/21, 27-56=-367/24<br>87/60, 30-53=-98/56,<br>93/56, 33-50=-95/58,<br>93/57, 36-47=-93/57,<br>97/59, 39-44=-69/41,<br>9=-73/40,<br>=-190/48,<br>/46, 6-7=-60/41 |
|                                                                                                 | $\begin{array}{c} 44=20-1\\ 46=20-1\\ 48=20-1\\ 50=20-1\\ 52=20-1\\ 56=20-1\\ 56=20-1\\ Max Uplift 2=-226\\ 43=-91 (\\ 45=-42 (\\ 47=-41 (\\ 49=-41 (\\ 51=-41 (\\ 53=-46 (\\ 53=-46 (\\ 53=-46 (\\ 53=-46 (\\ 53=-46 (\\ 53=-46 (\\ 53=-46 (\\ 53=-46 (\\ 53=-46 (\\ 53=-46 (\\ 53=-46 (\\ 53=-46 (\\ 53=-46 (\\ 53=-46 (\\ 53=-46 (\\ 53=-46 (\\ 53=-46 (\\ 53=-46 (\\ 53=-46 (\\ 53=-46 (\\ 53=-46 (\\ 53=-46 (\\ 53=-46 (\\ 53=-46 (\\ 53=-46 (\\ 53=-46 (\\ 53=-46 (\\ 53=-46 (\\ 53=-46 (\\ 53=-46 (\\ 53=-46 (\\ 53=-46 (\\ 53=-46 (\\ 53=-46 (\\ 53=-46 (\\ 53=-46 (\\ 53=-46 (\\ 53=-46 (\\ 53=-46 (\\ 53=-46 (\\ 53=-46 (\\ 53=-46 (\\ 53=-46 (\\ 53=-46 (\\ 53=-46 (\\ 53=-46 (\\ 53=-46 (\\ 53=-46 (\\ 53=-46 (\\ 53=-46 (\\ 53=-46 (\\ 53=-46 (\\ 53=-46 (\\ 53=-46 (\\ 53=-46 (\\ 53=-46 (\\ 53=-46 (\\ 53=-46 (\\ 53=-46 (\\ 53=-46 (\\ 53=-46 (\\ 53=-46 (\\ 53=-46 (\\ 53=-46 (\\ 53=-46 (\\ 53=-46 (\\ 53=-46 (\\ 53=-46 (\\ 53=-46 (\\ 53=-46 (\\ 53=-46 (\\ 53=-46 (\\ 53=-46 (\\ 53=-46 (\\ 53=-46 (\\ 53=-46 (\\ 53=-46 (\\ 53=-46 (\\ 53=-46 (\\ 53=-46 (\\ 53=-46 (\\ 53=-46 (\\ 53=-46 (\\ 53=-46 (\\ 53=-46 (\\ 53=-46 (\\ 53=-46 (\\ 53=-46 (\\ 53=-46 (\\ 53=-46 (\\ 53=-46 (\\ 53=-46 (\\ 53=-46 (\\ 53=-46 (\\ 53=-46 (\\ 53=-46 (\\ 53=-46 (\\ 53=-46 (\\ 53=-46 (\\ 53=-46 (\\ 53=-46 (\\ 53=-46 (\\ 53=-46 (\\ 53=-46 (\\ 53=-46 (\\ 53=-46 (\\ 53=-46 (\\ 53=-46 (\\ 53=-46 (\\ 53=-46 (\\ 53=-46 (\\ 53=-46 (\\ 53=-46 (\\ 53=-46 (\\ 53=-46 (\\ 53=-46 (\\ 53=-46 (\\ 53=-46 (\\ 53=-46 (\\ 53=-46 (\\ 53=-46 (\\ 53=-46 (\\ 53=-46 (\\ 53=-46 (\\ 53=-46 (\\ 53=-46 (\\ 53=-46 (\\ 53=-46 (\\ 53=-46 (\\ 53=-46 (\\ 53=-46 (\\ 53=-46 (\\ 53=-46 (\\ 53=-46 (\\ 53=-46 (\\ 53=-46 (\\ 53=-46 (\\ 53=-46 (\\ 53=-46 (\\ 53=-46 (\\ 53=-46 (\\ 53=-46 (\\ 53=-46 (\\ 53=-46 (\\ 53=-46 (\\ 53=-46 (\\ 53=-46 (\\ 53=-46 (\\ 53=-46 (\\ 53=-46 (\\ 53=-46 (\\ 53=-46 (\\ 53=-46 (\\ 53=-46 (\\ 53=-46 (\\ 53=-46 (\\ 53=-46 (\\ 53=-46 (\\ 53=-46 (\\ 53=-46 (\\ 53=-46 (\\ 53=-46 (\\ 53=-46 (\\ 53=-46 (\\ 53=-46 (\\ 53=-46 (\\ 53=-46 (\\ 53=-46 (\\ 53=-46 (\\ 53=-46 (\\ 53=-46 (\\ 53=-46 (\\ 53=-46 (\\ 53=-46 (\\ 53=-46 (\\ 53=-46 (\\ 53=-46 (\\ 53=-46 (\\ 53=-46 (\\ 53=-46 (\\ 53=-46 (\\ 53=-46 (\\ 53=-46 (\\ 53=-46 (\\ 53=-46 (\\ 53=-46 (\\ 53=-46 (\\ 53=-46 (\\ 53=-46 (\\ 53=-46 (\\ 53=-46 $ | ,<br>41=20-11-8, 43=20-11-8,<br>1-8, 45=20-11-8,<br>1-8, 47=20-11-8,<br>1-8, 49=20-11-8,<br>1-8, 51=20-11-8,<br>1-8, 55=20-11-8,<br>1-8, 55=20-11-8,<br>1-8 | BOT CHORD            | 34-35=-64/19<br>36-37=-101/1<br>38-39=-144/2<br>40-41=-240/2<br>7-9=-1829/41<br>11-13=-1892/<br>14-16=-20500<br>19-21=-2155/<br>23-25=-2216/<br>23-25=-2216/<br>23-25=-274/1<br>54-55=-193/2<br>51-52=-193/2<br>49-50=-194/2<br>47-48=-194/2 | 6, 9-11=-1862<br>(457, 13-14=-<br>(498, 16-19=-2<br>(510, 21-23=-2<br>(523, 25-56=-<br>(523, 25-56=-<br>(789, 55-56=-<br>(44, 52-54=-1<br>(44, 52-54=-1<br>(44, 46-47=-1<br>(44, 44-47=-1) | 198,<br>20/198,<br>70/189,<br>77, 5-7=-1799<br>2/436,<br>1977/479,<br>2125/504,<br>2187/516,<br>2226/522<br>20/1108,<br>193/244,<br>33/244,<br>34/244,<br>34/244,<br>34/244,<br>34/244,          | 0/395,                                                                     | Int<br>27<br>34<br>ex<br>me | erior (1)<br>1-0, Ext<br>1-14 to<br>bosed ; e<br>mbers a | 4-1-8 to<br>erior(2F<br>48-10-8<br>end veri<br>nd forc<br>DL=1.60                                                             | o 20-11-0, Exterio<br>R) 27-1-0 to 34-1<br>3 zone; cantileven<br>tical left and right                                                                                                                                                                    | or(2E) 20-11-0 to<br>-14, Interior (1)<br>r left and right<br>texposed;C-C for<br>rreactions shown;<br>1.60<br>MISSOUTH<br>NIEL<br>X<br>ALLER<br>042259           |

Continued on page 2 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. WARNING - Verify design parameters and KEAD KO LES ON THIS AND INCLUDED MILEK REFERENCE PAGE MIL-7473 rev. 17/2/2023 BEFORE USE. Design valid for use only with MITeK® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria**, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcscomponents.com)



Conne July 11,2023

Page: 1

| Job        | Truss | Truss Type                      | Qty | Ply | Roof - Osage Lot 85      |           |
|------------|-------|---------------------------------|-----|-----|--------------------------|-----------|
| P240347-01 | A1    | Piggyback Base Structural Gable | 2   | 1   | Job Reference (optional) | 159435143 |

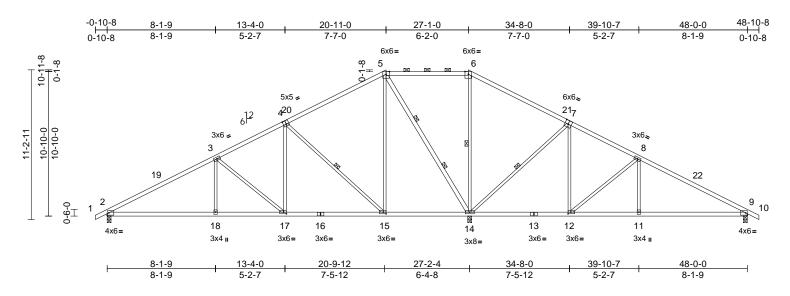
- Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) Provide adequate drainage to prevent water ponding.
- 5) All plates are 3x4 MT20 unless otherwise indicated.
- 6) Gable studs spaced at 1-4-0 oc.
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- All bearings are assumed to be SP No.2 crushing capacity of 565 psi.
- 9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 225 lb uplift at joint 2, 162 lb uplift at joint 56, 29 lb uplift at joint 41, 509 lb uplift at joint 55, 23 lb uplift at joint 54, 46 lb uplift at joint 53, 39 lb uplift at joint 52, 41 lb uplift at joint 51, 42 lb uplift at joint 50, 41 lb uplift at joint 49, 41 lb uplift at joint 48, 41 lb uplift at joint 47, 41 lb uplift at joint 46, 42 lb uplift at joint 45, 28 lb uplift at joint 44 and 91 lb uplift at joint 43.
- 10) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

LOAD CASE(S) Standard

Run: 8.63 S Apr 6 2023 Print: 8.630 S Apr 6 2023 MiTek Industries, Inc. Mon Jul 10 12:58:34 ID:EmCXOiXYCML5IKd?OVTvI7yGxE5-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 2

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSITPTI Quality Criteria, and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcscomponents.com)




| Job        | Truss | Truss Type     | Qty | Ply | Roof - Osage Lot 85      |           |
|------------|-------|----------------|-----|-----|--------------------------|-----------|
| P240347-01 | A2    | Piggyback Base | 6   | 1   | Job Reference (optional) | 159435144 |

Run: 8.63 S Apr 6 2023 Print: 8.630 S Apr 6 2023 MiTek Industries, Inc. Mon Jul 10 12:58:37 ID:Eh5q6SjuDTnlbtQwPDFzXnyGxF9-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC?f Page: 1

ONAL

July 11,2023

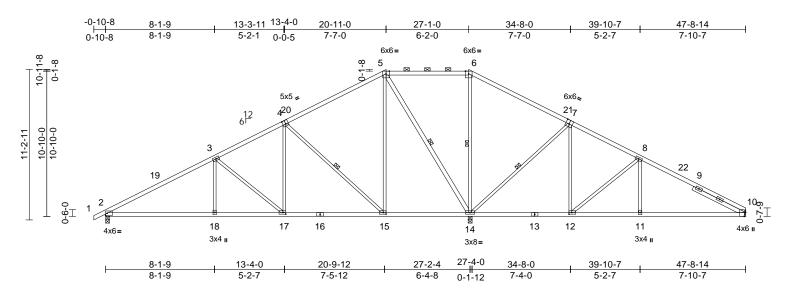
16023 Swingley Ridge Rd. Chesterfield, MO 63017 314.434.1200 / MiTek-US.com



| Scale = 1: | 86.4 |
|------------|------|
|------------|------|

| Plate Offsets (                                                                                                   | (X, Y): [4:0-2-8,0-3-4],                                                                                                                                                                                                                                                                                                                                                                                | [7:0-3-0,0-3-4], [12:                                                                                                                                                                                                                                                           | 0-2-8,0-1-                                            | •8], [15:0-2-8,0-                                                                                                                                                                                                                                                                                                                                                                                                                             | 1-8], [17:0-2-8                                                                                                                                                                                                                                                                                                                         | ,0-1-8]                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                         |                                                  |                             |                               |                          |                                  |                                    |
|-------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------|-----------------------------|-------------------------------|--------------------------|----------------------------------|------------------------------------|
| <b>Loading</b><br>FCLL (roof)<br>FCDL<br>BCLL<br>BCDL                                                             | (psf)<br>25.0<br>10.0<br>0.0<br>10.0                                                                                                                                                                                                                                                                                                                                                                    | Spacing<br>Plate Grip DOL<br>Lumber DOL<br>Rep Stress Incr<br>Code                                                                                                                                                                                                              | 2-0-0<br>1.15<br>1.15<br>YES<br>IRC201                | 18/TPI2014                                                                                                                                                                                                                                                                                                                                                                                                                                    | CSI<br>TC<br>BC<br>WB<br>Matrix-S                                                                                                                                                                                                                                                                                                       | 0.94<br>0.76<br>0.91                                                                                                                                                                                                                                                                                                                 | DEFL<br>Vert(LL)<br>Vert(CT)<br>Horz(CT)                                                                                                                                                                                                                                                | in<br>-0.13<br>-0.30<br>0.04                     | (loc)<br>2-18<br>2-18<br>14 | l/defl<br>>999<br>>999<br>n/a | L/d<br>240<br>180<br>n/a | PLATES<br>MT20<br>Weight: 232 lb | <b>GRIP</b><br>197/144<br>FT = 20% |
| UMBER<br>OP CHORD<br>OT CHORD<br>VEBS<br>BRACING<br>OP CHORD<br>OP CHORD<br>OT CHORD<br>VEBS<br>VEBS<br>REACTIONS | 2x4 SP No.2 *Excep<br>1650F 1.5E<br>2x4 SP No.2<br>2x3 SPF No.2 *Exce<br>Structural wood she<br>2-2-0 oc purlins, exc<br>2-0-0 oc purlins (10-<br>Rigid ceiling directly<br>bracing.<br>1 Row at midpt<br>2 Rows at 1/3 pts<br>(size) 2=0-3-8, §<br>Max Horiz 2=204 (LC<br>Max Uplift 2=-198 (L<br>14=-303 (<br>Max Grav 2=1034 (L<br>14=2925 (<br>(lb) - Maximum Com<br>Tension<br>1-2=0/17, 2-3=-1514 | t* 1-4,7-10:2x4 SP<br>ept* 14-5:2x4 SP No.<br>athing directly applie<br>con max.): 5-6.<br>applied or 6-0-0 oc<br>4-15, 6-14, 7-14<br>5-14<br>9=0-3-8, 14=0-3-8<br>C 12), 9=-184 (LC 1<br>LC 12)<br>LC 25), 9=689 (LC 20<br>(LC 1)<br>hpression/Maximum<br>1/257, 3-5=-926/229, | 2<br>2<br>2<br>3<br>4<br>3), 6<br>5<br>3), 7<br>8), 7 | <ul> <li>Wind: ASCE<br/>Vasd=91mp<br/>Ke=1.00; Ca<br/>exterior zond<br/>Interior (1) 4</li> <li>27-1-0, Exte<br/>34-1-14 to 4</li> <li>exposed; end<br/>members and<br/>Lumber DOI</li> <li>Provide ade</li> <li>This truss ha<br/>chord live lo</li> <li>All bearings<br/>capacity of 5</li> <li>Provide med<br/>bearing plate<br/>joint 2, 303 I</li> <li>This truss is<br/>International<br/>R802.10.2 a</li> <li>Graphical put</li> </ul> | 57-16; Vult=11<br>h; TCDL=6.0ps<br>it. II; Exp C; Er<br>e and C-C Exte<br>-1-8 to 20-11-0<br>rior(2R) 27-1-0<br>8-10-8 zone; c<br>nd vertical left a<br>id forces & MW<br>_=1.60 plate gr<br>quate drainage<br>as been design<br>ad nonconcurr<br>are assumed t<br>i65 psi.<br>chanical connet<br>e capable of wib<br>b uplift at joint | sf; BCDL=6.<br>hclosed; MW<br>prior(2E) -0<br>(), Exterior(2I)<br>0 to 34-1-14,<br>antilever left<br>and right exp<br>/FRS for read<br>ip DOL=1.60<br>e to prevent 1<br>hed for a 10.1<br>ent with any<br>o be SP No.<br>ction (by oth<br>ithstanding 1<br>14 and 184<br>ccordance w<br>ode sections<br>standard AN<br>ation does no | Dpsf; h=35ft;<br>FRS (envelo<br>0-8 to 4-1-8,<br>E) 20-11-0 to<br>Interior (1)<br>and right<br>iosed;C-C fo<br>ctions showr<br>0)<br>water pondin<br>0 psf bottom<br>other live loa<br>2 crushing<br>ers) of truss<br>98 lb uplift at joi<br>ith the 2018<br>R502.11.1 at<br>ISI/TPI 1. | r<br>n;<br>g.<br>ads.<br>to<br>t<br>nt 9.<br>and |                             |                               |                          | Weight: 232 lb                   | 11 - 2078                          |
| BOT CHORD                                                                                                         | 5-6=0/834, 6-8=-184<br>9-10=0/17<br>2-18=-312/1230, 17-<br>15-17=-143/748, 14-<br>12-14=-340/183, 11-                                                                                                                                                                                                                                                                                                   | -18=-312/1230,<br>-15=-152/328,                                                                                                                                                                                                                                                 |                                                       | bottom chor<br>OAD CASE(S)                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                         |                                                  |                             |                               | B                        | STATE OF M                       | AISSOLA                            |
| WEBS                                                                                                              | 9-11=-102/585<br>3-18=0/297, 3-17=-6<br>4-15=-911/325, 5-15<br>5-14=-1467/285, 6-1<br>7-14=-927/326, 7-12<br>8-12=-651/219, 8-11                                                                                                                                                                                                                                                                        | 5=-137/756,<br> 4=-882/186,<br>2=-60/514,                                                                                                                                                                                                                                       | 04,                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                         |                                                  |                             | •                             | R                        | Thanks                           | BER TO                             |
| NOTES<br>1) Unbalance<br>this desigr                                                                              | ed roof live loads have<br>n.                                                                                                                                                                                                                                                                                                                                                                           | been considered for                                                                                                                                                                                                                                                             | r                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                         |                                                  |                             |                               | Ø                        | PE-2022                          | 124                                |

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent toulsable personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)


| Job        | Truss | Truss Type     | Qty | Ply | Roof - Osage Lot 85      |           |
|------------|-------|----------------|-----|-----|--------------------------|-----------|
| P240347-01 | A3    | Piggyback Base | 2   | 1   | Job Reference (optional) | 159435145 |

Run: 8.63 S Apr 6 2023 Print: 8.630 S Apr 6 2023 MiTek Industries, Inc. Mon Jul 10 12:58:37 ID:\_BaRCVCQw9?42CIXuEbokKyGxNZ-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

