

RE: 240613 Lot 117 MN

Site Information:

Customer: Avital Homes Project Name: 240613 Lot/Block: Address: City:

MiTek, Inc. 16023 Swingley Ridge Rd. Chesterfield, MO 63017 314.434.1200

Model: Crestwood - Modern 3rd Car Subdivision: State:

General Truss Engineering Criteria & Design Loads (Individual Truss Design Drawings Show Special Loading Conditions):

Design Code: IRC2018/TPI2014 Wind Code: ASCE 7 - 16[Low Rise] Roof Load: 45.0 psf

Design Program: MiTek 20/20 8.7 Wind Speed: 115 mph Floor Load: N/A psf

This package includes 52 individual, dated Truss Design Drawings and 0 Additional Drawings.

No.	Seal#	Truss Name	Date	No.	Seal#	Truss Name	Date
1	164130705	A1A	3/11/2024	21	164130725	D11	3/11/2024
2	164130706	A2A	3/11/2024	22	164130726	G1	3/11/2024
3	164130707	A3A	3/11/2024	23	164130727	G2	3/11/2024
4	164130708	A4A	3/11/2024	24	164130728	G3	3/11/2024
5	164130709	A5A	3/11/2024	25	164130729	G4	3/11/2024
6	164130710	B1	3/11/2024	26	164130730	J1	3/11/2024
7	164130711	B2	3/11/2024	27	164130731	J2	3/11/2024
8	164130712	C1	3/11/2024	28	164130732	J3	3/11/2024
9	164130713	C2	3/11/2024	29	164130733	J4	3/11/2024
10	164130714	C3	3/11/2024	30	164130734	J5	3/11/2024
11	164130715	D1	3/11/2024	31	164130735	J6	3/11/2024
12	164130716	D2	3/11/2024	32	164130736	J7	3/11/2024
13	164130717	D3	3/11/2024	33	164130737	J8	3/11/2024
14	164130718	D4	3/11/2024	34	164130738	J9	3/11/2024
15	164130719	D5	3/11/2024	35	164130739	J10	3/11/2024
16	164130720	D6	3/11/2024	36	164130740	J10A	3/11/2024
17	164130721	D7	3/11/2024	37	164130741	J11	3/11/2024
18	164130722	D8	3/11/2024	38	164130742	LAY1	3/11/2024
19	164130723	D9	3/11/2024	39	164130743	LAY2	3/11/2024
20	164130724	D10	3/11/2024	40	164130744	LAY3	3/11/2024

The truss drawing(s) referenced above have been prepared by MiTek USA, Inc under my direct supervision

based on the parameters provided by Wheeler - Waverly.

Truss Design Engineer's Name: Garcia, Juan

My license renewal date for the state of Kansas is April 30, 2024.

Kansas COA: E-943

IMPORTANT NOTE: The seal on these truss component designs is a certification that the engineer named is licensed in the jurisdiction(s) identified and that the designs comply with ANSI/TPI 1. These designs are based upon parameters shown (e.g., loads, supports, dimensions, shapes and design codes), which were given to MiTek. Any project specific information included is for MiTek customers file reference purpose only, and was not taken into account in the preparation of these designs. MiTek has not independently verified the applicability of the design parameters or the designs for any particular building. Before use, the building designer should verify applicability of design parameters and properly incorporate these designs into the overall building design per ANSI/TPI 1, Chapter 2.

RE: 240613 - Lot 117 MN

MiTek, Inc. 16023 Swingley Ridge Rd. Chesterfield, MO 63017 314.434.1200

Site Information:

Project Customer: Avital HomesProject Name: 240613Lot/Block:Subdivision:Address:State:

No.	Seal#	Truss Name	Date
41	164130745	LAY4	3/11/2024
42	164130746	V2	3/11/2024
43	164130747	V3	3/11/2024
44	164130748	V4	3/11/2024
45	164130749	V5	3/11/2024
46	164130750	V6	3/11/2024
47	164130751	V7	3/11/2024
48	164130752	V8	3/11/2024
49	164130753	V9	3/11/2024
50	164130754	V10	3/11/2024
51	164130755	V11	3/11/2024
52	164130756	V12	3/11/2024

RE: 240613 Lot 117 MN

Site Information:

Customer: Avital Homes Project Name: 240613 Lot/Block: Model Address: Subdiv City: State: MiTek, Inc. 16023 Swingley Ridge Rd. Chesterfield, MO 63017 314.434.1200

240613 Model: Crestwood - Modern 3rd Car Subdivision: State:

General Truss Engineering Criteria & Design Loads (Individual Truss Design Drawings Show Special Loading Conditions):

Design Code: IRC2018/TPI2014 Wind Code: ASCE 7 - 16[Low Rise] Roof Load: 45.0 psf Design Program: MiTek 20/20 8.7 Wind Speed: 115 mph Floor Load: N/A psf

This package includes 52 individual, dated Truss Design Drawings and 0 Additional Drawings.

No.	Seal#	Truss Name	Date	No.	Seal#	Truss Name	Date
1	164130705	A1A	3/11/2024	21	164130725	D11	3/11/2024
2	164130706	A2A	3/11/2024	22	164130726	G1	3/11/2024
3	164130707	A3A	3/11/2024	23	164130727	G2	3/11/2024
4	164130708	A4A	3/11/2024	24	164130728	G3	3/11/2024
5	164130709	A5A	3/11/2024	25	164130729	G4	3/11/2024
6	164130710	B1	3/11/2024	26	164130730	J1	3/11/2024
7	164130711	B2	3/11/2024	27	164130731	J2	3/11/2024
8	164130712	C1	3/11/2024	28	164130732	J3	3/11/2024
9	164130713	C2	3/11/2024	29	164130733	J4	3/11/2024
10	164130714	C3	3/11/2024	30	164130734	J5	3/11/2024
11	164130715	D1	3/11/2024	31	164130735	J6	3/11/2024
12	164130716	D2	3/11/2024	32	164130736	J7	3/11/2024
13	164130717	D3	3/11/2024	33	164130737	J8	3/11/2024
14	164130718	D4	3/11/2024	34	164130738	J9	3/11/2024
15	164130719	D5	3/11/2024	35	164130739	J10	3/11/2024
16	164130720	D6	3/11/2024	36	164130740	J10A	3/11/2024
17	164130721	D7	3/11/2024	37	164130741	J11	3/11/2024
18	164130722	D8	3/11/2024	38	164130742	LAY1	3/11/2024
19	164130723	D9	3/11/2024	39	164130743	LAY2	3/11/2024
20	164130724	D10	3/11/2024	40	164130744	LAY3	3/11/2024

The truss drawing(s) referenced above have been prepared by

MiTek USA, Inc under my direct supervision

based on the parameters provided by Wheeler - Waverly.

Truss Design Engineer's Name: Garcia, Juan

My license renewal date for the state of Missouri is December 31, 2024. Missouri COA: 001193

IMPORTANT NOTE: The seal on these truss component designs is a certification that the engineer named is licensed in the jurisdiction(s) identified and that the designs comply with ANSI/TPI 1. These designs are based upon parameters shown (e.g., loads, supports, dimensions, shapes and design codes), which were given to MiTek. Any project specific information included is for MiTek customers file reference purpose only, and was not taken into account in the preparation of these designs. MiTek has not independently verified the applicability of the design parameters or the designs for any particular building. Before use, the building designer should verify applicability of design parameters and properly incorporate these designs into the overall building design per ANSI/TPI 1, Chapter 2.

RE: 240613 - Lot 117 MN

MiTek, Inc. 16023 Swingley Ridge Rd. Chesterfield, MO 63017 314.434.1200

Site Information:

Project Customer: Avital HomesProject Name: 240613Lot/Block:Subdivision:Address:State:

No.	Seal#	Truss Name	Date
41	164130745	LAY4	3/11/2024
42	164130746	V2	3/11/2024
43	164130747	V3	3/11/2024
44	164130748	V4	3/11/2024
45	164130749	V5	3/11/2024
46	164130750	V6	3/11/2024
47	164130751	V7	3/11/2024
48	164130752	V8	3/11/2024
49	164130753	V9	3/11/2024
50	164130754	V10	3/11/2024
51	164130755	V11	3/11/2024
52	164130756	V12	3/11/2024

Job	Truss	Truss Type	Qty	Ply	Lot 117 MN	
240613	A1A	Hip Girder	1	1	Job Reference (optional)	164130705

2-5-11

TCDL

BCLL

BCDL

WEBS

WFBS

1)

2)

Page: 1

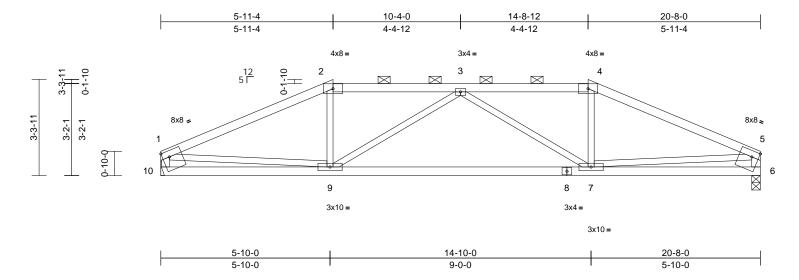
8x8 =

6

Run: 8 73 S. Feb 22 2024 Print: 8 730 S. Feb 22 2024 MiTek Industries. Inc. Fri Mar 08 12:04:32 ID:42hALF?CuloNF7MjAHQFskzd0Ac-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f 3-11-4 8-1-13 12-6-3 16-8-12 20-8-0 3-11-4 4-2-9 4-4-5 4-2-9 3-11-4 NAILED NAILED NAILED NAILED NAILED NAILED NAILED NAILED 12 5 Г 6x6 = 2x4 ı 6x6 = 3x4 = 2 3 15 16 4 17 5 0-1-6 φ 2-5-11 \geq 2 нI 8x8 = 2-4-5 2-4-5 1 D-10-0 13 Пĥ ΠΠ • 11 12 18 11 19 20 10 21 8 9 4x8 = 3x6 = 4x8 = 4x8 = 3x6 = NAILED NAILED NAILED NAILED NAILED Special Special NAILED 3-10-0 8-1-13 12-6-3 16-10-0 20-8-0 3-10-0 4-3-13 4-3-13 3-10-0 4-4-5 Scale = 1:39.6 Plate Offsets (X, Y): [1:Edge,0-5-11], [6:Edge,0-5-11], [8:0-2-8,0-2-0], [11:0-2-8,0-1-8], [12:0-2-8,0-2-0] Loading 2-0-0 CSI DEFL in l/defl L/d PLATES GRIP (psf) Spacing (loc) TCLL (roof) 25.0 Plate Grip DOL 1.15 TC 0.69 Vert(LL) -0.17 10-11 >999 360 MT20 197/144 10.0 Lumber DOL 1.15 BC 0.69 Vert(CT) -0.32 10-11 >768 240 Rep Stress Incr WB Horz(CT) 0.0 NO 0.67 0.05 7 n/a n/a 10.0 IRC2018/TPI2014 Matrix-S Wind(LL) 0.15 >999 240 Weight: 71 lb FT = 10% Code 10-11 LUMBER 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. TOP CHORD 2x4 SPF No.2 2x4 SPF 2100F 1.8E *Except* 9-7:2x4 SPF 5) * This truss has been designed for a live load of 20.0psf BOT CHORD on the bottom chord in all areas where a rectangle No.2 3-06-00 tall by 2-00-00 wide will fit between the bottom 2x3 SPF No.2 *Except* 13-1,7-6:2x4 SPF chord and any other members. No.2 All bearings are assumed to be SPF No.2 . 6) BRACING 7) Refer to girder(s) for truss to truss connections. TOP CHORD Structural wood sheathing directly applied or 111111 Provide mechanical connection (by others) of truss to 8) 3-7-13 oc purlins, except end verticals, and OF MIS bearing plate capable of withstanding 287 lb uplift at joint 2-0-0 oc purlins (2-8-9 max.): 2-5. TIXS * PROIN 13 and 287 lb uplift at joint 7. BOT CHORD Rigid ceiling directly applied or 8-6-2 oc 9) This truss is designed in accordance with the 2018 bracing. International Residential Code sections R502.11.1 and REACTIONS (size) 7=0-3-8, 13= Mechanical JUAN R802.10.2 and referenced standard ANSI/TPI 1. Max Horiz 13=-19 (LC 4) GARCIA 10) Graphical purlin representation does not depict the size Max Uplift 7=-287 (LC 5), 13=-287 (LC 4) or the orientation of the purlin along the top and/or Max Grav 7=1382 (LC 1), 13=1382 (LC 1) bottom chord FORCES (Ib) - Maximum Compression/Maximum NUMBER 11) "NAILED" indicates 3-10d (0.148"x3") or 3-12d Tension (0.148"x3.25") toe-nails per NDS guidlines. F -2000162101 TOP CHORD 1-2=-2401/539 2-3=-3418/809 12) Hanger(s) or other connection device(s) shall be 3-4=-3409/804, 4-5=-3412/806, 8 provided sufficient to support concentrated load(s) 217 5-6=-2406/540, 1-13=-1324/298 Ib down and 55 lb up at 3-11-4, and 217 lb down and 55 E ONAL 6-7=-1330/300 Ib up at 16-8-0 on bottom chord. The design/selection min BOT CHORD 12-13=-80/285. 11-12=-479/2178. of such connection device(s) is the responsibility of 16952 BOCK MARSAS 10-11=-773/3415, 8-10=-484/2182, others. 7-8 = -68/26213) In the LOAD CASE(S) section, loads applied to the face 2-12=-20/90, 5-8=-16/92, 1-12=-421/1916, of the truss are noted as front (F) or back (B). 6-8=-429/1944, 2-11=-329/1424, LOAD CASE(S) Standard 5-10=-324/1413, 3-11=-489/225, Dead + Roof Live (balanced): Lumber Increase=1.15, 1) 3-10=-34/21, 4-10=-475/225 Plate Increase=1.15 NOTES Uniform Loads (lb/ft) Unbalanced roof live loads have been considered for Vert: 1-2=-70, 2-5=-70, 5-6=-70, 7-13=-20 this design. Concentrated Loads (lb) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vert: 2=-45 (F), 5=-45 (F), 12=-217 (F), 8=-217 (F), Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. 11=-23 (F), 10=-23 (F), 3=-45 (F), 4=-45 (F), 14=-45 II; Exp C; Enclosed; MWFRS (envelope) exterior zone; (F), 15=-45 (F), 16=-45 (F), 17=-45 (F), 18=-23 (F), cantilever left and right exposed ; end vertical left and 19=-23 (F), 20=-23 (F), 21=-23 (F) right exposed; Lumber DOL=1.60 plate grip DOL=1.60

Provide adequate drainage to prevent water ponding.

16023 Swingley Ridge Rd. Chesterfield MO 63017 314.434.1200 / MiTek-US.com


March 11,2024

GIT

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a trust system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria**, and **DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

Job	Truss	Truss Type	Qty	Ply	Lot 117 MN	
240613	A2A	Нір	1	1	Job Reference (optional)	164130706

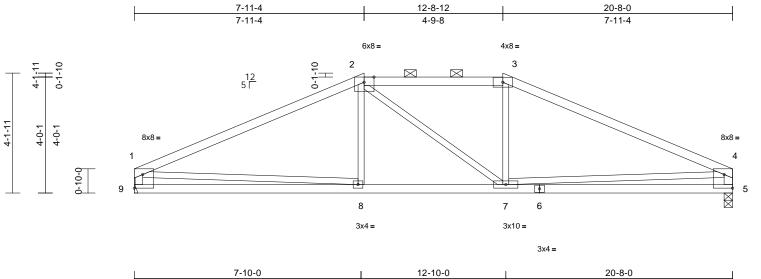
Run: 8.73 S Feb 22 2024 Print: 8.730 S Feb 22 2024 MiTek Industries, Inc. Fri Mar 08 12:04:32 ID:gkXTH29_b2ZOwGQP?DgXRhzd0AO-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

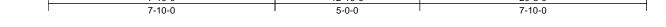
Scale = 1:39.7

Plate Offsets (X, Y): [1:Edge,0-2-8], [5:Edge,0-2-8]

Loading TCLL (roof) TCDL BCLL	(psf) 25.0 10.0 0.0*	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr	2-0-0 1.15 1.15 YES	CSI TC BC WB	0.52 0.64 0.36	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.15 -0.34 0.03	(loc) 7-9 7-9 6	l/defl >999 >718 n/a	L/d 360 240 n/a	PLATES MT20	GRIP 197/144
BCDL	10.0	Code	IRC2018/TPI2014	Matrix-S		Wind(LL)	0.06	7-9	>999	240	Weight: 71 lb	FT = 10%
	2x4 SPF No.2 2x4 SPF No.2 2x3 SPF No.2 *Exce No.2 Structural wood she 3-9-12 oc purlins, e 2-0-0 oc purlins (4-1 Rigid ceiling directly bracing. (size) 6=0-3-8, ' Max Horiz 10=-21 (L Max Uplift 6=-103 (L Max Grav 6=917 (LC	athing directly applie xcept end verticals, i 0-12 max.): 2-4. applied or 10-0-0 oc 10= Mechanical C 9) C 5), 10=-103 (LC 4	7) Refer to gir 8) Provide me bearing pla 10 and 103 9) This truss i Internation: and R802.10.2 10) Graphical p or the orier bottom cho LOAD CASE(S		russ conr on (by oth standing 1 rdance w e sections indard AN n does no	nections. ers) of truss t 03 lb uplift at ith the 2018 \$ R502.11.1 a NSI/TPI 1. ot depict the s	t joint and				JUA GAR	
FORCES	(lb) - Maximum Com									=		- =
TOP CHORD BOT CHORD WEBS	Tension 1-2=-1544/190, 2-3= 3-4=-1351/198, 4-5= 1-10=-870/125, 5-6= 9-10=-115/321, 7-9= 2-9=0/303, 3-9=-424	=-1544/190, =-870/125 =-245/1622, 6-7=-94/ 4/134, 3-7=-424/134,									E-20001	• 41.
	4-7=0/303, 1-9=-73/	1041, 5-7=-74/1041										10.5
 this design 2) Wind: ASC Vasd=91m II; Exp C; I cantilever right exposision 3) Provide ac 4) This truss chord live 5) * This truss on the bott 3-06-00 ta 	ed roof live loads have h. 2E 7-16; Vult=115mph hph; TCDL=6.0psf; BC Enclosed; MWFRS (er left and right exposed sed; Lumber DOL=1.6 lequate drainage to pr has been designed for load nonconcurrent wi s has been designed for tom chord in all areas 11 by 2-00-00 wide will any other members.	(3-second gust) DL=6.0psf; h=25ft; C ivelope) exterior zon ; end vertical left and 0 plate grip DOL=1.6 event water ponding r a 10.0 psf bottom th any other live load or a live load of 20.0 where a rectangle	Cat. d 50 i. ds. psf							. annus.	PRO 169	NSED

March 11,2024


A WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.
Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not
a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall
building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing
is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the
fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org)
and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

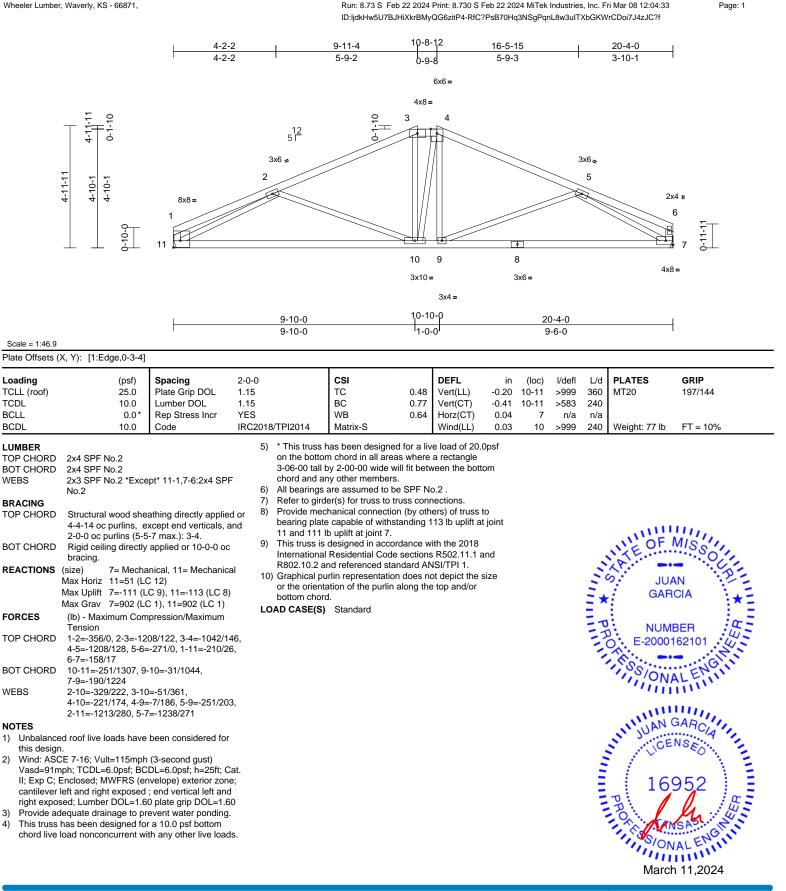


Job	Truss	Truss Type	Qty	Ply	Lot 117 MN	
240613	A3A	Hip	1	1	Job Reference (optional)	164130707

Run: 8.73 S Feb 22 2024 Print: 8.730 S Feb 22 2024 MiTek Industries, Inc. Fri Mar 08 12:04:33 ID:Nf8FOSHGF7qz7pBKaKsurozd0AE-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Scale = 1:39.8

Plate Offsets (X, Y): [1:Edge,0-5-11], [2:0-4-2,Edge], [4:Edge,0-5-11]


- 1010 0110010 ((,,, ,), [age;e e], [2:0 : 2,2090], [::	2090(0 0 1 1]									
Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15	тс	0.61	Vert(LL)	-0.10	8-9	>999	360	MT20	197/144
TCDL	10.0	Lumber DOL	1.15	BC	0.43	Vert(CT)	-0.21	8-9	>999	240		
BCLL	0.0*	Rep Stress Incr	YES	WB	0.24	Horz(CT)	0.02	5	n/a	n/a		
BCDL	10.0	Code	IRC2018/TPI2014	Matrix-S		Wind(LL)	0.03	7-8	>999	240	Weight: 72 lb	FT = 10%
LUMBER			6) All bearings	are assumed to b		0.2						
TOP CHORD	2x4 SPF 2100F 1.8E	= *Excent* 2-3:2v4 S	, .	ler(s) for truss to t								
	No.2	- LACEPT 2-0.2A4 0		hanical connection			to					
BOT CHORD				e capable of withs								
WEBS	2x3 SPF No.2 *Exce	ept* 9-1.5-4:2x4 SPF	• •	uplift at joint 5.	J							
				designed in acco	ordance w	ith the 2018						
BRACING				Residential Code			and					
TOP CHORD	Structural wood she	athing directly applie	u ui	nd referenced sta								105
	4-9-4 oc purlins, ex			Irlin representatio			size					MILL
	2-0-0 oc purlins (5-0		1 1	ation of the purlin	along the	e top and/or					NEOF	WISS
BOT CHORD	0 0 7	applied or 10-0-0 or	,							1		
	bracing.		LOAD CASE(S)	Standard						2	A	
REACTIONS		9= Mechanical								-	JU.	
	Max Horiz 9=36 (LC										GAF	RCIA
	Max Uplift 5=-97 (LC										:	: 2 =
500050	Max Grav 5=917 (L0									= T		
FORCES	(lb) - Maximum Corr Tension	pression/Maximum								= 3	NUM	• 41.
TOP CHORD		-1227/174,								-	E-2000	162101
	3-4=-1436/154, 1-9=	-839/142, 4-5=-839/	142							1	· ···· -·	- day
BOT CHORD	, -		44								I SION	AL ENIN
WEBS	2-8=0/220, 2-7=-160										I I I I	ALLIN
	1-8=-23/693, 4-7=-2	1/694										102
NOTES											LICE 16	IIII.
,	ed roof live loads have	been considered for									IL NN	GARO
this design	n. CE 7-16; Vult=115mph	(2 cocond quet)									1 JUAN	······································
	mph; TCDL=6.0psf; BC		`at								CE	NSE
	Enclosed; MWFRS (er										1 × ×	
	left and right exposed									-	1 - A	1 2
	sed; Lumber DOL=1.6										16	952
3) Provide ad	dequate drainage to pr	event water ponding								-	D IU	
	has been designed fo									-	D.	1. 1. 5
	load nonconcurrent wi										0.4	142
	ss has been designed f		psf								1.0	ISA
	ttom chord in all areas all by 2-00-00 wide will		m								1, SION	IN ENIN
	any other members.	IN DOLWCON THE DULL	111								1111	
											Mara	h 11,2024
											iviarc	11 11,2024

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANS//TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

Job	Truss	Truss Type	Qty	Ply	Lot 117 MN	
240613	A4A	Hip	1	1	Job Reference (optional)	164130708

Run: 8 73 S Feb 22 2024 Print: 8 730 S Feb 22 2024 MiTek Industries Inc. Fri Mar 08 12:04:33

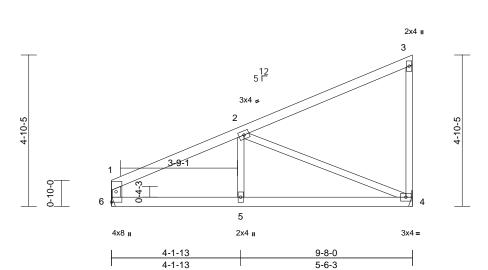
WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponent.com)

16023 Swingley Ridge Rd. Chesterfield MO 63017 314.434.1200 / MiTek-US.com

Job	Truss	Truss Type	Qty	Ply	Lot 117 MN	
240613	A5A	Monopitch	1	1	Job Reference (optional)	164130709

4-1-13

4-1-13


Wheeler Lumber, Waverly, KS - 66871,

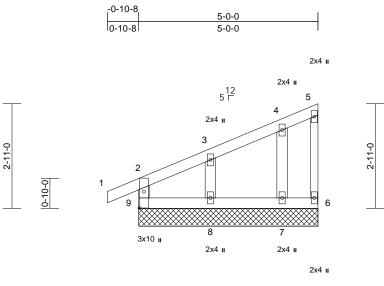
Run: 8.73 S Feb 22 2024 Print: 8.730 S Feb 22 2024 MiTek Industries, Inc. Fri Mar 08 12:04:33 ID:dUsF6I9_BQqiA92cQC1MRyzitP0-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

9-8-0

5-6-3

Page: 1

Scale =	1:37
---------	------


Scale = 1:37												
Loading	(psf)	Spacing	2-0-0	csi		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15	TC	0.39	Vert(LL)	-0.04	4-5	>999	360	MT20	197/144
TCDL	10.0	Lumber DOL	1.15	BC	0.36	Vert(CT)	-0.09	4-5	>999	240	-	
BCLL	0.0*	Rep Stress Incr	YES	WB	0.43	Horz(CT)	0.01	4	n/a	n/a		
BCDL	10.0	Code	IRC2018/TPI2014	Matrix-S		Wind(LL)	0.03	4-5	>999	240	Weight: 33 lb	FT = 10%
LUMBER			LOAD CASE(S)	Standard								
TOP CHORD	2x4 SPF No.2											
BOT CHORD	2x4 SPF No.2		0									
WEBS	2x3 SPF No.2 *Exce	ept" 6-1:2x4 SPF NO.	.2									
BRACING TOP CHORD		athing directly opplie										
TOP CHORD	Structural wood she 6-0-0 oc purlins, ex											
BOT CHORD	Rigid ceiling directly		2									
Bor onone	bracing.											
REACTIONS	(size) 4= Mecha	inical, 6= Mechanica	al									1117
	Max Horiz 6=194 (LC	,	-								N'OF	MISSI
	Max Uplift 4=-101 (L									3	NKE	
	Max Grav 4=424 (L0	C 1), 6=424 (LC 1)								~	Xr	
FORCES	(lb) - Maximum Com	pression/Maximum								20	S: JUA	AN 22
	Tension									2.	GAR	
TOP CHORD	1-6=-345/71, 1-2=-5	79/82, 2-3=-138/37,								- *		*-
	3-4=-167/67											
BOT CHORD	5-6=-114/484, 4-5=-									= 7	NUM	BER :
WEBS	2-4=-509/164, 2-5=0	/187									E-20001	62101 :41
NOTES		<i>(</i>))								-	A	123
	CE 7-16; Vult=115mph		Cot.								1. So	GN
	nph; TCDL=6.0psf; BC Enclosed; MWFRS (er										I, ON	ALENN
	left and right exposed										- 1111	inn
	sed; Lumber DOL=1.6											
	has been designed for										The LOCE	
	load nonconcurrent wi										MAN	SARC
	s has been designed f		psf								1 20	No. A
	tom chord in all areas										ICE	NSED
	II by 2-00-00 wide will	fit between the botto	om							-		1 2
	any other members. as are assumed to be \$	SPE No 2										
	irder(s) for truss to trus									-	: 16	952 : =
	echanical connection (0							-	D:	i a =
	ate capable of withstar										D.	145
	lb uplift at joint 4.	0									- A KA	5 S S
	is designed in accorda										1,50	GUN
	al Residential Code s		nd								ON ON	ALEN
R802.10.2	and referenced stand	ard ANSI/TPI 1.									1111	IIIII.
											March	n 11,2024
											-	

