

RE: 240616 Lot 133 MN

Site Information:

Customer: Avital Homes Project Name: 240616 Lot/Block: Address: City:

MiTek, Inc. 16023 Swingley Ridge Rd. Chesterfield, MO 63017 314.434.1200

Model: Serenade - Modern 3rd Car Subdivision: State:

General Truss Engineering Criteria & Design Loads (Individual Truss Design Drawings Show Special Loading Conditions):

Design Code: IRC2018/TPI2014 Wind Code: ASCE 7 - 16[Low Rise] Roof Load: 45.0 psf

Design Program: MiTek 20/20 8.7 Wind Speed: 115 mph Floor Load: N/A psf

This package includes 39 individual, dated Truss Design Drawings and 0 Additional Drawings.

	0.1"	—	D /		0.1"	-	. .
No.	Seal#	Truss Name	Date	No.	Seal#	Truss Name	Date
1	l64627061	A1	4/3/2024	21	l64627081	H3	4/3/2024
2	164627062	A2	4/3/2024	22	164627082	J1	4/3/2024
3	164627063	A3	4/3/2024	23	164627083	J2	4/3/2024
4	164627064	A4	4/3/2024	24	164627084	J3	4/3/2024
5	164627065	A5	4/3/2024	25	l64627085	J4	4/3/2024
6	164627066	A6	4/3/2024	26	164627086	J5	4/3/2024
7	164627067	B1	4/3/2024	27	164627087	J6	4/3/2024
8	164627068	B2	4/3/2024	28	164627088	J7	4/3/2024
9	164627069	B3	4/3/2024	29	164627089	J8	4/3/2024
10	164627070	B4	4/3/2024	30	164627090	J9	4/3/2024
11	164627071	B5A	4/3/2024	31	l64627091	J11	4/3/2024
12	164627072	B6A	4/3/2024	32	l64627092	J12	4/3/2024
13	164627073	B8	4/3/2024	33	l64627093	K1	4/3/2024
14	164627074	E1	4/3/2024	34	164627094	K2	4/3/2024
15	164627075	G1	4/3/2024	35	164627095	LAY1	4/3/2024
16	164627076	G2	4/3/2024	36	164627096	LAY2	4/3/2024
17	164627077	G3	4/3/2024	37	164627097	V1	4/3/2024
18	164627078	G4	4/3/2024	38	164627098	V2	4/3/2024
19	164627079	H1	4/3/2024	39	164627099	V3	4/3/2024
20	164627080	H2	4/3/2024				

1 of 1

The truss drawing(s) referenced above have been prepared by MiTek USA, Inc under my direct supervision

based on the parameters provided by Wheeler - Waverly.

Truss Design Engineer's Name: Garcia, Juan

My license renewal date for the state of Kansas is April 30, 2024. Kansas COA: E-943

IMPORTANT NOTE: The seal on these truss component designs is a certification that the engineer named is licensed in the jurisdiction(s) identified and that the designs comply with ANSI/TPI 1. These designs are based upon parameters shown (e.g., loads, supports, dimensions, shapes and design codes), which were given to MiTek. Any project specific information included is for MiTek customers file reference purpose only, and was not taken into account in the preparation of these designs. MiTek has not independently verified the applicability of the design parameters or the designs for any particular building. Before use, the building designer should verify applicability of design parameters and properly incorporate these designs into the overall building design per ANSI/TPI 1, Chapter 2.

	April 03, 2024
Garcia, Juan	RELEASE FOR CONSTRUCTION
Garcia, Juan	AS NOTED ON PLANS REVIEW
	DEVELOPMENT SERVICES
	LEE'S SUMMIT, MISSOURI
	04/22/2024 8:36:12

RE: 240616 Lot 133 MN

Site Information:

Customer: Avital Homes Project Name: 240616 Lot/Block: Model Address: Subdiv City: State: MiTek, Inc. 16023 Swingley Ridge Rd. Chesterfield, MO 63017 314.434.1200

240616 Model: Serenade - Modern 3rd Car Subdivision: State:

General Truss Engineering Criteria & Design Loads (Individual Truss Design Drawings Show Special Loading Conditions):

Design Code: IRC2018/TPI2014 Wind Code: ASCE 7 - 16[Low Rise]

Roof Load: 45.0 psf

Design Program: MiTek 20/20 8.7 Wind Speed: 115 mph Floor Load: N/A psf

This package includes 39 individual, dated Truss Design Drawings and 0 Additional Drawings.

No.	Seal#	Truss Name	Date	No.	Seal#	Truss Name	Date
1	164627061	A1	4/3/2024	21	164627081	H3	4/3/2024
2	164627062	A2	4/3/2024	22	164627082	J1	4/3/2024
3	164627063	A3	4/3/2024	23	164627083	J2	4/3/2024
4	164627064	A4	4/3/2024	24	164627084	J3	4/3/2024
5	164627065	A5	4/3/2024	25	164627085	J4	4/3/2024
6	164627066	A6	4/3/2024	26	164627086	J5	4/3/2024
7	164627067	B1	4/3/2024	27	164627087	J6	4/3/2024
8	164627068	B2	4/3/2024	28	164627088	J7	4/3/2024
9	164627069	B3	4/3/2024	29	164627089	J8	4/3/2024
10	164627070	B4	4/3/2024	30	164627090	J9	4/3/2024
11	l64627071	B5A	4/3/2024	31	164627091	J11	4/3/2024
12	164627072	B6A	4/3/2024	32	164627092	J12	4/3/2024
13	164627073	B8	4/3/2024	33	164627093	K1	4/3/2024
14	164627074	E1	4/3/2024	34	164627094	K2	4/3/2024
15	164627075	G1	4/3/2024	35	164627095	LAY1	4/3/2024
16	164627076	G2	4/3/2024	36	164627096	LAY2	4/3/2024
17	164627077	G3	4/3/2024	37	164627097	V1	4/3/2024
18	164627078	G4	4/3/2024	38	164627098	V2	4/3/2024
19	164627079	H1	4/3/2024	39	164627099	V3	4/3/2024
20	164627080	H2	4/3/2024				

The truss drawing(s) referenced above have been prepared by MiTek USA, Inc under my direct supervision

based on the parameters provided by Wheeler - Waverly.

Truss Design Engineer's Name: Garcia, Juan

My license renewal date for the state of Missouri is December 31, 2024. Missouri COA: 001193

IMPORTANT NOTE: The seal on these truss component designs is a certification that the engineer named is licensed in the jurisdiction(s) identified and that the designs comply with ANSI/TPI 1. These designs are based upon parameters shown (e.g., loads, supports, dimensions, shapes and design codes), which were given to MiTek. Any project specific information included is for MiTek customers file reference purpose only, and was not taken into account in the preparation of these designs. MiTek has not independently verified the applicability of the design parameters or the designs for any particular building. Before use, the building designer should verify applicability of design parameters and properly incorporate these designs into the overall building design per ANSI/TPI 1, Chapter 2.

	April 03, 2024
Garcia, Juan	RELEASE FOR CONSTRUCTION AS NOTED ON PLANS REVIEW DEVELOPMENT SERVICES LEE'S SUMMIT, MISSOURI 04/22/2024 8:36:12

Job	Truss	Truss Type	Qty	Ply	Lot 133 MN	
240616	A1	Hip Girder	1	3	Job Reference (optional)	164627061

Run: 8.73 S Mar 21 2024 Print: 8.730 S Mar 21 2024 MiTek Industries, Inc. Tue Apr 02 08:22:33 ID:8GT8_f7kXJbYSdR78zEY2czym18-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Scale = 1:71

Plate Offsets (X, Y): [2:0-4-0,0-1-0], [10:0-0-11,Edge], [20:0-5-12,0-4-4]

Fiale Olisels ((^x , 1). [2.0-4-0,0-1-0],	[10.0-0-11,Euge], [2	0.0-5-12,0)-4-4]	-								
Loading TCLL (roof) TCDL BCLL BCDL	(psf) 25.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 NO IRC201	8/TPI2014	CSI TC BC WB Matrix-S	0.71 0.52 0.48	DEFL Vert(LL) Vert(CT) Horz(CT) Wind(LL)	in -0.54 -0.94 0.41 0.47	(loc) 16 16 11 16-18	l/defl >837 >482 n/a >962	L/d 360 240 n/a 240	PLATES MT20 M18AHS Weight: 701 lb	GRIP 197/144 186/179 FT = 10%
	10.0 2x6 SP 2400F 2.0E No.2, 9-12:2x8 SP 2 2x6 SP 2400F 2.0E 2400F 2.0E, 13-11:2 SPF No.2 2x4 SPF No.2 *Exce Structural wood she 5-11-7 oc purlins, ex 2-0-0 oc purlins, (6-0 Rigid ceiling directly bracing. (size) 2=0-3-8, ' Max Horiz 2=-59 (LC Max Uplift 2=-988 (L Max Grav 2=4089 (L (lb) - Maximum Com Tension 1-2=0/3, 2-3=-15764 4-5=-17153/4374, 5: 6-8=-17167/4314, 8: 9-10=-12722/3064, ' 11-12=0/6 2-20=-3427/14220, ' 18-19=-2893/11741,	Code *Except* 1-4:2x6 SP 400F 2.0E *Except* 2-20:2x8 SI kx6 SPF No.2, 21-22: spt* 10-13:2x6 SPF N athing directly applie (cept +0 max.): 4-9. applied or 10-0-0 oc 11=0-3-8 S) C 4), 11=-952 (LC 5) C 1), 11=4103 (LC 1 pression/Maximum 1/3819, 3-4=-12678/3 -6=-17152/4373, -9=-17167/4314, 10-11=-2210/529, 19-20=-3144/13011, 16-18=-4788/19203, 14-15=-2840/12056, 11-13=0/0 19=-473/2018, 9=-473/2018, 9=-473/2018, 9=-473/2018, 16-18=-47887, 16-197/992,	IRC201 1) F 2x4 lo.2 d or 2) 3) 1) 4) (193, 5) 6) 7) 8) 9) 10	3-ply truss to (0.131"x3") r Top chords o staggered at oc. Bottom choro staggered at oc. Web connec 2 rows stagg All loads are except if not CASE(S) see provided to c unless other Unbalanced this design. Wind: ASCE Vasd=91mpl II; Exp C; En cantilever lef right expose. Provide adec All plates are All plates are chord live loa * This truss ha chord live loa * This truss ha chord and ar) All bearings i) Bearing at jo		ogether wi ows: 2x6 - 2 rows sta follows: 2 2 rows sta x4 - 1 row ally applie back (B) back (B) back (B) back (B) back (B) back (B) back (B) back (C) ave been of ads noted ave been of ads noted ave been of BCDL=6. (envelope sed ; end v 1.60 plate o prevent v bless other so otherwid of or a 10.0 t with any ed for a 11 be SPF Nt so s parallel 1	Wind(LL) th 10d 2 rows ggered at 0-9- x8 - 2 rows ggered at 0-9- at 0-9-0 oc, 2 d to all plies, face in the LC s have been as (F) or (B), considered for cond gust) Dpsf; h=25ft; (C) e) exterior zon vertical left and grip DOL=1.6 e) exterior zon vertical left and grip DOL=1.6 e) exterior zon vertical left and grip DOL=1.0 e) exterior zon vertical left and grip DOL=1.0 c) ps bottom other live load to 22.0 o grain value	0.47 -0 -0 2x6 - 0AD r Cat. be; dd dd dd. dd. dd. dds. 0psf om	16-18 13) This Inte R8(14) Gra or t bott 15) Usse Tru 9-0 to b 17) Usse Har con 18) Fill 19) Fille LOAD (1) De Pl Ut	>962 s truss is rnationa 02.10.2 a uphical p he orien tom choic a Simpso th Hand connect to a Simpso ss) or ec -12 from back face a Simpso ad Hip) o naect trus all nail h er applie CASE(S ead + Ro ate Increa- iform L	240 s design al Resid and ref urlin re- tation on Strop divaled the laip o station on Strop divaled station on Strop divaled station on Strop divaled station of Strop station of Live station of Strop of Strop of Strop and to plo of Strop and Strop and to plo of Strop and Stro	ned in accordance dential Code secti erenced standarc spresentation doe on the purtin atong mg-Tie THJA26 (i requivalent at 7-7- s) to back face of ng-Tie HUS26 (1- ng tie HUS26 (1- ration cherco 0001 ng Tie THJA26 (valence 12-0-11-10 to back face of back face of 15- there hanger, is th y: 1(Front) ndard e (balanced): Lurr .15 b/ft)	e with the 2018 ions R502.11.1 and ANSVTPI 1. shrondepict the size the top and/or HJJA26 on 2 bly 5 from the left end bottom chord. 4-10d Girder, 4-10d 0 oc max. starting at doonnect truss(se) 62101 HJJA26 on 2 bly, Left 1 from the left end to bitom chord. contact with lumber.
NOTES	6-15=-2242/600, 6-1	8=-2260/542	12	designer sho Provide mec bearing plate	buld verify capaci hanical connections capable of with buplift at joint 2.	ity of beari on (by oth standing 9	ng surface. ers) of truss to					III SSION	AL ENGINI
												Api	ril 3,2024

Page: 1

Continued on page 2 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

Job	Truss	Truss Type	Qty	Ply	Lot 133 MN	10 1007001
240616	A1	Hip Girder	1	3	Job Reference (optional)	164627061

Run: 8.73 S Mar 21 2024 Print: 8.730 S Mar 21 2024 MiTek Industries, Inc. Tue Apr 02 08:22:33 ID:8GT8_f7kXJbYSdR78zEY2czym18-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

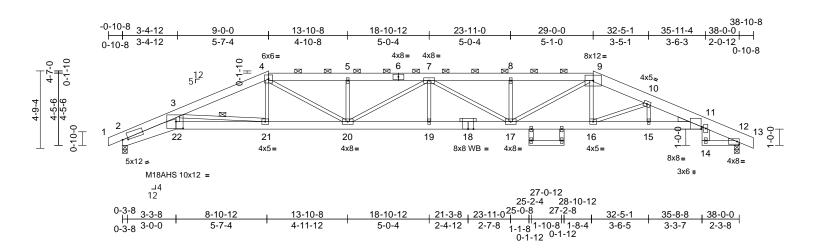
Vert: 1-4=-70, 4-9=-70, 9-12=-70, 2-20=-20,

10-20=-20, 11-13=-20

Concentrated Loads (lb)

Vert: 19=-786 (B), 14=-807 (B), 18=-278 (B), 16=-278 (B), 15=-278 (B), 24=-278 (B), 25=-278 (B), 26=-278 (B), 27=-278 (B), 28=-278 (B), 29=-278 (B),

30=-278 (B), 31=-278 (B)


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent touls be personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANS/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

Job	Truss	Truss Type	Qty	Ply	Lot 133 MN	
240616	A2	Нір	1	1	Job Reference (optional)	164627062

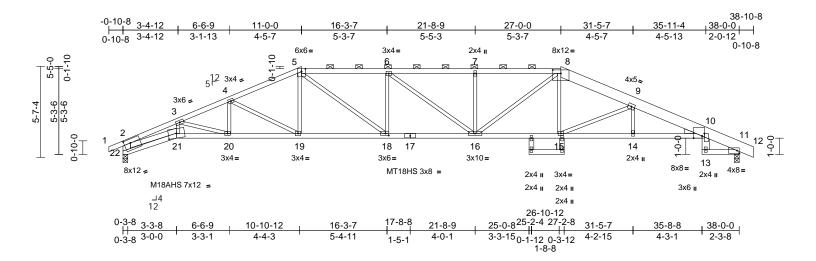
Run: 8.73 S Mar 21 2024 Print: 8.730 S Mar 21 2024 MiTek Industries, Inc. Tue Apr 02 08:22:34 ID:7KnIPG4b8?pvAQ6KhopbbNzymBX-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:71

Plate Offsets (X, Y): [2:0-4-0,0-1-0], [11:0-0-11,Edge], [22:0-5-4,0-5-0]

	A, f). [2.0-4-0,0-1-0],	, [11.0-0-11,Euge], [2	.2.0-5-4,0	-5-0]									
Loading	(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15		TC	0.68	Vert(LL)	-0.39	19	>999	360	MT20	197/144
TCDL	10.0	Lumber DOL	1.15		BC	0.54	Vert(CT)	-0.71	19	>636	240	M18AHS	142/136
BCLL	0.0*	Rep Stress Incr	YES		WB	0.54	Horz(CT)	0.42	12	n/a	n/a		
BCDL	10.0	Code	IRC20	18/TPI2014	Matrix-S		Wind(LL)	0.29	19	>999	240	Weight: 239 lb	FT = 10%
LUMBER			N	IOTES									
TOP CHORD	2x6 SP 2400F 2.0E 2400F 2.0E	·		, this design.	roof live loads h			or					
BOT CHORD	2x6 SP 2400F 2.0E 2400F 2.0E, 14-12,2	23-24:2x4 SPF No.2		Vasd=91mp	7-16; Vult=115 h; TCDL=6.0psf	; BCDL=6.0)psf; h=25ft;						
WEBS	2x3 SPF No.2 *Exce 23-25,24-26:2x4 SP	ept* 11-14:2x6 SPF N F No.2	lo.2,	cantilever le	closed; MWFRS t and right expo	sed ; end v	ertical left ar	nd					
OTHERS	2x3 SPF No.2				d; Lumber DOL								
WEDGE	Right: 2x4 SP No.3		3		quate drainage								
BRACING			4		MT20 plates u							NEOF	ISS
TOP CHORD		athing directly applie	dor 5 6		e 2x4 MT20 unle as been designe						1	A	
	3-8-12 oc purlins, ex 2-0-0 oc purlins (4-6				ad nonconcurre			ids.				~··	
BOT CHORD		applied or 10-0-0 oc	. 7		nas been desigr						2	JUA	
BOT ONORD	bracing.		•		n chord in all ar						= *	GAR	
WEBS	1 Row at midpt	3-21			oy 2-00-00 wide		veen the bott	om					
REACTIONS	(size) 2=0-3-8, *	12=0-3-8			ny other membe		_				= 0		
	Max Horiz 2=-74 (LC		8		are assumed to						-5		• 41
	Max Uplift 2=-245 (L	C 4), 12=-245 (LC 5)) 9		int(s) 2 conside FPI 1 angle to g			9			-1	E-20001	62101
	Max Grav 2=1768 (I	LC 1), 12=1768 (LC	1)		ould verify capac						1	A	-
FORCES	(lb) - Maximum Corr	npression/Maximum	1		hanical connect			to				1.SION	ENIN
	Tension				capable of with							UNF	Lin
TOP CHORD		807, 3-4=-4246/621,			uplift at joint 12								111.
	4-5=-4918/797, 5-7=		1		designed in acc								uu.
	7-8=-4968/801, 8-9=				Residential Co			and				ALL NO	ARC
	9-10=-4216/632, 10- 11-12=-913/136, 12-				nd referenced s							11 JUAN C	THCIA .
BOT CHORD	2-22=-707/5692, 21		1		Irlin representat			size				LICE T	NSA:
BOT ONORD	20-21=-492/3916, 1			bottom chore	ation of the purli	in along the	top and/or				1		SO .
	17-19=-765/5356, 1			OAD CASE(S)							-		- N E
	15-16=-587/4840, 1	1-15=-588/4840,		UAD CASE(S)	Stanuaru						-	1 1 6 0	52
	12-14=0/0										-	169	994 : E
WEBS	11-14=0/60, 3-22=-1										-	7:	/. : <u>#</u> :
		21=0/466, 9-16=-19/6	628,									0	Ma des
	10-16=-1067/161, 1											AN	SAS
	4-20=-242/1327, 5-2	20=-365/148, 9=0/212, 7-17=-550/9	12									1, 981	ENGIN
	8-17=-352/149, 9-17		, ∠,									ON	AL
	0 17-002/140, 0-17	- 277/1000											un.
												Ар	ril 3,2024


 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.
 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

Job	Truss	Truss Type	Qty	Ply	Lot 133 MN	
240616	A3	Нір	1	1	Job Reference (optional)	164627063

Run: 8.73 S Mar 21 2024 Print: 8.730 S Mar 21 2024 MiTek Industries, Inc. Tue Apr 02 08:22:34 ID:SJoxC1tR04ukLSBL1aYwD_zymEN-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:71

Plate Offsets (X	(, Y): [8:0-6-0,0-2-10], [10:0-6-4,Edge], [1	0:0-1-14,0	0-1-11], [18:0-2	-8,0-1-8], [21:0-	-6-0,0-3-7],	[22:0-4-12,0	-2-12]					
Loading TCLL (roof) TCDL BCLL BCDL	(psf) 25.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC201	8/TPI2014	CSI TC BC WB Matrix-S	0.83 0.64 0.73	DEFL Vert(LL) Vert(CT) Horz(CT) Wind(LL)	-0.84 0.52	(loc) 16-18 16-18 11 16-18	l/defl >982 >540 n/a >999	L/d 360 240 n/a 240	PLATES MT20 M18AHS MT18HS Weight: 169 lb	GRIP 197/144 142/136 197/144 FT = 10%
OT CHORD VEBS VEDGE RACING OP CHORD CHORD CHORD ORCES OP CHORD	Max Horiz 22=-82 (L Max Uplift 11=-220 (Max Grav 11=1764) (lb) - Maximum Com Tension 1-2=0/30, 2-3=-5444 4-5=-3558/500, 5-6= 6-7=-3946/606, 7-8= 8-9=-3661/512, 9-10 10-11=-911/123, 11- 21-22=-123/444, 20- 19-20=-425/3972, 18 16-18=-473/3946, 19 14-15=-460/4398, 10 11-13=0/0	- 	2) SPF 3) 4) 5) d or 6) 7) 8) 1) 1) 9) , 1(246 1' 246 1' L(this design. Wind: ASCE Vasd=91mpl II; Exp C; En cantilever lef right expose Provide aded All plates are chord live loz * This truss ha chord live loz * This truss ha on the bottor 3-06-00 tall t chord and ar All bearings Bearing at jousing ANSI/ designer shot Provide meco bearing plate 22 and 220 I D) This truss is International R802.10.2 a Graphical put 		mph (3-sec ; BCDL=6.0 S (envelope ssed; end v =1.60 plate to prevent v mless other d for a 10.0 nt with any ned for a liv reas where will fit betw ers. b e SPF No lers parallel rain formula city of beari tion (by oth- hstanding 2 1. cordance wi de sections tandard AN ion does no	ond gust) ops; h=25ft; exterior zo ertical left ar grip DOL=1 vater pondin wise indicate e load of 20. a rectangle recen the bott o.2. to grain valu a. Building ng surface. ers) of trusss 23 lb uplift a th the 2018 R502.11.1 a SI/TPI 1. th depict the si	Cat. ne; nd .60 g. ed. ads. Opsf oom ue to t joint				DONE-20001 SS/ONA E-20001 SS/ONA ICEI 160 BROCKSS/ON	CIA *

April 3,2024

IOTES

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

Job	Truss	Truss Type	Qty	Ply	Lot 133 MN	
240616	A4	Нір	1	1	Job Reference (optional)	164627064

Run: 8.73 S Mar 21 2024 Print: 8.730 S Mar 21 2024 MiTek Industries, Inc. Tue Apr 02 08:22:34 ID:aUMj1vUkVY9EIgxaGrXo0RzymK2-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

-0-10-8 3-4-12 0-10-8 3-4-12 38-10-8 13-0-0 19-0-0 8-11-8 25-0-0 31-5-6 38-0-0 5-6-12 4-0-8 6-0-0 6-0-0 6-5-6 6-6-10 0-10-8 6x6= 2x4 🛚 6x6= 0-1-10 н_ Н 6-3-0 5 6 \boxtimes 3x4 5 5 4 4x5 👟 8 6-3-5 6-1-6 6-1-6 3x6 ≠ 3 14 9 0-10-0 19 18 17 16 15 ģ 20 1AÌ 13 3x10= 4x5= 3x4= 4x8= 12 3x4 II 8x12 -8x8= 6x12= 5x12= M18AHS 7x16 = 」4 12 -3-8 3-3-8 8-11-8 12-10-12 19-0-0 25-0-8 31-5-6 38-0-0 H 5-8-0 6-1-4 6-0-8 6-4-14 6-6-10 3-0-0 3-11-4 0-3-8

