

Address: 3722/3724 SW Knoxville Ct

Mean Roof Height (feet): 35

RE: P240301 -

Site Information: Project Customer: Clover & Hive Project Name: Twin Honeydew - Farmhouse Lot/Block: 80 Subdivision: Osage Model: Twin Honeydew - Farmhouse

MiTek, Inc. 16023 Swingley Ridge Rd. Chesterfield, MO 63017 314.434.1200

State: MO

City: Lee's Summit General Truss Engineering Criteria & Design Loads (Individual Truss Design Drawings Show Special Loading Conditions):

Design Code: IRC2018/TPI2014 Wind Code: ASCE 7-16 Wind Speed: 115 mph Roof Load: 45.0 psf

Design Program: MiTek 20/20 8.6 Design Method: MWFRS (Envelope)/C-C hybrid Wind ASCE 7-16 Floor Load: N/A psf

Exposure Category: C

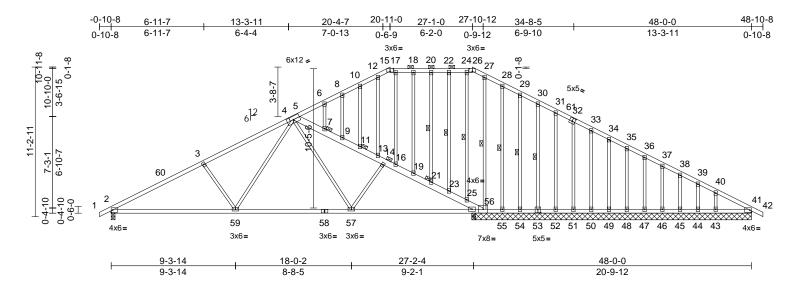
No. 1234567890112345678910112345677890011234567789001123456778900112345677800000000000000000000000000000000000	Seal# 164525595 164525596 164525597 164525598 164525600 164525600 164525601 164525603 164525603 164525605 164525605 164525607 164525609 164525609 164525610 164525610 164525611	Truss Name A1 A2 A3 A4 A5 A6 B1 B2 C1 C2 C3 C4 D1 D2 PB1 PB2 V1	3/28/24 3/28/24 3/28/24 3/28/24 3/28/24 3/28/24 3/28/24 3/28/24 3/28/24 3/28/24 3/28/24 3/28/24 3/28/24 3/28/24 3/28/24 3/28/24
15 16	164525608 164525609 164525610	D2 PB1 PB2	3/28/24 3/28/24 3/28/24

The truss drawing(s) referenced above have been prepared by MiTek USA, Inc. under my direct supervision based on the parameters provided by Premier Building Supply (Springhill, KS)20300 W 207th Street.

Truss Design Engineer's Name: Nathan Fox

My license renewal date for the state of Missouri is December 31, 2024.

IMPORTANT NOTE: The seal on these truss component designs is a certification that the engineer named is licensed in the jurisdiction(s) identified and that the designs comply with ANSI/TPI 1. These designs are based upon parameters shown (e.g., loads, supports, dimensions, shapes and design codes), which were given to MiTek or TRENCO. Any project specific information included is for MiTek's or TRENCO's customers file reference purpose only, and was not taken into account in the preparation of these designs. MiTek or TRENCO has not independently verified the applicability of the design parameters or the designs for any particular building. Before use, the building designer should verify applicability of design parameters and properly incorporate these designs into the overall building design per ANSI/TPI 1, Chapter 2.



Nathan Fox

March 28,2024

Job	Truss	Truss Type	Qty	Ply	
P240301	A1	Piggyback Base Structural Gable	2	1	I64525595 Job Reference (optional)

Run: 8,63 S Nov 1 2023 Print: 8,630 S Nov 1 2023 MiTek Industries, Inc. Wed Mar 27 14:09:13 ID:EmCXOiXYCML5IKd?OVTvI7yGxE5-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Scale = 1:86.4

Plate Offsets (X, Y): [15:0-3-0,Edge	e], [26:0-3-0,Edge], [32:0-2	2-8,0-3-0], [53:0-2	-8,0-3-0]								
Loading TCLL (roof) TCDL BCLL BCDL	(psf) 25.0 10.0 0.0 10.0	Plate Grip DOL1.7Lumber DOL1.7Rep Stress IncrYE	15	CSI TC BC WB Matrix-S	0.75 0.95 0.35	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.20 -0.43 0.07	(loc) 2-59 2-59 56	>999 >771	L/d 240 180 n/a	PLATES MT20 Weight: 312 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD WEBS	2x4 SP No.2 2x3 SPF No.2 2x3 SPF No.2 Structural wood she 2-2-0 oc purlins, ex 2-0-0 oc purlins (10- Rigid ceiling directly bracing, Except: 8-11-14 oc bracing: 10-0-0 oc bracing: 5 2-2-0 oc bracing: 5 1 Row at midpt	-0-0 max.): 15-26, 5-56. 2-59 3-57. 20-21, 22-23, 24-25, 27-56, 28-55, 29-54, 30-53	FORCES TOP CHORD	(lb) - Max Tension 1-2=0/17, 5-6=-43/2 10-12=0/2 17-18=-12 24-26=-11 24-26=-11 28-29=-6/	2=1249 (LC 1), 4 43=232 (LC 1), 4 45=128 (LC 26), 47=120 (LC 1), 4 9=120 (LC 26), 51=118 (LC 26), 5 53=96 (LC 26), 5 55=33 (LC 9), 5 imum Compressi 2-3=-1983/353, 3 46, 6-8=-12/263, 96, 12-15=-17/2 3/242, 18-20=-13, 3/242, 22-24=-13, 3/242, 22-24=-13, 3/242, 22-24=-13, 3/242, 22-24=-13, 3/242, 22-24=-13, 3/242, 22-30=-9/23 7/219, 33-34=-46,	44=81 (LC 1) 46=119 (LC 1) 48=120 (LC 1) 50=123 (LC 52=128 (LC 1) 54=234 (LC 1) 54=234 (LC 1) 55=-1735/35 8-10=0/277, 19, 15-17=-15 242, 242, 242, 223, 27-28=(3, 30-31=-7/2)), 1),), 1), 1), 1), 1),),) 9, 5/234, 0/312,	2) Wi 2) Wi Va Ke ext	S bbalanced s design. ind: ASC isd=91m j=1.00; C terior zor	14-57 22-23 28-55 31-52 34-49 37-46 40-43 16-17 10-11 d roof li E 7-16; ph; TCI at. II; Ene and	=-551/143, 20-21 =-67/38, 24-25= =-12/84, 29-54= =-92/56, 32-51= =-93/57, 35-48= =-93/57, 38-45= =-174/115, 18-15 =-169/20, 12-13= =-67/47, 8-9=-73 ve loads have be vult=115mph (3 DL=6.0psf; BCDL xp C; Enclosed; C-C Exterior(2E)	49/21, 27-56=-367/24, 87/60, 30-53=-98/56, 93/56, 33-50=-95/58, 93/57, 36-47=-93/57, 97/59, 39-44=-69/41, 0=-73/40, 190/48, /46, 6-7=-60/41
	44=20-11 46=20-11 48=20-11 50=20-11 52=20-11 54=20-11 54=20-11 Max Uplift 2=-225 (L 43=-91 (L 45=-42 (L 47=-41 (L 51=-41 (L 51=-41 (L 53=-46 (L	41=20-11-8, 43=20-11-8, -8, 45=20-11-8, -8, 47=20-11-8, -8, 49=20-11-8, -8, 51=20-11-8, -8, 53=20-11-8, -8, 55=20-11-8, -8	BOT CHORD	$\begin{array}{c} 34 \cdot 35 = -64\\ 36 \cdot 37 = -16\\ 38 \cdot 39 = -14\\ 40 \cdot 41 = -22\\ 7 \cdot 9 = -182\\ 11 \cdot 13 = -18\\ 14 \cdot 16 = -22\\ 19 \cdot 21 = -2^2\\ 23 \cdot 25 = -22\\ 23 \cdot 25 = -22\\ 23 \cdot 25 = -21\\ 56 \cdot 57 = -21\\$	1413, 35-36=-83, 14/200, 39-40=-11 14/200, 39-40=-11 10/230, 41-42=0/ 10/230, 41-42=0/ 10/230, 41-42=0/ 10/408, 16-19=- 155/510, 21-23=- 155/510, 21-25=- 155/510, 21-25=- 155/510, 21-25=- 155/510, 21	198, 20/198, 70/189, 77, 5-7=-1799 2/436, 1977/479, 2125/504, 2187/516, 2226/522 30/1108, 193/244, 33/244, 33/244, 34/244, 34/244, 34/244, 34/244,	9/395,	27 34 ex me	-1-0, Ext -1-14 to posed ; e embers a	erior(2F 48-10-8 and veri nd forc DL=1.60	R) 27-1-0 to 34-1 3 zone; cantileve tical left and righ es & MWFRS fo 0 plate grip DOL= 0 plate grip DOL= 0 F 1 STATE OF 1 NATHA FO	-14, interior (1) r left and right texposed;C-C for r reactions shown; 1.60 MISSOL NIEL X ER 042259

Courses March 28,2024

Page: 1

ontinued	on	page	2

tinued on page 2 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent colleges with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

Job	Truss	Truss Type	Qty	Ply	
P240301	A1	Piggyback Base Structural Gable	2	1	I64525595 Job Reference (optional)

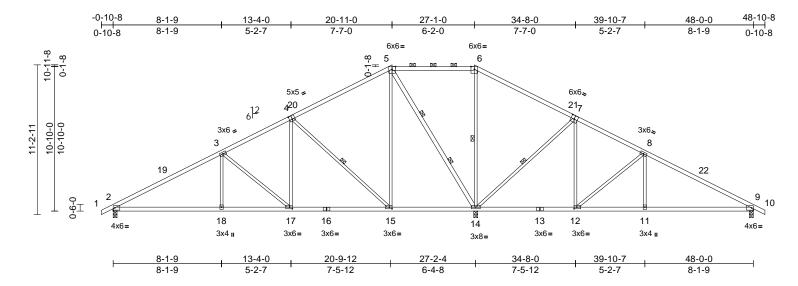
- Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) Provide adequate drainage to prevent water ponding.
- 5) All plates are 3x4 MT20 unless otherwise indicated.
- 6) Gable studs spaced at 1-4-0 oc.
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- All bearings are assumed to be SP No.2 crushing capacity of 565 psi.
- 9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 225 lb uplift at joint 2, 162 lb uplift at joint 56, 29 lb uplift at joint 41, 509 lb uplift at joint 55, 23 lb uplift at joint 54, 46 lb uplift at joint 53, 39 lb uplift at joint 52, 41 lb uplift at joint 51, 42 lb uplift at joint 50, 41 lb uplift at joint 49, 41 lb uplift at joint 48, 41 lb uplift at joint 47, 41 lb uplift at joint 46, 42 lb uplift at joint 45, 28 lb uplift at joint 44 and 91 lb uplift at joint 43.
- 10) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

LOAD CASE(S) Standard

Run: 8.63 S Nov 1 2023 Print: 8.630 S Nov 1 2023 MiTek Industries, Inc. Wed Mar 27 14:09:13 ID:EmCXOiXYCML5IKd?OVTvI7yGxE5-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 2

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPH Claulity Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

Job	Truss	Truss Type	Qty	Ply		
P240301	A2	Piggyback Base	6	1	Job Reference (optional)	164525596


Run: 8.63 S Nov 1 2023 Print: 8.630 S Nov 1 2023 MiTek Industries. Inc. Wed Mar 27 14:09:14 ID:Eh5q6SjuDTnlbtQwPDFzXnyGxF9-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

04/15/2024 6:48:14

ION EW

March 28,2024

Scale = 1	1:86.4
-----------	--------

	(X, Y): [4:0-2-8,0-3-4],	[7:0-3-0,0-3-4], [12:	0-2-0,0-1-	oj, [15.0-2-6,0-	1-0], [17.0-2-0,0	- 1-0]						•	
oading	(psf)	Spacing	2-0-0		CSI	0.04	DEFL	in 0.12	(loc)	l/defl	L/d	PLATES	GRIP
CLL (roof)	25.0 10.0	Plate Grip DOL Lumber DOL	1.15 1.15		TC BC	0.94 0.76	Vert(LL) Vert(CT)	-0.13 -0.30	2-18 2-18	>999 >999	240 180	MT20	197/144
BCLL	0.0	Rep Stress Incr	YES		WB	0.78	Horz(CT)	-0.30	2-10 14	>999 n/a	n/a		
BCDL	10.0	Code		8/TPI2014	Matrix-S	0.51	11012(01)	0.04	14	n/a	n/a	Weight: 232 lb	FT = 20%
			2)		7-16; Vult=115	mph (2 000	and quat)						
OP CHORD	2x4 SP No.2 *Excep 1650F 1.5E 2x4 SP No.2	t* 1-4,7-10:2x4 SP	۷)	Vasd=91mp Ke=1.00; Ca	h; TCDL=6.0psf it. II; Exp C; Enc and C-C Exter	; BCDL=6.0 closed; MW)psf; h=35ft; FRS (envelo	pe)					
VEBS	2x3 SPF No.2 *Exce	pt* 14-5:2x4 SP No.	.2	Interior (1) 4	-1-8 to 20-11-0,	Exterior(28) 20-11-0 to						
BRACING					rior(2R) 27-1-0								
OP CHORD	Structural wood shea 2-2-0 oc purlins, exc 2-0-0 oc purlins (10-	ept	ed or	exposed ; er members ar	8-10-8 zone; ca nd vertical left ar nd forces & MWF	nd right exp FRS for rea	osed;C-C for ctions showr						
BOT CHORD	Rigid ceiling directly		3)		_=1.60 plate grip quate drainage			a					
VEBS	bracing.	4-15, 6-14, 7-14	3) 4)		as been designe			y.					
EBS		5-14	,		ad nonconcurre			ıds.					
)=0-3-8, 14=0-3-8	5)		are assumed to	be SP No.	2 crushing						
Enomono	Max Horiz 2=204 (LC			capacity of s									
	Max Uplift 2=-198 (L 14=-303 (C 12), 9=-184 (LC 1	3), 6)	bearing plat	hanical connect capable of with	nstanding 1	98 Ib uplift a	t					
	Max Grav 2=1034 (L 14=2925 (C 25), 9=689 (LC 2	6), 7)	This truss is	b uplift at joint 1 designed in acc Residential Co	cordance w	th the 2018						
ORCES	(lb) - Maximum Com Tension	pression/Maximum		R802.10.2 a	nd referenced s	tandard AN	SI/TPI 1.						
OP CHORD	1-2=0/17, 2-3=-1514 5-6=0/834, 6-8=-184	,			Irlin representat ation of the purli d.			SIZE					m
BOT CHORD	9-10=0/17 2-18=-312/1230, 17- 15-17=-143/748, 14- 12-14=-340/183, 11- 9-11=-102/585	15=-152/328,	L	DAD CASE(S)	Standard						A	STATE OF I	
VEBS	3-18=0/297, 3-17=-6 4-15=-911/325, 5-15 5-14=-1467/285, 6-1 7-14=-927/326, 7-12 8-12=-651/219, 8-11	i=-137/756, 4=-882/186, 2=-60/514,	04,							•	R	FO	
OTES	5 . <u>2</u> - 00 //2 10, 0 11	0,000									N		042259
	ed roof live loads have n.	been considered for	r								V	FESSIONA	LENGING