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

Job	Truss	Truss Type	Qty	Ply	Lot 117 MN	
240613	B1	Monopitch Supported Gable	1	1	Job Reference (optional)	164130710

Run: 8.73 S Feb 22 2024 Print: 8.730 S Feb 22 2024 MiTek Industries, Inc. Fri Mar 08 12:04:33 ID:5yy3uSNHyx59LwQ3T_La9IzitOk-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

5-0-0

Scale = 1:32.1 Plate Offsets (X, Y): [9:0-5-8.0-1-8]

Plate Offsets (X, Y): [9:0-5-8,0-1-8]										-	
Loading TCLL (roof) TCDL BCLL BCDL	(psf) 25.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018/TPI2014	CSI TC BC WB Matrix-R	0.07 0.03 0.02	DEFL Vert(LL) Vert(CT) Horz(CT)	in n/a n/a 0.00	(loc) - - 6	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 19 lb	GRIP 197/144 FT = 10%
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SPF No.2 2x4 SPF No.2 *Exce 2x4 SPF No.2 Structural wood she 5-0-0 oc purlins, exx Rigid ceiling directly bracing. (size) 6=5-0-0.7 Max Horiz 9=118 (LC Max Uplift 6=-20 (LC (LC 8), 9= Max Grav 6=15 (LC (LC 1), 9=	athing directly applie cept end verticals. applied or 6-0-0 oc 7=5-0-0, 8=5-0-0, 9=4 2 5), 7=-28 (LC 8), 8= -23 (LC 4) 1), 7=154 (LC 1), 8= -160 (LC 1)	on the b 3-06-00 chord ar 8) All beari 9) Provide bearing 9, 20 lb uplift at j 10) This trus Internati 5-0-0 LOAD CASI	iss has been designed butom chord in all area tall by 2-00-00 wide w d any other members ngs are assumed to b mechanical connectic blate capable of withs uplift at joint 6, 73 lb u oint 7. s is designed in acco onal Residential Code .2 and referenced sta c(S) Standard	as where will fit betw s. De SPF No on (by oth standing 2 uplift at joi ordance w e sections	a rectangle veen the botto o.2. (3) of truss to (3) b uplift at jo (1) to and 28 lb (1) the 2018 (3) R502.11.1 at	om D Dint			······································	JU/ GAF	CIA *
FORCES TOP CHORD	(Ib) - Maximum Com Tension 2-9=-142/36, 1-2=0/2 3-4=-60/26, 4-5=-43,	27, 2-3=-80/23,								1111	NUM E-2000	• 41.
BOT CHORD WEBS		/27, 6-7=-38/27									SSION	ALENUI
 NOTES 1) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed ; end vertical left and right exposed; Lumber DCL=1.60 plate grip DCL=1.60 2) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1. 3) Gable requires continuous bottom chord bearing. 4) Truss to be fully sheathed from one face or securely braced against lateral movement (i.e. diagonal web). 5) Gable studs spaced at 2-0-0 oc. 6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 												

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

Job	Truss	Truss Type	Qty	Ply	Lot 117 MN	
240613	B2	Monopitch	8	1	Job Reference (optional)	164130711

-0-10-8

0-10-8

1

3x10 u

Wheeler Lumber, Waverly, KS - 66871,

Run: 8.73 S Feb 22 2024 Print: 8.730 S Feb 22 2024 MiTek Industries, Inc. Fri Mar 08 12:04:33 ID:w6JK9VR2Xnrl3rtDqFS_P0zitOe-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

3x4 II

2x4 🛚

2-11-0

3

2 Ŀ, 5 4 Ŕ

5-0-0

5-0-0

12 5 Г

5-0-0

Scale = 1:27.4

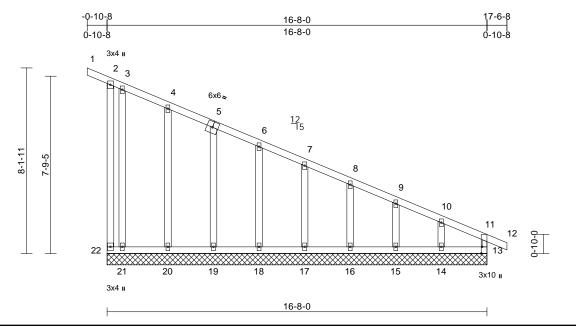
Plate Offsets (X, Y): [5:0-5-8,0-1-8]

2-11-0

0-10-0

	, 1). [5.0-5-6,0-1-6]											
Loading TCLL (roof) TCDL BCLL BCDL	(psf) 25.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018/TPI2014	BC 0	.29 .18 .00	DEFL Vert(LL) Vert(CT) Horz(CT) Wind(LL)	in -0.02 -0.04 0.00 0.01	(loc) 4-5 4-5 4 4-5	l/defl >999 >999 n/a >999	L/d 360 240 n/a 240	PLATES MT20 Weight: 15 lb	GRIP 197/144 FT = 10%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD BOT CHORD REACTIONS (1 N FORCES TOP CHORD BOT CHORD BOT CHORD BOT CHORD NOTES 1) Wind: ASCE Vasd=91mp II; Exp C; ET cantilever le right expose 2) This truss h chord live lo 3) * This truss h chord live lo 3) * This truss h chord and a 4) All bearings 5) Refer to girc 6) Provide med bearing plat 4 and 52 lb 7) This truss is International	2x4 SPF No.2 2x4 SPF No.2 2x3 SPF No.2 *Exce Structural wood she 5-0-0 oc purlins, ex Rigid ceiling directly bracing.	ept* 5-2:2x4 SPF No. athing directly applie cept end verticals. applied or 10-0-0 oc anical, 5=0-3-8 C 5) (a), 5=-52 (LC 8) C 1), 5=293 (LC 1) pression/Maximum 29, 3-4=-147/70, (3-second gust) DL=6.0psf; h=25ft; C velope) exterior zon ; end vertical left and 0 plate grip DDL=1.6 r a 10.0 psf bottom th any other live load or a live load of 20.0 where a rectangle fit between the botto SPF No.2. ss connections. (by others) of truss to ance with the 2018 ections R502.11.1 at	LOAD CASE(S) 22 ed or 25 Cat. 1e; d 30 ds. 1psf om							1111 * PH111	JUAN C BROCK SS/ONA I GARG	NISSOUR BER 62101 ALENG SARCIA SSED
											March	11,2024

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)


Job	Truss	Truss Type	Qty	Ply	Lot 117 MN	
240613	C1	Roof Special Supported Gable	1	1	Job Reference (optional)	164130712

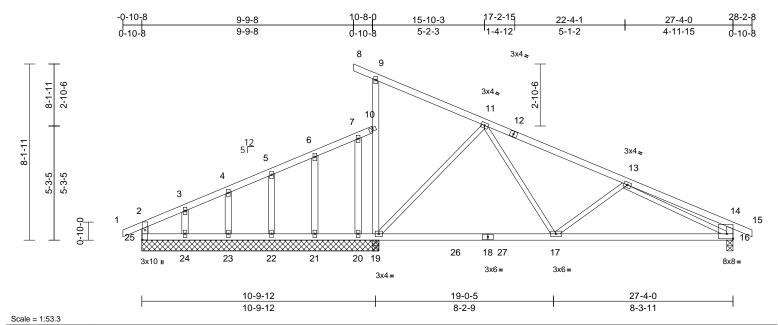
Run: 8.73 S Feb 22 2024 Print: 8.730 S Feb 22 2024 MiTek Industries, Inc. Fri Mar 08 12:04:33 ID:BqCIItu83zs4Jtq9mktaY2zitg7-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

March 11,2024

16023 Swingley Ridge Rd. Chesterfield, MO 63017 314.434.1200 / MiTek-US.com

Scale = 1:50.6


Plate Offsets (X, Y): [13:0-3-8,Edge]

		-	-		1		· · · ·		-	-			-
Loading	(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15		TC	0.24	Vert(LL)	n/a	-	n/a	999	MT20	197/144
TCDL	10.0	Lumber DOL	1.15		BC	0.15	Vert(CT)	n/a	-	n/a	999		
BCLL	0.0*	Rep Stress Incr	YES		WB	0.10	Horz(CT)	0.01	13	n/a	n/a		
BCDL	10.0	Code	IRC2	018/TPI2014	Matrix-R							Weight: 87 lb	FT = 10%
LUMBER TOP CHORD				WEBS	10-14=-128/126, 8-16=-139/75, 7- 5-19=-141/75, 4-	17=-140/7	71, 6-18=-139						
BOT CHORD WEBS				NOTES	5-15-141/15, 4-	20=-140/0	JT, J-21=-72/	33					
OTHERS	2x4 SPF No.2 *Exce 2x4 SPF No.2	ept 13-11:2x3 SPF 1	NO.2										
BRACING	274 011 100.2				E 7-16; Vult=115n ph; TCDL=6.0psf;			Cat					
TOP CHORD	Structural wood she	othing directly onnly	od or		nclosed; MWFRS								
I OF CHURD	6-0-0 oc purlins, ex		50 01		eft and right expos								• 19 TH
BOT CHORD					ed; Lumber DOL=								2011
Bot offorte	bracing.				gned for wind load							Nº OF	MISSI
REACTIONS	0	0, 14=16-8-0, 15=16	-8-0.		tuds exposed to w							NXE	
	. ,	0, 17=16-8-0, 18=16	'		rd Industry Gable						-	×	-
		0, 20=16-8-0, 21=16	,		ualified building d							S: JU/	AN
	22=16-8-	0			e 2x4 MT20 unle						2.	GAR	
	Max Horiz 22=-347 (res continuous bo						- *	:	:*=
	Max Uplift 14=-149 (fully sheathed fro						Ξ.		
		.C 9), 17=-47 (LC 9)			inst lateral moven		liagonal web)				=	NUM	BER .
		C 9), 19=-53 (LC 9)			s spaced at 2-0-0 as been designed						-7	- E-2000	• [] []
		C 9), 21=-57 (LC 9)	,		ad nonconcurren			ade			-	A.	.2.
	22=-134 (Max Cray 12-222 (1)		has been designed							50	GN
	Max Grav 13=233 (I	LC 15), 14=170 (LC LC 1), 16=179 (LC 1			om chord in all are			000				S/ONI	AL ENIN
		LC 1), 16=179 (LC 1 LC 1), 18=179 (LC 1			by 2-00-00 wide			om					init's
		LC 1), 18=179 (LC 1 LC 1), 20=181 (LC 1			any other member								1111
		LC 15), 22=101 (LC 1		9) All bearings	are assumed to	be SPF N	0.2 .						IIII.
FORCES	(lb) - Maximum Corr	<i>,,</i>	• ,	10) Provide me	chanical connecti	on (by oth	ers) of truss	to				UCE DE	GAD
. SNOLD	Tension				te capable of with							NUAN	CIA
TOP CHORD		=-27/0. 2-3=-83/36.			plift at joint 14, 23							S CE	NSA
	3-4=-137/57, 4-6=-1				t 16, 47 lb uplift at						1		NO 1
	7-8=-205/27, 8-9=-2	, ,	3,		lift at joint 19, 31	Ib uplift at	joint 20 and	57 lb					1 2
	10-11=-299/30, 11-1	12=0/26, 11-13=-188	3/0	uplift at join								10	050
BOT CHORD	21-22=-32/284, 20-2	21=-32/284,			s designed in acco							10	952 : :
	19-20=-32/284, 18-1				al Residential Cod and referenced sta			and			-	D	
	17-18=-32/284, 16-1					anuaru Ar	N31/TPTT.				-	-Di	4 .145
	15-16=-32/284, 14-1	15=-32/284,		LOAD CASE(S) Standard							- A. TA	
	13-14=-32/284											1,500	G
												ON ON	ALEN
												1111	IIIII
													11 2024

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

Job	Truss	Truss Type	Qty	Ply	Lot 117 MN	
240613	C2	Roof Special Structural Gable	1	1	Job Reference (optional)	164130713

Run: 8,73 S Feb 22 2024 Print: 8,730 S Feb 22 2024 MiTek Industries, Inc. Fri Mar 08 12:04:33 ID:Jh7LtO4c_5DA3xK?WJeYXjziteb-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Plate Offsets (X, Y): [16:Edge,0-2-12], [25:0-5-8,0-1-8]

	A, 1). [10.Euge,0-2-1	2], [25.0-5-6,0-1-6]	_											
Loading TCLL (roof) TCDL BCLL BCDL	(psf) 25.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC20	18/TPI2014	CSI TC BC WB Matrix-S	0.44 0.64 0.95	DEFL Vert(LL) Vert(CT) Horz(CT) Wind(LL)		(loc) 17-19 16-17 16 17	l/defl >999 >999 n/a >999	L/d 360 240 n/a 240	PLATES MT20 Weight: 111 lb	GRIP 197/144 FT = 10%	
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD	2x4 SPF No.2 2x3 SPF No.2 *Exce No.2, 16-14:2x4 SPF 2x4 SPF No.2	2100F 1.8E athing directly applie cept end verticals. 10 applied or 6-0-0 oc	PF d or	WEBS NOTES I) Unbalance this design 2) Wind: ASC Vasd=91m	24-25=-28/226, 25 22-23=-28/226, 21 20-21=-28/226, 15 16-17=-119/986 13-16=-820/132, 1 11-17=-27/562, 15 3-24=-129/120, 4 6-21=-145/74, 7-2 d roof live loads hav E 7-16; Vult=115mp ph; TCDL=6.0psf; E Enclosed; MWFRS (I-22=-28 J-20=-28 I-1-19=-7 J-17=-33 23=-143 0=-80/67 ve been ve been ph (3-sec SCDL=6.	/226, /226, 17-19=(20/238, 5/215, /61, 5-22=-14 / considered fo cond gust) Opsf; h=25ft; (0/74, or Cat.	or t	he orient	tation o rd.	presentation doe of the purlin along ndard	the top and	
	(size) 16=0-3-8, 21=10-11 23=10-11 25=10-11 Max Horiz 25=-117 (Max Uplift 16=-119 (20=-266 (22=-54 (L 24=-134 (Max Grav 16=806 (L 20=-34 (L 22=178 (L	19=10-11-8, 20=10- -8, 22=10-11-8, -8, 24=10-11-8, -8 LC 5) LC 9), 19=-139 (LC 5 LC 14), 21=-42 (LC 8 C 8), 23=-27 (LC 8), LC 8)	9), 8), 4 24), 6 (3), 7	right expos only. For s see Stand or consult of All plates a 5) Truss to be braced aga 6) Gable stud 7) This truss l chord live l 3) * This truss	eft and right expose ed; Lumber DOL=1 igned for wind loads studs exposed to wind rad Industry Gable E qualified building de re 2x4 MT20 unless a fully sheathed from ainst lateral movement is spaced at 2-0-0 on has been designed oad nonconcurrent is ab been designed	.60 plate s in the p nd (norm End Deta signer as s otherwin n one fac ent (i.e. c c. for a 10. with any d for a liv	grip DOL=1. lane of the tru al to the face ils as applica s per ANSI/TI se indicated. the or securely liagonal web) D psf bottom other live loa e load of 20.0	60 uss), ble, PI 1. ,			* 85.11	NUME E-20001	BER	
FORCES TOP CHORD	8-9=-27/0, 9-11=-94	42, 3-4=-147/44,	78, ,),	 3-06-00 tal chord and All bearing Provide me bearing pla 19, 119 lb uplift at joir 21 and 266 This truss i Internation 	om chord in all area I by 2-00-00 wide w any other members s are assumed to be bechanical connection the capable of withst uplift at joint 16, 13/2 th 23, 54 lb uplift at joint 20. Is designed in accord al Residential Code and referenced star	ill fit betw , with BC e SPF N n (by oth tanding 1 4 lb uplift joint 22, 4 rdance w sections	veen the botto CDL = 10.0psf c.2. ers) of truss t 39 lb uplift at at joint 24, 2' 42 lb uplift at ith the 2018 \$ R502.11.1 a	f. t joint 7 Ib joint			. THUNK	PROKESSION	952 SA3 0 ALENO	TI EEA

March 11,2024

Job	Truss	Truss Type	Qty	Ply	Lot 117 MN	
240613	С3	Roof Special Girder	1	3	Job Reference (optional)	164130714

Run: 8,73 S Feb 22 2024 Print: 8,730 S Feb 22 2024 MiTek Industries, Inc. Fri Mar 08 12:04:33 ID:UPX4fXz0rD6rX0DeA9uIvvzitYH-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

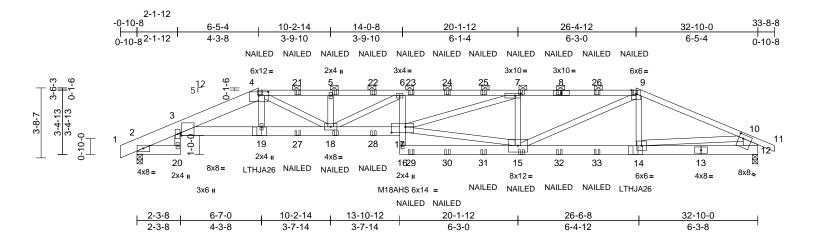
28-2-8 0-10-8 17-2-15 9-9-8 10-8-0 20-5-1 5-5-12 15-7-7 27-4-0 1-7-8 5-5-12 4-3-12 0-10-8 4-11-7 3-2-2 6-10-15 2x4 🛛 4 3x6 👟 5 2-10-6 2-10-6 8-1-11 5x8≈ 12 🚽 6 12 51 7 18 3x6 👟 8-1-11 3x6 ≠ 8 2 5-3-5 5-3-5 8x12 🚅 9 1 10 0-10-0 ПП N 17 Π ПГ 19 20 21 16 22 23 24 14 25 13 26 27 1228 8x8= 7x12 8x8= M18AHS 5x14 = 8x8= HUS26 HUS26 HUS26 HUS26 HUS26 HUS26 HUS26 HUS26 HGUS26-2 8x8= HUS26 HUS26 5-5-12 10-9-12 15-7-7 20-5-1 27-4-0 5-5-12 5-4-0 4-9-11 4-9-10 6-10-15 Scale = 1:59.1

Plate Offsets (X, Y): [1:0-4-4,0-2-8], [3:0-6-5,Edge], [11:0-5-8,0-2-4], [12:0-3-8,0-4-0], [13:0-4-0,0-4-12], [14:0-7-0,Edge], [15:0-4-0,0-4-12], [14:0-7-0,Edge], [15:0-4-0,0-4-12], [14:0-7-0,Edge], [15:0-4-0,0-4-12], [14:0-7-0,0-4-12], [14:	15:0-4-0,0-4-8], [16:0-3-8,0-4-0]
--	-----------------------------------

		-											
Loading	(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15		тс	0.86	Vert(LL)	-0.22	12-13	>999	360	MT20	197/144
TCDL	10.0	Lumber DOL	1.15		BC	0.57	Vert(CT)	-0.39	12-13	>826	240	M18AHS	186/179
BCLL	0.0*	Rep Stress Incr	NO		WB	1.00	Horz(CT)	0.07	11	n/a	n/a		
BCDL	10.0	Code	IRC201	8/TPI2014	Matrix-S		Wind(LL)	0.13	12-13	>999	240	Weight: 479 lb	FT = 10%
LUMBER TOP CHORD BOT CHORD WEBS BRACING	2x4 SPF 2100F 1.8E No.2 2x6 SP 2400F 2.0E 2x4 SPF No.2 *Exce 2.0E, 11-9:2x8 SP 2	pt* 17-1:2x10 SP 24	PF	(0.131"x3") n Top chords c staggered at oc, 2x8 - 2 rc Bottom chord staggered at		ows: 2x4 - 2 rows st 0-9-0 oc. follows: 2	- 2 rows aggered at 0- x6 - 3 rows	9-0	Tru: 0-10 to b 13) Use 8-10 con	ss) or eo 0-0 from ack face Simpso 0d Truss nect trus	quivale the lef of bot on Stro s) or ec ss(es)	nt spaced at 2-0- ft end to 18-10-0 ttom chord F ng-Tie HGUS26- uvivalent at 20-9- to back face of br	2 (20-10d Girder, 3 from the left end to ottom chord.
TOP CHORD	Structural wood she 5-2-9 oc purlins, exe Except: 6-0-0 oc bracing: 3-5	cept end verticals.	d or 2)	All loads are except if note CASE(S) see	ted as follows: 2> considered equa ed as front (F) or ction. Ply to ply c	ally applie back (B) onnection	d to all plies, face in the LC s have been	DAD	LOAD (1) De	CASE(S) Sta	ndard GAR (balanced): Lun	nber Increase=1.1 5,
BOT CHORD	Rigid ceiling directly bracing.	applied or 10-0-0 oc			listribute only loa wise indicated.	ds noted	as (F) or (B),			hiform Lo Vert: 1-		0/ft) NUME C3-18-E28,040€1	• 41.
	0	LĆ 5) LC 9), 17=-100 (LC 8	4) 3)	this design. Wind: ASCE Vasd=91mpł II; Exp C; En	roof live loads ha 7-16; Vult=115m n; TCDL=6.0psf; closed; MWFRS	nph (3-seo BCDL=6.0 (envelope	cond gust) Opsf; h=25ft; (e) exterior zor	Cat. ne;	Co	9-10=-7 oncentra Vert: 15 21=-144	0, 115 ited Lo i=-144; 43 (B),	17≟-20 ads (15) 3 (B), 19=-1045 (0	B), 20=-1486 (B), =-1443 (B), 24=-1443
FORCES	(lb) - Maximum Com		/		t and right expos d; Lumber DOL=					28=-297	73 (B)		
TOP CHORD	Tension 1-2=-18056/822, 2-3 3-15=-77/5571, 3-5= 5-6=-221/21, 6-8=-1 8-9=-17600/1605, 9- 1-17=-8618/452, 9-1	-188/108, 4-5=-27/0, 4745/1097, 10=0/32,	, '	All plates are This truss ha chord live loa * This truss h on the bottor	MT20 plates un as been designed ad nonconcurrent has been designe n chord in all are by 2-00-00 wide v	less other for a 10.0 t with any ed for a liv as where	wise indicate 0 psf bottom other live loa e load of 20.0 a rectangle	d. ds. Opsf					Ш <i>п</i> ,
BOT CHORD	16-17=-123/4457, 15 13-15=-675/14016, 11-12=-478/4140	5-16=-752/16592,	8)	chord and ar WARNING: F	y other members Required bearing input bearing siz	s. I size at jo		JIII				IN JUAN CE	ARCIA
WEBS	2-16=0/2138, 2-15=- 3-6=-13503/1078, 6- 8-13=-3088/677, 8-1 1-16=-660/12239, 9- 3-13=-1016/0	13=-361/6106, 2=-441/2689,	10	All bearings a Provide mec bearing plate 17 and 836 ll) This truss is	are assumed to b hanical connections capable of withs b uplift at joint 11 designed in acco	be SPF No on (by oth standing 1 ordance w	ers) of truss t 00 lb uplift at ith the 2018	joint			WILLIN.	JUAN LICE	952
NOTES				International	Residential Code	e sections	R502.11.1 a	ind				0	14:143

R802.10.2 and referenced standard ANSI/TPI 1.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent toulsable personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)


16023 Swingley Ridge Rd. Chesterfield, MO 63017 314.434.1200 / MiTek-US.com

March March March 11,2024

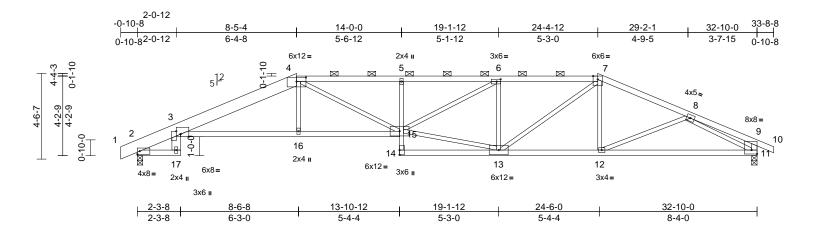
Job	Truss	Truss Type	Qty	Ply	Lot 117 MN	
240613	D1	Hip Girder	1	2	Job Reference (optional)	164130715

Run: 8,73 S Feb 22 2024 Print: 8,730 S Feb 22 2024 MiTek Industries, Inc. Fri Mar 08 12:04:34 ID:rnApu3Pg6Ah8v11x_yRabbzitRG-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:60.9