Scale = 1:71.1

CLL (red) 25.0 Piace Grp DOL 1.15 TC 0.09 Vert(L) -0.34 15-17 -999 800 MT20 197/144 CDL 0.00 Rep Stress Incr YES WB 0.93 Vert(L) -0.34 15-17 -999 800 MT20 197/144 CDL 0.00 Rep Stress Incr YES WB 0.93 Vert(L) -0.34 11 n/a n/a Mt201 197/144 CDL 0.00 Rep Stress Incr YES WB 0.93 Vert(L) -0.34 11 n/a n/a Mt201 197/144 CDL 0.00 Code IIIC2018/TP12014 Matrix-S Wind(L) 0.23 15-17 >999 240 Weight: 160 Ib FT = 10% DP CHORD 2x4 SPF No.2 Stress Trass SP No.2 Stress SPF No.2 Stress SP			1	-		-								-
CDL 10.0 Lumber DOL 1.15 BC 0.08 Ver(CT) 0.03 15-17 >715 240 Mt8AHS 142/136 CDL 10.0 Code IRC2018/TPI2014 Matrix-S Wind(LL) 0.23 15-17 >999 240 Mt8AHS 142/136 UMBER 24: SPF No.2 *Except 7: 10:2x8 SPF No.2 SPF No.2 *Except 7: 10:2x8 SPF No.2 SPF Storept 7: 10:2x	oading													
CLL 0.0° Rep Stress Incr YES WB 0.95 Hor(2(1) 0.24 11 n/a n/a CDL 10.0 Code IRC020RTP12014 Wind(LL) 0.23 15.1 n/a n/a MBER DP CHORD 24 SPF No.2* Except 7.10:2x6 SPF No.2 IFE No.2* Except 7.10:2x6 SPF No.2 IFE No.2* Except 7.20:2x6 SPF No.2 IFE No.2* Except 7.10:2x6 SPF No.2 IFE No.2* SPF No.2* Except 7.10:2x6 SPF No.2* SPF No.2* SPF No.2* SPF No.2* SPF No.2* SPF No.2	· · ·		1 1											
CDL 10.0 Code IRC2018/TTPI2014 Matrix-S Wind(LL) 0.23 15-17 >999 240 Weight: 160 Ib FT = 10% UMBER DP CHORD 2x4 SPF No.2 *Except* 7-10:2x6 SPF No.2 240 SP zub Wind:XSCE 7-16; VulF=115mph (3-second gus) Xsad=91mph; TDCL=6.06, BScH=50, SPI; Tc2; TCL Vind:XSCE 7-16; VulF=115mph (3-second gus) Xsad=91mph; TDCL=6.06, BScH=50, SPI; Tc2; TCL Vind:XSCE 7-16; VulF=115mph (3-second gus) Xsad=91mph; TDCL=6.06, BScH=50, SPI; Tc2; TCL Vind:XSCE 7-16; VulF=115mph (3-second gus) Xsad=91mph; TDCL=6.06, BScH=50, SPI; Tc2; TCL Vind:XSCE 7-16; VulF=115mph (3-second gus) Ysad=91mph; TDCL=6.06, BSCH=50, SPI; Tc2; TCL Vind:XSCE 7-16; VulF=10mph (3-second gus) Ysad=91mph; TDCL=6.06, BSCH=50, SPI; Tc2; TCL Vind:XSCE 7-16; VulF=10mph (3-second gus) Ysad=91mph; Vind:YSCE 7-16; VulF=10mph; Vind:YSCE 7-16; VulF=10mph; Vind:YSCE 7-16; VulF=10mph; Vind:								• • •					M18AHS	142/136
 Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0pst; BCDL=6.0pst; BCDL=6.0			1 '				0.95	· · /						FT 4004
 DP CHORD 2x4 SPF No.2*Except 7-10:2x6 SPF No.2 CHORD 2x4 SPF No.2*Except 7-10:2x6 SPF No.2 CHORD 2x4 SPF Xo2*Except 7-2:102x6 SPF No.2 CHORD 2x3 SPF No.2*Except 7-2:102x6 SPF No.2 CHORD 2x3 SPF No.2*Except 7-2:102x6 SPF No.2 CHORD 2x0E 2x3 SPF No.2*Except 7-2:102x6 SPF No.2 CHORD 2x0E 2x3 SPF No.2*Except 7-2:102x6 SPF No.2 CHORD 5 Structural wood sheathing directly applied or 10:0-0 oc bracing. CHORD 1:10:13 oc puttins, except and verticals, and 2:0-0 oc puttins (2:2-0 max); 5:7. CHORD 5 Structural wood sheathing directly applied or 10:0-0 oc bracing. CHORD 1:10:13 oc puttins (2:2-0 max); 5:7. CHORD 5 Structural wood sheathing directly applied or 10:0-0 oc bracing. CHORD 1:10:13 oc puttins (2:2-0 max); 5:7. CHORD 1:10:10:11:11:11:11:11:11:11:11:11:11:11	BCDL	10.0	Code	IRC201	8/1912014	Matrix-S		Wind(LL)	0.23	15-17	>999	240	Weight: 160 lb	FI = 10%
DT CHORD 244 SPF No.2 * Except * 19-16:224 SPF II: Exp C: Enclosed; MWFRS (enclope) exterior zone; cantilever tell and right exposed ; end vertical left and right exposed ; end vertical spin for a 10.0 ps bottom IEBS 23.0 SPF No.2 * Except * 20-22x6 SPF No.2 * E	UMBER			,					0-1					
 2100F 1.8E, 7+13:2x3 SPF No.2 EBS 2x3 SPF No.2 Second 2: 02:2x6 SPF No.2, 19:2x3 SPF No.2 Second 2: 02:2x6 SPF No.2, 19:2x3 SPF No.2 Second 2: 02:2x6 SPF No.2, 19:2x3 SPF No.2 SPF No.				0.2										
 39.22x4 SPF 2100F 1.8E, 11-0-2x6 SP 2400F 2.0E 30.P Civide adequate drainage to prevent water ponding. 41.P alteas are MT20 plates unless otherwise indicated. 41.P alteas are MT20 plates unless otherwise indicated. 41.P alteas are MT20 plates unless otherwise indicated. 57. 57.<!--</td--><td>SOT CHORD</td><td></td><td></td><td></td><td>cantilever lef</td><td>t and right expose</td><td>d;end ،</td><td>ertical left an</td><td>nd</td><td></td><td></td><td></td><td></td><td></td>	SOT CHORD				cantilever lef	t and right expose	d;end ،	ertical left an	nd					
 2400F 2.0E 2400F 2.0E 41) All plates are MT20 plates unless otherwise indicated. 71 his truss has been designed for a 10 0 parb bottom chord live load onconcurrent with any other live loads. 71 his truss has been designed for a 10 0 parb bottom chord live load onconcurrent with any other live loads. 71 his truss has been designed for a 10 0 parb bottom chord live load on any other members. 71 hos truss has been designed for a 10 0 parb bottom chord in all areas where a rectangle 3-36-00 tall by 2-00-00 wide with any other live loads. 71 his truss has been designed for a 10 0 parb bottom chord in all areas where a rectangle 3-36-00 tall by 2-00-00 wide with the bottom chord in all areas where a rectangle 3-36-00 tall by 2-00-00 wide with the bottom chord. 72 Has vart midpt 3-18 FACTIONS (size) 111-0-38. 200-3-8 Max Horiz 20-84 (LC 13) Max Horiz 10-9.8. (20-0-3.8) Max Kora 11-1767 (LC 1), 20=1767 (LC 1) Max Kora 11-1767 (LC 1), 20=1767 (LC 1) Max Kora 11-1767 (LC 1), 20=1767 (LC 1) Max Horiz 20-as 454/186, 4-3-3871/432, 4-6-3330(430, 9-10-0/30, 2-20=-1790/230, 9-11=1696/229 OT CHORD 12-20/30, 2-3-5547/594, 3-4-3-3871/432, 4-6-333, 15-17-2-40/2326, 14-14=-256/3048, 13-14-0/115, 7-14-25/624, 12-13=-710/48, 14-2115, 7-104, 11-12=-121/987 EES 5-15-1107/06, 6-15=-513203, 12-72-40/2326, 12-14=-246/2774, 8-14=-21/452, 8-14-84, 21-34-2714, 8-14=-21/452, 8-14-84, 21-34-2714, 8-14=-21/452, 8-14-24/6277, 8-14=-21/452, 8-14-24/6277, 8-14=-21/452, 8-1245/4, 14-0115, 12-12-19/972 OTES Unbalanced roof live loads have been considered for this design. Unbalanced roof live loads have been considered for this design. Unbalanced roof live loads have been considered for this design. Unbalanced roof live loads have been considered for this design. Unbalanced roof live loads have been considered for this design. 	VEBS	2x3 SPF No.2 *Exce	ept* 20-2:2x6 SPF No	o.2,										
 FACING DP CHORD Structural wood sheathing directly applied or 1-10-13 oc purlins, except end verticals, and 2-0-0 oc purlins, except end verticals, and 2-0-0 oc purlins, except end verticals, and 2-0-0 oc purlins (2-2-0 max.): 5-7. FIES 1 Row at midpt 3-18 EACTIONS (size) 11=0-3-8, 20=0-3-8 Max Horiz 20=-84 (LC 13) Max Crav 11=1767 (LC 1). 20=1787 (LC 1) Maximum Compression/Maximum Tension OP CHORD 1-2=0/30, 2-3=-5547/594, 3-4=-3871/432, 4-5=-3338/420, e-3=-338/420, e-3=-338/420, e-3=-338/420, e-3=-338/420, e-3=-338/420, e-3=-338/420, e-3=-338/420, e-3=-3476/420, e-3=-338/420, e-3=-3476/420, e-3=-46/20, e-3=-46			= 1.8E, 11-9:2x6 SP	3)										
 broken designed for a live load of 20.0psf chord live load of 20.0psf chord		2400F 2.0E							ed.					
 Strict Book of the original work and the partial and the partial of the	BRACING			,										LL .
 and the bottom chord in all areas where a rectangle bothom chord in all areas where a rectangle con the bottom chord in all areas where a rectangle con the bottom chord in all areas where a rectangle con the bottom chord in all areas where a rectangle con the bottom chord in all areas where a rectangle con the bottom chord in all areas where a rectangle con the bottom chord in all areas where a rectangle con the bottom chord in all areas where a rectangle con the bottom chord in all areas where a rectangle con the bottom chord in all areas where a rectangle con the bottom chord in all areas where a rectangle con the bottom chord in all areas where a rectangle con the bottom chord in all areas where a rectangle con the bottom chord in all areas where a rectangle con the bottom chord in all areas where a rectangle con the bottom chord in all areas where a rectangle con the bottom chord in all areas where a rectangle con the bottom chord in all areas where a rectangle con the bottom chord in all areas where a rectangle con the chord in all areas where a rectangle con the chord in all areas where a rectangle con the chord in all areas where a rectangle con the chord in all areas where a rectangle con the chord in all areas where a rectangle con the chord in all areas where a rectangle con the chord in all areas where a rectangle con the chord in all areas where a rectangle con the chord in all areas where a rectangle con the chord in all areas where a rectangle con the chord in all areas where a rectangle con the chord in all areas where a rectangle con the chord in all areas where a rectangle con the chord in all areas where a rectangle con the chord in all areas where a rectangle con the chord i	OP CHORD												IN OF I	11011
 All bearings are assumed to be SPF No.2. Bearing at joint(s) 20-00-00 wide will fit between the bottom chord and any other members. All bearings are assumed to be SPF No.2. Bearing at joint(s) 20 considers parallel to grain value using ANS/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface. Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 198 ib uplit at joint 20 and 198 to uplit at joint 20 and 198 to uplit at joint 20 and 198 to uplit at joint 11. DRCES (b) - Maximum Compression/Maximum Cherytes, 5547/594, 3-4=-3871/432, 4-5=-3330/430, 8-9=-3176/340, 9-10=0/30, 2-20=-1790/230, 9-11=-1686/229 OT CHORD 1-2e-0/373, 18-19=-586/4981, 17-18=-304/353, 15-17=-20/2926, 17-18=-256/23064, 13-14=0/115, 7-14=-25/624, 12-13=-71/04, 11-12=-121/987 EBS 3-13=-246/22, 4-17=-773, 199, 5-17=-70/580, 5-15=-1107/06, 6-15=-513/203, 12-14=-246/21, 74, 8-14=-21/452, 8-12=-545/148, 2:19=-491/4727, 9-12=-14/1851, 4-18=0/384, 3-18=-148/321, 7-15=-89/572 OTES Unbalanced roof live loads have been considered for this design. 				and 0)		0			uhai			9	NE	0801
 b) of the large damp defining the large damp definition of the large damp definition definition									om				1	
 TEBS 1 Row at midpt 3-18 FROW at midpt 3	SOLCHORD	0 0 ,	applied or 10-0-0 oc									20	~···	
 EACTIONS (size) 11=0-3-8, 20=0-3-8 Max Horiz 20=84 (LC 13) Max Upilit 11=-198 (LC 5), 20=-198 (LC 4) Max Grav 11=-1767 (LC 1), 20=1767 (LC 1) ORCES (lb) - Maximum Compression/Maximum Tension OP CHORD 1-2=0/30, 2-3=-5547/594, 3-4=-3871/432, 4-5=-3320/424, 5-6=-3347/478, 6-7=-3345/476, 7-8=-33894/30, 9-11=-1696/229 OT CHORD 19-20=-1090/373, 18-19=-586/4981, 17-18=-304/3533, 15-17=-240/2026, 14-15=-256/24, 12-13=-77104, 11-12=-121/987 This trues is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANS/I/TP1 1. This trues is designed in accordance with the size or the orientation does not depict the size or the orientation of the purlin along the top and/or bottom chord. LOAD CASE(S) Standard LOAD CASE(S) Standard 16952 07 EFS Unbalanced roof live loads have been considered for this design. 	/FBS		3-18	7)				o.2 .				2		
Max Horiz 20=-84 (LC 13) Max Uplift 11=-198 (LC 5), 20=-198 (LC 4) Max Grav 11=1767 (LC 1), 20=1767 (LC 1) ORCES (b) - Maximum Compression/Maximum Tension OP CHORD 1-2=0/30, 2-3=-5547/594, 3-4=-3871/432, 4-5=-3320/424, 5-6=-3347/478, 6-7-3345/476, 7-8=-3398/430, 8-9=-3176/340, 9-10=0/30, 2-20=-1790/230, 9-11=-1698/229 OT CHORD 19-20=-109/373, 18-19=-586/4981, 17-18=-304/3533, 15-17=-240/2926, 14-15=-256/3054, 13-14=-0/115, 7-14=-256/2054, 12-13=-7/104, 11-12=-121/987 7-14=-246/2774, 8-14=-211/452, 8-12=-545/148, 2-19=-491/4727, 9-12=-154/1851, 4-18=0/384, 3-18=-1468/321, 7-15=-89/572 OTES Umbalanced roof live loads have been considered for this design.				8)	Bearing at jo	int(s) 20 considers	s paralle	l to grain valu	le			= *	GAR	
Max Uplift 11=-198 (LC 5), 20=-198 (LC 4) Max Grav 11=1767 (LC 1), 20=1767 (LC 1) DRCES (lb) - Maximum Compression/Maximum Tension DP CHORD 1-2=0/30, 2-3=-5547/594, 3-4=-3871/432, 4-5=-3230/424, 5-6=-3347/478, 6-7=-3345/476, 7-8=-3398/430, 8-9=-3176/340, 9-10=0/30, 2-20=-1790/230, 9-11a=-166/229 OT CHORD 19-20=-109/373, 18-19=-586/4981, 17-18=-304/5533, 15-17=-240/2226, 14-15=-256/3054, 13-14=0/115, 7-14=-25/624, 12-13=-7/104, 11-12=-121/987 7-14=-25/624, 12-13=-7/104, 11-12=-121/987 7-14=-25/624, 12-13=-7/104, 11-12=-121/987 7-14=-25/624, 12-13=-7/104, 11-12=-121/987 7-14=-26/2774, 8-14=-21/452, 8-12=-545/148, 2-19=-491/4727, 9-12=-154/14851, 4-18=-0/384, 3-18=-1468/321, 7-15=-89/572 OTES Ubbalanced roof live loads have been considered for this design.	LACHONS	· · · ·											1	
 Max Grav 11=1767 (LC 1), 20=1767 (LC 1) Max Grav 11=1767 (LC 1), 20=1767 (LC 1) Max Grav 11=1767 (LC 1), 20=1767 (LC 1) Maximum Compression/Maximum Tension DP CHORD 12=0/30, 2-3=-5547/594, 3-4=-3871/432, 4-5=-3330/424, 5-6=-3347/478, 6-7=-3345/476, 7-8=-3398/430, 8-9=-3176/340, 9-10=0/30, 2-20=-1790/230, 9-11=-1696/229 OT CHORD 19-20=-109/373, 18-19=-586/4981, 17-18=-304/3533, 15-17=-240/2926, 14-15=-256/3054, 13-14=0/115, 7-14=-256/24, 12-13=-71/104, 11-12=-121/987 Tersion 19-20=-109/373, 18-17=-240/2926, 14-15=-256/3054, 13-14=0/115, 7-14=-26/624, 12-13=-71/104, 11-12=-121/987 Tess 3-19=-29(692, 4-17=-773/199, 5-17=-70/580, 5-15=-110/706, 6-15=-513/203, 12-14=-246/2774, 8-14=-246/274, 8-14=-246/274, 8-14=-246/274, 8-14=-246/274, 8-14=-246/274, 8-14=-246/274, 8-14=-246/274, 8-14=-246/274, 8-14=-246/274, 8-14=-246/274, 8-14=-246/274, 8-14=-246/274, 8-14=-246/274, 8-14=-246/274, 8-14=-246/274, 8-14=-246/274, 8-14=-246/274, 8-14=-246/274, 8-14=-246/274,				4)								= 0		· ·
ORCES (b) - Maximum Compression/Maximum Tension Defaulting faile Capable of WithSathurg 198 to Uplit at Joint 11. OP CHORD 1-2e0/30, 2-3=-5547/594, 3-4=-3871/432, 4-5=-3230/424, 5-6=-3347/478, 6-7=-3345/476, 7-8=-3398/430, 8-9=-3176/340, 9-10=0/30, 2-20=-1790/230, 9-11=-1696/229 10) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. 10) Crebord 19-20=-109/373, 18-19=-586/4981, 17-18=-304/3533, 15-17=-240/2926, 14-15=-256/3054, 13-14=0/115, 7-14=-25/624, 12-13=-77104, 11-12=-121/987 10) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord. UADA CASE(S) Standard VEBS 3-19=-29/692, 4-17=-773/199, 5-17=-70/580, 5-15=-1107/06, 6-15=-513/203, 12=-154/1851, 4-18=0/384, 3-18=-1468/321, 7-15=-89/572 OTES Ubalanced roof live loads have been considered for this design.												:5		• 41.
Tension Tension DP CHORD 1:2=0/30, 2:3=-5547/594, 3:4=-3871/432, 4:5=-3230/424, 5:6=-3347/478, 6:7=-3345/476, 7:8=-3398/430, 8:9=-3176/340, 9:10=0/30, 2:20=-1790/230, 9:11=-1696/229 OT CHORD 19:20=-109/373, 18:19=-586/4981, 17:18=-304/3533, 15:17=-240/2926, 14:15=-256/3054, 13:14=0/115, 7:14=-25/624, 12:13=-7/104, 11:12=-121/987 /EBS 5:15=-110/706, 6:15=-513/203, 12:14=-246/2774, 8:14=-21/452, 8:19=-24/692, 4:17=-773/199, 5:17=-70/580, 5:15=-110/706, 6:15=-513/203, 12:14=-246/2774, 8:14=-21/452, 8:19=-24/692, 4:17=-773/199, 5:17=-70/580, 5:15=-110/706, 6:15=-513/203, 12:14=-246/2774, 8:14=-21/452, 8:19=-24/692, 4:17=-773/199, 5:17=-70/580, 5:15=-110/706, 6:15=-513/203, 12:14=-246/2774, 8:14=-21/452, 8:19=-24/692, 4:14=-21/452, 8:19=-24/692, 4:17=-773/199, 5:17=-70/580, 5:15=-110/706, 6:15=-513/203, 12:14=-246/2774, 8:14=-21/452, 8:19=-491/4727, 9:12=-154/1851, 4:18=0/384, 3:18=-1468/321, 7:15=-89/572 OTES U Ubalanced roof live loads have been considered for this design.	ORCES			.,			anding	98 lb uplift at	joint			- (C. E-20001	62101
OP CHORD 1-2=0/30, 2-3=-5547/594, 3-4=-3871/432, 4-5=-3230/424, 5-6=-3347/478, 6-7=-3345/476, 7-8=-3398/430, 9-11=-1696/229 100 ministrate definition of the 2010 ministrational Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. 11 Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord. OT CHORD 19-20=-109/373, 18-19=-586/4981, 17-18=-256/3054, 13-14=0/115, 7-14=-25/624, 12-13=-7/104, 11-12=-121/987 ZEBS 3-19=-29/692, 4-17=-773/199, 5-17=-70/580, 5-15=-110/706, 6-15=-513/203, 12-14=-246/2774, 8-14=-21/452, 8-12=-545/148, 2-19=-491/4727, 9-12=-154/1851, 4-18=0/384, 3-18=-1468/321, 7-15=-89/572 OTES Unbalanced roof live loads have been considered for this design.	011020		iprocolori/maximum	10			danco w	ith the 2019				-	A	
 4-5=-3230/424, 5-6=-3347/478, 6-7=-3345/476, 7-8=-3398/430, 8-9=-3176/340, 9-10=0/30, 2-20=-1790/230, 9-11=-1696/229 OT CHORD 19-20=-109/373, 18-19=-586/4981, 17-18=-304/3533, 15-17=-240/2926, 14-15=-256/3054, 13-14=0/115, 7-14=-25/624, 12-13=-7/104, 11-12=-121/987 YEBS 3-19=-29/692, 4-17=-773/199, 5-17=-70/580, 5-15=-110/706, 6-15=-513/203, 12-14=-246/2774, 8-14=-21/452, 8-12=-545/148, 2-19=-491/4727, 9-12=-154/1851, 4-18=0/384, 3-18=-1468/321, 7-15=-89/572 OTES Unbalanced roof live loads have been considered for this design. 	OP CHORD		7/594. 3-4=-3871/432	2					and				1.000	"ENGIN
6-7=-3345/476, 7-8=-3398/430, 8-9=-3176/340, 9-10=0/30, 2-20=-1790/230, 9-11=-1696/229 11) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord. OT CHORD 19-20=-109/373, 18-19=-586/4981, 17-18=-304/3533, 15-17=-240/2926, 14-15=-256/3054, 13-14=0/115, 7-14=-25/624, 12-13=-7/104, 11-12=-121/987 LOAD CASE(S) Standard VEBS 3-19=-29/692, 4-17=-773/199, 5-17=-70/580, 5-15=-110/706, 6-15=-513/203, 12-14=-246/2774, 8-14=-21/452, 8-12=-545/148, 2-19=-491/4727, 9-12=-154/1851, 4-18=0/384, 3-18=-1468/321, 7-15=-89/572 LOAD CASE(S) Standard OTES Unbalanced roof live loads have been considered for this design. Unbalanced for this design.				,									ONA	LEIN
8-9=-3176/340, 9-10=0/30, 2-20=-1790/230, 9-11=-1696/229 or the orientation of the purlin along the top and/or bottom chord. OT CHORD 19-20=-109/373, 18-19=-586/4981, 17-18=-304/3533, 15-17=-240/2926, 14-15=-256/3054, 13-14=0/115, 7-14=-25/624, 12-13=-7/104, 11-12=-121/987 LOAD CASE(S) Standard //EBS 3-19=-29/692, 4-17=-773/199, 5-17=-70/580, 5-15=-110/706, 6-15=-513/203, 12-14=-246/2774, 8-14=-21/452, 8-12=-545/148, 2-19=-491/4727, 9-12=-154/1851, 4-18=0/384, 3-18=-1468/321, 7-15=-89/572 16952 OTES Unbalanced roof live loads have been considered for this design. 16952		6-7=-3345/476, 7-8=	-3398/430,	11					size					un.
OT CHORD 19-20=-109/373, 18-19=-586/4981, LOAD CASE(S) Standard 17-18=-304/3533, 15-17=-240/2926, 14-15=-256/3054, 13-14=-0/115, 7-14=-25/624, 12-13=-7/104, 11-12=-121/987 /EBS 3-19=-29/692, 4.17=-773/199, 5-17=-70/580, 5-15=-110/706, 6-15=-513/203, 12-14=-246/2774, 8-14=-21/452, 8-12=-545/148, 2-19=-491/4727, 9-12=-154/1851, 4-18=-0/384, 3-18=-1468/321, 7-15=-89/572 OTES Unbalanced roof live loads have been considered for this design.)=0/30, 2-20=-1790/2	230,									2.11	
14.15=-256/3054, 13.14=0/115, 7-14=-25/624, 12-13=-7/104, 11-12=-121/987 7EBS 3-19=-29/692, 4-17=-773/199, 5-17=-70/580, 5-15=-110/706, 6-15=-513/203, 12-14=-246/2774, 8-14=-21/452, 8-12=-545/148, 2-19=-491/4727, 9-12=-154/1851, 4-18=0/384, 3-18=-1468/321, 7-15=-89/572 OTES 1 Unbalanced roof live loads have been considered for this design.							Ū	•						
14.15=-256/3054, 13.14=0/115, 7-14=-25/624, 12-13=-7/104, 11-12=-121/987 7EBS 3-19=-29/692, 4-17=-773/199, 5-17=-70/580, 5-15=-110/706, 6-15=-513/203, 12-14=-246/2774, 8-14=-21/452, 8-12=-545/148, 2-19=-491/4727, 9-12=-154/1851, 4-18=0/384, 3-18=-1468/321, 7-15=-89/572 OTES 1 Unbalanced roof live loads have been considered for this design.	SOT CHORD			LC	DAD CASE(S)	Standard							NAU	ARC
7-14=-25/624, 12-13=-7/104, 11-12=-121/987 7/EBS 3-19=-29/692, 4-17=-773/199, 5-17=-70/580, 5-15=-110/706, 6-15=-513/203, 12-14=-246/2774, 8-14=-21/452, 8-12=-545/148, 2-19=-491/4727, 9-12=-154/1851, 4-18=0/384, 3-18=-1468/321, 7-15=-89/572 OTES Unbalanced roof live loads have been considered for this design.													Nº JOINTE	NON
9-12=-154/1851, 4-18=0/384, 3-18=-1468/321, 7-15=-89/572 OTES Unbalanced roof live loads have been considered for this design.		,	,	007										ED
9-12=-154/1851, 4-18=0/384, 3-18=-1468/321, 7-15=-89/572 OTES Unbalanced roof live loads have been considered for this design.	/EBS											-	1 A 1	- A 5
9-12=-154/1851, 4-18=0/384, 3-18=-1468/321, 7-15=-89/572 OTES Unbalanced roof live loads have been considered for this design.	VLD0			500,								-	1 100	
9-12=-154/1851, 4-18=0/384, 3-18=-1468/321, 7-15=-89/572 OTES Unbalanced roof live loads have been considered for this design.		,	,										: 169	952 : :
9-12=-154/1851, 4-18=0/384, 3-18=-1468/321, 7-15=-89/572 OTES Unbalanced roof live loads have been considered for this design.												-	DI	1 ig:
OTES Unbalanced roof live loads have been considered for this design.												-	D.	Y : 4
Unbalanced roof live loads have been considered for this design.													- A MAN	CARLINE S
this design.	OTES												1	G
this design.) Unbalance	ed roof live loads have	been considered for										ON	ALENN
April 3 2024	·												1111	inni.
	Ū.												An	ril 3.2024