Job	Truss	Truss Type	Qty	Ply		
P240301	A3	Piggyback Base	2	1	Job Reference (optional)	164525597

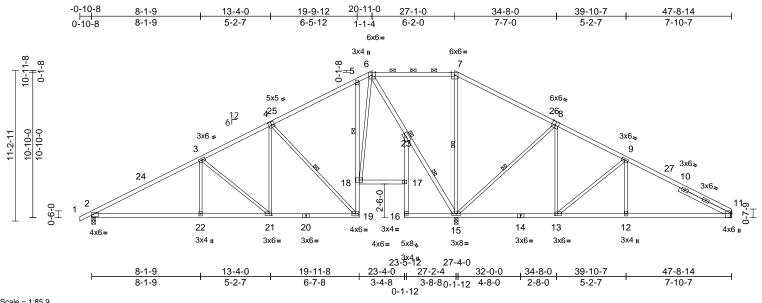
Run: 8,63 S Nov 1 2023 Print: 8,630 S Nov 1 2023 MiTek Industries, Inc. Wed Mar 27 14:09:14 ID:_BaRCVCQw9?42CIXuEbokKyGxNZ-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

13-3-11 13-4-0 5-2-1 0-0-5 20-11-0 27-1-0 39-10-7 47-8-14 8-1-9 34-8-0 6-2-0 8-1-9 7-7-0 7-7-0 7-10-7 5-2-7 6x6= 6x6= 10-11-8 0-1-8 ထု 5 6 5 6x6👟 5x5 🗸 21₇ 420 6¹² 10-10-0 11-2-11 10-10-0 3 8 22 9 0-9-0 16 15 12 18 17 13 14 11 4x6 II 4x6= 3х4 **п** 3х4 **п** 3x8= 27-4-0 27-2-4 34-8-0 8-1-9 13-4-0 20-9-12 39-10-7 47-8-14 8-1-9 5-2-7 7-10-7 6-4-8 7-4-0 5-2-7 7-5-12 0-1-12

Scale = 1:85.9

.oading (psf											-
oading (psf CLL (roof) 25.0		0-0 15	CSI TC	0.89	DEFL Vert(LL) -	in 0.13	(loc) 2-18	l/defl >999	L/d 240	PLATES MT20	GRIP 197/144
DL 10.0		15	BC	0.00	· · ·	0.31	2-18	>999	180	11120	137/144
CLL 0.0		ES	WB	0.96	· · ·	0.05	10	n/a	n/a		
CDL 10.0	Code IF	C201	8/TPI2014 Matrix-S							Weight: 236 lb	FT = 20%
EDL 10.0 IMBER 10.0 IP CHORD 2x4 SP No.2 *Ex 1650F 1.5E 1650F 1.5E DT CHORD 2x4 SP No.2 *E EBS 2x3 SPF No.2 *E IDER Right 2x4 SP No ACING 2-2-0 oc purlins, 2-0-0 oc purlins, 2-0-0 oc purlins, 2-0-10 co purlins, 2-0-0 oc purlins, 2-0-10 co purlins, 2-0-0 oc purlins, 2-0-10 co purlins, 2-0-0 oc purlins, 2-10 co purlins, 2-0-0 oc purlins, 2-10 co purlins, 2-0-0 oc purlins, 2-10 co purlins, </td <td>Code IF ept* 4-1,7-10:2x4 SP ept* 4-1,7-10:2x4 SP cept* 14-5:2x4 SP No.2 ept* 4-1,7-10:2x4 SP cept* 14-5:2x4 SP No.2 ept* 4-1,7-10:2x4 SP heathing directly applied or ept o-0 max.): 5-6. ty applied or 6-0-0 oc 6-14, 5-14, 7-14, 4-15 6,10 = Mechanical, 14=0-3-(LC 12) (LC 12), 10=-202 (LC 13), 0 (LC 12) 0 (LC 12) 10=696 (LC 26), 0 (LC 1) 0 (LC 1) ompression/Maximum 17, 2-3=-1560/287, =-364/860, 8-10=-913/318 r7-18=-344/1270, 14-15=-70/250, 11-12=-167/718, =-136/754, 6-14=-796/153, =-1391/268, 4-17=-59/501, 12=-51/500,</td> <td>3) 3) 4) 5) 8 6) 7) 8) 9) 10</td> <td>B/TPI2014 Matrix-S Wind: ASCE 7-16; Vult=115m; Vasd=91mph; TCDL=6.0psf; E Ke=1.00; Cat. II; Exp C; Encloi exterior zone and C-C Exterior Interior (1) 4-1.8 to 20-11-0, E: 27-1-0, Exterior(2R) 27-1-0 to 34-1-14 to 47-8-14 zone; canti exposed ; end vertical left and members and forces & MWFR Lumber DOL=1.60 plate grip D Provide adequate drainage to All plates are 3x6 MT20 unless This truss has been designed chord live load nonconcurrent Bearings are assumed to be: J capacity of 565 psi, Joint 14 Si of 565 psi. Refer to girder(s) for truss to tr</td> <td>bh (3-sec CDL=6. sed; MW (2E) -0 xterior(2] 34-1-14, lever left right exp S for rea 00L=1.60 prevent 1 s otherwit for a 10. with any loint 2 SI P No.2 c uss conr n (by oth anding 2 and 270 dance w sections ndard AN</td> <td>cond gust) 2psf; h=35ft; FRS (envelope) 10-8 to 4-1-8, E) 20-11-0 to Interior (1) and right bosed;C-C for ctions shown; water ponding. se indicated. D psf bottom other live loads. P No.2 crushing rushing capacity No.2 crushing capacity ections. ers) of truss to 102 lb uplift at lb uplift at joint ith the 2018 it R502.11.1 and IS/ITPI 1. bt depict the size</td> <td></td> <td></td> <td></td> <td></td> <td>Weight: 236 Ib</td> <td>MISSOUR NIEL</td>	Code IF ept* 4-1,7-10:2x4 SP ept* 4-1,7-10:2x4 SP cept* 14-5:2x4 SP No.2 ept* 4-1,7-10:2x4 SP cept* 14-5:2x4 SP No.2 ept* 4-1,7-10:2x4 SP heathing directly applied or ept o-0 max.): 5-6. ty applied or 6-0-0 oc 6-14, 5-14, 7-14, 4-15 6,10 = Mechanical, 14=0-3-(LC 12) (LC 12), 10=-202 (LC 13), 0 (LC 12) 0 (LC 12) 10=696 (LC 26), 0 (LC 1) 0 (LC 1) ompression/Maximum 17, 2-3=-1560/287, =-364/860, 8-10=-913/318 r7-18=-344/1270, 14-15=-70/250, 11-12=-167/718, =-136/754, 6-14=-796/153, =-1391/268, 4-17=-59/501, 12=-51/500,	3) 3) 4) 5) 8 6) 7) 8) 9) 10	B/TPI2014 Matrix-S Wind: ASCE 7-16; Vult=115m; Vasd=91mph; TCDL=6.0psf; E Ke=1.00; Cat. II; Exp C; Encloi exterior zone and C-C Exterior Interior (1) 4-1.8 to 20-11-0, E: 27-1-0, Exterior(2R) 27-1-0 to 34-1-14 to 47-8-14 zone; canti exposed ; end vertical left and members and forces & MWFR Lumber DOL=1.60 plate grip D Provide adequate drainage to All plates are 3x6 MT20 unless This truss has been designed chord live load nonconcurrent Bearings are assumed to be: J capacity of 565 psi, Joint 14 Si of 565 psi. Refer to girder(s) for truss to tr	bh (3-sec CDL=6. sed; MW (2E) -0 xterior(2] 34-1-14, lever left right exp S for rea 00L=1.60 prevent 1 s otherwit for a 10. with any loint 2 SI P No.2 c uss conr n (by oth anding 2 and 270 dance w sections ndard AN	cond gust) 2psf; h=35ft; FRS (envelope) 10-8 to 4-1-8, E) 20-11-0 to Interior (1) and right bosed;C-C for ctions shown; water ponding. se indicated. D psf bottom other live loads. P No.2 crushing rushing capacity No.2 crushing capacity ections. ers) of truss to 102 lb uplift at lb uplift at joint ith the 2018 it R502.11.1 and IS/ITPI 1. bt depict the size					Weight: 236 Ib	MISSOUR NIEL

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent colleges with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)


DEVELORMENT SERVICES LEE'S'SUMMIT'SMISSOURI 04/15/2024 6:48:14

TION IEW

March 28,2024

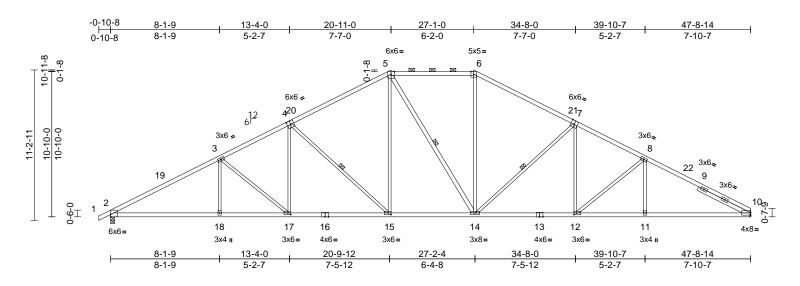
Job	Truss	Truss Type	Qty	Ply	
P240301	A4	Piggyback Base	2	1	I64525598 Job Reference (optional)

Run: 8,63 S Nov 1 2023 Print: 8,630 S Nov 1 2023 MiTek Industries, Inc. Wed Mar 27 14:09:14 ID:SN8pPrD2hT7xgLsjSx71GYyGxNY-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Scale = 1:85.9

Loading TCLL (roof) TCDL BCLL BCDL	(psf) 25.0 10.0 0.0	Plate Grip DOL Lumber DOL Rep Stress Incr	2-0-0 1.15 1.15 YES		CSI TC BC WB	0.91 0.72 0.91	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.13 -0.30 0.08	(loc) 2-22 2-22 15	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20	GRIP 197/144
LUMBER TOP CHORD BOT CHORD WEBS SLIDER BRACING TOP CHORD BOT CHORD 1 Row at midp WEBS JOINTS REACTIONS	1.5E 2x4 SP No.2 2x3 SPF No.2 *Exce Right 2x4 SP No.2 - Structural wood she 2-2-0 oc purlins, exc 2-0-0 oc purlins (10- Rigid ceiling directly bracing. Except: to 5-18 1 Row at midpt 1 Brace at Jt(s): 23 (size) 2=0-3-8, Max Horiz 2=208 (LC Max Uplift 2=-233 (L 15=-221 (L 15=2891 (lb) - Maximum Com	ht* 4-1,8-11:2x4 SP 168 ept* 15-6:2x4 SP No.2 - 4-4-0 athing directly applied ept 0-0 max.): 6-7. applied or 6-0-0 oc 7-15, 15-23, 8-15, 4-1 11= Mechanical, 15=0- C 12) C 12), 11=-358 (LC 13 LC 12) C 25), 11=682 (LC 26), (LC 1)	50F 2) or 2) 9 4) 5) 3-8 6) 8), 7) 8)	Unbalanced it this design. Wind: ASCE Vasd=91mpt Ke=1.00; Cate exterior zone Interior (1) 4- 27-1-0, Exter 34-1-14 to 47 exposed; en members and Lumber DOL Provide adec All plates are This truss ha Bearings are capacity of 50 of 565 psi. Refer to gird@ Provide mecl bearing plate	Matrix-S roof live loads have 7-16; Vult=115mp n; TCDL=6.0psf; Bit t. II; Exp C; Enclos and C-C Exterior(1-8 to 20-11-0, Ex ior(2R) 27-1-0 to 3 7-8-14 zone; cantile d vertical left and r d forces & MWFRS =1.60 plate grip Di guate drainage to p 3x6 MT20 unless s been designed for d nonconcurrent v assumed to be: Jo 65 psi, Joint 15 SP er(s) for truss to tru- hanical connection capable of withsta b) uplift at joint 15	h (3-sec CDL=6. ed; MW 22) -0 terior(2) 34-1-14, ever left right exp 5 for rea OL=1.6 or event otherwi or a 10. vith any point 2 S 2 No.2 c uss conn (by oth anding 3	cond gust) Opsf; h=35ft; IFRS (envelog IO-8 to 4-1-8, E) 20-11-0 to Interior (1) and right oossed;C-C for ictions shown water ponding se indicated. D psf bottom other live loa P No.2 crushin rushing capa nections. ers) of truss t 58 lb uplift at	pe) r; g. ng city				Weight: 257 lb	FT = 20%
TOP CHORD BOT CHORD WEBS	9-11=-884/640 2-22=-385/1109, 21 19-21=-205/604, 18 5-18=-288/208, 17-1)/903, 7-9=-333/1060, -22=-385/1109, -19=-168/668, 18=-98/31, 16-17=-15// 69/26, 13-15=-509/22 -12=-450/694 378/77, 9-12=0/290,	9) 10) 11,	International R802.10.2 ar Graphical pu		sections dard AN does n	s R502.11.1 a NSI/TPI 1. ot depict the s					STATE OF M NATHA FO	
NOTES		=-650/232, 8-13=-42/49 3=-625/182,	97,								As.	PE-2022	ENGINE

