

RE: 240613 Lot 117 MN

Site Information:

Customer: Avital Homes Project Name: 240613 Lot/Block: Address: City:

MiTek, Inc. 16023 Swingley Ridge Rd. Chesterfield, MO 63017 314.434.1200

Model: Crestwood - Modern 3rd Car Subdivision: State:

General Truss Engineering Criteria & Design Loads (Individual Truss Design Drawings Show Special Loading Conditions):

Design Code: IRC2018/TPI2014 Wind Code: ASCE 7 - 16[Low Rise] Roof Load: 45.0 psf

Design Program: MiTek 20/20 8.7 Wind Speed: 115 mph Floor Load: N/A psf

This package includes 52 individual, dated Truss Design Drawings and 0 Additional Drawings.

No.	Seal#	Truss Name	Date	No.	Seal#	Truss Name	Date
10.							
1	164130705	A1A	3/11/2024	21	164130725	D11	3/11/2024
2	164130706	A2A	3/11/2024	22	164130726	G1	3/11/2024
3	164130707	A3A	3/11/2024	23	164130727	G2	3/11/2024
4	164130708	A4A	3/11/2024	24	164130728	G3	3/11/2024
5	164130709	A5A	3/11/2024	25	164130729	G4	3/11/2024
6	164130710	B1	3/11/2024	26	164130730	J1	3/11/2024
7	164130711	B2	3/11/2024	27	164130731	J2	3/11/2024
8	164130712	C1	3/11/2024	28	164130732	J3	3/11/2024
9	164130713	C2	3/11/2024	29	164130733	J4	3/11/2024
10	164130714	C3	3/11/2024	30	164130734	J5	3/11/2024
11	164130715	D1	3/11/2024	31	164130735	J6	3/11/2024
12	164130716	D2	3/11/2024	32	164130736	J7	3/11/2024
13	164130717	D3	3/11/2024	33	164130737	J8	3/11/2024
14	164130718	D4	3/11/2024	34	164130738	J9	3/11/2024
15	164130719	D5	3/11/2024	35	164130739	J10	3/11/2024
16	164130720	D6	3/11/2024	36	164130740	J10A	3/11/2024
17	164130721	D7	3/11/2024	37	164130741	J11	3/11/2024
18	164130722	D8	3/11/2024	38	164130742	LAY1	3/11/2024
19	164130723	D9	3/11/2024	39	164130743	LAY2	3/11/2024
20	164130724	D10	3/11/2024	40	164130744	LAY3	3/11/2024

The truss drawing(s) referenced above have been prepared by MiTek USA, Inc under my direct supervision

based on the parameters provided by Wheeler - Waverly.

Truss Design Engineer's Name: Garcia, Juan

My license renewal date for the state of Kansas is April 30, 2024.

Kansas COA: E-943

IMPORTANT NOTE: The seal on these truss component designs is a certification that the engineer named is licensed in the jurisdiction(s) identified and that the designs comply with ANSI/TPI 1. These designs are based upon parameters shown (e.g., loads, supports, dimensions, shapes and design codes), which were given to MiTek. Any project specific information included is for MiTek customers file reference purpose only, and was not taken into account in the preparation of these designs. MiTek has not independently verified the applicability of the design parameters or the designs for any particular building. Before use, the building designer should verify applicability of design parameters and properly incorporate these designs into the overall building design per ANSI/TPI 1, Chapter 2.

	March 11, 2024
Garcia, Juan	RELEASE FOR CONSTRUCTION AS NOTED ON PLANS REVIEW DEVELOPMENT SERVICES LEE'S SUMMIT, MISSOURI
	04/22/2024 8:24:39

RE: 240613 - Lot 117 MN

MiTek, Inc. 16023 Swingley Ridge Rd. Chesterfield, MO 63017 314.434.1200

Site Information:

Project Customer: Avital HomesProject Name: 240613Lot/Block:Subdivision:Address:State:

No.	Seal#	Truss Name	Date
41	164130745	LAY4	3/11/2024
42	164130746	V2	3/11/2024
43	164130747	V3	3/11/2024
44	164130748	V4	3/11/2024
45	164130749	V5	3/11/2024
46	164130750	V6	3/11/2024
47	164130751	V7	3/11/2024
48	164130752	V8	3/11/2024
49	164130753	V9	3/11/2024
50	164130754	V10	3/11/2024
51	164130755	V11	3/11/2024
52	l64130756	V12	3/11/2024

RE: 240613 Lot 117 MN

Site Information:

Customer: Avital Homes Project Name: 240613 Lot/Block: Model Address: Subdiv City: State: MiTek, Inc. 16023 Swingley Ridge Rd. Chesterfield, MO 63017 314.434.1200

240613 Model: Crestwood - Modern 3rd Car Subdivision: State:

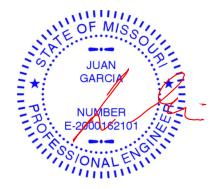
General Truss Engineering Criteria & Design Loads (Individual Truss Design Drawings Show Special Loading Conditions):

Design Code: IRC2018/TPI2014 Wind Code: ASCE 7 - 16[Low Rise] Roof Load: 45.0 psf Design Program: MiTek 20/20 8.7 Wind Speed: 115 mph Floor Load: N/A psf

This package includes 52 individual, dated Truss Design Drawings and 0 Additional Drawings.

No.	Seal#	Truss Name	Date	No.	Seal#	Truss Name	Date
10.							
1	164130705	A1A	3/11/2024	21	164130725	D11	3/11/2024
2	164130706	A2A	3/11/2024	22	164130726	G1	3/11/2024
3	164130707	A3A	3/11/2024	23	164130727	G2	3/11/2024
4	164130708	A4A	3/11/2024	24	164130728	G3	3/11/2024
5	164130709	A5A	3/11/2024	25	164130729	G4	3/11/2024
6	164130710	B1	3/11/2024	26	164130730	J1	3/11/2024
7	164130711	B2	3/11/2024	27	164130731	J2	3/11/2024
8	164130712	C1	3/11/2024	28	164130732	J3	3/11/2024
9	164130713	C2	3/11/2024	29	164130733	J4	3/11/2024
10	164130714	C3	3/11/2024	30	164130734	J5	3/11/2024
11	164130715	D1	3/11/2024	31	164130735	J6	3/11/2024
12	164130716	D2	3/11/2024	32	164130736	J7	3/11/2024
13	164130717	D3	3/11/2024	33	164130737	J8	3/11/2024
14	164130718	D4	3/11/2024	34	164130738	J9	3/11/2024
15	164130719	D5	3/11/2024	35	164130739	J10	3/11/2024
16	164130720	D6	3/11/2024	36	164130740	J10A	3/11/2024
17	164130721	D7	3/11/2024	37	164130741	J11	3/11/2024
18	164130722	D8	3/11/2024	38	164130742	LAY1	3/11/2024
19	164130723	D9	3/11/2024	39	164130743	LAY2	3/11/2024
20	164130724	D10	3/11/2024	40	164130744	LAY3	3/11/2024

The truss drawing(s) referenced above have been prepared by


MiTek USA, Inc under my direct supervision

based on the parameters provided by Wheeler - Waverly.

Truss Design Engineer's Name: Garcia, Juan

My license renewal date for the state of Missouri is December 31, 2024. Missouri COA: 001193

IMPORTANT NOTE: The seal on these truss component designs is a certification that the engineer named is licensed in the jurisdiction(s) identified and that the designs comply with ANSI/TPI 1. These designs are based upon parameters shown (e.g., loads, supports, dimensions, shapes and design codes), which were given to MiTek. Any project specific information included is for MiTek customers file reference purpose only, and was not taken into account in the preparation of these designs. MiTek has not independently verified the applicability of the design parameters or the designs for any particular building. Before use, the building designer should verify applicability of design parameters and properly incorporate these designs into the overall building design per ANSI/TPI 1, Chapter 2.

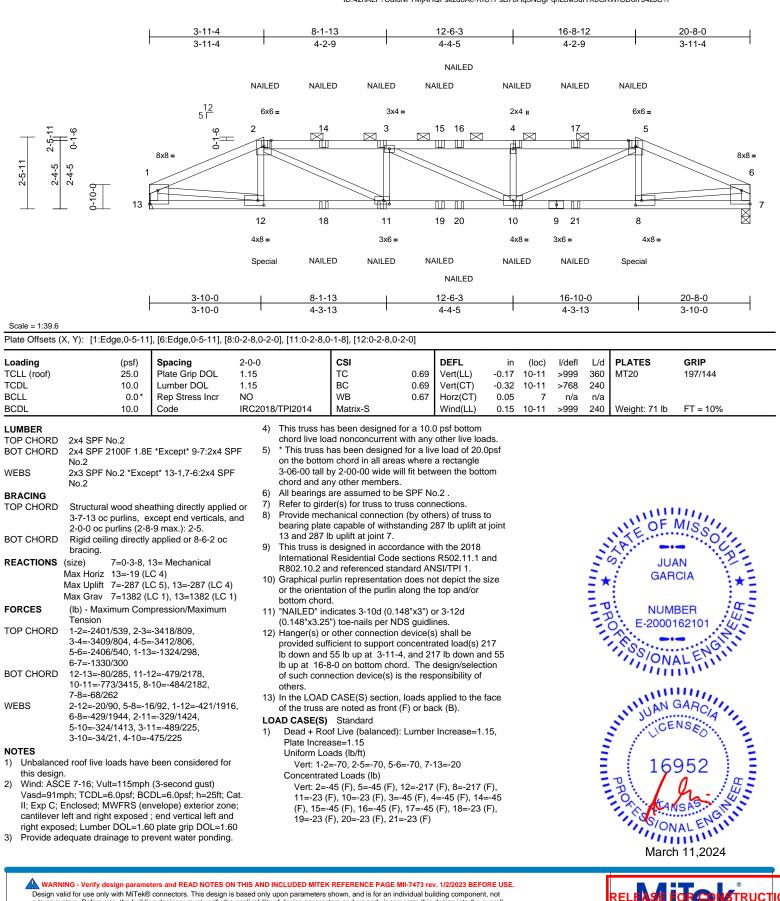
	March 11, 2024
Garcia, Juan	RELEASE FOR CONSTRUCTION AS NOTED ON PLANS REVIEW
	DEVELOPMENT SERVICES
	LEE'S SUMMIT, MISSOURI
	04/22/2024 8:24:40

RE: 240613 - Lot 117 MN

MiTek, Inc. 16023 Swingley Ridge Rd. Chesterfield, MO 63017 314.434.1200

Site Information:

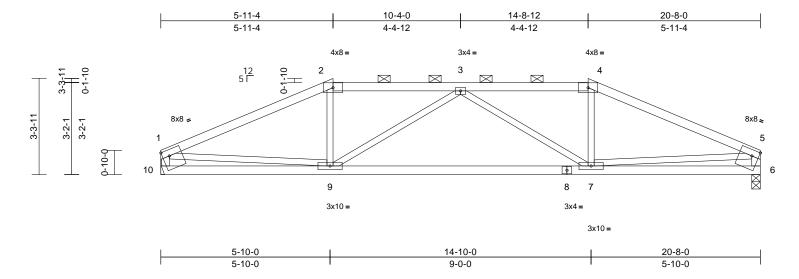
Project Customer: Avital HomesProject Name: 240613Lot/Block:Subdivision:Address:State:


No.	Seal#	Truss Name	Date
41	164130745	LAY4	3/11/2024
42	164130746	V2	3/11/2024
43	164130747	V3	3/11/2024
44	164130748	V4	3/11/2024
45	164130749	V5	3/11/2024
46	164130750	V6	3/11/2024
47	164130751	V7	3/11/2024
48	164130752	V8	3/11/2024
49	164130753	V9	3/11/2024
50	164130754	V10	3/11/2024
51	164130755	V11	3/11/2024
52	l64130756	V12	3/11/2024

Job	Truss	Truss Type	Qty	Ply	Lot 117 MN	
240613	A1A	Hip Girder	1	1	Job Reference (optional)	164130705

Run: 8.73 S Feb 22 2024 Print: 8.730 S Feb 22 2024 MiTek Industries, Inc. Fri Mar 08 12:04:32 ID:42hALF?CuIoNF7MjAHQFskzd0Ac-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

12:04:32 Page: 1


LEE'S' SUMWIT'SMISSOURI 04/22/2024 8:24:40

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent ouckling of individual truss web and/or chord members only. Additional temporary and permanent bracing fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/ITPI1 Quality Criteria**, and **DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcscomponents.com)

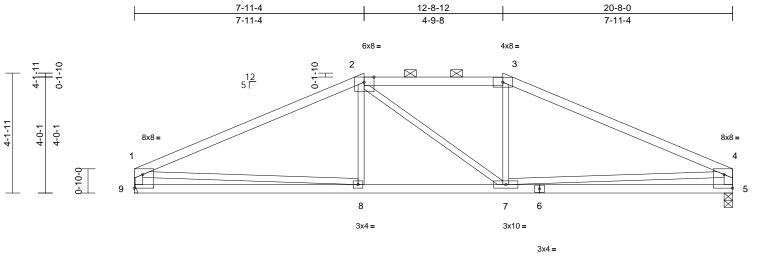
Job	Truss	Truss Type	Qty	Ply	Lot 117 MN	
240613	A2A	Нір	1	1	Job Reference (optional)	164130706

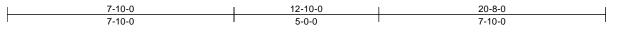
Run: 8.73 S Feb 22 2024 Print: 8.730 S Feb 22 2024 MiTek Industries, Inc. Fri Mar 08 12:04:32 ID:gkXTH29_b2ZOwGQP?DgXRhzd0AO-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Scale = 1:39.7

Plate Offsets (X, Y): [1:Edge,0-2-8], [5:Edge,0-2-8]

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15	TC	0.52	Vert(LL)	-0.15	7-9	>999	360	MT20	197/144
TCDL	10.0	Lumber DOL	1.15	BC	0.64	Vert(CT)	-0.34	7-9	>718	240		
BCLL	0.0*	Rep Stress Incr	YES	WB	0.36	Horz(CT)	0.03	6	n/a	n/a		
BCDL	10.0	Code	IRC2018/TPI2014	Matrix-S		Wind(LL)	0.06	7-9	>999	240	Weight: 71 lb	FT = 10%
	Max Horiz 10=-21 (L Max Uplift 6=-103 (L	athing directly applied xcept end verticals, a 0-12 max.): 2-4. applied or 10-0-0 oc 10= Mechanical C 9) C 5), 10=-103 (LC 4)	 7) Refer to gird 8) Provide mec bearing plate 10 and 103 I 9) This truss is International R802.10.2 a 10) Graphical puor or the orient bottom chord 	Residential Code nd referenced sta rlin representatio ation of the purlin d.	russ conr on (by oth standing 1 ordance w e sections andard AN on does no	ections. ers) of truss 03 lb uplift a ith the 2018 5 R502.11.1 a ISI/TPI 1. ot depict the	it joint and			in the second se	S JUA GAR	
FORCES	Max Grav 6=917 (LC (lb) - Maximum Com									Ξî		1^E
TOROLO	Tension	pression/maximum								- 7	NUMI	BER : C -
TOP CHORD BOT CHORD WEBS	1-2=-1544/190, 2-3= 3-4=-1351/198, 4-5= 1-10=-870/125, 5-6= 9-10=-115/321, 7-9= 2-9=0/303, 3-9=-424 4-7=0/303, 1-9=-73/	1544/190, 870/125 245/1622, 6-7=-94/3 -/134, 3-7=-424/134,	321							1111	E-20001	62101
NOTES												ш.
 this design Wind: ASC Vasd=91m II; Exp C; I cantilever right exposision Provide act This truss chord live * This truss on the bott 3-06-00 ta 	ed roof live loads have n. CE 7-16; Vult=115mph nph; TCDL=6.0psf; BC Enclosed; MWFRS (er left and right exposed sed; Lumber DOL=1.6d dequate drainage to pri- has been designed for load nonconcurrent wi is has been designed for tom chord in all areas ull by 2-00-00 wide will any other members.	(3-second gust) DL=6.0psf; h=25ft; C ivelope) exterior zone; end vertical left and 0 plate grip DOL=1.6 event water ponding. a 10.0 psf bottom th any other live load or a live load of 20.0p where a rectangle	e; i 0 s. ssf							. THUNK	PRO 169 March	ALENO


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent toulsable personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)


RELEASE I OR DEVELONMENT SERVICES LEE'S'SUMMIT'S MISSOURI 04/22/2024 8:24:40

Job	Truss	Truss Type	Qty	Ply	Lot 117 MN	
240613	A3A	Hip	1	1	Job Reference (optional)	164130707

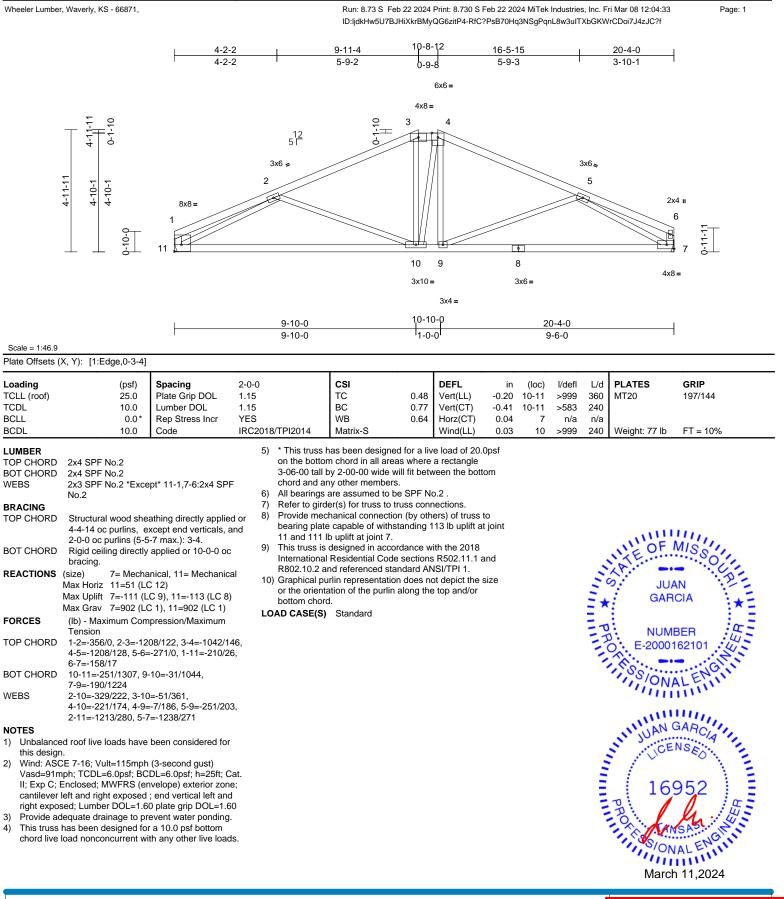
Run: 8.73 S Feb 22 2024 Print: 8.730 S Feb 22 2024 MiTek Industries, Inc. Fri Mar 08 12:04:33 ID:Nf8FOSHGF7qz7pBKaKsurozd0AE-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Scale = 1:39.8

Plate Offsets (X, Y): [1:Edge,0-5-11], [2:0-4-2,Edge], [4:Edge,0-5-11]

Loading (psf) TCLL (roof) 25.0 TCDL 10.0 BCLL 0.0* BCDL 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018/TPI2014	CSI TC BC WB Matrix-S	0.61 0.43 0.24	DEFL Vert(LL) Vert(CT) Horz(CT) Wind(LL)	in -0.10 -0.21 0.02 0.03	(loc) 8-9 8-9 5 7-8	l/defl >999 >999 n/a >999	L/d 360 240 n/a 240	PLATES MT20 Weight: 72 lb	GRIP 197/144 FT = 10%
LUMBER TOP CHORD 2x4 SPF 2100F 1.8E No.2 BOT CHORD 2x4 SPF No.2 WEBS 2x3 SPF No.2 *Exce BRACING TOP CHORD Structural wood shea 4-9-4 oc purlins, exc 2-0-0 oc purlins (5-0	*Except* 2-3:2x4 SF pt* 9-1,5-4:2x4 SPF I athing directly applied sept end verticals, an -14 max.): 2-3.	6) All bearings F 7) Refer to gird 8) Provide mec bearing plate 9 and 97 lb 9) This truss is International 1 or R802.10.2 a d 10) Graphical pu	are assumed to l er(s) for truss to hanical connecti e capable of with uplift at joint 5. designed in acco Residential Cod nd referenced sta riln representatio ation of the purlir	truss conr on (by oth standing 9 ordance w le sections andard AN on does no	b.2 . nections. ers) of truss t 07 lb uplift at j ith the 2018 \$ R502.11.1 a NSI/TPI 1. ot depict the s	to joint and	7-0	2000	240	Wegnt. 72 ID	MISSO
BOT CHORD Rigid ceiling directly bracing. REACTIONS (size) 5=0-3-8, 9 Max Horiz 9=36 (LC Max Grav 5=97 (LC Max Grav 5=917 (LC	l= Mechanical 12) 9), 9=-97 (LC 8)	LOAD CASE(S)								S JU/ GAR	
FORCES (lb) - Maximum Com Tension TOP CHORD 1-2=-1435/154, 2-3=	pression/Maximum -1227/174, -839/142, 4-5=-839/1 34/1227, 5-7=-135/54 /160, 3-7=-13/220,								Philip	NUM E-2000	• 41.
 NOTES Unbalanced roof live loads have this design. Wind: ASCE 7-16; Vult=115mph Vasd=91mph; TCDL=6.0psf; BCI II; Exp C; Enclosed; MWFRS (en cantilever left and right exposed right exposed; Lumber DOL=1.60 Provide adequate drainage to pro chord live load nonconcurrent wit * This truss has been designed fr on the bottom chord in all areas of 3-06-00 tall by 2-00-00 wide will in chord and any other members. 	(3-second gust) DL=6.0psf; h=25ft; Ci velope) exterior zone; end vertical left and plate grip DOL=1.60 event water ponding. a 10.0 psf bottom th any other live load: or a live load of 20.0p where a rectangle	;;) S. Sf							"HILLING	PROPERTY OF	952 ALENO

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent oulgase with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)



Job	Truss	Truss Type	Qty	Ply	Lot 117 MN	
240613	A4A	Нір	1	1	Job Reference (optional)	164130708

τιοι

LEE'S'SUMMIT'SMISSOUR 04/22/2024 8:24:40

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a trust system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria**, and **DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

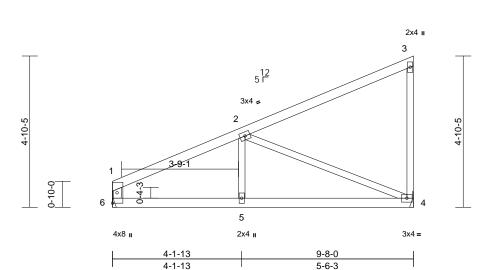
Job	Truss	Truss Type	Qty	Ply	Lot 117 MN	
240613	A5A	Monopitch	1	1	Job Reference (optional)	164130709

4-1-13

4-1-13

Wheeler Lumber, Waverly, KS - 66871,

Run: 8.73 S Feb 22 2024 Print: 8.730 S Feb 22 2024 MiTek Industries, Inc. Fri Mar 08 12:04:33 ID:dUsF6I9_BQqiA92cQC1MRyzitP0-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

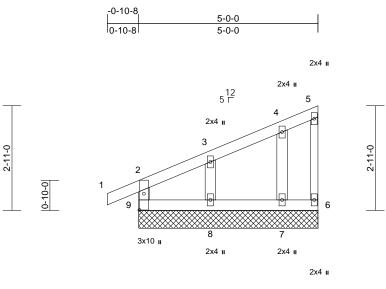

9-8-0

5-6-3

Page: 1

TION VIEW

DEVELOPMENT: SERVICES LEE'S SUMMIT: MISSOURI 04/22/2024 8:24:40



Loading TCLL (roof) TCDL BCLL BCDL	(psf) 25.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018/TPI2014	CSI TC BC WB Matrix-S	0.39 0.36 0.43	DEFL Vert(LL) Vert(CT) Horz(CT) Wind(LL)	in -0.04 -0.09 0.01 0.03	(loc) 4-5 4-5 4 4-5	l/defl >999 >999 n/a >999	L/d 360 240 n/a 240	PLATES MT20 Weight: 33 lb	GRIP 197/144 FT = 10%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD BOT CHORD REACTIONS (s M FORCES TOP CHORD BOT CHORD BOT CHORD WEBS NOTES 1) Wind: ASCE Vasd=91mp II; Exp C; Er cantilever le right expose 2) This truss ha chord live lo 3-06-00 tall chord and at 4) All bearings 5) Refer to gird 6) Provide med bearing platt 6 and 101 lb 7) This truss is International	2x4 SPF No.2 2x4 SPF No.2 2x3 SPF No.2 *Exce Structural wood she 6-0-0 oc purlins, ex Rigid ceiling directly bracing.	pt* 6-1:2x4 SPF No. athing directly applie cept end verticals. applied or 10-0-0 oc nical, 6= Mechanica C 7) C 8), 6=-58 (LC 8) C 1), 6=424 (LC 1) pression/Maximum 79/82, 2-3=-138/37, 114/484 /187 (3-second gust) DL=6.0psf; h=25ft; C ivelope) exterior zor ; end vertical left am 0 plate grip DOL=1.6 a 10.0 psf bottom th any other live load or a live load of 20.0 where a rectangle fit between the botto SPF No.2 is connections. by others) of truss to dding 58 lb uplift at jo ance with the 2018 ections R502.11.1 at	LOAD CASE(S)			VIIIQ(LL)	0.03			111 * Phili	DATE OF JU/ GAR NUM E-2000 SS/ON/ ICE 16 PROFESS/ON	MISSOUR CIA BER 162101 ALENGIN SEO 952
											Maro	11,2024

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent toulsable personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

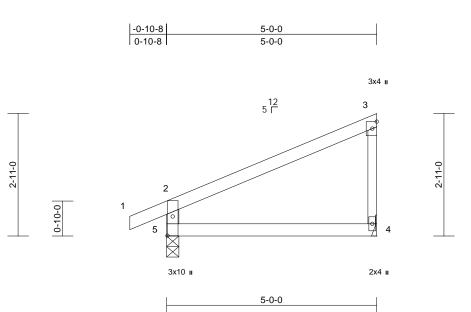
Job	Truss	Truss Type		Ply	Lot 117 MN		
240613	B1	Monopitch Supported Gable	1	1	Job Reference (optional)	164130710	

Run: 8.73 S Feb 22 2024 Print: 8.730 S Feb 22 2024 MiTek Industries, Inc. Fri Mar 08 12:04:33 ID:5yy3uSNHyx59LwQ3T_La9lzitOk-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

5-0-0	

Scale = 1:32.1 Plate Offsets (X_Y): [9:0-5-8.0-1-8]

			1		1						-
Loading (psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof) 25.0 TCDL 10.0	Plate Grip DOL Lumber DOL	1.15 1.15	TC BC	0.07 0.03	Vert(LL) Vert(CT)	n/a n/a	-	n/a n/a	999 999	MT20	197/144
3CLL 0.0*	Rep Stress Incr	YES	WB	0.03	Horz(CT)	0.00	- 6	n/a	999 n/a		
BCDL 10.0	Code	IRC2018/TPI2014	Matrix-R	0.02	11012(01)	0.00	0	n/a	n/a	Weight: 19 lb	FT = 10%
OTHERS 2x4 SPF No.2 BRACING TOP CHORD Structural wood she 5-0-0 oc purlins, ex BOT CHORD Rigid ceiling directly bracing. REACTIONS (size) 6=5-0-0, 7 Max Horiz 9=118 (LC Max Uplift 6=-20 (LC 8), 9= Max Grav 6=15 (LC	applied or 6-0-0 oc 7=5-0-0, 8=5-0-0, 9=5 5), 7=-28 (LC 8), 8= -23 (LC 4) 1), 7=154 (LC 1), 8=7	on the bot 3-06-00 ta chord and 8) All bearing 9) Provide m bearing pla 9, 20 lb up uplift at joi 10) This truss Internation R802.10.2 -73	is designed in acco al Residential Cod and referenced sta	as where will fit betw s. De SPF No on (by oth standing 2 uplift at join ordance w e sections	a rectangle veen the botto c.2. ers) of truss t :3 lb uplift at j nt 8 and 28 lb ith the 2018 \$ R502.11.1 a	o o oint o			*	JU/ GAR	
(LC 1), 9= FORCES (Ib) - Maximum Com	160 (LC 1) pression/Maximum								P	NUM	BER a
Tension									=1	E-2000	• 41.
TOP CHORD 2-9=-142/36, 1-2=0/ 3-4=-60/26, 4-5=-43	, ,								-1	A	
BOT CHORD 8-9=-38/27, 7-8=-38										1.88	
WEBS 3-8=-131/88, 4-7=-1										ON	ALEIN
NOTES											110
 Wind: ASCE 7-16; Vult=115mph Vasd=91mph; TCDL=6.0psf; BC II; Exp C; Enclosed; MWFRS (er cantilever left and right exposed right exposed; Lumber DOL=1.6 Truss designed for wind loads ir only. For studs exposed to wind see Standard Industry Gable En or consult qualified building desig Gable requires continuous bottoi Truss to be fully sheathed from or braced against lateral movemen Gable studs spaced at 2-0-0 oc. This truss has been designed fou chord live load nonconcurrent with 	DL=6.0psf; h=25ft; C ivelope) exterior zone; end vertical left and plate grip DOL=1.60 the plane of the trus (normal to the face), d Details as applicabl gner as per ANSI/TPI n chord bearing. one face or securely (i.e. diagonal web). a 10.0 psf bottom	e; 0 ss le, 1.									GARCIA NSEO 952 VSAS


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent toulsable personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

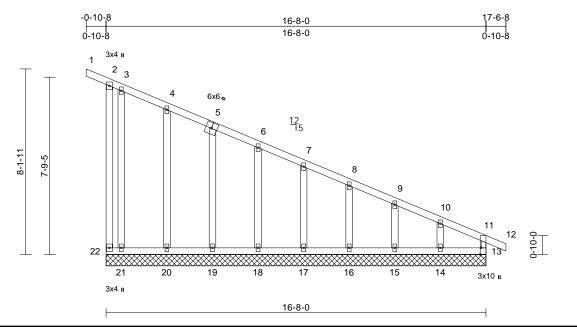
Job	Truss	Truss Type	Qty	Ply	Lot 117 MN	
240613	B2	Monopitch	8	1	Job Reference (optional)	164130711

Run: 8,73 S Feb 22 2024 Print: 8,730 S Feb 22 2024 MiTek Industries, Inc. Fri Mar 08 12:04:33 ID:w6JK9VR2Xnrl3rtDqFS_P0zitOe-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:27.4	
----------------	--

Plate Offsets (X, Y): [5:0-5-8,0-1-8]