NOTES

 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.
 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not besign value to dury with with where outputs into design is based only door parameters shown, and is for an individual building design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members and property incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TPH1 Quality Criteria**, and **DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcscomponents.com)

Job	Truss	Truss Type	Qty	Ply	Lot 133 MN	
240616	A5	Нір	1	1	Job Reference (optional)	164627065

Run: 8.73 S Mar 21 2024 Print: 8.730 S Mar 21 2024 MiTek Industries, Inc. Tue Apr 02 08:22:34 ID:T6IoFGMP6asF2g6H_VRbNEzymQf-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

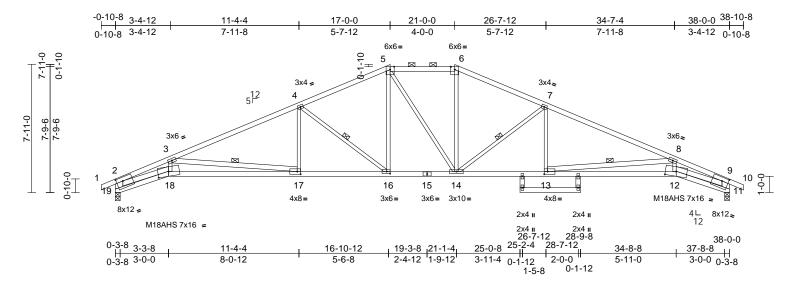
Page: 1

-0-10-8 3-4-12 0-10-8 3-4-12 <u>38-0-0</u> 38-10-8 3-4-12 0-10-8 8-11-7 15-0-0 19-0-0 23-0-0 29-0-9 34-7-4 5-6-11 6-0-9 4-0-0 4-0-0 6-0-9 5-6-11 2x4 II 6x6 =6x6= -10 10 0-1-10 7-1-0 5 6 7 \boxtimes \boxtimes 12 5 3x4 🚽 3x4 👟 4 8 6-11-6 7-1-0 3x6**≈** 3x6 🚅 3 9 10 11 0-0-**6**14 20 19 18 17 16 15 13 12 ₿ 3x4= M18AHS 7x16 = 4x5= 3x4= 3x10= 4x8= 8x12 -4∟ 12 2x4 II 2x4 II 8x12 👟 M18AHS 7x16 = 2x4 II 2x4 II 294059 38-0-0 <u>37-8-8</u> 3-0-0 0-3-8 25-2-4 28-9-8 0-3-8 3-3-8 H 0-3-8 3-0-0 21-3-8 23-1-4 25-0-8 28-7-12 2-3-8 1-9-12 1-11-4 3-5-8 0 0-1-12 19-0-0 8-11-7 14-10-12 34-8-8 28-7-12 ||| 3-5-8 0-1-12 0-3-1 5-7-15 5-11-5 4-1-4 5-7-15

Scale = 1:71.2

		1					· · · ·					1	
Loading	(psf)	Spacing	2-0-0		csi		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15		тс	0.77	Vert(LL)	-0.38	17	>999	360	MT20	197/144
TCDL	10.0	Lumber DOL	1.15		BC	0.65	Vert(CT)	-0.68	17-18	>661	240	M18AHS	142/136
BCLL	0.0*	Rep Stress Incr	YES		WB	0.49	Horz(CT)	0.45	12	n/a	n/a		
BCDL	10.0	Code	IRC201	8/TPI2014	Matrix-S		Wind(LL)	0.24	17	>999	240	Weight: 157 lb	FT = 10%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD WEBS REACTIONS	2x4 SPF No.2 2x4 SPF No.2 *Exce 2100F 1.8E 2x3 SPF No.2 *Exce No.2, 20-2,13-10:2x 22-24,23-25:2x4 SP Structural wood she 2-1-5 oc purlins, ex 2-0-0 oc purlins (3-4 Rigid ceiling directly bracing.	pt* 20-16,16-13:2x4 pt* 21-2,12-10:2x6 S 4 SPF 2100F 1.8E, F No.2 athing directly applie cept end verticals, ar -2 max.): 5-7. applied or 9-7-15 oc 3-19, 4-18, 8-15, 9-1 21=0-3-8 C 13) LC 9), 21=-209 (LC §	2) SPF 3) 4) 5) dor 1d 6) 4 7) 8) 8) 3) 9)	Wind: ASCE Vasd=91mpH II; Exp C; En cantilever lef right expose Provide adee All plates are This truss ha chord live loa * This truss ha chord live loa * This truss ha chord live loa * This truss the chord and ar All bearings Bearing at jo value using the Provide mec	7-16; Vult=115mp n; TCDL=6.0psf; B closed; MWFRS (t and right expose d; Lumber DOL=1 quate drainage to p e MT20 plates unle is been designed to ad nonconcurrent t has been designed n chord in all area by 2-00-00 wide win yo other members. are assumed to be int(s) 21, 12 consi ANSI/TPI 1 angle to val verify capacity hanical connection e capable of withst	CDL=6. envelope d; end v .60 plate prevent ess other for a 10. with any d for a liv is where e SPF Ne iders par to grain f y of bear n (by oth	cond gust) opps; h=25ft; () exterior zor vertical left an grip DOL=1. water ponding wise indicate 0 psf bottom other live loa e load of 20.0 a rectangle veen the botto c.2. allel to grain ormula. Built ing surface. ers) of truss t	Cat. ne; id 60 g. id ds. Opsf om ding				JUA GAR	NISSOLD CIA
FORCES	(lb) - Maximum Com Tension 1-2=0/30, 2-3=-5523 4-5=-2975/341, 5-6= 6-7=-2814/361, 2-21 10-12=-1795/228, 7 8-9=-3894/370, 9-10	3/670, 3-4=-3894/402 2814/361, =-1795/258, -8=-2975/341,	2, 11	21 and 209 l)) This truss is International R802.10.2 a I) Graphical pu	b uplift at joint 12. designed in accor Residential Code nd referenced star rlin representation ation of the purlin a	dance w sections ndard AN	ith the 2018 s R502.11.1 a ISI/TPI 1. ot depict the s	ind			111.	E-20001	LENGINI
BOT CHORD	20-21=-137/388, 19- 18-19=-351/3561, 1 15-17=-149/2661, 1- 13-14=-482/4955, 12	-20=-667/4955, 7-18=-149/2661, 4-15=-245/3561,		DAD CASE(S)								IN JUAN C	ARCIA NSED
WEBS NOTES 1) Unbalance this design	3-20=-48/690, 3-19= 4-18=-1014/258, 5-1 7-15=-55/589, 8-15= 9-14=-1414/258, 9-1 2-20=-547/4686, 10 5-17=-76/449, 7-17= ed roof live loads have	8=-62/589, 1014/243, 8-14=0/4 3=-6/690, -13=-453/4686, -77/449, 6-17=-366/	28, 131								THINK.	OX SOION	SAS OFFICE

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not besign value to dury with with where outputs into design is based only door parameters shown, and is for an individual building design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members and property incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TPH1 Quality Criteria**, and **DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcscomponents.com)



April 3,2024

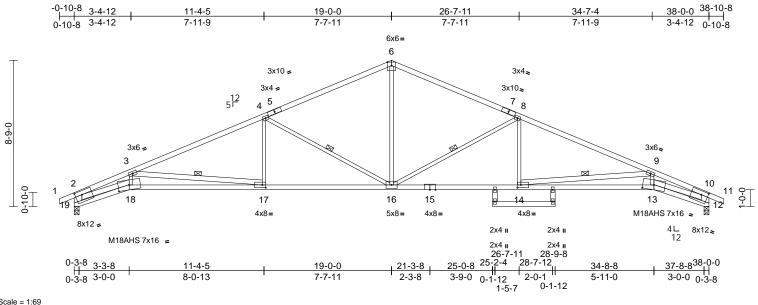
Job	Truss	Truss Type	Qty	Ply	Lot 133 MN	
240616	A6	Нір	1	1	Job Reference (optional)	164627066

Run: 8.73 S Mar 21 2024 Print: 8.730 S Mar 21 2024 MiTek Industries, Inc. Tue Apr 02 08:22:34 ID:dbIP89GKYcOAdhfo9uJGB2zymS4-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale =	1:71.3
---------	--------

Plate Offsets (X, Y): [11:0-4-12,0-2	-12], [12:0-8-0,0-3-7], [13:0	0-2-8,0-2-0], [16:0-2	-8,0-1-8], [17:0-2-8	8,0-2-0],	[18:0-8-0,0-3	-7], [19:	0-4-12,0	-2-12]			
Loading (psf) TCLL (roof) 25.0 TCDL 10.0 BCLL 0.0*	Spacing2-0Plate Grip DOL1.1Lumber DOL1.1Rep Stress IncrYE	5 5 S	CSI TC BC WB	0.74 0.72 0.62	. ,	-0.70 0.48	(loc) 14-16 17-18 11	l/defl >999 >643 n/a	L/d 360 240 n/a	PLATES MT20 M18AHS	GRIP 197/144 142/136
BCDL 10.0	Code IRC	C2018/TPI2014	Matrix-S		Wind(LL)	0.25	17-18	>999	240	Weight: 160 lb	FT = 10%
LUMBER TOP CHORD 2x4 SPF 2100F 1.8 No.2 BOT CHORD 2x4 SPF No.2 *Exc 2100F 1.8E WEBS 2x3 SPF No.2 *Exc 17-3,13-8,20-22,21 19-2,11-9:2x6 SPF 2100F 1.8E BRACING TOP CHORD Structural wood shi 2-8-12 oc purlins, (3- BOT CHORD Rigid ceiling directly bracing, Except: 8-7-7 oc bracing: 1 9-11-12 oc bracing: 1 9-	E *Except* 5-6:2x4 SPF ept* 18-15,15-12:2x4 SPF ept* 23:2x4 SPF No.2, No.2, 18-2,12-9:2x4 SPF eathing directly applied or except end verticals, and 6-4 max.): 5-6. / applied or 10-0-0 oc 7-18 12-13. 3-17, 4-16, 7-14, 8-13 , 19=0-3-8 (LC 13) (LC 9), 19=-226 (LC 8) (LC 1), 19=1767 (LC 1) npression/Maximum =-2696/283, =-5709/692, 9-10=0/30, 11=-1785/226, 1-2=0/30, =-3554/395, -18=-827/5141, 4-16=-121/2396,	 WEBS WEBS NOTES 1) Unbalanced this design. 2) Wind: ASCE Vasd=91mpf II; Exp C; En cantilever lef right exposer 3) Provide aded 4) All plates are 5) This truss ha chord live load 6) * This truss ha chord live load 6) * This truss from the bottor 3-06-00 tall b chord and ar 7) All bearings is 8) Bearing at jo value using A designer sho 9) Provide mech bearing plate 19 and 226 II 10) This truss is International R802.10.2 au 11) Graphical put 	3-18=-40/741, 3-17 3-18=-40/741, 3-17 3-16=-1019/262, 5 5-14=-222/228, 6- 7-14=-1016/250, 7 8-13=-1941/420, 8 2-18=-728/4945, 9 roof live loads hav 7-16; Vult=115mp h; TCDL=6.0psf; B closed; MWFRS (r t and right expose d; Lumber DOL=1, quate drainage to p dm20 plates unle s been designed f ad nonconcurrent has been designed n chord in all area sy 2-00-00 wide wi hy other members. are assumed to be int(s) 19, 11 consi ANSI/TPI 1 anglet b uplift at joint 11. designed in accorn Residential Code nd referenced star r/lin representation ation of the purlin a d.	-16=-108 14=-52/6 -13=0/47 -12=0/47 -12=-619 re been of cDL=6.0 enveloped d; end v 60 plate prevent v ess other or a 10.0 with any l for a liv s where ll fit betw e SPF No ders part o grain fr o (by oth anding 2 dance wi sections ndard AN	(500, 4-17=0/4 8/696, 9/97, 76, 42, 9/4946 considered for cond gust) Opsf; h=25ft; C exterior zon vertical left and grip DOL=1.6 water ponding wise indicater other live load of 20.0 a rectangle veen the botto 0.2. allel to grain ormula. Build ng surface. ers) of truss to (26 lb uplift at ith the 2018 R502.11.1 an SIJ/TP11.	478, f Cat. e; d 50 j. d. ds. psf om iing joint nd			AND * Philip	JUAN C BARG NUME E-20001 JUAN C JOE 160 FROM S/ON	N CIA BER


 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.
 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not besign value to dury with with where outputs into design is based only door parameters shown, and is for an individual building design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members and property incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TPH1 Quality Criteria**, and **DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcscomponents.com)

Job	Truss	Truss Type	Qty	Ply	Lot 133 MN	
240616	B1	Roof Special	1	1	Job Reference (optional)	164627067

Run: 8.73 S Mar 21 2024 Print: 8.730 S Mar 21 2024 MiTek Industries. Inc. Tue Apr 02 08:22:35 ID:UzvNYmg1CzP7vKDHwiZDGqzymbt-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale =	1:69
---------	------

Plate Offsets (X, Y)): [12:0-4-12,0-2-12], [13:0-8-0,0-3-7]	, [14:0-2-8,0-2-0], [17:0-2-8,0-2-0],	, [18:0-8-0,0-3-7], [19:0-4-12,0-2-12]
----------------------	---	---------------------------------------	--

3)

4)

5)

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15	TC	0.67	Vert(LL)	-0.35	13-14	>999	360	MT20	197/144
TCDL	10.0	Lumber DOL	1.15	BC	0.72	Vert(CT)	-0.71	13-14	>638	240	M18AHS	142/136
BCLL	0.0*	Rep Stress Incr	YES	WB	0.88	Horz(CT)	0.48	12	n/a	n/a		
BCDL	10.0	Code	IRC2018/TPI2014	Matrix-S		Wind(LL)	0.26	17-18	>999	240	Weight: 153 lb	FT = 10%

LUMBER	
TOP CHORD	2x4 SPF 2100F 1.8E
BOT CHORD	2x4 SPF No.2 *Except* 18-15,15-13:2x4 SPF
	2100F 1.8E
WEBS	2x3 SPF No.2 *Except*
	14-9,17-3,20-22,21-23:2x4 SPF No.2,
	19-2,12-10:2x6 SPF No.2, 18-2,13-10:2x4
	SPF 2100F 1.8E
BRACING	
TOP CHORD	Structural wood sheathing directly applied or
	2-11-15 oc purlins, except end verticals.
BOT CHORD	Rigid ceiling directly applied or 8-3-13 oc
	bracing.
WEBS	1 Row at midpt 8-16, 9-14, 4-16, 3-17
REACTIONS	(size) 12=0-3-8, 19=0-3-8
	Max Horiz 19=-124 (LC 13)
	Max Uplift 12=-242 (LC 9), 19=-242 (LC 8)
	Max Grav 12=1767 (LC 1), 19=1767 (LC 1)
FORCES	(lb) - Maximum Compression/Maximum
	Tension
TOP CHORD	1-2=0/30, 2-3=-5684/871, 3-4=-3568/448,
	4-6=-2454/302, 6-8=-2453/321,
	8-9=-3568/416, 9-10=-5684/733, 10-11=0/30,
	2-19=-1790/286, 10-12=-1790/245
BOT CHORD	18-19=-143/361, 17-18=-891/5115,
	16-17=-398/3232, 14-16=-243/3232,
	13-14=-647/5115, 12-13=-10/338
WEBS	6-16=-93/1339, 8-16=-1232/311, 8-14=0/499,
	9-14=-1896/406, 9-13=0/740,
	4-16=-1232/326, 4-17=0/499,
	3-17=-1896/497, 3-18=-55/740,
	2-18=-767/4905, 10-13=-642/4905
NOTES	
1) Unhalance	ed roof live loads have been considered for

2) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60 All plates are MT20 plates unless otherwise indicated. This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. * This truss has been designed for a live load of 20.0psf

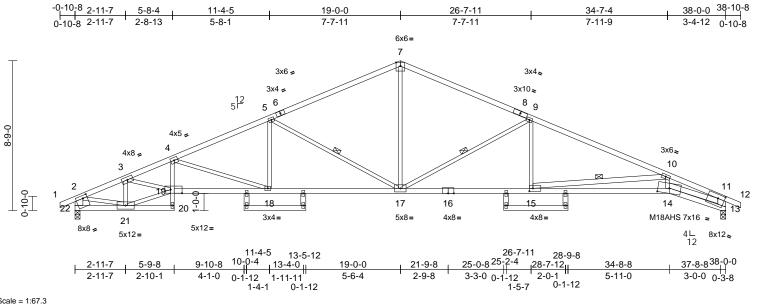
- on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members. All bearings are assumed to be SPF No.2 . 6)
- 7) Bearing at joint(s) 19, 12 considers parallel to grain
- value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface. 8) Provide mechanical connection (by others) of truss to
- bearing plate capable of withstanding 242 lb uplift at joint 19 and 242 lb uplift at joint 12. This truss is designed in accordance with the 2018 9)
- International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. LOAD CASE(S) Standard

MI

0

Unbalanced roof live loads have been considered for 1) this design.

 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.
 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponent.com)

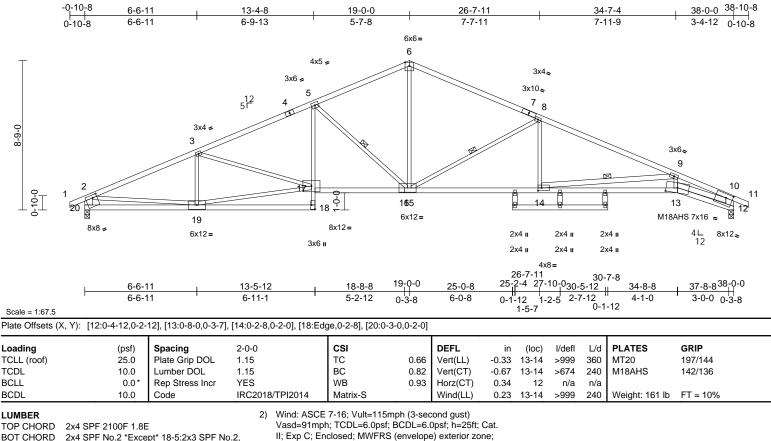

Job	Truss	Truss Type	Qty	Ply	Lot 133 MN	
240616	B2	Roof Special	1	1	Job Reference (optional)	164627068

Run: 8.73 S Mar 21 2024 Print: 8.730 S Mar 21 2024 MiTek Industries, Inc. Tue Apr 02 08:22:35 ID:bO5a0y?X94TxptWjCf4KYEzymck-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

ΤΙΟΝ 'IEW

DEVELOPMENT SERVICES LEE'S' SUMMIT'S MISSOURI 04/22/2024 8:36:12

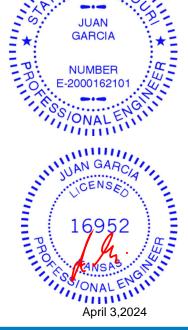


Scale = 1:67.3

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent colleges with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

Job	Truss	Truss Type	Qty	Ply	Lot 133 MN	
240616	B3	Roof Special	1	1	Job Reference (optional)	164627069

Run: 8.73 S Mar 21 2024 Print: 8.730 S Mar 21 2024 MiTek Industries. Inc. Tue Apr 02 08:22:35 ID:Iz3DGJ5Up10aJLHIJPEk?Pzymdv-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f


BOT CHORD			ept* 18-5:2x3 SPF No.2,	
	16-13:2x4	SPF 210	0F 1.8E	
WEBS	2x3 SPF I	No.2 *Exc	ept*	
	14-9,21-2	3,22-24,2	5-26:2x4 SPF No.2,	
	20-2,12-1	0:2x6 SPF	⁻ No.2, 13-10:2x4 SPF	
	2100F 1.8	3E		
BRACING				
TOP CHORD	Structura	l wood she	eathing directly applied or	
	2-11-15 c	c purlins,	except end verticals.	
BOT CHORD	Rigid ceil	ing directly	/ applied or 9-9-0 oc	
	bracing.			
WEBS	1 Row at	midpt	5-15, 8-15, 9-14	
REACTIONS	(size)	12=0-3-8	, 20=0-3-8	
	Max Horiz	20=125 (LC 12)	
	Max Uplift	12=-242	(LC 9), 20=-242 (LC 8)	
	Max Grav	12=1767	(LC 1), 20=1767 (LC 1)	
FORCES	(lb) - Max	imum Cor	npression/Maximum	
	Tension		•	
TOP CHORD	1-2=0/30,	2-3=-311	0/386, 3-5=-3279/419,	
	5-6=-241	4/306, 6-8	=-2452/319,	
	8-9=-3569	9/416, 9-1	0=-5682/733, 10-11=0/30),
	2-20=-169	94/272, 10)-12=-1790/246	
DOT OUODD				

- cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60 All plates are MT20 plates unless otherwise indicated. This truss has been designed for a 10.0 psf bottom
- chord live load nonconcurrent with any other live loads. 5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom
- chord and any other members. 6) All bearings are assumed to be SPF No.2 .

3)

4)

- 7) Bearing at joint(s) 12 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.
- Provide mechanical connection (by others) of truss to 8) bearing plate capable of withstanding 242 lb uplift at joint 20 and 242 lb uplift at joint 12.
- 9) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. LOAD CASE(S) Standard

LEE'S'SUMMIT'SMISSOURI 04/22/2024 8:36:13

TION

MIS

0

Page: 1

NOTES

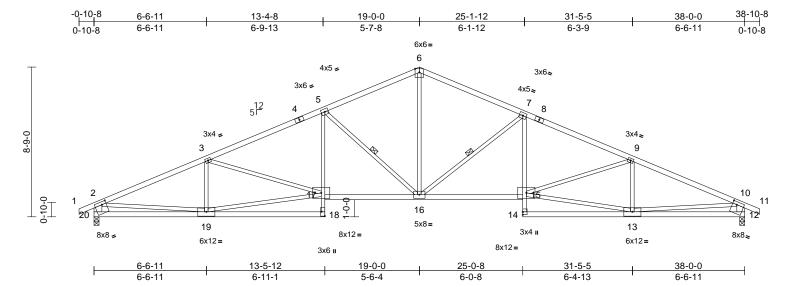
BOT CHORD

WEBS

1) Unbalanced roof live loads have been considered for this design.