Loading TCLL (root) (pst) 100 Spacing Plate Grip DOL 2-0-0 1.15 CSI TC DEFL TC in Correction (pst) Tr Plates GRIP BCLL 0.01 Rep Stress Incr NO Tr 0.72 Vert(LT) -0.48 17 >814 360 Mir20 197/144 BCLL 0.01 Rep Stress Incr NO Weight 347 16 17 >843 200 Weight 347 18 17 >843 200 10 17 >848 200 Weight 347 18 18 18 14 18 18 14 18 18 18 18 18 18 18 18 18 <th>Plate Offsets (</th> <th>X, Y): [3:0-0-11,Edge</th> <th>e], [4:0-6-0,0-2-6], [7:</th> <th>0-3-8,0-1</th> <th>-8], [12:0-2-12,0</th> <th>)-2-8], [17:0-8-12</th> <th>2,0-3-12]</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th>	Plate Offsets (X, Y): [3:0-0-11,Edge	e], [4:0-6-0,0-2-6], [7:	0-3-8,0-1	-8], [12:0-2-12,0)-2-8], [17:0-8-12	2,0-3-12]							
TCDL 10.0 Lumber DOL 1.15 BC 0.61 17 >453 240 MtMAHS 142/136 BCL 10.0 Rep Stress in NO Rep Stress in NO Matm:-S 0.31 Horz(CT) -0.88 17 >453 240 MtMAHS 142/136 LUMBER 10.0 Code Rep Stress in NO		u ,	· · ·				0.72			. ,				
BCLL 0.0° Reg Stress Incr NO WB 0.33 More (CT) 0.31 12 n/a Me BCDL 10.00 Code IR20187112014 Matrix-S Wind(LL) 0.40 17 >468 240 Weight: 347 Ib FT = 10% DOP CHORD 2x4 SPF 2100F 1.8E "Except" 1.4:2x8 SP 1 2-pily trusts to be connected together with 10d 0.131 Y33' nails as follows: 2x8 - 2 rows staggered at 0-9-0 oc. 2x1- 1 13 Use Simpson Strong Tie LTHJA26 (LTHJA26 on 2 p) Left Hand Hip) or equivalent at 65-10 from the left en to connect truss (es) to frait be ad obtom, chord (0.131 Y33') nails as follows: 2x8 - 2 rows staggered at 0-9-0 oc. 2x1- 1 100 BC Connect truss (es) to frait be ad obtom, chord (0.131 Y33') nails as follows: 2x8 - 2 rows staggered at 0-9-0 cc. 2x1- 1 100 BC Connect truss (es) to frait be ad obtom, chord (0.148 X25) to rate 160 Hand Hip) or equivalent at 65-10 from the left en to connect truss (es) to frait be ad obtom, chord (0.148 X25) to rate 160 Hand Hip) or equivalent at 65-10 from the left en to connect truss (es) to frait be ad obtom, chord (0.148 X25) to rate 160 Hand Hip) or equivalent at 65-10 from the left en to connect truss (es) to frait be ad obtom, chord (0.148 X25) to rate 160 Hand Hip) or equivalent at 65-10 from the left en to connect truss (es) to frait be ad obtom, chord (0.148 X25) to rate 160 Hand Hip) or equivalent at 65-10 from the left en to considered equility applied to all prices 10.04 Kass (es) From the second truss (es) to frait be add the dot to connect truss (es) to frat 142 Hand Hip) or equivalent at 65-10 from the telft	. ,					1		· · ·					-	
BCDL 10.0 Code IRC2018/TPI2014 Matrix-S Wind(LL) 0.40 17 >968 240 Weight: 347. Ib FT = 10% LUMBER TOP CHORD 2x4 SPF 2100F 1.8E *Except*1-4:2x8 SP 2400F 2.0E; 9-11:2x4 SPF No.2 10 2x9 truss to be connected together with 100 (0.131:37) nails as follows: 10 2x9 truss to be connected together with 100 (0.131:37) nails as follows: 13 Use Simpson Strong-Tie LTHJA26 (LTHJA26 0.2 FW 10.124/S70 2.20 WEBS 2x.0E 2x4 SPF No.2 Except*1 2-10:2x10 SP 2400F 2.0E Exotom chock connected as follows: 2x6 - 2 rows staggered at 0-9-0 oc. 10 Use Simpson Strong-Tie LTHJA26 (LTHJA26 0.2 FW 10.131:X37) nails as follows: 2x6 - 2 rows staggered at 0-9-0 oc. 13 Use Simpson Strong-Tie LTHJA26 (LTHJA26 0.2 FW 10.148:S720 FG 10.111 10 <td< td=""><td></td><td></td><td></td><td></td><td></td><td>-</td><td></td><td>· · ·</td><td></td><td></td><td></td><td></td><td></td><td>142/100</td></td<>						-		· · ·						142/100
 TOP CHORD 244 SPF 2100F 18 E* Except 1-1-238 SP 2400F 20.5 PX 12:44 SPF No.2 BOT CHORD 2.06 FX 0.2* Except 13-17:256 SP 2400F 2.05 BRACING 2.06 STructural wood sheathing directly applied or 2.02 Except 12-10:2x10 SP 2400F 2.05 BRACING 4.7-5 co purlins, except and verticals, and 2-9-0 c. Bructural wood sheathing directly applied or 2.9-0 c. Bructural wood sheathing directly applied or 2.9-0 c. Structural wood sheathing directly applied or 2.9 0			1 .		18/TPI2014			. ,					Weight: 347 lb	FT = 10%
 Construction of the sector of the s	TOP CHORD BOT CHORD VEBS BRACING TOP CHORD BOT CHORD REACTIONS	2400F 2.0E, 9-11:2) 2x6 SPF No.2 *Exce 2x4 SPF No.2 *Exce 2x4 SPF No.2 *Exce 2x0E Structural wood she 4-7-5 oc purlins, ex 2-0-0 oc purlins (4-1 Rigid ceiling directly bracing. (size) 2=0-3-8, Max Horiz 2=49 (LC Max Uplift 2=-572 (L	44 SPF No.2 ept* 3-17:2x6 SP 240 ept* 12-10:2x10 SP 2 eathing directly applie cept end verticals, an I-1 max.): 4-9. r applied or 10-0-0 or 12=0-3-8 12) .C 4), 12=-608 (LC 5	P 10F 2400F 2400F 25 3 3 3	 (0.131"x3") r Top chords of staggered at rows staggered at Web connect Web connect All loads are except if not CASE(S) set provided to c unless other Unbalanced this design. Wind: ASCE Vasd=91mpl 	nails as follows: connected as foll 0-9-0 oc, 2x4 red at 0-9-0 oc. ds connected as 0-9-0 oc. ted as follows: 2 considered equ ed as front (F) or ction. Ply to ply c distribute only loa wise indicated. roof live loads ha 7-16; Vult=115n h; TCDL=6.0psf;	ows: 2x8 1 row at 0- follows: 2 x4 - 1 row ally applie: back (B) connection ads noted ave been ave been mph (3-sec BCDL=6.1	2 rows 6-0 oc, 2x10 x6 - 2 rows at 0-9-0 oc. d to all plies, face in the LC s have been as (F) or (B), considered fo cond gust) Dpsf; h=25ft; (DAD r Cat.	Lef to c 14) Use Rig to c 15) Fill 16) "N <i>I</i> (0.1 LOAD (1) Do Pl Uh	t Hand H connect t e Simpse ht Hand connect t all nail h AILED" in 148"x3.2 CASE(S ead + Re ate Incre- niform L Vert: 1- 2-20=-2 poncentra	tip) or truss(e on Stro Hip) o truss(e noles w ndicate 5") toe 5") toe 5") toe 5") toe 5") toe 5") toe 5", toe 5", toe 5", toe 5", toe 5", toe 5", toe 5", toe 5", toe 5", toe 5, to 5, to	equivalent at 6-5 s) to from table of ing Tiel LTEURed to deviate the table to deviate the table to the table to the table table per NDS g marked to table table table per NDS g marked table per NDS g marke	10 from the left en bottom chord. (IT) UA26 on 2 ply 4+6 from the left e bottom chord. contact with Jumb 31) or 3-12d widthes. her Increase=0-4 62101 0 10-11=-70,
or the orientation of the purlin along the top and/or		Tension 1-2=0/6, 2-3=-1583/ 4-5=-10707/2143, 5 6-7=-12075/2508, 7 9-10=-5702/1174, 1	'313, 3-4=-8915/1756 -6=-10704/2143, -9=-8126/1715,	6 7	 cantilever lef right expose Provide aded All plates are This truss ha chord live load 	It and right exposed; Lumber DOL= quate drainage to MT20 plates ur as been designed ad nonconcurren	sed ; end v 1.60 plate o prevent v iless other d for a 10.0 t with any	vertical left an grip DOL=1. water ponding wise indicate 0 psf bottom other live loa	d 60 g. d. ds.		18=-72 24=-120 28=-72 32=-58	(F), 21 5 (F), 2 (F), 29 (F), 33	=-118 (F), 22=-1 25=-126 (F), 26=- 9=-58 (F), 30=-58 8=-58 (F)	18 (F), 23=-126 (F) 126 (F), 27=-72 (F) (F), 31=-58 (F),
or the orientation of the purlin along the top and/or	BOT CHORD	2-20=0/0, 3-19=-16 ⁻ 18-19=-1624/8602, 15-16=-120/649, 14	17-18=-2481/12405,		on the bottor 3-06-00 tall to chord and an	m chord in all are by 2-00-00 wide by other member	eas where will fit betv s.	a rectangle veen the botto	•				JUAN C	SARCIA
		4-19=-79/850, 15-17 7-17=-835/4152, 7-1 9-15=-678/3345, 9-1 10-14=-836/4197, 6	7=-1531/7571, 15=-2313/724, 14=0/307, -18=-1970/484,	, 1 1	 Provide mec bearing plate 2 and 608 lb 1) This truss is International R802.10.2 a 2) Graphical put 	chanical connecti capable of with uplift at joint 12. designed in accor Residential Cod nd referenced str urlin representatic ation of the purlir	on (by oth standing 5 ordance w le sections andard AN on does no	ers) of truss t i72 lb uplift at ith the 2018 is R502.11.1 a ISI/TPI 1. ot depict the s	joint nd			annun.	ESC. MA	SASNOTI



March 11,2024

 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.
 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not besign value to dury with with where outputs into design is based only door parameters shown, and is for an individual building design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members and property incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TPH1 Quality Criteria**, and **DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcscomponents.com)

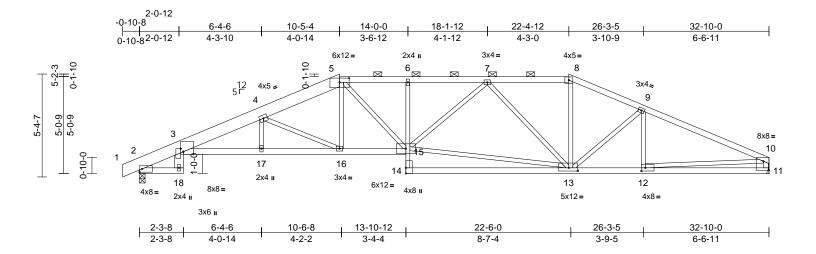
Job	Truss	Truss Type	Qty	Ply	Lot 117 MN	
240613	D2	Нір	1	1	Job Reference (optional)	164130716

Run: 8,73 S Feb 22 2024 Print: 8,730 S Feb 22 2024 MiTek Industries, Inc. Fri Mar 08 12:04:34 ID:untV3V8QbDauQ24xu7aCNfzitSu-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Scale = 1:61

Plate Offsets (2	X, Y): [3:0-5-4,Edge],	[3:0-1-14,0-2-11], [4:0-6-0,0-	2-10], [6:0-2-8,0)-1-8], [9:Edge,0	-2-8]							
Loading ICLL (roof) ICDL BCLL BCDL	(psf) 25.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES	18/TPI2014	CSI TC BC WB Matrix-S	0.73 0.69 0.97	DEFL Vert(LL) Vert(CT) Horz(CT) Wind(LL)	in -0.38 -0.68 0.37 0.28	(loc) 5 15-16 11 5	l/defl >999 >576 n/a >999	L/d 360 240 n/a 240	PLATES MT20 Weight: 138 lb	GRIP 197/144 FT = 10%
LUMBER FOP CHORD BOT CHORD WEBS BRACING FOP CHORD BOT CHORD REACTIONS	2x4 SPF No.2 *Exce 2.0E 2x4 SPF No.2 *Exce 1.8E, 5-14:2x3 SPF 2x3 SPF No.2 *Exce 11-9:2x4 SPF No.2 Structural wood she 3-0-13 oc purlins, e 2-0-0 oc purlins (2-4 Rigid ceiling directly bracing. (size) 2=0-3-8, 4	ept* 3-15:2x4 SPF 2 No.2 ept* 17-3:2x6 SPF N athing directly appli xcept end verticals, i-2 max.): 4-7. applied or 10-0-0 c	30F 4 100F 5 No.2, ied or 7 and	 Provide ade This truss ha chord live lo * This truss on the botto 3-06-00 tall chord and a All bearings Provide mec bearing plat 2 and 208 lb This truss is International R802.10.2 a 	quate drainage t as been designe ad nonconcurren has been desigr m chord in all ar by 2-00-00 wide ny other membe are assumed to chanical connect e capable of with uplift at joint 11 designed in acco Residential Coo nd referenced s	d for a 10.0 ht with any led for a live eas where will fit betworks be SPF No ion (by other standing 2 ordance with de sections tandard AN	b) psf bottom other live lose e load of 20. a rectangle veen the bott b.2. ers) of truss 08 lb uplift a th the 2018 R502.11.1 a ISI/TPI 1.	ads. Opsf tom to to t joint			In the	JUA GAR	MISSOU
	Max Horiz 2=63 (LC Max Uplift 2=-208 (L Max Grav 2=1536 (L	8) .C 4), 11=-208 (LC 5	1)					size				NUME	
FORCES	(lb) - Maximum Com Tension 1-2=0/0, 2-3=-785/1 4-5=-3996/647, 5-6= 6-7=-2991/507, 7-8= 9-10=0/27, 9-11=-35	12, 3-4=-3408/473, 3968/644, 2553/374, 8-9=-42	I								1111	E-20001	62101
BOT CHORD	2-17=0/0, 3-16=-370 14-15=0/104, 5-15=- 12-13=-260/2305, 1)/3212, 15-16=-366, -353/154, 13-14=-2											ARC
WEBS	3-17=0/56, 4-16=0/2 13-15=-382/2838, 6- 6-13=-988/244, 7-13 8-12=0/319, 8-11=-2	240, 4-15=-204/101 -15=-162/1134, 3=-186/949, 7-12=0									-	LICE	NSED
this design 2) Wind: ASC Vasd=91m II; Exp C; E cantilever	ed roof live loads have	been considered fo (3-second gust) DL=6.0psf; h=25ft; nvelope) exterior zo ; end vertical left ar	Cat. ne; nd								annua.	HORKS HON	ALENGINI

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent toulsable personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcscomponents.com)



March 11,2024

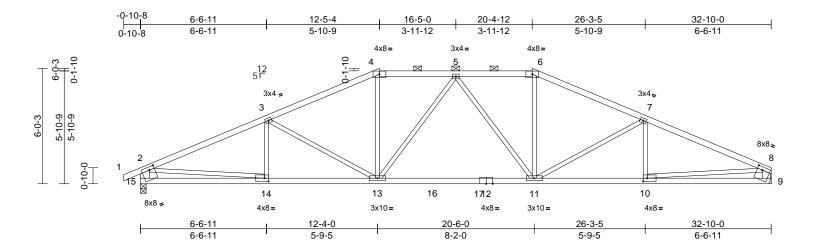
Job	Truss	Truss Type	Qty	Ply	Lot 117 MN	
240613	D3	Нір	1	1	Job Reference (optional)	164130717

Run: 8,73 S Feb 22 2024 Print: 8,730 S Feb 22 2024 MiTek Industries, Inc. Fri Mar 08 12:04:34 ID:AuO0edFKWH58t2n9IdqmclzitaW-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:60.1

Scale = 1:60.1													
Plate Offsets ((X, Y): [3:0-6-4,Edge],	, [3:0-1-14,0-1-11], [5	5:0-6-0,0-	2-10], [10:Edge	,0-5-11], [12:0-2	8,0-2-0], [13:0-5-8,0-2-	·0]					
Loading TCLL (roof) TCDL BCLL BCDL	(psf) 25.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC20	18/TPI2014	CSI TC BC WB Matrix-S	0.79 0.69 0.95	DEFL Vert(LL) Vert(CT) Horz(CT) Wind(LL)	0.30	. ,	l/defl >999 >691 n/a >999	L/d 360 240 n/a 240	PLATES MT20 Weight: 151 lb	GRIP 197/144 FT = 10%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SPF No.2 *Exce 2.0E 2x4 SPF No.2 *Exce 1.8E, 6-14:2x3 SPF 2x3 SPF No.2 *Exce 11-10:2x4 SPF No.2 Structural wood she 2-2-0 oc purlins, ex 2-0-0 oc purlins (3-1 Rigid ceiling directly bracing. (size) 2=0-3-8, ~ Max Horiz 2=51 (LC Max Uplift 2=-16 (LC Max Grav 2=1537 (L	ept* 1-5:2x8 SP 2400 ept* 3-15:2x4 SPF 21 No.2 ept* 18-3:2x6 SPF No athing directly applie cept end verticals, al -15 max.): 5-8. applied or 10-0-0 oc 11= Mechanical 10) 2 4) _C 1), 11=1463 (LC	20F 2 00F 5 0.2, ed or 7 nd 8	 Provide adee This truss ha chord live loading * This truss line on the botton 3-06-00 tall line All bearings Provide mechanishing Provide mechanishing<td>quate drainage t is been designe ad nonconcurren has been desigr n chord in all ar by 2-00-00 wild hanical connect e capable of with designed in acc Residential Con nd referenced s riln representati ation of the purli</td><td>d for a 10. Int with any led for a liv eas where will fit betw rs. be SPF No be truss conr icion (by oth hastanding 1 cordance w de sections tandard AN ion does no</td><td>water pondim. D psf bottom other live load e load of 20. a rectangle ween the bott b.2. ers) of truss 6 lb uplift at j ith the 2018 5 R502.11.1 at USI/TPI 1. bt depict the st</td><td>g. ads. Opsf om to joint</td><td></td><td></td><td>1111 × PT</td><td>JUA GAR</td><td>MISSOUD CIA</td>	quate drainage t is been designe ad nonconcurren has been desigr n chord in all ar by 2-00-00 wild hanical connect e capable of with designed in acc Residential Con nd referenced s riln representati ation of the purli	d for a 10. Int with any led for a liv eas where will fit betw rs. be SPF No be truss conr icion (by oth hastanding 1 cordance w de sections tandard AN ion does no	water pondim. D psf bottom other live load e load of 20. a rectangle ween the bott b.2. ers) of truss 6 lb uplift at j ith the 2018 5 R502.11.1 at USI/TPI 1. bt depict the st	g. ads. Opsf om to joint			1111 × PT	JUA GAR	MISSOUD CIA
FORCES	(lb) - Maximum Com Tension 1-2=0/0, 2-3=-786/1: 4-5=-3072/67, 5-6=- 7-8=-2167/61, 8-9=- 10-11=-1384/34	· 5, 3-4=-3872/34, 3088/92, 6-7=-3070/	'93,	OAD CASE(S)	Standard						in.	0. E-20001	ALENGINI
BOT CHORD	2-18=0/0, 3-17=-2/3 15-16=0/2784, 14-1	746, 16-17=-1/3740, 5=0/160, 6-15=-253/ =0/2364, 11-12=-17/										IN UAN C	SARO
WEBS	,		2,									CE	NSED
this design 2) Wind: AS0 Vasd=91n II; Exp C; and right 6	ed roof live loads have	been considered for (3-second gust) DL=6.0psf; h=25ft; C nvelope); cantilever l left and right expose	Cat. eft								Contraction of the second s	AOAR STON	ALENGINI

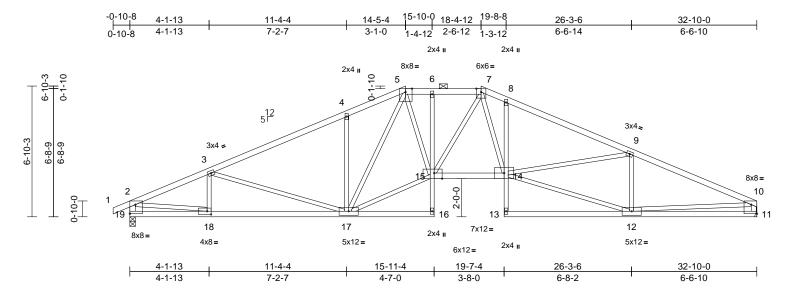

 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.
 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not besign value to dury with with where outputs into design is based only door parameters shown, and is for an individual building design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members and property incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TPH1 Quality Criteria**, and **DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcscomponents.com)

March 11,2024

Job	Truss	Truss Type	Qty	Ply	Lot 117 MN	
240613	D4	Нір	1	1	Job Reference (optional)	164130718

Run: 8,73 S Feb 22 2024 Print: 8,730 S Feb 22 2024 MiTek Industries, Inc. Fri Mar 08 12:04:34 ID:Pps8qGk_PNo5rbZ4rp3vvuzitbA-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Scale = 1:60


Plate Offsets ((X, Y): [8:0-3-4,0-2-0],	[10:0-2-8,0-2-0], [14	:0-2-8,0-2-0)], [15:0-3-4,0)-2-0]								
Loading TCLL (roof) TCDL BCLL BCDL	(psf) 25.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018/	TPI2014	CSI TC BC WB Matrix-S	0.61 0.90 0.69	DEFL Vert(LL) Vert(CT) Horz(CT) Wind(LL)	in -0.27 -0.48 0.09 0.07	(loc) 11-13 11-13 9 11	l/defl >999 >808 n/a >999	L/d 360 240 n/a 240	PLATES MT20 Weight: 125 lb	GRIP 197/144 FT = 10%
	2x4 SPF No.2 2x3 SPF No.2 *Exce No.2 Structural wood she 2-11-2 oc purlins, e 2-0-0 oc purlins (3-1 Rigid ceiling directly bracing.	applied or 10-0-0 oc anical, 15=0-3-8 C 8) 9), 15=-12 (LC 8)	= 6) 7) d or 8) ind 9) 10)	on the botton 3-06-00 tall I chord and an All bearings Refer to gird Provide mec bearing plate 15 and 1 lb i This truss is International R802.10.2 a Graphical pu		eas where will fit betw rs, with BC be SPF No truss com on (by oth standing 1 ordance w le sections andard AN on does no	a rectangle veen the bott DL = 10.0ps o.2. nections. ers) of truss i 2 lb uplift at j ith the 2018 is R502.11.1 at ISJ/TPI 1. ot depict the s	om f. to joint			*	JUA GAR	
ORCES	(lb) - Maximum Com Tension 1-2=0/30, 2-3=-2707		20,		Olandard						Ph	NUMI E-20001	• 41.
BOT CHORD	7-8=-2714/8, 2-15=-	2095/49, 6-7=-2342/ 1461/49, 8-9=-1392/ 4=0/2428, 11-13=0/2 =-16/448	37								11	KSS/ONI	ENGINI
WEBS	3-14=-79/104, 3-13= 6-11=0/619, 7-11=-4	-419/96, 4-13=0/611	,										ARO.
 this design Wind: ASC Vasd=91n II; Exp C; and right e Lumber D Provide ac This truss 	ed roof live loads have n. CE 7-16; Vult=115mph nph; TCDL=6.0psf; BC Enclosed; MWFRS (er exposed ; end vertical OL=1.60 plate grip DC dequate drainage to pr has been designed fo load nonconcurrent wi	(3-second gust) DL=6.0psf; h=25ft; C ivelope); cantilever le left and right exposed vL=1.60 event water ponding. r a 10.0 psf bottom	at. eft I;								CHIIII W	PHORE TO STON	952 ALENCIU

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent colleges with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

Job	Truss	Truss Type	Qty	Ply	Lot 117 MN	
240613	D5	Нір	1	1	Job Reference (optional)	164130719

Run: 8,73 S Feb 22 2024 Print: 8,730 S Feb 22 2024 MiTek Industries, Inc. Fri Mar 08 12:04:34 ID:A4pkxBdKXcgNGCNMpQPo1?zitbJ-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Scale = 1:60.3

	()												
Loading	(psf) 25.0	Spacing Plate Grip DOL	2-0-0 1.15		CSI TC	0.71	DEFL Vert(LL)	in -0.24	(loc) 14-15	l/defl >999	L/d 360	PLATES MT20	GRIP 197/144
CDL	10.0	Lumber DOL	1.15		BC	0.71	Vert(CT)	-0.24	14-15	>886	240	101120	197/144
BCLL	0.0*	Rep Stress Incr	YES		WB	0.72	Horz(CT)	0.19	11	>000 n/a	n/a		
BCDL	10.0	Code		8/TPI2014	Matrix-S	0.00	Wind(LL)		14-15	>999	240	Weight: 143 lb	FT = 10%
UMBER OP CHORD OT CHORD VEBS RACING OP CHORD OT CHORD	· · ·	pt* 19-2:2x4 SPF No F 2.0E athing directly applie cept end verticals, ar -5 max.): 5-7. applied or 10-0-0 oc anical, 19=0-3-8	PF 0.2, 3) 4) d or nd 5)	Vasd=91mp II; Exp C; Er and right exp Umber DOI Provide ade This truss hi- chord live lo * This truss on the botto 3-06-00 tall chord and a All bearings Refer to girc	7-16; Vult=115 h; TCDL=6.0psl hclosed; MWFR bosed; end vert =1.60 plate grij quate drainage as been designe ad nonconcurre has been design m chord in all ar by 2-00-00 wide are assumed to ler(s) for truss to	; BCDL=6.6 S (enveloped ical left and b DOL=1.60 to prevent v d for a 10.0 nt with any ned for a live eas where will fit betw rs. be SPF No b truss conr	Dpsf; h=25ft; s); cantilever d right expose) water pondin; p psf bottom other live lose e load of 20. a rectangle veen the bott 0.2.	left ed; g. ds. Opsf om			n _{in} .	JUA	
DRCES	Max Horiz 19=58 (LC Max Uplift 11=-12 (Lu Max Grav 11=1463 ((lb) - Maximum Com	C 9), 19=-22 (LC 8) LC 1), 19=1537 (LC	8) 1) 9)	Provide med bearing plate 19 and 12 lb This truss is	chanical connect capable of with uplift at joint 11 designed in acc	tion (by oth Instanding 2 cordance w	ers) of truss 2 lb uplift at j ith the 2018	oint				GAR NUME	BER U
TOP CHORD	Tension 1-2=0/27, 2-3=-2604 4-5=-2339/89, 5-6=-2 7-8=-3125/32, 8-9=-3 2-19=-1485/36, 10-1	2675/7, 6-7=-2682/6 3219/0, 9-10=-2682/2	10	R802.10.2 a	Residential Co nd referenced s urlin representat ation of the purl	tandard AN	ISI/TPI 1. ot depict the s					E-20001	62101 . W
BOT CHORD	18-19=-50/248, 17-1 15-16=0/58, 6-15=-2 13-14=0/117, 8-14=- 11-12=-26/439	78/43, 14-15=0/2609	9, ' L	DAD CASE(S)								IN UAN C	ARC
WEBS	5-15=0/1297, 12-14= 9-12=-775/81, 2-18= 7-15=-46/310, 7-14= 3-17=-332/87, 4-17= 15-17=0/2476	-4/2137, 10-12=0/19 -82/984, 3-18=-220/	70, 78,									ICE!	NSE0
NOTES I) Unbalance this desigr	ed roof live loads have h.	been considered for									TIM.	AN SOLON	SA9 CINI

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent toulsable personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

Job	Truss	Truss Type	Qty	Ply	Lot 117 MN	
240613	D6	Common	3	1	Job Reference (optional)	164130720

Run: 8.73 S Feb 22 2024 Print: 8.730 S Feb 22 2024 MiTek Industries, Inc. Fri Mar 08 12:04:35 ID:pay_Is9tjdlv4Dvs1kCfymzitbw-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

-0-10-8 0-10-8 4-1-13 11-4-4 16-5-0 21-5-12 28-8-3 32-10-0 4-1-13 7-2-7 5-0-13 5-0-12 7-2-7 4-1-13 4x5 II 5 ſ, 2x4 II 2x4 II 4 6 _12 5Γ 7-8-1 3x4 🚅 3x4 👟 3 7 te 2 8 0-10-0 <u>ل</u>لة T 45 9 m ⊠ 13 16 12 17 11 10 14 8x8= 8x8= 4x8= 4x8= 4x8= 4x8= 4x8= 4-1-13 11-4-4 21-5-12 28-8-3 32-10-0 4-1-13 4-1-13 7-2-7 10-1-9 7-2-7

Scale = 1:57.8

Plate Offsets (X, Y):	[9:Edge,0-5-11], [10:0-2-8,0-2-0], [14:0-2-8,0-2-0], [15:Edge,0-5-11]

	(.,,.). [e:==ge;e e ::],[::::==;:===],[:		, [·····	÷]								
Loading TCLL (roof) TCDL BCLL	(psf) 25.0 10.0 0.0*	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr	2-0-0 1.15 1.15 YES		CSI TC BC WB	0.70 0.60 0.76	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.38 -0.65 0.07	(loc) 11-13 11-13 9	l/defl >999 >604 n/a	L/d 360 240 n/a	PLATES MT20	GRIP 197/144
BCDL	10.0	Code	IRC2018/T	PI2014	Matrix-S		Wind(LL)	0.07	13-14	>999	240	Weight: 124 lb	FT = 10%
LUMBER TOP CHORE BOT CHORE WEBS BRACING TOP CHORE BOT CHORE REACTIONS FORCES TOP CHORE	 2x4 SPF No.2 2x4 SPF 2100F 1.81 2x3 SPF No.2 "Exce No.2 Structural wood she 2-6-14 oc purlins, e Rigid ceiling directly bracing. (size) 9= Mecha Max Horiz 15=67 (LI Max Uplift 9=-21 (LC Max Grav 9=1540 (I (Ib) - Maximum Con Tension 1-2=0/27, 2-3=-2709 4-5=-2536/118, 2-15 	E eathing directly applie except end verticals. v applied or 10-0-0 oc anical, 15=0-3-8 C 10) C 9), 15=-31 (LC 8) LC 2), 15=1600 (LC 1 ppression/Maximum 3/52, 3-4=-2544/39, 5=-1506/49,	4) * 5) A 6) R 6) R 4d or 7) P 1 8) T 1 8) T 1 8 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1	This truss ha in the bottom i-06-00 tall by chord and any ll bearings a Refer to girder provide mech bearing plate 5 and 21 lb u This truss is d	as been designe chord in all area / 2-00-00 wide w / other members re assumed to b r(s) for truss to t anical connectic capable of withs. uplift at joint 9. lesigned in acco Residential Code d referenced sta	as where will fit betw s, with BC be SPF No truss conr on (by oth- standing 3 ordance wi e sections	e load of 20.0 a rectangle veen the botto DL = 10.0psf 5.2. rections. ers) of truss t 11 lb uplift at ju ith the 2018 s R502.11.1 a	Opsf om o oint			111× PD	JUA GAR	
BOT CHORD WEBS	7-8=-2719/53 14-15=-58/333, 13- 11-13=0/1703, 10-1 2-14=-26/2175, 8-10	1=-27/2478, 9-10=-2	/285									ESS/ONA	LENGINI
this desig 2) Wind: AS Vasd=91 II; Exp C; and right Lumber I 3) This trust	5-13=-76/1039, 5-1 6-11=-483/146, 7-1 ced roof live loads have	1=-76/1042, 1=-334/96, 7-10=-249 been considered for (3-second gust) CDL=6.0psf; h=25ft; C nvelope); cantilever I left and right expose DL=1.60 r a 10.0 psf bottom	5/70 Cat. eft d;								. attitus.		ALENGIN

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent oulgase with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TPI1 Quality Criteria, and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcscomponents.com)

