

RE: 240616 Lot 133 MN

Site Information:

Customer: Avital Homes Project Name: 240616 Lot/Block: Address: City:

MiTek, Inc. 16023 Swingley Ridge Rd. Chesterfield, MO 63017 314.434.1200

Model: Serenade - Modern 3rd Car Subdivision: State:

General Truss Engineering Criteria & Design Loads (Individual Truss Design Drawings Show Special Loading Conditions):

Design Code: IRC2018/TPI2014 Wind Code: ASCE 7 - 16[Low Rise] Roof Load: 45.0 psf

Design Program: MiTek 20/20 8.7 Wind Speed: 115 mph Floor Load: N/A psf

This package includes 39 individual, dated Truss Design Drawings and 0 Additional Drawings.

No.	Seal#	Truss Name	Date	No.	Seal#	Truss Name	Date
1	164627061	A1	4/3/2024	21	l64627081	H3	4/3/2024
2	164627062	A2	4/3/2024	22	164627082	J1	4/3/2024
3	164627063	A3	4/3/2024	23	164627083	J2	4/3/2024
4	164627064	A4	4/3/2024	24	164627084	J3	4/3/2024
5	164627065	A5	4/3/2024	25	164627085	J4	4/3/2024
6	164627066	A6	4/3/2024	26	164627086	J5	4/3/2024
7	164627067	B1	4/3/2024	27	164627087	J6	4/3/2024
8	164627068	B2	4/3/2024	28	164627088	J7	4/3/2024
9	164627069	B3	4/3/2024	29	164627089	J8	4/3/2024
10	164627070	B4	4/3/2024	30	164627090	J9	4/3/2024
11	164627071	B5A	4/3/2024	31	164627091	J11	4/3/2024
12	164627072	B6A	4/3/2024	32	164627092	J12	4/3/2024
13	164627073	B8	4/3/2024	33	164627093	K1	4/3/2024
14	164627074	E1	4/3/2024	34	164627094	K2	4/3/2024
15	164627075	G1	4/3/2024	35	164627095	LAY1	4/3/2024
16	164627076	G2	4/3/2024	36	164627096	LAY2	4/3/2024
17	164627077	G3	4/3/2024	37	164627097	V1	4/3/2024
18	164627078	G4	4/3/2024	38	164627098	V2	4/3/2024
19	164627079	H1	4/3/2024	39	164627099	V3	4/3/2024
20	164627080	H2	4/3/2024				

The truss drawing(s) referenced above have been prepared by MiTek USA, Inc under my direct supervision

based on the parameters provided by Wheeler - Waverly.

Truss Design Engineer's Name: Garcia, Juan

My license renewal date for the state of Kansas is April 30, 2024.

Kansas COA: E-943

IMPORTANT NOTE: The seal on these truss component designs is a certification that the engineer named is licensed in the jurisdiction(s) identified and that the designs comply with ANSI/TPI 1. These designs are based upon parameters shown (e.g., loads, supports, dimensions, shapes and design codes), which were given to MiTek. Any project specific information included is for MiTek customers file reference purpose only, and was not taken into account in the preparation of these designs. MiTek has not independently verified the applicability of the design parameters or the designs for any particular building. Before use, the building designer should verify applicability of design parameters and properly incorporate these designs into the overall building design per ANSI/TPI 1, Chapter 2.

RE: 240616 Lot 133 MN

Site Information:

Customer: Avital Homes Project Name: 240616 Lot/Block: Model Address: Subdiv City: State: MiTek, Inc. 16023 Swingley Ridge Rd. Chesterfield, MO 63017 314.434.1200

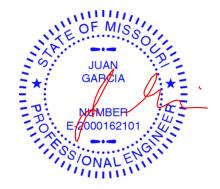
240616 Model: Serenade - Modern 3rd Car Subdivision: State:

General Truss Engineering Criteria & Design Loads (Individual Truss Design Drawings Show Special Loading Conditions):

Design Code: IRC2018/TPI2014 Wind Code: ASCE 7 - 16[Low Rise] Roof Load: 45.0 psf Design Program: MiTek 20/20 8.7 Wind Speed: 115 mph Floor Load: N/A psf

This package includes 39 individual, dated Truss Design Drawings and 0 Additional Drawings.

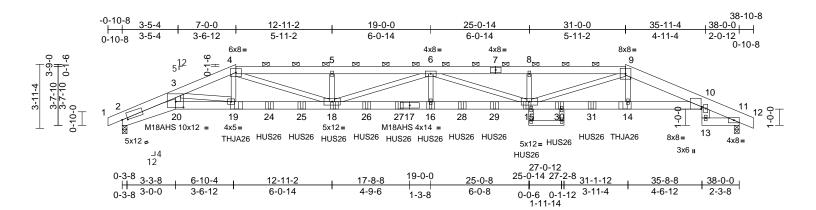
No.	Seal#	Truss Name	Date	No.	Seal#	Truss Name	Date
1	164627061	A1	4/3/2024	21	164627081	H3	4/3/2024
2	164627062	A2	4/3/2024	22	164627082	J1	4/3/2024
3	164627063	A3	4/3/2024	23	164627083	J2	4/3/2024
4	164627064	A4	4/3/2024	24	164627084	J3	4/3/2024
5	164627065	A5	4/3/2024	25	164627085	J4	4/3/2024
6	164627066	A6	4/3/2024	26	164627086	J5	4/3/2024
7	164627067	B1	4/3/2024	27	164627087	J6	4/3/2024
8	164627068	B2	4/3/2024	28	164627088	J7	4/3/2024
9	164627069	B3	4/3/2024	29	164627089	J8	4/3/2024
10	164627070	B4	4/3/2024	30	164627090	J9	4/3/2024
11	164627071	B5A	4/3/2024	31	l64627091	J11	4/3/2024
12	164627072	B6A	4/3/2024	32	164627092	J12	4/3/2024
13	164627073	B8	4/3/2024	33	164627093	K1	4/3/2024
14	164627074	E1	4/3/2024	34	164627094	K2	4/3/2024
15	164627075	G1	4/3/2024	35	164627095	LAY1	4/3/2024
16	164627076	G2	4/3/2024	36	164627096	LAY2	4/3/2024
17	164627077	G3	4/3/2024	37	164627097	V1	4/3/2024
18	164627078	G4	4/3/2024	38	164627098	V2	4/3/2024
19	164627079	H1	4/3/2024	39	164627099	V3	4/3/2024
20	164627080	H2	4/3/2024				


The truss drawing(s) referenced above have been prepared by MiTek USA, Inc under my direct supervision

based on the parameters provided by Wheeler - Waverly.

Truss Design Engineer's Name: Garcia, Juan

My license renewal date for the state of Missouri is December 31, 2024. Missouri COA: 001193


IMPORTANT NOTE: The seal on these truss component designs is a certification that the engineer named is licensed in the jurisdiction(s) identified and that the designs comply with ANSI/TPI 1. These designs are based upon parameters shown (e.g., loads, supports, dimensions, shapes and design codes), which were given to MiTek. Any project specific information included is for MiTek customers file reference purpose only, and was not taken into account in the preparation of these designs. MiTek has not independently verified the applicability of the design parameters or the designs for any particular building. Before use, the building designer should verify applicability of design parameters and properly incorporate these designs into the overall building design per ANSI/TPI 1, Chapter 2.

Garcia, Juan

Job	Truss	Truss Type	Qty	Ply	Lot 133 MN	
240616	A1	Hip Girder	1	3	Job Reference (optional)	164627061

Run: 8.73 S Mar 21 2024 Print: 8.730 S Mar 21 2024 MiTek Industries, Inc. Tue Apr 02 08:22:33 ID:8GT8_f7kXJbYSdR78zEY2czym18-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Scale = 1:71

Plate Offsets (X, Y): [2:0-4-0,0-1-0], [10:0-0-11,Edge], [20:0-5-12,0-4-4]

Flate Olisets (×, 1). [2.0-4-0,0-1-0],	[10.0-0-11,Euge], [2	0.0-5-12,0	J-4-4j	-							-	
Loading TCLL (roof) TCDL BCLL BCDL	(psf) 25.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 NO IRC201	8/TPI2014	CSI TC BC WB Matrix-S	0.71 0.52 0.48	DEFL Vert(LL) Vert(CT) Horz(CT) Wind(LL)	in -0.54 -0.94 0.41 0.47	(loc) 16 16 11 16-18	l/defl >837 >482 n/a >962	L/d 360 240 n/a 240	PLATES MT20 M18AHS Weight: 701 lb	GRIP 197/144 186/179 FT = 10%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD REACTIONS	2x6 SP 2400F 2.0E No.2, 9-12:2x8 SP 2 2x6 SP 2400F 2.0E 2400F 2.0E, 13-11:2 SPF No.2 2x4 SPF No.2 *Exce Structural wood she 5-11-7 oc purlins, ex 2-0-0 oc purlins (6-0 Rigid ceiling directly bracing. (size) 2=0-3-8, ' Max Horiz 2=-59 (LC Max Uplift 2=-988 (L Max Grav 2=4089 (I (lb) - Maximum Com Tension 1-2=0/3, 2-3=-15764 4-5=-17153/4374, 5- 6-8=-17167/4314, 8- 9-10=-12722/3064, ' 11-12=0/6 2-20=-3427/14220, ' 18-19=-2893/11741,	*Except* 1-4:2x6 SPI 400F 2.0E *Except* 2-20:2x8 SF 2x6 SPF No.2, 21-22: ept* 10-13:2x6 SPF N athing directly applied cept -0 max.): 4-9. applied or 10-0-0 oc 11=0-3-8 3 9) C 4), 11=-952 (LC 5) C 1), 11=4103 (LC 1 pression/Maximum 1/3819, 3-4=-12678/3 6=-17152/4373, -9=-17167/4314, 10-11=-2210/529, 19-20=-3144/13011, 16-18=-4788/19203, 14-15=-2840/12056 11-13=0/0 19=-473/2018, =-1477/5973,	1) F 2x4 (0.2 d or 2) 3) 193, 5) 6) 7 8) 7 8) 7 9)	3-ply truss to (0.131"x3") n Top chords c staggered at oc. Bottom chord staggered at oc. Web connec 2 rows stagg All loads are except if note CASE(S) see provided to c unless othen Unbalanced this design. Wind: ASCE Vasd=91mpl II; Exp C; n cantilever lef right exposed Provide aded All plates are All plates are All plates are This truss ha chord live loa * This truss for on the bottor 3-06-00 tall b earing at jo using ANSI/1 designer sho 2) Provide mec bearing plate	be connected to lails as follows: connected as foll 0-9-0 oc, 2x8 - 2 ds connected as 0-9-0 oc, 2x8 - 2 ds connected as 0-9-0 oc, 2x6 - 2 ted as follows: 2: ered at 0-9-0 oc considered equa das front (F) or tion. Ply to ply c listribute only loa wise indicated. roof live loads ha 7-16; Vult=115n n; TCDL=6.0psf; closed; MWFRS 7, Lumber DOL= quate drainage to been designed at onconcurren has been designed n chord in all are by 2-00-00 wide int(s) 2 consider: PI 1 angle to gra uld verify capacito capable of with:	ows: 2x6 - 2 rows sta follows: 2 2 rows sta follows: 2 2 rows sta ally applie back (B) connection ads noted ave been mph (3-sec BCDL=6. (envelop sed; end v -1.60 plate o prevent so therwid d for a 10. it with any ef for a liv eas where will fit betw 's be SPF N's s parallel ain formul ity of bear on (by oth standing 2	th 10d 2 rows ggered at 0-9 at 0-9-0 oc, 2 d to all plies, face in the LC s have been as (F) or (B), considered for considered for c	I-0 I-0 2x6 - DAD or Cat. ne; dd 60 g. dd. ds. Dpsf om	13) Thi Internet Reference	s truss is ernational 22.10.2 d aphical p he orien tom choic e Simpso ht Hand connect to e Simpso ss) or ec- 12 from pack face e Simpso nd Hip) c naect trus all nail h er applie CASE(S ead + Re ate Incre- niform L	s design and ref urlin re- tation Hig) on Strare Hig) on Strare the last of bolo on Strare the last of bolo on Strare the last of bolo on Strare soles w d to pl) Sta boles w d to pl) Sta boles w d to pl) Sta	ned in accordance dential Code secti erenced standarc presentation doe on the purtin along mg. Tie THJA26 (r quivalent at 7-1 s) to back face of ng. Tie HUS26 (1 ng. Tie HUS26 (1 raback face of them cherocococi them cherocococi here hanger, is m r. 15 b/ft) UAN (1 160 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	e with the 2018 ons R502.11.1 and ANSUTPI 1. show the size the top and/or HUA26 on 2 bly 5 from the left end bottom chord. 4-10d Girder, 4-10d 0 oc max. starting at do donnect trues (see) 62101 HUA26 on 2 bly. Left 0 from the left end to those on a bly. Left 0 from the left end to those on a bly. Left 0 from the left end to those on a bly. Left 0 from the left end to those on a bly. Left 0 from the left end to those on a bly. Left 0 for the left end to the left end to the left end to the left end to the left end to the left end to the lef
				1 1 anu 300 li	b uplift at joint 2.							1111	ril 3,2024

April 3,2024

Page: 1

Continued on page 2 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not besign value to dury with with where outputs into design is based only door parameters shown, and is for an individual building design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members and property incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TPH1 Quality Criteria**, and **DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcscomponents.com)

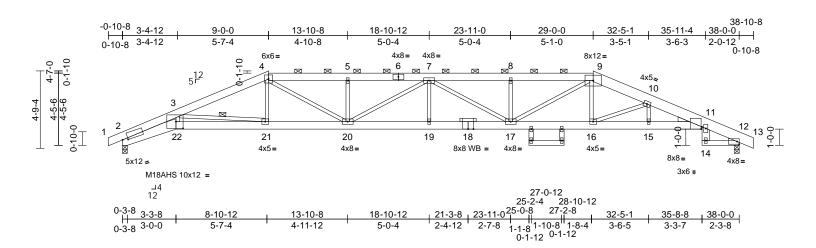
Job	Truss	Truss Type	Qty	Ply	Lot 133 MN	10 1007001
240616	A1	Hip Girder	1	3	Job Reference (optional)	164627061

Run: 8.73 S Mar 21 2024 Print: 8.730 S Mar 21 2024 MiTek Industries, Inc. Tue Apr 02 08:22:33 ID:8GT8_f7kXJbYSdR78zEY2czym18-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 2

Vert: 1-4=-70, 4-9=-70, 9-12=-70, 2-20=-20, 10-20=-20, 11-13=-20

Concentrated Loads (lb)


Vert: 19=-786 (B), 14=-807 (B), 18=-278 (B), 16=-278 (B), 15=-278 (B), 24=-278 (B), 25=-278 (B), 26=-278 (B), 27=-278 (B), 28=-278 (B), 29=-278 (B),

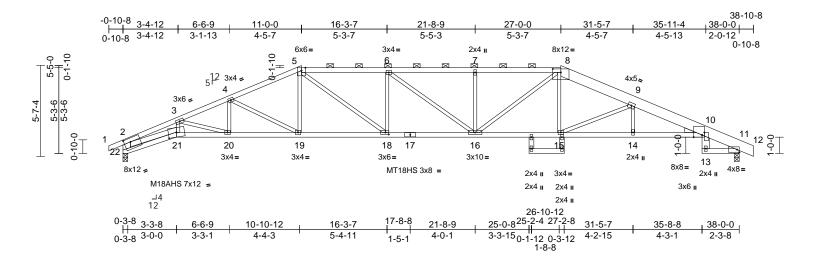
30=-278 (B), 31=-278 (B)

Job	Truss	Truss Type	Qty	Ply	Lot 133 MN	
240616	A2	Нір	1	1	Job Reference (optional)	164627062

Run: 8.73 S Mar 21 2024 Print: 8.730 S Mar 21 2024 MiTek Industries, Inc. Tue Apr 02 08:22:34 ID:7KnIPG4b8?pvAQ6KhopbbNzymBX-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

Scale = 1:71

Plate Offsets (X, Y): [2:0-4-0,0-1-0], [11:0-0-11,Edge], [22:0-5-4,0-5-0]


	X, 1). [2.0-4-0,0-1-0]	, [11.0-0-11,⊏uge], [z	.2.0-3-4,0	-5-0]									
Loading	(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15		тс	0.68	Vert(LL)	-0.39	19	>999	360	MT20	197/144
TCDL	10.0	Lumber DOL	1.15		BC	0.54	Vert(CT)	-0.71	19	>636	240	M18AHS	142/136
BCLL	0.0*	Rep Stress Incr	YES		WB	0.54	Horz(CT)	0.42	12	n/a	n/a		
BCDL	10.0	Code	IRC20	18/TPI2014	Matrix-S		Wind(LL)	0.29	19	>999	240	Weight: 239 lb	FT = 10%
LUMBER				IOTES									
TOP CHORD	2x6 SP 2400F 2.0E	*Evcont* 0-13.2v8 S			roof live loads h	ave heen	considered fo	nr.					
TOF CHORD	2400F 2.0E	Except 9-13.2x6 5		this design.				,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,					
BOT CHORD	2x6 SP 2400F 2.0E	*Except* 2-22:2x8 S	P 2	0	7-16; Vult=115	mph (3-seo	cond aust)						
	2400F 2.0E, 14-12,2				h; TCDL=6.0psf			Cat.					
WEBS		ept* 11-14:2x6 SPF N	lo.2,	II; Exp C; En	closed; MWFRS	S (envelope	e) exterior zo	ne;					
	23-25,24-26:2x4 SP	F No.2			t and right expo								
OTHERS	2x3 SPF No.2				d; Lumber DOL=								
WEDGE	Right: 2x4 SP No.3		3		quate drainage t								1111
BRACING			4		e MT20 plates u							NE OF	NIS SIL
TOP CHORD	Structural wood she	athing directly applie			e 2x4 MT20 unle							12.	0,4
	3-8-12 oc purlins, ex		6		is been designe						5	X	. 0-
	2-0-0 oc purlins (4-6		-		ad nonconcurrer							S: JUA	N
BOT CHORD		Rigid ceiling directly applied or 10-0-0 oc 7) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle GARCIA											
	bracing.											× -	
WEBS	chord and any other members.												
REACTIONS			8		are assumed to		0.2.				=]	NUME	BER :
	Max Horiz 2=-74 (LC	,	c		int(s) 2 conside)				E-20001	62101 :00-
	Max Uplift 2=-245 (L				FPI 1 angle to g						1	A	. 2.
	Max Grav 2=1768 (I		1)	designer sho	ould verify capac	city of bear	ing surface.				1	1. Co	GN
FORCES	(lb) - Maximum Com	pression/Maximum	1		hanical connect							1,SONIA	ENIN
	Tension	007 0 4 4040/004			e capable of with		245 lb uplift at	t joint				1111	in in the second se
TOP CHORD	1-2=0/3, 2-3=-6344/	, ,			uplift at joint 12								
	4-5=-4918/797, 5-7= 7-8=-4968/801, 8-9=		1		designed in acc								llin.
	9-10=-4216/632, 10	,			Residential Co			and				NN C	APO
	11-12=-913/136, 12				nd referenced si Irlin representati							IN UAN C	······································
BOT CHORD	2-22=-707/5692, 21		I		ation of the purli			size				JUAN C	NSE
	20-21=-492/3916, 1			bottom chore		in along the							101
	17-19=-765/5356, 1			OAD CASE(S)							2		A 2
	15-16=-587/4840, 1	1-15=-588/4840,		OAD CASE(S)	Stanuaru							1 1 6 0	52 : -
	12-14=0/0										- 2	169	992 : E
WEBS	11-14=0/60, 3-22=-2										-	P:	. : <u>#</u> :
	,	21=0/466, 9-16=-19/6	628,									0	Milli
	10-16=-1067/161, 1											- ANAN	SAS
	4-20=-242/1327, 5-2											1. 9.01-	ENG IN
		9=0/212, 7-17=-550/9	9Z,									ON	ALE
	8-17=-352/149, 9-17	r=-∠44/130U											nne.
												Ap	ril 3,2024
												1	

16023 Swingley Ridge Rd. Chesterfield, MO 63017 314.434.12007 MITek-US.com

Job	Truss	Truss Type	Qty	Ply	Lot 133 MN	
240616	A3	Нір	1	1	Job Reference (optional)	164627063

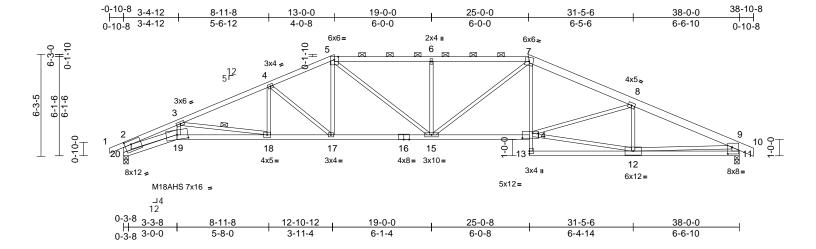
Run: 8.73 S Mar 21 2024 Print: 8.730 S Mar 21 2024 MiTek Industries. Inc. Tue Apr 02 08:22:34 ID:SJoxC1tR04ukLSBL1aYwD_zymEN-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:71

Plate Offsets ((X, Y): [8:0-6-0,0-2-10), [10:0-6-4,Edge], [1	0:0-1-14,	,0-1-11], [18:0-2	-8,0-1-8], [21:0-	6-0,0-3-7],	[22:0-4-12,0	-2-12]					
Loading TCLL (roof) TCDL BCLL BCDL	(psf) 25.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC20 ²	18/TPI2014	CSI TC BC WB Matrix-S	0.83 0.64 0.73	DEFL Vert(LL) Vert(CT) Horz(CT) Wind(LL)	in -0.46 -0.84 0.52 0.32	(loc) 16-18 16-18 11 16-18	l/defl >982 >540 n/a >999	L/d 360 240 n/a 240	PLATES MT20 M18AHS MT18HS Weight: 169 lb	GRIP 197/144 142/136 197/144 FT = 10%
LUMBER TOP CHORD BOT CHORD WEBS WEDGE BRACING TOP CHORD REACTIONS FORCES TOP CHORD BOT CHORD BOT CHORD WEBS	2.0E 2x4 SPF No.2 *Exce 2100F 1.8E 2x3 SPF No.2 *Exce No.2, 21-2:2x4 SPF 23-25,24-15:2x4 SPF Right: 2x4 SP No.3 Structural wood she 1-11-9 oc purlins, e 2-0-0 oc purlins, e 2-0-0 oc purlins (2-3 Rigid ceiling directly bracing. (size) 11=0-3-8. Max Horiz 22=-82 (L Max Uplift 11=-220 (Max Grav 11=1764 (lb) - Maximum Con Tension 1-2=0/30, 2-3=-5444 4-5=-3558/500, 5-6= 6-7=-3946/606, 7-8= 8-9=-3661/512, 9-10 0-11=-911/123, 11 21-22=-123/444, 20 19-20=-425/3972, 1 16-18=-473/3946, 1 11-13=0/0 10-13=0/60, 3-21=-5 8-15=-32/610, 9-15= 2-21=-493/4545, 5-7 8-16=-159/912, 6-18 6-16=-130/127, 7-18	PF No.2 PF No.2 Pathing directly applie except end verticals, a 3-13 max.): 5-8. y applied or 10-0-0 oc , 22=0-3-8 .C 13) (LC 5), 22=-223 (LC 4 (LC 1), 22=1771 (LC npression/Maximum 4/609, 3-4=-4305/534 =-3948/610, 3947/606, D=-4559/550, -12=0/0, 2-22=-1814/ -21=-522/4872, 8-19=-343/3231, 5-16=-343/32324, 0-14=-463/4404, 37/659, 5-19=-32/488 =-1198/213, 18=-178/1027,	0F 2 SPF 3 4 5 d or 6 7 8 4) 1 9 4, 1 1) 9 4, 1 1) 9 4, 1 1/246 1 1/246 1 5, 7/777,	 Vasd=91mpi II; Exp C; En cantilever lef right expose. Provide adec All plates are This truss ha chord live loa This truss ha chord live loa This truss for 3-06-00 tall be chord and ar All bearings to using ANSI/7 designer sho Provide mec bearing plate 22 and 220 I This truss is International R802.10.2 ai Graphical pu 	7-16; Vult=1157, r; TCDL=6.0ps; closed; MWFRS t and right expo d; Lumber DOL= quate drainage t e MT20 plates un is been design n chord in all ard by 2-00-00 wide are assumed to int(s) 22 conside (FPI 1 angle to gr und verify capad hanical connect e capable of with b uplift at joint 1 designed in acc Residential Con nd referenced st rinin representati ation of the purlin d.	mph (3-sec ; BCDL=6.1 S (envelope sed; end v =1.60 plate to prevent v nless other d for a 10.0 nt with any need for a liv eas where will fit betw rs. be SPF Ne ers parallel rain formul- city of bear ion (by oth standing 2 1. ordance w de sections tandard AN ion does no	cond gust) Opsf; h=25ft; e) exterior zo vertical left ar grip DOL=1. water pondin wise indicate o psf bottom o ther live loa e load of 20. a rectangle veen the bott D.2. I to grain valu a. Building ing surface. ers) of truss : 223 lb uplift ar ith the 2018 s R502.11.1 a SU/TP1 1. ot depict the si	Cat. ne; 1d .60 g. ed. ads. Opsf om ie to t joint				PROFESTUR	CIA BER 162101 ALENO SARCIA NSEO 952