12-13=-10/339

19-20=-250/617, 18-19=-7/128, 17-18=0/126,


5-17=-41/594, 15-17=-324/2951, 14-15=-244/3234, 13-14=-647/5112,

3-19=-549/178, 17-19=-406/2695, 3-17=-7/237, 5-15=-1076/286, 6-15=-124/1391, 8-15=-1238/311, 8-14=0/500, 9-14=-1891/406, 9-13=0/740, 2-19=-158/2178, 10-13=-642/4901

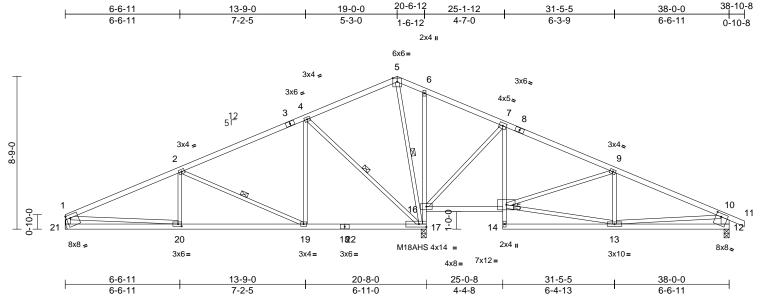
Job	Truss	Truss Type	Qty	Ply	Lot 133 MN	
240616	B4	Roof Special	2	1	Job Reference (optional)	164627070

Run: 8.73 S Mar 21 2024 Print: 8.730 S Mar 21 2024 MiTek Industries, Inc. Tue Apr 02 08:22:35 ID:erlP2mLzfg4WFgzB7gbzy7zymeu-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Scale = 1:67.3

Plate Offsets (X, Y): [12:0-3-0,0-2-0], [18:Edge,0-2-8], [20:0-3-0,0-2-0]

Loading	(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15		TC	0.74	Vert(LL)	-0.29	16-17	>999	360	MT20	197/144
TCDL	10.0	Lumber DOL	1.15		BC	0.87	Vert(CT)	-0.55	15-16	>821	240		
BCLL	0.0*	Rep Stress Incr	YES		WB	0.93	Horz(CT)	0.21	12	n/a	n/a		
BCDL	10.0	Code	IRC2018	/TPI2014	Matrix-S		Wind(LL)	0.19	16-17	>999	240	Weight: 157 lb	FT = 10%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD WEBS REACTIONS FORCES TOP CHORD BOT CHORD BOT CHORD WEBS NOTES 1) Unbalance this design	2x4 SPF No.2 *Exce No.2 2x3 SPF No.2 *Exce No.2 Structural wood she 2-2-0 oc purlins, ex Rigid ceiling directly bracing. 1 Row at midpt (size) 12=0-3-8, Max Horiz 20=125 (I Max Uplift 12=-242 (Max Grav 12=1767 (Ib) - Maximum Com Tension 1-2=0/30, 2-3=-3110 5-6=-2417/307, 6-7= 7-9=-3355/399, 9-10 2-20=-1693/272, 10- 19-20=-252/588, 18- 5-17=-41/589, 16-17 15-16=-189/3035, 1- 7-15=-22/594, 13-14 12-13=-144/611 3-19=-553/178, 17-1 3-17=-9/238, 5-16=- 6-16=-132/1428, 7-1 13-15=-273/2699, 9- 9-13=-594/153, 2-19 10-13=-136/2173 ed roof live loads have	pt* 20-2,12-10:2x6 S athing directly applie cept end verticals. applied or 10-0-0 oc 5-16, 7-16 20=0-3-8 .C 12) LC 9), 20=-242 (LC 4 (LC 1), 20=1767 (LC pression/Maximum 0/386, 3-5=-3280/419 2423/322, p=-3099/384, 10-11= -12=-1692/273 -19=-8/131, 17-18=0, 7=-325/2952, 4-15=0/116, i=-11/119, 9=-406/2693, 1077/287, 6=-1124/279, -15=-33/286, i=-157/2209,	PF 3) d or 4) 5) 6) 3) 7) 1) LO 0/30, (127,	Vasd=91mph II; Exp C; En cantilever lef right exposed This truss ha chord live loa * This truss h on the bottor 3-06-00 tall b chord and ar All bearings a Provide mec bearing plate 20 and 242 II This truss is International	7-16; Vult=115mp ; TCDL=6.0ps; B closed; MWFRS (i and right expose d; Lumber DOL=1. s been designed h onconcurrent v as been designed n chord in all area y 2-00-00 wide wi y other members. are assumed to be nanical connection capable of withst o uplift at joint 12. designed in accorn Residential Code hd referenced star Standard	CDL=6.0 envelope d; end v .60 plate for a 10.0 with any d for a liv s where ell fit betv e SPF No n (by oth anding 2 dance w sections	Dpsf; h=25ft; () exterior zor rertical left an grip DOL=1.) psf bottom other live loa e load of 20.0 a rectangle veen the botto b.2. ers) of truss t 42 lb uplift at ith the 2018 R502.11.1 a	ne; id 60 ds. Dpsf om o joint				PROCESSION	CIA *


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent colleges with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

April 3,2024

Job	Truss	Truss Type	Qty	Ply	Lot 133 MN	
240616	B5A	Roof Special	5	1	Job Reference (optional)	164627071

Run: 8.73 S Mar 21 2024 Print: 8.730 S Mar 21 2024 MiTek Industries, Inc. Tue Apr 02 08:22:35 ID:911TRY5Mv167OrbPaYFpGPzymgV-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Scale = 1:65.9

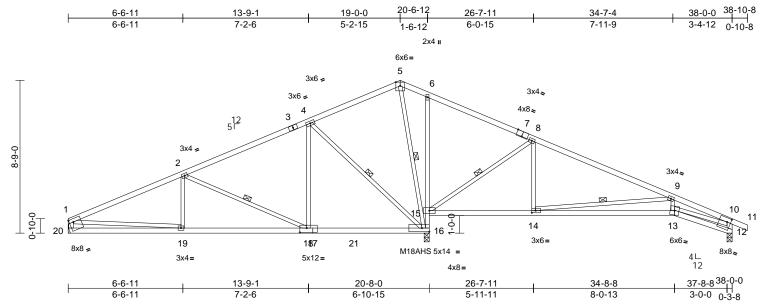
Plate Offsets (X, Y): [12:0-3-8,0-2-4], [20:0-2-8,0-1-8], [21:0-2-12,0-2-4]

					1									
Loading	(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP	
TCLL (roof)	25.0	Plate Grip DOL	1.15		TC	0.53	Vert(LL)	-0.08	17-19	>999	360	MT20	197/144	
TCDL	10.0	Lumber DOL	1.15		BC	0.61	Vert(CT)	-0.14	17-19	>999	240	M18AHS	142/136	
BCLL	0.0*	Rep Stress Incr	YES		WB	0.89	Horz(CT)	0.02	17	n/a	n/a			
BCDL	10.0	Code	IRC20	18/TPI2014	Matrix-S		Wind(LL)	0.04	19-20	>999	240	Weight: 159 lb	FT = 10%	
LUMBER TOP CHORD	2x4 SPF No.2		2		7-16; Vult=115r h; TCDL=6.0psf;			Cat.						
BOT CHORD		pt* 17-6,7-14:2x3 S	pt* 17-6,7-14:2x3 SPF II; Exp C; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed ; end vertical left and											
WEBS	2x3 SPF No.2 *Exce 12-10:2x6 SPF No.2	2x3 SPF No.2 *Except* 21-1:2x4 SPF No.2, 12-10:2x6 SPF No.2			right exposed; Lumber DOL=1.60 plate grip DOL=1.60 3) All plates are MT20 plates unless otherwise indicated.									
BRACING			4		as been designed									
TOP CHORD	Structural wood sheathing directly applied or 4-5-7 oc purlins, except end verticals.) * This truss I	ad nonconcurren nas been design	ed for a liv	e load of 20.						200	
BOT CHORD	Rigid ceiling directly bracing.	igid ceiling directly applied or 10-0-0 oc arcing. on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom										ILE OF I	ISSO	
WEBS	1 Row at midpt	2-19, 4-17, 5-17			ny other member			f.			~	Y		
REACTIONS	(size) 12=0-3-8,	17=0-3-8, 21=	6		are assumed to						20	JUA	N	
	Mechanic	al	7		er(s) for truss to						= .	GAR		
	Max Horiz 21=-133 (LC 9)	8		hanical connecti						- *	:	:*=	
	Max Uplift 12=-191 (21=-157 (8),	 bearing plate capable of withstanding 157 lb uplift at joint 21, 191 lb uplift at joint 12 and 132 lb uplift at joint 17. 9) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and 							NUIME			
	Max Grav 12=748 (L 21=862 (L		; 2), 9								E-2000162101			
FORCES	(lb) - Maximum Com	pression/Maximum			nd referenced st			and			1	A	•	
	Tension			OAD CASE(S)			0/1111.					1.08	ENGIN	
TOP CHORD	1-2=-1385/272, 2-4=		6, -		Stanuaru							ONP	LLIN	
	5-6=0/402, 6-7=0/42												nn.	
	9-10=-987/280, 10-1	1=0/30, 1-21=-774/	190,									2.11	111.	
DOTOUDDD	10-12=-686/223	~~~~~												
BOT CHORD	20-21=-181/382, 19- 17-19=-120/571, 16-											IN UAN C	ARCIN	
	6-16=-251/116, 15-1		/100									Nº JOE	No. 4	
	7-15=-16/498, 13-14											LICE	ED .	
WEBS	2-20=0/230, 2-19=-7										-		1 2	
WLDO	4-17=-1011/242, 5-1		,								11111	1		
	7-16=-810/216, 13-1											169	952 : :	
	9-15=-598/146, 9-13											TI		
	1-20=-128/894, 10-1										-	D		

NOTES

1) Unbalanced roof live loads have been considered for this design.

 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.
 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not besign value to dury with with where outputs into design is based only door parameters shown, and is for an individual building design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members and property incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TPH1 Quality Criteria**, and **DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcscomponents.com)



And And

April 3,2024

Job	Truss	Truss Type	Qty	Ply	Lot 133 MN	
240616	B6A	Roof Special	2	1	Job Reference (optional)	164627072

Run: 8.73 S Mar 21 2024 Print: 8.730 S Mar 21 2024 MiTek Industries, Inc. Tue Apr 02 08:22:35 ID:N8vJvlz1pSOKkY_XeW4??ozymhy-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Scale = 1:65.9

00010 - 1.00.0													
Plate Offsets ((X, Y): [7:0-4-0,Edge],	, [12:0-2-8,0-2-12], [1	4:0-2-8,0	-1-8], [17:0-4-12	2,0-3-0], [20:0-2-1	12,0-2-4]						-	
Loading TCLL (roof) TCDL BCLL BCDL	(psf) 25.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC201	18/TPI2014	CSI TC BC WB Matrix-S	0.72 0.84 0.85	DEFL Vert(LL) Vert(CT) Horz(CT) Wind(LL)	-0.39 0.02	(loc) 13-14 13-14 16 13-14	l/defl >999 >531 n/a >999	L/d 360 240 n/a 240	PLATES MT20 M18AHS Weight: 150 lb	GRIP 197/144 142/136 FT = 10%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD WEBS REACTIONS	2x4 SPF No.2 *Exce 2x3 SPF No.2 *Exce No.2 Structural wood she 3-9-8 oc purlins, ex Rigid ceiling directly bracing. 1 Row at midpt (size) 12=0-3-8, Mechanic Max Horiz 20=-133 (Max Uplift 12=-172 (20=-156 (Max Grav 12=689 (I	 applied or 6-0-0 oc 2-18, 4-16, 5-16, 8-1 9-14 , 16=0-3-8, 20= cal (LC 9) (LC 9), 16=-136 (LC 8) (LC 8) (LC 24), 16=2126 (LC 	.2 PF 3j d or 4, 5, 6j 7, 8j 3), 0	 Vasd=91mpl II; Exp C; En cantilever lef right expose All plates are This truss ha chord live loa * This truss h on the bottor 3-06-00 tall b chord and ar All bearings Refer to gird Bearing at jo using ANSI// designer sho Provide mec 	7-16; Vult=115m n; TCDL=6.0psf; B (closed; MWFRS it and right expose d; Lumber DOL=1 b MT20 plates unl is been designed ad nonconcurrent has been designed ad nonconcurrent has been designed ad nonconcurrent has been designed y 2-00-00 wide w y other members are assumed to b er(s) for truss to tr int(s) 12 consider FPI 1 angle to gra uld verify capacit hanical connectio o capable of withs	CDL=6. (enveloped; end to 1.60 plate ess othe for a 10. with any d for a liva as where vill fit betw s, with BC e SPF N russ conirs paralle in formul y of bear n (by oth	Opsf; h=25ft; (e) exterior zor vertical left an e grip DOL=1.1 wrise indicates 0 psf bottom other live loa re load of 20.0 a rectangle ween the botto DDL = 10.0psf o.2. rections. I to grain value a. Building ing surface. ters) of truss t	ne; d 60 ds. dpsf om e			·/// * PD	JUA GAR	CIA *
FORCES	20=837 (l (lb) - Maximum Com	,		•	olift at joint 12 and			S.			1		GINI
TOP CHORD	5-6=0/485, 6-8=0/53	=-652/200, 4-5=0/450 39, 8-9=-519/215, -11=0/27, 1-20=-756/	,	International	designed in account Residential Code nd referenced sta Standard	e sections	s R502.11.1 a	nd				108/ONA	
BOT CHORD		-16=-1006/297, 15=-55/404,										LICE	NSED
WEBS NOTES 1) Unbalance this design	2-19=0/234, 2-18=-7 4-16=-1028/243, 5-1 8-15=-979/241, 8-14 9-13=0/434, 1-19=-1 10-13=-447/1726 ed roof live loads have	729/206, 4-18=0/623, 16=-426/0, 4=0/445, 9-14=-1395/ 125/848,	400,								THINK.	PROXESSION	952 SAS
												Ap	ril 3.2024

 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.
 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not besign value to dury with with where outputs into design is based only door parameters shown, and is for an individual building design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members and property incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TPH1 Quality Criteria**, and **DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcscomponents.com)

April 3,2024

Job	Truss	Truss Type	Qty	Ply	Lot 133 MN	
240616	B8	Common Girder	1	1	Job Reference (optional)	164627073

Run: 8.73 S Mar 21 2024 Print: 8.730 S Mar 21 2024 MiTek Industries, Inc. Tue Apr 02 08:22:36

Wheeler Lumber, Waverly, KS - 66871,

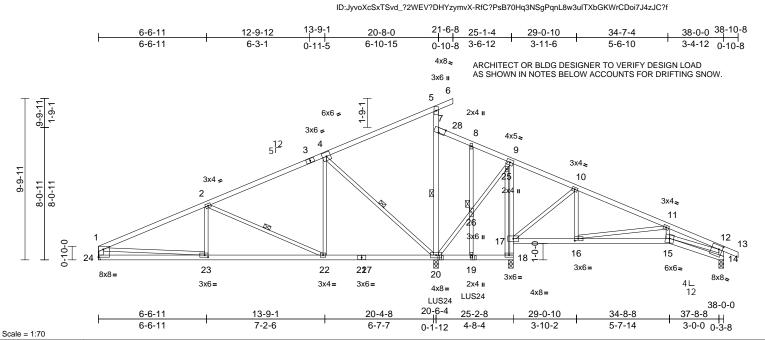


Plate Offsets (X, Y): [7:0-4-7,Edge], [14:0-2-8,0-2-12], [16:0-2-8,0-1-8], [23:0-2-8,0-1-8], [24:Edge,0-5-11]

3)

4)

5)

6)

7)

8)

9)

6-0-0 oc bracing: 19-20,18-19.

Mechanical

Max Uplift 14=-137 (LC 9), 18=-135 (LC 9),

(lb) - Maximum Compression/Maximum

1-2=-1476/163, 2-4=-800/87, 4-5=-50/188,

5-6=-27/0, 7-20=-523/119, 5-7=-314/124,

8-9=0/133, 9-10=0/324, 10-11=-355/155,

11-12=-1339/339, 12-13=0/27

9-17=-415/0, 16-17=-24/268,

23-24=-275/366, 22-23=-314/1303,

20-22=-120/692, 19-20=-234/107,

18-19=-234/107, 17-18=-889/101,

15-16=-279/1167, 14-15=-27/154

1-24=-820/139, 12-14=-538/155, 7-8=0/212,

2-22. 4-20

14=0-3-8, 18=0-3-8, 20=0-3-8, 24=

20=-439 (LC 8), 24=-106 (LC 27)

14=545 (LC 22), 18=1429 (LC 1),

20=1600 (LC 23), 24=905 (LC 23)

1 Row at midpt

Max Grav

Tension

1 Brace at Jt(s): 26

Max Horiz 24=217 (LC 8)

WEBS

JOINTS

FORCES

TOP CHORD

BOT CHORD

REACTIONS (size)

(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
25.0	Plate Grip DOL	1.15	TC	0.65	Vert(LL)	-0.08	22-23	>999	360	MT20	197/144
10.0	Lumber DOL	1.15	BC	0.62	Vert(CT)	-0.16	22-23	>999	240		
0.0*	Rep Stress Incr	NO	WB	0.77	Horz(CT)	0.04	14	n/a	n/a		
10.0	Code	IRC2018/TPI2014	Matrix-S		Wind(LL)	0.05	15-16	>999	240	Weight: 164 lb	FT = 10%
WBER WEBS 2-23=0/231, 2-22=-70 P CHORD 2x4 SPF No.2 4-20=-1013/268, 20-2 T CHORD 2x4 SPF No.2 *Except* 18-9:2x3 SPF No.2 9-25=-18/198, 10-17= BS 2x3 SPF No.2 *Except* 5-20,24-1,14-12:2x4 11-16=-912/258, 11-1 SPF No.2 12-15=-256/1073, 18 HERS 2x3 SPF No.2 8-26=-27/147, 19-26=							Tru: oc r con 14) Fill 15) Har prov	ss, Sing nax. sta nect trus all nail h nger(s) c <i>r</i> ided su	le Ply (rting at ss(es) toles w or other officient	Girder) or equival t 20-9-8 from the to front face of b here hanger is in r connection devi to support conce	ent spaced at 2-0-0 left end to 22-9-8 to trong chord, contact with lumber. se(s) shall be ptrated load(s) 300
	0 7 11	ed or 1) Unbalan this desi 2) Wind: As	 Unbalanced roof live loads have been considered for this design. Wind: ASCE 7-16: Vult=115mph (3-second gust) Ib down and 83 lb up at 25-1-4 on bottom design/selection of such connection devic responsibility of others. 							device(s) is the	
w at midpt 7-20 6-0-0 oc bracing: 5-7 CHORD Rigid ceiling directly applied or 10-0-0 oc bracing, Except:			Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60 1) Dead + Roof Live					are no) Stat	ted as front (#)/o ndard E-20001 e (balanced): Lur	62101 ber Increase=1.15,	
	25.0 10.0 0.0* 10.0 2x4 SPF No.2 *Exce 2x3 SPF No.2 *Exce SPF No.2 *Exce SPF No.2 2x3 SPF No.2 Structural wood she 4-3-4 oc purlins, exc Except: t 7-20 6-0-0 oc bracing: 5-7 Rigid ceiling directly	25.0 Plate Grip DOL 10.0 Lumber DOL 0.0* Rep Stress Incr 10.0 Code 2x4 SPF No.2 *Except* 18-9:2x3 SPF No 2x3 SPF No.2 *Except* 5-20,24-1,14-12: SPF No.2 2x3 SPF No.2 Structural wood sheathing directly applied 4-3-4 oc purlins, except end verticals. Except: t 7-20 6-0-0 oc bracing: 5-7 Rigid ceiling directly applied or 10-0-0 oc	25.0 Plate Grip DOL 1.15 10.0 Lumber DOL 1.15 0.0* Rep Stress Incr NO 10.0 Code IRC2018/TPI2014 WEBS 2x4 SPF No.2 Except* 18-9:2x3 SPF No.2 2x3 SPF No.2 Except* 5-20,24-1,14-12:2x4 SPF No.2 Except 2x3 SPF No.2 NOTES Structural wood sheathing directly applied or 4-3-4 oc purlins, except end verticals. 1) Unbalan this desi Except: 2) Wind: AS t 7-20 II; Exp C 6-0-0 oc bracing: 5-7 II; Exp C Rigid ceiling directly applied or 10-0-0 oc II; Exp C bracing, Except: cantilieve	(15) Plate Grip DOL 1.15 TC 10.0 Lumber DOL 1.15 BC 0.0* Rep Stress Incr NO WB 10.0 Code IRC2018/TPI2014 Matrix-S 2x4 SPF No.2 4-20=-1013/26 4-20=-1013/26 2x4 SPF No.2 9-25=-18/198, 2-23=0/231, 2- 2x4 SPF No.2 9-25=-18/198, 2-23=0/231, 2- 2x4 SPF No.2 9-25=-18/198, 2-23=0/231, 2- 2x3 SPF No.2 9-25=-18/198, 2-23=0/231, 2- 2x3 SPF No.2 9-25=-18/198, 2-23=0/231, 2- 2x3 SPF No.2 9-25=-18/198, 2-23=0/231, 2- Structural wood sheathing directly applied or 11-16=-912/25 8-26=-27/147, Structural wood sheathing directly applied or 8-26=-27/147, NOTES Structural wood sheathing directly applied or 1) Unbalanced roof live loads this design. 2:xeept: 1 Vasd=91mph; TODL=6.00 II; Exp C; Enclosed; MWFF Col oc bracing; 5-7 Rigid ceiling directly applied or 10-0-0 oc bracing, Except: II; Exp C; Enclosed; MWFF Cantilever left	(0.7) Plate Grip DOL 1.15 TC 0.65 10.0 Lumber DOL 1.15 BC 0.62 0.0* Rep Stress Incr NO WB 0.77 10.0 Code IRC2018/TPI2014 Matrix-S 2x4 SPF No.2 4-20=-1013/268, 20-26=0/2 4-20=-1013/268, 20-26=0/2 2x4 SPF No.2 9-25=-18/198, 10-17=-670/ 9-25=-18/198, 10-17=-670/ 2x3 SPF No.2 9-25=-18/198, 10-17=-670/ 8-26=-27/147, 19-26=-28/1 Structural wood sheathing directly applied or 4-3-4 oc purlins, except end verticals. 8-26=-27/147, 19-26=-28/1 8-26=-27/147, 19-26=-28/1 Structural wood sheathing directly applied or 4-3-4 oc purlins, except end verticals. 1) Unbalanced roof live loads have been of this design. 2wind: ASCE 7-16; Vult=115mph (3-sec Vasd=91mpi; TCDL=6.0psf; BCDL=6.0. I; Exp C; Enclosed; MWFRS (envelope cantilever left and right exposed; end veright exposed; Lumber DOL=1.60 plate	(17) Plate Grip DOL 1.15 TC 0.65 Vert(LL) 10.0 Lumber DOL 1.15 BC 0.62 Vert(LL) 0.0* Rep Stress Incr NO WB 0.77 Horz(CT) 10.0 Code IRC2018/TPI2014 Matrix-S Wind(LL) 2x4 SPF No.2 4-20=-1013/268, 20-26=0/260, 25-26=0 24-20=-1013/268, 20-26=0/260, 25-26=0 24-20=-1013/268, 20-26=0/260, 25-26=0 2x4 SPF No.2 9-25=-18/198, 10-17=-670/163, 10-16=1 11-16=-912/258, 11-15=0/311, 1-23=-33 10-16=1 2x3 SPF No.2 9-25=-18/198, 10-17=-670/163, 10-16=1 12-15=-256/1073, 18-25=-186/9, 8-26=27/147, 19-26=-28/185 8-26=-27/147, 19-26=-28/185 Structural wood sheathing directly applied or 4-3-4 oc purlins, except end verticals. Except: 1) Unbalanced roof live loads have been considered for this design. 2: Structural wood sheathing directly applied or 4-3-4 oc purlins, except end verticals. 2: Wind: ASCE 7-16; Vult=115mph (3-second gust) : T-20 1) Unbalanced roof live loads have been considered for this design. 2: : : : : : :	WEBS 2-23=0/231, 2-22=-703/216, 4-22=-5/565, 4-20=-1013/268, 20-26=0/260, 25-26=0/297, 9-25=-18/198, 10-17=-670/163, 10-16=0/345, 2-33 SPF No.2 2x4 SPF No.2 4-20=-1013/268, 20-26=0/260, 25-26=0/297, 9-25=-18/198, 10-17=-670/163, 10-16=0/345, 2-32=-703/216, 4-22=-5/565, 4-20=-1013/268, 20-26=0/260, 25-26=0/297, 9-25=-18/198, 10-17=-670/163, 10-16=0/345, 2-33 SPF No.2 2x4 SPF No.2 9-25=-18/198, 10-17=-670/163, 10-16=0/345, 2-32=-39/970, 12-15=-256/1073, 18-25=-186/9, 8-26=-27/147, 19-26=-28/185 Structural wood sheathing directly applied or 4-3-4 oc purlins, except end verticals. Except: TOC 5 Structural wood sheathing directly applied or 4-3-4 oc purlins, except end verticals. Except: 1) Unbalanced roof live loads have been considered for this design. 2 Wind: ASCE 7-16; Vult=115mph (3-second gust) Vad=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed ; end vertical left and	(1) Plate Grip DOL 1.15 TC 0.65 Vert(LL) -0.08 22-23 10.0 Lumber DOL 1.15 BC 0.62 Vert(CT) -0.16 22-23 0.0* Rep Stress Incr NO WB 0.77 Horz(CT) 0.04 14 10.0 Code IRC2018/TPI2014 Matrix-S Horz(CT) 0.04 14 10.0 Code IRC2018/TPI2014 Matrix-S Horz(CT) 0.04 14 10.0 Code IRC2018/TPI2014 Matrix-S Wind(LL) 0.05 15-16 2x4 SPF No.2 Except* 18-9:2x3 SPF No.2 9-25=-18/198, 10-17=-670/163, 10-16=0/345, ocr 7 7 7 0.07 Morz 10 10 10-16=0/345, ocr 9-25=-18/198, 10-17=-670/163, 10-16=0/345, ocr 9 14) Fill 13 Use 2x3 SPF No.2 9-25=-18/198, 10-17=-670/163, 10-16=0/345, ocr 12-15=-256/1073, 18-25=-186/9, 14) Fill 14) Fill 14) Fill 15 Har 15 Har 15 Har 14) Fill<	(i) Plate Grip DOL 1.15 TC 0.65 Vert(LL) -0.08 22-23 >999 10.0 Lumber DOL 1.15 BC 0.62 Vert(CT) -0.16 22-23 >999 0.0* Rep Stress Incr NO WB 0.77 Horz(CT) 0.04 14 n/a 10.0 Code IRC2018/TPI2014 Matrix-S Wind(LL) 0.05 15-16 >999 2x4 SPF No.2 *Except* 18-9:2x3 SPF No.2 9-25=:18/198, 10-17=-670/163, 10-16=0/345, 2-25-69/260, 25-26=0/297, 2-25=-186/9, 4-22=-50/1073, 18-25=-186/9, 1-15=0/311, 1-23=-39/970, 1-25=-28/185 13) Use Simpson cmax. state connect true 12-15=-256/1073, 18-25=-186/9, 1-15=0/311, 1-23=-39/970, 1-25=-28/185 14) Fill all nail in the 2-0AL 14) Fill all nail in the 2-0AL 2x3 SPF No.2 8-26=-27/147, 19-26=-28/185 15) Hanger(s) Connect true 12-15=-256/1073, 18-25=-186/9, 1-15 14) Fill all nail in the 2-0AL 14) Fill all nail in the 2-0AL 2x3 SPF No.2 8-26=-27/147, 19-26=-28/185 15) Hanger(s) Connect true 115=00000000000000000000000000000000000	(1) Plate Grip DOL 1.15 TC 0.65 Vert(LL) -0.08 22-23 >999 360 10.0 Lumber DOL 1.15 BC 0.62 Vert(CT) -0.16 22-23 >999 240 0.0* Rep Stress Incr NO WB 0.77 Horz(CT) 0.04 14 n/a n/a 10.0 Code IRC2018/TPI2014 Matrix-S Wind(LL) 0.05 15-16 >999 240 2x4 SPF No.2 *Except* 18-9:2x3 SPF No.2 9-25=:18/198, 10-17=-670/163, 10-16=0/345, 22=-39/970, 12-15=-256/1073, 18-25=-186/9, 12-15=-256/1073, 18-25=-186/	(1) Plate Grip DOL 1.15 TC 0.65 Vert(LL) -0.08 22-23 >999 360 MT20 10.0 Lumber DOL 1.15 BC 0.62 Vert(LL) -0.08 22-23 >999 240 0.0* Rep Stress Incr NO WB 0.77 Horz(CT) 0.04 14 n/a n/a 2x4 SPF No.2 Except* 18-9:2x3 SPF No.2 9-25=-18/198, 10-17=-670/163, 10-16=0/345, 20-26=0/260, 25-26=0/297, 2x3 SPF No.2 9-25=-18/198, 10-17=-670/163, 10-16=0/345, 20-26=0/260, 25-26=0/297, 25-256=0/297, 25-256/1073, 18-25=-186/9, 2x3 SPF No.2 13) Use Simpson Strong-Tie LUS24 (4 Structural wood sheathing directly applied or 4-3-4 oc purlins, except end verticals. 8-26=-27/147, 19-26=-28/185 13) Use Simpson Strong-Tie LUS24 (4 Yase Pi No.2 9-25=-18/198, 10-17=-670/163, 10-16=0/345, 20-26=-28/185 14) Fill all nail holes where hanger Is in be connect truss(es) to fort hanger Is in be connect for this design. 2x3 SPF No.2 Wind: ASCE 7-16; Vult=115mph (3-second gust) 14) Fill all nail holes where hanger Is in be connect for this design. 2x-20 O tob bracing; 5-7 <t< td=""></t<>

Truss designed for wind loads in the plane of the truss

see Standard Industry Gable End Details as applicable

or consult qualified building designer as per ANSI/TPI 1.

only. For studs exposed to wind (normal to the face),

Truss to be fully sheathed from one face or securely

braced against lateral movement (i.e. diagonal web).

