

RE: P230888-02 - Roof - Repair

Site Information:

Project Customer: Clover & Hive Project Name: Emerald Townhome

Lot/Block: 48 Subdivision: Osage

Model:

Address: 3733/3735/3737/3739 SW Clayton PI

City: Lee's Summit

General Truss Engineering Criteria & Design Loads (Individual Truss Design

Drawings Show Special Loading Conditions):

Design Code: IRC2018/TPI2014

Wind Code: ASCE 7-16 Wind Speed: 115 mph

Roof Load: 45.0 psf

Seal#

Mean Roof Height (feet): 35

Truss Name Date

164306636 164306637 164306638 164306639

MiTek, Inc.

16023 Swingley Ridge Rd. Chesterfield, MO 63017

314.434.1200

Design Program: MiTek 20/20 8.6

Design Method: MWFRS (Envelope)/C-C hybrid Wind ASCE 7-16

Floor Load: N/A psf

Exposure Category: C

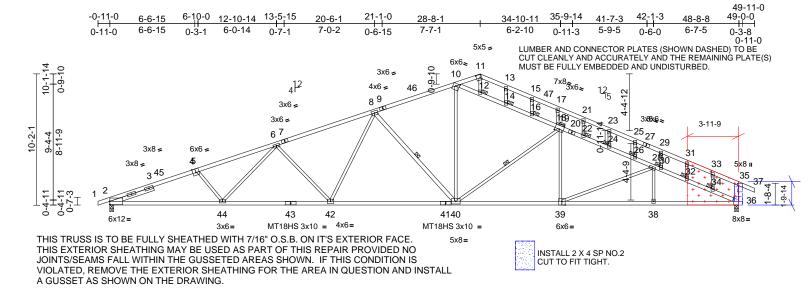
The truss drawing(s) referenced above have been prepared by MiTek USA, Inc. under my direct supervision based on the parameters provided by Premier Building Supply (Springhill, KS)20300 W 207th Street.

Truss Design Engineer's Name: Johnson, Andrew

My license renewal date for the state of Missouri is December 31, 2025.

IMPORTANT NOTE: The seal on these truss component designs is a certification that the engineer named is licensed in the jurisdiction(s) identified and that the designs comply with ANSI/TPI 1. These designs are based upon parameters shown (e.g., loads, supports, dimensions, shapes and design codes), which were given to MiTek or TRENCO. Any project specific information included is for MiTek's or TRENCO's customers file reference purpose only, and was not taken into account in the preparation of these designs. MiTek or TRENCO has not independently verified the applicability of the design parameters or the designs for any particular building. Before use, the building designer should verify applicability of design parameters and properly incorporate these designs into the overall building design per ANSI/TPI 1, Chapter 2.

ANDREW **THOMAS** JOHNSON **NUMBER** PE-2017018993


March 21,2024

Job	Truss	Truss Type	Qty	Ply	Roof - Repair	
P230888-02	A1	Roof Special Structural Gable	1	1	Job Reference (optional)	164306636

Run: 8.63 S Nov 1 2023 Print: 8.630 S Nov 1 2023 MiTek Industries, Inc. Mon Mar 18 11:45:03 ID:kkw6VMCTKypljEPYbt576Oz_rGt-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC?f

Page: 1

REPAIR: STUB RIGHT END 4"

ATTACH 7/16" OSB GUSSET (7/16" RATED SHEATHING 24/16 EXP 1) TO EACH FACE OF TRUSS WITH (0.131" X 2.5" MIN.) NAILS PER THE FOLLOWING NAIL SCHEDULE: 2 X 3'S - 2 ROWS, 2 X 4'S - 3 ROWS, 2 X 6'S AND LARGER - 4 ROWS; SPACED @ 4" O.C. NAILS TO BE DRIVEN FROM BOTH FACES. STAGGER SPACING FROM FRONT TO BACK FACE FOR A NET 2" O.C. SPACING IN EACH COVERED TRUSS MEMBER. USE 2" MEMBER END DISTANCE.