,,,,,, April 3,2024


 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.
 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not besign value to dury with with where outputs into design is based only door parameters shown, and is for an individual building design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members and property incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TPH1 Quality Criteria**, and **DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcscomponents.com)

Job	Truss	Truss Type	Qty	Ply	Lot 133 MN	
240616	A4	Нір	1	1	Job Reference (optional)	164627064

Run: 8.73 S Mar 21 2024 Print: 8.730 S Mar 21 2024 MiTek Industries. Inc. Tue Apr 02 08:22:34 ID:aUMj1vUkVY9EIgxaGrXo0RzymK2-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:71.1

BRACING

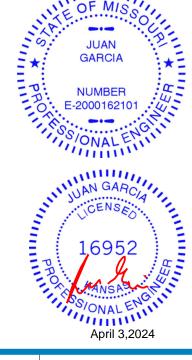
TOP CHORD

BOT CHORD

REACTIONS (size)

WEBS

FORCES


TOP CHORD

BOT CHORD

Plate Offsets (X, Y): [11:0-3-0,0-5-0], [14:0-7-12,0-3-12], [19:0-8-0,0-3-7], [20:0-4-12,0-2-12]													
Loading	(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15		тс	0.90	Vert(LL)	-0.34	15-17	>999	360	MT20	197/144
TCDL	10.0	Lumber DOL	1.15		BC	0.85	Vert(CT)	-0.63	15-17	>715	240	M18AHS	142/136
BCLL	0.0*	Rep Stress Incr	YES		WB	0.95	Horz(CT)	0.34	11	n/a	n/a		
BCDL	10.0	Code	IRC2018	3/TPI2014	Matrix-S		Wind(LL)	0.23	15-17	>999	240	Weight: 160 lb	FT = 10%
LUMBER TOP CHORD BOT CHORD WEBS	2x4 SPF No.2 *Except* 7-10:2x6 SPF No.22x4 SPF No.2 *Except* 19-16:2x4 SPF2x4 SPF No.2 *Except* 19-16:2x4 SPF2x4 SPF No.2 *Except* 19-16:2x4 SPFII; Exp C; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed; end vertical left and right exposed; unber DOL=1.60 plate grip DOL=1.602x4 SPF No.2 *Except* 20-2:2x6 SPF No.2Provide adequate drainage to prevent water ponding.2400F 2.0E4) All plates are MT20 plates unless otherwise indicated.												

4)	All plates are I	MT20 plates unless	s otherwise indicate
->	T 1 ' ' '		100 11 11

- 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. * This truss has been designed for a live load of 20.0psf 6) on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom
- chord and any other members. All bearings are assumed to be SPF No.2 . 7) 8) Bearing at joint(s) 20 considers parallel to grain value
- using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface. Provide mechanical connection (by others) of truss to 9)
- bearing plate capable of withstanding 198 lb uplift at joint 20 and 198 lb uplift at joint 11.
- 10) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 11) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.
- LOAD CASE(S) Standard

11111

NOTES

WEBS

1) Unbalanced roof live loads have been considered for this design.

Structural wood sheathing directly applied or

1-10-13 oc purlins, except end verticals, and

3-18

Rigid ceiling directly applied or 10-0-0 oc

11=0-3-8, 20=0-3-8

Max Uplift 11=-198 (LC 5), 20=-198 (LC 4)

Max Grav 11=1767 (LC 1), 20=1767 (LC 1)

1-2=0/30, 2-3=-5547/594, 3-4=-3871/432,

8-9=-3176/340, 9-10=0/30, 2-20=-1790/230,

7-14=-25/624, 12-13=-7/104, 11-12=-121/987

3-19=-29/692, 4-17=-773/199, 5-17=-70/580,

4-5=-3230/424, 5-6=-3347/478,

6-7=-3345/476.7-8=-3398/430.

5-15=-110/706, 6-15=-513/203, 12-14=-246/2774, 8-14=-21/452, 8-12=-545/148, 2-19=-491/4727,

9-12=-154/1851, 4-18=0/384, 3-18=-1468/321, 7-15=-89/572

19-20=-109/373, 18-19=-586/4981,

17-18=-304/3533, 15-17=-240/2926, 14-15=-256/3054, 13-14=0/115,

(Ib) - Maximum Compression/Maximum

2-0-0 oc purlins (2-2-0 max.): 5-7.

bracing.

Tension

1 Row at midpt

9-11=-1696/229

Max Horiz 20=-84 (LC 13)

Job	Truss	Truss Type	Qty	Ply	Lot 133 MN	
240616	A5	Нір	1	1	Job Reference (optional)	164627065

Run: 8.73 S Mar 21 2024 Print: 8.730 S Mar 21 2024 MiTek Industries, Inc. Tue Apr 02 08:22:34 ID:T6IoFGMP6asF2g6H_VRbNEzymQf-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

-0-10-8 3-4-12 0-10-8 3-4-12 38-0-0 38-10-8 3-4-12 0-10-8 8-11-7 15-0-0 19-0-0 23-0-0 29-0-9 34-7-4 5-6-11 6-0-9 4-0-0 4-0-0 6-0-9 5-6-11 2x4 II 6x6 =6x6= -10 10 0-1-10 7-1-0 5 6 7 \bowtie \boxtimes 12 5 3x4 🚽 3x4 👟 4 8 6-11-6 7-1-0 1-6 3x6**≈** 3x6 🛥 3 9 10 0-0-11 **6**14 20 19 18 17 16 15 13 12 ₿ 3x4= M18AHS 7x16 = 4x5= 3x4= 4x8= 3x10= 8x12 -4∟ 12 8x12 👟 2x4 II 2x4 II M18AHS 7x16 = 2x4 II 2x4 II 294059 38-0-0 <u>37-8-8</u> 3-0-0 0-3-8 25-2-4 28-9-8 0-3-8 3-3-8 H 0-3-8 3-0-0 21-3-8 23-1-4 25-0-8 28-7-12 2-3-8 1-9-12 1-11-4 3-5-8 0 0-1-12 19-0-0 8-11-7 14-10-12 34-8-8 28-7-12 ||| 3-5-8 0-1-12 0-3-1 5-7-15 5-11-5 4-1-4 5-7-15

Scale = 1:71.2

			-		-								
Loading	(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15		TC	0.77	Vert(LL)	-0.38	17	>999	360	MT20	197/144
TCDL	10.0	Lumber DOL	1.15		BC	0.65	Vert(CT)	-0.68	17-18	>661	240	M18AHS	142/136
BCLL	0.0*	Rep Stress Incr	YES		WB	0.49	Horz(CT)	0.45	12	n/a	n/a		
BCDL	10.0	Code	IRC201	18/TPI2014	Matrix-S	_	Wind(LL)	0.24	17	>999	240	Weight: 157 lb	FT = 10%
BCDL LUMBER TOP CHORD BOT CHORD BRACING TOP CHORD BOT CHORD WEBS FORCES TOP CHORD BOT CHORD BOT CHORD WEBS	2x4 SPF No.2 2x4 SPF No.2 *Exce 2100F 1.8E 2x3 SPF No.2 *Exce No.2, 20-2,13-10:2x 22-24,23-25:2x4 SP Structural wood she 2-1-5 oc purlins, ex 2-0-0 oc purlins (3-4 Rigid ceiling directly bracing. 1 Row at midpt (size) 12=0-3-8, Max Horiz 21=-94 (L Max Uplift 12=-209 (Max Grav 12=1767 (lb) - Maximum Com Tension 1-2=0/30, 2-3=-552: 4-5=-2875/341, 5-6 6-7=-2814/361, 2-2' 10-12=-1795/228, 7 8-9=-3894/370, 9-1(20-21=-137/388, 19 18-19=-351/3561, 1 15-17=-149/2661, 1 3-20=-48/690, 3-19= 4-18=-1014/258, 9-' 2-20=-547/4686, 10	apt* 20-16,16-13:2x4 apt* 21-2,12-10:2x6 § 4 SPF 2100F 1.8E, F No.2 eathing directly applie cept end verticals, au +2 max): 5-7. applied or 9-7-15 oc 3-19, 4-18, 8-15, 9- , 21=0-3-8 C 13) (LC 9), 21=-209 (LC (LC 1), 21=1767 (LC npression/Maximum 3/670, 3-4=-3894/402 2814/361, 1=-1795/258, -8=-2975/341, 0=-5523/566, 10-11= -20=-667/4955, -7-18=-149/2661, 4-15=-245/3561, 2-13=-36/388 =-1014/243, 8-14=0/4 13=-6/690,	2 SPF 3 4 5 5 6 6 7 8 14 7 8 14 7 8 1 2, 1 1, 0/30 L 428, 428, 428, 428, 428, 428, 43 43 5 5 5 5 6 6 7 8 1 1 1 1 1 1 1 1 1 1 1 1 1	 Wind: ASCE Vasd=91mpi Lis Exp C; Ercantilever lefright expose Provide adee All plates are This truss ha chord live loi * This truss loi on the bottoor 3-06-00 tall fictor and are All bearings Bearing at jci value using j designer shot Provide mec bearing plate 21 and 209 I This truss is International R802.10.2 a Graphical pu 	7-16; Vult=115m h; TCDL=6.0psf; l:closed; MWFRS ft and right expos d; Lumber DOL= quate drainage to b MT20 plates unl as been designed ad nonconcurrent nas been designed ad nonconcurrent nas been designed ad nonconcurrent as been designed ad nonconcurrent is been designed An Onconcurrent as been designed ad nonconcurrent is been designed ANSI/TPI 1 angle buld verify capacit thanical connectit e capable of with a ANSI/TPI 1 angle buld verify capacit thanical connectit e capable of with a connectit e capable of with a connectit designed in acco Residential Code nd referenced sta urlin representatio ation of the purlin d.	BCDL=6. (envelope ed; end v 1.60 plate prevent ' eless other for a 10. ' with any d for a liv with any d for a liv d for a liv d for a liv es SPF N- biders par to grain f y of bear on (by oth standing 2 ' rdance w e sections undard AN n does nu	cond gust) ops; h=25ft; evertical left an errical left an errical left an overtical left an errical left an overtical left an evertical left an overtical left an overtical left an overtical left an even the load of 20.0 a rectangle veen the bottw o.2. allel to grain formula. Buik ing surface. ers) of truss t 209 lb uplift at ith the 2018 s R502.11.1 a SI/TPI 1. ot depict the s	Cat. ne; id 60 g. id. dds. Dpsf om ding to to to to	17			JUAN C	MISSOURI N CIA
NOTES 1) Unbalance this design	ed roof live loads have n.	been considered for											AL ENGIN

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent colleges with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

April 3,2024

Job	Truss	Truss Type	Qty	Ply	Lot 133 MN	
240616	A6	Нір	1	1	Job Reference (optional)	164627066

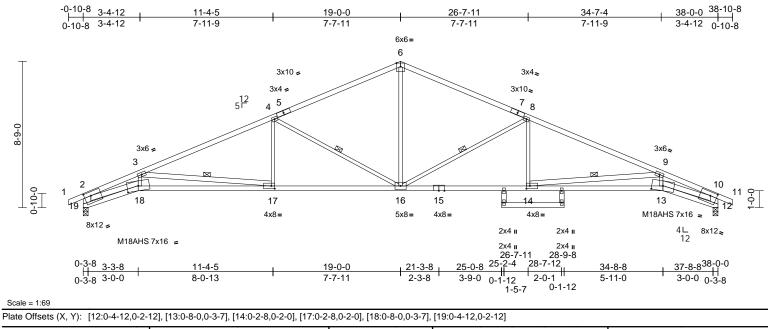
Run: 8.73 S Mar 21 2024 Print: 8.730 S Mar 21 2024 MiTek Industries, Inc. Tue Apr 02 08:22:34 ID:dbIP89GKYcOAdhfo9uJGB2zymS4-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

-0-10-8 3-4-12 0-10-8 3-4-12 38-10-8 0-10-8 11-4-4 17-0-0 21-0-0 26-7-12 34-7-4 38-0-0 7-11-8 5-7-12 4-0-0 5-7-12 7-11-8 3-4-12 6x6= 6x6= 1-10 H 0-1-10 7-11-0 5 6 3x4 🚽 3x4. 12 5 4 7 7-11-0 7-9-6 3x6 🚅 3x6 👟 3 8 ∇ Ì 9 0-10-0 4 10 0-0-18 17 16 15 14 13 12 Ø M18AHS 7x16 = 4x8= 3x6= 3x10= 3x6= 4x8= 8x12 = 4∟ 12 2x4 II 2x4 II 8x12≈ M18AHS 7x16 = $\begin{array}{c} 2^{X4} \parallel & 2^{X4}\\ 26-7-12 & 28-9\\ \underline{25-0-8} & 25-2-4 & 28-7-12\\ \hline 3-11-4 & 0-1-12 & 2-0-0\\ \hline 3-11-4 & 0-1-12 & 2-0-0\\ \hline 0-1-12 & 2-0-0\\ \hline 0-1-12 & 2-0-0\\ \hline 0-1-12 & 2-0-1\\ \hline 0-1-12 & 2$ 2x4 ။ 28-9-8 38-0-0 19-3-8 |21-1-4 2-4-12 1-9-12 37-8-8 3-0-0 0-3-8 16-10-12 11-4-4 34-8-8 8-0-12 5-6-8 5-11-0 0-1-12 1-5-8

Scale = 1:71.3

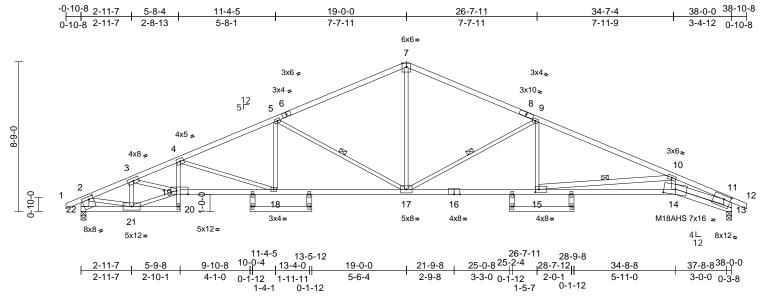
				_						
-2-12], [12:0-8-0,0-3-7], [13:	:0-2-8,0-2-0], [16:0-2	2-8,0-1-8], [17:0-2-8	8,0-2-0],	[18:0-8-0,0-3	8-7], [19:	0-4-12,0	-2-12]			
Plate Grip DOL 1.1 Lumber DOL 1.1 * Rep Stress Incr YE	15 15 ES	CSI TC BC WB Matrix-S	0.74 0.72 0.62	DEFL Vert(LL) Vert(CT) Horz(CT) Wind(LL)	-0.70 0.48	17-18 11	l/defl >999 >643 n/a >999	L/d 360 240 n/a 240	MT20 M18AHS	GRIP 197/144 142/136 FT = 10%
.8E *Except* 5-6:2x4 SPF xcept* 18-15,15-12:2x4 SPF xcept* 18-15,15-12:2x4 SPF 21-23:2x4 SPF No.2, F No.2, 18-2,12-9:2x4 SPF sheathing directly applied or , except end verticals, and 3-6-4 max.): 5-6. tly applied or 10-0-0 oc 17-18 ng: 12-13. 3-17, 4-16, 7-14, 8-13 18, 19=0-3-8 19 (LC 3) 19 (LC 3) 19 (LC 3) 19 (LC 1), 19=1767 (LC 1) ompression/Maximum -7=-2696/283, -9=-5709/692, 9-10=0/30, 9-11=-1785/226, 1-2=0/30, -4=-3554/395, 17-18=-827/5141, , 14-16=-121/2396,	WEBS NOTES 1) Unbalanced this design. 2) Wind: ASCE Vasd=91mp II; Exp C; Er cantilever le right expose 3) Provide ade 4) All plates ar 5) This truss on the botto 3-06-00 tall chord and a 7) All bearings 8) Bearing at jc value using designer shi 9) Provide med bearing plat 19 and 226 10) This truss in trunstona R802.10.2 a 11) Graphical pu or the orient	3-18=-40/741, 3-17 4-16=-1019/262, 5 5-14=-222/228, 6- 7-14=-1016/250, 7 8-13=-1941/420, 8 2-18=-728/4945, 9 1 roof live loads hav 5 7-16; Vult=115mp h; TCDL=6.0psf; B nclosed; MWFRS (of ft and right expose d; Lumber DOL=1. quate drainage to g e MT20 plates unle as been designed m chord in all area: by 2-00-00 wide wi ny other members. are assumed to be pint(s) 19, 11 consi- ANSI/TP1 1 angle to built at joint 11. designed in accorr I Residential Code and referenced star urlin representation ation of the purlin a d.	-16=-104 14=-52/6 -13=0/4 -12=0/7 -12=-619 we been of CDL=6.0 enveloped d; end v. 60 plate prevent v. 60 plate prevent v. 85 other for a 10.0 with any d for a liv s where all fit betw es SPF No ders par to grain f of bearin n (by oth anding 2 dance w sections hold does no	/500, 4-17=0/ 8/696, 997, 76, 42, 9/4946 considered fo considered fo cond gust) Dpsf; h=25ft; (9) exterior zon vertical left an grip DOL=1. water ponding wise indicate D psf bottom other live loa e load of 20.6 a rectangle veen the botto D.2. allel to grain ormula. Build ing surface. ers) of truss t 226 lb uplift at ith the 2018 s R502.11.1 a SIJ/TP1 1.	r Cat. ne; dd 60 g. ds. Dpsf om ding co ; joint	17-18		·····	SS/ONA GAR NUME E-20001	MISSOUR CIA BER 62101 ALENG NSEO
	Spacing 2- Plate Grip DOL 1. Lumber DOL 1. Rep Stress Incr YI Code IR 1.8E *Except* 5-6:2x4 SPF Except* 18-15,15-12:2x4 SPF Except* 21-23:2x4 SPF No.2, PF No.2, 18-2,12-9:2x4 SPF sheathing directly applied or s, except end verticals, and (3-6-4 max.): 5-6. ctty applied or 10-0-0 oc tt: : 17-18 ng: 12-13.	Openation Spacing 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 D0 Rep Stress Incr YES Code IRC2018/TPI2014 WEBS IRC2018/TPI2014 Stacept* 21-23:2x4 SPF Stacept* 21-23:2x4 SPF Stacept* 21-23:2x4 SPF Stacept* 21-21:3: stacept* 21-21:3: stacept* 31-7,4-16,7-14,8-13 Stat, 19=-0:3:8 31-7,4-16,7-14,8-13	Spacing2-0-0CSIPlate Grip DOL1.15BCUumber DOL1.15BC 0^{+} Rep Stress IncrYES 0^{+} CodeIRC2018/TPI20141.8E *Except* 5-6:2x4 SPF4-16=-1019/262, 5Except*18-15, 15-12:2x4 SPF $-14=-222/228, 6$ Except*18-15, 15-12:2x4 SPF $-14=-222/228, 6$ Except*21-23:2x4 SPF No.2, $-14=-222/228, 6$ Except*21-23:2x4 SPF No.2, $-14=-222/228, 6$ Sheathing directly applied or $-14=-222/228, 6$ sheathing directly applied or $-14=-222/228, 6$ $(3-6-4 max.): 5-6.-24=-356, 244 SPF(3-6-4 max.): 5-6.-14=-322/228, 6(21-213)-17-18(3-6-4 max.): 5-6.-16-00 full bealanced roof live loads have(3-6-4 max.): 5-6.-16-00 full bealanced roof live loads have(3-6-4 max.): 5-6.-16-00(21-213)-17-18(3-6-1212)-11=-1785/226, 1-2=0/30, -2=-5709/692, 9-10=0/30, -9=-5709/692, 9$	Spacing2-0-0CSIPlate Grip DOL1.15TC 0.74 Lumber DOL1.15BC 0.72 Rep Stress IncrYESWB 0.62 CodeIRC2018/TPI2014Matrix-S1.8E *Except* 5-6:2x4 SPF $4.16=-1019/262, 5-16=-10$ $5.14=-222/228, 6-14=-52/6$ 5:xcept* $2-23:2x4$ SPF $7-14=-1016/250, 7-13=0/4$ 8:xcept* $2-23:2x4$ SPF $7-14=-1016/250, 7-13=0/4$ 21-23:2x4 SPF No.2, $7-14=-1016/250, 7-13=0/4$ 8:recept* $2-23:2x4$ SPF $7-14=-1016/250, 7-13=0/4$ 21-23:2x4 SPF No.2, $7-14=-1016/250, 7-13=0/4$ 8: sheathing directly applied or $7-14=-1016/250, 7-13=0/4$ $8+13=-1941/420, 8+12=0/7$ 21-23:2x4 SPF No.2, $7-14=-1016/250, 7-13=0/4$ 8: except* $2-18=-728/4945, 9-12=-61$ 21-23:2x4 SPF No.2, 10 Unbalanced roof live loads have been of this design.21Unbalanced roof live loads have been of this design.21 $11-18$ (3-6-4 max.): 5-6. 10 Unbalanced roof live loads have been of this design.(3) CL 3) $3-17, 4-16, 7-14, 8-13$ $3-17, 4-16, 7-14, 8-13$ $3-17, 4-16, 7-14, 8-13$ $3-17, 4-16, 7-14, 8-13$ $3-17, 4-16, 7-14, 8-13$ $3-17, 4-16, 7-14, 8-13$ $3-17, 4-16, 7-14, 8-13$ $3-17, 4-16, 7-14, 8-13$ $3-17, 4-16, 7-14, 8-13$ $3-17, 4-16, 7-14, 8-13$ $3-17, 4-16, 7-14, 8-13$ $3-17, 4-16, 7-14, 8-13$ $3-17, 4-16, 7-14, 8-13$ $3-17, 4-16, 7-14, 8-13$ $3-17, 4-16, 7-14, 8$	Spacing2-0-0CSIDFFL 0 Plate Grip DOL1.15TC0.74Vert(LL)Lumber DOL1.15BC0.72Vert(LL) 0 CodeIRC2018/TPI2014Matrix-SWellVert(CT) 0 CodeIRC2018/TPI2014WES $3-18=-40/741, 3-17=-1939/500, 4-17=0/1.8E *Except* 5-6:2x4 SPF4-16=-1019/262, 5-16=-108/8086, 5-14=-222/228, 6-14=-52/697, 7-14=-1016/250, 7-13=-0/476, 8-13=-1941/420, 8-12=0/742, 2-18=-728/4945, 9-12=-619/494621-23:2x4 SPF No.2,PF No.2, 18-2,12-9:2x4 SPFNOTES21-23:2x4 SPF No.2,PF No.2, 18-2,12-9:2x4 SPF1)Unbalanced roof live loads have been considered for this design.21-23:2x4 SPF No.2,PF No.2, 18-2,12-9:2x4 SPF1)Unbalanced roof live loads have been considered for this design.21-23:2x4 SPF No.2,PF No.2, 18-2,12-9:2x4 SPF1)Unbalanced roof live loads have been considered for this design.21-23:2x4 SPF No.2,Provide adequate drainage to prevent water ponding2)Wind: ASCE 7-16; Vult=115mph (3-second gust)3-17, 4-16, 7-14, 8-131)Provide adequate drainage to prevent water ponding4)3-17, 4-16, 7-14, 8-133-60 Ot all by 2-00-0 ovide will fib etween the bottor chord and any other members.7 All bearings are assumed to be SPF No.2.8-354/395,Provide mechanical connection (by others) of trust to bearing plate capable of withstanding 226 lb uplift at 19 and 226 lb uplift at joint 11.10 This truss has beein a cordance with the 20186+7 Tis truss has beein a cordance with the 2018$	DefinitionDefinitionDefinition0) 0 1Plate Grip DOL 1.15 Lumber DOL 1.15 Lumber DOL 1.15 Lumber DOL 1.15 0 0CSI TC 0.74 WBDEFL in Vert(CT) 0.35 Vert(CT) 0.362 WB0.6221.8E *Except*RC2018/TPI2014WB Matrix-S0.6221.8E *Except*RC2018/TPI2014WBS 4.16=-1019/262, 5-16=-108/696, 5-14=-22/228, 6-14=-52/697, 7-14=-1016/250, 7-13=0/476, 8-13=-1941/420, 8-12=0/742, 2-18=-728/4945, 9-12=-619/49461.8E *Except*WEBS 8-13=-1941/420, 8-12=0/742, 2-18=-728/4945, 9-12=-619/494621-23:2x4 SPF No.2, PF No.2, 18-2,12-9:2x4 SPF s, except and verticals, and (3-6-4 max): 5-6. ctty applied or 10-0-0 oc t: 17-18 ng: 12-13. 3-17, 4-16, 7-14, 8-13 3-8, 19=0-3-8 09 (LC 13) 26 (LC 9), 19=-226 (LC 8) r67 (LC 1), 19=-1767 (LC 1) S-1=-2696/283, 3-9=-570/692, 9-10=0/30, 9-11=-1785/226, 1-2=0/30, 3-4=-3554/395,NOTES 1 Unbalanced roof live load nonconcurrent with any other live loads. 14 loates are MT20 plates unless otherwise indicated. This truss has been designed for a 10.0 psf bottom chord in all areas where a rectangle 3-06-00 tail by 2-00-00 wide will fit between the bottom chord in all areas where a rectangle 3-06-00 tail by 2-0-00 wide will fit between the bottom chord and any other mombers.7) All bearings are assumed to be SPF No.2. Bearing at joint(s) 19, 11 considers parallel to grain value using ANS/TP1 1 angle to grain formula. Building designer should verify capacity of bearing surface. Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 226 lb uplift at joint 19 and 226 lb uplift at joint 11.17-18=-	DefinitionDefinitionDefinition0) Plate Grip DOL Lumber DOL1.15 Lumber DOLTC0.72 BC $Vert(LL)$ 0.3514-161.8 = Texcept*74.8 Code1.8 = 1019/262, 5-16=-108/696, 5-14=-222/228, 6-14=-52/697, 7-14=-1016/250, 7-13=0/478, 4-16=-1019/262, 5-16=-108/696, 5-14=-222/228, 6-14=-52/697, 7-14=-1016/250, 7-13=0/478, 4-16=-1019/262, 5-16=-108/696, 5-14=-222/228, 6-14=-52/697, 7-14=-1016/250, 7-13=0/478, 8-13=-1941/420, 8-12=-07742, 2-18=-728/4945, 9-12=-619/49461.8 = *Except*18-163=1091/262, 5-16=-108/696, 5-14=-222/228, 6-14=-52/697, 7-14=-1016/250, 7-13=0/476, 8-13=-1941/420, 8-12=-07742, 2-18=-728/4945, 9-12=-619/49461.8 = *Except*18-1521-23:2x4 SPF No.2, PF No.2, 18-2,12-9:2x4 SPFNOTES1.9 Lobalanced rof live loads have been considered for this design. 3-14-16011-160 (16-100,06; BCDL=60,06; BCDL=60,06; BCDL=160) (16-100,06; BCDL=60,06; BCD	0 0 1 Plate Grip DOL Plate Grip DOL 1.15 TC 0.35 0.74 1.15 Vert(LL) 0.35 0.35 $1.4-16$ $0.4-16$ $1.4-16$ 0.35 $1.4-16$ $1.4-16$ $1.4-16$ 0.32 $1.4-16$ <	Spacing Plate Grip DOL 1.152-0-0 1.15CSI TC CDEFL ($Vert(LL)$) -0.3514-16 -999360 360DLumber DOL Lumber DOL Code1.15 Rep Stress Incr YESBC WB WB 0.620.72 WB WB WB 0.62Vert(LL) Vert(LL) 	Spacing Plate Grip DOL 1.152-0-0 TCCSI TCDFL triangle for the set of


