

		Lot 146 WO						MiTek, Inc.
	formation							16023 Swingley Ridge Rd. Chesterfield, MO 63017
		r: Summit Ho	omes Pr					314.434.1200
	ock: 146			S	ubdivision:	Woodside F	Ridge	01110111200
Model	: Charlest	on - Prairie						
Addre	ss: 2066 N	W O'Brien F	۲d					
City: L	_ee's Sumr	nit		S	tate: MO			
Genera	al Truss Ei	ngineering C	criteria &	Desig	n Loads (I	ndividual Tr	uss Design	1
Drawin	ngs Show	Special Load	ding Con	dition	s):			
Design	Code: IR	C2018/TPI20	014		D	esign Program	: MiTek 20	/20 8.7
		E 7-16 [IV øindR		15 mpł				Envelope) ASCE 7-16 [Low Rise]
Roof Lo	oad: 45.0 p	sf	•	-	Fl	oor Load: N/	A psf	-
	-						-	
Mean I	Roof Height	t (feet): 25			E	xposure Categ	ory: C	
No.	Seal#	Truss Name	e Date	No.		Truss Name	e Date	
1	164360222	A1	3/21/24 3/21/24	35	164360256 164360257 164360258 164360259	J8 J9	3/21/24	
1 2 3 4 5 6 7 8 9	164360223	A2 A3	3/21/24	35 36 37 38 40 41 42 43 44 45 46 47	164360257	J9 J10	3/21/24 3/21/24	
4	l64360224 l64360225	A3 B1	3/21/24	38	164360259	J11	3/21/24	
5	164360226 164360227 164360228	B2 B3	3/21/24	39 40	164360260 164360261 164360262	J12 J13	3/21/24 3/21/24	
7	164360228	B4	3/21/24	41	164360262	J14	3/21/24	
8	164360229 164360230	B5 C1	3/21/24	42	164360263 164360264	J15 J16	3/21/24 3/21/24	
10	164360231	Č2	3/21/24	44	164360265	J17	3/21/24	
	164360231 164360232	Č2 C3 C4	3/21/24	45	164360265 164360266	J18	3/21/24	
11 12 13 14 15 16 17	l64360233 l64360234	C5	3/21/24	46 47	164360267 164360268	J19 J20	3/21/24 3/21/24	
14	164360235 164360236 164360237	ČĞ	3/21/24	48	164360269 164360270	J21	3/21/24 3/21/24	
15 16	164360236	Č7 C8	3/21/24 3/21/24	49 50	164360270 164360271	J22 J23	3/21/24 3/21/24	
17	164360238	C9	3/21/24	51	164360272	J24	3/21/24	
18	164360239	C10 C11	3/21/24	48 49 51 52 54 55 55 55 55 55 60	164360273	J25 J26	3/21/24 3/21/24	
20	l64360240 l64360241	C12	3/21/24	53 54	164360274 164360275	J27	3/21/24	
21	164360242 164360243	Č13 C14	3/21/24	55	164360276 164360277	J28 J29	3/21/24	
22	164360243	C14 C15	3/21/24	57	164360278	J30	3/21/24 3/21/24	
24	164360244 164360245 164360246	Č16	3/21/24	58	164360278 164360279 164360280	J31	3/21/24	
25 26	164360246	C17 D1	3/21/24 3/21/24	59 60	164360280 164360281	J32 J33	3/21/24 3/21/24	
27	164360248	D2	3/21/24	61	164360282	J34	3/21/24	
18 19 221 223 225 226 278 230 231 233 334	164360249 164360250	J1 J2	3/21/24 3/21/24	62 63 64 65	164360283 164360284	J35 J36	3/21/24 3/21/24	
30	l64360251 l64360252	J3 J4	3/21/24	64	164360285 164360286	J37 J38	3/21/24	
31 32	164360252 164360253	J4 J5	3/21/24	65 66	l64360286 l64360287	J38 J39	3/21/24 3/21/24	
33	164360254	J6	3/21/24 3/21/24	67	164360288 164360289	J40	3/21/24	
34	164360255	J7	3/21/24	68	164360289	LAY2	3/21/24	

The truss drawing(s) referenced above have been prepared by MiTek USA, Inc. under my direct supervision based on the parameters provided by Wheeler - Waverly.

Truss Design Engineer's Name: Nathan Fox

My license renewal date for the state of Missouri is December 31, 2024.

IMPORTANT NOTE: The seal on these truss component designs is a certification that the engineer named is licensed in the jurisdiction(s) identified and that the designs comply with ANSI/TPI 1. These designs are based upon parameters shown (e.g., loads, supports, dimensions, shapes and design codes), which were given to MiTek or TRENCO. Any project specific information included is for MiTek's or TRENCO's customers file reference purpose only, and was not taken into account in the preparation of these designs. MiTek or TRENCO has not independently verified the applicability of the design parameters or the designs for any particular building. Before use, the building designer should verify applicability of design parameters and properly incorporate these designs into the overall building design per ANSI/TPI 1, Chapter 2.

Nathan Fox

RELEASE FOR CONSTRUCTION AS NOTED FOR PLAN REVIEW DEVELOPMENT SERVICES LEE'S SUMMIT, MISSOURI 04/11/2024

RE: B240051 - Lot 146 WO

MiTek, Inc. 16023 Swingley Ridge Rd. Chesterfield, MO 63017 314.434.1200

No.	Seal#	Truss Nam	e Date
69	164360290	LAY3	3/21/24
<u>70</u>	164360291	V3	3/21/24
71	164360292	V4	3/21/24
72	164360293	V5	3/21/24

								RELEAS	E FOR CONSTRUCTION
ob Truss		Truss Type		Qty	Ply	Lot 146 WC)		ED FOR PLAN REVIEW LOPMENT SERVICES 164360222
3240051 A1		Hip Girder		1	1	Job Refere	nce (optional		S SUMMIT, MISSOURI
heeler Lumber, Waverly, KS - 66871,			Run: 8.73 S Feb 22 D:cmypGrq7giZqfz'					/ed Mar 2009/09/ rCDoi7J4zJC?i	11/2 ¹ 24
	-0-10-8	<u>4-2-9</u> 4-2-9		8-9 4-6	9-7 -14			<u>13-0-0</u> 4-2-9	0-10-8
6-1-1- 	1 2 3x6=	$3.5]^{2}$ $3.5]^{2}$ $3.5]^{2}$ $2x4 $ $2x4 $ $6x6 =$ $2 \cdot 3 \cdot 8 \qquad 4 \cdot 3 \cdot 13$ $2 \cdot 3 \cdot 8 \qquad 2 \cdot 0 \cdot 5$		1	3 4 3-3 4-6	6x1 5 10 3x4 =		6 6x6 = 2x4 II 2x4 II 13-0- 2-3-1	
cale = 1:30 ate Offsets (X, Y): [3:0-4-13,Edge]	, [3:0-1-8,0-1-3], [4:0	6-0,0-1-12], [5:0-3-0,0-2-10], [6:0-4-9,Edge]	, [6:0-1-8,0-	1-7]				
bading (psf) CLL (roof) 25.0 CDL 10.0 CDL 10.0 CLL 0.0* CDL 10.0 CDL 10.0 JMBER 0.0* DP CHORD 2x6 SP 2400F 2.0E * No.2 DT CHORD DT CHORD 2x4 SPF No.2 *Exception 1.8E EBS DP CHORD Structural wood sheat 4-10-3 oc purlins, exception 2-0-0 oc purlins, exception 20T CHORD Structural wood sheat 4-10-3 oc purlins, exception 2-0-0 oc purlins, exception 20T CHORD Rigid ceiling directly is bracing. EACTIONS (size) 2=0-3-8, 7 Max Horiz 2=28 (LC * Max Uplift 2=-236 (LC * Max Uplift 2=-236 (LC * Max Grav 2=905 (LC * DR CHORD 1:2=0/1, 2-3=-360/10 0 4-5=-3110/738, 5-6= 7-8=0/1 0-11=-694/3025, 6- DT CHORD 2:12=-1/19, 3-12=0/6 10-11=-694	ot* 3-6:2x4 SPF 2100 athing directly applied cept 5 max.): 4-5. applied or 9-5-0 oc =0-3-8 12) C 4), 7=-236 (LC 5) 1), 7=905 (LC 1) pression/Maximum 11, 3-4=-2992/718, -3080/722, 6-7=-360/ 38, 3-11=-698/3020, 10=-686/3114, 6-9=0 -61/193, 5-10=-13/11 been considered for (3-second gust)	 5) * This truss has b on the bottom ch 3-06-00 tall by 2- chord and any ot 6) All bearings area a 7) Provide mechani bearing plate cap 2 and 236 lb uplit 8) This truss is desi International Res R802.10.2 and re 9) Graphical purlin r or the orientation bottom chord. 10) Hanger(s) or othe provided sufficier down and 38 lb u up at 6-6-0, and 18 lb u 97, 6-6-0, and 37 lb o down and 60 lb u 10) In the LOAD CAS of the truss are n 10 Dead + Roof Lin Plate Increase= Uniform Loads (atrix-S been designed fc ord in all areas v 00-00 wide will f her members. assumed to be S cal connection (f able of withstan it at joint 7. gned in accordan idential Code se aferenced standa representation du of the purlin alo er connection de t to support con p at 4-2-9, and 73 lb down and 68 p at 4-6-0, 37 lb down and 18 lb u p at 8-9-7 on bc of such connection thers. SE(S) section, lo oted as front (F) andard re (balanced): Lu 1.15	where a rect: t between the PF No.2 . by others) of ding 236 lb ince with the ctions R502 and ANSI/TP bes not deping the top a vice(s) shall centrated lo 73 lb down a 38 lb up at o lb up at 4 down and p at 8-6-0, withom chord. on device(s) ads applied or back (B)	LL) -CC CT) -CC (CT) -CC (CT) C (CT) C (LL) C of 20.0psf angle he bottom truss to uplift at join 2018 .11.1 and I 1. ct the size nd/or be ad(s) 73 lb and 37 lb 8-9-7 on -2-9, 37 lb 18 lb up at and 181 lb The j is the to the face ass=1.15,	nt)	I/defl L/d >766 360 >429 240 n/a n/a >897 240	PLATES MT20 Weight: 51 lb Weight: 51 lb STATE OF STATE OF NATH	

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

16023 Swingley, Ridge Rd. Chesterfield, MO 63017 314.434.1200 / MITEK-US.com

LOAD CASE(S) Standard

Unbalanced roof live loads have been considered for this design. Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd-91mph; TCDL = 6 0pcf; PCDL = 6 0pcf; b 25f; C

Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60 3) This truss has been designed for a 10.0 osf bottom

2-2-0 oc purlins, except end verticals.

Rigid ceiling directly applied or 2-2-0 oc

8=0-3-8, 12=0-3-8

Max Uplift 8=-130 (LC 5), 12=-130 (LC 4) Max Grav 8=642 (LC 1), 12=642 (LC 1)

(Ib) - Maximum Compression/Maximum

1-2=0/22, 2-3=-231/55, 3-4=-1405/144, 4-5=-1405/155, 5-6=-231/47, 6-7=0/22, 2-12=-709/152, 6-8=-709/148

11-12=-7/56, 3-11=-2/106, 3-10=-99/1358, 5-10=-99/1358, 5-9=0/106, 8-9=-3/56

BOT CHORD

REACTIONS

FORCES

TOP CHORD

BOT CHORD

WEBS

NOTES

bracing.

Tension

4-10=0/194

Max Horiz 12=24 (LC 8)

(size)

- 3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- 5) All bearings are assumed to be SPF No.2 .

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

WEBS 2x6 SPF No.2 *Except* 9-4:2x3 SPF No.2 BRACING TOP CHORD Structural wood sheathing directly applied or 2-2-0 oc purlins, except end verticals. BOT CHORD Rigid ceiling directly applied or 2-2-0 oc bracing. REACTIONS (size) 7=0-3-0, 11=0-3-8 Max Horiz 11=30 (LC 8) Max Uplift 7=-81 (LC 5), 11=-130 (LC 4)

 FORCES
 (lb) - Maximum Compression/Maximum Tension

 TOP CHORD
 1-2=0/22, 2-3=-231/41, 3-4=-1413/161, 4-5=-1413/160, 5-6=-222/35, 6-7=-620/105, 2-11=-711/153

Max Grav 7=559 (LC 1), 11=643 (LC 1)

BOT CHORD 10-11=-7/56, 3-10=-4/106, 3-9=-111/1366, 5-9=-111/1366, 5-8=-2/99, 7-8=-6/51 WEBS 4-9=0/194

NOTES

- 1) Unbalanced roof live loads have been considered for this design.
- Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- 5) All bearings are assumed to be SPF No.2 .

 This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI Claulity Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbsccomponents.com)

							RELEASE FOR CONSTRUCTION
Job	Truss	Truss Type		Qty	Plv	Lot 146 WO	AS NOTED FOR PLAN REVIEW
300	11035	Truss Type		Qty	I IV		DEVELOPMENT SERVICES 164360225
B240051	B1	Hip Girder		1	1	Job Reference (optional	
Wheeler Lumber, Waverly, F	S - 66871,		Run: 8.73 S Feb 22 20	024 Print: 8	.730 S Feb 2	2 2024 MiTek Industries, Inc. \	/ed Mar 2009/09/10 1 / 2 40:0

ID:NSJTn4Fs7FY5I_0nTv3Fp7z4SeO-RfC?PsB70Hq3NSgPqnL8w3uITXbGrWrCDoi754zJ07

Scale = 1:75

Plate Offsets (X, Y): [4:0-3-8,0-2-8], [7:0-3-8,0-2-8], [11:0-5-6,0-1-2]

	x, 1): [4:0 0 0;0 2 0],	[7.0 0 0,0 2 0], [11.0	000,012	-1									
Loading TCLL (roof) TCDL BCLL BCDL	(psf) 25.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 NO IRC201	8/TPI2014	CSI TC BC WB Matrix-S	0.78 0.94 0.97	DEFL Vert(LL) Vert(CT) Horz(CT) Wind(LL)	-0.39 0.07	(loc) 12-13 12-13 11 12-13	l/defl >999 >606 n/a >999	L/d 360 240 n/a 240	PLATES MT20 Weight: 164 lb	GRIP 197/144 D FT = 10%
FORCES TOP CHORD BOT CHORD WEBS NOTES	2.0E Structural wood she 4-0-3 oc purlins, exi 2-0-0 oc purlins (4-3 Rigid ceiling directly bracing. 1 Row at midpt 2 Rows at 1/3 pts (size) 2-0-3-8, 1 Max Horiz 2=-20 (LC Max Uplift 2=-243 (L 15=-519) (0 Max Grav 2=884 (LC 15=2221 / (lb) - Maximum Com Tension 1-2e0/1, 2-3=-1872// 4-5=-277/1253, 5-7= 7-8=-2062/501, 8-9= 9-11=-711/233 2-18=-389/1700, 17- 15-17=-350/1585, 11 2-13=-256/1242, 11 3-18=0/364, 3-17=-1 4-15=-2896/701, 5-1 7-15=-3360/792, 7-1 8-13=-198/853, 8-12 ed roof live loads have	athing directly applie- cept end verticals, ar -8 max.): 3-8. applied or 10-0-0 oc 4-15 7-15 11=0-3-8, 15=0-3-8 5) C 4), 11=-310 (LC 5) LC 4) C 21), 11=1017 (LC 2 (LC 1) pression/Maximum 450, 3-4=-1585/408, -277/1253, -1343/311, 9-10=0/4 -18=-390/1677, 3-15=-441/2062, 1-12=-248/1234 17/63, 4-17=0/310, 5=-643/303, 3=-47/263, 2=-86/156	0F 3) 4) d or 5) 6) 7) 7, 8) (2), 9) 8,	Vasd=91mpH II; Exp C; En cantilever lef right exposed Provide aded This truss ha chord live loa * This truss ha chord live loa * This truss ha chord and ar All bearings : Provide mec bearing plate 2, 519 lb upH This truss is International R802.10.2 au Graphical pu	7-16; Vult=115mp ; TCDL=6.0psf; B closed; MWFRS (it t and right expose d; Lumber DOL=1. quate drainage to j s been designed fa ad nonconcurrent in as been designed in chord in all area by 2-00-00 wide win yo other members. are assumed to be hanical connection capable of withst ft at joint 15 and 3 designed in accorr Residential Code nd referenced star rlin representation ation of the purlin at	CDL=6.1 enveloped d; end v. 60 plate prevent i for a 10.1 with any d for a liv s where ill fit betv e SPF Net n (by oth anding 2 to 0 b up dance w sections ndard AN	Opsf; h=25ft; (a) exterior zor vertical left an grip DOL=1.1 water ponding 0 psf bottom other live loa- re load of 20.0 a rectangle veen the botto o.2. ers) of truss tr 4/3 lb uplift at lift at joint 11. ith the 2018 s R502.11.1 a SI/TPI 1. ot depict the s	ne; id 60 g. ds. Opsf com ; joint	prov dow 8-2- and 20-2 and 26-2 and 32-2 cho dow 10-2 lb d 30-2 and cho	vided su <i>n</i> and 4 40, 70 lb 46 lb up 2-0, 70 ll 46 lb up 2-0, and <i>n</i> at 6-2 2-0, 20 ll own at 2-0, 20 ll and 2-0, 20 ll and and 2-0, 20 ll and and 2-0, 20 ll and and 2-0, 20 ll and and 2-0, 20 ll and and 2-0, 20 ll and and and and and and and and	fficient 6 lb up down o at 12 b dowr o at 24 b dowr o at 24 b dowr o at 24 b dowr o at 30 70 lb 6 140 lb 2-0, 20 b dowr 16-2-0 b dowr 26-2-0 b dowr at 30 70 lb 6 140 lb 2-0, 20 b dowr 16-2-0 b dowr 16-2-0 16-2-0 b dowr 16-2-0 16-0 16-2-0 16-0 16-0 16-0 16-0 16-0 16-0 16-0 16	o at 6-2-0, 70 lb and 46 lb up at 2-2-0, 70 lb down and 46 lb up at 3-2-0, and 70 lb down and 46 lb up down and 46 lb up at 12-2-0, 20 l b down at 8-2- n at 12-2-0, 20 l b down at 3-2- n at 12-2-0, 20 l b down at 5- n at 12-2-0, 20 l b down at 12-2-0, 20 l b	centrated load(s) 70 lb down and 46 lb up at 10-2-0, 70 lb down n and 46 lb up at t 16-2-0, 70 lb down n and 46 lb up at t 22-2-0, 70 lb down n and 46 lb up at t 22-2-0, 70 lb down down and 46 lb up at up at 34-2-0 on top up at 4-6-0, 20 lb -0, 20 lb down at lb down at 14-2-0, 20 18-2-0, 20 lb down at lb down at 24-2-0, 20 28-2-0, 20 lb down at lb down at 34-2-0, 35-10-0 on bottom ch connection device

Continued on page 2 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not besign value to dury with with where outputs into design is based only door parameters shown, and is for an individual building design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members and property incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TPH1 Quality Criteria**, and **DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcscomponents.com)

16023 Swingley Ridge Rd. Chesterfield, MO 63017 314.434.1200 / MiTek-US.com

March 21,2024

						RELEASE FOR CONSTRUCTION
Job	Truss	Truss Type	Qty	Ply	Lot 146 WO	
B240051	B1	Hip Girder	1	1	Job Reference (optional	DEVELOPMENT SERVICES 164360225 LEE'S SUMMIT, MISSOURI
Wheeler Lumber, Waverly, KS -	66871,				2 2024 MiTek Industries, Inc. \ 370Hq3NSgPqnL8w3uITXbGk	

11) In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (F) or back (B).

LOAD CASE(S) Standard

1) Dead + Roof Live (balanced): Lumber Increase=1.15, Plate Increase=1.15

Uniform Loads (lb/ft)

Vert: 1-3=-70, 3-8=-70, 8-9=-70, 9-10=-70, 2-11=-20 Concentrated Loads (lb)

Vert: 16=-4 (B), 18=-95 (B), 7=-10 (B), 13=-4 (B),

12=-80 (B), 19=-10 (B), 20=-10 (B), 21=-10 (B),

22=-10 (B), 23=-10 (B), 24=-10 (B), 25=-10 (B),

- 26=-10 (B), 27=-10 (B), 28=-10 (B), 29=-10 (B),

 $\begin{array}{l} 30 = -10 \ (B), \ 21 = -10 \ (B), \ 32 = -10 \ (B), \ 32 = -10 \ (B), \ 33 = -4 \ (B), \ 43 = -4 \ (B), \ 43 = -4 \ (B), \ 43 = -4 \ (B), \ 44 = -4 \ (B), \ 45 = -4 \ (B) \end{array}$

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

										R	RELEASE F		N
Job	Trus	S	Truss Typ	e		Q	y Ply	/	Lot 146 WO	· ·		FOR PLAN REVIEW PMENT SERVICES 164360226	'
B240051	B2		Hip			1	1		Job Reference (optional	ľ		I64360226 JMMIT, MISSOURI	
Wheeler Lumber, W	/averly, KS - 66871,								2 2024 MiTek Industries, Inc. 370Hq3NSgPqnL8w3uITXbGi			1/2024	4
	-0-10-8		40.0.0		10.0.1		00.040		00.40.0		00.4.0	44.0.0	
		<u>6-6-0</u> 6-6-0	<u>12-9-8</u> 6-3-8		<u>19-2-4</u> 6-4-12	-	<u>26-6-12</u> 7-4-8		33-10-0 7-3-4		<u>39-4-0</u> 5-6-0	<u>41-2-8</u> 1-10-8	
	0.00					ix12=							
0-0-6-		$4^{12} \stackrel{\text{o}}{-} 3$		3x4=	3x6=	6			3x4=	6x6=			
$\frac{1}{2} = \frac{1}{2}$				4 		6		×		8	_		
$\begin{array}{c} 2-10-0\\ 2-10-0\\ 2-8-7\\ 2-8-7\\ -2-8-7\\ -1-9\\ -1-9\\ -1-9\end{array}$		5-10-0				\square					4-10-0	9	
+ 2-10-6 + 2-8-7 2-8-7 0-8-0											6-10		Т
⊥ ⊥ <u>3</u> ⊤		18		17	16	8 15	14		13	12			L_
	6x6 II	3x4=		3x10=	276-	15 3x4 I	3x6=		10=	3x4=		7x12 II	
	6	6-4-12	12-9-8	- 1	19-2-4		26-6-12		33-11-4	1	39-4-0		

7-4-8

7-4-8

6-4-12

Scale = 1:74.6

6-4-12

6-4-12

Plate Offsets (X, Y): [11:0-3-8,Edge], [13:0-2-8,0-1-8], [17:0-2-8,0-1-8]													
Loading TCLL (roof) TCDL BCLL BCDL	(psf) 25.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018	8/TPI2014	CSI TC BC WB Matrix-S	0.72 0.79 0.84	DEFL Vert(LL) Vert(CT) Horz(CT) Wind(LL)	in -0.20 -0.39 0.00 0.16	(loc) 12-13 12-13 11 12-13	l/defl >999 >605 n/a >999	L/d 360 240 n/a 240	PLATES MT20 Weight: 127 lb	GRIP 197/144 FT = 10%
	Max Horiz 19=23 (LC Max Uplift 11=-231 (19=-178 (Max Grav 11=848 (L	ept* 11-9,19-2:2x6 SF athing directly applie cept end verticals, ar -12 max.): 3-8. applied or 4-6-13 oc 15=0-3-8, 19=0-3-8 C 8) LC 5), 15=-370 (LC 4 LC 4) LC 22), 15=2156 (LC	4 3) 4) dor nd 5) 5 5 5 4),	Vasd=91mp II; Exp C; Er cantilever let right expose Provide ade This truss ha chord live lo * This truss l on the botto 3-06-00 tall I chord and at All bearings Provide mec bearing plate 19, 370 lb up	F-16; Vult=115mp h; TCDL=6.0psf; B Iclosed; MWFRS (if and right expose d; Lumber DOL=1. quate drainage to p as been designed f ad nonconcurrent v has been designed m chord in all area: by 2-00-00 wide wi ny other members. are assumed to be chanical connectior e capable of withst- plift at joint 15 and designed in accorr	CDL=6. enveloped d; end v 60 plate prevent v or a 10. with any for a liv for a liv s where II fit betw SPF No (by oth anding 1 231 lb u	Opsf; h=25ft; a) exterior zc vertical left au grip DOL=1 water pondin 0 psf bottom other live los e load of 20. a rectangle veen the bott b.2. ers) of truss 78 lb uplift at plift at joint 1	one; nd .60 ig. ads. 0psf tom to to					
FORCES	19=728 (L (lb) - Maximum Com Tension	,	0)	R802.10.2 a	Residential Code and referenced star urlin representation	dard AN	ISI/TPI 1.						
TOP CHORD	1-2=0/24, 2-3=-1108 4-6=-541/197, 6-7=-7 8-9=-1072/202, 9-10 2-19=-659/213	830/237, 7-8=-937/2	15		ation of the purlin a d.			5126				0000	- Ch
BOT CHORD	18-19=-164/977, 17- 15-17=-1490/256, 13 12-13=-150/830, 11-	3-15=-1490/256,									h	ATE OF M	AISSOL
WEBS	3-1855/123, 4-18= 6-17365/2121, 6-1 6-13422/2441, 7-1 7-128/124, 8-12=0	51/495, 4-17=-635/ 5=-1996/448, 3=-601/223,	207,							-	K	S NATHA	
	ed roof live loads have	been considered for								/	W.	PE-2022	BER 042259

this design.