	8-8-11	17-1-1	26-9-7	34-10-11	42-1-3	49-0-0	
Scale = 1:89.2	8-8-11	8-4-6	9-8-6	8-1-4	7-2-8	6-10-13	

Plate Offsets (X, Y): [4:0-3-0,Edge], [10:0-3-8,0-2-7], [11:0-3-7,0-3-0], [18:0-4-0,0-2-0], [35:0-3-13,Edge], [36:0-3-4,Edge], [39:0-3-0,Edge]

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15	TC	0.94	Vert(LL)	-0.43	42	>999	240	MT20	244/190
TCDL	10.0	Lumber DOL	1.15	BC	0.97	Vert(CT)	-0.92	40-42	>640	180	MT18HS	244/190
BCLL	0.0	Rep Stress Incr	NO	WB	0.99	Horz(CT)	0.27	36	n/a	n/a		
BCDL	10.0	Code	IRC2018/TPI2014	Matrix-SH							Weight: 264 lb	FT = 20%

Louding	(201)	opaomig	200	00.		D=: =		(100)	1, 4011			O
TCLL (roof)	25.0	Plate Grip DOL	1.15	TC	0.94	Vert(LL)	-0.43	42	>999	240	MT20	244/190
TCDL	10.0	Lumber DOL	1.15	BC	0.97	Vert(CT)	-0.92	40-42	>640	180	MT18HS	244/190
BCLL	0.0	Rep Stress Incr	NO	WB	0.99	Horz(CT)	0.27	36	n/a	n/a		
BCDL	10.0	Code	IRC2018/TPI2014	Matrix-SH							Weight: 264 lb	FT = 20%
LUMBER TOP CHORD	2x4 SP No.2 *Excep	ot* 1-4.9-11.9-7:2x4	TOP CHORD	1-2=0/0, 2-5=-54 6-8=-4364/940, 8	,		055,				; Vult=115mph (3 DL=6.0psf; BCDL	

10-11=-603/418, 11-13=-614/420,

13-15=-623/384, 15-17=-663/362,

17-21=-603/295, 21-23=-613/266,

23-25=-648/248, 25-29=-655/211,

29-31=-613/147, 31-33=-651/131,

35-36=-506/181, 10-12=-2572/459

12-14=-2496/404, 14-16=-2535/426

16-18=-2554/435. 18-19=-2669/485.

19-22=-3313/605 22-24=-3352/623

24-26=-3370/631, 26-28=-3422/662,

28-30=-3893/815, 30-32=-3984/873

32-34=-4005/882, 34-36=-4031/910

40-42=-654/3695, 38-40=-849/4242,

2-44=-969/4984, 42-44=-858/4578,

11-12=-152/197, 13-14=-102/69,

15-16=-50/34, 17-18=-305/150,

25-26=-140/83, 29-30=-243/157

31-32=-55/23, 33-34=-68/73, 5-44=-238/181,

21-22=-101/53, 23-24=-47/23,

6-44=-55/453, 6-42=-784/286,

8-42=-114/855, 8-40=-1213/367

10-40=-287/1635, 19-40=-971/263, 19-39=-10/467, 28-39=-665/269,

36-38=-849/4242

33-35=-684/101, 35-37=0/29,

TOP CHORD 2x4 SP No.2 *Except* 1-4,9-11,9-7:2x4 SP 2400F 2.0E, 4-7:2x4 SP 1650F 1.5E

BOT CHORD 2x4 SP 2400F 2.0E *Except* 43-41.41-39:2x4 SP 1650F 1.5E

WFBS 2x3 SPF No.2 *Except* 36-35:2x4 SP 1650F

1.5E, 8-40:2x4 SP No.2

2x3 SPF No.2 OTHERS

SLIDER Left 2x4 SPF No.3 -- 3-6-9

BRACING

TOP CHORD Structural wood sheathing directly applied or 2-3-11 oc purlins, except end verticals.

BOT CHORD Rigid ceiling directly applied or 7-8-11 oc

bracing.