March 28,2024


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent colleges with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

TION IEW DEVELOPMENT SERVICES LEE'S'SUMMIT'SMISSOURI 04/15/2024 6:48:14

Job	Truss	Truss Type	Qty	Ply		
P240301	A5	Piggyback Base	10	1	Job Reference (optional)	164525599

Run: 8.63 S Nov 1 2023 Print: 8.630 S Nov 1 2023 MiTek Industries. Inc. Wed Mar 27 14:09:15 ID:waiCdBDgSnFoHVRv0eeGplyGxNX-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

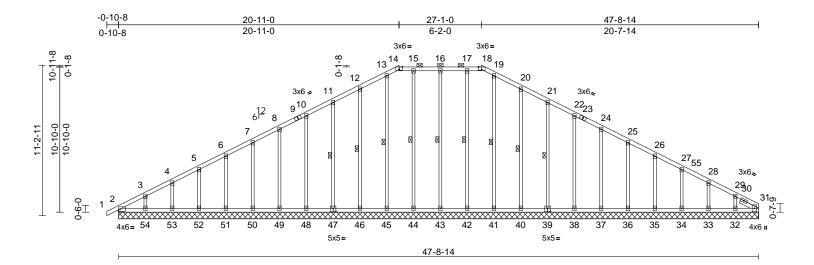
Scale = 1:85.9

			-										
oading	(psf)	Spacing	2-0-0 1.15		TC	0.07	DEFL	in 0.26	(loc) 15-17	l/defl	L/d 240	PLATES MT20	GRIP
CLL (roof) CDL	25.0 10.0	Plate Grip DOL Lumber DOL	1.15		BC	0.97 0.82	Vert(LL) Vert(CT)			>999 >999	240 180	W120	197/144
	0.0	Rep Stress Incr	YES		WB	0.82	Horz(CT)	-0.53	10-17	>999 n/a	n/a		
CDL	10.0	Code		3/TPI2014	Matrix-S	0.01	11012(01)	0.23	10	n/a	n/a	Weight: 236 lb	FT = 20%
JDL	10.0	Code	IKC2010	0/1712014	Maultx-3	-						Weight. 230 lb	FT = 2076
JMBER			2)		7-16; Vult=115m								
OP CHORD	2x4 SP 1650F 1.5E *)		n; TCDL=6.0psf;								
	No.2, 4-1:2x4 SP 24	00F 2.0E			t. II; Exp C; Enclo			ce)					
OT CHORD	2x4 SP 1650F 1.5E				and C-C Exterio								
EBS	2x3 SPF No.2 *Exce		2		-1-8 to 20-11-0, E								
IDER	Right 2x4 SP No.2	- 4-4-0			rior(2R) 27-1-0 to								
RACING					7-8-14 zone; can								
OP CHORD	Structural wood shea	athing directly applie	ed,		id vertical left and d forces & MWFI								
	except				.=1.60 plate grip			,					
	2-0-0 oc purlins (2-2		3)		quate drainage to			,					
OT CHORD	Rigid ceiling directly	applied or 9-5-7 oc	4)		is been designed			J.					
	bracing.	5 4 4 7 4 4 4 4 5	''		ad nonconcurrent			ds.					
EBS		5-14, 7-14, 4-15	5)		assumed to be:								
ACTIONS		10= Mechanical	-,		acity of 565 psi.								
	Max Horiz 2=209 (LC	,	6)	Refer to gird	er(s) for truss to	russ conr	nections.						
	Max Uplift 2=-329 (L			Provide mec	hanical connection	on (by oth	ers) of truss t	0					
	Max Grav 2=2214 (L		1)		e capable of with		01 lb uplift at						
ORCES	(lb) - Maximum Com	pression/Maximum			329 lb uplift at joi								
	Tension		8)		designed in acco								
OP CHORD	1-2=0/17, 2-3=-4010		3,		Residential Cod			nd					
	5-6=-2386/554, 6-8=	-3430/590,			nd referenced sta								
	8-10=-3898/580 2-18=-561/3433, 17-	40 504/0400	9)		rlin representatio			size					
DT CHORD	2-18=-561/3433, 17- 15-17=-401/3019, 14				ation of the purlin	along the	e top and/or					000	TIC
	12-14=-330/3010, 11	,		bottom chore								A OF M	AIG.
	10-11=-404/3340	1 12- 404/0040,	LC	OAD CASE(S)	Standard						5	TE OF M	10.00
EBS	3-18=0/291, 5-15=-1	34/725. 6-14=-80/7	18.								B	1251	1 CAN
	8-11=0/270, 5-14=-2										B	S NATHA	NIEL Y
	3-17=-547/206, 7-12	,	,								-AI	FO	x,
	7-14=-851/319, 8-12									-	X/	- the	
	4-15=-860/321	,									KF.	- TT	
DTES											M	XXANANI	
	ed roof live loads have	been considered for	r								103	S - MINIM	SEK
this design	h										N.	ON PE-20220	J42259 / AS /

this design.

March 28,2024

DEVELORMENT SERVICES LEE'S'SUMMIT'SMISSOURI 04/15/2024 6:48:14


ION EW

ESSIONAL ET

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent touls be personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANS/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

Job	Truss	Truss Type	Qty	Ply		
P240301	A6	Piggyback Base Supported Gable	2	1	I645 Job Reference (optional)	25600

Run: 8.63 S Nov 1 2023 Print: 8.630 S Nov 1 2023 MiTek Industries. Inc. Wed Mar 27 14:09:15 ID:JbPUB4NmDf0vUSJtFFIELayGxJT-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Scale = 1:85.9)
----------------	---

Plate Offsets (X,	Y): [14:0-3	3-0,Edge]	, [18:0-3-0,Edge], [3	1:0-3-2,0-1-12], [39:0	-2-8,0-3-0], [47:0-2-8,0	-3-0]							
Loading		(psf)	Spacing	2-0-0	CSI			DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)		25.0	Plate Grip DOL	1.15	TC			Vert(LL)	n/a	-	n/a	999	MT20	244/190
TCDL		10.0	Lumber DOL	1.15	BC		0.05	Vert(CT)	n/a	-	n/a	999		
BCLL		0.0	Rep Stress Incr	YES	WB	0	0.18	Horz(CT)	0.02	31	n/a	n/a		FT 000/
BCDL		10.0	Code	IRC2018/TPI2014	Matri	x-S					-		Weight: 267 lb	FI = 20%
BOT CHORD 2 OTHERS 2 SLIDER F BRACING TOP CHORD 5 BOT CHORD F	6-0-0 oc pu 2-0-0 oc pu	2 5.2 P No.2 vood shea rlins, exc rlins (6-0- g directly idpt	athing directly applied		(lb) - M	32=179 (I 34=180 (I 36=180 (I 38=180 (I 40=180 (I 40=180 (I 44=177 (I 46=180 (I 48=180 (I 52=180 (I 54=181 (I 54=181 (I aximum Com	_C 26), _C 26), _C 26), _C 26), _C 26), _C 26), _C 26), _C 25), _C 1), 4 _C 25), _C 1), 5 _C 1), 5 _C 25)	31=119 (LC 2 33=182 (LC 35=180 (LC 37=180 (LC 39=180 (LC 11=174 (LC 2 43=183 (LC 45=176 (LC 45=176 (LC 49=180 (LC 2 49=180 (LC 2 33=179 (LC 2 00/Maximum	1), 1), 26), 6), 26), 26), 5), 1), 5),			19-41 21-39 24-37 26-35 28-33 15-44 12-46 10-48 6-51= 3-54= d roof li	-140/97, 5-52=-1 -138/171	140/112, 140/96, 140/97, 139/106, -=-137/191, 136/8,
	3 3 3 4 4 4 4 4 5 5 5 5 5 5 5 5 5 5 5 3 3 3 3	32=47-8-1 34=47-8-1 36=47-8-1 36=47-8-1 36=47-8-1 36=47-8-1 32=47-8-1 32=47-8-1 36=47-8-1 36=47-8-1 36=47-8-1 32=47-8-1		3), 3), 3), 3), 2), 2), 2),	$\begin{array}{c} 4\text{-}5\text{=-1}\text{!}\\ 7\text{-}8\text{=-8}\text{!}\\ 11\text{-}12\text{=}\\ 13\text{-}14\text{=}\\ 15\text{-}16\text{=}\\ 17\text{-}18\text{=}\\ 19\text{-}20\text{=}\\ 24\text{-}22\text{=}\\ 24\text{-}22\text{=}\\ 27\text{-}28\text{=}\\ 27\text{-}28\text{=}\\ 27\text{-}28\text{=}\\ 27\text{-}28\text{=}\\ 27\text{-}34\text{=}\\ 48\text{-}49\text{=}\\ 48\text{-}49\text{=}\\ 48\text{-}49\text{=}\\ 48\text{-}49\text{=}\\ 48\text{-}49\text{=}\\ 38\text{-}37\text{=}\\ 34\text{-}35\text{=}\\ 34\text{-}35\text{=}\\ \end{array}$	7, 2-3=-295/ 31/97, 5-6=-1 4/162, 8-10=- 106/287, 12- 126/341, 14- 118/342, 16- 119/341, 18- 127/347, 20- 88/234, 22-2	36/110 71/190 -13=-12 -15=-1 -17=-11 -21=-10 24=-69/ 26=-56/ 29=-146 4=-59/2 52=-59/ 48=-59/ 48=-59/ 48=-59/ 43=-59/ 43=-59/ 38=-59/ 34=-59/	, 6-7=-110/13, , 10-11=-88/2 27/347, 19/341, 8/342, 26/341, 16/287, 180, 72, 26-27=-7 3/43, 225, 225, 225, 225, 225, 225, 225, 22	234,				PE-2022	BER 042259

Continued on page 2 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. WARNING - Verify design parameters and KEAD KO LES ON THIS AND INCLUDED MILEK REFERENCE PAGE MIL-7473 rev. 17/2/2023 BEFORE USE. Design valid for use only with MITeK® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria**, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcscomponents.com)

Job	Truss	Truss Type	Qty	Ply		
P240301	A6	Piggyback Base Supported Gable	2	1	Job Reference (optional)	164525600

- 2) Wind: ASCE 7-16: Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=35ft; Ke=1.00; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone and C-C Corner(3E) -0-10-8 to 4-0-0, Exterior(2N) 4-0-0 to 20-11-0, Corner(3R) 20-11-0 to 26-0-0, Exterior(2N) 26-0-0 to 27-1-0, Corner(3R) 27-1-0 to 32-0-0, Exterior(2N) 32-0-0 to 47-8-14 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- Truss designed for wind loads in the plane of the truss 3) only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- Provide adequate drainage to prevent water ponding. 4)
- All plates are 3x4 MT20 unless otherwise indicated. 5) Gable requires continuous bottom chord bearing. 6)
- 7) Gable studs spaced at 2-0-0 oc.
- 8)
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 9) All bearings are assumed to be SP No.2 crushing
- capacity of 565 psi. 10) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 26 lb uplift at joint 2, 58 lb uplift at joint 43, 9 lb uplift at joint 42, 74 lb uplift at joint 40, 60 lb uplift at joint 39, 61 lb uplift at joint 38, 61 lb uplift at joint 37, 61 lb uplift at joint 36, 61 lb uplift at joint 35, 62 lb uplift at joint 34, 59 lb uplift at joint 33, 103 lb uplift at joint 32, 12 lb uplift at joint 44, 71 lb uplift at joint 46, 61 lb uplift at joint 47, 61 lb uplift at joint 48, 61 lb uplift at joint 49, 61 lb uplift at joint 50, 61 lb uplift at joint 51, 61 lb uplift at joint 52, 61 lb uplift at joint 53 and 87 lb uplift at joint 54.
- 11) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 12) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord

LOAD CASE(S) Standard

Run: 8.63 S. Nov. 1 2023 Print: 8.630 S.Nov. 1 2023 MiTek Industries. Inc. Wed Mar 27 14:09:15 ID:JbPUB4NmDf0vUSJtFFIELayGxJT-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f


Page: 2

 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.
 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponent.com)

Job	Truss	Truss Type	Qty	Ply		
P240301	B1	Common Supported Gable	2	1	I64525601 Job Reference (optional)	

Run: 8,63 S Nov 1 2023 Print: 8,630 S Nov 1 2023 MiTek Industries, Inc. Wed Mar 27 14:09:15 ID:UdTxDbh?e9q_8iTwPnntXZyGxKM-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