5-4-12

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

₿ 15

3x6=

T 🖬

14

25-5-0

6-2-12

3x6=

13

3x4=

31-11-4

6-6-4

12

2x4 II

39-4-0

7-4-12

T T

16

3x6=

19-2-4

5-4-11

17

3x6=

18

3x4=

13-9-9

5-4-13

3	Call	e = 1	.74.	/				
		~ "			 	-	-	

3-6-0

Plate Offsets (X,	Y):	[9:0-3-11,Edge]
-------------------	-----	-----------------

2

49 N

6x6 II

8-4-12

8-4-12

Plate Offsets (.	X, Y): [9:0-3-11,Edge												
Loading TCLL (roof) TCDL BCLL BCDL	(psf) 25.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018	3/TPI2014	CSI TC BC WB Matrix-S	0.97 0.48 0.96	DEFL Vert(LL) Vert(CT) Horz(CT) Wind(LL)	in -0.11 -0.23 0.02 0.07	11	l/defl >999 >971 n/a >999	L/d 360 240 n/a 240	PLATES MT20 Weight: 128 lb	GRIP 197/144 FT = 10%
	2100F 1.8E 2x4 SPF No.2 *Exce 2100F 1.8E 2x3 SPF No.2 *Exce No.2 Structural wood she except end verticals (6-0-0 max.): 4-8. Rigid ceiling directly bracing. 1 Row at midpt	ept* 16-14:2x4 SPF ept* 11-9,19-2:2x6 SP athing directly applied , and 2-0-0 oc purlins applied or 6-0-0 oc 7-15 15=0-3-8, 19=0-3-8 C 12) LC 5), 15=-388 (LC 4 LC 4) LC 22), 15=2325 (LC	4) d, 5) 6) 7)),	Vasd=91mpl II; Exp C; En cantilever lef right expose Provide aded This truss ha chord live loa * This truss h on the bottor 3-06-00 tall h chord and ar Bearings are 15 SPF 2100 Provide mec bearing plate 19, 388 lb up This truss is International	7-16; Vult=115mp h; TCDL=6.0psf; E closed; MWFRS (it and right expose d; Lumber DOL=1 quate drainage to ad nonconcurrent has been designed ad nonconcurrent has been designed n chord in all area by 2-00-00 wide w hy other members assumed to be: J DF 1.8E, Joint 11 hanical connection e capable of withst blift at joint 15 and designed in accor Residential Code nd referenced sta	SCDL=6. envelop d; end .60 plate prevent for a 10. with any d for a lin s where ill fit betw. SPF No. n (by oth anding 223 lb u dance w sections	Opsf; h=25ft; a) exterior zo vertical left ar grip DOL=1. water pondin 0 psf bottom other live loa re load of 20. a rectangle veen the bott SPF No.2, Jc 2. ers) of truss 164 lb uplift ar plift at joint 1 ith the 2018 s R502.11.1 a	ne; nd .60 g. ads. Opsf com bint to t joint 1.					
FORCES	,		· LL	Graphical pu	Irlin representation ation of the purlin a d.	n does n	ot depict the	size				THE OF I	MISS
BOT CHORD	18-19=-196/783, 17- 15-17=-808/107, 13- 12-13=-87/728, 11-1	-15=-191/16,									Å	S NATHA	MIEL 15 V
WEBS NOTES 1) Unbalance this design	3-18=-246/150, 4-18 5-17=-39/776, 5-15= 7-15=-1977/386, 7-1 8-12=0/269 ed roof live loads have	8=0/336, 4-17=-968/19 1568/365, 3=0/498, 8-13=-732/9	,									PE-2022	SER 042259
												C'SSIONA	L EN

 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.
 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not besign value to dury with with where outputs into design is based only door parameters shown, and is for an individual building design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members and property incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TPH1 Quality Criteria**, and **DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcscomponents.com)

March 21,2024

6x6 II 9

4x5 II

_

0-0-

10

Scale = 1:71.9

Plate Offsets (X, Y): [10:0-3-11,Edge]

Loading	(psf)	Spacing	2-0-0		csi		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15		TC	0.78			11-12	>999	360	MT20	197/144
TCDL	10.0	Lumber DOL	1.15		BC	0.55	Vert(CT)		11-12	>664	240	-	
BCLL	0.0*	Rep Stress Incr	YES		WB	0.98	• • •	-0.01	15	n/a	n/a		
BCDL	10.0	Code		8/TPI2014	Matrix-S		Wind(LL)	0.08		>999	240	Weight: 131 lb	FT = 10%
							()				-	- J	
LUMBER			2)		7-16; Vult=115m								
TOP CHORD		ept* 6-8:2x4 SPF 210	0F		h; TCDL=6.0psf; E								
	1.8E				closed; MWFRS								
BOT CHORD		ept* 16-14:2x4 SPF			t and right expose								
	2100F 1.8E	****	NDE 2)		d; Lumber DOL=1								
WEBS	2x3 SPF No.2 *Exce	ept^ 11-10,19-2:2x6 S	SPF 3) 4)		quate drainage to as been designed			ıg.					
	No.2		4)		ad nonconcurrent			ade					
BRACING	Other strengthere and all a	a da la calla a adh a cara Ra	d or 5)		has been designe								
TOP CHORD	Structural wood she 5-4-3 oc purlins, ex		u 01 - /		n chord in all area			000					
	2-0-0 oc purlins, ex		iu		y 2-00-00 wide w			tom					
BOT CHORD				chord and ar	y other members	5.							
BOT ONORD	bracing.		6)		assumed to be:			oint					
REACTIONS	0	, 15=0-3-8, 19=0-3-8			0F 1.8E , Joint 11								
	Max Horiz 19=58 (L0		7)		hanical connectio								
	Max Uplift 11=-92 (L).	bearing plate capable of withstanding 141 lb uplift at joint									
	19=-141 (,,	19, 441 lb up	olift at joint 15 and	l 92 lb up	lift at joint 11						
	Max Grav 11=570 (I	· · ·	1),	This trues is	designed in seco	-	:+h +h = 0040						
	19=649 (l	LC 21)	8)		designed in accor Residential Code			and					
FORCES	(lb) - Maximum Corr	pression/Maximum			nd referenced sta			anu					
	Tension		9)		Irlin representation			size					
TOP CHORD	1-2=0/24, 2-3=-941/	173, 3-4=-417/167,	0)		ation of the purlin			0120					
	4-5=-354/137, 5-7=-		54,	bottom chore									-
	8-9=-486/77, 9-10=-		LC	DAD CASE(S)	Standard							and	alle
DOTOUDDD	10-11=-463/137, 2-1											B OF I	MIS S
BOT CHORD	,	,									6	TATE OF I	N.O.
	15-17=-1052/274, 1	,									8	S NATHA	NIFI XP.V
WEBS	12-13=0/428, 11-12 3-18=0/158, 3-17=-5		24								R	FO	
WEDS	5-17=-196/1344, 5-1	,	134,								7		
	7-15=-1524/378, 7-1										N/	H	
	8-13=-997/193, 8-12		89								W.	No I K A A	
NOTES											27	N U UNI	ER ARY
	ed roof live loads have	been considered for									N2	PE-2022	042259
this design											N	The second	12H
											Y	1050	JO'H
												SSIONA	LEFE
												Car	The second secon
												Marak	01 0004

 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.
 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not besign value to dury with with where outputs into design is based only door parameters shown, and is for an individual building design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members and property incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TPH1 Quality Criteria**, and **DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcscomponents.com)

March 21,2024

						RELEASE FOR CONSTRUCTION
Job	Truss	Truss Type	Qty P	у	Lot 146 WO	AS NOTED FOR PLAN REVIEW
B240051	B5	Roof Special Girder	1 1		Job Reference (optio	DEVELOPMENT SERVICES 164360229 LEE'S SUMMIT, MISSOURI
Wheeler Lumber, Waverly, KS -	6 6871,	Run: 8.73 S Feb 22			2 2024 MiTek Industries, Ir	
		ID:KrRDCIH6ftop?IA	AaK5juYz4SeM-F	RfC?PsB7	70Hq3NSgPqnL8w3uITXb	
	L	-1-10-8 1-10-0 3-10-0			10-4-0	
	I	1-10-8 1-10-0 2-0-0	I		6-6-0	I
						3x6 u
						5
		1-4-0				
		12				
LO LO		12 4 ☐ 4x5 =	4x10 ⊭			
3-9-5	1-9					9 9 9
	~					
	1-0-0 -1					
	-					6
		4×10				4x5 =
		4x10 u 3x4 =				4x0 =
		1-8-12			0-4-0	
Scale = 1:31.5		1-8-12		8	-7-4	1
Loading	(psf) Spacing	2-0-0 CSI	DEFL		in (loc) l/defl l	_/d PLATES GRIP
TCLL (roof) TCDL	25.0 Plate Grip DOL 10.0 Lumber DOL		0.67 Vert(LL) 0.67 Vert(CT)	-0. -0.		60 MT20 197/144 40
BCLL BCDL	0.0* Rep Stress Incr 10.0 Code	NO WB O IRC2018/TPI2014 Matrix-S).92 Horz(CT Wind(LL	,		n/a 40 Weight: 38 lb FT = 10%
BRACING TOP CHORD Structural w 6-0-0 oc pu BOT CHORD Rigid ceiling bracing. BAX REACTIONS (size) 6 Max Horiz 8 Max Horiz 8 Max Horiz 8 Max Grav 6 FORCES (lb) - Maxim ToP CHORD 1-2=0/45, 2: 4-5=-146/31 BOT CHORD BOT CHORD 7-8=-70/350, * NOTES 1) 1) Wind: ASCE 7-16; Vult= Vasd=91mph; TCDL=6. II; Exp C; Enclosed; MW cantilever left and right eright exposed; Lumber IC 2) Provide adequate draina 3) This truss has been des chord live load nonconc 4) * This truss has been des chord live load nonconc 4) * This truss has been des chord live load nonconc 5) All bearings are assume 6 6) 6) Refer to girder(s) for trux 7) Provide mechanical con 6	 2 *Except* 8-2:2x4 SPF No.2 2 *Except* 8-2:2x4 SPF No.2 2 rood sheathing directly applied rlins, except end verticals, an rlins (6-0-0 max.): 3-4. 3 directly applied or 10-0-0 oc = Mechanical, 8=0-3-8 = 164 (LC 5) = 94 (LC 8), 8=-179 (LC 4) = 440 (LC 1), 8=612 (LC 1) num Compression/Maximum -3=-503/3, 3-4=-399/8, , 5-6=-203/91, 2-8=-543/130 6-7=-221/866 4-7=-578/244, 4-6=-842/254 <i style="text-align: center;">right: center;</i> (a for a loop site grip DOL=1.60 (b pate grip DOL=1.61 age to prevent water ponding. agined for a 10.0 psf bottom urrent with any other live load: signed for a live load of 20.0p all areas where a rectangle wide will fit between the bottor mbers. d to be SPF No.2. ss to truss connections. inection (by others) of truss to f withstanding 94 lb uplift at joi 	or the orientation of the purlin alon bottom chord. 10) Hanger(s) or other connection dew provided sufficient to support cond down and 34 lb up at 1-10-0 on to down and 34 lb up at 1-10-0 on b design/selection of such connectio responsibility of others. 11) In the LOAD CASE(S) section, loa of the truss are noted as front (F) of LOAD CASE(S) Standard 1) Dead + Roof Live (balanced): Lu Plate Increase=1.15 Uniform Loads (lb/ft) Vert: 1-2=-70, 2-3=-70, 3-4=-7 Concentrated Loads (lb) Vert: 7=-3 (F) at. sf	tions R502.11 rd ANSI/TPI 1. es not depict th g the top and/or rice(s) shall be centrated load(op chord, and 6 ottom chord. T on device(s) is the ads applied to the or back (B).	1 and he size or 55 lb 4 lb he he he face =1.15,	7	STATE OF MISSOLUTE NATHANIEL FOX PE-2022042259 ESSIONAL ENGLISE

March 21,2024

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

							RELEASE FOR CONSTRUCTION
Job	Truss	Truss Type		Qty	Ply	Lot 146 WO	AS NOTED FOR PLAN REVIEW DEVELOPMENT SERVICES 164360230
B240051	C1	Hip Girder		1	2	Job Reference (optior	
Wheeler Lumber, Waver	rly, KS - 66871,					2 2024 MiTek Industries, In B70Hq3NSgPqnL8w3uIT≻	ic. Ved Mar 2009,09/11 1 / Pag: D /
	<u>-1-10-8</u> <u>6-7-4</u> 1-10-8 6-7-4	<u>12-10-0</u> 6-2-12		<u>19-2-0</u> 6-4-0	I	<u>25-4-12</u> 6-2-12	<u>32-0-0</u> 6-7-4 <u>33-10-8</u>
	10	4x5=	3x10=	3x6=	3x4=		4x5=
	4 ¹² o	± 3 17 18	19 4 20	21 5	22 6 <u>2</u> 3	3 24 25	7
3-2-7 3-0-13 3- 3-0-13 0-							8 9
	M18AHS 8x12 =	15 26 27 8x8=	28 14 29 2x4 II	13 6x6=	30 12 3 3x4=	1 32 33	11 8x8= M18AHS 8x12 =

19-2-0

6-4-0

25-6-8

6-4-8

32-0-0

6-5-8

12-10-0

6-4-8

Scale = 1:62.4

6-5-8

6-5-8

	(,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	1, [9 - , 1				-										
Loading	(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP			
TCLL (roof)	25.0	Plate Grip DOL	1.15		тс	0.98	Vert(LL)		12-14	>999	360	MT20	197/144			
TCDL	10.0	Lumber DOL	1.15		BC	0.92	Vert(CT)		12-14	>674	240	M18AHS	142/136			
BCLL	0.0*	Rep Stress Incr	NO		WB	0.60	Horz(CT)	0.09	10	n/a	n/a					
BCDL	10.0	Code	IRC201	8/TPI2014	Matrix-S		Wind(LL)		12-14	>999	240	Weight: 294 lb	o FT = 10%			
								-		()						
LUMBER TOP CHORD	2x4 SPE No 2 *Exce	ept* 5-7:2x4 SPF 210			considered equa ed as front (F) or			DAD				r connection dev t to support con	vice(s) shall be centrated load(s) 14	6		
	1.8E	5pt 0 7.2x1 011 210	01		ction. Ply to ply c								6 lb down and 85 lb			
BOT CHORD	2x6 SPF No.2			provided to c	listribute only loa	ds noted	as (F) or (B),		at	10-0-0, ⁻	146 lb	down and 85 lb	up at 12-0-0, 146 lb	0		
WEBS	2x4 SPF No.2				wise indicated.								δ lb down and 85 lb ι			
BRACING			3)		roof live loads ha	ave been	considered fo	or					up at 18-0-0, 146 lt			
TOP CHORD	Structural wood she	athing directly applie	dor	this design.		1 (0							146 lb down and 8			
		cept end verticals, ar	nd ⁴)		7-16; Vult=115m n; TCDL=6.0psf;			Cot					nd 85 lb up at 24-0-0 nd 133 lb up at 6-7-4			
	2-0-0 oc purlins (3-4				closed; MWFRS								at 10-0-0, 79 lb dow			
BOT CHORD	Rigid ceiling directly bracing.	applied or 10-0-0 oc			t and right expos							,	79 lb down at 16-0-			
REACTIONS	•	, 16=0-3-8		right expose	d; Lumber DOL=	1.60 plate	grip DOL=1.	.60					at 20-0-0, 79 lb do			
REACTIONS	Max Horiz 16=-26 (L		5)		quate drainage to								0-0, and 486 lb dow			
	Max Uplift 10=-650 (,	4) 6j		MT20 plates un			ed.					om chord. The desig	gn/		
	Max Grav 10=2844					een designed for a 10.0 psf bottor onconcurrent with any other live lo				selection of such connection device(s) is the responsibility of others.						
FORCES	(lb) - Maximum Corr		, 8		as been designe						•					
1011020	Tension	procolori/maximari	0		n chord in all are			оры	1) De				umber Increase=1.15	Б		
TOP CHORD	1-2=0/45, 2-3=-5945	5/1227, 3-4=-5513/11	87,		y 2-00-00 wide v			om	,	ate Incre		```		Ј,		
	4-6=-8439/1778, 6-7	,			y other members					hiform L						
	,	9=0/45, 2-16=-2713/6	62, <u>9</u>)) All bearings	are assumed to b	be SPF N	o.2 .				,	,	70, 7-8=-70, 8-9=-70).		
	8-10=-2719/663	45 4000/0405	10		hanical connection					10-16=-		, -	-,,	,		
BOT CHORD	15-16=-212/821, 14				capable of withs		650 lb uplift a	t joint	Co	oncentra	ted Lo	ads (lb)				
	12-14=-1698/8465, 10-11=-188/818	11-12=-1676/8439,			b uplift at joint 10							000	ADD			
WEBS	3-15=-172/1389, 4-1	15=-3297/694	1		designed in acco Residential Code			nd				8 OF	MISSO			
112BC	4-14=0/531, 4-12=-9	,			nd referenced sta			anu			9	BIE				
	6-11=-3263/687, 7-1		1		rlin representatio			size			B	1881	V V			
	2-15=-936/4784, 8-1	11=-935/4796			ation of the purlin			5120			B	S/ NATH	ANIEL C	N		
NOTES				bottom chore		J					- 1	FO	OX V			
1) 2-ply truss	s to be connected toge	ther with 10d									a/1	4		9		
	") nails as follows:										XI.	Ht-	1 Ha	n.		
	is connected as follows	s: 2x4 - 1 row at 0-9-0)								MA	Manie	ABER			
OC. Bottom ob	ords connected as foll	ower ave a rower									N.		2042259	1		
	l at 0-9-0 oc.	0WS: 2X6 - 2 10WS									N S	12 202	A A			
	ected as follows: 2x4 -	- 1 row at 0-9-0 oc									Y	NºSa-	JO'H			
												S'SION,	ALES			
												an	TOTA			
													h 21 2024			

Continued on page 2 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, rection and bracing of trusses and truss systems, see AMS/IPTI Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

MiTek

16023 Swingley Ridge Rd. Chesterfield, MO 63017 314.434.1200 / MiTek-US.com

						RELEASE FOR CONSTRUCTION		
Job	Truss	Truss Type	Qty	Ply	Lot 146 WO	AS NOTED FOR PLAN REVIEW		
B240051	C1	Hip Girder	1	2	Job Reference (optional	DEVELOPMENT SERVICES 164360230 LEE'S SUMMIT, MISSOURI		
Wheeler Lumber, Waverly, KS -	Wheeler Lumber, Waverly, KS - 66871, Run: 8.73 S Feb 22 2024 Print: 8.730 S Feb 22 2024 MiTek Industries, Inc. ID:GEZ_dRINBU2XEbKYhI7Bzzz4SeK-RfC?PsB70Hq3NSgPqnL8w3uITXb							

 $\begin{array}{l} \mbox{Vert: 13=-52 (F), 15=-486 (F), 11=-486 (F), 17=-123} \\ \mbox{(F), 18=-123 (F), 19=-123 (F), 20=-123 (F), 21=-123} \\ \mbox{(F), 22=-123 (F), 23=-123 (F), 24=-123 (F), 25=-123} \\ \mbox{(F), 26=-52 (F), 27=-52 (F), 28=-52 (F), 29=-52 (F), 30=-52 (F), 31=-52 (F), 32=-52 (F), 33=-52 (F) \\ \end{array}$

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

						RELEASE FOR CONSTRUCTION			
Job	Truss	Truss Type	Qty	Plv	Lot 146 WO	AS NOTED FOR PLAN REVIEW			
300	11055	Thuss Type	QIY	гіу	LUI 146 WO	DEVELOPMENT SERVICES I64360231			
B240051	C2	Нір	1	1	Job Reference (optional				
Wheeler Lumber, Waverly, KS - (/heeler Lumber, Waverly, KS - 66871, Run: 8.73 S Feb 22 2024 Print: 8.730 S Feb 22 2024 MiTek Industries, Inc. \ ID:8?oUSpLtEjYzjDdKwaC78pz4SeG-RfC?PsB70Hq3NSgPqnL8w3uITXbGH								

Scale = 1:62.5

Loading	(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15		TC	0.51	Vert(LL)	-0.25	13	>999	360	MT20	197/144
TCDL	10.0	Lumber DOL	1.15		BC	0.95	Vert(CT)	-0.46	13-14	>825	240		
BCLL	0.0*	Rep Stress Incr	YES		WB	0.66	Horz(CT)	0.14	10	n/a	n/a		
BCDL	10.0	Code	IRC2018	/TPI2014	Matrix-S		Wind(LL)	0.19	13	>999	240	Weight: 115 lb	FT = 10%
LUMBER			4)	This truss ha	s been designed	for a 10.0) psf bottom						
TOP CHORD	2x4 SPF No.2 *Exce	ept* 4-6:2x4 SPF 210)0F	chord live loa	ad nonconcurrent	with any	other live loa	ds.					
	1.8E		5)		nas been designe			Opsf					
BOT CHORD					n chord in all are								
WEBS	2x3 SPF No.2 *Exce	ept* 15-2,10-8:2x4 S	PF		y 2-00-00 wide v		veen the botte	om					
	No.2				y other members		- 0						
BRACING					are assumed to b hanical connectio			~					
TOP CHORD	Structural wood she		ju 01 ,		capable of withs								
		except end verticals,	and		b uplift at joint 10		sor in uplin at	John					
BOT CHORD	2-0-0 oc purlins (4-2 Rigid ceiling directly				designed in acco		ith the 2018						
BOT CHORD	bracing.	applied of 2-2-0 oc	-)		Residential Code			ind					
WEBS	1 Row at midpt	5-14, 5-11, 3-15, 7-	10	R802.10.2 a	nd referenced sta	Indard AN	ISI/TPI 1.						
REACTIONS		, 15=0-3-8	9)		rlin representatio			size					
REAGNONO	Max Horiz 15=-35 (L	,			ation of the purlin	along the	e top and/or						
	Max Uplift 10=-337	,	4)	bottom chord									
	Max Grav 10=1568			AD CASE(S)	Standard								
FORCES	(lb) - Maximum Con		,										
	Tension												
TOP CHORD	1-2=0/45, 2-3=-268/	14, 3-4=-2726/472,											
	4-5=-2541/474, 5-6=	=-2541/474,											
	6-7=-2726/472, 7-8=	, , ,											
	2-15=-356/132, 8-10												
BOT CHORD	,	,											
WEBS	11-13=-517/3366, 1		20									Som	1000
WEBS	5-13=0/274, 5-11=-	0/450, 5-14=-1042/23										BR OF M	AIS S
	7-11=-9/499, 3-15=-		0,								4	TE OF M	N.O.
	7-10=-2362/521	2002/021,									B	S NATHA	NIFI XP.V
NOTES											B	FO	
	ed roof live loads have	been considered for	r								7 1		" A print
this design											an	UTT.	1 M A
	 CE 7-16; Vult=115mph	(3-second gust)									M /	All and	11 ton 10
	nph; TCDL=6.0psf; BC		Cat.								NS	y ukun	BER MASS
	Enclosed; MWFRS (er										N	O PE-2022	042259 / 58
	left and right exposed	,									V	12	1×A
	sed; Lumber DOL=1.6										2	0.500	NO'B
3) Provide a	dequate drainage to pr	revent water ponding										C'SSIONA	LEY
												an	DEC.
												March	21 2024

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent toulsable personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

March 21,2024

$ \begin{array}{c c c c c c c c c c c c c c c c c c c $									RELEASE FOR C	CONSTRUCTION
B240051 C3 Hip 1 1 Job Reference (optional LEE'S SUMMIT, MISSOUR Wheeler Lumber, Waverly, KS - 66871. Rur: 8.73 S Feb 22 2024 Mints Industries, Inc. Ved Mar Obc 19/1 1 / 2024 Inc. 8/33 S Feb 22 2024 Mints Industries, Inc. Ved Mar Obc 19/1 1 / 2024 Inc. 8/33 S Feb 22 2024 Mints Industries, Inc. Ved Mar Obc 19/1 1 / 2024 In: 50 wFtUN7mkogyWni2?EbDEz4SeE-Ric?PsB70Hq3NSgPqnLew3uTxb ExtWrCDm/42Uert Inc. 8/33 S Feb 22 2024 Mints Industries, Inc. Ved Mar Obc 19/1 1 / 2024 In: 50 wFtUN7mkogyWni2?EbDEz4SeE-Ric?PsB70Hq3NSgPqnLew3uTxb ExtWrCDm/42Uert Inc. 8/3 S Feb 22 2024 Mints Industries, Inc. Ved Mar Obc 19/1 1 / 2024 In: 50 wFtUN7mkogyWni2?EbDEz4SeE-Ric?PsB70Hq3NSgPqnLew3uTxb ExtWrCDm/42Uert Inc. 8/3 S Feb 22 2024 Mints Industries, Inc. Ved Mar Obc 19/1 1 / 2024 In: 50 wFtUN7mkogyWni2?EbDEz4SeE-Ric?PsB70Hq3NSgPqnLew3uTxb ExtWrCDm/42Uert Inc. 8/3 S Feb 22 2024 Mints Industries, Inc. Ved Mar Obc 19/1 1 / 2024 In: 50 wFtUN7mkogyWni2?EbDEz4SeE-Ric?PsB70Hq3NSgPqnLew3uTxb ExtWrCDm/42Uert Inc. 8/3 S Feb 22 2024 Mints Industries, Inc. Ved Mar Obc 19/1 1 / 2024 In: 50 wFtUN7mkogyWni2?EbDEz4SeE-Ric?PsB70Hq3NSgPqnLew3uTxb ExtWrCDm/42Uert Inc. 8/3 S Feb 22 2024 Mints Industries, Inc. Ved Mar Obc 19/1 1 / 2024 In: 50 wFtUN7mkogyWni2?EbDEz4SeE-Ric?PsB70Hq3NSgPqnLew3uTxb ExtWrCDm/42Uert Inc. 8/3 S Feb 22 20/1 1 / 2024 Inc. 8/3 S Feb 22 20/1 1 / 2024 In: 50 wFtUN7mkogyWni2?EbDEz4SeE Ric?PsB70Hq3NSgPqnLew3uTxb ExtWrCDm/42Uert Inc. 8/3 S /	Job	Truss	Truss Ty	ре	Q	ty P	Ply	Lot 146 WO		
Wheeler Lumber, Waverly, KS - 66871. Run: 8.73 S Feb 22 2024 Pint: 8.730 S Feb 22 2024 MiTek Industries, Inc. Yed Mar 2021/21, 1/2024 ID:SOWFUN7mKogyWni27EbDEz4SeE-RIC?PsB70Hq3NSgPqnL&w3uTXb KWrCDbH.44Jer 10:10-8 $5-4-14$ $10-7-4$ $16-0-0$ $21-4-12$ $26-7-2$ $32-0-0$ $33-10-81-10-8$ $4x8=$ $3x10=10x12=$ $4x8=$ $3x10=4x8=$ $3x10=4x8=$ $3x10=4x8=$ $3x10=4x8=$ $3x10=4x8=$ $3x10=$	B240051	СЗ	Hip		1	1		Job Reference (optional		360232 T, MISSOURI
$\begin{array}{c} 1.10.8 & 5.4.14 & 5.2.6 & 5.4.12 & 5.4.12 & 5.2.6 & 5.4.12 & 1.10.8 \\ \hline 1.10.8 & 5.4.14 & 5.2.6 & 5.4.12 & 5.4.12 & 5.2.6 & 5.4.14 & 1.10.8 \\ \hline 1.10.8 & 5.4.14 & 5.2.6 & 5.4.12 & 5.4.12 & 5.2.6 & 5.4.14 & 1.10.8 \\ \hline 1.10x12 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ \hline 1.10x12 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ \hline 1.10x12 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ \hline 1.10x12 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ \hline 1.10x12 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ \hline 1.10x12 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & $	Wheeler Lumber, Wave	erly, KS - 66871,						2024 MiTek Industries, Inc. \	/ed Mar 2009.09/11	/2024
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$										
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$										
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		-1-10-8 5-4-1	4 1)-7-4	16-0-0	. 21	1-4-12	26-7-2	32-0-0	J33-10-8
$\begin{array}{c} 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 $		1-10-8 5-4-1								
10-6-0 16-0-0 21-6-0 32-0-0	4-6-7 4-4-13 4-6 4-4-13 0-1	2	3x10 =	φ 4 15 3x10=	N N P	5 R		6 2 11 8=	3x10z 7	9 10 9
			(0.0.0					3x10=		