July 11,2023

16023 Swingley Ridge Rd. Chesterfield, MO 63017 314.434.1200 / MiTek-US.com



| Scale = 1 | 1:85.9 |
|-----------|--------|
|-----------|--------|

| oading                                                                                              | (psf)                                                                                                                                                                                                                              | Spacing                                                                                                                                                                                                                                | 2-0-0                                                |                                                                                                                                                                                                                                                                                                    | CSI                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                             | DEFL                                                                                                                                                                                                                                                                            | in                          | (loc)      | l/defl      | L/d        | PLATES         | GRIP        |
|-----------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|------------|-------------|------------|----------------|-------------|
| CLL (roof)                                                                                          | 25.0                                                                                                                                                                                                                               | Plate Grip DOL                                                                                                                                                                                                                         | 1.15                                                 |                                                                                                                                                                                                                                                                                                    | TC                                                                                                                                                                                                                                                                                                                                                                                                        | 0.89                                                                                                                                                                                                                                                                                        | Vert(LL)                                                                                                                                                                                                                                                                        | -0.13                       | 2-18       | >999        | 240        | MT20           | 197/144     |
| CDL                                                                                                 | 10.0                                                                                                                                                                                                                               | Lumber DOL<br>Rep Stress Incr                                                                                                                                                                                                          | 1.15<br>YES                                          |                                                                                                                                                                                                                                                                                                    | BC<br>WB                                                                                                                                                                                                                                                                                                                                                                                                  | 0.77                                                                                                                                                                                                                                                                                        | Vert(CT)<br>Horz(CT)                                                                                                                                                                                                                                                            | -0.31                       | 2-18<br>10 | >999<br>n/a | 180<br>n/a |                |             |
| CDL                                                                                                 | 0.0<br>10.0                                                                                                                                                                                                                        | Code                                                                                                                                                                                                                                   |                                                      | 8/TPI2014                                                                                                                                                                                                                                                                                          | Matrix-S                                                                                                                                                                                                                                                                                                                                                                                                  | 0.96                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                 | 0.05                        | 10         | n/a         | n/a        | Weight: 236 lb | FT = 20%    |
| CDL                                                                                                 | 10.0                                                                                                                                                                                                                               | Code                                                                                                                                                                                                                                   | 160201                                               | 0/1712014                                                                                                                                                                                                                                                                                          | Matrix-3                                                                                                                                                                                                                                                                                                                                                                                                  | -                                                                                                                                                                                                                                                                                           | -                                                                                                                                                                                                                                                                               |                             |            |             |            | Weight. 230 lb | FT = 20 / 6 |
| DT CHORD<br>EBS<br>LIDER<br>RACING<br>DP CHORD<br>DT CHORD<br>EBS<br>EACTIONS (S<br>M<br>M<br>DRCES | Right 2x4 SP No.2 -<br>Structural wood she<br>2-2-0 oc purlins, exc<br>2-0-0 oc purlins (10)<br>Rigid ceiling directly<br>bracing.<br>1 Row at midpt<br>size) 2=0-3-8,<br>fax Horiz 2=209 (Li<br>fax Uplift 2=-212 (Li<br>14=-270) | ept* 14-5:2x4 SP No.<br>- 4-4-0<br>athing directly applie<br>ept<br>-0-0 max.): 5-6.<br>applied or 6-0-0 oc<br>6-14, 5-14, 7-14, 4-<br>10= Mechanical, 14=<br>C 12)<br>C 12), 10=-202 (LC<br>(LC 12)<br>-C 25), 10=696 (LC 2<br>(LC 1) | ed or<br>3)<br>4)<br>15 5)<br>0-3-8 6)<br>13),<br>7) | Vasd=91mp<br>Ke=1.00; Cr<br>exterior zon<br>Interior (1) 4<br>27-1-0, Exte<br>34-1-14 to 4<br>exposed ; e<br>members au<br>Lumber DO<br>Provide ade<br>All plates ar<br>This truss h<br>chord live lo<br>Bearings ar<br>capacity of so<br>656 psi.<br>Refer to girro<br>Provide me<br>bearing plat | 57-16; Vult=115<br>h; TCDL=6.0psi<br>at. II; Exp C; Enc<br>e and C-C Exter<br>-1-8 to 20-11-0,<br>rrior(2R) 27-1-0<br>7-8-14 zone; ca<br>nd vertical left a<br>nd forces & MW/<br>_=1.60 plate grij<br>quate drainage<br>e 3x6 MT20 unli<br>as been designe<br>ad nonconcurre<br>e assumed to be<br>365 psi, Joint 14<br>ter(s) for truss to<br>chanical connec<br>e capable of wit<br>Ib uplift at joint | ; BCDL=6.(<br>closed; MW<br>ior(2E) -0-1<br>Exterior(2E<br>to 34-1-14,<br>ntilever left<br>nd right exp<br>FRS for rea<br>o DOL=1.60<br>to prevent v<br>ess otherwised for a 10.0<br>to prevent v<br>ess otherwised for a 10.0<br>SP No.2 cl<br>o truss conr<br>tion (by oth<br>hstanding 2 | Dpsf; h=35ft;<br>FRS (envelo<br>0-8 to 4-1-8,<br>E) 20-11-0 to<br>Interior (1)<br>and right<br>iosed;C-C fo<br>ctions shown<br>water pondin<br>se indicated.<br>D psf bottom<br>other live loa<br>> No.2 crush<br>rushing capa<br>elections.<br>ers) of truss<br>02 lb uplift a | r<br>n;<br>ng<br>ng<br>city |            |             |            |                |             |
| OP CHORD                                                                                            | 5-6=0/665, 1-2=0/17<br>3-5=-973/270, 6-8=-                                                                                                                                                                                         | 364/860, 8-10=-913/                                                                                                                                                                                                                    | 9)<br>318                                            | This truss is<br>Internationa                                                                                                                                                                                                                                                                      | designed in acc<br>Residential Co                                                                                                                                                                                                                                                                                                                                                                         | de sections                                                                                                                                                                                                                                                                                 | R502.11.1 a                                                                                                                                                                                                                                                                     | ind                         |            |             |            |                | m           |
|                                                                                                     | 2-18=-344/1270, 17<br>15-17=-176/790, 14<br>12-14=-285/252, 11<br>10-11=-167/718                                                                                                                                                   | -15=-70/250,<br>-12=-167/718,                                                                                                                                                                                                          |                                                      | )) Graphical p                                                                                                                                                                                                                                                                                     | nd referenced s<br>urlin representat<br>ation of the purl<br>d.                                                                                                                                                                                                                                                                                                                                           | ion does no                                                                                                                                                                                                                                                                                 | ot depict the                                                                                                                                                                                                                                                                   | size                        |            |             | A          | STATE OF M     | AISSOL      |
| OTES                                                                                                | 8-11=0/287, 5-14=-<br>3-17=-619/217, 7-12<br>7-14=-925/324, 8-12<br>4-15=-908/324                                                                                                                                                  | ,                                                                                                                                                                                                                                      | 501, <b>L</b>                                        | DAD CASE(S)                                                                                                                                                                                                                                                                                        | Standard                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                 |                             |            |             |            | FOZ            | A Sta       |



| Job        | Truss | Truss Type     | Qty | Ply | Roof - Osage Lot 85      |           |
|------------|-------|----------------|-----|-----|--------------------------|-----------|
| P240347-01 | A4    | Piggyback Base | 2   | 1   | Job Reference (optional) | 159435146 |

Run: 8.63 S Apr 6 2023 Print: 8.630 S Apr 6 2023 MiTek Industries, Inc. Mon Jul 10 12:58:38 ID:SN8pPrD2hT7xgLsjSx71GYyGxNY-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

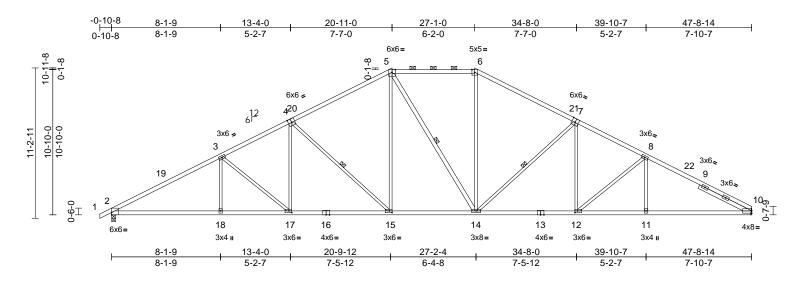
20-11-0 8-1-9 19-9-12 27-1-0 34-8-0 47-8-14 13-4-0 39-10-7 5-2-7 5-2-7 8-1-9 1-1-4 7-7-0 7-10-7 6-5-12 6-2-0 6x6= 6x6= 3x4 🛛 10-11-8 0-1-8 6 7 5x5 ዾ 6x6**≈** 4<sup>25</sup> 12 6 268 10-10-0 11-2-11 10-10-0 3x6👟 3x6 ≠ 3 9 27 <sup>3x6</sup>\* 10 24 18 17 3x6👟 TO. 0-9-2 16 0-9-0 19 5-0 L I 22 21 20 3x4= 14 13 12 4x6 II 4x6= 15 4x6= 3x4 II 3x6= 3x6= 3x6= 3x6= 3x4 II 4x6= 5x8<sub>1</sub> 3x8= 2 27-4-0 23-5-12 8-1-9 13-4-0 19-11-8 32-0-0 34-8-0 39-10-7 47-8-14 23-4-0 <u>27-2-4 ∥ 32-0-0</u> 3-8-80-1-12 4-8-0 -# 8-1-9 5-2-7 6-7-8 3-4-8 2-8-0 5-2-7 7-10-7 0-1-12

Scale = 1:85.9

| Plate Offsets (X, Y): [4: | 4:0-2-8,0-3-0], [8:0-3-0,Edge], | , [11:0-3-10,Edge], [13:0-2-8,0-1-8], [21:0 | -2-8,0-1-8] |
|---------------------------|---------------------------------|---------------------------------------------|-------------|
|---------------------------|---------------------------------|---------------------------------------------|-------------|

| Loading<br>TCLL (roof)<br>TCDL<br>BCLL<br>BCDL                                                                                          | (psf)<br>25.0<br>10.0<br>0.0<br>10.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Spacing<br>Plate Grip DOL<br>Lumber DOL<br>Rep Stress Incr<br>Code                                                                                                                                                                                                                                                                                                                                                                                                     | 2-0-0<br>1.15<br>1.15<br>YES<br>IRC201                                                            | 8/TPI2014                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | CSI<br>TC<br>BC<br>WB<br>Matrix-S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.91<br>0.72<br>0.91                                                                                                                                                                                                                                                             | DEFL<br>Vert(LL)<br>Vert(CT)<br>Horz(CT)                                                                                                                                                                                                                                                                                                               | in<br>-0.13<br>-0.30<br>0.08                          | (loc)<br>2-22<br>2-22<br>15 | l/defl<br>>999<br>>999<br>n/a | L/d<br>240<br>180<br>n/a | PLATES<br>MT20<br>Weight: 257 lb         | <b>GRIP</b><br>197/144<br>FT = 20% |
|-----------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|-----------------------------|-------------------------------|--------------------------|------------------------------------------|------------------------------------|
| LUMBER<br>TOP CHORD<br>BOT CHORD<br>WEBS<br>SLIDER<br>BRACING<br>TOP CHORD<br>BOT CHORD<br>1 Row at midp<br>WEBS<br>JOINTS<br>REACTIONS | 2x4 SP No.2 *Excep<br>1.5E<br>2x4 SP No.2 *Excep<br>Right 2x4 SP No.2 -<br>Structural wood she<br>2-2-0 oc purlins, exc<br>2-0-0 oc purlins, exc<br>2-20-0 cc purlins, exc<br>2-20-3-8, '<br>Max Horiz 2=208 [LC<br>15=-2891<br>(lb) - Maximum Com<br>Tension<br>1-2=0/17, 2-3=-1376<br>5-6=-217/494, 6-7=0<br>9-11=-884/640<br>2-22=-385/1109, 21'-<br>19-21=-205/604, 18<br>5-18=-288/208, 17-1 | ht* 4-1,8-11:2x4 SP 16<br>pt* 15-6:2x4 SP No.2<br>- 4-4-0<br>athing directly applied<br>to 2 applied or 6-0.0 oc<br>7-15, 15-23, 8-15, 4-<br>11= Mechanical, 15=(<br>C 12), 11=-358 (LC 1<br>LC 12)<br>C 22), 11=-358 (LC 1<br>LC 12)<br>C 22), 11=682 (LC 26<br>(LC 1)<br>apression/Maximum<br>6/391, 3-5=-774/467,<br>0/903, 7-9=-333/1060<br>-22=-385/1109,<br>-19=-168/668,<br>18=-98/31, 16-17=-15<br>-69/26, 13-15=-509/2<br>-12=-450/694<br>378/77, 9-12=0/290, | 1)<br>350F 2)<br>2<br>d or<br>19 4)<br>5)<br>0-3-8 6)<br>3), 7)<br>), 8)<br>9)<br>, 10<br>/11, 25 | <ul> <li>Unbalanced i<br/>this design.</li> <li>Wind: ASCE<br/>Vasd=91mpf<br/>Ke=1.00; Cat<br/>exterior zone<br/>Interior (1) 4-<br/>27-1-0, Exter<br/>34-1-14 to 47<br/>exposed ; en<br/>members and<br/>Lumber DOL</li> <li>Provide adec</li> <li>All plates are</li> <li>This truss ha<br/>chord live loa</li> <li>Bearings are<br/>capacity of 51<br/>of 565 psi.</li> <li>Refer to girdd<br/>bearing plate<br/>joint 11, 221<br/>2.</li> <li>This truss is of<br/>International<br/>R802.10.2 ar</li> <li>Graphical pu</li> </ul> | roof live loads hav<br>roof live loads hav<br>7-16; Vult=115mp<br>1; TCDL=6.0psf; B<br>1: II; Exp C; Enclos<br>and C-C Exterior<br>1-8 to 20-11-0, Es<br>ior(2R) 27-1-0 to 1<br>-7-8-14 zone; cantil<br>d vertical left and<br>1 forces & MWFR<br>=1.60 plate grip D<br>juate drainage to 1<br>3x6 MT20 unless<br>s been designed 1<br>d nonconcurrent 1<br>assumed to be: J<br>355 psi, Joint 15 SI<br>er(s) for truss to tr<br>nanical connection<br>capable of withst<br>Ib uplift at joint 15<br>designed in accor<br>Residential Code<br>d referenced star<br>rlin representatior<br>tion of the purlin a | ch (3-sec<br>CDL=6.<br>cDL=6.<br>sed; MW<br>(2E) -0<br>tterior(21<br>34-1-14,<br>ever left<br>right exg<br>S for rea<br>OL=1.6<br>brevent s<br>or a 10.0<br>with any<br>oint 2 SI<br>P No.2 c<br>uss conr<br>h (by oth<br>anding 3<br>and 233<br>dance w<br>sections<br>ndard AN | cond gust)<br>Opsf; h=35ft;<br>FRS (envelop<br>10-8 to 4-1-8,<br>E) 20-11-0 to<br>Interior (1)<br>and right<br>oosed;C-C for<br>ictions shown<br>water ponding<br>se indicated.<br>D psf bottom<br>other live loa<br>P No.2 crushi<br>rushing capad<br>hections.<br>ers) of truss t<br>3 lb uplift at jo<br>ith the 2018<br>c R502.11.1 a<br>SI/TPI 1. | be)<br>;<br>g.<br>ds.<br>ng<br>city<br>o<br>int<br>nd |                             |                               |                          | STATE OF M<br>STATE OF M<br>NATHA<br>FOI | MISSOLUP.                          |
| NOTES                                                                                                                                   | 4-21=-68/507, 3-21=<br>8-15=-922/318, 9-13<br>4-19=-822/275, 6-18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 197,                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                        |                                                       |                             |                               | W.                       | PE-20220                                 | L ENGINE                           |

July 11,2023


Page: 1

And the standard stan

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent toulsable personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

| Job        | Truss | Truss Type     | Qty | Ply | Roof - Osage Lot 85      |           |
|------------|-------|----------------|-----|-----|--------------------------|-----------|
| P240347-01 | A5    | Piggyback Base | 10  | 1   | Job Reference (optional) | 159435147 |

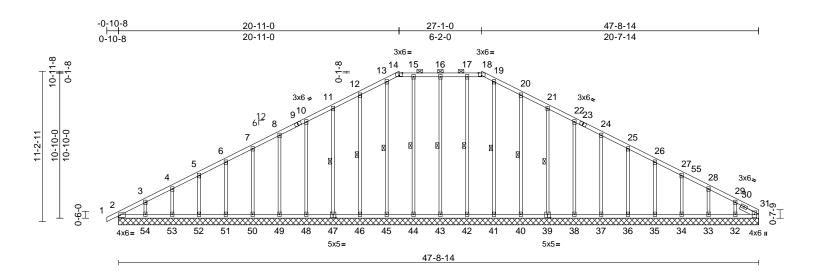
Run: 8.63 S Apr 6 2023 Print: 8.630 S Apr 6 2023 MiTek Industries, Inc. Mon Jul 10 12:58:38 ID:waiCdBDgSnFoHVRv0eeGplyGxNX-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1



## Scale = 1:85.9

|                                            |                                                                                                                                            | 1                                                                                                                                                                                                           |                                            | -                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                 |                | -              |              |            | 1                        |          |
|--------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|----------------|--------------|------------|--------------------------|----------|
| oading                                     | (psf)                                                                                                                                      | Spacing                                                                                                                                                                                                     | 2-0-0                                      |                                                                                                                                                                                                                                                                           | CSI                                                                                                                                                                                                                                                                                                                                                              | 0.07                                                                                                                                                                                                                                           | DEFL                                                                                                                                                                                                                            | in             | (loc)          | l/defl       | L/d        | PLATES                   | GRIP     |
| CLL (roof)                                 | 25.0                                                                                                                                       | Plate Grip DOL<br>Lumber DOL                                                                                                                                                                                | 1.15<br>1.15                               |                                                                                                                                                                                                                                                                           | TC<br>BC                                                                                                                                                                                                                                                                                                                                                         | 0.97                                                                                                                                                                                                                                           | Vert(LL)<br>Vert(CT)                                                                                                                                                                                                            |                | 15-17<br>15-17 | >999<br>>999 | 240<br>180 | MT20                     | 197/144  |
| CDL<br>CLL                                 | 10.0<br>0.0                                                                                                                                | Rep Stress Incr                                                                                                                                                                                             | YES                                        |                                                                                                                                                                                                                                                                           | WB                                                                                                                                                                                                                                                                                                                                                               | 0.82<br>0.81                                                                                                                                                                                                                                   | Horz(CT)                                                                                                                                                                                                                        | -0.53<br>0.23  | 10-17          | >999<br>n/a  | n/a        |                          |          |
| CDL                                        | 10.0                                                                                                                                       | Code                                                                                                                                                                                                        |                                            | 8/TPI2014                                                                                                                                                                                                                                                                 | Matrix-S                                                                                                                                                                                                                                                                                                                                                         | 0.01                                                                                                                                                                                                                                           | 1012(01)                                                                                                                                                                                                                        | 0.23           | 10             | n/a          | n/a        | Weight: 236 lb           | FT = 20% |
|                                            | 10.0                                                                                                                                       | 0000                                                                                                                                                                                                        | 110201                                     |                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                 |                |                |              |            | Wolght. 200 lb           | 11-2070  |
|                                            | (size) 2=0-3-8, 1<br>Max Horiz 2=209 (LC<br>Max Uplift 2=-329 (L<br>Max Grav 2=2214 (L                                                     | 00F 2.0E<br>ept* 14-5:2x4 SP No.<br>- 4-4-0<br>athing directly applie<br>t-0 max.): 5-6.<br>applied or 9-5-7 oc<br>5-14, 7-14, 4-15<br>10= Mechanical<br>C 16)<br>C 12), 10=-301 (LC<br>- C 1), 10=2141 (LC | 2<br>ed,<br>3)<br>4)<br>5)<br>13) 6)<br>7) | Vasd=91mp<br>Ke=1.00; Ca<br>exterior zonn<br>Interior (1) 4<br>27-1-0, Exte<br>34-1-14 to 4<br>exposed ; en<br>members ar<br>Lumber DOI<br>Provide ade<br>This truss ha<br>chord live lo<br>Bearings are<br>crushing cap<br>Refer to girc<br>Provide mec<br>bearing plate | 7-16; Vult=115<br>h; TCDL=6.0psf<br>it. II; Exp C; Enc<br>e and C-C Exter<br>-1-8 to 20-11-0,<br>rior(2R) 27-1-0<br>7-8-14 zone; ca<br>nd vertical left an<br>d forces & MWI<br>_=1.60 plate grip<br>quate drainage<br>as been designe<br>ad nonconcurre<br>e assumed to be<br>boacity of 565 psi<br>er(s) for truss to<br>thanical connect<br>e capable of with | BCDL=6.1<br>losed; MW<br>for(2E) -0-7<br>Exterior(2I)<br>o 34-114,<br>thilever left<br>ad right exp<br>RS for read<br>DOL=1.60<br>o prevent<br>to prevent<br>this cont<br>t with any<br>cont 2 SI<br>ftruss cont<br>ion (by oth<br>astanding 3 | Dpsf; h=35ft;<br>FRS (envelop<br>0-8 to 4-1-8,<br>E) 20-11-0 to<br>Interior (1)<br>and right<br>vosed;C-C for<br>ctions shown<br>over ponding<br>p sf bottom<br>other live loa<br>P 1650F 1.5E<br>nections.<br>ers) of truss to | ;<br>j.<br>ds. |                |              |            |                          |          |
| ORCES                                      | (lb) - Maximum Com<br>Tension<br>1-2=0/17, 2-3=-4010<br>5-6=-2386/554, 6-8=<br>8-10=-3898/580                                              | )/580, 3-5=-3462/598                                                                                                                                                                                        | 8)<br>3,<br>9)                             | This truss is<br>Internationa<br>R802.10.2 a                                                                                                                                                                                                                              | 329 lb uplift at jo<br>designed in acc<br>Residential Co<br>nd referenced s<br>urlin representat                                                                                                                                                                                                                                                                 | ordance w<br>de sections<br>tandard AN                                                                                                                                                                                                         | R502.11.1 a<br>SI/TPI 1.                                                                                                                                                                                                        |                |                |              |            |                          |          |
| OT CHORD                                   | 2-18=-561/3433, 17-<br>15-17=-401/3019, 14<br>12-14=-330/3010, 11<br>10-11=-404/3340                                                       | 4-15=-175/2388,                                                                                                                                                                                             | LC                                         | or the orient<br>bottom chor<br>OAD CASE(S)                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                  | n along the                                                                                                                                                                                                                                    | e top and/or                                                                                                                                                                                                                    |                |                |              |            | TATE OF M                | AISSO    |
| /EBS<br>OTES<br>) Unbalance<br>this design | 3-18=0/291, 5-15=-1<br>8-11=0/270, 5-14=-2<br>3-17=-547/206, 7-12<br>7-14=-851/319, 8-12<br>4-15=-860/321<br>ed roof live loads have<br>h. | 282/275, 4-17=-53/46<br>2=-44/425,<br>2=-452/190,                                                                                                                                                           | 66,                                        |                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                 |                |                | 1            |            | NATHA<br>FOI<br>PE-20220 | X CAR    |
|                                            |                                                                                                                                            |                                                                                                                                                                                                             |                                            |                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                 |                |                |              | Y          | ESSIONA                  | L ENGLIS |

