

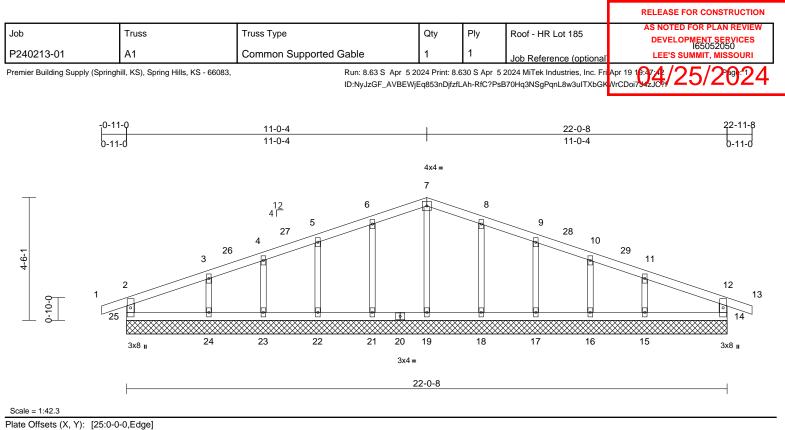
RE: P240213-01 - Roof - HR Lot 185	MiTek, Inc.
Site Information:	16023 Swingley Ridge Rd.
Project Customer: Clayton Properties Project Nam	e: Basswood - Farmhouse 3Cg14.434.1200
Lot/Block: 185 Subdivis	sion: Hawthorne Ridge
Model: Address: 1605 SW Arborway Terr City: Lee's Summit State: M	
General Truss Engineering Criteria & Design Load Drawings Show Special Loading Conditions):	ds (Individual Truss Design
Design Code: IRC2018/TPI2014	Design Program: MiTek 20/20 8.6
Wind Code: ASCE 7-16 Wind Speed: 115 mph	Design Method: MWFRS (Envelope)/C-C hybrid Wind ASCE 7-16
Roof Load: 45.0 psf	Floor Load: N/A psf

Mean Roof Height (feet): 35

Exposure Category: C

No.	Seal#	Truss Name	Date
1	l65052050	A1	4/22/24
	l65052051	A2	4/22/24
3	165052052	A3	4/22/24
5	l65052053	B1	4/22/24
	l65052054	B2	4/22/24
6	l65052055	B3	4/22/24
7	l65052056	C1	4/22/24
123456789	165052057	Č2	4/22/24
	165052058	C3	4/22/24
10	l65052059 l65052060	C1 C2 C3 D1 D2	4/22/24 4/22/24
11 12 13	165052061	D3	4/22/24
14	l65052062	E1	4/22/24
	l65052063	E2	4/22/24
15	l65052064	E3	4/22/24
16	l65052065	E4	4/22/24
16 17 18	165052066 165052067	Ē5 R1	4/22/24 4/22/24
19	165052068	V1	4/22/24
20	l65052069	V2	4/22/24
21	l65052070	V3	4/22/24
21 22 23	l65052071 l65052072	V4 V5	4/22/24 4/22/24
24	l65052073	V6	4/22/24
25	l65052074	V7	4/22/24
26	165052075	V8	4/22/24

The truss drawing(s) referenced above have been prepared by MiTek USA, Inc. under my direct supervision based on the parameters provided by Premier Building Supply (Springhill, KS)20300 W 207th Street.


Truss Design Engineer's Name: Sevier, Scott

My license renewal date for the state of Missouri is December 31, 2025.

IMPORTANT NOTE: The seal on these truss component designs is a certification that the engineer named is licensed in the jurisdiction(s) identified and that the designs comply with ANSI/TPI 1. These designs are based upon parameters shown (e.g., loads, supports, dimensions, shapes and design codes), which were given to MiTek or TRENCO. Any project specific information included is for MiTek's or TRENCO's customers file reference purpose only, and was not taken into account in the preparation of these designs. MiTek or TRENCO has not independently verified the applicability of the design parameters or the designs for any particular building. Before use, the building designer should verify applicability of design parameters and properly incorporate these designs into the overall building design per ANSI/TPI 1, Chapter 2.

Sevier, Scott

Spacing 2-0-0 CSI DEFL l/defl L/d PLATES GRIP Loading (psf) in (loc) TCLL (roof) 25.0 Plate Grip DOL 1.15 TC 0.15 Vert(LL) 999 MT20 197/144 n/a n/a Snow (Pf) 25.0 Lumber DOL 1.15 BC 0.06 Vert(CT) n/a n/a 999 TCDL Rep Stress Incr WB 0.07 Horz(CT) 10.0 YES 0.00 14 n/a n/a BCLL 0.0 IRC2018/TPI2014 Matrix-R Code BCDL 10.0 Weight: 89 lb FT = 20% WEBS LUMBER 7-19=-114/0, 6-21=-221/134, 5-22=-207/129, 12) All bearings are assumed to be SP No.2 crushing 4-23=-192/83, 3-24=-185/126, capacity of 565 psi. TOP CHORD 2x4 SP No.2 8-18=-221/134, 9-17=-207/129 2x4 SP No.2 13) Provide mechanical connection (by others) of truss to BOT CHORD 10-16=-192/82, 11-15=-185/123 bearing plate capable of withstanding 71 lb uplift at joint WEBS 2x4 SP No.2 14, 66 lb uplift at joint 25, 51 lb uplift at joint 21, 52 lb OTHERS 2x3 SPF No.2 NOTES uplift at joint 22, 41 lb uplift at joint 23, 81 lb uplift at joint Unbalanced roof live loads have been considered for BRACING 1) 24, 51 lb uplift at joint 18, 51 lb uplift at joint 17, 42 lb this design. TOP CHORD Structural wood sheathing directly applied or uplift at joint 16 and 77 lb uplift at joint 15. Wind: ASCE 7-16; Vult=115mph (3-second gust) 6-0-0 oc purlins, except end verticals. 2) 14) This truss is designed in accordance with the 2018 BOT CHORD Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=35ft; Rigid ceiling directly applied or 6-0-0 oc International Residential Code sections R502.11.1 and Ke=1.00; Cat. II; Exp C; Enclosed; MWFRS (envelope) bracing. R802.10.2 and referenced standard ANSI/TPI 1. exterior zone and C-C Corner(3E) 0-1-0 to 5-1-0, REACTIONS (size) 14=22-0-8, 15=22-0-8, 16=22-0-8, Exterior(2N) 5-1-0 to 12-0-4, Corner(3R) 12-0-4 to LOAD CASE(S) Standard 17=22-0-8, 18=22-0-8, 19=22-0-8, 17-0-4, Exterior(2N) 17-0-4 to 23-11-8 zone; cantilever 21=22-0-8, 22=22-0-8, 23=22-0-8, left and right exposed ; end vertical left and right 24=22-0-8, 25=22-0-8 Max Horiz 25=-54 (LC 21) exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip Max Uplift 14=-71 (LC 13), 15=-77 (LC 17), DOL=1.60 16=-42 (LC 13), 17=-51 (LC 17), Truss designed for wind loads in the plane of the truss 3) 18=-51 (LC 17), 21=-51 (LC 16), only. For studs exposed to wind (normal to the face), 22=-52 (LC 16), 23=-41 (LC 12), see Standard Industry Gable End Details as applicable, 24=-81 (LC 16), 25=-66 (LC 12) or consult qualified building designer as per ANSI/TPI 1. Max Grav 14=211 (LC 1), 15=242 (LC 24), 4) TCLL: ASCE 7-16; Pr=25.0 psf (roof LL: Lum DOL=1.15 16=226 (LC 24), 17=249 (LC 24), Plate DOL=1.15); Pf=25.0 psf (Lum DOL=1.15 Plate 18=260 (LC 24), 19=154 (LC 23), OF MISSO DOL=1.15); Is=1.0; Rough Cat C; Fully Exp.; Ce=0.9; 21=260 (LC 23), 22=249 (LC 23), Cs=1.00; Ct=1.10 23=226 (LC 23), 24=241 (LC 23), 5) Unbalanced snow loads have been considered for this 25=211 (LC 1) desian. SCOTT M. FORCES (Ib) - Maximum Compression/Maximum 6) This truss has been designed for greater of min roof live SEVIER Tension load of 12.0 psf or 2.00 times flat roof load of 25.0 psf on TOP CHORD 1-2=0/40, 2-3=-70/57, 3-4=-50/94, overhangs non-concurrent with other live loads 4-5=-60/128, 5-6=-72/164, 6-7=-85/200, All plates are 2x4 MT20 unless otherwise indicated. 7) 7-8=-85/194, 8-9=-73/150, 9-10=-60/114, Gable requires continuous bottom chord bearing. NUMBER 8) NOTESSIONAL 10-11=-51/80, 11-12=-62/45, 12-13=0/40, Truss to be fully sheathed from one face or securely 9) 12-14=-185/125, 2-25=-185/131 PE-2001018807 braced against lateral movement (i.e. diagonal web). BOT CHORD 24-25=-31/59, 23-24=-31/59, 22-23=-31/59, 10) Gable studs spaced at 2-0-0 oc. 21-22=-31/59, 19-21=-31/59, 18-19=-31/59, 11) This truss has been designed for a 10.0 psf bottom 17-18=-31/59, 16-17=-31/59, 15-16=-31/59, E chord live load nonconcurrent with any other live loads. 14-15=-31/59 April 22,2024

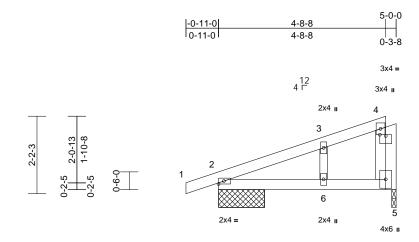
WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSUTPIT Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

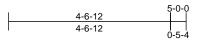
16023 Swingley Ridge Rd. Chesterfield, MO 63017 314.434.1200 / MiTek-US.com

											RELEASE		N
Job	Truss		Truss Type		Qty	Ply	R	oof - HR	Lot 185			ED FOR PLAN REVIEW OPMENT SERVICES 165052051	
P240213-01	A2		Common		4	1	Jo	b Refere	ence (optio	onal		I65052051 SUMMIT, MISSOURI	
Premier Building Sup	pply (Springhill, KS),	Spring Hills, KS - 66083,									Apr 19 19:47:48 WrCDoi794zJC?4	25/2024	4
				ID:19tivi 1 b / d	GUMINLOPKIN	SGIZILAG-RI	C?PSB/UF	пазиздра	IUT SM3011	XDGr	WICD0I/542JO/1		-
	-0-11-0	4-11-3	I	11-0-4	1		17-1-	5		1	22-0-8	22-11-8	
	0-11-0	4-11-3		6-1-1			6-1-2			1	4-11-3	0-11-0	
					4x6	-							
			1 <u>2</u> 4 [4								
T			4x4 =										
			15	\square	//	\backslash	\geq		16	4x4 =			
~		14	3							5	17		
4-6-1	7x8	-	- Et				$\langle \rangle$		$ \rightarrow $	Ð			
	2	A						. /				6 7	
0-10-0	13			¥	•			¥⁄	/				
⊥ ò⊥			ž	11	10			9					
			12	3x4 =	3x4 =			3x4 =				7x8 =	
	⊢	4-2-0	7-2-4	-	14-10-	1		_			22-0-8		
Scale = 1:42.3	·	4-2-0	3-0-4	Ĩ	7-8-0			I			7-2-4	'	
	Y): [2:Edge,0-2-0]], [3:0-0-0,0-0-0], [8:Ec	lge,0-2-0]										—
Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP	—
TCLL (roof) Snow (Pf)	25.0 25.0	Plate Grip DOL Lumber DOL	1.15 1.15	TC BC		Vert(LL) Vert(CT)	-0.11 -0.26	9-11 9-11		240 180	MT20	197/144	
TCDL	10.0	Rep Stress Incr	YES	WB		Horz(CT)	0.05	8		n/a			
BCLL BCDL	0.0 10.0	Code	IRC2018/TPI2014	Matrix-S							Weight: 93 lb	FT = 20%	
LUMBER		•	2) Wind: A	SCE 7-16; Vult=11	5mph (3-seco	nd gust)							
	x4 SP 1650F 1.5E x4 SP No.2			mph; TCDL=6.0ps ; Cat. II; Exp C; Er			pe)						
WEBS 2x		ept* 8-6,13-2:2x4 SP I		zone and C-C Exte 1) 5-1-0 to 12-0-4,									
		eathing directly applied	17-0-4, Ì	nterior (1) 17-0-4 t exposed ; end ve	o 23-11-8 zór	e; cantileve	er left						
		except end verticals. y applied or 8-7-7 oc	exposed	;C-C for members	and forces &	MWFRS fo	r						
	racing. Row at midpt	5-8, 3-13	DOL=1.6		·	• •							
REACTIONS (siz	ze) 8=0-3-8, ax Horiz 13=-54 (I	12=0-6-8, 13=0-3-8	Plate DC	SCE 7-16; Pr=25.0)L=1.15); Pf=25.0	psf (Lum DOI	.=1.15 Plate	е						
Ma	ax Uplift 8=-224 (I	LC 13), 13=-232 (LC 1	 Cs=1.00 	l5); ls=1.0; Rough ; Ct=1.10	Cat C; Fully I	Exp.; Ce=0.	9;						
Ма	13=1093 (13=1004	(LC 24), 12=154 (LC 7 (LC 23)	^{),} 4) Unbalan design.	ced snow loads ha	ive been cons	idered for t	his						
· · · · · · · · · · · · · · · · · · ·	 b) - Maximum Cor ension 	mpression/Maximum		s has been desigr 2.0 psf or 2.00 tim									
		/139, 3-4=-1640/468, =-384/138, 6-7=0/40,	overhan	gs non-concurrent s has been desigr	with other live	loads.							
6-	-8=-341/224, 2-13 2-13=-451/1749, 1	=-306/224	chord liv	e load nonconcurr	ent with any o	ther live loa	ads.						
9-	-11=-258/1203, 8-	9=-424/1853	capacity	ngs are assumed t of 565 psi.		-						an	
4-		=-396/209, 4-9=-57/57		mechanical conne plate capable of wi							E OF I	MISSO	
5- NOTES	-9=-396/210			nd 232 lb uplift at jo s is designed in ac		h the 2018				A	124	N S S	
 Unbalanced ro this design. 	oof live loads have	e been considered for		onal Residential C .2 and referenced			and			R	SCOT SEV		
this design.				(S) Standard						alo	1 4	0 1	
										Į.	NUM	Jenny	<u>}</u>
										N.	PE-2001		
										Y	18SIL	ENGL	
											SIONA	L	

Anril 22 55 April 22,2024

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)