Loading TCLL (roof) TCDL BCLL	(psf) 25.0 10.0 0.0*	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr	2-0-0 1.15 1.15 YES	CSI TC BC WB	0.29 0.18 0.00	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.02 -0.04 0.00	(loc) 4-5 4-5 4	l/defl >999 >999 n/a	L/d 360 240 n/a	PLATES MT20	GRIP 197/144
BCDL	10.0	Code	IRC2018/TPI2014	Matrix-R		Wind(LL)	0.01	4-5	>999	240	Weight: 15 lb	FT = 10%
BOT CHORD WEBS BRACING TOP CHORD BOT CHORD REACTIONS (2x4 SPF No.2 2x4 SPF No.2 2x3 SPF No.2 *Exce Structural wood shea 5-0-0 oc purlins, exc Rigid ceiling directly bracing. size) 4= Mecha Max Horiz 5=118 (LC	athing directly applie cept end verticals. applied or 10-0-0 od nical, 5=0-3-8	ed or	Standard							IN OF	MISSO
FORCES	Max Uplift 4=-51 (LC Max Grav 4=206 (LC (Ib) - Maximum Com Tension 1-2=0/27, 2-3=-117/2	C 1), 5=293 (LC 1) pression/Maximum								111×	ク・JU/ GAR	
	2-5=-257/90 4-5=-33/30									PH	NUM	• 41.
 Wind: ASCI Vasd=91mp II; Exp C; E cantilever let 	E 7-16; Vult=115mph oh; TCDL=6.0psf; BCI nclosed; MWFRS (en oft and right exposed ed; Lumber DOL=1.60	DL=6.0psf; h=25ft; (velope) exterior zor ; end vertical left and	ie; d								SS/ON	AL ENGLIT
 This truss h chord live lo * This truss on the botto 	as been designed for bad nonconcurrent wit has been designed for m chord in all areas v by 2-00-00 wide will t	a 10.0 psf bottom th any other live load or a live load of 20.0 where a rectangle	ds. psf								UAN CE	GARCIA NSEO
 chord and a All bearings Fefer to gire Provide me bearing plat 	are assumed to be S der(s) for truss to trus chanical connection (te capable of withstar uplift at joint 5.	SPF No.2 . s connections. by others) of truss to	D							THINK.	169 PHO	952
 This truss is International 	a designed in accorda al Residential Code se and referenced stands	ections R502.11.1 a	nd									AL ENGIN

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent toulsable personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

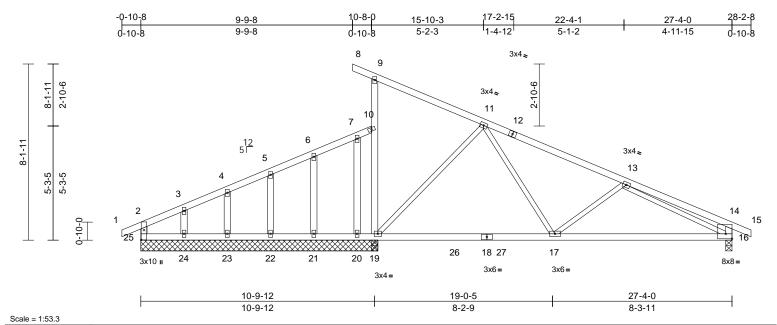
Job	Truss	Truss Type	Qty	Ply	Lot 117 MN	
240613	C1	Roof Special Supported Gable	1	1	Job Reference (optional)	164130712

Run: 8.73 S Feb 22 2024 Print: 8.730 S Feb 22 2024 MiTek Industries, Inc. Fri Mar 08 12:04:33 ID:BqClltu83zs4Jtq9mktaY2zitg7-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Scale = 1:50.6

Plate Offsets (X, Y): [13:0-3-8,Edge]

		-											
Loading	(psf)	Spacing	2-0-0		csi		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15		тс	0.24	Vert(LL)	n/a	-	n/a	999	MT20	197/144
TCDL	10.0	Lumber DOL	1.15		BC	0.15	Vert(CT)	n/a	-	n/a	999		
BCLL	0.0*	Rep Stress Incr	YES		WB	0.10	Horz(CT)	0.01	13	n/a	n/a		
BCDL	10.0	Code	IRC20	18/TPI2014	Matrix-R							Weight: 87 lb	FT = 10%
LUMBER					10-14=-128/126, 9								
TOP CHORD	2x4 SPF No.2				8-16=-139/75, 7-1								
BOT CHORD					5-19=-141/75, 4-2	20=-140/	61, 3-21=-72/9	99					
WEBS		ept* 13-11:2x3 SPF N	lo.2	NOTES									
OTHERS	2x4 SPF No.2				7-16; Vult=115m								
BRACING					h; TCDL=6.0psf; E								
TOP CHORD		eathing directly applie	ed or		closed; MWFRS								
	6-0-0 oc purlins, ex				ft and right expose								Un.
BOT CHORD	0 0 .	applied or 6-0-0 oc			ed; Lumber DOL=1							N'OF	MISSI
	bracing.				uds exposed to wi							NE	····Soli
REACTIONS		0, 14=16-8-0, 15=16			d Industry Gable I							17	
		0, 17=16-8-0, 18=16	,		ualified building de						-	S. JU	ANI
	22=16-8-	0, 20=16-8-0, 21=16-	-0-0,		e 2x4 MT20 unles						-		
	Max Horiz 22=-347				res continuous bot						= *	GAF	
	Max Uplift 14=-149	· /)	5) Truss to be	fully sheathed fror	n one fa	ce or securely	,			-		
		_C 9), 17=-47 (LC 9),	,,		nst lateral movem		liagonal web)				= 7	NUM	
		_C 9), 19=-53 (LC 9),			spaced at 2-0-0 c						-5	•	• 41.
	20=-31 (I	_C 9), 21=-57 (LC 9),			as been designed						-	E-2000	162101
	22=-134				ad nonconcurrent						1	A	
	Max Grav 13=233 (.,		has been designe			Upst				108/00	ENGIN
	,	LC 1), 16=179 (LC 1)			m chord in all area by 2-00-00 wide w			om				I.ON	ALLIN
		LC 1), 18=179 (LC 1)			ny other members			UIII					TD.
		LC 1), 20=181 (LC 1)			are assumed to b		0.2						in.
	(LC 15), 22=104 (LC			chanical connectio			to.				UCE 16	
FORCES	(Ib) - Maximum Cor Tension	npression/Maximum			e capable of withs							NAU	GARCIN
TOP CHORD		27/0 2 2 22/26			plift at joint 14, 23							Nº JOINTE	No
IOP CHORD		=-27/0, 2-3=-03/30, 168/35, 6-7=-182/27,		uplift at joint	16, 47 lb uplift at	joint 17,	47 lb uplift at	joint					ED . S
	,	230/27, 9-10=-249/28			lift at joint 19, 31 lt	o uplift at	joint 20 and	57 lb			-		1 2
		12=0/26, 11-13=-188	/n	uplift at joint								1	
BOT CHORD					designed in acco						-	: 16	952 : =
	19-20=-32/284, 18-	,			Residential Code			and			-	DI	1 in-
	17-18=-32/284, 16-	17=-32/284,			ind referenced sta	ndard Al	NSI/TPI 1.				-	P.	
	15-16=-32/284, 14-	15=-32/284,		_OAD CASE(S)	Standard							- A . HA	6 51 5
	13-14=-32/284											1. 60	G
												NO/ON	ALENI
												1111	IIIII
													h 11 2024


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent oulgase with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TPI1 Quality Criteria, and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcscomponents.com)

March 11,2024

Job	Truss	Truss Type	Qty	Ply	Lot 117 MN	
240613	C2	Roof Special Structural Gable	1	1	Job Reference (optional)	164130713

Run: 8,73 S Feb 22 2024 Print: 8,730 S Feb 22 2024 MiTek Industries, Inc. Fri Mar 08 12:04:33 ID:Jh7LtO4c_5DA3xK?WJeYXjziteb-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Plate Offsets (X, Y): [16:Edge,0-2-12], [25:0-5-8,0-1-8]

	X, Y): [16:Edge,0-2-1.				_								
Loading TCLL (roof) TCDL BCLL BCDL	(psf) 25.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC20	18/TPI2014	CSI TC BC WB Matrix-S	0.44 0.64 0.95	DEFL Vert(LL) Vert(CT) Horz(CT) Wind(LL)		(loc) 17-19 16-17 16 17	l/defl >999 >999 n/a >999	L/d 360 240 n/a 240	PLATES MT20 Weight: 111 lb	GRIP 197/144 FT = 10%
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD	2x4 SPF No.2 2x4 SPF No.2 2x3 SPF No.2 *Exce No.2, 16-14:2x4 SPF 2x4 SPF No.2 Structural wood she: 5-7-8 oc purlins, exc Except: 6-0-0 oc bracing: 9-1 Rigid ceiling directly bracing, Except:	2100F 1.8E athing directly applied cept end verticals.	PF \ d or 1	NOTES I) Unbalanced this design 2) Wind: ASC	22-23=-28/226, 21 20-21=-28/226, 19 16-17=-119/986 13-16=-820/132, 1 11-17=-27/562, 13 3-24=-129/120, 4-2 6-21=-145/74, 7-20 d roof live loads hav	-22=-28, -20=-28, 1-19=-7; -17=-33; 23=-143, 0=-80/67 re been o	226, 226, 17-19=(20/238, 5/215, 61, 5-22=-14 considered fo considered fo	0/74, r	or t	he orien om choi	tation c rd.	of the purlin along	MISSOU
	10-0-0 oc bracing: 1 (size) 16=0-3-8, 21=10-11: 25=10-11: 25=10-11: Max Horiz 25=-117 (Max Uplift 16=-119 (20=-266 (22=-54 (L) 24=-134 (L) 20=-234 (L) 22=-78 (L)	19=10-11-8, 20=10- -8, 22=10-11-8, -8, 24=10-11-8, -8 LC 5) LC 9), 19=-139 (LC 9 LC 14), 21=-42 (LC 8 C 8), 23=-27 (LC 8), LC 8) .C 24), 19=1178 (LC 22; C 21), 21=216 (LC 22; C 21), 21=216 (LC 22; C 21), 21=216 (LC 17; pression/Maximum 42, 3-4=-147/44, 7/63, 6-7=-49/73, -234/82, 9-10=-214/7; /61, 11-13=-914/113,	3), 2 3), 5 24), 6 3), 7 3), 7 3), 8 (), 8 (), 8 (), 9 (), 8 (), 9 (), 8 (), 9 (), 9	 II; Exp C; E cantilever la right exposs Truss desi only. For s see Standa or consult C All plates a Truss to be braced aga Gable stud: This truss fi chord live la * This truss on the bottot 3-06-00 tall chord and a All bearings Provide me bearing pla 19, 119 b u uplift at join 21 and 266 This truss i International 	on, TCDL=0.0pst, B nclosed; MWFRS (r eff and right expose ed; Lumber DOL=1. gned for wind loads tuds exposed to wir ird Industry Gable E jualified building de: re 2x4 MT20 unless fully sheathed from inst lateral moveme is spaced at 2-0-0 or has been designed foad nonconcurrent to has been designed foad nonconcurrent to has been designed om chord in all area: by 2-00-00 wide wi any other members, is are assumed to be chanical connectior te capable of withst uplift at joint 16, 134 t 23, 54 lb uplift at joint 20. is designed in accorra al Residential Code and referenced star	enveloped d; end \ 60 plate in the p dd (norm ind Deta signer as o therwin d one fac or a 10.0 with any t for a liv s where II fit betw with BC e SPF No a (by oth anding 1 lb uplift bint 22, 4 dance w sections	 exterior zor rertical left an grip DOL=1. ane of the tru. ane of the tru. ane of the tru. ane of the tru. be rANSI/TF se indicated. e or securely iagonal web) psf bottom other live loa e load of 20.0 a rectangle veen the bottod DL = 10.0psf D.2 otruss t at joint 24, 27 Iz Ib uplift at ith the 2018 R502.11.1 a 	ne; d 60 iss), ble, Pl 1. ds.)psf om ; om joint 7 lb joint			** PH-11	GAR NUMI E-20001 SS/ON CE 160 PROVINI	CIA BER 62101 LENG NSEO 52 SAS

 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.
 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not besign value to dury with with where outputs into design is based only door parameters shown, and is for an individual building design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members and property incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TPH1 Quality Criteria**, and **DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcscomponents.com)

March 11,2024

Job	Truss	Truss Type	Qty	Ply	Lot 117 MN	
240613	С3	Roof Special Girder	1	3	Job Reference (optional)	164130714

Run: 8,73 S Feb 22 2024 Print: 8,730 S Feb 22 2024 MiTek Industries, Inc. Fri Mar 08 12:04:33 ID:UPX4fXz0rD6rX0DeA9uIvvzitYH-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

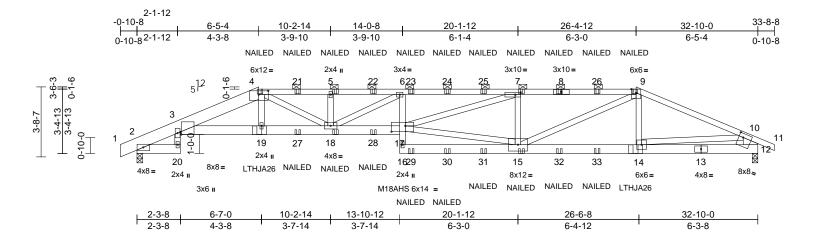
March March March 11,2024

DEVELOPMENT SERVICES LEE'S'SUMMIT'SMISSOURI 04/22/2024 8:24:40

TION

IEW

28-2-8 0-10-8 17-2-15 10-8-0 20-5-1 5-5-12 9-9-8 15-7-7 27-4-0 1-7-8 5-5-12 4-3-12 0-10-8 4-11-7 3-2-2 6-10-15 2x4 🛛 4 3x6 👟 5 2-10-6 2-10-6 8-1-11 5x8≈ 12 -6 12 51 7 18 3x6 👟 8-1-11 3x6 ≠ 8 2 5-3-5 5-3-5 8x12 🚅 1 9 10 0-10-0 N 17 Ш Π ПГ 19 20 21 16 22 23 24 14 25 13 26 27 1228 8x8= 7x12 8x8= M18AHS 5x14 = 8x8= HUS26 HUS26 HUS26 HUS26 HUS26 HUS26 HUS26 HGUS26-2 HUS26 8x8= HUS26 HUS26 5-5-12 10-9-12 15-7-7 20-5-1 27-4-0 5-5-12 5-4-0 4-9-11 4-9-10 6-10-15 Scale = 1:59.1


								-			-	-	
Loading TCLL (roof)	(psf) 25.0	Spacing Plate Grip DOL	2-0-0 1.15		CSI TC	0.86		in -0.22	(loc) 12-13	l/defl >999	L/d 360	PLATES MT20	GRIP 197/144
TCDL	10.0	Lumber DOL	1.15		BC	0.57	Vert(CT)	-0.39	12-13	>826	240	M18AHS	186/179
BCLL BCDL	0.0* 10.0	Rep Stress Incr Code	NO	8/TPI2014	WB Matrix-S	1.00	Horz(CT) Wind(LL)	0.07	11 12-13	n/a >999	n/a 240	Weight: 479 lb	FT = 10%
	10.0	Code	11(0201	10/11/2014	Wath -0	-	WING(LL)	0.15	12-13	2000	240	Weight. 473 lb	11 = 1070
LUMBER TOP CHORD BOT CHORD	2x4 SPF 2100F 1.8E No.2 2x6 SP 2400F 2.0E	E *Except* 4-7:2x4 S		(0.131"x3") I Top chords	b be connected to nails as follows: connected as follo t 0-4-0 oc, 2x10 -	ows: 2x4	- 2 rows	-9-0	´Tru 0-1	ss) or eo 0-0 from	quivale the lef	nt spaced at 2-0-	4-10d Girder, 6-10d 0 oc max. starting at to connect truss(es)
WEBS	2x4 SPF No.2 *Exce 2.0E, 11-9:2x8 SP 24		00F	Bottom chor	ows staggered at ds connected as		x6 - 3 rows		13) Use 8-1	e Simpso 0d Truss	on Stro s) or ee	ng-Tie HGUS26- wivalent at 20-9-	2 (20-10d Girder, 3 from the left end to
BRACING				staggered at	t 0-4-0 oc. xted as follows: 2x	(1 1 row	at 0 0 0 aa						ottom chord.
TOP CHORD	Structural wood shea 5-2-9 oc purlins, exe Except: 6-0-0 oc bracing: 3-5	cept end verticals.	ed or 2)) All loads are except if not CASE(S) se	e considered equa ed as front (F) or ction. Ply to ply co	Illy applie back (B) onnection	d to all plies, face in the LC s have been		LOAD (CASE(S) Star	dard GAR (balanced): Lun	CIA nber Increase=1.15,
BOT CHORD	Rigid ceiling directly bracing.		;	unless other	distribute only loa wise indicated.					niform Lo	oads (I		• 41-
	(size) 11=0-3-8, (req. 0-5-' Max Horiz 17=-127 (Max Uplift 11=-836 (Max Grav 11=8681 (LĆ 5) LC 9), 17=-100 (LC	4) 8)	this design. Wind: ASCE Vasd=91mp II; Exp C; Er	roof live loads ha 7-16; Vult=115m h; TCDL=6.0psf; l nclosed; MWFRS ft and right expos	iph (3-seo BCDL=6.4 (envelope	cond gust) Opsf; h=25ft; e) exterior zoi	Cat. ne;	Co	Vert: 15 21=-144 (B), 25=	ted Lo =-1443 43 (B), =-1441	ads (15) 3 (B), 19=-/1345 (B), 20=-1486 (B), 3=-1443 (B), 24=-1443), 27=-1445 (B),
FORCES	(lb) - Maximum Com Tension	pression/Maximum	5	right expose	d; Lumber DOL= MT20 plates un	1.60 plate	grip DOL=1.	.60		28=-297	73 (B)		
TOP CHORD	1-2=-18056/822, 2-3 3-15=-77/5571, 3-5= 5-6=-221/21, 6-8=-1- 8-9=-17600/1605, 9- 1-17=-8618/452, 9-1	188/108, 4-5=-27/0 4745/1097, -10=0/32,	6) This truss ha chord live lo) * This truss l on the botto	as been designed ad nonconcurrent has been designe m chord in all area	for a 10. with any d for a liv as where	0 psf bottom other live loa e load of 20.0 a rectangle	ids. Opsf					
BOT CHORD	16-17=-123/4457, 15 13-15=-675/14016, 1 11-12=-478/4140	5-16=-752/16592,	8)	chord and and and and and and and and and an	by 2-00-00 wide v ny other members Required bearing	s. size at jo		om				IN JUAN CE	SARCIA NSE
WEBS	2-16=0/2138, 2-15=- 3-6=-13503/1078, 6- 8-13=-3088/677, 8-1 1-16=-660/12239, 9- 3-13=-1016/0	-13=-361/6106, 2=-441/2689,	1) All bearings 0) Provide med bearing plate 17 and 836	input bearing size are assumed to b chanical connection e capable of withs b uplift at joint 11 designed in acco	be SPF Note on (by oth standing 1	ers) of truss t 00 lb uplift at				WIIIII.	DI 16	952
NOTES			1	International	Residential Code	e sections	s R502.11.1 a	and			-	PO	M. HE

R802.10.2 and referenced standard ANSI/TPI 1.

 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.
 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not besign value to dury with with where outputs into design is based only door parameters shown, and is for an individual building design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members and property incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TPH1 Quality Criteria**, and **DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcscomponents.com)

Job	Truss	Truss Type	Qty	Ply	Lot 117 MN	
240613	D1	Hip Girder	1	2	Job Reference (optional)	164130715

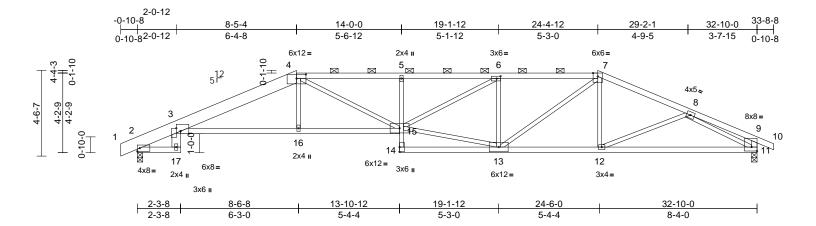
Run: 8,73 S Feb 22 2024 Print: 8,730 S Feb 22 2024 MiTek Industries, Inc. Fri Mar 08 12:04:34 ID:rnApu3Pg6Ah8v11x_yRabbzitRG-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Scale = 1:60.9

Plate Offsets (2	X, Y): [3:0-0-11,Edge], [4:0-6-0,0-2-6]. [7:	0-3-8,0-1	8], [12:0-2-12.	0-2-8], [17:0-8-12	2,0-3-121									
					1	4	DEEL		(1	1/-1-4	1.74	DI ATTO			
Loading TCLL (roof)	(psf) 25.0	Spacing Plate Grip DOL	2-0-0 1.15		CSI TC	0.72	DEFL Vert(LL)	in 0.49	(loc) 17	l/defl >814	L/d 360	PLATES MT20	GRIP 197/144		
TCDL (1001)	25.0 10.0	Lumber DOL	1.15		BC	0.72	Vert(LL)	-0.48 -0.86	17	>814 >453	360 240	M120 M18AHS	142/136		
BCLL	0.0*	Rep Stress Incr	NO		WB				12	>455 n/a	240 n/a	INTOARS	142/130		
		1 1				0.93	. ,	0.31				Mainht 047 lb	FT 400/		
BCDL	10.0	Code	IRC20	8/TPI2014	Matrix-S		Wind(LL)	0.40	17	>968	240	Weight: 347 lb	FT = 10%		
L UMBER TOP CHORD	2x4 SPF 2100F 1.8E 2400F 2.0E, 9-11:2x			(0.131"x3") Top chords	to be connected to nails as follows: connected as fol	lows: 2x8	- 2 rows		Lef	t Hand F	lip) or truss(e	equivalent at 6-5 s) to front face of			
BOT CHORD	2x6 SPF No.2 *Exce 2.0E			rows stagge	at 0-9-0 oc, 2x4 - ered at 0-9-0 oc.) - 2	Rig	ht Hand	Hip) o	r equivalent at 2	6-4-6 from the left en		
WEBS	2x4 SPF No.2 *Exce 2.0E	ept* 12-10:2x10 SP 2	400F	staggered a					15) Fill	all nail h	oles w	bere hanger is i	of bottom chord. In contact with lumber		
BRACING			-		cted as follows: 2							es 3-10d (0.148")			
TOP CHORD	Structural wood she 4-7-5 oc purlins, ex	cept end verticals, a		except if no	e considered equ ted as front (F) of ection, Ply to ply (r back (B)	face in the L	OAD	LOAD	CASE(S) Sta				
BOT CHORD	2-0-0 oc purlins (4-1 Rigid ceiling directly bracing.		;	CASE(S) section. Ply to ply connections have been provided to distribute only loads noted as (F) or (B), unless otherwise indicated. 1) Dead + Roof Live (balanced): Lumber Increase Plate Increase=115 Uniform Loads (b)(t) E-2000162101											
REACTIONS	•	12=0-3-8	3	3) Unbalanced roof live loads have been considered for Vert: 1-4=-70, 4-9=-70, 9-10=-70, 10-11=-70.											
	Max Horiz 2=49 (LC			this design.						2-20=-2	20, 3-1	7=-20,512-16=-2(ads.(lb) /ON	0		
	Max Uplift 2=-572 (L		4		E 7-16; Vult=115r			-	C	oncentra	ted Lo	ads (Ib) ON	ALENN		
	Max Grav 2=2995 (I				oh; TCDL=6.0psf;					Vert: 4=	-118 (F), 8=-126 (F), 1	9 ⊨-586 (F), 7=-126 (I		
ORCES	(lb) - Maximum Corr	<i>.</i>	1)		nclosed; MWFRS					15=-58	(F), 9=	-126 (F), 14=-48	35 (F), 5=-118 (F),		
ORCES	(ib) - Maximum Corr Tension	ipression/maximum			oft and right expo					18=-72	(F), 21	=-118 (F), 22=-1	118 (F), 23=-126 (F),		
TOP CHORD	1-2=0/6, 2-3=-1583/	313 3-18015/1750			ed; Lumber DOL=								-126 (F), 27=-72 (F),		
	4-5=-10707/2143, 5		5, 5 6		equate drainage t e MT20 plates ur								3 (F), 31=-58 (F),		
	6-7=-12075/2508, 7		7		as been designe							3=-58 (F)			
	9-10=-5702/1174, 1	,	1		ad nonconcurrer										
	10-12=-2880/620	o 0,0 .,	8		has been design										
BOT CHORD	2-20=0/0, 3-19=-161	18/8535.	0		om chord in all are			.opsi					11111		
	18-19=-1624/8602,				by 2-00-00 wide			tom				AL AN	GARO		
	15-16=-120/649, 14	-15=-1028/5185,			any other member		veen the bot	lonn				N' JUN	····· A		
	12-14=-254/1053	,	q		are assumed to		n 2					CE	NSF		
VEBS	3-20=-32/250, 16-17	7=0/290, 6-17=0/395			chanical connecti			to					10 1 1		
	4-19=-79/850, 15-17	7=-1531/7571,			te capable of with						2		1 2		
	7-17=-835/4152, 7-1	15=-2313/724,			b uplift at joint 12.			,			-	: 16	052		
	9-15=-678/3345, 9-1		1		s designed in acc		ith the 2018					10	GARCIA INSEO 952		
	10-14=-836/4197, 6				al Residential Cod							P	<u>i</u> <u>a</u>		
	5-18=-325/177, 4-18	3=-491/2462			and referenced st			-				201	M 145		
NOTES			1					size				- AN KAI	VSAS		
		12) Graphical purlin representation does not depict the size of the purlin science of the purlin science the ten and/or													

or the orientation of the purlin along the top and/or bottom chord.

 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.
 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not besign value to dury with with where outputs into design is based only door parameters shown, and is for an individual building design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members and property incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TPH1 Quality Criteria**, and **DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcscomponents.com) DEVELOPMENT SERVICES LEE'S'SUMMIT'SMISSOURI 04/22/2024 8:24:40



ΓΙΟΝ

FW

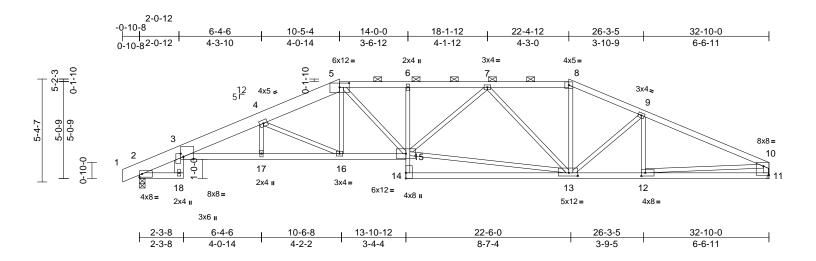
Job	Truss	Truss Type	Qty	Ply	Lot 117 MN	
240613	D2	Нір	1	1	Job Reference (optional)	164130716

Run: 8.73 S Feb 22 2024 Print: 8.730 S Feb 22 2024 MiTek Industries, Inc. Fri Mar 08 12:04:34 ID:untV3V8QbDauQ24xu7aCNfzitSu-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

Scale = 1:61

Plate Offsets ((X, Y): [3:0-5-4,Edge],	, [3:0-1-14,0-2-11], [4:0-6-0,0-	2-10], [6:0-2-8,0)-1-8], [9:Edge,0-	-2-8]							
Loading TCLL (roof) TCDL 3CLL 3CDL	(psf) 25.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC20	18/TPI2014	CSI TC BC WB Matrix-S	0.73 0.69 0.97	DEFL Vert(LL) Vert(CT) Horz(CT) Wind(LL)	in -0.38 -0.68 0.37 0.28	(loc) 5 15-16 11 5	l/defl >999 >576 n/a >999	L/d 360 240 n/a 240	PLATES MT20 Weight: 138 lb	GRIP 197/144 FT = 10%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SPF No.2 *Exce 2.0E 2x4 SPF No.2 *Exce 1.8E, 5-14:2x3 SPF 2x3 SPF No.2 *Exce 11-9:2x4 SPF No.2 Structural wood she 3-0-13 oc purlins, e 2-0-0 oc purlins (2-4 Rigid ceiling directly bracing.	ept* 1-4:2x8 SP 240 ept* 3-15:2x4 SPF 2 No.2 ept* 17-3:2x6 SPF N athing directly appli xcept end verticals, I-2 max.): 4-7. applied or 10-0-0 o 11=0-3-8 8) C 4), 11=-208 (LC 5	3 0F 4 100F 5 lo.2, ed or 7 and bc 8 g5) 1)	 Provide ade This truss ha chord live lo * This truss lo on the botto 3-06-00 tall chord and a All bearings Provide mee bearing plate 2 and 208 lb This truss is International R802.10.2 a Graphical put 	quate drainage to as been designed ad nonconcurren has been designed m chord in all are by 2-00-00 wide 'n ny other member are assumed to l chanical connecti e capable of with uplift at joint 11. designed in acco Residential Cod nd referenced st urlin representatio ation of the purlir d.	d for a 10. t with any ed for a liv eas where will fit betw s. be SPF No on (by oth standing 2 ordance w le sections andard AN on does no	water pondin 0 psf bottom other live loo e load of 20. a rectangle veen the bot 0.2. ers) of truss 208 lb uplift a ith the 2018 is R502.11.1 i USI/TPI 1. bt depict the	ng. ads. .0psf tom to at joint and				JUA GAR	MISSOL NN CIA
FORCES	(lb) - Maximum Com Tension 1-2=0/0, 2-3=-785/1 4-5=-3996/647, 5-6= 6-7=-2991/507, 7-8= 9-10=0/27, 9-11=-35	12, 3-4=-3408/473, 3968/644, 2553/374, 8-9=-42			Clandard						1111	E-20001	62101
BOT CHORD)/3212, 15-16=-366/ -353/154, 13-14=-2	,									IN UAN C	ARO
WEBS	3-17=0/56, 4-16=0/2 13-15=-382/2838, 6 6-13=-988/244, 7-13 8-12=0/319, 8-11=-2	240, 4-15=-204/1018 -15=-162/1134, 3=-186/949, 7-12=0/	,									JUN JUN	NSEO
this design 2) Wind: ASC Vasd=91n II; Exp C; cantilever	ed roof live loads have	been considered fo (3-second gust) DL=6.0psf; h=25ft; hvelope) exterior zoi ; end vertical left ar	Cat. ne; nd								THUNK .	PROCESSION	952 ALENGIII

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent toulsable personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)