Scale = 1:62.5

Plate Offsets (X, Y): [2:Edge,0-2-12]], [10:Edge,0-2-12]											
Loading TCLL (roof) TCDL BCLL BCDL	(psf) 25.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018/T	TPI2014	CSI TC BC WB Matrix-S	0.59 0.68 0.81	DEFL Vert(LL) Vert(CT) Horz(CT) Wind(LL)	-0.54 0.11	(loc) 15-16 15-16 10 13-15	l/defl >999 >704 n/a >999	L/d 360 240 n/a 240	PLATES MT20 Weight: 119 lb	GRIP 197/144 FT = 10%
	2x4 SPF 2100F 1.8E SPF No.2 2x3 SPF No.2 *Exce No.2 Structural wood shea 2-10-9 oc purlins, e: 2-0-0 oc purlins (3-4 Rigid ceiling directly bracing. 1 Row at midpt	pt* 16-2,10-8:2x4 SF athing directly applied xcept end verticals, a -14 max.): 4-6. applied or 9-5-1 oc 3-16, 7-10 16=0-3-8 C 12) LC 5), 16=-328 (LC 4	5)	chord live loa * This truss h on the bottom 3-06-00 tall b chord and an All bearings a Provide mech bearing plate 16 and 328 lt This truss is of International R802.10.2 ar Graphical pui		vith any for a liv where l fit betw SPF 21 (by oth anding 3 ance w sections dard AN does no	other live loa e load of 20.0 a rectangle veen the bottu 100F 1.8E . ers) of truss t i28 lb uplift at ith the 2018 5 R502.11.1 a USI/TPI 1. bt depict the s	Dpsf om ; joint ind					
FORCES TOP CHORD BOT CHORD WEBS	(lb) - Maximum Com Tension 1-2=0/45, 2-3=-403// 4-5=-2413/436, 5-6= 6-7=-2603/433, 7-8= 2-16=-447/159, 8-10 15-16=-438/2427, 13 11-13=-382/2759, 11 3-15=-47/243, 4-15= 5-13=0/97, 5-11=-57 7-11=-47/243, 3-16=	pression/Maximum 20, 3-4=-2603/433, 403/20, 8-9=0/45, =-447/159 3-15=-382/2759, 0-11=-401/2427 -7/451, 5-15=-578/11 '8/171, 6-11=-7/451,									H.	S NATHA	
this design 2) Wind: ASC Vasd=91m II; Exp C; I cantilever right expos	7-10=-2350/521 ed roof live loads have CE 7-16; Vult=115mph nph; TCDL=6.0psf; BC Enclosed; MWFRS (er left and right exposed sed; Lumber DOL=1.6d dequate drainage to pro	(3-second gust) DL=6.0psf; h=25ft; C ivelope) exterior zone ; end vertical left and 0 plate grip DOL=1.6	e; 0							5		PE-2022	SER 042259

- II; Exp C; Enclosed; MWFRS (envelope) external cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Provide adequate drainage to prevent water ponding.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling or individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

										RELEASE FOR	CONSTRUCTION
Job	Truss		Truss Ty	ре		Qty	Ply L	_ot 146 WO			R PLAN REVIEW
B240051	C4		Hip			1	1	lob Reference (option	ali	16 LEE'S SUMN	NT SERVICES 4360233 IIT, MISSOURI
Wheeler Lumber, Way	verly, KS - 66871,							2024 MiTek Industries, Inc 370Hq3NSgPqnL8w3uIT>			/2024
	<u>-1-10-8</u> 1-10-8	5-11-0		12-7-4		19-4-12		26-1-0		32-0-0	33-10-8
	1-10-8	5-11-0		6-8-4	6x8=	6-9-8	4x8=	6-8-4	·	5-11-0	1-10-8
+2-1 1-9			10	ရာ			5				
			4F	م +	4						
			5x12 ≠			~			5x12 ≈		
13			3						6		
5-2-7 5-0-13 5-0-13	4x5 II			~		Æ					4x5 I
	2										7
	1	/			\leq	•		/			8
⊥ ⊥ / ⊥	15		14		13	12	11		10		Ř
	4x8=		2x4 I		3x4=	3x6=	3x10=		2x4 u		4x8=
	L	5-11-0		12-6-0		19-6-0		26-1-0		32-0-0	
	I	5-11-0	1	6-7-0	1	7-0-0	,	6-7-0	'	5-11-0	T

Scale = 1:62.6

Plate Offsets ((X, Y): [2:0-2-8,0-1-12	2], [7:0-2-8,0-1-12]										
Loading TCLL (roof) TCDL 3CLL 3CDL	(psf) 25.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018/TPI2014	CSI TC BC WB Matrix-S	0.93 0.75 0.96	DEFL Vert(LL) Vert(CT) Horz(CT) Wind(LL)	in -0.18 -0.36 0.13 0.14	(loc) 13-14 11-13 9 13-14	l/defl >999 >999 n/a >999	L/d 360 240 n/a 240	PLATES MT20 Weight: 119 lb	GRIP 197/144 FT = 10%
FORCES	1.8E 2x4 SPF No.2 *Exce No.2 *Exce No.2 Structural wood she except end verticals (4-4-1 max.): 4-5. Rigid ceiling directly bracing. 1 Row at midpt (size) 9=0-5-8, Max Horiz 15=-59 (L Max Uplift 9=-318 (L Max Grav 9=1568 (M (lb) - Maximum Com Tension	4-11, 3-15, 6-9 15=0-3-8 LC 9) LC 5), 15=-318 (LC 4 LC 1), 15=1568 (LC - npression/Maximum	00F chord live 5) * This trus on the bot F 3-06-00 ta chord and 6) All bearing pl 15 and 31 8) This truss Internation R802.10.2 9) Graphical or the orie bottom ch		nt with any ned for a liv eas where will fit betw rs. be SPF No tion (by oth nstanding 3 b cordance w de sections tandard AN tion does no	other live load e load of 20. a rectangle veen the bott o.2. ers) of truss 818 lb uplift a ith the 2018 \$ R502.11.1 a VSI/TPI 1. ot depict the	Opsf tom to t joint and					
TOP CHORD BOT CHORD	7-8=0/45, 2-15=-45	=-2446/404, 6-7=-388 7/186, 7-9=-457/185 3-14=-386/2547,	8/87,								OF I	
WEBS	3-14=0/240, 3-13=-3 4-11=-225/226, 5-1	369/175, 4-13=0/357 1=0/357, 6-11=-368/´ 2472/378, 6-9=-2471	176,							A	STATE OF I	NIEL R
this design 2) Wind: ASC Vasd=91n II; Exp C; cantilever right expos	ed roof live loads have	been considered for (3-second gust) CDL=6.0psf; h=25ff; C nvelope) exterior zon ; end vertical left an 0 plate grip DOL=1.6	r Dat. d 50								PE-2022	120

16023 Swingley Ridge Rd. Chesterfield, MO 63017 314.434.1200 / MiTek-US.com

Tek[®]

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling or individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

						RELEASE FOR CONSTRUCTION
Job	Truss	Truss Type	Qtv	Plv	Lot 146 WO	AS NOTED FOR PLAN REVIEW
000	11033	Truss Type	Quy	1 19		DEVELOPMENT SERVICES 164360234
B240051	C5	Roof Special Girder	1	1	Job Reference (optional	
Wheeler Lumber, Waverly, KS -	2 2024 MiTek Industries, Inc. \ sB70Hq3NSgPqnL8w3uITXb0					

35-10-8 34-0-0 |<u>-1-10-8</u>| |1-10-8 7-5-0 14-7-4 17-4-12 21-8-4 24-8-12 28-8-12 32-8-12 1-3-4 1-10-8 7-5-0 7-2-4 2-9-8 4-3-8 3-0-8 4-0-0 4-0-0 6x8= 6x12= 5 Ģ 4 4¹² 3x4 II 5-8-13 6 3x4 = 8x8= 6x12= 6x6= 3 9 7 8 23 5-10-7 10 犁 Þ -1 3-5-1 3-5-1 4x10 = ĥ 12 ₿ 2 24 13 15 14 2-0-0 0-0-6x6= 6x12= 22 Þ 8x8 II 21 20 19 18 3x4 II 3x4 II 4x8= 3x4= 3x6= 10x16= 5x12= 34-0-0 7-5-0 14-6-0 17-6-0 21-10-0 24-10-0 28-8-12 32-7-8 7-5-0 7-1-0 4-4-0 3-0-0 3-10-12 3-10-12 1-4-8 3-0-0

Scale = 1:66.3

Plate Offsets (X, Y): [5:0-4-8,0-1-0]	, [15:0-2-8,0-3-0], [16	6:0-8-0,0-5	5-4], [21:0-2-8,0)-2-0]							-	
Loading TCLL (roof) TCDL BCLL	(psf) 25.0 10.0 0.0*	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr	2-0-0 1.15 1.15 NO		CSI TC BC WB	0.61 0.84 1.00	DEFL Vert(LL) Vert(CT) Horz(CT)		(loc) 15-16 15-16 12	l/defl >653 >370 n/a	L/d 360 240 n/a	PLATES MT20	GRIP 197/144
BCDL	10.0	Code	IRC201	8/TPI2014	Matrix-S		Wind(LL)	0.43	15-16	>936	240	Weight: 163 lb	FT = 10%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD	No.2, 22-2:2x6 SPF Structural wood she 2-9-5 oc purlins, ex 2-0-0 oc purlins (3-3	00F 2.0E, 9-11:2x6 3 apt* 16-12:2x6 SP 24 apt* 16-5,12-10:2x4 5 No.2 eathing directly applie cept end verticals, ar 3-0 max.): 4-5, 7-9. v applied or 10-0-0 oc 20-21	W PF SPF 00F SPF N 1) ad or nd 2)	/EBS OTES) Unbalanced this design.) Wind: ASCE Vasd=91mpl II; Exp C; and cantilever lef right expose	3-21=-114/136 4-20=-23/370, 5-18=-1036/21 5-16=-628/408 7-15=-956/199 2-21=-287/230 8-15=-445/279 roof live loads	4-18=-217/2 13, 16-18=-24 31, 7-16=-304 90, 8-14=0/146 909, 10-13=-24 22, 8-13=-37 14, have been of 5mph (3-sec sf; BCDL=6.0 RS (envelope cosed; end v L=1.60 plate	210, 47, 56/2345, 40/473, 5, 9-13=-84/4: 38/2010, 16/561 considered fo ond gust) psf; h=25ft; (e) exterior zor retrical left an grip DOL=1.	35, r Cat. he; d 60	10) Har pro dow lb u 32- 29- lb c dess res 11) In t of t LOAD (1) Do Pl	nger(s) c vided su vn and 1 po at 30- 8-12 on 0-0, and lown and ign/sele ponsibili he LOAL he truss CASE(S ead + RC ate Incre- niform Lo	or othe fficient 27 lb u 8-0, al top cho 16 lb 1 177 ll ction o ty of ot 0 CAS are no 0 Sta oof Live ease=1 boads (l	r connection devii t to support conce up at 29-0-0, and nd 71 lb down an ord, and 16 lb dov down and 23 lb u b up at 32-8-0 or f such connectior thers. E(S) section, load ted as front (F) o ndard e (balanced): Lun .15 b/ft)	ce(s) shall be entrated load(s) 71 71 lb down and 12 d 127 lb up at wn and 23 lb up at p at 30-8-0, and 1 h bottom chord. Th h device(s) is the ds applied to the fa
	1 Row at midpt	8-13 , 22=0-3-8 LC 8) (LC 5), 22=-313 (LC -	4) 5) 4)	 This truss has chord live los * This truss has on the bottor 3-06-00 tall b 	as been desigr ad nonconcurr nas been desig n chord in all a by 2-00-00 wid	ned for a 10.0 rent with any gned for a liv areas where le will fit betw) psf bottom other live load e load of 20.0 a rectangle	ds.)psf	C	9-10=-7 oncentra	0, 10- ted Lo	11=-70, 17-22=-2	0, 12-16=-20
FORCES	(lb) - Maximum Com Tension	npression/Maximum	6)) Bearings are	ny other memb assumed to b		SPF No.2 , Jo	int					
TOP CHORD	1-2=0/47, 2-3=-2962 4-5=-2261/391, 5-6= 6-7=-5864/857, 7-8=	=-8373/1226,)=-2248/356, 10-11=	(bearing plate 22 and 354 I) This truss is	hanical conne capable of w b uplift at joint designed in a	ithstanding 3 12. ccordance wi	13 lb uplift at	joint			H	STATE OF N STATE NATHA	MISSOLUT
BOT CHORD	21-22=-185/434, 20 18-20=-264/2242, 1 16-17=0/87, 6-16=-2 15-16=-1196/8444, 13-14=-839/5776, 1	-21=-424/2730, 7-18=-14/143, 237/140, 14-15=-839/5776,	9)	R802.10.2 a Graphical pu	Residential C nd referenced Irlin representa ation of the pu d.	standard AN ation does no	ISI/TPI 1. ot depict the s					PE-2022	042259

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

March 21,2024

								RELEASE FOR CONSTRUCTION
Job	Truss	Truss Type		Qty	Ply	Lot 146 WO		AS NOTED FOR PLAN REVIEW DEVELOPMENT SERVICES 164360235
B240051	C6	Roof Special		1	1	Job Referen	ce (optional	I64360235 LEE'S SUMMIT, MISSOURI
Wheeler Lumber, Wa	iverly, KS - 66871,		Run: 8.73 S Feb 22 ID:CL9JTJ7yjt9fxlgg					
						22.0.40		05 40 0
		8-6-0 8-6-0	16-0-0 7-6-0		-8-4 8-4	22-8-12	<u>30-8-12</u> 8-0-0	<u>34-0-0</u> 35-10-8 3-3-4 1-10-8
	1-10-8	8-0-0		ס- x12=	8-4	1-0-8	8-0-0	3-3-4 1-10-8
		10	5					
2		4 ¹² 3x6 =				6x8=		
6-4-0 2-2-15		3x4 ≠				3x4 II 6 _		5x8=
5-0		3 4			\sim	7	× ×	8 4x8≈
6-4-0					\square		X	9
	5x12 =							10
6 4-1-1	2							
	1					2-0-0		M18AHS 8x12 = 3x4 II
\top \uparrow $\dot{\neg}$	18					<u>−</u> 14		
	⊠ 3x6=	17	16 1			2x4 II		
		4x8=	4x8= 5x	:12=		M18AHS 10	x16 =	
	L	8-6-0	16-0-0	21-	10-0	I	30-10-0	34-0-0
	1	8-6-0	7-6-0	5	10-0	I	9-0-0	3-2-0

Scale = 1:65.9

Plate Offsets (2	X, Y): [2:0-4-15,0-2-8], [5:0-7-4,Edge], [8:0)-5-0,0-2-8], [9:0-3-0,0-2	-0], [17:0-2-8,0-2-0	0]							
Loading	(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15		TC	0.98	Vert(LL)	-0.54	13	>743	360	MT20	197/144
TCDL	10.0	Lumber DOL	1.15		BC	0.84	Vert(CT)	-0.98	12-13	>411	240	M18AHS	142/136
BCLL	0.0*	Rep Stress Incr	YES		WB	0.97	Horz(CT)	0.21	11	n/a	n/a		
BCDL	10.0	Code	IRC2018	3/TPI2014	Matrix-S		Wind(LL)	0.39	13	>999	240	Weight: 137 lb	FT = 10%
BCDL LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD WEBS REACTIONS FORCES TOP CHORD BOT CHORD BOT CHORD WEBS	10.0 2x4 SPF No.2 *Exce 2100F 1.8E 2x4 SPF No.2 *Exce No.2, 12-7:2x4 SPF SPF No.2 Structural wood sheat except end verticals, (2-2-0 max.): 7-8. Rigid ceiling directly bracing. 1 Row at midpt	Code pt* 5-7,7-8:2x4 SPF pt* 13-11:2x4 SPF 2 pt* 13-5,11-9:2x4 SPF 2100F 1.8E, 18-2:2x athing directly applies, and 2-0-0 oc purlins applied or 6-0-0 oc 3-15, 7-12 18=0-3-8. C 8) LC 5), 18=-297 (LC 4 (LC 1), 18=1661 (LC pression/Maximum //378, 3-5=-2323//36 -5773/784, -2617//34, 9-10=0/4 1-7=-380/2749, 4=0/95, 6-13=-190/1 1-12=-20/49 -784/229, 5=-178/2100, 3=-1522/321, 2=0/465, 2=-327/2533	IRC2018 2) 100F 2F 3) 6 4) 5) 6, 6) 5) 6, 7) 8) 8) 1) 9) 1, 10 5, LC	Wind: ASCE Vasd=91mpl II; Exp C; En cantilever lef right expose Provide adee All plates are This truss ha chord live loa * This truss ha chord live loa * This truss ha chord and ar Bearings are 11 SPF 2100 Provide mec bearing plate 18 and 318 I This truss is International R802.10.2 a) Graphical put	Matrix-S 7-16; Vult=115mp r; TCDL=6.0psf; B closed; MWFRS ((it and right expose d; Lumber DOL=1. quate drainage to p a MT20 plates unle is been designed ad nonconcurrent has been designed m chord in all area by 2-00-00 wide win by 2-00-00 wide win	oh (3-sec GCDL=6.0 envelope d; end v. 60 plate prevent v ses other for a 10.0 with any f for a 10.0 with any f f f f f f f f f f f f f f f f f f f	Wind(LL) cond gust) Dpsf; h=25ft; () exterior zor vertical left an grip DOL=1. water ponding wise indicate D psf bottom other live loa e load of 20.0 a rectangle veen the bottot SPF No.2, Jo ers) of truss t (97 lb uplift at ith the 2018 a R502,11.1 a ISI/TPI 1. bt depict the s	0.39 Cat. ne; nd 60 g. dd. dds. Opsf om bint to to to to to to to to to to to to to			240	STATE OF M STATE OF M STATE	MISSOUR NIEL SEE
this design												SSIONA	L ENGLE
												March	21,2024

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

								RELEASE FOR	RCONSTRUCTION
Job	Truss	T	russ Type		Qty P	'ly Lo	ot 146 WO		DR PLAN REVIEW IENT SERVICES 64360236
B240051	C7	R	oof Special		1 1	Jo	ob Reference (optional)		64360236 MIT, MISSOURI
Wheeler Lumber, Way	verly, KS - 66871,						024 MiTek Industries, Inc. \ 3NSgPqnL8w3uITXbGKWr		1/2024
	- <u>1-10-8</u> 1-10-8	<u>8-6-0</u> 8-6-0		6-0-0 7-6-0	20-8-12 4-8-12	21-8-4 0-11-8		<u>34-0-0</u> 5-3-4	35-10-8 1-10-8
6-4-0 	5x12 = 2 1 18 3x6 =		4^{12} 3x6 = 3x4 = 3 4 17 4x8 =	4x8= 5 16 15 4x8= 6x18.	*	3x4 6x6= 6 7		5x8= 8 12 6x6=	5x8≈ 9 10 11 3x4=
	ŀ	8-6-0 8-6-0		6-0-0 7-6-0	<u>21-10-</u> 5-10-0		<u>28-10-0</u> 7-0-0	<u>34-0-0</u> 5-2-0	

Scale = 1:65.9

Plate Offsets	(X, Y): [2:0-4-15,0-2-8], [8:0-4-0,0-2-3], [9:0)-2-14,0-2	-8], [11:Edge,0)-1-8], [12:0-2-8,0	0-3-0], [13	:0-4-0,Edge]	, [17:0-2-	8,0-2-0]				
Loading	(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15		тс	0.98	Vert(LL)	-0.36	13	>999	360	MT20	197/144
TCDL	10.0	Lumber DOL	1.15		BC	0.83	Vert(CT)	-0.66	12-13	>610	240		
BCLL	0.0*	Rep Stress Incr	YES		WB	0.85	Horz(CT)	0.14	11	n/a	n/a		
BCDL	10.0	Code	IRC201	8/TPI2014	Matrix-S		Wind(LL)	0.26	13	>999	240	Weight: 137 lb	FT = 10%
LUMBER			2)	Wind: ASCE	7-16; Vult=115n	nph (3-sec	cond gust)						
TOP CHORD	2x4 SPF No.2 *Exce	pt* 6-8:2x4 SPF 240	0F .		h; TCDL=6.0psf;								
	2.0E				closed; MWFRS								
BOT CHORD					ft and right expos								
WEBS	2x3 SPF No.2 *Exce				d; Lumber DOL=								
	No.2, 15-13:2x4 SPF	F 2100F 1.8E, 18-2:2			quate drainage to			g.					
	SPF No.2		4)		as been designed ad nonconcurren			ode					
BRACING	o		a 5)		has been designe								
TOP CHORD	Structural wood she except end verticals		u, -/		n chord in all are			opoi					
	(2-2-0 max.): 6-8.	, and 2-0-0 oc putilits	>		by 2-00-00 wide			om					
BOT CHORD		applied or 9-6-0 oc		chord and a	ny other member	s.							
201 0110112	bracing.		6)		are assumed to I								
WEBS		3-15, 6-15	7)		hanical connecti								
REACTIONS	(size) 11=0-3-8,	18=0-3-8			e capable of with		294 lb uplift a	t joint					
	Max Horiz 18=125 (L	_C 8)	8)		b uplift at joint 11 designed in acco		ith the 2019						
	Max Uplift 11=-318 (LC 5), 18=-294 (LC 4	4) 0)		Residential Cod			and					
	Max Grav 11=1654	(LC 1), 18=1661 (LC	1)		nd referenced sta								
FORCES	(lb) - Maximum Com	pression/Maximum	9)	Graphical pu	Irlin representatio	on does no	ot depict the	size					
	Tension	1272 2 E 2200/226			ation of the purlin	n along the	e top and/or						
TOP CHORD	1-2=0/47, 2-3=-2995 5-6=-2281/332, 6-7=			bottom chore									
		4092/079, 2879/401, 9-10=0/4	5 LC	DAD CASE(S)	Standard								
	2-18=-1574/338, 9-1		0,									and	TOP
BOT CHORD	,											OF N	Also
	14-15=-19/107, 13-1	4=0/90, 7-13=-392/1	89,								1	THE OF N	~0, W
	12-13=-315/2679, 1										A	NATUA	
WEBS	,	-798/230, 5-15=-80/	983,								A	S/ MAILA	
	6-15=-2905/455, 13-										kh.	FO	
	6-13=-217/1339, 8-1 8-12=-234/132, 2-17										87		1-1-1-9
	9-12=-309/2477	-192/2203,									N/	In the and	1 1 in A
NOTES	5 . <u>L</u> = 55572 111										23	A ANNI	BER
	ed roof live loads have	been considered for									N	O PE-2022	042259
this desig											V	1st	18A
												ESSIONA	NO'A
												ONA	LEY
												A NA	DEC.
												March	21,2024

March 21,2024

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

									ONSTRUCTION
Job	Truss	Truss Type		Qty	Ply	Lot 146 WO		NOTED FOR P EVELOPMENT 1643	PLAN REVIEW
B240051	C8	Roof Special		1	1	Job Reference (optional		I643 EE'S SUMMIT,	
Wheeler Lumber, Waverl	y, KS - 66871,					2 2024 MiTek Industries, Inc. 1 Hq3NSgPqnL8w3uITXbGKW			2024
		<u>6-0 </u>	<u> </u>		- <u>6-12</u> 6-12		9-6-12 3-10-6	<u>34-0-0</u> 4-5-4	35-10-8
				6x12=					
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	5x12 = 2 1 18 3x6=	4 ¹² 3x 3x4= 3 4 17 4x8=	6 = 1 16 4x8=	5 15 5x12=		6x8 x 3x6= 6 7 6 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	6x6 8 ₩ 12 6x8		4x8≈ 9 10 11 3x4=
	8-	6-0	16-0-0	21	-10-0	29-8-0		34-0-0]