											RELEAS	E FOR CONSTRUCTION
Job	Truss		Truss Type		Qty	Ply	R	oof - HR	Lot 185			ED FOR PLAN REVIEW OPMENT SERVICES 165052052
P240213-01	A3		Common		1	1	Jo	b Refere	ence (op	tional		SUMMIT, MISSOURI
Premier Building Supply (Sp	ringhill, KS), S	pring Hills, KS - 66083,									Apr 19 19:47:48 WrCDoi794zJC?1	25/2024
	0-11-0 0-11-0	4-11-3 4-11-3		11-0-4 6-1-1			<u>17-1-</u> 6-1-2				<u>22-0-8</u> 4-11-3	22-11-8 0-11-0
					4x6							
			1 <u>2</u> 4 [4							
\top			4x4 =	/								
			15			\backslash			16	4x4 :	-	
<u>~</u>		14	3				、 、			5	17	
4-6-1	7x8 =									Æ		
1	2											6 7
-0-10-0	13				•							
0			2 12	11	10			9				\bigotimes
			12	3x4 =	3x4 =			3x4 =				7x8 =
		4.0.0	7.0.4									
		<u>4-2-0</u> 4-2-0	3-0-4		<u>14-10-</u> 7-8-0	ł					22-0-8 7-2-4	
Scale = 1:42.3												
Plate Offsets (X, Y): [2:	Edge,0-2-0],	[5:0-0-0,0-0-0], [8:Ed	lge,0-2-0]									
Loading TCLL (roof)	(psf) 25.0	Spacing Plate Grip DOL	2-0-0 1.15	CSI TC	0.68	DEFL Vert(LL)	in -0.11	(loc) 9-11	l/defl >999	L/d 240	PLATES MT20	GRIP 197/144
Snow (Pf) TCDL	25.0 10.0	Lumber DOL Rep Stress Incr	1.15 YES	BC WB		Vert(CT) Horz(CT)	-0.26 0.05	9-11 8	>830 n/a	180 n/a		
BCLL BCDL	0.0	Code	IRC2018/TPI201		0.01		0.00	Ū		n, a	Weight: 93 lb	FT = 20%
	10.0		2) Wind: /	ASCE 7-16; Vult=115r	mph (3-seco	nd aust)	· · · ·				Weight. 33 lb	11 - 2076
	1650F 1.5E		Vasd=	01mph; TCDL=6.0psf; 0; Cat. II; Exp C; Encl	BCDL=6.0	osf; h=35f						
	No.2 *Exce	pt* 13-2,8-6:2x4 SP	exterio	zone and C-C Exteri (1) 4-1-0 to 11-0-4, E	or(2E) -0-1	-0 to 4-1-	0,					
BRACING		athing diseath (applia	Interior	(1) 16-0-4 to 22-11-8 posed ; end vertical le	zone; cant	lever left a	and					
3-10-5 0	oc purlins, e	athing directly applie cept end verticals.	for me	nbers and forces & M r DOL=1.60 plate grip	WFRS for r							
bracing		applied or 8-7-8 oc	 TCLL: 	ASCE 7-16; Pr=25.0 p OL=1.15); Pf=25.0 ps	osf (roof LL:							
WEBS 1 Row a REACTIONS (size)	8=0-3-8, 1	3-13, 5-8 2=0-6-8, 13=0-3-8	DOL=1	.15); Is=1.0; Rough C 0: Ct=1.10								
	z 13=-54 (L t 8=-224 (L	C 21) C 13), 13=-232 (LC <i>1</i>	4) Unbala	nced snow loads have	e been con	idered for	this					
Max Grav	/ 8=1093 (L 13=1004 (.C 24), 12=154 (LC 7 (LC 23)	^{),} 5) This tru	iss has been designed 12.0 psf or 2.00 times								
FORCES (Ib) - Ma Tension		pression/Maximum	overha	ngs non-concurrent w iss has been designed	ith other live	e loads.						
		143, 3-4=-1639/467, -396/142, 6-7=0/40,	chord I	ve load nonconcurrer rings are assumed to	it with any o	ther live lo						
	11/226, 6-8= 450/1748, 11	-346/226 I-12=-450/1748,		y of 565 psi. e mechanical connecti	on (by othe	rs) of trus	s to				~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	
	57/1203, 8-9 96/209, 4-11			plate capable of with and 232 lb uplift at joir		4 lb uplift	at				E OF	MISSOL
3-13=-1 5-8=-17		=-56/574, 5-9=-396/2	· • •) ••••••••••••••••••••••••••••••••	iss is designed in acc tional Residential Coc						A	1 AL SCOT	C S S S
NOTES I) Unbalanced roof live	loads have	been considered for		0.2 and referenced st E(S) Standard	andard AN	SI/TPI 1.				A	SCOT SEV	
this design.										80	TTS	· Real A
										Ø.	NUM	
										Ø	PE-2001	018807
										۲	CSSIONA	LENG
											all a	
											Apr	il 22,2024


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

						RELEASE FOR CONSTRUCTION
Job	Truss	Truss Type	Qty	Ply	Roof - HR Lot 185	AS NOTED FOR PLAN REVIEW DEVELOPMENT SERVICES
P240213-01	B1	Monopitch Structural Gable	1	1	Job Reference (optional	DEVELOPMENT SERVICES 165052053 LEE'S SUMMIT, MISSOURI
Premier Building Supply (Spring	hill, KS), Spring Hills, KS - 66083,				2024 MiTek Industries, Inc. M	

Run: 8.63 E Feb 2 2024 Print: 8.630 E Feb 2 2024 MiTek Industries, Inc. Mon Apr 2 1:3 of ID:0aSecMxhRSfQIAVWAXas1vylfDC-BI4XE_DyX?KJun?o508rR5JpANL_022t3Jrm3y203ed

Scale = 1:32.4

Plate Offsets (X, Y): [4:0-2-0,0-0-7]

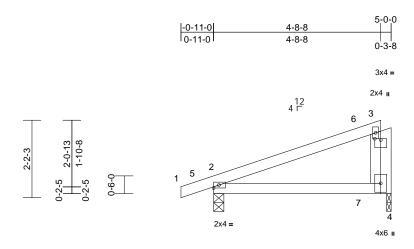
	())[]												
Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 25.0 25.0 10.0 0.0 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	1-11-4 1.15 1.15 YES IRC2018/	/TPI2014	CSI TC BC WB Matrix-S	0.26 0.26 0.04	DEFL Vert(LL) Vert(CT) Horz(CT)	in 0.03 -0.04 0.00	(loc) 2-6 2-6 5	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 22 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD BOT CHORD BOT CHORD BOT CHORD	2x4 SP No.2 2x4 SP No.2 2x3 SPF No.2 *Exce Structural wood she 5-0-0 oc purlins, ex Rigid ceiling directly bracing. (lb/size) 2=267/1-1 Max Horiz 2=79 (LC Max Uplift 2=-75 (LC Max Grav 2=373 (LI (lb) - Maximum Com Tension 1-2=0/12, 2-3=-187/ 4-5=-133/120 2-6=-95/112, 5-6=-8	v applied or 10-0-0 od 3-8, 5=193/0-1-8 12) C 12), 5=-55 (LC 16) C 23), 5=263 (LC 23 apression/Maximum /0, 3-4=-115/52,	5) 6) 6d or 7) 7) 9) 9) 10) 11)	design. This truss he load of 12.0 overhangs n Gable studs This truss ha chord live loo: All bearings capacity of 5 Bearing at jo using ANSI/1 designer sho Provide mec bearing plate Provide mec bearing plate 2 and 55 lb o This truss is	snow loads have as been designed psf or 2.00 times on-concurrent wit spaced at 2-0-0 c as been designed ad nonconcurrent are assumed to b 65 psi. init(s) 5 considers TPI 1 angle to gra Juld verify capacit hanical connectio a ta joint(s) 5. hanical connectio a tapint(s) 5.	for great flat roof k h other liv c. for a 10.0 with any e SP No. parallel t in formula y of bear n (by oth on (by oth tanding 7 rdance w	er of min roo pad of 25.0 p ve loads. D psf bottom other live loa 2 crushing o grain value a. Building ng surface. ers) of truss 5 lb uplift at ith the 2018	f live osf on ads. e to to joint					
Vasd=91r Ke=1.00; exterior zc Exterior(2 right expo	3-6=-100/159 CE 7-16; Vult=115mph mph; TCDL=6.0psf; BC Cat. II; Exp C; Enclose one and C-C Corner(3) N) 4-1-0 to 4-6-12 zon used ; end vertical left e and forces & MWFRS	CDL=6.0psf; h=35ft; ed; MWFRS (envelop E) -0-11-0 to 4-1-0, le; cantilever left and exposed;C-C for	e)	R802.10.2 a AD CASE(S)	nd referenced sta Standard	Indard AN	ISI/TPI 1.			-		STATE OF I	MISSOUR I M. ER

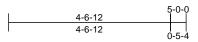
- Lumber DOL=1.60 plate grip DOL=1.60 2) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable,
- or consult qualified building designer as per ANSI/TPI 1. 3) TCLL: ASCE 7-16; Pr=25.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=25.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat C; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10

 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.
 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not besign value for use only with with twit even connectors. This design is based only upon parameters shown, and is for an individual building designer must verify the applicability of design parameters and properly incorporate this design into the overall building designer must verify the applicability of design parameters and properly incorporate this design into the overall building designer. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcscomponents.com)

E

NUMBER


PE-2001018807


SSIONAL

C

						RELEASE FOR CONSTRUCTION
Job	Truss	Truss Type	Qty	Ply	Roof - HR Lot 185	AS NOTED FOR PLAN REVIEW DEVELOPMENT SERVICES 165052054
P240213-01	B2	Monopitch	3	1	Job Reference (optional	

Run: 8.63 E Feb 2 2024 Print: 8.630 E Feb 2 2024 MiTek Industries, Inc. Mon Apr 2 11:24:34 ID:O7VVk_L0RvxcNO62AgBqQ4ylfCg-TA82vWECL?9CjpNcXk5iu63UYCchqMrkPzGkpzO9pQ

Scale = 1:32.4

Plate Offsets (X, Y): [3:0-2-0,0-0-7]

	(, (, 1): [e:e = ete e :]												
Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL LUMBER	(psf) 25.0 25.0 10.0 0.0 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018		CSI TC BC WB Matrix-P as been designed				(loc) 2-4 2-4 4	l/defl >612 >727 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 21 lb	GRIP 244/190 FT = 20%
TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x4 SP No.2 2x4 SP No.2 Structural wood she 5-0-0 oc purlins, ex Rigid ceiling directly bracing.	cept end verticals. applied or 6-0-0 oc 3-8, 4=190/0-1-8 16) .C 12), 4=-98 (LC 12	6) ed or 7) 8) 2) 9)	overhangs n This truss ha chord live lo: All bearings Bearing at jc using ANSI/ designer shc Provide mec bearing plate Provide mec bearing plate	psf or 2.00 times on-concurrent wit as been designed ad nonconcurrent are assumed to b i65 psi. iint(s) 4 considers TPI 1 angle to gra Juld verify capacit chanical connectic a t joint(s) 4. chanical connection e capable of withs 8 lb uplift at joint 4	th other li for a 10.1 t with any be SP No. s parallel ain formul ty of bear on (by oth standing 1	ve loads. D psf bottom other live loa 2 crushing to grain value a. Building ing surface. ers) of truss	ads. e to					
FORCES TOP CHORD BOT CHORD	3-4=-215/212		61,	This truss is International	designed in acco Residential Code nd referenced sta	ordance w e sections	8 R502.11.1 a	and					
NOTES 1) Wind: ASG Vasd=91n Ke=1.00; exterior zc Interior (z exposed; reactions DOL=1.66 2) TCLL: AS Plate DOL DOL=1.15 Cs=1.00;	CE 7-16; Vult=115mph mph; TCDL=6.0psf; BC Cat. II; Exp C; Enclose one and C-C Exterior(2) 4-1-0 to 4-6-12 zone; end vertical left expos C-C for members and f shown; Lumber DOL= 0 CC 7-16; Pr=25.0 psf (L L=1.15); Pf=25.0 psf (L 5); Is=1.0; Rough Cat (C	DL=6.0psf; h=35ft; d; MWFRS (envelop E) -0-11-0 to 4-1-0, cantilever left and ri- ed; porch left and ri- orces & MWFRS for 1.60 plate grip froof LL: Lum DOL= um DOL=1.15 Plate C; Fully Exp.; Ce=0.5	ight ght 1.15 9;									STATE OF I SCOT SEV PE-2001	

April 22,2024

5/202

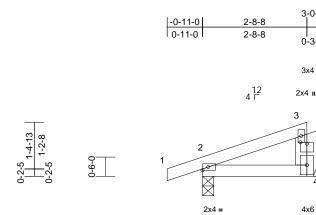
WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

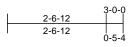
						RELEASE FOR CONSTRUCTION
Job	Truss	Truss Type	Qty	Ply	Roof - HR Lot 185	AS NOTED FOR PLAN REVIEW DEVELOPMENT SERVICES 165052055
P240213-01	B3	Monopitch	7	1	Job Reference (optional)	

1-6-3

Run: 8.63 S Apr 5 2024 Print: 8.630 S Apr 5 2024 MiTek Industries, Inc. Fri Apr 19 19374 /25/29924 ID:OfYMtcmLQLDnSdia9popoFylfC8-RfC?PsB70Hq3NSgPqnL8w3uITXbGK VrCDoi7042JC11

3-0-0


0-3-8


3x4 =

6

Щ

4x6 🛛

Scale = 1:29.9

Plate Offsets (X, Y): [3:0-2-0,0-0-7]

Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 25.0 25.0 10.0 0.0 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018/TPI2014	CSI TC BC WB Matrix-P	0.16 0.06 0.00	DEFL Vert(LL) Vert(CT) Horz(CT)	in 0.00 0.00 0.00	(loc) 2-4 2-4 4	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 13 lb	GRIP 244/190 FT = 20%
BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x4 SP No.2 2x4 SP No.2 2x4 SP No.2 Structural wood she 3-0-0 oc purlins, ex Rigid ceiling directly bracing. (size) 2=0-3-8, 4 Max Horiz 2=57 (LC Max Uplift 2=-79 (LC Max Grav 2=270 (LC	cept end verticals. applied or 10-0-0 o 4= Mechanical 15) C 12), 4=-23 (LC 16)	chord liv 6) Bearing capacity 7) Refer to 8) Provide bearing 2 and 2: c 9) This true Internat R802.10 LOAD CAS	is has been designed e load nonconcurren s are assumed to be: of 565 psi. girder(s) for truss to mechanical connecti plate capable of with b buplift at joint 4. is is designed in acco onal Residential Cod .2 and referenced st E(S) Standard	nt with any : Joint 2 SI truss conr ion (by oth standing 7 ordance w le sections	other live loa No.2 crushi nections. ers) of truss t '9 lb uplift at j ith the 2018 \$ R502.11.1 a	ng to oint					
FORCES	(lb) - Maximum Com Tension 1-2=0/13, 2-3=-73/4	pression/Maximum	,									
	2-4=-26/28											
Vasd=91m Ke=1.00; C exterior zor and right ex exposed;C-	E 7-16; Vult=115mph ph; TCDL=6.0psf; BC 2at. II; Exp C; Enclose ne and C-C Exterior(2 xposed ; end vertical -C for members and f hown; Lumber DOL=	DL=6.0psf; h=35ft; d; MWFRS (envelop E) zone; cantilever left and right orces & MWFRS for	left							đ	STATE OF	I MI.
 TCLL: ASC Plate DOL= DOL=1.15) Cs=1.00; C Unbalanced design. 	CE 7-16; Pr=25.0 psf (=1.15); Pf=25.0 psf (L); Is=1.0; Rough Cat (Ct=1.10 d snow loads have be nas been designed fo	um DOL=1.15 Plate C; Fully Exp.; Ce=0.9 een considered for th	9; D; nis								SEV Cotton PE-2001	Server

4) This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 25.0 psf on overhangs non-concurrent with other live loads.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

16023 Swingley Ridge Rd. Chesterfield, MO 63017 314.434.1200 / MiTek-US.com

						RELEASE FOR CONSTRUCTION
Job	Truss	Truss Type	Qty	Plv	Roof - HR Lot 185	AS NOTED FOR PLAN REVIEW
000	11033		Giy	1 19		DEVELOPMENT SERVICES 165052056
P240213-01	C1	Common Structural Gable	1	1	Job Reference (optional	

Run: 8.63 S Apr 5 2024 Print: 8.630 S Apr 5 2024 MiTek Industries, Inc. Fri Apr 19 1927 ID:gfrsVxpQoNOr6dkbbQOWdoylfDM-RfC?PsB70Hq3NSgPqnL8w3uITXbGF WrCDoi1942J3