March 11,2024

Job	Truss	Truss Type	Qty	Ply	Lot 117 MN	
240613	D7	Hip	1	1	Job Reference (optional)	164130721

Run: 8.73 S Feb 22 2024 Print: 8.730 S Feb 22 2024 MiTek Industries, Inc. Fri Mar 08 12:04:35 ID:WzVwjfspMFkJCX3Fdhn1_jzitcl-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Scale = 1:60.1

oading	(psf)	Spacing	2-0-0		csi		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
CLL (roof)	25.0	Plate Grip DOL	1.15		тс	0.66	Vert(LL)	-0.15	12-13	>999	360	MT20	197/144
CDL	10.0	Lumber DOL	1.15		BC	0.74	Vert(CT)	-0.34	12-13	>999	240		
BCLL	0.0*	Rep Stress Incr	YES		WB	0.70	Horz(CT)	0.08	8	n/a	n/a		
BCDL	10.0	Code	IRC201	8/TPI2014	Matrix-S		Wind(LL)	0.07	12-13	>999	240	Weight: 124 lb	FT = 10%
OT CHORD VEBS RACING OP CHORD OT CHORD VEBS EACTIONS	(size) 8= Mecha Max Horiz 14=58 (LC	pt* 14-2,8-7:2x4 SPI athing directly applie kcept end verticals, a -15 max.): 4-5. applied or 10-0-0 oc 3-12, 6-10 nical, 14=0-3-8 2 10)	F 6) 7) 8) d or and 9) : 10	on the botto 3-06-00 tall chord and a All bearings Refer to girc Provide mer bearing plat 14 and 12 lb This truss is Internationa R802.10.2 a		eas where will fit betw rs. be SPF No truss conr ion (by oth histanding 2 cordance w de sections tandard AN ion does no	a rectangle veen the bott o.2. nections. ers) of truss 2 lb uplift at 18502.11.1 a ISI/TPI 1. ot depict the	om to joint and			*****	JUA GAR	
	Max Uplift 8=-12 (LC Max Grav 8=1463 (L (lb) - Maximum Com Tension 1-2=0/27, 2-3=-2707	C 1), 14=1537 (LC 2 pression/Maximum			Standard						Philip	NUME E-20001	• [] []
BOT CHORD	4-5=-1842/48, 5-6=-2 2-14=-1469/54, 7-8= 13-14=-81/518, 12-1 10-12=0/1841, 9-10=	-1394/43 3=-33/2423,	,									S/ONA	LENUT
VEBS	3-13=-39/185, 3-12= 4-10=-214/216, 5-10 6-9=-52/178, 2-13=0	-667/110, 4-12=0/39 =0/393, 6-10=-680/1	90,									IL JUAN C	ARCIA
 this design Wind: ASC Vasd=91m II; Exp C; E and right e Lumber DC Provide ad This truss I 	ed roof live loads have CE 7-16; Vult=115mph ph; TCDL=6.0psf; BC Enclosed; MWFRS (er exposed; end vertical I DL=1.60 plate grip DO dequate drainage to pro- has been designed for load nonconcurrent wi	(3-second gust) DL=6.0psf; h=25ft; C velope); cantilever lu eft and right exposed L=1.60 vent water ponding a 10.0 psf bottom	Cat. eft d;								. THINK	PROFESSION	952 ALENO 111,2024

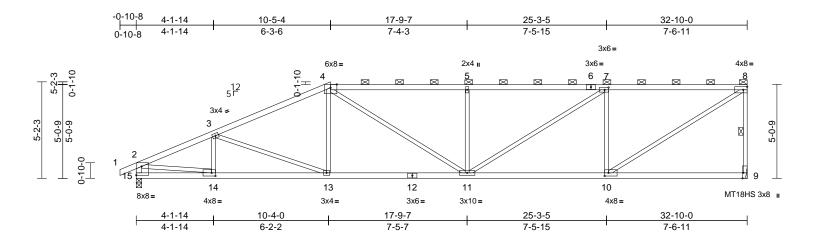
WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

Job	Truss	Truss Type	Qty	Ply	Lot 117 MN	
240613	D8	Half Hip	1	1	Job Reference (optional)	164130722

Run: 8.73 S Feb 22 2024 Print: 8.730 S Feb 22 2024 MiTek Industries, Inc. Fri Mar 08 12:04:35 ID:dBGPtHpJJ0EtjvmUOri5qtzitcM-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

25-11-5 32-10-0 6-6-9 12-5-4 19-1-7 6-6-9 5-10-11 6-8-3 6-9-15 6-10-11 3x10= 2x4 II 3x6= 6x6= 6x6= 0-1-10 -10 4 5 67 8 5¹² \square \boxtimes \boxtimes 3x4 🥃 3 5-10-9 5-10-9 6-0-3 5-10-9 X 0-10-0 45 q 4 14 13 16 12 11 17 10 18 MT18HS 3x8 II 8x8 ≠ 4x8= 3x4= 3x6= 6x6= 3x10= 6-6-9 19-1-7 12-4-0 25-11-5 32-10-0 6-6-9 5-9-7 6-9-7 6-9-15 6-10-11

Scale = 1:62.1


Plata Offcate ((X, Y): [6:0-2-8,0-1-8],	[7:0 4 11 0 1 9] [0:0	1 2 0 Ed	aol [10:0 2 8 0	2 01 114.0 2 9 0	2 01 [15:0	240201						
	[^, 1). [0.0-2-0,0-1-0],	[7.0-4-11,0-1-0], [9.0 I	J-3-0,EU	gej, [10.0-2-0,0-	3-0j, [14.0-2-6,0- T	-2-0], [15.0	J-3-4,0-2-0]						
Loading	(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15		TC	0.74	Vert(LL)		11-13	>999	360	MT20	197/144
TCDL	10.0	Lumber DOL	1.15		BC	0.79	Vert(CT)		11-13	>999	240	MT18HS	197/144
BCLL	0.0*	Rep Stress Incr	YES		WB	0.82	Horz(CT)	0.07	9	n/a	n/a	-	
BCDL	10.0	Code	IRC20	18/TPI2014	Matrix-S	-	Wind(LL)	0.08	11-13	>999	240	Weight: 129 lb	FT = 10%
	2x4 SPF No.2 2x3 SPF No.2 *Exce 3-0-1 oc purlins, exc 2-0-0 oc purlins (3-0 Rigid ceiling directly bracing. 1 Row at midpt	athing directly applie cept end verticals, ar -7 max.): 4-8. applied or 10-0-0 oc 8-9 nical, 15=0-3-8 .C 5) : 5), 15=-19 (LC 4)	d or nd	 chord live lo. * This truss is on the bottoo 3-06-00 tall ichord and ai All bearings Refer to gird Provide mec bearing plate 9 and 19 lb is international R802.10.2 a Graphical pu 	as been designed ad nonconcurren has been designe m chord in all are by 2-00-00 wide are assumed to b er(s) for truss to thanical connectic e capable of with plift at joint 15. designed in acco Residential Cod nd referenced sta urlin representatic ation of the purlin	t with any ed for a liv as where will fit betw be SPF Ne truss conr on (by oth standing 7 ordance w e sections andard AN on does no	other live load e load of 20. a rectangle ween the bott CDL = 10.0ps 5.2. ections. ers) of truss 11 lb uplift at ith the 2018 \approx R502.11.1 at SU/TPI 1. ot depict the	Opsf om f. to joint and			******	JUA GAR	
FORCES	(lb) - Maximum Com Tension		,	bottom chore	d.	i along the					=		
TOP CHORD BOT CHORD	1-2=0/30, 2-3=-2743 4-5=-2253/115, 5-6= 6-8=-1569/102, 8-9= 2-15=-1477/54 14-15=-188/568, 13- 11-13=-127/2125, 10	2251/114, 1445/101, -14=-140/2460,		LOAD CASE(S)	Standard							E-20001	• 41.
WEBS	9-10=-64/49 2-14=0/1902, 4-13=0 4-11=-39/347, 5-11=	-515/118, 6-11=-42/8	881,									MUAN C	BARCI
NOTEO	6-10=-1055/153, 3-1	3=-381/91, 3-14=-73	8/116									N CE	NSA
 this design Wind: ASC Vasd=91m II; Exp C; I and right e Lumber D0 Provide ac 	ed roof live loads have n. CE 7-16; Vult=115mph nph; TCDL=6.0psf; BC Enclosed; MWFRS (er exposed ; end vertical I OL=1.60 plate grip DO dequate drainage to pro are MT20 plates unless	(3-second gust) DL=6.0psf; h=25ft; C ivelope); cantilever le eft and right exposed L=1.60 event water ponding.	cat. eft d;								. THINK	PROFESSION	952 AL ENGINE

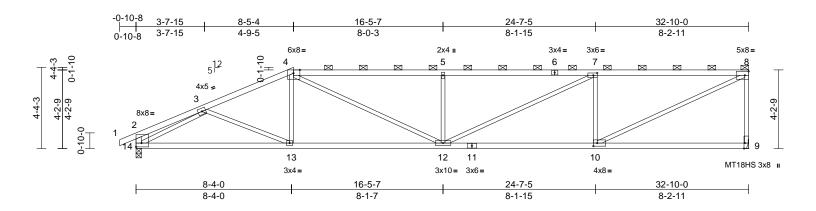
Job	Truss	Truss Type	Qty	Ply	Lot 117 MN	
240613	D9	Half Hip	1	1	Job Reference (optional)	164130723

Run: 8.73 S Feb 22 2024 Print: 8.730 S Feb 22 2024 MiTek Industries, Inc. Fri Mar 08 12:04:35 ID:dwk_JTceJo5lBlyCunv5dHzitcd-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:61.9

Plate Offsets (X, Y): [4:0-4-2,Edge], [7:0-2-8,0-1-8], [9:0-3-8,Edge], [10:0-2-8,0-2-0], [14:0-2-8,0-2-0], [15:Edge,0-5-11]													
Loading TCLL (roof) TCDL BCLL BCDL	(psf) 25.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES	3/TPI2014	CSI TC BC WB Matrix-S	0.81 0.68 0.75	DEFL Vert(LL) Vert(CT) Horz(CT) Wind(LL)	in -0.17 -0.34 0.08 0.09	(loc) 11 11-13 9 11	l/defl >999 >999 n/a >999	L/d 360 240 n/a 240	PLATES MT20 MT18HS Weight: 123 lb	GRIP 197/144 197/144 ET = 10%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD WEBS REACTIONS FORCES TOP CHORD BOT CHORD BOT CHORD WEBS NOTES 1) Unbalance	2x4 SPF 2100F 1.8E No.2 2x4 SPF No.2 2x3 SPF No.2 *Exce Structural wood shea 2-2-0 oc purlins, exi 2-0-0 oc purlins, exi 2-0-0 oc purlins (4-2 Rigid ceiling directly bracing. 1 Row at midpt (size) 9= Mecha Max Horiz 15=164 (L Max Uplift 9=-71 (LC Max Grav 9=1465 (L (Ib) - Maximum Com Tension 1-2=0/27, 2-3=-2579 4-5=-2579/134, 5-7= 7-8=-1869/115, 8-9= 2-15=-1479/46 14-15=-144/282, 13- 11-13=-131/2188, 10 9-10=-51/42 2-14=-12/2074, 4-13 3-13=-150/122, 3-14 5-11=-568/129, 7-11 7-10=-1019/160	E *Except* 1-4:2x4 SF pt* 15-2:2x4 SPF No. athing directly applied cept end verticals, an -3 max.): 4-8. applied or 10-0-0 oc 8-9 nical, 15=0-3-8 .C 5) :5), 15=-27 (LC 4) .C 1), 15=1539 (LC 1) pression/Maximum //32, 3-4=-2450/82, 2576/132, 1399/106, :14=-144/2334, 11=-120/1869, :=-235/65, 4-11=-52/6 =-42/837,	4) PF 5) 6) d or d or 10 10 11 LC	All plates are This truss ha chord live loa * This truss h on the bottor 3-06-00 tall b chord and ar All bearings a Refer to gird Provide mec bearing plate 9 and 27 lb u) This truss is International R802.10.2 ar) Graphical pu	MT20 plates unlikes with the second secon	for a 10.0 with any d for a liv as where vill fit betv s. e SPF Nor russ conr n (by oth tanding 7 rdance w s sections ndard AN n does no	wise indicate D psf bottom other live load of 20. a rectangle veen the bott o.2. nections. ers) of truss '1 lb uplift at ith the 2018 s R502.11.1 : USI/TPI 1. bt depict the	ed. ads. .0psf tom to joint and				JUAN C	MISSOUDIA NCIA
 Wind: ASC Vasd=91m II; Exp C; I and right e Lumber D0 	I; Exp C; Enclosed; MWFRS (envelope); cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60												

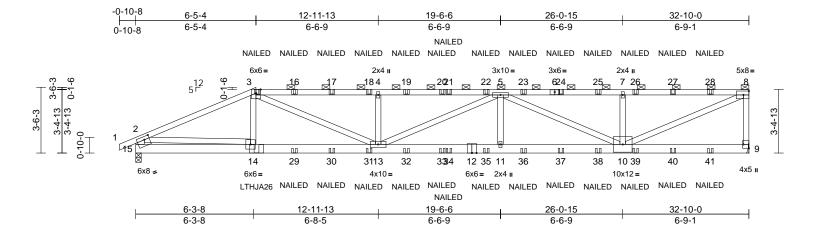

March 11,2024

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

Job	Truss	Truss Type	Qty	Ply	Lot 117 MN	
240613	D10	Half Hip	1	1	Job Reference (optional)	164130724

Run: 8.73 S Feb 22 2024 Print: 8.730 S Feb 22 2024 MiTek Industries, Inc. Fri Mar 08 12:04:35 ID:wkcmeEHigVh7R9O0pcwm1bzitd2-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Scale = 1:61.7


Loading TOLL (noof) (pd) (100) Spacing (100) 2-0 (100) CSI DEF In the (100) Interster (100) PATES (FP)P (100) BCL 0.00 100 Imper TOLL (meb FTOL) 115 EC 0.07 Verif(L) 0.08 90 MT1BHS 197/144 BCL 100 Code Imper TOLL (meb FTOC) 155 EC 0.07 Verif(L) 0.08 90 no 00 197/144 DTOC HORD 2x4 SPF 70.07 1.85 Except 14.22.45 FN0.2 11.61.2 2909 240 Weight: 118.16 FT = 10% LUMBER TOP CHORD Structural wood sheathing directly applied or 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other an enclosance with the 2018 7	Plate Offsets (X, Y): [2:Edge,0-2-8], [4:0-4-2,Edge], [7:0-2-8,0-1-8], [9:0-3-8,Edge], [10:0-2-8,0-2-0]													
 TOP CHORD 2x4 SPF 2100F 1.8E "Except" 1-4:2x4 SPF No.2 Mo2 BOT CHORD 2x4 SPF No.2 "Except" 1-4:2x4 SPF No.2 BACING Ling and SP Logita Set Summed to be SPF No.2. BACING 2x4 SPF No.2 "Except" 1-4:2x4 SPF No.2 Bacing Ling and SP Logita Set Summed to be SPF No.2. BACING 2x4 SPF No.2 "Except" 1-4:2x4 SPF No.2 Bacing Ling and SP Logita Set Summed to be SPF No.2. BACING 2x4 SPF No.2 "Except" 1-4:2x4 SPF No.2 Bacing Ling and SP Logita Set Summed to be SPF No.2. BACING 2x4 SPF No.2 "Logita Set SetSet Interview Interview	TCLL (roof) TCDL BCLL	25.0 10.0 0.0*	Plate Grip DOL Lumber DOL Rep Stress Incr	1.15 1.15 YES	8/TPI2014	TC BC WB	0.76	Vert(LL) Vert(CT) Horz(CT)	-0.23 -0.44 0.09	10-12 10-12 9	>999 >888 n/a	360 240 n/a	MT20 MT18HS	197/144 197/144
 TOP CHORD 1-2=0/27, 2-3=-429/0, 3-4=-2577/82, 4-5=-3167/162, 5-7=-3167/162, 5-7=-3167/162, 5-7=-3167/162, 5-7=-3164/161, 7-8=-2187/362, 5-7=-3164/161, 7-8=-2187/362, 5-7=-3164/161, 1-2=-139/268, 12-13=-137/36 BOT CHORD 13-14=-168/2188, 12-13=-127/2334, 10-12=-142/2415, 9-10=-37/36 WEBS 3-13=0/353, 4-13=0/267, 3-14=-2147/111, 5-12=-620/141, 4-12=-80/1049, 7-12=-45/831, 7-10=-976/167, 8-10=-130/2642 NOTES 1) Unbalanced roof live loads have been considered for this design. 2) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0pst; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope); cantilever left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60 3) Provide adequate drainage to prevent water ponding. 4) All plates are MT20 plates unless otherwise indicated. 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 	 TOP CHORD 2x4 SPF 2100F 1.8E *Except* 1-4:2x4 SPF No.2 BOT CHORD 2x4 SPF No.2 BOT CHORD 2x4 SPF No.2 BRACING 2x3 SPF No.2 *Except* 14-2:2x4 SPF No.2 BRACING TOP CHORD Structural wood sheathing directly applied or 3-3-4 oc purlins (2-20 max.): 4-8. BOT CHORD Rigid ceiling directly applied or 13-3-4 oc purlins (2-20 max.): 4-8. REACTIONS (size) 9 = Mechanical, 14=0-3-8 Max Horiz 14=136 (LC 5) Max Upit 14 = 136 (LC 5) Max Upit 19 = -72 (LC 5), 14=-39 (LC 4) Max Grav 9=1465 (LC 1), 14=1539 (LC 1) FORCES (lb) - Maximum Compression/Maximum Tension TOP CHORD 1-2=0/27, 2-3=-429/0, 3-4=-2577/82, 4-5=-3167/162, 5-7=-3164/161, 													
Lumber DOL=1.60 plate grip DOL=1.60 3) Provide adequate drainage to prevent water ponding. 4) All plates are MT20 plates unless otherwise indicated. 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.	BOT CHORD	1-2=0/27, 2-3=-429/0 4-5=-3167/162, 5-7= 7-8=-2415/136, 8-9= 13-14=-168/2188, 12 10-12=-142/2415, 9-	-3164/161, -1392/111, 2-14=-30 2-13=-127/2334, 10=-37/36										E-20001	• 41.
	 WEBS 3-13=0/353, 4-13=0/267, 3-14=-2147/111, 5-12=-620/141, 4-12=-80/1049, 7-12=-45/831, 7-10=-976/167, 8-10=-130/2642 NOTES 1) Unbalanced roof live loads have been considered for this design. 2) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; Cat. II; Exp C; Enclosed; MWFRS (envelope); cantilever left and right exposed; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60 3) Provide adequate drainage to prevent water ponding. 4) All plates are MT20 plates unless otherwise indicated. 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 													

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

0 16023 Swingley Ridge Rd. Chesterfield, MO 63017 314.434.1200 / MiTek-US.com

Job	Truss	Truss Type	Qty	Ply	Lot 117 MN	
240613	D11	Half Hip Girder	1	2	Job Reference (optional)	164130725

Run: 8,73 S Feb 22 2024 Print: 8,730 S Feb 22 2024 MiTek Industries, Inc. Fri Mar 08 12:04:36 ID:jnxLiY2LksXdQLP1kCXTptzitZT-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

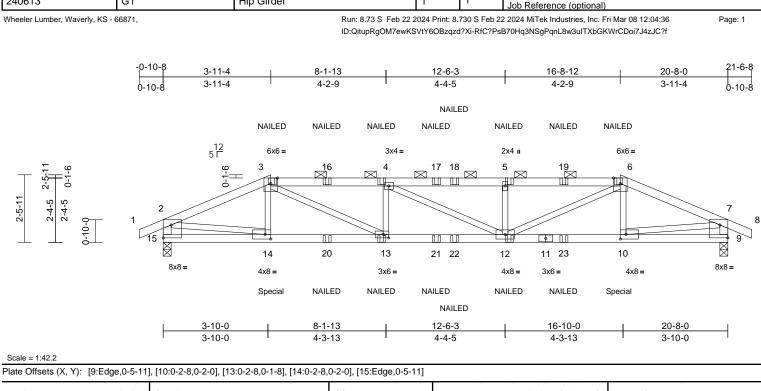
Scale = 1:61.7

Plate Offsets (X, Y): [9:Edge,0-3-8], [15:0-3-4,0-2-0]

		-													
Loading	(psf)	Spacing	2-0-0		csi		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP		
TCLL (roof)	25.0	Plate Grip DOL	1.15		TC	0.73	Vert(LL)		11-13	>999	360	MT20	197/144		
TCDL	10.0	Lumber DOL	1.15		BC	0.91	Vert(CT)	-0.52	11-13	>749	240				
BCLL	0.0*	Rep Stress Incr	NO		WB	0.74	Horz(CT)	0.08	9	n/a	n/a				
BCDL	10.0	Code	IRC201	8/TPI2014	Matrix-S		Wind(LL)	0.23	11-13	>999	240	Weight: 303 lb	FT = 10%		
-									-			, î			
LUMBER			,		considered equal					hiform Lo	,	,			
TOP CHORD		E *Except* 1-3:2x4 SI	PF		ed as front (F) or b			DAD		Vert: 1-2	2=-70,	2-3=-70, 3-8=-70), 9-15=-20		
	No.2				ction. Ply to ply co				Co	oncentra	ted Lo	ads (lb)	MILL.		
BOT CHORD			•		listribute only load wise indicated.	s noted	as (F) or (B),			Vert: 3=	-126 (B), 14 ≕ -485)(B),	6=126 (B) 17=-126		
WEBS	2x4 SPF No.2 *Exce	ept* 15-2:2x6 SPF No	.2 3)		roof live loads hav	o hoon	considered fo	r					20=-126 (B), 21=-126		
BRACING			- /	this design.		e been		4					24=-126 (B), 25=-126		
TOP CHORD	(C), C) Structural wood sheating directly applied of										20=-120 (D), 29=-38				
	4-4-14 oc purlins, except end verticals, and 2-0-0 oc purlins (4-11-12 max.): 3-8. (B), 31=-58 (B), 36=-58 (B), 36									58 (B) 36-58					
BOT CHORD					closed; MWFRS (38=-58	(B) 39	=-58 (B), 40=-58	(B), 31 = 30 (B)		
BUICHORD	and right exposed; end vertical left and right exposed;										· · · · ·				
REACTIONS	0	anical, 15=0-3-8			=1.60 plate grip D						= +	NUME	BER :		
REACTIONS	Max Horiz 15=106 (L	,	5)		quate drainage to			g.			1	C . E-20001	62101 :4		
	Max Uplift 9=-549 (L	,	6)		s been designed f						1	A			
	Max Grav 9=2993 (L		`		ad nonconcurrent							1.80			
FORCES	(lb) - Maximum Com		, 7)	7) * This truss has been designed for a live load of 20.0psf											
FORCES	Tension	ipression/waximum		on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom											
TOP CHORD		5/1072 3-4=-8358/15	98		ly other members.		veen me bollo	JIII							
	4-5=-8354/1596, 5-7	,	8)		are assumed to be		n 2								
	7-8=-5575/1059, 8-9		9)		er(s) for truss to tr										
	2-15=-2889/522		-,		hanical connection			o.							
BOT CHORD	14-15=-279/1240, 13	3-14=-1043/5348,			capable of withst										
	11-13=-1605/8337,	10-11=-1605/8337,			uplift at joint 15.			,							
	9-10=-47/111		11		designed in accor	dance w	ith the 2018						1113		
WEBS	3-14=0/371, 3-13=-6			International	Residential Code	sections	s R502.11.1 a	ind							
	4-13=-1070/461, 5-1				nd referenced star							NAU	ARCI		
	5-10=-3043/599, 7-1		12		rlin representation			size				Nº JOINTE	NO		
	8-10=-1116/6009, 2-	-14=-776/4202			ation of the purlin a	along the	e top and/or						10×0		
NOTES				bottom chord		A 00 /I T					-	1 / C	1.2		
	to be connected toge	ther with 10d	13		n Strong-Tie LTHJ Hip) or equivalent :						-	1			
	') nails as follows:	a. 0.4 1 rays at 0.0 (`					ena				169	952 : =		
	2 rows staggered at 0-9	lows: 2x4 - 1 fow at 0-9-0 to connect ituss(es) to back face of bottom chord.										1 :0-			
	ords connected as foll		2 rows 15) "NAILED" indicates 3-10d (0.148"x3") or 3-12d										4 145		
	at 0-9-0 oc.	0110. ZAU ZIUW3			") toe-nails per NE							- A KAN	CAS		
	ected as follows: 2x4 -	- 1 row at 0-9-0 oc.	10	DAD CASE(S)	<i>'</i>	- <u>3</u> un						1.50	G		
			1)		of Live (balanced):	Lumber	Increase=1	15.				ON ON	ALENI		
			.,	Plate Increa				- ,				1111	inni,		
												March	n 11,2024		
												marci	111,2027		

> 16023 Swingley Ridge Rd. Chesterfield MO 63017 314.434.1200 / MiTek-US.com

Page: 1


 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.
 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not besign value to dury with with where outputs into design is based only door parameters shown, and is for an individual building design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members and property incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TPH1 Quality Criteria**, and **DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcscomponents.com)

Job	Truss	Truss Type	Qty	Ply	Lot 117 MN	
240613	G1	Hip Girder	1	1	Job Reference (optional)	164130726

2-4-5 2-5-11

2-5-11

Scale = 1:42.2

												-	
Loading	(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15		TC	0.69	Vert(LL)		12-13	>999	360	MT20	197/144
TCDL	10.0	Lumber DOL	1.15		BC	1.00	Vert(CT)	-0.33	12-13	>732	240		
BCLL	0.0*	Rep Stress Incr	NO		WB	0.64	Horz(CT)	0.06	9	n/a	n/a		
BCDL	10.0	Code	IRC2018/	TPI2014	Matrix-S		Wind(LL)	0.16	12-13	>999	240	Weight: 74 lb	FT = 10%
LUMBER TOP CHORD	2x4 SPF No.2				s been designed f			ds.					
BOT CHORD	2x4 SPF No.2				as been designed								
WEBS		ept* 15-2,9-7:2x4 SPF	- -	on the botton 3-06-00 tall b	n chord in all area y 2-00-00 wide wi	s where ill fit betv	a rectangle						
BRACING					y other members.								
TOP CHORD	 OP CHORD Structural wood sheathing directly applied or 3-6-11 oc purlins, except end verticals, and 2-0-0 oc purlins (2-8-8 max.): 3-6. 6) All bearings are assumed to be SPF No.2. 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 319 lb uplift at joint 												
BOT CHORD	Rigid ceiling directly bracing.	applied or 6-9-14 oc	8)	This truss is	designed in accord							NYE.	NISSO I
REACTIONS	(size) 9=0-3-8, - Max Horiz 15=-18 (L Max Uplift 9=-319 (L Max Grav 9=1452 (L	_C 6) _C 5), 15=-319 (LC 4)	9)	R802.10.2 ar Graphical pu	Residential Code nd referenced star rlin representation ttion of the purlin a	ndard AN n does no	ISI/TPI 1. ot depict the s					JUA GAR	
FORCES	(lb) - Maximum Com Tension	npression/Maximum	10)	"NAILED" inc	licates 3-10d (0.14 ") toe-nails per NE						=7	NUM	
TOP CHORD	1-2=0/27, 2-3=-2385 4-5=-3394/803, 5-6=	5/537, 3-4=-3398/806 =-3396/804, =0/27, 2-15=-1399/33	, 11) 2,	Hanger(s) or provided suff lb down and	other connection icient to support c 55 lb up at 3-11-4 -0 on bottom chor	device(s concentra 4, and 21	i) shall be ated load(s) 2 15 lb down an	d 55			in the	E-20001	• 111
BOT CHORD	14-15=-93/304, 13-1 12-13=-753/3396, 1 9-10=-79/303	,		of such conn others.	ection device(s) is	s the res	ponsibility of					NON!	
WEBS	3-14=-10/96, 6-10=-	-9/96, 2-14=-408/187			CASE(S) section, re noted as front (ace					
	7-10=-409/1877, 3-1 6-12=-327/1418, 4-1	13=-489/226,	LOA 1)	AD CASE(S) Dead + Roo	Standard of Live (balanced):	: Lumber	Increase=1.7	15,				JUAN C	NSTRACIA
	4-12=-28/23, 5-12=-	-478/225		Plate Increa									E0
NOTES		h		Uniform Loa	()							1 A 1 A 1	A 20
this design	ed roof live loads have	been considered for			=-70, 2-3=-70, 3-6	6=-70, 6-	7=-70, 7-8=-7	'0,				1 100	
	CE 7-16; Vult=115mph	(3-second aust)		9-15=-20	ed Loads (lb)						-	16	952
	nph; TCDL=6.0psf; BC		at.		45 (F), 6=-45 (F),	1/215	(E) 10-215	(F)			-	D	
	Enclosed; MWFRS (er				F), 12=-23 (F), 4=-							2	12 3 4 2
	left and right exposed				45 (F), 18=-45 (F)							- AN AK	SAS
	sed; Lumber DOL=1.6	0		F), 22=-23 (F), 23=							1. 50	ENG IN	
Provide ac	dequate drainage to pr	revent water ponding.										NON	ALEIN