7-6-0

5-10-0

7-10-0

4-4-0

Scale = 1:67.1

8-6-0

Plate Offsets ((X, Y): [2:0-4-15,0-2-8], [5:0-7-4,Edge], [8:0 ∎	0-3-0,0-2-	8], [9:0-3-0,0-2	-∪j, [11:Edge,0-1	i-8], [13:0-	4-8,Edge], [1	17:0-2-8,0	J-2-0]				
_oading FCLL (roof) FCDL 3CLL	(psf) 25.0 10.0 0.0*	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr	2-0-0 1.15 1.15 YES		CSI TC BC WB	0.98 0.78 0.96	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.46 -0.83 0.17	11	l/defl >882 >487 n/a	L/d 360 240 n/a	PLATES MT20	GRIP 197/144
BCDL	10.0	Code	IRC201	8/TPI2014	Matrix-S		Wind(LL)	0.33	6-13	>999	240	Weight: 134 lb	FT = 10%
LUMBER FOP CHORD BOT CHORD WEBS BRACING FOP CHORD	1.8E 2x3 SPF No.2 *Exce No.2, 18-2:2x6 SPF Structural wood she except end verticals (2-2-0 max.): 6-8.	pt* 13-11:2x4 SPF 2 pt* 13-5,11-9:2x4 SF No.2 athing directly applie , and 2-0-0 oc purlins	100F PF 3) 4) d, 5)	Vasd=91mp II; Exp C; Er cantilever lea right expose Provide ade This truss h chord live lo * This truss on the botto 3-06-00 tall	i 7-16; Vult=115r h; TCDL=6.0psf; loclosed; MWFRS ft and right exposed; d; Lumber DOL= quate drainage t as been designer ad nonconcurrer has been design m chord in all are by 2-00-00 wide ny other member	BCDL=6. (envelope sed; end v =1.60 plate o prevent v d for a 10.0 nt with any ed for a liv eas where will fit betw	Dpsf; h=25ft; e) exterior zo rertical left ar grip DOL=1 water pondin 0 psf bottom other live loa e load of 20. a rectangle	one; nd .60 ng. ads. .0psf					
	Rigid ceiling directly bracing. 1 Row at midpt (size) 11=0-3-8, Max Horiz 18=125 (L Max Uplift 11=-318 (Max Grav 11=1654	3-15, 7-12 18=0-3-8 .C 8) LC 5), 18=-295 (LC 4	6) 7) 4) 8)	Bearings and 11 SPF 210 Provide med bearing plat 18 and 318 This truss is	a assumed to be: DF 1.8E . chanical connection capable of with b uplift at joint 1 designed in accord	: Joint 18 S ion (by oth istanding 2 1. ordance w	ers) of truss 95 lb uplift a ith the 2018	to at joint					
FORCES	(lb) - Maximum Com Tension 1-2=0/47, 2-3=-2993 5-6=-5652/837, 6-7= 7-8=-2524/364, 8-9=	pression/Maximum)/375, 3-5=-2323/336 5316/719,	9) ,	R802.10.2 a Graphical p		andard AN on does no	ISI/TPI 1. ot depict the						~~~
BOT CHORD	2-18=-1573/339, 9-1 17-18=-241/560, 15- 14-15=-19/133, 13-1 12-13=-571/4188, 1	17=-377/2748, 4=0/95, 6-13=-2069/	396,								B	144	AISSOL
WEBS	3-17=-54/190, 3-15= 5-15=-281/123, 13-1 5-13=-594/3932, 8-1 2-17=-194/2198, 9-1 7-13=-116/1285, 7-1	784/229, 5=-178/2105, 2=-15/626, 2=-289/2411,									K	FOI	
NOTES I) Unbalance this desigr	ed roof live loads have n.	been considered for									A.	PE-2022	042259 20 E

WAL DODD March 21,2024

Scale = 1:65.9

Plate Offsets ()	X, Y): [5:0-5-0,0-1-4],	, [8:0-3-0,0-2-11], [1 ⁻	1:Edge,0-	7-8], [18:0-2-8,0)-2-0], [19:0-5-0,	0-2-4]							
Loading	(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15		TC	0.89	Vert(LL)	-0.59	14	>684	360	MT20	197/144
CDL	10.0	Lumber DOL	1.15		BC	0.88	Vert(CT)	-1.06	15	>382	240	M18AHS	142/136
CLL	0.0*	Rep Stress Incr	NO		WB	0.99	Horz(CT)	0.21	11	n/a	n/a	MT18HS	197/144
CDL	10.0	Code	IRC20	18/TPI2014	Matrix-S		Wind(LL)	0.44	14	>920	240	Weight: 157 lb	FT = 10%
UMBER			1) Unbalanced	roof live loads h	ave been o	considered fo	r	Ur	niform Lo	oads (I	b/ft)	
OP CHORD	2x4 SPF 2100F 1.88			this design.									, 7-8=-70, 8-9=-70,
	2400F 2.0E, 7-8:2x6	3 SPF No.2, 8-10:2x4	4 2		7-16; Vult=115			•				19=-20, 11-14=-2	0
	SPF No.2				h; TCDL=6.0psf;					oncentra			
OT CHORD	2x4 SPF No.2 *Exce	ept* 14-11:2x6 SP 24	100F		closed; MWFRS ft and right expo					Vert: 12	!=-24 (I	B), 21=-272 (B), 2	22=-3 (B)
/EBS	2.0E 2x3 SPF No.2 *Exce	ont* 11 5 10 7.0v1 C	DE		d; Lumber DOL=								
LD3	2100F 1.8E, 19-2:2x		3		quate drainage t								
	11-9,12-9:2x4 SPF I		4		e MT20 plates u								
RACING			5		as been designe								
OP CHORD	Structural wood she	athing directly applie	ed or		ad nonconcurrer								
	2-5-3 oc purlins, ex				has been design)psf					
	2-0-0 oc purlins (2-1	10-0 max.): 7-8.			m chord in all are								
OT CHORD	Rigid ceiling directly	applied or 8-11-5 of	0		by 2-00-00 wide		een the botto	om					
	bracing.		7		ny other membe assumed to be			int					
EBS		3-16, 7-12	7	11 SP 2400		. Joint 19 3	FF N0.2, JU	Int					
	(size) 11=0-3-8,		8		hanical connect	ion (by oth	ers) of truss t	0					
	Max Horiz 19=127 (I	,			e capable of with								
	Max Uplift 11=-428 (b uplift at joint 1								
	Max Grav 11=1900		;1) 9		designed in acc								
ORCES	(lb) - Maximum Corr Tension	pression/Maximum			Residential Coo nd referenced st			nd					
OP CHORD	1-2=0/47, 2-3=-3123	3/423. 3-5=-2469/384	4. 1		Ind representati			170					
	5-6=-6441/1068, 6-7	7=-6473/1000,	· ·		ation of the purli			120				and	TOP
	7-8=-3080/554, 8-9=	-3289/568, 9-10=0/4	45,	bottom chor								A OF I	MIS.
	2-19=-1627/359, 9-1		1	1) Hanger(s) o	r other connectio	on device(s) shall be				1	TATE OF N	N.O.
OT CHORD	18-19=-244/592, 16	,			ficient to suppor						B	NATHA	NIET XAN
	15-16=-16/180, 14-1		144,		lb up at 29-6-0,						R	S NATHA	
	13-14=-1202/8051, 11-12=0/106	12-13=-1209/8050,			on top chord, and						43	M	
EBS	3-18=-62/186, 3-16=	765/2/3			nd 16 lb down a			nd			И Т		NY. X
200	5-16=-348/145, 14-1	,			and 44 lb up at 3 selection of such			the			8	Kalkin	1 1 mb
	5-14=-800/4641, 7-1	,		responsibilit		CONNECTIO	in device(s) is	ule			87	WW WOM	ER OF
	7-13=-60/277, 7-12=		1		CASE(S) section	n loads a	onlied to the f	ace			N	O PE-2022	042259
	8-12=-39/563, 2-18=				are noted as fror			400			N	The second second	12A
	9-12=-590/3242		1	OAD CASE(S)							Y	C'SSIONA	NO'A
OTES			1		of Live (balance	d): Lumber	Increase=1	15				ONA	LEFA
						a). Lumber	11010030=1.	10,				ALL.	

+ Roof Live palanced): Lumber Increase=1.15, 1) Plate Increase=1.15

 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.
 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not besign value to dury with with where outputs into design is based only door parameters shown, and is for an individual building design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members and property incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TPH1 Quality Criteria**, and **DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcscomponents.com) Course March 21,2024

Plate Offsets (X, Y): [2:0-4-15,0-2-8], [13:0-2-8,0-1-8] Loading 2-0-0 CSI DEFL in l/defl L/d PLATES GRIP (psf) Spacing (loc) TCLL (roof) 25.0 Plate Grip DOL 1.15 TC 0.85 Vert(LL) -0.15 11-13 >999 360 MT20 197/144 TCDL 10.0 Lumber DOL 1.15 BC 0.66 Vert(CT) -0.30 11-13 >999 240 BCLL Rep Stress Incr YES WB Horz(CT) 0.07 8 0.0 0.54 n/a n/a BCDL 10.0 Code IRC2018/TPI2014 Matrix-S Wind(LL) 0.11 11-13 >999 240 Weight: 108 lb FT = 10% LUMBER 5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle TOP CHORD 2x4 SPF No.2 3-06-00 tall by 2-00-00 wide will fit between the bottom 2x4 SPF No.2 BOT CHORD chord and any other members. 2x3 SPF No.2 *Except* 7-8:2x4 SPF No.2, WEBS 6) All bearings are assumed to be SPF No.2 . 14-2:2x6 SPF No.2 Refer to girder(s) for truss to truss connections. 7) BRACING 8) Provide mechanical connection (by others) of truss to TOP CHORD Structural wood sheathing directly applied or bearing plate capable of withstanding 166 lb uplift at joint 2-7-9 oc purlins, except end verticals, and 8 and 278 lb uplift at joint 14. 2-0-0 oc purlins (6-0-0 max.): 6-7. This truss is designed in accordance with the 2018 9) BOT CHORD Rigid ceiling directly applied or 9-9-7 oc International Residential Code sections R502.11.1 and bracing. R802.10.2 and referenced standard ANSI/TPI 1. WEBS 1 Row at midpt 3-11 10) Graphical purlin representation does not depict the size REACTIONS (size) 8= Mechanical, 14=0-3-8 or the orientation of the purlin along the top and/or Max Horiz 14=137 (LC 8) bottom chord. Max Uplift 8=-166 (LC 5), 14=-278 (LC 4) LOAD CASE(S) Standard Max Grav 8=1212 (LC 1), 14=1371 (LC 1) FORCES (lb) - Maximum Compression/Maximum Tension TOP CHORD 1-2=0/47, 2-3=-2285/333, 3-4=-1523/237, 4-5=-2713/449, 5-6=-2732/360, 6-7=-117/0, 7-8=-103/27, 2-14=-1286/322 BOT CHORD 13-14=-249/503, 11-13=-353/2078 10-11=-9/83. 9-10=0/94. 5-9=-383/190. 8-9=-342/2227 OF MISS WEBS 3-13=0/232, 3-11=-845/235, 4-11=-34/200, 9-11=-151/1351, 4-9=-281/1421, 6-9=-16/354, 6-8=-2366/387, 2-13=-159/1582 NATHANIE NOTES FOX Unbalanced roof live loads have been considered for 1) this design 2) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. **UMBER** II; Exp C; Enclosed; MWFRS (envelope) exterior zone; PE-2022042259

cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60 Provide adequate drainage to prevent water ponding.

- 3) 4)
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponent.com)

March 21,2024

E

SSIONAL

Job B240051 Wheeler Lumber, Waverly, KS	Truss C11	Truss Type Common	Qty	Ply	Lot 146 WO		FOR PLAN REVIEW
		Common					MENT SERVICES
Wheeler Lumber, Waverly, KS	5 - 66871.		1	1	Job Reference (optional	LEE'S SU	MENT SERVICES 164360240 MMIT, MISSOURI
) 22 2024 MiTek Industries, Inc. \ 'sB70Hq3NSgPqnL8w3uITXbGK		1/2024
₁ -1-10-8	8-6-0	16-0-0	. 22	-0-6	26-10-15	33-0-0	33-10-8
1-10-8	8-6-0	7-6-0	6-	0-6	4-10-9	6-1-1	0-10-8
	5x12 = 2 2 3x4= 8-6-0		13 12 3x10= 4x5=	24-10-	11 3x4=	0° = 7 33-0-0	
	8-6-0	7-6-0		8-10-1		8-1-15	

Scale = 1:62.6	
Plate Offsets (X, Y):	[2:0-4-15,0-2-8], [8:0-3-15,0-5-10], [14:0-2-8,0-2-0]

Plate Offsets ((X, Y): [2:0-4-15,0-2-8], [8:0-3-15,0-5-10],	[14:0-2-8,0-2-0	0]									
Loading TCLL (roof) TCDL BCLL BCDL	(psf) 25.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018/TF	912014	CSI TC BC WB Matrix-S	0.94 0.85 0.83	DEFL Vert(LL) Vert(CT) Horz(CT) Wind(LL)	-0.49 0.12	(loc) 11-13 11-13 10 11-13	l/defl >999 >792 n/a >999	L/d 360 240 n/a 240	PLATES MT20 Weight: 119 lb	GRIP 197/144 FT = 10%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD WEBS REACTIONS	2x4 SPF No.2 2x3 SPF No.2 *Exce 10-8:2x6 SP 2400F 3 Structural wood she except end verticals Rigid ceiling directly bracing. 1 Row at midpt (size) 10=0-3-8, Max Horiz 15=-85 (L Max Uplift 10=-264 (2.0E athing directly applie applied or 9-4-3 oc 3-13, 7-10, 6-13 15=0-3-8 C 9) LC 5), 15=-302 (LC	or 3- 5) Al 6) Pr ed, 15 7) Tr In R LOAD	n the bottom 06-00 tall by nord and an Il bearings a rovide mech earing plate 5 and 264 lb nis truss is o ternational	as been designe n chord in all area y 2-00-00 wide w y other members are assumed to b nanical connectio capable of withs o uplift at joint 10. designed in accoo Residential Code d referenced sta Standard	as where vill fit betw s. e SPF No on (by oth tanding 3 rdance w e sections	a rectangle veen the bott o.2 . ers) of truss t 02 lb uplift at th the 2018 5 R502.11.1 at	om to t joint					
FORCES	Max Grav 10=1538 (lb) - Maximum Com	· · · · · · · · · · · · · · · · · · ·	51)										
TOP CHORD BOT CHORD	5-6=-2179/317, 6-7= 7-8=-1066/218, 8-9= 8-10=-639/201 14-15=-199/553, 13-	3023/438, -0/24, 2-15=-1526/3 -14=-343/2641,											
WEBS	11-13=-285/2630, 10 3-14=-52/184, 3-13= 2-14=-209/2097, 7-1 6-13=-801/243, 6-11	-789/235, 5-13=-62 0=-2153/269,										TATE OF I	AISSO
 this design Wind: AS0 Vasd=91n II; Exp C; cantilever right expo This truss 	ed roof live loads have n. CE 7-16; Vult=115mph mph; TCDL=6.0psf; BC Enclosed; MWFRS (er left and right exposed sed; Lumber DOL=1.6 has been designed for load nonconcurrent wi	(3-second gust) DL=6.0psf; h=25ft; (ivelope) exterior zor ; end vertical left an 0 plate grip DOL=1.1 r a 10.0 psf bottom	Cat. ne; d 60									PE-2022	X LA LA

March 21,2024

MiTek[®] 16023 Swingley Ridge Rd. Chesterfield, MO 63017 314.434.1200 / MiTek-US.com

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling or individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

						RELEASE FOR CONSTRUCTION
Job	Truss	Truss Type	Qty	Plv	Lot 146 WO	AS NOTED FOR PLAN REVIEW
300	Truss	Truss Type		гіу	LOI 148 WO	DEVELOPMENT SERVICES 164360241
B240051	C12	Common	1	1	Job Reference (optional	
	-				Job Reference (optional	
Wheeler Lumber, Waverly, KS -	66871,	Run: 8.73 S Feb 22	2024 Print: 8	.730 S Feb 2	2 2024 MiTek Industries, Inc.	/ed Mar 2009/19/13 1 / Pag 1 /
		ID:1m2?IAOOIx2OBo	x59QG3lfz4	SeC-RfC?Ps	B70Hq3NSgPqnL8w3uITXbGI	WrCDoil 4zJC7f

Plate Offsets (X, Y): [2:0-4-15,0-2-8], [8:0-2-12,0-2-12], [13:0-2-8,0-2-0]

Plate Offsets ((X, Y): [2:0-4-15,0-2-8], [8:0-2-12,0-2-12], [13:0-2-8,0-	-2-0]									
Loading TCLL (roof)	(psf) 25.0	Spacing Plate Grip DOL	2-0-0 1.15		CSI TC	0.94	DEFL Vert(LL)	in -0.23	(loc) 10-12	l/defl >999	L/d 360	PLATES MT20	GRIP 197/144
TCDL	10.0	Lumber DOL	1.15		BC	0.87	Vert(CT)	-0.50	10-12	>775	240		
BCLL	0.0*	Rep Stress Incr	YES		WB	0.93	Horz(CT)	0.12	9	n/a	n/a		
BCDL	10.0	Code	IRC2018	/TPI2014	Matrix-S		Wind(LL)	0.16	10-12	>999	240	Weight: 118 lb	FT = 10%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD WEBS REACTIONS	2x4 SPF No.2 2x4 SPF No.2 2x3 SPF No.2 *Exce No.2 Structural wood sheat except end verticals. Rigid ceiling directly bracing. 1 Row at midpt (size) 9=0-3-8, 1 Max Horiz 14=90 (LC	athing directly applie applied or 8-11-13 c 3-12, 6-12, 7-9 14=0-3-8	F 5) 6) d, _{DC} 7)	on the bottor 3-06-00 tall b chord and ar All bearings a Provide mec bearing plate 14 and 216 ll This truss is International	as been designe n chord in all area by 2-00-00 wide w yo other members are assumed to b hanical connectio capable of withs b uplift at joint 9. designed in accoo Residential Code nd referenced sta Standard	as where vill fit betw e SPF No n (by oth tanding 3 rdance w e sections	a rectangle veen the bott o.2. ers) of truss t 02 lb uplift at ith the 2018 5 R502.11.1 a	om to t joint					
	Max Uplift 9=-216 (L Max Grav 9=1460 (L	C 5), 14=-302 (LC 4)											
FORCES	(lb) - Maximum Com Tension	pression/Maximum											
TOP CHORD	1-2=0/47, 2-3=-2882 5-6=-2183/318, 6-7= 7-8=-844/154, 2-14=	-3041/446,	,										
BOT CHORD	13-14=-205/553, 12- 10-12=-307/2634, 9-												
WEBS	3-13=-53/184, 3-12= 6-12=-802/243, 6-10 2-13=-210/2100, 7-9	-788/235, 5-12=-63/ =-9/402, 7-10=-212/	,									OF N	MISSO
NOTES											A	TATE OF N	N'SON
 this design Wind: ASC Vasd=91rr II; Exp C; I cantilever right exposition This truss 	 Unbalanced roof live loads have been considered for this design. Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60 This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 												

chord live load nonconcurrent with any other live loads.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

SSIONAL EN Cours March 21,2024

Scale = 1:63.6

Plate Offsets (X, Y): [10:0-3-8,0-6-0], [11:0-2-8,0-2-0], [15:0-2-8,0-2-0]

	(,, , ,): [10:0 0 0,0 0 0], [11:0 2 0,0 2 0], [1	0.0 2 0,0 1	= 0]									
Loading TCLL (roof) TCDL BCLL BCDL	(psf) 25.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018	3/TPI2014	CSI TC BC WB Matrix-S	0.89 0.86 0.91	DEFL Vert(LL) Vert(CT) Horz(CT) Wind(LL)	-0.44 0.09	(loc) 11-12 11-12 10 11-12	l/defl >999 >893 n/a >999	L/d 360 240 n/a 240	PLATES MT20 Weight: 123 lb	GRIP 197/144 FT = 10%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD WEBS REACTIONS	2100F 1.8E 2x4 SPF No.2 2x3 SPF No.2 *Exce No.2 Structural wood she except end verticals (3-8-12 max.): 5-6. Rigid ceiling directly bracing. 1 Row at midpt	ept* 16-2,10-9:2x6 SF athing directly applie , and 2-0-0 oc purlins applied or 9-0-6 oc 8-12 , 16=0-3-8 C 8) (LC 5), 16=-312 (LC 4	PF 6) (d, 6) (7) 8) 9) (1)	This truss ha chord live loa * This truss h on the bottor 3-06-00 tall b chord and ar All bearings a Provide mec bearing plate 16 and 226 ll This truss is International R802.10.2 au Graphical pu		f for a 10.0 t with any ed for a liv as where will fit betv s. De SPF No on (by oth standing 3 Dordance w e sections andard AN on does no	b) psf bottom other live loc e load of 20. a rectangle veen the bot b.2. 12 lb uplift a ith the 2018 R502.11.1 SI/TPI 1. ot depict the	ads. Opsf tom to to t joint					
FORCES TOP CHORD BOT CHORD	5-6=-2183/387, 6-8= 8-9=-3237/496, 2-16 9-10=-1375/264 15-16=-155/424, 14 12-14=-217/2148, 1	9/416, 3-5=-2351/356 =-2398/373, 3=-1537/349, -15=-375/2651,										TE OF M	AISSO
WEBS	,	4=-618/198, =-172/285, 6-12=-21/3 I=0/236, 2-15=-276/2	,							i		ST NATHA FOL	NIEL E
this design 2) Wind: ASC Vasd=91n II; Exp C; cantilever	ed roof live loads have	(3-second gust) DL=6.0psf; h=25ft; C nvelope) exterior zono ; end vertical left and	e; I									PE-20220	LENGILE

 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.
 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not besign value to dury with with where outputs into design is based only door parameters shown, and is for an individual building design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members and property incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TPH1 Quality Criteria**, and **DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcscomponents.com) 16023 Swingley Ridge Rd. Chesterfield MO 63017

314.434.1200 / MiTek-US.com

Scale = 1:63.6

Plate Offsets ()	X, Y): [3:0-5-0,Edge],	[9:0-3-8,0-2-4], [11:	0-2-8,0-2-0	0], [14:0-5-12,0)-3-0]								
Loading TCLL (roof) TCDL BCLL BCDL	(psf) 25.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC201	8/TPI2014	CSI TC BC WB Matrix-S	0.80 0.83 0.83	DEFL Vert(LL) Vert(CT) Horz(CT) Wind(LL)	0.41	(loc) 14-15 14-15 10 14-15	l/defl >999 >544 n/a >999	L/d 360 240 n/a 240	PLATES MT20 Weight: 152 lb	GRIP 197/144 FT = 10%
	(size) 10=0-3-8, Max Horiz 17=77 (LC Max Uplift 10=-238 (ept* 3-14:2x4 SPF 21 ept* 3-14:2x4 SPF No athing directly applie , and 2-0-0 oc purlin applied or 10-0-0 oc -12. 4-14 17=0-3-8 C 8) LC 5), 17=-322 (LC	100F b.2, 3) d, 5) s c 6) 7) 8) 4)	Vasd=91mpl II; Exp C; En cantilever let right expose Provide ade This truss ha chord live loa * This truss ha chord live loa * This truss ha chord live loa * This truss ha chord and ar All bearings Provide mec bearing platt 17 and 238 I This truss is International	7-16; Vult=115r h; TCDL=6.0psf; iclosed; MWFRS ft and right exposed; Lumber DOL= quate drainage tr as been designer ad nonconcurren mas been designer m chord in all are by 2-00-00 wide are assumed to thanical connecti e capable of with b uplift at joint 10 designed in acco Residential Cool nd referenced st	BCDL=6.(\$ (envelopesed ; end v -1.60 plate o o prevent v d for a 10.0 tt with any ed for a live pass where will fit betw 's. be SPF No on (by oth standing 3). ordance will le sections	Dpsf; h=25ft; e) exterior zo rertical left ar grip DOL=1 yater pondin b) psf bottom other live loz e load of 20. a rectangle veen the bott b.2. ers) of truss 22 lb uplift a ith the 2018 R502.11.1 a	ne; nd .60 g. ads. 0psf com to t joint					
FORCES	Max Grav 10=1464 (Ib) - Maximum Com Tension		; 1) 9)		Irlin representation ation of the purlir			size					
TOP CHORD	1-2=0/45, 2-3=-483/ 4-5=-3086/486, 5-6= 6-7=-3060/521, 7-8= 8-9=-3249/531, 2-17 9-10=-1381/272	=-3083/516, =-2633/443,	L	DAD CASE(S)								TE OF M	AISSOL
BOT CHORD	16-17=-2/18, 3-16=0 14-15=-613/4154, 13 6-14=-327/148, 12-1 11-12=-457/3014, 10	3-14=0/106, 3=-16/190, 0-11=-138/752	3,									S NATHA	NIEL
WEBS	4-15=-176/119, 4-14 5-14=-142/837, 12-1 7-14=-171/856, 7-12 8-12=-669/220, 8-11 9-11=-320/2267	4=-266/2273, 2=-98/158,									PE-2022	3ER 042259	

NOTES

 Unbalanced roof live loads have been considered for this design.