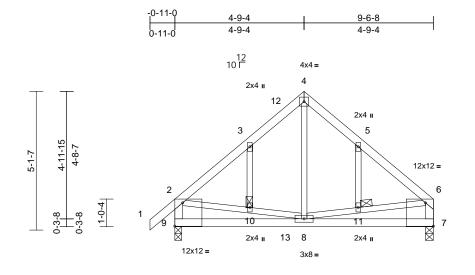
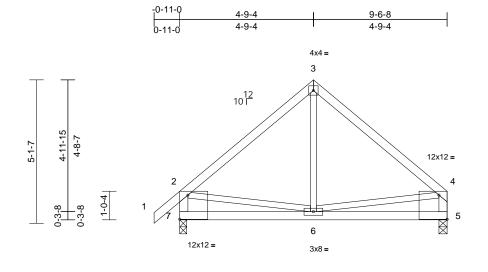


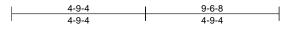
Plate Offsets (X, Y): [6:Edge,0-10-6], [9:Edge,0-10-6]

Scale = 1:42.5

Flate Olisets ((A, T). [0.Euge,0-10-0	j, [9.⊏uge,0-10-0]										-	
Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 25.0 25.0 10.0 0.0 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	1-11-4 1.15 1.15 YES IRC201	3/TPI2014	CSI TC BC WB Matrix-S	0.42 0.27 0.33	DEFL Vert(LL) Vert(CT) Horz(CT)	in 0.04 0.03 0.00	(loc) 7-8 7-8 7	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 51 lb	GRIP 197/144 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD JOINTS REACTIONS	2x4 SP No.2 2x3 SPF No.2 *Exce 2x3 SPF No.2	athing directly applie cept end verticals. applied or 10-0-0 or 9=0-3-0	4) ed or	only. For stu see Standar or consult qu TCLL: ASCE Plate DOL=1 DOL=1.15); Cs=1.00; Ct: Unbalanced design. This truss ha load of 12.0 overhangs n Truss to be f	snow loads have b as been designed for psf or 2.00 times fil on-concurrent with fully sheathed from	d (norm nd Deta signer a (roof Ll Lum DC C; Fully been con or great at roof I other li one fac	al to the face ils as applica s per ANSI/TI :: Lum DOL= DL=1.15 Plate Exp.; Ce=0.9 nsidered for the er of min roof pad of 25.0 p ve loads. er or securely), ble, PI 1. 1.15 9; his f live sf on					
FORCES	Max Uplift 7=-48 (LC Max Grav 7=539 (LC (lb) - Maximum Com	C 24), 9=612 (LC 23) 9)	Gable studs This truss ha chord live loa	nst lateral moveme spaced at 2-0-0 oc as been designed fo ad nonconcurrent v	:. or a 10. vith any	0 psf bottom other live loa						
TOP CHORD	Tension 1-2=0/79, 2-3=-488/9 4-5=-320/571, 5-6=- 6-7=-493/485	, ,		capacity of 5 Provide med	are assumed to be 65 psi. hanical connection e capable of withsta	(by oth	ers) of truss t						
BOT CHORD WEBS	8-9=-242/242, 7-8=- 4-8=-471/172, 2-10= 8-11=-90/171, 6-11= 5-11=-58/52	-92/181, 8-10=-97/1	,	9 and 48 lb t) This truss is International	aplift at joint 7. designed in accord Residential Code nd referenced stan	lance w sections	ith the 2018 8 R502.11.1 a					STATE OF L	MISSO
this desigr	ed roof live loads have n. CE 7-16: Vult=115mph			OAD CASE(S)	Standard							S SCOT SEV	T M. IER

2) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=35ft; Ke=1.00; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone and C-C Corner(3E) -0-11-0 to 4-1-0, Exterior(2N) 4-1-0 to 4-9-4, Corner(3E) 4-9-4 to 9-4-12 zone; cantilever left and right exposed; end vertical left and right exposed; porch left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60


25/20


FION IEW IS

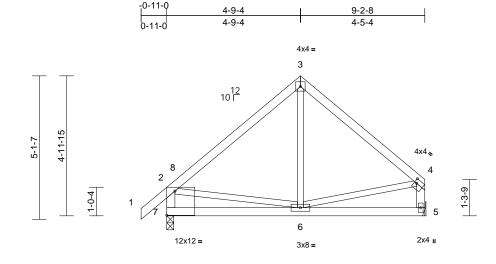
WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSITPTI Quality Criteria, and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcscomponents.com)

						RELEASE FOR CONSTRUCTION
Job	Truss	Truss Type	Qty	Ply	Roof - HR Lot 185	AS NOTED FOR PLAN REVIEW DEVELOPMENT SERVICES 165052057
P240213-01	C2	Common	1	1	Job Reference (optional	
Premier Building Supply (Spring	Apr 19 10 17 1/25/2024					

Scale = 1:41.1 Plate Offsets (X, Y): [4:Edge.0-10-6], [7:Edge.0-10-6]

design.

Plate Offsets ((X, Y): [4:Edge,0-10-6], [7:Edge,0-10-6]											
Loading TCLL (roof) Snow (Pf)	(psf) 25.0 25.0	Spacing Plate Grip DOL Lumber DOL	2-0-0 1.15 1.15		CSI TC BC	0.59 0.22	DEFL Vert(LL) Vert(CT)	in 0.03 0.02	(loc) 6-7 6-7	l/defl >999 >999	L/d 240 180	PLATES MT20	GRIP 197/144
TCDL	10.0	Rep Stress Incr	YES		WB	0.18	Horz(CT)	0.00	5	n/a	n/a		
BCLL BCDL	0.0 10.0	Code	IRC2018	3/TPI2014	Matrix-S							Weight: 48 lb	FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD	2x4 SP No.2 2x4 SP No.2 2x3 SPF No.2 *Exce Structural wood she 6-0-0 oc purlins, ex Rigid ceiling directly bracing. (size) 5=0-3-8, 7 Max Horiz 7=143 (LC Max Grav 5=556 (LC (lb) - Maximum Com	athing directly appli cept end verticals. applied or 6-0-0 oc 7=0-3-0 C 13) C 17), 7=-75 (LC 16) C 24), 7=631 (LC 23	No.2 6) ed or 7) 8) 9)	load of 12.0 overhangs n This truss ha chord live loa All bearings capacity of 5 Provide mec bearing plate 7 and 49 b o This truss is International	hanical connection e capable of withsta uplift at joint 5. designed in accord Residential Code nd referenced stan	at roof I other li or a 10. with any SP No a (by oth anding 7 dance w sections	oad of 25.0 p: ve loads. 0 psf bottom other live loa 2 crushing ers) of truss t 75 lb uplift at j ith the 2018 \$ R502.11.1 a	sf on Ids. to oint				Weight. 40 D	FT = 2070
TOP CHORD	Tension 1-2=0/82, 2-3=-521/4	434 3-4517/441											
	2-7=-589/417, 4-5=-	, , ,											
BOT CHORD	,												
WEBS	3-6=-342/178, 2-6=-	110/198, 4-6=-81/18	38										
NOTES													
 Unbalance this design 	ed roof live loads have	been considered fo	r										-
 Wind: ASO Vasd=91n Ke=1.00; 	CE 7-16; Vult=115mph nph; TCDL=6.0psf; BC Cat. II; Exp C; Enclose one and C-C Exterior(2	DL=6.0psf; h=35ft; d; MWFRS (envelop	pe)								A	1251	MISSOL
Interior (1) zone; can exposed; and forces DOL=1.60 3) TCLL: AS) 41-0 to 4-9-4, Exteria tilever left and right exp porch left and right exp s & MWFRS for reactio 0 plate grip DOL=1.60 CE 7-16; Pr=25.0 psf (L ==1.15); Pf=25.0 psf (L	or(2E) 4-9-4 to 9-4-1 posed ; end vertical posed;C-C for memb ons shown; Lumber roof LL: Lum DOL=	left bers 1.15							•	S	SCOT SEV NUM PE-2001	Server BER
DOL=1.15 Cs=1.00;	5); Is=1.0; Rough Cat C	C; Fully Exp.; Ce=0.9	9;								Ŷ	SSIONA	IL ENGINE


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

April 22,2024

						RELEASE FOR CONSTRUCTION
Job	Truss	Truss Type	Qty	Ply	Roof - HR Lot 185	AS NOTED FOR PLAN REVIEW DEVELOPMENT SERVICES 165052058
P240213-01	С3	Common	1	1	Job Reference (optional	

Run: 8.63 S Apr 5 2024 Print: 8.630 S Apr 5 2024 MiTek Industries, Inc. Fri Apr 19 18 37 4 /25/26 124 ID:bBOxdUdBwZQGDBIEEzD_0KylfMf-RfC?PsB70Hq3NSgPqnL8w3ulTXbc KWrCDorrd4zJC/f

4-9-4	9-2-8	
4-9-4	4-5-4	

Scale = 1:41.1 Plate Offsets (X, Y): [4:0-1-0,0-1-12], [7:Edge,0-10-6]

Plate Offsets ((X, Y): [4:0-1-0,0-1-12	!], [7:Edge,0-10-6]											
Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 25.0 25.0 10.0 0.0 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC201	8/TPI2014	CSI TC BC WB Matrix-S	0.50 0.21 0.17	DEFL Vert(LL) Vert(CT) Horz(CT)	in 0.03 0.03 0.00	(loc) 6-7 6-7 5	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 47 lb	GRIP 197/144 FT = 20%
this design 2) Wind: ASC Vasd=91n Ke=1.00; exterior zc Interior (1)	2x4 SP No.2 2x3 SPF No.2 *Exce 6-0-0 oc purlins, exi Rigid ceiling directly bracing. (size) 5= Mecha Max Horiz 7=142 (LC Max Uplift 5=-48 (LC Max Uplift 5=-48 (LC (lb) - Maximum Com Tension 1-2=0/82, 2-3=-484// 2-7=-549/404, 4-5=- 6-7=-320/257, 5-6=- 3-6=-322/162, 2-6=- ed roof live loads have n. CE 7-16; Vult=115mph nph; TCDL=6.0psf; BC Cat. II; Exp C; Enclose one and C-C Exterior(2)) 4-1-0 to 4-9-4, Exterior	athing directly appli cept end verticals. applied or 9-11-10 anical, 7=0-3-0 C 13) C 16), 7=-73 (LC 16) C 24), 7=592 (LC 23 apression/Maximum 414, 3-4=-473/426, 489/379 101/126 112/183, 4-6=-127/2 been considered for (3-second gust) DL=6.0psf; h=35ft; ad; MWFRS (envelo) ED -0-11-0 to 4-1-0, or(2E) 4-9-4 to 9-0-1	ed or 7) oc 8) 9) 10 3) L 201 or pe) 12	load of 12.0 overhangs n This truss ha chord live lo Bearings are capacity of 5 Refer to gird Provide mec bearing platt 7 and 48 lb ()) This truss is International	ler(s) for truss to tr chanical connectior e capable of withst uplift at joint 5. designed in accor I Residential Code nd referenced star	lat roof lo n other liv for a 10.0 with any loint 7 SI uss conr n (by oth anding 7 dance w sections	bad of 25.0 p ve loads. D psf bottom other live loa P No.2 crushi nections. ers) of truss i r3 lb uplift at j ith the 2018 s R502.11.1 a	sf on ads. ing to joint				STATE OF J	MISSOUR T M. ER
zone; can exposed;) 4-1-0 to 4-9-4, Exterior tilever left and right exp porch left and right exp	posed ; end vertical posed;C-C for memb	left								E.	SEV	IER

 DOL=1.60 plate grip DOL=1.60
 TCLL: ASCE 7-16; Pr=25.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=25.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat C; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10

and forces & MWFRS for reactions shown; Lumber

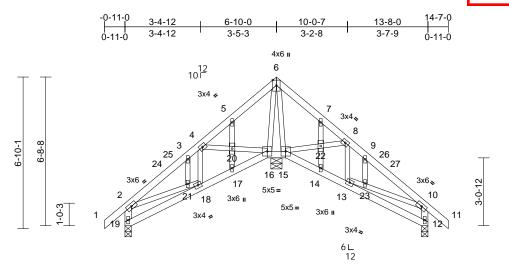
4) Unbalanced snow loads have been considered for this design.

April 22,2024

314.434.1200 / MiTek-US.com

E

PE-200101880


SSIONAL


0

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSITPTI Quality Criteria, and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcscomponents.com)

						RELEASE FOR CONSTRUCTION
Job	Truss	Truss Type	Qty	Ply	Roof - HR Lot 185	AS NOTED FOR PLAN REVIEW
				Ĺ		DEVELOPMENT SERVICES 165052059
P240213-01	D1	Roof Special Structural Gable	1	1	Job Reference (optional	LEE'S SUMMIT, MISSOURI

Run: 8.63 S Apr 5 2024 Print: 8.630 S Apr 5 2024 MiTek Industries, Inc. Fri Apr 19 19 17.4 /25/20 24 ID:ZbQgzf7wzm0H2n9hpnXDoOylfRA-RfC?PsB70Hq3NSgPqnL8w3uITXbGtWrCDoi 94zJC?f

Scale =	1:52
---------	------

Scale = 1:52													
Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 25.0 25.0 10.0 0.0		2-0-0 1.15 1.15 YES IRC2018	8/TPI2014	CSI TC BC WB Matrix-S	0.20 0.20 0.14	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.01 -0.02 0.00	(loc) 17-18 17-18 12	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 79 lb	GRIP 197/144 FT = 20%
Bacch 10.0 LUMBER TOP CHORD 2x4 SP No.2 TOP CHORD 2x4 SP No.2 2x3 SPF No.2 *Except* 19-2,12-10:2x4 SP No.2 WEBS 2x3 SPF No.2 *Except* 19-2,12-10:2x4 SP No.2 DTHERS 2x3 SPF No.2 BRACING Structural wood sheathing directly applied or 6-0-0 oc purlins, except end verticals. BOT CHORD Structural wood sheathing directly applied or 6-0-0 oc bracing. REACTIONS (size) 12=0-3-8, 15=0-6-0, 16=0-6-0, 19=0-3-8 Max Horiz 19=-215 (LC 14) Max Uplift 12=-106 (LC 17), 15=-55 (LC 17), 16=-112 (LC 16), 19=-84 (LC 17) Max Grav 12=354 (LC 24), 15=588 (LC 24),				Vasd=91mpl Ke=1.00; Ca exterior zone Interior (1) 4 11-10-0, Intel left and right exposed;C-C reactions sho DOL=1.60 Truss design only. For stu see Standarr or consult qu TCLL: ASCE Plate DOL=1	7-16; Vult=115mp 7; TCDL=6.0psf; E t. II; Exp C; Enclose and C-C Exterioro 1-0 to 6-10-0, Ext rior (1) 11-10-0 to exposed; end ve C for members and cown; Lumber DOL own; Lumber DOL own; Lumber DOL own; Lumber dods uds exposed to wind d Industry Gable E ualified building de ; 7-16; Pr=25.0 psf I.15); Pf=25.0 psf Is=1.0; Rough Cat	CDL=6. sed; MW (2E) -0- erior(2R 14-7-0 ; rtical left I forces ; =1.60 pl in the p nd (norm ind Deta signer a: f (roof LI (Lum DC	Dpsf; h=35ft; FRS (envelop 11-0 to 4-1-0, 0 6-10-0 to cone; cantilev and right & MWFRS for ate grip lane of the tru al to the face) is a applicat s per ANSI/TF c. Lum DOL= ²	er Iss), ble, PI 1. 1.15	Inte	ernationa 02.10.2 a	al Resid and ref	ned in accordan dential Code sec ferenced standa	ce with the 2018 ctions R502.11.1 and
FORCES	16=603 ((Ib) - Maximum Con	LC 23), 19=354 (LC 23		Cs=1.00; Ct= Unbalanced design.	=1.10 snow loads have	been cor	nsidered for th	nis					
TOP CHORD			, 7)	 6) This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 25.0 psf on overhangs non-concurrent with other live loads. 7) All plates are 1.5x4 MT20 unless otherwise indicated. 								(D)	
BOT CHORD	18-19=-217/270, 17 16-17=-153/301, 15	-18=-149/262,	9)	braced agair Gable studs	ully sheathed from nst lateral moveme spaced at 2-0-0 o as been designed	ent (i.e. c c.	iagonal web).				4	TATE OF	MISSO
WEBS	6-16=-274/38, 6-15= 18-21=0/185, 13-23 4-20=-412/211, 16-2 4-18=-37/100, 15-22 8-22=-399/197, 8-13	=-276/36, 2-21=0/193, =-16/153, 10-23=-19/1 20=-418/213, 2=-407/200, 3=-28/120, 5-20=-122/ =-15/46, 7-22=-104/60	^{157,} 11 12 75,	 chord live loa All bearings capacity of 5 Bearing at jo value using at jo designer sho Provide mec 	ad nonconcurrent are assumed to be	with any SP No. ders par to grain f of bear n (by oth	other live load 2 crushing allel to grain ormula. Build ng surface.	ding			R.	SCOT SEV NUM PE-2001	BER

bearing plate capable of withstanding 84 lb uplift at joint

19, 112 lb uplift at joint 16, 55 lb uplift at joint 15 and 106

NOTES

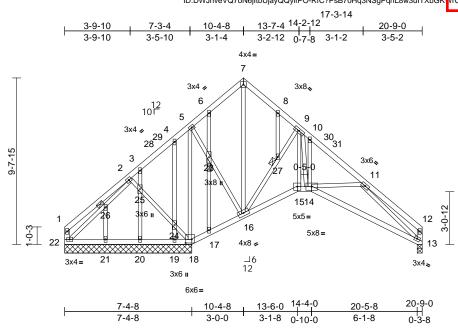
 Unbalanced roof live loads have been considered for this design.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSITPTI Quality Criteria**, and **DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcscomponents.com)

lb uplift at joint 12.