 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.
 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not besign value for use only with with twit even connectors. This design is based only upon parameters shown, and is for an individual building designer must verify the applicability of design parameters and properly incorporate this design into the overall building designer must verify the applicability of design parameters and properly incorporate this design into the overall building designer. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcscomponents.com)

16023 Swingley Ridge Rd. Chesterfield, MO 63017 314.434.1200 / MiTek-US.com

Job	Truss	Truss Type	Qty	Ply	Lot 117 MN	
240613	G2	Нір	1	1	Job Reference (optional)	164130727

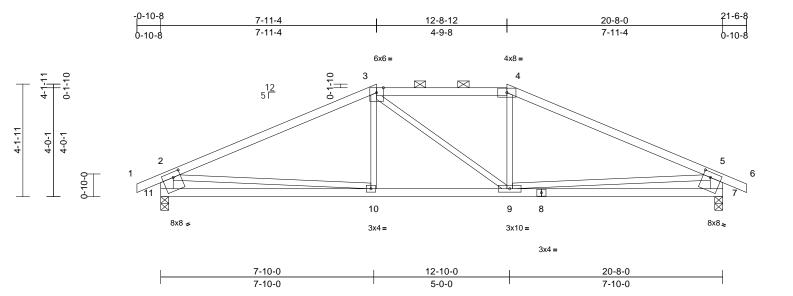
Run: 8,73 S Feb 22 2024 Print: 8,730 S Feb 22 2024 MiTek Industries, Inc. Fri Mar 08 12:04:36 ID:40bQKYqwXp9DmIPBFdc?SMzd?XW-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

-0-10-8 21-6-8 10-4-0 5-11-4 14-8-12 20-8-0 0-10-8 5-11-4 4-4-12 4-4-12 5-11-4 0-10-8 4x5 = 3x4 = 4x5 = 0-1-10 3-3-11 12 5 Г 3 4 5 0-1-10 \bowtie \bowtie \bowtie \bowtie ᡨ -3-3-11 3-2-1 3-2-1 2 6 p-10-0 7 12 8 कि \boxtimes \bigotimes 11 9 10 8x8= 8x8 = 3x10 = 3x4 = 3x10 = 14-10-0 20-8-0 5-10-0 5-10-0 9-0-0 5-10-0

Scale = 1:42.3

Plate Offsets (X, Y): [8:Edge,0-5-11], [12:Edge,0-5-11]												
Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15	тс	0.46	Vert(LL)	-0.15	9-11	>999	360	MT20	197/144
TCDL	10.0	Lumber DOL	1.15	BC	0.64	Vert(CT)	-0.34	9-11	>723	240		
BCLL	0.0*	Rep Stress Incr	YES	WB	0.32	Horz(CT)	0.03	8	n/a	n/a		
BCDL	10.0	Code	IRC2018/TPI2014	Matrix-S		Wind(LL)	0.05	9-11	>999	240	Weight: 73 lb	FT = 10%
E) * This trues has been designed for a live lead of 20 Oper												

LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD	2x4 SPF No.2 2x4 SPF No.2 2x3 SPF No.2 *Except* 12-2,8-6:2x4 SPF No.2 Structural wood sheathing directly applied or 4-3-7 oc purlins, except end verticals, and 2-0-0 oc purlins (4-10-15 max.): 3-5. Rigid ceiling directly applied or 10-0-0 oc	 * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members. All bearings are assumed to be SPF No.2. Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 135 lb uplift at joint 12 and 135 lb uplift at joint 8. This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and 	OF MISS
REACTIONS	bracing.	 R802.10.2 and referenced standard ANSI/TPI 1. 9) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord. LOAD CASE(S) Standard 	GARCIA
FORCES	(Ib) - Maximum Compression/Maximum		
TOP CHORD	Tension 1-2=0/27, 2-3=-1533/188, 3-4=-1333/194, 4-5=-1333/194, 5-6=-1533/188, 6-7=0/27, 2-12=-943/157, 6-8=-943/157		NUMBER E-2000162101
BOT CHORD	11-12=-163/422, 9-11=-226/1613,		SSIONAL ENGIN
WEBS	8-9=-136/422 3-11=0/310, 4-11=-427/136, 4-9=-427/136, 5-9=0/310, 2-11=-38/932, 6-9=-38/932		THINK .
NOTES			
	ed roof live loads have been considered for		NIAN GARC
this design			CENS
Vasd=91m II; Exp C; I cantilever right expos	CE 7-16; Vult=115mph (3-second gust) nph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. Enclosed; MWFRS (envelope) exterior zone; left and right exposed ; end vertical left and sed; Lumber DOL=1.60 plate grip DOL=1.60 lequate drainage to prevent water ponding.		16952 g
This truss	has been designed for a 10.0 psf bottom load nonconcurrent with any other live loads.		March 11,2024


16023 Swingley Ridge Rd. Chesterfield, MO 63017 314.434.1200 / MiTek-US.com

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

Jo	ob	Truss	Truss Type	Qty	Ply	Lot 117 MN	
2	40613	G3	Hip	1	1	Job Reference (optional)	164130728

Run: 8.73 S Feb 22 2024 Print: 8.730 S Feb 22 2024 MiTek Industries, Inc. Fri Mar 08 12:04:36 ID:NMW3oxvJtz1D6NSX9bEeEqzd?XP-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:42.4

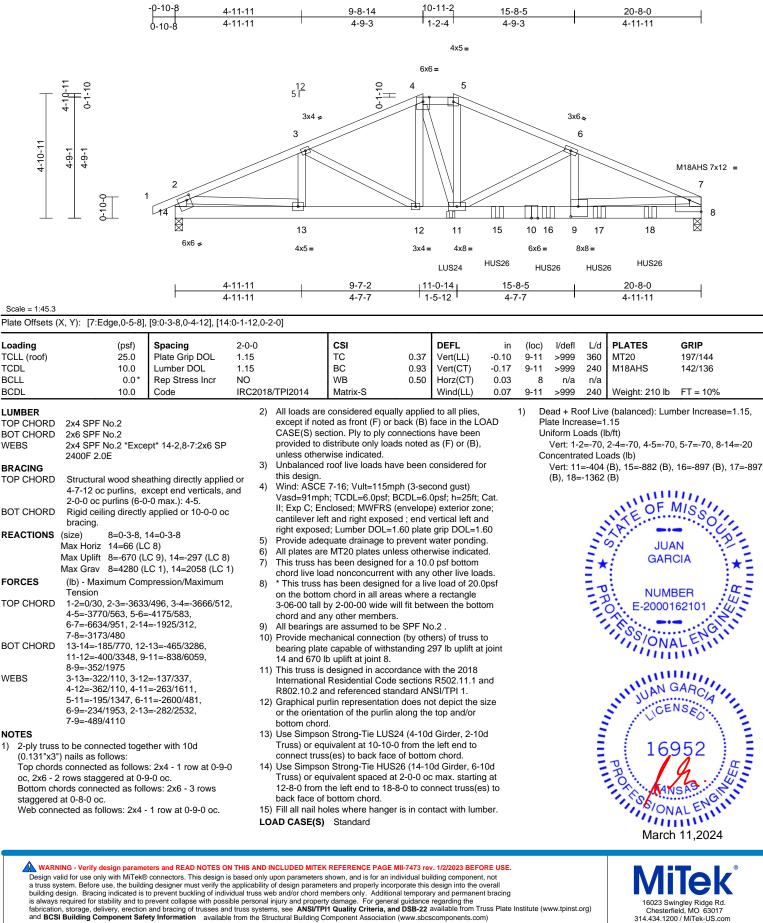
Plate Offsets (X, Y): [7:0-3-4,0-2-4], [11:0-3-4,0-2-4]

Plate Offsets	(X, Y): [7:0-3-4,0-2-4],	[11:0-3-4,0-2-4]	-										
Loading TCLL (roof) TCDL BCLL BCDL	(psf) 25.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC20	18/TPI2014	CSI TC BC WB Matrix-S	0.80 0.42 0.21	DEFL Vert(LL) Vert(CT) Horz(CT) Wind(LL)	in -0.10 -0.20 0.03 0.03	(loc) 10-11 10-11 7 9-10	l/defl >999 >999 n/a >999	L/d 360 240 n/a 240	PLATES MT20 Weight: 75 lb	GRIP 197/144 FT = 10%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD FORCES TOP CHORD BOT CHORD WEBS	2x4 SPF No.2 2x3 SPF No.2 *Exce No.2 Structural wood she 3-4-15 oc purlins, e 2-0-0 oc purlins (5-2 Rigid ceiling directly bracing. (size) 7=0-3-8, 1 Max Horiz 11=-42 (L Max Uplift 7=-122 (L Max Grav 7=987 (LC (lb) - Maximum Com Tension 1-2=0/30, 2-3=-1404 4-5=-1405/152, 5-6= 5-7=-912/167	athing directly applie xcept end verticals, -10 max.): 3-4. applied or 10-0-0 or 11=0-3-8 C 13) C 9), 11=-122 (LC 8 C 1), 11=987 (LC 1) pression/Maximum 1/152, 3-4=-1189/164 c0/30, 2-11=-911/164 0=-62/1189, i0/150, 4-9=0/221,	F ed or and a c s) J	 on the bottor 3-06-00 tall b chord and ar All bearings Provide mec bearing plate 11 and 122 l This truss is International R802.10.2 a Graphical pu 		as where vill fit betw s. De SPF No on (by oth standing 1 ordance w e sections andard AN on does no	a rectangle veen the bott b.2. ers) of truss 22 lb uplift a ith the 2018 i R502.11.1 a ISI/TPI 1. ot depict the	tom to it joint and				JU GAF SS/ON	BER
 this desig Wind: AS Vasd=91r II; Exp C; cantilever right expc Provide a This truss 	eed roof live loads have in. CE 7-16; Vult=115mph mph; TCDL=6.0psf; BC Enclosed; MWFRS (er left and right exposed obsed; Lumber DOL=1.6 idequate drainage to pr has been designed for load nonconcurrent wi	(3-second gust) DL=6.0psf; h=25ft; (ivelope) exterior zor ; end vertical left an 0 plate grip DOL=1.6 event water ponding r a 10.0 psf bottom	Cat. ne; d 60 J.								. anna anna anna anna anna anna anna an	PROFESSION	GARCIA NSEO 952 VSAS

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

March 11,2024

Job	Truss	Truss Type	Qty	Ply	Lot 117 MN	
240613	G4	Hip Girder	1	2	Job Reference (optional)	164130729

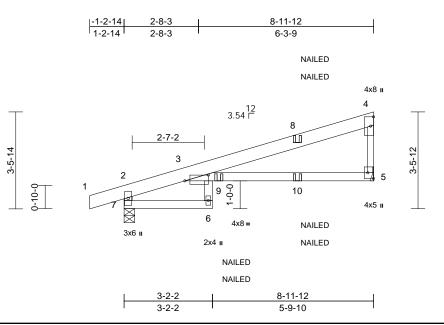

TCDL

BCLL

BCDL

Run: 8 73 S Feb 22 2024 Print: 8 730 S Feb 22 2024 MiTek Industries Inc. Fri Mar 08 12:04:36 ID:sAF0Q99wdd0czCqKhkaowYzd?Vo-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1



and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

Job	Truss	Truss Type	Qty	Ply	Lot 117 MN	
240613	J1	Diagonal Hip Girder	1	1	Job Reference (optional)	164130730

Run: 8,73 S Feb 22 2024 Print: 8,730 S Feb 22 2024 MiTek Industries, Inc. Fri Mar 08 12:04:36 ID:nNIAdfv4K4qgGPmn4VzjJyzitma-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale =	1:41.5
---------	--------

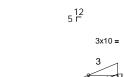
Plate Offsets (X, Y): [3:0-10-3,0-2-8], [5:Edge,0-2-8]

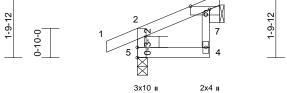
Plate Olisets	(X, Y): [3:0-10-3,0-2-8	5], [5:Euge,0-2-8]											
Loading	(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15		TC	0.92	Vert(LL)	-0.23	6	>458	360	MT20	197/144
TCDL	10.0	Lumber DOL	1.15		BC	0.61	Vert(CT)	-0.40	6	>262	240		
BCLL	0.0*	Rep Stress Incr	NO		WB	0.02	Horz(CT)	0.16	5	n/a	n/a		
BCDL	10.0	Code	IRC201	8/TPI2014	Matrix-R		Wind(LL)	0.23	6	>453	240	Weight: 33 lb	FT = 10%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD	2x4 SPF No.2 2x4 SPF No.2 *Exce Structural wood she 5-9-13 oc purlins, e Rigid ceiling directly bracing.	athing directly applie xcept end verticals. applied or 6-0-0 oc	ed or ⁹⁾	International R802.10.2 a "NAILED" in (0.148"x3.25 In the LOAD of the truss a DAD CASE(S)	of Live (balanced	le sections andard AN 148"x3") c NDS guidli n, loads a t (F) or ba	8 R502.11.1 a ISI/TPI 1. or 2-12d nes. pplied to the ck (B).	face				WHITE STREET	MIS
REACTIONS	(size) 5= Mecha Max Horiz 7=123 (LC Max Uplift 5=-113 (L Max Grav 5=492 (LC	.C 8), 7=-165 (LC 4)		Uniform Lo Vert: 1-2 Concentrat	ads (lb/ft) =-70, 2-4=-70, 6- ed Loads (lb)	,					1111	ZP. JU	AN
FORCES	(lb) - Maximum Com Tension	pression/Maximum			-44 (F=-22, B=-22 F=-36, B=-36)	2), 9=-56 (F=-28, B=-28	8),			Ξ×	GAF	
TOP CHORD	2-7=-557/188, 1-2=0										EP		
BOT CHORD	3-4=-166/16, 4-5=-3 6-7=-50/0, 3-5=-32/1										=]	• E-2000	• 41.
WEBS	3-6=0/77										-	A	
NOTES												10000	GN
Vasd=91r	CE 7-16; Vult=115mph mph; TCDL=6.0psf; BC Enclosed; MWFRS (er	DL=6.0psf; h=25ft; 0										11,0N	ALENIN
cantilever	left and right exposed	; end vertical left an	d										1111.
	sed; Lumber DOL=1.6		60									JUAN UCE	GAD
	has been designed for											NUAN	CIA
	load nonconcurrent wi											CE	NSA
	ss has been designed f		pst										10
	ttom chord in all areas all by 2-00-00 wide will		m								-		1 3
	any other members.	in between the boll										16	052
	as are assumed to be \$	SPF No.2 .										10	952

- All bearings are assumed to be SPF No.2.
- Refer to girder(s) for truss to truss connections. 5)
- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 165 lb uplift at joint 7 and 113 lb uplift at joint 5.

16023 Swingley Ridge Rd. Chesterfield, MO 63017 314.434.1200 / MiTek-US.com

March


March 11,2024


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent oulgase with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TPI1 Quality Criteria, and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcscomponents.com)

Job	Truss	Truss Type	Qty	Ply	Lot 117 MN	
240613	J2	Jack-Closed	2	1	Job Reference (optional)	164130731

Run: 8.73 S Feb 22 2024 Print: 8.730 S Feb 22 2024 MiTek Industries, Inc. Fri Mar 08 12:04:36 ID:QPxHayrxVYCO9etqHyNYcvzitmf-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

-0-10-8 2-4-3 0-10-8 2-4-3

2-0-11 2-1-0 2-0-11 0-3-8

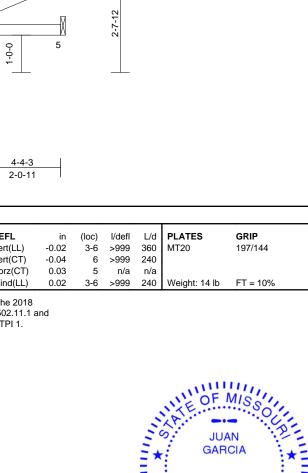
Scale = 1:32.8

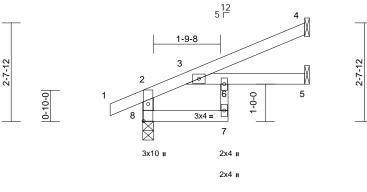
Plate Offsets (X, Y): [3:0-6-8,Edge]

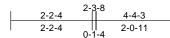
Plate Olisets ((X, Y): [3:0-6-8,Edge]											
Loading TCLL (roof) TCDL BCLL BCDL	(psf) 25.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018/TPI2014	CSI TC BC WB Matrix-R	0.06 0.02 0.00	DEFL Vert(LL) Vert(CT) Horz(CT) Wind(LL)	in 0.00 0.00 0.00 0.00	(loc) 4-5 4-5 7 4	l/defl >999 >999 n/a >999	L/d 360 240 n/a 240	PLATES MT20 Weight: 8 lb	GRIP 197/144 FT = 10%
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SPF No.2 2x4 SPF No.2 2x3 SPF No.2 2x4 SPF No.2 Structural wood shea 2-4-3 oc purlins, exc Rigid ceiling directly bracing. (size) 5=0-3-8, 7 Max Horiz 5=56 (LC Max Uplift 5=-35 (LC	cept end verticals. applied or 10-0-0 oc 7= Mechanical 5)	Internatio R802.10. LOAD CASE	s is designed in acco nal Residential Code 2 and referenced sta (S) Standard	e sections	ith the 2018 R502.11.1 a	ind			111.	INTE OF	MISSO
Vasd=91n II; Exp C; cantilever right expo 2) This truss chord live 3) * This trus on the bot 3-06-00 ta chord and	Max Grav 5=180 (LC (lb) - Maximum Com Tension 2-5=-160/50, 1-2=0/2 3-6=-18/29 4-5=-21/18 3-7=-29/6 CE 7-16; Vult=115mph mph; TCDL=6.0psf; BC Enclosed; MWFRS (er left and right exposed sed; Lumber DOL=1.6(has been designed for tom chord in all areas is any other members. ps are assumed to be S	pression/Maximum 26, 2-3=-52/7, 4-6=0 (3-second gust) DL=6.0psf; h=25ft; 0 velope) exterior zon ; end vertical left and 0 plate grip DOL=1.6 • a 10.0 psf bottom th any other live load or a live load of 20.0 where a rectangle fit between the botto	Cat. le; d 50 ds. lpsf							* Phone	GAF NUM E-2000 SS/ON UCE 16	IBER 162101
6) Provide m bearing pl	irder(s) for truss to trus echanical connection (ate capable of withstar b uplift at joint 7.	by others) of truss to									AC SIO	VSAS CHUIN

March 11,2024

A WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.
Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not
a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall
building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing
is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the
fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org)
and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)


Job	Truss	Truss Type	Qty	Ply	Lot 117 MN	
240613	J3	Jack-Open	2	1	Job Reference (optional)	164130732


-0-10-8 0-10-8


Wheeler Lumber, Waverly, KS - 66871,

Run: 8.73 S Feb 22 2024 Print: 8.730 S Feb 22 2024 MiTek Industries, Inc. Fri Mar 08 12:04:37 ID:QPxHayrxVYCO9etqHyNYcvzitmf-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

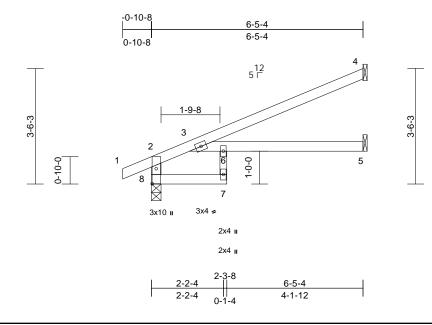
4-4-3 4-4-3

Scale = 1:30.9

Plate Offsets (X, Y): [8:0-5-8,0-1-8]

Loading (psf)	Spacing	2-0-0	csi		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof) 25.0	Plate Grip DOL	1.15		0.21	Vert(LL)	-0.02	3-6	>999	360	MT20	197/144
TCDL 10.0	Lumber DOL	1.15	BC (0.18	Vert(CT)	-0.04	6	>999	240		
BCLL 0.0*	Rep Stress Incr	YES	WB (0.01	Horz(CT)	0.03	5	n/a	n/a		
BCDL 10.0	Code	IRC2018/TPI2014	Matrix-S		Wind(LL)	0.02	3-6	>999	240	Weight: 14 lb	FT = 10%
LUMBER TOP CHORD 2x4 SPF No.2 BOT CHORD 2x4 SPF No.2 WEBS 2x4 SPF No.2 *Exc BRACING TOP CHORD Structural wood she 4-4-3 oc purlins, ex BOT CHORD Rigid ceiling directly bracing. REACTIONS (size) 4= Mech 8=0-3-8 Max Horiz 8=77 (LC Max Uplift 4=-56 (LI	ept* 7-6:2x3 SPF No. eathing directly applie ccept end verticals. y applied or 10-0-0 oc anical, 5= Mechanica : 8)	7) This truss is International R802.10.2 a 2 LOAD CASE(S) d or	designed in accordan Residential Code sec nd referenced standar	ctions	ith the 2018 R502.11.1 ar			2000	2+0	JUA GAR	MISSOUT
FORCES (lb) - Maximum Cor Tension	n (3-second gust) CDL=6.0psf; h=25ft; C nvelope) exterior zon i; end vertical left and 50 plate grip DOL=1.6 or a 10.0 psf bottom rith any other live load for a live load of 20.0 where a rectangle lit between the botto SPF No.2. uss connections. (by others) of truss to	Sat. e; j i0 is. psf m								NUME E-20001 SS/ONA JCE 169	• 41-

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)


16023 Swingley Ridge Rd. Chesterfield, MO 63017 314.434.1200 / MiTek-US.com

March 11,2024

Job	Truss	Truss Type	Qty	Ply	Lot 117 MN	
240613	J4	Jack-Open	4	1	Job Reference (optional)	164130733

Run: 8,73 S Feb 22 2024 Print: 8,730 S Feb 22 2024 MiTek Industries, Inc. Fri Mar 08 12:04:37 ID:FZJYq?vi5OyXtZLzeCUys9zitmZ-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Scale = 1:35

Plate Offsets (X, Y): [8:0-5-8,0-1-8]

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15	TC	0.56	Vert(LL)	-0.09	5-6	>814	360	MT20	197/144
TCDL	10.0	Lumber DOL	1.15	BC	0.46	Vert(CT)	-0.19	5-6	>392	240		
BCLL	0.0*	Rep Stress Incr	YES	WB	0.02	Horz(CT)	0.11	5	n/a	n/a		
BCDL	10.0	Code	IRC2018/TPI2014	Matrix-S		Wind(LL)	0.11	5-6	>682	240	Weight: 19 lb	FT = 10%
LUMBER			7) This truss i	s designed in acc	ordance w	ith the 2018						
TOP CHORE	D 2x4 SPF No.2			al Residential Coo			and					
BOT CHORE	D 2x4 SPF No.2		R802.10.2	and referenced st	tandard AN	ISI/TPI 1.						
WEBS	2x4 SPF No.2 *Exce	pt* 7-6:2x3 SPF No	.2 LOAD CASE(S	 Standard 								
BRACING												
TOP CHORE			ed or									
	6-0-0 oc purlins, ex											
BOT CHORE	0 0 7	applied or 10-0-0 o	С									1111.
DEACTIONS	bracing.	wind C. Mashawia	-1								N'OF	MISSI
REACTIONS	S (size) 4= Mecha 8=0-3-8	inical, 5= Mechanica	ai,								NKE	
	Max Horiz 8=112 (L0	38)								~	18	
	Max Uplift 4=-87 (LC	,								20	JU/	AN ??
	Max Grav 4=188 (L0		8=373							2.	GAR	
	(LC 1)	,, (,,								- *	:	:*=
FORCES	(lb) - Maximum Com	pression/Maximum									1	
	Tension									= 7	NUM	BER
TOP CHORE		27, 2-3=-125/0,									E-2000	162101
	3-4=-70/58									1	A	
BOT CHORE WEBS	D 7-8=0/0, 3-6=0/0, 5- 6-7=-13/52	6=0/0									100000	
	6-7=-13/52										IN ON	ALENN
NOTES		(0									- 1111	inn
	SCE 7-16; Vult=115mph 1mph; TCDL=6.0psf; BC		Cot									
	; Enclosed; MWFRS (er											IIIII.
	er left and right exposed										AN	GARC
	osed; Lumber DOL=1.6										1 20.00	NONA
2) This trus	s has been designed for	r a 10.0 psf bottom									JUAN JUAN JCE PB 16	NOED .
	e load nonconcurrent wi									-		
	uss has been designed f		Opsf							=	1	
	ottom chord in all areas										16	952 : =
	tall by 2-00-00 wide will	nt between the bott	om							-	D	1 0
chord an	nd any other members.									-	DI	

All bearings are assumed to be SPF No.2 . 4)

5) Refer to girder(s) for truss to truss connections.

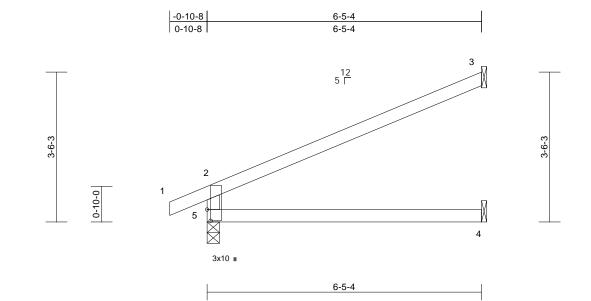
6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 36 lb uplift at joint 8 and 87 lb uplift at joint 4.

> 16023 Swingley Ridge Rd. Chesterfield, MO 63017 314.434.1200 / MiTek-US.com

March .