 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.
 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not besign value to dury with with where outputs into design is based only door parameters shown, and is for an individual building design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members and property incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TPH1 Quality Criteria**, and **DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcscomponents.com)

Job	Truss	Truss Type	Qty	Ply	Lot 133 MN	
240616	B1	Roof Special	1	1	Job Reference (optional)	164627067

Run: 8.73 S Mar 21 2024 Print: 8.730 S Mar 21 2024 MiTek Industries, Inc. Tue Apr 02 08:22:35 ID:UzvNYmg1CzP7vKDHwiZDGqzymbt-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1


	(,, ,). [.2.02,0 2	1, 1 , 1			-,,	,],	,.					-	
Loading	(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15		TC	0.67	Vert(LL)	-0.35	13-14	>999	360	MT20	197/144
TCDL	10.0	Lumber DOL	1.15		BC	0.72	Vert(CT)	-0.71	13-14	>638	240	M18AHS	142/136
BCLL	0.0*	Rep Stress Incr	YES		WB	0.88	Horz(CT)	0.48	12	n/a	n/a		
BCDL	10.0	Code	IRC2018	8/TPI2014	Matrix-S		Wind(LL)	0.26	17-18	>999	240	Weight: 153 lb	FT = 10%
	10.0 2x4 SPF 2100F 1.8E 2x4 SPF No.2 *Exce 2100F 1.8E 2x3 SPF No.2 *Exce 14-9,17-3,20-22,21- 19-2,12-10:2x6 SPF SPF 2100F 1.8E Structural wood she 2-11-15 oc purlins, Rigid ceiling directly bracing. 1 Row at midpt (size) 12=0-3-8, Max Horiz 19=-124 (Max Uplift 12=-242 (Max Grav 12=1767 (lb) - Maximum Corr Tension 1-2=0/30, 2-3=-5684 4-6=-2454/302, 6-8= 8-9=-3568/416, 9-10 2-19=-1790/286, 10 18-19=-143/361, 17 16-17=-398/3232, 1 13-14=-647/5115, 12	Code E ppt* 18-15,15-13:2x4 ppt* 23:2x4 SPF No.2, No.2, 18-2,13-10:2x athing directly applie except end verticals. applied or 8-3-13 oc 8-16, 9-14, 4-16, 3- 19=0-3-8 LC 13) LC 9), 19=-242 (LC - (LC 1), 19=1767 (LC ppression/Maximum W871, 3-4=-3568/448 2453/321, D=-5684/733, 10-11= -12=-1790/245 -18=-891/5115, 4-16=-243/3232,	IRC2018 2) SPF 4 3) 4 4) 5) 6 dor : 6) 17 7) 8) 1) 9) 3, LC 0/30, LC	Wind: ASCE Vasd=91mpH II; Exp C; En cantilever lef right expose All plates are This truss ha chord live loa * This truss ha chord live loa * This truss ha chord live loa * This truss ha chord and ar All bearings Bearing at jo value using / designer sho Provide mec bearing plate 19 and 242 I This truss is International	Matrix-S 7-16; Vult=115r r; TCDL=6.0psf; closed; MWFRS t and right expo d; Lumber DOL= MT20 plates un is been designe ad nonconcurrer has been designe ad nonconcurrer has been designe m chord in all arr py 2-00-00 wide yy other membe are assumed to int(s) 19, 12 cor ANSI/TPI 1 angl Juld verify capac hanical connect a capable of with b uplift at joint 1. designed in acc Residential Coo nd referenced st	mph (3-sec BCDL=6. 6 (envelope sed ; end \ 1.60 plate nless other d for a 10. twith any ed for a live as where will fit betw rs. be SPF No siders par e to grain f ity of bear ion (by oth standing 2 2. ordance w de sections	Wind(LL) cond gust) Dpsf; h=25ft; exterior zovertical left ar grip DOL=1 wise indicate D psf bottom other live loa e load of 20. a rectangle veen the bott b.2. allel to grain iormula. Buil ing surface. ers) of truss 242 lb uplift a ith the 2018 5 R502.11.1 a	0.26 Cat. ne; nd 60 ed. dis. Opsf om ding to t joint		>999	240	Weight: 153 lb Weight: 153 lb JUA GAR NUME E-20001 SS ONA LICE 165	MISSOUD NN CIA
	9-14=-1896/406, 9-1 4-16=-1232/326, 4-1 3-17=-1896/497, 3-1	7=0/499, 8=-55/740,										169	952
NOTES 1) Unbalance this design	2-18≕-767/4905, 10 ed roof live loads have n.										III.	OX CON	AL ENGLISH

Job	Truss	Truss Type	Qty	Ply	Lot 133 MN	
240616	B2	Roof Special	1	1	Job Reference (optional)	164627068

Run: 8.73 S Mar 21 2024 Print: 8.730 S Mar 21 2024 MiTek Industries. Inc. Tue Apr 02 08:22:35 ID:bO5a0y?X94TxptWjCf4KYEzymck-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

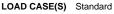
Scale = 1:67.3

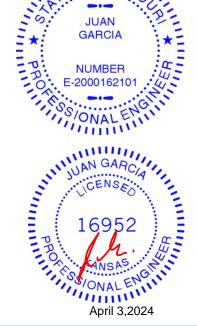
Loading	(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15		TC	0.67	Vert(LL)	-0.33	14-15	>999		MT20	197/144
TCDL	10.0	Lumber DOL	1.15		BC	0.72	Vert(CT)	-0.68	14-15	>666	240	M18AHS	142/136
BCLL	0.0*	Rep Stress Incr	YES		WB	0.87	Horz(CT)	0.38	13	n/a	n/a		
BCDL	10.0	Code	IRC2018	3/TPI2014	Matrix-S		Wind(LL)	0.23	14-15	>999	240	Weight: 160 lb	FT = 10%
LUMBER TOP CHORD BOT CHORD	2x4 SPF 2100F 1.8E Vasd=91r 2x4 SPF No.2 *Except* 20-4:2x3 SPF No.2, II; Exp C; 19-16,16-14:2x4 SPF 2100F 1.8E cantilever				7-16; Vult=115 h; TCDL=6.0ps closed; MWFR t and right expo	f; BCDL=6.0 S (envelope osed ; end v	Dpsf; h=25ft; e) exterior zo vertical left ar	ne; nd					
WEBS					d; Lumber DOL		01						
	, , , , , , , , , , , , , , , , , , , ,				es are MT20 plates unless otherwise indicated. es are 2x4 MT20 unless otherwise indicated.								

No.2

BRACING	
TOP CHORD	
BOT CHORD	2-11-15 oc purlins, except end verticals. Rigid ceiling directly applied or 9-8-14 oc bracing.
WEBS	1 Row at midpt 5-17, 9-17, 10-15
REACTIONS	(size) 13=0-3-8, 22=0-3-8
	Max Horiz 22=125 (LC 12)
	Max Uplift 13=-242 (LC 9), 22=-242 (LC 8)
	Max Grav 13=1767 (LC 1), 22=1767 (LC 1)
FORCES	(lb) - Maximum Compression/Maximum Tension
TOP CHORD	1-2=0/30, 2-3=-2615/331, 3-4=-4441/614,
	4-5=-3512/452, 5-7=-2451/301,
	7-9=-2457/320, 9-10=-3566/416,
	10-11=-5687/733, 11-12=0/30,
	2-22=-1695/250, 11-13=-1790/245
BOT CHORD	
	4-19=-34/415, 18-19=-615/4118,
	17-18=-390/3189, 15-17=-244/3230,
	14-15=-647/5117, 13-14=-10/337
WEBS	10-14=0/741, 11-14=-642/4908,
	3-21=-1288/233, 3-19=-229/1796,
	19-21=-383/2344, 2-21=-235/2058,
	4-18=-980/238, 5-18=0/504, 5-17=-1178/317
	7-17=-85/1320, 9-17=-1225/311, 9-15=0/495
	10-15=-1900/406

Plate Offsets (X, Y): [13:0-4-12,0-2-12], [14:0-8-0,0-3-7], [15:0-2-8,0-2-0], [19:0-8-0,0-2-8], [22:0-3-0,0-2-0]


1) Unbalanced roof live loads have been considered for this design.


All plates are 2x4 MT20 unless otherwise indicated. 4) This truss has been designed for a 10.0 psf bottom 5) chord live load nonconcurrent with any other live loads. * This truss has been designed for a live load of 20.0psf 6) on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.

All bearings are assumed to be SPF No.2 . 7) Bearing at joint(s) 13 considers parallel to grain value 8) using ANSI/TPI 1 angle to grain formula. Building

designer should verify capacity of bearing surface. Provide mechanical connection (by others) of truss to 9) bearing plate capable of withstanding 242 lb uplift at joint 22 and 242 lb uplift at joint 13.

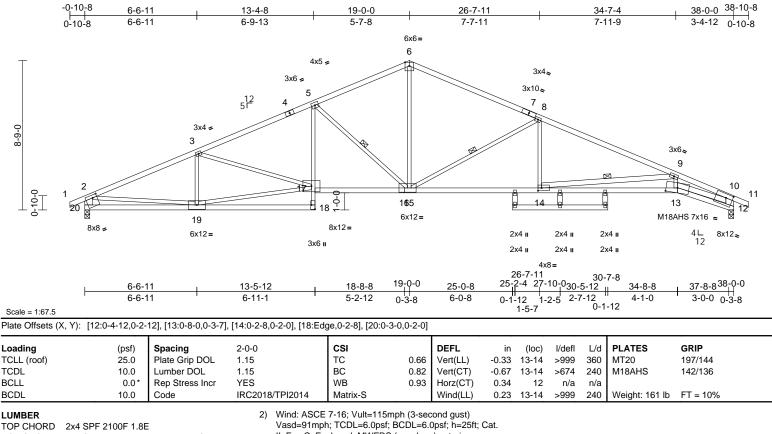
10) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

MI

JUAN

GARCIA

0



 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.
 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponent.com)

NOTES

Job	Truss	Truss Type	Qty	Ply	Lot 133 MN	
240616	B3	Roof Special	1	1	Job Reference (optional)	164627069

Run: 8.73 S Mar 21 2024 Print: 8.730 S Mar 21 2024 MiTek Industries, Inc. Tue Apr 02 08:22:35 ID:Iz3DGJ5Up10aJLHIJPEk?Pzymdv-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

TOP CHORD BOT CHORD	2x4 SPF 2100F 1.8E 2x4 SPF No.2 *Except* 18-5:2x3 SPF No.2,
	16-13:2x4 SPF 2100F 1.8E
WEBS	2x3 SPF No.2 *Except*
	14-9,21-23,22-24,25-26:2x4 SPF No.2,
	20-2,12-10:2x6 SPF No.2, 13-10:2x4 SPF
	2100F 1.8E
BRACING	
TOP CHORD	Structural wood sheathing directly applied or
	2-11-15 oc purlins, except end verticals.
BOT CHORD	Rigid ceiling directly applied or 9-9-0 oc
	bracing.
WEBS	1 Row at midpt 5-15, 8-15, 9-14
REACTIONS	(size) 12=0-3-8, 20=0-3-8
	Max Horiz 20=125 (LC 12)
	Max Uplift 12=-242 (LC 9), 20=-242 (LC 8)
	Max Grav 12=1767 (LC 1), 20=1767 (LC 1)
FORCES	(lb) - Maximum Compression/Maximum
	Tension
TOP CHORD	1-2=0/30, 2-3=-3110/386, 3-5=-3279/419,
	5-6=-2414/306, 6-8=-2452/319,
	8-9=-3569/416, 9-10=-5682/733, 10-11=0/30,
	2-20=-1694/272, 10-12=-1790/246
BOT CHORD	19-20=-250/617, 18-19=-7/128, 17-18=0/126,
	5-17=-41/594, 15-17=-324/2951,
	14-15=-244/3234, 13-14=-647/5112,
	12-13=-10/339
WEBS	3-19=-549/178, 17-19=-406/2695,
	3-17=-7/237, 5-15=-1076/286,
	6-15=-124/1391, 8-15=-1238/311,
	8-14=0/500, 9-14=-1891/406, 9-13=0/740, 2-19=-158/2178, 10-13=-642/4901
	2-19=-150/21/0, 10-13=-042/4901
NOTES	

- Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat II; Exp C; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60 All plates are MT20 plates unless otherwise indicated. This truss has been designed for a 10.0 psf bottom
- chord live load nonconcurrent with any other live loads.
 * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom
- chord and any other members.6) All bearings are assumed to be SPF No.2 .

3)

4)

- Bearing at joint(s) 12 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building
- designer should verify capacity of bearing surface.
 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 242 lb uplift at joint 20 and 242 lb uplift at joint 12.
- This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
 LOAD CASE(S) Standard

16023 Swingley Ridge Rd. Chesterfield, MO 63017 314.434.1200 / MiTek-US.com

MIS

0

Page: 1

 Unbalanced roof live loads have been considered for this design.

Job	Truss	Truss Type	Qty	Ply	Lot 133 MN	
240616	B4	Roof Special	2	1	Job Reference (optional)	164627070

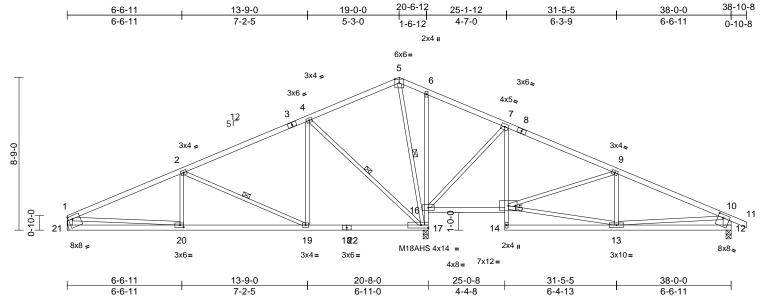
Run: 8.73 S Mar 21 2024 Print: 8.730 S Mar 21 2024 MiTek Industries, Inc. Tue Apr 02 08:22:35 ID:erlP2mLzfg4WFgzB7gbzy7zymeu-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

38-10-8 6-6-11 19-0-0 25-1-12 31-5-5 38-0-0 13-4-8 6-6-11 6-9-13 5-7-8 6-1-12 6-3-9 6-6-11 0-10-8 6x6= 6 4x5 🚅 仚 3x6~ 3x6 ≠ 4x5 👟 5 7 12 51 4 8 8-9-0 3x4 🚅 3x4**≈** 3 9 10 Ŧ 4 0-10-0 11 0-0-1 1 M M 16 12 н 18 14 5x8= 19 13 3x4 II 8x12= 8x8 🚅 8x8≈ 6x12= 6x12= 8x12= 3x6 II 6-6-11 19-0-0 25-0-8 38-0-0 13-5-12 31-5-5 6-6-11 6-11-1 5-6-4 6-0-8 6-4-13 6-6-11

Scale = 1:67.3

Plate Offsets (X, Y): [12:0-3-0,0-2-0], [18:Edge,0-2-8], [20:0-3-0,0-2-0]

Loading	(psf)	Spacing	2-0-0		CSI	-	DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP	
TCLL (roof)	25.0	Plate Grip DOL	1.15		TC	0.74	Vert(LL)	-0.29	16-17	>999	360	MT20	197/144	
TCDL	10.0	Lumber DOL	1.15		BC	0.87	Vert(CT)	-0.55	15-16	>821	240			
BCLL	0.0*	Rep Stress Incr	YES		WB	0.93	Horz(CT)	0.21	12	n/a	n/a	1		
BCDL	10.0	Code		3/TPI2014	Matrix-S		Wind(LL)		16-17	>999	240	Weight: 157 lb	FT = 10%	
												Ŭ		
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD WEBS REACTIONS	2x4 SPF No.2 *Exce No.2 2x3 SPF No.2 *Exce No.2 Structural wood she 2-2-0 oc purlins, ex Rigid ceiling directly bracing. 1 Row at midpt	ept* 20-2,12-10:2x6 s athing directly applie cept end verticals. applied or 10-0-0 or 5-16, 7-16 , 20=0-3-8	SPF 3) ed or 4)	Vasd=91mpl II; Exp C; En cantilever lef right expose This truss ha chord live loa * This truss h on the bottor 3-06-00 tall h chord and ar All bearings Provide mec bearing plate	7-16; Vult=115m h; TCDL=6.0psf; lclosed; MWFRS t and right expos d; Lumber DOL= as been designed n chord in all are by 2-00-00 wide w ny other members are assumed to b shanical connectic e capable of withs	BCDL=6. (envelope ed; end \ 1.60 plate for a 10. with any ed for a liv as where as where the star be SPF No on (by oth standing 2	Dpsf; h=25ft; e) exterior zo vertical left ar grip DOL=1. 0 psf bottom other live loa e load of 20.1 a rectangle veen the botto 0.2. ers) of truss l	ne; id 60 ds. Dpsf om			-un-	JU/ GAR		
ORCES	Max Uplift 12=-242 (Max Grav 12=1767 (lb) - Maximum Com Tension	(LC 9), 20=-242 (LC (LC 1), 20=1767 (LC	(¹)	This truss is International R802.10.2 a	b uplift at joint 12 designed in acco Residential Code nd referenced sta	rdance w e sections	R502.11.1 a	ind				NUM	BER QC	11111
TOP CHORD		=-2423/322,)=-3099/384, 10-11=	9,	OAD CASE(S)	Standard						111	ESSION	ALENGIN	
BOT CHORD	19-20=-252/588, 18 5-17=-41/589, 16-17 15-16=-189/3035, 1 7-15=-22/594, 13-14 12-13=-144/611	7=-325/2952, 4-15=0/116,	/127,										GARCIA	
WEBS	3-19=-553/178, 17- 3-17=-9/238, 5-16=- 6-16=-132/1428, 7- 13-15=-273/2699, 9 9-13=-594/153, 2-19 10-13=-136/2173	1077/287, 16=-1124/279, -15=-33/286,									WILLIN.	UCE	952 Æ	IIIIIIIII
NOTES 1) Unbalance this design	ed roof live loads have n.	been considered fo	r										AL ENGINE	Ξ.