N A:Tal

ONAL



April 22,2024

E

						RELEASE FOR CONSTRUCTION
Job	Truss	Truss Type	Qty	Ply	Roof - HR Lot 185	
P240213-01	D2	Roof Special Structural Gable	1	1	Job Reference (optional	DEVELOPMENT SERVICES 165052060 LEE'S SUMMIT, MISSOURI
Bromier Building Supply (Springh		Bun: 8 63 S. Apr. 5 3	224 Drint: 0.6	20 8 Apr 5 (2024 MiTek Industrian Inc. Fri	

Run: 8.63 S Apr 5 2024 Print: 8.630 S Apr 5 2024 MiTek Industries, Inc. Fri Apr 19 19:37.4/25/20:24 ID:DWJnveVQ7oN6jltbUjayQQylfPO-RfC?PsB70Hq3NSgPqnL8w3uITXbGK

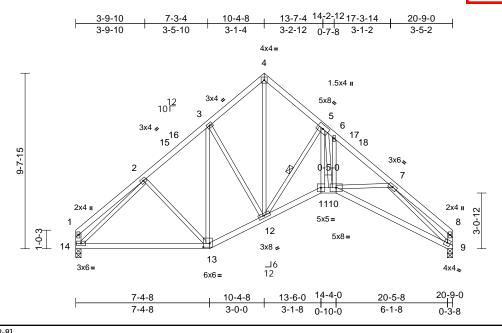
Scale = 1:66.9 Plate Offsets (X, Y): [18:0-4-4,0-2-8]

Plate Olisets (A, f). [10.0-4-4,0-2-0															
Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 25.0 25.0 10.0 0.0 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	1-11-4 1.15 1.15 YES IRC2018	/TPI2014	CSI TC BC WB Matrix-S	0.23 0.37 0.80	DEFL Vert(LL) Vert(CT) Horz(CT)		(loc) 13-14 13-14 13	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 136 lb	GRIP 244/190 FT = 20%			
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD JOINTS REACTIONS	2x4 SP No.2 2x3 SPF No.2 *Exce No.2 2x3 SPF No.2 Structural wood she 6-0-0 oc purlins, ex Rigid ceiling directly bracing. 1 Brace at Jt(s): 23, 26, 27 (size) 13=0-3-8, 20=7-4-8, Max Horiz 22=264 (I Max Uplift 13=-60 (L	18=7-4-8, 19=7-4-8, 21=7-4-8, 22=7-4-8 _C 15) C 17), 18=-189 (LC 10	or NO 1) 2)	 WEBS 5-18=-721/42, 9-15=0/176, 9-14=-62/457, 10-14=-84/89, 2-25=-276/188, 24-25=-273/186, 18-24=-264/180, 11-14=-185/218, 11-13=-675/82, 7-16=-218/0, 5-23=0/655, 16-23=0/666, 16-27=-723/93, 9-27=-682/83, 22-26=-123/278, 2-26=-139/316, 6-23=-175/54, 17-23=-173/49, 4-24=-195/66, 19-24=-203/73, 3-25=-4/76, 20-25=-5/79, 21-26=-22/51, 8-27=-48/13 NOTES 1) Unbalanced roof live loads have been considered for this design. 2) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=35ft; Ke=1.00; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) 0-1-12 to 51-12, Interior (1) 5-1-12 to 10-4-8, Exterior(2R) 10-4-8 to 						 9) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 10) All bearings are assumed to be SP No.2 crushing capacity of 565 psi. 11) Bearing at joint(s) 13 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface. 12) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 189 lb uplift at joint 18, 139 lb uplift at joint 22, 39 lb uplift at joint 19, 36 lb uplift at joint 20 and 60 lb uplift at joint 13. 13) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. LOAD CASE(S) Standard 						
	22=-139 (Max Grav 13=479 (L 19=157 (L	19=-39 (LC 16), 20=-36 (LC 23), Interior (1) 5-1-12 to 10-4-8, Exterior(2K) 10-4-8 to 22=-139 (LC 23) 15-4-8, Interior (1) 15-4-8 to 20-7-4 zone; cantilever left ax Grav 13=479 (LC 23), 18=1212 (LC 23), 15-4-8, Interior (1) 15-4-8 to 20-7-4 zone; cantilever left and right exposed; c-C for members and forces & MWFRS for exposed;C-C for members and forces & MWFRS for 21=66 (LC 7), 22=127 (LC 35) reactions shown; Lumber DOL=1.60 plate grip														
FORCES	(lb) - Maximum Com		3)	DOL=1.60 Truss desid	ned for wind loads	in the n	lane of the tru	\$5				ASSOCIATE I	and			
TOP CHORD	4-5=-1/394, 5-6=-82	7/105, 9-10=-532/84, 2=-208/67,	-)	 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1. 4) TCLL: ASCE 7-16; Pr=25.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15; Pf=25.0 psf (Lum DOL=1.1												
BOT CHORD	21-22=-243/163, 20- 19-20=-243/163, 18- 17-18=-447/236, 16-	-21=-243/163, -19=-243/163,	650 6)	DOL=1.15); Is=1.0; Rough Cat C; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10 Unbalanced snow loads have been considered for this design. All plates are 2x4 MT20 unless otherwise indicated.								PE-2001	018807			

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANS/TPH1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

Gable studs spaced at 2-0-0 oc.

8)


16023 Swingley Ridge Rd. Chesterfield, MO 63017 314.434.1200 / MITek-US.com

April 22,2024

VONAL E

						RELEASE FOR CONSTRUCTION
Job	Truss	Truss Type	Qty	Plv	Roof - HR Lot 185	AS NOTED FOR PLAN REVIEW
				,		DEVELOPMENT SERVICES 165052061
P240213-01	D3	Roof Special	7	1	Job Reference (optional	LEE'S SUMMIT, MISSOURI

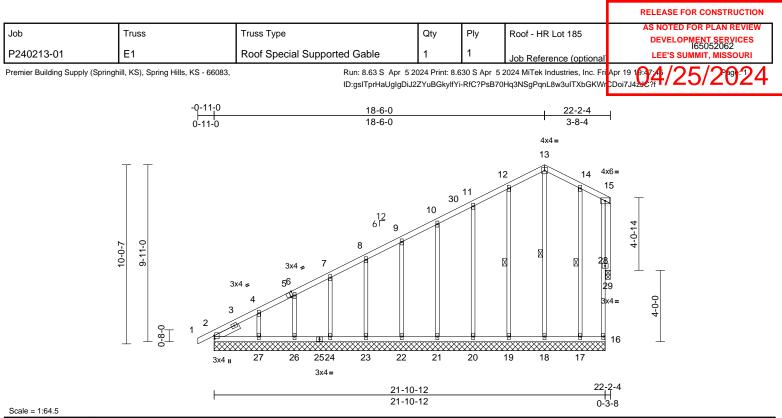
Run: 8.63 S Apr 5 2024 Print: 8.630 S Apr 5 2024 MiTek Industries, Inc. Fri Apr 19 19.74/25/29:24 ID:IFehQ2g8Nbhuyi5Lxjrm7tylfQT-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKWr2Doi7J4292?f

Scale = 1:63.4 Plate Offsets (X, Y): [13:0-4-4,0-2-8]

		1			· · · · ·							1		
Loading	(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP	
TCLL (roof)	25.0	Plate Grip DOL	1.15		тс	0.26	Vert(LL)	-0.10	13-14	>999	240	MT20	244/190	
Snow (Pf)	25.0	Lumber DOL	1.15		BC	0.52	Vert(CT)	-0.21	13-14	>999	180			
TCDL	10.0	Rep Stress Incr	YES		WB	0.97	Horz(CT)	0.16	9	n/a	n/a			
BCLL	0.0	Code	IRC2018	3/TPI2014	Matrix-S									
BCDL	10.0											Weight: 119 lb	FT = 20%	
LUMBER			2)	Wind: ASCE	7-16; Vult=115mp	h (3-seo	cond gust)							
TOP CHORD	2x4 SP No.2		,	Vasd=91mp	h; TCDL=6.0psf; B	CDL=6.	0psf; h=35ft;							
BOT CHORD	2x4 SP No.2			Ke=1.00; Cat. II; Exp C; Enclosed; MWFRS (envelope)										
WEBS	2x3 SPF No.2 *Exce	ept* 14-1,9-8:2x4 SP	No.2	exterior zone and C-C Exterior(2E) 0-1-12 to 5-1-12,										
BRACING		•			-1-12 to 10-4-8, Ex									
TOP CHORD	Structural wood she	athing directly applied	d or		ior (1) 15-4-8 to 20-			left						
		except end verticals.		and right exposed; end vertical left and right										
BOT CHORD	Rigid ceiling directly	applied or 10-0-0 oc			exposed;C-C for members and forces & MWFRS for									
	bracing.				own; Lumber DOL=	=1.60 pl	ate grip							
WEBS	1 Row at midpt	5-12		DOL=1.60	7 40. D. 05 0	(
REACTIONS	(size) 9=0-3-8, 1	14=0-3-8	3)		7-16; Pr=25.0 psf									
	Max Horiz 14=272 (L	_C 15)		Plate DOL=1.15); Pf=25.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat C; Fully Exp.; Ce=0.9;										
	Max Uplift 9=-114 (L	C 17), 14=-113 (LC 1	6)	Dol=1.10; no=1.0, Rough Cal C, Fully Exp., Ce=0.9, Cs=1.00; Ct=1.10										
	Max Grav 9=976 (LC	C 23), 14=976 (LC 22	2) 4)											
FORCES	(lb) - Maximum Com	pression/Maximum		design.	Show loads have b			113						
	Tension		5)	0	as been designed fo	or a 10.	0 psf bottom							
TOP CHORD	1-2=-295/81, 2-3=-1	000/225, 3-4=-934/26	50, -/		ad nonconcurrent w			ds.						
	4-5=-938/266, 5-6=-	1848/328,	6)		are assumed to be									
	6-7=-1991/277, 7-8=	-304/81, 1-14=-266/9	90, [´]	capacity of 5	65 psi.		Ũ							
	8-9=-268/80		7)	Bearing at jo	int(s) 9 considers p	barallel	to grain value							
BOT CHORD	13-14=-197/796, 12-	-13=-98/796,	,	using ANSI/	FPI 1 angle to grain	n formul	a. Building							
	11-12=-89/1489, 10-	-11=-71/1309,		designer sho	ould verify capacity	of bear	ing surface.							
	9-10=-244/1521		8)	Provide med	hanical connection	(by oth	ers) of truss t	0				O TE	ALL	
WEBS		=-41/662, 5-10=-110/8		bearing plate	e capable of withsta	anding 1	13 lb uplift at	joint				R.F. OF I	IIS S	
		882/158, 7-9=-1754/2	,		b uplift at joint 9.						4	7. A	No	
	7-10=-44/198, 3-12=	,	9)		designed in accord						B	SCOT	TM XP.V	
	4-12=-246/804, 5-12	2=-1334/187,		designer should verify capacity of bearing surface.) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 113 lb uplift at joint 14 and 114 lb uplift at joint 9.) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and P802.10.2 and reforement stunderd MUSI/UPI 1										
	2-13=-144/171				nd referenced stan	dard Al	ISI/TPI 1.				In_			
NOTES			LC	DAD CASE(S)	Standard						W ~	1-1-5		
1) Unbalanc	ed roof live loads have	been considered for								_			Somer	

- Unbalanced roof live loads have been considered for this design.
 - WARNING Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent toulsable personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

April 22,2024


E

NUMBER

PE-200101880

SIONAL

RO

Plate Offsets (X, Y): [2:0-2-1,0-0-5], [5:0-1-9, Edge]

	7, 1): [2:0 2 1,0 0 0], [e.e : e,=age]			-								
Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 25.0 25.0 10.0 0.0 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018/T	PI2014	CSI TC BC WB Matrix-R	0.13 0.04 0.28	DEFL Vert(LL) Vert(CT) Horz(CT)	in 0.00 0.00 0.01	(loc) 2-27 2-27 29	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 132 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS SLIDER BRACING TOP CHORD BOT CHORD WEBS REACTIONS	Left 2x4 SP No.2 Structural wood sh 6-0-0 oc purlins, e Rigid ceiling directl bracing. 1 Row at midpt (size) 2=21-10 17=21-1 21=21-1 21=21-1 23=21-1 24=21-1 23=21-1 24=21-1 23=21-1 24=21-1 23=21(1 19=-64 (21=-61 (23=-60 (24=-42 (29=-11 (Max Grav 2=218 (I 17=218) 17=2218 (I 17=2218) 17=2218 (I 18=2218) 17=2218 (I 1	eathing directly applie xcept end verticals. y applied or 10-0-0 oc 13-18, 12-19, 14-17 -12, 16=21-10-12, 0-12, 20=21-10-12, 0-12, 22=21-10-12, 0-12, 22=21-10-12, 0-12, 27=21-10-12, 0-12, 27=21-10-12, 2 C 16) C 17), 17=-50 (LC 17 LC 16), 22=-61 (LC 11 LC 16), 24=-65 (LC 1) LC 16), 27=-147 (LC	D.2 BOT dor (dor (1) U (1) (1) (1) (1) (1) (1) (1) (1) (1) (1)	CHORD S Inbalancen is design. Vind: ASC (asd=91m] ee1.00; C xterior zor ixterior(2N 1-9-8 zone ertical left WVFRS for rip DOL=1 Truss desi nly. For s ee Standa r consult C	E 7-16; Vult=115m ph; TCDL=6.0psf; I iat. II; Exp C; Enclo ne and C-C Corner I) 4-1-0 to 18-6-0, (0 e; cantilever left an exposed;C-C for n r reactions shown; I.60 gned for wind load tuds exposed to wind rod Industry Gable qualified building de	3=-227/80 -11=-81/4 3-14=-54. -28=-32/2 1/1, 24 	 a), 8-9=-179/62 b), 8-9=-179/62 c), 4, 11-12=-48 c)/94, 14-15=-2 c)/1 c)/1 c)/2 c)/1 c)/2 c)/3 c)/4 c)/4	/54, 5/38, /100, r be) tte iss), ble, PI 1.	loac ove 7) All 8) Gal 9) Thi chc 10) All cap 11) Bea usii des 12) Pro bea 16, upli 23, upli join 13) Thi Inte	d of 12.0 erhangs plates a ble studs s truss h ord live lo bearings pacity of aring at j ng ANSI signer sh voide me aring pla 64 lb up ift at join 65 lb up ift at join t 29. s truss h) psf or non-co re 2x4 s space has bee boad noo s are as 565 ps joint(s) /TPI 1 hould v. chanic te capa blift at ju t 21, 6 blift at ju t 27, 5 s desig al Resig and ref	2.00 times flat rc ncurrent with oth MT20 unless oth ad at 2-0-0 oc. en designed for a nconcurrent with ssumed to be SP i. 29 considers par angle to grain for erify capacity of b al connection (by able of withstandi oint 19, 62 lb upli 1 lb uplift at joint 2 oint 24, 42 lb upli 0 lb uplift at joint ned in accordance	erwise indicated. 10.0 psf bottom any other live loads. No.2 crushing allel to grain value mula. Building bearing surface. others) of truss to ng 9 lb uplift at joint ft at joint 20, 61 lb 22, 60 lb uplift at joint ft at joint 26, 147 lb 17 and 11 lb uplift at be with the 2018 ions R502.11.1 and d ANSI/TPI 1. MISSOUL
FORCES	26=171 29=22 (L	(LC 23), 24=182 (LC 3 (LC 1), 27=215 (LC 3 (LC 24) mpression/Maximum	50), F 6), E C 5) L	Plate DOL= OOL=1.15) Ss=1.00; C	E 7-16; Pr=25.0 ps =1.15); Pf=25.0 psf ; Is=1.0; Rough Ca :t=1.10 d snow loads have	(Lum DC it C; Fully	DL=1.15 Plate Exp.; Ce=0.9);				PE-2001	12A