March 11,2024

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)


Job	Truss	Truss Type	Qty	Ply	Lot 117 MN	
240613	J5	Jack-Open	21	1	Job Reference (optional)	164130734

Run: 8.73 S Feb 22 2024 Print: 8.730 S Feb 22 2024 MiTek Industries, Inc. Fri Mar 08 12:04:37 ID:QPxHayrxVYCO9etqHyNYcvzitmf-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

March 11,2024

16023 Swingley Ridge Rd. Chesterfield, MO 63017 314.434.1200 / MiTek-US.com

Scale = 1:27

Plate Offsets (X, Y): [5:0-3-3,0-1-0]

											-	
Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15	тс	0.63	Vert(LL)	-0.07	4-5	>999	360	MT20	197/144
TCDL	10.0	Lumber DOL	1.15	BC	0.38	Vert(CT)	-0.16	4-5	>476	240		
BCLL	0.0*	Rep Stress Incr	YES	WB	0.00	Horz(CT)	0.06	3	n/a	n/a		
BCDL	10.0	Code	IRC2018/TPI2014	Matrix-R		Wind(LL)	0.08	4-5	>987	240	Weight: 17 lb	FT = 10%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SPF No.2 2x4 SPF No.2 2x4 SPF No.2 Structural wood she 6-0-0 oc purlins, ex Rigid ceiling directly bracing.	athing directly applie cept end verticals. applied or 10-0-0 or nnical, 4= Mechanica C 8) C 8), 5=-45 (LC 8) C 1), 4=118 (LC 3), 5	7) This truss Internation R802.10.2 LOAD CASE(s ed or	s designed in acco al Residential Cod and referenced sta	le sections	ith the 2018 R502.11.1		+-3	2001	*	JU, GAF	MISSOL
TOP CHORD BOT CHORD	Tension 2-5=-311/104, 1-2=0 4-5=0/0									PH	NUM	• []]
NOTES										1	A	
1) Wind: ASC Vasd=91m II; Exp C; E cantilever	CE 7-16; Vult=115mph nph; TCDL=6.0psf; BC Enclosed; MWFRS (er left and right exposed	DL=6.0psf; h=25ft; (nvelope) exterior zor ; end vertical left an	ne; d								1,58/ON	ALENI
	sed; Lumber DOL=1.6 has been designed for		60								MAN	GARCI
 chord live 3) * This trust on the bott 3-06-00 tal chord and 4) All bearing 5) Refer to gi 6) Provide mu bearing plate 	load nonconcurrent wi s has been designed for tom chord in all areas Il by 2-00-00 wide will any other members. Is are assumed to be S rder(s) for truss to tru echanical connection (ate capable of withstar o uplift at joint 3.	th any other live load or a live load of 20.0 where a rectangle fit between the botto SPF No.2 . ss connections. (by others) of truss to	opsf om o							annua.	PROCESSION	952 VSAS

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

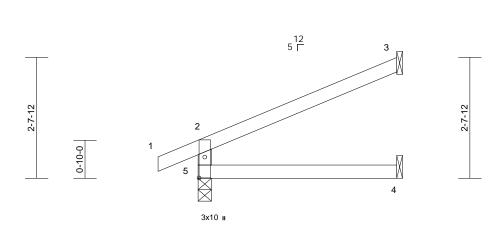
Job	Truss	Truss Type	Qty	Ply	Lot 117 MN	
240613	J6	Jack-Open	4	1	Job Reference (optional)	164130735

4-4-3

4-4-3

4-4-3

-0-10-8


0-10-8

Wheeler Lumber, Waverly, KS - 66871,

Run: 8.73 S Feb 22 2024 Print: 8.730 S Feb 22 2024 MiTek Industries, Inc. Fri Mar 08 12:04:37 ID:ucVfnHrZGsKEnoS0rfvn96zitme-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

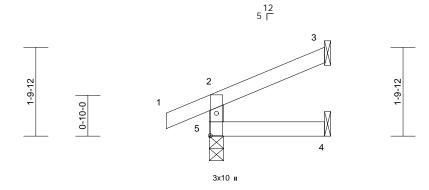
_	Scale	= 1:25.2	2	

Plate Offsets (X,	Y):	[5:0-5-8,0-1-8]
-------------------	-----	-----------------

Loading	(ps	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	(ps 25.		1.15	TC	0.25	Vert(LL)	-0.01	4-5	>999	360	MT20	197/144
TCDL	10.		1.15	BC	0.15	Vert(CT)	-0.03	4-5	>999	240	-	
BCLL	0.	* Rep Stress Incr	YES	WB	0.00	Horz(CT)	0.02	3	n/a	n/a		
BCDL	10.	Code	IRC2018/TPI2014	Matrix-R		Wind(LL)	0.02	4-5	>999	240	Weight: 12 lb	FT = 10%
LUMBER TOP CHORD BOT CHORD WEBS			Ínternationa	designed in acco Residential Code and referenced sta Standard	e sections	s R502.11.1 a	and					
BRACING												
TOP CHORD		sheathing directly appli except end verticals.	ed or									
BOT CHORD		except end verticals. ctly applied or 10-0-0 o	с									1997
REACTIONS	(size) 3= Me	chanical, 4= Mechanica	al,								NE OF	MISS
	5=0-3 Max Horiz 5=77									1	XP	
		(LC 8), 5=-36 (LC 8)								20	JU/	AN
		(LC 1), 4=78 (LC 3), 5	=267							E*	GAR	
FORCES	(lb) - Maximum (compression/Maximum								En		
TOP CHORD	Tension 2-5=-233/75 1-2	=0/27, 2-3=-69/38								=]	NUM	• 41.
BOT CHORD		-0/21, 2 3- 03/30								-10	E-2000	162101
NOTES										1	10.	G
		nph (3-second gust) BCDL=6.0psf; h=25ft; (Cat.								I,ON	ALENIN
II; Exp C;	Enclosed; MWFRS	(envelope) exterior zor	ne;									110-
		ed ; end vertical left an 1.60 plate grip DOL=1.									PRO 16	11111
		for a 10.0 psf bottom	00								MAN	GARC
		t with any other live loa									N' JUNE	NSA
		ed for a live load of 20.0 as where a rectangle)psf									0
		will fit between the botto	m								1 A State 1	- A E
	any other membe										16	952
4) All bearing	gs are assumed to	be SPF No.2 .								=	10	
		truss connections.								-	D	
		on (by others) of truss t									0.	5.4
	b uplift at joint 3.	standing 36 lb uplift at j	UIIIL								1 Contract	Shing
											O/ON	ALENI
											1111	IIIII.
											Marcl	า 11,2024

- 4) All bearings are assumed to be SPF No.2 .
- 5) Refer to girder(s) for truss to truss connections.
- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 36 lb uplift at joint 5 and 67 lb uplift at joint 3.

	MiTek							
nst.org)	16023 Swingley Ridge Rd. Chesterfield, MO 63017 314.434.1200 / MiTek-US.com							


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpin and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

Job	Truss	Truss Type Qty		Ply	Lot 117 MN	
240613	J7	Jack-Open	4	1	Job Reference (optional)	I64130736

Run: 8,73 S Feb 22 2024 Print: 8,730 S Feb 22 2024 MiTek Industries, Inc. Fri Mar 08 12:04:37 ID:ucVfnHrZGsKEnoS0rfvn96zitme-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

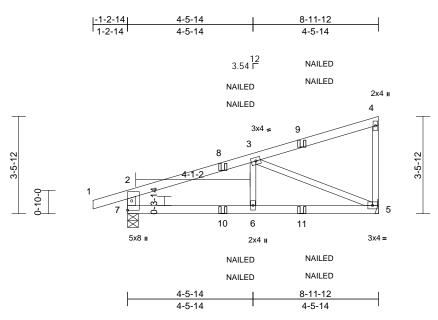
-0-10-8 2-4-3 0-10-8 2-4-3

2-4-3

Scale =	1:23.5

Plate Offsets (X, Y): [5:0-5-8,0-1-8]

		1		1	-							
Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15	TC	0.07	Vert(LL)	0.00	4-5	>999	360	MT20	197/144
TCDL	10.0	Lumber DOL	1.15	BC	0.04	Vert(CT)	0.00	4-5	>999	240		
BCLL	0.0*	Rep Stress Incr	YES	WB	0.00	Horz(CT)	0.00	3	n/a	n/a		
BCDL	10.0	Code	IRC2018/TPI2014	Matrix-R		Wind(LL)	0.00	4-5	>999	240	Weight: 7 lb	FT = 10%
LUMBER TOP CHORD	2x4 SPF No.2			s designed in acco al Residential Code			ind					
BOT CHORD	2x4 SPF No.2			and referenced sta								
WEBS	2x4 SPF No.2		LOAD CASE(S									
BRACING			20/12 0/102(0) olandara								
TOP CHORD	Structural wood she	eathing directly appli	ed or									
	2-4-3 oc purlins, ex	cept end verticals.										
BOT CHORD	Rigid ceiling directly bracing.	/ applied or 10-0-0 o	с									Mille
REACTIONS	(size) 3= Mecha 5=0-3-8	anical, 4= Mechanica	al,								NYE.	WISSO !!
	Max Horiz 5=46 (LC	5)								5	7	
	Max Uplift 3=-36 (LC	C 8), 5=-30 (LC 4)									2. JU	AN
	Max Grav 3=59 (LC (LC 1)	: 1), 4=39 (LC 3), 5=	185							Ξ×	GAF	
FORCES	(lb) - Maximum Con Tension	npression/Maximum								=	NUN	
TOP CHORD	2-5=-162/49, 1-2=0	/27, 2-3=-38/17								= 5		162101
BOT CHORD	4-5=0/0										L-2000	102101
NOTES										1	1. Co.	G
	CE 7-16; Vult=115mpl										IN ON	ALENI
	ph; TCDL=6.0psf; BC										1111	1111 Contraction
	Enclosed; MWFRS (e											
	left and right exposed sed; Lumber DOL=1.6											
	has been designed for		00								INIAN	GARC
	load nonconcurrent w		ds.								N 30	No.A .
3) * This truss	s has been designed	for a live load of 20.0	Dpsf								CE	NSEO
	tom chord in all areas									-		1 2
	ll by 2-00-00 wide will	fit between the botto	m							-	1	
	any other members.										16	952 🗄 🗄
	is are assumed to be rder(s) for truss to tru									11111	D:	A : = =
	echanical connection		0							-	H.	M. 145
	ate capable of withsta										- A A	NGAS SS
	o uplift at joint 3.										1586	GN
	· ·										10/01	VALE
											111	in in the second s
											Marc	h 11,2024


- chord and any other members. 4) All bearings are assumed to be SPF No.2 .
- Refer to girder(s) for truss to truss connections.
- 5)
- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 30 lb uplift at joint 5 and 36 lb uplift at joint 3.

16023 Swingley Ridge Rd. Chesterfield, MO 63017 314.434.1200 / MiTek-US.com

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent colleges with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

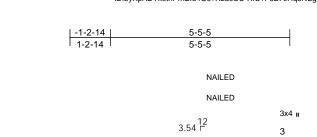
Job	Truss	Truss Type	Qty	Ply	Lot 117 MN	
240613	J8	Diagonal Hip Girder	2	1	Job Reference (optional)	164130737

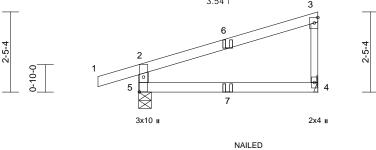
Run: 8,73 S Feb 22 2024 Print: 8,730 S Feb 22 2024 MiTek Industries, Inc. Fri Mar 08 12:04:37 ID:FZJYq?vi5OyXtZLzeCUys9zitmZ-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Scale = 1:41.3

Locking (pd) Spacing 2-0- (main point of the participant point poi
 TOP CHORD 244 SPF No.2 BOT CHORD 244 SPF No.2 Star Stractural words starting directly applied of 10-0-0 contraction of the LOAD CASE(5) section. (Sea Sections R502,11.1 and R802.10.2 and referenced standard ANSI/TP1 1. NALLED' indicates 3-10d (0.148'x3) or 2-12d (0.148'

- chord and any other members. 4) All bearings are assumed to be SPF No.2 .
- 5) Refer to girder(s) for truss to truss connections.
- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 137 lb uplift at joint 7 and 109 lb uplift at joint 5.


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent colleges with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)



Job	Truss	Truss Type	Qty	Ply	Lot 117 MN	
240613	J9	Diagonal Hip Girder	4	1	Job Reference (optional)	164130738

Run: 8.73 S Feb 22 2024 Print: 8.730 S Feb 22 2024 MiTek Industries, Inc. Fri Mar 08 12:04:37 ID:byRpADYx9thPrhBf84G6?Rzd0CU-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

NAILED

5-5-5

Plate Offsets (X, Y): [5:0-5-6,0-1-8]

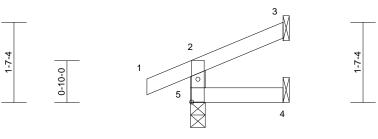
	(74, 1): [8:8 8 8;8 1 8]											
Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15	тс	0.38	Vert(LL)	-0.03	4-5	>999	360	MT20	197/144
TCDL	10.0	Lumber DOL	1.15	BC	0.24	Vert(CT)	-0.06	4-5	>999	240		
BCLL	0.0*	Rep Stress Incr	NO	WB	0.00	Horz(CT)	0.00	4	n/a	n/a		
BCDL	10.0	Code	IRC2018/TPI20	14 Matrix-R		Wind(LL)	0.01	4-5	>999	240	Weight: 16 lb	FT = 10%
LUMBER			8) "NAIL	ED" indicates 3-10d (0.	.148"x3") c	or 2-12d						
TOP CHORD	2x4 SPF No.2			3"x3.25") toe-nails per N								
BOT CHORD	2x4 SPF No.2			LOAD CASE(S) sectio			ace					
WEBS	2x4 SPF No.2 *Exce	pt* 3-4:2x3 SPF No		truss are noted as fron	t (F) or ba	ck (B).						
BRACING				SE(S) Standard								
TOP CHORD	Structural wood she	athing directly applie		d + Roof Live (balanced	d): Lumber	Increase=1.	15,					
	5-5-5 oc purlins, ex			e Increase=1.15								
BOT CHORD	0 0 ,	applied or 10-0-0 or	•	orm Loads (lb/ft)								111.
	bracing.			ert: 1-2=-70, 2-3=-70, 4	-5=-20						IN OF	MICH
REACTIONS	· · ·	inical, 5=0-4-9		centrated Loads (lb)							NE	0801
	Max Horiz 5=98 (LC	,	V	ert: 7=-2 (F=2, B=-4)						- 5	18	
	Max Uplift 4=-48 (LC									-		ANI : D-
	Max Grav 4=222 (L0									2	JU.	
FORCES	(lb) - Maximum Com	pression/Maximum								= *	GAF	
	Tension											
TOP CHORD)/27, 2-3=-127/14,								= 1		
BOT CHORD	3-4=-158/71 4-5=-27/49									= 5	NUM	• 41.
	4-5=-27/49									- 1	C: E-2000	162101
NOTES	0= = 40 \ 4 4 4 4 4	(0))								-	A	
	CE 7-16; Vult=115mph		Cat								1,00,	
	mph; TCDL=6.0psf; BC Enclosed; MWFRS (er										ON N	ALEIN
	· left and right exposed											inn.
	sed; Lumber DOL=1.6											
	has been designed for		00									
	load nonconcurrent wi		ds.								UCE P	GARCI
	ss has been designed f										N 30	NO
on the bot	ttom chord in all areas	where a rectangle									UCE	ED .
	all by 2-00-00 wide will	fit between the botto	om							-		1 2
	any other members.									-		
	gs are assumed to be \$										16	952
	pirder(s) for truss to trus									1	T	
Provide m	nechanical connection (by others) of truss t	0							-	1	

- Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 102 lb uplift at joint 6) 5 and 48 lb uplift at joint 4.
- This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. 7)

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent colleges with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)


March

March 11,2024


Job	Truss	Truss Type	Qty	Ply	Lot 117 MN	
240613	J10	Jack-Open	7	1	Job Reference (optional)	164130739

Run: 8,73 S Feb 22 2024 Print: 8,730 S Feb 22 2024 MiTek Industries, Inc. Fri Mar 08 12:04:37 ID:?eQypZ8ATE3sxsJMLjBvIzzd0EI-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

3x10 ш

1-10-3

Scale = 1:23	

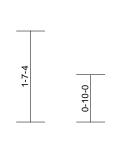
Plate Offsets (X, Y): [5:0-5-8,0-1-8]

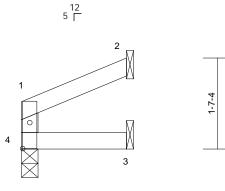
bading CLL (roof)	(psf) 25.0	Spacing Plate Grip DOL	2-0-0 1.15	CSI TC	0.07	DEFL Vert(LL)	in 0.00	(loc) 4-5	l/defl >999	L/d 360	PLATES MT20	GRIP 197/144
	10.0	Lumber DOL	1.15	BC	0.02	Vert(CT)	0.00	4-5	>999	240	101120	131/144
CLL	0.0*	Rep Stress Incr	YES	WB	0.00	Horz(CT)	0.00	3	n/a	n/a		
CDL	10.0	Code	IRC2018/TPI2014	Matrix-R		Wind(LL)	0.00	4-5	>999	240	Weight: 6 lb	FT = 10%
			7) This trues			:4h 4h a 2010						
JMBER DP CHORD	2x4 SPF No.2			is designed in acc al Residential Coo			nd					
DF CHORD	2x4 SPF No.2 2x4 SPF No.2			and referenced st								
EBS	2x4 SPF No.2		LOAD CASE									
RACING			(,								
OP CHORD	Structural wood sh	eathing directly applie	ed or									
		except end verticals.										
OT CHORD		y applied or 10-0-0 o	С									llin.
EACTIONS	bracing.	onical 4 Machanica									Nº OF	MISSI
EACTIONS	(SIZE) 3= Mech 5=0-3-8	anical, 4= Mechanica	1 ,								N XE	
	Max Horiz 5=41 (L0	C 5)								~	74 · · ·	
	Max Uplift 3=-28 (L	C 8), 5=-32 (LC 4)								20	S. JU	AN
I		C 1), 4=30 (LC 3), 5=	169							24	GAF	RCIA
	(LC 1)									= ^	÷	
ORCES		mpression/Maximum								= 1	1	in in
OP CHORD	Tension 2-5=-148/46, 1-2=0	/27 2-331/11								= 5		IBER
OT CHORD	4-5=0/0	//27, 2-5=-51/11								-	E-2000	162101
DTES										1	A	-
	E 7-16; Vult=115mp	h (3-second gust)									1,SION	ALENIN
		CDL=6.0psf; h=25ft; (ALTIN
		envelope) exterior zor										
		d; end vertical left an										uun,
	has been designed f	60 plate grip DOL=1.	60								11 JUAN	GARC
		vith any other live loa	ds.								1. 20	
		for a live load of 20.0									CF	NSEO
	om chord in all areas									-		
		I fit between the botto	om							-	1	0-0
	any other members. s are assumed to be	SDE No 2								-	The Te	952
	rder(s) for truss to tr									-	D	
		(by others) of truss t	0							-	20.	M. 14:
		anding 32 lb uplift at j	oint								- A	NSAS.
5 and 28 lb	o uplift at joint 3.										S.S.	ENGIN
											111	VAL
											More	h 11,2024
											iviard	/1 11,2024

- 3 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members. 4) All bearings are assumed to be SPF No.2 .
- 5) Refer to girder(s) for truss to truss connections.
- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 32 lb uplift at joint 5 and 28 lb uplift at joint 3.

16023 Swingley Ridge Rd. Chesterfield, MO 63017 314.434.1200 / MiTek-US.com

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent colleges with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)


Job	Truss	Truss Type	Qty	Ply	Lot 117 MN	
240613	J10A	Jack-Open	1	1	Job Reference (optional)	164130740


1-10-3

Wheeler Lumber, Waverly, KS - 66871,

Run: 8,73 S Feb 22 2024 Print: 8,730 S Feb 22 2024 MiTek Industries, Inc. Fri Mar 08 12:04:37 ID:?eQypZ8ATE3sxsJMLjBvIzzd0EI-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

3x10 u

1-10-3	

Scale = 1:20.3

Plate Offsets (X, Y): [4:0-5-8,0-1-8]

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15	TC	0.04	Vert(LL)	0.00	3-4	>999	360	MT20	197/144
TCDL	10.0	Lumber DOL	1.15	BC	0.02	Vert(CT)	0.00	3-4	>999	240		
BCLL	0.0*	Rep Stress Incr	YES	WB	0.00	Horz(CT)	0.00	2	n/a	n/a		
BCDL	10.0	Code	IRC2018/TPI2014	Matrix-R		Wind(LL)	0.00	3-4	>999	240	Weight: 5 lb	FT = 10%
LUMBER			7) This truss is	designed in acc	ordance w	ith the 2018						
TOP CHORD	2x4 SPF No.2		Internationa	I Residential Coc	de sections	R502.11.1 a	and					
BOT CHORD	2x4 SPF No.2		R802.10.2 a	and referenced st	tandard AN	ISI/TPI 1.						
WEBS	2x4 SPF No.2		LOAD CASE(S	Standard								
BRACING												
TOP CHORD	Structural wood she											
	1-10-3 oc purlins, e											
BOT CHORD	Rigid ceiling directly	applied or 10-0-0 o	С									III.
	bracing.										N'OF	MIS
REACTIONS	(size) 2= Mecha 4=0-3-8	anical, 3= Mechanica	al,								N X E	
	4=0-3-8 Max Horiz 4=32 (LC	5)								1	18	
	Max Uplift 2=-31 (LC									-	JU,	AN :2-
	Max Grav 2=55 (LC		76							-	GAF	
	(LC 1)	1), 0=00 (E0 0), 4=	10							= *	GAP	*=
FORCES	(lb) - Maximum Com	pression/Maximum								=	:	
	Tension									- 7	NUM	BEB : C-
TOP CHORD	1-4=-63/18, 1-2=-28	/17								-7	- E-2000	
BOT CHORD	3-4=0/0										L-2000	102101
NOTES											A	G
1) Wind: ASC	CE 7-16; Vult=115mph	(3-second gust)									1,SION	AL ENIN
Vasd=91n	nph; TCDL=6.0psf; BC	DL=6.0psf; h=25ft;	Cat.									ALTIN
	Enclosed; MWFRS (er											10.0
	left and right exposed											IIII.
right expo	sed; Lumber DOL=1.6	0 plate grip DOL=1.	60									GAD

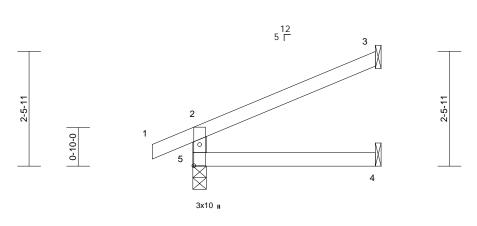
2) This truss has been designed for a 10.0 psf bottom

chord live load nonconcurrent with any other live loads. * This truss has been designed for a live load of 20.0psf 3) on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.

4) All bearings are assumed to be SPF No.2 .

Refer to girder(s) for truss to truss connections. 5)

Provide mechanical connection (by others) of truss to 6) bearing plate capable of withstanding 31 lb uplift at joint 2.



Job	Truss	Truss Type	Qty	Ply	Lot 117 MN	
240613	J11	Jack-Open	16	1	Job Reference (optional)	164130741

Run: 8,73 S Feb 22 2024 Print: 8,730 S Feb 22 2024 MiTek Industries, Inc. Fri Mar 08 12:04:37 ID:LbDrtGCJIni91dBK8Gn4?1zd0ED-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

3-11-4

Scale = 1:24.9	
Plate Offsets (X_Y)	[5:0-5-8 0-1-8]

Loading TCLL (roof) (ps) 25.0 Spacing (ps) 25.0 2-0-0 Plate Grip DOL Lumber DOL 1.15 CSI TC TC DE 0.00 DEFL TC C in (loc) V/defl L/d L/d F PLATES FRIP MT20 GRIP MT20 BCLL 0.0° 10.0 0.0° Rep Stress Incr YES WB 0.01 4.5 5.999 360 MT20 197/144 BCLL 0.0° Vind(LL) 0.01 4.5 5.999 240 Weight: 11 lb FT = 10% LUMBER TOP CHORD 2x4 SPF No.2 Code 7) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and references standard ANS/TP1 1. LOAD CASE(S) Standard BOT CHORD Structural wood sheathing directly applied or 3-11-4 co purins, except end verticals. BOT CHORD Signal and Signal and Signal and Signa	Plate Offsets (2	X, Y): [5:0-5-8,0-1-8]			-								
TOP CHORD 2x4 SPF No.2 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANS//TP11. BOT CHORD 2x4 SPF No.2 LOAD CASE(S) Standard BR802.10.2 and referenced standard ANS//TP11. WEBS 2x4 SPF No.2 LOAD CASE(S) Standard BR802.10.2 and referenced standard ANS//TP11. LOAD CASE(S) Standard BR802.10.2 and referenced standard ANS//TP11. BOT CHORD Structural wood sheathing directly applied or 10-0-0 oc bracing. REACTIONS (size) 3 = Mechanical, 4 = Mechanical, 5=0-3-8 Max Horiz 5=70 (LC 8) Max Uplift 3=-61 (LC 8), 5=-34 (LC 8) Max Uplift 3=-61 (LC 8), 5=-34 (LC 8) Max Uplift 3=-61 (LC 1), 4=70 (LC 3), 5=249 (LC 1) FORCES (b) - Maximum Compression/Maximum Tension TOP CHORD 2-5=-218/70, 1-2=0/27, 2-3=-63/34 BOT CHORD 4-5=0/0 NOTES 1) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25f; Cat. LI: Exp C: Enclosed: MWFRS (cneelope) exterior zone:	TCLL (roof) TCDL BCLL	25.0 10.0 0.0*	Plate Grip DOL Lumber DOL Rep Stress Incr	1.15 1.15 YES	TC BC WB	0.12	Vert(LL) Vert(CT) Horz(CT)	-0.01 -0.02 0.01	4-5 4-5 3	>999 >999 n/a	360 240 n/a	MT20	197/144
FORCES (lb) - Maximum Compression/Maximum Tension TOP CHORD 2-5=-218/70, 1-2=0/27, 2-3=-63/34 BOT CHORD 4-5=0/0 NOTES 1) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II: Exp C: Enclosed: MWERS (envelope) exterior zone:	TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SPF No.2 2x4 SPF No.2 Structural wood she 3-11-4 oc purlins, e Rigid ceiling directly bracing. (size) 3= Mecha 5=0-3-8 Max Horiz 5=70 (LC Max Uplift 3=-61 (LC Max Grav 3=115 (LC	xcept end verticals. applied or 10-0-0 oc anical, 4= Mechanica 8) \$ 8), 5=-34 (LC 8)	Internationa R802.10.2 a LOAD CASE(S) ad or	Residential Code Ind referenced sta	e sections	R502.11.1 a	and				•	
 4) All bearings are assumed to be SPF No.2. 5) Refer to girder(s) for truss to truss connections. 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 34 lb uplift at joint 5 and 61 lb uplift at joint 3. 	Max Uplift 3=-61 (LC 8), 5=-34 (LC 8) Max Grav 3=115 (LC 1), 4=70 (LC 3), 5=249 (LC 1) FORCES (lb) - Maximum Compression/Maximum Tension TOP CHORD 2-5=-218/70, 1-2=0/27, 2-3=-63/34 BOT CHORD 4-5=0/0 NOTES 1) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 3) * This truss has been designed for a 10.0 psf bottom chord any other members. 4) All bearings are assumed to be SPF No.2. 5) Refer to girder(s) for truss to truss connections. 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 34 lb uplift at joint										62101 ALENGIN		

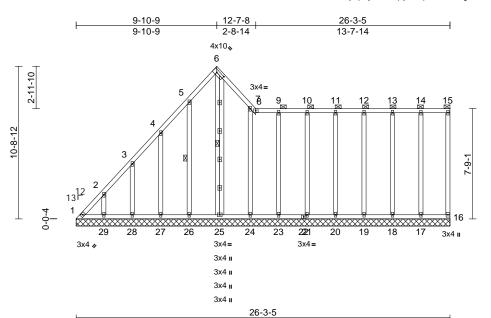
- 4) All bearings are assumed to be SPF No.2 .
- 5) Refer to girder(s) for truss to truss connections.
- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 34 lb uplift at joint 5 and 61 lb uplift at joint 3.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

Job	Truss	Truss Type	Qty	Ply	Lot 117 MN	
240613	LAY1	Lay-In Gable	1	1	Job Reference (optional)	164130742

Run: 8.73 E Jan 4 2024 Print: 8.730 E Jan 4 2024 MiTek Industries, Inc. Mon Mar 11 09:38:31 ID:ucVfnHrZGsKEnoS0rfvn96zitme-o?KROvp08FiUPo39AeISVI6Wihi_qCkO6RKHiHzc2MN

Scale = 1:61.5


Loading TCLL (roof) TCDL BCLL BCDL	(psf) 25.0 10.0 0.0* 10.0	Plate Grip DOL Lumber DOL Rep Stress Incr	2-0-0 1.15 1.15 YES IRC2018/TF	912014	CSI TC BC WB Matrix-S	0.06 0.05 0.11	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.01	(loc) - - 11	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 110 lb	GRIP 197/144 FT = 10%
LUMBER TOP CHORD BOT CHORD OTHERS BRACING TOP CHORD BOT CHORD WEBS REACTIONS	2x4 SPF No.2 2x4 SPF No.2 Structural wood she 6-0-0 oc purlins. Rigid ceiling directly bracing. 1 Row at midpt (lb/size) 1=79/19- 12=182/1 14=180/1 16=116/1 20=182/1 Max Horiz 1=-277 (L Max Uplift 1=-133 (L 12=-131 14=-135 17=-124 Max Grav 1=272 (L 12=207 (L 12=207 (L 12=205 (L))	_C 4) _C 6), 11=-88 (LC 7), (LC 9), 13=-128 (LC 9), (LC 9), 15=-121 (LC 9), (LC 8), 18=-134 (LC 8), (LC 8), 20=-131 (LC 8) C 8), 11=242 (LC 9), LC 16), 13=205 (LC 16) LC 9), 17=212 (LC 15), LC 15), 19=205 (LC 15)	thi 2) W V2 II; ca rig 3) Tr or 3) Tr or 4) Al 5) Ga 6) Ga 6) Ga 7) Th ch 8) * 1 or or 0, 3- 10) Pr	4 8 8 9 10 10 10 10 10 10 10 10 10 10 10 10 10	hanical connecti	5-17=-173, 9-13=-16 7-15=-169 ave been mph (3-sec BCDL=6. 8 (envelop sed ; end v =1.60 plate designer a sed ; end v =1.60 plate designer a ses otherwi ottom chor oc. d for a 10. nt with any ed for a 10 ed for a 10 twith any ed for a 10 ses where will fit betw rs. be SPF Ni ion (by oth	(148, 6/153, 6/153, 6/153, 6/153, 6/153, 6/153, 6/154, considered fo cond gust) Dpsf; h=25ft; (a) exterior zon vertical left an grip DOL=1. ane of the tru al to the face ils as applical s per ANSI/TF se indicated. d bearing. D psf bottom other live loa e load of 20.0 a rectangle ween the botto b.2 crushing ers) of truss t	r Cat. ne; d 60 ss), ble, Pl 1. Dpsf om				JUAN C	CIA *
FORCES TOP CHORD BOT CHORD	Tension 1-2=-386/241, 2-3= 4-5=-143/144, 5-6=	7-18=-123/260, 1-16=-123/260, 1-14=-123/260,	1, up joi 13 11) Tr Ini R{	88 lb uplift blift at joint 7 int 17, 131 l 35 lb uplift a his truss is o ternational	capable of with at joint 11, 131 19, 134 lb uplift lb uplift at joint 1 designed in acco Residential Coc nd referenced st Standard	Ib uplift at at joint 18, 12, 128 Ib 21 Ib uplift ordance w de sections	joint 20, 128 124 lb uplift uplift at joint 1 at joint 15. ith the 2018 \$R502.11.1 a	İb at I3,			CHIIII W	PROPERTY OF	952
BOT CHORD	7-8=-96/102, 8-9=-1 10-11=-345/179 1-20=-123/260, 19- 18-19=-123/260, 17 16-17=-123/260, 15 14-15=-123/260, 13	123/82, 9-10=-221/131, 20=-123/260, -18=-123/260, -16=-123/260, -14=-123/260,	13 11) Th Int R8	35 lb uplift a his truss is o ternational 802.10.2 an	at joint 14 and 12 designed in according Residential Coording referenced st	21 lb uplift ordance w de sections	at joint 15. ith the 2018 R502.11.1 a				THINK.		