27-4-0

Scale = 1:52.4												
Loading TCLL (roof) TCDL BCLL BCDL	(psf) 25.0 10.0 0.0 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018/TPI2014	CSI TC BC WB Matrix-S	0.07 0.03 0.18	DEFL Vert(LL) Vert(CT) Horz(CT)	in n/a n/a 0.01	(loc) - - 24	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 145 lb	GRIP 197/144 FT = 20%
	2x4 SP No.2 2x3 SPF No.2 Structural wood shea 6-0-0 oc purlins. Rigid ceiling directly bracing. (size) 2=27-4-0, 33=27-4-0 33=27-4-0 33=27-4-0 40=27-40 40 40=27-40 40=27-40 40 40=27-40 40 40=27-40 40	24=27-4-0, 26=27-4. 0, 28=27-4-0, 29=27 0, 31=27-4-0, 35=27 0, 34=27-4-0, 35=27 0, 38=27-4-0, 42=27 0, 41=27-4-0, 42=27 0, 44=27-4-0, 45=27 C 13) 28), 24=-4 (LC 9), 26 27=-40 (LC 13), 28=-4 29=-41 (LC 13), 30=-4 31=-41 (LC 13), 30=-4 31=-41 (LC 12), 43=-4 38=-41 (LC 12), 43=-4 38=-41 (LC 12), 44=-4 15=-63 (LC 12) C 1), 24=150 (LC 1), LC 26), 27=117 (LC 2 C 26), 31=120 (LC 2). C 26), 35=145 (LC 2). C 26), 35=145 (LC 2). C 1), 34=121 (LC 22). C 25), 38=121 (LC 24). C 25), 42=120 (LC 2). C 25), 42=120 (LC 2). C 25), 42=120 (LC 2). C 1), 44=117 (LC 25). C 25).	-0, BOT CHORD 4-0, 4-0, 4-0, 4-0, 4-0, 4-0, 4-0, 4-0, 4-0, 4-0, 4-0, 4-0, 4-0, 1 WEBS 41 40 NOTES 1) Unbalanc this desig 2) Wind: AS (1) Vasd=91 (2), exterior (2) (2), exterior (2), (3), (2), exterior (2), (4), (4), (4), (4), (4), (4), (4), (4),	15-16=-66/191, 16 17-19=-41/119, 15 21-22=-51/20, 22- 24-25=0/17, 1-2e 6-7=-59/107, 7-9= 10-11=-66/191, 11 12-13=-89/255 2-45=-40/160, 44 43-44=-40/160, 42 41-42=-40/160, 42 41-42=-40/160, 33 36-38=-40/160, 33 34-35=-40/160, 23 34-35=-40/160, 22 26-27=-40/160, 22 13-35=-148/26, 12 10-39=-93/64, 9-4 6-42=-93/64, 9-4 6-42=-93/64, 9-4 6-42=-93/64, 9-4 6-42=-93/64, 9-4 6-42=-93/64, 2-1 23-26=-99/119 ed roof live loads haven. CE 7-16; Vult=115mj mph; TCDL=6.0psf; E Cat. II; Exp C; Enclo one and C-C Corner(2N) 4-4-0 to 13-8-0, C xterior(2N) 18-8-0 to ght exposed ; end ve C-C for members and shown; Lumber DOL	5-17=-53 J-20=-34 23=-74/2 J/17, 2-3 -99/76, 5 -50/126, 1-12=-80 45=-40/2 2-43=-40 -3-39=-40 J-31=-94 3-39=-40 J-32=-96 J-32=-96 J-3	<pre>/155, /83, 20-21=-35 /22, 23-24=-123 =-181/64, 5-6=-76/89, 9-10=-53/155 /230, /160, /17, /13, /13, /13, /13, /13, /13, /13, /13</pre>	5/48, 5/44, 7 5/74, 7 74, 64, 99, e)	only see or c or c or c or c l) All p o) Gat 7) This cho 8) All I cap 0) Pro bea 2, 2 upli 34, upli 34, upli 34, upli 10) This line	y. For si Standa consult q plates an oble requi- oble studs s truss h ord live k bearings acity of vide me uring plai 77 lb upli ft at join 41 lb up ft at join 48 lb up ft at join 41 lb up ft at join s truss is ernationa	uds ex rd Indu ualifier re 1.5x irres coo s space as bee aad noo a are as 565 ps chanic t e capa ff at joint a 39, 4 liff at j; t 39, 4 liff at j; t 39, 4 liff at j; t 39, 4 liff at j; t 26 a s desigg and ref	posed to wind (n istry Gable End D d building designed 4 MT20 unless of ntinuous bottom of ed at 1-4-0 oc. an designed for a nconcurrent with ssumed to be SP i. al connection (by able of withstandi int 36, 46 ib uplift 1 ib uplift at joint - oint 42, 41 lb uplif 1 ib uplift at joint - oint 33, 41 lb uplift 1 ib uplift at joint - oint 28, 40 lb uplift 1 ib uplift at joint - oint 28, 40 lb uplift 1 ib uplift at joint - oint 28, 40 lb uplift 1 ib uplift at joint - oint 28, 40 lb uplift 1 ib uplift at joint - oint 28, 40 lb uplift 1 ib uplift at joint - oint 28, 40 lb uplift 1 ib uplift at joint - oint 28, 40 lb uplift 1 ib uplift at joint - oint 28, 40 lb uplift 1 ib uplift at joint - oint 28, 40 lb uplift 1 ib uplift at joint - oint 28, 40 lb uplift 1 ib uplift at joint - oint - oft - DF I NATHA PE-2022	10.0 psf bottom any other live loads. No.2 crushing others) of truss to ng 26 lb uplift at joint at joint 38, 41 lb 40, 41 lb uplift at joint ft at joint 43, 40 lb 45, 21 lb uplift at joint ft at joint 27, 57 lb nt 24. we with the 2018 ions R502.11.1 and d ANSI/TPI 1.
FORCES	(lb) - Maximum Com Tension	pression/Maximum	DOL=1.6	U							CONA	L

March 28,2024

Page: 1

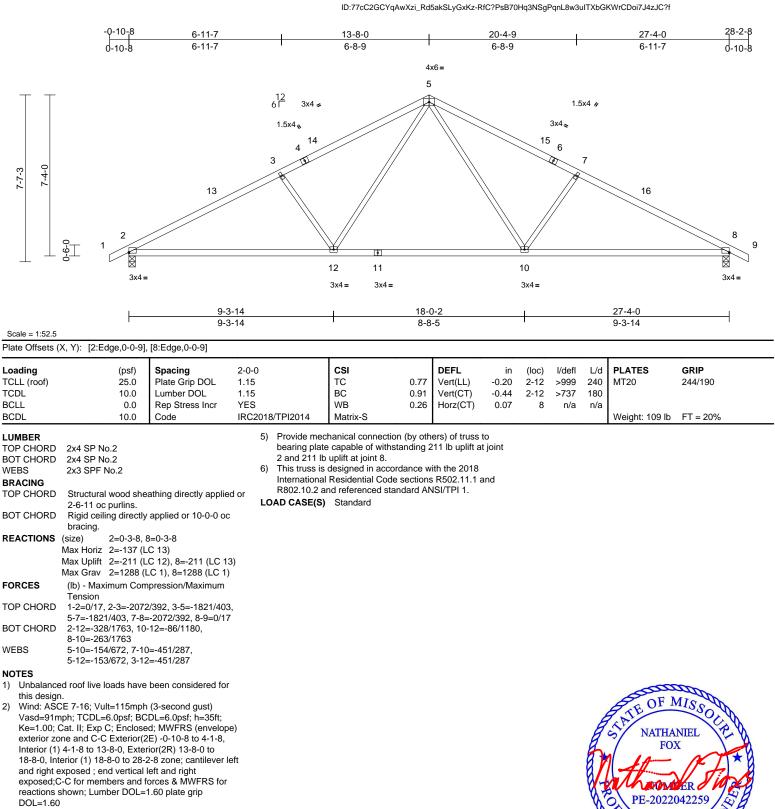
Tension

Continued on page 2 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, reaction and tracing of trusses and truss systems, see AMS/TPTI Quality Criteria, and DSB-22 available form Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

Job	Truss	Truss Type	Qty	Ply		
P240301	B1	Common Supported Gable	2	1	Job Reference (optional)	164525601
Premier Building Supply (Springh	nill, KS), Spring Hills, KS - 66083,	Run: 8.63 S Nov 1 2	023 Print: 8.0	630 S Nov 1	2023 MiTek Industries, Inc. Wed Mar 27 14:09:15	Page: 2

Run: 8,63 S Nov 1 2023 Print: 8,630 S Nov 1 2023 MiTek Industries, Inc. Wed Mar 27 14:09:15 ID:UdTxDbh?e9q_8iTwPnntXZyGxKM-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

LOAD CASE(S) Standard


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent toulsible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

Job	Truss	Truss Type	Qty	Ply		
P240301	B2	Common	4	1	I64 Job Reference (optional)	525602

Run: 8.63 S Nov 1 2023 Print: 8.630 S Nov 1 2023 MiTek Industries, Inc. Wed Mar 27 14:09:15

Page: 1

 This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

4) All bearings are assumed to be SP No.2 crushing

 All bearings are assumed to be SP No.2 capacity of 565 psi.

SSIONAL

E

04/15/2024 6:48:14

TION

March 28,2024

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

Job	Truss	Truss Type	Qty	Ply	
P240301	C1	Common Supported Gable	1	1	I64525603 Job Reference (optional)

Scale = 1:37.9

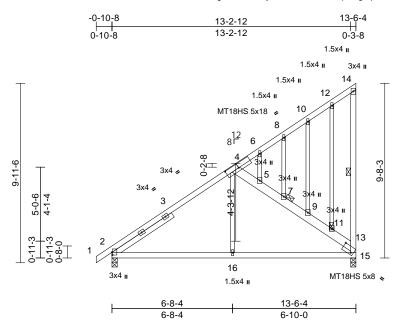
Run: 8.63 S Nov 1 2023 Print: 8.630 S Nov 1 2023 MiTek Industries, Inc. Wed Mar 27 14:09:15 ID:pEeiREjqUZILYPLYj_L6lhyGxLc-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

March 28,2024

DEVELOPMENT SERVICES LEE'S'SUMMIT'SMISSOURI 04/15/2024 6:48:14

TION IEW



	X, Y): [12:Ed	ge,0-5-1-	4j	-		1	-						1	
Loading TCLL (roof) TCDL BCLL BCDL		(psf) 25.0 10.0 0.0 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES	018/TPI2014	CSI TC BC WB Matrix-S	0.06 0.03 0.07	DEFL Vert(LL) Vert(CT) Horz(CT)	in n/a n/a 0.00	(loc) - - 12	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 73 lb	GRIP 197/144 FT = 20%
DODL		10.0	Code	11102			-						Weight. 75 lb	11 = 2070
LUMBER TOP CHORD BOT CHORD OTHERS SLIDER		<u>?</u> .2	I-8-5, Right 2x4 SP	No.2	NOTES	7-18=-119/26, 8-1 10-15=-100/111, 6-19=-104/73, 5-2 3-22=-109/131	11-14=-1 20=-99/10	02/129, 06, 4-21=-100,	/111,					
BRACING TOP CHORD	6-0-0 oc purlins. Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=35ft;													
BOT CHORD	Rigid ceiling directly applied or 10-0-0 oc Ke=1.00; Cat. II; Exp C; Enclosed; MWFRS (envelope) bracing. exterior zone and C-C Corner(3E) -0-10-8 to 4-2-0,													
	(size) 2= 11 12 Max Horiz 2= Max Uplift 2= (L (L Max Grav 2= 14 16 18 22 14 12 14 12 14 12 14 12 14 14 15 12 14 15 14 15 15 15 15 15 15 15 15 15 15	5=13-6-4 8=13-6-4 1=13-6-4 =-144 (L =-39 (LC C 13), 1 LC 13), 1 LC 12), 2 LC 12), 2 =159 (LC 6=128 (L 8=119 (L 0=126 (L 2=139 (L	 8), 12=-2 (LC 9), 14 5=-52 (LC 13), 16=-7=-42 (LC 13), 19=-00=-56 (LC 12), 21=-200. (LC 12), 21=-200. (LC 12) 20), 12=154 (LC 12) 20), 12=154 (LC 12) C 20), 15=125 (LC 20), 17=127 (LC 20), 17=127 (LC 20), 19=131 (LC 20), 19=131 (LC 20), 19=131 (LC 20), 21=126 (LC 12), 21=126 (LC 12), 21=126 (LC 20), 20) 	-6-4, -6-4, 4=-73 57 45 52), 20), 20), 19),	Exterior(2N) 11-10-0, Ext left and right exposed;C-(reactions sh DOL=1.60 3) Truss desig only. For st see Standar or consult qi 4) All plates arr 5) Gable studs 6) This truss ha chord live lo 7) All bearings capacity of 5	4-2-0 to 6-10-0, (erior(2N) 11-10-0 exposed; end vc C for members an own; Lumber DOI med for wind load dus exposed to wi d Industry Gable alified building de e 1.5x4 MT20 unit spaced at 1-4-0 o as been designed ad nonconcurrent are assumed to b	Corner(3F to 14-6-{ ertical left d forces a L=1.60 pl s in the p ind (norm End Deta esigner a ess other bc. for a 10. with any e SP No.	R) 6-10-0 to B zone; cantile and right & MWFRS for ate grip lane of the tru al to the face ils as applicat s per ANSI/TF wise indicated 0 psf bottom other live loa 2 crushing	lss), ble, Pl 1. I. ds.			Ä	TATE OF I	MISSOLUS
FORCES	(lb) - Maxim Tension	um Com	pression/Maximum		bearing plate	e capable of withs	standing 2	lb uplift at joi				A	S NATHA	
TOP CHORD	10-11=-58/2 1-2=0/16, 2- 4-5=-87/72, 2-22=-52/15 20-21=-52/1	7-8=-91/176, 8-9=-66/126, 9-10=-49/59, 10-11=-58/29, 11-12=-112/57, 12-13=0/16, 1-2=0/16, 2-3=-140/112, 3-4=-96/80, 4-5=-87/72, 5-6=-77/126, 6-7=-91/176 2-22=-52/150, 21-22=-52/150, 20-21=-52/150, 19-20=-52/150, 18-19=-52/150, 17-18=-52/150,				 12, 39 lb uplift at joint 2, 42 lb uplift at joint 17, 57 lb uplift at joint 16, 52 lb uplift at joint 15, 73 lb uplift at joint 14, 45 lb uplift at joint 19, 56 lb uplift at joint 20, 52 lb uplift at joint 21 and 80 lb uplift at joint 22. 9) N/A 10) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and 								
	16-17=-52/1 14-15=-52/1			R802.10.2 and referenced standard ANSI/TPI 1.						L EN				