WFBS 1 Row at midpt 8-40, 19-40

JOINTS 1 Brace at Jt(s): 12,

14, 16, 18, 22, 24, 26, 30, 32, 34

REACTIONS (size) 2=0-3-8, 36=0-3-8

Max Horiz 2=177 (LC 16)

Max Grav 2=2262 (LC 1), 36=2273 (LC 1)

FORCES

WEBS

Max Uplift 2=-413 (LC 8), 36=-301 (LC 13)

(lb) - Maximum Compression/Maximum

Tension

NOTES

BOT CHORD

Unbalanced roof live loads have been considered for this design.

28-38=0/237

- Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=35ft; Ke=0.96; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) -0-11-0 to 4-1-0, Interior (1) 4-1-0 to 28-8-1, Exterior(2R) 28-8-1 to 33-8-1, Interior (1) 33-8-1 to 49-11-0 zone; cantilever left and right exposed; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- All plates are MT20 plates unless otherwise indicated.
- All plates are 3x4 MT20 unless otherwise indicated.
- Gable studs spaced at 2-0-9 or
- This truss has been designed to a 10.0 ss bottom chord live load nonconculrent with any other live.

sumed to be SP 2400F 2.0E All bearings are a capacity of 805 THOMAS

JOHNSON ROLLING PL NUMBER PE-2017018993

March 21,2024

Continued on page 2

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

Job	Truss	Truss Type	Qty	Ply	Roof - Repair	
P230888-02	A1	Roof Special Structural Gable	1	1	Job Reference (optional)	164306636

Run: 8.63 S Nov 1 2023 Print: 8.630 S Nov 1 2023 MiTek Industries, Inc. Mon Mar 18 11:45:03 $ID: kkw6VMCTKypljEPYbt576Oz_rGt-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC?ff$

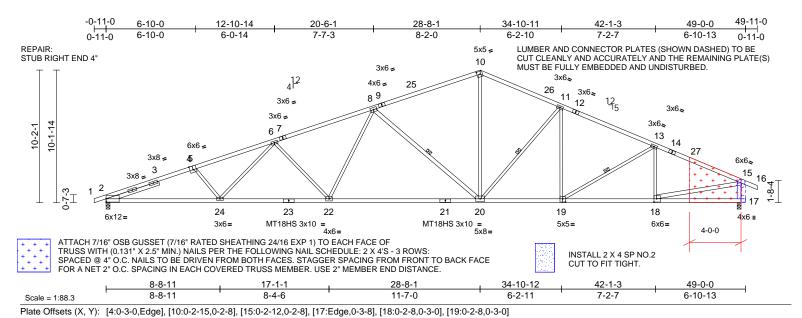
Page: 2

This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

10) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

11) 2 X 4 notch at 20000 o.c. is allowed along the stacked top chord. No notches allowed in overhang and 1100 from left end and 1100 from right end or 12" along rake from scarf, whichever is larger. Minimum 1.5x4 tie plates required at 2-0-0 o.c. maximum between the stacking chords. For edge-wise notching, provide at least one tie plate between each notch.

LOAD CASE(S) Standard


March 21,2024

Job	Truss	Truss Type	Qty	Ply	Roof - Repair	
P230888-02	A2	Roof Special	2	1	Job Reference (optional)	164306637

Run: 8.63 S Nov 1 2023 Print: 8.630 S Nov 1 2023 MiTek Industries, Inc. Mon Mar 18 11:45:04 ID:kkw6VMCTKypljEPYbt576Oz_rGt-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC?f

Page: 1

Loading	(psf)	Spacing	2-0-0	csı		DEFL	in	(loc)	I/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15	TC	0.96	Vert(LL)	-0.42	20-22	>999	240	MT20	244/190
TCDL	10.0	Lumber DOL	1.15	BC	0.93	Vert(CT)	-0.98	20-22	>598	180	MT18HS	244/190
BCLL	0.0	Rep Stress Incr	NO	WB	0.76	Horz(CT)	0.20	17	n/a	n/a		
BCDL	10.0	Code	IRC2018/TPI2014	Matrix-SH							Weight: 235 lb	FT = 20%

LUMBER

TOP CHORD 2x4 SP 1650F 1.5E *Except* 14-16:2x4 SP No.2, 9-10,9-7:2x4 SP 2400F 2.0E