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent toulsable personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)




July 11,2023

| Job        | Truss | Truss Type                     | Qty | Ply | Roof - Osage Lot 85      |           |
|------------|-------|--------------------------------|-----|-----|--------------------------|-----------|
| P240347-01 | A6    | Piggyback Base Supported Gable | 2   | 1   | Job Reference (optional) | 159435148 |

Run: 8.63 S Apr 6 2023 Print: 8.630 S Apr 6 2023 MiTek Industries, Inc. Mon Jul 10 12:58:39 ID:JbPUB4NmDf0vUSJtFFIELayGxJT-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f





## Scale = 1:85.9

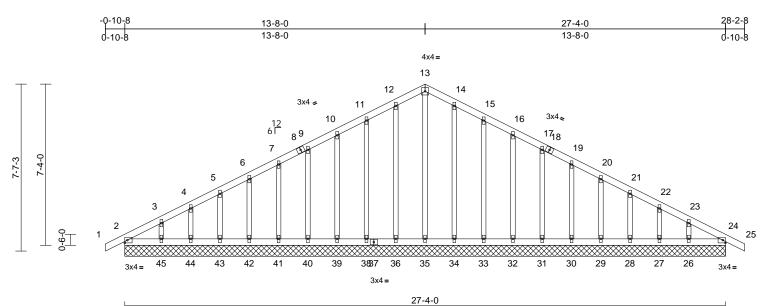
| Plate Offsets (                                                                                   | X, Y): [14:0-3                                                                                                                                                                                                             | 8-0,Edge]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | , [18:0-3-0,Edge], [3                                                                                                                            | 1:0-3-2,0-1-12], [39:0-                              | 2-8,0-3-0],                                                                                                                                                                                                                                                                      | [47:0-2-8,0-3-0]                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                    |                                                                                                  |                       |                             |                                                                                                             |                                                    |                                                                             |
|---------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|-----------------------|-----------------------------|-------------------------------------------------------------------------------------------------------------|----------------------------------------------------|-----------------------------------------------------------------------------|
| Loading<br>TCLL (roof)<br>TCDL<br>BCLL<br>BCDL                                                    |                                                                                                                                                                                                                            | (psf)<br>25.0<br>10.0<br>0.0<br>10.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <b>Spacing</b><br>Plate Grip DOL<br>Lumber DOL<br>Rep Stress Incr<br>Code                                                                        | 2-0-0<br>1.15<br>1.15<br>YES<br>IRC2018/TPI2014      | CSI<br>TC<br>BC<br>WB<br>Matrix-                                                                                                                                                                                                                                                 | 0.13<br>0.05<br>0.18<br>S                                                                                                                                                                                                                                                                                                                                                                                                                            | DEFL<br>Vert(LL)<br>Vert(CT)<br>Horz(CT)                                                                                                                                           | in<br>n/a<br>n/a<br>0.02                                                                         | (loc)<br>-<br>-<br>31 | l/defl<br>n/a<br>n/a<br>n/a | L/d<br>999<br>999<br>n/a                                                                                    | PLATES<br>MT20<br>Weight: 267 lb                   | <b>GRIP</b><br>244/190<br>FT = 20%                                          |
| LUMBER<br>TOP CHORD<br>BOT CHORD<br>OTHERS<br>SLIDER<br>BRACING<br>TOP CHORD<br>BOT CHORD<br>WEBS | 2x4 SP No.2<br>2x3 SPF No<br>Right 2x4 SF<br>Structural w<br>6-0-0 oc pur<br>2-0-0 oc pur<br>Rigid ceiling<br>bracing.<br>1 Row at min                                                                                     | 2<br>.2<br>P No.2<br>rood shea<br>rlins, exc<br>rlins (6-0<br>g directly<br>directly                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | athing directly applie<br>ept<br>-0 max.): 14-18.<br>applied or 10-0-0 oc<br>16-43, 17-42, 19-41,<br>20-40, 21-39, 15-44,<br>13-45, 12-46, 11-47 |                                                      | (lb) - Ma:                                                                                                                                                                                                                                                                       | 2=178 (LC 21), 3<br>32=179 (LC 26),<br>34=180 (LC 26),<br>36=180 (LC 26),<br>38=180 (LC 26),<br>40=180 (LC 1), 4<br>42=177 (LC 26),<br>44=177 (LC 25),<br>46=180 (LC 1), 4<br>48=180 (LC 2),<br>50=180 (LC 1), 5<br>52=180 (LC 1), 5<br>54=181 (LC 25),<br>ximum Compression                                                                                                                                                                         | 33=182 (LC<br>35=180 (LC<br>37=180 (LC<br>39=180 (LC<br>11=174 (LC 2<br>43=183 (LC<br>45=176 (LC<br>45=176 (LC<br>49=180 (LC<br>11=180 (LC 2<br>3=179 (LC 2                        | 1),<br>1),<br>1),<br>26),<br>26),<br>26),<br>22),<br>22),<br>25),<br>1),<br>25),<br>25),<br>25), | ,                     |                             | 19-41:<br>21-39:<br>24-37:<br>26-35:<br>28-33:<br>15-44:<br>12-46:<br>10-48:<br>6-51=<br>3-54=<br>d roof li | -140/97, 5-52=-1<br>-138/171                       | 140/112,<br>=-140/96,<br>=-140/97,<br>=-139/106,<br>2=-137/191,<br>=-136/8, |
|                                                                                                   | 32<br>34<br>36<br>36<br>36<br>36<br>36<br>42<br>42<br>44<br>46<br>55<br>52<br>52<br>52<br>52<br>52<br>52<br>52<br>52<br>52<br>52<br>53<br>34<br>35<br>35<br>35<br>35<br>35<br>35<br>35<br>35<br>35<br>35<br>35<br>35<br>35 | 2=47-8-1<br>4=47-8-1<br>6=47-8-1<br>8=47-8-1<br>0=47-8-1<br>2=47-8-1<br>2=47-8-1<br>0=47-8-1<br>0=47-8-1<br>0=47-8-1<br>0=47-8-1<br>0=209 (LC<br>=-26 (LC<br>=-2 |                                                                                                                                                  | 5),<br>3),<br>3),<br>3),<br>3),<br>2),<br>2),<br>2), | 4-5=-181<br>7-8=-84/<br>11-12=-1<br>13-14=-1<br>15-16=-1<br>17-18=-1<br>19-20=-1<br>24-25=-5<br>27-28=-1<br>29-31=-2<br>2-54=-58<br>50-51=-2<br>50-51=-2<br>48-49=-5<br>48-49=-5<br>48-49=-5<br>48-49=-5<br>48-49=-5<br>48-49=-5<br>38-40=-5<br>36-37=-5<br>36-37=-5<br>34-35=-5 | 7, 2-3=-295/92, 3-4<br>/97, 5-6=-136/110<br>162, 8-10=-71/190<br>06/287, 12-13=-1;<br>26/341, 14-15=-1<br>18/342, 16-17=-1<br>19/341, 18-19=-1;<br>27/347, 20-21=-10<br>8/234, 22-24=-69,<br>66/126, 25-26=-56,<br>00/27, 28-29=-144<br>32/67<br>9/225, 53-54=-59/2<br>99/225, 53-54=-59/2<br>99/225, 44-45=-59,<br>99/225, 44-45=-59,<br>99/225, 44-45=-59,<br>99/225, 44-45=-59,<br>99/225, 37-38=-59,<br>99/225, 37-38=-59,<br>99/225, 31-32=-59, | , 6-7=-110/1.<br>, 10-11=-88/<br>27/347,<br>19/341,<br>8/342,<br>26/341,<br>16/287,<br>180,<br>72, 26-27=-7<br>3/43,<br>25,<br>225,<br>225,<br>225,<br>225,<br>225,<br>225,<br>225 | 234,                                                                                             |                       | ۲<br>پ                      | A A A                                                                                                       | STATE OF J<br>STATE OF J<br>NATHA<br>FO<br>PE-2022 | BER<br>042259                                                               |

Continued on page 2 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. WARNING - Verify design parameters and KEAD KO LES ON THIS AND INCLUDED MILEK REFERENCE PAGE MIL-7473 rev. 17/2/2023 BEFORE USE. Design valid for use only with MITeK® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria**, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcscomponents.com)



| Job        | Truss | Truss Type                     | Qty | Ply | Roof - Osage Lot 85      |           |
|------------|-------|--------------------------------|-----|-----|--------------------------|-----------|
| P240347-01 | A6    | Piggyback Base Supported Gable | 2   | 1   | Job Reference (optional) | 159435148 |

- 2) Wind: ASCE 7-16: Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=35ft; Ke=1.00; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone and C-C Corner(3E) -0-10-8 to 4-0-0, Exterior(2N) 4-0-0 to 20-11-0, Corner(3R) 20-11-0 to 26-0-0, Exterior(2N) 26-0-0 to 27-1-0, Corner(3R) 27-1-0 to 32-0-0, Exterior(2N) 32-0-0 to 47-8-14 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- Truss designed for wind loads in the plane of the truss 3) only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- Provide adequate drainage to prevent water ponding. 4)
- All plates are 3x4 MT20 unless otherwise indicated. 5) Gable requires continuous bottom chord bearing. 6)
- 7) Gable studs spaced at 2-0-0 oc.
- 8)
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. All bearings are assumed to be SP No.2 crushing 9)
- capacity of 565 psi. 10) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 26 lb uplift at joint 2, 58 lb uplift at joint 43, 9 lb uplift at joint 42, 74 lb uplift at joint 40, 60 lb uplift at joint 39, 61 lb uplift at joint 38, 61 lb uplift at joint 37, 61 lb uplift at joint 36, 61 lb uplift at joint 35, 62 lb uplift at joint 34, 59 lb uplift at joint 33, 103 lb uplift at joint 32, 12 lb uplift at joint 44, 71 lb uplift at joint 46, 61 lb uplift at joint 47, 61 lb uplift at joint 48, 61 lb uplift at joint 49, 61 lb uplift at joint 50, 61 lb uplift at joint 51, 61 lb uplift at joint 52, 61 lb uplift at joint 53 and 87 lb uplift at joint 54.
- 11) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 12) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord


LOAD CASE(S) Standard

Run: 8,63 S Apr 6 2023 Print: 8,630 S Apr 6 2023 MiTek Industries, Inc. Mon Jul 10 12:58:39 ID:JbPUB4NmDf0vUSJtFFIELayGxJT-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 2



| Job     |      | Truss | Truss Type             | Qty | Ply | Roof - Osage Lot 85      |           |
|---------|------|-------|------------------------|-----|-----|--------------------------|-----------|
| P240347 | 7-01 | B1    | Common Supported Gable | 2   | 1   | Job Reference (optional) | 159435149 |

Run: 8.63 S Apr 6 2023 Print: 8.630 S Apr 6 2023 MiTek Industries, Inc. Mon Jul 10 12:58:40 ID:UdTxDbh?e9q\_8iTwPnntXZyGxKM-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f



| Scale = 1:52.4                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                              |                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                      |                                           |                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | '                                                                                                                                                                                                                                                                                                                |
|----------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|-------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Loading                                                                                      | (psf)                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Spacing                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2-0-0                                                        |                                                                                                                           | CSI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                            | DEFL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | in                                                                                   | (loc                                      | ) l/defl                                                                                                                                                                                                                                                                                                                               | L/d                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | PLATES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | GRIP                                                                                                                                                                                                                                                                                                             |
| TCLL (roof)                                                                                  | 25.0                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Plate Grip DOL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1.15                                                         |                                                                                                                           | TC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.07                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Vert(LL)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | n/a                                                                                  |                                           | - n/a                                                                                                                                                                                                                                                                                                                                  | 999                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | MT20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 197/144                                                                                                                                                                                                                                                                                                          |
| TCDL                                                                                         | 10.0                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Lumber DOL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1.15                                                         |                                                                                                                           | BC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.03                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Vert(CT)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | n/a                                                                                  |                                           | - n/a                                                                                                                                                                                                                                                                                                                                  | 999                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                  |
| BCLL                                                                                         | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Rep Stress Incr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | YES                                                          |                                                                                                                           | WB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.18                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Horz(CT)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.01                                                                                 | 24                                        | 4 n/a                                                                                                                                                                                                                                                                                                                                  | n/a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                  |
| BCDL                                                                                         | 10.0                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Code                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | IRC2018/TP                                                   | 2014                                                                                                                      | Matrix-S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                      |                                           |                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Weight: 145 lb                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | FT = 20%                                                                                                                                                                                                                                                                                                         |
| LUMBER<br>TOP CHORD<br>BOT CHORD<br>OTHERS<br>BRACING<br>TOP CHORD<br>BOT CHORD<br>REACTIONS | 2x4 SP No.2<br>2x3 SPF No.2<br>Structural wood s<br>6-0-0 oc purlins.<br>Rigid ceiling direc<br>bracing.<br>(size) 2=27-4<br>27=27-<br>33=27-<br>36=27-<br>40=27-<br>40=27-<br>43=27-<br>Max Uplift 2=-26<br>(LC 13)<br>(LC 13)<br>(LC 13)<br>(LC 13)<br>(LC 12)<br>(LC 12)<br>(LC 12)<br>(LC 12)<br>(LC 12)<br>(LC 12)<br>(LC 12)<br>(LC 12)<br>(LC 12)<br>(26=130)<br>26=130)<br>28=121<br>30=120<br>32=122<br>34=122<br>36=121<br>39=120<br>41=120 | heathing directly applie<br>tly applied or 10-0-0 oc<br>-0, 24=27-4-0, 26=27-4<br>4-0, 28=27-4-0, 29=27-<br>4-0, 31=27-4-0, 35=27-<br>4-0, 34=27-4-0, 35=27-<br>4-0, 34=27-4-0, 39=27-<br>4-0, 44=27-4-0, 45=27-<br>(LC 13)<br>LC 8), 24=-4 (LC 9), 26<br>, 27=-40 (LC 13), 32=-<br>, 32=-41 (LC 13), 32=-<br>, 33=-41 (LC 13), 34=-<br>, 36=-27 (LC 12), 34=-<br>, 36=-27 (LC 12), 44=-<br>, 45=-63 (LC 12)<br>(LC 1), 24=150 (LC 1),<br>0 (LC 26), 31=120 (LC 20)<br>0 (LC 1), 32=120 (LC 20)<br>0 (LC 1), 33=121 (LC 20)<br>0 (LC 25), 38=121 (LC 20)<br>0 (LC 1), 40=120 (LC 1)<br>0 (LC 25), 32=120 (LC 20)<br>0 (LC 1), 44=117 (LC 20)<br>0 (LC 1), 44=117 (LC 20)<br>0 (LC 25), 32=120 (LC 20)<br>0 (LC 25) 0 (LC 10)<br>0 (LC 25) 0 (LC 20)<br>0 (LC 25) 0 ( | d or<br>-0, BOT C<br>4-0, 4-0, 4-0, 4-0, 4-0, 4-0, 4-0, 4-0, | balanced<br>s design.<br>nd: ASCI<br>sd=91mp<br>=1.00; C<br>terior zon<br>terior(2N<br>-8-0, Exte<br>and righ<br>posed;C- | 13-14=-89/255, 1<br>13-16=-66/191, 1<br>17-19=-41/119, 1<br>21-22=-51/20, 22<br>24-25=0/17, 1-2=<br>3-4=-131/67, 4-5<br>6-7=-59/107, 7-9<br>10-11=-66/191, 1<br>12-13=-89/255<br>2-45=-40/160, 44<br>43-44=-40/160, 44<br>43-44=-40/160, 3<br>36-38=-40/160, 3<br>30-31=-40/160, 2<br>26-27=-40/160, 2<br>26-27=-40/160, 2<br>26-27=-40/160, 2<br>13-35=-148/26, 1<br>10-39=-93/64, 5-4<br>3-45=-99/122, 14<br>16-32=-93/64, 5-4<br>3-45=-99/122, 14<br>16-32=-93/64, 21<br>23-26=-99/119<br>d roof live loads ha<br>E 7-16; Vult=115m<br>ph; TCDL=6.0psf;<br>at. II; Exp C; Enclue<br>the and C-C Corner<br>0, 4-4-0 to 13-8-0,<br>erior(2N) 18-8-0 to<br>the exposed ; end v<br>C for members ar<br>hown; Lumber DO | 6-17=-53<br>9-20=-34<br>2-23=-74/2<br>00/7, 2-3<br>=-99/76, 5<br>=-50/126,<br>1-12=-80<br>1-45=-40/'<br>12-43=-40<br>0-41=-40<br>88-39=-40<br>03-34=-40<br>03-34=-40<br>03-34=-40<br>03-34=-40<br>03-34=-96<br>40=-93/64<br>3-94-82,<br>1-24=-96/4<br>2-36=-96<br>40=-93/64<br>3-94/82,<br>1-34=-96/4<br>'-31=-93/6<br>-28=-94/8<br>ave been<br>nph (3-see<br>BCDL=6,<br>osed; IMW,<br>r(3E) -0-1<br>Corner(3F)<br>0-28-2-8 z<br>ertical left<br>of forces | <ul> <li>/155,</li> <li>/83, 20-21=-3</li> <li>/22, 23-24=-12</li> <li>-181/64,</li> <li>5-6=-76/89,</li> <li>9-10=-53/15:</li> <li>//230,</li> <li>/160,</li> <li>/160,<td>95/74,<br/>5,<br/>5,<br/>5,<br/>5,<br/>5,<br/>5,<br/>5,<br/>5,<br/>5,<br/>5,<br/>5,<br/>5,<br/>5,</td><td>oi si si</td><td>nly. For s<br/>ee Standar<br/>r consult c<br/>III plates a<br/>able stud:<br/>his truss h<br/>hord live li<br/>II bearings<br/>apacity of<br/>rovide me<br/>earing pla<br/>apacity of<br/>rovide me<br/>earing pla<br/>, 27 lb upl<br/>plift at join<br/>4, 48 lb up<br/>plift at join<br/>9, 41 lb up<br/>plift at join<br/>his truss is<br/>internationar</td><td>tuds e)<br/>rrd Indu<br/>qualifieire f 1.5x<br/>rifes co s space<br/>rifes to space<br/>rifes</td><td>posed to wind (n<br/>istry Gable End E<br/>d building designed<br/>4 MT20 unless of<br/>thinuous bottom of<br/>ad at 1-4-0 oc.<br/>an designed for a<br/>nconcurrent with -<br/>ssumed to be SP<br/>i.<br/>al connection (by<br/>able of withstandii<br/>int 36, 46 lb uplift<br/>1 lb uplift at joint 4<br/>oint 42, 41 lb uplift<br/>1 lb uplift at joint 4<br/>oint 42, 41 lb uplift<br/>1 lb uplift at joint 4<br/>oint 33, 40 lb uplift<br/>1 lb uplift at joint 4<br/>oint 28, 40 lb uplift<br/>at joint 28, 40 lb uplift<br/>at joint 28, 40 lb uplift<br/>the uplift at joint 4<br/>cenced standard<br/>where the the the the the<br/>percent of the the the the<br/>of the the the the the the<br/>of the the the the the the<br/>the the the the the the the<br/>of the the the the the the the the the<br/>of the the the the the the the the the the</td><td>10.0 psf bottom<br/>any other live loads.<br/>No.2 crushing<br/>others) of truss to<br/>ng 26 lb uplift at joint<br/>at joint 38, 41 lb<br/>40, 41 lb uplift at joint<br/>ft at joint 43, 40 lb<br/>45, 21 lb uplift at joint<br/>ft at joint 27, 57 lb<br/>nt 24.<br/>with the 2018<br/>ions R502.11.1 and<br/>d ANSI/TPI 1.</td></li></ul> | 95/74,<br>5,<br>5,<br>5,<br>5,<br>5,<br>5,<br>5,<br>5,<br>5,<br>5,<br>5,<br>5,<br>5, | oi si | nly. For s<br>ee Standar<br>r consult c<br>III plates a<br>able stud:<br>his truss h<br>hord live li<br>II bearings<br>apacity of<br>rovide me<br>earing pla<br>apacity of<br>rovide me<br>earing pla<br>, 27 lb upl<br>plift at join<br>4, 48 lb up<br>plift at join<br>9, 41 lb up<br>plift at join<br>his truss is<br>internationar | tuds e)<br>rrd Indu<br>qualifieire f 1.5x<br>rifes co s space<br>rifes to space<br>rifes | posed to wind (n<br>istry Gable End E<br>d building designed<br>4 MT20 unless of<br>thinuous bottom of<br>ad at 1-4-0 oc.<br>an designed for a<br>nconcurrent with -<br>ssumed to be SP<br>i.<br>al connection (by<br>able of withstandii<br>int 36, 46 lb uplift<br>1 lb uplift at joint 4<br>oint 42, 41 lb uplift<br>1 lb uplift at joint 4<br>oint 42, 41 lb uplift<br>1 lb uplift at joint 4<br>oint 33, 40 lb uplift<br>1 lb uplift at joint 4<br>oint 28, 40 lb uplift<br>at joint 28, 40 lb uplift<br>at joint 28, 40 lb uplift<br>the uplift at joint 4<br>cenced standard<br>where the the the the the<br>percent of the the the the<br>of the the the the the the<br>of the the the the the the<br>the the the the the the the<br>of the the the the the the the the the<br>of the | 10.0 psf bottom<br>any other live loads.<br>No.2 crushing<br>others) of truss to<br>ng 26 lb uplift at joint<br>at joint 38, 41 lb<br>40, 41 lb uplift at joint<br>ft at joint 43, 40 lb<br>45, 21 lb uplift at joint<br>ft at joint 27, 57 lb<br>nt 24.<br>with the 2018<br>ions R502.11.1 and<br>d ANSI/TPI 1. |
| FURGES                                                                                       | (ID) - Maximum C                                                                                                                                                                                                                                                                                                                                                                                                                                      | ompression/iviaximum                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                              |                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                      |                                           |                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | CONA<br>CONA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | DITES -                                                                                                                                                                                                                                                                                                          |