April 22,2024

16023 Swingley Ridge Rd. Chesterfield, MO 63017 314.434.1200 / MiTek-US.com

Continued on page 2 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

						RELEASE FOR CONSTRUCTION
Job	Truss	Truss Type	Qty	Ply	Roof - HR Lot 185	AS NOTED FOR PLAN REVIEW DEVELOPMENT SERVICES 165052062
P240213-01	E1	Roof Special Supported Gable	1	1	Job Reference (optional	
Premier Building Supply (Spring	ghill, KS), Spring Hills, KS - 66083,	Run: 8.63 S Apr 5 2 ID:gslTprHaUglgDiJ	2024 Print: 8.0 2ZYuBGkylfY	630 S Apr 5 2 i-RfC?PsB70	2024 MiTek Industries, Inc. Fri Hq3NSgPqnL8w3uITXbGKWr	Apr 19 10 74/25/20 24

LOAD CASE(S) Standard

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

r					1				OR CONSTRUCTION
Job	Truss		Truss Type		Qty	Ply	Roof - HR Lot 185		PMENT SERVICES 165052063
P240213-01	E2		Roof Special		8	1	Job Reference (optio		JMMIT, MISSOURI
Premier Building Supply ((Springhill, KS), Spring	g Hills, KS - 66083,					5 2024 MiTek Industries, Inc 70Hq3NSgPqnL8w3uITXbG		5/2024
						ynz v-1010 i 1 3D			
		-0-11-0 	6-3-11 6-3-11	<u>12-4-13</u> 6-1-3		<u>18-6-0</u> 6-1-3) <u>21-9-8</u> 2 3-3-8 (2-2-4 ++ -4-12	
		0-11-0					4x4=		
							7		
	T				6	16		5x8 ↓ 8 ₩ ⊤ ⊤	
	-1-0		2x4	12 6Г				4-0-14 7-10-11 3-10-11	
	9-11-0		4	3					
			15 3			/\$			
		2 /8	3					4-0-0	
						[4		9	
	C C	⊠ 3x8 ⊪		13		1:	2 11 10 5x8=	2x4 II	
			9-4-4			18-6-0	21-10-12 ²		
Scale = 1:64.2			9-4-4			9-1-12	0,4,40	-++ 0-3-8	
Plate Offsets (X, Y): [[2:0-4-1,Edge], [8:0	0-2-12,0-2-8]							
Loading	(psf) Sp	pacing	2-0-0	CSI	D	EFL	in (loc) l/defl	_/d PLATES	GRIP
TCLL (roof) Snow (Pf)		ate Grip DOL umber DOL	1.15 1.15			()		40 MT20 2 80	244/190
TCDL	10.0 Re	ep Stress Incr	YES	WB		. ,		n/a	
BCLL BCDL	0.0 Co 10.0	ode	IRC2018/TPI2014	Matrix-S				Weight: 119 lb	FT = 20%
LUMBER				7-16; Pr=25.0 psf (ro			5	•	
TOP CHORD 2x4 SI BOT CHORD 2x4 SI	P No.2 P No.2 *Except* 9-	-8:2x3 SPF No.2		.15); Pf=25.0 psf (Lu ls=1.0; Rough Cat C;					
WEBS 2x3 SI	PF No.2 *Except* ^ x4 SP No.2 3-5-^	14-8:2x4 SP No.2		=1.10 snow loads have bee	n consid	lered for this			
BRACING			design.	is been designed for			2		
	tural wood sheathir oc purlins, except		load of 12.0	psf or 2.00 times flat	roof load	l of 25.0 psf o			
BOT CHORD Rigid bracin	ceiling directly app	blied or 8-4-5 oc		on-concurrent with ot 3x4 MT20 unless ot					
WEBS 1 Row	vat midpt 7-1	1, 6-11		is been designed for a ad nonconcurrent with					
	2=0-3-8, 14=0 priz 2=382 (LC 16	6)	 All bearings capacity of 5 	are assumed to be SI					
	olift 2=-157 (LC 16 rav 2=1079 (LC 2		6) 9) Bearing at jo	int(s) 14 considers pa					
FORCES (lb) - M Tensio	Maximum Compres	ssion/Maximum	designer sho	ould verify capacity of	bearing	surface.			
TOP CHORD 1-2=0, 6-7=-5	/12, 2-4=-1602/218 508/106, 7-8=-382/		bearing plate joint 2 and 2	hanical connection (b capable of withstand 32 lb uplift at joint 14.	ding 157	Ib uplift at			
BOT CHORD 2-13=	-986/266 -477/1334, 11-13=		2/6 International	designed in accordar Residential Code see	ctions R	502.11.1 and			
	-57/122, 6-11=-838 -351/245, 8-11=-19	,	23, R802.10.2 a LOAD CASE(S)	nd referenced standa Standard	rd ANSI	/TPI 1.		S OF M	and the second second
NOTES 1) Unbalanced roof li	ive loads have hee	an considered for	(•)					TE OF M	1880
this design.								SCOTT	
	DL=6.0psf; BCDL= Exp C; Enclosed; N	=6.0psf; h=35ft; /WFRS (envelope)				4	SEVIE	
Interior (1) 4-1-0 to zone; cantilever le	o 18-6-0, Exterior(2	2E) 18-6-0 to 21-9					7	NUMB	
exposed;C-C for n reactions shown; I	nembers and force	es & MWFRS for						PE-200101	18807
DOL=1.60		Proto Aub						SSIONAL	ENG
								and a	22,2024
								April 2	22,2024

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

http://www.angley.kide.kd. Chesterfield, MO 63017 314.434.1200 / MiTek-US.com

										RELEASE	FOR CONSTRUCTION	
Job	Truss		Truss Type	Qt	/	Ply F	Roof - HR I	_ot 185			D FOR PLAN REVIEW OPMENT SERVICES 165052064	7
P240213-01	E3		Roof Special	2		1	Job Refere	nce (opti	ional		SUMMIT, MISSOURI	
Premier Building	Supply (Springhill, KS), S	pring Hills, KS - 66083,		Run: 8.63 S Apr 5 2024 F							25/2024	Ē
				ID:HXyS?ajf9Rc8qbAhrG?	Jw7ylfVZ-	RfC?PsB70F	Hq3NSgPqnL	_8w3uITX	bGKV	rCDoi7J4zJC?		
		-0-11-0 - 0-11-0	6-3-11	12-4-13	16-0		<u>6-0 21</u>	<u>-9-8</u> 22- -3-8 0-4	-2-4			
		0-11-0	6-3-11	6-1-2	3-7-	7 2-5	-12 3	-3-8 0-4	-12			
Scale = 1:70.3	10-0-1		2 3x4 = 4 3x4 = 19 3 x8 II <u>9-5-10</u> 9-5-10	6 ¹² 3x4 = 6 2x4 = 5 5 5 1716 4x8 = 3x6 = 16	- <u>1-8</u> 7-14	15 2x4 II 6 19		13 4x87 4x87 4= 3 22 21-10 21-21 21-2	312 312 4 II x4 = -2-4 0-12 H	+ -0-14 +		
	K, Y): [2:0-4-1,Edge]							0	00			—
Loading TCLL (roof) Snow (Pf) TCDL	(psf) 25.0 25.0 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr	2-0-0 1.15 1.15 YES	CSI TC 0.45 BC 0.83 WB 0.50	DEFL Vert(LL Vert(C Horz(C	́Г) -0.41) 2-17 1 2-17	l/defl >999 >641 n/a	L/d 240 180 n/a	PLATES MT20	GRIP 244/190	
BCLL BCDL	0.0 10.0	Code	IRC2018/TPI2014	Matrix-S						Weight: 134 lb	FT – 20%	
LUMBER TOP CHORD BOT CHORD WEBS OTHERS SLIDER BRACING TOP CHORD BOT CHORD WEBS REACTIONS	4-7-5 oc purlins. Rigid ceiling directly bracing. 1 Row at midpt	5-15 athing directly applied applied or 6-0-0 oc 8-12	Vasd=91mpł Ke=1.00; Cat exterior zone Interior (1) 4- zone; cantile and right exp MWFRS for grip DOL=1.6 3) TCLL: ASCE Plate DOL=1 DOL=1.15); 1 Cs=1.00; Ct=	7-16; Pr=25.0 psf (roof Ll .15); Pf=25.0 psf (Lum DC s=1.0; Rough Cat C; Fully	Dpsf; h=3 FRS (en 1-0 to 4 18-6-0 ; end ver d forces DOL=1.6 .: Lum D DL=1.15 Exp.; Co	55ft; velope) -1-0, to 21-9-8 tical left & 0 plate OL=1.15 Plate e=0.9;						

8-14=-325/1191, 8-12=-963/265, 11-12=0/16 NOTES 1) Unbalanced roof live loads have been considered for

4-17=-374/256, 6-17=-59/156,

14-17=-373/1216, 6-14=-372/156,

Max Uplift 2=-157 (LC 16), 18=-232 (LC 16)

Max Grav 2=1079 (LC 23), 18=990 (LC 23)

1-2=0/12, 2-4=-1604/225, 4-6=-1312/185,

2-17=-484/1339, 15-17=-5/6, 14-15=0/88,

12-13=-123/440, 11-13=0/37, 10-11=-3/0,

10-12=0/45, 12-18=-205/925, 9-18=-197/70

7-14=-264/119, 13-14=-120/444,

6-7=-1049/244, 7-8=-1022/309, 8-9=-107/56

(lb) - Maximum Compression/Maximum

this design.

Tension

FORCES

TOP CHORD

BOT CHORD

WEBS

- This truss has been designed for greater of min roof live 5) load of 12.0 psf or 2.00 times flat roof load of 25.0 psf on overhangs non-concurrent with other live loads. 6) This truss has been designed for a 10.0 psf bottom
- chord live load nonconcurrent with any other live loads.
- All bearings are assumed to be SP No.2 crushing 7) capacity of 565 psi.

Bearing at joint(s) 18 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building 8) designer should verify capacity of bearing surface.

Provide mechanical connection (by others) of truss to 9) bearing plate capable of withstanding 157 lb uplift at joint 2 and 232 lb uplift at joint 18.

10) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard

16023 Swingley Ridge Rd. Chesterfield MO 63017 314.434.1200 / MiTek-US.com

 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.
 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not beigh valid for use only with with with sets outputs into design is based only door parameters shown, and is for an individual dualing component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria**, and **DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcscomponents.com)

								RELEASE FOR CONSTRUCT	ION
Job	Truss	Truss Type		Qty	Ply	Roof - HR Lot 18	35	AS NOTED FOR PLAN REVIE DEVELOPMENT SERVICES 165052065	
P240213-01	E4	Common		7	1	Job Reference (optional	LEE'S SUMMIT, MISSOURI	
Premier Building Supply (Spring	hill, KS), Spring Hills, KS - 66083,					5 2024 MiTek Industrie sB70Hq3NSgPqnL8w3			:4
-0-11-0 - 0-11-0	0 <u>6-3-11</u> 6-3-11	12-4-13 6-1-3	<u>18-6-0</u> 6-1-3	5x5=	24-7-3 6-1-3		-8-5 1-3	<u>37-0-0</u> 37-11 6-3-11 0-11-	-0 0
	1.5x4 3x4 = 4 3x4 = 19 3 x5 II	$6^{\frac{12}{6}}$ 3x4=	4 = 20 (t) 17 3x6=	16 4x8=	15 3x6=		3x4	1.5x4 ¢ 5 5 10 3x4 ± 22 11 3x4 ± 12 5x5 II	13
F	9-4-4 9-4-4	3x4=	18-6-0 9-1-12	4x0=	27-	7-12 -12	+	37-0-0 9-4-4	
Scale = 1:67.9	10 0 0 101 110 0 0 10 0 0 10								
Plate Offsets (X, Y): [2:0-2	-13,0-0-12], [12:0-2-13,0-0-12		1		-			1	
Loading ITCLL (roof) Snow (Pf) ITCDL BCLL BCDL	(psf) Spacing 25.0 Plate Grip DOL 25.0 Lumber DOL 10.0 Rep Stress Incr 0.0 Code 10.0 Rep Stress Incr	2-0-0 1.15 1.15 YES IRC2018/TPI2014	CSI TC BC WB Matrix-S	0.99 Ve	rt(LL) -(rt(CT) -(in (loc) l/de 0.19 2-18 >99 0.42 2-18 >99 0.14 12 n/a	9 240 9 180	PLATES GRIP MT20 244/190 Weight: 171 lb FT = 20%	
No.2 3-5- BRACING TOP CHORD Structural v 30T CHORD Rigid ceilin bracing. WEBS 1 Row at m REACTIONS (size) 2 Max Horiz 2 Max Upift 2 Max Upift 2 Max Upift 2 FORCES (lb) - Maxin Tension TOP CHORD 1-2=0/12, 2 6-7=-1924 8-10=-2655 12-13=0/12 30T CHORD 2-18=-488/ 14-16=-210/ NEBS 7-16=-200/ 8-14=-58/4 NOTES	2 5.2 No.2 3-5-15, Right 2x4 SP 15 vood sheathing directly applie g directly applied or 2-2-0 oc hidpt 8-16, 6-16 2=0-3-8, 12=0-5-8 2=183 (LC 16) 2=-276 (LC 16), 12=-276 (LC - 2=1729 (LC 1), 12=1729 (LC 1) hum Compression/Maximum 2-4=-2919/471, 4-6=-2659/458 432, 7-8=-1924/432, 0/458, 10-12=-2918/471,	 Vasd=91m; Ke=1.00; C exterior zorn Interior (1) 4 23-6-0, Inte and right ex exposed;C- reactions sh DOL=1.60 3) TCLL: ASC Plate DOL= DOL=1.10; C 7) 4) Unbalanced design. 5) This truss h load of 12.C overhangs i 6) All plates an 7) This truss h chord live I6 8) All bearings capacity of 9) Provide me bearing plat /230 joint 2 and 2 10) This trus sh 	d snow loads have b as been designed fo psf or 2.00 times fla non-concurrent with re 3x4 MT20 unless as been designed fo sad nonconcurrent w are assumed to be 565 psi. chanical connection te capable of withsta 276 lb uplift at joint 1 s designed in accord al Residential Codes and referenced stan	CDL=6.0psf; ed; MWFRS 2E) -0-11-0 2E) -0-11-0 left and righ forces & MV e1.60 plate g (roof LL: Lu Lum DOL=1 C; Fully Exp een conside or greater of at roof load c other live lo otherwise in or a 10.0 psf vith any othe SP No.2 cru (by others) anding 276 ll 2. lance with th sections R50	h=35ft; (envelope) to 4-1-0, 6-0 to cantilever le tv VFRS for rrip m DOL=1.1: .15 Plate .; Ce=0.9; ered for this min roof livio of 25.0 psf c ads. dicated. bottom rr live loads. ushing of truss to p uplift at me 2018 02.11.1 and	5 Ə ın		STATE OF MISSOURS SCOTT M. SEVIER NUMBER PE-2001018807	