SSIONAL ET

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSITPTI Quality Criteria, and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcscomponents.com)

16023 Swingley Ridge Rd. Chesterfield, MO 63017 314.434.1200 / MiTek-US.com

Scale = 1:68.2

Plate Offsets (X, Y): [3:0-6-14,Edge], [3:0-2-7,0-1-2], [4:0-7-4,Edge], [8:0-3-12,0-2-4], [13:0-4-12,0-4-8], [14:1-0-12,0-6-0], [19:0-2-8,0-3-0]													
Loading TCLL (roof) TCDL BCLL BCDL	(psf) 25.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC201	8/TPI2014	CSI TC BC WB Matrix-S	0.69 0.79 1.00	DEFL Vert(LL) Vert(CT) Horz(CT) Wind(LL)	-1.16 0.57	(loc) 13-14 13-14 9 13-14	l/defl >609 >337 n/a >820	L/d 360 240 n/a 240	PLATES MT20 M18AHS Weight: 165 lb	GRIP 197/144 142/136 FT = 10%
LUMBER TOP CHORD BOT CHORD WEBS	2x4 SPF 2100F 1.8E 2400F 2.0E 2x4 SPF No.2 *Exce 2100F 1.8E, 13-12:2 2x3 SPF No.2 *Exce No.2, 9-8:2x6 SPF N	- ept* 3-17,14-13:2x4 S 2x3 SPF No.2 ept* 19-14,10-13:2x4	2) SPF	this design. Wind: ASCE Vasd=91mpl II; Exp C; En cantilever lef	roof live loads h 7-16; Vult=115r h; TCDL=6.0psf; closed; MWFRS t and right expos d; Lumber DOL=	nph (3-seo BCDL=6. (envelope sed ; end v	cond gust) Opsf; h=25ft; e) exterior zon vertical left an	Cat. ne; id					
BRACING TOP CHORD	Structural wood she	eathing directly applie except end verticals, a		 Provide adea All plates are The Fabricat This truss had 	quate drainage to MT20 plates un ion Tolerance at as been designed	o prevent nless other joint 13 = d for a 10.0	water ponding wise indicate 6%) psf bottom	g. ed.					
BOT CHORD	Rigid ceiling directly bracing, Except: 6-0-0 oc bracing: 15 8-4-8 oc bracing: 13		7)	 * This truss h on the bottor 3-06-00 tall h 	ad nonconcurren nas been design n chord in all are by 2-00-00 wide	ed for a liv eas where will fit betw	e load of 20.0 a rectangle	Opsf					
	1 Row at midpt (size) 2=0-3-8, 9 Max Horiz 2=79 (LC Max Uplift 2=-333 (L Max Grav 2=1615 (I	12) _C 4), 9=-248 (LC 5)	8) 9)	 All bearings Provide mec bearing plate 2 and 248 lb 	ny other member are assumed to hanical connecti capable of with uplift at joint 9. designed in according	be SPF No on (by oth standing 3	ers) of truss t 33 lb uplift at						
FORCES TOP CHORD	4-5=-6260/985, 5-6= 6-7=-5221/838, 7-8=	/122, 3-4=-3646/561, =-5056/833,		International R802.10.2 a 1) Graphical pu	Residential Cod nd referenced st Irlin representation ation of the purlir	le sections andard AN on does no	R502.11.1 a ISI/TPI 1. ot depict the s					SF. OF M	MISSO
BOT CHORD	15-16=-78/22, 15-17 5-14=0/321, 13-14=	18=-94/512, 16-18=0	/41, 51/0,	OAD CASE(S)	Standard							STATE OF A	NIEL
WEBS	4-19=-702/211, 14-1 5-13=-1659/325, 11 6-13=-124/1289, 7-1 8-10=-355/2314, 10 7-13=-258/1900, 4-1	19=-417/3120, -13=0/388, 10=-1102/275, -13=-511/3082,	•									PE-2022	128
NOTES												SIONA	L ENCE

March 21,2024

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSITPTI Quality Criteria, and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcscomponents.com)

Scale = 1:63.5

3) Provide adequate drainage to prevent water ponding.

Plate Offsets ((X, Y): [3:0-7-2,Edge],	[3:0-2-7 0-0-14] [6:	0-2-8 0-1	-8] [8·Edge 0-0	-6] [13:1-0-8 0-4	1-41							
	, T). [3.0-7-2,Euge],	, [3.0-2-7,0-0-14], [0.	.0-2-0,0-1	-oj, [o.⊏uye,0-0	-0j, [13.1-0-8,0-4								
Loading TCLL (roof)	(psf) 25.0	Spacing Plate Grip DOL	2-0-0 1.15		CSI TC	0.82	DEFL Vert(LL)	in -0.45	(loc) 12	l/defl >880	L/d 360	PLATES MT20	GRIP 197/144
TCDL BCLL	10.0 0.0*	Lumber DOL Rep Stress Incr	1.15 YES		BC WB	0.68 0.80	Vert(CT) Horz(CT)	-0.80 0.35	13-14 8	>488 n/a	240 n/a	M18AHS	142/136
BCDL	10.0	Code		18/TPI2014	Matrix-S	0.80	Wind(LL)	0.35	12	>999	240	Weight: 153 lb	FT = 10%
LUMBER TOP CHORD	2x10 SP 2400F 2.0E	- - *Evoont* 4 7:2v4 9	4 105 5		MT20 plates ur as been designed			ed.					
BOT CHORD	No.2, 7-8:2x6 SP 24 2x4 SPF No.2 *Exce	00F 2.0E		chord live lo	ad nonconcurren	it with any	other live loa						
	2100F 1.8E	•		on the botto	n chord in all are	eas where	a rectangle	•					
WEBS BRACING	2x3 SPF No.2 *Exce	ept* 11-13:2x4 SPF I	No.2		by 2-00-00 wide by other member		veen the bott	om					
TOP CHORD	4-9-15 oc purlins, exceptSPF 2100F 1.8E .2-0-0 oc purlins (2-2-0 max.): 4-7.8)Provide mechanical connection (by others) of truss to												
BOT CHORD	2-0-0 oc purlins (2-2 Rigid ceiling directly bracing.			 bearing plate capable of withstanding 258 lb uplift at joint 8 and 343 lb uplift at joint 2. 									
WEBS	1 Row at midpt	5-14	9		designed in acco								
REACTIONS	· · · ·				Residential Cod nd referenced st			and					
	Max Horiz 2=66 (LC		1		Irlin representatio			size					
	Max Uplift 2=-343 (L Max Grav 2=1618 (L	,, , , , , , , , , , , , , , , , , , , ,			ation of the purlir	n along the	e top and/or						
FORCES	(lb) - Maximum Corr Tension		,	bottom chore OAD CASE(S)									
TOP CHORD	1-2=0/12, 2-3=-688/ 4-5=-3938/689, 5-6= 6-7=-3463/651, 7-8=	-5005/872,	,										
BOT CHORD	2-15=0/10, 3-15=0/6 13-14=-795/5114, 1 11-12=-40/296, 9-11	60, 3-14=-598/3926, 2-13=0/105, 5-13=0/	/338,									TATE OF M	ADD ALL
	8-9=-416/2938	1=-419/2992,										TE	MISSO W
WEBS	4-14=-14/445, 5-14=										B	S NATHA	NITET SA
	11-13=-486/3260, 6	,	808							_	B	FO	
NOTES													
1) Unbalance	ed roof live loads have	been considered for	r								N/	The	1 13
this design	n. CE 7-16; Vult=115mph	(2 accord quat)								1	WA	X Yamie	SER
	_E 7-16; Vuit=115mpn nph; TCDL=6.0psf; BC		Cat.								N	O PE-2022	042259
II; Exp C;	Enclosed; MWFRS (er	nvelope) exterior zor	ne;								Ŷ	The	154
	left and right exposed										6	SIONIA	LEN
	cantilever left and right exposed ; end vertical left and ight exposed; Lumber DOL=1.60 plate grip DOL=1.60 Divide deviate d												

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSITPTI Quality Criteria, and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcscomponents.com)

Scale = 1:63.8

Plate Offsets (X, Y): [3:0-6-8,Edge], [4:Edge,0-0-0], [5:0-3-8,0-2-0], [8:0-4-0,0-3-0], [14:0-5-8,0-3-4], [15:0-3-8,0-2-0]													
Plate Offsets (X, Y): [3:0-6-8,Edge],	, [4:⊨dge,0-0-0], [5:0-	3-8,0-2-0], [8:0-4-0,0-3-0)], [14:0-5-8,0-3-/	4], [15:0-3	-8,0-2-0]						
Loading	(psf)	Spacing	2-0-0		CSI	0.04	DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof) TCDL	25.0	Plate Grip DOL Lumber DOL	1.15 1.15		TC BC	0.84 0.98	Vert(LL) Vert(CT)	-0.52 -0.95		>755 >415	360 240	MT20 M18AHS	244/190 142/136
BCLL	10.0 0.0*	Rep Stress Incr	NO		WB	0.98		-0.95 0.40	14-15 9	>415 n/a	240 n/a	WITNANS	142/130
BCDL	10.0	Code		8/TPI2014	Matrix-S	0.00	Wind(LL)	0.40	9 14	>897	240	Weight: 403 lb	FT = 10%
BODL	10.0	Code	11(0201	0/11/2014	Wath-0		WING(LL)	-					
	No.2 2x6 SPF No.2 *Exce No.2, 3-14:2x6 SP 2 2x4 SPF No.2 *Exce 2100F 1.8E Structural wood she 5-4-1 oc purlins, ex 2-0-0 oc purlins (6-0 Rigid ceiling directly bracing. (size) 9=0-3-8, ' Max Horiz 17=41 (L0 Max Uplift 9=-557 (L Max Grav 9=2760 (I	apt* 12-14:2x4 SPF athing directly applie cept end verticals, ar 0-0 max.): 4-8. applied or 10-0-0 oc 17=0-3-8 C 8) C 5), 17=-641 (LC 4) _C 1), 17=2955 (LC 1	PF 2) d 2) d 3) 4)	(0.131"x3") r Top chords of staggered at oc, 2x4 - 1 ro Bottom chorr 0-9-0 oc, 2x6 Web connect All loads are except if not CASE(S) se provided to of unless other Unbalanced this design. Wind: ASCE Vasd=91mpl	be connected to hails as follows: connected as foll 0-9-0 oc, 2x6 - 2 ow at 0-9-0 oc. ds connected as 5 - 2 rows stagge ted as follows: 2 considered equa ed as front (F) or ction. Ply to ply co istribute only loa wise indicated. roof live loads ha 7-16; Vult=115n n; TCDL=6.0psf; closed; MWFRS	ows: 2x8 2 rows sta follows: 2 ered at 0-9 x4 - 1 row ally applie back (B) connection ads noted ave been ave been mph (3-see BCDL=6.	- 2 rows ggered at 0-9 x4 - 1 row at -0 oc. at 0-9-0 oc. d to all plies, face in the LC s have been as (F) or (B), considered fo cond gust) 0psf; h=25ft; (-0 DAD r Cat.	pro lb d at dov at dov up : on t 63 at 79 at anc sele res	vided su own and 10-0-0, 1 vn and 8 16-0-0, 1 vn and 8 at 22-0- top chord b down 12-0-0, 7 b down 22-0-0, a 12-10, 7 b down 22-0-0, a 141 lb u ection of consibilit CASE(S)	fficient d 70 lb 136 lb 5 lb up 146 lb 5 lb up 0, and d, and at 8-0 79 lb dr at 8-0 79 lb dr at 18- and 79 up at 2 such of ty of ot) Sta	up at 8-0-0, 136 down and 70 lb u o at 14-0-0, 146 l down and 85 lb u o at 20-0-0, and 146 lb down and 500 lb down and 500 lb down at 500 lb down at 20, 63 lb down at lb down at 24-0. 25-4-12 on bottor connection device hers. ndard	entrated load(s) 136 Ib down and 70 Ib up p at 12-0-0, 146 Ib b down and 85 Ib up p at 18-0-0, 146 Ib 146 Ib down and 85 Ib 85 Ib up at 24-0-0 137 Ib up at 6-7-4, 10-0-0, 63 Ib down 79 Ib down at 16-0-0, tt 20-0-0, 79 Ib down 0, and 550 Ib down n chord. The design/
FORCES	(lb) - Maximum Com Tension 1-2=0/45, 2-3=-926/ 4-5=-11093/2155, 5 7-8=-9680/1966, 8-9 2-17=-2984/668	' 219, 3-4=-11106/214 -7=-14313/2827,	6)	 cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60 5) Provide adequate drainage to prevent water ponding. 6) All plates are MT20 plates unless otherwise indicated. 7) This truss has been designed for a 10.0 psf bottom Plate Increase=1.15 Uniform Loads (lb/ft) Vert: 1-2=-70, 2-3=-70, 3-4=-70, 4-8=-70, 8-9=- 16-17=-20, 3-14=-20, 9-13=-20 Concentrated Loads (lb) 									
BOT CHORD	14-15=-2751/14334 12-13=-286/1306, 1 9-10=-1343/6920	0-12=-1341/6877,	86, 8)	on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom								MISSOL	
WEBS	12-14=-1597/8491, 7-12=-2522/705, 8-1 8-10=-32/771, 4-15= 5-15=-3482/774, 5-1	12=-636/3219, =-125/1242,	 9) Bearings are assumed to be: Joint 17 SPF No.2, Joint 9 SPF No.2. 10) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 557 lb uplift at joint 								THEF IS A		
NOTES			 9 and 641 lb uplift at joint 17. 11) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. 12) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord. 										

March 21,2024

Continued on page 2 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not besign value to dury with with where outputs into design is based only door parameters shown, and is for an individual building design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members and property incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TPH1 Quality Criteria**, and **DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcscomponents.com)

						RELEASE FOR CONSTRUCTION	
Job	Truss	Truss Type	Qty	Ply	Lot 146 WO	AS NOTED FOR PLAN REVIEW DEVELOPMENT SERVICES 164360246	
B240051	C17	Hip Girder	1	2	Job Reference (optional		
Wheeler Lumber, Waverly, KS - 66871, Run: 8.73 S Feb 22 2024 Print: 8.730 S Feb 22 2024 MiTek Industries, Inc. Wed Mar 2002 ben 1 1/2 for ID:8?oUSpLtEjYzjDdKwaC78pz4SeG-RfC?PsB70Hq3NSgPqnL8w3ulTXbGFWrCDoi 242074 1/2 for 1/2 for							

 $\begin{array}{l} \mbox{Vert: 14=-52 (B), 10=-550 (B), 15=-500 (B), 5=-123 \\ \mbox{(B), 18=-113 (B), 19=-113 (B), 20=-113 (B), 21=-123 \\ \mbox{(B), 22=-123 (B), 23=-123 (B), 24=-123 (B), 25=-123 \\ \mbox{(B), 26=-63 (B), 27=-63 (B), 28=-63 (B), 29=-52 (B), 30=-52 (B), 31=-52 (B), 32=-52 (B), 33=-52 (B) \\ \end{array}$

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

Scale = 1:31.5

Plate Offsets (X, Y): [3:0-3-0,0-2-8], [4:0-3-0,0-2-8], [9:0-2-8,0-1-8]

Plate Olisets (A, T). [3.0-3-0,0-2-0],	, [4.0-3-0,0-2-6], [9.0-	-2-0,0-1-0										
Loading TCLL (roof) TCDL BCLL BCDL	(psf) 25.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 NO IRC201	8/TPI2014	CSI TC BC WB Matrix-S	0.45 0.47 0.44	DEFL Vert(LL) Vert(CT) Horz(CT) Wind(LL)	in -0.05 -0.09 0.01 0.04	(loc) 8-9 8-9 7 8-9	l/defl >999 >999 n/a >999	L/d 360 240 n/a 240	PLATES MT20 Weight: 51 lb	GRIP 197/144 FT = 10%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD REACTIONS	4-5-4 oc purlins, ex 2-0-0 oc purlins (4-5 Rigid ceiling directly bracing.	athing directly applie cept end verticals, ar i-4 max.): 3-4. applied or 10-0-0 oc 10=0-3-8 .C 19) .C 5), 10=-289 (LC 4 .C 1), 10=1063 (LC -	7) F 8) ad or 9) c 10	Provide mec bearing plate 10 and 289 II This truss is International R802.10.2 an Graphical pu or the orienta bottom chorc D) Hanger(s) or provided suff down and 64 up at 6-9-0, top chord, ar 43 Ib down a	are assumed to b hanical connection e capable of withs b uplift at joint 7. designed in accc Residential Cod nd referenced sta riln representatic ation of the purlin J. other connection ficient to support I b up at 4-9-0, a and 90 lb down a d 227 lb down a t 6-9-0, and 227 own chord. The c	on (by oth standing 2 ordance w e sections andard AN n does n a along the concentra and 90 lb and 64 lb nd 50 lb u ' lb down	ers) of truss i 89 lb uplift at ith the 2018 5 R502.11.1 a ISI/TPI 1. ot depict the s a top and/or it) shall be ated load(s) S down and 62 down and 62 up at 4-9-0, a and 50 lb up	t joint and size 00 lb lb on und at					
TOP CHORD BOT CHORD	5-7=-1011/309 9-10=-42/133, 8-9=-	=0/45, 2-10=-1011/30 264/1394, 7-8=-29/1)9, L(In the LOAD of the truss a DAD CASE(S) 	evice(s) is the re CASE(S) section are noted as front Standard of Live (balanced	n, loads a t (F) or ba	pplied to the ck (B).						
 this design 2) Wind: ASC Vasd=91m II; Exp C; I cantilever right exposision 3) Provide ac 4) This truss chord live 5) * This truss on the bot 3-06-00 ta 	2-9=-266/1290, 5-8= ad roof live loads have b. CE 7-16; Vult=115mph mph; TCDL=6.0psf; BC Enclosed; MWFRS (er left and right exposed sed; Lumber DOL=1.6 dequate drainage to pr has been designed fo load nonconcurrent wi s has been designed fo tom chord in all areas	3-9=0/220, 3-8=-61/62, 4-8=0/220, Plate Inc. 2-9=-266/1290, 5-8=-265/1291 Uniform vert: vert: roof live loads have been considered for 7-10= Concent Vert: 7-16; Vult=115mph (3-second gust) Vert: n; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. 11=-5 closed; MWFRS (envelope) exterior zone; t and right exposed ; end vertical left and d; Lumber DOL=1.60 plate grip DOL=1.60 uate drainage to prevent water ponding. s been designed for a 10.0 psf bottom ad nonconcurrent with any other live loads. nas been designed for a 10.0 psf bottom hchord in all areas where a rectangle y2-00-00 wide will fit between the bottom y2-00-00 wide will fit between the bottom					5=-70, 5-6=-7 (F), 3=-59 (F	70,			D	OF PE-2022	BER 042259

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not besign value to dury with with where outputs into design is based only door parameters shown, and is for an individual building design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members and property incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TPH1 Quality Criteria**, and **DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcscomponents.com)

16023 Swingley Ridge Rd.

Chesterfield MO 63017 314.434.1200 / MiTek-US.com

Scale = 1:31.5												
Loading TCLL (roof) TCDL BCLL BCDL	(psf) 25.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018/TPI2014	CSI TC BC WB Matrix-R	0.81 0.42 0.08	DEFL Vert(LL) Vert(CT) Horz(CT) Wind(LL)	in -0.09 -0.17 0.01 0.04	(loc) 7 7 6 7-8	l/defl >999 >932 n/a >999	L/d 360 240 n/a 240	PLATES MT20 M18AHS Weight: 40 lb	GRIP 197/144 142/136 FT = 10%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD	2x4 SPF No.2 2x4 SPF No.2 2x4 SPF 2100F 1.8E No.2 Structural wood she 5-1-14 oc purlins, e Rigid ceiling directly bracing.	athing directly applie xcept end verticals.	Internatic R802.10. PF LOAD CASE	a is designed in acco nal Residential Code 2 and referenced sta (S) Standard	e sections	R502.11.1 a	and					
	•	8) C 5), 8=-176 (LC 4) C 1), 8=736 (LC 1)										
TOP CHORD	Tension 1-2=0/45, 2-3=-757/ 4-5=0/45, 2-8=-644/ 7-8=-22/631, 6-7=-2 3-7=0/245	98, 3-4=-757/98, 214, 4-6=-644/214										
 this design Wind: ASC Vasd=91m II; Exp C; E cantilever I right exposision All plates a This truss I chord live I this truss I on the bott 3-06-00 tal chord and All bearing Provide me bearing plate 	d roof live loads have E 7-16; Vult=115mph ph; TCDL=6.0psf; BC Enclosed; MWFRS (er left and right exposed sed; Lumber DOL=1.6 are MT20 plates unless has been designed for load nonconcurrent wi s has been designed for load nonconcurrent wi s has been designed for load nonconcurrent wi s are assumed to be S echanical connection (ate capable of withstar lb uplift at joint 6.	(3-second gust) DL=6.0psf; h=25ff; C welope) exterior zom ; end vertical left and 0 plate grip DOL=1.6 s otherwise indicater r a 10.0 psf bottom th any other live load or a live load of 20.0 where a rectangle fit between the botto SPF No.2. (by others) of truss to	Cat. e; d 50 d. J. ds. psf m								PE-2022	VER 042259

March 21,2024

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent colleges with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

						RELEASE FOR CONSTRUCTION
Job	Truss	Truss Type	Qty	Plv	Lot 146 WO	AS NOTED FOR PLAN REVIEW
005	11000			,		DEVELOPMENT SERVICES I64360249
B240051	J1	Diagonal Hip Girder	2	1	Job Reference (optional	
-						

Scale - 1.33

0000 - 1100												
Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15	TC	0.56	Vert(LL)	-0.06	6	>999	360	MT20	197/144
TCDL	10.0	Lumber DOL	1.15	BC	0.24	Vert(CT)	-0.11	6	>556	240		
BCLL	0.0*	Rep Stress Incr	NO	WB	0.00	Horz(CT)	0.06	5	n/a	n/a		
BCDL	10.0	Code	IRC2018/TPI2014	Matrix-R		Wind(LL)	0.06	6	>999	240	Weight: 15 lb	FT = 10%
LUMBER	UMBER 8) Hanger(s) or other connection device(s) shall be											

TOP CHORD	2x4 SPF I	No.2
BOT CHORD	2x4 SPF I	No.2 *Except* 6-3:2x3 SPF No.2
WEBS	2x4 SPF I	No.2 *Except* 4-5:2x3 SPF No.2
BRACING		
TOP CHORD	Structura	wood sheathing directly applied or
	5-3-8 oc p	ourlins, except end verticals.
BOT CHORD	Rigid ceil	ing directly applied or 10-0-0 oc
	bracing.	
REACTIONS	(size)	5= Mechanical, 7=0-4-7
	Max Horiz	7=58 (LC 5)

Max Uplift 5=-42 (LC 8), 7=-108 (LC 4) Max Grav 5=212 (LC 1), 7=344 (LC 1) FORCES (Ib) - Maximum Compression/Maximum Tension TOP CHORD 2-7=-335/126, 1-2=0/22, 2-3=-86/0,

3-4=-79/13, 4-5=-145/45 BOT CHORD 6-7=-2/20, 3-6=0/67, 3-5=-13/72

NOTES

- 1) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
- This truss has been designed for a 10.0 psf bottom 2) chord live load nonconcurrent with any other live loads.
- 3) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- 4) All bearings are assumed to be SPF No.2 .
- Refer to girder(s) for truss to truss connections. 5)
- Provide mechanical connection (by others) of truss to 6) bearing plate capable of withstanding 108 lb uplift at joint 7 and 42 lb uplift at joint 5.
- This truss is designed in accordance with the 2018 7) International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

- provided sufficient to support concentrated load(s) 69 lb down and 25 lb up at 2-4-3, and 79 lb down and 30 lb up at 3-0-6 on top chord, and 4 lb down and 4 lb up at 2-4-3 on bottom chord. The design/selection of such connection device(s) is the responsibility of others.
- In the LOAD CASE(S) section, loads applied to the face 9) of the truss are noted as front (F) or back (B).