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent toulsable personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

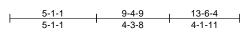
Job	Truss	Truss Type	Qty	Ply	
P240301	C2	Monopitch	1	1	I64525604 Job Reference (optional)

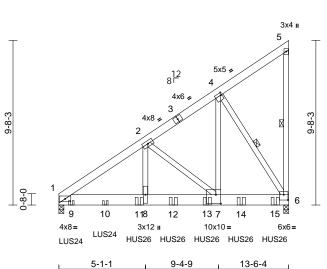
Run: 8.63 S Nov 1 2023 Print: 8.630 S Nov 1 2023 MiTek Industries, Inc. Wed Mar 27 14:09:16 ID:Ho1WEiUTGX1gwu78IG1QiOyGxNB-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Scale = 1:63.8

Plate		(X	V)·	[2.0-1-13 0-0-4]	[4.0-0-0-3-0]	[15:0-6-6,0-3-11]
гае	Olisels	(^,	1).	[2.0-1-13,0-0-4],	[4.0-9-0,0-3-0],	[13.0-0-0,0-3-11]

	(7, 1). [2.0 1 10,0 0 4	i, [4.0 0 0,0 0 0], [10]									
Loading TCLL (roof) TCDL BCLL BCDL	(psf) 25.0 10.0 0.0 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018	3/TPI2014	CSI TC BC WB Matrix-S	0.65 0.44 0.26	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.04 -0.09 0.01	(loc) 15-16 2-16 15	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 MT18HS Weight: 97 lb	GRIP 244/190 197/144 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS OTHERS SLIDER BRACING TOP CHORD BOT CHORD WEBS JOINTS REACTIONS	2x4 SP No.2 2x4 SP No.2 *Excep 2x3 SPF No.2 Left 2x4 SP No.2 : Structural wood she 6-0-0 oc purlins, ex Rigid ceiling directly bracing. 1 Row at midpt 1 Brace at Jt(s): 11, 7	ot* 4-16:2x3 SPF No. 3-11-10 eathing directly applie cept end verticals. r applied or 9-10-14 of 14-15 15=0-3-8 C 9) 2 12), 15=-202 (LC 1 C 1), 15=658 (LC 19)	2 3) 4) 5) ed or 6) 7) pc 8) 9) 10 2)	only. For sti see Standar or consult qu Provide adeu All plates are Gable studs This truss ha chord live loi All bearings capacity of 5 Provide mec bearing plate joint 15 and) This truss is International R802.10.2 a) Graphical pu	ned for wind loads uds exposed to wind d Industry Gable E Jalified building de quate drainage to e MT20 plates unle e MT20 unless spaced at 1-4-0 o as been designed ad nonconcurrent are assumed to build 65 psi. hanical connectio e capable of withsi 83 lb uplift at joint designed in accor Residential Code nd referenced stau urlin representation ation of the purlin	nd (norm End Deta signer a prevent ess otherwind for a 10. with any e SP No n (by oth tanding 2 2. rdance w s sections n ndard Ah n does n	al to the face ils as applica s per ANSI/T water pondin wise indicate se indicated. 0 psf bottom other live loa 2 crushing ers) of truss 202 lb uplift a ith the 2018 s R502.11.1 a SI/TPI 1. ot depict the	e), hble, PI 1. g. ads. ads. to t					
TOP CHORD	Tension 1-2=0/16, 2-6=-708/ 8-10=-236/218, 10-1 12-14=-95/98, 13-15	/227, 6-8=-276/239, 12=-204/204, 5=-600/366, ·538/231, 5-7=-560/2		bottom chord DAD CASE(S)	d. '							THE OF I	MISSO
Vasd=91n Ke=1.00; exterior zc Interior (1 exposed ; members	2-16=-333/580, 15-1	-214/183, 9-10=-77/6 //6 n (3-second gust) DD=6.0psf; h=35ft; ed; MWFRS (envelop 2E) -0-10-8 to 4-1-8, cantilever left and ri ght exposed;C-C for for reactions shown;	pe) ght									PE-2022	Der From 042259


March 28,2024



Job	Truss	Truss Type	Qty	Ply	
P240301	C3	Monopitch Girder	2	2	I64525605 Job Reference (optional)

Run: 8.63 S Nov 1 2023 Print: 8.630 S Nov 1 2023 MiTek Industries, Inc. Wed Mar 27 14:09:16 ID:HXV5guHpHJt4OGKtoCERWpyGxNS-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

4-3-8

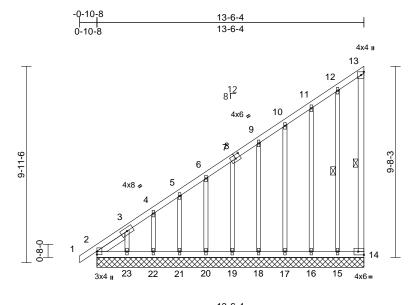
4-1-11

5-1-1

Scale = 1:67.8

Plate Offsets (X, Y): [4:0-0-12,0-1-12], [6:0-3-0,0-3-12], [7:0-3-8,0-6-4]

Plate Offsets (X, Y): [4	:0-0-12,0-1-1	2], [6:0-3-0,0-3-12], [[7:0-3-8,0-	6-4]									
Loading TCLL (roof) TCDL BCLL BCDL	(psf) 25.0 10.0 0.0 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 NO IRC201	8/TPI2014	CSI TC BC WB Matrix-S	0.29 0.36 0.88	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.07 -0.12 0.02	(loc) 7-8 7-8 6	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 230 lb	GRIP 197/144 FT = 20%
WEBS 2x4 SP BRACING TOP CHORD Structur 5-5-90 BOT CHORD Rigid c bracing WEBS 1 Row REACTIONS (size) Max Hor Max UPI Max Gra FORCES (lb) - M Tension TOP CHORD 1-2=-76 4-5=-20 BOT CHORD 1-2=-77 4-5=-20 BOT CHORD 1-2=-77 4-5=-20 BOT CHORD 1-2=-77 4-5=-20 BOT CHORD 1-2=-77 4-5=-20 BOT CHORD 1-2=-77 4-5=-20 BOT CHORD 1-2=-77 4-5=-20 BOT CHORD 1-2=-78 4-5=-20 BOT CHORD 1-2=-78 4-7=-12 NOT ES 10 2-2Ply trus to be con- 0 (0.131"x3") nails as TOP CHORD 5-00 BOT CHORD 4-00 BOT CHORD 4-00 8-0	2400F 2.0E No.2 ral wood she c purlins, ex eiling directly 1 =0-3-8, (iz 1=384 (LC v 1=5503 (I aximum Com b 347/1389, 2-4 201/80, 5-6=- 372/6184, 7-5 201/7202, 4-6 nnected toge follows: ted as follows: ted as follows: ted as follows: co, 2x4 - 1 ro nected as follows: follows: 2x4 - follows: 2x4 - follows	C 11) (LC 12), 6=-1295 (LC _C 1), 6=7639 (LC 1) ppression/Maximum 4=-4084/764, 144/122 3=-1372/6184, =-3634/843, 3=-6287/1143 ther with 10d s: 2x6 - 2 rows w at 0-9-0 oc. ows: 2x8 - 4 rows - 1 row at 0-9-0 oc. applied to all plies, ck (B) face in the LO nections have been	2 4) 5) (12) 6)) 7) 8) 9) 10 LC 1)	Vasd=91mpł Ke=1.00; Ca exterior zone Interior (1) 5- exposed; en members an Lumber DOL This truss ha chord live loa All bearings; capacity of 8 Provide mec bearing plate joint 6 and 1 ⁻ This truss is International R802.10.2 at Use Simpsor Truss, Single oc max. starf connect truss Use Simpsor Truss) or equ 4-8-12 from 1 to back face b) Fill all nail ho DAD CASE(S) Dead + Roc Plate Increa Uniform Loa Vert: 1-5- Concentratt	hanical connection capable of withsta 112 lb uplift at joint designed in accord Residential Code nd referenced stan Strong-Tie LUS2 Ply Girder) or equing at 0-8-12 from s(es) to back face of botom chord. les where hanger Standard of Live (balanced): ase=1.15 ads (lb/ft) =-70, 1-6=-20 ed Loads (lb) 680 (B), 10=-662 (I l), 13=-2121 (B)	CDL=6.1 (2E) 0-1 (2E)	Dpsf; h=35ft; FRS (envelo, -12 to 5-1-1, vover left and r posed;C-C foi ctions showr)) psf bottom other live loa 0F 2.0E crus ers) of truss t 295 lb uplift a : R502.11.1 a SI/TPI 1. I Girder, 2-10 spaced at 2-(end to 2-8-12 n chord.) Girder, 6-1 c max. startin connect truss(latext with lum I Increase=1.	right r shing to and 0-0 2 to 10d g at (es) uber.				NATHA FO PE-2022	SER OCCO


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent touls be personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANS/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

Job	Truss	Truss Type	Qty	Ply	
P240301	C4	Monopitch Supported Gable	1	1	I64525606 Job Reference (optional)

Scale = 1:58.3

Run: 8.63 S Nov 1 2023 Print: 8.630 S Nov 1 2023 MiTek Industries, Inc. Wed Mar 27 14:09:16 ID:GjwpzSgpHeSKmRw4J_pUy2yGxOF-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

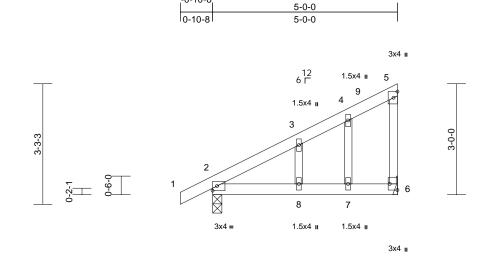
13-6-4									

Plate Offsets (X, Y): [8:0-3-0,0-2-	4], [14:Edge,0-2-0]											
Loading TCLL (roof) TCDL BCLL BCDL	(psf) 25.0 10.0 0.0 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC201	8/TPI2014	CSI TC BC WB Matrix-S	0.77 0.37 0.14	DEFL Vert(LL) Vert(CT) Horz(CT)	in n/a n/a 0.00	(loc) - - 14	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 96 lb	GRIP 244/190 FT = 20%
	2x4 SP No.2 2x4 SP No.2 2x3 SPF No.2 Left 2x4 SP No.2 Structural wood s 6-0-0 oc purlins, Rigid ceiling direct bracing. 1 Row at midpt (size) 2=13-6 16=13- 19=13- 22=13- Max Uplift 2=-101 15=-83 17=-63 19=-53 21=-51 23=-11 Max Grav 2=258 15=124 17=125 19=126 21=126	heathing directly applie except end verticals. tly applied or 10-0-0 or 13-14, 12-15 -4, 14=13-6-4, 15=13-6 6-4, 17=13-6-4, 18=13 6-4, 20=13-6-4, 21=13 6-4, 23=13-6-4	V. dor N 6-4, 6-4, 6-4, (1), (2), (2), (2), (3), (4) (19), (5) (9), (5) (19), (5) (19), (5), (19), (5), (19), (1	VEBS OTES Wind: ASCE Vasd=91mp Ke=1.00; Ca exterior zon Exterior(2N) right expose for members Lumber DO Truss desig only. For st see Standar or consult q All plates ar Gable requi Gable studs This truss h chord live lo	2-23=-178/230, 22 21-22=-178/230, 2 19-20=-178/230, 1 77-18=-178/230, 1 5-16=-178/230, 1 2-15=-221/207, 9 6-20=-99/90, 5-21 3-23=-179/231 57-16; Vult=115m h; TCDL=6.0psf; E at. II; Exp C; Enclo e and C-C Corner 0 4-2-4 to 13-4-8 zr d; end vertical lef s and forces & MW L=1.60 plate grip I gned for wind loads uds exposed to wird Industry Gable E ualified building de e 1.5x4 MT20 unle res continuous bot s spaced at 1-4-0 c as been designed and nonconcurrent are assumed to b 565 psi.	20-21=-1 18-19=-1 16-17=-1 14-15=-1 11-16=-1 -18=-99/7 =-99/99, ph (3-see 3CDL=6. sed; MW (3E) -0-1 one; cant t and rigi /FRS for DOL=1.6 s in the p nd (norm End Deta signer a ses other tom choo c. for a 10. with any	78/230, 78/20, 78/2	/90, 14, -C -C ywn; Jss), ble, PI 1. d.	Inte	rnationa)2.10.2 a	al Resid	erenced standar ndard	MISSOLUTION
FORCES	(lb) - Maximum Co Tension 1-2=0/16, 2-3=-84	0mpression/Maximum 1/547, 3-4=-686/452, i=-566/394, 6-7=-508/3 0=-384/308, 11-12=-244/253,	-,	 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 108 lb uplift at joint 14, 101 lb uplift at joint 2, 83 lb uplift at joint 15, 41 lb uplift at joint 16, 63 lb uplift at joint 17, 50 lb uplift at joint 20, 51 lb uplift at joint 21, 54 lb uplift at joint 22 and 118 lb uplift at joint 23. 9) Revelod elete or chim required to provide full bearing 								BER 042259	