March 11,2024

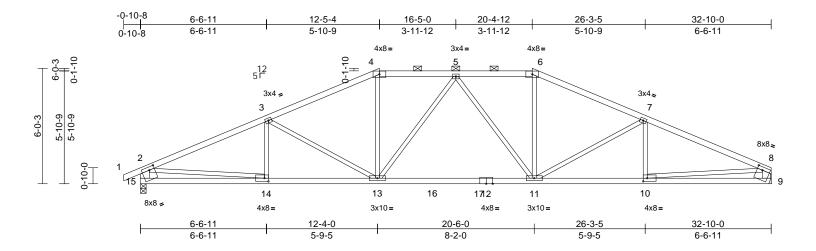
Job	Truss	Truss Type	Qty	Ply	Lot 117 MN	
240613	D3	Нір	1	1	Job Reference (optional)	164130717

Run: 8,73 S Feb 22 2024 Print: 8,730 S Feb 22 2024 MiTek Industries, Inc. Fri Mar 08 12:04:34 ID: AuO0 edFKWH58t2n9IdqmclzitaW-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:60.1

Plate Offsets ((X, Y): [3:0-6-4,Edge]	, [3:0-1-14,0-1-11], [5:0-6-0,0-	2-10], [10:Edge	,0-5-11], [12:0-2	-8,0-2-0], [13:0-5-8,0-2	-0]					
.oading TCLL (roof) TCDL BCLL BCDL	(psf) 25.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC20	18/TPI2014	CSI TC BC WB Matrix-S	0.79 0.69 0.95	DEFL Vert(LL) Vert(CT) Horz(CT) Wind(LL)	0.30		l/defl >999 >691 n/a >999	L/d 360 240 n/a 240	PLATES MT20 Weight: 151 lb	GRIP 197/144 FT = 10%
UMBER OP CHORD OT CHORD VEBS RACING OP CHORD OT CHORD EACTIONS	2x4 SPF No.2 *Exce 2.0E 2x4 SPF No.2 *Exce 1.8E, 6-14:2x3 SPF 2x3 SPF No.2 *Exce 11-10:2x4 SPF No.2 Structural wood she 2-2-0 oc purlins, ex 2-0-0 oc purlins (3-1 Rigid ceiling directly bracing.	ept* 1-5:2x8 SP 2400 ept* 3-15:2x4 SPF 2 No.2 ept* 18-3:2x6 SPF N eathing directly applie cept end verticals, a I-15 max.): 5-8. applied or 10-0-0 or 11= Mechanical 10) 2 4)	0F 2 100F 5 1007 5 10000 1007 5 1007 5 1000000000000000000000000000000000000	 Provide ade This truss h chord live lo * This truss on the botto 3-06-00 tall chord and a All bearings Refer to gird Provide met bearing plat 2. This truss is Internationa R802.10.2 a Graphical plat 	quate drainage t as been designe ad nonconcurrer has been design m chord in all ar by 2-00-00 wide ny other membe are assumed to ler(s) for truss to chanical connect e capable of with designed in acc I Residential Coo und referenced si urlin representati ation of the purli	d for a 10.0 th with any ed for a liv eas where will fit betw rs. be SPF Ne truss conr istanding 1 ordance w de sections andard AN on does no	water pondin O psf bottom other live load of 20. a rectangle veen the bott o.2. nections. ers) of truss 6 lb uplift at ith the 2018 5 R502.11.1 at USI/TPI 1. ot depict the	g. ads. Opsf aom to joint	13-10		*	JUA GAR	N CIA
ORCES OP CHORD	(lb) - Maximum Com Tension 1-2=0/0, 2-3=-786/1 4-5=-3072/67, 5-6=- 7-8=-2167/61, 8-9=-	5, 3-4=-3872/34, 3088/92, 6-7=-3070	/93,	OAD CASE(S)							1111	E-20001	62101 . W
OT CHORD	10-11=-1384/34 2-18=0/0, 3-17=-2/3 15-16=0/2784, 14-1 13-14=0/262, 12-13	5=0/160, 6-15=-253/	/64,									IN UAN C	ARC
VEBS	3-18=0/56, 4-16=-1(5-15=-36/561, 13-15 7-13=-919/80, 8-13= 9-12=-109/52, 10-12	5=-62/2498, 7-15=0/ =0/663, 9-13=-281/9	2,								-	LICE THE	NSEO
this design Wind: ASC Vasd=91n II; Exp C; and right e	ed roof live loads have n. CE 7-16; Vult=115mph nph; TCDL=6.0psf; BC Enclosed; MWFRS (er exposed ; end vertical OL=1.60 plate grip DC	i (3-second gust) :DL=6.0psf; h=25ft; (nvelope); cantilever l left and right expose	Cat. left								THURS.	OR STON	ALENGINI


 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.
 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not besign value to dury with with where outputs into design is based only door parameters shown, and is for an individual building design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members and property incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TPH1 Quality Criteria**, and **DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcscomponents.com)

March 11,2024

Job	Truss	Truss Type	Qty	Ply	Lot 117 MN	
240613	D4	Нір	1	1	Job Reference (optional)	164130718

Run: 8.73 S Feb 22 2024 Print: 8.730 S Feb 22 2024 MiTek Industries, Inc. Fri Mar 08 12:04:34 ID:Pps8qGk_PNo5rbZ4rp3vvuzitbA-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Scale = 1:60

Plate Offsets	(X, Y): [8:0-3-4,0-2-0],	[10:0-2-8,0-2-0], [14	:0-2-8,0-2	-0], [15:0-3-4,0)-2-0]								
Loading TCLL (roof) TCDL BCLL BCDL	(psf) 25.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018	8/TPI2014	CSI TC BC WB Matrix-S	0.61 0.90 0.69	DEFL Vert(LL) Vert(CT) Horz(CT) Wind(LL)		(loc) 11-13 11-13 9 11	l/defl >999 >808 n/a >999	L/d 360 240 n/a 240	PLATES MT20 Weight: 125 lb	GRIP 197/144 FT = 10%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD REACTIONS FORCES TOP CHORD BOT CHORD WEBS	2x4 SPF No.2 2x3 SPF No.2 *Exce No.2 Structural wood she 2-11-2 oc purlins, e 2-0-0 oc purlins (3-1 Rigid ceiling directly bracing. (size) 9= Mecha Max Horiz 15=49 (LC Max Uplift 9=-1 (LC Max Uplift 9=-1 (LC Max Grav 9=1515 (L (Ib) - Maximum Com Tension 1-2=0/30, 2-3=-2707 4-5=-2095/49, 5-6=- 7-8=-2714/8, 2-15=- 14-15=-86/566, 13-1 10-11=0/2443, 9-103	athing directly applie xcept end verticals, a 1-7 max.): 4-6. applied or 10-0-0 oc anical, 15=0-3-8 C 8) 9), 15=-12 (LC 8) C 2), 15=1580 (LC 2 pression/Maximum 7/7, 3-4=-2339/41, 2095/49, 6-7=-2342/ 1461/49, 8-9=-1392/ 1461/49, 8-9=-1392/ 14=0/2428, 11-13=0/; =-16/448 =-419/96, 4-13=0/611 138/98, 7-10=-95/96,	6) 7) and 8) and 5; 9) 10 2) LC 41, 37 2197, 1,	on the botton 3-06-00 tall I chord and ar All bearings Refer to gird Provide mec bearing plate 15 and 1 lb o This truss is International R802.10.2 a		eas where will fit betw rs, with BC be SPF No truss conr ion (by oth standing 1 ordance w de sections andard AN on does no	a rectangle veen the bott DL = 10.0ps o.2. nections. ers) of truss 2 lb uplift at R502.11.1 at R502.11.1 at SI/TPI 1.	om f. to joint and				JUAN C	CIA *
 this desig Wind: ASI Vasd=91r II; Exp C; and right of Lumber D Provide a This truss 	ed roof live loads have n. CE 7-16; Vult=115mph nph; TCDL=6.0psf; BC Enclosed; MWFRS (er exposed ; end vertical I OL=1.60 plate grip DC dequate drainage to pr has been designed for load nonconcurrent wi	(3-second gust) DL=6.0psf; h=25ft; C nvelope); cantilever le left and right exposed VL=1.60 event water ponding r a 10.0 psf bottom	Cat. eft d;								. THUNK	PORTS ION	952 ALENGIN

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSITPTI Quality Criteria, and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcscomponents.com)

March 11,2024

Job	Truss	Truss Type	Qty	Ply	Lot 117 MN	
240613	D5	Нір	1	1	Job Reference (optional)	164130719

Run: 8.73 S Feb 22 2024 Print: 8.730 S Feb 22 2024 MiTek Industries, Inc. Fri Mar 08 12:04:34 ID:A4pkxBdKXcgNGCNMpQPo1?zitbJ-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

-0-10-8 15-10-0 18-4-12 19-8-8 4-1-13 11-4-4 14-5-4 26-3-6 32-10-0 0-10-8 4-1-13 7-2-7 3-1-0 1-4-12 2-6-12 1-3-12 6-6-14 6-6-10 2x4 II 2x4 II 8x8= 6x6= 2x4 II 0-1-10 1-10 5 6 7 8 12 5 3x4 👟 6-10-3 9 6-8-9 6-8-9 3x4 ≠ 3 14 8x8= 2-0-0 10 0-10-0 Ľ, 13 16 Ř 18 17 12 7x12= 2x4 II 8x8= 4x8= 5x12= 5x12= 2x4 II 6x12= 4-1-13 11-4-4 15-11-4 19-7-4 26-3-6 32-10-0 4-1-13 7-2-7 4-7-0 3-8-0 6-8-2 6-6-10

Scale = 1:60.3

Plate Offsets (2	X, Y): [5:0-4-2,Edge],	[10:Edge,0-5-11], [1	5:0-5-0,E	dge], [18:0-2-8,	,0-2-0], [19:Edថ្	ge,0-5-11]							
L oading TCLL (roof) TCDL 3CLL 3CDL	(psf) 25.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC201	8/TPI2014	CSI TC BC WB Matrix-S	0.71 0.72 0.85	DEFL Vert(LL) Vert(CT) Horz(CT) Wind(LL)	-0.44 0.19	(loc) 14-15 14-15 11 14-15	l/defl >999 >886 n/a >999	L/d 360 240 n/a 240	PLATES MT20 Weight: 143 lb	GRIP 197/144 FT = 10%
	2x4 SPF No.2 2x4 SPF No.2 *Exce No.2 2x3 SPF No.2 *Exce 11-10:2x4 SPF 2400 Structural wood she 2-6-0 oc purlins, ex 2-0-0 oc purlins, ex 2-0-0 oc purlins (3-5 Rigid ceiling directly bracing. (size) 11= Mech Max Horiz 19=58 (LC Max Uplift 11=-12 (L Max Grav 11=1463 ((lb) - Maximum Com Tension 1-2=0/27, 2-3=-2604 4-5=-2339/89, 5-6=- 7-8=-3125/32, 8-9=- 2-19=-1485/36, 10-1 18-19=-50/248, 17-1 15-16=0/58, 6-15=-2 13-14=0/117, 8-14=- 11-12=-26/439 5-15=0/1297, 12-14= 9-15=-46/310, 7-14= 3-17=-32/87, 4-17= 15-17=0/2476	pt* 19-2:2x4 SPF No P 2.0E athing directly applie cept end verticals, ar -5 max.): 5-7. applied or 10-0-0 oc anical, 19=0-3-8 C 9), 19=-22 (LC 8) (LC 1), 19=1537 (LC pression/Maximum V/29, 3-4=-2376/26, 2675/7, 6-7=-2682/6 3219/0, 9-10=-2682/ 1=-1392/44 8=-54/2362, 16-17=! 278/43, 14-15=0/2609 -251/117, 12-13=0/43 e-0/2460, 9-14=0/543 e-4/2137, 10-12=0/14 e-82/984, 3-18=-220/	2.2, 3) 4) d or 5) 6) 7) 8) 1) 9) , 10 24, 10 24, 10 24, 10 25, 10 24, 10 24, 10 10 10 10 10 10 10 10 10 10	Vasd=91mpl II; Exp C; En and right exp Lumber DOL Provide ader This truss ha chord live loa * This truss ha chord live loa * This truss ha chord and ar All bearings Refer to gird Provide mec bearing plate 19 and 12 lb This truss is International R802.10.2 ar	ation of the pur 1.	sf; BCDL=6.0 S (envelopertical left and ip DOL=1.60 to prevent v ed for a 10.0 ent with any gned for a liv. ereas where e will fit betw ers. o be SPF No to truss conn- tion (by oth- thstanding 2 1. cordance wind ode sections standard AN tition does no	Dipsf; h=25ft;); cantilever right expose vater pondin 0 psf bottom other live loa e load of 20. a rectangle ecen the bott cections. ers) of truss 2 lb uplift at th the 2018 R502.11.1 a SI/TPI 1. th depict the si	left ed; g. ads. Opsf om to joint				JUAN C SON SYONA JUAN C LICE	
 Unbalance this design 	ed roof live loads have	been considered for									-	A	

this design.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent toulsable personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

March 11,2024

Job	Truss	Truss Type	Qty	Ply	Lot 117 MN	
240613	D6	Common	3	1	Job Reference (optional)	164130720

Run: 8.73 S Feb 22 2024 Print: 8.730 S Feb 22 2024 MiTek Industries, Inc. Fri Mar 08 12:04:35 ID:pay_Is9tjdlv4Dvs1kCfymzitbw-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

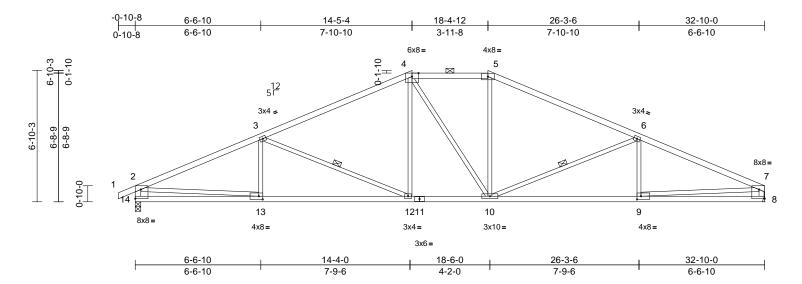
-0-10-8 0-10-8 4-1-13 11-4-4 16-5-0 21-5-12 28-8-3 32-10-0 4-1-13 7-2-7 5-0-13 5-0-12 7-2-7 4-1-13 4x5 II 5 ſ, 2x4 II 2x4 II 4 6 _12 5Γ 7-8-1 3x4 🚅 3x4 👟 3 7 2 8 0-10-0 Ę 45 9 m ⊠ 13 16 12 17 11 10 14 8x8= 8x8= 4x8= 4x8= 4x8= 4x8= 4x8= 4-1-13 11-4-4 21-5-12 28-8-3 32-10-0 4-1-13 7-2-7 10-1-9 7-2-7 4-1-13

Scale = 1:57.8

Diata Officiata (V. V).	$[0, \mathbb{E}]$ dec $0 \in [44]$ $[40, 0, 0, 0, 0, 0]$ $[44, 0, 0, 0, 0, 0]$ $[4\mathbb{E}]$ \mathbb{E} dec $0 \in [44]$	
Plate Offsets (A. T):	[9:Edge,0-5-11], [10:0-2-8,0-2-0], [14:0-2-8,0-2-0], [15:Edge,0-5-11]	
	[

			,-	-1/1 5									
Loading	(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15		TC	0.70	Vert(LL)	-0.38	11-13	>999	360	MT20	197/144
TCDL	10.0	Lumber DOL	1.15		BC	0.60	Vert(CT)		11-13	>604	240		
BCLL	0.0*	Rep Stress Incr	YES		WB	0.76	Horz(CT)	0.07	9	n/a	n/a		
BCDL	10.0	Code	IRC201	8/TPI2014	Matrix-S		Wind(LL)	0.07	13-14	>999	240	Weight: 124 lb	FT = 10%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD REACTIONS FORCES TOP CHORD	2x4 SPF No.2 2x4 SPF 2100F 1.8f 2x3 SPF No.2 *Exce No.2 Structural wood she 2-6-14 oc purlins, e Rigid ceiling directly bracing. (size) 9= Mecha Max Horiz 15=67 (L0 Max Grav 9=1540 (I (Ib) - Maximum Com Tension 1-2=0/27, 2-3=-2705 4-5=-2536/118, 2-15	E eathing directly applie except end verticals. applied or 10-0-0 oc anical, 15=0-3-8 C 10) 2 9), 15=-31 (LC 8) LC 2), 15=1600 (LC 2 apression/Maximum 9/52, 3-4=-2544/39,	4, F 5; 6, 6, 7, 8, 8, 2) L	 * This truss I on the bottor 3-06-00 tall I chord and ar All bearings Refer to gird Provide mec bearing plate 15 and 21 lb This truss is International 	has been design in chord in all arr by 2-00-00 wide y other membe are assumed to er(s) for truss to hanical connect e capable of with uplift at joint 9. designed in acc Residential Coo nd referenced st	eas where will fit betw rs, with BC be SPF No truss conr ion (by oth astanding 3 cordance w de sections	e load of 20. a rectangle veen the bott IDL = 10.0ps 0.2 . rections. ers) of truss 11 lb uplift at ith the 2018 5 R502.11.1 a	Opsf fom if. to joint	10-14	~333	2+0	JUA GAR NUMI 0. E-20001	MISSOL CIA
BOT CHORD												ESS ON	ENGIN
WEBS	2-14=-26/2175, 8-10 3-14=-239/69, 3-13= 5-13=-76/1039, 5-1	-320/95, 4-13=-485/	146,										ALTIN BAROUM
this desig 2) Wind: AS0 Vasd=91r II; Exp C; and right o Lumber D 3) This truss	ed roof live loads have n. CE 7-16; Vult=115mph mph; TCDL=6.0psf; BC Enclosed; MWFRS (er exposed ; end vertical OL=1.60 plate grip DC s has been designed fo load nonconcurrent w	n (3-second gust) IDL=6.0psf; h=25ft; C nvelope); cantilever lu left and right exposed L=1.60 r a 10.0 psf bottom	Cat. eft d;								offitter.		NSED 52 ALEN

March 11,2024

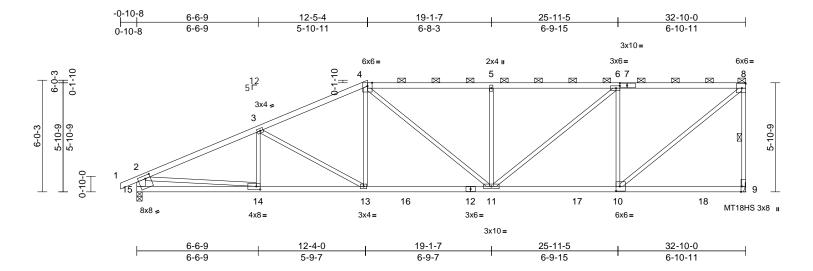

Page: 1

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent toulsable personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

Job	Truss	Truss Type	Qty	Ply	Lot 117 MN	
240613	D7	Hip	1	1	Job Reference (optional)	164130721

Run: 8.73 S Feb 22 2024 Print: 8.730 S Feb 22 2024 MiTek Industries, Inc. Fri Mar 08 12:04:35 ID:WzVwjfspMFkJCX3Fdhn1_jzitcl-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Scale = 1:60.1


oading	(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
CLL (roof)	25.0	Plate Grip DOL	1.15		TC	0.66	Vert(LL)		12-13	>999	360	MT20	197/144
CDL BCLL	10.0 0.0*	Lumber DOL Rep Stress Incr	1.15 YES		BC WB	0.74 0.70	Vert(CT) Horz(CT)	-0.34 0.08	12-13 8	>999 n/a	240 n/a		
BCDL	10.0	Code		8/TPI2014	Matrix-S	0.70	Wind(LL)	0.08	o 12-13	>999	240	Weight: 124 lb	FT = 10%
UMBER OP CHORD OT CHORD /EBS RACING OP CHORD OT CHORD /EBS EACTIONS	No.2 2x4 SPF No.2 *Exce 2x3 SPF No.2 *Exce 2400F 2.0E Structural wood she 3-9-12 oc purlins, e 2-0-0 oc purlins, (4-0 Rigid ceiling directly bracing. 1 Row at midpt (size) 8= Mecha Max Horiz 14=58 (LC Max Uplift 8=-12 (LC	pt* 14-2,8-7:2x4 SP athing directly applie ccept end verticals, -15 max.): 4-5. applied or 10-0-0 or 3-12, 6-10 nical, 14=0-3-8 2 10) 9), 14=-22 (LC 8)	F 6) 7) 8) ed or and 9) c 10 L	on the botton 3-06-00 tall li chord and an All bearings Provide mec bearing plate 14 and 12 lb This truss is International R802.10.2 a		as where vill fit betw e SPF No russ conr n (by oth tanding 2 rdance w e sections ndard AN n does no	a rectangle veen the bott o.2. nections. ers) of truss t 2 lb uplift at j ith the 2018 5 R502.11.1 a ISI/TPI 1. ot depict the s	om to oint and			······································	JUA GAR	AIA 🖈
ORCES	Max Grav 8=1463 (L (lb) - Maximum Com Tension	<i>,</i>	1)									E-20001	• 41-
OP CHORD	4-5=-1842/48, 5-6=- 2-14=-1469/54, 7-8= 13-14=-81/518, 12-1	2110/23, 6-7=-2713, -1394/43 3=-33/2423,	,									SS/ONA	LENGIN
VEBS	10-12=0/1841, 9-10= 3-13=-39/185, 3-12= 4-10=-214/216, 5-10 6-9=-52/178, 2-13=0	-667/110, 4-12=0/3 =0/393, 6-10=-680/	90,									IN JUAN C	ARCIA
OTES												CE	NSED
 this design Wind: ASC Vasd=91n II; Exp C; and right e Lumber D Provide ac This truss 	ed roof live loads have n. CE 7-16; Vult=115mph nph; TCDL=6.0psf; BC Enclosed; MWFRS (er exposed ; end vertical I OL=1.60 plate grip DO dequate drainage to pr has been designed for load nonconcurrent wi	(3-second gust) DL=6.0psf; h=25ft; (velope); cantilever l eft and right expose L=1.60 event water ponding a 10.0 psf bottom	Cat. eft d;								THINK.		SAS

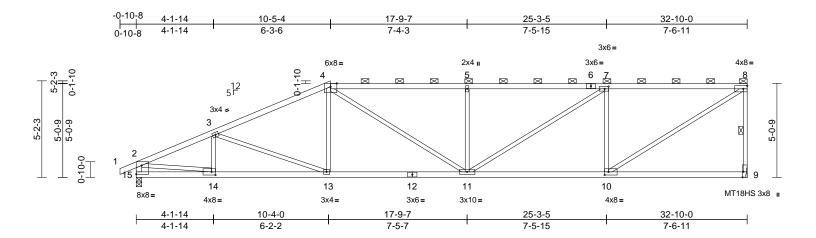
Design valid for use only using parameters and READ for USB of This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and perment bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcscomponents.com)

Job	Truss	Truss Type	Qty	Ply	Lot 117 MN	
240613	D8	Half Hip	1	1	Job Reference (optional)	164130722

Run: 8.73 S Feb 22 2024 Print: 8.730 S Feb 22 2024 MiTek Industries, Inc. Fri Mar 08 12:04:35 ID:dBGPtHpJJ0EtjvmUOri5qtzitcM-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