LOAD CASE(S) Standard

- 1) Dead + Roof Live (balanced): Lumber Increase=1.15, Plate Increase=1.15 Uniform Loads (lb/ft)

 - Vert: 1-2=-70, 2-3=-70, 3-4=-70, 6-7=-20, 3-5=-20 Concentrated Loads (lb)

Vert: 3=-3 (B), 9=4 (F)

16023 Swingley Ridge Rd. Chesterfield MO 63017 314.434.1200 / MiTek-US.com

 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.
 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not beigh valid for use only with with with sets outputs into design is based only door parameters shown, and is for an individual dualing component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria**, and **DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcscomponents.com)

						RELEASE FOR CONSTRUCTION
Job	Truss	Truss Type	Qty	Plv	Lot 146 WO	AS NOTED FOR PLAN REVIEW
				Ĺ		DEVELOPMENT SERVICES 164360250
B240051	J2	Jack-Open	3	1	Job Reference (optional	LEE'S SUMMIT, MISSOURI
						0.4/4.4/0.004

Scale = 1:29.6

Plate Offsets (X, Y): [3:0-4-0,0-1-12]

Loading TCLL (roof) TCDL	(psf) 25.0 10.0	Spacing Plate Grip DOL Lumber DOL	2-0-0 1.15 1.15	CSI TC BC	0.21 0.13	DEFL Vert(LL) Vert(CT)	in -0.01 -0.02	(loc) 6 6	l/defl >999 >999	L/d 360 240	PLATES MT20	GRIP 197/144
BCLL	0.0*	Rep Stress Incr	YES	WB	0.00	Horz(CT)	0.02	5	n/a	n/a		
BCDL	10.0	Code	IRC2018/TPI2014	Matrix-R		Wind(LL)	0.01	6	>999	240	Weight: 10 lb	FT = 10%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD	2x4 SPF No.2 *Exce 2x3 SPF No.2 Structural wood she 3-6-15 oc purlins, e	athing directly applie xcept end verticals.	Internationa 2 R802.10.2 a LOAD CASE(S)	designed in accord Residential Code s nd referenced stan Standard	sections	R502.11.1 a	and					
BOTCHORD	bracing.	applied of 0-0-0 oc										
REACTIONS	(size) 4= Mecha 7=0-3-8 Max Horiz 7=57 (LC Max Uplift 4=-33 (LC (LC 4) Max Grav 4=87 (LC (LC 1)	2 8), 5=-6 (LC 8), 7=-	62									
FORCES	(lb) - Maximum Com	pression/Maximum										
 Vasd=91n II; Exp C; cantilever right expo This truss chord live * This truss on the bot 3-06-00 ta chord and All bearing Refer to g Provide m bearing pl 	,	4, 3-5=-10/5 (3-second gust) DL=6.0psf; h=25ft; C tivelope) exterior zon ; end vertical left and 0 plate grip DOL=1.6 r a 10.0 psf bottom th any other live load or a live load of 20.0 where a rectangle fit between the botto SPF No.2. ss connections. (by others) of truss to nding 62 lb uplift at jo	cat. e; i 0 ls. psf m								THE OF NATH FO PE-2022	1042259

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

						RELEASE FOR CONSTRUCTION
Job	Truss	Truss Type	Qty	Ply	Lot 146 WO	AS NOTED FOR PLAN REVIEW
5040054						DEVELOPMENT SERVICES I64360251
B240051	J3	Jack-Open	2	1	Job Reference (optional	

1-3-12

Run: 8.73 S Feb 22 2024 Print: 8.730 S Feb 22 2024 MiTek Industries, Inc. Ved Mar 2002 Ps/15 1/29:24 ID:UeVK8XR?IN49MICVheY9EbznZn3-RfC?PsB70Hq3NSgPqnL8w3uITXbc KWrCDore4z.071

1-11-5

Зх6 ш

Scale = 1:21.9

Scale = 1:21.9												
Loading TCLL (roof)	(psf) 25.0	Spacing Plate Grip DOL	2-0-0 1.15	CSI TC	0.11	DEFL Vert(LL)	in -0.02	(loc) 4	l/defl >999	L/d 360	PLATES MT20	GRIP 197/144
TCDL	10.0	Lumber DOL	1.15	BC	0.11	Vert(CT)	-0.04	4	>547	240		
BCLL	0.0*	Rep Stress Incr	YES	WB	0.00	Horz(CT)	0.01	3	n/a	n/a		
BCDL	10.0	Code	IRC2018/TPI2014	Matrix-R		Wind(LL)	0.00	4	>999	240	Weight: 6 lb	FT = 10%
LUMBER												
TOP CHORD	2x4 SPF No.2											
BOT CHORD	2x4 SPF No.2											
WEBS	2x4 SPF No.2											
BRACING TOP CHORD	Structural wood she	othing directly appli	od or									
TOP CHORD	1-11-5 oc purlins, e											
BOT CHORD	Rigid ceiling directly											
	bracing.											
		anical, 5=0-3-8										
	Max Horiz 5=36 (LC											
	Max Uplift 3=-19 (LC											
	Max Grav 3=60 (LC											
FORCES	(lb) - Maximum Corr Tension	ipression/waximum										
TOP CHORD	2-5=-136/81, 1-2=0/	23, 2-3=-18/15										
BOT CHORD	4-5=0/0	,										
NOTES												
	CE 7-16; Vult=115mph											
	nph; TCDL=6.0psf; BC											
	Enclosed; MWFRS (er left and right exposed											
	sed; Lumber DOL=1.6											
	has been designed fo											
	load nonconcurrent wi		ids.								S	Jan
	s has been designed f		Opsf								TATE OF	MISS
	tom chord in all areas									4	2 Mil	N'SON
	Il by 2-00-00 wide will any other members.	TIT between the bott	om							H	S NATH	ANIEL
	are assumed to be	SPF No.2.								H.	FC FC	
	irder(s) for truss to tru									' KA	HA	1 4 1 1
	echanical connection									X 4	A Alfano	
	ate capable of withstar	nding 59 lb uplift at j	oint							MH	VUran	DER JODO
	b uplift at joint 3.	anaa with the 2010								1/2	DE 202	2042259
	is designed in accordanal Residential Code s		and							N	FE-2022	AND ALLOS AND A
	and referenced stand									Y	1880	ENGL
											Nh Ular	FANA

LOAD CASE(S) Standard

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

						RELEASE FOR CONSTRUCTION
Job	Truss	Truss Type	Qty P	Plv	Lot 146 WO	AS NOTED FOR PLAN REVIEW
300	11035	Tuss Type	Quy 1	'y		DEVELOPMENT SERVICES 164360252
B240051	J4	Jack-Open	2 1	1	Job Reference (optional	LEFTE CUMMIT, MICCOURT
	•		• •			

Run: 8.73 S Feb 22 2024 Print: 8.730 S Feb 22 2024 MiTek Industries, Inc. Ved Mar 2002 Physical 1/2 20:24 ID:nGyPAkj26I5IF_265hzoCeznZmh-RfC?PsB70Hq3NSgPqnL8w3uITXbGKvrCDoi7.42JC7

1-2-0

-0-10-8	1-10-0
0-10-8	1-10-0

1-10-0

Scale = 1:21.6												
Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15	тс	0.08	Vert(LL)	0.00	4-5	>999	360	MT20	197/144
TCDL	10.0	Lumber DOL	1.15	BC	0.02	Vert(CT)	0.00	4-5	>999	240		
BCLL	0.0*	Rep Stress Incr	YES	WB	0.00	Horz(CT)	0.00	3	n/a	n/a		
BCDL	10.0	Code	IRC2018/TPI2014	Matrix-R		Wind(LL)	0.00	4-5	>999	240	Weight: 6 lb	FT = 10%

TOP CHORD	274 605	No 2	LOAD CASE(S)	Standard	
BOT CHORD					
WEBS	2x4 SFF 2x6 SPF				
BRACING	200 01 1	10.2			
TOP CHORD	Structura	I wood sheathing directly applied or			
		purlins, except end verticals.			
BOT CHORD	Rigid cei	ing directly applied or 10-0-0 oc			
	bracing.				
REACTIONS	(size)	3= Mechanical, 4= Mechanical, 5=0-3-8			
	Max Horiz	5=30 (LC 4)			
		3=-20 (LC 8), 5=-67 (LC 4)			
	Max Grav	3=37 (LC 1), 4=27 (LC 3), 5=176 (LC 1)			
FORCES	(lb) - Max Tension	kimum Compression/Maximum			
TOP CHORD		/76, 1-2=0/22, 2-3=-21/7			
BOT CHORD	4-5=0/0				
NOTES					
1) Wind: AS	CE 7-16; Vu	Ilt=115mph (3-second gust)			
		6.0psf; BCDL=6.0psf; h=25ft; Cat.			
		/WFRS (envelope) exterior zone;			
		nt exposed ; end vertical left and			
		er DOL=1.60 plate grip DOL=1.60 lesigned for a 10.0 psf bottom			
		ncurrent with any other live loads.			
		designed for a live load of 20.0psf			1
		n all areas where a rectangle			В
3-06-00 ta	all by 2-00-0	0 wide will fit between the bottom			2
	any other i			le la	5
		med to be SPF No.2 .			
		truss to truss connections.		l l l l l l l l l l l l l l l l l l l	14
		onnection (by others) of truss to of withstanding 67 lb uplift at joint		Y	λ
	b uplift at jo				0
		I in accordance with the 2018			
		tial Code sections R502.11.1 and			
Internatio	and refere	nced standard ANSI/TPI 1.			

16023 Swingley Ridge Rd. Chesterfield, MO 63017 314.434.1200 / MiTek-US.com

WARNING - Verify design parameters and KEAD KOTES ON THIS AND INCLUDED MITER KEFEKANCE PAGE MIL/473 rev. 1/2/20/3 BEFORE USE. Design valid for use only with MiTeR® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

S _____
						RELEASE FOR CONSTRUCTION
Job	Truss	Truss Type	Qty	Plv	Lot 146 WO	AS NOTED FOR PLAN REVIEW
000	11055		Guy	1 19		DEVELOPMENT SERVICES 164360253
B240051	J5	Jack-Closed Supported Gable	1	1	Job Reference (optional)	
			-			

Run: 8.73 S Feb 22 2024 Print: 8.730 S Feb 22 2024 MiTek Industries, Inc. Wed Mar @09999/51 1/2@24 ID:cwqR5L9r0oXEoIPF?DwNURz4SeW-RfC?PsB70Hq3NSgPqnL8w3uITXb6KWrCDor/J426267f

2-0-0

Scale = 1:22

Loading TCLL (roof) TCDL BCLL BCDL LUMBER TOP CHORD 2x2	(psf) 25.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES	CSI TC BC WB	0.07 0.02 0.00	DEFL Vert(LL) Vert(CT)	in n/a n/a	(loc) - -	l/defl n/a n/a	L/d 999 999	PLATES MT20	GRIP 197/144
TCLL (roof) TCDL BCLL BCDL LUMBER	25.0 10.0 0.0*	Plate Grip DOL Lumber DOL Rep Stress Incr	1.15 1.15 YES	TC BC	0.02	Vert(LL) Vert(CT)	n/a n/a	-	n/a	999		
TCDL BCLL BCDL	10.0 0.0*	Lumber DOL Rep Stress Incr	1.15 YES	BC	0.02	Vert(CT)	n/a	-				
BCLL BCDL	0.0*	Rep Stress Incr	YES									
BCDL						Horz(CT)	0.00	4	n/a	n/a		
		0000	IRC2018/TPI2014	Matrix-R		- (-)					Weight: 7 lb	FT = 10%
WEBS 2x4 BRACING TOP CHORD Str 2-C BOT CHORD Rig brack REACTIONS (size Max Max FORCES (lb) Tel TOP CHORD 2-5 BOT CHORD 4-5 BOT CHORD 4-5 NOTES 1) Wind: ASCE 7- Vasd=91mph; II; Exp C; Enclo cantilever left a right exposed; I 2) Truss designed only. For studs see Standard In or consult quali 3) Gable requires 4) Truss to be fully braced against 5) Gable studs sp 6) This truss has 1 chord live load	D-0 oc purlins, ex gid ceiling directly acing. e) 4=2-0-0, : (Horiz 5=49 (LC (Uplift 4=-14 (LC (Grav 4=56 (LC) - Maximum Com nsion 5=-150/76, 1-2=0/ 5=-15/10 -16; Vult=115mph TCDL=6.0psf; BC osed; MWFRS (er and right exposed Lumber DOL=1.6. d for wind loads in s exposed to winc ndustry Gable En ified building desi (continuous botto y sheathed from () lateral movemen paced at 2-0-0 oc. been designed fo nonconcurrent w	athing directly applie cept end verticals. applied or 10-0-0 oc 5=2-0-0 7) 5.5), 5=-65 (LC 4) 1), 5=170 (LC 1) pression/Maximum 23, 2-3=-35/6, 3-4=-4 (3-second gust) DL=6.0ps; h=25ft; C nvelope) exterior zon ; end vertical left and 0 plate grip DOL=1.6 n the plane of the tru: (normal to the face) d Details as applicab gner as per ANSI/TP m chord bearing. one face or securely t (i.e. diagonal web).	9) Provide r bearing p 5 and 14 10) This truss Internatio R802.10. LOAD CASE 41/21 Cat. le; d 30 ss , ple, 11.	Matrix-R nechanical connecti late capable of with lb uplift at joint 4. s is designed in acc nal Residential Coc 2 and referenced st (S) Standard	ion (by oth istanding 6 ordance w de sections	5 lb uplift at j ith the 2018 s R502.11.1 a	oint	4	n/a	n/a		MISSOUR

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

March 21,2024

						RELEASE FOR CONSTRUCTION
Job	Truss	Truss Type	Qty	Ply	Lot 146 WO	
B240051	J6	Jack-Closed	5	1	Job Reference (optional	DEVELOPMENT SERVICES 164360254 LEE'S SUMMIT, MISSOURI
					JOD Reference (optional	

Run: 8.73 S Feb 22 2024 Print: 8.730 S Feb 22 2024 MiTek Industries, Inc. Ved Mar 2009 15 1/2024 ID:cwqR5L9r0oXEoIPF?DwNURz4SeW-RfC?PsB70Hq3NSgPqnL8w3ulTXbsKWrCDw7J4z50?f

2x4 🛛

2-0-0

Scale = 1:22							•						
Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP	
TCLL (roof)	25.0	Plate Grip DOL	1.15	TC	0.07	Vert(LL)	0.00	4-5	>999	360	MT20	197/144	
TCDL	10.0	Lumber DOL	1.15	BC	0.02	Vert(CT)	0.00	4-5	>999	240			
BCLL	0.0*	Rep Stress Incr	YES	WB	0.00	Horz(CT)	0.00	4	n/a	n/a			
BCDL	10.0	Code	IRC2018/TPI2014	Matrix-R		Wind(LL)	0.00	4-5	>999	240	Weight: 7 lb	FT = 10%	
LUMBER													
TOP CHORD	2x4 SPF No.2												
BOT CHORD	2x4 SPF No.2												
WEBS	2x4 SPF No.2 *Exce	2x4 SPF No.2 *Except* 3-4:2x3 SPF No.2											
BRACING													
TOP CHORD	Structural wood she	athing directly appli	ed or										
	2-0-0 oc purlins, ex	cept end verticals.											
BOT CHORD	Rigid ceiling directly	applied or 10-0-0 o	с										
	bracing.												
REACTIONS	(size) 4= Mecha	anical, 5=0-3-8											
	Max Horiz 5=49 (LC 5)												
	Max Uplift 4=-14 (LC	C 5), 5=-65 (LC 4)											
	Max Grav 4=58 (LC	1), 5=171 (LC 1)											
FORCES	(lb) - Maximum Com	pression/Maximum											
	Tension												

Tension TOP CHORD 2-5=-151/76, 1-2=0/23, 2-3=-35/7, 3-4=-43/21 BOT CHORD 4-5=-15/10

NOTES

- Wind: ASCE 7-16; Vult=115mph (3-second gust) 1) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
- 2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 3) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- 4) All bearings are assumed to be SPF No.2
- Refer to girder(s) for truss to truss connections. 5)
- Provide mechanical connection (by others) of truss to 6) bearing plate capable of withstanding 65 lb uplift at joint 5 and 14 lb uplift at joint 4.
- This truss is designed in accordance with the 2018 7) International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard

 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.
 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not beign value of use only wan win exec connectors, this design is based only upon parameters shown, and is for an individual building domponent, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality** Criteria, and **DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcscomponents.com)

4-9-8 0-0-6

Scale = 1:25.2

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15	TC	0.63	Vert(LL)	-0.02	4-5	>999	360	MT20	197/144
TCDL	10.0	Lumber DOL	1.15	BC	0.14	Vert(CT)	-0.02	4-5	>999	240		
BCLL	0.0*	Rep Stress Incr	NO	WB	0.00	Horz(CT)	0.00	4	n/a	n/a		
BCDL	10.0	Code	IRC2018/TPI2014	Matrix-R		Wind(LL)	-0.02	4-5	>999	240	Weight: 16 lb	FT = 10%
		•		or other connecti			106				•	·

- TOP CHORD 2x4 SPF No.2

BOT CHORD 2x4 SPF No.2 2x4 SPF No.2 *Except* 3-4:2x3 SPF No.2 WEBS

BRACING		
TOP CHORD		l wood sheathing directly applied or purlins, except end verticals.
BOT CHORD	Rigid ceili bracing.	ing directly applied or 6-0-0 oc
REACTIONS	· · ·	4= Mechanical, 5=0-4-3 5=88 (LC 5)
	Max Uplift	4=-46 (LC 5), 5=-196 (LC 4)

Max Grav 4=156 (LC 15), 5=410 (LC 1) FORCES (Ib) - Maximum Compression/Maximum Tension TOP CHORD 2-5=-373/204, 1-2=0/45, 2-3=-90/34,

3-4=-110/63 BOT CHORD 4-5=-28/61

NOTES

- 1) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
- 2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 3) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- All bearings are assumed to be SPF No.2
- 5) Refer to girder(s) for truss to truss connections.
- Provide mechanical connection (by others) of truss to 6) bearing plate capable of withstanding 196 lb uplift at joint 5 and 46 lb uplift at joint 4.
- This truss is designed in accordance with the 2018 7) International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

provided sufficient to support concentrated load(s) 106 Ib down and 198 lb up at 1-6-5, and 70 lb down and 39 Ib up at 2-1-0, and 58 lb down and 39 lb up at 4-4-4 on top chord, and 0 lb down and 57 lb up at 1-6-5, and 5 lb down at 2-1-0, and 17 lb down and 2 lb up at 4-4-4 on bottom chord. The design/selection of such connection device(s) is the responsibility of others.

9) In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (F) or back (B).

LOAD CASE(S) Standard

- Dead + Roof Live (balanced): Lumber Increase=1.15, Plate Increase=1.15
 - Uniform Loads (lb/ft)
 - Vert: 1-2=-70, 2-3=-70, 4-5=-20
 - Concentrated Loads (lb)
 - Vert: 6=45 (B), 8=-1 (B), 9=30 (B), 10=-1 (F), 11=2
 - (B)

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not beigh valid for use only with with with sets outputs into design is based only door parameters shown, and is for an individual dualing component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria**, and **DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcscomponents.com)

Plate Offsets (X, Y): [2:0-2-8.0-1-12]

Plate Offsets	(X, Y): [2:0-2-8,0-1-12	2]			-								
Loading TCLL (roof) TCDL BCLL BCDL	(psf) 25.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 NO IRC2018/	TPI2014	CSI TC BC WB Matrix-R	0.63 0.17 0.00	DEFL Vert(LL) Vert(CT) Horz(CT) Wind(LL)	in 0.02 -0.02 0.00 -0.02	(loc) 4-5 4-5 4 4-5	l/defl >999 >999 n/a >999	L/d 360 240 n/a 240	PLATES MT20 Weight: 16 lb	GRIP 197/144 FT = 10%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD REACTIONS FORCES TOP CHORD	2x4 SPF No.2 2x4 SPF No.2 *Exce Structural wood she 4-9-14 oc purlins, e Rigid ceiling directly bracing. (size) 4= Mecha Max Horiz 5=88 (LC Max Uplift 4=-41 (LC Max Grav 4=155 (LC (Ib) - Maximum Com Tension 2-5=-351/188, 1-2=0 3-4=-106/59	athing directly appli xcept end verticals. applied or 6-0-0 oc anical, 5=0-4-9 5) 5), 5=-180 (LC 4) C 15), 5=389 (LC 1) apression/Maximum	.2 ed or 9) LOA 1)	provided suff lb down and lb up at 2-1- top chord, ar lb down and up at 4-4-4 of such connecc In the LOAD of the truss a AD CASE(S) Dead + Roo Plate Increa Uniform Lo: Vert: 1-2 Concentrate	of Live (balanced ase=1.15	concentra -5, and 75 n and 39 57 lb up a), and 17 The desi the respon n, loads ap (F) or ba): Lumber 5=-20	ted load(s) 1 ib down and b up at 4-4 at 1-6-5, and b down and i gn/selection isbility of oth oplied to the ck (B). Increase=1.	i 140 4 on 15 2 Ib of ners. face 15,					
Vasd=91r II; Exp C; cantilever right expc 2) This truss chord live 3) * This trus on the boi 3-06-00 tt chord and 4) All bearin 5) Refer to g 6) Provide m	4-5=-55/63 CE 7-16; Vult=115mph mph; TCDL=6.0psf; BC Enclosed; MWFRS (er r left and right exposed seed; Lumber DOL=1.6 s has been designed fo load nonconcurrent wi ss has been designed fo ttom chord in all areas all by 2-00-00 wide will by 2-00-00 wide will by 2-00-00 wide will by 2-00-00 wide will by 2-00-00 wide will to any other members. gs are assumed to be S girder(s) for truss to tru- nechanical connection (late canable of withstar	DL=6.0psf; h=25ft; invelope) exterior zor ; end vertical left an 0 plate grip DOL=1. r a 10.0 psf bottom ith any other live loa for a live load of 20.0 where a rectangle fit between the botto SPF No.2. ss connections. (by others) of truss t	ne; d 60 ds. Dpsf om 0							•		STRIE OF	BER HER

bearing plate capable of withstanding 180 lb uplift at joint 5 and 41 lb uplift at joint 4. 7) This truss is designed in accordance with the 2018

International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent colleges with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

						RELEASE FOR CONSTRUCTION
Job	Truss	Truss Type	Qty	Ply	Lot 146 WO	AS NOTED FOR PLAN REVIEW
B240051	J9	Jack-Open	2	1	Job Reference (optional	DEVELOPMENT SERVICES 164360257 LEE'S SUMMIT, MISSOURI
Wheeler Lumber, Wave	erly, KS - 66871,	Run: 8.73 S ID:cwqR5L9	Feb 22 2024 Print: r0oXEoIPF?DwNUF	8.730 S Fel Rz4SeW-RfC	b 22 2024 MiTek Industries, Inc. \ C?PsB70Hq3NSgPqnL8w3uITXb	/ed Mar 2009;09/151 1/2*0:24 6KWrCD6#J4250?f
		-1-10-8	1	3-0-3		
		1-10-8		3-0-3		

					3-0-3							
Scale = 1:22.2												
Loading TCLL (roof)	(psf) 25.0	Spacing Plate Grip DOL	2-0-0 1.15	CSI TC	0.28	DEFL Vert(LL)	in 0.00	(loc) 4-5		PLATES MT20	GRIP 197/144	

		IRC2018/TPI2014	WB Matrix-R	0.00	Vert(CT) Horz(CT) Wind(LL)	-0.01 0.00 0.00	4-5 3 4-5	>999 n/a >999	240 n/a 240	Weight: 10 lb	FT = 10%
3-0-3 oc purlins, e BOT CHORD Rigid ceiling direct bracing.	y applied or 10-0-0 oc anical, 4= Mechanica C 4)		Standard								
Max Grav 3=60 (LC (LC 1)	 c 1), 4=48 (LC 3), 5=3 npression/Maximum 0/45, 2-3=-43/13 n (3-second gust) CDL=6.0psf; h=25ft; C novelope) exterior zon 1; end vertical left and 50 plate grip DOL=1.6 or a 10.0 psf bottom it any other live load for a live load of 20.0 where a rectangle If between the botto SPF No.2. uss connections. (by others) of truss to inding 120 lb uplift at ance with the 2018 sections R502.11.1 ar 	cat. e; d SO ds. psf m								PE-2022	BER VALUE

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent toules bible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

2x4 🛛

2-2-0

					3-6-0			_				
Scale = 1:22.5												
Loading	(psf)	Spacing	2-0-0	CSI	 DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP	

Loading TCLL (roof) TCDL BCLL BCDL	(psf) 25.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018/TPI2014	CSI TC BC WB Matrix-R	0.28 0.08 0.00	DEFL Vert(LL) Vert(CT) Horz(CT) Wind(LL)	in -0.01 -0.01 0.00 0.00	(loc) 4-5 4-5 3 4-5	l/defl >999 >999 n/a >999	L/d 360 240 n/a 240	PLATES MT20 Weight: 11 lb	GRIP 197/144 FT = 10%
LUMBER TOP CHORD 2x4 SPF N BOT CHORD 2x4 SPF N WEBS 2x4 SPF N BRACING TOP CHORD Structural 3-6-0 oc p BOT CHORD Rigid ceili bracing. REACTIONS (size) Max Horiz Max Uplift	No.2 No.2 No.2 wood she purlins, exi ng directly 3= Mecha 5=0-3-8 5=69 (LC 3=-45 (LC	athing directly applie sept end verticals. applied or 10-0-0 oc nical, 4= Mechanica	LOAD CASE(S) d or l,									
Tension	inum Com 143, 1-2=0 143, 1-2=0 143, 1-2=0 144, 1-2	DL=6.0psf; h=25ft; C ivelope) exterior zon ; end vertical left and 0 plate grip DOL=1.6 a 10.0 psf bottom th any other live load or a live load of 20.0 where a rectangle fit between the botto SPF No.2. ss connections. by others) of truss to iding 119 lb uplift at j ance with the 2018 ections R502.11.1 ar	e; 1 00 Is. psf m							N	PE-20220	BER JACK

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

						RELEASE FOR CONSTRUCTION
Job	Truss	Truss Type	Qty	Ply	Lot 146 WO	AS NOTED FOR PLAN REVIEW
D240054	14.4			1		DEVELOPMENT SERVICES 164360259
B240051	J11	Jack-Open	2	'	Job Reference (optional	

1-4-1

Run: 8.73 S Feb 22 2024 Print: 8.730 S Feb 22 2024 MiTek Industries, Inc. Ved Mar 2009, 11 1/2024 ID:gXihhf7bUBHWZRFstotvP0z4SeY-RfC?PsB70Hq3NSgPqnL8w3uITXbGK/wrCDoi794zJC?

2x4 II

Scale = 1:23.9

00010 - 1.20.0													
Loading	(p	sf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25	5.0	Plate Grip DOL	1.15	TC	0.28	Vert(LL)	0.00	4-5	>999	360	MT20	197/144
TCDL	1(0.0	Lumber DOL	1.15	BC	0.06	Vert(CT)	0.00	4-5	>999	240		
BCLL	(0.0*	Rep Stress Incr	YES	WB	0.00	Horz(CT)	0.00	3	n/a	n/a		
BCDL	1(0.0	Code	IRC2018/TPI2014	Matrix-R		Wind(LL)	0.00	4-5	>999	240	Weight: 5 lb	FT = 10%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD	1-0-3 oc purlin Rigid ceiling di bracing.	s, exe rectly	athing directly applied cept end verticals. applied or 10-0-0 oc	Internation R802.10.2 LOAD CASE(is designed in ac al Residential Co and referenced S) Standard	ode sections	R502.11.1	and					
REACTIONS	(size) 3= N 5=0-		inical, 4= Mechanical,	3									
	Max Horiz 5=3	9 (LC	5)										
	Max Uplift 3=-9 (LC		C 1), 4=-29 (LC 1), 5=-	-169									

(LC 1) FORCES (lb) - Maximum Compression/Maximum Tension TOP CHORD 2-5=-300/167, 1-2=0/45, 2-3=-50/18

Max Grav

BOT CHORD 4-5=0/0

NOTES

1) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60

3=56 (LC 4), 4=13 (LC 4), 5=347

- 2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 3) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- All bearings are assumed to be SPF No.2 . 4)
- 5) Refer to girder(s) for truss to truss connections.
- 6) Provide mechanical connection (by others) of truss to
- bearing plate capable of withstanding 169 lb uplift at joint 5, 29 lb uplift at joint 4 and 99 lb uplift at joint 3.

 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.
 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not beigh valid for use only with with with sets outputs into design is based only door parameters shown, and is for an individual dualing component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria**, and **DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcscomponents.com)

						RELEASE FOR CONSTRUCTION
Job	Truss	Truss Type	Qty	Plv	Lot 146 WO	AS NOTED FOR PLAN REVIEW
000	11035	Truss Type	Gity	1 19		DEVELOPMENT SERVICES 164360260
B240051	J12	Jack-Open	1	1	Job Reference (optional	
					-	04/44/0004

2

Wheeler Lumber, Waverly, KS - 66871,

1-5-10

0-8-0

Run: 8.73 S Feb 22 2024 Print: 8.730 S Feb 22 2024 MiTek Industries, Inc. Ved Mar 2009 her 1/2 2024 MiTek Industries, Inc. Ved Mar 2009 her 1/2 2024 ID:gXihhf7bUBHWZRFstotvP0z4SeY-RfC?PsB70Hq3NSgPqnL8w3uITXbGK WrCDoi794zJC?