March 11,2024

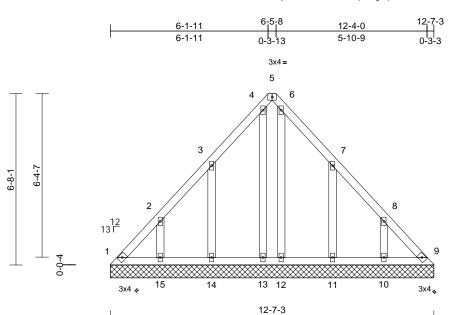
Job	Truss	Truss Type	Qty	Ply	Lot 117 MN	
240613	LAY2	Lay-In Gable	1	1	Job Reference (optional)	164130743

Run: 8.73 E Jan 4 2024 Print: 8.730 E Jan 4 2024 MiTek Industries, Inc. Mon Mar 11 09:39:10 ID:ucVfnHrZGsKEnoS0rfvn96zitme-dhlZoal6jXlpCy7rW2Tq6jmHUpLUCGXHJg0O5zzc2LI

Scale = 1:81

Plate Offsets (X, Y): [6:0-6-10,0-2-0], [22:0-1-14,0-1-8]

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP				
TCLL (roof)	(psi) 25.0		1.15	TC	0.26	Vert(LL)	n/a	(100)	n/a	999	MT20	197/144				
TCDL	10.0		1.15	BC	0.20	Vert(TL)	n/a	-	n/a	999		107/177				
BCLL	0.0*		YES	WB	0.25	Horiz(TL)	0.00	16	n/a	n/a	1					
BCDL	10.0		IRC2018/TPI2014	Matrix-S	-						Weight: 177 lb	FT = 10%				
LUMBER			TOP CHORD									a live load of 20.0ps				
TOP CHORE				4-5=-281/233, 5-			83,				rd in all areas wh					
BOT CHORE				7-8=-90/65, 8-9=	,	,		3-0	6-00 tall	by 2-0	00-00 wide will fit	between the bottom				
WEBS OTHERS	2x4 SPF No.2 2x4 SPF No.2			10-11=-105/80, 12-13105/80				chord and any other members. F M/S								
	2X4 3PF NU.2			12-13=-105/80, 13-14=-105/80, 14-15=-105/80, 15-16=-62/43							10) All bearings are assumed to be SPF No.2 croshing capacity of 425 psi					
BRACING TOP CHORE		athing directly applied	or BOT CHORD	,			3/88,									
TOF CHORE		cept end verticals, and		26-27=-113/88, 2	25-26=-11	3/88,		bea	aring pla	te capa	able of withstandi	ng 196 lb uplift at joi				
		line (6.0-0 max): 8-15 24-25=-107/81, 23-24=-107/81, 1, 18										ft at joint 29, 129 lb				
BOT CHORE		applied or 10-0-0 oc		22-23=-107/81, 2		,		upl	ift at join	t 28, 1	33 lb uplift at join	t 27, 124 lb uplift at				
	bracing.			20-21=-107/81, 18-19=-107/81,								6 lb uplift at joint 24, joint 18, 32 lb, uplift				
WEBS	1 Row at midpt	5-26, 6-25		16-17=-107/81, 16-17=-107/81	10=10	7701,						Cuplificat joint 21 and				
REACTIONS	· · ·	3-5, 16=71/26-3-5,	WEBS	2-29=-162/148, 3	3-28=-166	/154,		25	lb uplift a	at ioint	23	. ~ ~				
		6-3-5, 18=179/26-3-5, 6-3-5, 20=180/26-3-5,		4-27=-165/157, 5	5-26=-169	/149,		12) Thi	s truss is	s desig	ned in accordance	ce with the 2018				
	21=181/2		6-25=-273/248, 7		,		Inte	ernationa	al Resi	dential Code sect	ions R502 11.1 and					
		6-3-5, 25=181/26-3-5,		14-17=-148/92, 13-18=-139/52, 12-19=-140/59, 11-20=-140/57, 10-21=-141/62, 9-23=-135/49					02.10.2	and ref	erenced standar	D'ANSI/TPI 1.				
		6-3-5, 27=181/26-3-5,							 Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or 							
	28=180/2	6-3-5, 29=182/26-3-5	NOTEO	10-21=-141/62, 9-23=-135/49						or the orientation of the purlin along the top and/or bottom chord.						
	Max Horiz 1=373 (L	/		 NOTES 1) Unbalanced roof live loads have been considered for this design. 					LOAD CASE(S) Standard							
	Max Uplift 1=-196 (L		,													
		C 9), 18=-38 (LC 5), C 9), 20=-34 (LC 5),			nph (3-seo	cond aust)										
		.C 9), 23=-25 (LC 5),		 Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. 					16952							
		(LC 4), 25=-204 (LC 7)		Enclosed; MWFRS								1111.				
	26=-124	(LC 8), 27=-133 (LC 8)	cantileve	left and right expos				IN GAR								
		(LC 8), 29=-131 (LC 8)	right expo	sed; Lumber DOL=							N JUA					
	Max Grav 1=316 (L			signed for wind load studs exposed to w							CE	NSE				
		LC 22), 18=179 (LC 1),	Cham	dard Industry Gable												
		LC 22), 20=180 (LC 1), LC 22), 23=174 (LC 1),		t qualified building c						-	1.1	1 1				
		LC 22), 23=174 (LC 1), LC 16), 25=299 (LC 4),	() Dura dala a	dequate drainage to				16952								
	26=211 (). 5) All plates						16952								
		LC 15), 29=207 (LC 15	6) Gable red	·, · · · · · · · · · · · · · · · · · ·					PRO KANSAS							
FORCES	(lb) - Maximum Con	pression/Maximum		ids spaced at 2-0-0							- 9 · · · ·	13:14:				
	Tension	•		has been designed load nonconcurren				ANSP G								
			chord live	ioau nonconcurren	n with any	other live load	15.				March	ALENIN				
											1111	innin, i				
											Morek	11 2024				


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

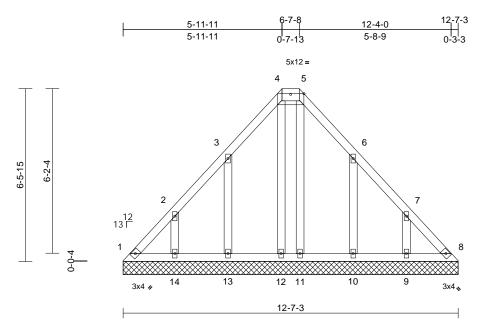
March 11,2024

Job	Truss	Truss Type	Qty	Ply	Lot 117 MN	
240613	LAY3	Lay-In Gable	1	1	Job Reference (optional)	164130744

Run: 8,73 S Feb 22 2024 Print: 8,730 S Feb 22 2024 MiTek Industries, Inc. Fri Mar 08 12:04:38 ID:wsKlikW713BtsG3cVanUtjzd0GO-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Scale = 1:44.9

Loading TCLL (roof)	(psf) 25.0	Spacing Plate Grip DOL	2-0-0 1.15	CSI TC	0.06	DEFL Vert(LL)	in n/a	(loc) -	l/defl n/a	L/d 999	PLATES MT20	GRIP 197/144
TCDL	10.0	Lumber DOL	1.15	BC	0.03	Vert(TL)	n/a	-	n/a	999		
BCLL	0.0*	Rep Stress Incr	YES	WB	0.07	Horiz(TL)	0.00	9	n/a	n/a		
BCDL	10.0	Code	IRC2018/TPI2014	Matrix-S							Weight: 60 lb	FT = 10%
LUMBER TOP CHORD BOT CHORD OTHERS BRACING TOP CHORD BOT CHORD REACTIONS FORCES TOP CHORD BOT CHORD	2x4 SPF No.2 2x4 SPF No.2 2x4 SPF No.2 Structural wood she 6-0-0 oc purlins. Rigid ceiling directly bracing. (size) 1=12-7-3, 11=12-7-7 14=12-7-7 Max Horiz 1=-171 (L Max Uplift 1=-66 (LC 10=-129 (L 15=-129 (L 15=-129 (L) 12=113 (L) 14=215 (L) (lb) - Maximum Com Tension 1-2=-211/150, 2-3=- 4-5=-30/83, 5-6=-36 7-8=-93/65, 8-9=-18 1-15=-73/150, 14-15 13-14=-73/150, 12-1 11-12=-73/150, 10-1	<pre>C 6), 9=-34 (LC 7), (LC 9), 11=-138 (LC 9), (LC 8), 14=-138 (LC 8), (LC 8) C 5), 14=-138 (LC 9), (LC 8) 9=122 (LC 9), (LC 16), 11=216 (LC 10), (LC 17), 13=129 (LC 10)</pre>	only. For stu see Standar, or consult qu Provide aded 5) All plates are 6) Gable requir 7) Gable studs 8) This truss h chord live loa chord live loa 7-3, 9) * This truss h on the bottor 3-06-00 tall h chord and ar 10) All bearings 11) Provide mec bearing plate 1, 34 lb uplift uplift at joint 5), 12) This truss is International R802.10.2 a 8, LOAD CASE(S)	hed for wind loads ids exposed to wind d Industry Gable E lailified building de quate drainage to e 2x4 MT20 unless es continuous bot spaced at 2-0-0 o us been designed ad nonconcurrent has been designed in chord in all area by 2-00-00 wide w hy other members are assumed to be hanical connection e capable of withst at joint 9, 129 lb 14, 20 lb uplift at join designed in accor Residential Code nd referenced star Standard	nd (norm End Deta signer as prevent v s otherwi tom chor c. for a 10.0 with any d for a liv as where ill fit betw e SPF No n (by oth tanding 6 uplift at jo oint 13, it 11. dance w sections	al to the face) ils as applicat s per ANSI/TP water ponding se indicated. d bearing. D psf bottom other live load e load of 20.0 a rectangle ween the botto D.2. ers) of truss to 6 lb uplift at jo pint 15, 138 lb 129 lb uplift at itt the 2018 i R502.11.1 ai), ole, PI 1. J. ds. dpsf om opint				JUAN C	MISSOCA NN CIA
WEBS	2-15=-160/147, 3-14 4-13=-103/36, 8-10= 7-11=-175/164, 6-12	-160/147,								ATTEN A		60
this design 2) Wind: AS0 Vasd=91n II; Exp C; cantilever	ed roof live loads have n. CE 7-16; Vult=115mph nph; TCDL=6.0psf; BC Enclosed; MWFRS (er left and right exposed sed; Lumber DOL=1.6	(3-second gust) DL=6.0psf; h=25ft; Ca nvelope) exterior zone ; end vertical left and	;							THE.	DAL CAN	ALENGINI


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

16023 Swingley Ridge Rd. Chesterfield, MO 63017 314.434.1200 / MiTek-US.com

March 11,2024

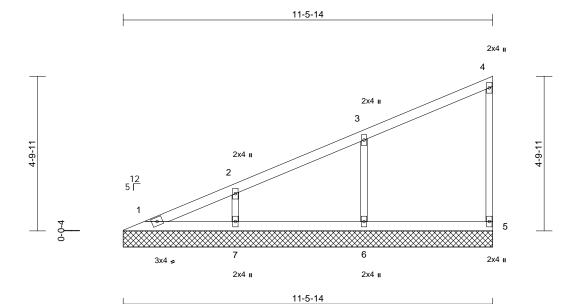
Job	Truss	Truss Type	Qty	Ply	Lot 117 MN	
240613	LAY4	Lay-In Gable	1	1	Job Reference (optional)	164130745

Run: 8,73 S Feb 22 2024 Print: 8,730 S Feb 22 2024 MiTek Industries, Inc. Fri Mar 08 12:04:38 ID:yWJWb5gmbqW3jIwh_PtyRczd?Xj-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Scale = 1:43.3

Plate Offsets (X, Y): [4:0-6-0,0-0-5]

Loading (psf) Spacing 2-0-0 CSi DEFL in (loc) !/def !/def !/def BLATES GRIP TCLL (roof) 25.0 Plate Grip DOL 1.15 TC 0.05 Vert(LL) n/a - n/a 999 MT20 197/144 TCDL 10.0 Lumber DOL 1.15 BC 0.03 Vert(TL) n/a - n/a 999 MT20 197/144 BCLL 0.0* Rep Stress Incr YES WB 0.06 Horiz(TL) 0.00 8 n/a n/a PLATES FT = 10% BCDL 10.0 Code IRC2018/TPI2014 Matrix-S Verticities	
LUMBER TOP CHORD 2x4 SPF No.2 "Except 4-5:2x6 SPF No.2 BOT CHORD 2x4 SPF No.2 BRACING OTHERS 2x4 SPF No.2 BRACING COTHERS 2x4 SPF No.2 BRACING COTHERS Structural wood sheathing directly applied or 6-0-0 op purins; 6:-0-0 bracing. Trust designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSITP1 1. REACTIONS (size) 1=12-73, 11=12-73, 12=12-73, 13=12-73, 11=12-73, 11=12-73, 13=12-73, 11=12-73, 12=12-72, 13=12-73, 11=12-73, 11=12-73, 13=12-73, 11=27-8, 11=0(LC 18), 11=111(LC 17), 12=12/LC L18), 13=219 (LC 16), 1-22=14 (LC 18), 13=219 (LC 16), 1-22=14 (LC 18), 13=2219 (LC 15), 1-4=24 (LC 18), 13=2219 (LC 16), 1-22=14 (LC 18), 13=2219 (LC 15), 1-4=24 (LC 18), 13=2219 (LC 16), 1-2=127 (LC 18), 13=2219 (LC 16), 1-2=127 (LC 18), 13=2219 (LC 16), 1-2=140 (LC 18), 12=13=68/133, 11-12-68/133, 10-11=88/133, 1-10-68/133, 0-68/133, 10-11=88/133, 1-10-68/133, 0-68/133, 10-11=88/133, 1-10-68/133, 10-11=88/18, 3-11-2-78/194, 2-14=-169/14, 3-13=-719/192, 2-14=-169/14, 3-13=-71	


Page: 1

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

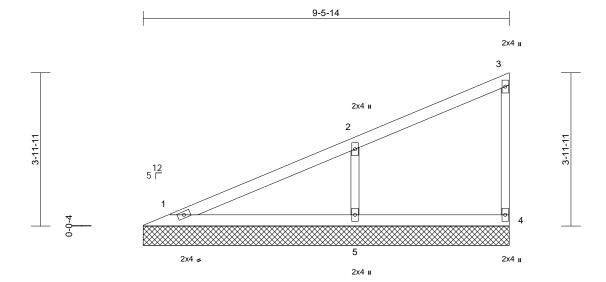
Job	Truss	Truss Type	Qty	Ply	Lot 117 MN	
240613	V2	Valley	1	1	Job Reference (optional)	164130746

Run: 8,73 S Feb 22 2024 Print: 8,730 S Feb 22 2024 MiTek Industries, Inc. Fri Mar 08 12:04:38 ID:ucVfnHrZGsKEnoS0rfvn96zitme-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:35.8

Scale = 1.55.0													
Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	2	25.0	Plate Grip DOL	1.15	TC	0.20	Vert(LL)	n/a	-	n/a	999	MT20	197/144
TCDL	1	10.0	Lumber DOL	1.15	BC	0.11	Vert(TL)	n/a	-	n/a	999		
BCLL		0.0*	Rep Stress Incr	YES	WB	0.08	Horiz(TL)	0.00	5	n/a	n/a		
BCDL	1	10.0	Code	IRC2018/TPI201	4 Matrix-S							Weight: 33 lb	FT = 10%
	6-0-0 oc purlin Rigid ceiling o bracing. (size) 1=1 Max Horiz 1=1 Max Uplift 5=- (LC	2 2 2 3 3 3 3 3 4 3 4 3 5 4 5 4 5 4 5 4 5 5 8 5 8 5 1 5 1 5 1 5 1 1 1 5 1 1 1 5 1 1 1 5 1 1 1 5 1 1 1 5 1 1 1 5 1 1 1 5 1 1 1 1 5 1 1 1 1 1 5 1 1 1 1 1 5 1		on the I 3-06-00 chord a 7) All bear 8) Provide bearing 5, 106 I 9) This tru Internat 5-14, R802.1 LOAD CAS	uss has been design pottom chord in all ar tall by 2-00-00 wide nd any other membe ings are assumed to mechanical connect plate capable of with b uplift at joint 6 and ss is designed in acc ional Residential Co 0.2 and referenced s E(S) Standard	eas where will fit betw rs. be SPF No- tion (by oth nstanding 2 88 lb uplift cordance w de sections	a rectangle veen the botto c.2. ers) of truss to 28 lb uplift at jo at joint 7. ith the 2018 5 R502.11.1 a	om D D Dint			In the	TE OF JU/ GAR	
ORCES	6=3	399 (LC	C 1), 7=330 (LC 1) pression/Maximum									NUM	
	Tension										= 5		• 41.
OP CHORD		2-3=-1	28/53, 3-4=-112/37,								-1	E-2000	102101
	4-5=-109/43	7 00	140 5 6 60/40								1	A	- day
OT CHORD	3-6=-312/153		/48, 5-6=-63/48									1.SION	ENI
	3-0=-312/153	, 2-7=-2	200/101									I ON	ALLIN
IOTES			(a										10.5
Vasd=91rr II; Exp C; I cantilever right expos 2) Truss des only. For see Stand or consult 3) Gable requ 4) Gable stud 5) This truss	nph; TCDL=6.0p Enclosed; MWF left and right ex sed; Lumber DC signed for wind l studs exposed t ard Industry Ga qualified buildin uires continuous ds spaced at 4-C has been desig	osf; BC RS (en posed DL=1.60 oads ir to wind ble End og desig s bottor D-0 oc. ned for	(3-second gust) DL=6.0psf; h=25f; C welope) exterior zom ; end vertical left and 0 plate grip DOL=1.6 h the plane of the tru (normal to the face) d Details as applicat gner as per ANSI/TF m chord bearing. r a 10.0 psf bottom th any other live load	ne; d 60 iss j, ole, 21 1.							. and the second	LICE	GARCIA NSEO 952
												Marcl	n 11,2024


- or consult qualified building designer as per ANSI/TPI 1. 3) Gable requires continuous bottom chord bearing.
- 4) Gable studs spaced at 4-0-0 oc.
- 5)
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent oulgase with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TPI1 Quality Criteria, and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcscomponents.com)

Job	Truss	Truss Type	Qty	Ply	Lot 117 MN	
240613	V3	Valley	1	1	Job Reference (optional)	164130747

Run: 8.73 S Feb 22 2024 Print: 8.730 S Feb 22 2024 MiTek Industries, Inc. Fri Mar 08 12:04:38 ID:ucVfnHrZGsKEnoS0rfvn96zitme-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

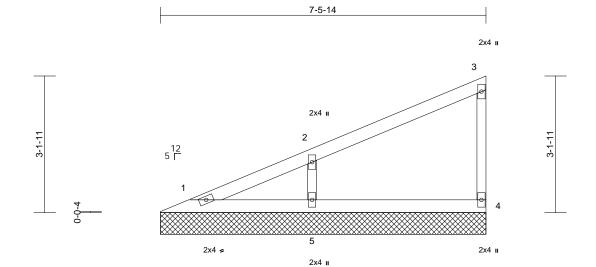
9-5-14

Scale = 1:29.9

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15	TC	0.29	Vert(LL)	n/a	-	n/a	999	MT20	197/144
TCDL	10.0	Lumber DOL	1.15	BC	0.16	Vert(TL)	n/a	-	n/a	999		
BCLL	0.0*	Rep Stress Incr	YES	WB	0.07	Horiz(TL)	0.00	4	n/a	n/a		
BCDL	10.0	Code	IRC2018/TPI2014	Matrix-S							Weight: 26 lb	FT = 10%
LUMBER TOP CHORD	2x4 SPF No.2			nechanical connecti late capable of with								
BOT CHORD				9 lb uplift at joint 5.	istanuing 2	s ib upint at ju	mit					
WEBS	2x4 SPF No.2 2x3 SPF No.2			s is designed in acc	ordance w	ith the 2018						
OTHERS	2x3 SPF No.2			onal Residential Coc			nd					
	273 011 10.2			2 and referenced st								
BRACING		المحمد بالتحجيل حجال		(S) Standard								
TOP CHORD	6-0-0 oc purlins, ex	cept end verticals.										
BOT CHORD	Rigid ceiling directly bracing.	applied or 10-0-0 o	IC .									100.
REACTIONS		, 4=9-5-14, 5=9-5-14	4								NE OF	MISS
	Max Horiz 1=159 (LO									1	Xr.	
	Max Uplift 4=-23 (LC	C 5), 5=-129 (LC 8)								-	74	-
	Max Grav 1=172 (L0	C 1), 4=122 (LC 1),	5=487							20	っ. JUA	AN
	(LC 1)									24	: GAR	CIA :1=
FORCES	(lb) - Maximum Com	npression/Maximum								- 7		
	Tension	00/00 0 4 00/00								=		
TOP CHORD	1-2=-123/71, 2-3=-1	,								=7	NUM	BER :
BOT CHORD WEBS	1-5=-51/39, 4-5=-51 2-5=-370/182	/39									E-20001	162101
	2-3=-370/162									-	A	
NOTES										1	1000	GN
	CE 7-16; Vult=115mph		a .								I,SONI	ALENIN
	nph; TCDL=6.0psf; BC										1111	iiiii
	Enclosed; MWFRS (er left and right exposed											
	ised; Lumber DOL=1.6											IIII.
	signed for wind loads in										IL AND	GARO
	studs exposed to wind										NAU	······································
	lard Industry Gable En										CE	NSE
	qualified building desi									-		101
	uires continuous botto									2	6 A.	1 2
4) Gable stu	ds spaced at 4-0-0 oc.	Ū.								-	1 1 6	052
5) This truss	has been designed fo	r a 10.0 psf bottom								-	UCE	952
	load nonconcurrent w									-	P: /	
	ss has been designed f		0psf							-	0.	n-143
	ttom chord in all areas										- AN AN	ISA9 R
	all by 2-00-00 wide will	fit between the bott	om								1.50	NGIN
	any other members.										ON	ALE
All bearing	gs are assumed to be	SPF No.2 .									1111	IIIII.

March 11,2024

16023 Swingley Ridge Rd. Chesterfield, MO 63017 314.434.1200 / MiTek-US.com


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

Mich

Job	Truss	Truss Type	Qty	Ply	Lot 117 MN	
240613	V4	Valley	1	1	Job Reference (optional)	164130748

Run: 8 73 S. Feb 22 2024 Print: 8 730 S. Feb 22 2024 MiTek Industries. Inc. Fri Mar 08 12:04:38 ID:ucVfnHrZGsKEnoS0rfvn96zitme-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Sca

BOT CHORD

WEBS

OTHERS

BRACING

TOP CHORD

BOT CHORD

FORCES

WFBS

NOTES

2)

3)

4)

5)

6)

7)

TOP CHORD

BOT CHORD

REACTIONS (size)

2x4 SPF No.2

2x3 SPF No.2

2x3 SPF No.2

Max Horiz 1=122 (LC 5)

(LC 1)

1-5=-40/30 4-5=-40/30

1) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60 Truss designed for wind loads in the plane of the truss

only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1. Gable requires continuous bottom chord bearing.

This truss has been designed for a 10.0 psf bottom

on the bottom chord in all areas where a rectangle

All bearings are assumed to be SPF No.2 .

chord live load nonconcurrent with any other live loads. * This truss has been designed for a live load of 20.0psf

3-06-00 tall by 2-00-00 wide will fit between the bottom

bracing.

Max Grav

Tension

Gable studs spaced at 4-0-0 oc.

chord and any other members.

2-5=-299/153

Structural wood sheathing directly applied or 6-0-0 oc purlins, except end verticals.