This truss has been designed for a 10.0 psf bottom

on the bottom chord in all areas where a rectangle

All bearings are assumed to be SPF No.2 .

Refer to girder(s) for truss to truss connections.

10) Bearing at joint(s) 14 considers parallel to grain value

using ANSI/TPI 1 angle to grain formula. Building

designer should verify capacity of bearing surface.

11) Provide mechanical connection (by others) of truss to

12) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

bearing plate capable of withstanding 439 lb uplift at joint

20, 106 lb uplift at joint 24, 137 lb uplift at joint 14 and

chord live load nonconcurrent with any other live loads.

3-06-00 tall by 2-00-00 wide will fit between the bottom

chord and any other members, with BCDL = 10.0psf.

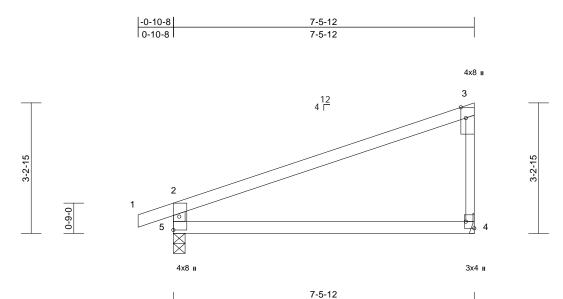
* This truss has been designed for a live load of 20.0psf

Gable studs spaced at 2-0-0 oc.

- Dead + Roof Live (balanced): Lumber Increase=1,1 Plate Increase=1,15 Uniform Loads (Ib/ft) Vert: 1-5=-70, 5-6=-70,18+24=-20, 15-17=-20, 14-15=-20, 7-28=-20, 12-28=-70, 12-13=-70 Concentrated Loads (Ib)
 - Vert: 20=-300 (F), 19=-300 (F), 18=-300 (F)

Page: 1

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSUTPH Quality Criteria, and OSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcsccomponents.com)

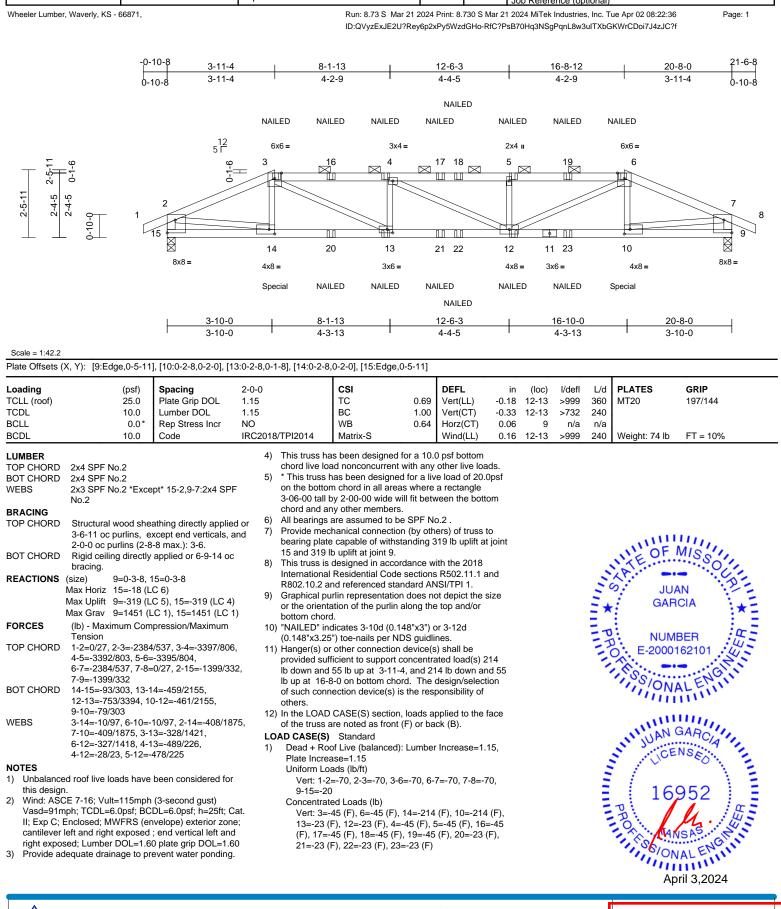

135 lb uplift at joint 18.

RELEASE FOR CONSTRUCTION AS NOTED ON PLANS REVIEW DEVELORMENT SERVICES LEE'S'SUMMIT'S MISSOURI 04/22/2024 8:36:13

Job	Truss	Truss Type	Qty	Ply	Lot 133 MN	
240616	E1	Monopitch	3	1	Job Reference (optional)	164627074

Run: 8.73 S Mar 21 2024 Print: 8.730 S Mar 21 2024 MiTek Industries, Inc. Tue Apr 02 08:22:36 ID:6jHUfDNtkJr8SMt3gLYQcnzdGKI-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

IEW

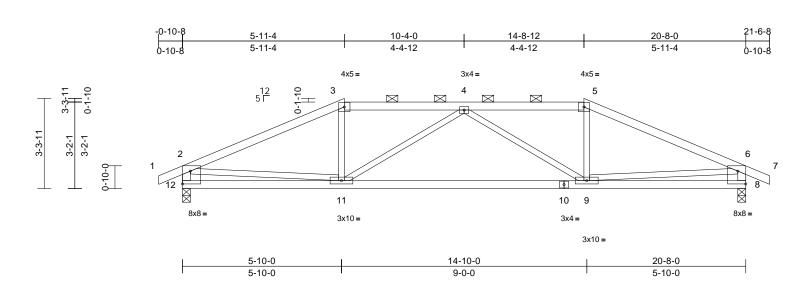


Scale = 1:28.6												
Plate Offsets (X, Y): [3:0-3-3,Edge], [4:Edge,0-2-8]												
Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15	TC	0.75	Vert(LL)	-0.11	4-5	>805	360	MT20	197/144
TCDI	10.0		1 15	BC	0.45	Vort(CT)	-0.23	1-5	\37 /	240		

TCLL (roof)	25.0	Plate Grip DOL	1.15	TC	0.75	Vert(LL)	-0.11	4-5	>805	360	MT20	197/144
TCDL BCLL	10.0 0.0*	Lumber DOL Rep Stress Incr	1.15 YES	BC WB	0.45 0.00	Vert(CT) Horz(CT)	-0.23 0.00	4-5 4	>374 n/a	240 n/a		
			-		0.00						Weight: 21 lb	FT = 10%
BCDL LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD BOT CHORD REACTIONS FORCES TOP CHORD BOT CHORD BOT CHORD NOTES 1) Wind: ASC Vasd=91mm I; Exp C; E cantilever la right expos 2) This truss f chord live la 3) * This truss on the botton 3-06-00 tall chord and a 4) All bearing 5) Refer to gir 6) Provide me bearing pla 4 and 96 lb 7) This truss i International	10.0 2x4 SPF No.2 2x4 SPF No.2 2x3 SPF No.2 *Exce Structural wood sher 6-0-0 oc purlins, exc Rigid ceiling directly bracing.	Code pt* 5-2:2x4 SPF No. athing directly applie cept end verticals. applied or 10-0-0 oc nical, 5=0-3-8 C 5) :8), 5=-96 (LC 4) C 1), 5=402 (LC 1) pression/Maximum 17, 3-4=-227/101, (3-second gust) DL=6.0psf; h=25ft; C ivelope) exterior zon ; end vertical left and 0 plate grip DOL=1.6 a 10.0 psf bottom th any other live load or a live load of 20.0 where a rectangle fit between the botto SPF No.2. is connections. by others) of truss to ding 71 lb uplift at jo ance with the 2018 actions R502.11.1 ar	IRC2018/TPI2014 LOAD CASE(S)	Matrix-R		Wind(LL)	0.05	4-5	>999	240	PROCESSION	CIA *
A												
Design val	id for use only with MiTek®	connectors. This design i	N THIS AND INCLUDED MITEK is based only upon parameters s e applicability of design paramet	hown, and is for an indiv	/idual bui	Iding component	, not				RELEASE	

ARXING - Verify design parameters and READ ROTES ON THIS AND INCLUED MITER REFERENCE PAGE MIL-7473 rev. 17/2/2023 BEFORE USE. Design valid for use only with MITeR® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

Job	Truss	Truss Type	Qty	Ply	Lot 133 MN	
240616	G1	Hip Girder	1	1	Job Reference (optional)	164627075



WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSUTPP1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcsccomponents.com)

LEE'S'SUMWIT, MISSOURI 04/22/2024 8:36:13

Job	Truss	Truss Type	Qty	Ply	Lot 133 MN	
240616	G2	Нір	1	1	I6 Job Reference (optional)	64627076

Run: 8.73 S Mar 21 2024 Print: 8.730 S Mar 21 2024 MiTek Industries, Inc. Tue Apr 02 08:22:36 ID:40gVI1SmDAWk4007ITdma2zdGHc-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Scale = 1:42.3

		_		
Plate Offsets	(X. Y	: [8	8:Edae.0-5-11]. [12:Edae.0-5-11	1

Plate Offsets ((X, Y): [8:Edge,0-5-11]], [12:Edge,0-5-11]												
Loading TCLL (roof) TCDL BCLL BCDL	(psf) 25.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC201	8/TPI2014	CSI TC BC WB Matrix-S	0.46 0.64 0.32	DEFL Vert(LL) Vert(CT) Horz(CT) Wind(LL)	in -0.15 -0.34 0.03 0.05	(loc) 9-11 9-11 8 9-11	l/defl >999 >723 n/a >999	L/d 360 240 n/a 240	PLATES MT20 Weight: 73 lb	GRIP 197/144 FT = 10%	
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD BOT CHORD BOT CHORD WEBS	2x4 SPF No.2 2x3 SPF No.2 *Exce No.2 Structural wood shea 4-3-7 oc purlins, exu 2-0-0 oc purlins (4-1 Rigid ceiling directly bracing. (size) 8=0-3-8, 1 Max Horiz 12=-29 (L Max Uplift 8=-135 (L Max Grav 8=988 (LC (lb) - Maximum Com Tension 1-2=0/27, 2-3=-1533 4-5=-1333/194, 5-6= 2-12=-943/157, 6-8=	athing directly applie cept end verticals, ar 0-15 max.): 3-5. applied or 10-0-0 oc 12=0-3-8 C 13) C 5), 12=-135 (LC 4) C 1), 12=988 (LC 1) pression/Maximum 1/188, 3-4=-1333/194 1533/188, 6-7=0/27 -943/157 1=-226/1613, 127/136, 4-9=-427/13	F 6; rt, dor nd 8; s 9;) L t, r,	on the bottor 3-06-00 tall b chord and ar All bearings Provide mec bearing plate 12 and 135 I This truss is International R802.10.2 a		as where vill fit betw e SPF No n (by oth tanding 1 rdance w e sections ndard AN n does no	a rectangle veen the bott o.2. ers) of truss 35 lb uplift a the the 2018 SR502.11.1 a NSI/TPI 1. bt depict the	to to t joint and				JU GAF SS/ON	BER	
 this design Wind: AS0 Vasd=91n II; Exp C; cantilever right expo Provide au This truss 	ed roof live loads have n. CE 7-16; Vult=115mph mph; TCDL=6.0psf; BC Enclosed; MWFRS (er left and right exposed sed; Lumber DOL=1.6 dequate drainage to pro- has been designed for load nonconcurrent wi	(3-second gust) DL=6.0psf; h=25ft; C ivelope) exterior zon ; end vertical left and 0 plate grip DOL=1.6 event water ponding r a 10.0 psf bottom	Cat. e; d 50								. annua	PROPERTY SYON	GAROLA NSEO 952 VSAS VALENO	ANNULLIN.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent toulsable personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

Job	Truss	Truss Type	Qty	Ply	Lot 133 MN	
240616	G3	Нір	1	1	Job Reference (optional)	164627077

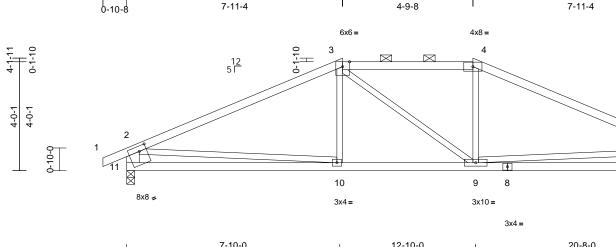
<u>-0-10-8</u>

Run: 8.73 S Mar 21 2024 Print: 8.730 S Mar 21 2024 MiTek Industries, Inc. Tue Apr 02 08:22:36 ID:JXjve6ZP6xeTfACsnsItRyzdGHT-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

20-8-0

21-6-8


0-10-8

5

Ø

8x8 👟

6

7-11-4

7-10-0 12-10-0 20-8-0 7-10-0 5-0-0 7-10-0

12-8-12

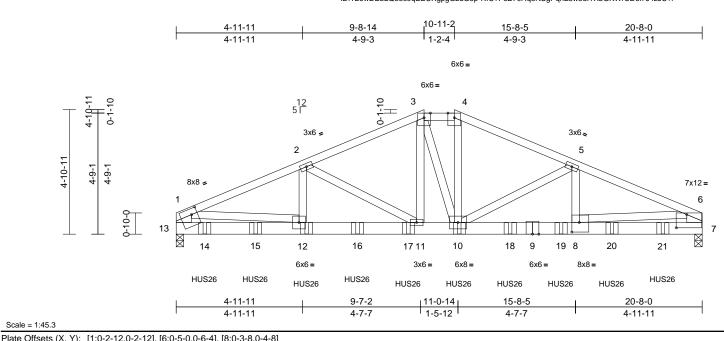
Scale = 1:42.4

4-1-11

Plate Offsets (X, Y): [7:0-3-4.0-2-4]. [11:0-3-4.0-2-4]

Plate Offsets	(X, Y): [7:0-3-4,0-2-4],	[11:0-3-4,0-2-4]										-	
Loading TCLL (roof) TCDL BCLL BCDL	(psf) 25.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC201	18/TPI2014	CSI TC BC WB Matrix-S	0.80 0.42 0.21	DEFL Vert(LL) Vert(CT) Horz(CT) Wind(LL)		(loc) 10-11 10-11 7 9-10	l/defl >999 >999 n/a >999	L/d 360 240 n/a 240	PLATES MT20 Weight: 75 lb	GRIP 197/144 FT = 10%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD REACTIONS FORCES TOP CHORD BOT CHORD WEBS	2x4 SPF No.2 2x3 SPF No.2 *Exce No.2 Structural wood she 3-4-15 oc purlins, e 2-0-0 oc purlins (5-2 Rigid ceiling directly bracing. (size) 7=0-3-8, 1 Max Horiz 11=42 (LC Max Uplift 7=-122 (L Max Grav 7=987 (LC (lb) - Maximum Com Tension 1-2=0/30, 2-3=-1404 4-5=-1405/152, 5-6= 5-7=-912/167	athing directly applie xcept end verticals, i -10 max.): 3-4. applied or 10-0-0 oc 11=0-3-8 C 9), 11=-122 (LC 8 C 1), 11=987 (LC 1) ipression/Maximum 1/152, 3-4=-1189/168 c0/30, 2-11=-911/168 0=-62/1189, i0/150, 4-9=0/221,	F 6, 7 ed or 8 c 9,	on the bottor 3-06-00 tall h chord and ar) All bearings) Provide mec bearing plate 11 and 122 l) This truss is International R802.10.2 a		as where vill fit betw s. e SPF No on (by oth standing 1 rdance w e sections undard AN n does no	a rectangle veen the bott c.2. ers) of truss i 22 lb uplift ai th the 2018 & R502.11.1 a NSI/TPI 1.	om to t joint and					BER
 this desig Wind: AS Vasd=911 II; Exp C; cantilever right expc Provide a This truss 	eed roof live loads have in. CE 7-16; Vult=115mph mph; TCDL=6.0psf; BC Enclosed; MWFRS (er left and right exposed osed; Lumber DOL=1.6 dequate drainage to pr s has been designed for load nonconcurrent wi	(3-second gust) DL=6.0psf; h=25ft; C ivelope) exterior zon ; end vertical left and 0 plate grip DOL=1.6 event water ponding r a 10.0 psf bottom	Cat. ne; d 60 j.								"THIM	16 PROPERTY OF	GARCIA NSEO 952 VSAS VAL ENO

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent toulsable personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)


ΤΙΟΝ **IEW** DEVELOPMENT SERVICES LEE'S' SUMMIT'S MISSOURI 04/22/2024 8:36:13

Job	Truss	Truss Type	Qty	Ply	Lot 133 MN	
240616	G4	Hip Girder	1	2	Job Reference (optional)	164627078

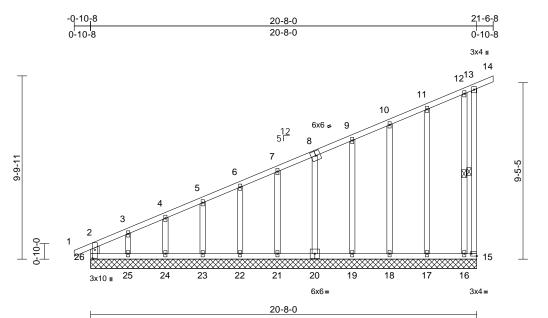
Run: 8.73 S Mar 21 2024 Print: 8.730 S Mar 21 2024 MiTek Industries, Inc. Tue Apr 02 08:22:36 ID:T2owDBbLQ8ec9qEEUXgpgGzdG5p-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

			-									1	
Loading	(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15		TC	0.51	Vert(LL)		11-12	>999	360	MT20	197/144
TCDL	10.0 0.0*	Lumber DOL	1.15 NO		BC WB	0.93	Vert(CT)		11-12 7	>999	240		
BCLL BCDL	10.0	Rep Stress Incr Code		8/TPI2014	Matrix-S	0.67	Horz(CT) Wind(LL)	0.04	ر 11-12	n/a >999	n/a 240	Weight: 224 lb	ET - 10%
DODL	10.0	Code	11(020	0/11/2014	Wath-0			0.10	-			Ŭ	
LUMBER			1		be connected toge	ther wi	th 10d						4-10d Girder, 4-10d
TOP CHORD		*= *******	-		ails as follows: connected as follow	0. 21/4	1 row of 0.6	0					0 oc max. starting at connect truss(es) to
BOT CHORD	2x6 SP 2400F 2.0E No.2	*Except* 9-7:2x6 SPI	-		ows staggered at 0-		• 110w at 0-0	-0				m chord.	connect truss(es) to
WEBS		ept* 13-1,7-6:2x8 SP			ds connected as fol		x6 - 2 rows						contact with lumber.
	2400F 2.0E			staggered at					LOAD			-	
BRACING					ted as follows: 2x4				1) De	ead + Ro	, oof Live	e (balanced): Lum	ber Increase=1.15,
TOP CHORD		eathing directly applie			considered equally ed as front (F) or ba					ate Incre			
		except end verticals, a	Ind		ction. Ply to ply con			JAD		hiform Lo			7 40 00
BOT CHORD	2-0-0 oc purlins (5-	1-1 max.): 3-4. y applied or 10-0-0 oc			listribute only loads					vert: 1 oncentra		3-4=-70, 4-6=-70	, 7-13=-20
BOTCHORD	bracing.	y applied of 10-0-0 0c			wise indicated.							(B), 10=-800 (B),	14=-818 (B)
REACTIONS	0	(req. 0-4-2), 13=0-3-8	3, 3		roof live loads have	been o	considered fo	r					818 (B), 18=-800 (B),
	(req. 0-4	-2)	4	this design.	7-16; Vult=115mph	(2	cond quict)			19=-863	3 (B), 2	0=-888 (B), 21=-8	888 (B)
	Max Horiz 13=-49 (-		n; TCDL=6.0psf; BC			Cat					
		LC 9), 13=-953 (LC 8)			closed; MWFRS (e								
		LC 17), 13=5284 (LC	18)		t and right exposed								
FORCES	(lb) - Maximum Cor Tension	npression/Maximum	_		d; Lumber DOL=1.6								
TOP CHORD		3=-6515/1154	5		quate drainage to p			g.					
	3-4=-5979/1088, 4-		0		is been designed fo ad nonconcurrent w			ds					
	5-6=-8381/1379, 1-		7		has been designed								
	6-7=-4036/702				n chord in all areas								
BOT CHORD	12-13=-468/2307, 10-11=-982/5984,	1-12=-1370/7595,			by 2-00-00 wide will	fit betv	veen the botto	om					ш <u>.</u>
	7-8=-327/2065	3-10 7 -1233/7691,			ny other members.							NI C	AD
WEBS	2-12=202/1379, 2-	11=-1755/426.	8		Required bearing si input bearing size.	ze at jo	int(s) 13, 7					NUAN	CIA
	3-11=-399/2148, 3	10=-68/324,	9		are assumed to be	SPF No	2					CE	NSEA.
	4-10=-404/2288,5 5-8=-115/1460,1-1	10=-1834/323,			hanical connection			0			-		
	5-8=-115/1460, 1-1	2=-909/5332,			e capable of withsta	nding 9	153 Ib uplift at	joint			-	1.1	1 5
	6-8=-912/5670 RC	i*=			b uplift at joint 7.							169	952
NOTES			1		designed in accord Residential Code s			nd			1	Def	
	NUMB	ER :			nd referenced stand			inu			-	D.	M INS
	- C. E-200010	2101	1		rlin representation			size				- A TAM	SAS
	1				ation of the purlin al	ong the	top and/or					1,50	NGIN
	1,80,	"ENG'I		bottom chore	1.							ON	ALE
	ONA	LEIN											un.
		111.										Δηι	ril 3,2024

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent colleges with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

- e=1.15,
 - -800 (B),


TION IEW

DEVELORMENT SERVICES LEE'S'SUMMIT,SMISSOURI 04/22/2024 8:36:13

Job	Truss	Truss Type	Qty	Ply	Lot 133 MN	
240616	H1	Monopitch Supported Gable	1	1	Job Reference (optional)	164627079

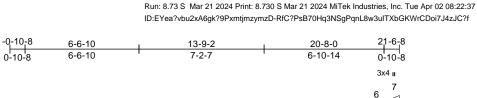
Run: 8.73 S Mar 21 2024 Print: 8.730 S Mar 21 2024 MiTek Industries, Inc. Tue Apr 02 08:22:37 ID:pRvbEG8hlaWMk2g2kgbCjzzymzo-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

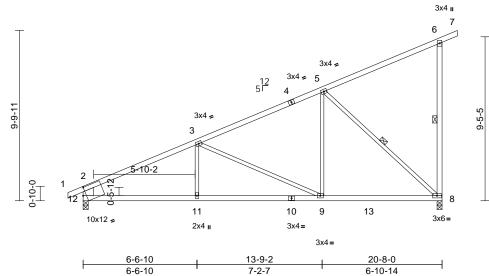
Scale	_ '	1.61	6

F

Plate Offsets (X, Y):	[15:Edge,0-1-8],	[26:0-5-8,0-1-8]