July 11,2023

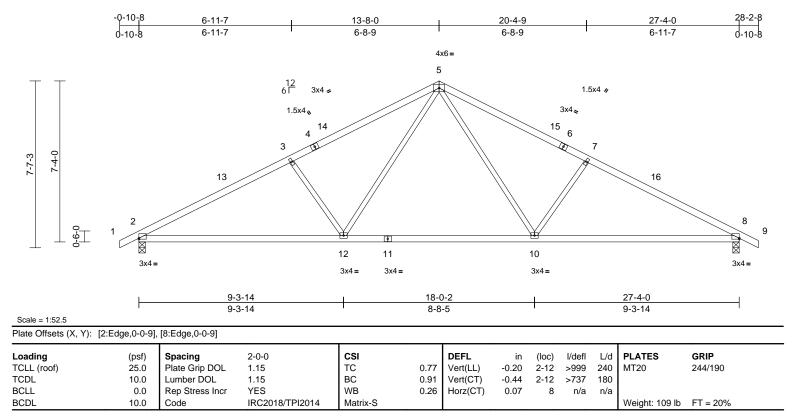
Page: 1



Continued on page 2 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design in the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property idamage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of frusses and truss systems, see ANS/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

| Job                                                                                 | Truss | Truss Type             | Qty | Ply         | Roof - Osage Lot 85                             |           |
|-------------------------------------------------------------------------------------|-------|------------------------|-----|-------------|-------------------------------------------------|-----------|
| P240347-01                                                                          | B1    | Common Supported Gable | 2   | 1           | Job Reference (optional)                        | 159435149 |
| Premier Building Supply (Springhill, KS), Spring Hills, KS - 66083, Run: 8.63 S Apr |       |                        |     | 30 S Apr 62 | 2023 MiTek Industries, Inc. Mon Jul 10 12:58:40 | Page: 2   |

Run: 8.63 S Apr 6 2023 Print: 8.630 S Apr 6 2023 MiTek Industries, Inc. Mon Jul 10 12:58:40 ID:UdTxDbh?e9q\_8iTwPnntXZyGxKM-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f


LOAD CASE(S) Standard

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)



| ſ | Job        | Truss | Truss Type Qty Ply Roof - Osage Lot 85 |   | Roof - Osage Lot 85 |                          |           |
|---|------------|-------|----------------------------------------|---|---------------------|--------------------------|-----------|
|   | P240347-01 | B2    | Common                                 | 4 | 1                   | Job Reference (optional) | 159435150 |

Run: 8.63 S Apr 6 2023 Print: 8.630 S Apr 6 2023 MiTek Industries, Inc. Mon Jul 10 12:58:40 ID:77cC2GCYqAwXzi\_Rd5akSLyGxKz-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f



| LUMBER    |             |                                    |
|-----------|-------------|------------------------------------|
| TOP CHORD | 2x4 SP N    | 0.2                                |
| BOT CHORD | 2x4 SP N    | 0.2                                |
| WEBS      | 2x3 SPF I   | No.2                               |
| BRACING   |             |                                    |
| TOP CHORD | Structural  | wood sheathing directly applied or |
|           | 2-6-11 oc   | purlins.                           |
| BOT CHORD | Rigid ceili | ing directly applied or 10-0-0 oc  |
|           | bracing.    |                                    |
| REACTIONS | (size)      | 2=0-3-8, 8=0-3-8                   |
|           | Max Horiz   | 2=-137 (LC 13)                     |
|           | Max Uplift  | 2=-211 (LC 12), 8=-211 (LC 13)     |
|           | Max Grav    | 2=1288 (LC 1), 8=1288 (LC 1)       |
| FORCES    | (lb) - Max  | imum Compression/Maximum           |
|           | Tension     | ·                                  |
| TOP CHORD | 1-2=0/17,   | 2-3=-2072/392, 3-5=-1821/403,      |
|           | 5-7=-182    | 1/403, 7-8=-2072/392, 8-9=0/17     |
| BOT CHORD | 2-12=-328   | 8/1763, 10-12=-86/1180,            |
|           | 8-10=-263   | 3/1763                             |
|           |             |                                    |

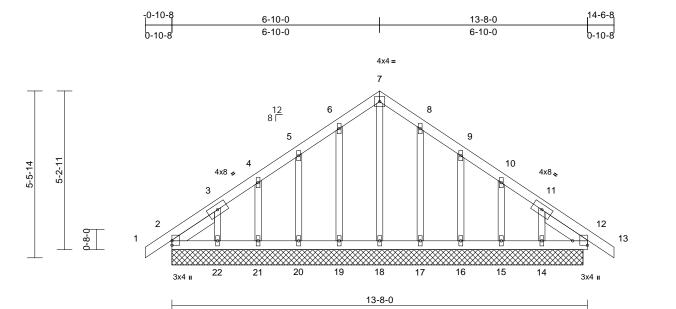
- WEBS 5-10=-263/1763 5-10=-154/672, 7-10=-451/287, 5-12=-153/672, 3-12=-451/287
- NOTES
- Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=35ft; Ke=1.00; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) -0-10-8 to 4-1-8, Interior (1) 4-1-8 to 13-8-0, Exterior(2R) 13-8-0 to 18-8-0, Interior (1) 18-8-0 to 28-2-8 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- All bearings are assumed to be SP No.2 crushing capacity of 565 psi.

- Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 211 lb uplift at joint 2 and 211 lb uplift at joint 8.
- This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard



Page: 1


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPH Claulity Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)



| Job        | Truss | Truss Type             | Qty | Ply | Roof - Osage Lot 85      |           |
|------------|-------|------------------------|-----|-----|--------------------------|-----------|
| P240347-01 | C1    | Common Supported Gable | 1   | 1   | Job Reference (optional) | 159435151 |

Run: 8.63 S Apr 6 2023 Print: 8.630 S Apr 6 2023 MiTek Industries, Inc. Mon Jul 10 12:58:40 ID:pEeiREjqUZILYPLYj\_L6IhyGxLc-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

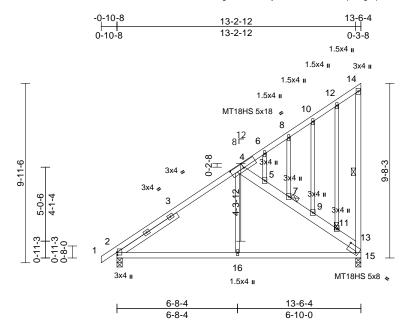
Page: 1



Scale = 1:37.9

Plate Offsets (X, Y): [12:Edge,0-5-14]

| Loading<br>TCLL (roof)<br>TCDL<br>BCLL<br>BCDL                                            | (psf)<br>25.0<br>10.0<br>0.0<br>10.0                                                                                                                                                                        | Plate Grip DOL<br>Lumber DOL<br>Rep Stress Incr                                                                                                                                                                                 | 2-0-0<br>1.15<br>1.15<br>YES<br>IRC2018/TPI2014                                                                                                                                                                                                        | CSI<br>TC<br>BC<br>WB<br>Matrix-S                                                                                                                                                                                                                  | 0.06<br>0.03<br>0.07                                                                                                                          | DEFL<br>Vert(LL)<br>Vert(CT)<br>Horz(CT)                                                                                                                                        | in<br>n/a<br>n/a<br>0.00            | (loc)<br>-<br>-<br>12 | l/defl<br>n/a<br>n/a<br>n/a | L/d<br>999<br>999<br>n/a |               | <b>GRIP</b><br>197/144<br>FT = 20% |
|-------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------|-----------------------|-----------------------------|--------------------------|---------------|------------------------------------|
|                                                                                           | 10.0                                                                                                                                                                                                        | oode                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                        | Matrix 0                                                                                                                                                                                                                                           |                                                                                                                                               |                                                                                                                                                                                 |                                     |                       |                             |                          | Weight. 70 lb | 11 = 2070                          |
| LUMBER<br>TOP CHORD<br>BOT CHORD<br>OTHERS<br>SLIDER<br>BRACING<br>TOP CHORD<br>BOT CHORD | 2x4 SP No.2<br>2x3 SPF No.2<br>Left 2x4 SP No.2<br>1-8-5<br>Structural wood she<br>6-0-0 oc purlins.                                                                                                        | 1-8-5, Right 2x4 SP No<br>eathing directly applied o<br>y applied or 10-0-0 oc                                                                                                                                                  | 1) Unbalance<br>this design<br>or 2) Wind: ASC<br>Vasd=91m<br>Ke=1.00; 0<br>exterior zo                                                                                                                                                                | CE 7-16; Vult=115mp<br>hph; TCDL=6.0psf; E<br>Cat. II; Exp C; Enclos<br>ne and C-C Corner(                                                                                                                                                         | 11-14=-1<br>0=-99/10<br>we been<br>ph (3-sea<br>3CDL=6.<br>sed; MW<br>(3E) -0-1                                                               | 02/129,<br>06, 4-21=-100<br>considered fo<br>cond gust)<br>0psf; h=35ft;<br>/FRS (envelo<br>0-8 to 4-2-0,                                                                       | D/111,<br>Dr                        |                       |                             |                          |               |                                    |
| REACTIONS                                                                                 | (size) 2=13-6-4<br>15=13-6-<br>18=13-6-<br>21=13-6-<br>Max Horiz 2=-144 (I<br>Max Uplift 2=-39 (Ld<br>(LC 13),<br>(LC 13),<br>(LC 12),<br>(LC 12),<br>Max Grav 2=159 (L<br>14=132 (<br>16=128 (<br>18=119 ( | C 8), 12=-2 (LC 9), 14=-<br>15=-52 (LC 13), 16=-57<br>17=-42 (LC 13), 19=-45<br>20=-56 (LC 12), 21=-52<br>22=-80 (LC 12)<br>C 20), 12=154 (LC 1),<br>LC 20), 15=125 (LC 20)<br>LC 20), 19=131 (LC 19)<br>LC 21), 21=126 (LC 19) | <ol> <li>H1-10-0, E</li> <li>Ieft and rig<br/>exposed;C<br/>reactions s</li> <li>DOL=1.60</li> <li>Truss des<br/>only. For<br/>see Stand<br/>or consult</li> <li>All plates a</li> <li>Gable stuc</li> <li>Ghable stucs</li> <li>Chord live</li> </ol> | igned for wind loads<br>studs exposed to win<br>ard Industry Gable E<br>qualified building de<br>are 1.5x4 MT20 unle<br>Is spaced at 1-4-0 o<br>has been designed f<br>load nonconcurrent<br>is are assumed to be                                  | to 14-6-<br>rtical left<br>d forces<br>=1.60 pl<br>s in the p<br>nd (norm<br>End Deta<br>signer a<br>ess other<br>c.<br>for a 10.<br>with any | 3 zone; cantil<br>and right<br>& MWFRS fo<br>ate grip<br>lane of the tr<br>ial to the face<br>ils as applica<br>s per ANSI/T<br>wise indicate<br>0 psf bottom<br>other live loa | uss<br>e),<br>able,<br>PI 1.<br>ed. |                       |                             |                          | TATE OF       | MISSOL                             |
| FORCES                                                                                    |                                                                                                                                                                                                             | npression/Maximum                                                                                                                                                                                                               | 8) Provide m                                                                                                                                                                                                                                           | echanical connection                                                                                                                                                                                                                               |                                                                                                                                               |                                                                                                                                                                                 |                                     |                       |                             | A                        | S NATH        | ANIEL E                            |
| TOP CHORD                                                                                 | Tension<br>7-8=-91/176, 8-9=-6<br>10-11=-58/29, 11-1<br>1-2=0/16, 2-3=-140<br>4-5=-87/72, 5-6=-77                                                                                                           | 56/126, 9-10=-49/59,<br>2=-112/57, 12-13=0/16,<br>/112, 3-4=-96/80,<br>7/126, 6-7=-91/176<br>2=-52/150,<br>2=-52/150,<br>18=-52/150,<br>16=-52/150,                                                                             | 12, 39 lb u<br>uplift at joi<br>14, 45 lb u<br>uplift at joi<br>9) Non Stand<br>10) This truss<br>Internation                                                                                                                                          | ate capable of withst<br>plift at joint 2, 42 lb of<br>th 16, 52 lb uplift at j<br>plift at joint 19, 56 lb<br>th 21 and 80 lb uplift<br>ard bearing conditio<br>is designed in accor<br>al Residential Code<br>and referenced star<br>5) Standard | uplift at j<br>joint 15,<br>o uplift at<br>t at joint<br>on. Revie<br>dance w<br>sections                                                     | oint 17, 57 lb<br>73 lb uplift at<br>joint 20, 52 l<br>22.<br>ew required.<br>ith the 2018<br>\$ R502.11.1 a                                                                    | joint<br>b                          |                       |                             | A REAL                   | PE-2022       | 1042259                            |


July 11,2023



WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

| Job        | Truss | Truss Type | Qty | Ply | Roof - Osage Lot 85      |           |
|------------|-------|------------|-----|-----|--------------------------|-----------|
| P240347-01 | C2    | Monopitch  | 1   | 1   | Job Reference (optional) | 159435152 |

Run: 8.63 S Apr 6 2023 Print: 8.630 S Apr 6 2023 MiTek Industries, Inc. Mon Jul 10 12:58:41 ID:Ho1WEiUTGX1gwu78IG1QiOyGxNB-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

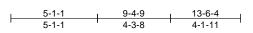


Scale = 1:63.8

## Plate Offsets (X, Y): [2:0-1-13,0-0-4], [4:0-9-0,0-3-0], [15:0-6-6,0-3-11]

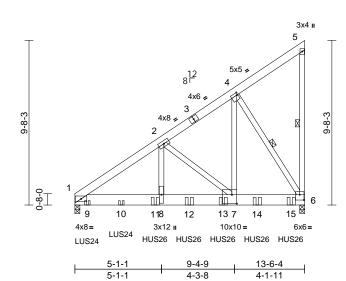
members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

|                                                                               | (7, 1). [2.0 1 10,0 0 4                                                                                                                                                                                                                                                                                                                            | ], [4.0 0 0,0 0 0], [10                                                                                                                                                                                                                                                 |                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                   |                                                                                                                                                                                                                                                            |                                                  |                              |                               |                          |                                           |                                               |
|-------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------|------------------------------|-------------------------------|--------------------------|-------------------------------------------|-----------------------------------------------|
| Loading<br>TCLL (roof)<br>TCDL<br>BCLL<br>BCDL                                | (psf)<br>25.0<br>10.0<br>0.0<br>10.0                                                                                                                                                                                                                                                                                                               | Spacing<br>Plate Grip DOL<br>Lumber DOL<br>Rep Stress Incr<br>Code                                                                                                                                                                                                      | 2-0-0<br>1.15<br>1.15<br>YES<br>IRC2018/TP                                                                                                                              | T<br>B<br>W                                                                                                                                                                                                                                                                                                                            | CSI<br>CC<br>3C<br>VB<br>Matrix-S                                                                                                                                                                                                                                                                                                                                                                                            | 0.65<br>0.44<br>0.26                                                                                                                                              | <b>DEFL</b><br>Vert(LL)<br>Vert(CT)<br>Horz(CT)                                                                                                                                                                                                            | in<br>-0.04<br>-0.09<br>0.01                     | (loc)<br>15-16<br>2-16<br>15 | l/defl<br>>999<br>>999<br>n/a | L/d<br>240<br>180<br>n/a | PLATES<br>MT20<br>MT18HS<br>Weight: 97 lb | <b>GRIP</b><br>244/190<br>197/144<br>FT = 20% |
|                                                                               | 2x4 SP No.2 *Excep<br>2x4 SP No.2<br>2x4 SP No.2<br>2x3 SPF No.2<br>Left 2x4 SP No.2:<br>Structural wood she<br>6-0-0 oc purlins, ex<br>Rigid ceiling directly<br>bracing.<br>1 Row at midpt<br>1 Brace at Jt(s): 11,<br>7<br>(size) 2=0-3-8,<br>Max Horiz 2=39 (LC<br>Max Uplift 2=-83 (LC<br>Max Grav 2=665 (LC<br>(lb) - Maximum Com<br>Tension | t* 4-16:2x3 SPF No.<br>3-11-10<br>athing directly applie<br>cept end verticals.<br>applied or 9-10-14 of<br>14-15<br>15=0-3-8<br>C 9)<br>C 12), 15=-202 (LC 1<br>C 1), 15=658 (LC 19)<br>ppression/Maximum<br>227, 6-8=-276/239,<br>12=-204/204,<br>538/231, 5-7=-560/2 | 2) Tr<br>2 or<br>3) Pro<br>4) All<br>5) All<br>5) All<br>6) Ga<br>60 Ga<br>7) Th<br>60 Ga<br>8) All<br>cal<br>9) Pro<br>be:<br>joir<br>10) Th<br>11) Gr:<br>bo'<br>LOAD | uss designed<br>ly. For studs<br>e Standard In<br>consult qualif<br>ovide adequa<br>plates are M<br>plates are 3x<br>bile studs spa<br>is truss has b<br>ord live load r<br>bearings are<br>pacity of 565<br>ovide mechar<br>aring plate ca<br>at 15 and 83 l<br>is truss is des<br>ernational Re<br>ouz. 10.2 and l<br>aphical purlin | d for wind loads in<br>exposed to wind<br>dustry Gable En<br>fied building desi<br>ate drainage to pr<br>T20 plates unless<br>(4 MT20 unless of<br>aced at 1-4-0 oc.<br>been designed fo<br>nonconcurrent wi<br>e assumed to be st<br>psi.<br>nical connection -<br>apable of withstar<br>buplift at joint 2.<br>signed in accorda<br>seidential Code s<br>referenced stando<br>n representation of<br>no of the purlin alco | I (norm<br>d Deta<br>gner as<br>revent v<br>s other<br>otherwi<br>r a 10.0<br>ith any<br>SP No.<br>(by oth<br>noding 2<br>ance w<br>ections<br>lard AN<br>does no | al to the face<br>ils as applica<br>s per ANSI/TI<br>water ponding<br>wise indicate<br>se indicated.<br>0 psf bottom<br>other live loa<br>2 crushing<br>ers) of truss 1<br>02 lb uplift al<br>ith the 2018<br>R502.11.1 a<br>ISI/TPI 1.<br>ot depict the s | ),<br>ble,<br>PI 1.<br>g.<br>dd.<br>dds.<br>dds. |                              |                               |                          |                                           | MISSO                                         |
| BOT CHORD<br>WEBS                                                             |                                                                                                                                                                                                                                                                                                                                                    | -214/183, 9-10=-77/6                                                                                                                                                                                                                                                    | 64,                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                   |                                                                                                                                                                                                                                                            |                                                  |                              |                               | E.                       | S NATHA                                   | NIEL                                          |
| Vasd=91n<br>Ke=1.00; (<br>exterior zc<br>Interior (1)<br>exposed ;<br>members | CE 7-16; Vult=115mph<br>nph; TCDL=6.0psf; BC<br>Cat. II; Exp C; Enclose<br>one and C-C Exterior(2<br>) 4-1-8 to 13-4-8 zone;<br>end vertical left and ri,<br>and forces & MWFRS<br>OL=1.60 plate grip DC                                                                                                                                           | DL=6.0psf; h=35ft;<br>d; MWFRS (envelop<br>E) -0-10-8 to 4-1-8,<br>cantilever left and ri<br>ght exposed;C-C for<br>for reactions shown;                                                                                                                                | ght                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                   |                                                                                                                                                                                                                                                            |                                                  |                              |                               | THE                      | PE-2022                                   | 042259                                        |