Concer March 28,2024

DEVELOPMENT SERVICES LEE'S'SUMMIT'S MISSOURI 04/15/2024 6:48:14

TION IEW


Job	Truss	Truss Type	Qty	Ply	
P240301	D1	Monopitch	4	1	I64525607 Job Reference (optional)

-0-10-8

Premier Building Supply (Springhill, KS), Spring Hills, KS - 66083,

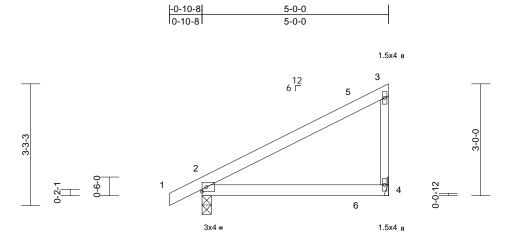
Run: 8.63 S Nov 1 2023 Print: 8.630 S Nov 1 2023 MiTek Industries, Inc. Wed Mar 27 14:09:16 ID:J9uoFkXWrWxKhW?zklsl4bzDH1v-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

1 4

5-0-0

Scale = 1:31.2 Plate Offsets (X, Y): [6:Edge,0-2-8]

	K, Y): [6:Edge,0-2-8]											
Loading TCLL (roof) TCDL BCLL BCDL	(psf) 25.0 10.0 0.0 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018/TPI2	CSI TC BC WB 014 Matrix-S	0.20 0.28 0.03	DEFL Vert(LL) Vert(CT) Horz(CT)	in 0.04 -0.05 0.00	(loc) 7-8 7-8 6	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 22 lb	GRIP 197/144 FT = 20%
FORCES TOP CHORD BOT CHORD WEBS NOTES 1) Wind: ASC Vasd=91m Ke=1.00; C exterior zor Interior (1) right expos for membe Lumber DC 2) Truss desi only. For s see Stande or consult C 3) Gable stud 4) This truss f chord live live	2x4 SP No.2 2x3 SPF No.2 2x3 SPF No.2 2x3 SPF No.2 2x3 SPF No.2 Structural wood she 5-0-0 oc purlins, ex Rigid ceiling directly bracing. (size) 2=0-3-0.6 Max Horiz 2=123 (L0 Max Uplit 2=-59 (L0 Max Grav 2=292 (L0 (lb) - Maximum Com Tension 1-2=0/17, 2-3=-169/ 4-5=-65/57, 5-6=-10 2-8=-67/74, 7-8=-67 4-7=-36/69, 3-8=-48 E 7-16; Vult=115mph ph; TCDL=6.0psf; BC Cat. II; Exp C; Enclose ne and C-C Exterior(2 4-1-8 to 4-10-12 zone ed ; end vertical left at rs and forces & MWF DL=1.60 plate grip DC igned for wind loads in studs exposed to wind fudustry Gable En qualified building desi s spaced at 1-4-0 oc. nas been designed fo oad nonconcurrent wi re assumed to be: Joi	cept end verticals. applied or 10-0-0 oc 6= Mechanical C 9) C 12), 6=-60 (LC 12) C 1), 6=207 (LC 1) apression/Maximum 71, 3-4=-102/61, 6/113 /74, 6-7=-67/74 /105 (G-second gust) DL=6.0psf; h=35ft; d; MWFRS (envelop E) -0-10-8 to 4-1-8, c; cantilever left and and right exposed; C-1 RS for reactions sho DL=1.60 n the plane of the tru I (normal to the face) d Details as applicat gner as per ANSI/TF r a 10.0 psf bottom ith any other live load	7) Prov bear 6 an 8) This Inter R80, LOAD C c c C C Wm; iss 5, ble, 21 1. ds.	er to girder(s) for truss ide mechanical conne ing plate capable of w d 59 lb uplift at joint 2 truss is designed in a national Residential C 2.10.2 and referenced ASE(S) Standard	ection (by oth vithstanding 6 accordance w Code sections	ers) of truss t 0 lb uplift at j ith the 2018 5 R502.11.1 a	joint			2	NATHA FO PE-2022	X DER 042259 LENGT


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent touls be personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANS/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

RELEASE FOR CONTRUCTION AS NOTED ON PLANS REVIEW DEVELORMENT: SERVICES LEE'S'SUMMIT'SMISSOURI 04/15/2024 6:48:14

Job	Truss	Truss Type	Qty	Ply	
P240301	D2	Monopitch	10	1	I64525608 Job Reference (optional)

Run: 8.63 S Nov 1 2023 Print: 8.630 S Nov 1 2023 MiTek Industries, Inc. Wed Mar 27 14:09:16 ID:yf123P231X1sVXWTy3fc?NzDH2W-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

5-0-0

Scale = 1:30.9	0.9	1::	=	ale	Sca
----------------	-----	-----	---	-----	-----

Loading	(psf)	Spacing	2-0-0	csi		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15	TC	0.48	Vert(LL)	0.09	2-4	>603	240	MT20	197/144
TCDL	10.0	Lumber DOL	1.15	BC	0.42	Vert(CT)	0.08	2-4	>751	180		
BCLL	0.0	Rep Stress Incr	YES	WB	0.00	Horz(CT)	0.00	4	n/a	n/a		
BCDL	10.0	Code	IRC2018/TPI2014	Matrix-P							Weight: 19 lb	FT = 20%
LUMBER												
TOP CHORD	2x4 SP No.2											
BOT CHORD												
WEBS	2x3 SPF No.2											
BRACING												
TOP CHORD	Structural wood she	athing directly appli	ed or									
	5-0-0 oc purlins, ex											
BOT CHORD	Rigid ceiling directly bracing.	applied or 10-0-0 c	C									
REACTIONS	0	4= Mechanical										
REACTIONS	Max Horiz 2=123 (L0											
	Max Uplift 2=-59 (LC											
	Max Grav 2=292 (L0	,, ()										
FORCES	(lb) - Maximum Com	npression/Maximum										
	Tension											
TOP CHORD	1-2=0/17, 2-3=-167/	114, 3-4=-167/225										
BOT CHORD	2-4=-54/59											
NOTES		(*)										
	CE 7-16; Vult=115mph											
	nph; TCDL=6.0psf; BC Cat. II; Exp C; Enclose		ne)									
	one and C-C Exterior(2											
) 4-1-8 to 4-10-12 zone	, ,										
	sed ; end vertical left a											(m)
	ght exposed;C-C for m										O DE	A Des
	or reactions shown; Lu	imber DOL=1.60 pla	ate							C	ALE OF I	MISSO
grip DOL= 2) This truss	has been designed fo	r a 10.0 nsf bottom								A	TATEOF	N.S.
	load nonconcurrent w		ids.							R	S NATHA	ANIEL VEN
	are assumed to be: Jo									SI/	FO	X
capacity o										4/4	1 Am	
	irder(s) for truss to trus									1		
	echanical connection									14	alkan	
	ate capable of withstan b uplift at joint 2.	nuing 87 ib uplift at j	om							117	PE-2022	042259
	is designed in accorda	ance with the 2018								N	The second second	12 h
	nal Residential Code s		and							Y	1050	G
R802.10.2	2 and referenced stand	lard ANSI/TPI 1.									CSSIONA	LEFA
LOAD CASE	S) Standard										an	DIS
												00.0004

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent toulsable personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com) DEVELOPMENS SERVICES LEE'S'SUMMIT'SMISSOURI

March 28,2024

04/15/2024 6:48:14

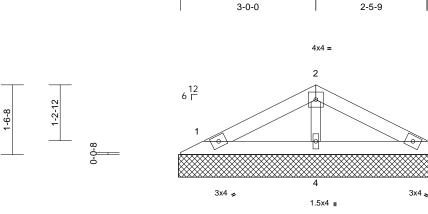
CTION **IEW**

Job	Truss	Truss Type	Qty	Ply	
P240301	PB1	Piggyback	2	1	I64525609 Job Reference (optional)

3-0-0

Premier Building Supply (Springhill, KS), Spring Hills, KS - 66083,

Run: 8.63 S Nov 1 2023 Print: 8.630 S Nov 1 2023 MiTek Industries, Inc. Wed Mar 27 14:09:16 ID:9wUnxfypw9GahpSGfCwjgdzczGe-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f


6-0-0

0-6-7

3

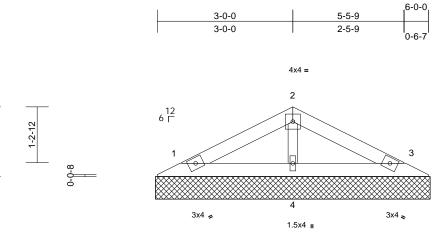
Scale = 1:25.5

Scale = 1:25.5												
Loading TCLL (roof) TCDL BCLL BCDL	(psf) 25.0 10.0 0.0 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018/TPI2014	CSI TC BC WB 4 Matrix-P	0.13 0.06 0.03	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 3	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 18 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	6-0-0 oc purlins. Rigid ceiling directly bracing.	3=6-1-0, 4=6-1-0 12) C 12), 3=-34 (LC 13),	capacit 8) Provide bearing 1, 34 lb 9) This tru Internat c R802.1 10) See Sta Detail for Consult 4=-7	ings are assumed to y of 565 psi. mechanical connect plate capable of with uplift at joint 3 and 7 ss is designed in acc ional Residential Coo 0.2 and referenced si indard Industry Piggy or Connection to bass qualified building des E(S) Standard	ion (by oth istanding 3 Ib uplift at ordance w de sections tandard Al /back Trus e truss as	ners) of truss t 30 lb uplift at j ; joint 4. vith the 2018 s R502.11.1 a NSI/TPI 1. ss Connection	and					
FORCES TOP CHORD BOT CHORD	(lb) - Maximum Com Tension 1-2=-55/46, 2-3=-55 1-4=-1/25, 3-4=-1/25	;/52										
WEBS	2-4=-150/135	D										
this design 2) Wind: ASC Vasd=91m Ke=1.00; (exterior zo and right e exposed;C	ed roof live loads have n. CE 7-16; Vult=115mph nph; TCDL=6.0psf; BC Cat. II; Exp C; Enclose one and C-C Exterior(2 exposed ; end vertical C-C for members and f shown; Lumber DOL=	a (3-second gust) IDL=6.0psf; h=35ft; ad; MWFRS (envelop E) zone; cantilever I left and right forces & MWFRS for	oe) eft								STATE OF	MISSOUR

- DOL=1.60
- Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) Gable requires continuous bottom chord bearing.
- 5) Gable studs spaced at 1-4-0 oc.
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

NATHANIEL EOX PE-2022042259 Narch 28,2024

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPH Claulity Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)


Job	Truss	Truss Type	Qty	Ply	
P240301	PB2	Piggyback	22	1	I64525610 Job Reference (optional)

1-6-8

Run: 8,63 S Nov 1 2023 Print: 8,630 S Nov 1 2023 MiTek Industries, Inc. Wed Mar 27 14:09:16 ID:9wUnxfypw9GahpSGfCwjgdzczGe-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

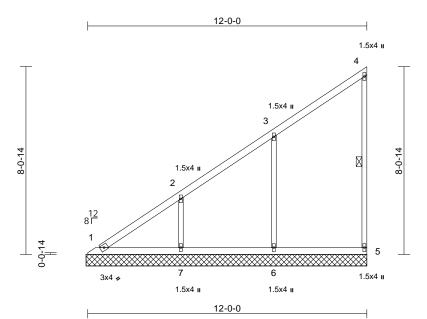
6-0-0

Scale = 1:25.5

Scale = 1:25.5													
Loading TCLL (roof) TCDL BCLL BCDL	(psf) 25.0 10.0 0.0 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC201	8/TPI2014	CSI TC BC WB Matrix-P	0.13 0.06 0.03	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 3	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 18 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	6-0-0 oc purlins. Rigid ceiling directly bracing.	C 12), 3=-34 (LC 13),	4=-7	capacity of 5 Provide mec bearing plate 1, 34 lb uplift This truss is International R802.10.2 ai D See Standar Detail for Co	hanical connectio capable of withs at joint 3 and 7 ll designed in accoo Residential Code nd referenced sta d Industry Piggyb nnection to base fied building desig	n (by oth tanding 3 o uplift at rdance w sections ndard AN ack Trus truss as a	ers) of truss t 30 lb uplift at ji joint 4. ith the 2018 \$ R502.11.1 a NSI/TPI 1. \$ Connection	oint nd					
FORCES	(lb) - Maximum Com Tension 1-2=-55/46, 2-3=-55	;/52											
BOT CHORD WEBS NOTES	1-4=-1/25, 3-4=-1/2 2-4=-150/135	5											
this design 2) Wind: ASC Vasd=91m Ke=1.00; (exterior zo and right e exposed;C	CE 7-16; Vult=115mph hph; TCDL=6.0psf; BC Cat. II; Exp C; Enclose one and C-C Exterior(2 exposed ; end vertical >C for members and f shown; Lumber DOL=	n (3-second gust) IDL=6.0psf; h=35ft; ad; MWFRS (envelop EE) zone; cantilever la left and right forces & MWFRS for	e)									STE OF D	MISSOLUR INIEL X