April 3,2024

Page: 1

Job	Truss	Truss Type	Qty	Ply	Lot 133 MN	
240616	B5A	Roof Special	5	1	Job Reference (optional)	164627071

Run: 8.73 S Mar 21 2024 Print: 8.730 S Mar 21 2024 MiTek Industries, Inc. Tue Apr 02 08:22:35 ID:911TRY5Mv167OrbPaYFpGPzymgV-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC?f

Scale = 1:65.9

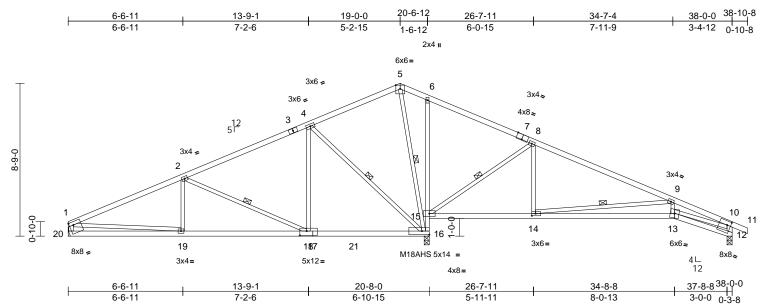
Plate Offsets (X, Y): [12:0-3-8,0-2-4], [20:0-2-8,0-1-8], [21:0-2-12,0-2-4]

					1								
Loading	(psf)	Spacing	2-0-0		csi		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15		TC	0.53	Vert(LL)	-0.08	17-19	>999	360	MT20	197/144
TCDL	10.0	Lumber DOL	1.15		BC	0.61	Vert(CT)	-0.14	17-19	>999	240	M18AHS	142/136
BCLL	0.0*	Rep Stress Incr	YES		WB	0.89	Horz(CT)	0.02	17	n/a	n/a		
BCDL	10.0	Code	IRC201	8/TPI2014	Matrix-S		Wind(LL)	0.04	19-20	>999	240	Weight: 159 lb	FT = 10%
	4-5-7 oc purlins, ex Rigid ceiling directly bracing. 1 Row at midpt	apt* 21-1:2x4 SPF No athing directly applie cept end verticals. applied or 10-0-0 oc 2-19, 4-17, 5-17 17=0-3-8, 21= cal LC 9) LC 9), 17=-132 (LC LC 8) LC 24), 17=2019 (LC	5.2, 3, 4, 6d or 5) 5 6 7, 8, 8)	Vasd=91mpl II; Exp C; En cantilever lef right expose All plates are This truss ha chord live loo * This truss h on the bottor 3-06-00 tall t chord and ar All bearings Refer to gird Provide mec bearing plate 21, 191 lb up	7-16; Vult=115m n; TCDL=6.0psf; closed; MWFRS it and right exposed d; Lumber DOL= e MT20 plates un us been designed ad nonconcurren has been designed n chord in all are py 2-00-00 wide v yo other member are assumed to b er(s) for truss to hanical connective e capable of withs blift at joint 12 and designed in according to the second second second second to the second second second second to the second second second second second to the second second second second second second to the second second second second second second second to the second second second second second second second to the second se	BCDL=6. (envelopped) (envelopped) (avelopped) (aveloped	Dpsf; h=25ft; () exterior zon rertical left an grip DOL=1. wise indicate D psf bottom other live loa e load of 20.0 a rectangle veen the botto DL = 10.0psf b.2. ers) of truss t 57 lb uplift at plift at joint 12 ith the 2018	ne; d 60 d. ds. Dpsf 5. om 5. ijoint 7.			111 * PP	JUA GARI NUME E-20001	CIA *
FORCES	(lb) - Maximum Com Tension	,		R802.10.2 a	Residential Cod nd referenced sta			ind			1	AS	
TOP CHORD	1-2=-1385/272, 2-4= 5-6=0/402, 6-7=0/42 9-10=-987/280, 10-1 10-12=-686/223		р,	OAD CASE(S)	Siandard							17,5/ONF	
BOT CHORD	20-21=-181/382, 19- 17-19=-120/571, 16- 6-16=-251/116, 15-1 7-15=-16/498, 13-14	-17=-928/266, 16=-44/295, 14-15=0										JUAN C	ARCIA
WEBS		720/206, 4-19=0/609 17=-384/0, 15=-182/807, 3=-52/160,										169	952

NOTES

 Unbalanced roof live loads have been considered for this design.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbsccomponents.com)



And

Page: 1

Job	Truss	Truss Type	Qty	Ply	Lot 133 MN	
240616	B6A	Roof Special	2	1	Job Reference (optional)	164627072

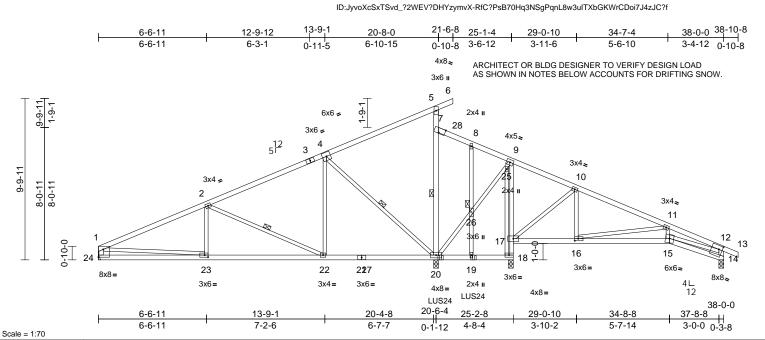
Run: 8.73 S Mar 21 2024 Print: 8.730 S Mar 21 2024 MiTek Industries, Inc. Tue Apr 02 08:22:35 ID:N8vJvlz1pSOKkY_XeW4??ozymhy-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Scale = 1:65.9

Plate Offsets (X, Y): [7:0-4-0,Edge], [[12:0-2-8,0-2-12], [14:0-2-	-8,0-1-8], [17:0-4-12	2,0-3-0], [20:0-2-12	2,0-2-4]							
	Spacing2-0Plate Grip DOL1.11Lumber DOL1.11Rep Stress IncrYES	5 5	CSI TC BC WB	0.72 0.84 0.85	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.20 -0.39 0.02	(loc) 13-14 13-14 16	l/defl >999 >531 n/a	L/d 360 240 n/a	PLATES MT20 M18AHS	GRIP 197/144 142/136
BCDL 10.0	Code IRC	C2018/TPI2014	Matrix-S		Wind(LL)	0.12	13-14	>999	240	Weight: 150 lb	FT = 10%
No.2 BRACING Structural wood shear 3-9-8 oc purlins, exce BOT CHORD BOT CHORD Rigid ceiling directly a bracing. WEBS 1 Row at midpt 2 REACTIONS (size) 12=0-3-8, 1 Mechanical Max Horiz 9 REACTIONS (size) 12=0-3-8, 1 Mechanical Max Horiz 20=-133 (L 20=-133 (L Max Uplift 12=-172 (L 20=-156 (L Max Grav 12=689 (LC 20=837 (LC FORCES (lb) - Maximum Comp Tension 1-2=-1331/269, 2-4=-4 5-6=0/485, 6-8=0/539 9-10=-2015/517, 10-1 10-12=-668/176 5-6=0/485, 6-8=0/539 9-10=-2015/517, 10-1 10-12=-668/176 BOT CHORD 19-20=-180/377, 18-1 16-18=-116/517, 15-1 6-15=-343/159, 14-15 13-14=-453/1789, 12- WEBS 2-19=0/234, 2-18=-72 4-16=-1028/243, 5-16	bt* 20-1,12-10:2x4 SPF thing directly applied or ept end verticals. applied or 6-0-0 oc 2-18, 4-16, 5-16, 8-15, 3-14 16=0-3-8, 20= 11 .C 9) .C 9), 16=-136 (LC 8), .C 8) .C 24), 16=2126 (LC 2), C 23) pression/Maximum -652/200, 4-5=0/450, 0, 8-9=-519/215, 11=0/27, 1-20=-756/188, 19=-304/1170, 16=-1006/297, 5=-55/404, -13=-7/147 29/206, 4-18=0/623, 3=-426/0, =0/445, 9-14=-1395/400, 25/848,	 Vasd=91mph II; Exp C; Enc cantilever left right exposed All plates are This truss ha chord live loa * This truss ha on the botton 3-06-00 tall b chord and an All bearings at joi using ANSI/T designer sho Provide mech bearing plate 20, 172 lb up This truss is of International 	7-16; Vult=115mp ; TCDL=6.0psf; B closed; MWFRS (it t and right expose d; Lumber DOL=1. MT20 plates unle s been designed f id nonconcurrent in as been designed in chord in all area- y 2-00-00 wide wi y other members, are assumed to be er(s) for truss to tru- int(s) 12 considers PI 1 angle to grain uld verify capacity hanical connectior capable of withst lift at joint 12 and designed in accord Residential Code in referenced star Standard	CDL=6.0 enveloped d; end v. 60 plate ses othere for a 10.0 with any f for a liv s where uss conre- s parallel n formula- o of bear- n (by oth anding 1 136 lb u dance w sections	Opsf; h=25ft; (e) exterior zor vertical left an a grip DOL=1.1 or grip DOL=1.1 or grip DOL=1.1 or grip DOL=1.1 or grip DOL=1.1 or grip dol and of 20.0 a rectangle vecen the bottod CDL = 10.0psf o.2. nections. I to grain valu a. Building ing surface. vers) of truss t 156 lb uplift at pilift at joint 16 ith the 2018 s R502.11.1 a	ne; d 60 ds.)psf om e o joint 3.				PROCESSION	CIA BER 62101

NOTES

 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.
 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not besign value to dury with with where outputs into design is based only door parameters shown, and is for an individual building design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members and property incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TPH1 Quality Criteria**, and **DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcscomponents.com)



Page: 1

Job	Truss	Truss Type	Qty	Ply	Lot 133 MN	
240616	B8	Common Girder	1	1	Job Reference (optional)	164627073

Run: 8.73 S Mar 21 2024 Print: 8.730 S Mar 21 2024 MiTek Industries, Inc. Tue Apr 02 08:22:36

Wheeler Lumber, Waverly, KS - 66871,

Plate Offsets (X, Y): [7:0-4-7,Edge], [14:0-2-8,0-2-12], [16:0-2-8,0-1-8], [23:0-2-8,0-1-8], [24:Edge,0-5-11]

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15	TC	0.65	Vert(LL)	-0.08	22-23	>999	360	MT20	197/144
TCDL	10.0	Lumber DOL	1.15	BC	0.62	Vert(CT)	-0.16	22-23	>999	240		
BCLL	0.0*	Rep Stress Incr	NO	WB	0.77	Horz(CT)	0.04	14	n/a	n/a		
BCDL	10.0	Code	IRC2018/TPI2014	Matrix-S		Wind(LL)	0.05	15-16	>999	240	Weight: 164 lb	FT = 10%
							25	40) 11-	0:			
LUMBER			WEBS	WEBS 2-23=0/231, 2-22=-703/2				13) USE	e Simpso	on Stro	ng-11e LUS24 (4-	-10d Girder, 2-10d

TOP CHORD	2x4 SPF I	No.2
BOT CHORD	2x4 SPF I	No.2 *Except* 18-9:2x3 SPF No.2
WEBS	2x3 SPF I	No.2 *Except* 5-20,24-1,14-12:2x4
	SPF No.2	• • •
OTHERS	2x3 SPF	No.2
BRACING		
TOP CHORD	Structura	wood sheathing directly applied or
	4-3-4 oc ı	ourlins, except end verticals.
	Except:	, ,
1 Row at midp	t 7-20	
	6-0-0 oc l	pracing: 5-7
BOT CHORD	Rigid ceil	ng directly applied or 10-0-0 oc
	bracing,	Except:
	6-0-0 oc l	pracing: 19-20,18-19.
WEBS	1 Row at	midpt 2-22, 4-20
JOINTS	1 Brace a	t Jt(s): 26
REACTIONS	(size)	14=0-3-8, 18=0-3-8, 20=0-3-8, 24=
		Mechanical
	Max Horiz	24=217 (LC 8)
	Max Uplift	14=-137 (LC 9), 18=-135 (LC 9),
		20=-439 (LC 8), 24=-106 (LC 27)
	Max Grav	14=545 (LC 22), 18=1429 (LC 1),
		20=1600 (LC 23), 24=905 (LC 23)
FORCES	(lb) - Max	imum Compression/Maximum
	Tension	
TOP CHORD		6/163, 2-4=-800/87, 4-5=-50/188,
		, 7-20=-523/119, 5-7=-314/124,
		0/139, 12-14=-538/155, 7-8=0/212,
		3, 9-10=0/324, 10-11=-355/155,
		339/339, 12-13=0/27
BOT CHORD		75/366, 22-23=-314/1303,
		20/692, 19-20=-234/107,
	18-19=-23	34/107, 17-18=-889/101,

9-17=-415/0, 16-17=-24/268,

15-16=-279/1167, 14-15=-27/154

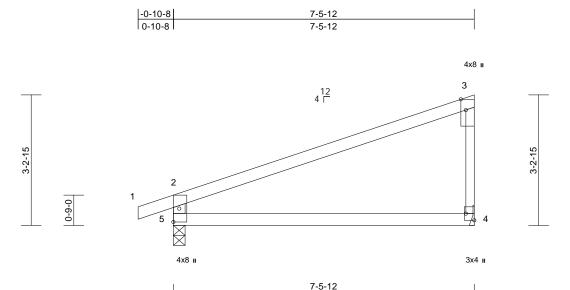
4-20=-1013/268, 20-26=0/260, 25-26=0/297, 9-25=-18/198, 10-17=-670/163, 10-16=0/345, 11-16=-912/258, 11-15=0/311, 1-23=-39/970, 12-15=-256/1073, 18-25=-186/9, 8-26=-27/147, 19-26=-28/185

- NOTES
- Unbalanced roof live loads have been considered for 1) this design
- 2) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed : end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1. 4) Truss to be fully sheathed from one face or securely braced against lateral movement (i.e. diagonal web).
- 5) Gable studs spaced at 2-0-0 oc.
- This truss has been designed for a 10.0 psf bottom 6) chord live load nonconcurrent with any other live loads.
- 7) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf. All bearings are assumed to be SPF No.2 . 8)
- 9) Refer to girder(s) for truss to truss connections.
- 10) Bearing at joint(s) 14 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.
- 11) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 439 lb uplift at joint 20, 106 lb uplift at joint 24, 137 lb uplift at joint 14 and 135 lb uplift at joint 18.
- 12) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

Truss, Single Ply Girder) or equivalent spaced at 2-0-0 oc max. starting at 20-9-8 from the left end to 22-9-8 to connect truss(es) to from tage of borlong chord.

Page: 1

- 14) Fill all nail holes where hanger is in contact with lumber. 15) Hanger(s) or other connection device(s) shall be
- provided sufficient to support concernated load(s) 300 Ib down and 83 Ib up at 25-1-4 on bottom chord. The design/selection of such connection device(s) is the responsibility of others.
- 16) In the LOAD CASE(S) section, loads applied to the face of the truss are noted as from (#) of Eack (B).
- LOAD CASE(S) Standard E-2000162101
- Dead + Roof Live (balanced): Lumber Increase=1, 15, Plate Increase=1, 15 Uniform Loads (lb/ft), Vert: 1-5=-70, 5-6=-70,18-24=20, 15-17=-20, 14-15=-20, 7-28=-20, 12-28=-70, 12-13=-70 1) Concentrated Loads (lb)


Vert: 20=-300 (F), 19=-300 (F), 18=-300 (F)

16023 Swingley Ridge Rd. Chesterfield MO 63017 314.434.1200 / MiTek-US.com

Job	Truss	Truss Type	Qty	Ply	Lot 133 MN	
240616	E1	Monopitch	3	1	Job Reference (optional)	164627074

Run: 8.73 S Mar 21 2024 Print: 8.730 S Mar 21 2024 MiTek Industries, Inc. Tue Apr 02 08:22:36 ID:6jHUfDNtkJr8SMt3gLYQcnzdGKI-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

Scale = 1:28.6													
Plate Offsets (X, Y):	[3:0-3-3,Edge],	[4:Edge,0-2-8]											
Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP	
	05.0		4.45	1 70	0.75	1/2	0.44	4 5	005	000	LATOO	407/444	

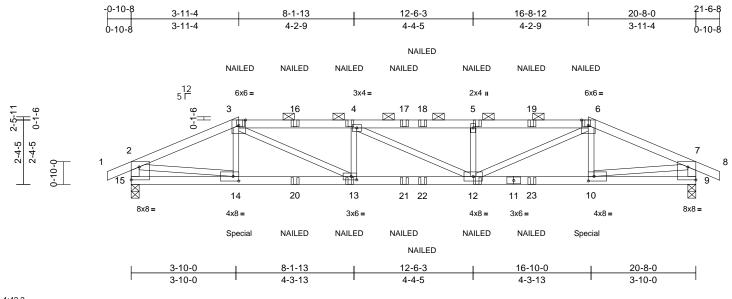
LUMBER			LOAD CASE(S)	Standard									
BCDL	10.0	Code	IRC2018/TPI2014	Matrix-R		Wind(LL)	0.05	4-5	>999	240	Weight: 21 lb	FT = 10%	
BCLL	0.0*	Rep Stress Incr	YES	WB	0.00	Horz(CT)	0.00	4	n/a	n/a			
TCDL	10.0	Lumber DOL	1.15	BC	0.45	Vert(CT)	-0.23	4-5	>374	240			
TCLL (roof)	25.0	Plate Grip DOL	1.15	TC	0.75	Vert(LL)	-0.11	4-5	>805	360	MT20	197/144	
Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP	

TOP CHORD	2x4 SPF I	No.2
BOT CHORD	2x4 SPF I	No.2
WEBS	2x3 SPF I	No.2 *Except* 5-2:2x4 SPF No.2
BRACING		
TOP CHORD	Structura	I wood sheathing directly applied or
	6-0-0 oc p	ourlins, except end verticals.
BOT CHORD	Rigid ceil	ing directly applied or 10-0-0 oc
	bracing.	
REACTIONS	(size)	4= Mechanical, 5=0-3-8
	Max Horiz	5=134 (LC 5)
	Max Uplift	4=-71 (LC 8), 5=-96 (LC 4)
	Max Grav	4=320 (LC 1), 5=402 (LC 1)
FORCES	(lb) - Max	imum Compression/Maximum
	Tension	·
TOP CHORD	1-2=0/23,	2-3=-164/17, 3-4=-227/101,

TOP CHORD 1-2=0/23, 2-3=-164/17, 3-4=-227/101 2-5=-351/152 BOT CHORD 4-5=-34/70

NOTES

- Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- 4) All bearings are assumed to be SPF No.2.
- 5) Refer to girder(s) for truss to truss connections.
- Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 71 lb uplift at joint 4 and 96 lb uplift at joint 5.
- 7) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.


> 16023 Swingley Ridge Rd. Chesterfield MO 63017

314.434.1200 / MiTek-US.com

Job	Truss	Truss Type	Qty	Ply	Lot 133 MN	
240616	G1	Hip Girder	1	1	Job Reference (optional)	164627075

Run: 8.73 S Mar 21 2024 Print: 8.730 S Mar 21 2024 MiTek Industries, Inc. Tue Apr 02 08:22:36 ID:QVyzExJE2U?Rey6p2xPy5WzdGHo-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:42.2

2-5-11

Plate Offsets ((X, Y): [9:Edge,0-5-11], [10:0-2-8,0-2-0], [1	3:0-2-8,0	-1-8], [14:0-2-8	,0-2-0], [15:Edge	e,0-5-11]							
Loading TCLL (roof) TCDL BCLL BCDL	(psf) 25.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 NO IRC20 ⁷	18/TPI2014	CSI TC BC WB Matrix-S	0.69 1.00 0.64	DEFL Vert(LL) Vert(CT) Horz(CT) Wind(LL)	-0.33 0.06	(loc) 12-13 12-13 9 12-13	l/defl >999 >732 n/a >999	L/d 360 240 n/a 240	PLATES MT20 Weight: 74 lb	GRIP 197/144 FT = 10%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD REACTIONS FORCES	2x4 SPF No.2 2x3 SPF No.2 *Exce No.2 Structural wood she 3-6-11 oc purlins, e 2-0-0 oc purlins (2-8 Rigid ceiling directly bracing. (size) 9=0-3-8, ~ Max Horiz 15=-18 (L Max Uplift 9=-319 (L Max Grav 9=1451 (L	athing directly applie xcept end verticals, a l-8 max.): 3-6. applied or 6-9-14 oc 15=0-3-8 C 6) C 5), 15=-319 (LC 4 _C 1), 15=1451 (LC 4	5 F and 7 : 8) 9 1)	 chord live lo. * This truss I on the bottooi 3-06-00 tall I chord and ai All bearings Provide mec bearing plate 15 and 319 I This truss is International R802.10.2 ai Graphical pu or the orient bottom chore 		It with any ed for a liv as where will fit betw rs. be SPF No on (by oth standing 3 ordance w le sections andard AN on does no a along the	other live load e load of 20. a rectangle veen the bott c.2. ers) of truss 19 lb uplift a ith the 2018 s R502.11.1 a ISI/TPI 1. ot depict the a top and/or	Opsf tom t joint and			*	S JU/ GAR	
TOP CHORD	4-5=-3392/803, 5-6=-3395/804, 6-7=-2384/537, 7-8=0/27, 2-15=-1399/332, 7-9=-1399/332 14.14 _ 02/02 = 12.14 _ 450/2145 b up at 16-8-0 on bottom chord. The design/selection								162101				
WEBS	12-13=-753/3394, 10 9-10=-79/303 3-14=-10/97, 6-10=- 7-10=-409/1875, 3-1 6-12=-327/1418, 4-1 4-12=-28/23, 5-12=-	10/97, 2-14=-408/18 3=-328/1421, 3=-489/226,	75,	of the truss a OAD CASE(S)) Dead + Ro	of Live (balanced	t (F) or ba	ck (B).					JUAN CE	GARCIA NSE
this design 2) Wind: ASC Vasd=91n II; Exp C; cantilever right expo	ed roof live loads have	been considered for (3-second gust) DL=6.0psf; h=25f; C ivelope) exterior zon ; end vertical left and 0 plate grip DOL=1.6	Cat. e; d	9-15=-2(Concentrat Vert: 3=- 13=-23 ((F), 17=-	ads (lb/ft) =-70, 2-3=-70, 3), 14=-214 =-45 (F), 5 F), 19=-45	(F), 10=-214 5=-45 (F), 16	4 (F), =-45			. THUNK		952 VSAS

April 3,2024

Job	Truss	Truss Type	Qty	Ply	Lot 133 MN	
240616	G2	Нір	1	1	Job Reference (optional)	164627076

Run: 8.73 S Mar 21 2024 Print: 8.730 S Mar 21 2024 MiTek Industries, Inc. Tue Apr 02 08:22:36

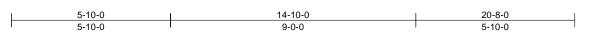
ID:4ogVI1SmDAWk4o07ITdma2zdGHc-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f -0-10-8 10-4-0 5-11-4 14-8-12 20-8-0 0-10-8 5-11-4 4-4-12 4-4-12 5-11-4 4x5 = 3x4 = 4x5 = 0-1-10 3-3-11 12 5 Г 3 4 5 0-1-10 \bowtie \bowtie \bowtie \bowtie -3-3-11 3-2-1 3-2-1 2 p-10-0 12 कि \boxtimes 11 10 9 8x8= 3x10 = 3x4 =