	(,, ,). [.0.					_								
Loading		(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)		25.0	Plate Grip DOL	1.15		TC	0.36	Vert(LL)	n/a	-	n/a	999	MT20	197/144
TCDL		10.0	Lumber DOL	1.15		BC	0.17	Vert(CT)	n/a	-	n/a	999		
BCLL		0.0*	Rep Stress Incr	YES		WB	0.16	Horz(CT)	0.00	15	n/a	n/a		
BCDL		10.0	Code	IRC2	018/TPI2014	Matrix-R							Weight: 118 lb	FT = 10%
LUMBER					BOT CHORD	25-26=-130/98, 2							ned in accordanc	
TOP CHORD	2x4 SPF I	No.2				23-24=-130/98, 2								ions R502.11.1 an
BOT CHORD						21-22=-130/98, 1		,					erenced standard	ANSI/TPI 1.
WEBS			ept* 13-15:2x4 SPF N	lo.2		18-19=-130/98, 1				LOAD	CASE(S) Sta	ndard	
OTHERS	2x4 SPF I	No.2				16-17=-130/98, 1								
BRACING					WEBS	3-25=-119/153, 4								
TOP CHORD			athing directly applie	d or		6-22=-140/71, 7-2 9-19=-140/71, 10			72,					
			cept end verticals.			11-17=-138/52, 1								111.
BOT CHORD		ing directly	applied or 6-0-0 oc		NOTES	11-17=130/32, 1	2-1030	145					VI OF I	AIO'II
WEDO	bracing.	ف ما م	10 15 10 10		NOTES	E 7-16; Vult=115m	oph (2 co	cond quict)					NE	Sol
WEBS	1 Row at		13-15, 12-16			ph; TCDL=6.0psf;			`at				18	
REACTIONS	(size)		0, 16=20-8-0, 17=20-			Enclosed; MWFRS						-	· · · · ·	N
			0, 19=20-8-0, 20=20· 0, 22=20-8-0, 23=20·			eft and right expos						-	JUA	
			0, 22=20-8-0, 23=20- 0, 25=20-8-0, 26=20-			ed; Lumber DOL=						= *	GAR	
	Max Horiz			-0-0		igned for wind load							÷	
		((LC 7), 16=-102 (LC)	8)	only. For s	studs exposed to w	ind (norm	al to the face)	,			= T		· · ·
	max opint		.C 5), 18=-56 (LC 8),			ard Industry Gable						= 1	NUME	• []].
			.C 8), 20=-48 (LC 8),			qualified building d			11.			-	C: E-20001	62101
			C 8), 22=-46 (LC 8),			re 2x4 MT20 unles							· ··· -··	·
		23=-55 (L	.C 8), 24=-17 (LC 8),			ires continuous bo							1, 50,	······································
		25=-190 (fully sheathed from							I,ONA	LEIN
	Max Grav		LC 1), 16=182 (LC 16			ainst lateral movem		liagonal web).						
			_C 1), 18=181 (LC 1)	,		s spaced at 2-0-0 (
			LC 1), 20=180 (LC 1)	,		oad nonconcurrent			le.				, init	
			LC 1), 22=180 (LC 1)			s has been designe							IN UAN C	ARC
			LC 1), 24=186 (LC 1)	,		om chord in all are			por				N 30	A 1
			LC 1), 26=281 (LC 10	5)		l by 2-00-00 wide v			m				CE	SED.
FORCES		imum Con	pression/Maximum			any other members								
TOP CHORD	Tension	7/0 1 2 0/	20 2 2 275/20			s are assumed to b		o.2 .				-	1	
I OP CHORD			30, 2-3=-375/36, 95/28, 5-6=-269/27,			echanical connection)				LICE	952 :
		,	22/27, 9-10=-194/27		bearing pla	ate capable of withs	standing 1	70 lb uplift at	joint			=	m: - Y.	
			12=-159/73, 12-13=-8			uplift at joint 25, 17							Ď.	
		7/0, 13-15=		/ • • • ,		nt 23, 46 lb uplift at							- O	A: 43
		,				plift at joint 20, 46 I							- A WAR	SA
						nt 18, 34 lb uplift at	joint 17 a	nd 102 lb upli	tt at				1,95/0N	AL ENIN
					joint 16.									
														11112

April 3,2024


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent toulsible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

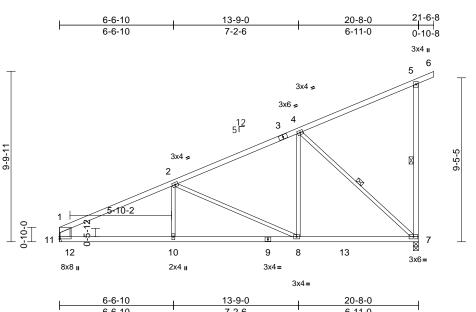
Job	Truss	Truss Type	Qty	Ply	Lot 133 MN	
240616	H2	Monopitch	1	1	Job Reference (optional)	164627080

Page: 1

Scale = 1:66.3

Plate Offsets (X, Y)	: [12:0-2-3,0-5-5]
----------------------	--------------------

		-										
Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15	TC	0.69	Vert(LL)	-0.15	9-11	>999	360	MT20	197/144
TCDL	10.0	Lumber DOL	1.15	BC	0.76	Vert(CT)	-0.28	9-11	>853	240		
BCLL	0.0*	Rep Stress Incr	YES	WB	0.86	Horz(CT)	0.04	8	n/a	n/a		
BCDL	10.0	Code	IRC2018/TPI2014	Matrix-S		Wind(LL)	0.08	9-11	>999	240	Weight: 84 lb	FT = 10%
LUMBER			5) Provide m	echanical connecti	on (by oth	ers) of truss	to					
TOP CHORD	2x4 SPF No.2 *Exce	ont* 1-4-2v4 SPF 210	·	ate capable of with								
	1.8E	pt 1 4.2A4 011 210		lb uplift at joint 12.								
BOT CHORD	2x4 SPF No.2			is designed in acco		ith the 2018						
WEBS	2x3 SPF No.2 *Exce	ept* 6-8:2x4 SPF No.	2, Internation	nal Residential Cod	le sections	8 R502.11.1	and					
	12-2:2x8 SP 2400F	2.0E	R802.10.2	2 and referenced sta	andard AN	ISI/TPI 1.						
BRACING			LOAD CASE	Standard								
TOP CHORD	Structural wood she		d or									111.
	5-0-4 oc purlins, ex										IN OF	MICH
BOT CHORD	Rigid ceiling directly	applied or 10-0-0 oc	;								NE	SS
WEBS	bracing.	C O F O									A	
	1 Row at midpt	6-8, 5-8								-	<u>.</u>	·
	(size) 8=0-3-8, 1									-	S JU	
	Max Horiz 12=421 (L Max Uplift 8=-242 (L	,	N N							= *	GAR	
	Max Opiint 8=-242 (L Max Grav 8=1023 (L											
FORCES	(lb) - Maximum Com		-)							= 7		
FURGES	Tension	pression/waximum								-5	NUM	• 41.
TOP CHORD	1-2=0/32, 2-3=-1487	7/189 3-5=-935/121								-	E-2000	162101
	5-6=-220/68, 6-7=-2									1	A	
	2-12=-893/179							ENGIN				
BOT CHORD	11-12=-288/1277, 9-	-11=-288/1277,									UN	ALLIN
	8-9=-145/770											110
WEBS	3-11=0/238, 3-9=-55	56/199, 5-9=-2/553,										110.
	5-8=-1035/262											
NOTES											NAU	AAACIA
	CE 7-16; Vult=115mph										N CE	NSA
	nph; TCDL=6.0psf; BC											50 ·
	Enclosed; MWFRS (er left and right exposed									-	1 / L	A 2
	sed; Lumber DOL=1.6									-	10	050
	has been designed for									-	10	952
	load nonconcurrent wi		ds.							-	DEP 16	<u> </u>
	s has been designed f		psf								0.	h: 143
	tom chord in all areas										- A KAN	ISA
	II by 2-00-00 wide will									1,56	ENGIN	
	any other members, v									NON	ALEN	
 All bearing 	s are assumed to be s	SPF NO.2.										ril 0.0004


April 3,2024

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent toulsable personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

Job	Truss	Truss Type	Qty	Ply	Lot 133 MN	
240616	H3	Monopitch	2	1	Job Reference (optional)	164627081

Run: 8.73 S Mar 21 2024 Print: 8.730 S Mar 21 2024 MiTek Industries. Inc. Tue Apr 02 08:22:37 ID:JyvoXcSxTSvd_?2WEV?DHYzymvX-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

Scale = 1:66.3			0-0-10		-2-0		0-11	-0					
Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP	
TCLL (roof)	25.0	Plate Grip DOL	1.15	тс	0.70	Vert(LL)	-0.20	8-10	>999	360	MT20	197/144	
TCDL	10.0	Lumber DOL	1.15	BC	0.70	Vert(CT)	-0.36	8-10	>676	240			
BCLL	0.0*	Rep Stress Incr	YES	WB	0.85	Horz(CT)	0.03	7	n/a	n/a			
BCDL	10.0	Code	IRC2018/TPI2014	Matrix-S		Wind(LL)	0.11	8-10	>999	240	Weight: 83 lb	FT = 10%	
LUMBER TOP CHORD BOT CHORD	2x4 SPF No.2 2x4 SPF 2100F 1.8E	E *Except* 9-7:2x4 \$	bearing pla	echanical conne te capable of wi b uplift at joint 1	ithstanding 2								

LUN	VIE	BE	R
-		~ '	

IOF CHORD	2X4 3FF NU.2
BOT CHORD	
	No.2
WEBS	2x3 SPF No.2 *Except* 5-7:2x4 SPF No.2,
	11-1:2x8 SP 2400F 2.0E
BRACING	
TOP CHORD	Structural wood sheathing directly applied or
	3-8-6 oc purlins, except end verticals.
BOT CHORD	Rigid ceiling directly applied or 10-0-0 oc
BOT ONORE	bracing.
WEBS	8
	1 Row at midpt 5-7, 4-7
REACTIONS	(size) 7=0-3-8, 11= Mechanical
	Max Horiz 11=410 (LC 5)
	Max Uplift 7=-243 (LC 8), 11=-120 (LC 8)
	Max Grav 7=1025 (LC 2), 11=940 (LC 2)
FORCES	(lb) - Maximum Compression/Maximum
	Tension
TOP CHORD	1-2=-1469/187, 2-4=-958/123, 4-5=-220/68,
	5-6=-27/0, 5-7=-266/116, 1-11=-765/147
BOT CHORD	
	10-11=-288/1277, $8-10=-288/1277$.
BOTCHORD	, ,
	7-8=-146/774
WEBS	, ,

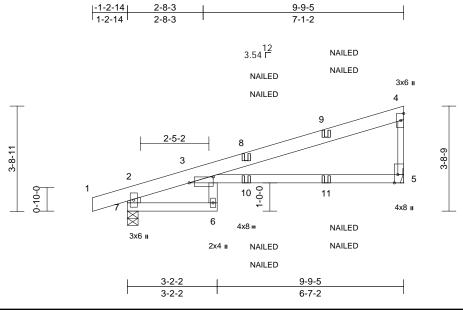
NOTES

- Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
- 2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 3) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf. All bearings are assumed to be SPF No.2
- 5) Refer to girder(s) for truss to truss connections.

7) This truss is designed in accordance with the 2018

International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard


 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.
 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponent.com)

Job	Truss	Truss Type	Qty	Ply	Lot 133 MN	
240616	J1	Diagonal Hip Girder	1	1	Job Reference (optional)	164627082

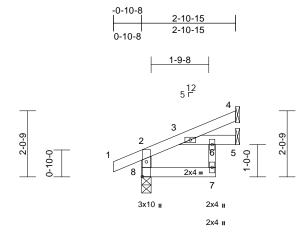
Run: 8.73 S Mar 21 2024 Print: 8.730 S Mar 21 2024 MiTek Industries, Inc. Tue Apr 02 08:22:37 ID:E8pjp5DOcWE6PV3pOholj8zyn49-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

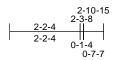
Page: 1

Scale = 1:40.7

Plate Offsets (X, Y): [3:0-10-3,0-2-8], [5:0-3-8,Edge]

- 1410 0110010 ((X, 1): [3:0 10 3;0 2 0], [0:0 0 0,Edg0]											
Loading TCLL (roof) TCDL BCLL BCDL	(psf) 25.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 NO IRC2018/T	TPI2014	CSI TC BC WB Matrix-R	0.59 0.75 0.02	DEFL Vert(LL) Vert(CT) Horz(CT) Wind(LL)	in -0.20 -0.46 0.14 0.18	(loc) 6 3-5 5 6	l/defl >572 >248 n/a >631	L/d 360 240 n/a 240	PLATES MT20 Weight: 42 lb	GRIP 197/144 FT = 10%
Vasd=91n II; Exp C; cantilever right expo 2) This truss chord live 3) * This truss on the bot 3-06-00 ta chord and 4) All bearing 6) Provide m bearing pl	2x6 SPF No.2 *Exce 6-3:2x4 SPF No.2 Structural wood shee 6-0-0 oc purlins, exc Rigid ceiling directly bracing. (size) 5= Mecha Max Horiz 7=134 (LC Max Uplift 5=-98 (LC Max Grav 5=557 (LC (lb) - Maximum Com Tension 2-7=-592/147, 1-2=0 3-4=-186/24, 4-5=-44	athing directly applie cept end verticals. applied or 6-0-0 oc nical, 7=0-4-9 2 5) 8), 7=-127 (LC 4) 2 1), 7=617 (LC 1) pression/Maximum /29, 2-3=-177/16, 01/153 06 (3-second gust) DL=6.0psf; h=25ft; C welope) exterior zon ; end vertical left and 2 plate grip DOL=1.6 a 10.0 psf bottom th any other live load or a live load of 20.0 where a rectangle fit between the botto SPF No.2 . s connections. by others) of truss to	2, 8) (9) (d or LOA 1) Cat. e; d so bsf m	International R802.10.2 ar "NAILED" incu (0.148"x3.25" In the LOAD of the truss a D CASE(S) Dead + Roc Plate Increas Uniform Loa Vert: 1-2- Concentrate Vert: 9=-8	f Live (balanced): se=1.15	sections ndard AN 48"x3") c DS guidlii loads a _l (F) or ba Lumber =-20, 3-4	R502.11.1 a ISI/TPI 1. or 2-12d nes. oplied to the ck (B). Increase=1.	face 15,				DATE OF JUJ GAR NUM E-2000 FOSS/ON/ ICE 16 PRO K S/ON	CIA BER 162101 ALENG GARCIA NSEO


April 3,2024


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent oulgase with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TPI1 Quality Criteria, and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcscomponents.com)

Job	Truss	Truss Type	Qty	Ply	Lot 133 MN	
240616	J2	Jack-Open	2	1	Job Reference (optional)	164627083

Run: 8.73 S Mar 21 2024 Print: 8.730 S Mar 21 2024 MiTek Industries, Inc. Tue Apr 02 08:22:37 ID:T_47f_Ms2Ji?otvIP_5jzazynAQ-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

Scale = 1:35.7

Plate Offsets (X, Y): [8:0-5-8,0-1-8]

Loading		(psf)	Spacing	2-0-0	CSI	-	DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)		25.0	Plate Grip DOL	1.15	TC	0.09	Vert(LL)	0.00	3	>999	360	MT20	197/144
TCDL		10.0	Lumber DOL	1.15	BC	0.06	Vert(CT)	-0.01	3-6	>999	240		
BCLL		0.0*	Rep Stress Incr	YES	WB	0.01	Horz(CT)	-0.01	5	n/a	n/a		
BCDL		10.0	Code	IRC2018/TPI2014	Matrix-S		Wind(LL)	0.01	3	>999	240	Weight: 10 lb	FT = 10%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD		No.2 No.2 *Exce	ept* 7-6:2x3 SPF No athing directly applie	Internation R802.10.2 2 LOAD CASE(S	s designed in ac al Residential Co and referenced a) Standard	ode sections	R502.11.1	and					
BOT CHORD			except end verticals applied or 10-0-0 of										
	bracing.	5 ,											
	(size) Max Horiz	8=0-3-8 8=53 (LC	anical, 5= Mechanica 8) 2 8), 8=-24 (LC 8)	ıl,							111	XP.E.OF	AN

 Initial Opinit
 4=-54 (LC 0), 0=-24 (LC 0)

 Max Grav
 4=73 (LC 1), 5=65 (LC 3), 8=216 (LC 1)

 (LC 1)
 FORCES

 (Ib) - Maximum Compression/Maximum Tension

 TOP CHORD
 2-8=-197/45, 1-2=0/27, 2-3=-52/0, 3-4=-20/24

 BOT CHORD
 7-8=0/0, 3-6=0/0, 5-6=0/0

WEBS

NOTES

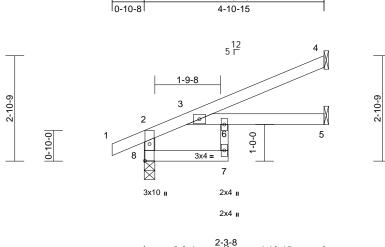
- Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
- 2) This truss has been designed for a 10.0 psf bottom
- chord live load nonconcurrent with any other live loads.
 * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- 4) All bearings are assumed to be SPF No.2.

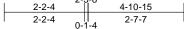
6-7=0/42

- 5) Refer to girder(s) for truss to truss connections.
- Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 24 lb uplift at joint 8 and 34 lb uplift at joint 4.

04/22/2024 8:36:13

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPH Claulity Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)


Job	Truss	Truss Type	Qty	Ply	Lot 133 MN	
240616	J3	Jack-Open	2	1	Job Reference (optional)	164627084


-0-10-8

Wheeler Lumber, Waverly, KS - 66871,

Run: 8.73 S Mar 21 2024 Print: 8.730 S Mar 21 2024 MiTek Industries, Inc. Tue Apr 02 08:22:37 ID:uqIhrpcPKSEACyRbaASPnozynA6-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

4-10-15

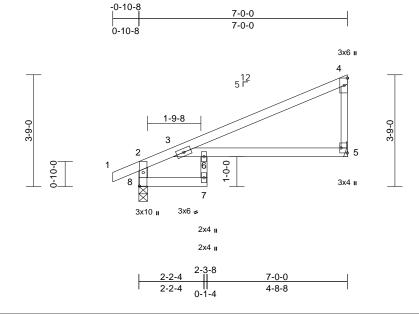
Scale = 1:31.5

Plate Offsets (X, Y): [8:0-5-8,0-1-8]

	(,,, ,). [0.0 0 0,0 . 0]	i			-							
Loading	(psf)	Spacing	2-0-0	csi		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15	TC	0.29	Vert(LL)	-0.03	7	>999	360	MT20	197/144
ICDL	10.0	Lumber DOL	1.15	BC	0.24	Vert(CT)	-0.06	5-6	>885	240		
BCLL	0.0*	Rep Stress Incr	YES	WB	0.02	Horz(CT)	0.04	5	n/a	n/a		
BCDL	10.0	Code	IRC2018/TPI2014		0.02	Wind(LL)	0.04	7	>999	240	Weight: 15 lb	FT = 10%
.002	10.0	0000					0.01		2000	210	Wolght. To ib	11-10/0
UMBER				ss is designed in acc								
FOP CHORD				ional Residential Co			and					
BOT CHORD				0.2 and referenced s	tandard AN	ISI/TPI 1.						
VEBS	2x4 SPF No.2 *Exce	ept* 7-6:2x3 SPF No	0.2 LOAD CAS	E(S) Standard								
BRACING												
OP CHORD	Structural wood she	athing directly appli	ed or									
	4-10-15 oc purlins,	except end verticals	S.									
BOT CHORD	Rigid ceiling directly	applied or 10-0-0 o	C									115.
	bracing.										ALL OF	MICH
REACTIONS	(size) 4= Mecha	anical, 5= Mechanica	al,								NEOF	WISS
	8=0-3-8									1	A	
	Max Horiz 8=87 (LC	8)								-	X	. 0 -
	Max Uplift 4=-64 (LC	C 8), 8=-30 (LC 8)								-	JU.	AN
	Max Grav 4=139 (L0	C 1), 5=93 (LC 3), 8	=305							Ξ.	: GAF	RCIA :
	(LC 1)									- 7		×.
ORCES	(lb) - Maximum Corr	npression/Maximum								=		
	Tension									= 7	NUM	IBER
FOP CHORD	2-8=-297/59, 1-2=0/	27, 2-3=-93/0, 3-4=-	-48/44								E-2000	162101
BOT CHORD	7-8=0/0, 3-6=0/0, 5-	6=0/0								-		.2.
VEBS	6-7=-5/48										· • • • •	GAN
OTES											1,SION	AL ENIN
I) Wind: AS	CE 7-16; Vult=115mph	(3-second aust)									I I I I	AL
	nph; TCDL=6.0psf; BC		Cat.									110.5
II; Exp C;	Enclosed; MWFRS (er	nvelope) exterior zoi	ne;									110.
cantilever	left and right exposed	; end vertical left an	nd									CA5 11.
right expo	sed; Lumber DOL=1.6	0 plate grip DOL=1.	60								NAU	GARCIN
This truss	has been designed fo	r a 10.0 psf bottom									Nº STOF	NON
	load nonconcurrent w											ED
	ss has been designed f		Opsf							-		1 1 5
	ttom chord in all areas										1	
	all by 2-00-00 wide will	fit between the botto	om								16	952
	any other members.									THIN W	TI	- In-
	gs are assumed to be										D.	
	irder(s) for truss to tru										- On	14:45
	nechanical connection										1 C A	NSA
	late capable of withsta	nuing 30 ib uplift at j	om								1, 5/01	VALEN IN
8 and 64 l	lb uplift at joint 4.										111	VAL
												oril 2 2024

tanding 30 lb uplift at joint 8 and 64 lb uplift at joint 4.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent oulgase with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TPI1 Quality Criteria, and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcscomponents.com)



April 3,2024

Job	Truss	Truss Type	Qty	Ply	Lot 133 MN	
240616	J4	Jack-Closed	3	1	Job Reference (optional)	164627085

Run: 8.73 S Mar 21 2024 Print: 8.730 S Mar 21 2024 MiTek Industries, Inc. Tue Apr 02 08:22:37 ID:bVPwOnc9fHglbnNW7XkOC0zynUm-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Scale = 1:38.7

Plate Offsets (X, Y): [5:Edge,0-2-8], [8:0-5-8,0-1-8]

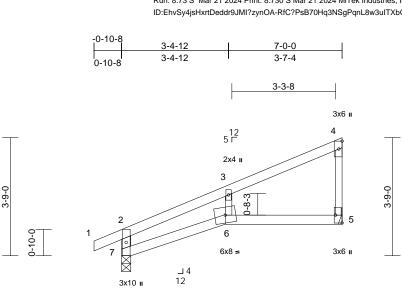
Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15	TC	0.57	Vert(LL)	-0.11	5-6	>768	360	MT20	197/144
TCDL	10.0	Lumber DOL	1.15	BC	0.49	Vert(CT)	-0.21	5-6	>386	240		
BCLL	0.0*	Rep Stress Incr	YES	WB	0.02	Horz(CT)	0.11	5	n/a	n/a		
BCDL	10.0	Code	IRC2018/TPI2014	Matrix-R		Wind(LL)	0.11	5-6	>709	240	Weight: 22 lb	FT = 10%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD	2x4 SPF No.2 2x4 SPF No.2 2x3 SPF No.2 *Exce Structural wood she		Internationa R802.10.2 a LOAD CASE(S)	designed in ac I Residential Co Ind referenced Standard	ode sections	R502.11.1 a	and					

Structural	l wood sheathing directly applied
6-0-0 oc p	ourlins, except end verticals.
Rigid ceili	ing directly applied or 10-0-0 oc
bracing.	
(size)	5= Mechanical, 8=0-3-8
Max Horiz	8=138 (LC 5)
Max Uplift	5=-74 (LC 8), 8=-63 (LC 8)
Max Grav	5=298 (LC 1), 8=381 (LC 1)
(lb) - Max	imum Compression/Maximum
Tension	
2-8=-384/	/96, 1-2=0/27, 2-3=-165/0,
3-4=-136/	/13, 4-5=-192/84
7-8=0/0, 3	3-6=-31/66, 5-6=-31/66
6-7=-13/5	0
	6-0-0 oc p Rigid ceili bracing. (size) Max Horiz Max Uplift Max Grav (lb) - Max Tension 2-8=-384/ 3-4=-136/ 7-8=0/0, 3

NOTES

- Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
 This terms has a description of the order of the terms.
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- 4) All bearings are assumed to be SPF No.2 .
- 5) Refer to girder(s) for truss to truss connections.
- Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 63 lb uplift at joint 8 and 74 lb uplift at joint 5.

April 3,2024


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

Job	Truss	Truss Type	Qty	Ply	Lot 133 MN	
240616	J5	Jack-Closed	10	1	Job Reference (optional)	164627086

Run: 8.73 S Mar 21 2024 Print: 8.730 S Mar 21 2024 MiTek Industries, Inc. Tue Apr 02 08:22:37 ID:EhvSy4jsHxrtDeddr9JMI?zynOA-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:36.6

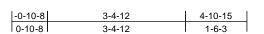
Plate Offsets (X, Y): [5:Edge,0-2-8]

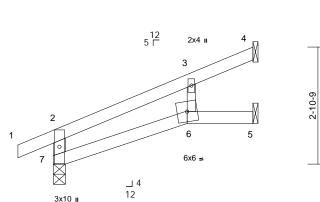
Loading (psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof) 25.0	Plate Grip DOL	1.15	TC	0.54	Vert(LL)	-0.15	6	>536	360	MT20	197/144
CDL 10.0	Lumber DOL	1.15	BC	0.38	Vert(CT)	-0.27	6	>302	240		
3CLL 0.0*	Rep Stress Incr	YES	WB	0.03	Horz(CT)	0.09	5	n/a	n/a		
3CDL 10.0	Code	IRC2018/TPI2014	Matrix-R		Wind(LL)	0.16	6	>511	240	Weight: 21 lb	FT = 10%
UMBER OP CHORD 2x4 SPF No.2 SOT CHORD 2x4 SPF No.2 VEBS 2x3 SPF No.2 *Exce SRACING OP CHORD Structural wood she 6-0-0 oc purlins, ex SOT CHORD Rigid ceiling directly bracing.	applied or 10-0-0 oc nical, 7=0-3-8 2 5) 8), 7=-63 (LC 8) 2), 7=-83 (LC 1) pression/Maximum 27, 2-3=-178/0, 90/71 87 (3-second gust) DL=6.0psf; h=25ft; C velope) exterior zonc end vertical left and D plate grip DDL=1.6 a 10.0 psf bottom th any other live load or a live load of 20.0p where a rectangle fit between the bottor SPF No.2. s connections. Irrallel to grain value ormula. Building	7) Provide mer bearing plat 7 and 74 lb 2 8) This truss is Internationa d or R802.10.2 a LOAD CASE(S) at. at. a;	chanical connection e capable of withs uplift at joint 5. designed in acco I Residential Code and referenced sta	standing 6 rdance w e sections	ers) of truss t 3 lb uplift at j ith the 2018 5 R502.11.1 a	joint			11111111111111111111111111111111111111	JUAN GAR SOURCE SOURCE	MISSOU AN CIA BER

- All bearings are assumed to be SPF No.2 . 4)
- 5) Refer to girder(s) for truss to truss connections.
- Bearing at joint(s) 7 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building 6) designer should verify capacity of bearing surface.