BOT CHORD 2x4 SP 2400F 2.0E *Except* 19-21:2x4 SP

1650F 1.5E

WEBS

2x3 SPF No.2 *Except* 17-15,18-15,20-8:2x4 SP No 2

SLIDER

Left 2x4 SPF No.3 -- 4-3-0 **BRACING**

TOP CHORD

Structural wood sheathing directly applied,

except end verticals **BOT CHORD**

Rigid ceiling directly applied or 8-5-5 oc bracing

WEBS

1 Row at midpt 13-19, 8-20, 11-20

REACTIONS (size) 2=0-3-8, 17=0-3-8

Max Horiz 2=177 (LC 16)

Max Uplift 2=-413 (LC 8), 17=-301 (LC 13) Max Grav 2=2262 (LC 1), 17=2273 (LC 1)

FORCES (lb) - Maximum Compression/Maximum

Tension

TOP CHORD

1-2=0/0, 2-5=-5391/1090, 5-6=-5159/1057,

6-8=-4375/934. 8-10=-2917/733. 10-11=-2985/750, 11-13=-3408/775

13-15=-3421/708, 15-16=0/29, 15-17=-2203/573

BOT CHORD 2-24=-973/4986, 22-24=-853/4578,

20-22=-663/3707, 18-20=-572/3077,

17-18=-88/190

15-18=-495/2952, 5-24=-244/182, **WEBS**

10-20=-296/1547, 6-22=-757/281, 13-18=-476/204, 11-19=-6/232,

13-19=-186/146, 8-20=-1392/411 6-24=-66/451, 11-20=-688/266, 8-22=-89/865

NOTES

1) Unbalanced roof live loads have been considered for this design.

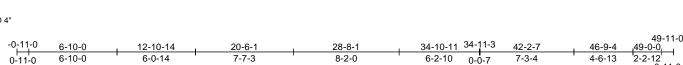
- Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=35ft; Ke=0.96; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) -0-11-0 to 4-1-0, Interior (1) 4-1-0 to 28-8-1, Exterior(2R) 28-8-1 to 33-8-1, Interior (1) 33-8-1 to 49-11-0 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- All plates are MT20 plates unless otherwise indicated.
- All plates are 3x6 MT20 unless otherwise indicated.
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- All bearings are assumed to be SP 2400F 2.0E crushing capacity of 805 psi.
- This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

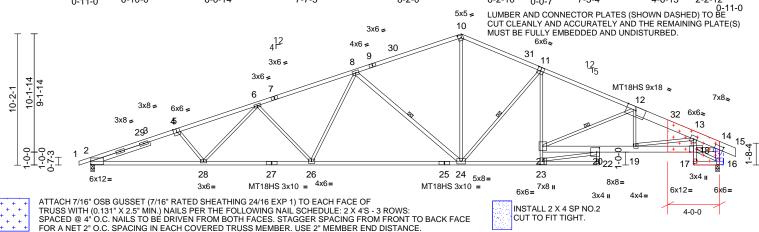
LOAD CASE(S) Standard

March 21,2024

🗥 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not

a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)




Qty Ply Job Truss Truss Type Roof - Repair 164306638 P230888-02 **A3** Roof Special 5 1 Job Reference (optional)

Premier Building Supply (Springhill, KS), Spring Hills, KS - 66083,

Run: 8.63 S Nov 1 2023 Print: 8.630 S Nov 1 2023 MiTek Industries, Inc. Mon Mar 18 11:45:05 ID:kkw6VMCTKypljEPYbt576Oz_rGt-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC?f

REPAIR STUB RIGHT END 4"

39-4-8 34-10-11 34-11-15 28-8-1 8-8-11 14-0-0 17-1-1 46-8-0 49<u>-0-0</u> 27-4-8 42-1-3 3-1-1 10-3-7 6-2-10 8-8-11 4-4-9 2-8-11 Scale = 1:89.2 5-3-5 1-3-9 0-1-4 4-6-13 2-4-0

Plate Offsets (X, Y): [4:0-3-0,Edge], [10:0-2-15,0-2-8], [11:0-3-0,0-3-4], [14:0-2-5,0-3-8], [20:0-2-8,0-4-0], [22:Edge,0-2-8], [23:0-2-8,0-3-0]