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

April 22,2024

											RELEASE	FOR CONSTRUCTION
Job		Truss		Truss Type		Qty	Ply	F	Roof - HR L	ot 185.		ED FOR PLAN REVIEW
P240213-01		E5		Common Support	ed Gable	1	1		lob Roforor	nce (optional)		OPMENT SERVICES 165052066 SUMMIT, MISSOURI
	Supply (Spring	hill, KS), S	pring Hills, KS - 66083,		Run: 8.63 S Apr &	5 2024 Print:	8.630 S A					25/2011
		, -,, -			ID:WUXtsnQTcg5							23/2024
	-0-11-0			40.0.0						07.0.0		37-11-0
	-0-11-0 			<u>18-6-0</u> 18-6-0						<u>37-0-0</u> 18-6-0		0-11-0
	0 11 0					5x5=						0 11 0
						13						
ТТ					12		14					
					11			15				
				12 6F 10					16			
				3x6 = 9						17 3x6		
1-0			7	8						18		
9-11-0			6			×					20	
		3x4 ≠	455								2146	3
		4										22 ^{3x4}
	2	3										23
		6				9	8	9	8	8 8		25
- o	- ⊠ 3xi	<u> </u>	4 43 42	41 40 39	★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★	35 ××××××××	3433	<u>*****</u> 32	31 3	××××××××××××××××××××××××××××××××××××××	28 27	26 3x6 II
	34				3x6=		3x6=					3,0
	L					37-0-0						
Scale = 1:67.9												'
Plate Offsets (X	, Y): [2:0-4-	1,Edge],	[24:0-4-1,Edge]									
Looding		(nof)	Specing	200	C 51				(100)			
Loading TCLL (roof)		(psf) 25.0	Spacing Plate Grip DOL	2-0-0 1.15	CSI TC		EFL ert(LL)	ir n/a	· · /	l/defl L/d n/a 999	PLATES MT20	GRIP 244/190
Snow (Pf)		25.0	Lumber DOL	1.15	BC		ert(CT)	n/a		n/a 999		
TCDL BCLL		10.0 0.0	Rep Stress Incr Code	YES IRC2018/TPI2014	WB Matrix-S	0.32 H	orz(CT)	0.01	1 24	n/a n/a		
BCDL		10.0									Weight: 195 lb	FT = 20%
LUMBER					Max Grav 2=188 (Lo				1) Unba	alanced roof li	ve loads have be	en considered for
	2x4 SP No.2 2x4 SP No.2					LC 37), 27 LC 37), 29				design. I [.] ASCF 7-16	Vult=115mph (3	-second qust)
OTHERS	2x3 SPF No				30=180 (I	LC 37), 31	=221 (LC	24),	Vasc	l=91mph; TC	DL=6.0psf; BCDL	_=6.0psf; h=35ft;
	Left 2x4 SP 1-6-7	No.2 1	-6-7, Right 2x4 SP N	o.2		LC 24), 34: LC 29), 36:					:xp C; Enclosed; C-C Corner(3E) ·	MWFRS (envelope) -0-11-0 to 4-1-0,
BRACING						LC 23), 39					to 18-6-0, Corne	
TOP CHORD	Structural w 6-0-0 oc pu		athing directly applied	or		LC 36), 41 LC 36), 43			left a	nd right expo	sed ; end vertical	
BOT CHORD	Rigid ceiling		applied or 10-0-0 oc	FORCES	44=211 (l (lb) - Maximum Com	,	Acvinum			,	nembers and forc _umber DOL=1.6	ces & MWFRS for
WEBS	bracing. 1 Row at m	idpt	13-35, 12-36, 14-34	FORCES	Tension	pression/i	viaximum		DOL	=1.60		
REACTIONS (size) 2	=37-0-0,	24=37-0-0, 26=37-0-		1-2=0/12, 2-4=-243/ 5-6=-128/105, 6-8=-			50				ne plane of the truss formal to the face),
), 28=37-0-0, 29=37-0), 31=37-0-0, 32=37-0		9-10=-73/187, 10-1	1=-91/237,		55,	see	Standard Indu	istry Gable End	Details as applicable,
	3	4=37-0-0), 35=37-0-0, 36=37-0	-0,	11-12=-111/294, 12 13-14=-128/341, 14							er as per ANSI/TPI 1. of LL: Lum DOL=1.15
), 39=37-0-0, 40=37-0), 42=37-0-0, 43=37-0		15-16=-91/237, 16-	17=-73/184	1,	0/04				n DOL=1.15 Plate Fully Exp.; Ce=0.9;
Ν	4 Aax Horiz 2	4=37-0-0			17-18=-58/130, 18-2 21-22=-98/22, 22-24					1.00; Ct=1.10	, Rough Cat C, r	ully Exp., Ce=0.9,
			5 17), 26=-105 (LC 17)	, BOT CHORD	2-44=-48/193, 43-44				5) Unba desig		loads have been	o considered for this
			C 17), 28=-63 (LC 17) C 17), 30=-61 (LC 17)		42-43=-48/193, 41-4 40-41=-48/193, 39-4				ucsię	<i>j</i>		m
	3	1=-60 (L	C 17), 32=-67 (LC 17)	,	38-39=-48/193, 36-3 35-36=-48/193, 34-3						OF I	MISSOL
			C 17), 36=-55 (LC 16) C 16), 39=-60 (LC 16)		32-34=-48/193, 31-3					A	TATE OF I	10000
	4	0=-61 (L	C 16), 41=-60 (LC 16)	,	30-31=-48/193, 29-3 28-29=-48/193, 27-2					B	SCOT	TM. YE Y
		2=-64 (L 4=-118 (C 16), 43=-48 (LC 16) LC 16)		26-27=-48/193, 24-2	26=-48/193	3			B_	SEVI	
	4	.= 110 (,	WEBS	13-35=-213/42, 12-3 11-38=-225/104, 10					<u>y</u>	+++	
					9-40=-140/97, 8-41=	=-140/96, 6	6-42=-141	/98,			NUM	BER
					5-43=-136/100, 4-44 14-34=-234/82 15-3					X2	PE-2001	

NOTES

Continued on page 2 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, rection and bracing of trusses and truss systems, see AMS/IPTI Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

5-43=-136/100, 4-44=-159/205, 14-34=-234/82, 15-32=-225/104, 16-31=-181/95, 17-30=-140/97, 18-29=-140/96, 20-28=-141/98, 21-27=-136/101, 22-26=-159/202

April 22,2024

PE-2001012

there

				RELEASE FOR CONSTRUCTION
Job Truss	Truss Type	Qty PI	ly Roof - HR Lot 18	5 AS NOTED FOR PLAN REVIEW
P240213-01 E5	Common Supported Gable	1 1	Job Reference (o	DEVELOPMENT SERVICES I65052066 LEE'S SUMMIT, MISSOURI
Premier Building Supply (Springhill KS) Sprin	ng Hills KS - 66083 Run: 8.63	S Apr 5 2024 Print: 8 630 9	S Apr. 5 2024 MiTek Industries	

- 6) This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 25.0 psf on overhangs non-concurrent with other live loads.
- 7) All plates are 1.5x4 MT20 unless otherwise indicated.

8) Gable requires continuous bottom chord bearing.

9) Gable studs spaced at 2-0-0 oc.

- 10) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 11) All bearings are assumed to be SP No.2 crushing capacity of 565 psi.
- 12) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 27 lb uplift at joint 2, 55 lb uplift at joint 36, 65 lb uplift at joint 38, 60 lb uplift at joint 39, 61 lb uplift at joint 40, 60 lb uplift at joint 41, 64 lb uplift at joint 42, 48 lb uplift at joint 43, 118 lb uplift at joint 44, 50 lb uplift at joint 34, 67 lb uplift at joint 32, 60 lb uplift at joint 31, 61 lb uplift at joint 30, 61 lb uplift at joint 29, 63 lb uplift at joint 28, 51 lb uplift at joint 27 and 105 lb uplift at joint 26.
- 13) Beveled plate or shim required to provide full bearing surface with truss chord at joint(s) 2.
- 14) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard

Run: 8.63 S Apr 5 2024 Print: 8.630 S Apr 5 2024 MiTek Industries, Inc. Fri Apr 19 19 19 74 /25/29 24 ID:WUXtsnQTcg5xShQIN2gNrTylfdh-RfC?PsB70Hq3NSgPqnL8w3uITXbGK vrCDoi7942JCH

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSITPTI Quality Criteria, and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcscomponents.com)

Job	Truss		Truss	Туре			Qty	Ply	Roof - HR Lot	t 185		IED FOR PLAN REVIEW LOPMENT SERVICES 165052067	′
P240213-01	R1		Flat C	Girder			1	2	Job Referenc	e (optional		165052067 S SUMMIT, MISSOURI	
Premier Building Supply (Springh	hill, KS), Sprin	g Hills, KS - 6608	3,		Run: 8 ID:p1I	8.63 S Apr 5 ILYtHBqmZt0H	2024 Print: 8.6 IL5osFBZ7ylfC	30 S Apr 52 DN-RfC?PsB7	2024 MiTek Indus 70Hq3NSgPqnL8	tries, Inc. Fri A w3ulTXbGK\Vr	pr 19 19:47:45 CDoi7J42JC?f	25/2024	4
	L	5-3-6		1	10-4-8	1	15·	-5-10	1	20-9-0	1		
	Γ	5-3-6		1	5-1-2	I	5-	-1-2	1	5-3-6	1		
		HUS26	HUS26	HUS26	HUS26	HUS26	HUS26	HUS26	HUS26	HUS26	HUS26		
	Зх6 н			5x8 =		3x6	II	7x8=	= 5x8=		3x6 ı	ı	
4-0-0		13	14	2 15		173	18	4	5 19		21 6		

₩.

9

4x8 =

SUPPLEMENTARY BEARING PLATES, SPECIAL ANCHORAGE, OR	6x6=
OTHER MEANS TO ALLOW FOR THE MINIMUM REQUIRED SUPPORT	
WIDTH (SUCH AS COLUMN CAPS, BEARING BLOCKS, ETC.)	
ARE THE RESPONSIBILITY OF THE TRUSS MANUFACTURER	
OR THE BUILDING DESIGNER.	

MT18HS 9x18 =

11

2x4 u

10

	F	5-3-6		10-4-8		15-5-10		+		20-9-0		
Scale = 1:46		5-3-6		5-1-2	•	5-1-2		•		5-3-6		
Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15	TC	0.56	Vert(LL)	-0.11	9	>999	240	MT18HS	197/144
Snow (Pf)	25.0	Lumber DOL	1.15	BC	0.84	Vert(CT)	-0.20	9	>999	180	MT20	197/144
TCDL	10.0	Rep Stress Incr	NO	WB	0.70	Horz(CT)	0.07	7	n/a	n/a		
BCLL	0.0	Code	IRC2018/TPI2014	Matrix-S								
BCDL	10.0										Weight: 257 lb	FT = 20%

LI	υN	IB	Ε	R
τ/		6	۱L	

LUMBER		2)
TOP CHORD	2x8 SPF No.2	
BOT CHORD	2x6 SPF No.2	
WEBS	2x3 SPF No.2 *Except* 12-1,6-7,12-2,7-5:2x4	
	SP No.2	
BRACING		3)
TOP CHORD	2-0-0 oc purlins (5-6-11 max.): 1-6, except	
	end verticals.	
BOT CHORD	Rigid ceiling directly applied or 10-0-0 oc	
	bracing.	
WEBS	1 Row at midpt 2-12, 5-7	
REACTIONS	(size) 7=0-3-8, (req. 0-4-9), 12=0-3-8,	•
	(req. 0-4-2)	4)
	Max Horiz 12=-105 (LC 14)	
	Max Uplift 7=-1277 (LC 13), 12=-1147 (LC 12)	
	Max Grav 7=5815 (LC 1), 12=5240 (LC 1)	5)
FORCES	(Ib) - Maximum Compression/Maximum	3)
	Tension	6)
TOP CHORD	1-12=-788/259, 1-2=-105/96,	7)
	2-3=-8426/2117, 3-5=-8426/2117,	8)
	5-6=-77/18, 6-7=-1345/363	0)
BOT CHORD	11-12=-1670/6526, 9-11=-1670/6526,	9)
	8-9=-1639/6556, 7-8=-1639/6556	-,
WEBS	2-12=-7788/1943, 2-11=0/187,	10
	2-9=-576/2299, 3-9=-2452/684,	
	5-9=-577/2263, 5-8=0/186, 5-7=-7819/1957	11
NOTES		
1) 2-ply truss	s to be connected together with 10d	
(0.131"x3	") nails as follows:	12
	Is connected as follows: 2x4 - 1 row at 0-9-0	
	3 rows staggered at 0-5-0 oc.	
	ords connected as follows: 2x6 - 2 rows	13
	at 0-9-0 oc.	
	nected as follows: 2x4 - 1 row at 0-9-0 oc, 2x3 -	
1 row at 0	-9-0 oc.	14

- All loads are considered equally applied to all plies, 2) except if noted as front (F) or back (B) face in the LOAD CASE(S) section. Ply to ply connections have been provided to distribute only loads noted as (F) or (B), unless otherwise indicated.
 - Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=35ft; Ke=1.00; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone and C-C Corner (3) zone; cantilever left and right exposed ; end vertical left exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- TCLL: ASCE 7-16; Pr=25.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=25.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat C; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10
- Unbalanced snow loads have been considered for this desian.
- Provide adequate drainage to prevent water ponding.
- All plates are MT20 plates unless otherwise indicated.
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- WARNING: Required bearing size at joint(s) 12, 7 greater than input bearing size.
-) All bearings are assumed to be SPF No.2 crushing capacity of 425 psi.
- Provide mechanical connection (by others) of truss to) bearing plate capable of withstanding 1147 lb uplift at joint 12 and 1277 lb uplift at joint 7.
- 2) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 3) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.
- 14) Use Simpson Strong-Tie HUS26 (14-10d Girder, 4-10d Truss) or equivalent spaced at 2-0-0 oc max. starting at 2-0-0 from the left end to 20-0-0 to connect truss(es) to back face of top chord.

15) Fill all nail holes where hanger is in contact with lumber.

₿

MT18HS 9x18 =

16) Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 18 lb down and 20 lb up at 0-1-12 on top chord. The design/ selection of such connection device(s) is the responsibility of others.