3

4

				ŀ	2	-4-15						
Scale = 1:22.3		<u>. </u>										
Loading	(psf)	Spacing	2-0-0	CSI	ļ	DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15	TC	0.07	Vert(LL)	0.00	4-5	>999	360	MT20	197/144
TCDL	10.0	Lumber DOL	1.15	BC	0.04	Vert(CT)	0.00	4-5	>999	240		
BCLL	0.0*	Rep Stress Incr	YES	WB	0.00	Horz(CT)	0.00	3	n/a	n/a		
BCDL	10.0	Code	IRC2018/TPI2014	Matrix-R	,	Wind(LL)	0.00	4-5	>999	240	Weight: 7 lb	FT = 10%

3x6 ш

LUMBER TOP CHORD	2x4 SPF I		LOAD CASE(S)	Stanuaru	
BOT CHORD					
WEBS	2x4 SPF I 2x4 SPF I				
	2X4 SPF I	N0.2			
BRACING	o				
TOP CHORD	2-4-15 oc	wood sheathing directly applied or purlins, except end verticals.			
BOT CHORD	Rigid ceili bracing.	ng directly applied or 10-0-0 oc			
REACTIONS	(size)	3= Mechanical, 4= Mechanical, 5=0-3-8			
	Max Horiz	5=42 (LC 4)			
		3=-32 (LC 8), 5=-60 (LC 4)			
		3=62 (LC 1), 4=40 (LC 3), 5=187 (LC 1)			
FORCES	· · /	imum Compression/Maximum			
TOP CHORD	Tension	78, 1-2=0/23, 2-3=-31/15			
BOT CHORD	4-5=0/0	78, 1-2=0/23, 2-3=-31/13			
	4-5=0/0				
NOTES					
		It=115mph (3-second gust) 6.0psf; BCDL=6.0psf; h=25ft; Cat.			
		WFRS (envelope) exterior zone;			
		it exposed ; end vertical left and			
		r DOL=1.60 plate grip DOL=1.60			
		esigned for a 10.0 psf bottom			
		ncurrent with any other live loads.			
		designed for a live load of 20.0psf			
on the bot	tom chord ir	n all areas where a rectangle			
		0 wide will fit between the bottom			
	any other n				
		ned to be SPF No.2.			
		truss to truss connections.			
		onnection (by others) of truss to			
	b uplift at joi	of withstanding 60 lb uplift at joint			
		in accordance with the 2018			
		ial Code sections R502.11.1 and			
		nced standard ANSI/TPI 1.			

16023 Swingley Ridge Rd. Chesterfield, MO 63017 314.434.1200 / MiTek-US.com

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent buckling be personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcscomponents.com)

						RELEASE FOR CONSTRUCTION
Job	Truss	Truss Type	Qty	Ply	Lot 146 WO	AS NOTED FOR PLAN REVIEW
D040054	140			4		DEVELOPMENT SERVICES 164360261
B240051	J13	Jack-Open	1	1	Job Reference (optional	LEE'S SUMMIT, MISSOURI
	140 00074	n i i i i i i i i i i i i i i i i i i i	0 70 0 E.L 00 0004 D.L 0			www.contaket 4 1000 0 1

Run: 8.73 S Feb 22 2024 Print: 8.730 S Feb 22 2024 MiTek Industries, Inc. Ved Mar 2009, 11 1/2024 ID:gXihhf7bUBHWZRFstotvP0z4SeY-RfC?PsB70Hq3NSgPqnL8w3uITXbGK/wrCDoi794zJC?

1-4-15

Scale	- 1	1.21	

Scale = 1:21												
Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15	тс	0.28	Vert(LL)	0.00	4-5	>999	360	MT20	197/144
TCDL	10.0	Lumber DOL	1.15	BC	0.07	Vert(CT)	0.00	4-5	>999	240		
BCLL	0.0*	Rep Stress Incr	YES	WB	0.00	Horz(CT)	0.00	3	n/a	n/a		
BCDL	10.0	Code	IRC2018/TPI2014	Matrix-R		Wind(LL)	0.00	4-5	>999	240	Weight: 6 lb	FT = 10%
BOT CHORD												

VVEBS	2X4 SPF I	N0.2
BRACING		
TOP CHORD		wood sheathing directly applied or
		purlins, except end verticals.
BOT CHORD	Rigid ceili bracing.	ing directly applied or 10-0-0 oc
REACTIONS	(size)	3= Mechanical, 4= Mechanical,
		5=0-3-8
	Max Horiz	5=43 (LC 5)
	Max Uplift	3=-41 (LC 1), 4=-17 (LC 1), 5=-144
		(LC 4)
	Max Grav	3=24 (LC 4), 4=15 (LC 3), 5=312
		(LC 1)
FORCES	(lb) - Max	imum Compression/Maximum
	Tension	
TOP CHORD	2-5270/	115 1-2-0/15 2-3-11/7

TOP CHORD 2-5=-270/145, 1-2=0/45, 2-3=-41/7 BOT CHORD 4-5=0/0

NOTES

- 1) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
- This truss has been designed for a 10.0 psf bottom 2) chord live load nonconcurrent with any other live loads.
- 3) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- All bearings are assumed to be SPF No.2 . 4)
- 5) Refer to girder(s) for truss to truss connections.
- 6) Provide mechanical connection (by others) of truss to
- bearing plate capable of withstanding 144 lb uplift at joint 5, 17 lb uplift at joint 4 and 41 lb uplift at joint 3.

 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.
 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not beigh valid for use only with with with sets outputs into design is based only door parameters shown, and is for an individual dualing component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria**, and **DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcscomponents.com)

Scale =	1:21.3
---------	--------

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15	TC	0.63	Vert(LL)	0.00	4-5	>999	360	MT20	197/144
TCDL	10.0	Lumber DOL	1.15	BC	0.10	Vert(CT)	0.00	4-5	>999	240		
BCLL	0.0*	Rep Stress Incr	NO	WB	0.00	Horz(CT)	0.00	4	n/a	n/a		
BCDL	10.0	Code	IRC2018/TPI2014	Matrix-R		Wind(LL)	0.00	4-5	>999	240	Weight: 10 lb	FT = 10%

- LU TOP CHORD
- 2x4 SPF No.2 BOT CHORD 2x4 SPF No.2
- 2x4 SPF No.2 *Except* 3-4:2x3 SPF No.2 WEBS
- BRACING TOP CHORD Structural wood sheathing directly applied or 2-5-10 oc purlins, except end verticals. BOT CHORD Rigid ceiling directly applied or 6-0-0 oc bracing. REACTIONS (size) 4= Mechanical, 5=0-4-9
- Max Horiz 5=78 (LC 7) Max Uplift 4=-24 (LC 1), 5=-206 (LC 4) Max Grav 4=50 (LC 4), 5=419 (LC 1) FORCES (lb) - Maximum Compression/Maximum
- Tension TOP CHORD 2-5=-367/205, 1-2=0/45, 2-3=-25/34, 3-4=-22/16 BOT CHORD 4-5=-41/38

NOTES

- 1) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
- This truss has been designed for a 10.0 psf bottom 2) chord live load nonconcurrent with any other live loads.
- 3) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- 4) All bearings are assumed to be SPF No.2 .
- Refer to girder(s) for truss to truss connections. 5)
- Provide mechanical connection (by others) of truss to 6) bearing plate capable of withstanding 206 lb uplift at joint 5 and 24 lb uplift at joint 4.
- This truss is designed in accordance with the 2018 7) International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not beigh valid for use only with with with sets outputs into design is based only door parameters shown, and is for an individual dualing component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria**, and **DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcscomponents.com)

						RELEASE FOR CONSTRUCTION
Job	Truss	Truss Type	Qty	Ply	Lot 146 WO	AS NOTED FOR PLAN REVIEW DEVELOPMENT SERVICES
B240051	J15	Jack-Open	1	1	Job Reference (optional	DEVELOPMENT SERVICES 164360263 LEE'S SUMMIT, MISSOURI
Wheeler Lumber, Waverly, KS	- 66871,				2 2024 MiTek Industries, Inc. \ PsB70Hq3NSqPqnL8w3uITXI	

Run: 8.73 S Feb 22 2024 Print: 8.730 S Feb 22 2024 MiTek Industries, Inc. Ved Mar 2009 19 N ID:8kG3u?8DFUPNAbq2RWO8yEz4SeX-RfC?PsB70Hq3NSgPqnL8w3uITX GKWrCber7J4zcC?f

2x4 🛛

1-10-0

Scale = 1:20.5				1								
Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15	тс	0.04	Vert(LL)	0.00	3-4	>999	360	MT20	197/144
TCDL	10.0	Lumber DOL	1.15	BC	0.02	Vert(CT)	0.00	3-4	>999	240		
BCLL	0.0*	Rep Stress Incr	YES	WB	0.00	Horz(CT)	0.00	2	n/a	n/a		
BCDL	10.0	Code	IRC2018/TPI2014	Matrix-R		Wind(LL)	0.00	3-4	>999	240	Weight: 5 lb	FT = 10%

	214 605	No 2	LOAD CASE(S)	Standard
TOP CHORD BOT CHORD				
WEBS	2x4 SPF 2x4 SPF			
	284 366	N0.2		
BRACING TOP CHORD	Structure	I wood sheathing directly applied or		
TOF CHORD		purlins, except end verticals.		
BOT CHORD		ing directly applied or 10-0-0 oc		
REACTIONS	•	2= Mechanical, 3= Mechanical, 4=0-3-8		
	Max Horiz	4=32 (LC 5)		
	Max Uplift	2=-29 (LC 8), 4=-3 (LC 4)		
	Max Grav	2=55 (LC 1), 3=32 (LC 3), 4=75 (LC 1)		
FORCES	(lb) - Max Tension	kimum Compression/Maximum		
TOP CHORD		19, 1-2=-22/14		
BOT CHORD		-, -		
NOTES				
1) Wind: AS	CE 7-16: Vu	Ilt=115mph (3-second gust)		
		=6.0psf; BCDL=6.0psf; h=25ft; Cat.		
II; Exp C;	Enclosed; M	/WFRS (envelope) exterior zone;		
cantilever	left and right	nt exposed ; end vertical left and		
		er DOL=1.60 plate grip DOL=1.60		
		lesigned for a 10.0 psf bottom		
		ncurrent with any other live loads.		
		designed for a live load of 20.0psf		
		n all areas where a rectangle		
		0 wide will fit between the bottom		
	any other r	med to be SPF No.2 .		
		truss to truss connections.		
		connection (by others) of truss to		
		of withstanding 3 lb uplift at joint 4		
	uplift at join			
		in accordance with the 2018		
,	0	tial Code sections R502.11.1 and		
R802.10.2	2 and refere	nced standard ANSI/TPI 1.		

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TFI1 Quality Criteria**, and **DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcscomponents.com)

					4-9-14				_		
Scale = 1:22.5											
Loading	(psf)	Spacing	2-0-0	CSI	DEFL	in	(loc)	l/defl		GRIP	

	aing	(psi)	Spacing	2-0-0	LSI		DEFL	In	(100)	i/dell	L/u		GRIP
	L (roof)	25.0	Plate Grip DOL	1.15	TC	0.34	Vert(LL)	-0.02	4-5	>999	360	MT20	197/144
TCD		10.0	Lumber DOL	1.15	BC	0.17	Vert(CT)	-0.03	4-5	>999	240		
BCL	L	0.0*	Rep Stress Incr	NO	WB	0.00	Horz(CT)	0.00	4	n/a	n/a		
BCD	DL	10.0	Code	IRC2018/TPI2014	Matrix-R		Wind(LL)	0.00	4-5	>999	240	Weight: 15 lb	FT = 10%
	IBER												
	CHORD	2x4 SPF No.2											
	CHORD	2x4 SPF No.2 2x4 SPF No.2											
WEE		2x4 SPF No.2 *Exce	ent* 3-4·2x3 SPF No	2									
		EXTOT TO:2 EXO											
	CHORD	Structural wood she	athing directly applie	ed or									
101	ONORD	4-9-14 oc purlins, et											
вот	CHORD	Rigid ceiling directly		0									
		bracing.											
REA	CTIONS	(size) 4= Mecha	anical, 5=0-4-9										
	1	Max Horiz 5=84 (LC	7)										
	I	Max Uplift 4=-34 (LC	28), 5=-141 (LC 4)										
	I	Max Grav 4=172 (LC	C 1), 5=386 (LC 1)										
FOR	CES	(lb) - Maximum Com	pression/Maximum										
		Tension											
TOP	CHORD	2-5=-340/169, 1-2=0)/34, 2-3=-79/13,										
DOT		3-4=-126/57											
	CHORD	4-5=-22/28											
NOT			(a										
		E 7-16; Vult=115mph		2-4									
		ph; TCDL=6.0psf; BC Enclosed; MWFRS (er											
		eft and right exposed											
		ed; Lumber DOL=1.6											
		has been designed for										Sun	all
, í	chord live le	oad nonconcurrent wi	th any other live loa	ds.								POF I	MISC
		has been designed f)psf							1	STATE OF I	W.OS
		om chord in all areas									A	A NATURA	New Yar
		by 2-00-00 wide will	fit between the botto	om							A	S/ NATHA	TIMEL VY
		any other members.									K	FO	X
		s are assumed to be S									N/	1 1 4	1 TAX
,	0	der(s) for truss to trus		-							2	AT1	
6) I	FIOVIDE ME	echanical connection ((by others) or truss t	0							4	MI / IN A An IA	

 5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 141 lb uplift at joint 5 and 34 lb uplift at joint 4.

7) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent oulgase with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

2x4 🛚

2x4 🛛

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15	TC	0.28	Vert(LL)	0.00	4-5	>999	360	MT20	197/144
TCDL	10.0	Lumber DOL	1.15	BC	0.08	Vert(CT)	-0.01	4-5	>999	240		
BCLL	0.0*	Rep Stress Incr	YES	WB	0.00	Horz(CT)	0.00	4	n/a	n/a		
BCDL	10.0	Code	IRC2018/TPI2014	Matrix-R		Wind(LL)	0.00	4-5	>999	240	Weight: 12 lb	FT = 10%
		•		•								

LUMBER

Scale = 1:22.5

- TOP CHORD 2x4 SPF No.2
- BOT CHORD
 2x4 SPF No.2

 WEBS
 2x4 SPF No.2 *Except* 3-4:2x3 SPF No.2
- BRACING
- BRACING

 TOP CHORD
 Structural wood sheathing directly applied or 3-6-0 oc purlins, except end verticals.

 BOT CHORD
 Rigid ceiling directly applied or 10-00 oc bracing.
- REACTIONS
 (size)
 4= Mechanical, 5=0-3-8

 Max Horiz
 5=92 (LC 5)

 Max Uplift
 4=-24 (LC 5), 5=-130 (LC 4)

 Max Grav
 4=102 (LC 1), 5=332 (LC 1)

 FORCES
 (lb) Maximum Compression/Maximum Tension
- TOP CHORD 2-5=-293/149, 1-2=0/45, 2-3=-65/13, 3-4=-76/39 BOT CHORD 4-5=-27/21

NOTES

- Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- 4) All bearings are assumed to be SPF No.2 .
- 5) Refer to girder(s) for truss to truss connections.
- Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 130 lb uplift at joint 5 and 24 lb uplift at joint 4.
- This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPH Claulity Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

Loading	(psf)	Spacing	2-0-0	csi		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15	TC	0.85	Vert(LL)	-0.05	5-6	>999	360	MT20	197/144
TCDL	10.0	Lumber DOL	1.15	BC	0.43	Vert(CT)	-0.09	5-6	>999	240		
BCLL	0.0*	Rep Stress Incr	NO	WB	0.21	Horz(CT)	0.01	5	n/a	n/a		
BCDL	10.0	Code	IRC2018/TPI2014	Matrix-S		Wind(LL)	0.05	5-6	>999	240	Weight: 32 lb	FT = 10%
			, , ,	r other connecti	```	/	73 lh					

LUM	BE	R
TOD	CL	

- CHORD 2x4 SPF No.2
- BOT CHORD 2x4 SPF No.2
- 2x3 SPF No.2 *Except* 7-2:2x4 SPF No.2 WEBS BRACING TOP CHORD Structural wood sheathing directly applied or 6-0-0 oc purlins, except end verticals. BOT CHORD Rigid ceiling directly applied or 10-0-0 oc
- bracing. REACTIONS (size) 5= Mechanical, 7=0-7-6 Max Horiz 7=132 (LC 7)
- Max Uplift 5=-116 (LC 8), 7=-212 (LC 4) Max Grav 5=514 (LC 1), 7=645 (LC 1) FORCES (Ib) - Maximum Compression/Maximum Tension TOP CHORD 2-7=-555/229, 1-2=0/45, 2-3=-542/90, 3-4=-88/34, 4-5=-210/92
- BOT CHORD 6-7=-119/452, 5-6=-119/452 WEBS 3-6=0/202 3-5=-477/120 NOTES
- Wind: ASCE 7-16; Vult=115mph (3-second gust) 1) Vasd=91mph: TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
- This truss has been designed for a 10.0 psf bottom 2) chord live load nonconcurrent with any other live loads.
 This truss has been designed for a live load of 20.0psf
- 3) on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- All bearings are assumed to be SPF No.2 4)
- Refer to girder(s) for truss to truss connections. 5)
- Provide mechanical connection (by others) of truss to 6) bearing plate capable of withstanding 212 lb uplift at joint 7 and 116 lb uplift at joint 5.
- This truss is designed in accordance with the 2018 7) International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

provided sufficient to support concentrated load(s) 73 lb down and 73 lb up at 2-8-7, 70 lb down and 28 lb up at 3-7-12, 87 lb down and 58 lb up at 5-6-6, and 98 lb down and 67 lb up at 6-5-11, and 119 lb down and 79 lb up at 8-4-5 on top chord, and 12 lb down and 16 lb up at 2-8-7, 8 lb down and 10 lb up at 3-7-12, 19 lb down at 5-6-6, and 26 lb down at 6-5-11, and 61 lb down at 8-4-5 on bottom chord. The design/selection of such connection device(s) is the responsibility of others.

9) In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (F) or back (B).

LOAD CASE(S) Standard

- Dead + Roof Live (balanced): Lumber Increase=1.15, 1) Plate Increase=1.15
 - Uniform Loads (lb/ft)
 - Vert: 1-2=-70, 2-4=-70, 5-7=-20
 - Concentrated Loads (lb)
 - Vert: 3=-1 (B), 6=-2 (B), 10=-21 (F), 11=-92 (B),
 - 13=10 (F), 14=-12 (F), 15=-39 (B)

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponent.com)

BOT CHORD		purlins, except end verticals. ing directly applied or 10-0-0 oc
	bracing.	
REACTIONS	(size)	3= Mechanical, 4= Mechanical,

		5=0-3-8
	Max Horiz	5=111 (LC 4)
	Max Uplift	3=-92 (LC 8), 5=-127 (LC 4)
	Max Grav	3=193 (LC 1), 4=119 (LC 3), 5=452
		(LC 1)
FORCES	(lb) - Max	imum Compression/Maximum

FORCES

Tension TOP CHORD 2-5=-396/181, 1-2=0/45, 2-3=-87/47 BOT CHORD 4-5=0/0

NOTES

- Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
 * This truss has been designed for a live load of 20.0psf
- This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- 4) All bearings are assumed to be SPF No.2 .
- Refer to girder(s) for truss to truss connections.
 Provide mechanical connection (by others) of truss to
- bearing plate capable of withstanding 127 lb uplift at joint 5 and 92 lb uplift at joint 3.
- 7) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTPIT Quality Criteria, and DSE-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcscomponents.com)

										RELEASE	FOR CONSTRUCTION	
Job	Truss	3	Truss Type		Qty	Ply	Lot	146 WO			D FOR PLAN REVIEW	7
B240051	J20		Jack-Open		3	1	Joh	Reference (op	tional		OPMENT SERVICES 164360268 SUMMIT, MISSOURI	
Wheeler Lumber,	Waverly, KS - 66871,			Run: 8.73 S Feb 22			22 202	4 MiTek Industries	s, Inc. \			
				ID:8kG3u?8DFUPN	Abq2RWO8	yEz4SeX-Rf	C?PsB7	0Hq3NSgPqnL8w	/3uITXI	GKWrCDef7J4zJC?	f 1/202	
			-1-10-8			-10-3						
			1-10-8	l	5	-10-3						
						10						
						1 <u>2</u> 4			3	_		
									M			
	<u>ہ</u>			3x4 II						6 6		
	2-11-6		:	2						2-11-6		
		0		P								
		1-0-0	5	•								
			5						1\) 1	_		
				\bowtie					4			
				3x4 u								
				I	5	-10-3			1			
Scale = 1:24.2												
Loading	(psf)	Spacing	2-0-0	CSI	DE		in	(loc) l/defl	L/d	PLATES	GRIP	
TCLL (roof) TCDL	25.0 10.0	Plate Grip DOL Lumber DOL	1.15 1.15			. ,	0.05 0.10	4-5 >999 4-5 >681	360 240	MT20	197/144	
BCLL BCDL	0.0* 10.0	Rep Stress Incr Code	YES IRC2018/TPI2014	WB Matrix-R		z(CT) nd(LL)	0.04 0.04	3 n/a 4-5 >999	n/a 240	Weight: 17 lb	FT = 10%	
LUMBER	· ·	4	LOAD CASE(S	5) Standard	<u>!</u>			• •		-		
TOP CHORD BOT CHORD	2x4 SPF No.2 2x4 SPF No.2											
WEBS BRACING	2x4 SPF No.2											
TOP CHORD		eathing directly applied except end verticals.										
BOT CHORD		ly applied or 10-0-0 o										
REACTIONS	(size) 3= Mech	nanical, 4= Mechanica	al,									
	5=0-3-8 Max Horiz 5=101 (I											
	Max Grav 3=168 (.C 8), 5=-123 (LC 4) _C 1), 4=104 (LC 3),	5=421									
FORCES	(LC 1) (Ib) - Maximum Co	mpression/Maximum										
TOP CHORD	Tension 2-5=-369/171, 1-2=	=0/45, 2-3=-77/40										
BOT CHORD NOTES	4-5=0/0											
1) Wind: ASC	E 7-16; Vult=115mp	h (3-second gust) CDL=6.0psf; h=25ft;	Cat									
II; Exp C; E	nclosed; MWFRS (envelope) exterior zoi d ; end vertical left an	ne;									
right expos	ed; Lumber DOL=1.	60 plate grip DOL=1. or a 10.0 psf bottom	60							OF I	ADD -	
chord live l	oad nonconcurrent	with any other live load							A	ATE	AISSOL	
on the bott	om chord in all area								A	S NATHA		
chord and a	any other members.								AL		"And	
5) Refer to gir	s are assumed to be der(s) for truss to ti	uss connections.							X.	alhan	BER TON	
bearing pla	te capable of withst	n (by others) of truss t anding 123 lb uplift at							N	PE-2022		
This truss i		dance with the 2018							Y	23237	NOT	
	al Residential Code and referenced star	sections R502.11.1 a Idard ANSI/TPI 1.	and							SIONA	LEI	
										March	21,2024	

March 21,2024

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

MiTek[®] 16023 Swingley Ridge Rd. Chesterfield, MO 63017 314.434.1200 / MiTek-US.com

					3-10-3					
				İ						
										 _
(nef)	Spacing	2-0-0	C SI		DEEL	in	(loc)	l/dofl	L/d	-

Scale = 1:22.8

Loading TCLL (roof)	(psf) 25.0	Spacing Plate Grip DOL	2-0-0 1.15	CSI TC	0.28	DEFL Vert(LL)	in -0.01	(loc) 4-5	l/defl >999	L/d 360	PLATES MT20	GRIP 197/144
TCDL	10.0	Lumber DOL	1.15		0.11	Vert(CT)	-0.02	4-5	>999	240		
BCLL	0.0*	Rep Stress Incr	YES		0.00	Horz(CT)	0.01	3	n/a	n/a		
BCDL	10.0	Code	IRC2018/TPI2014	Matrix-R		Wind(LL)	0.00	4-5	>999	240	Weight: 12 lb	FT = 10%
LUMBER			LOAD CASE(S)	Standard								
TOP CHORD	2x4 SPF No.2 2x4 SPF No.2											
BOT CHORD WEBS	2x4 SPF No.2 2x4 SPF No.2											
BRACING	2.4. 01. 11012											
TOP CHORD		eathing directly applie	ed or									
		except end verticals.	_									
BOT CHORD	Rigid ceiling directi bracing.	y applied or 10-0-0 or	0									
REACTIONS	0	anical, 4= Mechanica	al.									
	5=0-3-8		,									
	Max Horiz 5=74 (LC											
	Max Uplift 3=-50 (L Max Gray 3-95 (L	C 8), 5=-119 (LC 4) C 1), 4=65 (LC 3), 5=3	845									
	(LC 1)	, 1, 1–00 (20 0), 0–0										
FORCES		mpression/Maximum										
	Tension	0/45 2 2 52/22										
TOP CHORD BOT CHORD	2-5=-302/146, 1-2= 4-5=0/0	:0/45, 2-3=-52/22										
NOTES	10-0/0											
	CE 7-16; Vult=115mp	h (3-second gust)										
		CDL=6.0psf; h=25ft; 0										
		nvelope) exterior zor d ; end vertical left and										
		60 plate grip DOL=1.6									San	alle
,	has been designed for										F OF J	MISSO
		vith any other live load								6	TATEOF	-00 W
	tom chord in all areas	for a live load of 20.0	ipsi							H	S NATHA	ANIEL CEN
		I fit between the botto	m							K	7 FO	
	any other members.									Ø 🔥	1 10-	*
	gs are assumed to be irder(s) for truss to tr									8/	ATT:	
		(by others) of truss to	0							83		BER
		anding 119 lb uplift at	joint							N	PE-2022	042259
	b uplift at joint 3. is designed in accord	lance with the 2019								Ŷ		1SA
		sections R502.11.1 a	nd							C	SSIONA	TENA
R802.10.2	and referenced stan	dard ANSI/TPI 1.									Con P	TITE
											March	n 21,2024
												,