Loading	(psf)	Spacing	2-0-0	csı		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15	TC	0.93	Vert(LL)	-0.43	24-26	>999	240	MT18HS	197/144
TCDL	10.0	Lumber DOL	1.15	BC	0.94	Vert(CT)	-1.02	24-26	>574	180	MT20	197/144
BCLL	0.0	Rep Stress Incr	NO	WB	0.98	Horz(CT)	0.31	16	n/a	n/a		
BCDL	10.0	Code	IRC2018/TPI2014	Matrix-SH							Weight: 262 lb	FT = 20%

LUMBER TOP CHORD 2x4 SP 1650F 1.5E *Except* 12-15:2x8 SPF

No.2, 9-10:2x4 SP 2400F 2.0E, 11-10:2x4 SP

No.2

BOT CHORD 2x4 SP 2400F 2.0E *Except*

22-20,13-17:2x3 SPF No.2, 21-18:2x6 SP 2400F 2.0E, 17-16:2x4 SP No.2, 25-22:2x4

SP 1650F 1.5E

WEBS 2x3 SPF No.2 *Except* 16-14:2x4 SPF No.3,

24-8.14-18:2x4 SP No.2

SLIDER Left 2x4 SPF No.3 -- 4-9-11

BRACING

WEBS

Structural wood sheathing directly applied, TOP CHORD

except end verticals

BOT CHORD Rigid ceiling directly applied or 10-0-0 oc

bracing, Except: 8-5-15 oc bracing: 2-28

8-11-11 oc bracing: 26-28

8-10-12 oc bracing: 24-26. 8-24, 11-24, 12-21 1 Row at midpt

REACTIONS 2=0-3-8, 16=0-3-8 (size)

Max Horiz 2=176 (LC 16)

Max Uplift 2=-413 (LC 8), 16=-300 (LC 13)

Max Grav 2=2262 (LC 1), 16=2273 (LC 1)

FORCES (lb) - Maximum Compression/Maximum

Tension

TOP CHORD 1-2=0/0, 2-5=-5398/1092, 5-6=-5167/1058,

6-8=-4375/935, 8-10=-2916/732, 10-13=-4799/979, 13-14=-3869/808, 14-15=0/29, 14-16=-2219/554

BOT CHORD 2-28=-961/4992, 26-28=-843/4581,

24-26=-649/3703, 23-24=-499/3055, 22-23=-26/257, 20-22=0/87, 20-21=-315/1400, 19-20=-809/4421, 18-19=-702/3497, 17-18=0/37, 13-18=-582/147, 16-17=-25/119

WEBS

10-24=-296/1544, 8-24=-1386/409, 8-26=-92/869, 11-24=-687/270, 14-18=-682/3439, 13-19=-141/929, 6-26=-765/285, 6-28=-64/456, 5-28=-241/179, 12-21=-1473/336, 21-23=-603/169, 11-21=-11/252, 20-23=-482/2848, 16-18=-61/39, 12-19=-4/624

NOTES

- Unbalanced roof live loads have been considered for this design.
- Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=35ft; Ke=0.96: Cat. II: Exp C: Enclosed: MWFRS (envelope) exterior zone and C-C Exterior(2E) -0-11-0 to 4-1-0, Interior (1) 4-1-0 to 28-8-1, Exterior(2R) 28-8-1 to 33-8-1, Interior (1) 33-8-1 to 49-11-0 zone; cantilever left and right exposed; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- All plates are MT20 plates unless otherwise indicated.
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- Bearings are assumed to be: Joint 2 SP 2400F 2.0E crushing capacity of 805 psi, Joint 16 SP No.2 crushing capacity of 565 psi.
- This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