LOAD CASE(S) Standard

8

2x4 II

- Dead + Snow (balanced): Lumber Increase=1.15, Plate 1) Increase=1.15
 - Uniform Loads (lb/ft)

Vert: 1-6=-70, 7-12=-20

Concentrated Loads (lb)

Vert: 4=-920 (B), 13=-920 (B), 14=-920 (B), 15=-920 (B), 16=-920 (B), 17=-920 (B), 18=-920 (B), 19=-920

(B), 20=-920 (B), 21=-934 (B)

16023 Swingley Ridge Rd. Chesterfield MO 63017 314.434.1200 / MiTek-US.com

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not beigh valid for use only with with with sets outputs into design is based only door parameters shown, and is for an individual dualing component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria**, and **DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcscomponents.com)

Job P240213-01 Premier Building		Truss V1		Tru	uss Type		0.0	I .					RELEASE FOR CONSTRUCTION AS NOTED FOR PLAN REVIEW		
		1/1							Ply	Roof - HR	Lot 185		DEVELOPMENT SERVICES 165052068		
Premier Building	Supply (Springhi	V I		Va	alley		1	· ·	1	Job Refer	e <u>nce (or</u>	otional		SUMMIT, MISSOURI	
	oupply (opinight	ill, KS), Sp	pring Hills, KS - 660	J83,		Run: 8.63 S Apr 5								25/2024	
						ID:znOG5Q?SPPEg	gIYP3TG1	Yi3bylff)	X-RfC?PsI	370Hq3NSgP	qnL8w3ul	TXbGK	WrCDoi734zJC?		
				L		13-0-1					13	-8-9			
						13-0-1					b	-8-8			
											_	8			
		T	-								7	\square	\top		
										6					
								5		1					
							16	J	7						
		6-0				4			1				2		
		6-10-9				3 15							6-6-5		
						P									
				1 <u>2</u> 6 Г	2										
					1										
			4	1			•			•		9			
			-0-0 4					****							
				3x4	4 ≈ 14	13 1	2	1	1	10					
				L		13-0-1									
Scale = 1:42				·											
oading		(psf)	Spacing		11-4	CSI TC			\	in (loc)	l/defl	L/d 999	PLATES MT20	GRIP 244/190	
CLL (roof) Snow (Pf)		25.0 25.0	Plate Grip DOL Lumber DOL	- 1.1 1.1				/ert(LL /ert(C⁻	,	n/a - n/a -	n/a n/a	999 999	WI120	244/190	
CDL SCLL		10.0 0.0	Rep Stress Incl Code		S C2018/TPI2014	WB Matrix-S	0.14	Horz(C	CT) 0	.00 9	n/a	n/a			
SCDL		10.0											Weight: 58 lb	FT = 20%	
NOT CHORD VEBS DTHERS BRACING OP CHORD NOT CHORD REACTIONS	6-0-0 oc purli Rigid ceiling o bracing. (size) 1= 11 14 Max Horiz 1= Max Uplift 9= 11 13 Max Grav 1= 10 12=-350/142 4-5=-172/68, 7-8=-42/0, 7- 1-14=0/0, 13 10-11=0/0, 9-	2 2 2 2 2 2 2 2 2 2 2 2 2 2	: 16) 16), 10=-55 (LC C 16), 12=-60 (L) C 16), 14=-77 (L' : 28), 9=204 (LC C 23), 11=249 (I C 23), 13=159 (I C 23) pression/Maximu 276/110, 3-4=-22 15/48, 6-7=-62/44 107 , 12-13=0/0, 11-7 =-211/105, 4-12=	oc 3-0-1, =13-0-1, C 16), C 16), C 16), C 23), LC 23), LC 23), LC 23), LC 1), Jm 26/91, 6, 12=0/0,	 Ke=1.00; Cat exterior zone Interior (1) 5- exposed; C-C reactions shc DOL=1.60 2) Truss design only. For stu see Standarc or consult qu 3) TCLL: ASCE Plate DOL=1 DOL=1.15); I Cs=1.00; Ct= 4) Unbalanced si design. 5) This truss ha load of 12.0 p overhangs no 6) All plates are 7) Gable require 8) Gable studs si ocapacity of 56 11) Provide mech bearing plate 9, 55 lb uplift at joint 12, 54 14. 12) This truss is constructional 	snow loads have been s been designed for the for 2.00 times flat on-concurrent with or 2x4 MT20 unless of the scontinuous bottom spaced at 2-0-0 oc. s been designed for d nonconcurrent with are assumed to be S	d; MWFF E) 0-7-9 cantileve orces & .60 plate the plar (normal d Details per as p oof LL: 1 im DOL: ; Fully E en consi greater roof loa ther live therwise n chord 1 a 10.0 p h any ot EP No.2 d by other: ding 57 iff at join and 77 lt nce with	RS (en to 5-7- er left az MWFF e grip he of th to the as apport AN- Lum D =1.15 i vpper AN- Lum D =1.15 i loads. i indicas bearing of d of 22 loads. i indicas bearing osf bott her livy crushir s) of tri lb upilift to 11, 6 o upilift the 22502.1	velope) -9, and right RS for he truss face), plicable, plicable, plicable, sl/TPI 1. OL=1.15 Plate e=0.9; for this n roof live 5.0 psf or ated. g. tom to loads. ng uss to ft at joint 60 lb uplif at joint 018 1.1 and	1			STATE OF SCOT SEV PE-2001	Reviewer	
WARN	ING - Verify desiar	n paramet	ers and READ NOTE	ES ON THIS	LOAD CASE(S)		7473 rev. 1	/2/2023	BEFORE U	ISE.			- -	IL ENOLUTION II 22,2024	

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

16023 Swingley Ridge Rd. Chesterfield, MO 63017 314.434.1200 / MiTek-US.com

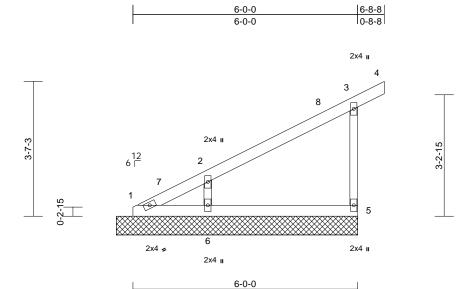
						RELEASE FOR CONSTRUCTION
Job	Truss	Truss Type	Qty	Ply	Roof - HR Lot 185	AS NOTED FOR PLAN REVIEW DEVELOPMENT SERVICES 165052069
P240213-01	V2	Valley	1	1	Job Reference (optional	I65052069 LEE'S SUMMIT, MISSOURI
Premier Building Supply	(Springhill, KS), Spring Hills,	KS - 66083,	Run: 8.63 S Apr 5 2024 Print: ID:CFvEQhvRHyDpKJoX?bPq	8.630 S Apr kvylfff-RfC?F	r 52024 MiTek Industries, Inc. Fri PsB70Hq3NSgPqnL8w3uITXbGK\	Apr 19 1074/25/2024
			<u>9-9-5</u> 9-9-5		10-5-13	
			3-3-0		0-8-8	
					2x4 II	

9-9-5

Scale = 1:39.6

Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 25.0 25.0 10.0 0.0 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC20	18/TPI2014	CSI TC BC WB Matrix-S	0.47 0.22 0.12	DEFL Vert(LL) Vert(CT) Horz(CT)	in n/a n/a 0.00	(loc) - - 5	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 36 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD REACTIONS FORCES TOP CHORD	6-0-0 oc purlins, ex Rigid ceiling directly bracing. (size) 1=9-9-5, § Max Horiz 1=214 (LC Max Uplift 5=-70 (LC Max Grav 1=188 (LC 6=640 (LC (lb) - Maximum Com Tension 1-2=-266/125, 2-3=- 3-5=-261/146	applied or 6-0-0 oc 5=9-9-5, 6=9-9-5 C 16) C 16), 6=-171 (LC 16) C 1), 5=285 (LC 23), C 23) npression/Maximum	8 9 1 1	 design. This truss ha load of 12.0 overhangs n Gable requir Gable studs This truss ha chord live loa All bearings capacity of 5 Provide mec bearing plate and 171 lb This truss is International 	hanical conne capable of w uplift at joint 6 designed in ac Residential C nd referenced	hed for great les flat roof lk bottom chor -0 oc. hed for a 10.0 ent with any to be SP No. ction (by oth tithstanding 7 S. ccordance w ode sections	er of min roof bad of 25.0 p ve loads. d bearing. D psf bottom other live loa 2 crushing ers) of truss f 0 lb uplift at j ith the 2018 s R502.11.1 a	f live sf on ids. to joint					
BOT CHORD WEBS	1-6=-1/3, 5-6=-1/3 2-6=-515/333												
NOTES 1) Wind: ASC	CE 7-16; Vult=115mph	(3-second gust)											The second se

 Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=35ft; Ke=1.00; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) 0-7-9 to 5-9-13, Interior (1) 5-9-13 to 10-6-5 zone; cantilever left and right exposed ;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60


5-3-3

- Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
 TCLL: ASCE 7-16; Pr=25.0 psf (roof LL: Lum DOL=1.15
- TCLL: ASCE 7-16; Pr=25.0 psf (roof LL: Lum DOL=1.1 Plate DOL=1.15); Pf=25.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat C; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10
 - WARNING Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent college with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

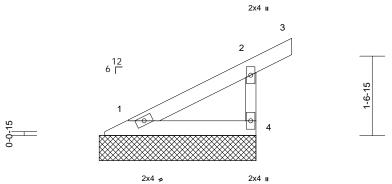
And the second s

						RELEASE FOR CONSTRUCTION
Job	Truss	Truss Type	Qty	Ply	Roof - HR Lot 185	AS NOTED FOR PLAN REVIEW DEVELOPMENT SERVICES 165052070
P240213-01	V3	Valley	1	1	Job Reference (optional	
Premier Building Supply (Springhill, KS), Spring Hills,	KS - 66083,			5 2024 MiTek Industries, Inc. Fri PSB70Hq3NSgPqnL8w3uITXbGł	

Scale = 1:30.7

Scale = 1:30.7													
Loading ICLL (roof) Snow (Pf) ICDL 3CLL 3CDL	(psf) 25.0 25.0 10.0 0.0 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC20 ²	18/TPI2014	CSI TC BC WB Matrix-P	0.32 0.12 0.08	DEFL Vert(LL) Vert(CT) Horz(CT)	in n/a n/a n/a	(loc) - -	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 23 lb	GRIP 244/190 FT = 20%
FORCES TOP CHORD BOT CHORD WEBS	2x4 SP No.2 2x4 SP No.2 2x3 SPF No.2 2x3 SPF No.2 2x3 SPF No.2 Structural wood she 6-0-0 oc purlins, ex Rigid ceiling directly bracing. (size) 1=6-5-5, 4 Max Horiz 1=141 (LC Max Uplift 5=-81 (LC Max Grav 1=64 (LC 6=497 (LC (lb) - Maximum Corr Tension 1-2=-261/117, 2-3=- 3-5=-278/195 1-6=0/0, 5-6=0/0 2-6=-417/310	cept end verticals. v applied or 10-0-0 o 5=6-5-5, 6=6-5-5 C 16), 6=-117 (LC 16 16), 5=310 (LC 23), C 23) npression/Maximum	8 9 1 6) 7 1	 design. This truss h load of 12.0 overhangs Gable requi Gable studs This truss h chord live ld All bearings capacity of Provide me bearing pla and 117 I This truss is International 	chanical connect te capable of with b uplift at joint 6. s designed in acc al Residential Co and referenced s	ed for great es flat roof k vith other lin oottom chor o c. ed for a 10.0 nt with any o be SP No. tion (by oth hstanding & cordance w de sections	er of min roof pad of 25.0 ps /e loads. d bearing. D psf bottom other live loa 2 crushing ers) of truss t i1 lb uplift at ji ith the 2018 : R502.11.1 a	live sf on ds. o pint					
Vasd=91m Ke=1.00; 0	CE 7-16; Vult=115mph nph; TCDL=6.0psf; BC Cat. II; Exp C; Enclose	DL=6.0psf; h=35ft; d; MWFRS (envelop	pe)									SE OF I	MISSO

- Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=35ft; Ke=1.00; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) 0-7-9 to 5-7-9, Interior (1) 5-7-9 to 7-2-5 zone; cantilever left and right exposed ;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- or consult qualified building designer as per ANSI/TPI 1.
 TCLL: ASCE 7-16; Pr=25.0 psf (roof LL: Lum DOL=1.15) Plate DOL=1.15); Pf=25.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat C; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10


PE-2001018807

April 22,2024

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent oulgase with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

						RELEASE FOR CONSTRUCTION
Job	Truss	Truss Type	Qty	Ply	Roof - HR Lot 185	AS NOTED FOR PLAN REVIEW DEVELOPMENT SERVICES 165052071
P240213-01	V4	Valley	1	1	Job Reference (optional	
Premier Building Supply (Springhill, KS), Spring Hills, k	S - 66083,	Run: 8.63 S Apr 5 2024 Print: ID:GbG2QBgWm6qVZPrtO5ZN	8.630 S Apr Tuylffy-RfC?	5 2024 MiTek Industries, Inc. Fri ?PsB70Hq3NSgPqnL8w3uITXbG	Apr 19 19:37/4/25/29:24 (WrCDoive4z)5/
		1	3-0-0	3-	8-8	
			3-0-0	0-	8-8	

3-0-0

Scale = 1:22.9

Scale = 1:22.9													
Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 25.0 25.0 10.0 0.0 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC20	18/TPI2014	CSI TC BC WB Matrix-P	0.14 0.06 0.00	Vert(CT)	in n/a n/a n/a	(loc) - -	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 11 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD REACTIONS	2x3 SPF No.2 Structural wood she 3-1-13 oc purlins, e	except end verticals. v applied or 10-0-0 or 4=3-1-5 16) C 16)	ed or	 7) Gable studs 8) This truss he chord live los 9) All bearings capacity of 5 10) Provide mechanism plate 4. 11) This truss is International 	chanical connect e capable of with designed in acc Residential Co nd referenced s	o oc. ed for a 10.1 nt with any be SP No. tion (by oth nstanding 7 cordance w de sections	0 psf bottom other live load 2 crushing ers) of truss to 70 lb uplift at jo ith the 2018 \$ R502.11.1 at	o pint					
FORCES	(lb) - Maximum Com Tension	npression/Maximum											
TOP CHORD BOT CHORD	1-2=-103/62, 2-3=-4 1-4=0/0	4/0, 2-4=-222/193											
NOTES													
Vasd=91n Ke=1.00; (exterior zc and right e MWFRS fr grip DOL=	CE 7-16; Vult=115mph nph; TCDL=6.0psf; BC Cat. II; Exp C; Enclose one and C-C Exterior(2 exposed ;C-C for mem or reactions shown; Lu 1.60	DL=6.0psf; h=35ft; ed; MWFRS (envelop 2E) zone; cantilever l bers and forces & umber DOL=1.60 pla	left ate									5 TE OF	MISSO

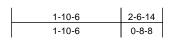
 Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

1-11-3

or consult qualified building designer as per ANSI/TPI 1.
 TCLL: ASCE 7-16; Pr=25.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=25.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat C; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10

4) Unbalanced snow loads have been considered for this design.

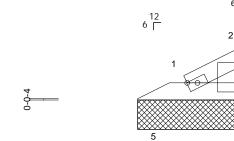
5) This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 25.0 psf on overhangs non-concurrent with other live loads.