DEVELOPMENT SERVICES LEE'S'SUMMIT'SMISSOURI 04/22/2024 8:36:14

ΤΙΟΝ **IEW**


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent colleges with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)


Job	Truss	Truss Type	Qty	Ply	Lot 133 MN	
240616	J6	Jack-Open	2	1	Job Reference (optional)	164627087

2-10-9

0-10-0

Run: 8.73 S Mar 21 2024 Print: 8.730 S Mar 21 2024 MiTek Industries, Inc. Tue Apr 02 08:22:37 ID:qOllusue_EcuvniJg6ZetyzynNy-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

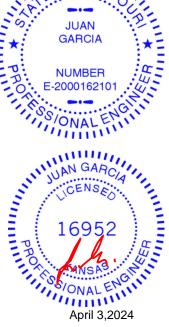
Scale = 1:28.4

Loading		(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)		25.0	Plate Grip DOL	1.15		TC	0.26	Vert(LL)	-0.03	6-7	>999	360	MT20	197/144
TCDL		10.0	Lumber DOL	1.15		BC	0.24	Vert(CT)	-0.06	6-7	>923	240		
BCLL		0.0*	Rep Stress Incr	YES		WB	0.02	Horz(CT)	0.03	4	n/a	n/a		
BCDL		10.0	Code	IRC201	8/TPI2014	Matrix-P		Wind(LL)	0.04	6-7	>999	240	Weight: 14 lb	FT = 10%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD	2x4 SPF N 2x4 SPF N Structural 4-10-15 oc	lo.2 lo.2 *Exce wood shea purlins, o	pt* 3-6:2x3 SPF No. athing directly applie except end verticals applied or 6-0-0 oc	d or	bearing plate 7, 42 lb uplife This truss is International	hanical connecti capable of with at joint 4 and 23 designed in acco Residential Cod nd referenced st Standard	standing 3 3 lb uplift a ordance w le sections	7 lb uplift at t joint 5. ith the 2018 R502.11.1 a	joint					
REACTIONS	Max Horiz Max Uplift Max Grav	7=0-3-8 7=86 (LC 4=-42 (LC (LC 8)	nical, 5= Mechanica 8) 8), 5=-23 (LC 8), 7= C 1), 5=89 (LC 1), 7=	=-37								in in	JU/ GAR	

 FORCES
 (lb) - Maximum Compression/Maximum Tension

 TOP CHORD
 2-7=-225/53, 1-2=0/27, 2-3=-75/26, 3-4=-22/40

 BOT CHORD
 6-7=-25/14, 5-6=0/0

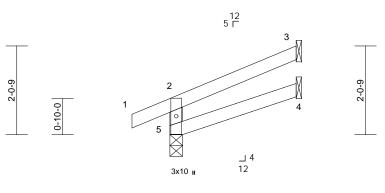

 WEBS
 3-6=-62/64

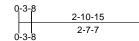
WLD0

NOTES

- Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
 This truss has been designed for a 10.0 psf bottom
- chord live load nonconcurrent with any other live loads. 3) * This truss has been designed for a live load of 20.0psf
- on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- 4) All bearings are assumed to be SPF No.2 .
- Refer to girder(s) for truss to truss connections.
 Bearing at joint(s) 7 considers parallel to grain value
- using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPH Claulity Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)





Job	Truss	Truss Type	Qty	Ply	Lot 133 MN	
240616	J7	Jack-Open	2	1	Job Reference (optional)	164627088

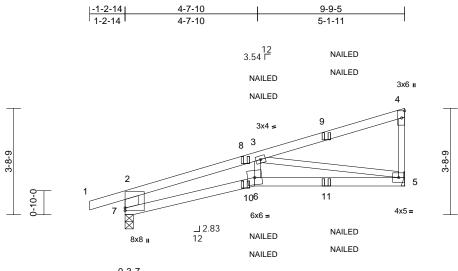
Run: 8.73 S Mar 21 2024 Print: 8.730 S Mar 21 2024 MiTek Industries, Inc. Tue Apr 02 08:22:37 ID:fpeRjk94ZIVd9KykWRT1IpzynNb-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Scale = 1:26.6

Ocale = 1.20.0												
Loading	(psf)	Spacing	2-0-0	csi		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15	тс	0.09	Vert(LL)	0.00	4-5	>999	360	MT20	197/144
TCDL	10.0	Lumber DOL	1.15	BC	0.06	Vert(CT)	-0.01	4-5	>999	240		
BCLL	0.0*	Rep Stress Incr	YES	WB	0.00	Horz(CT)	0.00	3	n/a	n/a		
BCDL	10.0	Code	IRC2018/TPI2014	Matrix-R		Wind(LL)	0.00	4-5	>999	240	Weight: 9 lb	FT = 10%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SPF No.2 2x4 SPF No.2 Structural wood she 2-10-15 oc purlins, Rigid ceiling directly bracing. (size) 3= Mecha 5=0-3-8 Max Horiz 5=53 (LC	except end verticals applied or 6-0-0 oc anical, 4= Mechanica 5)	Internation R802.10.2 LOAD CASE(ed or S.	is designed in acc al Residential Coc and referenced si 5) Standard	de sections	R502.11.1	and				LITE OF	MISSO
	Max Uplift 3=-45 (LC Max Grav 3=80 (LC (LC 1)	1), 4=50 (LC 3), 5=								in the second se	S JU	
FORCES	(lb) - Maximum Corr Tension	pression/Maximum								- *		*=
TOP CHORD		27, 2-3=-46/23								= 0		
BOT CHORD	4-5=-18/12									-5	NUN	• []].
NOTES										-	C. E-2000	162101
Vasd=91r II; Exp C; cantilever	CE 7-16; Vult=115mph mph; TCDL=6.0psf; BC Enclosed; MWFRS (er r left and right exposed psed; Lumber DOL=1.6	DL=6.0psf; h=25ft; nvelope) exterior zoi ; end vertical left an	ne; id								ESS/ON	ALENGIN
	s has been designed for		00									uun.
 This trus on the boti 3-06-00 ta chord and All bearing Refer to g Bearing a using ANS designer s Provide m bearing pl 	load nonconcurrent wi ss has been designed f ttom chord in all areas all by 2-00-00 wide will d any other members. gs are assumed to be s jirder(s) for truss to tru tt joint(s) 5 considers pai SI/TPI 1 angle to grain should verify capacity of nechanical connection late capable of withstat hu pulif at joint 3	or a live load of 20.0 where a rectangle fit between the botto SPF No.2 . ss connections. arallel to grain value formula. Building of bearing surface. (by others) of truss t	Dpsf om o							CHIIII III	PROX LOS	GARCIA NSEO 952
bearing pl											11,00,00	VALEN

> ΤΙΟΝ **IEW** DEVELOPMENT SERVICES LEE'S'SUMMIT'S MISSOURI 04/22/2024 8:36:14

April 3,2024


Page: 1

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent oulgase with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TPI1 Quality Criteria, and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcscomponents.com)

Job	Truss	Truss Type	Qty	Ply	Lot 133 MN	
240616	J8	Diagonal Hip Girder	1	1	Job Reference (optional)	164627089

Run: 8.73 S Mar 21 2024 Print: 8.730 S Mar 21 2024 MiTek Industries, Inc. Tue Apr 02 08:22:38 ID:4r8r7GByjPcjowNaBUou2Czyn84-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale =	1:40.3
---------	--------

00010 = 111010												
Loading TCLL (roof) TCDL BCLL BCDL	(psf) 25.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 NO IRC2018/TPI2014	CSI TC BC WB Matrix-S	0.71 0.81 0.69	DEFL Vert(LL) Vert(CT) Horz(CT) Wind(LL)	in -0.16 -0.28 0.08 0.15	(loc) 5-6 5-6 5 5-6	l/defl >720 >398 n/a >749	L/d 360 240 n/a 240	PLATES MT20 Weight: 32 lb	GRIP 197/144 FT = 10%
FORCES TOP CHORD BOT CHORD WEBS	2.0E Structural wood she 5-7-1 oc purlins, ex Rigid ceiling directly bracing.	ept* 7-2:2x6 SP 2400 eathing directly applied cept end verticals. v applied or 9-4-12 oc anical, 7=0-3-7 C 5) C 8), 7=-160 (LC 4) C 1), 7=584 (LC 1) apression/Maximum 0/29, 2-3=-1267/325, 117/76 =-366/1092	bearing p 7 and 15 F 8) This truss Internatic R802.10. 9) "NAILED (0.148"x3 10) In the LO of the trus LOAD CASE 1) Dead + Plate In Uniform Vert: Concen	hechanical connecti late capable of with 2 lb uplift at joint 5. is is designed in accornal and Residential Cod 2 and referenced st ' indicates 3-10d (0. .25") toe-nails per N AD CASE(S) sections as are noted as from (S) Standard Roof Live (balanced crease=1.15 Loads (lb/ft) 1-2=-70, 2-4=-70, 6 trated Loads (lb) 9=-40 (F=-20, B=-21 22 (F=-61, B=-61)	standing 1 ordance w le sections andard AN 148"x3") (NDS guidli n, loads a t (F) or ba d): Lumber -7=-20, 5-	I60 b uplift a ith the 2018 \$ R502.11.1 a NSI/TPI 1. or 2-12d nes. pplied to the ck (B). • Increase=1. 6=-20	t joint and face .15,				GAR S. L.	CIA *
NOTES 1) Wind: ASC	CE 7-16; Vult=115mph	(3-second gust)									ESS IN	ENGLIN

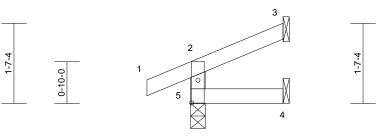
 Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
 This trans here been desired for x10 ordinates the term.

 This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

- This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- 4) All bearings are assumed to be SPF No.2 .
- 5) Refer to girder(s) for truss to truss connections.
- Bearing at joint(s) 7 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPH Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

April 3,2024


Job	Truss	Truss Type	Qty	Ply	Lot 133 MN	
240616	J9	Jack-Open	4	1	Job Reference (optional)	164627090

Run: 8.73 S Mar 21 2024 Print: 8.730 S Mar 21 2024 MiTek Industries, Inc. Tue Apr 02 08:22:38 ID:IScCNskl7146Vk0noa4whczdGIX-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

3x10 ш

1-10-3

Scale =	= 1:23		

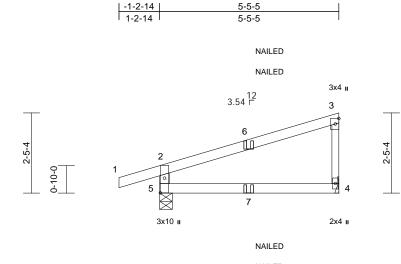
Plate Offsets	(X,	Y):	[5:0-5-8,0-1-8]	
---------------	-----	-----	-----------------	--

	, 5			_	_							
Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15	тс	0.07	Vert(LL)	0.00	4-5	>999	360	MT20	197/144
TCDL	10.0	Lumber DOL	1.15	BC	0.02	Vert(CT)	0.00	4-5	>999	240		
BCLL	0.0*	Rep Stress Incr	YES	WB	0.00	Horz(CT)	0.00	3	n/a	n/a		
BCDL	10.0	Code	IRC2018/TPI2014	Matrix-R		Wind(LL)	0.00	4-5	>999	240	Weight: 6 lb	FT = 10%
LUMBER			7) This truss is	s designed in acc	ordance w	ith the 2018						
TOP CHORD	2x4 SPF No.2		Internationa	al Residential Coc	de sections	R502.11.1 a	and					
BOT CHORD	2x4 SPF No.2		R802.10.2	and referenced st	tandard AN	ISI/TPI 1.						
WEBS 2	2x4 SPF No.2		LOAD CASE(S) Standard								
BRACING												
TOP CHORD	Structural wood she	athing directly appli	ed or									
	1-10-3 oc purlins, e											
	Rigid ceiling directly	applied or 10-0-0 o	с									1117
	bracing.										11 OF	MICH
REACTIONS (s	,	nical, 4= Mechanica	al,								NE	Sol
	5=0-3-8										18	
	lax Horiz 5=41 (LC lax Uplift 3=-28 (LC									- 0	2. 11	AN .P
	lax Grav 3=41 (LC		160							-		
10	(LC 1)	1), 4=30 (LC 3), 5=	109							= *	GAP	
FORCES	(Ib) - Maximum Com	pression/Maximum								=	1	
	Tension	pression/maximum								- 7	NILIN.	IBER :
	2-5=-148/46, 1-2=0/2	27. 2-3=-31/11								= 1	E-2000	• []].
	4-5=0/0	,									C. E-2000	102101
NOTES										1	A	- day
	7-16; Vult=115mph	(3-second aust)									1,5/01	ENI
	h; TCDL=6.0psf; BC		Cat.								I I I I	ALLIN
II; Exp C; En	nclosed; MWFRS (er	velope) exterior zoi	ne;									110 ¹
	ft and right exposed											um.
	d; Lumber DOL=1.6		60									GAD
	as been designed for										11 UAN	CAACIA
	ad nonconcurrent wi										S CE	NSA .
	has been designed f		Opst									- O ·
	m chord in all areas by 2-00-00 wide will		om							-	1 J	- A E
	ny other members.	III DEIWEEN INE DOIII								-	1 10	050
	are assumed to be S	SPE No 2									10	952
	ler(s) for truss to tru									-	P: /	Λ

- 4
- 5) Refer to girder(s) for truss to truss connections.
- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 32 lb uplift at joint 5 and 28 lb uplift at joint 3.

UCTION /IEW DEVELOPMENT SERVICES LEE'S'SUMMIT'SMISSOURI 04/22/2024 8:36:14

S/ONAL ENGI And


April 3,2024

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent oulgase with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TPI1 Quality Criteria, and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcscomponents.com)

Job	Truss	Truss Type	Qty	Ply	Lot 133 MN	
240616	J11	Diagonal Hip Girder	2	1	Job Reference (optional)	164627091

Run: 8.73 S Mar 21 2024 Print: 8.730 S Mar 21 2024 MiTek Industries, Inc. Tue Apr 02 08:22:38 ID:BVN8n2?wAUj7Wy6qXUys11zdGIC-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

NAILED

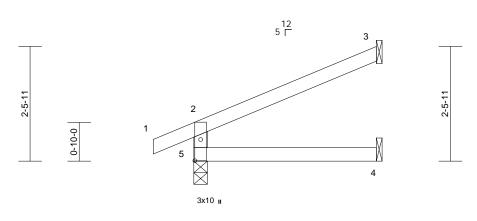
5-5-5

Scale = 1:35

Plate Offsets (X, Y): [5:0-5-6,0-1-8]

oading	(psf)	Spacing	2-0-0		csi		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
CLL (roof)	25.0	Plate Grip DOL	1.15		тс	0.38	Vert(LL)	-0.03	4-5	>999	360	MT20	197/144
CDL	10.0	Lumber DOL	1.15		BC	0.24	Vert(CT)	-0.06	4-5	>999	240		
CLL	0.0*	Rep Stress Incr	NO		WB	0.00	Horz(CT)	0.00	4	n/a	n/a		
CDL	10.0	Code	IRC2018/	/TPI2014	Matrix-R		Wind(LL)	0.01	4-5	>999	240	Weight: 16 lb	FT = 10%
			0)			4.4.0	0.401	-					
UMBER			8)		dicates 3-10d (0 ") toe-nails per l								
OP CHORD	2x4 SPF No.2		9)		CASE(S) section			faaa					
OT CHORD	2x4 SPF No.2		,		ire noted as fror			lace					
EBS	2x4 SPF No.2 *Exce	ept" 3-4:2x3 SPF No		AD CASE(S)			JK (D).						
RACING	o			• • • •	of Live (balance	d). Lumbor	Inorocco 1	15					
OP CHORD	Structural wood she		ed or i)	Plate Increa		u). Lumber	increase=1.	15,					
OT CHORD	5-5-5 oc purlins, ex Rigid ceiling directly		2	Uniform Lo									
	bracing.	applied 01 10-0-0 00			=-70, 2-3=-70, 4	-5=-20							110.
EACTIONS	0	anical, 5=0-4-9			ed Loads (lb)							Nº OF	MISS
	Max Horiz 5=98 (LC	,			(F=2, B=2)						6	XE	0.1
	Max Uplift 4=-48 (LC										~	Y	
	Max Grav 4=219 (LC										20	JU/	AN P
ORCES	(lb) - Maximum Com	,, , ,									2.	GAR	CIA :
	Tension										- *		×
P CHORD	2-5=-302/140, 1-2=0)/27, 2-3=-126/14,									=	1	
	3-4=-158/71										= 7	NUM	BER :
OT CHORD	4-5=-26/49											E-2000	162101
DTES											-	A	
	E 7-16; Vult=115mph										1	1.00.	Gin
	ph; TCDL=6.0psf; BC											INONI	ALENN
	Enclosed; MWFRS (er											- 100	iiiii
	left and right exposed												•
	ed; Lumber DOL=1.6		60										IIIII.
	has been designed for load nonconcurrent wi		de									IN AN	GARC
	s has been designed f											N 30	····· A .
	om chord in all areas		,po.									CE	NSE
	ll by 2-00-00 wide will		om								-	1 × 1	Ŭ,
chord and	any other members.										-	1	
	s are assumed to be \$											UGE	952 !
	rder(s) for truss to trus										1	11 19	T in
	echanical connection (-	Ď.	
	ate capable of withstar	nding 102 lb uplift at	joint									Par. KA.	1.5.4:
	o uplift at joint 4. is designed in accorda	anco with the 2019										· AAA	Shing
	al Residential Code s		nd									S/ON	AL ENIN
	and referenced stand											1111	inin'i i
													oril 3,2024

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent oulgase with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)



Job	Truss	Truss Type	Qty	Ply	Lot 133 MN	
240616	J12	Jack-Open	8	1	Job Reference (optional)	164627092

Run: 8.73 S Mar 21 2024 Print: 8.730 S Mar 21 2024 MiTek Industries. Inc. Tue Apr 02 08:22:38 ID:7czTdvpWitqGDfTx8qAKwtzdGIR-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Scale = 1:24.9	
Plate Offsets (X Y)	[5.0-2-8 0-1-8]

Flate Offsets (A, T). [5.0-5-6,0-T-6]	-									-		
Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP	
TCLL (roof)	25.0	Plate Grip DOL	1.15	тс	0.20	Vert(LL)	-0.01	4-5	>999	360	MT20	197/144	
TCDL	10.0	Lumber DOL	1.15	BC	0.12	Vert(CT)	-0.02	4-5	>999	240			
BCLL	0.0*	Rep Stress Incr	YES	WB	0.00	Horz(CT)	0.01	3	n/a	n/a			
BCDL	10.0	Code	IRC2018/TPI2014	Matrix-R		Wind(LL)	0.01	4-5	>999	240	Weight: 11 lb	FT = 10%	
LUMBER TOP CHORD BOT CHORD WEBS	2x4 SPF No.2 2x4 SPF No.2 2x4 SPF No.2		Ínternationa	designed in ad Residential C and referenced Standard	ode sections	R502.11.1 a	and						

3-11-4

LOAD CASE(S) Standard

BRACING		
TOP CHORD	Structura	wood sheathing directly applied or
		purlins, except end verticals.
BOT CHORD	0	ing directly applied or 10-0-0 oc
	bracing.	
REACTIONS	(size)	3= Mechanical, 4= Mechanical,
		5=0-3-8
	Max Horiz	5=70 (LC 8)
	Max Uplift	3=-61 (LC 8), 5=-34 (LC 8)
	Max Grav	3=115 (LC 1), 4=70 (LC 3), 5=249
		(LC 1)
FORCES	(lb) - Max	imum Compression/Maximum
	Tension	

TOP CHORD 2-5=-218/70, 1-2=0/27, 2-3=-63/34 BOT CHORD 4-5=0/0

NOTES

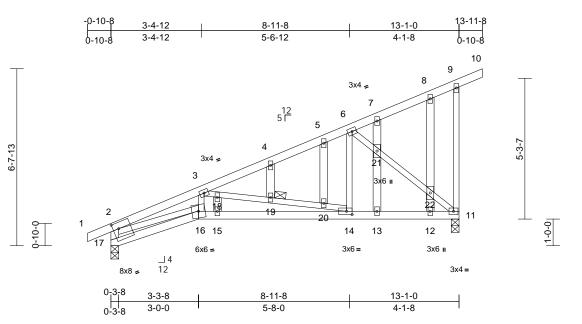
Wind: ASCE 7-16; Vult=115mph (3-second gust) 1) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60

2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

- * This truss has been designed for a live load of 20.0psf 3) on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- 4) All bearings are assumed to be SPF No.2 .

Refer to girder(s) for truss to truss connections. 5)

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 34 lb uplift at joint 5 and 61 lb uplift at joint 3.