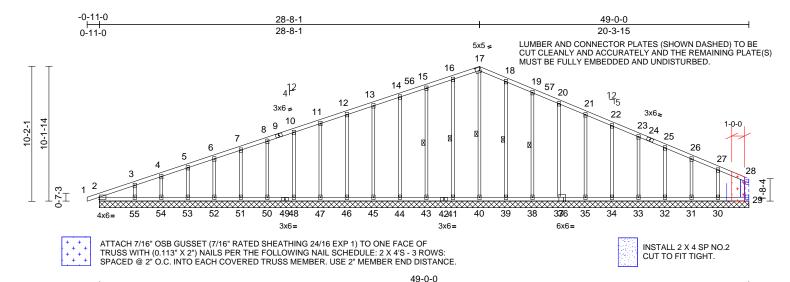
LOAD CASE(S) Standard

Page: 1

March 21,2024

🗥 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not

a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)


Ply Job Truss Truss Type Qty Roof - Repair 164306639 P230888-02 **A4** Roof Special Supported Gable 1 1 Job Reference (optional)

Premier Building Supply (Springhill, KS), Spring Hills, KS - 66083,

Run: 8.63 S Nov 1 2023 Print: 8.630 S Nov 1 2023 MiTek Industries, Inc. Mon Mar 18 11:45:05 ID:kkw6VMCTKypljEPYbt576Oz_rGt-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC?f

Page: 1

REPAIR: STUB RIGHT END 4"

Scale = 1:86.9

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	I/defI	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15	TC	0.11	Vert(LL)	n/a	-	n/a	999	MT20	244/190
TCDL	10.0	Lumber DOL	1.15	BC	0.04	Vert(CT)	n/a	-	n/a	999		
BCLL	0.0	Rep Stress Incr	NO	WB	0.21	Horz(CT)	0.00	29	n/a	n/a		
BCDL	10.0	Code	IRC2018/TPI2014	Matrix-SH							Weight: 253 lb	FT = 20%

LUMBER TOP CHORD 2x4 SP No.2				3	=175 (LC 1), 29 0=205 (LC 26)	, 31=174 (LC	1),	WEBS		15-43	=-179/36, 16-41= =-140/123, 14-44	l=-140/71,	
BCDL	10.0	Code	IRC2018/TPI2014	Matrix-SH	l						Weight: 253 lb	FT = 20%	
BCLL	0.0	Rep Stress Incr	NO	WB	0.21	Horz(CT)	0.00	29	n/a	n/a			
TCDL	10.0	Lumber DOL	1.15	BC	0.04	Vert(CT)	n/a	-	n/a	999			
TCLL (roof)	25.0	Plate Grip DOL	1.15	TC	0.11	Vert(LL)	n/a	-	n/a	999	MT20	244/190	

BOT CHORD 2x4 SP 2400F 2.0E *Except

36-42.42-49:2x4 SP No.2 WFBS 2x4 SPF No 3

OTHERS 2x3 SPF No.2

BRACING

BOT CHORD

TOP CHORD Structural wood sheathing directly applied or

6-0-0 oc purlins, except end verticals. Rigid ceiling directly applied or 10-0-0 oc

bracing.

WEBS 1 Row at midpt 17-40, 16-41, 15-43,

18-39, 19-38

REACTIONS (size) 2=49-0-0, 29=49-0-0, 30=49-0-0, 31=49-0-0, 32=49-0-0, 33=49-0-0, 34=49-0-0, 35=49-0-0, 37=49-0-0, 38=49-0-0, 39=49-0-0, 40=49-0-0, 41=49-0-0, 43=49-0-0, 44=49-0-0, 45=49-0-0, 46=49-0-0, 47=49-0-0, 48=49-0-0, 50=49-0-0, 51=49-0-0,

> 55=49-0-0 Max Horiz 2=187 (LC 16)

Max Uplift 2=-32 (LC 13), 30=-101 (LC 13),

31=-38 (LC 13), 32=-54 (LC 13), 33=-50 (LC 13), 34=-51 (LC 13), 35=-51 (LC 13), 37=-50 (LC 13), 38=-57 (LC 13), 39=-41 (LC 13),

52=49-0-0, 53=49-0-0, 54=49-0-0,

41=-39 (LC 12), 43=-50 (LC 8), 44=-45 (LC 12), 45=-46 (LC 8), 46=-46 (LC 12), 47=-46 (LC 8), 48=-46 (LC 12), 50=-46 (LC 8), 51=-46 (LC 12), 52=-46 (LC 8),