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent colleges with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

July 11,2023




| Job        | Truss | Truss Type       | Qty | Ply | Roof - Osage Lot 85      |           |
|------------|-------|------------------|-----|-----|--------------------------|-----------|
| P240347-01 | C3    | Monopitch Girder | 2   | 2   | Job Reference (optional) | 159435153 |

Run: 8.63 S Apr 6 2023 Print: 8.630 S Apr 6 2023 MiTek Industries, Inc. Mon Jul 10 12:58:41 ID:HXV5guHpHJt4OGKtoCERWpyGxNS-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f





zJC?f



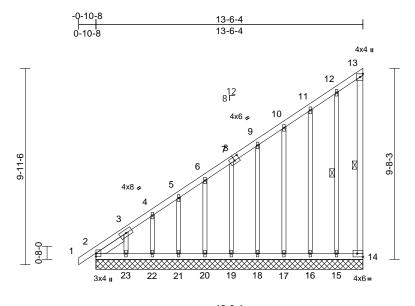
Scale = 1:67.8

## Plate Offsets (X, Y): [4:0-0-12,0-1-12], [6:0-3-0,0-3-12], [7:0-3-8,0-6-4]

| Plate Offsets (                                                                                                                                                                                                | (X, Y): [4:0-0-12,0-1-1                                                                                                                                                                                                                                                                                        | 2], [6:0-3-0,0-3-12],                                                                                                                                                                                                                                                                                                                                                              | [7:0-3-8,0-                                                         | 6-4]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                  |                          |                               |                          |                                            |                                    |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|--------------------------|-------------------------------|--------------------------|--------------------------------------------|------------------------------------|
| Loading<br>TCLL (roof)<br>TCDL<br>BCLL<br>BCDL                                                                                                                                                                 | (psf)<br>25.0<br>10.0<br>0.0<br>10.0                                                                                                                                                                                                                                                                           | Spacing<br>Plate Grip DOL<br>Lumber DOL<br>Rep Stress Incr<br>Code                                                                                                                                                                                                                                                                                                                 |                                                                     | 8/TPI2014                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | CSI<br>TC<br>BC<br>WB<br>Matrix-S<br>7-16: Vult=115mr                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.29<br>0.36<br>0.88                                                                                                                                                                                                                                                                            | DEFL<br>Vert(LL)<br>Vert(CT)<br>Horz(CT)                                                                                                                                                                                                                                                                                                                                                                     | in<br>-0.07<br>-0.12<br>0.02                                                     | (loc)<br>7-8<br>7-8<br>6 | l/defl<br>>999<br>>999<br>n/a | L/d<br>240<br>180<br>n/a | PLATES<br>MT20<br>Weight: 230 lb           | <b>GRIP</b><br>197/144<br>FT = 20% |
| FORCES<br>TOP CHORD<br>BOT CHORD<br>WEBS<br>NOTES<br>1) 2-ply truss<br>(0.131"x3"<br>Top chord<br>staggered<br>Bottom ch<br>staggered<br>Web conn<br>2) All loads a<br>except if n<br>CASE(S) :<br>provided th | 2x8 SP 2400F 2.0E<br>2x4 SP No.2<br>Structural wood she<br>5-5-9 oc purlins, ex<br>Rigid ceiling directly<br>bracing.<br>1 Row at midpt<br>(size) 1=0-3-8,<br>Max Horiz 1=384 (Lt<br>Max Uplift 1=-1112 /<br>Max Grav 1=5503 (I<br>(lb) - Maximum Con<br>Tension<br>1-2=-7647/1389, 2-4<br>4-5=-202/180, 5-6=- | r applied or 10-0-0 oc<br>5-6, 4-6<br>6=0-3-8<br>C 9)<br>(LC 12), 6=-1295 (LC<br>LC 1), 6=7639 (LC 1)<br>hpression/Maximum<br>4=-4084/764,<br>144/122<br>3=-1372/6184,<br>=-3634/843,<br>5=-6287/1143<br>ther with 10d<br>s: 2x6 - 2 rows<br>iw at 0-9-0 oc.<br>lows: 2x8 - 4 rows<br>- 1 row at 0-9-0 oc.<br>applied to all plies,<br>ck (B) face in the LO<br>nections have been | (2) 4)<br>(5) 5)<br>(7) 6)<br>(7) 8)<br>(7) 8)<br>(9)<br>(10<br>(1) | Vasd=91mpł<br>Ke=1.00; Ca<br>exterior zone<br>Interior (1) 5-<br>exposed; en<br>members an<br>Lumber DOL<br>This truss ha<br>chord live loa<br>All bearings;<br>capacity of 8<br>Provide mec<br>bearing plate<br>joint 6 and 1 <sup>-</sup><br>This truss is<br>International<br>R802.10.2 at<br>Use Simpsor<br>Truss, Single<br>oc max. starf<br>connect truss<br>Use Simpsor<br>Truss) or equ<br>4-8-12 from 1<br>to back face<br>b) Fill all nail ho<br>DAD CASE(S)<br>Dead + Roc<br>Plate Increa<br>Uniform Loa<br>Vert: 1-5-<br>Concentratt | hanical connection<br>capable of withst<br>112 lb uplift at join<br>designed in accor<br>Residential Code<br>nd referenced starn<br>Strong-Tie LUS2<br>e Ply Girder) or eq<br>ting at 0-8-12 from<br>s(es) to back face<br>n Strong-Tie HUS2<br>uivalent spaced at<br>the left end to 12-<br>for bottom chord.<br>oles where hanger<br>Standard<br>of Live (balanced):<br>ase=1.15<br>ads (lb/ft)<br>=-70, 1-6=-20<br>ed Loads (lb)<br>680 (B), 10=-662 (1)<br>1 (B), 13=-2121 (B) | CDL=6.<br>sed; MW<br>(2E) 0-1<br>e; cantile<br>right exg<br>S for rea<br>JOL=1.6<br>for a 10.<br>with any<br>e SP 240<br>n (by oth<br>anding 1<br>t 1.<br>dance w<br>sections<br>ndard AN<br>24 (4-100<br>uivalent<br>t the left<br>of bottol<br>26 (14-11<br>2-0-0 od<br>3-12 to c<br>: Lumber | Opsf; h=35ft;<br>FRS (envelo<br>-12 to 5-1-1,<br>vover left and I<br>bosed;C-C foi<br>citions showr<br>D psf bottom<br>other live loa<br>00F 2.0E crus<br>ers) of truss :<br>295 lb uplift :<br>ith the 2018<br>s R502.11.1 a<br>SIS/TPI 1.<br>d Girder, 2-10<br>spaced at 2-1<br>end to 2-8-12<br>m chord.<br>Dd Girder, 6-<br>c max. startin<br>onnect truss(<br>tact with lum<br>Increase=1.<br>2121 (B), | right<br>r,<br>shing<br>to<br>and<br>0-0<br>2 to<br>10d<br>g at<br>(es)<br>uber. |                          |                               |                          | THE OF M<br>STATE OF M<br>NATHA<br>PE-2022 | ER OCC                             |
|                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                    |                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                  |                          |                               |                          | July                                       | 11,2023                            |



WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent oulgase with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TPI1 Quality Criteria, and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcscomponents.com)


| Job        | Truss | Truss Type                | Qty | Ply | Roof - Osage Lot 85      |           |
|------------|-------|---------------------------|-----|-----|--------------------------|-----------|
| P240347-01 | C4    | Monopitch Supported Gable | 1   | 1   | Job Reference (optional) | 159435154 |

Scale = 1:58.3

Run: 8.63 S Apr 6 2023 Print: 8.630 S Apr 6 2023 MiTek Industries, Inc. Mon Jul 10 12:58:42 ID:GjwpzSgpHeSKmRw4J\_pUy2yGxOF-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

-

Page: 1



| 13-6-4 |  |
|--------|--|
|        |  |

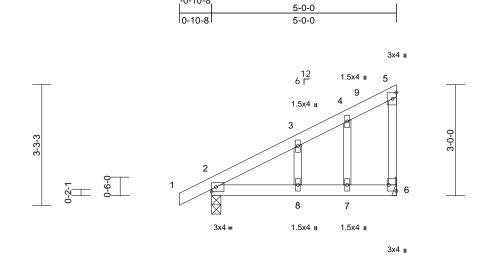
 $\vdash$ 

| Plate Offsets (                                | (X, Y): [8:0-3-0,0-2-4]                                                                                                                                                                                                                                                                                                                                                                | [14:Edge,0-2-0]                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                        |                                          |                       |                             |                                       |                                 |                                    |
|------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------|-----------------------|-----------------------------|---------------------------------------|---------------------------------|------------------------------------|
| Loading<br>TCLL (roof)<br>TCDL<br>BCLL<br>BCDL | (psf)<br>25.0<br>10.0<br>0.0<br>10.0                                                                                                                                                                                                                                                                                                                                                   | Spacing<br>Plate Grip DOL<br>Lumber DOL<br>Rep Stress Incr<br>Code                                                                                                                                                                                                                                                    | 2-0-0<br>1.15<br>1.15<br>YES<br>IRC201                                                                                                                          | 8/TPI2014                                                                                                                                                                                                                                                                                              | CSI<br>TC<br>BC<br>WB<br>Matrix-S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.77<br>0.37<br>0.14                                                                                                                                                                                                                                             | DEFL<br>Vert(LL)<br>Vert(CT)<br>Horz(CT)                                                                                                                                                                                                                                                                                               | in<br>n/a<br>n/a<br>0.00                 | (loc)<br>-<br>-<br>14 | l/defl<br>n/a<br>n/a<br>n/a | L/d<br>999<br>999<br>n/a              | PLATES<br>MT20<br>Weight: 96 lb | <b>GRIP</b><br>244/190<br>FT = 20% |
|                                                | 2x4 SP No.2<br>2x3 SPF No.2<br>Left 2x4 SP No.2<br>Left 2x4 SP No.2<br>Structural wood she<br>6-0-0 oc purlins, ex<br>Rigid ceiling directly<br>bracing.<br>1 Row at midpt<br>(size) 2=13-6-4<br>16=13-6-<br>22=13-6-<br>22=13-6-<br>Max Horiz 2=399 (LI<br>Max Uplift 2=-101 (L<br>15=-83 (L<br>19=-53 (L<br>23=-118)<br>Max Grav 2=258 (LI<br>15=124 (L)<br>15=124 (L)<br>15=124 (L) | athing directly applie<br>cept end verticals.<br>applied or 10-0-0 oc<br>13-14, 12-15<br>14=13-6-4, 15=13-6<br>4, 17=13-6-4, 15=13-6<br>4, 23=13-6-4, 21=13-<br>4, 23=13-6-4<br>C 9)<br>C 8), 14=-108 (LC 1<br>C 12), 16=-41 (LC 9)<br>C 12), 18=-50 (LC 12<br>C 12), 20=-52 (LC 12<br>C 12), 22=-54 (LC 12<br>LC 12) | W<br>d or<br>-4,<br>6-4,<br>6-4,<br>6-4,<br>2),<br>2),<br>2),<br>3)<br>(9),<br>(9),<br>(6)<br>9),<br>(7),<br>(7),<br>(7),<br>(7),<br>(7),<br>(7),<br>(7),<br>(7 | VEBS<br>OTES<br>Wind: ASCE<br>Vasd=91mp<br>Ke=1.00; Ca<br>exterior zonw<br>Exterior(2N)<br>right expose<br>for members<br>Lumber DOI<br>Truss desig<br>only. For st<br>see Standar<br>or consult qu<br>All plates ard<br>Gable requir<br>Gable requir<br>Gable studs<br>This truss ha<br>chord live lo | 2-23=-178/230, 22<br>21-22=-178/230, 22<br>21-22=-178/230, 2<br>19-20=-178/230, 1<br>17-18=-178/230, 1<br>12-15=-221/207, 1<br>10-17=-98/107, 9-1<br>6-20=-99/90, 5-21=<br>3-23=-179/231<br>7-16; Vult=115mp<br>h; TCDL=6.0psf; B<br>t. II; Exp C; Enclos<br>e and C-C Corner(<br>4-2-4 to 13-4-8 zo<br>d; end vertical left<br>and forces & MWU<br>=1.60 plate grip D<br>ned for wind loads<br>us exposed to wind<br>l ndustry Gable E<br>alified building des<br>e 1.5x4 MT20 unles<br>es continuous bott<br>spaced at 1-4-0 oc<br>as been designed f<br>ad nonconcurrent<br>vare assumed to be | 0-21=-1<br>8-19=-1<br>6-17=-1<br>4-15=-1<br>1-16=-1<br>18=-99/<br>99/99,<br>h (3-see<br>CDL=6.<br>ed; MW<br>3E) -0-1<br>ne; can<br>and rig<br>FRS for<br>OL=1.6<br>in the p<br>d (norm<br>nd Deta<br>signer a<br>ss other<br>om cho<br>:<br>or a 10.<br>vith any | 78/230,<br>78/230,<br>78/230,<br>78/230,<br>78/230,<br>03/114,<br>101, 7-19=-99/<br>4-22=-101/11<br>0psf; h=35ft;<br>(FRS (envelop<br>0-8 to 4-2-4,<br>ilever left and<br>the exposed;C<br>reactions sho<br>0<br>lane of the tru<br>is as applicat<br>s per ANSI/TF<br>wise indicated<br>d bearing.<br>0 psf bottom<br>other live load | 4,<br>c<br>wn;<br>ss<br>,<br>ble,<br>t1. | Inte<br>R80           | ernationa                   | al Resi                               | erenced standar<br>ndard        | MISSOFFE                           |
| FORCES<br>TOP CHORD                            | 23=160 (l<br>(lb) - Maximum Con<br>Tension<br>1-2=0/16, 2-3=-841/<br>4-5=-624/422, 5-6=-<br>7-9=-449/337, 9-10=<br>10-11=-316/282, 11<br>12-13=-127/149, 13                                                                                                                                                                                                                            | pression/Maximum<br>547, 3-4=-686/452,<br>566/394, 6-7=-508/3<br>384/308,<br>-12=-244/253,                                                                                                                                                                                                                            | 8)<br>65,<br>9)                                                                                                                                                 | <ul> <li>Provide mec</li> <li>bearing plate</li> <li>joint 14, 101</li> <li>lb uplift at joint 18, 531</li> <li>lb uplift at joint 18, 531</li> <li>lb uplift at joint 23.</li> <li>Beveled plate</li> </ul>                                                                                           | the pair.<br>thanical connectior<br>to capable of withsta<br>lb uplift at joint 2, 8<br>int 16, 63 lb uplift at<br>b uplift at joint 19, 8<br>int 21, 54 lb uplift at<br>e or shim required<br>truss chord at joint                                                                                                                                                                                                                                                                                                                                                                               | anding<br>33 lb up<br>t joint 1<br>52 lb up<br>t joint 2<br>to provi                                                                                                                                                                                             | 108 <sup>°</sup> Ib uplift at<br>lift at joint 15,<br>7, 50 Ib uplift a<br>lift at joint 20,<br>2 and 118 Ib u                                                                                                                                                                                                                         | 41<br>at<br>51<br>plift                  |                       |                             | A A A A A A A A A A A A A A A A A A A | PE-2022                         | ER<br>042259                       |

annes July 11,2023

16023 Swingley Ridge Rd. Chesterfield, MO 63017 314.434.1200 / MiTek-US.com

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)


| Job        | Truss | Truss Type | Qty | Ply | Roof - Osage Lot 85      |           |
|------------|-------|------------|-----|-----|--------------------------|-----------|
| P240347-01 | D1    | Monopitch  | 4   | 1   | Job Reference (optional) | 159435155 |

-0-10-8

Premier Building Supply (Springhill, KS), Spring Hills, KS - 66083,

Run: 8.63 S Apr 6 2023 Print: 8.630 S Apr 6 2023 MiTek Industries, Inc. Mon Jul 10 12:58:42 ID:J9uoFkXWrWxkhW?zklsl4bzDH1v-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC?f Page: 1

. 45



5-0-0

| Scale = 1:31.2 |  |
|----------------|--|

Plate Offsets (X, Y): [6:Edge,0-2-8]

| Loading         (psf)         Spacing         2-0-0         CSI         DEFL         in         (loc)         I/defl         I/d         PLATES           TCLL (roof)         25.0         Plate Grip DOL         1.15         TC         0.20         Vert(LL)         0.04         7-8         >99         240         MT20           TCDL         10.0         Lumber DOL         1.15         BC         0.28         Vert(CT)         -0.05         7-8         >999         180           BCLL         0.0         Rep Stress Incr         YES         WB         0.03         Horz(CT)         0.00         6         n/a         n/a | <b>GRIP</b><br>197/144 |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|
| TCLL (roof)         25.0         Plate Grip DOL         1.15         TC         0.20         Vert(LL)         0.04         7-8         >999         240         MT20           TCDL         10.0         Lumber DOL         1.15         BC         0.28         Vert(CT)         -0.05         7-8         >999         180                                                                                                                                                                                                                                                                                                                 |                        |
| TCDL 10.0 Lumber DOL 1.15 BC 0.28 Vert(CT) -0.05 7-8 >999 180                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                        |
| BCDL         10.0         Code         IRC2018/TPI2014         Matrix-S         Weight: 22 lb                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | FT = 20%               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2070                   |
| LUMBER         6)         Refer to girder(s) for truss to truss connections.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                        |
| TOP CHORD     2x4 SP No.2     7)     Provide mechanical connection (by others) of truss to                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                        |
| BOT CHORD 2x4 SP No.2 bearing plate capable of withstanding 60 lb uplift at joint                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                        |
| WEBS   2x3 SPF No.2   6 and 59 lb uplift at joint 2.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                        |
| OTHERS 2x3 SPF No.2 8) This truss is designed in accordance with the 2018                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                        |
| BRACING International Residential Code sections R502.11.1 and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |
| TOP CHORD Structural wood sheathing directly applied or R802.10.2 and referenced standard ANSI/TPI 1.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                        |
| 5-0-0 oc purlins, except end verticals. LOAD CASE(S) Standard                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |
| BOT CHORD Rigid ceiling directly applied or 10-0-0 oc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                        |
| bracing.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                        |
| REACTIONS (size) 2=0-3-0, 6= Mechanical                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                        |
| Max Horiz 2=123 (LC 9)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                        |
| Max Uplift 2=-59 (LC 12), 6=-60 (LC 12)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                        |
| Max Grav 2=292 (LC 1), 6=207 (LC 1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                        |
| FORCES (Ib) - Maximum Compression/Maximum                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                        |
| TOP CHORD 1-2=0/17, 2-3=-169/71, 3-4=-102/61,<br>4-5=-65/57, 5-6=-106/113                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                        |
| BOT CHORD 2-8=-67/74, 7-8=-67/74, 6-7=-67/74                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                        |
| WEBS 4-7=-36/69, 3-8=-48/105                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                        |
| NOTES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                        |
| 1) Wind: ASCE 7-16: Vult=115mph (3-second gust)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                        |
| Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=35ft;                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 5                      |
| Ke=1.00; Cat. II; Exp C; Enclosed; MWFRS (envelope)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | and the                |
| exterior zone and C-C Exterior(2E) -0-10-8 to 4-1-8,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | IISSO                  |
| Interior (1) 4-1-8 to 4-10-12 zone; cantilever left and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | N                      |
| right exposed ; end vertical left and right exposed;C-C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                        |
| for members and forces & MWFRS for reactions shown;                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                        |
| Lumber DOL=1.60 State grip DOL=1.60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                        |
| 2) Truss designed for wind loads in the plane of the truss                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 11 120                 |
| only. For studs exposed to wind (normal to the face),                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | XII TE VA              |
| see Standard Industry Gable End Details as applicable,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                        |
| or consult qualified building designer as per ANSI/TPI 1.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 12250 188              |
| 3) Gable studs spaced at 1-4-0 bc.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1203/28                |
| 4) This truss has been designed for a 10.0 psf bottom                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1 ONB                  |
| chord live load nonconcurrent with any other live loads.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ENA                    |
| <ul> <li>4) This truss has been designed for a 10.0 pst bottom<br/>chord live load nonconcurrent with any other live loads.</li> <li>5) Bearings are assumed to be: Joint 2 SP No.2 crushing<br/>capacity of 565 psi.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                             | - A                    |
| capacity of 565 psi.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                        |
| July                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 11,2023                |