Scale = 1:62.1

CICL (root) 25.0 Piate Gip DOL 1.15 TC 0.74 Ver(IC1) -0.20 11.3 segs 360 MT20 197/144 SICL 0.0 Immor DOL 1.15 BC 0.79 Ver(IC1) -0.02 11.3 segs 360 MT20 197/144 SICL 0.0 Code IRC2012017P12014 Wind(LL) 0.08 11.3 segs 360 MT20 197/144 SICL 0.0 Code IRC2012017P12014 Wark/S Ver(IC1) -0.03 11.3 segs 360 MT20 197/144 SICL 0.0 Code IRC2012017P12014 Marrix/S Ver(IC1) -0.03 11.3 segs 360 MT20 197/144 MIRES 200 Code IRC2012017P12014 Marrix/S Ver(IC1) -0.03 11.15 BC 0.79 Ver(IC1) -0.03 11.15 IPS0 400 11.15 BC 0.79 Ver(IC1) -0.03 11.15 IPS0 400 11.15 IPS0 400 IPS0 400 11.15<	Plate Offsets (2	X, Y): [6:0-2-8,0-1-8],	[7:0-4-11,0-1-8], [9:	0-3-8,Edge	e], [10:0-2-8,0-	3-0], [14:0-2-8,0-2	2-0], [15:0)-3-4,0-2-0]						
CCDL 0.0 Lumber DOL 1.15 BC 0.72 Ver(T) 0.03 11-13 -999 240 Matrix-S Matrix-S Wind(LL) 0.08 11-13 -999 240 Matrix-S Matrix-S Wind(LL) 0.08 11-13 -999 240 UMBER Code Code 11-13 -999 240 Wind(LL) 0.08 11-13 -999 240 Wind(LL) 0.08 11-13 -999 240 Wind(LL) 0.01 11-13 -999 240 Wind(L) 0.01 11-13 -999 240 Wind(L) 0.01 11-13 -20 -20 -20 -20 -20 -20 -20 -20	Loading	u ,								. ,				
SCLL 0.01 Rep RVess Incr YES WB 0.02 Vir(2(T) 0.07 9 n/a n/a SCDL 10.0 Code IRC2018/TPI2014 Matrix-S Vir(2(T) 0.07 9 n/a n/a n/a SCDL Code IRC2018/TPI2014 Matrix-S Vir(a)(LL) 0.08 11-13 >.999 240 Weight: 129 Ib FT = 10% SOT CHORD 2x4 SPF No.2 SPF No.2 </td <td>TCLL (roof)</td> <td></td> <td>-</td> <td></td>	TCLL (roof)												-	
SCDL 10.0 Code IRC2018/TTP12014 Matrix-S Wind(LL) 0.08 11-13 >998 240 Weight: 129 Ib FT = 10% JUMBER 100 CHORD 2x4 SPF No.2 - <t< td=""><td>TCDL</td><td></td><td></td><td></td><td></td><td>-</td><td></td><td>· · ·</td><td></td><td></td><td></td><td></td><td>MT18HS</td><td>197/144</td></t<>	TCDL					-		· · ·					MT18HS	197/144
 LUMBER TOP CHORD 2x4 SPF No.2 SYS SPF No.2 "Except 15-2:2x6 SPF No.2 STACURA Wood sheathing directly applied or 10-0-0 cord Provide metasia been designed for a it ve load of 20.0 psf on the bottom chord in all areas where a rectangle 30-60 to taily 20-00 ox will fit between the bottom chord and any other members, with BCDL = 10.0psf. This truss has been designed for a it ve load of 20.0 psf on the bottom chord in all areas where a rectangle 30-60 to taily 20-00 ox will fit between the bottom chord and any other members, with BCDL = 10.0psf. All bearings are assumed to be SPF No.2. Refeations (size) 9 Mechanical, 156–0-38 Max Upilit 9=-71 (LC 5), 155–19 (LC 4) Max Girls 9=-71 (LC 5), 155–19 (LC 4) Max Upilit 9=-71 (LC 5), 155–19 (LC 4) Max Upilit 9=-71 (LC 5), 155–19 (LC 4) (b) - Maximum Compression/Maximum Tersion CP CHORD 12-82-031, 23-a2-74328, 3-4=2368/79, 4-52-2253/115, 56-a2251/114, 6-35–61569/102, 2-31-6510/11, 2-15–61449 VEBS 1 (Norther 14-51-180668, 13-14=-1402460, 11-13=1272/1225, 10-11=-106/1569, 9-144-01'802, 4-13=0/442, 8-10=-91/2013, 4-11=394247, 5-1651161, 6-11=-42081, 6-10=-1056/153, 3-13=-301(91, 3-14=-731116 OTES Otrest Otrest Otrest Otrest Otrest Otrest Otrest Murk ASCE 7-16, Vult=115mph (3-second gut) vased-9timpi (CDL=6, 0pit targoting (1-4, exposed; Lumber DOL=1.60 pitte grip DOL=1.60) Provide aredizate drainage to prevent water proding. At plates are MT20 plates unless otherwise indicated. 							0.82							
 cipic Circlo Dizoto Diza SPF No.2 cipic Circlo Dizoto Structural wood sheathing directly applied or 3.0-01 oc purifis, except end verticals, and 2.0-00 oc purifis (0-77 max).4.8, and yother members, with BCOL = 10.0psf. 7) All bearings are assumed to be SPF No.2. 8) Provide mechanical, 15–0-3-8 Maximum Compression/Maximum Tension 16) Max Horz 15–192 (LC 5). Max Forz 15–12 (LC 2). 15=1596 (LC 2). 10) Max Grav 9=1572 (LC 2). 15=1596 (LC 2). 10) Max Grav 9=1572 (LC 2). 15=1596 (LC 2). 10) Max Grav 9=1572 (LC 2). 15=1596 (LC 2). 10) Max Grav 9=1572 (LC 2). 15=1596 (LC 2). 11) Graphical purific personal and ANSI/TP1 1. 11) Graphical purific personal and and and and and and and and and and	BCDL	10.0	Code	IRC201	8/TPI2014	Matrix-S	-	Wind(LL)	0.08	11-13	>999	240	Weight: 129 lb	FT = 10%
 soft CHORD 2x4 SPF No.2 2x3 SPF No.2 * Except 15-2:2x6 SPF No.2 3rACING 2x3 SPF No.2 * Except 15-2:2x6 SPF No.2 3rACING 2x3 SPF No.2 * Except 15-2:2x6 SPF No.2 3rACING 2x3 SPF No.2 * Except 15-2:2x6 SPF No.2 3rACING 2x3 SPF No.2 * Except 15-2:2x6 SPF No.2 3rACING 2x3 SPF No.2 * Except 15-2:2x6 SPF No.2 3rACING 2x3 SPF No.2 * Except 15-2:2x6 SPF No.2 3rACING 2x3 SPF No.2 * Except 15-2:2x6 SPF No.2 3rACING 2x3 SPF No.2 * Except 15-2:2x6 SPF No.2 3rACING 2x3 SPF No.2 * Except 15-2:2x6 SPF No.2 3rACING 2x3 SPF No.2 * Except 15-2:2x6 SPF No.2 3rACING 2x3 SPF No.2 * Except 15-2:2x6 SPF No.2 3rACING 2x3 SPF No.2 * Except 15-2:2x6 SPF No.2 3rACING 2x3 SPF No.2 * Except 15-2:2x6 SPF No.2 3rACING 2x3 SPF No.2 * Except 15-2:2x6 SPF No.2 3rACING 2x3 SPF No.2 * Except 15-2:2x6 SPF No.2 3rACING 2x3 SPF No.2 * Except 15-2:2x6 SPF No.2 3rACING 2x3 SPF No.2 * Except 15-2:2x6 SPF No.2 3rACING 2x3 SPF No.2 * Except 15-2:2x6 SPF No.2 3rACING 2x3 SPF No.2 * Except 15-2:2x6 SPF No.2 3rACING 2x3 SPF No.2 * Except 15-2:2x6 SPF No.2 3rACING 2x3 SPF No.2 * Except 15-2:2x6 SPF No.2 3rACING 2x3 SPF No.2 * Except 15-2:2x6 SPF No.2 3rACING 2x3 SPF No.2 * Except 15-2:2x6 SPF No.2 3rACING 2x3 SPF No.2 * Except 15-2:2x6 SPF No.2 3rACING 2x3 SPF No.2 * Except 15-2:2x6 SPF No.2 3rACING 2x3 SPF No.2 * Except 15-2:2x6 SPF No.2 3rACING 2x3 SPF No.2 * Except 15-2:2x6 SPF No.2 3rACING 2x3 SPF No.2 * Except 15-2:2x6 SPF No.2 3rACING 2x3 SPF No.2 * Except 15-2:2x6 SPF No.2 3rACING 2x3 SPF No.2 * Except 15-2:2x6 SPF No.2 3rACING 2x3 SPF No.2 * Except 15-2:2x6 SPF No.2 3rACING 2x3 SPF No.2 * Except 15-2:2x6 SPF No.2 3rACING 2x3 SPF No.2 * Except 15-2:2x6 SPF No.2 3rACING 2x3 SPF No.2 * Ex5 SPF No.2 3rACING 2x3 SPF No.2 * Except		2×4 SPE No 2		5)					ads					
 VEBS 2X SPF No.2 *Except* 15-2:2x6 SPF No.2 SRACING 10P CHORD Structural wood sheathing directly applied of 3-0-1 oc purlins, except end verticals, and so the bottom chord in all areas where a rectangle 3-0-0-0 cupulins (so-0-max). OP CHORD Rigid celling directly applied of 10-0-0 cupulins, except end verticals, and 19 b y-20-00 wide will fit between the bottom chord and any other members, with BCDL = 10.0pst. OP CHORD Rigid celling directly applied of 10-0-0 cupulins, except end verticals, and 19 b upiff at joint 3 and 19 b upiff at joint 15. This truss is designed in accordance with the 2018 International Residential Code sections R502:11.1 and R82.102.12 and referenced standard ANSUTP1 1.1. R82.01 CL 20, 3-32 = 2743/28, 3-48=-2380/19. OP CHORD 1-2-030, 2-33 = 2743/28, 3-48=-2380/19. OT CHORD 14-158=-188/568, 13-148=-140/2460, 11-138=-127/3115. 56=-2251/114, 6-88=-1589/102, 4-33=-334(7).511=-51/15/18, 6-11=-42/2811, 6-10=-1055/153, 5.11=-316/1598, 1-14=-72/3116. DU Inbalanced roof live loads have been considered for this design. Wind: AGCE 7-16; Vult-115mph (3-second gust) Vasd-91/mph; TCDL=6.0pst; BCDL=6.0pst; h=-25f; Cat. Lift; Exp. C.Enclosed; MWFRS (envelope); cantilever left and right exposed; (and vertile and right exposed; (and				6)										
 SRACING STUCLUTAI wood sheathing directly applied or 3-0-1 oc purlins, except end verticals, and 2-0-0 oc purlins (3-0-7 max), 4-8. SOT CHORD, Biglid celling directly applied or 10-0-0 and any other members, with BCDL = 100.0psf. Refer to glide celling directly applied or 10-0-0 and any other members, with BCDL = 100.0psf. Refer to glide celling directly applied or 10-0-0 and any other members, with BCDL = 100.0psf. Refer to glide celling directly applied or 10-0-0 and any other members, with BCDL = 100.0psf. Refer to glide celling directly applied or 10-0-0 and 4. Refer to glide celling directly applied or 10-0-0 and 4. Refer to glide celling directly applied or 10-0-0 and 4. Refer to glide celling directly applied or 10-0 and 19 b uplift at joint 15. Refer to glide celling directly applied or 10-0-10 and 4. Refer to glide celling directly applied or 10-0-60449. Refer to glide celling directly applied or 10-0-60449. Refer to glide celling directly applied or 10-0-60449. Refer to glide celling directly applied context or 11-13a-127/2125, 10-11-106/1569, -01-0-60451, 10-13-150/118, 6-11=42/881, -61-0-1055/153, 3-1331619, 3-14=-73/116 Refer to glide glight polled and right exposed; Lumber DOL=1.60 plate glip DOL=1.60. Provide adequate drainage to prevent water ponding. All plates are MT20 plates unless otherwise indicated. 	WEBS		pt* 15-2:2x6 SPF N	o.2	on the botto	m chord in all are	as where	a rectangle	•					
 TOP CHORD Structural wood sheating directly applied or 3-0-10 cputtins (3-0-7 max.): 4-48. SOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing. WEBS 1 Row at midpt 8-9 ReACTIONS (size) 9- Mechanical, 15=0-3-8 Max Horiz 15=192 (LC 5). Max Koriz 15=192 (LC 5). Max Koriz 9-1572 (LC 2), 155=159 (LC 4). Max Koriz 9-1572 (LC 2), 15=1596 (LC 2). Max Koriz 9-1572 (LC 2), 15=1596 (LC 2). Max Grav 9-1572 (LC 2), 15=1596 (LC 2). VEBS 215:47754 Ad-2-2523/115, 5-6=2251/114, 6-8=-2253/115, 5-6=2251/114, 6-8=-1808/02, 4-13=0/442, 8-10=-91/2013, 4-113=39/347, 5-11=-515/18, 6-11=-42/281, 6	BRACING													
 3-0-1 oc purifies, exceptiond verticals, and 2-0-0 oc purifies, exceptiond verticals, and 2-0-0 oc purifies (3-07 max); 1-48. 80T CHORD Rigid ceiling directly applied or 10-0-0 oc bracing. WEBS 1 Row at midpt 8-9 FVANDE Max Loglift 9=-71 (LC 5), 15=-03-8 Max Horiz 15=192 (LC 2) Max Uplift 9=-71 (LC 5), 15=-196 (LC 2) Max Clay 9 = Mechanical, 15=0-3-8 Max Clay 9 = 1572 (LC 2), 15=-196 (LC 2) FORCES (b) - Maximum Compression/Maximum Tension COP CHORD 2-38=-2743/28, 3-4=-2368/79, 4-5=-2253/115, 5-6=-2251/114, 6-8=-1568/102, 8-9=-1445/101, 2-15=-1477/54 Mest S 2-14=0/1902, 4-13=-04842, 8-10=-91/2013, 4-11=-30230, 2-3=-2743/28, 3-14=-2368/79, 9-10=-64/49 WEBS 2-14=0/1902, 4-13=-0442, 8-10=-91/2013, 4-11=-30230, 2-3=-2743/28, 3-14=-73/116 VOTES Unbalanced roof live loads have been considered for this design. OV mict: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0p; RE (2mc), cantilever left and right exposed; end vertical left and right exposed; Lumber DOL=1.60 pitale grip DOL=1.60 Provide adequate drainage to prevent water ponding. All plates are MT20 plates unless otherwise indicated. 	TOP CHORD	Structural wood she	athing directly applie	ed or					f.					
 SOT CHORD Rigid ceiling directly applied or 10-0-0 co bracing. WEBS Row at midpt 8-9 ReACTIONS (size) 9 = Mechanical, 15=0-3-8 Max Horiz 15=192 (LC 5) Max Uplitt 9=-71 (LC 5), 15=-19 (LC 4) Max Grav 9=1572 (LC 2), 15=-159 (LC 4) Max Grav 9=1572 (LC 2), 15=1596 (LC 2) (b) - Maximum Compression/Maximum Tension TOP CHORD 12-2-0/30, 2-3=-2743/28, 3-4=-2368/79, 4-5=-2253/115, 5-6=-2251/114, 6-8=-1569/102, 8-9=-1448/101, 2-15=-1477/54 VEBS 2-14=0/1902, 4-13=0/442, 8-10=-91/2013, 6-10=-1055/153, 3-13=-381/91, 3-14=-73/116 VBolanced roof live loads have been considered for this design. Vimits: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0p; BcDL=6.0p; h=25ft; Cat. II: Exp. C. Fnolosed; MWFRS (envelope); cantilever left and right exposed; end vertical left and right exposed; Lumber DOL=1.60 pites unless otherwise indicated. 				nd ⁷⁾										
 bearing plate capable of withstanding 71 lb uplift at joint 9 acting, 9 plate capable of withstanding 71 lb uplift at joint 9 acting plate capable of withstanding 71 lb uplift at joint 9 acting plate capable of withstanding 71 lb uplift at joint 15. bearing plate capable of withstanding 71 lb uplift at joint 9. bearing plate capable of withstanding 71 lb uplift at joint 9. bearing plate capable of withstanding 71 lb uplift at joint 9. bearing plate capable of withstanding 71 lb uplift at joint 15. bearing plate capable of withstanding 71 lb uplift at joint 15. bearing plate capable of withstanding 71 lb uplift at joint 9. bearing plate capable of withstanding 71 lb uplift at joint 9. bearing plate capable of withstanding 71 lb uplift at joint 9. bearing plate capable of withstanding 71 lb uplift at joint 9. bearing plate capable of withstanding 71 lb uplift at joint 9. bearing plate capable of withstanding 71 lb uplift at joint 9. bearing plate capable of withstanding 71 lb uplift at joint 9. bearing plate capable of withstanding 71 lb uplift at joint 15. bearing plate capable of withstanding 71 lb uplift at joint 9. bearing plate capable of withstanding 71 lb uplift at joint 15. bearing plate capable of withstanding 71 lb uplift at joint 15. bearing plate capable of withstanding 71 lb uplift at joint 15. bearing plate capable of withstanding 71 lb uplift at joint 9. bearing plate capable of withstanding 71 lb uplift at joint 9. bearing plate capable of withstanding 71 lb uplift at joint 9. bearing plate capable of withstanding 71 lb uplift at joint 9. bearing plate capable of withstanding 71 lb uplift at joint 9. bearing plate capable of withstanding 71 lb uplift at joint 9. bearing plate capable of withstanding 71 lb uplift at joint 9. bearing plate capable of withstanding 71 lb				က်										LL .
 10) This truss is designed in accordance with the 2018 International Residential Code sections R502-111 and R802.10.2 and referenced standard ANSI/TP1 1. 10) This truss is designed in accordance with the 2018 International Residential Code sections R502-111 and R802.10.2 and referenced standard ANSI/TP1 1. 10) This truss is designed in accordance with the 2018 International Residential Code sections R502-111 and R802.10.2 and referenced standard ANSI/TP1 1. 11) This truss is designed in accordance with the 2018 International Residential Code sections R502-111 and R802.10.2 and referenced standard ANSI/TP1 1. 10) This truss is designed in accordance with the 2018 International Residential Code sections R502-111 and R802.10.2 and referenced standard ANSI/TP1 1. 11) This truss is designed in accordance with the 2018 International Residential Code sections R502-111 and R802.10.2 and referenced standard ANSI/TP1 1. 11) This truss is designed in accordance with the 2018 International Residential Code sections R502-111 and R802.10.2 and referenced standard ANSI/TP1 1. 11) This truss is designed in accordance with the 2018 International Residential Code sections R502-111 and R802.10.2 and referenced standard ANSI/TP1 1. 11) This truss is designed in accordance with the 2018 International Residential Code sections R502-111 and R802.10.2 and referenced standard ANSI/TP1 1. 11) This truss is designed in accordance with the 2018 International Residential Code sections R502-1140.1140. 12 This truss is designed in accordance with the 2018 International Residential Code sections R502-1140.1140. 12 The 1-145-186/568, 13-14-2-140/2460. 14 The 2-1480/1402, 4-13=-0/442, 8-10=-91/2013, 4-13=-0/442, 8-10=-91/2013, 4-13=-0/442, 8-10=-91/2013, 4-13=-0/442, 8-10=-91/2013, 4-13=-0/442, 8-10=-91/2013, 4-13=-0/442, 8-10=-91/2013, 4-13=-0/442, 8-10=-91/2014, 4-13=-10/442, 8-10=-91/2014, 4-13=-10/442, 8-10=-91/2014, 4-13=-10	BOT CHORD		applied or 10-0-0 or	c 9)	bearing plate	e capable of withs							NE OF I	MISS
 KEACTIONS (Size) 9 = Mechanical, 15=0-3-8 Max Horiz, 15=192 (LC 5) Max Grav 9=1572 (LC 5), 15=-199 (LC 2) Max Grav 9=1572 (LC 2), 15=1596 (LC 2) Graphical putin representation dees not depict the size or the orientation of the putin along the top and/or bottom chord. LOAD CASE(S) Standard LOAD CASE(S) Standard LOAD CASE(S) Standard MUMBER E-2000162101 Max Horiz, 15=16/18, 6:11=-42/881, 6:10=-1055/153, 3:13=-381/91, 3:14=-73/116 Mottal ASCE 7-16; Vult=115mph (3-second gust) Vasd-91mph; TCDL=60, psf; h=25f; Cat. II; Exp C; Enclosed; MWFRS (envelope); cantilever left and right exposed; i.end vertical left and right exposed; i	WEBS	1 Row at midpt	8-9	40	9 and 19 lb (uplift at joint 15.						1	NY	0,1
Max Holiz 15-192 (LC 5) Max Uplit 9-71 (LC 5), 15=-19 (LC 4) Max Grav 9=1572 (LC 2), 15=1596 (LC 2) CPORCES (b)- Maximum Compression/Maximum Tension TOP CHORD 1-2=0/30, 2-3=-2743/28, 3-4=-2368/79, 4-5=-2253/115, 5-6=-2251/114, 6-8=-1569/102, 8-9=-1445/101, 2-15=-1477/54 30T CHORD 11-15-rel X9568, 13-14=-140/2460, 11-13=-127/2125, 10-11=-106/1569, 9-10=-64/49 WEBS 2-14=0/1902, 4-13=0/442, 8-10=-91/2013, 4-11=-30/347, 5-11=-515/118, 6-11=-42/881, 6-10=-1055/153, 3-13=-381/91, 3-14=-73/116 SOTES 1) Unbalanced roof live loads have been considered for this design. 2) Wind: ASCE 7-16; Vull=115mph (3-second gust) Vaade-31mph; TCDL=6.0pst; B-25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope); cantilever left and right exposed; end vertical left and right exposed; Lumber DDL=1.60 pter grip DDL=1.60 3) Provide adequate drainage to prevent water ponding. 4) All plates are MT20 plates unless otherwise indicated.	REACTIONS	(size) 9= Mecha	anical, 15=0-3-8	10					and			5	X	. 0-
Max Grav 9=1572 (LC 2), 15=159 (LC 2) Max Grav 9=1572 (LC 2), 15=1596 (LC 2) FORCES (b) - Maximum Compression/Maximum Tension TOP CHORD 1-2=0/30, 2-3=-2743/28, 3-4=-2368/79, 4-5=-2253/115, 5-6=-2251/114, 6-8=-1569/102, 8-9=-1445/101, 2-15=-1477/54 30T CHORD 14-15=-188/568, 13-14=-140/2460, 11-13=-127/2125, 10-11=-106/1569, 9-10=-64/49 VEBS 2-14=0/1902, 4-13=-0/442, 8-10=-91/2013, 4-11=-39/374, 5-11=-51/51/18, 6-11=-42/881, 6-10=-1055/153, 3-13=-381/91, 3-14=-73/116 VOTES 1) Unbalanced roof live loads have been considered for this design. 2) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=3-1mph; TCDL=6.0psf; B-25f; Cat. I]; Exp C; Enclosed; MWFRS (envelope); cantilever left and right exposed; end vertical left and right exposed, Lumber DOL=1.60 plate grip DOL=1.60 3) Provide adequate drainage to prevent water ponding. 4) All plates are MT20 plates unless otherwise indicated.		Max Horiz 15=192 (L	_C 5)						anu			-	JUA	N
Max Grav 9=1572 (LC 2), 15=1596 (LC 2) FORCES (b) - Maximum Compression/Maximum Tension TOP CHORD 1.2=0/30, 2-3=-2743/28, 3-4=-2368/79, 4-5=-2253/115, 5-6=-2251/114, 6-8=-1569/102, 8-9=-1445/101, 2-15=-1477/54 300T CHORD 14-15=-188/658, 13-14=-140/2460, 11-13=-127/2125, 10-11=-106/1569, 9-10=-64/49 WEBS 2-14=0/1902, 4-13=-0/42, 8-10=-91/2013, 4-11=-39/347, 5-11=-515/118, 6-11=-42/881, 6-10=-1055/153, 3-13=-381/91, 3-14=-73/116 VOTES 1) Unbalanced roof live loads have been considered for this design. 2) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=-25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope); cantilever left and right exposed; end vertical left and right exposed; Lumber DOL=1.60 p) Provide adequate drainage to prevent water ponding. 4) All plates are MT20 plates unless otherwise indicated.				11					size			24	GAR	
 CORCES (b) - Maximum Compression/Maximum bottom chord. Tension TOP CHORD 1-2e/030, 2-3=-2743/28, 3-4=-2368/79, 4-5=-2253/115, 5-6=-2251/114, 6-8=-1686/102, 8-9=-1445/101, 2-15=-1477/54 SOT CHORD 14-15=-188/568, 13-14=-140/2460, 11-13=-127/2125, 10-11=-106/1569, 9-10=-64/49 WEBS 2-14=-0/1902, 4-13=0/442, 8-10=-91/2013, 6-10=-1055/153, 3-13=-381/91, 3-14=-73/116 NOTES Unbalanced roof live loads have been considered for this design. Unbalanced roof live loads have been considered for this design. Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0pst; BcDL=6.0pst; h=25t; Cat. II; Exp C; Enclosed; MWFRS (envelope); cantilever left and right exposed; end vertical left and right exposed; Lumber DOL=1.60 Provide adequate drainage to prevent water ponding. All plates are MT20 plates unless otherwise indicated. 		Max Grav 9=1572 (L	_C 2), 15=1596 (LC :	2)					0.20					
TOP CHORD 1-2=0/30, 2-3=-2743/28, 3-4=-2368/79, 4-5=-2253/115, 5-6=-2251/114, 6-8=-1569/102, 8-9=-1445/101, 2-15=-1477/54 3OT CHORD 14-15=-188/568, 13-14=-140/2460, 11-13=-127/2125, 10-11=-106/1569, 9-10=-64/49 WEBS 2-14=0/1902, 4-13=0/442, 8-10=-91/2013, 4-11=-39/347, 5-11=-515/118, 6-11=-42/881, 6-10=-1055/153, 3-13=-381/91, 3-14=-73/116 NOTES I) Unbalanced roof live loads have been considered for this design. Vind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope); cantilever left and right exposed; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60 3) Provide adequate drainage to prevent water ponding. 4) All plates are MT20 plates unless otherwise indicated.	FORCES		pression/Maximum				Ū	·				5-	:	:m=
4-5=-2253/115, 5-6=-2251/114, 6-8=-1569/102, 8-9=-1445/101, 2-15=-1477/54 3OT CHORD 14-15=-188/568, 13-14=-140/2460, 11-13=-127/2125, 10-11=-106/1569, 9-10=-64/49 WEBS 2-14=0/1902, 4-13=0/442, 8-10=-91/2013, 4-11=-39/347, 5-11=-515/118, 6-11=-42/881, 6-10=-1055/153, 3-13=-381/91, 3-14=-73/116 VOTES I) Unbalanced roof live loads have been considered for this design. V) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope); cantilever left and right exposed; end vertical left and right exposed; cumber DOL=1.60 plate grip DOL=1.60 B) Provide adequate drainage to prevent water ponding. All plates are MT20 plates unless otherwise indicated.				LC	DAD CASE(S)	Standard								• 41
 6-8=-1569/102, 8-9=-1445/101, 2-15=-1477/54 3OT CHORD 14-15=-188/568, 13-14=-140/2460, 11-13=-127/2125, 10-11=-106/1569, 9-10=-64/49 WEBS 2-14=0/1902, 4-13=0/442, 8-10=-91/2013, 4-11=-39/347, 5-11=-515/118, 6-11=-42/881, 6-10=-1055/153, 3-13=-381/91, 3-14=-73/116 VOTES I) Unbalanced roof live loads have been considered for this design. 2) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope); cantilever left and right exposed; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60 3) Provide adequate drainage to prevent water ponding. 4) All plates are MT20 plates unless otherwise indicated. 	TOP CHORD											-	C: E-20001	62101
 2-15=-1477/54 30T CHORD 14-15=-188/568, 13-14=-140/2460, 11-13=-127/2125, 10-11=-106/1569, 9-10=-64/49 WEBS 2-14=0/1902, 4-13=0/442, 8-10=-91/2013, 4-11=-39/347, 5-11=-515/118, 6-11=-42/881, 6-10=-1055/153, 3-13=-381/91, 3-14=-73/116 NOTES I) Unbalanced roof live loads have been considered for this design. I) Unbalanced roof live loads have been considered for this design. I) Unbalanced roof live loads have been considered for this design. I) Unbalanced roof live loads have been considered for this design. I) Unbalanced roof live loads have been considered for this design. I) Unbalanced roof live loads have been considered for this design. I) Unbalanced roof live loads have been considered for this design. I) Unbalanced roof live loads have been considered for this design. I) Unbalanced roof live loads have been considered for this design. I) Unbalanced roof live loads have been considered for this design. I) Unbalanced roof live loads have been considered for this design. I) Unbalanced roof live loads have been considered for this design. I) Unbalanced roof live loads have been considered for this design. I) Unbalanced roof live loads have been considered for this design. I) Unbalanced roof live loads have been considered for this design. I) Unbalanced roof live loads have been considered for this design. I) All plates are MT20 plates unless otherwise indicated. 												1	A	
30T CHORD 14-15=-188/568, 13-14=-140/2460, 11-13=-127/2125, 10-11=-106/1569, 9-10=-64/49 WEBS 2-14=0/1902, 4-13=0/442, 8-10=-91/2013, 4-11=-39/347, 5-11=-515/118, 6-11=-42/881, 6-10=-1055/153, 3-13=-381/91, 3-14=-73/116 NOTES I) Unbalanced roof live loads have been considered for this design. 2) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope); cantilever left and right exposed; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60 3) Provide adequate drainage to prevent water ponding. 4) All plates are MT20 plates unless otherwise indicated.			1445/101,										1, 5,0,	
 11-13=-127/2125, 10-11=-106/1569, 9-10=-64/49 WEBS 2-14=0/1902, 4-13=0/442, 8-10=-91/2013, 4-11=-39/347, 5-11=-515/118, 6-11=-42/881, 6-10=-1055/153, 3-13=-381/91, 3-14=-73/116 NOTES I) Unbalanced roof live loads have been considered for this design. P) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope); cantilever left and right exposed; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60 P) Provide adequate drainage to prevent water ponding. All plates are MT20 plates unless otherwise indicated. 	BOT CHORD		-14=-140/2460.										ONA	LEIN
and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60 Provide adequate drainage to prevent water ponding. All plates are MT20 plates unless otherwise indicated.														nn.
and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60 Provide adequate drainage to prevent water ponding. All plates are MT20 plates unless otherwise indicated.		9-10=-64/49												
and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60 Provide adequate drainage to prevent water ponding. All plates are MT20 plates unless otherwise indicated.	WEBS													
and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60 Provide adequate drainage to prevent water ponding. All plates are MT20 plates unless otherwise indicated.		,	,	,									NANC	ARC
and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60 Provide adequate drainage to prevent water ponding. All plates are MT20 plates unless otherwise indicated.		6-10=-1055/153, 3-1	3=-381/91, 3-14=-73	3/116									Nº JOINTE	NON
and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60 Provide adequate drainage to prevent water ponding. All plates are MT20 plates unless otherwise indicated.	NOTES											1.1		ED.
and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60 Provide adequate drainage to prevent water ponding. All plates are MT20 plates unless otherwise indicated.			been considered for	r								-	1 / C	1 2 2
and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60 Provide adequate drainage to prevent water ponding. All plates are MT20 plates unless otherwise indicated.			(0										1 100	
and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60 Provide adequate drainage to prevent water ponding. All plates are MT20 plates unless otherwise indicated.				Cat								-	: 165	952 : :
and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60 Provide adequate drainage to prevent water ponding. All plates are MT20 plates unless otherwise indicated.												-	D	Λ
Lumber DOL=1.60 plate grip DOL=1.60 Provide adequate drainage to prevent water ponding. All plates are MT20 plates unless otherwise indicated.												-	2	M . ! # 5
 Provide adequate drainage to prevent water ponding. All plates are MT20 plates unless otherwise indicated. 				.,									- ANTAN	SAS
annun.				J.									1.00	NGIN
March 11 2024	4) All plates a	are MT20 plates unles	s otherwise indicated	d.									ON N	ALEN
March 11 2024													111	unn.
March 11,2024													March	11,2024


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent oulgase with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TPI1 Quality Criteria, and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcscomponents.com)

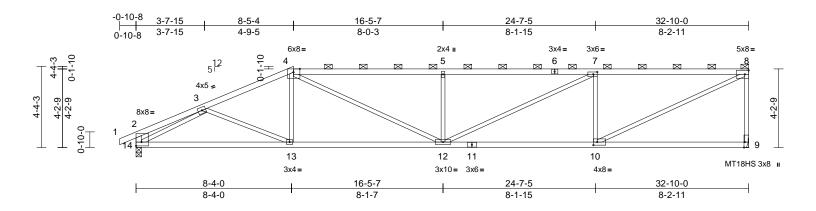
Job	Truss	Truss Type	Qty	Ply	Lot 117 MN	
240613	D9	Half Hip	1	1	Job Reference (optional)	164130723

Run: 8.73 S Feb 22 2024 Print: 8.730 S Feb 22 2024 MiTek Industries, Inc. Fri Mar 08 12:04:35 ID:dwk_JTceJo5lBlyCunv5dHzitcd-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:61.9

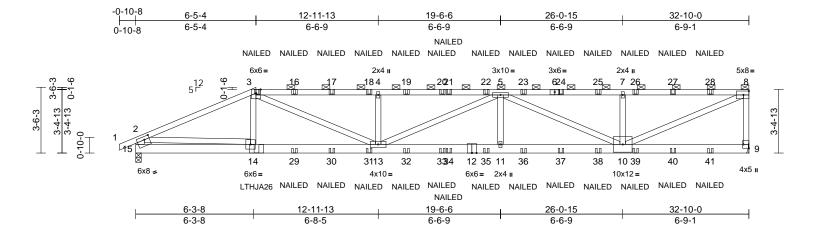
Plate Offsets ((X, Y): [4:0-4-2,Edge],	[7:0-2-8,0-1-8], [9:0	-3-8,Edge]	, [10:0-2-8,0-2	-0], [14:0-2-8,0-2-	0], [15:E	dge,0-5-11]							
Loading	(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP	
TCLL (roof)	25.0	Plate Grip DOL	1.15		TC	0.81	Vert(LL)	-0.17	11	>999	360	MT20	197/144	
TCDL	10.0	Lumber DOL	1.15		BC	0.68	Vert(CT)		11-13	>999	240	MT18HS	197/144	
BCLL	0.0*	Rep Stress Incr	YES		WB	0.75	Horz(CT)	0.08	9	n/a	n/a			
BCDL	10.0	Code	IRC201	8/TPI2014	Matrix-S		Wind(LL)	0.09	11	>999	240	Weight: 123 lb	FT = 10%	
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD WEBS REACTIONS	No.2 2x4 SPF No.2 2x3 SPF No.2 *Exce Structural wood shee 2-2-0 oc purlins, exc 2-0-0 oc purlins (4-2 Rigid ceiling directly bracing. 1 Row at midpt	pt* 15-2:2x4 SPF Not athing directly applie cept end verticals, ar -3 max.): 4-8. applied or 10-0-0 oc 8-9 nical, 15=0-3-8 .C 5) : 5), 15=-27 (LC 4)	(PF 5) 5.2 (d or nd 7) 8) 5 9) 10	This truss ha chord live lo. * This truss l on the botto 3-06-00 tall l chord and al All bearings Refer to gird Provide mec bearing plate 9 and 27 lb o)) This truss is International R802.10.2 a) Graphical pu	e MT20 plates unle as been designed ad nonconcurrent has been designed m chord in all area by 2-00-00 wide w hy other members are assumed to be er(s) for truss to tr thanical connectio e capable of withsi publit at joint 15. designed in accor Residential Code nd referenced stai urlin representation ation of the purlin	for a 10.1 with any d for a liv is where ill fit betv e SPF Ne russ conr n (by oth tanding 7 dance w sections ndard AN n does no	D psf bottom other live loa e load of 20. a rectangle veen the bott b.2. hections. ers) of truss 11 lb uplift at. ith the 2018 a R502.11.1 at SU/TPI 1. bt depict the	ads. Opsf om to joint and			*******	JUA GAR		
FORCES TOP CHORD BOT CHORD	4-5=-2579/134, 5-7= 7-8=-1869/115, 8-9= 2-15=-1479/46	//32, 3-4=-2450/82, 2576/132, 1399/106, .14=-144/2334,	LC	bottom chore DAD CASE(S)							in in it	E-20001	62101	
WEBS	9-10=-51/42 2-14=-12/2074, 4-13 3-13=-150/122, 3-14 5-11=-568/129, 7-11 7-10=-1019/160	=0/319, 8-10=-107/2 =-235/65, 4-11=-52/										LICE	ARCIA NSEO	in the second seco
NOTES											-	(1		=
this design 2) Wind: ASC Vasd=91n II; Exp C; and right e Lumber D	ed roof live loads have n. CE 7-16; Vult=115mph nph; TCDL=6.0psf; BC Enclosed; MWFRS (er exposed ; end vertical I OL=1.60 plate grip DO dequate drainage to pro	(3-second gust) DL=6.0psf; h=25ft; C ivelope); cantilever I eft and right expose L=1.60	Cat. eft d;								THAN,	OKES6/ON	SA3 OF	


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent toulsable personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

Job	Truss	Truss Type	Qty	Ply	Lot 117 MN	
240613	D10	Half Hip	1	1	Job Reference (optional)	164130724

Run: 8.73 S Feb 22 2024 Print: 8.730 S Feb 22 2024 MiTek Industries, Inc. Fri Mar 08 12:04:35 ID:wkcmeEHigVh7R9O0pcwm1bzitd2-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Scale = 1:61.7