53=-47 (LC 12), 54=-43 (LC 8), 55=-62 (LC 12)

32=181 (LC 26), 33=180 (LC 34=180 (LC 26), 35=180 (LC 26), 37=180 (LC 1), 38=180 (LC 26), 39=188 (LC 26), 40=213 (LC 22), 41=188 (LC 25), 43=180 (LC 25), 44=180 (LC 1), 45=180 (LC 25), 46=180 (LC 1), 47=180 (LC 25), 48=180 (LC 1), 50=180 (LC 1), 51=180 (LC 1), 52=179 (LC 25) 53=185 (LC 1), 54=159 (LC 25),

55=242 (LC 25) (lb) - Maximum Compression/Maximum Tension

1-2=0/18, 2-3=-194/110, 3-4=-162/118, 4-5=-141/134, 5-6=-120/151, 6-7=-99/168, 7-8=-78/185, 8-10=-85/208, 10-11=-97/236,

11-12=-108/264, 12-13=-119/292, 13-14=-131/320, 14-15=-142/348, 15-16=-154/377, 16-17=-164/400, 17-18=-169/398, 18-19=-155/341, 19-20=-140/281, 20-21=-125/243,

21-22=-111/207, 22-23=-96/171 23-25=-81/135, 25-26=-66/99, 26-27=-53/65,

27-28=-61/41, 28-29=-72/21 2-55=-42/78, 54-55=-38/76, 53-54=-38/76,

52-53=-38/76, 51-52=-38/76, 50-51=-38/76, 48-50=-38/76, 47-48=-38/76, 46-47=-38/76, 45-46=-38/76, 44-45=-38/76, 43-44=-38/76, 41-43=-38/76, 40-41=-38/76, 39-40=-38/76, 38-39=-38/76, 37-38=-38/76, 35-37=-38/76,

34-35=-38/76, 33-34=-38/76, 32-33=-38/76, 31-32=-38/76, 30-31=-38/76, 29-30=-38/76

45=-140/70, 12-46=-140/70, 11-47=-140/70, 10-48=-140/70, 8-50=-140/70, 7-51=-140/70, 6-52=-139/70, 5-53=-143/71, 4-54=-128/66, 3-55=-178/85, 18-39=-148/123, 19-38=-140/133,

20-37=-140/75, 21-35=-140/75, 22-34=-140/75, 23-33=-140/75, 25-32=-141/77, 26-31=-135/67,

27-30=-160/106

NOTES

Unbalanced roof live loads have been considered for 1) this design.

March 21,2024

Continued on page 2

WARNING - Ve

Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not

FORCES

TOP CHORD

BOT CHORD

besign value to use only with recks colline tools. This design is based only upon parameters shown, and is not an individual busining denipolinit, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

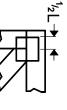
Job	Truss	Truss Type	Qty	Ply	Roof - Repair	
P230888-02	A4	Roof Special Supported Gable	1	1	Job Reference (optional)	164306639

Run: 8.63 S Nov 1 2023 Print: 8.630 S Nov 1 2023 MiTek Industries, Inc. Mon Mar 18 11:45:05 ID:kkw6VMCTKypljEPYbt576Oz_rGt-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC?f

Page: 2

- Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=35ft; Ke=0.96; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone and C-C Corner(3E) -0-11-0 to 4-1-0, Exterior(2N) 4-1-0 to 28-8-1, Corner(3R) 28-8-1 to 33-8-1, Exterior(2N) 33-8-1 to 48-10-4 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- All plates are 3x4 MT20 unless otherwise indicated.
- Gable requires continuous bottom chord bearing.
- Gable studs spaced at 2-0-0 oc.
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- All bearings are assumed to be SP 2400F 2.0E crushing capacity of 805 psi.
- 9) Solid blocking is required on both sides of the truss at joint(s), 2.
- 10) Beveled plate or shim required to provide full bearing surface with truss chord at joint(s) 2.
- 11) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard



March 21,2024

Symbols

PLATE LOCATION AND ORIENTATION

Center plate on joint unless x, y offsets are indicated.
Dimensions are in ft-in-sixteenths.
Apply plates to both sides of truss and fully embed teeth.