Mittek 16023 Swingley Ridge Rd. Chesterfield, MO 63017 314.434.1200 / MiTek-US.com

| WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.                                                      |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not                                 |  |
| a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall                          |  |
| building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing                             |  |
| is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the                                      |  |
| fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) |  |
| and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)                                                |  |

| Job        | Truss | Truss Type | Qty | Ply | Roof - Osage Lot 85      |           |
|------------|-------|------------|-----|-----|--------------------------|-----------|
| P240347-01 | D2    | Monopitch  | 10  | 1   | Job Reference (optional) | 159435156 |

Run: 8.63 S Apr 6 2023 Print: 8.630 S Apr 6 2023 MiTek Industries, Inc. Mon Jul 10 12:58:42 ID:yf123P231X1sVXWTy3fc?NzDH2W-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1



5-0-0

| Scale = 1:30.9 | 9 | 1:30. | _ | cale |  |
|----------------|---|-------|---|------|--|
|----------------|---|-------|---|------|--|

| _          |             |                                                    |                                       |                 |          |      |          |      |       |        |      |               |             |
|------------|-------------|----------------------------------------------------|---------------------------------------|-----------------|----------|------|----------|------|-------|--------|------|---------------|-------------|
| Loa        | ading       | (psf)                                              | Spacing                               | 2-0-0           | CSI      |      | DEFL     | in   | (loc) | l/defl | L/d  | PLATES        | GRIP        |
| тс         | LL (roof)   | 25.0                                               | Plate Grip DOL                        | 1.15            | TC       | 0.48 | Vert(LL) | 0.09 | 2-4   | >603   | 240  | MT20          | 197/144     |
| тс         | DL          | 10.0                                               | Lumber DOL                            | 1.15            | BC       | 0.42 | Vert(CT) | 0.08 | 2-4   | >751   | 180  |               |             |
| BC         | LL          | 0.0                                                | Rep Stress Incr                       | YES             | WB       | 0.00 | Horz(CT) | 0.00 | 4     | n/a    | n/a  |               |             |
| BC         | DL          | 10.0                                               | Code                                  | IRC2018/TPI2014 | Matrix-P |      |          |      |       |        |      | Weight: 19 lb | FT = 20%    |
|            | MBER        |                                                    | •                                     |                 |          |      |          |      |       |        |      |               |             |
|            | P CHORD     | 2x4 SP No.2                                        |                                       |                 |          |      |          |      |       |        |      |               |             |
|            | T CHORD     |                                                    |                                       |                 |          |      |          |      |       |        |      |               |             |
| WE         |             | 2x3 SPF No.2                                       |                                       |                 |          |      |          |      |       |        |      |               |             |
|            | ACING       | 2/0 011 110.2                                      |                                       |                 |          |      |          |      |       |        |      |               |             |
|            | P CHORD     | Structural wood she                                | athing directly appli                 | ed or           |          |      |          |      |       |        |      |               |             |
| 10         | FUNCT       | 5-0-0 oc purlins, ex                               |                                       |                 |          |      |          |      |       |        |      |               |             |
| BO         | T CHORD     | Rigid ceiling directly                             |                                       | c               |          |      |          |      |       |        |      |               |             |
| 00         | 1 OHORD     | bracing.                                           |                                       | 0               |          |      |          |      |       |        |      |               |             |
| RE         | ACTIONS     | (size) 2=0-3-0, 4                                  | 4= Mechanical                         |                 |          |      |          |      |       |        |      |               |             |
|            |             | Max Horiz 2=123 (LC                                | C 9)                                  |                 |          |      |          |      |       |        |      |               |             |
|            |             | Max Uplift 2=-59 (LC                               |                                       |                 |          |      |          |      |       |        |      |               |             |
|            |             | Max Grav 2=292 (L0                                 | C 1), 4=207 (LC 1)                    |                 |          |      |          |      |       |        |      |               |             |
| FO         | RCES        | (lb) - Maximum Corr                                | npression/Maximum                     |                 |          |      |          |      |       |        |      |               |             |
|            |             | Tension                                            |                                       |                 |          |      |          |      |       |        |      |               |             |
|            | P CHORD     | 1-2=0/17, 2-3=-167/                                | 114, 3-4=-167/225                     |                 |          |      |          |      |       |        |      |               |             |
| BO         | T CHORD     | 2-4=-54/59                                         |                                       |                 |          |      |          |      |       |        |      |               |             |
| NO         | TES         |                                                    |                                       |                 |          |      |          |      |       |        |      |               |             |
| 1)         |             | CE 7-16; Vult=115mph                               |                                       |                 |          |      |          |      |       |        |      |               |             |
|            |             | nph; TCDL=6.0psf; BC                               |                                       |                 |          |      |          |      |       |        |      |               |             |
|            |             | Cat. II; Exp C; Enclose                            |                                       | pe)             |          |      |          |      |       |        |      |               |             |
|            |             | one and C-C Exterior(2                             | · · · · · · · · · · · · · · · · · · · |                 |          |      |          |      |       |        |      |               |             |
|            |             | 4-1-8 to 4-10-12 zone<br>sed ; end vertical left a |                                       | oroh            |          |      |          |      |       |        |      |               |             |
|            |             | ht exposed;C-C for m                               |                                       |                 |          |      |          |      |       |        |      | 000           | TID         |
|            |             | or reactions shown; Lu                             |                                       |                 |          |      |          |      |       |        |      | F. OF         | MIC         |
|            | grip DOL=   |                                                    |                                       |                 |          |      |          |      |       |        |      | TATE OF I     | 0.00        |
| 2)         |             | has been designed fo                               | r a 10.0 psf bottom                   |                 |          |      |          |      |       |        | 6    | AT            | N SY        |
| ,          |             | load nonconcurrent wi                              |                                       | ds.             |          |      |          |      |       |        | B    | ∽⁄ NATHA      | ANIEL YC V  |
| 3)         | Bearings a  | are assumed to be: Joi                             | int 2 SP No.2 crushi                  | ng              |          |      |          |      |       |        | R    | FO FO         | X           |
|            | capacity of | f 565 psi.                                         |                                       |                 |          |      |          |      |       |        | alt  | H             |             |
| 4)         |             | irder(s) for truss to trus                         |                                       |                 |          |      |          |      |       |        | WI   | Alling        | 1 2         |
| 5)         |             | echanical connection                               |                                       |                 |          |      |          |      |       |        | MA   | N/IN/an M     | BER         |
|            |             | ate capable of withstar                            | nding 87 lb uplift at j               | oint            |          |      |          |      |       |        | · Wg | O PE-2022     |             |
| <b>C</b> ) |             | b uplift at joint 2.                               |                                       |                 |          |      |          |      |       |        | N    | PE-2022       | 1042239 199 |
| 6)         |             | is designed in accordanal Residential Code s       |                                       | nd              |          |      |          |      |       |        | Y    | 1 Pa          | LANA A      |
|            |             | and referenced stand                               |                                       | inu             |          |      |          |      |       |        | 12   | E'SSIONA      | TENS        |
| 10         |             | Standard                                           |                                       |                 |          |      |          |      |       |        |      | <b>WINA</b>   | L E         |

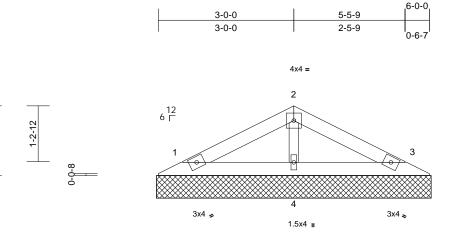
LOAD CASE(S) Standard

July 11,2023

Course

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)




| Job        | Truss | Truss Type | Qty | Ply | Roof - Osage Lot 85      |           |
|------------|-------|------------|-----|-----|--------------------------|-----------|
| P240347-01 | PB1   | Piggyback  | 2   | 1   | Job Reference (optional) | 159435157 |

1-6-8

Run: 8.63 S Apr 6 2023 Print: 8.630 S Apr 6 2023 MiTek Industries, Inc. Mon Jul 10 12:58:42 ID:9wUnxfypw9GahpSGfCwjgdzczGe-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

6-0-0





Scale = 1:25.5

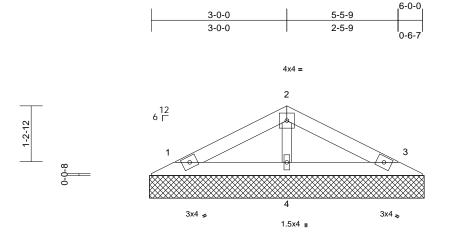
| Scale = 1.25.5                                                                                                               |                                                                                                                                                                                                   |                                                                                                                                               |                            |                                                                                                                                                                                                    |                                                                                                                                                                                              |                                                                                                            |                                                                                                                    |      |       |        |     |               |                       |
|------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|------|-------|--------|-----|---------------|-----------------------|
| Loading                                                                                                                      | (psf)                                                                                                                                                                                             | Spacing                                                                                                                                       | 2-0-0                      |                                                                                                                                                                                                    | CSI                                                                                                                                                                                          |                                                                                                            | DEFL                                                                                                               | in   | (loc) | l/defl | L/d | PLATES        | GRIP                  |
| TCLL (roof)                                                                                                                  | 25.0                                                                                                                                                                                              | Plate Grip DOL                                                                                                                                | 1.15                       |                                                                                                                                                                                                    | тс                                                                                                                                                                                           | 0.13                                                                                                       | Vert(LL)                                                                                                           | n/a  | -     | n/a    | 999 | MT20          | 244/190               |
| TCDL                                                                                                                         | 10.0                                                                                                                                                                                              | Lumber DOL                                                                                                                                    | 1.15                       |                                                                                                                                                                                                    | BC                                                                                                                                                                                           | 0.06                                                                                                       | Vert(TL)                                                                                                           | n/a  | -     | n/a    | 999 |               |                       |
| BCLL                                                                                                                         | 0.0                                                                                                                                                                                               | Rep Stress Incr                                                                                                                               | YES                        |                                                                                                                                                                                                    | WB                                                                                                                                                                                           | 0.03                                                                                                       | Horiz(TL)                                                                                                          | 0.00 | 3     | n/a    | n/a |               |                       |
| BCDL                                                                                                                         | 10.0                                                                                                                                                                                              | Code                                                                                                                                          | IRC20                      | 18/TPI2014                                                                                                                                                                                         | Matrix-P                                                                                                                                                                                     |                                                                                                            |                                                                                                                    |      |       |        |     | Weight: 18 lb | FT = 20%              |
|                                                                                                                              | 6-0-0 oc purlins.<br>Rigid ceiling directly<br>bracing.                                                                                                                                           | 3=6-1-0, 4=6-1-0<br>12)<br>5 12), 3=-34 (LC 13),                                                                                              | 8<br>d or 9<br>1<br>4=-7 L | <ul> <li>capacity of 5</li> <li>Provide mec<br/>bearing plate</li> <li>1, 34 lb uplift</li> <li>This truss is<br/>International<br/>R802.10.2 ai</li> <li>See Standar<br/>Detail for Co</li> </ul> | hanical connection<br>a capable of withs<br>a ti joint 3 and 7 I<br>designed in acco<br>Residential Code<br>nd referenced sta<br>d Industry Piggyb<br>nnection to base<br>fied building desi | on (by oth<br>standing 3<br>b uplift at<br>ordance w<br>e sections<br>andard AN<br>back Trus<br>truss as a | ers) of truss to<br>30 lb uplift at ju<br>joint 4.<br>ith the 2018<br>\$ R502.11.1 a<br>NSI/TPI 1.<br>s Connection | oint |       |        |     |               |                       |
| FORCES                                                                                                                       | (lb) - Maximum Com<br>Tension                                                                                                                                                                     | pression/Maximum                                                                                                                              |                            |                                                                                                                                                                                                    |                                                                                                                                                                                              |                                                                                                            |                                                                                                                    |      |       |        |     |               |                       |
| TOP CHORD                                                                                                                    | 1-2=-55/46, 2-3=-55                                                                                                                                                                               | /52                                                                                                                                           |                            |                                                                                                                                                                                                    |                                                                                                                                                                                              |                                                                                                            |                                                                                                                    |      |       |        |     |               |                       |
| BOT CHORD                                                                                                                    | 1-4=-1/25, 3-4=-1/25                                                                                                                                                                              | 5                                                                                                                                             |                            |                                                                                                                                                                                                    |                                                                                                                                                                                              |                                                                                                            |                                                                                                                    |      |       |        |     |               |                       |
| WEBS                                                                                                                         | 2-4=-150/135                                                                                                                                                                                      |                                                                                                                                               |                            |                                                                                                                                                                                                    |                                                                                                                                                                                              |                                                                                                            |                                                                                                                    |      |       |        |     |               |                       |
| NOTES                                                                                                                        |                                                                                                                                                                                                   |                                                                                                                                               |                            |                                                                                                                                                                                                    |                                                                                                                                                                                              |                                                                                                            |                                                                                                                    |      |       |        |     |               |                       |
| this design<br>2) Wind: ASC<br>Vasd=91m<br>Ke=1.00; C<br>exterior zor<br>and right e<br>exposed;C<br>reactions s<br>DOL=1.60 | d roof live loads have<br>E 7-16; Vult=115mph<br>ph; TCDL=6.0psf; BC<br>cat. II; Exp C; Enclose<br>ne and C-C Exterior(2<br>xposed ; end vertical I<br>-C for members and fr<br>hown; Lumber DOL= | (3-second gust)<br>DL=6.0psf; h=35ft;<br>d; MWFRS (envelop<br>E) zone; cantilever le<br>eft and right<br>orces & MWFRS for<br>1.60 plate grip | e)                         |                                                                                                                                                                                                    |                                                                                                                                                                                              |                                                                                                            |                                                                                                                    |      |       |        |     | STE OF J      | MISSOUR<br>ANIEL<br>X |

- Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) Gable requires continuous bottom chord bearing.
- 5) Gable studs spaced at 1-4-0 oc.
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.



WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSITPTI Quality Criteria, and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcscomponents.com)

16023 Swingley Ridge Rd. Chesterfield, MO 63017 314.434.1200 / MiTek-US.com


| Job        | Truss | Truss Type | Qty | Ply | Roof - Osage Lot 85      |           |
|------------|-------|------------|-----|-----|--------------------------|-----------|
| P240347-01 | PB2   | Piggyback  | 22  | 1   | Job Reference (optional) | 159435158 |

1-6-8

Run: 8.63 S Apr 6 2023 Print: 8.630 S Apr 6 2023 MiTek Industries, Inc. Mon Jul 10 12:58:43 ID:9wUnxfypw9GahpSGfCwjgdzczGe-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

6-0-0



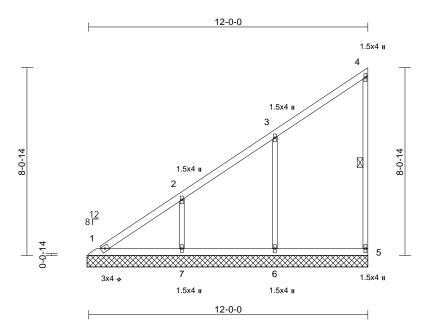


Scale = 1:25.5

| 30ale = 1.23.3                                        |                                                                                                                                                                                                                                                              |                                                                                                        |                                                                                                                                                                                  |                                                                                                                                                                                                                |                                                                                                          |                                                                                                                   |                          |                      |                             |                          |                                 |                                    |
|-------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|--------------------------|----------------------|-----------------------------|--------------------------|---------------------------------|------------------------------------|
| Loading<br>TCLL (roof)<br>TCDL<br>BCLL<br>BCDL        | (psf)<br>25.0<br>10.0<br>0.0<br>10.0                                                                                                                                                                                                                         | Spacing<br>Plate Grip DOL<br>Lumber DOL<br>Rep Stress Incr<br>Code                                     | 2-0-0<br>1.15<br>1.15<br>YES<br>IRC2018/TPI2014                                                                                                                                  | <b>CSI</b><br>TC<br>BC<br>WB<br>Matrix-P                                                                                                                                                                       | 0.13<br>0.06<br>0.03                                                                                     | DEFL<br>Vert(LL)<br>Vert(TL)<br>Horiz(TL)                                                                         | in<br>n/a<br>n/a<br>0.00 | (loc)<br>-<br>-<br>3 | l/defl<br>n/a<br>n/a<br>n/a | L/d<br>999<br>999<br>n/a | PLATES<br>MT20<br>Weight: 18 lb | <b>GRIP</b><br>244/190<br>FT = 20% |
|                                                       | 6-0-0 oc purlins.<br>Rigid ceiling directly<br>bracing.                                                                                                                                                                                                      | 2 12), 3=-34 (LC 13),                                                                                  | capacity of<br>8) Provide me<br>bearing pla<br>1, 34 Ib upli<br>d or<br>9) This truss is<br>Internationa<br>R802.10.2 i<br>10) See Standa<br>Detail for C<br>consult qua<br>4=-7 | chanical connection<br>e capable of withs<br>ft at joint 3 and 7 lb<br>s designed in accou-<br>ll Residential Code<br>and referenced sta<br>rd Industry Piggyb<br>connection to base<br>lified building design | on (by oth<br>tanding 3<br>b uplift at<br>rdance w<br>e sections<br>indard AN<br>pack Trus<br>truss as a | ers) of truss t<br>30 lb uplift at ji<br>joint 4.<br>ith the 2018<br>\$ R502.11.1 a<br>ISI/TPI 1.<br>s Connection | oint                     |                      |                             |                          |                                 |                                    |
| this design<br>2) Wind: ASC<br>Vasd=91m<br>Ke=1.00; ( | (lb) - Maximum Com<br>Tension<br>1-2=-55/46, 2-3=-55<br>1-4=-1/25, 3-4=-1/25<br>2-4=-150/135<br>ed roof live loads have<br>b.<br>CE 7-16; Vult=115mph<br>nph; TCDL=6.0psf; BC<br>Cat. II; Exp C; Enclose<br>Cat. II; Exp C; Enclose<br>me and C-C Exterior/2 | ,<br>/52<br>5<br>been considered for<br>(3-second gust)<br>(DL=6.0psf; h=35ft;<br>ed; MWFRS (enveloped | /                                                                                                                                                                                |                                                                                                                                                                                                                |                                                                                                          |                                                                                                                   |                          |                      |                             |                          | TE OF I                         | MISSO                              |

- exterior zone and C-C Exterior(2E) zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 3) Truss designed for wind loads in the plane of the truss
- only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1. Gable requires continuous bottom chord bearing. 4)
- 5) Gable studs spaced at 2-0-0 oc.
- 6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.