Loading	(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15		TC	0.91	Vert(LL)	-0.23	10-12	>999	360	MT20	197/144
TCDL	10.0	Lumber DOL	1.15		BC	0.76	Vert(CT)		10-12	>888	240	MT18HS	197/144
BCLL BCDL	0.0* 10.0	Rep Stress Incr Code	YES	8/TPI2014	WB Matrix-S	0.91	Horz(CT) Wind(LL)	0.09	9 10-12	n/a >999	n/a 240	Wajaht 119 lb	FT = 10%
SCDL	10.0	Code	IRC201	0/1712014	Watrix-S	-	WIND(LL)	0.13	10-12	>999	240	Weight: 118 lb	FT = 10%
COP CHORD SOT CHORD VEBS SRACING OP CHORD	No.2 2x4 SPF No.2 2x3 SPF No.2 *Exce Structural wood she	ept* 14-2:2x4 SPF N	o.2 7) 8) ed or 9)	on the botto 3-06-00 tall chord and a) All bearings) Refer to gird) Provide med	has been designed m chord in all are by 2-00-00 wide of ny other member are assumed to der(s) for truss to chanical connecti e capable of with	as where will fit betv s. De SPF No truss conr Dn (by oth	a rectangle ween the botto p.2 . nections. ers) of truss t	o					
OT CHORD	2-0-0 oc purlins (2-2	2-0 max.): 4-8.	4	0) This truss is Internationa	uplift at joint 14. designed in acco I Residential Cod	e sections	8 R502.11.1 a	nd				ILE OF I	MISSO
REACTIONS	0	C 5), 14=-39 (LC 4)	1)	1) Graphical p		on does no	ot depict the s	size				JUA GAR	
ORCES	(lb) - Maximum Con Tension	npression/Maximum	' L	UAD CASE(S)	Standard						-	NUME	
TOP CHORD	1-2=0/27, 2-3=-429/ 4-5=-3167/162, 5-7 7-8=-2415/136, 8-9 13-14=-168/2188, 1	=-3164/161, =-1392/111, 2-14=-3 2-13=-127/2334,	64/26								1111	E-20001	• 41-
VEBS	10-12=-142/2415, 9 3-13=0/353, 4-13=0 5-12=-620/141, 4-12 7-12=-45/831, 7-10: 8-10=-130/2642	/267, 3-14=-2147/11 2=-80/1049,	1,									IN UAN C	ARC
IOTES) Unbalance	ed roof live loads have	been considered fo	r									IL JUCE	
Vasd=91n II; Exp C; and right c Lumber D 3) Provide ac 4) All plates 5) This truss	CE 7-16; Vult=115mph nph; TCDL=6.0psf; BC Enclosed; MWFRS (e exposed; end vertical IOL=1.60 plate grip DC dequate drainage to pi are MT20 plates unles has been designed fo	EDL=6.0psf; h=25ft; (nvelope); cantilever l left and right expose DL=1.60 revent water ponding s otherwise indicate r a 10.0 psf bottom	left ed; g. d.								THINK.	P:	952 SA3 AL ENGINI
chord live	load nonconcurrent w	ith any other live loa	ds.									March	11,2024

Design value for use only with with every connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcscomponents.com)

ON AS NOTED ON PLANS REVIEW DEVENSOR SERVICES LEE'S' SUMMIT'S MISSOURI 04/22/2024 8:24:41

Job	Truss	Truss Type	Qty	Ply	Lot 117 MN	
240613	D11	Half Hip Girder	1	2	Job Reference (optional)	164130725

Run: 8,73 S Feb 22 2024 Print: 8,730 S Feb 22 2024 MiTek Industries, Inc. Fri Mar 08 12:04:36 ID:jnxLiY2LksXdQLP1kCXTptzitZT-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

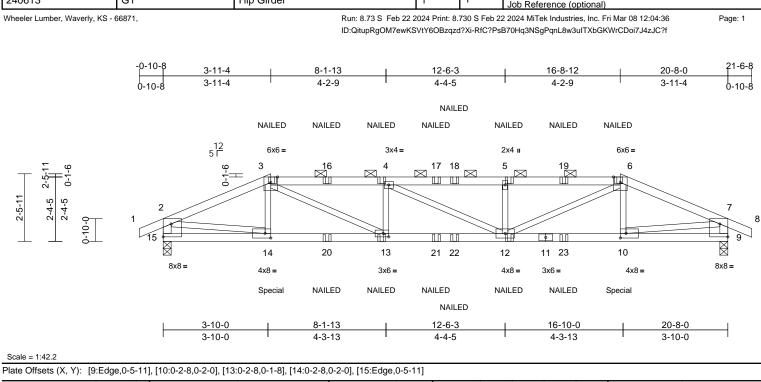
Scale = 1:61.7

Plate Offsets (X, Y): [9:Edge,0-3-8], [15:0-3-4,0-2-0]

Loading	(psf)	Spacing	2-0-0		csi		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15		тс	0.73	Vert(LL)	-0.28	11-13	>999	360	MT20	197/144
TCDL	10.0	Lumber DOL	1.15		BC	0.91	Vert(CT)	-0.52	11-13	>749	240		
BCLL	0.0*	Rep Stress Incr	NO		WB	0.74	Horz(CT)	0.08	9	n/a	n/a		
BCDL	10.0	Code	IRC201	8/TPI2014	Matrix-S		Wind(LL)	0.23	11-13	>999	240	Weight: 303 lb	FT = 10%
LUMBER			2)		considered equal					niform L	,	,	0.45 00
TOP CHORD	No.2	E *Except* 1-3:2x4 S	PF	CASE(S) sec	ed as front (F) or b ction. Ply to ply co	nnection	s have been		C	oncentra	ited Lo	2-3=-70, 3-8=-70 ads (lb)	1111
BOT CHORD					listribute only load	ds noted	as (F) or (B),			Vert: 3=	-126 (B), 14 ⇒ 485(B),	6 ≠-126 (B), 17=-126
WEBS	2x4 SPF No.2 *Exc	ept* 15-2:2x6 SPF No			wise indicated. roof live loads hav		a a a a i d a a a d fe			(B), 18=	-126 (B), 19 ≓- 126 (B), 1	20=-126 (B), 21=-126
BRACING			3)	this design.	roor live loads hav	ve been	considered id	DI					24=-126 (B), 25=-126
TOP CHORD		eathing directly applie			7-16; Vult=115m	nh (3-sec	cond aust)			(B), 26=	= 120 (b), $Z_{1} = -120$ (p), Z_{2}	28=-126 (B), 29=-58
	4-4-14 oc purlins, (2-0-0 oc purlins (4-	except end verticals, a	and '		n; TCDL=6.0psf; E			Cat.		(B), 30= 34=-58	(B), 35	=-58 (B), 36=-58	=-58 (B), 33=-58 (B), (B), 37=-58 (B),
BOT CHORD		y applied or 10-0-0 oc		II; Exp C; En	closed; MWFRS ((envelope	e); cantilever	left		38=-58	(B), 39	-58 (B), 40=-58	(B), 41=-58 (B)
201 0110112	bracing.				osed ; end vertica			ed;			= 7		
REACTIONS	(size) 9= Mech	anical, 15=0-3-8	5		=1.60 plate grip E			-			= 1	NUM	• 41.
	Max Horiz 15=106 ((LC 7)	5) 6)		uate drainage to s been designed			g.			-	E-20001	62101
	Max Uplift 9=-549 (LC 5), 15=-510 (LC 4)	0)		ad nonconcurrent			ade			1	A	
	Max Grav 9=2993 ((LC 1), 15=3016 (LC 1) 7)		as been designed							1.05/011	ENUN
FORCES		mpression/Maximum	.,		n chord in all area			-1				I ONF	Lin
	Tension				y 2-00-00 wide w		veen the bott	om					102
TOP CHORD		5/1072, 3-4=-8358/15			y other members		_						
	4-5=-8354/1596, 5- 7-8=-5575/1059, 8-		8)		are assumed to be								
	2-15=-2889/522	3=-20+2/330,	9)		er(s) for truss to tr hanical connection			4.0					
BOT CHORD	14-15=-279/1240, 1	13-14=-1043/5348.			capable of withst								
	,	10-11=-1605/8337,			uplift at joint 15.	canoning c	45 ib upint a	t joint					
	9-10=-47/111		1'		designed in accor	rdance w	ith the 2018						
WEBS	3-14=0/371, 3-13=-				Residential Code			and					
	,	13=-33/19, 5-11=0/54	,		nd referenced star							NAN	ARCI
	5-10=-3043/599, 7- 8-10=-1116/6009, 2		12	or the orienta	rlin representation ation of the purlin			size				PA 169	NSEO
NOTES		the second de la Cal	11	bottom chord	ı. n Strong-Tie LTHJ			alu				1.1	1.2
	to be connected toge) nails as follows:	ether with 10d			lip) or equivalent							1 100	
		rs: 2x4 - 1 row at 0-9-	h		uss(es) to back fa			lenu				169	952 : =
	2 rows staggered at 0				les where hanger			ber.			-	P	
	ords connected as fo				dicates 3-10d (0.1							-Bi	1 145
staggered	at 0-9-0 oc.				") toe-nails per NI							- A HAN	SAS
Web conn	ected as follows: 2x4	- 1 row at 0-9-0 oc.	L	DAD CASE(S)								1.90	
			1)		of Live (balanced)	: Lumber	Increase=1.	15,				ON	ALE
				Plate Increa	ase=1.15								un.
												March	n 11,2024

- Web connected as follows: 2x4 1 row at 0-9-0 oc.
- 1) Dead + Roof Live (balanced): Lumber Increase=1.15, Plate Increase=1.15

 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.
 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not besign value to dury with with where outputs into design is based only door parameters shown, and is for an individual building design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members and property incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TPH1 Quality Criteria**, and **DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcscomponents.com)


Job	Truss	Truss Type	Qty	Ply	Lot 117 MN	
240613	G1	Hip Girder	1	1	Job Reference (optional)	164130726

2-5-11

2-4-5

2-5-11

Scale = 1:42.2

Plate Offsets ((X, Y): [9:Edge,0-5-11], [10:0-2-8,0-2-0], [1	3:0-2-8,0-1-	·8], [14:0-2-8,	,0-2-0], [15:Edge,0	0-5-11]						-	
Loading TCLL (roof) TCDL BCLL BCDL	(psf) 25.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 NO IRC2018/	TPI2014	CSI TC BC WB Matrix-S	0.69 1.00 0.64	Vert(CT)	-0.33 0.06	(loc) 12-13 12-13 9 12-13	l/defl >999 >732 n/a >999	L/d 360 240 n/a 240	PLATES MT20 Weight: 74 lb	GRIP 197/144 FT = 10%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD	No.2 Structural wood she 3-6-11 oc purlins, e 2-0-0 oc purlins (2-8	ept* 15-2,9-7:2x4 SPf eathing directly applie except end verticals, a 3-8 max.): 3-6. applied or 6-9-14 oc	5) d or 6) and 7)	chord live loa * This truss h on the bottor 3-06-00 tall b chord and ar All bearings Provide mec bearing plate 15 and 319 li	is been designed ad nonconcurrent has been designer n chord in all area by 2-00-00 wide w by other members are assumed to b hanical connectio c capable of withsi b uplift at joint 9.	with any d for a liv as where vill fit betv a e SPF N n (by oth tanding 3	other live loa rectangle ween the botto o.2. mers) of truss t 319 lb uplift at)psf om o				Nº OF	MISSOL
REACTIONS	bracing. (size) 9=0-3-8, Max Horiz 15=-18 (L Max Uplift 9=-319 (L Max Grav 9=1452 (I	15=0-3-8 .C 6) .C 5), 15=-319 (LC 4) LC 1), 15=1452 (LC 1	8) 9)	International R802.10.2 ar Graphical pu	designed in accor Residential Code nd referenced star rlin representation ation of the purlin d.	e sections ndard Al	s R502.11.1 a NSI/TPI 1. ot depict the s				·····	5 JU/ GAR	
FORCES	(lb) - Maximum Com Tension 1-2=0/27, 2-3=-2385 4-5=-3394/803, 5-6= 6-7=-2386/537, 7-8= 7-9=-1400/332	5/537, 3-4=-3398/806	, 11) 2,	(0.148"x3.25 Hanger(s) or provided suff Ib down and	dicates 3-10d (0.1 ") toe-nails per NI other connection ficient to support 55 lb up at 3-11-	DS guidli device(s concentra 4, and 2	nes. s) shall be ated load(s) 2 15 lb down an	d 55			Philip .	NUM E-20001	
BOT CHORD	14-15=-93/304, 13-1 12-13=-753/3396, 1			of such conn others.	3-0 on bottom cho ection device(s) is	s the res	ponsibility of					1,0N/	AL ENTIT
WEBS	9-10=-79/303 3-14=-10/96, 6-10=- 7-10=-409/1877, 3-1 6-12=-327/1418, 4-1 4-12=-28/23, 5-12=-	13=-489/226,	6,	of the truss a AD CASE(S) Dead + Roo	of Live (balanced)	(F) or ba	ick (B).					IN JUAN	BARCIA NSE
this desigr 2) Wind: ASC Vasd=91m II; Exp C; I cantilever right expos	ed roof live loads have	been considered for (3-second gust) iDL=6.0psf; h=25ft; C invelope) exterior zom- ; end vertical left anc 0 plate grip DOL=1.6	at. e; l	9-15=-20 Concentrate Vert: 3= 13=-23 (I (F), 17=	ads (lb/ft) =-70, 2-3=-70, 3-6	14=-215 -45 (F), {), 19=-45	6 (F), 10=-215 5=-45 (F), 16=	(F), =-45			CHIIII WAS	PROAKSION	952

March 11,2024

DEVELOPMENT SERVICES LEE'S'SUMMIT'SMISSOURI 04/22/2024 8:24:41

TION

IEW

 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.
 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not besign value to dury with with where outputs into design is based only door parameters shown, and is for an individual building design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members and property incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TPH1 Quality Criteria**, and **DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcscomponents.com)

Job	Truss	Truss Type	Qty	Ply	Lot 117 MN	
240613	G2	Нір	1	1	Job Reference (optional)	164130727

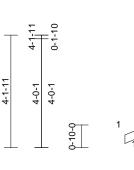
Run: 8.73 S Feb 22 2024 Print: 8.730 S Feb 22 2024 MiTek Industries, Inc. Fri Mar 08 12:04:36 ID:40bQKYqwXp9DmIPBFdc?SMzd?XW-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

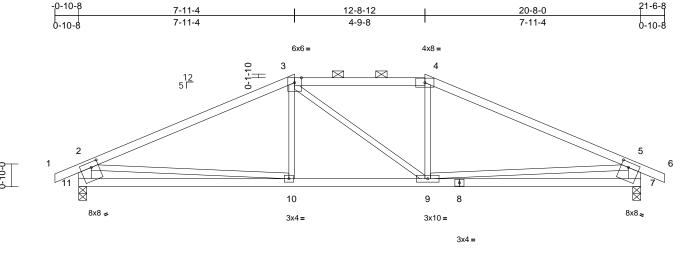
-0-10-8 21-6-8 10-4-0 5-11-4 14-8-12 20-8-0 0-10-8 5-11-4 4-4-12 4-4-12 5-11-4 0-10-8 4x5 = 3x4 = 4x5 = 0-1-10 3-3-11 12 5 Г 3 4 5 0-1-10 \bowtie \bowtie \bowtie \bowtie ᡨ -3-3-11 3-2-1 3-2-1 2 6 <u>φ-10-</u> 7 12 8 कि \boxtimes \bigotimes 11 9 10 8x8= 8x8 = 3x10 = 3x4 = 3x10 = 5-10-0 14-10-0 20-8-0 5-10-0 9-0-0 5-10-0

Scale = 1:42.3

Scale = $1:42.3$													
Plate Offsets ((X, Y): [8:Edge,0-5-11], [12:Edge,0-5-11]										-	
Loading TCLL (roof) TCDL BCLL BCDL	(psf) 25.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC201	8/TPI2014	CSI TC BC WB Matrix-S	0.46 0.64 0.32	DEFL Vert(LL) Vert(CT) Horz(CT) Wind(LL)	in -0.15 -0.34 0.03 0.05	(loc) 9-11 9-11 8 9-11	l/defl >999 >723 n/a >999	L/d 360 240 n/a 240	PLATES MT20 Weight: 73 lb	GRIP 197/144 FT = 10%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD REACTIONS FORCES TOP CHORD	2x4 SPF No.2 2x3 SPF No.2 *Exce No.2 Structural wood she 4-3-7 oc purlins, ex 2-0-0 oc purlins (4-1 Rigid ceiling directly bracing. (size) 8=0-3-8, 1 Max Horiz 12=-29 (L Max Uplift 8=-135 (L Max Grav 8=988 (LC (lb) - Maximum Com Tension 1-2=0/27, 2-3=-1533 4-5=-1333/194, 5-6 2-12=-943/157, 6-8=	athing directly applie cept end verticals, a 0-15 max.): 3-5. applied or 10-0-0 or 12=0-3-8 C 13) C 5), 12=-135 (LC 4 C 1), 12=988 (LC 1) pression/Maximum 3/188, 3-4=-1333/19 1533/188, 6-7=0/2 943/157	6; 7] ed or 8; c 9; ⁽¹⁾ L 4,	on the botto 3-06-00 tall chord and a All bearings Provide mec bearing plat 12 and 135 This truss is Internationa R802.10.2 a Graphical pu		eas where will fit betw rs. be SPF No ion (by oth standing 1 ordance w de sections andard AN on does no	a rectangle veen the bott o.2. ers) of truss 35 lb uplift a ith the 2018 R502.11.1 a ISI/TPI 1. ot depict the	tom to it joint and			111 * Phil		• 41.
BOT CHORD WEBS	8-9=-136/422 3-11=0/310, 4-11=-4	127/136, 4-9=-427/1	36,									110N	ALENIN
 this design Wind: AS(Vasd=91n II; Exp C; cantilever right expo Provide ad This truss 	5-9=0/310, 2-11=-38 ed roof live loads have n. CE 7-16; Vult=115mph mph; TCDL=6.0psf; BC Enclosed; MWFRS (er left and right exposed sed; Lumber DOL=1.6 dequate drainage to pr has been designed for load nonconcurrent wi	been considered for (3-second gust) DL=6.0psf; h=25ft; (nvelope) exterior zor ; end vertical left an 0 plate grip DOL=1.0 event water ponding r a 10.0 psf bottom	Cat. ne; d 60 g.								WILLIN,	PROFILESSIO	952 952

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent toulsable personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)




March 11,2024

Job	Truss	Truss Type	Qty	Ply	Lot 117 MN	
240613	G3	Нір	1	1	Job Reference (optional)	164130728

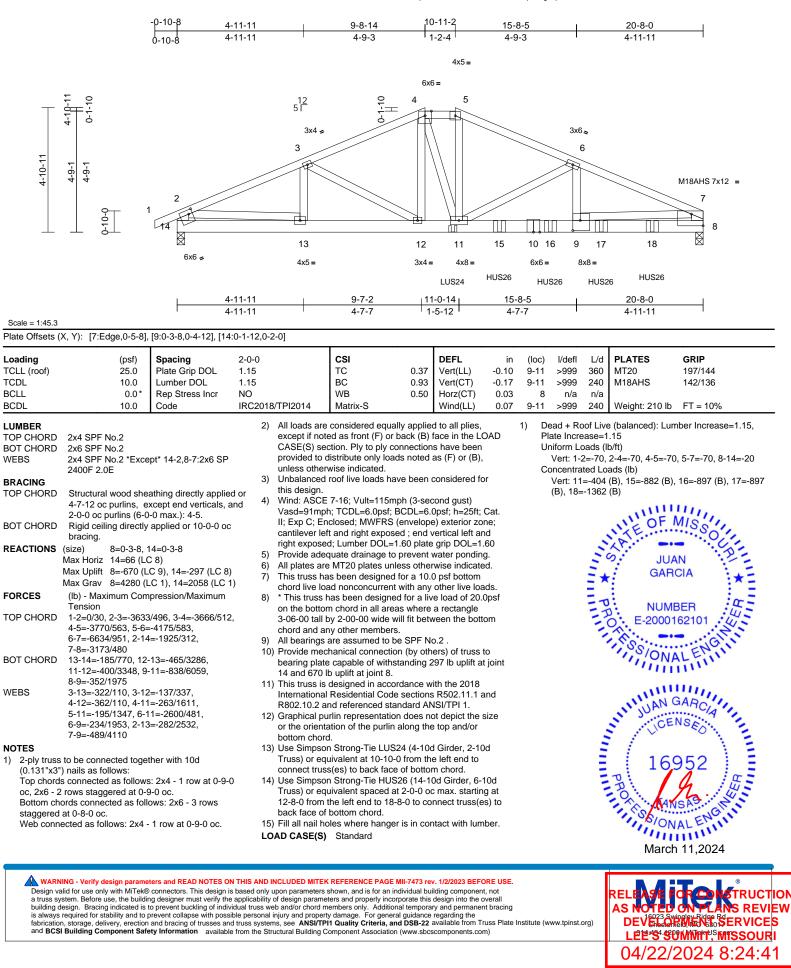
Run: 8.73 S Feb 22 2024 Print: 8.730 S Feb 22 2024 MiTek Industries, Inc. Fri Mar 08 12:04:36 ID:NMW3oxvJtz1D6NSX9bEeEqzd?XP-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:42.4

Plate Offsets (X, Y): [7:0-3-4.0-2-4]. [11:0-3-4.0-2-4]

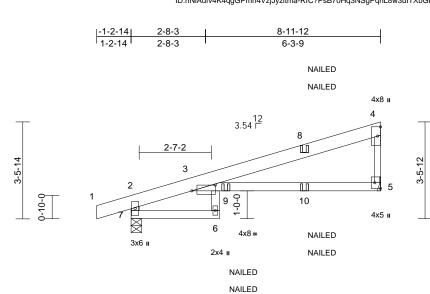
Plate Offsets	(X, Y): [7:0-3-4,0-2-4],	[11:0-3-4,0-2-4]									-	
Loading TCLL (roof) TCDL BCLL BCDL	(psf) 25.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC20	18/TPI2014	CSI TC BC WB Matrix-S	0.80 0.42 0.21	DEFL Vert(LL) Vert(CT) Horz(CT) Wind(LL)	in -0.10 -0.20 0.03 0.03	l/defl >999 >999 n/a >999	L/d 360 240 n/a 240	PLATES MT20 Weight: 75 lb	GRIP 197/144 FT = 10%
LUMBER TOP CHORD BOT CHORD BOT CHORD BOT CHORD REACTIONS FORCES TOP CHORD BOT CHORD WEBS	 2x4 SPF No.2 2x3 SPF No.2 *Exce No.2 Structural wood she 3-4-15 oc purlins, e 2-0-0 oc purlins (5-2 Rigid ceiling directly bracing. (size) 7=0-3-8, Max Horiz 11=-42 (L Max Uplift 7=-122 (L Max Grav 7=987 (LC (lb) - Maximum Com Tension 1-2=0/30, 2-3=-1404 4-5=-1405/152, 5-6= 5-7=-912/167 	athing directly applic xcept end verticals, t-10 max.): 3-4. applied or 10-0-0 or 11=0-3-8 C 13) C 9), 11=-122 (LC 8 C 1), 11=987 (LC 1) ipression/Maximum t/152, 3-4=-1189/16 =0/30, 2-11=-911/16 10=-62/1189, 50/150, 4-9=0/221,	PF 6 7 ed or 8 c 9 3) L 9,	 on the botto 3-06-00 tall chord and a All bearings Provide mee bearing plate 11 and 122 This truss is International R802.10.2 a Graphical pu 		as where will fit betw s. De SPF No on (by oth standing 1 ordance w e sections andard AN on does no	a rectangle veen the bott c.2. ers) of truss 22 lb uplift a the the 2018 SR502.11.1 a NSI/TPI 1. to depict the	to to t joint and			JU GAF SS/ON	BER
 this desig Wind: AS Vasd=91 II; Exp C; cantilever right expo Provide a This trust 	ced roof live loads have gn. SCE 7-16; Vult=115mph mph; TCDL=6.0psf; BC ; Enclosed; MWFRS (er r left and right exposed osed; Lumber DOL=1.6 adequate drainage to pr s has been designed for e load nonconcurrent wi	(3-second gust) DL=6.0psf; h=25ft; (vvelope) exterior zor ; end vertical left an 0 plate grip DOL=1. event water ponding r a 10.0 psf bottom	Cat. ne; d 60 g.							. THUNK		GARCIA NSEO 952 VSAS


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent toulsable personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

March 11,2024

Job	Truss	Truss Type	Qty	Ply	Lot 117 MN	
240613	G4	Hip Girder	1	2	Job Reference (optional)	164130729

Run: 8.73 S Feb 22 2024 Print: 8.730 S Feb 22 2024 MiTek Industries, Inc. Fri Mar 08 12:04:36 ID:sAF0Q99wdd0czCqKhkaowYzd?Vo-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f



Job	Truss	Truss Type	Qty	Ply	Lot 117 MN	
240613	J1	Diagonal Hip Girder	1	1	Job Reference (optional)	164130730

Run: 8,73 S Feb 22 2024 Print: 8,730 S Feb 22 2024 MiTek Industries, Inc. Fri Mar 08 12:04:36 ID:nNIAdfv4K4qgGPmn4VzjJyzitma-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

8-11-12

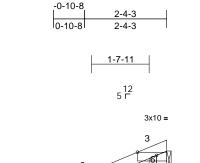
5-9-10

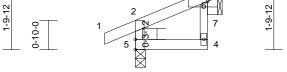
3-2-2

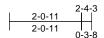
3-2-2

Scale = 1:41.5

Plate Offsets (X, Y):	[3:0-10-3,0-2-8],	[5:Edge,0-2-8]
-----------------------	-------------------	----------------


Loading (psf)	Spacing	2-0-0	csi		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof) 25.0	Plate Grip DOL	1.15	тс	0.92	Vert(LL)	-0.23	(.00)	>458	360	MT20	197/144
TCDL 10.0	Lumber DOL	1.15	BC	0.61	Vert(CT)	-0.40	6	>262	240	-	
BCLL 0.0	Rep Stress Incr	NO	WB	0.02	Horz(CT)	0.16	5	n/a	n/a		
BCDL 10.0	Code	IRC2018/TPI2014	Matrix-R		Wind(LL)	0.23	6	>453	240	Weight: 33 lb	FT = 10%
BCDL 10.0 LUMBER TOP CHORD 2x6 SPF No.2 BOT CHORD 2x4 SPF No.2 WEBS BRACING 2x4 SPF No.2 *Ex BRACING Structural wood s TOP CHORD Structural wood s 5-9-13 oc purlins, BOT CHORD Rigid ceiling direct bracing. REACTIONS (size) 5= Mec Max Horiz 7=123 Max Grav 5=492	Code code	IRC2018/TPI2014 7) This truss is International R802.10.2 a 8) "NAILED" in (0.148"x3.25 ed or 9) In the LOAD of the truss a LOAD CASE(S) 1) Dead + Ro Plate Incre Uniform Lo Vert: 1-2 Concentrat Vert: 8=- 10=-72 (Cat. ne; id 60 ds. Opsf	Matrix-R designed in accor I Residential Code and referenced stata dicates 3-10d (0.1 5") toe-nails per NI 0 CASE(S) section are noted as front 0 Standard of Live (balanced) ase=1.15	dance w sections ndard AN 48"x3") o DS guidli , loads a (F) or ba : Lumber 7=-20, 3-	ith the 2018 : R502.11.1 a SI/TPI 1. or 2-12d nes. oplied to the ck (B). Increase=1. 5=-20	0.23 and face 15,		>453	240 × PT	DE D	MISSOURAN AN ICIA


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent toulsable personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)


Job	Truss	Truss Type	Qty	Ply	Lot 117 MN	
240613	J2	Jack-Closed	2	1	Job Reference (optional)	164130731

Run: 8.73 S Feb 22 2024 Print: 8.730 S Feb 22 2024 MiTek Industries, Inc. Fri Mar 08 12:04:36 ID:QPxHayrxVYCO9etqHyNYcvzitmf-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

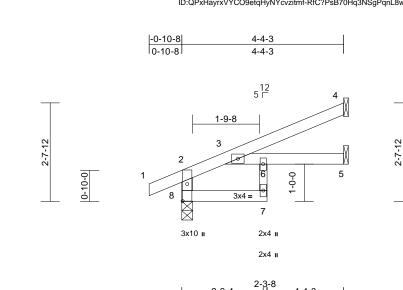
3x10 u 2x4 u

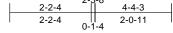
Scale = 1:32.8

Plate Offsets (X, Y): [3:0-6-8,Edge]

	(, .). [
Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15	TC	0.06	Vert(LL)	0.00	4-5	>999	360	MT20	197/144
TCDL	10.0	Lumber DOL	1.15	BC	0.02	Vert(CT)	0.00	4-5	>999	240	-	
BCLL	0.0*	Rep Stress Incr	YES	WB	0.00	Horz(CT)	0.00	7	n/a	n/a		
BCDL	10.0	Code	IRC2018/TPI2014	Matrix-R		Wind(LL)	0.00	4	>999	240	Weight: 8 lb	FT = 10%
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SPF No.2 2x4 SPF No.2 2x3 SPF No.2 2x4 SPF No.2 Structural wood she 2-4-3 oc purlins, ex Rigid ceiling directly bracing. (size) 5=0-3-8, ' Max Horiz 5=56 (LC Max Uplift 5=-35 (LC	athing directly applie cept end verticals. applied or 10-0-0 or 7= Mechanical 5) 2 4), 7=-20 (LC 8)	7) This truss i Internation R802.10.2 LOAD CASE(S	s designed in acco al Residential Cod and referenced sta	le sections	ith the 2018 R502.11.1 a			2000	2+0	XE OF	MISSOUR
	Max Grav 5=180 (L0									Ex	GAF	
FORCES	(lb) - Maximum Com Tension	pression/Maximum									÷	
	2-5=-160/50, 1-2=0/ 3-6=-18/29 4-5=-21/18 3-7=-29/6 CE 7-16; Vult=115mph	(3-second gust)								En li	E-2000	• [] []
 II; Exp C; cantilever right expo 2) This truss chord live 3) * This trus on the bol 3-06-00 ta chord and 4) All bearing 5) Refer to g 6) Provide m bearing pl 	mph; TCDL=6.0psf; BC Enclosed; MWFRS (er left and right exposed sed; Lumber DOL=1.6 has been designed fo load nonconcurrent w ss has been designed f ttom chord in all areas all by 2-00-00 wide will d any other members. gs are assumed to be jirder(s) for truss to tru nechanical connection late capable of withstar lb uplift at joint 7.	nvelope) exterior zor ; end vertical left and 0 plate grip DOL=1.6 r a 10.0 psf bottom ith any other live load or a live load of 20.0 where a rectangle fit between the botto SPF No.2. ss connections. (by others) of truss to	ne; d 60 ds. Jpsf om							WHITE STATE	LICE	GARCIA NSEO 952

March 11,2024


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent oulgase with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TPI1 Quality Criteria, and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcscomponents.com)



Job	Truss	Truss Type	Qty	Ply	Lot 117 MN	
240613	J3	Jack-Open	2	1	Job Reference (optional)	164130732

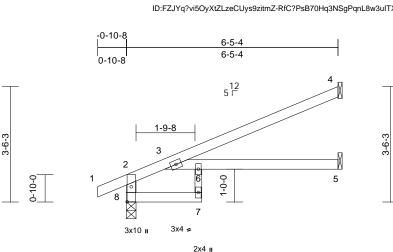
Run: 8,73 S Feb 22 2024 Print: 8,730 S Feb 22 2024 MiTek Industries, Inc. Fri Mar 08 12:04:37 ID:QPxHayrxVYCO9etqHyNYcvzitmf-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