3x10 =

Page: 1

21-6-8

0-10-8


6

 \bigotimes

8x8 =

8

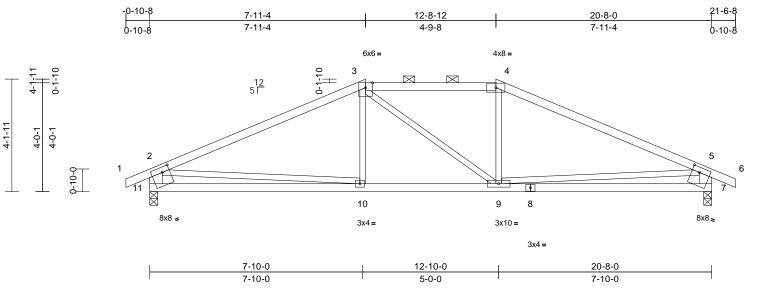
7

Scale = 1:42.3

Plate Offsets (X, Y): [8:Edge.0-5-11]. [12:Edge.0-5-11]

Plate Offsets ((X, Y): [8:Edge,0-5-11]], [12:Edge,0-5-11]										-	
Loading TCLL (roof) TCDL BCLL BCDL	(psf) 25.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018	/TPI2014	CSI TC BC WB Matrix-S	0.46 0.64 0.32	DEFL Vert(LL) Vert(CT) Horz(CT) Wind(LL)	in -0.15 -0.34 0.03 0.05	(loc) 9-11 9-11 8 9-11	l/defl >999 >723 n/a >999	L/d 360 240 n/a 240	PLATES MT20 Weight: 73 lb	GRIP 197/144 FT = 10%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SPF No.2 2x3 SPF No.2 *Exce No.2 Structural wood shea 4-3-7 oc purlins, exi 2-0-0 oc purlins (4-1 Rigid ceiling directly bracing.	athing directly applie cept end verticals, a 0-15 max.): 3-5. applied or 10-0-0 or 12=0-3-8 C 13) C 5), 12=-135 (LC 4	F 6) 7) ed or nd 8) c 9)	on the bottor 3-06-00 tall b chord and ar All bearings Provide mec bearing plate 12 and 135 l This truss is International R802.10.2 au Graphical put		ill fit betv - e SPF No n (by oth tanding 1 rdance w sections ndard AN n does no	a rectangle veen the bott o.2. ers) of truss 35 lb uplift a ith the 2018 i R502.11.1 a ISI/TPI 1. ot depict the	to to t joint and			*	JU/ GAR	
FORCES TOP CHORD BOT CHORD WEBS	(lb) - Maximum Com Tension 1-2=0/27, 2-3=-1533 4-5=-1333/194, 5-6= 2-12=-943/157, 6-8=	pression/Maximum 3/188, 3-4=-1333/19 1533/188, 6-7=0/2 943/157 1=-226/1613, 127/136, 4-9=-427/13	7,								Philip .	NUM E-2000	162101
 this design Wind: AS0 Vasd=91n II; Exp C; cantilever right expo Provide ad This truss 	ed roof live loads have	been considered fo (3-second gust) DL=6.0psf; h=25ft; (ivelope) exterior zor ; end vertical left an 0 plate grip DOL=1.0 event water ponding r a 10.0 psf bottom	Cat. he; d 60 J.									PROFIL SION	952 VSAS

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)



April 3,2024

Job	Truss	Truss Type	Qty	Ply	Lot 133 MN	
240616	G3	Нір	1	1	Job Reference (optional)	164627077

Run: 8.73 S Mar 21 2024 Print: 8.730 S Mar 21 2024 MiTek Industries, Inc. Tue Apr 02 08:22:36 ID:JXjve6ZP6xeTfACsnsltRyzdGHT-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

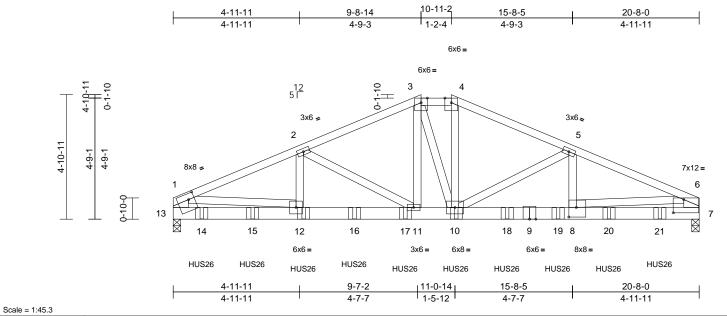
Page: 1

Scale = 1:42.4

Plate Offsets (X, Y): [7:0-3-4,0-2-4], [11:0-3-4,0-2-4]

Plate Offsets	(X, Y): [7:0-3-4,0-2-4],	[11:0-3-4,0-2-4]			-							
Loading TCLL (roof) TCDL BCLL BCDL	(psf) 25.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC20 ⁷	18/TPI2014	CSI TC BC WB Matrix-S	0.80 0.42 0.21	DEFL Vert(LL) Vert(CT) Horz(CT) Wind(LL)	in -0.10 -0.20 0.03 0.03	l/defl >999 >999 n/a >999	L/d 360 240 n/a 240	PLATES MT20 Weight: 75 lb	GRIP 197/144 FT = 10%
LUMBER TOP CHORD BOT CHORD BRACING TOP CHORD BOT CHORD FORCES TOP CHORD BOT CHORD WEBS	2x4 SPF No.2 2x3 SPF No.2 *Exce No.2 Structural wood she 3-4-15 oc purlins, e 2-0-0 oc purlins (5-2 Rigid ceiling directly bracing. (size) 7=0-3-8, 1 Max Horiz 11=42 (LC Max Uplift 7=-122 (L Max Grav 7=987 (LC (lb) - Maximum Com Tension 1-2=0/30, 2-3=-1404 4-5=-1405/152, 5-6= 5-7=-912/167	athing directly applie xcept end verticals, -10 max.): 3-4. applied or 10-0-0 or 11=0-3-8 C 9), 11=-122 (LC 8 C 9), 11=987 (LC 1) pression/Maximum 1/152, 3-4=-1189/164 c0/30, 2-11=-911/164 0=-62/1189, io/150, 4-9=0/221,	6 7 and 8 5 9) L	on the bottor 3-06-00 tall th chord and ar) All bearings) Provide mec bearing plate 11 and 122 I) This truss is International R802.10.2 a) Graphical pu		as where will fit betw s. De SPF No on (by oth standing 1 ordance w e sections andard AN on does no	a rectangle ween the bott o.2. ers) of truss i 22 lb uplift ai ith the 2018 i R502.11.1 a ISI/TPI 1. ot depict the s	om to t joint and			D S S S S S S S S S S S S S S S S S S S	BER
 this desig Wind: AS Vasd=91r II; Exp C; cantilever right expc Provide a This truss 	ed roof live loads have n. CE 7-16; Vult=115mph nph; TCDL=6.0psf; BC Enclosed; MWFRS (er left and right exposed sed; Lumber DOL=1.6 dequate drainage to pr has been designed for load nonconcurrent wi	(3-second gust) DL=6.0psf; h=25ft; (ivelope) exterior zor ; end vertical left an 0 plate grip DOL=1.6 event water ponding r a 10.0 psf bottom	Cat. le; d 60 l.							. THINK	PROTISION	GARCIA NSEO 952

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)


April 3,2024

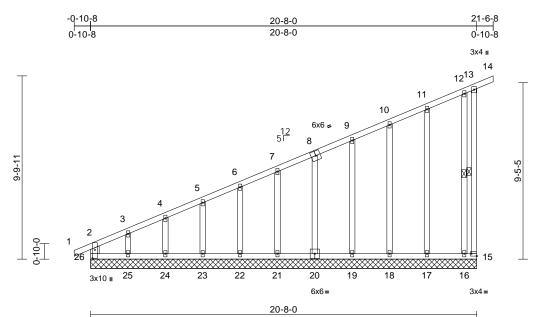
Job	Truss	Truss Type	Qty	Ply	Lot 133 MN	
240616	G4	Hip Girder	1	2	Job Reference (optional)	164627078

Run: 8.73 S Mar 21 2024 Print: 8.730 S Mar 21 2024 MiTek Industries, Inc. Tue Apr 02 08:22:36 ID:T2owDBbLQ8ec9qEEUXgpgGzdG5p-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Plate Offsets (X, Y): [1:0-2-12,0-2-12], [6:0-5-0,0-6-4], [8:0-3-8,0-4-8]

		_,	_], [o:o o o,o o .], [o		. •]									
Loading		(psf)	Spacing	2-0-0		csi		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)		25.0	Plate Grip DOL	1.15		тс	0.51	Vert(LL)		11-12		360	MT20	197/144
TCDL		10.0	Lumber DOL	1.15		BC	0.93	· · /		11-12	>999	240		
BCLL		0.0*	Rep Stress Incr	NO		WB	0.67	· · /	0.04	7	n/a	n/a	1	
BCDL		10.0	Code		18/TPI2014	Matrix-S	0.07	Wind(LL)		, 11-12	>999	240	Weight: 224 lb	FT - 10%
		10.0	Out	11(020	10/11/2014	Matrix 0		Wind(EE)	0.10	11 12	2000	240	Weight. 224 ib	11 = 1070
LUMBER						be connected to	gether wi	th 10d						14-10d Girder, 4-10d
TOP CHORD	2x4 SPF No.:	2			(0.131"x3") r	nails as follows:				Tru	ss) or eo	quivale	nt spaced at 2-0)-0 oc max. starting at
BOT CHORD	2x6 SP 2400	F 2.0E *	*Except* 9-7:2x6 SPI	F		connected as follo		- 1 row at 0-6-	-0	1-1-	-8 from t	he left	end to 19-1-8 to	connect truss(es) to
	No.2		·			ows staggered at							m chord.	
WEBS	2x4 SPF No.	2 *Exce	pt* 13-1,7-6:2x8 SP			ds connected as	follows: 2	x6 - 2 rows		14) Fill	all nail h	oles w	here hanger is i	n contact with lumber.
	2400F 2.0E		•		staggered at					LOAD	CASE(S) Sta	ndard	
BRACING						ted as follows: 2>				1) De	ead + Ro	oof Live	e (balanced): Lu	mber Increase=1.15,
TOP CHORD	Structural wo	ood shea	athing directly applie	dor ²		considered equa					ate Incre			
			cept end verticals, a			ed as front (F) or			DAD	Ur	hiform Lo	bads (I	b/ft)	
	2-0-0 oc purlins (5-1-1 max.): 3-4.				CASE(S) section. Ply to ply connections have been Vert: 1-3								3-4=-70, 4-6=-7	0, 7-13=-20
BOT CHORD						distribute only loa	ds noted	as (F) or (B),		Co	oncentra	ted Lo	ads (lb)	
	bracing.					wise indicated.							(B), 10=-800 (B), 14=-818 (B),
REACTIONS	•	0-3-8 (req. 0-4-2), 13=0-3-8	:		roof live loads ha	ave been	considered fo	r					818 (B), 18=-800 (B)
		eq. 0-4-2			this design.								0=-888 (B), 21=	
	Max Horiz 13					7-16; Vult=115m			-			(),		()
			C 9), 13=-953 (LC 8)			h; TCDL=6.0psf;								
			.C 17), 13=5284 (LC			closed; MWFRS								
FORCES			pression/Maximum	,		t and right expos								
FUNCES	Tension		pression/maximum			d; Lumber DOL=								
TOP CHORD	1-2=-8241/14	175 2-3	6515/115/			quate drainage to			j .					
			=-6574/1156,			is been designed								
		,	3=-3938/738,			ad nonconcurrent								
	6-7=-4036/70		5=-5550/750,			nas been designe			pst					
BOT CHORD			1-12=-1370/7595,			n chord in all are								
BOT ONORD	10-11=-982	984 B	10 7 -1233/7691,			oy 2-00-00 wide v		veen the botto	om					IIIII.
	7-8=-327/200	SF M	10,100,1001,			ny other members		int(a) 10 7					AL AN	GAR
WEBS	2-12-202/13	379 2-1	1=-1755/426			Required bearing		$\operatorname{int}(S)$ 13, 7					NUAN	CIA
112BO	3-11=-399/21					input bearing siz are assumed to b							S CE	NSA .
i.	4-10=-404/22													SO .
	5-8=-115/146					hanical connection capable of withs						-		1 2
	6-8=-912/56					b uplift at joint 7.		bos in uplint at	joint				1	00 i =
NOTES						designed in acco		ith the 2019				=	THE LOCE	952 : -
						Residential Code			nd			-	D: /	1 : 0 -
	D. N	UMBE	B C			nd referenced sta			na			-	D	
		000162	• 41.			Irlin representatio			izo				On the	19 in 4 :
		00102				ation of the purlin			120				- AV4	NSA
	18:00		. Carlo		bottom chore		along the						SIO	UNI EN IN
	1.51		ENI			<i>.</i>							111	VAL
	111	NAL	till'											nuove en
		1111	LTV C										Ap	oril 3,2024
													-	


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

16023 Swingley Ridge Rd. Chesterfield, MO 63017 314.434.1200 / MiTek-US.com

ſ	Job	Truss	Truss Type	Qty	Ply	Lot 133 MN	
	240616	H1	Monopitch Supported Gable	1	1	Job Reference (optional)	164627079

Run: 8.73 S Mar 21 2024 Print: 8.730 S Mar 21 2024 MiTek Industries, Inc. Tue Apr 02 08:22:37 ID:pRvbEG8hlaWMk2g2kgbCjzzymzo-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

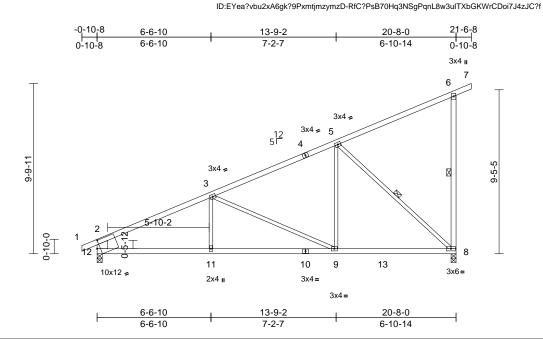
Page: 1

- ·			-
Scale	= 1	:61	.6

Plate Offsets (X, Y): [15:Edge,0-1-8], [26:0-5-8,0-1-8]

·		-1, [,1			-								-
Loading	(psf)	Spacing	2-0-0		csi		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15		TC	0.36	Vert(LL)	n/a	-	n/a	999	MT20	197/144
TCDL	10.0	Lumber DOL	1.15		BC	0.17	Vert(CT)	n/a	-	n/a	999		
BCLL	0.0	Rep Stress Incr	YES		WB	0.16	Horz(CT)	0.00	15	n/a	n/a		
BCDL	10.0	Code	IRC2	018/TPI2014	Matrix-R							Weight: 118 lb	FT = 10%
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD WEBS REACTIONS	2x4 SPF No.2 2x4 SPF No.2 2x6 SPF No.2 *Ex 2x4 SPF No.2 Structural wood sl 6-0-0 cc purlins, c Rigid ceiling direc bracing. 1 Row at midpt (size) 15=20-1 21=20-1 24=20-1 Max Horiz 26=420 Max Horiz 26=420 Max Uplift 15=-170 17=-34 19=-46 21=-48 23=-150 25=-190 Max Grav 15=102 17=179 19=180 21=179 23=178 (lb) - Maximum Co Tension 2-26=-227/0, 1-2= 3-4=-311/30, 4-5 6-7=-245/27, 7-9=	cept* 13-15:2x4 SPF i except end verticals. ly applied or 6-0-0 oc 13-15, 12-16 -0, 16=20-8-0, 17=20 -0, 19=20-8-0, 20=20 (-0, 22=20-8-0, 23=20 -0, 25=20-8-0, 26=20 (LC 5), 18=-56 (LC 8) (LC 8), 22=-46 (LC 8) (LC 8), 22=-46 (LC 8) (LC 3), 22=-46 (LC 8) (LC 1), 16=182 (LC 1) (LC 1), 22=180 (LC 1) (LC 1), 22=180 (LC 1) (LC 1), 24=186 (LC 1) (LC 1), 24=186 (LC 1) (LC 1), 26=281 (LC 1) (LC 1), 26=	No.2 ed or -8-0, -8-0, -8-0, -8-0, -8-0, -8-0, -8), , , , , , , , , , , , , , , , , , ,	BOT CHORD WEBS 1) Wind: ASC Vasd=91mµ II; Exp C; E cantilever le right exposs only. For s see Standa or consult c 3) All plates ai 4) Gable requ 5) Truss to be braced aga 6) Gable studs 7) This truss on the botto 3-06-00 tall chord live le 8) * This truss on the botto 3-06-00 tall chord and a 9) All bearings 10) Provide me bearing pla 15, 190 lb u uplift at join 21, 48 lb up	Matrix-R 25-26=-130/98, 2 23-24=-130/98, 2 21-22=-130/98, 3 18-19=-130/98, 7 16-17=-130/98, 7 3-25=-119/153, 4 6-22=-140/71, 7 9-19=-140/71, 11 11-17=-138/52, 7 E F7-16; Vult=115r pch; TCDL=6.0psf; nclosed; MWFRS ed; Lumber DOL= gned for wind load tuds exposed to w rd Industry Gable qualified building c re 2x4 MT20 unle irss continuous bo fully sheathed frc inst lateral moven by 2-00-0 wide ad nonconcurren has been designer by 2-00-0 wide any other member s re assumed to chainel connecti capable of with plift at joint 20, 46 t 18, 34 lb uplift at	22-23=-13 19-21=-13 17-18=-13 15-16=-13 1-24=-145 21=-140/7 1-8=-141 12-16=-90 mph (3-see BCDL=6.1 (envelopsed; end v 1.60 plate 1.60 plat	0/98, 0/98, 0/98, 0/98, 0/98, 0/98, 0/98, 12, 8-23=-13 12, 8-20=-140, 77, 143 20, 8-20=-140, 77, 143 20, 8-20=-140, 77, 143 20, 9, 8, 20, 9, 8, 20, 9, 8, 20, 9, 8, 20, 9, 8, 20, 14, 20, 1	/72, Cat. ne; d 60 sss), pole, Pl 1. ds. ppsf pm o joint lb ooint 0	Ínte	rnationa)2.10.2 ≵ CASE(S	Il Resir and ref) Sta	ned in accordance dential Code sect erenced standard ndard OF JUA GAR NUME E-20001	ANSI/TPI 1.

April 3,2024


16023 Swingley Ridge Rd. Chesterfield, MO 63017 314.434.1200 / MiTek-US.com

Job	Truss	Truss Type	Qty	Ply	Lot 133 MN	
240616	H2	Monopitch	1	1	Job Reference (optional)	164627080

Run: 8.73 S Mar 21 2024 Print: 8.730 S Mar 21 2024 MiTek Industries, Inc. Tue Apr 02 08:22:37

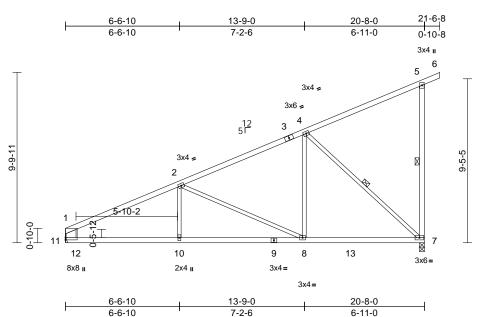
Page: 1

Wheeler Lumber, Waverly, KS - 66871,

Scale = 1:66.3

Plate Offsets (X	, Y):	[12:0-2-3,0-5-5]
------------------	-------	------------------

_			1										
Lo	ading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
		25.0	Plate Grip DOL	1.15	тс	0.69	Vert(LL)	-0.15	9-11	>999	360	MT20	197/144
		10.0	Lumber DOL	1.15	BC	0.76	Vert(CT)	-0.28	9-11	>853	240		
BC	LL	0.0*	Rep Stress Incr	YES	WB	0.86	Horz(CT)	0.04	8	n/a	n/a		
BC	DL	10.0	Code	IRC2018/TPI2014	Matrix-S		Wind(LL)	0.08	9-11	>999	240	Weight: 84 lb	FT = 10%
				E) Drovido m	achanical connectio	n (hu oth	oro) of truco	to					
			00+* 1 1.2v1 CDE 210	· · · ·									
10	P CHURD		pt 1-4.2x4 SPF 210			anding 2		t joint					
во	T CHORD					rdance w	ith the 2018						
			ept* 6-8:2x4 SPF No.:	2, Internation	al Residential Code	e sections	s R502.11.1 a	and					
	CLL (roof) 25.0 (DL Piate Grip DOL 1.15 (Impler POL Rep Stress Incr TC 0.69 (BC Vert(L1) -0.15 9-11 >999 360 (MT20 MT20 197/144 ICDL 10.0 Rep Stress Incr Rep Stress Incr WB 0.86 Nor(CT) -0.28 9-11 >999 240 Weight: 84 lb FT = 10% UMBER COC Code IRC2018/TPI2014 Matrix-S Wind(LL) 0.08 9-11 >999 240 Weight: 84 lb FT = 10% UMBER DO ChORD 2x4 SPF No.2 "Except* 6-8:2x4 SPF No.2" "For Vide mechanical connection (by others) of truss to bearing plate capable of withstanding 242 lb uplift at joint 12." "Di This truss is designed in accordarace with the 2018 12-2:2x8 SP 2400F 2.0E Structural wood sheathing directly applied or 5-0-4 oc purins, except end verticals. "T2-1014 (LC 2) "Di This truss is designed in accordarace with the 2018 RBCING OP CHORD Structural wood sheathing directly applied or 5-0-4 oc purins, except end verticals. "Structural wood sheathing directly applied or 5-0-4 oc purins, except end verticals. "Di T2-032, 2-3-1487/148, 1C.0.5 Max Horiz 12-2-124. (LC 5) "Max Horiz 2-2-0-3-8 "Max Horiz NUM BER "E-20001621												
TCLL (roof) 25.0 Plate Grip DOL 1.15 TC 0.66 TCDL 10.0 Lumber DOL 1.15 BC 0.76 BCDL 10.0 Code IRC2018/TPI2014 Matrix-S LUMBER Code IRC2018/TPI2014 Matrix-S LUMBER Code IRC2018/TPI2014 Matrix-S BOT CHORD 2x4 SPF No.2 *Except* 1-4:2x4 SPF 2100F 5) Provide mechanical connection (by obearing plate capable of withstanding 8 and 148 lb uplift at joint 12. BOT CHORD 2x4 SPF No.2 *Except* 6-8:2x4 SPF No.2, 12-2:2x8 SP 2400F 2.0E 5) Provide mechanical code section Residential Code section Residental Code section Residential Code section Residential													
то	P CHORD			d or									III.
												IN OF	MICH
BO	I CHORD		applied or 10-0-0 oc									NE	
	BS		6-8 5-8									· P ··· -·	
			,								-	S. 111	IN P
ΝĽ											2		
											= *	GAH	
											=	:	1 2
FO				,							- 7	NUM	BER C-
		()									-1		• []]
TO	P CHORD										1		
			7/0, 6-8=-266/116,									1. Co.	GN
D O			44 000/4077									I,SONI	EPIN
вО	I CHORD	,	-11=-288/1277,									- 1111	inter
WF	BS		56/199 5-9=-2/553										
		,	<i>ion</i> 100, 0 0– 2,000,										IIIII.
NO	TES											IN AN C	GARC
		CE 7-16: Vult=115mph	(3-second aust)									N 20	····· A .
,	Vasd=91m	nph; TCDL=6.0psf; BC	DL=6.0psf; h=25ft; C	at.								CE	NSED
		Enclosed; MWFRS (er									1		- TA 8
		left and right exposed									-		
		sed; Lumber DOL=1.6		0								169	952 E
2)		has been designed fo load nonconcurrent wi		le							-	U:	1 i a =
3)		s has been designed f									-	-P.	145
0)		tom chord in all areas										- A KAN	ISAS SS
	3-06-00 tal	ll by 2-00-00 wide will	fit between the botto	m								1.586	NG N
		any other members, v										, PON	ALE
4)	All bearing	s are assumed to be	SPF No.2 .										mm.
												٨٥	ril 2 2024