 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.
 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not besign value for use only with with twit even connectors. This design is based only upon parameters shown, and is for an individual building designer must verify the applicability of design parameters and properly incorporate this design into the overall building designer must verify the applicability of design parameters and properly incorporate this design into the overall building designer. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcscomponents.com)

| Job        | Truss | Truss Type | Qty | Ply | Roof - Osage Lot 85      |           |
|------------|-------|------------|-----|-----|--------------------------|-----------|
| P240347-01 | V1    | Valley     | 2   | 1   | Job Reference (optional) | 159435159 |

Run: 8.63 S Apr 6 2023 Print: 8.630 S Apr 6 2023 MiTek Industries, Inc. Mon Jul 10 12:58:43 ID:3dyyPIGdvpWQ0?o0jPG2wlyGxRL-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1



Scale = 1:49.5

| Loading                               | (psf)                                                                                                                        | Spacing                                                         | 2-0-0        |               | CSI<br>TC                                  | 0.05         | DEFL                 | in         | (loc) | l/defl     | L/d        | PLATES<br>MT20 | GRIP     |
|---------------------------------------|------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------|--------------|---------------|--------------------------------------------|--------------|----------------------|------------|-------|------------|------------|----------------|----------|
| TCLL (roof)<br>TCDL                   | 25.0<br>10.0                                                                                                                 | Plate Grip DOL<br>Lumber DOL                                    | 1.15<br>1.15 |               | BC                                         | 0.25<br>0.13 | Vert(LL)<br>Vert(TL) | n/a<br>n/a | -     | n/a<br>n/a | 999<br>999 | WI120          | 244/190  |
| BCLL                                  | 0.0                                                                                                                          | Rep Stress Incr                                                 | YES          |               | WB                                         | 0.13         | Horiz(TL)            | 0.00       | - 5   | n/a        | 999<br>n/a |                |          |
| BCDL                                  | 10.0                                                                                                                         | Code                                                            |              | 8/TPI2014     | Matrix-S                                   | 0.20         | TION2(TL)            | 0.00       | 5     | 11/a       | n/a        | Weight: 50 lb  | FT = 20% |
| LUMBER<br>TOP CHORD                   | 2x4 SP No.2                                                                                                                  | •                                                               | 5)           |               | as been designed t<br>ad nonconcurrent     |              |                      | ds         |       |            |            |                |          |
| BOT CHORD                             | 2x4 SP No.2                                                                                                                  |                                                                 | 6)           |               | are assumed to be                          |              |                      |            |       |            |            |                |          |
| WEBS                                  | 2x3 SPF No.2                                                                                                                 |                                                                 | - /          | capacity of 5 |                                            |              | 5                    |            |       |            |            |                |          |
| OTHERS                                | 2x3 SPF No.2                                                                                                                 |                                                                 | 7)           | Provide mec   | hanical connection                         | n (by oth    | ers) of truss t      | 0          |       |            |            |                |          |
| BRACING                               |                                                                                                                              |                                                                 |              |               | e capable of withst                        |              |                      | oint       |       |            |            |                |          |
| TOP CHORD                             | Structural wood she<br>6-0-0 oc purlins, ex                                                                                  |                                                                 | ed or 8)     | This truss is | ift at joint 6 and 17<br>designed in accor | dance w      | ith the 2018         |            |       |            |            |                |          |
| BOT CHORD                             | Rigid ceiling directly<br>bracing.                                                                                           | applied or 10-0-0 o                                             |              | R802.10.2 a   | Residential Code<br>nd referenced star     |              |                      | ind        |       |            |            |                |          |
| WEBS                                  | 1 Row at midpt                                                                                                               | 4-5                                                             | LC           | DAD CASE(S)   | Standard                                   |              |                      |            |       |            |            |                |          |
| REACTIONS                             | (size) 1=12-0-15<br>7=12-0-15                                                                                                | 5, 5=12-0-15, 6=12-0<br>5                                       | 0-15,        |               |                                            |              |                      |            |       |            |            |                |          |
|                                       | Max Horiz 1=335 (LC                                                                                                          | C 12)                                                           |              |               |                                            |              |                      |            |       |            |            |                |          |
|                                       | Max Uplift 5=-62 (LC<br>7=-171 (L                                                                                            |                                                                 | 2),          |               |                                            |              |                      |            |       |            |            |                |          |
|                                       | Max Grav 1=183 (LC                                                                                                           |                                                                 |              |               |                                            |              |                      |            |       |            |            |                |          |
| FORCES                                | (lb) - Maximum Com<br>Tension                                                                                                | pression/Maximum                                                |              |               |                                            |              |                      |            |       |            |            |                |          |
| TOP CHORD                             | 1-2=-377/251, 2-3=-<br>4-5=-116/84                                                                                           | 228/156, 3-4=-104/5                                             | 51,          |               |                                            |              |                      |            |       |            |            |                |          |
| BOT CHORD                             | 1-7=-1/2, 6-7=-1/2, 5                                                                                                        | 5-6=-1/2                                                        |              |               |                                            |              |                      |            |       |            |            |                |          |
| WEBS                                  | 3-6=-327/235, 2-7=-                                                                                                          | 299/221                                                         |              |               |                                            |              |                      |            |       |            |            |                |          |
| NOTES                                 |                                                                                                                              |                                                                 |              |               |                                            |              |                      |            |       |            |            | STA            | ADD      |
| Vasd=91m<br>Ke=1.00; (<br>exterior zo | CE 7-16; Vult=115mph<br>nph; TCDL=6.0psf; BC<br>Cat. II; Exp C; Enclose<br>one and C-C Exterior(2<br>) 5-7-13 to 12-0-1 zone | DL=6.0psf; h=35ft;<br>d; MWFRS (envelop<br>E) 0-7-13 to 5-7-13; |              |               |                                            |              |                      |            |       |            |            | STATE OF I     |          |
|                                       | sed ; end vertical left e                                                                                                    |                                                                 |              |               |                                            |              |                      |            |       |            | ØA         |                | AT A     |
|                                       |                                                                                                                              |                                                                 |              |               |                                            |              |                      |            |       |            | 11/1       |                |          |

members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 2) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable,

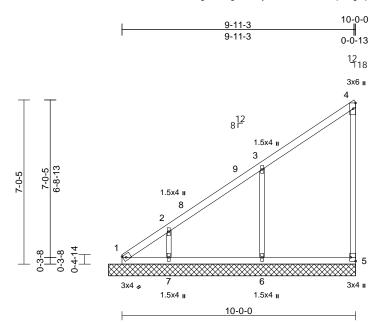
or consult qualified building designer as per ANSI/TPI 1. Gable requires continuous bottom chord bearing. 3)

4)́ Gable studs spaced at 4-0-0 oc.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent colleges with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)



July 11,2023


MBER

PE-2022042259

SSIONAL EN

| Job        | Truss | Truss Type | Qty | Ply | Roof - Osage Lot 85      |           |
|------------|-------|------------|-----|-----|--------------------------|-----------|
| P240347-01 | V2    | Valley     | 2   | 1   | Job Reference (optional) | 159435160 |

Run: 8.63 S Apr 6 2023 Print: 8.630 S Apr 6 2023 MiTek Industries, Inc. Mon Jul 10 12:58:43 ID: XHTUUT twhg M5Z xmg HzAJ4LyG xRs-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?ff



Scale = 1:49.3

Plate Offsets (X, Y): [5:Edge,0-2-8]

|                                                                                 |                                                                                                                                                                                                     |                                                                                                                                       | -        |                                 |                                      |              |                  |      |       |        |     |               |          |
|---------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|----------|---------------------------------|--------------------------------------|--------------|------------------|------|-------|--------|-----|---------------|----------|
| Loading                                                                         | (psf)                                                                                                                                                                                               | Spacing                                                                                                                               | 2-0-0    |                                 | CSI                                  |              | DEFL             | in   | (loc) | l/defl | L/d | PLATES        | GRIP     |
| TCLL (roof)                                                                     | 25.0                                                                                                                                                                                                | Plate Grip DOL                                                                                                                        | 1.15     |                                 | TC                                   | 0.60         | Vert(LL)         | n/a  | -     | n/a    | 999 | MT20          | 244/190  |
| TCDL                                                                            | 10.0                                                                                                                                                                                                | Lumber DOL                                                                                                                            | 1.15     |                                 | BC                                   | 0.20         | Vert(TL)         | n/a  | -     | n/a    | 999 |               |          |
| BCLL                                                                            | 0.0                                                                                                                                                                                                 | Rep Stress Incr                                                                                                                       | YES      |                                 | WB                                   | 0.14         | Horiz(TL)        | 0.00 | 5     | n/a    | n/a |               |          |
| BCDL                                                                            | 10.0                                                                                                                                                                                                | Code                                                                                                                                  | IRC2018  | /TPI2014                        | Matrix-S                             |              |                  |      |       |        |     | Weight: 42 lb | FT = 20% |
| LUMBER<br>TOP CHORD                                                             | 2x4 SP No.2                                                                                                                                                                                         |                                                                                                                                       | 5)       |                                 | s been designed<br>ad nonconcurrent  |              |                  | ds   |       |        |     |               |          |
| BOT CHORD                                                                       | 2x4 SP No.2<br>2x4 SP No.2                                                                                                                                                                          |                                                                                                                                       | 6)       |                                 | are assumed to b                     |              |                  |      |       |        |     |               |          |
| WEBS                                                                            | 2x3 SPF No.2                                                                                                                                                                                        |                                                                                                                                       | -,       | capacity of 5                   |                                      |              |                  |      |       |        |     |               |          |
| OTHERS                                                                          | 2x3 SPF No.2                                                                                                                                                                                        |                                                                                                                                       | 7)       |                                 | hanical connectio                    | on (by oth   | ers) of truss t  | to   |       |        |     |               |          |
| BRACING                                                                         |                                                                                                                                                                                                     |                                                                                                                                       |          | bearing plate                   | capable of withs                     | standing 7   | 7 lb uplift at j | oint |       |        |     |               |          |
| TOP CHORD                                                                       | Structural wood shea<br>6-0-0 oc purlins, exc                                                                                                                                                       |                                                                                                                                       | ed or    | 1, 59 lb uplift uplift at joint | at joint 5, 176 lb<br>7.             | uplift at jo | bint 6 and 14    | 8 lb |       |        |     |               |          |
| BOT CHORD                                                                       | Rigid ceiling directly<br>bracing.                                                                                                                                                                  |                                                                                                                                       | 8)       |                                 | designed in acco<br>Residential Code |              |                  | ind  |       |        |     |               |          |
|                                                                                 | (size) 1=10-6-15<br>7=10-6-15<br>Max Horiz 1=285 (LC<br>Max Uplift 1=-77 (LC<br>6=-176 (L<br>Max Grav 1=164 (LC                                                                                     | C 9)<br>5 10), 5=-59 (LC 9),<br>C 12), 7=-148 (LC 1                                                                                   | 2)       | R802.10.2 a<br>AD CASE(S)       | nd referenced sta<br>Standard        | andard AN    | ISI/TPI 1.       |      |       |        |     |               |          |
| FORCES                                                                          | (lb) - Maximum Com<br>Tension                                                                                                                                                                       |                                                                                                                                       |          |                                 |                                      |              |                  |      |       |        |     |               |          |
| TOP CHORD                                                                       | 1-2=-503/322, 2-3=-3<br>4-5=-129/138                                                                                                                                                                | 372/260, 3-4=-177/1                                                                                                                   | 52,      |                                 |                                      |              |                  |      |       |        |     |               |          |
| BOT CHORD                                                                       | 1-7=-133/145, 6-7=-                                                                                                                                                                                 |                                                                                                                                       | 45       |                                 |                                      |              |                  |      |       |        |     |               |          |
| WEBS                                                                            | 3-6=-344/303, 2-7=-2                                                                                                                                                                                | 249/215                                                                                                                               |          |                                 |                                      |              |                  |      |       |        |     |               | ~        |
| NOTES                                                                           |                                                                                                                                                                                                     |                                                                                                                                       |          |                                 |                                      |              |                  |      |       |        |     | A             | all      |
| Vasd=91m<br>Ke=1.00; C<br>exterior zo<br>Interior (1)<br>exposed ;<br>members a | E 7-16; Vult=115mph<br>ph; TCDL=6.0psf; BC<br>Cat. II; Exp C; Enclose<br>ne and C-C Exterior(2<br>5-9-1 to 10-6-1 zone;<br>end vertical left and rig<br>and forces & MWFRS<br>DL=1.60 plate grip DO | DL=6.0psf; h=35ft;<br>d; MWFRS (envelop<br>E) 0-9-1 to 5-9-1,<br>cantilever left and ri<br>ght exposed;C-C for<br>for reactions shown | ght<br>; |                                 |                                      |              |                  |      |       | -      |     | STATE OF J    | X        |

2) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

Gable requires continuous bottom chord bearing. 3)

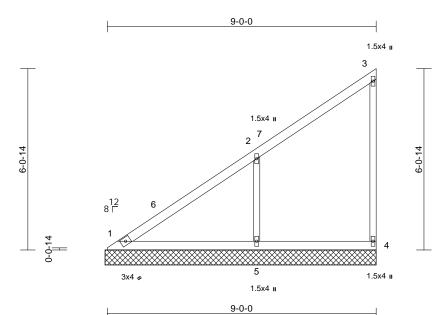
4) Gable studs spaced at 4-0-0 oc.



 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.
 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not Design value for use only with with every connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcscomponents.com)



PE-2022042259


SIONAL ET

Page: 1

| Job        | Truss | Truss Type | Qty | Ply | Roof - Osage Lot 85      |           |
|------------|-------|------------|-----|-----|--------------------------|-----------|
| P240347-01 | V3    | Valley     | 2   | 1   | Job Reference (optional) | 159435161 |

Run: 8,63 S Apr 6 2023 Print: 8,630 S Apr 6 2023 MiTek Industries, Inc. Mon Jul 10 12:58:43 ID:7inLsRr1OlzWhT15crccTiyGxRv-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1



Scale = 1:38.6

| Loading<br>TCLL (roof)                                                                               | (psf)<br>25.0                                                                                                                                                                                                                               | Spacing<br>Plate Grip DOL                                                                         | 2-0-0<br>1.15                                                                                                         | CSI<br>TC                                                                                                                       | 0.70                                                                      | DEFL<br>Vert(LL)                                                                  | in<br>n/a   | (loc)<br>- | l/defl<br>n/a | L/d<br>999 | PLATES<br>MT20 | <b>GRIP</b><br>244/190 |
|------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------|-----------------------------------------------------------------------------------|-------------|------------|---------------|------------|----------------|------------------------|
| TCDL<br>BCLL<br>BCDL                                                                                 | 10.0<br>0.0<br>10.0                                                                                                                                                                                                                         | Lumber DOL<br>Rep Stress Incr<br>Code                                                             | 1.15<br>YES<br>IRC2018/TPI2014                                                                                        | BC<br>WB<br>Matrix-S                                                                                                            | 0.18<br>0.10                                                              | Vert(TL)<br>Horiz(TL)                                                             | n/a<br>0.00 | 4          | n/a<br>n/a    | 999<br>n/a | Weight: 36 lb  | FT = 20%               |
| LUMBER<br>TOP CHORD<br>BOT CHORD<br>WEBS<br>OTHERS<br>BRACING<br>TOP CHORD<br>BOT CHORD<br>REACTIONS | 2x4 SP No.2<br>2x4 SP No.2<br>2x3 SPF No.2<br>2x3 SPF No.2<br>Structural wood she<br>6-0-0 oc purlins, ex<br>Rigid ceiling directly<br>bracing.<br>(size) 1=9-0-15,<br>Max Horiz 1=242 (LC<br>Max Uplift 1=-4 (LC 12)<br>Max Grav 1=194 (LC | cept end verticals.<br>applied or 10-0-0 or<br>4=9-0-15, 5=9-0-15<br>C 9)<br>8), 4=-50 (LC 9), 5= | capacity of<br>7) Provide m<br>bearing pl<br>1, 50 lb up<br>8) This truss<br>Internation<br>R802.10.2<br>c LOAD CASE( | echanical connec<br>ate capable of witi<br>lift at joint 4 and 2<br>is designed in acc<br>al Residential Co<br>and referenced s | tion (by oth<br>hstanding 4<br>209 lb uplift<br>cordance w<br>de sections | ers) of truss t<br>b uplift at jo<br>at joint 5.<br>ith the 2018<br>5 R502.11.1 a | pint        |            |               |            |                |                        |

5=506 (LC 19) FORCES (lb) - Maximum Compression/Maximum Tension TOP CHORD 1-2=-388/267, 2-3=-172/145, 3-4=-134/142 BOT CHORD 1-5=-116/126, 4-5=-116/126 WEBS 2-5=-399/340

## NOTES

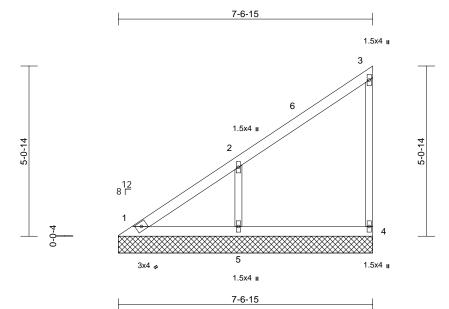
- Wind: ASCE 7-16; Vult=115mph (3-second gust) 1) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=35ft; Ke=1.00; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) 0-5-12 to 5-5-12, Interior (1) 5-5-12 to 9-0-1 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1. 3) Gable requires continuous bottom chord bearing.

Gable studs spaced at 4-0-0 oc. 4)

- 5) This truss has been designed for a 10.0 psf bottom
- chord live load nonconcurrent with any other live loads.

 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.
 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not beigh valid for use only with with with sets outputs into design is based only door parameters shown, and is for an individual dualing component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria**, and **DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcscomponents.com)








| Job        | Truss | Truss Type | Qty | Ply | Roof - Osage Lot 85      |           |
|------------|-------|------------|-----|-----|--------------------------|-----------|
| P240347-01 | V4    | Valley     | 2   | 1   | Job Reference (optional) | 159435162 |

## Run: 8.63 S Apr 6 2023 Print: 8.630 S Apr 6 2023 MiTek Industries, Inc. Mon Jul 10 12:58:43 ID:i76DDQo95qbyq0JWxj3vr4yGxRy-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1



Scale = 1:34.3

| Loading<br>TCLL (roof)<br>TCDL<br>BCLL<br>BCDL                                                       | (psf)<br>25.0<br>10.0<br>0.0<br>10.0                                                                                                                                                                           | Spacing<br>Plate Grip DOL<br>Lumber DOL<br>Rep Stress Incr<br>Code                                                          | 2-0-0<br>1.15<br>1.15<br>YES<br>IRC2018 | 8/TPI2014                                                                                   | CSI<br>TC<br>BC<br>WB<br>Matrix-P                                                                                      | 0.45<br>0.13<br>0.08                                                      | <b>DEFL</b><br>Vert(LL)<br>Vert(TL)<br>Horiz(TL)                                     | in<br>n/a<br>n/a<br>0.00 | (loc)<br>-<br>-<br>4 | l/defl<br>n/a<br>n/a<br>n/a | L/d<br>999<br>999<br>n/a | PLATES<br>MT20<br>Weight: 29 lb | <b>GRIP</b><br>244/190<br>FT = 20% |
|------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|---------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------|--------------------------------------------------------------------------------------|--------------------------|----------------------|-----------------------------|--------------------------|---------------------------------|------------------------------------|
| LUMBER<br>TOP CHORD<br>BOT CHORD<br>WEBS<br>OTHERS<br>BRACING<br>TOP CHORD<br>BOT CHORD<br>REACTIONS | 2x4 SP No.2<br>2x3 SPF No.2<br>2x3 SPF No.2<br>Structural wood she<br>6-0-0 oc purlins, ex<br>Rigid ceiling directly<br>bracing.<br>(size) 1=7-6-15,<br>Max Horiz 1=199 (LC<br>Max Uplift 1=-16 (LC<br>(LC 12) | cept end verticals.<br>applied or 10-0-0 oc<br>4=7-6-15, 5=7-6-15<br>C 9)<br>S 8), 4=-46 (LC 9), 5=<br>C 20), 4=158 (LC 19) | ; LC<br>=-172                           | capacity of<br>Provide me<br>bearing plat<br>1, 46 lb upli<br>This truss is<br>Internationa | chanical connec<br>e capable of with<br>ft at joint 4 and 1<br>designed in acc<br>l Residential Co<br>and referenced s | tion (by oth<br>hstanding f<br>172 lb uplift<br>cordance w<br>de sections | ers) of truss t<br>6 lb uplift at j<br>at joint 5.<br>ith the 2018<br>\$ R502.11.1 a | joint                    |                      |                             |                          |                                 |                                    |
| FORCES                                                                                               | (lb) - Maximum Com<br>Tension                                                                                                                                                                                  | pression/Maximum                                                                                                            |                                         |                                                                                             |                                                                                                                        |                                                                           |                                                                                      |                          |                      |                             |                          |                                 |                                    |

Tension TOP CHORD 1-2=-353/236, 2-3=-165/135, 3-4=-138/151 BOT CHORD 1-5=-96/105, 4-5=-96/105 WEBS 2-5=-330/305

### NOTES

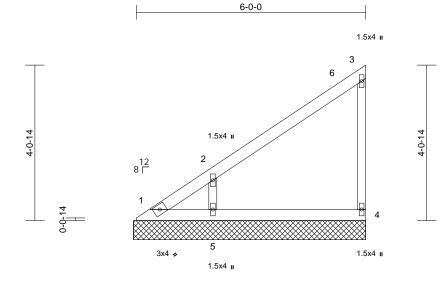
- Wind: ASCE 7-16; Vult=115mph (3-second gust) 1) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=35ft; Ke=1.00; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) 0-5-12 to 5-5-12, Interior (1) 5-5-12 to 7-6-1 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1. 3) Gable requires continuous bottom chord bearing.