- DOL=1.60 Truss designed for wind loads in the plane of the truss 3)
- only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1. Gable requires continuous bottom chord bearing. 4)
- 5) Gable studs spaced at 2-0-0 oc.
- 6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

BER PE-2022042259 SSIONAL EN March 28,2024


 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.
 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not besign value for use only with with twit even connectors. This design is based only upon parameters shown, and is for an individual building designer must verify the applicability of design parameters and properly incorporate this design into the overall building designer must verify the applicability of design parameters and properly incorporate this design into the overall building designer. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcscomponents.com)

Job	Truss	Truss Type	Qty	Ply	
P240301	V1	Valley	2	1	I64525611 Job Reference (optional)

Run: 8.63 S Nov 1 2023 Print: 8.630 S Nov 1 2023 MiTek Industries, Inc. Wed Mar 27 14:09:17 ID:3dyyPIGdvpWQ0?o0jPG2wlyGxRL-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:49.5

												i	
Loading	(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15		TC	0.25	Vert(LL)	n/a	-	n/a	999	MT20	244/190
TCDL	10.0	Lumber DOL	1.15		BC	0.13	Vert(TL)	n/a	-	n/a	999		
BCLL	0.0	Rep Stress Incr	YES		WB	0.20	Horiz(TL)	0.00	5	n/a	n/a		
BCDL	10.0	Code	IRC20	18/TPI2014	Matrix-S							Weight: 50 lb	FT = 20%
LUMBER			5) This truss ha	as been designed	d for a 10.0) psf bottom						
TOP CHORD	2x4 SP No.2				ad nonconcurren			ıds.					
BOT CHORD	2x4 SP No.2		6		are assumed to b	be SP No.	2 crushing						
WEBS	2x3 SPF No.2		_	capacity of 5									
OTHERS	2x3 SPF No.2		7		hanical connection								
BRACING					e capable of with			oint					
TOP CHORD	Structural wood she		ed or		ift at joint 6 and 1 designed in acco								
	6-0-0 oc purlins, ex		o		Residential Cod			nd					
BOT CHORD	Rigid ceiling directly	applied or 10-0-0 o	С		nd referenced sta			inu					
	bracing.			OAD CASE(S)									
WEBS		4-5			Standard								
REACTIONS		5, 5=12-0-15, 6=12-0	0-15,										
	7=12-0-15 Max Horiz 1=335 (L0												
	Max Uplift 5=-62 (LC		2)										
	7=-171 (L		<u>z),</u>										
	Max Grav 1=183 (LC		0										
		C 19), 7=388 (LC 19											
FORCES	(lb) - Maximum Com	<i>,,</i>	/										
	Tension												
TOP CHORD	1-2=-377/251, 2-3=-	228/156, 3-4=-104/5	51,										
	4-5=-116/84												
BOT CHORD	1-7=-1/2, 6-7=-1/2, 5												
WEBS	3-6=-327/235, 2-7=-	299/221											
NOTES												Cont	alle
	CE 7-16; Vult=115mph											TATE OF D	MISO
	nph; TCDL=6.0psf; BC										1	750	100 M
	Cat. II; Exp C; Enclose										R	NATHA	MILLI XXX
	one and C-C Exterior(2		,								A		
) 5-7-13 to 12-0-1 zone									1	N/	FO	X
right expos	sed ; end vertical left e	xposed;C-C for									an	11/1/	

Lumber DOL=1.60 plate grip DOL=1.60 Truss designed for wind loads in the plane of the truss 2) only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

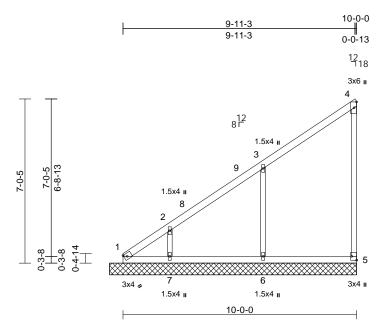
members and forces & MWFRS for reactions shown;

- Gable requires continuous bottom chord bearing. 3)
- 4) Gable studs spaced at 4-0-0 oc.

March 28,2024

MBER

PE-2022042259


SIONAL E

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent colleges with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

Job	Truss	Truss Type	Qty	Ply	
P240301	V2	Valley	2	1	I64525612 Job Reference (optional)

Run: 8.63 S Nov 1 2023 Print: 8.630 S Nov 1 2023 MiTek Industries. Inc. Wed Mar 27 14:09:17 ID:XHTUUTtwhgM5ZxmgHzAJ4LyGxRs-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Scale = 1:49.3

Plate Offsets (X, Y): [5:Edge,0-2-8]

	(;;; ;): [e:zege;e z e]												
Loading TCLL (roof) TCDL	(psf) 25.0 10.0	Spacing Plate Grip DOL Lumber DOL	2-0-0 1.15 1.15		CSI TC BC	0.60 0.20	DEFL Vert(LL) Vert(TL)	in n/a n/a	(loc) - -	l/defl n/a n/a	L/d 999 999	PLATES MT20	GRIP 244/190
BCLL	0.0	Rep Stress Incr	YES		WB	0.14	Horiz(TL)	0.00	5	n/a	n/a		
BCDL	10.0	Code	IRC2018/	/TPI2014	Matrix-S				-			Weight: 42 lb	FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD	 2x4 SP No.2 2x3 SPF No.2 2x3 SPF No.2 Structural wood she 6-0-0 oc purlins, ex 	cept end verticals.	6) 7) ed or	chord live loa All bearings capacity of 5 Provide mec bearing plate 1, 59 lb uplift uplift at joint This truss is International	hanical connectio capable of withs t at joint 5, 176 lb 7. designed in accol Residential Code	with any e SP No. n (by oth tanding 7 uplift at jo rdance w e sections	other live loa 2 crushing ers) of truss t 7 lb uplift at j bint 6 and 148 ith the 2018 5 R502.11.1 a	o oint 8 Ib					
REACTIONS	(size) 1=10-6-19 7=10-6-19 Max Horiz 1=285 (LC Max Uplift 1=-77 (LC 6=-176 (L	C 9) C 10), 5=-59 (LC 9), C 12), 7=-148 (LC 1	2)	R802.10.2 a AD CASE(S)	nd referenced sta Standard	ndard AN	ISI/TPI 1.						
	Max Grav 1=164 (L0 6=426 (L0	C 9), 5=164 (LC 19), C 19), 7=317 (LC 19											
FORCES	(lb) - Maximum Com Tension		,										
TOP CHORD		372/260, 3-4=-177/1	152,										
BOT CHORD WEBS	1-7=-133/145, 6-7=- 3-6=-344/303, 2-7=-	,	145										m
Vasd=91r Ke=1.00; exterior z Interior (1 exposed ; members Lumber D 2) Truss de	CE 7-16; Vult=115mph mph; TCDL=6.0psf; BC Cat. II; Exp C; Enclose one and C-C Exterior(2) 5-9-1 to 10-6-1 zone; ; end vertical left and rig and forces & MWFRS DOL=1.60 plate grip DC signed for wind loads in studs exposed to wind	DL=6.0psf; h=35ft; d; MWFRS (envelop E) 0-9-1 to 5-9-1, cantilever left and ri ght exposed;C-C for for reactions shown uL=1.60 n the plane of the tru	ight ; iss									STE OF	

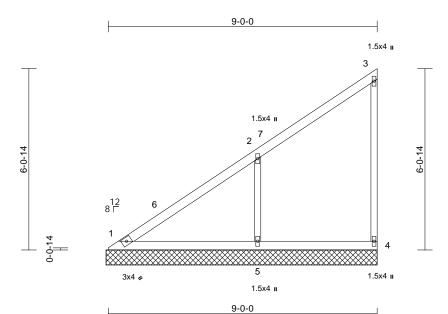
only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1. Gable requires continuous bottom chord bearing.

3)

4) Gable studs spaced at 4-0-0 oc.

March 28,2024

SIONAL ET


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent colleges with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

TION DEVELORMENT SERVICES LEE'S'SUMMIT'S MISSOURI 04/15/2024 6:48:15

Job	Truss	Truss Type	Qty	Ply	
P240301	V3	Valley	2	1	I64525613 Job Reference (optional)

Run: 8.63 S Nov 1 2023 Print: 8.630 S Nov 1 2023 MiTek Industries, Inc. Wed Mar 27 14:09:17 ID:7inLsRr1OlzWhT15crccTiyGxRv-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC?f Page: 1

4zJC?f

Scale = 1:38.6

Loading TCLL (roof) TCDL BCLL BCDL	(psf) 25.0 10.0 0.0 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018/TPI2014	CSI TC BC WB Matrix-S	0.70 0.18 0.10	Vert(TL)	in n/a n/a 0.00	(loc) - - 4	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 36 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x4 SP No.2 2x3 SPF No.2 2x3 SPF No.2 2x3 SPF No.2 Structural wood shea 6-0-0 oc purlins, exc Rigid ceiling directly bracing. (size) 1=9-0-15, Max Horiz 1=242 (LC Max Uplitt 1=-4 (LC 8 (LC 12)	athing directly applie cept end verticals. applied or 10-0-0 oc 4=9-0-15, 5=9-0-15 2 9) 3), 4=-50 (LC 9), 5=- 2 20), 4=143 (LC 19)	 6) All bearings capacity of 7) Provide men bearing plat 1, 50 lb upli 8) This truss is Internationa R802.10.2 a c) LOAD CASE(S) 	are assumed to b 565 psi. chanical connection e capable of withs t at joint 4 and 20 designed in acco I Residential Code and referenced sta	on (by oth standing 4 99 lb uplift ordance w e sections	ers) of truss t lb uplift at jo at joint 5. ith the 2018 s R502.11.1 a	int					

 FORCES
 (lb) - Maximum Compression/Maximum Tension

 TOP CHORD
 1-2=-388/267, 2-3=-172/145, 3-4=-134/142

 BOT CHORD
 1-5=-116/126, 4-5=-116/126

 WEBS
 2-5=-399/340

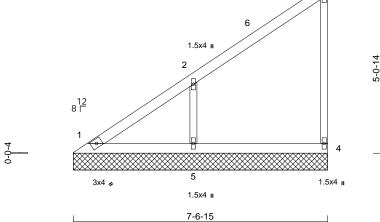
NOTES

- Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=35ft; Ke=1.00; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) 0-5-12 to 5-5-12, Interior (1) 5-5-12 to 9-0-1 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
 Gable requires continuous bottom chord bearing.

4) Gable studs spaced at 4-0-0 oc.

- 5) This truss has been designed for a 10.0 psf bottom
- chord live load nonconcurrent with any other live loads.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSITPH1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)



Job	Truss	Truss Type	Qty	Ply	
P240301	V4	Valley	2	1	Job Reference (optional)

5-0-14

Run: 8.63 S Nov 1 2023 Print: 8.630 S Nov 1 2023 MiTek Industries, Inc. Wed Mar 27 14:09:17 ID:i76DDQo95qbyq0JWxj3vr4yGxRy-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

7-6-15

Scale = 1:34.3

Loading TCLL (roof) TCDL BCLL BCDL	2	5.0 0.0 0.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC20	18/TPI2014	CSI TC BC WB Matrix-P	0.45 0.13 0.08	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 4	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 29 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x3 SPF No.2 2x3 SPF No.2 Structural woo 6-0-0 oc purlin Rigid ceiling di bracing. (size) 1=7 Max Horiz 1=1 Max Uplift 1=- (LC Max Grav 1=1	od shea is, exce irectly a -6-15, 4 99 (LC 16 (LC a 12)	8), 4=-46 (LC 9), 5 20), 4=158 (LC 19	ed or c 5 =-172	 capacity of 4 Provide mereories bearing plat 1, 46 lb upli This truss is International 	chanical connec e capable of wit t at joint 4 and 1 designed in ac I Residential Co and referenced s	tion (by oth hstanding 1 172 lb uplift cordance w de sections	ers) of truss 6 lb uplift at j at joint 5. ith the 2018 s R502.11.1 a	joint					
FORCES		``	pression/Maximum											

TOP CHORD 1-2=-353/236, 2-3=-165/135, 3-4=-138/151 BOT CHORD 1-5=-96/105, 4-5=-96/105 WEBS 2-5=-330/305

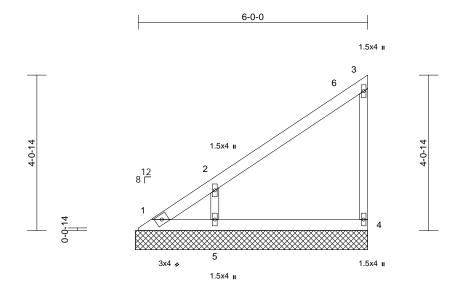
NOTES

- Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=35ft; Ke=1.00; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) 0-5-12 to 5-5-12, Interior (1) 5-5-12 to 7-6-1 zone; cantilever left and right exposed; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
 Gable requires continuous bottom chord bearing.

4) Gable studs spaced at 4-0-0 oc.