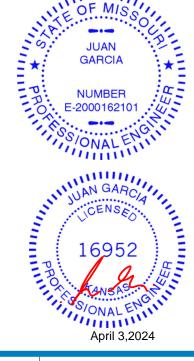

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

April 3,2024

Job	Truss	Truss Type	Qty	Ply	Lot 133 MN	
240616	НЗ	Monopitch	2	1	Job Reference (optional)	164627081

Run: 8.73 S Mar 21 2024 Print: 8.730 S Mar 21 2024 MiTek Industries, Inc. Tue Apr 02 08:22:37 ID:JyvoXcSxTSvd_?2WEV?DHYzymvX-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

Scale = 1:66.3

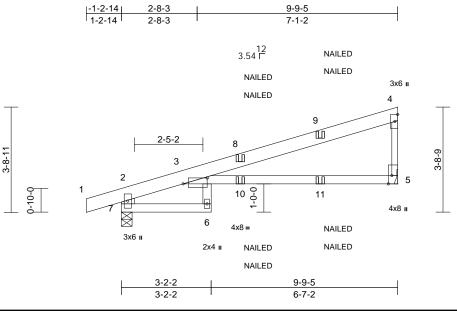

Scale = 1.00.3													
_oading	(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15		TC	0.70	Vert(LL)	-0.20	8-10	>999	360	MT20	197/144
TCDL	10.0	Lumber DOL	1.15		BC	0.70	Vert(CT)	-0.36	8-10	>676	240		
BCLL	0.0*	Rep Stress Incr	YES		WB	0.85	Horz(CT)	0.03	7	n/a	n/a		
BCDL	10.0	Code	IRC201	8/TPI2014	Matrix-S		Wind(LL)	0.11	8-10	>999	240	Weight: 83 lb	FT = 10%
TOP CHORD BOT CHORD WEBS				 bearing plate capable of withstanding 243 lb uplift at joint 7 and 120 lb uplift at joint 11. 7) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. 									
BRACING				OAD CASE(S)	Standard								
OP CHORD	Structural wood she		ed or										
OT CHORD	3-8-6 oc purlins, exe Rigid ceiling directly		C										1117

BOT CHORD	Rigiu celli	ng unechy applied of 10-0-0 oc
	bracing.	
WEBS	1 Row at	midpt 5-7, 4-7
REACTIONS	(size)	7=0-3-8, 11= Mechanical
	Max Horiz	11=410 (LC 5)
	Max Uplift	7=-243 (LC 8), 11=-120 (LC 8)
	Max Grav	7=1025 (LC 2), 11=940 (LC 2)
FORCES	(lb) - Max	imum Compression/Maximum
	Tension	
TOP CHORD	1-2=-1469	9/187, 2-4=-958/123, 4-5=-220/68,
	5-6=-27/0	, 5-7=-266/116, 1-11=-765/147
BOT CHORD	10-11=-28	38/1277, 8-10=-288/1277,
	7-8=-146/	774
WERG	2 10-0/20	2 2 9 551/107 1 9 1/565

WEBS	2-10=0/203, 2-8=-551/197, 4-8=-4/565,
	4-7=-1040/265

NOTES

- Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
 This targe here here a base of the second secon
- 2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
 3) * This truss has been designed for a live load of 20.0psf
- on the bottom chord in all areas where a rectangle
 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
 All bearings are assumed to be SPF No.2.
- 5) Refer to girder(s) for truss to truss connections.



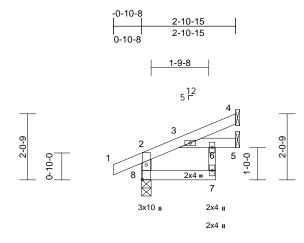
16023 Swingley Ridge Rd. Chesterfield, MO 63017 314.434.1200 / MiTek-US.com

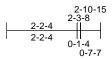
Job	Truss	Truss Type	Qty	Ply	Lot 133 MN	
240616	J1	Diagonal Hip Girder	1	1	Job Reference (optional)	164627082

Run: 8.73 S Mar 21 2024 Print: 8.730 S Mar 21 2024 MiTek Industries, Inc. Tue Apr 02 08:22:37 ID:E8pjp5DOcWE6PV3pOholj8zyn49-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Plate Offsets (X, Y): [3:0-10-3,0-2-8], [5:0-3-8, Edge]


Plate Olisets (A, T). [3.0-10-3,0-2-6	j, [5.0-3-6,⊏ugej											
Loading TCLL (roof) TCDL BCLL BCDL	(psf) 25.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 NO IRC2018/TPI2014	CSI TC BC WB Matrix-R	0.59 0.75 0.02	DEFL Vert(LL) Vert(CT) Horz(CT) Wind(LL)	in -0.20 -0.46 0.14 0.18	(loc) 6 3-5 5 6	l/defl >572 >248 n/a >631	L/d 360 240 n/a 240	PLATES MT20 Weight: 42 lb	GRIP 197/144 FT = 10%	
 Vasd=91n II; Exp C; cantilever right expo. 2) This truss chord live 3) * This trus on the bot 3-06-00 ta chord and 4) All bearing 5) Refer to g 6) Provide m bearing plice 	2x6 SPF No.2 *Exce 6-3:2x4 SPF No.2 Structural wood she 6-0-0 oc purlins, exx Rigid ceiling directly bracing. (size) 5= Mecha Max Horiz 7=134 (LC Max Uplift 5=-98 (LC Max Grav 5=557 (LC (lb) - Maximum Com Tension 2-7=-592/147, 1-2=C 3-4=-186/24, 4-5=-4	athing directly applie cept end verticals. applied or 6-0-0 oc nical, 7=0-4-9 2 5) 8), 7=-127 (LC 4) 2 1), 7=617 (LC 1) pression/Maximum /29, 2-3=-177/16, 01/153 06 (3-second gust) DL=6.0psf; h=25ft; C ivelope) exterior zon ; end vertical left and 0 plate grip DOL=1.6 a 10.0 psf bottom th any other live load or a live load of 20.0 where a rectangle fit between the botto SPF No.2. is connections. by others) of truss to	Cat. http://cat. Cat.	is designed in acco al Residential Code and referenced statindicates 3-104 (0. 25") toe-nails per N AD CASE(S) section s are noted as front S) Standard Roof Live (balanced rease=1.15 Loads (lb/ft) I-2=-70, 2-4=-70, 6- rated Loads (lb) =-80 (F=-40, B=-40 7 (F=-43, B=-43)	e sections andard AN 148"x3") o IDS guidli n, loads a t (F) or ba I): Lumber -7=-20, 3-9	3 R502.11.1 a ISI/TPI 1. or 2-12d nes. opplied to the l ck (B). Increase=1.	face 15,				PROTO SION	CIA *	



April 3,2024

Job	Truss	Truss Type	Qty	Ply	Lot 133 MN	
240616	J2	Jack-Open	2	1	Job Reference (optional)	164627083

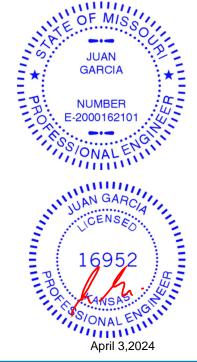
Run: 8.73 S Mar 21 2024 Print: 8.730 S Mar 21 2024 MiTek Industries, Inc. Tue Apr 02 08:22:37 ID:T_47f_Ms2Ji?otvIP_5jzazynAQ-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

Scale = 1:35.7

Plate Offsets (X, Y): [8:0-5-8,0-1-8]

- 1010 0110010 (1												
Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15	TC	0.09	Vert(LL)	0.00	3	>999	360	MT20	197/144
TCDL	10.0	Lumber DOL	1.15	BC	0.06	Vert(CT)	-0.01	3-6	>999	240		
BCLL	0.0*	Rep Stress Incr	YES	WB	0.01	Horz(CT)	-0.01	5	n/a	n/a		
BCDL	10.0	Code	IRC2018/TPI2014	Matrix-S		Wind(LL)	0.01	3	>999	240	Weight: 10 lb	FT = 10%
LUMBER TOP CHORD BOT CHORD WEBS BRACING	2x4 SPF No.2 2x4 SPF No.2 2x4 SPF No.2 *Exce		Internationa R802.10.2 a .2 LOAD CASE(S	designed in act Residential Co and referenced s Standard	de sections	R502.11.1 a	and					
TOP CHORD	Structural wood she											
BOT CHORD	2-10-15 oc purlins, Rigid ceiling directly											

Ber energy	bracing.	
REACTIONS	0	4= Mechanical, 5= Mechanical, 8=0-3-8
	Max Horiz	8=53 (LC 8)
	Max Uplift	4=-34 (LC 8), 8=-24 (LC 8)
	Max Grav	4=73 (LC 1), 5=65 (LC 3), 8=216 (LC 1)
FORCES	(lb) - Max	imum Compression/Maximum
	Tension	
TOP CHORD	2-8=-197/	45. 1-2=0/27. 2-3=-52/0. 3-4=-20/2


 TOP CHORD
 2-8=-197/45, 1-2=0/27, 2-3=-52/0, 3-4=-20/24

 BOT CHORD
 7-8=0/0, 3-6=0/0, 5-6=0/0

 WEBS
 6-7=0/42

NOTES

- Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- 4) All bearings are assumed to be SPF No.2 .
- 5) Refer to girder(s) for truss to truss connections.
- Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 24 lb uplift at joint 8 and 34 lb uplift at joint 4.

Job	Truss	Truss Type	Qty Ply Lot 133 MN		Lot 133 MN	
240616	J3	Jack-Open	2	1	Job Reference (optional)	164627084

1-9-8

Ø ● 6

3

4-10-15

4-10-15

12 5 Г

-0-10-8

0-10-8

2

2-10-9

Wheeler Lumber, Waverly, KS - 66871,

Run: 8.73 S Mar 21 2024 Print: 8.730 S Mar 21 2024 MiTek Industries, Inc. Tue Apr 02 08:22:37 ID:uqIhrpcPKSEACyRbaASPnozynA6-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

X

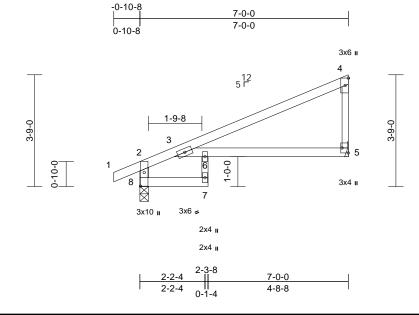
5

2-10-9

0-10-0 1-0-0 0 8 3x4 = \mathbb{X} 7 3x10 🛛 2x4 🛛 2x4 🛛 2-3-8 4-10-15 2-2-4 2-2-4 0-1-4 2-7-7

Scale = 1:31.5 Plate Offsets (X, Y): [8:0-5-8,0-1-8]

Loading TCLL (roof) TCDL BCLL BCDL	(psf) 25.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC201	8/TPI2014	CSI TC BC WB Matrix-S	0.29 0.24 0.02	DEFL Vert(LL) Vert(CT) Horz(CT) Wind(LL)	in -0.03 -0.06 0.04 0.04	(loc) 7 5-6 5 7	l/defl >999 >885 n/a >999	L/d 360 240 n/a 240	PLATES MT20 Weight: 15 lb	GRIP 197/144 FT = 10%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD	2x4 SPF No.2 2x4 SPF No.2 *Exce Structural wood she 4-10-15 oc purlins, Rigid ceiling directly	athing directly applie except end verticals.	2 L(d or	International	designed in acco Residential Code nd referenced sta Standard	e sections	s R502.11.1 a	ind					U.,.
REACTIONS	bracing. (size) 4= Mecha 8=0-3-8 Max Horiz 8=87 (LC Max Uplift 4=-64 (LC Max Grav 4=139 (LC (LC 1)	8), 8=-30 (LC 8)									*****	JUA GAR	
	(lb) - Maximum Com Tension 2-8=-297/59, 1-2=0/: 7-8=0/0, 3-6=0/0, 5-1 6-7=-5/48 CE 7-16; Vult=115mph	27, 2-3=-93/0, 3-4=-4 6=0/0 (3-second gust)									Philip	NUME E-20001	• [] []
II; Exp C; cantilever right expo 2) This truss chord live 3) * This trus on the bot 3-06-00 ta	nph; TCDL=6.0psf; BC Enclosed; MWFRS (er left and right exposed sed; Lumber DOL=1.6 has been designed for load nonconcurrent wi ss has been designed f ttom chord in all areas all by 2-00-00 wide will any other members.	velope) exterior zon ; end vertical left and 0 plate grip DOL=1.6 r a 10.0 psf bottom th any other live load or a live load of 20.0 where a rectangle	e; d 60 ds. psf								un un	UCE	AROLA NSEO
 All bearing Refer to g Provide m bearing pl 	gs are assumed to be \$ jirder(s) for truss to tru- nechanical connection (late capable of withstar b uplift at joint 4.	ss connections. (by others) of truss to									111.	PROFESSION	SAL ENGLIS


April 3,2024

Job	Truss	Truss Type	Qty	Ply	Lot 133 MN	
240616	J4	Jack-Closed	3	1	Job Reference (optional)	164627085

Run: 8.73 S Mar 21 2024 Print: 8.730 S Mar 21 2024 MiTek Industries. Inc. Tue Apr 02 08:22:37 ID:bVPwOnc9fHglbnNW7XkOC0zynUm-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Scale = 1:38.7

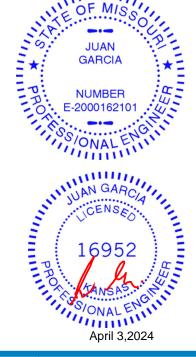
Plate Offsets (X, Y): [5:Edge.0-2-8], [8:0-5-8.0-1-8]

	X, 1). [0.Edge,0 2 0],											
Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15	TC	0.57	Vert(LL)	-0.11	5-6	>768	360	MT20	197/144
TCDL	10.0	Lumber DOL	1.15	BC	0.49	Vert(CT)	-0.21	5-6	>386	240		
BCLL	0.0*	Rep Stress Incr	YES	WB	0.02	Horz(CT)	0.11	5	n/a	n/a		
BCDL	10.0	Code	IRC2018/TPI2014	Matrix-R		Wind(LL)	0.11	5-6	>709	240	Weight: 22 lb	FT = 10%
LUMBER TOP CHORD BOT CHORD WEBS	2x4 SPF No.2 2x4 SPF No.2 2x3 SPF No.2 *Exce	ept* 8-2:2x4 SPF No.2	Internation R802.10.2	s designed in ac al Residential Co and referenced s) Standard	de sections	R502.11.1						

(3)

BRACING		
TOP CHORD		wood sheathing directly applied or
		ourlins, except end verticals.
BOT CHORD	Rigid ceili	ng directly applied or 10-0-0 oc
	bracing.	
REACTIONS	(size)	5= Mechanical, 8=0-3-8
	Max Horiz	8=138 (LC 5)
	Max Uplift	5=-74 (LC 8), 8=-63 (LC 8)
	Max Grav	5=298 (LC 1), 8=381 (LC 1)
FORCES	(lb) - Max	imum Compression/Maximum
	Tension	·
TOP CHORD	2-8=-384/	96, 1-2=0/27, 2-3=-165/0,
	3-4=-136/	13, 4-5=-192/84
BOT CHORD	7-8=0/0, 3	3-6=-31/66, 5-6=-31/66
WEBS	6-7=-13/5	0

NOTES

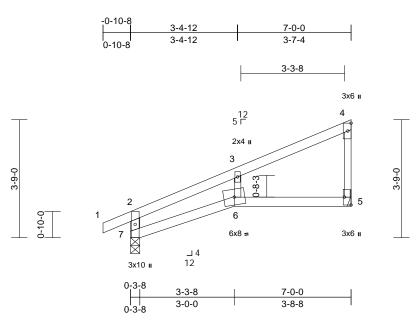

1) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60

This truss has been designed for a 10.0 psf bottom 2) chord live load nonconcurrent with any other live loads.

- * This truss has been designed for a live load of 20.0psf 3) on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- All bearings are assumed to be SPF No.2 . 4)

Refer to girder(s) for truss to truss connections. 5)

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 63 lb uplift at joint 8 and 74 lb uplift at joint 5.



Job	Truss	Truss Type	Qty	Ply	Lot 133 MN	
240616	J5	Jack-Closed	10	1	Job Reference (optional)	164627086

Run: 8.73 S Mar 21 2024 Print: 8.730 S Mar 21 2024 MiTek Industries, Inc. Tue Apr 02 08:22:37 ID:EhvSy4jsHxrtDeddr9JMI?zynOA-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

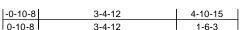
Scale = 1:36.6

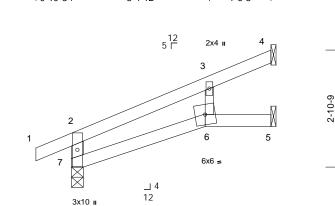
Plate Offsets (X, Y): [5:Edge,0-2-8]

Loading TCLL (roof) (psf) 25.0 Spacing Plate Grip DOL 2-0-0 CSI TC DEFL in (loc) I/defl L/d PLATES GRIP MT20 197/4 TCDL 10.0 Lumber DOL 1.15 TC 0.54 Vert(LL) -0.15 6 >536 360 MT20 197/4 BCLL 0.0* Rep Stress Incr YES WB 0.03 Horz(CT) 0.09 5 n/a n/a BCDL 10.0 Code IRC2018/TPI2014 Matrix-R Wind(LL) 0.16 6 >511 240 Weight: 21 lb FT = 1	144
	: 10%
 TOP CHORD 2x4 SPF No.2 BOT CHORD 2x4 SPF No.2 WEBS 2x3 SPF No.2 "Except 7-2:2x4 SPF No.2 WEBS 2x3 SPF No.2 "Except 7-2:2x4 SPF No.2 BACING 50:00 CHORD Structural wood sheathing directly applied or 10:0-0 oc bracing. BOT CHORD Rigid ceiling directly applied or 10:0-0 oc bracing. REACTIONS (size) 5 =-Mechanical, 7=0-3-8 Max Horiz 7=139 (LC 5) Max Grav 5=228 (LC 1), 7=381 (LC 1) FORCES (b) - Maximum Compression/Maximum Tension TOP CHORD 67-4-0022; 56-388/37 WEBS 3-6=-31/83 NUMBER 10:01-160 pite index polocities (and white and right exposed; unive polocities) (b) - Maximum compression (b) - 160 pite pite polocities (b) - 160 pite pite pite polocities (b) - 160 pite pite pite pite pite pite pite pite	NULL CAR CONTRACTOR

- З on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- All bearings are assumed to be SPF No.2 . 4)
- 5) 6) Refer to girder(s) for truss to truss connections.
- Bearing at joint(s) 7 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent oulgase with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)




Job	Truss	Truss Type	Qty	Ply	Lot 133 MN	104002002	
240616	J6	Jack-Open	2	1	Job Reference (optional)	164627087	

2-10-9

0-10-0

Run: 8,73 S Mar 21 2024 Print: 8,730 S Mar 21 2024 MiTek Industries. Inc. Tue Apr 02 08:22:37 ID:qOllusue_EcuvniJg6ZetyzynNy-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Scale = 1:28.4

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15	TC	0.26	Vert(LL)	-0.03	6-7	>999	360	MT20	197/144
TCDL	10.0	Lumber DOL	1.15	BC	0.24	Vert(CT)	-0.06	6-7	>923	240		
BCLL	0.0	* Rep Stress Incr	YES	WB	0.02	Horz(CT)	0.03	4	n/a	n/a		
BCDL	10.0	Code	IRC2018/TPI2014	Matrix-P		Wind(LL)	0.04	6-7	>999	240	Weight: 14 lb	FT = 10%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SPF No.2 2x4 SPF No.2 *E: Structural wood s 4-10-15 oc purlin Rigid ceiling direc bracing. (size) 4= Mer 7=0-3- Max Horiz 7=86 (Max Uplift 4=-42 (LC 8)		bearing pla 7, 42 lb up 7, 42 lb up 1nternation ed or R802.10.2 LOAD CASE(al,	echanical connect ate capable of wi lift at joint 4 and is designed in ac al Residential Co and referenced 5) Standard	ithstanding 3 23 lb uplift a ccordance w ode sections	87 lb uplift at at joint 5. ith the 2018 s R502.11.1 a	joint			nin.	ANE OF	

(LC 1) FORCES (lb) - Maximum Compression/Maximum Tension TOP CHORD 2-7=-225/53, 1-2=0/27, 2-3=-75/26, 3-4=-22/40 BOT CHORD 6-7=-25/14, 5-6=0/0 WEBS 3-6=-62/64

NOTES

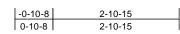
- Wind: ASCE 7-16; Vult=115mph (3-second gust) 1) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60 This truss has been designed for a 10.0 psf bottom 2)
- chord live load nonconcurrent with any other live loads. 3) * This truss has been designed for a live load of 20.0psf
- on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- All bearings are assumed to be SPF No.2 . 4)
- Refer to girder(s) for truss to truss connections. 5) Bearing at joint(s) 7 considers parallel to grain value 6)
- using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.