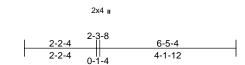
Page: 1

Scale = 1:30.9

Plate Offsets (X, Y): [8:0-5-8,0-1-8]

	()							(1)				
Loading	(psf)	Spacing	2-0-0	CSI	0.01	DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15	TC	0.21	Vert(LL)	-0.02	3-6	>999	360	MT20	197/144
TCDL	10.0	Lumber DOL	1.15	BC	0.18	Vert(CT)	-0.04	6	>999	240		
BCLL	0.0*	Rep Stress Incr	YES	WB	0.01	Horz(CT)	0.03	5	n/a	n/a		
BCDL	10.0	Code	IRC2018/TPI2014	Matrix-S	-	Wind(LL)	0.02	3-6	>999	240	Weight: 14 lb	FT = 10%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SPF No.2 2x4 SPF No.2 *Exce Structural wood she 4-4-3 oc purlins, ex Rigid ceiling directly bracing.	v applied or 10-0-0 oc anical, 5= Mechanica 8)	Internatio R802.10. 2 LOAD CASE d or	s is designed in acc nal Residential Coo 2 and referenced si (S) Standard	de sections	R502.11.1	and			111.	XA. JU	MISSOU
FORCES	Max Grav 4=121 (L (LC 1) (Ib) - Maximum Con Tension	C 1), 5=84 (LC 3), 8=	-280							*		ČE
TOP CHORD		27, 2-3=-82/0, 3-4=-4	40/38							= 5	E-2000	• []]
BOT CHORD	7-8=0/0, 3-6=0/0, 5-	6=0/0									L-2000	102101:5
WEBS	6-7=-2/46									1	· · · · · ·	- day
NOTES											1.SION	FNI
1) Wind: AS Vasd=91n	CE 7-16; Vult=115mph nph; TCDL=6.0psf; BC Enclosed; MWFRS (ei	DL=6.0psf; h=25ft; C									THUN	ALITIN
	left and right exposed										, unit	
	sed; Lumber DOL=1.6										NAU	GARCI
	has been designed fo										Nº JUNE	No
	load nonconcurrent w										UCE	E0
	ss has been designed t		psf							-		1 2
	ttom chord in all areas									-	1	
	all by 2-00-00 wide will	tit between the botto	m							=	: 16	952 🗄 🗄
	l any other members. gs are assumed to be	SDE No 2									D:	i a =
	jirder(s) for truss to tru									-	H.	M. 145
	hechanical connection		`									ISAS S.
	late capable of withsta										1,500	G
	lb uplift at joint 4.										ON	VALEN
											111	IIIII.
											More	h 11 2024


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent toulsable personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)



March 11,2024

Job	Truss	Truss Type	Qty	Ply	Lot 117 MN	
240613	J4	Jack-Open	4	1	Job Reference (optional)	164130733

Run: 8,73 S Feb 22 2024 Print: 8,730 S Feb 22 2024 MiTek Industries, Inc. Fri Mar 08 12:04:37 ID:FZJYq?vi5OyXtZLzeCUys9zitmZ-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Scale = 1:35

Plate Offsets (X, Y): [8:0-5-8,0-1-8]

	(,, ,). [0.0 0 0,0 1 0]											
Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15	TC	0.56	Vert(LL)	-0.09	5-6	>814	360	MT20	197/144
TCDL	10.0	Lumber DOL	1.15	BC	0.46	Vert(CT)	-0.19	5-6	>392	240		
BCLL	0.0*	Rep Stress Incr	YES	WB	0.02	Horz(CT)	0.11	5	n/a	n/a		
BCDL	10.0	Code	IRC2018/TPI2014	Matrix-S		Wind(LL)	0.11	5-6	>682	240	Weight: 19 lb	FT = 10%
LUMBER			7) This truss is	s designed in acc	ordance wi	ith the 2018						
TOP CHORE	D 2x4 SPF No.2			al Residential Coc			and					
BOT CHORE	2x4 SPF No.2		R802.10.2	and referenced st	andard AN	ISI/TPI 1.						
WEBS	2x4 SPF No.2 *Exce	ept* 7-6:2x3 SPF No	.2 LOAD CASE(S) Standard								
BRACING												
TOP CHORE	O Structural wood she	athing directly appli	ed or									
	6-0-0 oc purlins, ex											
BOT CHORE	0 0 ,	applied or 10-0-0 o	c									111.
	bracing.										IN OF	MIG
REACTIONS	()	anical, 5= Mechanica	al,								NE	Sol
	8=0-3-8										18	
	Max Horiz 8=112 (LC	,								-	JU JU	ANI : 2-
	Max Uplift 4=-87 (LC		0 070							-		
	Max Grav 4=188 (L0 (LC 1)	5 T), 5=120 (LC 3),	8=373							=*	GAF	
FORCES	(lb) - Maximum Com	pression/Maximum								3	1	
	Tension									= -	NUN	IBER
TOP CHORE		27, 2-3=-125/0,									C. E-2000	162101 :4
BOT CHORE	3-4=-70/58 7-8=0/0, 3-6=0/0, 5-4	6_0/0									A	
WEBS	6-7=-13/52	6=0/0									1.80	Git
	0-7=-13/32										I,ON	ALEN
NOTES		(0									- 111	in the
	SCE 7-16; Vult=115mph mph; TCDL=6.0psf; BC		Cat									
	; Enclosed; MWFRS (er											
	r left and right exposed										IN IAN	GARC
	osed; Lumber DOL=1.6										N 30	····· A /
	s has been designed for										CE	NSED
	e load nonconcurrent wi		ds.								JUAN JUAN JOE P	$\sim \sqrt{2}$
3) * This tru	iss has been designed f	or a live load of 20.0	Opsf							-	1	
	ottom chord in all areas										: 16	952
	tall by 2-00-00 wide will	fit between the botto	om							=	m: +Y	
chord an	d any other members.									-	P	A : 4 =

All bearings are assumed to be SPF No.2 . 4)

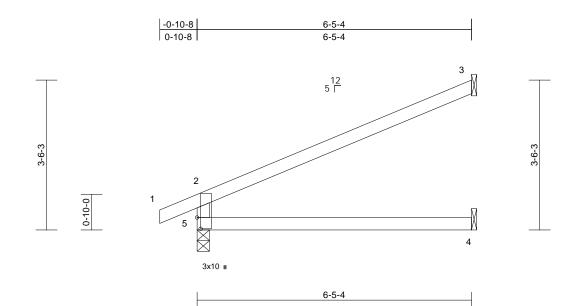
5) Refer to girder(s) for truss to truss connections.

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 36 lb uplift at joint 8 and 87 lb uplift at joint 4.

> TION IEW DEVELOPMENT SERVICES LEE'S'SUMMIT'SMISSOURI 04/22/2024 8:24:42

O/ONAL ENG

UNAL ENTIN March 11,2024


Page: 1

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent colleges with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

Job	Truss	Truss Type	Qty	Ply	Lot 117 MN	
240613	J5	Jack-Open	21	1	Job Reference (optional)	164130734

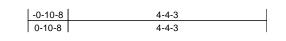
Run: 8.73 S Feb 22 2024 Print: 8.730 S Feb 22 2024 MiTek Industries, Inc. Fri Mar 08 12:04:37 ID:QPxHayrxVYCO9etqHyNYcvzitmf-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

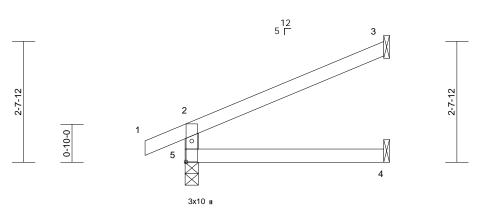
Scale = 1:27

Plate Offsets (X, Y): [5:0-3-3,0-1-0]

	(,,, ,); [e:e e e;e ; e]											
Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15	TC	0.63	Vert(LL)	-0.07	4-5	>999	360	MT20	197/144
TCDL	10.0	Lumber DOL	1.15	BC	0.38	Vert(CT)	-0.16	4-5	>476	240		
BCLL	0.0*	Rep Stress Incr	YES	WB	0.00	Horz(CT)	0.06	3	n/a	n/a		
BCDL	10.0	Code	IRC2018/TPI2014	Matrix-R		Wind(LL)	0.08	4-5	>987	240	Weight: 17 lb	FT = 10%
LUMBER				s designed in acco								
TOP CHORD				al Residential Cod			and					
BOT CHORD				and referenced st	andard AN	ISI/TPI 1.						
WEBS	2x4 SPF No.2		LOAD CASE(S) Standard								
BRACING												
TOP CHORD			ed or									
BOT CHORD	6-0-0 oc purlins, ex Rigid ceiling directly		2									
BUT CHURD	bracing.	applied of 10-0-0 0	C .								- WILL	1111
REACTIONS	(size) 3= Mecha	anical, 4= Mechanica	al,								NE OF	MISS
	5=0-3-8									1		
	Max Horiz 5=112 (LC	,								2	A	
	Max Uplift 3=-99 (LC									2	S JU	
	Max Grav 3=196 (L0	C 1), 4=118 (LC 3), 5	5=358							= *	GAF	
505050	(LC 1)											
FORCES	(lb) - Maximum Com Tension	pression/iviaximum								= 0	NUM	
TOP CHORD)/27 2-3=-103/59								:5	•	• 41.
BOT CHORD										-1	E-2000	162101
NOTES										1	£	G
1) Wind: AS	CE 7-16; Vult=115mph	(3-second gust)									I,SON	AL ENIN
	mph; TCDL=6.0psf; BC										1111	i i i i i i i i i i i i i i i i i i i
	Enclosed; MWFRS (er											10.5
	left and right exposed											1111.
	osed; Lumber DOL=1.6 has been designed fo		60								11 UAN	GARO
	load nonconcurrent w		de								N 30	····· A 11
	ss has been designed f										CE	NSE
	ttom chord in all areas		,001								, XV	
	all by 2-00-00 wide will		om							-	1.1	1 5
	any other members.										16	952
	gs are assumed to be									=	- · · · ·	
	pirder(s) for truss to tru									-	JUAN UCE	<u>и</u> ішт
	nechanical connection										· On the	5 1 4 5
	late capable of withstan Ib uplift at joint 3.	nuing 45 ib uplift at j	om								1. Colta	VShight
5 anu 99 i	io upint at joint 5.										S/ON	AL ENIN
											1111	in the second se

March 11,2024


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent toulsible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)



Job	Truss	Truss Type	Qty	Ply	Lot 117 MN	
240613	J6	Jack-Open	4	1	Job Reference (optional)	164130735

Run: 8.73 S Feb 22 2024 Print: 8.730 S Feb 22 2024 MiTek Industries, Inc. Fri Mar 08 12:04:37 ID:ucVfnHrZGsKEnoS0rfvn96zitme-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

4-4-3

Scale = 1:25.2	
Plate Offsets (X, Y):	[5:0-5-8,0-1-8]

				1								
Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15	TC	0.25	Vert(LL)	-0.01	4-5	>999	360	MT20	197/144
TCDL	10.0	Lumber DOL	1.15	BC	0.15	Vert(CT)	-0.03	4-5	>999	240		
BCLL	0.0*	Rep Stress Incr	YES	WB	0.00	Horz(CT)	0.02	3	n/a	n/a		
BCDL	10.0	Code	IRC2018/TPI2014	Matrix-R		Wind(LL)	0.02	4-5	>999	240	Weight: 12 lb	FT = 10%
LUMBER TOP CHORD BOT CHORD WEBS BRACING	ER 7) This truss is designed in accordance with the 2018 iHORD 2x4 SPF No.2 iHORD 2x4 SPF No.2											
TOP CHORD	Structural wood she 4-4-3 oc purlins, ex		ed or									
BOT CHORD												
REACTIONS	5=0-3-8	nical, 4= Mechanica	al,								ATEOF	NISSO /
	Max Horiz 5=77 (LC	8)									~	

Max Uplift 3=-67 (LC 8), 5=-36 (LC 8) Max Grav 3=128 (LC 1), 4=78 (LC 3), 5=267 (LC 1) FORCES (Ib) - Maximum Compression/Maximum Tension TOP CHORD 2-5=-233/75, 1-2=0/27, 2-3=-69/38

BOT CHORD 2-5=-255/75, 1-2=0/27, 2-5=-69/56 BOT CHORD 4-5=0/0

- NOTES
- Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60

2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

 This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.

4) All bearings are assumed to be SPF No.2 .

5) Refer to girder(s) for truss to truss connections.

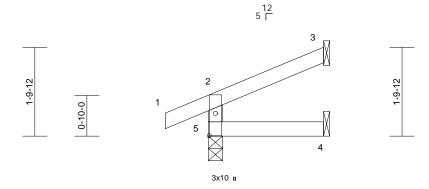
 Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 36 lb uplift at joint 5 and 67 lb uplift at joint 3.

τιοι

ELORMENT SERVICES

LEE'S'SUMMIT'SMISSOURI 04/22/2024 8:24:42

DE


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and properly damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANS/ITPI Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

Job	Truss	Truss Type	Qty	Ply	Lot 117 MN		
240613	J7	Jack-Open	4	1	Job Reference (optional)	164130736	

Run: 8,73 S Feb 22 2024 Print: 8,730 S Feb 22 2024 MiTek Industries, Inc. Fri Mar 08 12:04:37 ID:ucVfnHrZGsKEnoS0rfvn96zitme-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

2-4-3

S	cale =	1:23.5	

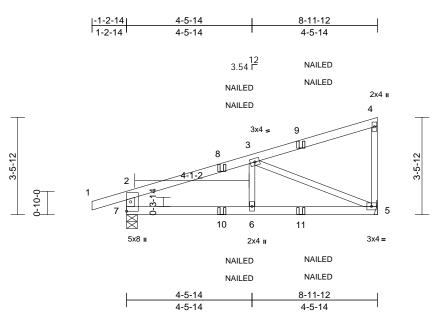
Plate Offsets (X, Y): [5:0-5-8,0-1-8]

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15	TC	0.07	Vert(LL)	0.00	4-5	>999	360	MT20	197/144
TCDL	10.0	Lumber DOL	1.15	BC	0.04	Vert(CT)	0.00	4-5	>999	240		
BCLL	0.0*	Rep Stress Incr	YES	WB	0.00	Horz(CT)	0.00	3	n/a	n/a		
BCDL	10.0	Code	IRC2018/TPI2014	Matrix-R		Wind(LL)	0.00	4-5	>999	240	Weight: 7 lb	FT = 10%
LUMBER				s designed in acc								
TOP CHORE				al Residential Coo			and					
BOT CHORE				and referenced st	andard AN	ISI/TPI 1.						
WEBS	2x4 SPF No.2		LOAD CASE(S	 Standard 								
BRACING												
TOP CHORE			ed or									
	2-4-3 oc purlins, ex											
BOT CHORE		applied or 10-0-0 o	с									1117
	bracing.										11 OF	MICH
REACTIONS	()	inical, 4= Mechanica	al,								NE	
	5=0-3-8	-									18.00 -	
	Max Horiz 5=46 (LC									- 0	A	AN .P
	Max Uplift 3=-36 (LC		405							-		
	Max Grav 3=59 (LC (LC 1)	1), 4=39 (LC 3), 5=	681							= *	GAL	
FORCES	(Ib) - Maximum Com	nroccion/Movimum								_	•	
FURGES	Tension	pression/maximum								= 0	. NILIN	
TOP CHORE		27 2-3=-38/17								= 1		• 41.
BOT CHORE		21, 2 0 - 00, 11								-10	E-2000	162101
NOTES										1	A	
	SCE 7-16; Vult=115mph	(3-second quet)									10810	ENGIN
	mph; TCDL=6.0psf; BC		Cat								IN ON	ALLIN
	; Enclosed; MWFRS (er											un.
	r left and right exposed											
	osed; Lumber DOL=1.6											
2) This trus	s has been designed for	r a 10.0 psf bottom									NAU	GARCI
	e load nonconcurrent wi										UCF	NON
	iss has been designed f		Opsf									ED
	ottom chord in all areas									-		1 2
	tall by 2-00-00 wide will	fit between the botto	om							=	1	
	d any other members.									-	16	952 : =
All bearing	ngs are assumed to be \$	SPF No.2 .										

- 4) All bearings are assumed to be SPF No.2.
- Refer to girder(s) for truss to truss connections. 5)
- Provide mechanical connection (by others) of truss to 6) bearing plate capable of withstanding 30 lb uplift at joint 5 and 36 lb uplift at joint 3.

CTION DEVELOPMENT SERVICES LEE'S'SUMMIT'SMISSOURI 04/22/2024 8:24:42

SSIONAL ENG SONAL ENGIN


March 11,2024

'IEW

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent oulgase with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

Job	Truss	Truss Type	Qty	Ply	Lot 117 MN	
240613	J8	Diagonal Hip Girder	2	1	Job Reference (optional)	164130737

Run: 8.73 S Feb 22 2024 Print: 8.730 S Feb 22 2024 MiTek Industries, Inc. Fri Mar 08 12:04:37 ID:FZJYq?vi5OyXtZLzeCUys9zitmZ-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Scale = 1:41.3

Ocale = 1.41.5													
Loading TCLL (roof) TCDL BCLL BCDL	(psf) 25.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 NO IRC2018/T	PI2014	CSI TC BC WB Matrix-S	0.53 0.38 0.33	DEFL Vert(LL) Vert(CT) Horz(CT) Wind(LL)	in -0.04 -0.07 0.01 0.03	(loc) 5-6 5-6 5 5-6	l/defl >999 >999 n/a >999	L/d 360 240 n/a 240	PLATES MT20 Weight: 30 lb	GRIP 197/144 FT = 10%
	2x4 SPF No.2 2x3 SPF No.2 *Exce 1.8E Structural wood she 6-0-0 oc purlins, ex Rigid ceiling directly bracing. (size) 5= Mecha Max Horiz 7=143 (LC Max Uplift 5=-109 (L Max Grav 5=456 (LC	thing directly applie cept end verticals. applied or 10-0-0 or nical, 7=0-4-9 55) C 8), 7=-137 (LC 4) C 1), 7=528 (LC 1))00F 8) " (9) 1 ed or C LOA	nternational (802.10.2 ar NAILED" inco 0.148"x3.25 n the LOAD of the truss a D CASE(S) Dead + Roc Plate Increa Uniform Loc Vert: 1-2: Concentrate	of Live (balanced se=1.15 ads (lb/ft) =-70, 2-4=-70, 5- ed Loads (lb) 59 (F=-29, B=-29	e sections andard AN 148"x3") o IDS guidli n, loads a (F) or ba): Lumber 7=-20	: R502.11.1 a ISI/TPI 1. or 2-12d nes. oplied to the ck (B). Increase=1.	face 15,			111	KTE OF	
FORCES TOP CHORD BOT CHORD	3-4=-119/30, 4-5=-1 6-7=-157/549, 5-6=-)/27, 2-3=-632/118, 62/71 157/549									* PH	GAR NUM E-2000	BER
WEBS NOTES	3-6=0/197, 3-5=-574	k/16Z									-	~	
 Wind: AS(Vasd=91n II; Exp C; cantilever right expo This truss chord live * This truss on the bot 3-06-00 ta chord and All bearing Refer to g 	CE 7-16; Vult=115mph mph; TCDL=6.0psf; BC Enclosed; MWFRS (er left and right exposed sed; Lumber DOL=1.6 has been designed fo load nonconcurrent wi se has been designed fi ttom chord in all areas all by 2-00-00 wide will any other members. gs are assumed to be S gs are assumed to bruss to truss to truss to truss to truss to truss to trus	DL=6.0psf; h=25ff; (velope) exterior zor ; end vertical left and 0 plate grip DOL=1.6 r a 10.0 psf bottom th any other live load or a live load of 20.0 where a rectangle fit between the botto SPF No.2. ss connections.	ne; d 60 ds. ipsf								annun a	LICE	BARCIA NSEO 952

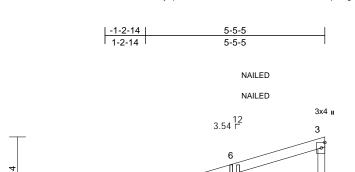
bearing plate capable of withstanding 137 lb uplift at joint 7 and 109 lb uplift at joint 5.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent oulgase with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

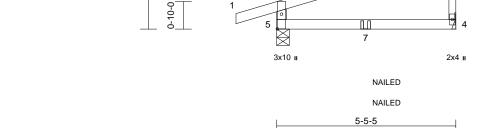
Mart SIONALES

March 11,2024

S


Page: 1

Job	Truss	Truss Type	Qty	Ply	Lot 117 MN	
240613	J9	Diagonal Hip Girder	4	1	Job Reference (optional)	164130738


Run: 8,73 S Feb 22 2024 Print: 8,730 S Feb 22 2024 MiTek Industries, Inc. Fri Mar 08 12:04:37 ID:byRpADYx9thPrhBf84G6?Rzd0CU-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

2-5-4

Page: 1

2

2-5-4

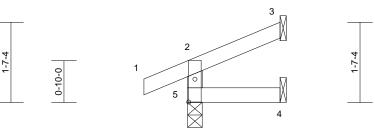
Scale =	1:35
---------	------

Plate Offsets (X, Y): [5:0-5-6,0-1-8]

Loading (psf) TCLL (roof) 25.0 TCDL 10.0 BCLL 0.0* BCDL 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 NO IRC2018/TPI2014	CSI TC BC WB Matrix-R	0.38 0.24 0.00	DEFL Vert(LL) Vert(CT) Horz(CT) Wind(LL)	in -0.03 -0.06 0.00 0.01	(loc) 4-5 4-5 4 4-5	l/defl >999 >999 n/a >999	L/d 360 240 n/a 240	PLATES MT20 Weight: 16 lb	GRIP 197/144 FT = 10%
LUMBER TOP CHORD 2x4 SPF No.2 BOT CHORD 2x4 SPF No.2 WEBS 2x4 SPF No.2 *Excep BRACING TOP CHORD Structural wood shea 5-5-5 oc purlins, exc BOT CHORD Rigid ceiling directly a bracing. REACTIONS (size) 4= Mechar Max Horiz 5=98 (LC 5 Max Uplift 4=-48 (LC Max Grav 4=222 (LC	athing directly applie sept end verticals. applied or 10-0-0 oc nical, 5=0-4-9 5) 8), 5=-102 (LC 4)	(0.148"x3. 9) In the LOA of the trus LOAD CASE(ad or 1) Dead + F Plate Inc Uniform I Vert: 1 Concentri	indicates 3-10d (0. 25") toe-nails per N D CASE(S) sections are noted as from S) Standard Roof Live (balanced rease=1.15 _oads (lb/ft) -2=-70, 2-3=-70, 4- ated Loads (lb) =-2 (F=2, B=-4)	IDS guidlin n, loads ap t (F) or ba l): Lumber	nes. oplied to the t ck (B).				1, II.	ZA. JU	MISSOUR
 FORCES (Ib) - Maximum Comp Tension TOP CHORD 2-5=-302/140, 1-2=0/ 3-4=-158/71 BOT CHORD 4-5=-27/49 NOTES 1) Wind: ASCE 7-16; Vult=115mph for Vasd=91mph; TCDL=6.0psf; BCE II; Exp C; Enclosed; MWFRS (envicention) This truss has been designed for chord live load nonconcurrent witit 3) * This truss has been designed for on the bottom chord in all areas w 3-06-00 tall by 2-00-00 wide will fit chord any other members. 4) All bearings are assumed to be S 5) Refer to girder(s) for truss to truss 6) Provide mechanical connection (the bearing plate capable of withstand 5 and 48 lb uplift at joint 4. 7) This truss is designed in accordant 	(27, 2-3=-127/14, (3-second gust) DL=6.0psf; h=25ft; C velope) exterior zon ; end vertical left and) plate grip DOL=1.6 a 10.0 psf bottom th any other live load or a live load of 20.0 where a rectangle it between the botto SPF No.2. s connections. by others) of truss to ding 102 lb uplift at	e; d b0 ds. psf m							* 85.0	GAR NUM E-2000 SS/ON JCE 16	BER 44

- 2
- 5
- 6
- This truss is designed in accordance with the 2018 7) International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent oulgase with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)


March 11,2024

Job	Truss	Truss Type	Qty	Ply	Lot 117 MN	
240613	J10	Jack-Open	7	1	Job Reference (optional)	164130739

Run: 8,73 S Feb 22 2024 Print: 8,730 S Feb 22 2024 MiTek Industries, Inc. Fri Mar 08 12:04:37 ID:?eQypZ8ATE3sxsJMLjBvIzzd0EI-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

3x10 ш

1-10-3

Plate Offsets (X,	Y):	[5:0-5-8,0-1-8]
-------------------	-----	-----------------

		-		-								
Loading	(psf)	Spacing	2-0-0	csi		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15	TC	0.07	Vert(LL)	0.00	4-5	>999	360	MT20	197/144
TCDL	10.0	Lumber DOL	1.15	BC	0.02	Vert(CT)	0.00	4-5	>999	240		
BCLL	0.0*	Rep Stress Incr	YES	WB	0.00	Horz(CT)	0.00	3	n/a	n/a		
BCDL	10.0	Code	IRC2018/TPI2014	Matrix-R		Wind(LL)	0.00	4-5	>999	240	Weight: 6 lb	FT = 10%
LUMBER			7) This truss i	s designed in acc	ordance w	ith the 2018						
TOP CHORE	D 2x4 SPF No.2			al Residential Coo			and					
BOT CHORE	2x4 SPF No.2		R802.10.2	and referenced st	tandard AN	ISI/TPI 1.						
WEBS	2x4 SPF No.2		LOAD CASE(S	 Standard 								
BRACING												
TOP CHORE	O Structural wood shear	athing directly appli	ed or									
	1-10-3 oc purlins, e	xcept end verticals.										
BOT CHORE	D Rigid ceiling directly	applied or 10-0-0 o	С									111.
	bracing.										IN OF	MICH
REACTIONS	s (size) 3= Mecha	nical, 4= Mechanica	al,								NE	SS
	5=0-3-8										A	
	Max Horiz 5=41 (LC	,									<u>.</u>	
	Max Uplift 3=-28 (LC									2	JU JU	
	Max Grav 3=41 (LC	1), 4=30 (LC 3), 5=	169							- +	GAF	RCIA
	(LC 1)										:	: 2 =
FORCES	(lb) - Maximum Com	pression/Maximum								= 11		
TOP CHORE	Tension 2-5=-148/46, 1-2=0/2	07 0 0 04/44									NUN	• [] [
BOT CHORE	,	27, 2-3=-31/11								-	E-2000	162101
	J 4-5=0/0									1		
NOTES		(0 ()									1. So	
	SCE 7-16; Vult=115mph		0-1								I,ON	ALEIN
	mph; TCDL=6.0psf; BC ; Enclosed; MWFRS (en										111	IIII
	er left and right exposed											
	osed; Lumber DOL=1.6											
	s has been designed for		00								IN IAN	GARC
	e load nonconcurrent wi		ds.								N 30	A 1
	iss has been designed for									1	CE	NSED
	ottom chord in all areas										i Aria	× \
	tall by 2-00-00 wide will		om								1	1 5
chord an	d any other members.									-	16	952
4) All bearir	ngs are assumed to be S	SPF No.2 .								-	10	JYC : -

- 4) All bearings are assumed to be SPF No.2
- 5) Refer to girder(s) for truss to truss connections.
- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 32 lb uplift at joint 5 and 28 lb uplift at joint 3.

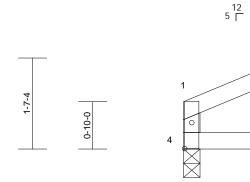
CTION **IEW** DEVELOPMENT SERVICES LEE'S'SUMMIT'SMISSOURI 04/22/2024 8:24:42

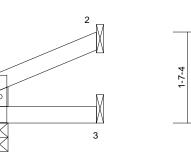
ONAL ENG NONAL ENGIN

March 11,2024

Page: 1

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent oulgase with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TPI1 Quality Criteria, and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcscomponents.com)


Job	Truss	Truss Type	Qty	Ply	Lot 117 MN	
240613	J10A	Jack-Open	1	1	Job Reference (optional)	164130740


1-10-3

Wheeler Lumber, Waverly, KS - 66871,

Run: 8.73 S Feb 22 2024 Print: 8.730 S Feb 22 2024 MiTek Industries, Inc. Fri Mar 08 12:04:37 ID:?eQypZ8ATE3sxsJMLjBvIzzd0EI-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

.

3x10 ш

1-10-3	

Scale = 1:20.3

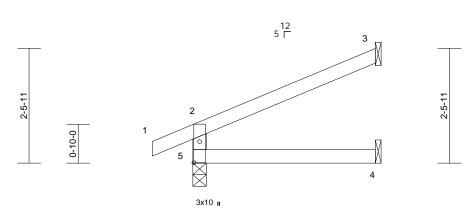
Plate Offsets (X, Y): [4:0-5-8,0-1-8]

	() / [;]											
Loading TCLL (roof)	(psf) 25.0	Spacing Plate Grip DOL	2-0-0 1.15	CSI TC	0.04	DEFL Vert(LL)	in 0.00	(loc) 3-4	l/defl >999	L/d 360	PLATES MT20	GRIP 197/144
TCDL	10.0	Lumber DOL	1.15	BC	0.02	Vert(CT)	0.00	3-4	>999	240		
BCLL	0.0*	Rep Stress Incr	YES	WB	0.00	Horz(CT)	0.00	2	n/a	n/a		
BCDL	10.0	Code	IRC2018/TPI2014	Matrix-R		Wind(LL)	0.00	3-4	>999	240	Weight: 5 lb	FT = 10%
LUMBER TOP CHORD BOT CHORD	2x4 SPF No.2		Internationa R802.10.2	s designed in accor al Residential Code and referenced sta	e sections	s R502.11.1 a	nd					
WEBS	2x4 SPF No.2		LOAD CASE(S) Standard								
BRACING TOP CHORD Structural wood sheathing directly applied or 1-10-3 oc purlins, except end verticals.												
BOT CHORD	Rigid ceiling directly bracing.	applied or 10-0-0 o	C								AND DE	1111
REACTIONS	(size) 2= Mecha 4=0-3-8	anical, 3= Mechanica	al,								NYE OF	MISSO
	Max Horiz 4=32 (LC	5)								~	74	
	Max Uplift 2=-31 (LC	C 8)								0	JU/	AN P
	Max Grav 2=55 (LC (LC 1)	1), 3=33 (LC 3), 4=	76							Ξ×	GAR	
FORCES	(lb) - Maximum Com Tension	npression/Maximum								=P	NUM	
TOP CHORD		8/17								-1	E-2000	• 41.
BOT CHORD	3-4=0/0										L-2000	102101
NOTES											100	G
Vasd=91m II; Exp C; I	CE 7-16; Vult=115mph nph; TCDL=6.0psf; BC Enclosed; MWFRS (er left and right exposed	DL=6.0psf; h=25ft; (nvelope) exterior zor	ne;								S/ON	ALENIN
	sed; Lumber DOL=1.6										, min	
2) This truss	has been designed fo	r a 10.0 psf bottom									IN JUAN	GARCIA
chord live	load nonconcurrent wi	ith any other live loa	de								· · · · · · ·	

- chord live load nonconcurrent with any other live loads.
 * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- 4) All bearings are assumed to be SPF No.2 .
- 5) Refer to girder(s) for truss to truss connections.
- Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 31 lb uplift at joint 2.