 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.
 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not beigh valid for use only with with with sets outputs into design is based only door parameters shown, and is for an individual dualing component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria**, and **DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcscomponents.com)

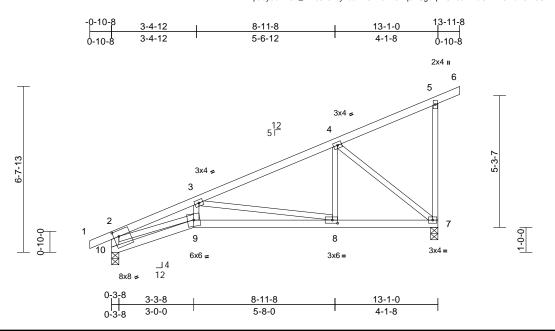
Job	Truss	Truss Type	Qty	Ply	Lot 133 MN	
240616	К1	Monopitch Structural Gable	1	1	Job Reference (optional)	164627093

Run: 8.73 S Mar 21 2024 Print: 8.730 S Mar 21 2024 MiTek Industries, Inc. Tue Apr 02 08:22:38 ID:5NA8c2YPVemFhRSW6foDCZzynfA-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Scale = 1:43.3

Plate Offsets (X, Y): [14:0-2-8,0-1-8], [17:0-2-8,0-2-12]

	, , t,],[]										
Loading	(psf)	Spacing	2-0-0	csi		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15	тс	0.22	Vert(LL)	-0.08	14-15	>999	360	MT20	197/144
TCDL	10.0	Lumber DOL	1.15	BC	0.54	Vert(CT)	-0.16		>977	240	1	
BCLL	0.0*	Rep Stress Incr	YES	WB	0.45	Horz(CT)	0.06	11	n/a	n/a	1	
BCDL	10.0	Code	IRC2018/TPI2014	Matrix-S	0.10	Wind(LL)		14-15	>999	240	Weight: 65 lb	FT = 10%
	10.0	oodc		Matrix 0		WING(EE)	0.00	14 10	2000	240	Weight. 00 lb	11 = 1070
FORCES TOP CHORD BOT CHORD WEBS NOTES 1) Wind: ASC Vasd=91m II; Exp C; E cantilever	2x4 SPF No.2 Structural wood she 4-5-5 oc purlins, ex Rigid ceiling directly bracing. 1 Brace at Jt(s): 19 (size) 11=0-3-8, Max Horiz 17=266 (I (Max Uplift 11=-167 (Max Grav 11=646 (I (Ib) - Maximum Com Tension 1-2=0/27, 2-3=-1652 4-5=-579/79, 5-6=-5 7-8=-110/25, 8-9=-7 9-11=-142/65, 2-17= 16-17=-271/194, 15 14-15=-399/1434, 1: 12-13=-98/537, 11-1 3-16=-106/369, 6-21 21-22=-679/183, 11 2-16=-246/1303, 6-1 19-20=-906/308, 14	applied or 9-2-13 oc 17=0-3-8 _C 5) LC 8), 17=-95 (LC 8) _C 1), 17=649 (LC 1) pression/Maximum 2/337, 3-4=-625/55, 80/102, 6-7=-118/15, 4/30, 9-10=-26/0, -660/165 -16=-399/1434, 3-14=-98/537, !2=-98/537 !=-692/185, -22=-709/190, 4:=-65/470, !9=-901/304, -20=-941/319, -244/35, 5-20=-150/4' 40/12, 8-22=-61/54, (3-second gust) DL=6.0psf; h=25ft; C rowelope) exterior zon; ; end vertical left anc	only. For st see Standai or consult q 3) All plates ar 4) Truss to be braced agai 5) Gable studs 6) This truss on the botto 3-06-00 tall chord and a 8) All bearings 9) Bearing at j using ANSI/ designer sh 10) Provide me- bearing plat 11 and 95 lt 11) This truss is Internationa R802.10.2 a LOAD CASE(S) 7,	ned for wind load: uds exposed to wi d Industry Gable I ualified building de e 2x4 MT20 unles fully sheathed fror nst lateral movem spaced at 2-0-0 c as been designed ad noncourrent has been designe m chord in all area by 2-00-00 wide w ny other members are assumed to b bint(s) 17 consider TPI 1 angle to gra buld verify capacit chanical connectio e capable of withs b uplift at joint 17. designed in acco I Residential Code and referenced sta	ind (norm End Deta ssigner as s otherwin n one face ent (i.e. d oc. for a 10.0 with any d for a liv as where vill fit betw s. e SPF Nor s parallel in formula y of beari on (by oth tanding 1 rdance w e sections	al to the face) ils as applicat s per ANSI/TF se indicated. ce or securely liagonal web). O psf bottom other live load e load of 20.0 a rectangle ween the botto c.2. I to grain value a. Building ing surface. ers) of truss tr 67 lb uplift at ith the 2018 s R502.11.1 a), ole, ol 1. ds. opsf om e o joint				PRO SYON	GARCIA NSEO


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent colleges with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

Job	Truss	Truss Type	Qty	Ply	Lot 133 MN	
240616	K2	Monopitch	3	1	Job Reference (optional)	164627094

Run: 8.73 S Mar 21 2024 Print: 8.730 S Mar 21 2024 MiTek Industries, Inc. Tue Apr 02 08:22:38 ID:VDNipuoyooHP5V_MHs9v0nzynes-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:46.2

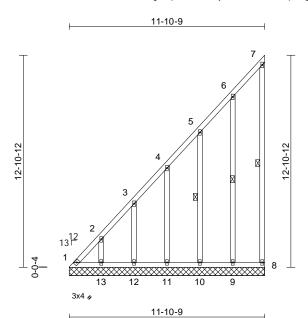
Plate Offsets (X, Y): [8:0-2-8,0-1-8], [10:0-2-8,0-2-12]

	3 (X, 1): [0:0 2 0;0 1 0];	[10:0 2 0,0 2 12]	-		-							
Loading	(psf)	Spacing	2-0-0	csi		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15	TC	0.35	Vert(LL)	-0.07	8-9	>999	360	MT20	197/144
TCDL	10.0	Lumber DOL	1.15	BC	0.48	Vert(CT)	-0.14	8-9	>999	240		
BCLL	0.0*	Rep Stress Incr	YES	WB	0.75	Horz(CT)	0.06	7	n/a	n/a		
BCDL	10.0	Code	IRC2018/TPI2014	Matrix-S		Wind(LL)	0.06	8-9	>999	240	Weight: 52 lb	FT = 10%
LUMBER TOP CHORI BOT CHORI			bearing	nechanical connection blate capable of with bluplift at joint 10.								
WEBS BRACING TOP CHORI	2x3 SPF No.2 *Exce		Internation	s is designed in acco onal Residential Cod 2 and referenced sta	le sections	R502.11.1 a	and					
BOT CHORI	4-5-1 oc purlins, ex	cept end verticals.	LOAD CASE	(S) Standard								
bor onora	bracing.										AND LE	
REACTIONS	S (size) 7=0-3-8, 1 Max Horiz 10=266 (L										NYE OF	MISSO
	Max Uplift 7=-167 (L Max Grav 7=646 (LC	C 8), 10=-95 (LC 8)								3		AN
FORCES	(lb) - Maximum Com Tension	,. , ,								E*		
TOP CHORI		, , ,								I Ph	NUN E-2000	• 41.
BOT CHORI WEBS	D 9-10=-266/173, 8-9= 3-9=-37/309, 4-7=-7 4-8=0/341, 3-8=-939	14/193, 2-9=-266/13								11		
NOTES	4-0=0/341, 3-0=-938	//323									I,ON	ALEIN
1) Wind: A Vasd=9 II; Exp C cantileve right exp	SCE 7-16; Vult=115mph 1mph; TCDL=6.0psf; BC 2; Enclosed; MWFRS (er er left and right exposed bosed; Lumber DOL=1.6 as has been designed for	DL=6.0psf; h=25ft; ivelope) exterior zor ; end vertical left an 0 plate grip DOL=1.	ne; id								JUAN	GARCIA NSEC
chord liv 3) * This tru on the b 3-06-00	ve load nonconcurrent wi uss has been designed fo ottom chord in all areas tall by 2-00-00 wide will nd any other members.	th any other live loa or a live load of 20.0 where a rectangle	Opsf							THIN W	ي ۱6	952
	ind any other members.	SPE No 2								-	7	1.145

All bearings are assumed to be SPF No.2. 4)

Bearing at joint(s) 10 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building 5) designer should verify capacity of bearing surface.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent colleges with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)


ONALENG WAL ENIN

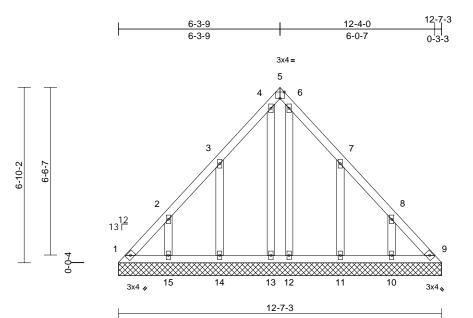
April 3,2024

Job	Truss	Truss Type	Qty	Ply	Lot 133 MN	
240616	LAY1	Lay-In Gable	2	1	Job Reference (optional)	164627095

Run: 8.73 S Mar 21 2024 Print: 8.730 S Mar 21 2024 MiTek Industries, Inc. Tue Apr 02 08:22:38 ID:QimbEXIPgtDQpcZcTTeraQzynM8-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:70.1


			;	1								
Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
CLL (roof)	25.0	Plate Grip DOL	1.15	TC	0.07	Vert(LL)	n/a	-	n/a	999	MT20	197/144
CDL	10.0	Lumber DOL	1.15	BC	0.02	Vert(TL)	n/a	-	n/a	999		
CLL	0.0*	Rep Stress Incr	YES	WB	0.10	Horiz(TL)	0.00	8	n/a	n/a		
BCDL	10.0	Code	IRC2018/TPI2014	Matrix-S							Weight: 81 lb	FT = 10%
UMBER OP CHORD OF CHORD VEBS DTHERS BRACING OP CHORD BOT CHORD VEBS REACTIONS	2x4 SPF No.2 2x4 SPF No.2 2x4 SPF No.2 2x4 SPF No.2 2x4 SPF No.2 Structural wood sh 6-0-0 cc purlins, e Rigid ceiling directl bracing. 1 Row at midpt (size) 1=11-10 10=11-1 12=11-1 Max Horiz 1=505 (I Max Uplift 1=-161 (9=-130 (11=-129 13=-130 Max Grav 1=507 (I (LC 15),	eathing directly applie xcept end verticals. y applied or 10-0-0 or 7-8, 5-10, 6-9 -9, 8=11-10-9, 9=11-7 0-9, 11=11-10-9, 0-9, 13=11-10-9 .C 8) LC 6), 8=-49 (LC 8), LC 8), 10=-131 (LC 8 (LC 8), 12=-129 (LC	 2) Truss de only. Fo see Stan or consu 3) All plates 4) Gable ste 5) Gable ste 6) This trus chord live 7) * This trus on the bc 10-9, chord an 8) All bearing p 10, uplift at je joint 10 a 9) Provider n 8), uplift at se 10 point 10 a 9) This trus per 10 point 10 a 9) This trus per 10 point 10 a 10, uplift at ge 10 point 10 a 205 R802.10. 	signed for wind loar studs exposed to v dard Industry Gable t qualified building q are 2x4 MT20 unle quires continuous b uds spaced at 2-0-0 s has been designe bload nonconcurrer ss has been designe bload nonconcurrer ss has been design thom chord in all ar all by 2-00-00 wide d any other membe gs are assumed to nechanical connect blate capable of with plift at joint 8, 130 l plift at joint 12, 129 lb uplift nd 130 lb uplift at joi s is designed in acco nal Residential Coo 2 and referenced si (S) Standard	wind (norm a End Deta designer a sss otherw ottom cho oc. d for a 10. nt with any ued for a 10. nt with any ued for a 10. nt with any ued for a 10. be SPF N ion (by ott b uplift at j b uplift at j ordance w de sections	al to the face ils as applica is per ANSI/TI se indicated. d bearing. 0 psf bottom other live loa e load of 20.1 a rectangle veen the bott 0.2. ers) of truss i l61 lb uplift al pint 13, 129 ll , 131 lb uplift ith the 2018 is R502.11.1 a), ble, PI 1. Dpsf om too t joint o at				JU/ GAR NUM SS/00	MISSOUR AN ICIA BER
ORCES	(lb) - Maximum Co Tension	mpression/Maximum									1111	1111
TOP CHORD	1-2=-705/278, 2-3=	582/231, 3-4=-451/1 190/93, 6-7=-70/37,									JCE THE THE	GARCIA
BOT CHORD	1-13=0/0, 12-13=0, 9-10=0/0, 8-9=0/0	0, 11-12=0/0, 10-11=	:0/0,								I'V LICE	NSED
WEBS	2-13=-162/147, 3-1 4-11=-165/153, 5-1	2=-166/155, 0=-166/154, 6-9=-169	9/156									$ \ge $
NOTES	-,-									- 3	16	952 : 3
Vasd=91m II; Exp C; I	Enclosed; MWFRS (e	h (3-second gust) CDL=6.0psf; h=25ft; (nvelope) exterior zor d ; Lumber DOL=1.60	ne;							111.	- AKSSION	VSAS NAL ENGINI

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent toulsible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

TION IEW DEVELOPMENT SERVICES LEE'S' SUMMIT'S MISSOURI 04/22/2024 8:36:14

Job	Truss	Truss Type	Qty	Ply	Lot 133 MN	
240616	LAY2	Lay-In Gable	1	1	Job Reference (optional)	164627096

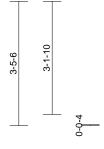
Run: 8.73 S Mar 21 2024 Print: 8.730 S Mar 21 2024 MiTek Industries, Inc. Tue Apr 02 08:22:38 ID:_RXavupuNoZ2Q3RvwWpKeUzdGSm-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

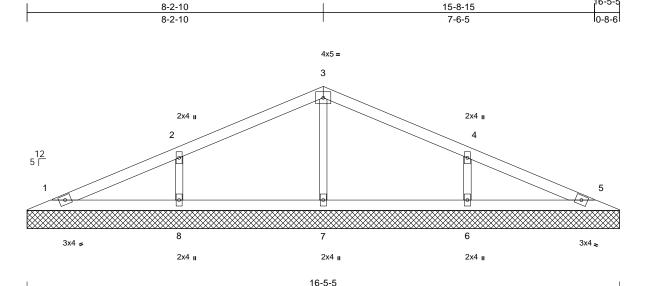
Scale = 1:44.9

Plate Offsets (X, Y): [5:Edge,0-3-0]

Loading	(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15		TC	0.06	Vert(LL)	n/a	-	n/a	999	MT20	197/144
TCDL	10.0	Lumber DOL	1.15		BC	0.03	Vert(TL)	n/a	-	n/a	999		
BCLL	0.0*	Rep Stress Incr	YES		WB	0.07	Horiz(TL)	0.00	9	n/a	n/a		
BCDL	10.0	Code	IRC2018	/TPI2014	Matrix-S							Weight: 60 lb	FT = 10%
LUMBER TOP CHORD BOT CHORD BRACING TOP CHORD BOT CHORD REACTIONS FORCES TOP CHORD BOT CHORD BOT CHORD WEBS NOTES 1) Unbalance this desig	 2x4 SPF No.2 2x4 SPF No.2 Structural wood she 6-0-0 oc purlins. Rigid ceiling directly bracing. (size) 1=12-7-3 11=12-7- 14=12-7- 14=12-7- Max Horiz 1=173 (L Max Uplift 1=-68 (L0 10=-129) 13=-21 (L 10=-129) (15=-129) Max Grav 1=152 (L 10=205 (12=112 (14=216 ((lb) - Maximum Cor Tension 1-2=-223/152, 2-3= 4-5=-27/70, 5-6=-33 7-8=-93/71, 8-9=-15 0 1-15=-76/159, 14-1 13-14=-76/159, 12- 11-12=-76/159, 10- 2-15=-160/147, 3-1 4-13=-105/36, 8-10 7-11=-176/167, 6-1 	C 6), 9=-37 (LC 7), (LC 9), 11=-141 (LC 9) (LC 9), 14=-140 (LC 8) (LC 8) C 8), 9=132 (LC 9), LC 16), 11=217 (LC 1 LC 17), 13=131 (LC 1 LC 15), 15=205 (LC 1 npression/Maximum -122/106, 3-4=-97/11' 3/74, 6-7=-71/91, 95/111 5=-76/159, 13=-76/159, 11=-76/159, 9-10=-76 4=-175/166, =-160/147, 2=-86/4	d or 3) 3, 4) 7-3, 6) 7) 9), 8) (6), 9) (5), 10) (5) 7, 11) LO 5/159	Vasd=91mpf II; Exp C; En cantilever lef right exposed Truss design only. For stu see Standard or consult qu All plates are Gable requir Gable studs This truss ha chord live loa * This truss ha chord live loa * This truss ha chord and ar All bearings a Provide mec bearing plate 1, 37 lb uplift uplift at joint joint 10 and This truss is International	7-16; Vult=115mp n; TCDL=6.0psf; Bi closed; MWFRS (et and right exposed d; Lumber DOL=1. need for wind loads uds exposed to wind l Industry Gable E ialified building des e 2x4 MT20 unless es continuous bott spaced at 2-0-0 oc is been designed fr ad nonconcurrent v has been designed in chord in all areas by 2-00-00 wide wil y other members. are assumed to be hanical connection to a capable of withste at joint 9, 129 lb u 14, 21 lb uplift at joint designed in accord Residential Code nd referenced stan Standard	CDL=6.6 enveloped d; end v 60 plate in the p d (norm nd Deta signer as otherwi	Dpsf; h=25ft; (a) exterior zor vertical left am- grip DOL=1.6 ane of the tru al to the face) ils as applicat s per ANSI/TF se indicated. d bearing. D psf bottom other live load e load of 20.0 a rectangle veen the botto c.2. ers) of truss tr is bu plift at jo bit 15, 140 lb i29 lb uplift at ith the 2018 i R502.11.1 a	ne; d 60 siss), oble, 21 1. ds. opsf om opint				OKESSION	CIA BER 162101

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent toulsable personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)


April 3,2024


Jo	ob	Truss	Truss Type	Qty	Ply	Lot 133 MN		
2	40616	V1	Valley	1	1	Job Reference (optional)	164627097	

Run: 8.73 S Mar 21 2024 Print: 8.730 S Mar 21 2024 MiTek Industries. Inc. Tue Apr 02 08:22:38 ID:ByKHeQabA2RyRkWHXLLtfszdGlk-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

16-5-5

Scale = 1:32

Ocale = 1.52													
Loading	(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15		TC	0.20	Vert(LL)	n/a	-	n/a	999	MT20	197/144
TCDL	10.0	Lumber DOL	1.15		BC	0.10	Vert(TL)	n/a	-	n/a	999		
BCLL	0.0*	Rep Stress Incr	YES		WB	0.06	Horiz(TL)	0.00	5	n/a	n/a		
BCDL	10.0	Code	IRC20	18/TPI2014	Matrix-S							Weight: 42 lb	FT = 10%
				 on the bottor 3-06-00 tall b chord and ar All bearings Provide mec bearing plate 1, 13 lb uplift uplift at joint This truss is International 	designed in ac Residential Co nd referenced s	reas where e will fit betw ers. b be SPF No tition (by oth- thstanding 1 lb uplift at jo cordance wi ode sections	a rectangle veen the botto o.2. ers) of truss t 0 lb uplift at j oint 8 and 11: ith the 2018 5 R502.11.1 a	om oo oint 2 lb				JUA GAR	
FORCES	21) (Ib) - Maximum Com	pression/Maximum									3	1	i an E
	Tension	process, maximum									= 1	NUME	• 41.
TOP CHORD	1-2=-74/52, 2-3=-87 4-5=-56/41	/83, 3-4=-87/70,									1	E-20001	62101
BOT CHORD	1-8=0/43, 7-8=0/43,	6-7=0/43, 5-6=0/43										1.80	
WEBS	3-7=-228/38, 2-8=-3	13/157, 4-6=-313/15	7									I, ONA	ALE IN
NOTES												1111	HIL.
 Unbalance this design 	ed roof live loads have	been considered for											um.
2) Wind: ASC	 CE 7-16; Vult=115mph	N _4									IN UAN C	GARCI	

Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60

3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable or consult qualified building designer as per ANSI/TPI 1.

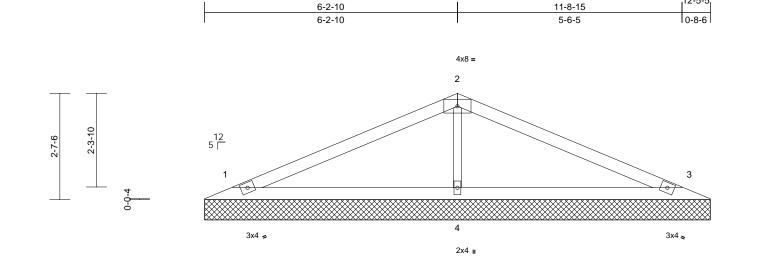
Gable requires continuous bottom chord bearing. 4)

Gable studs spaced at 4-0-0 oc. 5)

This truss has been designed for a 10.0 psf bottom 6) chord live load nonconcurrent with any other live loads.

 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.
 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not besign value to dury with with where outputs into design is based only door parameters shown, and is for an individual building design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members and property incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TPH1 Quality Criteria**, and **DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcscomponents.com)

LEE'S'SUMMIT'SMISSOURI 04/22/2024 8:36:14


Job	Truss	Truss Type	Qty	Ply	Lot 133 MN	
240616	V2	Valley	1	1	Job Reference (optional)	164627098

Run: 8.73 S Mar 21 2024 Print: 8.730 S Mar 21 2024 MiTek Industries. Inc. Tue Apr 02 08:22:38

12-5-5

ID:bX?QHRdUTzpXIBFsCTuaHVzdGlh-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

12-5-5

Scale - 1.28.3

Scale = 1:28.3														
Loading TCLL (roof) TCDL BCLL BCDL	(psf) 25.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC201	8/TPI2014	CSI TC BC WB Matrix-S	0.43 0.25 0.08	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 3	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 29 lb	GRIP 197/144 FT = 10%	
	6-0-0 oc purlins. Rigid ceiling directly bracing.	C 8), 3=-54 (LC 9), 4= C 21), 3=228 (LC 22) C 1) npression/Maximum 16/46	² 10 ₌₋₃₄ L0	on the bottor 3-06-00 tall b chord and ar All bearings Provide mec bearing plate 1, 54 lb uplift D) This truss is International	has been designe n chord in all are by 2-00-00 wide ' by other member are assumed to ' hanical connecti c capable of with at joint 3 and 3/ designed in acco Residential Cod nd referenced st Standard	eas where will fit betw s. be SPF N on (by oth standing 4 1 lb uplift a ordance w e sections	a rectangle veen the botto o.2. ers) of truss t I7 lb uplift at j at joint 4. ith the 2018 \$ R502.11.1 a	om to oint				GAR S S S JU/ GAR S S S S S S S S S S S S S S S S S S S	CIA *	
this desigr 2) Wind: ASC	ed roof live loads have CE 7-16; Vult=115mph noh: TCDL=6.0psf: BC	(3-second gust)										SS/ON	AL ENGLIT	

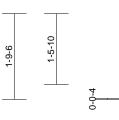
0psf; BCDL=6.0psf; h=25ft; Cat. nph; ICDL II; Exp C; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60

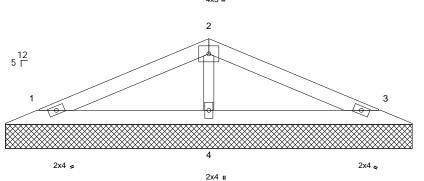
3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1. 4) Gable requires continuous bottom chord bearing.

5) Gable studs spaced at 4-0-0 oc.

6)

This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. SYONAL JUAN GARC LICENSE 16C (111111) April 2


 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.
 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not besign value to dury with with where outputs into design is based only door parameters shown, and is for an individual building design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members and property incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TPH1 Quality Criteria**, and **DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcscomponents.com)



Job	Truss	Truss Type	Qty	Ply	Lot 133 MN	
240616	V3	Valley	1	1	Job Reference (optional)	164627099

ID:?6hYvTfMmuC69f_RucRHv7zdGle-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC?f 4-2-10 7-8-15 8-5-5 4-2-10 3-6-5 0-8-6 4x5 =

Run: 8.73 S Mar 21 2024 Print: 8.730 S Mar 21 2024 MiTek Industries. Inc. Tue Apr 02 08:22:39

8-5-5

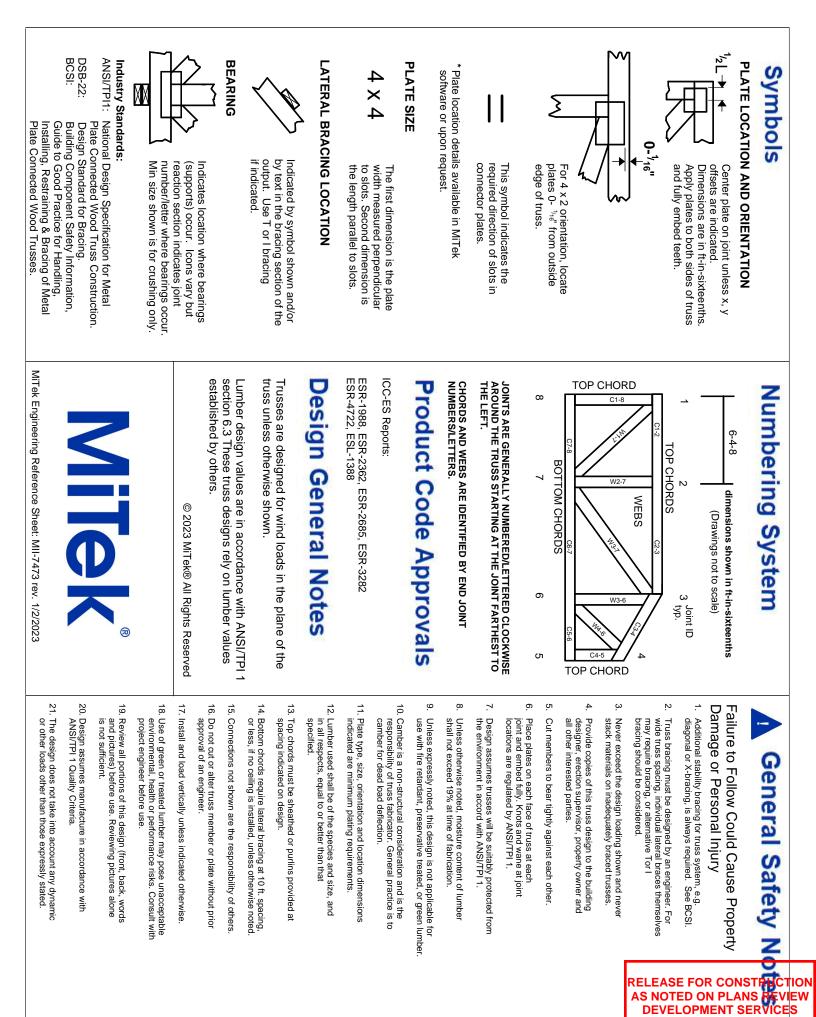
Scale		1.23 0
Scale	=	1.23.9

00010 - 112010														
Loading TCLL (roof) TCDL BCLL BCDL	(psf) 25.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC20	18/TPI2014	CSI TC BC WB Matrix-P	0.22 0.10 0.04	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 3	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 19 lb	GRIP 197/144 FT = 10%	
LUMBER TOP CHORD BOT CHORD OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	bracing. (size) 1=8-5-5, 3 Max Horiz 1=26 (LC Max Uplift 1=-37 (LC (LC 8) Max Grav 1=160 (LC (LC 1)	applied or 10-0-0 oc 3=8-5-5, 4=8-5-5 12) 2 8), 3=-41 (LC 9), 4= C 1), 3=160 (LC 1), 4	d or 8	 on the bottor 3-06-00 tall b chord and ar All bearings Provide mec bearing plate 1, 41 lb uplifi This truss is International 	Residential Co nd referenced s	eas where will fit betw ers. be SPF Notion (by oth nstanding 3 b lb uplift at cordance w de sections	a rectangle veen the both c.2. ers) of truss of truss T b uplift at joint 4. ith the 2018 \$ R502.11.1 a	tom to joint			un.	Solution of a state of		
FORCES TOP CHORD BOT CHORD WEBS	(lb) - Maximum Com Tension 1-2=-65/37, 2-3=-65, 1-4=-1/27, 3-4=-1/27 2-4=-226/61	/26									* Phil	NUM	BER 4	
NOTES												1.00	G	

1) Unbalanced roof live loads have been considered for this design.

- 2) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1. 4) Gable requires continuous bottom chord bearing.

5) Gable studs spaced at 4-0-0 oc.


This truss has been designed for a 10.0 psf bottom 6) chord live load nonconcurrent with any other live loads.

BOOKSSIL April 2

Page: 1

 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.
 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not beigh valid for use only with with with sets outputs into design is based only door parameters shown, and is for an individual dualing component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria**, and **DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcscomponents.com)

ASE FOR CONST **OTED ON PLANS** VELOPMENT SER LEE'S SUMMIT, MISSOURI

8:36:14

04/22/2024