1111 Talin 16. ONALE, UNAN GARCIA LICENSED 16952 April 2

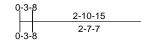
NUMBER

2000162101

F


C

Page: 1



Job	Truss	Truss Type	Qty	Ply	Lot 133 MN	
240616	J7	Jack-Open	2	1	Job Reference (optional)	164627088

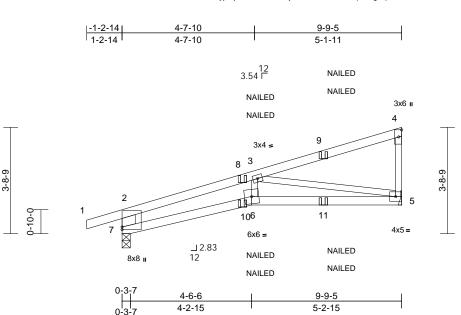
Run: 8.73 S Mar 21 2024 Print: 8.730 S Mar 21 2024 MiTek Industries, Inc. Tue Apr 02 08:22:37 ID:fpeRjk94ZIVd9KykWRT1IpzynNb-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Scale = 1:26.6

Loa	ding	(psf)	Spacing	2-0-0	csi		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
	L (roof)	25.0	Plate Grip DOL	1.15	тс	0.09	Vert(LL)	0.00	4-5	>999	360	MT20	197/144
TCE)L	10.0	Lumber DOL	1.15	BC	0.06	Vert(CT)	-0.01	4-5	>999	240		
BCL	.L	0.0*	Rep Stress Incr	YES	WB	0.00	Horz(CT)	0.00	3	n/a	n/a		
BCE	DL	10.0	Code	IRC2018/TPI2014	Matrix-R		Wind(LL)	0.00	4-5	>999	240	Weight: 9 lb	FT = 10%
			•										
	IBER				designed in accord			امم					
	CHORD	2x4 SPF No.2			Residential Code s			and					
WE	CHORD	2x4 SPF No.2 2x4 SPF No.2		LOAD CASE(S)		alu Al	131/TFTT.						
		2X4 3FF NU.2		LUAD CASE(S)	Stanuaru								
	ACING CHORD	Structural wood she	othing directly opplic	dor									
TUP	CHORD	2-10-15 oc purlins,											
BOT	CHORD	Rigid ceiling directly											
20.	00.12	bracing.											
REA	CTIONS	(size) 3= Mecha	nical, 4= Mechanica	al,									Mar.
		5=0-3-8										NE OF	MISS
		Max Horiz 5=53 (LC	,								1	Xr.	0,4
		Max Uplift 3=-45 (LC									5	X	. 0
		Max Grav 3=80 (LC	1), 4=50 (LC 3), 5=2	207								JUA JUA	AN
	050	(LC 1)									24	GAR	CIA
FUR	RCES	(lb) - Maximum Com Tension	pression/maximum									1	
TOF	CHORD	2-5=-181/56, 1-2=0/2	27 2-3=-46/23								-	• • • • • • • • • • • • • • • • • • •	im E
	CHORD	4-5=-18/12	21, 2 0= 10/20								- 7	NUM	• 41.
NOT		10 10,12									-	C: E-20001	62101
		E 7-16; Vult=115mph	(3-second gust)								1	· · · ·	
		iph; TCDL=6.0psf; BC		Cat.								1. So	
		Enclosed; MWFRS (er										ONA	ALEIN
	cantilever	left and right exposed	; end vertical left an	d									un.
		sed; Lumber DOL=1.6		60									
		has been designed for											
		load nonconcurrent wi										NAU	ARC
		s has been designed f om chord in all areas		ipsr								Nº JOINTE	NSA
		ll by 2-00-00 wide will		m									ED
		any other members.	in between the bolle	////							-		A 20
		s are assumed to be S	SPF No.2 .									1 100	
5)	Refer to gi	rder(s) for truss to true	ss connections.									10	952
	 2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members. 4) All bearings are assumed to be SPF No.2. 5) Refer to girder(s) for truss to truss connections. 5) Bearing at joint(s) 5 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building 												
										M: 145			
	designer should verify capacity of bearing surface.										ISAS		
	7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 29 lb uplift at joint									ENG I			
		o uplift at joint 3.	iung 29 ib upint at jo	JIII								ON	AL
	5 ana 4 0 li	apint at joint 0.											inn.
												۸ ۵	ril 2 2024

> 16023 Swingley Ridge Rd. Chesterfield, MO 63017 314.434.1200 / MiTek-US.com

April 3,2024


Page: 1

Job	Truss	Truss Type	Qty	Ply	Lot 133 MN	
240616	J8	Diagonal Hip Girder	1	1	Job Reference (optional)	164627089

Run: 8.73 S Mar 21 2024 Print: 8.730 S Mar 21 2024 MiTek Industries. Inc. Tue Apr 02 08:22:38 ID:4r8r7GByjPcjowNaBUou2Czyn84-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

5-2-15

Page: 1

Scale - 1:40 3

30ale = 1.40.3													
Loading	(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15		тс	0.71	Vert(LL)	-0.16	5-6	>720	360	MT20	197/144
TCDL	10.0	Lumber DOL	1.15		BC	0.81	Vert(CT)	-0.28	5-6	>398	240		
BCLL	0.0*	Rep Stress Incr	NO		WB	0.69	Horz(CT)	0.08	5	n/a	n/a		
BCDL	10.0	Code	IRC2018	3/TPI2014	Matrix-S		Wind(LL)	0.15	5-6	>749	240	Weight: 32 lb	FT = 10%
LUMBER TOP CHORD BOT CHORD WEBS	2x4 SPF 2100F 1.8E 2x4 SPF No.2 2x3 SPF No.2 *Exce 2.0E	E ept* 7-2:2x6 SP 2400F	7)	bearing plat 7 and 152 lb This truss is Internationa	chanical connect e capable of with o uplift at joint 5. designed in acc I Residential Co	nstanding 1 cordance w de sections	60 lb uplift a ith the 2018 R502.11.1 a	it joint					
BRACING	Structural wood she	athing directly applied	lor 9)		nd referenced s dicates 3-10d (0								

5-7-1 oc purlins, except end verticals. BOT CHORD Rigid ceiling directly applied or 9-4-12 oc bracing

REACTIONS (size) 5= Mechanical, 7=0-3-7 Max Horiz 7=138 (LC 5) Max Uplift 5=-152 (LC 8), 7=-160 (LC 4) Max Grav 5=536 (LC 1), 7=584 (LC 1) FORCES (Ib) - Maximum Compression/Maximum Tension TOP CHORD 2-7=-745/246, 1-2=0/29, 2-3=-1267/325, 3-4=-135/26, 4-5=-217/76 BOT CHORD 6-7=-384/1159, 5-6=-366/1092

3-6=-50/345, 3-5=-1043/341 WEBS

NOTES

1) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60

This truss has been designed for a 10.0 psf bottom 2) chord live load nonconcurrent with any other live loads.

- 3) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- All bearings are assumed to be SPF No.2
- Refer to girder(s) for truss to truss connections. 5)
- 6) Bearing at joint(s) 7 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.

- (0.148"x3.25") toe-nails per NDS guidlines.

4-2-15

10) In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (F) or back (B).

LOAD CASE(S) Standard

Dead + Roof Live (balanced): Lumber Increase=1.15, Plate Increase=1.15

Uniform Loads (lb/ft)

Vert: 1-2=-70, 2-4=-70, 6-7=-20, 5-6=-20

Concentrated Loads (lb)

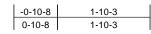
Vert: 9=-40 (F=-20, B=-20), 10=-5 (F=-3, B=-3), 11=-122 (F=-61, B=-61)

VIII * PRVI JUAN GARCIA NUMBER F 2000162101 C ONAL UNAN GAROL UCENSE April -

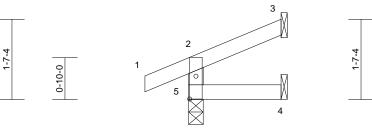
111

0

MI



Job	Truss	Truss Type	Qty	Ply	Lot 133 MN	
240616	J9	Jack-Open	4	1	Job Reference (optional)	164627090


Run: 8.73 S Mar 21 2024 Print: 8.730 S Mar 21 2024 MiTek Industries, Inc. Tue Apr 02 08:22:38 ID:IScCNskl7146Vk0noa4whczdGIX-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

3x10 ш

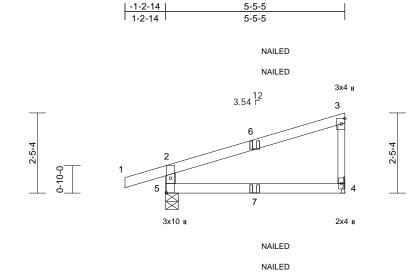
1-10-3

Scale = 1:23

Plate Offsets (X, Y): [5:0-5-8,0-1-8]

Loading	(psf)	Spacing	2-0-0	csi		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15	TC	0.07	Vert(LL)	0.00	4-5	>999	360	MT20	197/144
TCDL	10.0	Lumber DOL	1.15	BC	0.02	Vert(CT)	0.00	4-5	>999	240		
BCLL	0.0*	Rep Stress Incr	YES	WB	0.00	Horz(CT)	0.00	3	n/a	n/a		
BCDL	10.0	Code	IRC2018/TPI2014	Matrix-R		Wind(LL)	0.00	4-5	>999	240	Weight: 6 lb	FT = 10%
LUMBER				s is designed in acc								
TOP CHORD				nal Residential Co			and					
BOT CHORD				2 and referenced s	landard AN	151/TPLT.						
BRACING	2x4 SPF No.2		LUAD CASE	(S) Standard								
TOP CHORD	Structural wood she	athing directly appli	od or									
OF CHORD	1-10-3 oc purlins, e											
BOT CHORD	Rigid ceiling directly											
	bracing.										, while	NULL.
REACTIONS		anical, 4= Mechanica	al,								NEOF	MISS
	5=0-3-8	_									· · · · -	
	Max Horiz 5=41 (LC									-	2.	AN P
	Max Uplift 3=-28 (LC Max Grav 3=41 (LC		160							-		
	(LC 1)	1), 4=30 (LC 3), 5=	109							= *	GAR	
FORCES	(lb) - Maximum Con	npression/Maximum								Ξ.	1	
	Tension									=7	NUN	IBER C
TOP CHORD	2-5=-148/46, 1-2=0/	/27, 2-3=-31/11									E-2000	• []].
BOT CHORD	4-5=0/0									-	A	
NOTES											· So	Git
	CE 7-16; Vult=115mph		a .								I,ON	ALENN
	nph; TCDL=6.0psf; BC Enclosed; MWFRS (er										- 111	mm
	left and right exposed											
	sed; Lumber DOL=1.6										,,,,,,,	
	has been designed fo										11 UAN	GARC
	load nonconcurrent w										PB 16	NSA
	s has been designed		0psf									60
	tom chord in all areas									-	1.1	- A - F
	all by 2-00-00 wide will any other members.	In between the bott	om							-	1 10	050
	any other members.	SPF No 2									10	952
	irder(s) for truss to tru									-	P: /	<u>л</u> . : <u>с</u> :
	echanical connection		to								0.	Y .: #:
	ate capable of withsta	nding 32 lb uplift at j	oint								- A	NSAS.
5 and 28 l	b uplift at joint 3.										Sin	ENGIN
												VAL
												10.0004
											A	pril 3.2024

- All bearings are assumed to be SPF No.2 . 4)
- 5) Refer to girder(s) for truss to truss connections.
- Provide mechanical connection (by others) of truss to 6) bearing plate capable of withstanding 32 lb uplift at joint 5 and 28 lb uplift at joint 3.



April 3,2024

Job	Truss	Truss Type	Qty	Ply	Lot 133 MN	
240616	J11	Diagonal Hip Girder	2	1	Job Reference (optional)	164627091

Run: 8.73 S Mar 21 2024 Print: 8.730 S Mar 21 2024 MiTek Industries, Inc. Tue Apr 02 08:22:38 ID:BVN8n2?wAUj7Wy6qXUys11zdGIC-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

5-5-5

Scale = 1:35

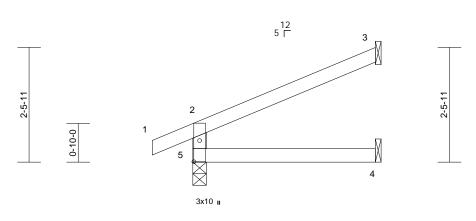
Plate Offsets (X, Y): [5:0-5-6,0-1-8]

- 1010 0110010												
Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15	TC	0.38	Vert(LL)	-0.03	4-5	>999	360	MT20	197/144
TCDL	10.0	Lumber DOL	1.15	BC	0.24	Vert(CT)	-0.06	4-5	>999	240		
BCLL	0.0*	Rep Stress Incr	NO	WB	0.00	Horz(CT)	0.00	4	n/a	n/a		
BCDL	10.0	Code	IRC2018/TPI201	4 Matrix-R	-	Wind(LL)	0.01	4-5	>999	240	Weight: 16 lb	FT = 10%
LUMBER			8) "NAILE	D" indicates 3-10d (0.	148"x3") c	or 2-12d						
TOP CHORD	2x4 SPF No.2			'x3.25") toe-nails per N								
BOT CHORD			· · · · ·	OAD CASE(S) section			face					
WEBS	2x4 SPF No.2 *Exce	ept* 3-4:2x3 SPF No.		russ are noted as from	t (⊢) or ba	ск (В).						
BRACING				SE(S) Standard								
TOP CHORD				+ Roof Live (balanced Increase=1.15	i): Lumber	Increase=1.	15,					
BOT CHORD	5-5-5 oc purlins, ex Rigid ceiling directly			rm Loads (lb/ft)								
BOTCHORD	bracing.	applied of 10-0-0 oc		rt: 1-2=-70, 2-3=-70, 4-	-5=-20							Min.
REACTIONS	0	anical, 5=0-4-9		entrated Loads (lb)							Nº OF	MISS
	Max Horiz 5=98 (LC		Ve	rt: 7=4 (F=2, B=2)						1	XE.	0,1
	Max Uplift 4=-48 (LC	,								5	Yr.	
	Max Grav 4=219 (L0	C 1), 5=342 (LC 1)								-	⊅. JU	AN
FORCES	(lb) - Maximum Com	pression/Maximum								24	GAR	RCIA
	Tension										:	101
TOP CHORD)/27, 2-3=-126/14,								= 1		in I
BOT CHORD	3-4=-158/71 4-5=-26/49									- 1	NUM	• 41.
	4-3=-20/49									-	E-2000	162101
NOTES 1) Wind: AS	CE 7-16; Vult=115mph	(2 accord quat)								1	~~· -·	
	mph; TCDL=6.0psf; BC		Cat								1.SION	ENIN
	Enclosed; MWFRS (er										I. ON	ALLIN
	left and right exposed											110°
	osed; Lumber DOL=1.6		60									1111.
	has been designed for										ALL NI	GAD
	load nonconcurrent wi										NUAN	CIA I
	ss has been designed f ttom chord in all areas		ipst								. CE	NSE
	all by 2-00-00 wide will		m									10 1 2
	any other members.		////							-	JUAN JUAN JOE THE	1 =
	gs are assumed to be \$	SPF No.2 .								-	16	952
5) Refer to g	girder(s) for truss to trus	ss connections.								=	9	
Provide m	nechanical connection ((by others) of truss to	0							-	D.	

- 6) bearing plate capable of withstanding 102 lb uplift at joint 5 and 48 lb uplift at joint 4.
- This truss is designed in accordance with the 2018 7) International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent colleges with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

And And


April 3,2024

Job	Truss	Truss Type	Qty	Ply	Lot 133 MN	
240616	J12	Jack-Open	8	1	Job Reference (optional)	164627092

Run: 8.73 S Mar 21 2024 Print: 8.730 S Mar 21 2024 MiTek Industries, Inc. Tue Apr 02 08:22:38 ID:7czTdvpWitqGDfTx8qAKwtzdGIR-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

3-11-4

Scale = 1:24.9	
Plate Offsets (X_Y)	[5:0-5-8 0-1-8]

Plate Offsets (X, Y): [5:0-5-8,0-1-8]											
Loading TCLL (roof) TCDL BCLL BCDL	(psf) 25.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018/TPI20	CSI TC BC WB 14 Matrix-R	0.20 0.12 0.00	DEFL Vert(LL) Vert(CT) Horz(CT) Wind(LL)	in -0.01 -0.02 0.01 0.01	(loc) 4-5 4-5 3 4-5	l/defl >999 >999 n/a >999	L/d 360 240 n/a 240	PLATES MT20 Weight: 11 lb	GRIP 197/144 FT = 10%
	2x4 SPF No.2 2x4 SPF No.2 2x4 SPF No.2 Structural wood she 3-11-4 oc purlins, e Rigid ceiling directly bracing. (size) 3= Mecha 5=0-3-8 Max Horiz 5=70 (LC Max Uplift 3=-61 (LC Max Grav 3=-115 (LC (LC 1) (lb) - Maximum Com	xcept end verticals. applied or 10-0-0 oc anical, 4= Mechanica 8) 5 8), 5=-34 (LC 8) C 1), 4=70 (LC 3), 5=	Interna R802. LOAD CA	uss is designed in acc attional Residential Coo 10.2 and referenced st SE(S) Standard	de sections	s R502.11.1 a	ind			******	JU/ GAR	
Vasd=91m II; Exp C; I cantilever right expos 2) This truss chord live 3) * This truss on the bott 3-06-00 ta chord and 4) All bearing 5) Refer to gi 6) Provide m bearing pla	Tension 2-5=-218/70, 1-2=0/ 4-5=0/0 CE 7-16; Vult=115mph pph; TCDL=6.0psf; BC Enclosed; MWFRS (er left and right exposed sed; Lumber DOL=1.6 has been designed for load nonconcurrent wi s has been designed for load nonconcurrent wi s are assumed to be s rder(s) for truss to tru echanical connection (buplift at joint 3.	(3-second gust) DL=6.0psf; h=25ft; C ivelope) exterior zon ; end vertical left and 0 plate grip DOL=1.6 r a 10.0 psf bottom th any other live load or a live load of 20.0 where a rectangle fit between the botto SPF No.2. ss connections. (by others) of truss to	e; d 30 ds. psf m							Phone and a statements	PROKE SION	162101

- 3) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- 4) All bearings are assumed to be SPF No.2 .
- Refer to girder(s) for truss to truss connections. 5)
- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 34 lb uplift at joint 5 and 61 lb uplift at joint 3.

April 2

Job	Truss	Truss Type	Qty	Ply	Lot 133 MN	
240616	К1	Monopitch Structural Gable	1	1	Job Reference (optional)	164627093

Run: 8.73 S Mar 21 2024 Print: 8.730 S Mar 21 2024 MiTek Industries, Inc. Tue Apr 02 08:22:38 ID:5NA8c2YPVemFhRSW6foDCZzynfA-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

-0-10-8 0-10-8 13-11-8 3-4-12 8-11-8 13-1-0 3-4-12 5-6-12 4-1-8 0-10-8 10 9 8 3x4 🚅 7 12 5 Г 6 5 5-3-7 4 3x4 🚅 3 346 Æ - **k** 18 22 1 ł 19 2 11 20 9-10-9 1-0-0 ₿ 12 16 15 14 13 6x6 = 3x6 = 3x6 II 4 12 3x4 = 8x8 ≠ 0 2 0

0-5-0	3-3-8	8-11-8	13-1-0	
0-3-8	3-0-0	5-8-0	4-1-8	

Scale = 1:43.3

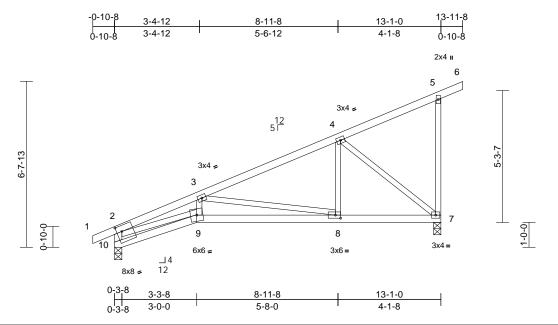
Plate Offsets (X, Y): [14:0-2-8,0-1-8], [17:0-2-8,0-2-12]

6-7-13

Loading	(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d		GRIP	
TCLL (roof)	25.0	Plate Grip DOL	1.15		TC	0.22	Vert(LL)		14-15	>999	360	MT20	197/144	
TCDL	10.0	Lumber DOL	1.15		BC	0.54	Vert(CT)	-0.16	14-15	>977	240			
BCLL	0.0*	Rep Stress Incr	YES		WB	0.45	Horz(CT)	0.06	11	n/a	n/a	-		
BCDL	10.0	Code	IRC2018/T	PI2014	Matrix-S		Wind(LL)	0.08	14-15	>999	240	Weight: 65 lb	FT = 10%	
LUMBER			2)	Truss desigr	ned for wind loads	s in the p	ane of the tr	uss						
TOP CHORD	2x4 SPF No.2		C	only. For stu	ds exposed to wi	nd (norm	al to the face	e),						
BOT CHORD	2x4 SPF No.2				Industry Gable E									
WEBS	2x3 SPF No.2 *Exce	pt* 17-2:2x4 SPF No			alified building de									
OTHERS	2x4 SPF No.2				2x4 MT20 unles									
BRACING					ully sheathed from									
TOP CHORD	Structural wood shea	athing directly applie			st lateral moveme		iagonal web)).						
	4-5-5 oc purlins, exc		5) (spaced at 2-0-0 o									
BOT CHORD	Rigid ceiling directly				s been designed								1111	
	bracing.		(ad nonconcurrent							Nº OF	MISS	1.
JOINTS	1 Brace at Jt(s): 19				as been designe			0psf				X4		11
REACTIONS	(size) 11=0-3-8,	17=0-3-8			n chord in all area						-	X		11
	Max Horiz 17=266 (L				y 2-00-00 wide w		een the bott	om				S: JU	AN .	22
	Max Uplift 11=-167 (y other members						-	GAR		
	Max Grav 11=646 (L		0) 7		are assumed to b						- *			*=
FORCES	(lb) - Maximum Com	,. , ,	3)		int(s) 17 consider			ie			=	:		: =
FURGES	Tension	pression/waximum			PI 1 angle to gra						- 7	NUM	RED	:
TOP CHORD	1-2=0/27, 2-3=-1652	0/227 2 4- 625/55			uld verify capacit						= 3			41-
	4-5=-579/79, 5-6=-58				hanical connectio capable of withs						-	C. E-2000	162101	4-
	7-8=-110/25, 8-9=-74	,			uplift at joint 17.	lanuing i	or in uplin a	i joini			1	A		5.5
	9-11=-142/65, 2-17=				designed in accor	donco w	ith the 2019					1, 50,	NO.	S
BOT CHORD	16-17=-271/194, 15-				Residential Code			and				ON!	ALEN	
Der enerte	14-15=-399/1434, 13				nd referenced sta			anu					1111	
	12-13=-98/537.11-1					iuaiu Ar	131/TFTT.							
WEBS	3-16=-106/369, 6-21		LOA	D CASE(S)	Standard							UCE	11111	
	21-22=-679/183, 11-											NN	GARO	
	2-16=-246/1303, 6-1											11 JUAN		1,
	3-18=-915/320, 18-1											CE	NSA	1
	19-20=-906/308, 14-												-0-	-
	15-18=-98/87, 4-19=		7.								-		- A	
	7-21=-19/8, 13-21=-	,	,								_	10	050	-
	12-22=-14/67	,										10	952	
NOTES											-	D: A		α:
NOTES											-			4-

NOTES

 Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60 April 3,2024


Page: 1

Job	Truss	Truss Type	Qty	Ply	Lot 133 MN	10 100700 1
240616	K2	Monopitch	3	1	Job Reference (optional)	164627094

Run: 8.73 S Mar 21 2024 Print: 8.730 S Mar 21 2024 MiTek Industries, Inc. Tue Apr 02 08:22:38 ID:VDNipuoyooHP5V_MHs9v0nzynes-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:46.2

Plate Offsets (X, Y): [8:0-2-8,0-1-8], [10:0-2-8,0-2-12]