DEVERSION SERVICES LEE'S'SUMMIT'S MISSOURI 04/22/2024 8:24:42

CTION


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent colleges with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

Job	Truss	Truss Type	Qty	Ply	Lot 117 MN	
240613	J11	Jack-Open	16	1	Job Reference (optional)	164130741

Run: 8.73 S Feb 22 2024 Print: 8.730 S Feb 22 2024 MiTek Industries, Inc. Fri Mar 08 12:04:37 ID:LbDrtGCJIni91dBK8Gn4?1zd0ED-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

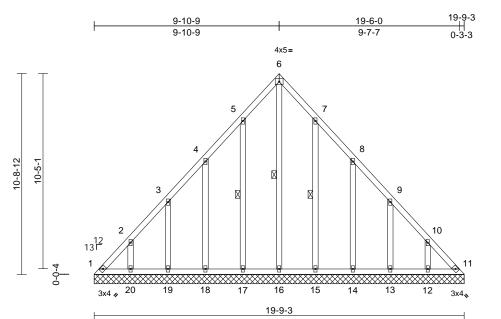
3-11-4

Plate Offsets (X, Y): [5:0-5-8,0-1-8]											
Loading TCLL (roof) TCDL BCLL BCDL	(psf) 25.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018/TPI2014	CSI TC BC WB Matrix-R	0.20 0.12 0.00	DEFL Vert(LL) Vert(CT) Horz(CT) Wind(LL)	in -0.01 -0.02 0.01 0.01	(loc) 4-5 4-5 3 4-5	l/defl >999 >999 n/a >999	L/d 360 240 n/a 240	PLATES MT20 Weight: 11 lb	GRIP 197/144 FT = 10%
LUMBER TOP CHORD BOT CHORD BOT CHORD BOT CHORD BOT CHORD BOT CHORD REACTIONS FORCES TOP CHORD BOT CHORD BOT CHORD BOT CHORD NOTES 1) Wind: ASC Vasd=91m II; Exp C; I cantilever right expos 2) This truss chord live 3) * This truss on the bott 3-06-00 ta chord and 4) All bearing 5) Refer to gi 6) Provide m bearing pla	2x4 SPF No.2 2x4 SPF No.2 2x4 SPF No.2 Structural wood shea 3-11-4 oc purlins, ea Rigid ceiling directly bracing.	athing directly applie keept end verticals. applied or 10-0-0 oc nical, 4= Mechanica 8) 8), 5=-34 (LC 8) 2), 4=70 (LC 3), 5= pression/Maximum 27, 2-3=-63/34 (3-second gust) DL=6.0psf; h=25ft; C velope) exterior zon ; end vertical left am D plate grip DOL=1.6 a 10.0 psf bottom th any other live load or a live load of 20.0 where a rectangle fit between the botto SPF No.2. ss connections. by others) of truss to	7) This truss is Internationa R802.10.2 a LOAD CASE(S) ed or c il, ==249 Cat. le; d 50 ds. ipsf om	designed in acco Residential Cod and referenced sta	e sections	th the 2018 R502.11.1					DATE OF JUJ GAR NUM E-2000 S/ON UCE 16 PROCESSION	MISSOL AN ICIA BER

March 11,2024

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent toulsible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

Job	Truss	Truss Type	Qty	Ply	Lot 117 MN	
240613	LAY1	Lay-In Gable	1	1	Job Reference (optional)	164130742


Run: 8,73 E Jan 4 2024 Print: 8,730 E Jan 4 2024 MiTek Industries, Inc. Mon Mar 11 09:38:31 ID:ucVfnHrZGsKEnoS0rfvn96zitme-o?KROvp08FiUPo39AeISVI6Wihi_qCkO6RKHiHzc2MN

Page: 1

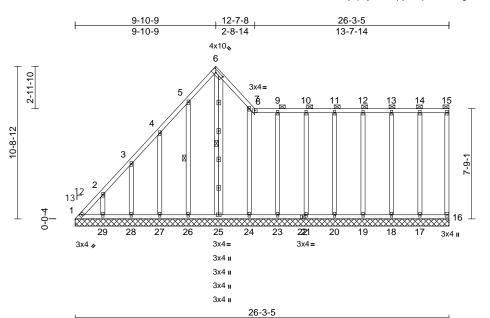
March 11,2024

DEVELOPMENT SERVICES LEE'S' SUMMIT'S MISSOURI 04/22/2024 8:24:42

CTION **IEW**

Scale = 1:61.5

Loading TCLL (roof) TCDL BCLL BCDL	(psf) 25.0 10.0 0.0* 10.0	Plate Grip DOL Lumber DOL Rep Stress Incr	2-0-0 1.15 1.15 YES IRC2018	8/TPI2014	CSI TC BC WB Matrix-S	0.06 0.05 0.11	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.01	(loc) - - 11	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 110 lb	GRIP 197/144 FT = 10%
LUMBER TOP CHORD BOT CHORD OTHERS BRACING TOP CHORD BOT CHORD WEBS REACTIONS	6-0-0 oc purlins. Rigid ceiling directly bracing. 1 Row at midpt (lb/size) 1=79/19-5 12=182/1 14=180/1 16=116/1 20=182/1 Max Horiz 1=-277 (L Max Uplift 1=-133 (L 12=-131 (L 14=-135 (L 19=-128 (L 14=-206 (L 16=255 (L)	C 4) C 6), 11=-88 (LC 7), LC 9), 13=-128 (LC 9) LC 9), 15=-121 (LC 9) LC 8), 18=-134 (LC 8) LC 8), 20=-131 (LC 8) C 8), 11=242 (LC 9), C 16), 13=205 (LC 16 C 9), 17=212 (LC 15), LC 15), 19=205 (LC 15)	NC or 1) 2) 3) 4) 5) 6) 7) 8) 3) 9) 9) 9)	CTES Unbalanced this design. Wind: ASCE Vasd=91mpl II; Exp C; En cantilever lef right expose Truss design only. For stu see Standard or consult qu All plates are Gable requiri Gable studs This truss ha chord live loa * This truss h on the bottor 3-06-00 tall b chord and ar All bearings. capacity of 4	2-20=-162/148, 4-18=-164/158, 10-12=-162/149 3-14=-166/159, roof live loads h 7-16; Vult=115r n; TCDL=6.0psf; closed; MWFRS t and right expo d; Lumber DOL= ued for wind load ds exposed to v d Industry Gable valified building d e 2x4 MT20 unle es continuous b spaced at 2-0-0 is been designe ad nonconcurre as been designe n chord in all arr by 2-00-00 wide y other membe are assumed to 25 psi. hanical connect	5-17=-173, 9-13=-169, 7-15=-169, ave been (mph (3-sec BCDL=6, 6) (BCDL=6, 6)	(148, (148, (145, 6-16=-2 considered fo considered fo considered fo psf; h=25ft; (ane of the tru- ane of the tru- a	r Cat. he; d 60 ss ble, ble, ble, ble, ble, ble, ble, ble,				JUAN C	CIA BER 62101
FORCES TOP CHORD BOT CHORD	4-5=-143/144, 5-6=-	262/193, 3-4=-170/143 114/207, 6-7=-89/185, 23/82, 9-10=-221/131, 20=-123/260, -18=-123/260, -16=-123/260, -14=-123/260,	11	1, 88 lb uplift uplift at joint joint 17, 131 135 lb uplift a) This truss is International	e capable of with at joint 11, 131 19, 134 lb uplift lb uplift at joint 14 at joint 14 and 1 designed in acc Residential Coo nd referenced st Standard	Ib uplift at at joint 18, 12, 128 lb 21 lb uplift ordance w de sections	joint 20, 128 124 lb uplift ; uplift at joint 1 at joint 15. ith the 2018 5 R502.11.1 a	Íb at 3,			. anna anna anna anna anna anna anna an	PROPERTY AND	NSEO 952 ALENOIL
												Marah	11 2024


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent toulsable personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

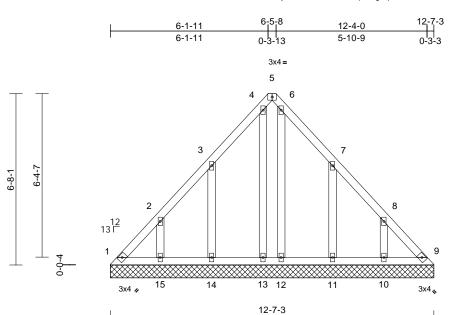
Job	Truss	Truss Type	Qty	Ply	Lot 117 MN	
240613	LAY2	Lay-In Gable	1	1	Job Reference (optional)	164130743

Run: 8.73 E Jan 4 2024 Print: 8.730 E Jan 4 2024 MiTek Industries, Inc. Mon Mar 11 09:39:10 ID:ucVfnHrZGsKEnoS0rfvn96zitme-dhlZoal6jXlpCy7rW2Tq6jmHUpLUCGXHJg0O5zzc2LI Page: 1

March 11,2024

DEVERSION SERVICES LEE'S'SUMMIT'S MISSOURI 04/22/2024 8:24:42

Scale = 1:81


Plate Offsets (X, Y): [6:0-6-10,0-2-0], [22:0-1-14,0-1-8]

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP		
TCLL (roof)	25.0		1.15	TC	0.26		n/a	-	n/a	999	MT20	197/144		
TCDL	10.0		1.15	BC	0.11	Vert(TL)	n/a	-	n/a	999				
BCLL	0.0*	Rep Stress Incr	YES	WB	0.25	Horiz(TL) 0	.00	16	n/a	n/a				
BCDL	10.0	Code	IRC2018/TPI2014	Matrix-S							Weight: 177 lb	FT = 10%		
LUMBER			TOP CHORI									a live load of 20.0psf		
TOP CHORE				4-5=-281/233, 5-6							rd in all areas wh			
BOT CHORE				7-8=-90/65, 8-9=-1 10-11=-105/80, 11	,	,		3-0 cho	b-00 tall and and a	Dy 2-0	er members.	etween the bottom		
WEBS OTHERS	2x4 SPF No.2 2x4 SPF No.2			12-13=-105/80, 13			1		hearings	are as	ssumed to be SPI	FINA 2 croshing		
BRACING	2X4 3FF NU.2			14-15=-105/80, 15		,		cap	acity of	425 ps				
TOP CHORE	C Structural wood ch	eathing directly applied	or BOT CHORI	,			38, 1	1) Pro	vide me	chanio	al connection (by	others) of truss to		
		cept end verticals, and		26-27=-113/88, 25	-26=-11	3/88,		bea	ring plat	te capa	able of withstandi	others) of trues to ng 196 lb uplift at joint		
	2-0-0 oc purlins (6-			24-25=-107/81, 23								t at joint 29, 129 lb		
BOT CHORE		y applied or 10-0-0 oc		22-23=-107/81, 21		,						27, 124 lb uplift at		
	bracing.			20-21=-107/81, 19 18-19=-107/81, 17								b lb uplift at joint 24,		
WEBS	1 Row at midpt	5-26, 6-25		16-17=-107/81	-1010	7701,						cuplift at joint 21 and		
REACTIONS	· · · ·	3-5, 16=71/26-3-5,	WEBS	2-29=-162/148, 3-2	28=-166	/154,		25	lb uplift a	at ioint	221.			
		26-3-5, 18=179/26-3-5,		4-27=-165/157, 5-2	26=-169	/149,	1	2) Thi	s truss is	s desig	ned in accordance	e with the 2018		
		26-3-5, 20=180/26-3-5, 26-3-5, 23=174/26-3-5,		6-25=-273/248, 7-2		,		Inte	ernationa	I Resid	dential Code sect	ions R502, 11.1 and		
		26-3-5, 25=181/26-3-5,		14-17=-148/92, 13		,		R802.10.2 and referenced standard ANSI/TPI 1. 13) Graphical purlin representation does not depict the size						
		26-3-5, 27=181/26-3-5,		12-19=-140/59, 11			1							
	28=180/2	26-3-5, 29=182/26-3-5	10750	10-21=-141/62, 9-2	23=-135	49			tom chor		of the purlin along	the top and/or		
	Max Horiz 1=373 (L		NOTES	ced roof live loads hav		a a maintain and fam			CASE(S)		ndard			
	Max Uplift 1=-196 (this desi		e been	considered for	-	UAD (SASE(S) 31a	nuaru			
		LC 9), 18=-38 (LC 5),		SCE 7-16; Vult=115mp	h (3-sec	cond aust)								
		LC 9), 20=-34 (LC 5), LC 9), 23=-25 (LC 5),		mph; TCDL=6.0psf; B										
		(LC 9), 23=-25 (LC 5), (LC 4), 25=-204 (LC 7)		; Enclosed; MWFRS (un		
		(LC 8), 27=-133 (LC 8)	cantileve	r left and right expose							ALL NO	AD		
		(LC 8), 29=-131 (LC 8)	right exp	osed; Lumber DOL=1							NUAN	CIA		
	Max Grav 1=316 (L	C 5), 16=71 (LC 1),		signed for wind loads							CE	NSA		
		LC 22), 18=179 (LC 1),	and Char	r studs exposed to wir dard Industry Gable E						1		10		
		LC 22), 20=180 (LC 1),		It qualified building de						-	6 A	1 5		
		LC 22), 23=174 (LC 1),	 Description 	adequate drainage to			•			-	160	252 : 2		
		LC 16), 25=299 (LC 4), LC 15), 27=205 (LC 15		s are 2x4 MT20 unless						-	10:	552		
		LC 15), 27=205 (LC 15) LC 15), 29=207 (LC 15		quires continuous bott							P			
FORCES		npression/Maximum	 Gable st 	uds spaced at 2-0-0 o		-					BOR	ARCIA NSEO 052		
. SNOLD	Tension			s has been designed f							A AN	SAS		
			chord liv	e load nonconcurrent	with any	other live loads.					March	AL EN IN		
											March	11 2024		

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent touls be personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANS/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

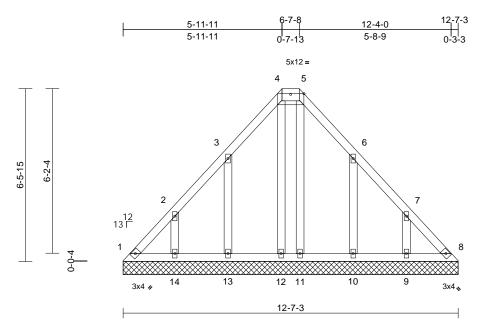
Job	Truss	Truss Type	Qty	Ply	Lot 117 MN	
240613	LAY3	Lay-In Gable	1	1	Job Reference (optional)	164130744

Run: 8,73 S Feb 22 2024 Print: 8,730 S Feb 22 2024 MiTek Industries, Inc. Fri Mar 08 12:04:38 ID:wsKlikW713BtsG3cVanUtjzd0GO-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Scale = 1:44.9

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15	TC	0.06	Vert(LL)	n/a	-	n/a	999	MT20	197/144
TCDL	10.0	Lumber DOL	1.15	BC	0.03	Vert(TL)	n/a	-	n/a	999		
BCLL	0.0*	Rep Stress Incr	YES	WB	0.07	Horiz(TL)	0.00	9	n/a	n/a		
BCDL	10.0	Code	IRC2018/TPI2014	Matrix-S							Weight: 60 lb	FT = 10%
LUMBER TOP CHORD BOT CHORD OTHERS BRACING TOP CHORD BOT CHORD REACTIONS FORCES TOP CHORD BOT CHORD BOT CHORD WEBS NOTES 1) Unbalanc this desig 2) Wind: AS Vasd=91T II; Exp C; cantilever	2x4 SPF No.2 2x4 SPF No.2 2x4 SPF No.2 2x4 SPF No.2 Structural wood she 6-0-0 oc purlins. Rigid ceiling directly bracing. (size) 1=12-7-3, 11=12-7-3 (size) 1=12-7-3, 11=12-7-3 (size) 1=12-7-3, 11=12-7-3 (size) 1=12-7-3, 11=12-7-3 (size) 1=12-7-3, 11=2-7-3 (size) 1=12-7-3, 10=205 (l 10=-129 (l 10=-129 (l 10=-129 (l 10=-129 (l 10=-129 (l 10=-129 (l 10=-129 (l 10=-129 (l) 10=-129 (l 10=-129 (l) 10=-129	athing directly applied applied or 10-0-0 oc 9=12-7-3, 10=12-7-3 3, 12=12-7-3, 13=12-7 3, 15=12-7-3 C 4) 5 (6), 9=-34 (LC 7), LC 9), 11=-138 (LC 9), C 5), 14=-138 (LC 9), LC 8) C 5), 14=-138 (LC 9), LC 16), 11=216 (LC 10 LC 17), 13=129 (LC 11 LC 15), 15=205 (LC 14 Dispression/Maximum 126/103, 3-4=-100/12 /87, 6-7=-74/99, 2/106 5=-73/150, 3=-73/150, 13=-73/150, 9-10=-73/ L=-174/164, =-160/147, 2=-87/3 been considered for (3-second gust) DL=6.0psf; h=25ft; Ca yeelope) exterior zone ; end vertical left and	 3) Truss desig only. For stuses Standar or consult quart of consult quarts and the study of the stud	ned for wind loads uds exposed to wind d Industry Gable E ualified building des quate drainage to p e 2x4 MT20 unless es continuous bott spaced at 2-0-0 or as been designed fad nonconcurrent to as been designed in chord in all areas by 2-00-00 wide win the there members. are assumed to be thanical connectior e capable of withst t at joint 9, 129 lb u 14, 20 lb uplift at joint designed in accord Residential Code nd referenced star	Ind (norm ind Deta signer as prevent v or event v or chorvio or a 10.0 with any t for a liv t SPF No the point 13, ' t 11. dance w sections	al to the face; ils as applicat s per ANSI/TF water ponding se indicated. d bearing. D psf bottom other live loa e load of 20.0 a rectangle ween the botto 0.2. ers) of truss t i6 lb uplift at jp oint 15, 138 lb 129 lb uplift at ith the 2018 : R502.11.1 a), ble, Pl 1. g. ds. g. ds. opsf om oint o t				JUA GAR NUME E-20001	MISSOUR CIA BER 62101 LEV SARCIA NSEO

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent toulsable personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)



March 11,2024

Page: 1

Job	Truss	Truss Type	Qty	Ply	Lot 117 MN	
240613	LAY4	Lay-In Gable	1	1	Job Reference (optional)	164130745

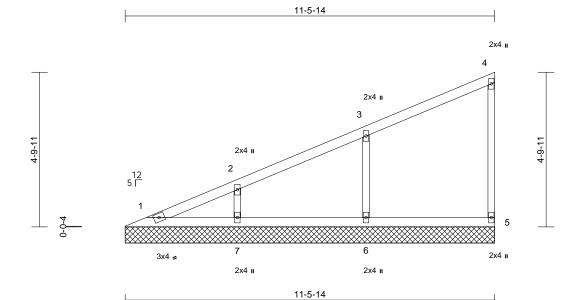
Run: 8.73 S Feb 22 2024 Print: 8.730 S Feb 22 2024 MiTek Industries, Inc. Fri Mar 08 12:04:38 ID:yWJWb5gmbqW3jlwh_PtyRczd?Xj-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Scale = 1:43.3

Plate Offsets (X, Y): [4:0-6-0,0-0-5]

Loading (ps TCLL (roof) 25 TCDL 10 BCLL 0 BCDL 10	.0 Plate C .0 Lumbe .0* Rep St	Grip DOL	2-0-0 1.15 1.15 YES IRC2018	5/TPI2014	CSI TC BC WB Matrix-S	0.05 0.03 0.06	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 8	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 60 lb	GRIP 197/144 FT = 10%
10=1 13=1 Max Horiz 1=16 Max Uplift 1=-6 (LC 9 5), 1: Max Grav 1=13 9=20 11=1	sheathing di , except (6-0-0 max.) ectly applied -7-3, 8=12-7- 2-7-3, 14=12- 4 (LC 5) 3 (LC 6), 8=-2 0), 10=-135 (LC 8), 10=-135 (LC 8), 10=-135 (LC 8), 10=-135 (LC 11 (LC 17), 1 9 (LC 16), 10 11 (LC 17), 1 9 (LC 15), 1 Compression 2-3=-129/99, 3 6=-85/119, 6- 3-14=-68/13 1-12=-68/13 3-13=-178/16 -9=-160/148,	irectly applied): 4-5. or 10-0-0 oc -3, 9=12-7-3, :-7-3, 12=12-7 2-7-3 29 (LC 7), 9=- LC 9), 12=-18 (LC 18),)=218 (LC 16) 12=127 (LC 18),)=218 (LC 16) 12=127 (LC 18), 12=127 (LC 18), 13=128 (LC 18), 13=128 (LC 18), 14=128 (LC 18), 15=128 (LC 18), 15=1	or 3) 4) 5) 5,-3, 6) 7, 8) 130 9) (LC 9) (LC 9) 130, 10) 3), 10) 3), 11) , 12) 3 13) 62	Vasd=91mph II; Exp C; Enn cantilever left right exposed Truss design only. For stu see Standard or consult qu Provide adeq All plates are Gable require Gable studs 3 This truss ha chord live loa * This truss h on the bottom 3-06-00 tall b chord and an All bearings a Provide mect bearing plate 1, 29 lb uplift uplift at joint joint 9 and 13 This truss is of International R802.10.2 ar Graphical put		CDL=6.0 nvelope ; end v 50 plate n the pl d (norm d Detai gner as revent v to therwise m chor in a 10.0 ith any for a liv where fit betw SPF No (by other nding 6 blift at jo int 12, 1 0. ance wise ections dard AN does no	psf; h=25ft; C) exterior zon ertical left anc grip DOL=1.6 anc of the tru al to the face) Is as applicat ; per ANSI/TP avater ponding se indicated. d bearing.) psf bottom other live load e load of 20.0 a rectangle reen the botto 0.2. ers) of truss tr 3 lb uplift at jc init 14, 136 lb 30 lb uplift at th the 2018 R502.11.1 an SI/TP1 1. t depict the si	ne; d 30 ss ss , ole, de, de, de, de, de, de, de, de, de, d				JUAN C	CIA BER 62101 ALEN SARCIA SAS

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent toulsable personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)


March 11,2024

Page: 1

Job	Truss	Truss Type	Qty	Ply	Lot 117 MN	
240613	V2	Valley	1	1	Job Reference (optional)	164130746

Run: 8,73 S Feb 22 2024 Print: 8,730 S Feb 22 2024 MiTek Industries, Inc. Fri Mar 08 12:04:38 ID:ucVfnHrZGsKEnoS0rfvn96zitme-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:35.8

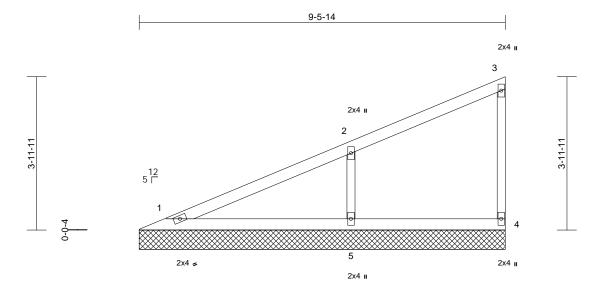
Loading TCLL (roof)	(psf) 25.0	Spacing Plate Grip DOL	2-0-0 1.15		CSI TC	0.20	DEFL Vert(LL)	in n/a	(loc)	l/defl n/a	L/d 999	PLATES MT20	GRIP 197/144
TCDL	10.0	Lumber DOL	1.15		BC	0.11	Vert(TL)	n/a	-	n/a	999		
BCLL	0.0*	Rep Stress Incr	YES		WB	0.08	Horiz(TL)	0.00	5	n/a	n/a		
BCDL	10.0	Code	IRC2018	8/TPI2014	Matrix-S	-						Weight: 33 lb	FT = 10%
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD	2x4 SPF No.2 2x3 SPF No.2 2x3 SPF No.2 Structural wood she 6-0-0 oc purlins, ex	cept end verticals.	0)	on the botton 3-06-00 tall li chord and an All bearings Provide mec bearing plate 5, 106 lb upl This truss is International	has been designed in chord in all are by 2-00-00 wide by other member are assumed to hanical connection e capable of with iff at joint 6 and 8 designed in accor Residential Cod not referenced st	eas where will fit betw 's. be SPF No on (by oth standing 2 38 lb uplift ordance w le sections	a rectangle veen the botto c.2. ers) of truss t 28 lb uplift at j at joint 7. ith the 2018 \$ R502.11.1 a	om to oint				min	2007
REACTIONS	(size) 1=11-5-14 7=11-5-14	4, 5=11-5-14, 6=11-	^{5-14,} LC	ABU2.10.2 a		andard Ar	151/TPLT.					NE OF	MISS
	Max Horiz 1=195 (LC Max Uplift 5=-28 (LC (LC 8) Max Grav 1=107 (LC 6=399 (LC	c 5), 6=-106 (LC 8), 1										S JU, GAF	
FORCES	(lb) - Maximum Com Tension	pression/Maximum									EPT	NUM	• 41.
TOP CHORD	1-2=-162/43, 2-3=-1 4-5=-109/43	28/53, 3-4=-112/37,									1	E-2000	162101
BOT CHORD WEBS	1-7=-63/48, 6-7=-63 3-6=-312/153, 2-7=-	,										SSION	ALENGIN
NOTES		(a											III.
Vasd=91n II; Exp C; cantilever right expo 2) Truss des only. For	CE 7-16; Vult=115mph nph; TCDL=6.0psf; BC Enclosed; MWFRS (er left and right exposed sed; Lumber DOL=1.6 signed for wind loads ir studs exposed to wind dard Industry Gable En-	DL=6.0psf; h=25ft; (nvelope) exterior zor ; end vertical left an 0 plate grip DOL=1. h the plane of the tru 1 (normal to the face)	ne; id 60 uss),									UCE	NSED
	qualified building designing designing the second sec		기 1.								Ξ	п 16	952

Gable requires continuous bottom chord bearing. 3)

4) Gable studs spaced at 4-0-0 oc.

5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent touls be personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANS/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)


ΤΙΟΝ 'IEW DEVELOPMENT SERVICES LEE'S'SUMMIT'SMISSOURI 04/22/2024 8:24:42

NONAL ENGLIS

March 11,2024

Job	Truss	Truss Type	Qty	Ply	Lot 117 MN	
240613	V3	Valley	1	1	Job Reference (optional)	164130747

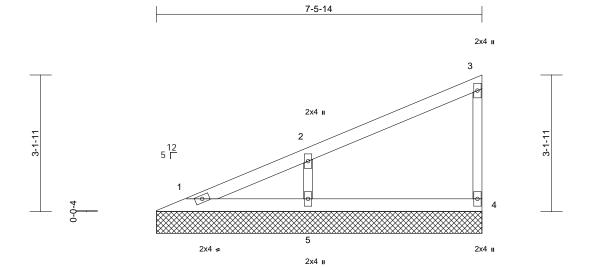
Run: 8.73 S Feb 22 2024 Print: 8.730 S Feb 22 2024 MiTek Industries, Inc. Fri Mar 08 12:04:38 ID:ucVfnHrZGsKEnoS0rfvn96zitme-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

9-5-14

Scale = 1:29.9

)		-										
Loading TCLL (roof) TCDL BCLL BCDL	(psf) 25.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018/	TPI2014	CSI TC BC WB Matrix-S	0.29 0.16 0.07	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 4	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 26 lb	GRIP 197/144 FT = 10%
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	 2x4 SPF No.2 2x3 SPF No.2 2x3 SPF No.2 Structural wood she 6-0-0 oc purlins, exi Rigid ceiling directly bracing. 	cept end verticals. applied or 10-0-0 or 4=9-5-14, 5=9-5-14	9) ed or LOA	bearing plate 4 and 129 lb This truss is International	nanical connectio capable of withsi uplift at joint 5. designed in accor Residential Code Id referenced star Standard	tanding 2 rdance w sections	3 lb uplift at j ith the 2018 s R502.11.1 a	joint				IN TE OF	MISSO
FORCES	Max Uplift 4=-23 (LC Max Grav 1=172 (LC (LC 1) (lb) - Maximum Com	5), 5=-129 (LC 8) 1), 4=122 (LC 1), 5	5=487									D JU/ GAR	
TOP CHORD BOT CHORD WEBS	,	,									Philip	NUM E-20001	• 41-
Vasd=91 II; Exp C; cantilever	CE 7-16; Vult=115mph mph; TCDL=6.0psf; BC Enclosed; MWFRS (er r left and right exposed	DL=6.0psf; h=25ft; 0 velope) exterior zor ; end vertical left and	ne; d									SS/ON	AL ENGIN
 Truss de only. For see Stand 	osed; Lumber DOL=1.6 esigned for wind loads in r studs exposed to wind dard Industry Gable End t qualified building desig	n the plane of the tru (normal to the face) d Details as applicat	ss , ole,									JUAN C	SARCIA NSEO
 Gable red Gable stu This truss chord live 	quires continuous botto uds spaced at 4-0-0 oc. s has been designed for e load nonconcurrent wi	m chord bearing. r a 10.0 psf bottom th any other live load	ds.								THIN W	P 16	952
on the bo 3-06-00 ta chord and	ss has been designed for ottom chord in all areas all by 2-00-00 wide will d any other members. ags are assumed to be \$	where a rectangle fit between the botto										OR SION	ISA9 - WIII

March 11,2024


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent toulsible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

RELEASE IOR STRUCTION AS NOTED ON PLANS REVIEW DEVELORMENT SERVICES LEE'S'SUMMIT'S MISSOURI 04/22/2024 8:24:42

Job	Truss	Truss Type	Qty	Ply	Lot 117 MN	
240613	V4	Valley	1	1	Job Reference (optional)	164130748

Run: 8,73 S Feb 22 2024 Print: 8,730 S Feb 22 2024 MiTek Industries, Inc. Fri Mar 08 12:04:38 ID:ucVfnHrZGsKEnoS0rfvn96zitme-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

7-5-14

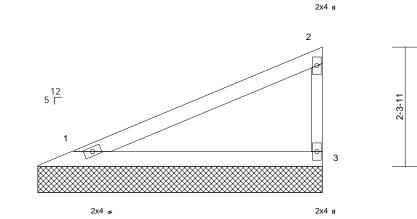
Scale = 1:26.5

00010 - 1.20.0													
Loading TCLL (roof)	(psf) 25.0	Spacing Plate Grip DOL	2-0-0 1.15		CSI TC	0.19	DEFL Vert(LL)	in n/a	(loc)	l/defl n/a	L/d 999	PLATES MT20	GRIP 197/144
TCDL	10.0	Lumber DOL	1.15		BC	0.10	Vert(TL)	n/a	-	n/a	999		
BCLL	0.0*	Rep Stress Incr	YES		WB	0.05	Horiz(TL)	0.00	4	n/a	n/a		
BCDL	10.0	Code	IRC2018	/TPI2014	Matrix-P							Weight: 20 lb	FT = 10%
LUMBER			8)	Provide med	chanical connect	tion (bv oth	ers) of truss	to					
TOP CHORD	2x4 SPF No.2		- /		e capable of with								
BOT CHORD	2x4 SPF No.2			4 and 102 lb	uplift at joint 5.	-		-					
WEBS	2x3 SPF No.2		9)		designed in acc								
OTHERS	2x3 SPF No.2				Residential Co			and					
BRACING					nd referenced s	tandard AN	ISI/TPI 1.						
TOP CHORD	Structural wood she 6-0-0 oc purlins, ex		ed or LO	AD CASE(S)	Standard								
BOT CHORD	Rigid ceiling directly bracing.	applied or 10-0-0 o	С										un.
REACTIONS	· · ·	, 4=7-5-14, 5=7-5-14	Ļ									NE OF	MISS
	Max Horiz 1=122 (LC	,										A	
	Max Uplift 4=-26 (LC	,, ()	5 204									A	
	Max Grav 1=81 (LC (LC 1)	16), 4=141 (LC 1), 3	0=384								2		
FORCES	(lb) - Maximum Com Tension	npression/Maximum									Ξ*	GAR	
TOP CHORD	1-2=-99/52, 2-3=-92	2/32, 3-4=-109/44									- 7	NUM	
BOT CHORD	1-5=-40/30, 4-5=-40	/30									-5		• 41.
WEBS	2-5=-299/153										-1	E-20001	162101
NOTES											1	A	
	CE 7-16; Vult=115mph	(3-second gust)										1. SIG	ENIN
Vasd-01n	mph: TCDI -6 Opsf: BC	DI -6 0psf: b-25ft: (Cat									I,ON	ALLIN

- Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
- 2) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1. Gable requires continuous bottom chord bearing. 3)
- Gable studs spaced at 4-0-0 oc. 4)
- 5)
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 6)
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- 7) All bearings are assumed to be SPF No.2 .