Gable studs spaced at 4-0-0 oc. 4)

- 5) This truss has been designed for a 10.0 psf bottom
- chord live load nonconcurrent with any other live loads.



July 11,2023


16023 Swingley Ridge Rd. Chesterfield MO 63017 314.434.1200 / MiTek-US.com



| Job        | Truss | Truss Type | Qty | Ply | Roof - Osage Lot 85      |           |
|------------|-------|------------|-----|-----|--------------------------|-----------|
| P240347-01 | V5    | Valley     | 2   | 1   | Job Reference (optional) | 159435163 |

## Run: 8.63 S Apr 6 2023 Print: 8.630 S Apr 6 2023 MiTek Industries, Inc. Mon Jul 10 12:58:44 ID:mk\_SpknvZDLEbi98pI1RmfyGxS\_-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1



#### Scale = 1:30.2

| Loading     | (psf)                                                                                                                                                                                                                 | Spacing                                                                   | 2-0-0                           |                                                                                                    | CSI                                                                                                         |                                                                          | DEFL                                                                              | in    | (loc) | l/defl | L/d | PLATES        | GRIP     |
|-------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------|---------------------------------|----------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------|-----------------------------------------------------------------------------------|-------|-------|--------|-----|---------------|----------|
| TCLL (roof) | 25.0                                                                                                                                                                                                                  | Plate Grip DOL                                                            | 1.15                            |                                                                                                    | TC                                                                                                          | 0.28                                                                     | Vert(LL)                                                                          | n/a   | -     | n/a    | 999 | MT20          | 244/190  |
| TCDL        | 10.0                                                                                                                                                                                                                  | Lumber DOL                                                                | 1.15                            |                                                                                                    | BC                                                                                                          | 0.12                                                                     | Vert(TL)                                                                          | n/a   | -     | n/a    | 999 |               |          |
| BCLL        | 0.0                                                                                                                                                                                                                   | Rep Stress Incr                                                           | YES                             |                                                                                                    | WB                                                                                                          | 0.07                                                                     | Horiz(TL)                                                                         | 0.00  | 4     | n/a    | n/a |               |          |
| BCDL        | 10.0                                                                                                                                                                                                                  | Code                                                                      | IRC2018/                        | TPI2014                                                                                            | Matrix-P                                                                                                    |                                                                          |                                                                                   |       |       |        |     | Weight: 22 lb | FT = 20% |
|             | 2x4 SP No.2<br>2x3 SPF No.2<br>2x3 SPF No.2<br>2x3 SPF No.2<br>Structural wood shea<br>6-0-0 oc purlins, exx<br>Rigid ceiling directly<br>bracing.<br>(size) 1=6-0-15,<br>Max Horiz 1=157 (LC<br>Max Uplift 1=-56 (LC | cept end verticals.<br>applied or 10-0-0 oc<br>4=6-0-15, 5=6-0-15<br>C 9) | 7)  <br>8) <sup>-</sup><br>d or | capacity of 5<br>Provide mec<br>bearing plate<br>1, 41 lb uplift<br>This truss is<br>International | nanical connec<br>capable of wit<br>at joint 4 and 1<br>designed in ac<br>Residential Co<br>nd referenced s | tion (by oth<br>hstanding 5<br>56 lb uplift<br>cordance w<br>de sections | ers) of truss t<br>6 lb uplift at j<br>at joint 5.<br>ith the 2018<br>R502.11.1 a | joint |       |        |     |               |          |

6-0-0

#### 5=-156 (LC 12) 1=83 (LC 9), 4=159 (LC 19), 5=378 Max Grav (LC 19) FORCES (lb) - Maximum Compression/Maximum Tension TOP CHORD 1-2=-331/216, 2-3=-155/120, 3-4=-135/154

BOT CHORD 1-5=-76/82, 4-5=-76/82 WEBS 2-5=-298/299

- NOTES
- Wind: ASCE 7-16; Vult=115mph (3-second gust) 1) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=35ft; Ke=1.00; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) 0-5-12 to 5-5-12, Interior (1) 5-5-12 to 6-0-1 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1. 3) Gable requires continuous bottom chord bearing.

4) Gable studs spaced at 4-0-0 oc.

- 5)
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

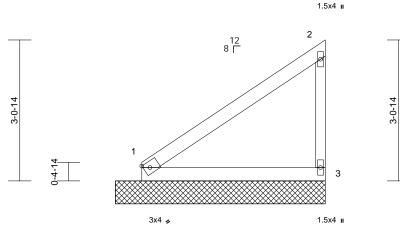




 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.
 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not beigh valid for use only with with with sets outputs into design is based only door parameters shown, and is for an individual dualing component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria**, and **DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcscomponents.com)



| Job        | Truss | Truss Type | Qty | Ply | Roof - Osage Lot 85      |           |
|------------|-------|------------|-----|-----|--------------------------|-----------|
| P240347-01 | V6    | Valley     | 2   | 1   | Job Reference (optional) | 159435164 |


4-0-0

Premier Building Supply (Springhill, KS), Spring Hills, KS - 66083,

### Run: 8,63 S Apr 6 2023 Print: 8,630 S Apr 6 2023 MiTek Industries, Inc. Mon Jul 10 12:58:44 ID:MAIKAik0HIzfkFQZ89Tk80yGxS1-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1





| 4-0-0 |  |
|-------|--|
|       |  |

| 00010 = 1.20.1 |       |                 |                                 |                  |            |               |      |       |        |     |               |          |
|----------------|-------|-----------------|---------------------------------|------------------|------------|---------------|------|-------|--------|-----|---------------|----------|
| Loading        | (psf) | Spacing         | 2-0-0                           | csi              |            | DEFL          | in   | (loc) | l/defl | L/d | PLATES        | GRIP     |
| TCLL (roof)    | 25.0  | Plate Grip DOL  | 1.15                            | тс               | 0.31       | Vert(LL)      | n/a  | -     | n/a    | 999 | MT20          | 244/190  |
| TCDL           | 10.0  | Lumber DOL      | 1.15                            | BC               | 0.17       | Vert(TL)      | n/a  | -     | n/a    | 999 |               |          |
| BCLL           | 0.0   | Rep Stress Incr | YES                             | WB               | 0.00       | Horiz(TL)     | 0.00 | 3     | n/a    | n/a |               |          |
| BCDL           | 10.0  | Code            | IRC2018/TPI2014                 | Matrix-P         |            |               |      |       |        |     | Weight: 15 lb | FT = 20% |
|                |       | -               |                                 | -                |            | :4h 4h a 2010 |      |       |        |     |               |          |
| LUMBER         |       |                 | <ol><li>This truss is</li></ol> | s designed in ac | cordance w | iin the 2018  |      |       |        |     |               |          |

International Residential Code sections R502.11.1 and

R802.10.2 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard

| LUMBER |  |  | J | Μ | в | Е | R |
|--------|--|--|---|---|---|---|---|
|--------|--|--|---|---|---|---|---|

Scale - 1.25 1

| TOP CHORD | 2x4 |
|-----------|-----|
| BOT CHORD | 2x4 |
| WEBS      | 2x3 |

| WEBS      | 2x3 SPF I               | No.2                               |
|-----------|-------------------------|------------------------------------|
| BRACING   |                         |                                    |
| TOP CHORD |                         | wood sheathing directly applied or |
|           | 4-7-5 oc p              | ourlins, except end verticals.     |
| BOT CHORD | Rigid ceili<br>bracing. | ing directly applied or 10-0-0 oc  |
|           | bracing.                |                                    |
| REACTIONS | (size)                  | 1=4-6-15, 3=4-6-15                 |
|           | Max Horiz               | 1=114 (LC 9)                       |
|           | Max Uplift              | 1=-15 (LC 12), 3=-58 (LC 12)       |
|           | Max Grav                | 1=169 (LC 1), 3=186 (LC 19)        |
| FORCES    | (lb) - Max              | imum Compression/Maximum           |
|           |                         |                                    |

SP No.2

SP No.2

Tension TOP CHORD 1-2=-163/120, 2-3=-154/185 1-3=-55/60

# BOT CHORD

NOTES

- Wind: ASCE 7-16; Vult=115mph (3-second gust) 1) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=35ft; Ke=1.00; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- Truss designed for wind loads in the plane of the truss 2) only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- Gable requires continuous bottom chord bearing. 3)

Gable studs spaced at 4-0-0 oc. 4)

This truss has been designed for a 10.0 psf bottom 5) chord live load nonconcurrent with any other live loads. All bearings are assumed to be SP No.2 crushing 6)

capacity of 565 psi. 7)

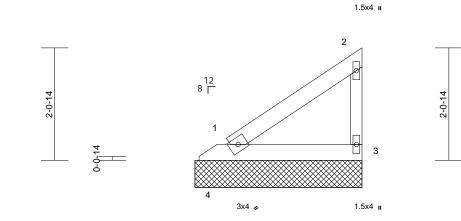
Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 15 lb uplift at joint 1 and 58 lb uplift at joint 3.



July 11,2023

 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.
 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not beigh valid for use only with with with sets outputs into design is based only door parameters shown, and is for an individual dualing component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria**, and **DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcscomponents.com)




| Job        | Truss | Truss Type | Qty | Ply | Roof - Osage Lot 85      |           |
|------------|-------|------------|-----|-----|--------------------------|-----------|
| P240347-01 | V7    | Valley     | 2   | 1   | Job Reference (optional) | 159435165 |

3-0-0

3-0-0

Premier Building Supply (Springhill, KS), Spring Hills, KS - 66083,

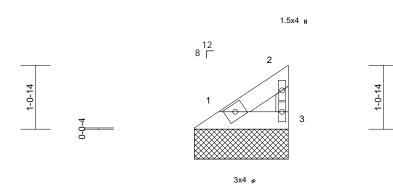
Run: 8.63 S Apr 6 2023 Print: 8.630 S Apr 6 2023 MiTek Industries, Inc. Mon Jul 10 12:58:44 ID:xbdBYgi8\_Nb4tni\_T1w1WOyGxS4-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1



| Scale - | = 1:21.2 |
|---------|----------|
|         |          |

| Loading                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | (psf)                                                                                                                                                  | Spacing                                                                            | 2-0-0           | CSI      |      | DEFL      | in   | (loc) | l/defl | L/d | PLATES        | GRIP     |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------|-----------------|----------|------|-----------|------|-------|--------|-----|---------------|----------|
| TCLL (roof)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 25.0                                                                                                                                                   | Plate Grip DOL                                                                     | 1.15            | TC       | 0.11 | Vert(LL)  | n/a  | -     | n/a    | 999 | MT20          | 244/190  |
| TCDL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 10.0                                                                                                                                                   | Lumber DOL                                                                         | 1.15            | BC       | 0.05 | Vert(TL)  | n/a  | -     | n/a    | 999 |               |          |
| BCLL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.0                                                                                                                                                    | Rep Stress Incr                                                                    | YES             | WB       | 0.00 | Horiz(TL) | 0.00 | 3     | n/a    | n/a |               |          |
| BCDL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 10.0                                                                                                                                                   | Code                                                                               | IRC2018/TPI2014 | Matrix-P |      |           |      |       |        |     | Weight: 10 lb | FT = 20% |
| LUMBER       7)       Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 39 lb uplift at joint 3 and 47 lb uplift at joint 4.         BOT CHORD       2x4 SP No.2       7)       Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 39 lb uplift at joint 3 and 47 lb uplift at joint 4.         WEBS       2x3 SPF No.2       8)       This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.         BOT CHORD       Rigid ceiling directly applied or 10-0-0 oc bracing.       Ta3-0-15, 3=3-0-15, 4=3-0-15 Max Horiz 4=72 (LC 9) Max Uplift 3=-39 (LC 12), 4=-47 (LC 3) Max Grav 1=143 (LC 3), 3=110 (LC 19),       Standard |                                                                                                                                                        |                                                                                    |                 |          |      |           |      |       |        |     |               |          |
| FORCES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 4=-14 (LC                                                                                                                                              | ,                                                                                  |                 |          |      |           |      |       |        |     |               |          |
| FORCES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | (lb) - Maximum Com<br>Tension                                                                                                                          | ipression/ivlaximum                                                                |                 |          |      |           |      |       |        |     |               |          |
| TOP CHORD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1-2=-105/77, 2-3=-9                                                                                                                                    | 9/121                                                                              |                 |          |      |           |      |       |        |     |               |          |
| BOT CHORD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1-4=-160/107, 1-3=-                                                                                                                                    | 35/38                                                                              |                 |          |      |           |      |       |        |     |               |          |
| NOTES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                        |                                                                                    |                 |          |      |           |      |       |        |     |               |          |
| Vasd=91m<br>Ke=1.00; C<br>exterior zo<br>and right e                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | CE 7-16; Vult=115mph<br>hph; TCDL=6.0psf; BC<br>Cat. II; Exp C; Enclose<br>ne and C-C Exterior(2<br>xposed ; end vertical I<br>C-C for members and for | DL=6.0psf; h=35ft;<br>d; MWFRS (envelop<br>E) zone; cantilever le<br>eft and right |                 |          |      |           |      |       |        |     |               |          |

- reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1. Gable requires continuous bottom chord bearing.
- 3)
- 4) Gable studs spaced at 4-0-0 oc. 5)
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 6) All bearings are assumed to be SP No.2 crushing capacity of 565 psi.




 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.
 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not besign value for use only with with twit even connectors. This design is based only upon parameters shown, and is for an individual building designer must verify the applicability of design parameters and properly incorporate this design into the overall building designer must verify the applicability of design parameters and properly incorporate this design into the overall building designer. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcscomponents.com)



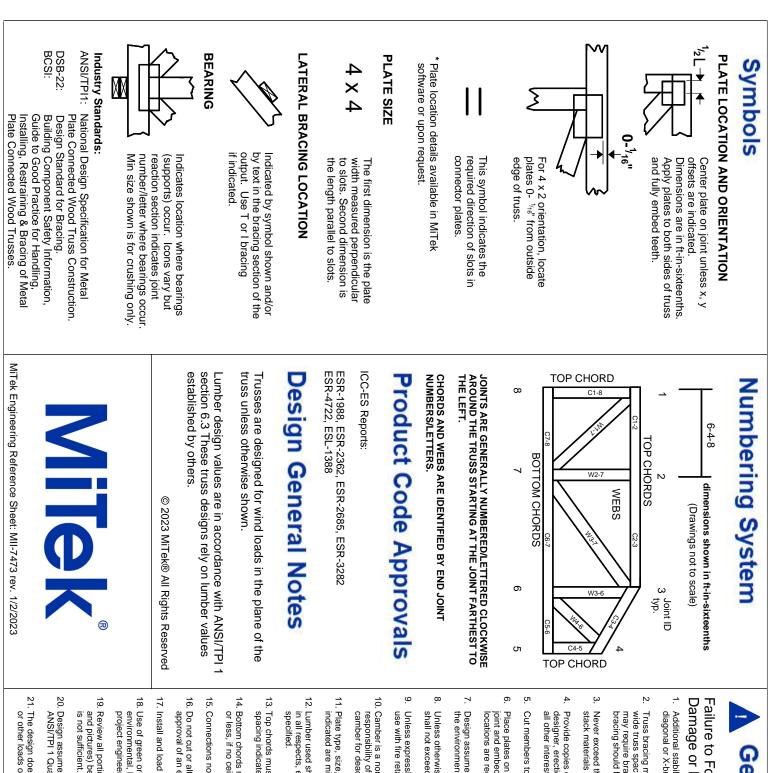
| Job        | Truss | Truss Type | Qty | Ply | Roof - Osage Lot 85      |           |
|------------|-------|------------|-----|-----|--------------------------|-----------|
| P240347-01 | V8    | Valley     | 2   | 1   | Job Reference (optional) | 159435166 |

Run: 8.63 S Apr 6 2023 Print: 8.630 S Apr 6 2023 MiTek Industries, Inc. Mon Jul 10 12:58:44 ID:3pNgiJfdw84fOAODEBr5MYyGxS8-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1



1.5x4 🛚




1-6-15

| Scale = | 1:19 | 9.3 |
|---------|------|-----|
|---------|------|-----|

| Scale = 1:19.3                                 |                                      |                                                                           |                                                 |                                   |                      |                                                  |                          |                      |                             |                          |                                |                                    |
|------------------------------------------------|--------------------------------------|---------------------------------------------------------------------------|-------------------------------------------------|-----------------------------------|----------------------|--------------------------------------------------|--------------------------|----------------------|-----------------------------|--------------------------|--------------------------------|------------------------------------|
| Loading<br>TCLL (roof)<br>TCDL<br>BCLL<br>BCDL | (psf)<br>25.0<br>10.0<br>0.0<br>10.0 | <b>Spacing</b><br>Plate Grip DOL<br>Lumber DOL<br>Rep Stress Incr<br>Code | 2-0-0<br>1.15<br>1.15<br>YES<br>IRC2018/TPI2014 | CSI<br>TC<br>BC<br>WB<br>Matrix-P | 0.02<br>0.01<br>0.00 | <b>DEFL</b><br>Vert(LL)<br>Vert(TL)<br>Horiz(TL) | in<br>n/a<br>n/a<br>0.00 | (loc)<br>-<br>-<br>3 | l/defl<br>n/a<br>n/a<br>n/a | L/d<br>999<br>999<br>n/a | PLATES<br>MT20<br>Weight: 5 lb | <b>GRIP</b><br>244/190<br>FT = 20% |
|                                                |                                      |                                                                           |                                                 |                                   |                      |                                                  |                          |                      | MISSOLANIEL<br>XX           |                          |                                |                                    |
| <u></u>                                        |                                      |                                                                           |                                                 |                                   |                      |                                                  |                          |                      |                             |                          |                                |                                    |

Antitek Bandward State Reference Bandward State Reference Bandward Ref

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)



General Safety Notes

Failure to Follow Could Cause Property Damage or Personal Injury

- 1. Additional stability bracing for truss system, e.g. diagonal or X-bracing, is always required. See BCSI.
- Truss bracing must be designed by an engineer. For wide truss spacing, individual lateral braces themselves may require bracing, or alternative Tor1 bracing should be considered.
- Never exceed the design loading shown and never stack materials on inadequately braced trusses.
- Provide copies of this truss design to the building designer, erection supervisor, property owner and all other interested parties.
- 5. Cut members to bear tightly against each other
- Place plates on each face of truss at each joint and embed fully. Knots and wane at joint locations are regulated by ANSI/TPI 1.
- Design assumes trusses will be suitably protected from the environment in accord with ANSI/TPI 1.
- Unless otherwise noted, moisture content of lumber shall not exceed 19% at time of fabrication.
- Unless expressly noted, this design is not applicable for use with fire retardant, preservative treated, or green lumber.
- Camber is a non-structural consideration and is the responsibility of truss fabricator. General practice is to camber for dead load deflection.
- 11. Plate type, size, orientation and location dimensions indicated are minimum plating requirements.
- 12. Lumber used shall be of the species and size, and in all respects, equal to or better than that specified.
- Top chords must be sheathed or purlins provided at spacing indicated on design.
- 14. Bottom chords require lateral bracing at 10 ft. spacing, or less, if no ceiling is installed, unless otherwise noted.
- 15. Connections not shown are the responsibility of others.
- Do not cut or alter truss member or plate without prior approval of an engineer.
- 17. Install and load vertically unless indicated otherwise.
- Use of green or treated lumber may pose unacceptable environmental, health or performance risks. Consult with project engineer before use.
- Review all portions of this design (front, back, words and pictures) before use. Reviewing pictures alone is not sufficient.
- 20. Design assumes manufacture in accordance with ANSI/TPI 1 Quality Criteria.
- 21. The design does not take into account any dynamic or other loads other than those expressly stated.