- 4) Gable studs spaced at 4-0-0 oc.
- 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

e plane of the truss rmal to the face), etails as applicable, ras per ANSI/TPI 1


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPH Claulity Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

Job	Truss	Truss Type	Qty	Ply	
P240301	V5	Valley	2	1	I64525615 Job Reference (optional)

Run: 8.63 S Nov 1 2023 Print: 8.630 S Nov 1 2023 MiTek Industries, Inc. Wed Mar 27 14:09:17 ID:mk_SpknvZDLEbi98pI1RmfyGxS_-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:30.2

Loading TCLL (roof) TCDL BCLL	25.0 Pla 10.0 Lur	acing ate Grip DOL mber DOL p Stress Incr	2-0-0 1.15 1.15 YES	CSI TC BC WB	0.28 0.12 0.07	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 4	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20	GRIP 244/190
BCDL	10.0 Co	•	IRC2018/TPI2014	Matrix-P	0.07	TION2(TE)	0.00	4	n/a	Π/a	Weight: 22 lb	FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	Max Horiz 1=157 (LC 9) Max Uplift 1=-56 (LC 10), 5=-156 (LC 12)	end verticals. lied or 10-0-0 oc -0-15, 5=6-0-15 , 4=-41 (LC 9),	capacity of 7) Provide me bearing pla 1, 41 lb up 8) This truss i Internation R802.10.2 LOAD CASE(\$	chanical connecti te capable of with ff at joint 4 and 19 s designed in acco al Residential Coc and referenced st	ion (by oth Istanding 5 56 lb uplift ordance w le sections	ers) of truss t i6 lb uplift at j at joint 5. ith the 2018 i R502.11.1 a	joint					

6-0-0

FORCES	(lb) - Maximum Compression/Maximum Tension
TOP CHORD	1-2=-331/216, 2-3=-155/120, 3-4=-135/154
BOT CHORD	1-5=-76/82, 4-5=-76/82
WEBS	2-5=-298/299

NOTES

- 1) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=35ft; Ke=1.00; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) 0-5-12 to 5-5-12, Interior (1) 5-5-12 to 6-0-1 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1. 3) Gable requires continuous bottom chord bearing.

4) Gable studs spaced at 4-0-0 oc.

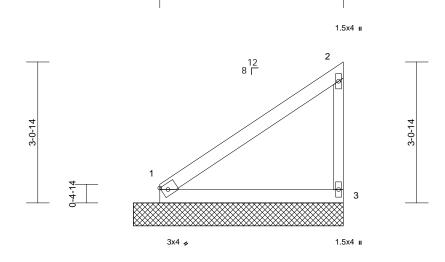
5)

This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

DEVELORMENT SERVICES LEE'S'SUMMIT'SMISSOURI 04/15/2024 6:48:15

ΤΙΟΝ

 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.
 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not besign value to dury with with where outputs into design is based only door parameters shown, and is for an individual building design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members and property incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TPH1 Quality Criteria**, and **DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcscomponents.com)


Job	Truss	Truss Type	Qty	Ply	
P240301	V6	Valley	2	1	I64525616 Job Reference (optional)

4-0-0

Premier Building Supply (Springhill, KS), Spring Hills, KS - 66083,

Run: 8.63 S Nov 1 2023 Print: 8.630 S Nov 1 2023 MiTek Industries, Inc. Wed Mar 27 14:09:17 ID:MAIKAik0HIzfkFQZ89Tk80yGxS1-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

4-0-0

Scale = 1:25.1				1				1				
Loading	(psf)	Spacing	2-0-0	c	csi		DEFL	in	(loc)	l/defl	L/d	PLATES
TCLL (roof)	25.0	Plate Grip DOL	1.15	Т	ГС	0.31	Vert(LL)	n/a	-	n/a	999	MT20
TCDL	10.0	Lumber DOL	1.15	В	3C	0.17	Vert(TL)	n/a	-	n/a	999	
BCLL	0.0	Rep Stress Incr	YES	v	VВ	0.00	Horiz(TL)	0.00	3	n/a	n/a	

LOAD CASE(S) Standard

Matrix-P

8) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

IRC2018/TPI2014

LUMBER				
TOP CHORD	2x4 SP N	0.2		
BOT CHORD	2x4 SP N	0.2		
WEBS	2x3 SPF I	No.2		
BRACING				
TOP CHORD	Structural	wood shea	athing directly applied o	٥r
	4-7-5 oc p	ourlins, exc	cept end verticals.	
BOT CHORD	Rigid ceili	ng directly	applied or 10-0-0 oc	
	bracing.			
REACTIONS	(size)	1=4-6-15,	3=4-6-15	
	Max Horiz	1=114 (LC	39)	
	Max Uplift	1=-15 (LC	12), 3=-58 (LC 12)	
	Max Grav	1=169 (LC	C 1), 3=186 (LC 19)	
FORCES	(lb) - Max Tension	imum Com	pression/Maximum	
TOP CHORD	1-2=-163/	120 2-3=-1	154/185	

10.0 Code

TOP CHORD 1-2=-163/120, 2-3=-154/185 BOT CHORD 1-3=-55/60NOTES

BCDL

- Wind: ASCE 7-16; Vult=115mph (3-second gust) 1) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=35ft; Ke=1.00; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- Truss designed for wind loads in the plane of the truss 2) only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- Gable requires continuous bottom chord bearing. 3)
- Gable studs spaced at 4-0-0 oc. 4)
- This truss has been designed for a 10.0 psf bottom 5) chord live load nonconcurrent with any other live loads. All bearings are assumed to be SP No.2 crushing 6)

capacity of 565 psi. 7)

Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 15 lb uplift at joint 1 and 58 lb uplift at joint 3.

OF MISSO NATHANIEL FOX **ER** PE-2022042259 SIONAL F

 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.
 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not beigh valid for use only with with with sets outputs into design is based only door parameters shown, and is for an individual dualing component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria**, and **DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcscomponents.com)

LEE'S'SUMMIT'SMISSOURI 04/15/2024 6:48:15

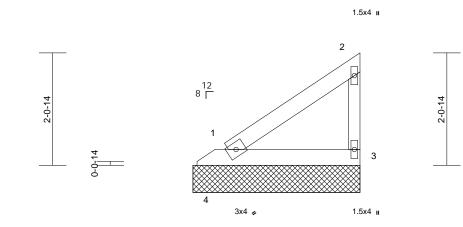
GRIP

Weight: 15 lb

244/190

FT = 20%

Job	Truss	Truss Type	Qty	Ply	
P240301	V7	Valley	2	1	Job Reference (optional)


3-0-0

3-0-0

Premier Building Supply (Springhill, KS), Spring Hills, KS - 66083,

Run: 8.63 S Nov 1 2023 Print: 8.630 S Nov 1 2023 MiTek Industries, Inc. Wed Mar 27 14:09:17 ID:xbdBYgi8_Nb4tni_T1w1WOyGxS4-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

Fag

Scale = 1:21.2

00010 = 1.21.2												
Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15	TC	0.11	Vert(LL)	n/a	-	n/a	999	MT20	244/190
TCDL	10.0	Lumber DOL	1.15	BC	0.05	Vert(TL)	n/a	-	n/a	999		
BCLL	0.0	Rep Stress Incr	YES	WB	0.00	Horiz(TL)	0.00	3	n/a	n/a		
BCDL	10.0	Code	IRC2018/TPI20	14 Matrix-P							Weight: 10 lb	FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD	2x4 SP No.2 2x4 SP No.2 2x3 SPF No.2 Structural wood she 3-1-5 oc purlins, ex	cept end verticals.	bearin 3 and 8) This tr Interna d or R802. LOAD CA	e mechanical connection g plate capable of withs 47 lb uplift at joint 4. uss is designed in acco ational Residential Code 10.2 and referenced sta SE(S) Standard	standing 3 ordance w e sections	89 lb uplift at jo ith the 2018 s R502.11.1 a	oint					
BOT CHORD	Rigid ceiling directly bracing.	applied or 10-0-0 oc	;									
FORCES	(lb) - Maximum Corr Tension	pression/Maximum										
TOP CHORD BOT CHORD NOTES	1-2=-105/77, 2-3=-9 1-4=-160/107, 1-3=-											
Vasd=91m Ke=1.00; C exterior zo and right e exposed;C	CE 7-16; Vult=115mph hph; TCDL=6.0psf; BC Cat. II; Exp C; Enclose ne and C-C Exterior(2 exposed ; end vertical -C for members and f shown; Lumber DOL=	DL=6.0psf; h=35ft; d; MWFRS (envelop E) zone; cantilever le left and right orces & MWFRS for 1.60 plate grip									ATE OF I	MISSOL

- Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 3) Gable requires continuous bottom chord bearing.
- 4) Gable studs spaced at 4-0-0 oc.
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 6) All bearings are assumed to be SP No.2 crushing capacity of 565 psi.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent colleges with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

Job	Truss	Truss Type	Qty	Ply	
P240301	V8	Valley	2	1	I64525618 Job Reference (optional)

12 8 Г

1-6-15

Premier Building Supply (Springhill, KS), Spring Hills, KS - 66083,

Run: 8.63 S. Nov. 1 2023 Print: 8.630 S.Nov. 1 2023 MiTek Industries. Inc. Wed Mar 27 14:09:17 ID:3pNgiJfdw84fOAODEBr5MYyGxS8-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

1-0-14

l/defl

n/a 999

n/a

n/a n/a

in

n/a

n/a

0.00

(loc)

3

L/d

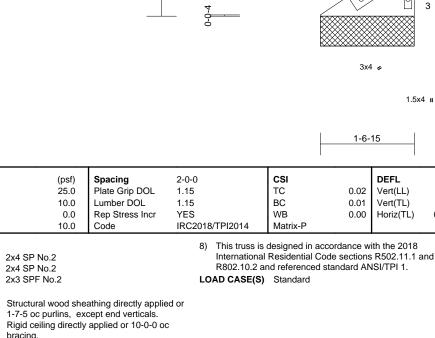
999

PLATES

Weight: 5 lb

MT20

GRIP


244/190

FT = 20%

1.5x4 u

2

Page: 1

Scale = 1:19.3 Loading

TCLL (roof)

TCDI

BCLL

BCDL

WEBS BRACING TOP CHORD

LUMBER

TOP CHORD

BOT CHORD

BOT CHORD

FORCES

NOTES

1)

2)

3)

4)

5)

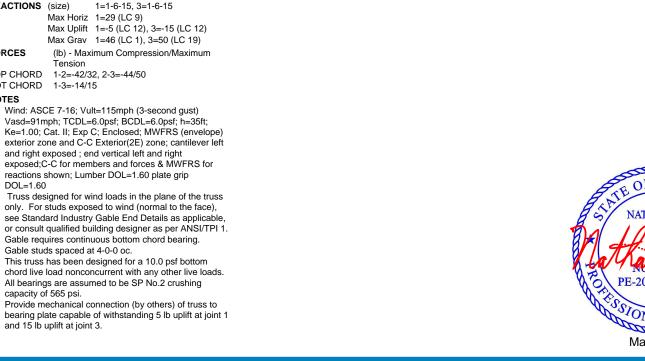
6)

7)

TOP CHORD

BOT CHORD

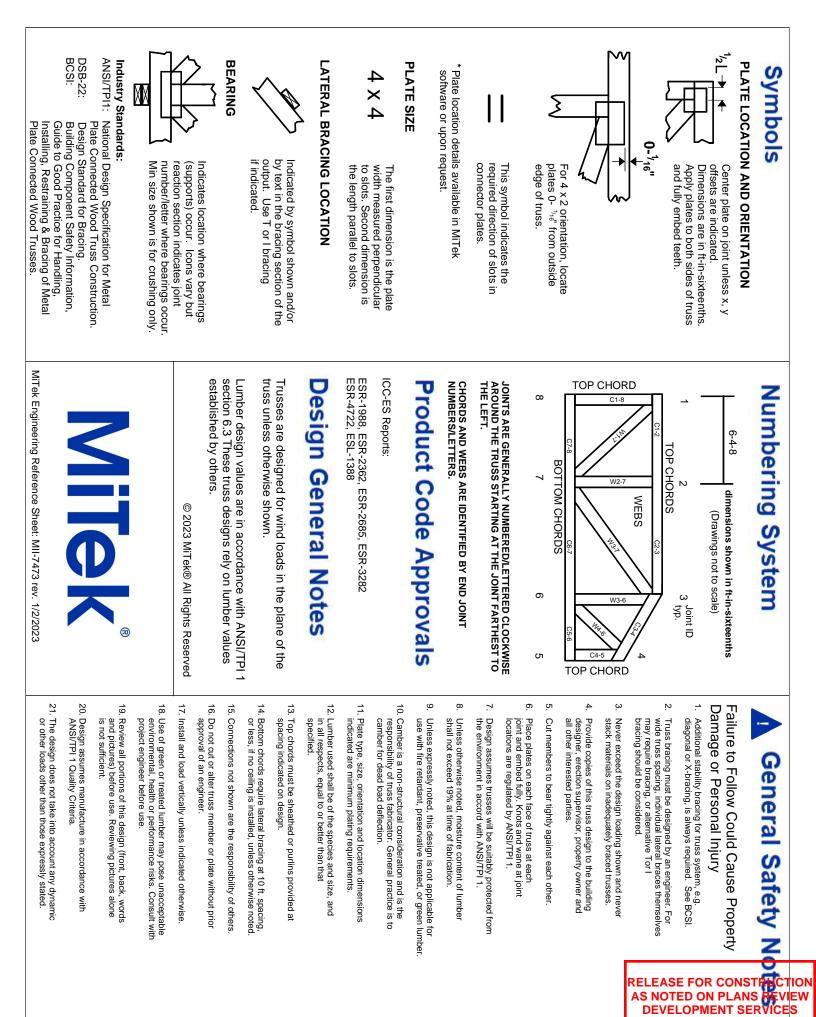
DOL=1.60


capacity of 565 psi.

REACTIONS (size)

bracing.

Tension


1-0-14

 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.
 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponent.com)

ΤΙΟΝ **DEVELOPMEN** SERVICES LEE'S'SUMMIT'SMISSOURI 04/15/2024 6:48:15

ASE FOR CONST OTED ON PLANS VELOPMENT SER LEE'S SUMMIT, MISSOURI 04/15/2024 6:48:15