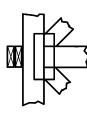
For 4 x 2 orientation, locate plates 0- ¹/16" from outside edge of truss.

This symbol indicates the required direction of slots in connector plates.

* Plate location details available in MiTek software or upon request.

PLATE SIZE

4 × 4

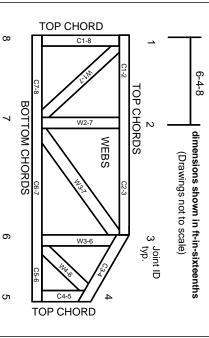

The first dimension is the plate width measured perpendicular to slots. Second dimension is the length parallel to slots.

LATERAL BRACING LOCATION

Indicated by symbol shown and/or by text in the bracing section of the output. Use T or I bracing if indicated.

BEARING

Indicates location where bearings (supports) occur. Icons vary but reaction section indicates joint number/letter where bearings occur. Min size shown is for crushing only.


Industry Standards:

National Design Specification for Metal Plate Connected Wood Truss Construction. Design Standard for Bracing.

Building Component Safety Information, Guide to Good Practice for Handling, Installing, Restraining & Bracing of Metal Plate Connected Wood Trusses.

ANSI/TPI1: DSB-22:

Numbering System

JOINTS ARE GENERALLY NUMBERED/LETTERED CLOCKWISE AROUND THE TRUSS STARTING AT THE JOINT FARTHEST TO THE LEFT.

CHORDS AND WEBS ARE IDENTIFIED BY END JOINT NUMBERS/LETTERS.

Product Code Approvals

ICC-ES Reports:

ESR-1988, ESR-2362, ESR-2685, ESR-3282 ESR-4722, ESL-1388

Design General Notes

Trusses are designed for wind loads in the plane of the truss unless otherwise shown.

Lumber design values are in accordance with ANSI/TPI 1 section 6.3 These truss designs rely on lumber values established by others.

© 2023 MiTek® All Rights Reserved

MiTek Engineering Reference Sheet: MII-7473 rev. 1/2/2023

General Safety Notes

Failure to Follow Could Cause Property Damage or Personal Injury

- Additional stability bracing for truss system, e.g. diagonal or X-bracing, is always required. See BCSI
- Truss bracing must be designed by an engineer. For wide truss spacing, individual lateral braces themselves may require bracing, or alternative Tor I bracing should be considered.

Ņ

Never exceed the design loading shown and never stack materials on inadequately braced trusses.

ω

- Provide copies of this truss design to the building designer, erection supervisor, property owner and all other interested parties.
- Cut members to bear tightly against each other.

'n

- Place plates on each face of truss at each joint and embed fully. Knots and wane at joint locations are regulated by ANSI/TPI 1.
- Design assumes trusses will be suitably protected from the environment in accord with ANSI/TPI 1.
- Unless otherwise noted, moisture content of lumber shall not exceed 19% at time of fabrication.

œ

- Unless expressly noted, this design is not applicable for use with fire retardant, preservative treated, or green lumber.
- Camber is a non-structural consideration and is the responsibility of truss fabricator. General practice is to camber for dead load deflection.
- Plate type, size, orientation and location dimensions indicated are minimum plating requirements.
- Lumber used shall be of the species and size, and in all respects, equal to or better than that specified.
- Top chords must be sheathed or purlins provided at spacing indicated on design.
- Bottom chords require lateral bracing at 10 ft. spacing, or less, if no ceiling is installed, unless otherwise noted.
- 15. Connections not shown are the responsibility of others.
- Do not cut or alter truss member or plate without prior approval of an engineer.
- Install and load vertically unless indicated otherwise.
- Use of green or treated lumber may pose unacceptable environmental, health or performance risks. Consult with project engineer before use.
- Review all portions of this design (front, back, words and pictures) before use. Reviewing pictures alone is not sufficient.
- Design assumes manufacture in accordance with ANSI/TPI 1 Quality Criteria.
- 21. The design does not take into account any dynamic or other loads other than those expressly stated.