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent oulgase with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

Access of the second se

						RELEASE FOR CONSTRUCTION
Job	Truss	Truss Type	Qty	Ply	Roof - HR Lot 185	AS NOTED FOR PLAN REVIEW
P240213-01	V5	Valley	1	1	Job Reference (optional	DEVELOPMENT SERVICES 165052072 LEE'S SUMMIT, MISSOURI
Premier Building Supply (Spring	nill, KS), Spring Hills, KS - 66083,				2024 MiTek Industries, Inc. Fri 370Ha3NSaPanL8w3uITXbGK	

1-3-11


Run: 8.63 S Apr 5 2024 Print: 8.630 S Apr 5 2024 MiTek Industries, Inc. Fri Apr 19 1927 A ID:zFLPyob7PzyVDKpXU7xkgQylfg3-RfC?PsB70Hq3NSgPqnL8w3uITXbGK VrCDoi73-2JO7

6x6 =

3

4

2x4 🤹

1-10-6

Scale = 1:19.6

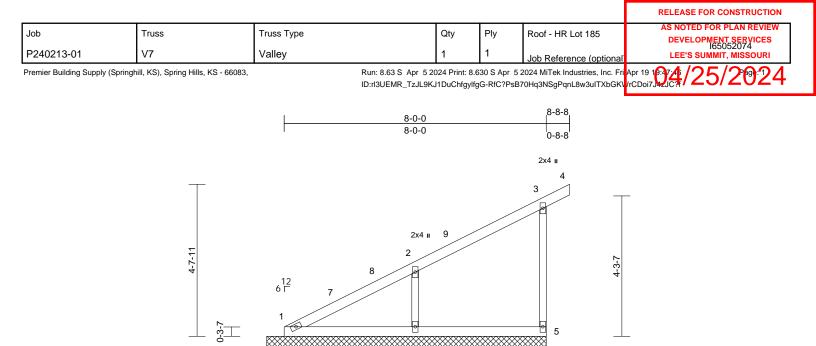
Plate Offsets (X, Y): [2:Edge,0-1-14]

	(,,, ,): [<u>=</u> :=age;e : : :	1											
Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 25.0 25.0 10.0 0.0 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018/T	PI2014	CSI TC BC WB Matrix-P	0.09 0.01 0.00	DEFL Vert(LL) Vert(CT) Horz(CT)	in n/a n/a 0.00	(loc) - - 1	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 6 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x4 SP No.2 2x3 SPF No.2 Structural wood she 1-10-14 oc purlins, Rigid ceiling directly bracing.	except end verticals applied or 10-0-0 o , 4=1-10-6, 5=1-10-6 16) 22), 4=-61 (LC 16) 7), 4=161 (LC 23),	6) C 7) C ed or 8) T 5 C 9) 4 C 9) 4 C 9) 4 C 9) 4 C 9) 4 C 10) F 5 5 5 5 5 6 7 10) F 5 6 7 7 7 7 7 7 7 7 7 7 7 7 7	oad of 12.0 p overhangs n Gable require Gable studs This truss ha chord live loa All bearings a capacity of 5 Provide mecl bearing plate to and 61 lb u This truss is nternational	nanical connection capable of withs plift at joint 4. designed in acco Residential Code ad referenced sta	flat roof lo th other liv ttom chor oc. for a 10.0 with any oe SP No. on (by oth standing 1 rdance w e sections	ad of 25.0 per ve loads. d bearing.) psf bottom other live loa 2 crushing ers) of truss t 5 lb uplift at j ith the 2018 R502.11.1 a	sf on ds. o oint					
TOP CHORD BOT CHORD	1-2=-90/42, 2-3=-44												
Vasd=91n Ke=1.00; i exterior zc and right e MWFRS fi grip DOL= 2) Truss dee only. For see Stand or consult 3) TCLL: AS Plate DOL DOL=1.15 Cs=1.00; i	signed for wind loads in studs exposed to wind lard Industry Gable En c qualified building desi CE 7-16; Pr=25.0 psf (L =1.15); Pf=25.0 psf (L 5); Is=1.0; Rough Cat C	DL=6.0psf; h=35ft; d; MWFRS (envelop E) zone; cantilever bers and forces & mber DOL=1.60 pla h the plane of the tru (normal to the face d Details as applica gner as per ANSI/TI roof LL: Lum DOL= um DOL=1.15 Plate C; Fully Exp.; Ce=0.9	left ite iss), ble, Pl 1. 1.15 2;									Cottory PE-2001	

April 22,2024

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

16023 Swingley Ridge Rd. Chesterfield, MO 63017 314.434.1200 / MiTek-US.com


	<u> </u>				— — —						E FOR CONSTRUCTION ED FOR PLAN REVIEW
Job	Truss	3	Truss Type	Q	ty	Ply I	Roof - HR	Lot 185			OPMENT SERVICES 165052073
P240213-01	V6		Valley	1		1	Job Refere	ence (op	tional	LEE'S	SUMMIT, MISSOURI
² remier Building	Supply (Springhill, KS),	Spring Hills, KS - 66083,		Run: 8.63 S Apr 5 2024 ID:gvQmUPVk3p3UtFmB							25/2024
				D.gvanor vilopeen	280000,	gantion de.	Unquivog.	queonea.	TAUC.		
			I	5.0.0		1:	- 0 0				
				<u>5-0-0</u> 5-0-0			<u>5-8-8</u> 0-8-8				
						2x4	l II				
							5 3				
						2				_	
					/						
		Ę		/	//						
		2-11-11	1 <u>2</u> 6 Г						2-7-7		
									2		
			1								
				*****	****		4			_	
			2x4	↓ ≈		2x4	/ II				
			l	5-0-0		1					
Scale = 1:27.1]					
.oading	(psf)	Spacing	2-0-0	CSI	DEFL		n (loc)	l/defl	L/d	PLATES	GRIP
CLL (roof) Snow (Pf)	25.0 25.0	Plate Grip DOL Lumber DOL	1.15 1.15	TC 0.68 BC 0.25				n/a n/a	999 999	MT20	244/190
CDL	10.0	Rep Stress Incr	YES	WB 0.00		,		n/a	n/a		
BCLL BCDL	0.0 10.0	Code	IRC2018/TPI2014	Matrix-P						Weight: 18 lb	FT = 20%
UMBER	· · · · · ·	-1	5) This truss ha	Is been designed for great	ter of mir	n roof live					
OP CHORD	2x4 SP No.2 2x4 SP No.2		load of 12.0 p	psf or 2.00 times flat roof on-concurrent with other	load of 2	25.0 psf on					
VEBS	2x3 SPF No.2		Gable require	es continuous bottom cho							
BRACING	Structural wood sh	eathing directly applied	O This toward ha	spaced at 4-0-0 oc. Is been designed for a 10	.0 psf bo	ottom					
SOT CHORD	5-2-14 oc purlins,	except end verticals.	chord live loa	ad nonconcurrent with any are assumed to be SP No	y other liv	ve loads.					
	bracing.	ly applied or 10-0-0 oc	capacity of 5			0					
REACTIONS	(size) 1=5-2-6, Max Horiz 1=114 (L	, 4=5-2-6 LC 16)	bearing plate	e capable of withstanding							
	Max Uplift 1=-9 (LC	C 16), 4=-100 (LC 16)	11) This truss is	plift at joint 4. designed in accordance v							
ORCES	(lb) - Maximum Co	LC 23), 4=393 (LC 23) mpression/Maximum	International	Residential Code section nd referenced standard A							
TOP CHORD	Tension 1-2=-144/93, 2-3=-	44/0, 2-4=-347/264	LOAD CASE(S)	Standard							
BOT CHORD		· · · ,									
NOTES	CE 7-16; Vult=115mp	h (3-second gust)									
1) WIND. AGC	nph; TCDL=6.0psf; B										

- Wind: ASCE 7-16; Vulle 115mpn (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=35ft; Ke=1.00; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) 0-7-9 to 5-7-9, Interior (1) 5-7-9 to 5-11-6 zone; cantilever left and right exposed ;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TP1 1.
- TCLL: ASCE 7-16; P=25.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=25.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat C; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10
- 4) Unbalanced snow loads have been considered for this design.
- or as per ANSI/TPI 1. of LL: Lum DOL=1.15 of DOL=1.15 Plate Fully Exp.; Ce=0.9; considered for this
- CONTENSIONAL ENGINE

April 22,2024

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSITPTI Quality Criteria, and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcscomponents.com)

Scale = 1:35.2

Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 25.0 25.0 10.0 0.0 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC201	8/TPI2014	CSI TC BC WB Matrix-P	0.37 0.15 0.09	DEFL Vert(LL) Vert(CT) Horz(CT)	in n/a n/a 0.00	(loc) - - 5	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 31 lb	GRIP 244/190 FT = 20%
	2x3 SPF No.2 2x3 SPF No.2 Structural wood she 6-0-0 oc purlins, ex Rigid ceiling directly bracing.	cept end verticals. applied or 10-0-0 oc 5=8-6-6, 6=8-6-6	8) 9)	design. This truss ha load of 12.0 overhangs n Gable requir Gable studs This truss ha chord live loa All bearings capacity of 5	hanical connect	d for greate s flat roof lo ith other liv ottom chor oc. d for a 10.0 it with any be SP No.	er of min rooi bad of 25.0 p ve loads. d bearing. D psf bottom other live loa 2 crushing ers) of truss	f live sf on ads. to					
	Max Uplift 5=-77 (LC Max Grav 1=131 (LC 6=564 (LC (lb) - Maximum Com Tension 1-2=-270/124, 2-3=- 3-5=-272/166	C 16), 6=-146 (LC 16 C 1), 5=301 (LC 23), C 23) ppression/Maximum	, 11	5 and 146 lb) This truss is International	e capable of with uplift at joint 6. designed in acc Residential Coo nd referenced st Standard	ordance w le sections	ith the 2018 R502.11.1 a						
BOT CHORD WEBS NOTES	1-6=0/0, 5-6=0/0 2-6=-467/335												

1) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=35ft; Ke=1.00; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) 0-8-10 to 5-8-10, Interior (1) 5-8-10 to 9-3-6 zone; cantilever left and right exposed ;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

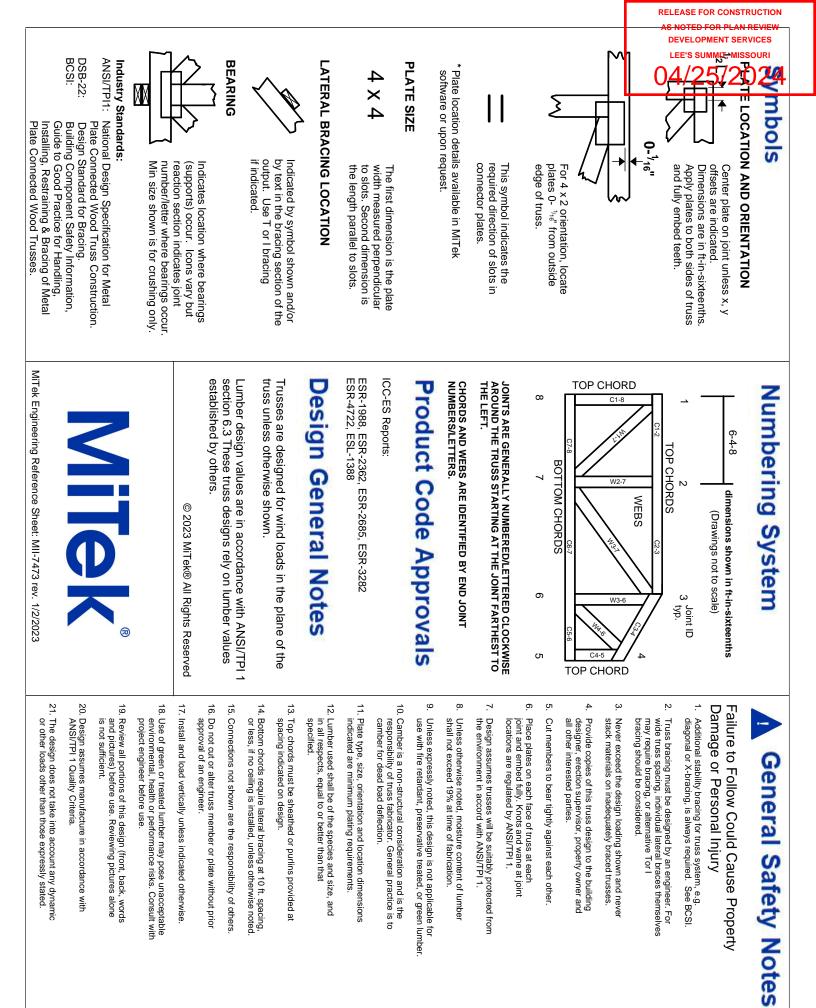
- Truss designed for wind loads in the plane of the truss 2) only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- TCLL: ASCE 7-16; Pr=25.0 psf (roof LL: Lum DOL=1.15 3) Plate DOL=1.15); Pf=25.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat C; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10

 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.
 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not besign value to dury with with where outputs into design is based only door parameters shown, and is for an individual building design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members and property incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TPH1 Quality Criteria**, and **DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcscomponents.com)

	<u> </u>								'		E FOR CONSTRUCTION ED FOR PLAN REVIEW	
Job	Trus		Truss Type	,	Qty	Ply	Roo	of - HR Lot 18	,5		LOPMENT SERVICES 165052075	
P240213-01	1 V8		Valley	′	1	1	Job	o Reference (c	optional	1 5 5 10	SUMMIT, MISSOURI	
Premier Building	Supply (Springhill, KS)	S), Spring Hills, KS - 66083,		Run: 8.63 S Apr 5 20 ID:UFCl20yWf_Ot_Kq)24 Print: qXRC?Xa	: 8.630 S Apr aSylfgt-RfC?P	5 2024 № PsB70Hq3	MiTek Industries 3NSgPqnL8พ3เ	s, Inc. Fri JITXbGK	Apr 19 19:47:46 VrCDoi7J+2JC?f	25/2024	F
			<u> </u>	<u>11-10-6</u> 11-10-6				12-6-14 0-8-8	:			
		T						2x4 n 5 4				
		-0-0-4	612 1	10 2x4 II 9 2 8	3			6		5-11-7		
Scale = 1:44.1			3x4 ≠	8 2x4 u 11-10-6		7 2x4 II		2x4 u				
Loading TCLL (roof) Snow (Pf) TCDL BCLL BCLL BCDL	(psf) 25.0 25.0 10.0 0.0 10.0	 Plate Grip DOL Lumber DOL Rep Stress Incr Code 	2-0-0 1.15 1.15 YES IRC2018/TPI2014	BC 0.).33 Ve).13 Ve	DEFL /ert(LL) /ert(CT) łorz(CT)	in n/a n/a 0.00	(loc) l/defi - n/a - n/a 6 n/a	a 999 a 999	MT20	GRIP 244/190 FT = 20%	
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x3 SPF No.2 2x3 SPF No.2 2x3 SPF No.2 Structural wood sh 6-0-0 oc purlins, e Rigid ceiling direct bracing. (size) 1=11-10 8=11-10 Max Horiz 1=259 (Max Uplift 6=-80 (I	sheathing directly applied except end verticals. ctly applied or 10-0-0 oc 10-6, 6=11-10-6, 7=11-1(10-6 (LC 16) (LC 16), 7=-129 (LC 16),	Plate DOL=1 DOL=1.15); I Cs=1.00; Ct 4) Unbalanced design. d or 5) This truss ha load of 12.0 p overhangs no 6) Gable require 0-6, 7) Gable studs s 8) This truss ha chord live load 9) All bearings a	snow loads have been as been designed for gr psf or 2.00 times flat ro ion-concurrent with other res continuous bottom of spaced at 4-0-0 oc. as been designed for a ad nonconcurrent with are assumed to be SP	m DOL=1 Fully Exp n conside greater of coof load her live lo chord be a 10.0 ps a any othe	=1.15 Plate kp.; Ce=0.9; dered for this of min roof liv d of 25.0 psf loads. bearing. sf bottom her live loads	; is live f on			Togin. io iz		_
FORCES TOP CHORD BOT CHORD	Max Grav 1=132 (7=521 ((lb) - Maximum Co Tension 1-2=-331/140, 2-3 4-5=-44/0, 4-6=-27		10) Provide mech bearing plate 6, 129 lb upli 11) This truss is a International R802.10.2 ar	 10) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 80 lb uplift at joint 6, 129 lb uplift at joint 7 and 122 lb uplift at joint 8. 11) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. LOAD CASE(S) Standard 								
WEBS NOTES 1) Wind: ASC Vasd=91m	3-7=-436/244, 2-8 CE 7-16; Vult=115mp nph; TCDL=6.0psf; E Cat. II; Exp C; Enclos	8=-273/231	e)						k	STATE OF M	MISSOL	

- Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=35ft; Ke=1.00; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) 0-7-9 to 5-7-9, Interior (1) 5-7-9 to 12-7-6 zone; cantilever left and right exposed ;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent colleges with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)



SCOTT M.

SEVIER

10/12

PE-2001018807