1=7-5-14, 4=7-5-14, 5=7-5-14

1=81 (LC 16), 4=141 (LC 1), 5=384

Rigid ceiling directly applied or 10-0-0 oc

Max Uplift 4=-26 (LC 8), 5=-102 (LC 8)

(lb) - Maximum Compression/Maximum

1-2=-99/52, 2-3=-92/32, 3-4=-109/44

Scale = 1:26.5															
Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP			
TCLL (roof)	25.0	Plate Grip DOL	1.15	тс	0.19	Vert(LL)	n/a	-	n/a	999	MT20	197/144			
TCDL	10.0	Lumber DOL	1.15	BC	0.10	Vert(TL)	n/a	-	n/a	999					
BCLL	0.0*	Rep Stress Incr	YES	WB	0.05	Horiz(TL)	0.00	4	n/a	n/a					
BCDL	10.0	Code	IRC2018/TPI2014	Matrix-P							Weight: 20 lb	FT = 10%			
LUMBER 8) Provide mechanical connection (by o bearing plate capable of withstanding TOP CHORD 2x4 SPF No.2 bearing plate capable of withstanding															

7-5-14


bearing plate capable of withstanding 26 lb uplift at joint

4 and 102 lb uplift at joint 5. 9)

This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and

R802.10.2 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard

MIS

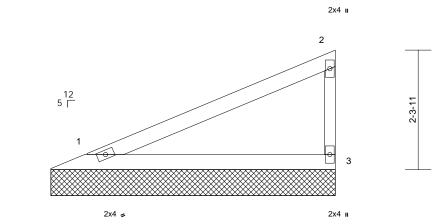
0

March 11,2024

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not beigh valid for use only with with with sets outputs into design is based only door parameters shown, and is for an individual dualing component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria**, and **DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcscomponents.com)

16023 Swingley Ridge Rd. Chesterfield MO 63017 314.434.1200 / MiTek-US.com

Jo	b	Truss	Truss Type	Qty	Ply	Lot 117 MN	
24	40613	V5	Valley	1	1	Job Reference (optional)	164130749


5-5-14

Wheeler Lumber, Waverly, KS - 66871,

Run: 8,73 S Feb 22 2024 Print: 8,730 S Feb 22 2024 MiTek Industries, Inc. Fri Mar 08 12:04:38 ID:ucVfnHrZGsKEnoS0rfvn96zitme-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

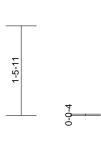
Page: 1

	5-5-14
ſ	

Scale = 1:22.2										
TCLL (roof) 25.0 Pi TCDL 10.0 Lu BCLL 0.0* Re	pacing 2-0-0 late Grip DOL 1.15 umber DOL 1.15 ep Stress Incr YES ode IRC2018	CSI TC BC WB Matrix-P	0.42 0.23 0.00	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 3	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 14 lb	GRIP 197/144 FT = 10%
LUMBER TOP CHORD 2x4 SPF No.2 BOT CHORD 2x4 SPF No.2 BOT CHORD 2x4 SPF No.2 BRACING TOP CHORD Structural wood sheathin 5-6-8 oc purlins, except BOT CHORD Rigid ceiling directly app bracing. REACTIONS (size) 1=5-5-14, 3=5 Max Horiz 1=86 (LC 5) Max Uplift 1=-31 (LC 8), Max Grav 1=211 (LC 1), FORCES (lb) - Maximum Compres Tension TOP CHORD 1-2=-76/51, 2-3=-164/76 BOT CHORD 1-3=-28/21 NOTES 1) Wind: ASCE 7-16; Vult=115mph (3-s Vasd=91mph; TCDL=6.0psf; BCDL= II; Exp C; Enclosed; MWFRS (enveld cantilever left and right exposed ; env right exposed; Lumber DOL=1.60 pla 2) Truss designed for wind loads in the only. For studs exposed to wind (no see Standard Industry Gable End De or consult qualified building designer 3) Gable requires continuous bottom ct 4) Gable studs spaced at 4-0-0 oc. 5) This truss has been designed for a 1 chord live load nonconcurrent with ai 6) * This truss has been designed for a on the bottom chord in all areas whe 3-06-00 tall by 2-00-00 wide will fit by chord and any other members. 7) All bearings are assumed to be SPF 8) Provide mechanical connection (by or bearing plate capable of withstanding 1 and 48 lb uplift at joint 3.	 9) LO ing directly applied or t end verticals. plied or 10-0-0 oc 5-5-14 , 3=-48 (LC 8) , 3=211 (LC 1) ssion/Maximum 6 second gust) =6.0psf; h=25ft; Cat. ope) exterior zone; do vertical left and late grip DOL=1.60 e plane of the truss prmal to the face), etails as applicable, ir as per ANSI/TPI 1. hord bearing. 10.0 psf bottom any other live loads. a live load of 20.0psf ere a rectangle petween the bottom T No.2. others) of truss to 		Code sections	8 R502.11.1 a	nd				JU GAF SS/ON E-2000 SS/ON LCE 16 PROTESS/ON	MISSOURAN AN ICIA

> 16023 Swingley Ridge Rd. Chesterfield, MO 63017 314.434.1200 / MiTek-US.com

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)


Job	Truss	Truss Type	Qty	Ply	Lot 117 MN	
240613	V6	Valley	1	1	Job Reference (optional)	164130750

Run: 8,73 S Feb 22 2024 Print: 8,730 S Feb 22 2024 MiTek Industries, Inc. Fri Mar 08 12:04:38 ID:ucVfnHrZGsKEnoS0rfvn96zitme-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

2x4 u

1-5-11

Page: 1

3-5-14

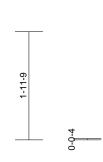
3-5-14

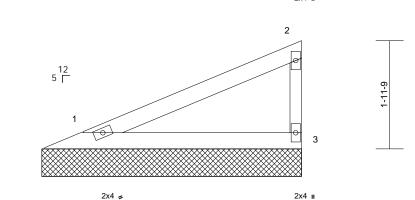
	DEFL in (lc /ert(LL) n/a /ert(TL) n/a	oc) l/defl - n/a	L/d PLATES GRIP
1 CTT (root) 25.0 EPlate Grip DOI 1.15 ETC 0.13 EV	. ,	- n/a	
	/ert(IL) n/a		999 MT20 197/144
		- n/a	999
BCLL 0.0* Rep Stress Incr YES WB 0.00 H BCDL 10.0 Code IRC2018/TPI2014 Matrix-P H	loriz(TL) 0.00	3 n/a	n/a Weight: 8 lb FT = 10%
LUMBER 9) This truss is designed in accordance with t			
OP CHORD 2x4 SPF No.2 International Residential Code sections R5			
BOT CHORD 2x4 SPF No.2 R802.10.2 and referenced standard ANSI/	I/TPI1.		
VEBS 2x3 SPF No.2 LOAD CASE(S) Standard			
BRACING OP CHORD Structural wood sheathing directly applied or			
3-6-8 oc purlins, except end verticals.			
BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing.			
REACTIONS (size) 1=3-5-14, 3=3-5-14			AND DR.
Max Horiz 1=49 (LC 7)			OF MISSIN
Max Uplift 1=-18 (LC 8), 3=-28 (LC 8)			NXE. O
Max Grav 1=121 (LC 1), 3=121 (LC 1)			S.Kr.
FORCES (Ib) - Maximum Compression/Maximum Tension			JUAN GARCIA
TOP CHORD 1-2=-44/29, 2-3=-94/44			= *: · · · · · · · · · · · · · · · · · ·
BOT CHORD 1-3=-16/12			F
NOTES			NUMBER
 Wind: ASCE 7-16; Vult=115mph (3-second gust) 			E-2000162101
Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat.			
II; Exp C; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed; end vertical left and			1. So
right exposed; Lumber DOL=1.60 plate grip DOL=1.60			ONALE
 Truss designed for wind loads in the plane of the truss 			in and the second se
only. For studs exposed to wind (normal to the face),			
see Standard Industry Gable End Details as applicable,			
or consult qualified building designer as per ANSI/TPI 1.			UAN GARCIN
 Gable requires continuous bottom chord bearing. Gable studs spaced at 4-0-0 oc. 			CENSA
5) This truss has been designed for a 10.0 psf bottom			S LIOS COM
chord live load nonconcurrent with any other live loads.			- S /
6) * This truss has been designed for a live load of 20.0psf			16952
on the bottom chord in all areas where a rectangle			10952
3-06-00 tall by 2-00-00 wide will fit between the bottom			
chord and any other members.) All bearings are assumed to be SPF No.2 .			30 L/h /43
 All bearings are assumed to be SPF No.2. Provide mechanical connection (by others) of truss to 			ANSA3
bearing plate capable of withstanding 18 lb uplift at joint			1, SONAL ENTIN
1 and 28 lb uplift at joint 3.			
			March 11,2024

> 16023 Swingley Ridge Rd. Chesterfield, MO 63017 314.434.1200 / MiTek-US.com

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent oulgase with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

Job	Truss	Truss Type	Qty	Ply	Lot 117 MN	
240613	V7	Valley	1	1	Job Reference (optional)	164130751


4-7-14


Wheeler Lumber, Waverly, KS - 66871,

Run: 8 73 S. Feb 22 2024 Print: 8 730 S. Feb 22 2024 MiTek Industries. Inc. Fri Mar 08 12:04:38 ID:ucVfnHrZGsKEnoS0rfvn96zitme-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

2x4 II

Sc

Scale = 1:20.9												
Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15	TC	0.27	Vert(LL)	n/a	-	n/a	999	MT20	197/144
TCDL	10.0	Lumber DOL	1.15	BC	0.15	Vert(TL)	n/a	-	n/a	999		
BCLL	0.0*	Rep Stress Incr	YES	WB	0.00	Horiz(TL)	0.00	3	n/a	n/a		
BCDL	10.0	Code	IRC2018/TPI2014	Matrix-P							Weight: 11 lb	FT = 10%
LUMBER 9) This truss is designed in accordance with the 2018 TOP CHORD 2x4 SPF No.2 BOT CHORD 2x4 SPF No.2 WEBS 2x3 SPF No.2 BRACING												
	4-8-8 oc purlins, ex	tructural wood sheathing directly applied or -8-8 oc purlins, except end verticals.										
BOT CHORD	Rigid ceiling directly	applied or 10-0-0 o	C									

4-7-14

BOT CHORD		ing directly applied or 10-0-0 oc
REACTIONS	(size)	1=4-8-8, 3=4-8-8
	Max Horiz	1=71 (LC 7)
	Max Uplift	1=-25 (LC 8), 3=-39 (LC 8)
	Max Grav	1=173 (LC 1), 3=173 (LC 1)
FORCES	(lb) - Max	imum Compression/Maximum

Tension TOP CHORD 1-2=-63/42, 2-3=-135/63 BOT CHORD 1-3=-23/17

NOTES

- Wind: ASCE 7-16; Vult=115mph (3-second gust) 1) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
- 2) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- Gable requires continuous bottom chord bearing. 3)
- Gable studs spaced at 4-0-0 oc. 4)
- 5) This truss has been designed for a 10.0 psf bottom
- chord live load nonconcurrent with any other live loads. 6) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom
- chord and any other members.

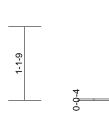
All bearings are assumed to be SPF No.2 . 7)

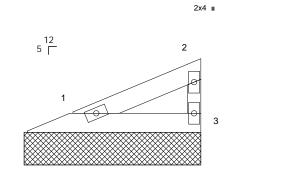
Provide mechanical connection (by others) of truss to 8) bearing plate capable of withstanding 25 lb uplift at joint 1 and 39 lb uplift at joint 3.

"IIIT PHILI JUAN GARCIA NUMBER F 2000162101 C JUAN GARC LICENSE 16C G 40000 March 11,2024

MIS

0

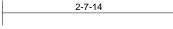

 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.
 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not beigh valid for use only with with with sets outputs into design is based only door parameters shown, and is for an individual dualing component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria**, and **DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcscomponents.com)



Job	Truss	Truss Type	Qty	Ply	Lot 117 MN	
240613	V8	Valley	1	1	Job Reference (optional)	164130752

Run: 8 73 S. Feb 22 2024 Print: 8 730 S. Feb 22 2024 MiTek Industries. Inc. Fri Mar 08 12:04:38 ID:o3ZmetNEN4fwegK_5sEOkXzicZx-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1



2-7-14

2x4 🛚

2x4 🚅

Ocale = 1.17.0												
Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15	тс	0.06	Vert(LL)	n/a	-	n/a	999	MT20	197/144
TCDL	10.0	Lumber DOL	1.15	BC	0.03	Vert(TL)	n/a	-	n/a	999		
BCLL	0.0*	Rep Stress Incr	YES	WB	0.00	Horiz(TL)	0.00	3	n/a	n/a		
BCDL	10.0	Code	IRC2018/TPI2014	Matrix-P							Weight: 6 lb	FT = 10%

9) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard

LUMBER		J	J	V	В	Ε	R
--------	--	---	---	---	---	---	---

Scale - 1.17.6

TOP CHORD	2x4 SPF I	No.2
BOT CHORD	2x4 SPF I	No.2
WEBS	2x3 SPF I	No.2
BRACING		
TOP CHORD	Structural	wood sheathing directly applied or
	2-8-8 oc p	ourlins, except end verticals.
BOT CHORD	Rigid ceili	ing directly applied or 10-0-0 oc
	bracing.	
REACTIONS	(size)	1=2-8-8, 3=2-8-8
	Max Horiz	1=34 (LC 7)
	Max Uplift	1=-12 (LC 8), 3=-19 (LC 8)
	Max Grav	1=83 (LC 1), 3=83 (LC 1)
FORCES	(lb) - Max	imum Compression/Maximum

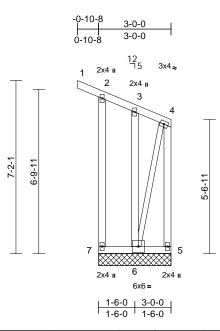

	Tension
TOP CHORD	1-2=-30/20, 2-3=-65/30
BOT CHORD	1-3=-11/8

NOTES

- Wind: ASCE 7-16; Vult=115mph (3-second gust) 1) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
- 2) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- Gable requires continuous bottom chord bearing. 3)
- Gable studs spaced at 4-0-0 oc. 4)
- 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 6) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom
- chord and any other members. All bearings are assumed to be SPF No.2 . 7)

8)

Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 12 lb uplift at joint 1 and 19 lb uplift at joint 3.


 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.
 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not beigh valid for use only with with with sets outputs into design is based only door parameters shown, and is for an individual dualing component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria**, and **DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcscomponents.com)

Job	Truss Truss Type Qty Ply Lot 11		Lot 117 MN			
240613	V9	Valley	1	1	Job Reference (optional)	164130753

Run: 8,73 S Feb 22 2024 Print: 8,730 S Feb 22 2024 MiTek Industries, Inc. Fri Mar 08 12:04:38 ID:Y7BfXIP7yOcg5sH_6liUkmzicUk-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

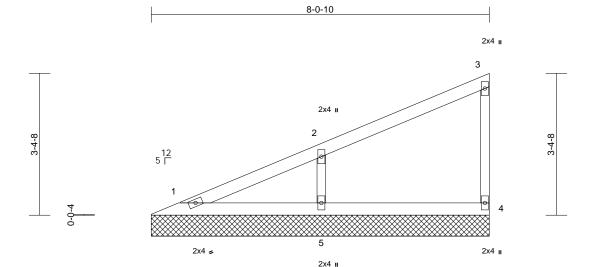
Scale = 1:47.7

												-	
Loading	(psf)	Spacing	2-0-0		csi		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15		тс	0.28	Vert(LL)	n/a	-	n/a	999	MT20	197/144
TCDL	10.0	Lumber DOL	1.15		BC	0.04	Vert(CT)	n/a	-	n/a	999		
BCLL	0.0*	Rep Stress Incr	YES		WB	0.23	Horz(CT)	0.00	5	n/a	n/a		
BCDL	10.0	Code	IRC201	8/TPI2014	Matrix-P							Weight: 32 lb	FT = 10%
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	Max Horiz 7=-269 (L Max Uplift 5=-290 (L 7=-90 (LC	athing directly applie cept end verticals. applied or 10-0-0 or 6=3-0-0, 7=3-0-0 C 4) C 5), 6=-594 (LC 4), C 4)	8) 9) c 11 L	 on the bottor 3-06-00 tall b chord and ar All bearings Provide mes bearing plate 7, 290 lb upli This truss is International 	has been designen n chord in all are by 2-00-00 wide v ny other members are assumed to thanical connection e capable of withs ff at joint 5 and 5 designed in accor Residential Cod nd referenced sta Standard	as where will fit betw s. De SPF No on (by oth standing 9 94 lb upli ordance w e sections	a rectangle veen the bott c.2. ers) of truss t 0 lb uplift at j ft at joint 6. ith the 2018 5 R502.11.1 a	to joint			un.	KE OF	MISSOUR
	Max Grav 5=647 (LC (LC 1)	5 4), 6=328 (LC 7), 7	/=150								E*	GAF	
FORCES	(lb) - Maximum Com Tension	pression/Maximum									Er		
TOP CHORD	2-7=-140/96, 1-2=-2 3-4=-123/38, 4-5=-6	, , ,									==	NUM	• []].
BOT CHORD	6-7=-153/216, 5-6=-	75/57									1	A	
WEBS	3-6=-80/49, 4-6=-31	2/642										1.00	
NOTES												I,ON	ALEIN
1) Wind: ASC	CE 7-16; Vult=115mph	(3-second gust)											1115
	nph; TCDL=6.0psf; BC												110.
II [.] Exp C [.] I	Enclosed: MWERS (er	velope) exterior zor	ne.										IIII.

- II; Exp C; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60 2) Truss designed for wind loads in the plane of the truss
- only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1. 3) Gable requires continuous bottom chord bearing.
- Truss to be fully sheathed from one face or securely 4)
- braced against lateral movement (i.e. diagonal web).

5) Gable studs spaced at 2-0-0 oc.

6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. BORNERS 16952 MANSAS ONAL ENGINE March 11,202 **NULLE**


 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.
 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not besign value to dury with with where outputs into design is based only door parameters shown, and is for an individual building design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members and property incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TPH1 Quality Criteria**, and **DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcscomponents.com)

Job	Truss	Truss Type	Qty	Ply	Lot 117 MN	
240613	V10	Valley	1	1	Job Reference (optional)	164130754

Run: 8,73 S Feb 22 2024 Print: 8,730 S Feb 22 2024 MiTek Industries, Inc. Fri Mar 08 12:04:38 ID:_V0sQ0MFb6Dug7W1UBibEozd_jA-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

8-0-10

Scale = 1:27.4	Scale	=	1:27.4
----------------	-------	---	--------

Scale = 1:27.4												
Loading TCLL (roof) TCDL BCLL BCDL	(psf) 25.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018/TPI2014	CSI TC BC WB Matrix-P	0.21 0.11 0.06	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 4	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 21 lb	GRIP 197/144 FT = 10%
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD BOT CHORD BOT CHORD BOT CHORD BOT CHORD BOT CHORD BOT CHORD BOT CHORD BOT CHORD WEBS NOTES 1) Wind: ASCI Vasd=91mm II; Exp C; E cantilever la right exposs 2) Truss desi only. For si see Standa or consult of 3) Gable requi 4) Gable studs 5) This truss h chord live la 6) * This truss	2x4 SPF No.2 2x4 SPF No.2 2x3 SPF No.2 2x3 SPF No.2 2x3 SPF No.2 2x3 SPF No.2 Structural wood she 6-0-0 oc purlins, ex Rigid ceiling directly bracing. 'size) 1=8-0-10 Max Horiz 1=132 (L Max Uplift 4=-24 (LC Max Grav 1=106 (L (LC 1) (lb) - Maximum Con Tension 1-2=-106/59, 2-3=-5 1-5=-43/33, 4-5=-43 2-5=-318/163 E 7-16; Vult=115mpt oh; TCDL=6.0psf; BC nclosed; MWFRS (e eft and right exposed ed; Lumber DOL=1.6 gned for wind loads i tuds exposed to winor rd Industry Gable Er jualified building desi ires continuous botto s spaced at 4-0-0 oc. ias been designed fo oad nonconcurrent w has been designed fo om chord in all areas	eathing directly applie ccept end verticals. / applied or 10-0-0 or 5 (28), 5=-109 (LC 8) C 1), 4=137 (LC 1), 5 mpression/Maximum 25/30, 3-4=-107/42 3/33 (3-second gust) CDL=6.0psf; h=25ft; 0 nvelope) exterior zor I; end vertical left an 30 plate grip DOL=1.1 n the plane of the tru d (normal to the face) d Details as applicat igner as per ANSI/TF m chord bearing. r a 10.0 psf bottom ith any other live load for a live load of 20.0 where a rectangle fit between the bottom	8) Provide m bearing pla 4 and 109 9) This truss Internation R802.10.2 cd or LOAD CASE(5=409 5=409 Cat. he; d 60 liss), ole, P1 1. ds.)psf	echanical connection te capable of withs lb uplift at joint 5. is designed in acco al Residential Code and referenced sta	standing 2 ordance w e sections	24 lb uplift at j ith the 2018 s R502.11.1 a	oint				DOTE OF JU/ GAR NUM E-2000 SS/ON/ ICE 160 PBO S/ON	MISSOL NN CIA
											March	n 11,2024

- on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- 7) All bearings are assumed to be SPF No.2 .

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

16023 Swingley Ridge Rd. Chesterfield, MO 63017 314.434.1200 / MiTek-US.com

ſ	Job	Truss	Truss Type	Qty	Ply	Lot 117 MN				
2	240613	V11	Valley	1	1	Job Reference (optional)	164130755			

Run: 8.73 S Feb 22 2024 Print: 8.730 S Feb 22 2024 MiTek Industries, Inc. Fri Mar 08 12:04:39

Page: 1

ID:_V0sQ0MFb6Dug7W1UBibEozd_jA-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f 6-0-10 2x4 🛚 2 12 5 Г 2-6-8 2-6-8 1 3 0-0-4

6-0-10

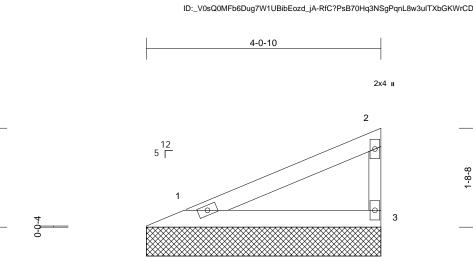
2x4 🚅

2x4 🛛

Scale = 1:23.2

Scale = 1:23.2												
Loading TCLL (roof) TCDL BCLL BCDL	(psf) 25.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018/TPI2014	CSI TC BC WB Matrix-P	0.53 0.29 0.00	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 3	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 15 lb	GRIP 197/144 FT = 10%
	2x4 SPF No.2 2x4 SPF No.2 2x3 SPF No.2 Structural wood shea 6-1-4 oc purlins, exc Rigid ceiling directly bracing. (size) 1=6-0-10, Max Horiz 1=96 (LC	cept end verticals. applied or 10-0-0 od 3=6-0-10	Internationa R802.10.2 a LOAD CASE(S) ed or	designed in accord I Residential Code nd referenced stan Standard	sections	8 R502.11.1 a	Ind				VUI OF	MISSIL
FORCES	Max Uplift 1=-34 (LC Max Grav 1=236 (LC (Ib) - Maximum Com Tension 1-2=-86/57, 2-3=-18 1-3=-31/24	: 8), 3=-54 (LC 8) C 1), 3=236 (LC 1) pression/Maximum								·////* P	JU/ GAR	CIA *
 Wind: ASC Vasd=91m II; Exp C; E cantilever le right exposi Truss desii only. For s 	E 7-16; Vult=115mph ph; TCDL=6.0psf; BC inclosed; MWFRS (er eft and right exposed ed; Lumber DOL=1.6i gned for wind loads ir tuds exposed to wind	DL=6.0psf; h=25ft; (avelope) exterior zor ; end vertical left and 0 plate grip DOL=1.6 n the plane of the tru (normal to the face)	ne; d 50 ss							THE PARTY	E-2000	• 41
 or consult of 3) Gable required 4) Gable stude 5) This truss her chord live location 	Industry Gable End ualified building desig ires continuous bottor s spaced at 4-0-0 oc. has been designed for bad nonconcurrent wi has been designed fr	gner as per ANSI/TF m chord bearing. a 10.0 psf bottom th any other live load	ข 1. ds.								UCE	SARCIA NSEO
 on the botto 3-06-00 tall chord and a 7) All bearings 8) Provide me bearing pla 	both a solution of the solutio	where a rectangle fit between the botto SPF No.2 . by others) of truss to	om D							III.	PROCESSION	ISAS RULE

March 11,2024


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

Job	Truss	Truss Type	Qty	Ply	Lot 117 MN	
240613	V12	Valley	1	1	Job Reference (optional)	164130756

1-8-8

Run: 8,73 S Feb 22 2024 Print: 8,730 S Feb 22 2024 MiTek Industries, Inc. Fri Mar 08 12:04:39 ID:_V0sQ0MFb6Dug7W1UBibEozd_jA-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

2x4 🚅

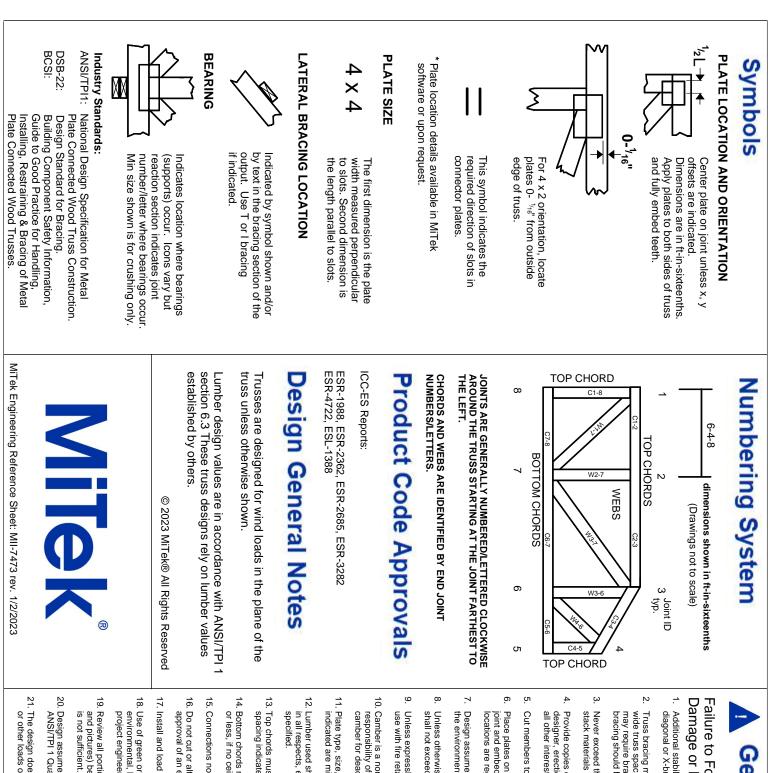
2x4 u

Scale	- 1	.10	٥

	4-0-10	

Scale = 1:19.9	9											
Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15	TC	0.19	Vert(LL)	n/a	-	n/a	999	MT20	197/144
TCDL	10.0	Lumber DOL	1.15	BC	0.10	Vert(TL)	n/a	-	n/a	999	-	
BCLL	0.0*	Rep Stress Incr	YES	WB	0.00	Horiz(TL)	0.00	3	n/a	n/a		
BCDL	10.0	Code	IRC2018/TPI2014	Matrix-P							Weight: 10 lb	FT = 10%
LUMBER			9) This truss is	designed in accor	dance w	ith the 2018						
TOP CHORD	2x4 SPF No.2			I Residential Code			and					
BOT CHORD	2x4 SPF No.2		R802.10.2 a	and referenced star	ndard AN	NSI/TPI 1.						
WEBS	2x3 SPF No.2		LOAD CASE(S)	Standard								
BRACING												
TOP CHORD			ed or									
	4-1-4 oc purlins, ex											
BOT CHORD	 Rigid ceiling directly bracing. 	applied or 10-0-0 o	с									
REACTIONS	(size) 1=4-0-10	, 3=4-0-10									, min	Min.
	Max Horiz 1=60 (LC	5)									NEOF	MISS
	Max Uplift 1=-21 (LC	C 8), 3=-33 (LC 8)									NY	0/1
	Max Grav 1=146 (L0	C 1), 3=146 (LC 1)								-	X	
FORCES	(lb) - Maximum Com	npression/Maximum									S: JU	AN
	Tension									2.	: GAR	CIA :1
TOP CHORD		4/53										
BOT CHORD	0 1-3=-19/15											
NOTES										= 7	NUM	BER :
	SCE 7-16; Vult=115mph										C. E-2000	162101 :41
	mph; TCDL=6.0psf; BC									-	A	
	; Enclosed; MWFRS (er										· · · · · · · · · · · · · · · · · · ·	
	r left and right exposed										IN ON	ALENI
	osed; Lumber DOL=1.6										- 100	iiiii
	esigned for wind loads in r studs exposed to wind											
	dard Industry Gable En											1111.
	It qualified building desi										NN NN	GARO
	quires continuous botto										11 JUAN	
	uds spaced at 4-0-0 oc.										CE	NSEN.
	s has been designed fo											
	e load nonconcurrent w		ds.							-	1	1 2
6) * This tru:	ss has been designed f	for a live load of 20.0	Opsf								16	052 : =
on the bo	ottom chord in all areas	where a rectangle									10	952
	all by 2-00-00 wide will	fit between the botto	om							-	P: /	: # :
chord and	d any other members.	-									PO:	M
7) All la a min	and a second a second											

All bearings are assumed to be SPF No.2 . 7)


Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 21 lb uplift at joint 8) 1 and 33 lb uplift at joint 3.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

16023 Swingley Ridge Rd. Chesterfield, MO 63017 314.434.1200 / MiTek-US.com

ONAL ENGI March .

March 11,2024

General Safety Notes

Failure to Follow Could Cause Property Damage or Personal Injury

- 1. Additional stability bracing for truss system, e.g. diagonal or X-bracing, is always required. See BCSI.
- Truss bracing must be designed by an engineer. For wide truss spacing, individual lateral braces themselves may require bracing, or alternative Tor1 bracing should be considered.
- Never exceed the design loading shown and never stack materials on inadequately braced trusses.
- Provide copies of this truss design to the building designer, erection supervisor, property owner and all other interested parties.
- 5. Cut members to bear tightly against each other
- Place plates on each face of truss at each joint and embed fully. Knots and wane at joint locations are regulated by ANSI/TPI 1.
- Design assumes trusses will be suitably protected from the environment in accord with ANSI/TPI 1.
- Unless otherwise noted, moisture content of lumber shall not exceed 19% at time of fabrication.
- Unless expressly noted, this design is not applicable for use with fire retardant, preservative treated, or green lumber.
- Camber is a non-structural consideration and is the responsibility of truss fabricator. General practice is to camber for dead load deflection.
- 11. Plate type, size, orientation and location dimensions indicated are minimum plating requirements.
- 12. Lumber used shall be of the species and size, and in all respects, equal to or better than that specified.
- 13. Top chords must be sheathed or purlins provided at spacing indicated on design.
- Bottom chords require lateral bracing at 10 ft. spacing, or less, if no ceiling is installed, unless otherwise noted.
- 15. Connections not shown are the responsibility of others.
- Do not cut or alter truss member or plate without prior approval of an engineer.
- 17. Install and load vertically unless indicated otherwise.
- Use of green or treated lumber may pose unacceptable environmental, health or performance risks. Consult with project engineer before use.
- Review all portions of this design (front, back, words and pictures) before use. Reviewing pictures alone is not sufficient.
- 20. Design assumes manufacture in accordance with ANSI/TPI 1 Quality Criteria.
- 21. The design does not take into account any dynamic or other loads other than those expressly stated.