 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.
 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not beigh valid for use only with with with sets outputs into design is based only door parameters shown, and is for an individual dualing component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria**, and **DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcscomponents.com)

Job	Truss	Truss Type	Qty	Ply	Lot 117 MN	
240613	V5	Valley	1	1	Job Reference (optional)	l64130749


5-5-14

Wheeler Lumber, Waverly, KS - 66871,

Run: 8,73 S Feb 22 2024 Print: 8,730 S Feb 22 2024 MiTek Industries, Inc. Fri Mar 08 12:04:38 ID:ucVfnHrZGsKEnoS0rfvn96zitme-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

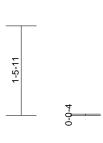
5-5-14

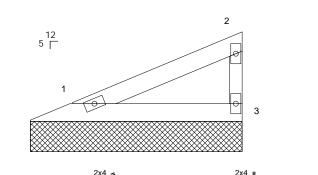
Scale =	1:22.2
---------	--------

Scale = 1:22.2												
Loading TCLL (roof) TCDL BCLL BCDL	(psf) 25.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018/TPI2014	CSI TC BC WB Matrix-P	0.42 0.23 0.00	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 3	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 14 lb	GRIP 197/144 FT = 10%
LUMBER				s designed in acco								
TOP CHORD				al Residential Code			and					
BOT CHORD				and referenced sta	andard AN	ISI/TPI 1.						
WEBS	2x3 SPF No.2		LOAD CASE(S) Standard								
BRACING TOP CHORD	Structural wood she	athing directly appli	ed or									
	5-6-8 oc purlins, ex											
BOT CHORD	Rigid ceiling directly bracing.	applied or 10-0-0 o	с									
REACTIONS	()	, 3=5-5-14									, while	Miller.
	Max Horiz 1=86 (LC										NE OF	NISS
	Max Uplift 1=-31 (LC Max Grav 1=211 (LC									- 5		
FORCES	(lb) - Maximum Com	,. , ,								-	S. JU	AN .P-
TOROLO	Tension	pression/maximum								Ξ.	GAR	
TOP CHORD		4/76								- *	Gru	*=
BOT CHORD	1-3=-28/21									=		
NOTES										= 7	NUM	• [1]
	CE 7-16; Vult=115mph		Cat								C. E-2000	162101
	nph; TCDL=6.0psf; BC Enclosed; MWFRS (er									1	· ··· -·	
	left and right exposed										1.85	ENGIN
	sed; Lumber DOL=1.6										I.ON	ALLIN
	signed for wind loads ir											100
	studs exposed to wind lard Industry Gable En-											1111.
	qualified building desig										NN NN	GARO
	uires continuous botto										1 30	A
	ds spaced at 4-0-0 oc.										CE	NSED
	has been designed for									-	i / č	~ \ `
	load nonconcurrent wi is has been designed f										1	
	tom chord in all areas		opsi							-	: 16	952 : =
	all by 2-00-00 wide will		om							-	P	0. : # =
	any other members.									-	20.	M: 14:
	gs are assumed to be S		-								A MAI	VSAS
	echanical connection (ate capable of withstar										1, SSIC	ENCIN
	b uplift at joint 3.	nung or ib upint at j	Unit									AL
												11111

1111 March 11,2024

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent toulsible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)


Job	Truss	Truss Type	Qty	Ply	Lot 117 MN	
240613	V6	Valley	1	1	Job Reference (optional)	164130750


Run: 8,73 S Feb 22 2024 Print: 8,730 S Feb 22 2024 MiTek Industries, Inc. Fri Mar 08 12:04:38 ID:ucVfnHrZGsKEnoS0rfvn96zitme-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

2x4 u

1-5-11

Page: 1

3-5-14

3-5-14

cale – 1·19		

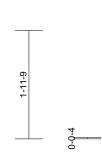
Scale = 1:19										
_oading (ps		2-0-0	CSI	DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof) 25		1.15	TC 0.13	. ,	n/a	-	n/a	999	MT20	197/144
CDL 10		1.15	BC 0.0		n/a	-	n/a	999		
	.0* Rep Stress Incr	YES	WB 0.00) Horiz(TL)	0.00	3	n/a	n/a		
CDL 10	.0 Code	IRC2018/TPI2014	Matrix-P						Weight: 8 lb	FT = 10%
UMBER			designed in accordance							
OP CHORD 2x4 SPF No.2			I Residential Code sectio		and					
OT CHORD 2x4 SPF No.2 /EBS 2x3 SPF No.2		LOAD CASE(S		ANOI/TETT.						
RACING		LOAD CASE(S	Stanuaru							
	sheathing directly appli	ied or								
	, except end verticals.									
	ectly applied or 10-0-0 c	DC .								
EACTIONS (size) 1=3-	5-14, 3=3-5-14									Win.
Max Horiz 1=49									NE OF	MISS
	8 (LC 8), 3=-28 (LC 8)							1	17.	0,1
	1 (LC 1), 3=121 (LC 1)							5	<u> </u>	· D -
	Compression/Maximum	1						-	JU JU	
Tension OP CHORD 1-2=-44/29, 2-3	- 04/44							= *	GAF	
OF CHORD 1-2=-44/29, 2-3	=-34/44									
IOTES								=0	NUN	
) Wind: ASCE 7-16; Vult=115	mph (3-second aust)							= 5		• 41-
Vasd=91mph; TCDL=6.0ps	1 ()	Cat.							E-2000	102101
II; Exp C; Enclosed; MWFR								1	£	- ich h
cantilever left and right expo									1,SION	AL ENIN
right exposed; Lumber DOL										ALTIN
Truss designed for wind loa										10.0
only. For studs exposed to see Standard Industry Gabl	e End Details as applica	;), ble								un.
or consult qualified building									AL AN	GARCIA
) Gable requires continuous l									N	····· A
) Gable studs spaced at 4-0-									CE	NSE
) This truss has been designed									1 / Y	
chord live load nonconcurre									1	E
) * This truss has been desig		Upst							16	952 : =
on the bottom chord in all a 3-06-00 tall by 2-00-00 wide		om						11111	D Y	- I or =
chord and any other member								-	D.	M
All bearings are assumed to									- 0	
Provide mechanical connec	tion (by others) of truss								1.50	G
bearing plate capable of wit	hstanding 18 lb uplift at	joint							0101	VALEN
1 and 28 lb uplift at joint 3.									1111	unne.
									Marc	h 11 2024

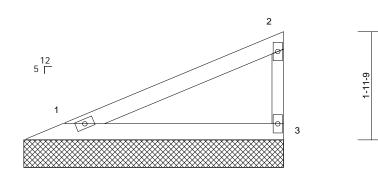
WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent oulgase with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TPI1 Quality Criteria, and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcscomponents.com)

March 11,2024

Job	Truss	Truss Type	Qty	Qty Ply Lot 117 MN		
240613	V7	Valley	1	1	Job Reference (optional)	l64130751

4-7-14


Wheeler Lumber, Waverly, KS - 66871,


Run: 8,73 S Feb 22 2024 Print: 8,730 S Feb 22 2024 MiTek Industries, Inc. Fri Mar 08 12:04:38 ID:ucVfnHrZGsKEnoS0rfvn96zitme-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

CTION /IEW

DEVELOPMENT SERVICES LEE'S' SUMMIT'S MISSOURI 04/22/2024 8:24:43

2x4 🚅

4-7-14

2x4 🛛

2x4 🛛

Scale = 1:20.9

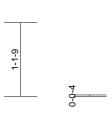
Scale = 1:20.9											
Loading (psf) TCLL (roof) 25.0 TCDL 10.0 BCLL 0.0* BCDL 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018/TPI2014	CSI TC BC WB Matrix-P	0.27 0.15 0.00	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 3	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 11 lb	GRIP 197/144 FT = 10%
BCDL 10.0 LUMBER TOP CHORD 2x4 SPF No.2 BOT CHORD 2x4 SPF No.2 BOT CHORD 2x3 SPF No.2 BRACING TOP CHORD Structural wood sheat 4-8-8 oc purlins, exc BOT CHORD Rigid ceiling directly a bracing. REACTIONS (size) 1=4-8-8, 3: Max Horiz 1=71 (LC 7 Max Uplift Max Uplift 1=-25 (LC Max Grav Max Uplift 1=-25 (LC Max Grav FORCES (lb) - Maximum Comp Tension TOP CHORD 1-2=-63/42, 2-3=-135 BOT CHORD BOT CHORD 1-2=-63/42, 2-3=-135 BOT CHORD TOP CHORD 1-2=-63/42, 2-3=-135 BOT CHORD TOP CHORD 1-2=-63/42, 2-3=-135 BOT CHORD Mid: ASCE 7-16; Vult=115mph i Vasd=91mph; TCDL=6.0psf; BCD I) Wind: ASCE 7-16; Vult=115mph i vasd=91mph; TCDL=6.0psf; BCD D) Truss designed for wind loads in only. For studs e	athing directly applies ept end verticals. applied or 10-0-0 oc =4-8-8 7) 8), 3=-39 (LC 8) ; 1), 3=173 (LC 1) pression/Maximum 5/63 (3-second gust) DL=6.0psf; h=25ft; C velope) exterior zono end vertical left and 0 plate grip DOL=1.6 the plane of the trus (normal to the face), 1 Details as applicab gner as per ANSI/TPI n chord bearing. a 10.0 psf bottom h any other live load or a live load of 20.00 where a rectangle it between the bottor SPF No.2. by others) of truss to	9) This truss is Internationa R802.10.2 a LOAD CASE(S) d or : : : : : : : : : : : : : : : : : : :	designed in accor I Residential Code nd referenced sta	sections	R502.11.1 a	nd				Weight: 11 lb VEE OF JU/ GAR NUM CE SS/ON/ VE-2000 SS/ON/ DO E-2000 SS/ON/ DO E-2000 SS/ON/ DO E-2000 SS/ON/ DO E-2000 SS/ON/ DO E-2000 SS/ON/ DO E-2000 SS/ON/ DO E-2000 SS/ON/ DO E-2000 SS/ON/ DO E-2000 SS/ON/	MISSOURI CIA

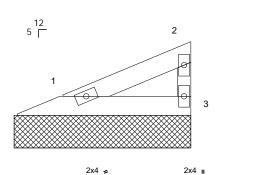
WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent toulsible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

Job	Truss	Truss Type	Qty	Ply	Lot 117 MN	
240613	V8	Valley	1	1	Job Reference (optional)	164130752

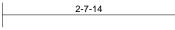
Run: 8.73 S Feb 22 2024 Print: 8.730 S Feb 22 2024 MiTek Industries, Inc. Fri Mar 08 12:04:38 ID:o3ZmetNEN4fwegK_5sEOkXzicZx-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

2x4 II


1-1-9


Page: 1

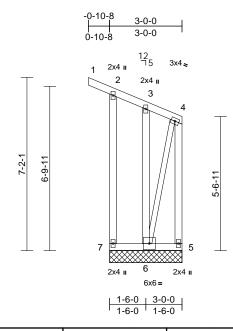
FRUCTION VIEW


SRE

DEVELORMEN SERVICES LEE'S' SUMMIT'S MISSOURI 04/22/2024 8:24:43

2-7-14

	Scale	e = 1	1:17	.6
--	-------	-------	------	----

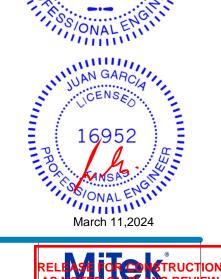

Scale = 1:17.6											
Loading (psf) TCLL (roof) 25.0 TCDL 10.0 BCLL 0.0* BCDL 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018/TPI2014	CSI TC BC WB Matrix-P	0.06 0.03 0.00	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 3	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 6 lb	GRIP 197/144 FT = 10%
LUMBER TOP CHORD 2x4 SPF No.2 BOT CHORD 2x4 SPF No.2 WEBS 2x3 SPF No.2 BRACING	athing directly applied cept end verticals. applied or 10-0-0 oc 3=2-8-8 7) (3), 3=-19 (LC 8) 1), 3=83 (LC 1) pression/Maximum /30 (3-second gust) DL=6.0psf; h=25ft; Ca ivelope) exterior zone ; end vertical left and 0 plate grip DOL=1.60 n the plane of the truss (normal to the face), d Details as applicable gner as per ANSI/TPI m chord bearing. r a 10.0 psf bottom th any other live loads or a live load of 20.0p; where a rectangle fit between the bottom SPF No.2 . (by others) of truss to	 9) This truss is International R802.10.2 a LOAD CASE(S) I or at. ; at. ; as. ; as. ; as. ; as. ; by the second second	designed in accord Residential Code nd referenced stan	sections	R502.11.1 a	nd				DALE OF JU, GAF NUM E-2000 SS/ON LCE 16 PROTOSION	MISSOUR AN RCIA BER 162101 ALEN GARCIA

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent toulsable personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

Job	Truss	Truss Type	Qty	Ply	Lot 117 MN	
240613	V9	Valley	1	1	Job Reference (optional)	164130753

Run: 8,73 S Feb 22 2024 Print: 8,730 S Feb 22 2024 MiTek Industries, Inc. Fri Mar 08 12:04:38 ID:Y7BfXIP7yOcg5sH_6liUkmzicUk-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

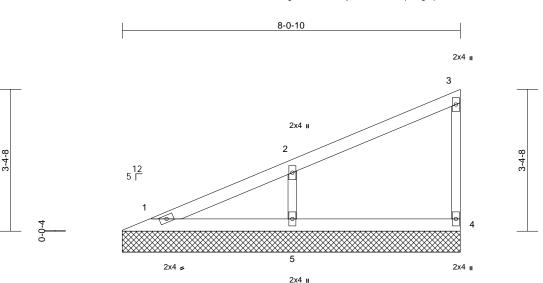

Scale = 1:47.7

Loading TCLL (roof) TCDL BCLL BCDL	(psf) 25.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC201	8/TPI2014	CSI TC BC WB Matrix-P	0.28 0.04 0.23	DEFL Vert(LL) Vert(CT) Horz(CT)	in n/a n/a 0.00	(loc) - - 5	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 32 lb	GRIP 197/144 FT = 10%
	2x4 SPF No.2 2x4 SPF No.2 2x4 SPF No.2 *Exce 2x4 SPF No.2 *Exce 3-0-0 oc purlins, exi Rigid ceiling directly bracing. (size) 5=3-0-0, 6 Max Horiz 7=-269 (L Max Uplift 5=-290 (L T=-90 (LC Max Grav 5=647 (LC (LC 1)	athing directly applie cept end verticals. applied or 10-0-0 oc S=3-0-0, 7=3-0-0 C 4) C 5), 6=-594 (LC 4), : 4)	8) 9) d or ; 10	on the botton 3-06-00 tall b chord and an All bearings a Provide med bearing plate 7, 290 lb upli 0) This truss is International	has been designen in chord in all are by 2-00-00 wide v by other member are assumed to t hanical connection capable of with that joint 5 and 5 designed in acco Residential Cod nd referenced sta Standard	as where will fit betw s. be SPF No on (by oth standing 9 594 lb uplit ordance w e sections	a rectangle veen the bott o.2. ers) of truss t 0 lb uplift at j it at joint 6. ith the 2018 5 R502.11.1 a	om to oint			* 50	JU/ GAR	
FORCES	(lb) - Maximum Com Tension	pression/Maximum									EP	NUM	
TOP CHORD	2-7=-140/96, 1-2=-2 3-4=-123/38, 4-5=-6										===	E-2000	
BOT CHORD WEBS	6-7=-153/216, 5-6=- 3-6=-80/49, 4-6=-31										1	1	
NOTES 1) Wind: ASC Vasd=91m II; Exp C; B	CE 7-16; Vult=115mph nph; TCDL=6.0psf; BC Enclosed; MWFRS (er left and right exposed	(3-second gust) DL=6.0psf; h=25ft; C ivelope) exterior zone	e;									11,S/ON/	AL ENTIT

- cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60 2) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable,
- or consult qualified building designer as per ANSI/TPI 1. 3) Gable requires continuous bottom chord bearing.
- Truss to be fully sheathed from one face or securely 4)
- braced against lateral movement (i.e. diagonal web). 5) Gable studs spaced at 2-0-0 oc.

This truss has been designed for a 10.0 psf bottom 6) chord live load nonconcurrent with any other live loads.

 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.
 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not besign value to dury with with where outputs into design is based only door parameters shown, and is for an individual building design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members and property incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TPH1 Quality Criteria**, and **DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcscomponents.com)



DEVELORMENT SERVICES LEE'S'SUMMIT'SMISSOURI 04/22/2024 8:24:43

Job	Truss	Truss Type	Qty	Ply	Lot 117 MN	
240613	V10	Valley	1	1	Job Reference (optional)	164130754

Run: 8,73 S Feb 22 2024 Print: 8,730 S Feb 22 2024 MiTek Industries, Inc. Fri Mar 08 12:04:38 ID:_V0sQ0MFb6Dug7W1UBibEozd_jA-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

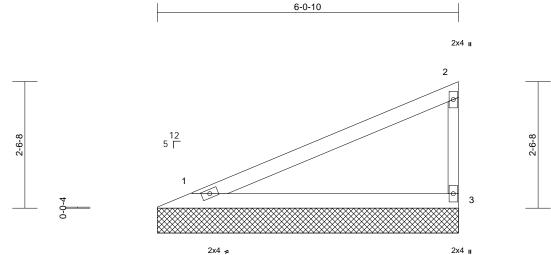
8-0-10

Scale	= 1:27.4	

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15	TC	0.21	Vert(LL)	n/a	-	n/a	999	MT20	197/144
TCDL	10.0	Lumber DOL	1.15	BC	0.11	Vert(TL)	n/a	-	n/a	999		
BCLL	0.0*	Rep Stress Incr	YES	WB	0.06	Horiz(TL)	0.00	4	n/a	n/a		
BCDL	10.0	Code	IRC2018/TPI2014	Matrix-P							Weight: 21 lb	FT = 10%
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD	2x4 SPF No.2 2x4 SPF No.2 2x3 SPF No.2 2x3 SPF No.2 Structural wood she 6-0-0 cc purlins, ex Rigid ceiling directly bracing.	cept end verticals.	bearing 4 and 10 9) This trus Internatie R802.10 ed or LOAD CASE	nechanical connec late capable of wi 9 lb uplift at joint 5 s is designed in ac nal Residential Co 2 and referenced (S) Standard	thstanding 2 cordance woode sections	4 lb uplift at ith the 2018 R502.11.1 a	joint					111.
	0	C 8), 5=-109 (LC 8)								1111	SATE OF	
FORCES	(lb) - Maximum Com Tension	npression/Maximum								Ξ*	GAR	*
TOP CHORD	1-2=-106/59, 2-3=-9	5/30, 3-4=-107/42								= 0	NUM	
BOT CHORD	1-5=-43/33, 4-5=-43	/33								-5		• 41-
WEBS	2-5=-318/163									-1	C. E-2000	162101
NOTES										1	A	

- 1) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
- Truss designed for wind loads in the plane of the truss 2) only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- Gable requires continuous bottom chord bearing. 3) Gable studs spaced at 4-0-0 oc. 4)
- 5)
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 6)
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- 7) All bearings are assumed to be SPF No.2 .

 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.
 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not beigh valid for use only with with with sets outputs into design is based only door parameters shown, and is for an individual dualing component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria**, and **DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcscomponents.com)



Job	Truss	Truss Type	Qty	Ply	Lot 117 MN	
240613	V11	Valley	1	1	Job Reference (optional)	l64130755

Run: 8.73 S Feb 22 2024 Print: 8.730 S Feb 22 2024 MiTek Industries, Inc. Fri Mar 08 12:04:39 ID:_V0sQ0MFb6Dug7W1UBibEozd_jA-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

2x4 🚅

6-0-10

Scale = 1:23.2								1			
Loading (psf) TCLL (roof) 25.0 TCDL 10.0 BCLL 0.0 BCDL 10.0	Plate Grip DOL Lumber DOL * Rep Stress Incr	2-0-0 1.15 1.15 YES IRC2018/TPI2014	CSI TC BC WB Matrix-P	0.53 0.29 0.00	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 3	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 15 lb	GRIP 197/144 FT = 10%
6-1-4 oc purlins, BOT CHORD Rigid ceiling direct bracing.	heathing directly applie except end verticals. tty applied or 10-0-0 or	Internationa R802.10.2 LOAD CASE(S	s designed in accordz al Residential Code s and referenced stand) Standard	ections	R502.11.1 a	nd					11.
Max Horiz 1=96 (Max Uplift 1=-34 Max Grav 1=236	(LC 8), 3=-54 (LC 8) (LC 1), 3=236 (LC 1) ompression/Maximum									JU/ GAR	
 NOTES 1) Wind: ASCE 7-16; Vult=115m Vasd=91mph; TCDL=6.0psf; II; Exp C; Enclosed; MWFRS cantilever left and right expose right exposed; Lumber DOL= 2) Truss designed for wind load only. For studs exposed to w see Standard Industry Gable or consult qualified building d 3) Gable requires continuous bo 4) Gable studs spaced at 4-0-0 5) This truss has been designed chord live load nonconcurrent 6) * This truss has been designed on the bottom chord in all are 3-06-00 tall by 2-00-00 wide w chord and any other members 7) All bearings are assumed to to bearing plate capable of withs 1 and 54 lb uplift at joint 3. 	3CDL=6.0psf; h=25ft; ((envelope) exterior zor ed; end vertical left an 1.60 plate grip DOL=1.1 s in the plane of the tru ind (normal to the face) End Details as applical ssigner as per ANSI/TF tom chord bearing. oc. for a 10.0 psf bottom with any other live loa d for a live load of 20.0 as where a rectangle vill fit between the botto s. e SPF No.2. n (by others) of truss t	ne; d 60 Jss), ble, PI 1. ds. Dpsf om							Phone Contraction	LICE	• 41-

March 11,2024

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent toulsable personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcscomponents.com)

CTION **IEW** DEVELOPMENT SERVICES LEE'S' SUMMIT'S MISSOURI 04/22/2024 8:24:43

Job	Truss	Truss Type	Qty	Ply	Lot 117 MN	
240613	V12	Valley	1	1	Job Reference (optional)	164130756

4-0-10

4-0-10

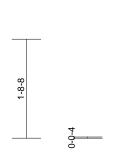
Wheeler Lumber, Waverly, KS - 66871,

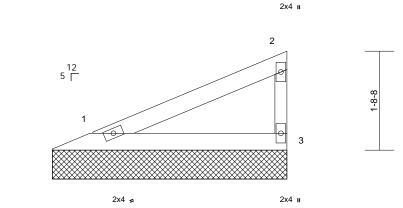
7)

8)

chord and any other members. All bearings are assumed to be SPF No.2 .

1 and 33 lb uplift at joint 3.

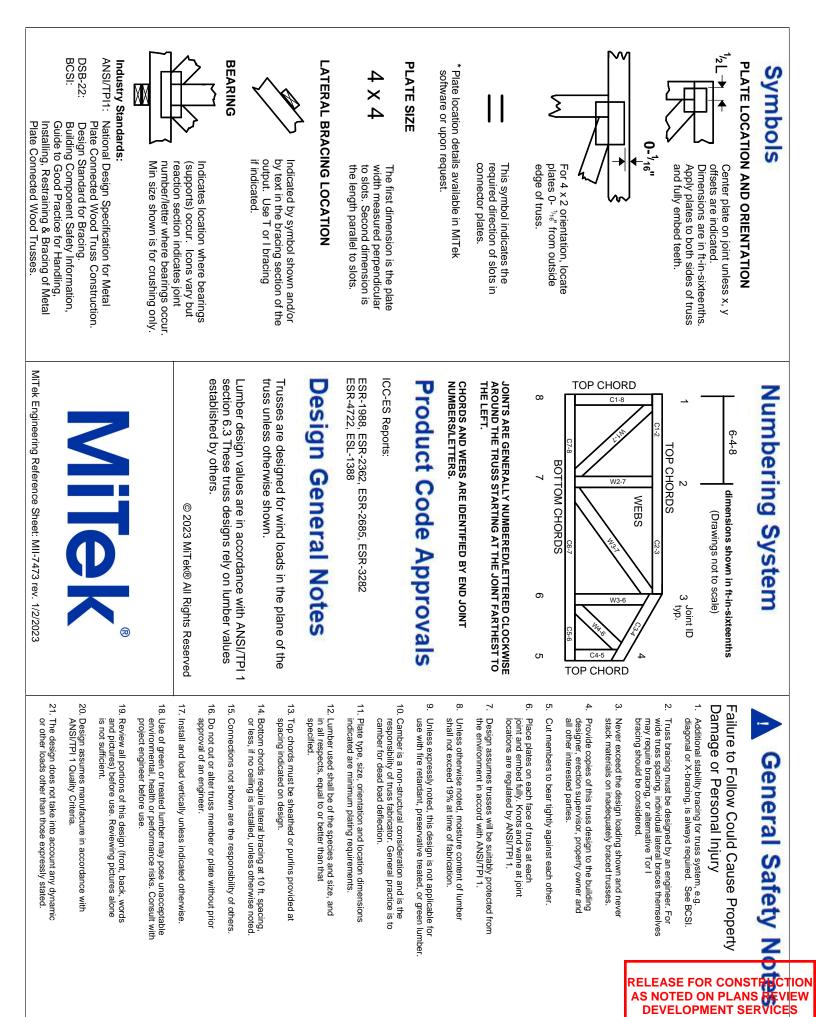

Provide mechanical connection (by others) of truss to


bearing plate capable of withstanding 21 lb uplift at joint

Run: 8,73 S Feb 22 2024 Print: 8,730 S Feb 22 2024 MiTek Industries, Inc. Fri Mar 08 12:04:39 ID:_V0sQ0MFb6Dug7W1UBibEozd_jA-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

e = 1:19.9			


Scale = 1:19.9												
Loading TCLL (roof) TCDL	(psf) 25.0 10.0	Spacing Plate Grip DOL Lumber DOL	2-0-0 1.15 1.15	CSI TC BC	0.19 0.10	DEFL Vert(LL) Vert(TL)	in n/a n/a	(loc) - -	l/defl n/a n/a	L/d 999 999	PLATES MT20	GRIP 197/144
BCLL BCDL	0.0* 10.0	Rep Stress Incr Code	YES IRC2018/TPI2014	WB Matrix-P	0.00	Horiz(TL)	0.00	3	n/a	n/a	Weight: 10 lb	FT = 10%
LUMBER TOP CHORD BOT CHORD WEBS BRACING	2x4 SPF No.2 2x4 SPF No.2 2x3 SPF No.2		Ínternationa	s designed in acc al Residential Co and referenced s) Standard	de sections	R502.11.1 a	and				-	
TOP CHORD BOT CHORD	Structural wood she 4-1-4 oc purlins, ex Rigid ceiling directly bracing.	cept end verticals.										
	(size) 1=4-0-10, Max Horiz 1=60 (LC Max Uplift 1=-21 (LC Max Grav 1=146 (LC	5) 8), 3=-33 (LC 8)								1	ATE OF	MISSOUT
FORCES	(lb) - Maximum Com Tension 1-2=-53/35, 2-3=-11									E*	D JU/ GAR	
BOT CHORD	1-3=-19/15									= 1		
Vasd=91m II; Exp C; E cantilever right expose 2) Truss des	CE 7-16; Vult=115mph nph; TCDL=6.0psf; BC Enclosed; MWFRS (er left and right exposed sed; Lumber DOL=1.6 signed for wind loads in	DL=6.0psf; h=25ft; (nvelope) exterior zor ; end vertical left an 0 plate grip DOL=1. n the plane of the tru	ne; d 60 Iss							1111	NUM E-2000	ALENGIN
see Standa or consult 3) Gable requ	studs exposed to wind ard Industry Gable En qualified building desig uires continuous botto	d Details as applical gner as per ANSI/TF	ble,								JUAN C	GARCIA
 5) This truss chord live 6) * This truss 	ds spaced at 4-0-0 oc. has been designed for load nonconcurrent wi s has been designed f	th any other live loa or a live load of 20.0								WILLIN'S	16	952 ■
	tom chord in all areas Il by 2-00-00 wide will		om								PP	992 JE

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent oulgase with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

CTION **IEW** DEVELOPMENT SERVICES LEE'S'SUMMIT'S MISSOURI 04/22/2024 8:24:43

VONAL ENGLI

March 11,2024

ASE FOR CONST **OTED ON PLANS** VELOPMENT SER LEE'S SUMMIT, MISSOURI 04/22/2024 8:24:43