		, , , , , , , , , , , , , , , , , , , ,	[10:0 2 0;0 2 12]	-									
Lo	ading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
	LL (roof)	25.0	Plate Grip DOL	1.15	TC	0.35	Vert(LL)	-0.07	8-9	>999	360	MT20	197/144
тс	DL	10.0	Lumber DOL	1.15	BC	0.48	Vert(CT)	-0.14	8-9	>999	240		
BC	LL	0.0*	Rep Stress Incr	YES	WB	0.75	Horz(CT)	0.06	7	n/a	n/a		
BC	DL	10.0	Code	IRC2018/TPI2014	Matrix-S		Wind(LL)	0.06	8-9	>999	240	Weight: 52 lb	FT = 10%
	MBER P CHORD	2x4 SPF No.2		bearing p	nechanical connection								
BO	T CHORD	2x4 SPF No.2			lb uplift at joint 10.								
WE	BS	2x3 SPF No.2 *Exce	pt* 10-2:2x4 SPF N		s is designed in acco								
	ACING			D000 40	nal Residential Code			and					
то	P CHORD	Structural wood sheat 4-5-1 oc purlins, exc			2 and referenced sta (S) Standard	andard AN	ISI/TPI 1.						
BC	T CHORD	Rigid ceiling directly bracing.			(-)							will	Mille
RE	ACTIONS	(size) 7=0-3-8, 1	0=0-3-8									NE OF	NISS
		Max Horiz 10=266 (L	.C 5)								1	A	
		Max Uplift 7=-167 (L									20	A	
		Max Grav 7=646 (LC									2	JU/	
FO	RCES	(lb) - Maximum Com	pression/Maximum								=*	GAR	
то	P CHORD	Tension 1-2=0/27, 2-3=-1686	/346 3-4=-668/87								2	÷	
10		4-5=-127/38, 5-6=-20									= 7	NUM	BER :
		2-10=-649/157										E-2000	162101
	T CHORD	9-10=-266/173, 8-9=	,								-	A	
WE	BS	3-9=-37/309, 4-7=-7		361,							1	1997	G
		4-8=0/341, 3-8=-939	/323									I,ON	ALENN
	TES		(0									- 400	IIII
1)		CE 7-16; Vult=115mph		Cat									
		nph; TCDL=6.0psf; BC Enclosed; MWFRS (en											IIIII.
		left and right exposed										INIAN	GARC
		sed; Lumber DOL=1.6										N 30	No. A I
2)		has been designed for										THE 16	NSED
,		load nonconcurrent wi		ds.								1 / Y	- T N - E -
3)		s has been designed f		Opsf							- 5	1	
		tom chord in all areas										16	952 : -
		Il by 2-00-00 wide will	fit between the botto	m							-	D.	
	chord and	any other members.									-	D:	

- 4) All bearings are assumed to be SPF No.2 .
- Bearing at joint(s) 10 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent colleges with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

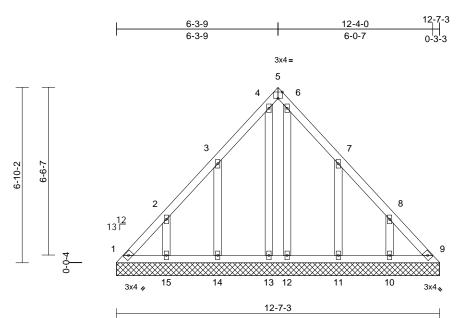
April 3,2024

Job	Truss	Truss Type	Qty	Ply	Lot 133 MN	
240616	LAY1	Lay-In Gable	2	1	Job Reference (optional)	164627095

Run: 8.73 S Mar 21 2024 Print: 8.730 S Mar 21 2024 MiTek Industries, Inc. Tue Apr 02 08:22:38 ID:QimbEXIPgtDQpcZcTTeraQzynM8-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:70.1


Ocale = 1.70.1													
Loading	(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
CLL (roof)	25.0	Plate Grip DOL	1.15		TC	0.07	Vert(LL)	n/a	-	n/a	999	MT20	197/144
CDL	10.0	Lumber DOL	1.15		BC	0.02	Vert(TL)	n/a	-	n/a	999		
CLL	0.0*	Rep Stress Incr	YES		WB	0.10	Horiz(TL)	0.00	8	n/a	n/a		
BCDL	10.0	Code	IRC2018/TP	12014	Matrix-S							Weight: 81 lb	FT = 10%
UMBER OP CHORD VEBS DTHERS BRACING OP CHORD 30T CHORD VEBS REACTIONS	2x4 SPF No.2 2x4 SPF No.2 2x4 SPF No.2 2x4 SPF No.2 2x4 SPF No.2 Structural wood she 6-0-0 oc purlins, ex Rigid ceiling directly bracing. 1 Row at midpt (size) 1=11-10-5 10=11-10 12=11-10 Max Horiz 1=505 (LC Max Uplift 1=-161 (L 11=-129 (13=-130 (L (LC 15), 1 (LC 15), 1 (LC 15)	athing directly applie cept end verticals. applied or 10-0-0 oc 7-8, 5-10, 6-9 9, 8=11-10-9, 9=11-1 -9, 11=11-10-9, -9, 13=11-10-9 C 8) C 6), 8=-49 (LC 8), C 6), 8=-49 (LC 8), C 8), 12=-129 (LC LC 8) C 8), 8=75 (LC 15), 9 0=206 (LC 15), 11= 2=205 (LC 15), 13= 2	2) Tr se or 3) All 4) Ga ed or 5) Ga 6) Th 5 Ch 6) Th 6 Ch 7) * T 00 10-9, Ch 8) All 9) Pr be 1, up 8), joi 10, Th 205 R8 207 R8	russ design ly. For stu- e Standard consult qua plates are able require able require able studs s is truss hai ord live loa This truss hai ord live loa This truss hai ord live loa This truss hai ord and an bearings a ovide mect 49 lb uplift lift at joint 1 is truss is o cernational	hed for wind load ds exposed to wi I Industry Gable alified building de 2x4 MT20 unles es continuous base es continuous base as continuous base so been designed d nonconcurrent as been designed d nonconcurrent as been designed y 2-00-00 wide v y other members are assumed to b nanical connectic capable of withs at joint 8, 130 lb 12, 129 lb uplift at join designed in acco Residential Code ad referenced sta	ind (norm End Deta esigner as is otherwittom chor bc. for a 10.0 with any d for a liv as where vill fit betw s. es SPF No on (by oth tstanding 1 uplifit at jo t joint 11, mt 9. we sections	al to the face ils as applical s per ANSI/TF se indicated. d bearing.) psf bottom other live loa e load of 20.0 a rectangle veen the botto b.2. errs) of truss t 61 lb uplift at bint 13, 129 lk 131 lb uplift at the 2018 R502.11.1 a), ble, 21 1. ds. ppsf pm o joint jat			AND * Philip	GAR SS/ON	MISSOUR CIA BER 162101
ORCES	(lb) - Maximum Com Tension											2000	IIII.
TOP CHORD	1-2=-705/278, 2-3=- 4-5=-321/132, 5-6=- 7-8=-61/57		81,									IN UAN	GARCIA
BOT CHORD	1-13=0/0, 12-13=0/0 9-10=0/0, 8-9=0/0	, 11-12=0/0, 10-11=	0/0,									I'V UCE	NSED.
VEBS	2-13=-162/147, 3-12 4-11=-165/153, 5-10	,	9/156										$\langle \cdot \rangle =$
Vasd=91r II; Exp C; cantilever	CE 7-16; Vult=115mph mph; TCDL=6.0psf; BC Enclosed; MWFRS (er left and right exposed DOL=1.60	(3-second gust) DL=6.0psf; h=25ft; C ivelope) exterior zon	Cat. ie;								THUR .	PROCESSION	952 ALL HALL

April 3,2024

Job	Truss	Truss Type	Qty	Ply	Lot 133 MN	
240616	LAY2	Lay-In Gable	1	1	Job Reference (optional)	164627096

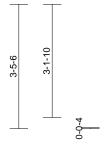
Run: 8.73 S Mar 21 2024 Print: 8.730 S Mar 21 2024 MiTek Industries, Inc. Tue Apr 02 08:22:38 ID:_RXavupuNoZ2Q3RvwWpKeUzdGSm-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

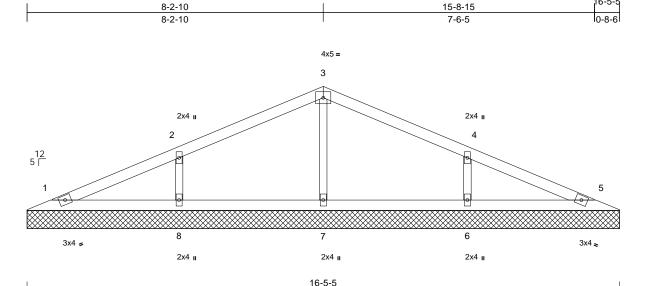
Scale = 1:44.9

Plate Offsets (X, Y): [5:Edge,0-3-0]

Loading		(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)		25.0	Plate Grip DOL	1.15		тс	0.06	Vert(LL)	n/a	-	n/a	999	MT20	197/144
TCDL		10.0	Lumber DOL	1.15		BC	0.03	Vert(TL)	n/a	-	n/a	999		
BCLL		0.0*	Rep Stress Incr	YES		WB	0.07	Horiz(TL)	0.00	9	n/a	n/a		
BCDL		10.0	Code	IRC20	18/TPI2014	Matrix-S							Weight: 60 lb	FT = 10%
LUMBER TOP CHORE BOT CHORE OTHERS BRACING TOP CHORE BOT CHORE REACTIONS FORCES TOP CHORE BOT CHORE BOT CHORE WEBS NOTES 1) Unbaland this desig	 2x4 SPF N 2x4 SPF N Structural 6-0-0 oc p Rigid celli bracing. (size) Max Horiz Max Uplift Max Grav (lb) - Maxi Tension 1-2=-223/ 4-5=-27/7 7-8=-93/7 1-15=-76/ 13-14=-76 1-15=-76/ 13-14=-76 1-15=-76/ 4-13=-105 7-11=-176 	No.2 No.2 No.2 No.3 No.3 No.2 No.5 No.5 No.5 No.5 No.5 No.5 No.5 No.5	c 6), 9=-37 (LC 7), LC 9), 11=-141 (LC 9) C 5), 14=-140 (LC 8), LC 8) C 8), 9=132 (LC 9), LC 16), 11=217 (LC 10, LC 17), 13=131 (LC 11, LC 15), 15=205 (LC 11, pression/Maximum 122/106, 3-4=-97/117 7/4, 6-7=-71/91, 5/111 =-76/159, 3=-76/159, 1=-76/159, 9-10=-76/ =-175/166, e-160/147,	f or 5, 7, 7, 8, 6), 5, 5, 5, 7, 1	Vasd=91mpH II; Exp C; En cantilever lef right exposed 3) Truss design only. For stu see Standard or consult qu 4) All plates are 5) Gable requir 6) Gable studs 7) This truss ha chord live loa 8) * This truss h on the bottor 3-06-00 tall b chord and ar 9) All bearing plate 1, 37 lb uplift uplift at joint 10 more the start international	7-16; Vult=115mp ; TCDL=6.0psf; B(closed; MWFRS (et and right exposed d; Lumber DOL=1. ned for wind loads ds exposed to wind loadstry Gable Ef alified building des e 2x4 MT20 unless es continuous bott spaced at 2-0-0 oc s been designed for an onconcurrent v nas been designed n chord in all areas by 2-00-00 wide will y other members. are assumed to be hanical connection capable of withsta at joint 9, 129 lb u 14, 21 lb uplift at joint designed in accorc Residential Code s nd referenced stan Standard	CDL=6. enveloped () end v 60 plate in the p od (norm nd Deta signer a: otherwio othe	Dpsf; h=25ft; (a) exterior zor vertical left an grip DOL=1.1 lane of the tru- al to the face ills as applical s per ANSI/TF se indicated. d bearing. D psf bottom other live loa e load of 20.0 a rectangle ween the botto D.2. ers) of truss t i8 lb uplift at jp bint 15, 140 lb 129 lb uplift at isth the 2018 i R502.11.1 a	ne; d 60 iss), ble, PI 1. ds. Dpsf om oint o t				PROKESSION	CIA *

April 3,2024


Page: 1


Job	Truss	Truss Type	Qty	Ply	Lot 133 MN	
240616	V1	Valley	1	1	Job Reference (optional)	164627097

Run: 8.73 S Mar 21 2024 Print: 8.730 S Mar 21 2024 MiTek Industries. Inc. Tue Apr 02 08:22:38 ID:ByKHeQabA2RyRkWHXLLtfszdGlk-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

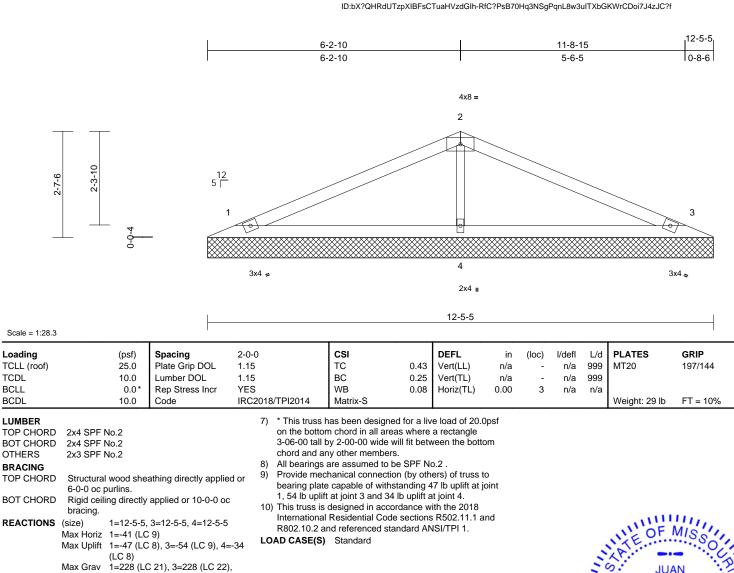
16-5-5

Scale = 1:32

Scale = 1:32												
Loading	(psf)	Spacing	2-0-0	CSI	0.00	DEFL	in n/n	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof) TCDL	25.0 10.0	Plate Grip DOL Lumber DOL	1.15 1.15	TC BC	0.20 0.10	Vert(LL) Vert(TL)	n/a n/a		n/a n/a	999 999	MT20	197/144
BCLL	0.0*	Rep Stress Incr	YES	WB	0.06	Horiz(TL)	0.00	5	n/a	n/a		
BCDL	10.0	Code	IRC2018/TPI2014	Matrix-S							Weight: 42 lb	FT = 10%
I	6-0-0 oc purlins. Rigid ceiling directly bracing. (size) 1=16-5-5 7=16-5-5 Max Horiz 1=55 (LC Max Uplift 1=-10 (LC (LC 9), 8:	C 9), 5=-13 (LC 9), 6= =-112 (LC 8)	d or 4 or 5 or 6 or 6 or 6 or 6 or 7 or 9 or 9 Provide mec 9 bearing plat 1, 13 lb uplit 10) This truss is 10 Internationa R802.10.2 a 12 CAD CASE(S)	designed in accord Residential Code s nd referenced stand	where fit betw SPF No (by oth inding 1 plift at jo ance w sections	a rectangle veen the botto o.2. o lb uplift at jo oint 8 and 112 ith the 2018 i R502.11.1 ar	bm D Dint 2 Ib			nin.	ALE OF	
FORCES		C 1), 5=129 (LC 1), 6 7=304 (LC 1), 8=402 npression/Maximum								Ex D	GAR	CIA *
TOP CHORD	Tension 1-2=-74/52, 2-3=-87 4-5=-56/41	7/83, 3-4=-87/70,									E-20001	• [] []
BOT CHORD		6-7=0/43, 5-6=0/43	-								issi	ENGIN
WEBS NOTES	3-7=-228/38, 2-8=-3	313/157, 4-6=-313/15	(ON	Lin
	d roof live loads have	been considered for										10.5
this design.												
Vasd=91m II; Exp C; E cantilever le	Enclosed; MWFRS (e eft and right exposed	n (3-second gust) CDL=6.0psf; h=25ft; C nvelope) exterior zono ; end vertical left and 60 plate grip DOL=1.6	e; I							-	In JUAN CE	NSED
only. For s see Standa or consult o	studs exposed to wind ard Industry Gable En qualified building desi	n the plane of the trus d (normal to the face), id Details as applicab gner as per ANSI/TP	le,							THINK STATE	16 PHO	952 h. #
	uires continuous botto ls spaced at 4-0-0 oc.										- AN AN	ISAS
6) This truss h	has been designed fo		ls.									AL ENGIN
Design val a truss sys	lid for use only with MiTek®	connectors. This design is ing designer must verify the	N THIS AND INCLUDED MITEI s based only upon parameters e applicability of design parameters	shown, and is for an indi	vidual bui	Iding component,	not				Mi	Tek °

- Wind: ASCE 7-16; Vult=115mph (3-second gust) 2) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable or consult qualified building designer as per ANSI/TPI 1.
- Gable requires continuous bottom chord bearing. 4)
- Gable studs spaced at 4-0-0 oc. 5)
- This truss has been designed for a 10.0 psf bottom 6) chord live load nonconcurrent with any other live loads.

16023 Swingley Ridge Rd. Chesterfield MO 63017


314.434.1200 / MiTek-US.com

 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.
 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not besign value to dury with with where outputs into design is based only door parameters shown, and is for an individual building design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members and property incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TPH1 Quality Criteria**, and **DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcscomponents.com)

Job	Truss	Truss Type	Qty	Ply	Lot 133 MN	
240616	V2	Valley	1	1	Job Reference (optional)	164627098

Run: 8 73 S. Mar 21 2024 Print: 8 730 S. Mar 21 2024 MiTek Industries. Inc. Tue Apr 02 08:22:38

Page: 1

4=546 (LC 1) FORCES (lb) - Maximum Compression/Maximum Tension

TOP CHORD 1-2=-116/60, 2-3=-116/46 BOT CHORD 1-4=-2/46, 3-4=-2/46 2-4=-380/101 WEBS

NOTES

TCDI

BCLL

BCDL

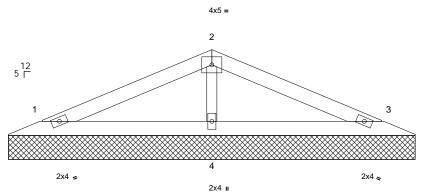
1) Unbalanced roof live loads have been considered for this design

- Wind: ASCE 7-16; Vult=115mph (3-second gust) 2) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
- Truss designed for wind loads in the plane of the truss 3) only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1. Gable requires continuous bottom chord bearing.

Gable studs spaced at 4-0-0 oc. 5)

6)

This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.


JUAN GARCIA NUMBER T F 2000162101 C 16C JGIT April -

16023 Swingley Ridge Rd. Chesterfield MO 63017 314.434.1200 / MiTek-US.com

ſ	Job	Truss	Truss Type	Qty	Ply	Lot 133 MN	
	240616	V3	Valley	1	1	Job Reference (optional)	164627099

Run: 8.73 S Mar 21 2024 Print: 8.730 S Mar 21 2024 MiTek Industries, Inc. Tue Apr 02 08:22:39 ID:?6hYvTfMmuC69f_RucRHv7zdGle-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f 4-2-10 7-8-15 8-5-5 4-2-10 3-6-5 0-8-6

8-5-5

Scale	_ ^	1.23 0

												-	
Loading TCLL (roof) TCDL BCLL BCDL	(psf) 25.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2	018/TPI2014	CSI TC BC WB Matrix-P	0.22 0.10 0.04	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 3	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 19 lb	GRIP 197/144 FT = 10%
LUMBER TOP CHORD BOT CHORD OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SPF No.2 2x3 SPF No.2 Structural wood sheathing directly applied or 6-0-0 oc purlins. Rigid ceiling directly applied or 10-0-0 oc bracing.			on the botto 3-06-00 tall chord and a 8) All bearings 9) Provide meac bearing plat 1, 41 lb uplif 10) This truss is Internationa	I Residential Co and referenced s	reas where e will fit betw ers. b be SPF No tition (by oth hstanding 3 B lb uplift at cordance w ode sections	a rectangle veen the both o.2. ers) of truss 37 lb uplift at joint 4. ith the 2018 \$ R502.11.1	tom to joint			- min	JUA GAR	
FORCES	(lb) - Maximum Com Tension	pression/Maximum									Ξ*	GAN	*
TOP CHORD BOT CHORD WEBS	1-2=-65/37, 2-3=-65/ 1-4=-1/27, 3-4=-1/27 2-4=-226/61										Philip	NUMI	• 41.

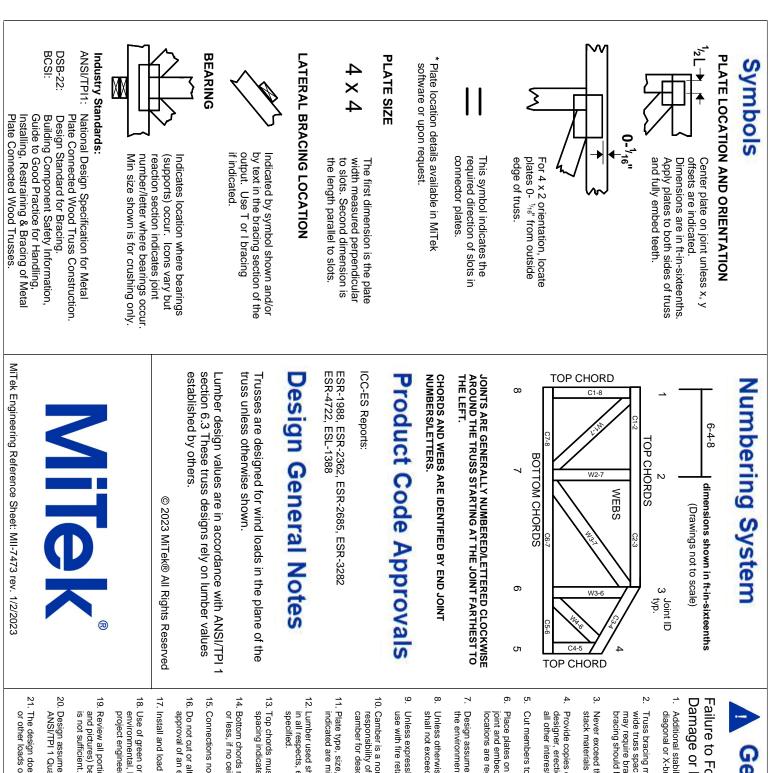
NOTES

1) Unbalanced roof live loads have been considered for this design.

- Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

4) Gable requires continuous bottom chord bearing.

5) Gable studs spaced at 4-0-0 oc.6) This truss has been designed for


6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPH Claulity Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

Page: 1

General Safety Notes

Failure to Follow Could Cause Property Damage or Personal Injury

- 1. Additional stability bracing for truss system, e.g. diagonal or X-bracing, is always required. See BCSI.
- Truss bracing must be designed by an engineer. For wide truss spacing, individual lateral braces themselves may require bracing, or alternative Tor1 bracing should be considered.
- Never exceed the design loading shown and never stack materials on inadequately braced trusses.
- Provide copies of this truss design to the building designer, erection supervisor, property owner and all other interested parties.
- 5. Cut members to bear tightly against each other
- Place plates on each face of truss at each joint and embed fully. Knots and wane at joint locations are regulated by ANSI/TPI 1.
- Design assumes trusses will be suitably protected from the environment in accord with ANSI/TPI 1.
- Unless otherwise noted, moisture content of lumber shall not exceed 19% at time of fabrication.
- Unless expressly noted, this design is not applicable for use with fire retardant, preservative treated, or green lumber.
- Camber is a non-structural consideration and is the responsibility of truss fabricator. General practice is to camber for dead load deflection.
- 11. Plate type, size, orientation and location dimensions indicated are minimum plating requirements.
- 12. Lumber used shall be of the species and size, and in all respects, equal to or better than that specified.
- Top chords must be sheathed or purlins provided at spacing indicated on design.
- 14. Bottom chords require lateral bracing at 10 ft. spacing, or less, if no ceiling is installed, unless otherwise noted.
- 15. Connections not shown are the responsibility of others.
- Do not cut or alter truss member or plate without prior approval of an engineer.
- 17. Install and load vertically unless indicated otherwise.
- Use of green or treated lumber may pose unacceptable environmental, health or performance risks. Consult with project engineer before use.
- Review all portions of this design (front, back, words and pictures) before use. Reviewing pictures alone is not sufficient.
- 20. Design assumes manufacture in accordance with ANSI/TPI 1 Quality Criteria.
- 21. The design does not take into account any dynamic or other loads other than those expressly stated.