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

						0.4.4.4.1000.4
B240051	J22	Jack-Open	4	1	Job Reference (optional	
Job	Truss	Truss Type	Qty	Ply	Lot 146 WO	DEVELOPMENT SERVICES 164360270
lah	Truce	Truce Ture	0	Plv	1	AS NOTED FOR PLAN REVIEW
						RELEASE FOR CONSTRUCTION

Run: 8.73 S Feb 22 2024 Print: 8.730 S Feb 22 2024 MiTek Industries, Inc. Ved Mar 2002 Point 1/20:24 ID:8kG3u?8DFUPNAbq2RWO8yEz4SeX-RfC?PsB70Hq3NSgPqnL8w3uITX GKWrCDer7J4zcC?f

1-10-3

Scale =	1:21.3
---------	--------

Ocale = 1.21.5												
Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15	TC	0.28	Vert(LL)	0.00	4-5	>999	360	MT20	197/144
TCDL	10.0	Lumber DOL	1.15	BC	0.07	Vert(CT)	0.00	4-5	>999	240		
BCLL	0.0*	Rep Stress Incr	YES	WB	0.00	Horz(CT)	-0.01	3	n/a	n/a		
BCDL	10.0	Code	IRC2018/TPI2014	Matrix-R		Wind(LL)	0.00	4-5	>999	240	Weight: 7 lb	FT = 10%
LUMBER TOP CHORD BOT CHORD WEBS	2x4 SPF No.2 2x4 SPF No.2 2x4 SPF No.2		Ínternationa	s designed in ac al Residential Co and referenced s) Standard	ode sections	R502.11.1 a	and					
BRACING												
TOP CHORD		eathing directly applie except end verticals.										
BOT CHORD	Rigid ceiling directly bracing.	applied or 10-0-0 o	с									
REACTIONS	(size) 3= Mecha 5=0-3-8	anical, 4= Mechanica	al,									
	Max Horiz 5=47 (LC	4)										
	Max Uplift 3=-12 (LC (LC 4)	C 8), 4=-6 (LC 1), 5=	-131									
	Max Grav 3=4 (LC	19), 4=25 (LC 3), 5=	302									

(LC 1) **FORCES** (Ib) - Maximum Compression/Maximum Tension TOP CHORD 2-5=-262/137, 1-2=0/45, 2-3=-38/1

 TOP CHORD
 2-5=-262/137, 1-2=0/45, 2-3=-38/1

 BOT CHORD
 4-5=0/0

NOTES

- Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
 This trues has been desired for a 40 or of bettern
- 2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- 4) All bearings are assumed to be SPF No.2 .
- 5) Refer to girder(s) for truss to truss connections.
- 6) Provide mechanical connection (by others) of truss to
- bearing plate capable of withstanding 131 b uplift at joint 5, 6 b uplift at joint 4 and 12 b uplift at joint 3.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPH Claulity Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

Loading TCLL (roof) TCDL BCLL BCDL	(psf) 25.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018/TPI2014	BC C).50).37).00	DEFL Vert(LL) Vert(CT) Horz(CT) Wind(LL)	in -0.10 -0.18 0.07 0.11	(loc) 5-6 5-6 5 5-6	l/defl >782 >420 n/a >719	L/d 360 240 n/a 240	PLATES MT20 Weight: 20 lb	GRIP 197/144 FT = 10%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD	2x4 SPF No.2 2x4 SPF No.2 2x4 SPF No.2 Structural wood she 6-0-0 cc purlins, ex Rigid ceiling directly bracing.	cept end verticals.	Internationa R802.10.2 a LOAD CASE(S)	designed in accordan I Residential Code sec and referenced standar Standard	ctions	R502.11.1 a	nd					
REACTIONS	(size) 4= Mecha 8=0-3-8 Max Horiz 8=111 (LC Max Uplift 4=-75 (LC Max Grav 4=183 (LC (LC 1)	C 8), 8=-127 (LC 4)										
FORCES TOP CHORD BOT CHORD	(lb) - Maximum Com Tension 2-8=-404/145, 1-2=(3-4=-37/49 7-8=-70/135, 6-7=0/)/45, 2-3=-211/11,	V0									
NOTES	7-0=-70/135, 0-7=0/	41, 3-0=-3/94, 3-0=0	//0									
 Wind: ASC Vasd=91n II; Exp C; cantilever right expo: This truss chord live * This trus on the bot 3-06-00 ta 	CE 7-16; Vult=115mph nph; TCDL=6.0psf; BC Enclosed; MWFRS (er left and right exposed sed; Lumber DOL=1.6 has been designed fo load nonconcurrent wi s has been designed f tom chord in all areas Il by 2-00-00 wide will any other members.	DL=6.0psf; h=25ft; (hvelope) exterior zor ; end vertical left an 0 plate grip DOL=1.0 r a 10.0 psf bottom ith any other live load for a live load of 20.0 where a rectangle	ne; d 30 ds. psf								STATE OF M NATHA FO	
 All bearing Refer to give 	gs are assumed to be s irder(s) for truss to tru	ss connections.	_							83	Man	BER CAR

6) Provide mechanical connection (by others) of truss to

bearing plate capable of withstanding 127 lb uplift at joint 8 and 75 lb uplift at joint 4.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent colleges with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

						RELEASE FOR CONSTRUCTION
Job	Truss	Truss Type	Qty	Plv	Lot 146 WO	AS NOTED FOR PLAN REVIEW
000	11000			,		DEVELOPMENT SERVICES 164360272
B240051	J24	Jack-Open	1	1	Job Reference (optional	
Wheeler Lumber, Waverly, KS	- 66871,	Run: 8.73 S Feb 22	2024 Print: 8	.730 S Feb 2	2 2024 MiTek Industries, Inc. V	Ved Mar 2009,09/17 1 / 2 Age 2 /

Run: 8.73 S Feb 22 2024 Print: 8.730 S Feb 22 2024 MiTek Industries, Inc. Ved Mar 2009/99/1 1/2024 ID:8kG3u?8DFUPNAbq2RWO8yEz4SeX-RfC?PsB70Hq3NSgPqnL8w3uITX GKWrCDer7J42sC?f

Scale = 1:29.1

2-11-6

Scale = 1.29.	1		1									
Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15	TC	0.35	Vert(LL)	-0.06	6	>999	360	MT20	197/144
TCDL	10.0	Lumber DOL	1.15	BC	0.27	Vert(CT)	-0.10	5-6	>654	240		
BCLL	0.0*	Rep Stress Incr	YES	WB	0.00	Horz(CT)	0.04	5	n/a	n/a		
BCDL	10.0	Code	IRC2018/TPI2014	Matrix-R		Wind(LL)	0.06	5-6	>999	240	Weight: 18 lb	FT = 10%
LUMBER			7) This truss i	s designed in acc	ordance w	ith the 2018						
TOP CHORE	D 2x4 SPF No.2			al Residential Coc			and					
BOT CHORE	D 2x4 SPF No.2		R802.10.2	and referenced st	andard AN	ISI/TPI 1.						
WEBS	2x4 SPF No.2		LOAD CASE(S) Standard								
BRACING												
TOP CHORE												
	5-10-3 oc purlins, e											
BOT CHORE		applied or 10-0-0 o	С									
DEACTIONS	bracing.	nicol C. Machania										
REACTIONS	8=0-3-8	nical, 5= Mechanica	di,									
	Max Horiz 8=101 (L0	C 4)										
	Max Uplift 4=-63 (LC	,										
	Max Grav 4=156 (L0	,, , , ,	=421									
	(LC 1)											
FORCES	(lb) - Maximum Com	pression/Maximum										
	Tension											
TOP CHORE	,)/45, 2-3=-171/6,										
BOT CHORE	3-4=-31/42 7-8=-56/102, 6-7=0/-	12 3-6-5/70 5-6-1	0/0									
NOTES	<i>1-0</i>	42, 5-0=-3/73, 5-0=0	0/0									
	SCE 7-16; Vult=115mph	(3-second quet)										
	mph; TCDL=6.0psf; BC		Cat									
	; Enclosed; MWFRS (er											
	er left and right exposed										and	alle
	osed; Lumber DOL=1.6		60								A OF	MISCO
	s has been designed for									1	TATE OF	1,0°
	e load nonconcurrent wi									B	NATH	ANIEL SAN
	iss has been designed f ottom chord in all areas		Upst							R	FC	
	tall by 2-00-00 wide will		om							สา		
	id any other members.	in solwcon the boll								01	Film	11 25 2
	ngs are assumed to be S	SPF No.2 .								W	A/Kania	1 Stra
	girder(s) for truss to tru									24	NUM	BER 7 9 AV

5) Refer to girder(s) for truss to truss connections.

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 123 lb uplift at joint 8 and 63 lb uplift at joint 4.

314.434.1200 / MiTek-US.com

PE-2022042259

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

Scale = 1:23.2						4-6-3					
Loading TCLL (roof)	(psf) 25.0	Spacing Plate Grip DOL	2-0-0 1.15	CSI TC	0.28	DEFL Vert(LL)	in -0.02	(loc) 4-5	l/defl >999	PLATES MT20	GRIP 197/144

Load TCLL TCDI BCLL	_ (roof)	(psf) 25.0 10.0 0.0*	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr	2-0-0 1.15 1.15 YES	BC 0.	.16	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.02 -0.03 0.01	(loc) 4-5 4-5 3	l/defl >999 >999 n/a	L/d 360 240 n/a	PLATES MT20	GRIP 197/144
BCD	L	10.0	Code	IRC2018/TPI2014	Matrix-R		Wind(LL)	0.01	4-5	>999	240	Weight: 14 lb	FT = 10%
BOT WEB BRA TOP BOT	CHORD 2x CHORD 2x S 2x CING CHORD St 4- CHORD Ri br CTIONS (siz	-6-3 oc purlins, exc igid ceiling directly racing. ce) 3= Mecha 5=0-3-8	applied or 10-0-0 oc nical, 4= Mechanica		Standard								
	Max	x Horiz 5=83 (LC x Uplift 3=-61 (LC x Grav 3=120 (LC (LC 1)	,	368									
FOR		o) - Maximum Com ension	pression/Maximum										
	CHORD 2-	5=-323/154, 1-2=0	/45, 2-3=-60/28										
		·5=0/0											
، آ ا د	Vind: ASCE 7 /asd=91mph; l; Exp C; Encl cantilever left a	losed; MWFRS (en and right exposed	(3-second gust) DL=6.0psf; h=25ft; C velope) exterior zon ; end vertical left and 0 plate grip DOL=1.6	e; 1									-an
2) T	his truss has	been designed for	a 10.0 psf bottom								-1	FOF M	AISS
3) * C 3	This truss ha on the bottom 3-06-00 tall by	as been designed fo chord in all areas v	th any other live load or a live load of 20.0 where a rectangle fit between the botto	psf								STATE OF M	NIEL
		re assumed to be S r(s) for truss to trus									V	att.	in fin
6) F b	Provide mecha	anical connection (capable of withstan	by others) of truss to ading 119 lb uplift at								AT.	PE-2022	SER 242259
7) T II	his truss is de nternational R	esigned in accorda	ections R502.11.1 ar	nd							Ŷ	SIONA	L ENGL 21,2024

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

						RELEASE FOR CONSTRUCTION
Job	Truss	Truss Type	Qty	Ply	Lot 146 WO	AS NOTED FOR PLAN REVIEW
B240051	J26	Jack-Open	3	1	Job Reference (optional)	DEVELOPMENT SERVICES 164360274 LEE'S SUMMIT, MISSOURI
Wheeler Lumber, Waverly, KS -	66871,				2 2024 MiTek Industries, Inc. V PsB70Hq3NSgPqnL8w3uITXI	

						2-6-3		_				
Scale = 1:21.8					1							
Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15	TC	0.28	Vert(LL)	0.00	4-5	>999	360	MT20	197/144
TCDL	10.0	Lumber DOL	1.15	BC	0.07	Vert(CT)	0.00	4-5	>999	240		
BCLL	0.0*	Rep Stress Incr	YES	WB	0.00	Horz(CT)	-0.01	3	n/a	n/a		
BCDL	10.0	Code	IRC2018/TPI2014	Matrix-R		Wind(LL)	0.00	4-5	>999	240	Weight: 9 lb	FT = 10%

	0.4 005	N- 0	LOAD CASE(S)	Standard	
TOP CHORD	2x4 SPF				
BOT CHORD	2x4 SPF				
WEBS	2x4 SPF	N0.2			
BRACING					
TOP CHORD		al wood sheathing directly applied or			
		purlins, except end verticals.			
BOT CHORD		ling directly applied or 10-0-0 oc			
	bracing.				
REACTIONS	(size)	3= Mechanical, 4= Mechanical,			
		5=0-5-8			
		5=56 (LC 4)			
		3=-27 (LC 8), 5=-123 (LC 4)			
	Max Grav	3=35 (LC 1), 4=38 (LC 3), 5=307			
FORCES	(lb) - Ma	(LC 1) ximum Compression/Maximum			
ONCLO	Tension				
TOP CHORD		8/136, 1-2=0/45, 2-3=-40/6			
BOT CHORD	4-5=0/0	130, 1-2-0/43, 2-340/0			
	4-3=0/0				
NOTES					
		ult=115mph (3-second gust)			
		=6.0psf; BCDL=6.0psf; h=25ft; Cat.			
		WWFRS (envelope) exterior zone;			
		ht exposed ; end vertical left and			
0 1	,	er DOL=1.60 plate grip DOL=1.60			
,		designed for a 10.0 psf bottom			
		oncurrent with any other live loads.			
,		designed for a live load of 20.0psf			E
		in all areas where a rectangle			g
	any other	00 wide will fit between the bottom		X	2/
		med to be SPF No.2 .			
,		truss to truss connections.			
, .		connection (by others) of truss to		//	U
,		e of withstanding 123 lb uplift at joint			Y
	b uplift at jo				Y
		d in accordance with the 2018			3
		tial Code sections R502.11.1 and			
7) This truss					
 This truss Internation 		enced standard ANSI/TPI 1.			

1-10-1

16023 Swingley Ridge Rd. Chesterfield, MO 63017 314.434.1200 / MiTek-US.com

Plate Offsets (X, Y): [2:0-2-8,0-1-12], [4:0-3-8,Edge], [5:Edge,0-3-8]

Plate Olisets (, f). [2.0-2-6,0-1-12	zj, [4.0-3-6,⊏ugej, [5.	Euge,0-3-oj											
Loading TCLL (roof) TCDL BCLL BCDL	(psf) 25.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 NO IRC2018/T	PI2014	CSI TC BC WB Matrix-R	0.65 0.49 0.00	DEFL Vert(LL) Vert(CT) Horz(CT) Wind(LL)	in -0.24 -0.44 0.11 0.25	(loc) 5-6 5-6 5 5-6	l/defl >455 >242 n/a >435	L/d 360 240 n/a 240	PLATES MT20 M18AHS Weight: 28 lb	GRIP 197/144 142/136 FT = 10%	
 Vasd=91n II; Exp C; cantilever right expo; All plates a This truss chord live * This trus on the bot 3-06-00 ta chord and Bearings a Joint 5 SP Refer to g Provide m bearing pli 	2x4 SPF No.2 Structural wood she 6-0-0 oc purlins, ex Rigid ceiling directly bracing. (size) 5= Mecha Max Horiz 8=115 (LC Max Uplift 5=-120 (L Max Grav 5=28 (LC) (lb) - Maximum Com Tension 2-8=-580/231, 1-2=(3-4=-298/351, 6-7=-1 5-6=-73/262 CE 7-16; Vult=115mph nph; TCDL=6.0psf; BC CE 7-16; Vult=115mph nph; TCDL=6.0psf; BC Enclosed; MWFRS (er left and right exposed sed; Lumber DOL=1.6 are MT20 plates unless has been designed fo load nonconcurrent wi shas been designed fo tom chord in all areas all by 2-00-00 wide will any other members. are assumed to be: Joi	E eathing directly applie cept end verticals. r applied or 10-0-0 or anical, 8=0-4-9 C 5) C 8), 8=-218 (LC 4) C 1), 8=651 (LC 1) npression/Maximum 0/45, 2-3=-447/75, i20/119 1/54, 3-6=-21/101, n (3-second gust) CDL=6.0psf; h=25ft; (nvelope) exterior zor ; end vertical left an 0 plate grip DOL=14, s otherwise indicater r a 10.0 psf bottom ith any other live load for a live load of 20.0 where a rectangle fit between the bottoc int 8 SPF 2100F 1.8 ss connections. (by others) of truss to	9) F 9) F 9) F 5 5 5 5 5 5 5 5 5 5 5 5 5	nternational I R802.10.2 and Hanger(s) or provided suffit Jown and 73 3-7-12, 86 lb Jown and 50 at 2-8-7, 8 lb Joy at 8-4-5 o at 2-8-7, 8 lb Joy at 8-4-5 o at 2-8-7, 8 lb Joy at 2-8-7, 8 lb Joy	CASE(S) section, re noted as front of Standard f Live (balanced): se=1.15 ids (lb/ft) 70, 2-4=-70, 7-8	sections ndard AN device (s concentra 0 lb down p at 5-6 and 110 12 lb down p at 3-8 lb down -5 on bot ection de , loads a (F) or ba : Lumber 3=-20, 5-1 11=-13 (f	R502.11.1 a ISI/TPI 1.) shall be ated load(s) 7 n and 28 lb up -6, and 98 lb lb down and 4 wn and 16 lb -14, 21 lb do and 23 lb up tom chord. T vice(s) is the oplied to the f ck (B). Increase=1.	3 lb p at 63 lb up wn at The face 15,				RESSIONA	A DER 042259	
												March	ו 21.2024	

 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.
 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not besign value to dury with with where outputs into design is based only door parameters shown, and is for an individual building design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members and property incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TPH1 Quality Criteria**, and **DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcscomponents.com)

March 21,2024

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15	TC	0.91	Vert(LL)	-0.06	5-6	>999	360	MT20	197/144
TCDL	10.0	Lumber DOL	1.15	BC	0.50	Vert(CT)	-0.11	5-6	>978	240		
BCLL	0.0*	Rep Stress Incr	NO	WB	0.25	Horz(CT)	0.01	5	n/a	n/a		
BCDL	10.0	Code	IRC2018/TPI2014	Matrix-S		Wind(LL)	0.05	5-6	>999	240	Weight: 32 lb	FT = 10%

- TOP CHORD 2x4 SPF No.2
- BOT CHORD 2x4 SPF No.2

2x3 SPF No.2 *Except* 7-2:2x4 SPF No.2 WEBS BRACING TOP CHORD Structural wood sheathing directly applied or

BOT CHORD		ourlins, except end verticals. Ing directly applied or 10-0-0 oc
REACTIONS	(size)	5= Mechanical, 7=0-4-3

Max Horiz 7=132 (LC 5) Max Uplift 5=-124 (LC 5), 7=-218 (LC 4) Max Grav 5=578 (LC 1), 7=682 (LC 1) FORCES (Ib) - Maximum Compression/Maximum Tension TOP CHORD 2-7=-580/232, 1-2=0/45, 2-3=-612/100, 3-4=-99/34, 4-5=-232/98

BOT CHORD 6-7=-149/520, 5-6=-149/520 WEBS 3-6=0/217 3-5=-545/136

NOTES

- Wind: ASCE 7-16; Vult=115mph (3-second gust) 1) Vasd=91mph: TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
- This truss has been designed for a 10.0 psf bottom 2) chord live load nonconcurrent with any other live loads.
- 3) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- All bearings are assumed to be SPF No.2 4)
- Refer to girder(s) for truss to truss connections. 5)
- Provide mechanical connection (by others) of truss to 6) bearing plate capable of withstanding 218 lb uplift at joint 7 and 124 lb uplift at joint 5.
- This truss is designed in accordance with the 2018 7) International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

8) Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 73 lb down and 73 lb up at 2-8-7, 87 lb down and 58 lb up at 3-7-12, 87 lb down and 58 lb up at 5-6-6, and 116 lb down and 81 lb up at 6-5-11, and 119 lb down and 79 lb up at 8-4-5 on top chord, and 12 lb down and 16 lb up at 2-8-7, 18 lb down at 3-7-12, 19 lb down at 5-6-6, and 44 lb down at 6-5-11, and 61 lb down at 8-4-5 on bottom chord. The design/selection of such connection device(s) is the responsibility of others.

9) In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (F) or back (B).

LOAD CASE(S) Standard

- Dead + Roof Live (balanced): Lumber Increase=1.15, 1) Plate Increase=1.15
 - Uniform Loads (lb/ft)
 - Vert: 1-2=-70, 2-4=-70, 5-7=-20
 - Concentrated Loads (lb)
 - Vert: 3=-1 (F), 6=-2 (F), 9=-3 (B), 10=-71 (B), 11=-92
 - (F), 13=-9 (B), 14=-40 (B), 15=-39 (F)

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITEk® connectors. This design is based only upon parameters shown, and is for an individual building component, not and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponent.com)

						0.4.14.4.1000.4
B240051	J29	Jack-Open	1	1	Job Reference (optional	
Job	Truss	Truss Type	Qty	Ply	Lot 146 WO	DEVELOPMENT SERVICES 164360277
lah	Truce	Truce Ture	05	Plv		AS NOTED FOR PLAN REVIEW
						RELEASE FOR CONSTRUCTION

Run: 8.73 S Feb 22 2024 Print: 8.730 S Feb 22 2024 MiTek Industries, Inc. Ved Mar 2002 Ps/18 1/29:24 ID:8kG3u?8DFUPNAbq2RWO8yEz4SeX-RfC?PsB70Hq3NSgPqnL8w3uITXI GKWrCDer7.14z.C?f

Scale = 1:30.7

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0		1.15	TC	0.28	Vert(LL)	-0.01	6	>999	360	MT20	197/144
TCDL	10.0	Lumber DOL	1.15	BC	0.06	Vert(CT)	-0.01	7	>999	240		
BCLL	0.0		YES	WB	0.00	Horz(CT)	0.00	4	n/a	n/a		
BCDL	10.0	Code	IRC2018/TPI2014	Matrix-R		Wind(LL)	0.00	6	>999	240	Weight: 13 lb	FT = 10%
LUMBER			7) This truss i	s designed in ac	cordance w	ith the 2018						
TOP CHORD	2x4 SPF No.2			al Residential Co								
BOT CHORD	2x4 SPF No.2			and referenced s			ana					
WEBS	2x4 SPF No.2		LOAD CASE(S	3) Standard								
BRACING			(,								
TOP CHORD	Structural wood s	heathing directly appli	ied or									
		except end verticals.										
BOT CHORD		tly applied or 10-0-0 c										
	bracing.	, ,,										
REACTIONS	(size) 4= Med	hanical, 5= Mechanic	al,									
	8=0-3-8	3										
	Max Horiz 8=74 (I	_C 4)										
		LC 8), 5=-10 (LC 8), 8	3=-119									
	(LC 4)											
		_C 1), 5=50 (LC 3), 8=	=345									
	(LC 1)											
FORCES	(lb) - Maximum C Tension	ompression/Maximum	1									
TOP CHORD	2-8=-306/136, 1-2	=0/45, 2-3=-74/0,										
	3-4=-13/23	,,										
BOT CHORD	7-8=-22/34, 6-7=0	/45, 3-6=-8/41, 5-6=0)/0									
NOTES												

- Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
- 2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- 4) All bearings are assumed to be SPF No.2 .
- 5) Refer to girder(s) for truss to truss connections.
- Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 119 lb uplift at joint 8, 28 lb uplift at joint 4 and 10 lb uplift at joint 5.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPH Claulity Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

						RELEASE FOR CONSTRUCTION
Job	Truss	Truss Type	Qty	Plv	Lot 146 WO	AS NOTED FOR PLAN REVIEW
						DEVELOPMENT SERVICES I64360278
B240051	J30	Jack-Open	1	1	Job Reference (optional	LEE'S SUMMIT, MISSOURI
						0.4.14.4.10.00.4

2-6-1

Run: 8.73 S Feb 22 2024 Print: 8.730 S Feb 22 2024 MiTek Industries, Inc. Ved Mar 2009 1978 1/2024 ID:8kG3u?8DFUPNAbq2RWO8yEz4SeX-RfC?PsB70Hq3NSgPqnL8w3uITX GKWrCDer7J422C?f

Scale = 1:29

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15	TC	0.28	Vert(LL)	-0.01	6	>999	360	MT20	197/144
TCDL	10.0	Lumber DOL	1.15	BC	0.12	Vert(CT)	-0.03	7	>999	240		
BCLL	0.0	* Rep Stress Incr	YES	WB	0.00	Horz(CT)	-0.01	5	n/a	n/a		
BCDL	10.0	Code	IRC2018/TPI2014	Matrix-R		Wind(LL)	0.02	6	>999	240	Weight: 15 lb	FT = 10%
LUMBER			7) This truss is	designed in acc	ordance wi	th the 2018						
TOP CHORD	2x4 SPF No.2			I Residential Cod			and					
BOT CHORD	2x4 SPF No.2		R802.10.2	and referenced st	andard AN	ISI/TPI 1.						
WEBS	2x4 SPF 2400F 2	.0E	LOAD CASE(S	Standard								
BRACING												
TOP CHORD	Structural wood s	heathing directly appli	ied or									
	4-6-3 oc purlins,	except end verticals.										
BOT CHORD	Rigid ceiling direc bracing.	tly applied or 10-0-0 c	0C									
REACTIONS	0	hanical, 5= Mechanic	al									
REACTIONS	(SIZE) 4= MeC 8=0-3-8		ai,									
	Max Horiz 8=83 (I											
	,	LC 8), 5=-6 (LC 8), 8=	-119									
	(LC 4)	, (, _										
		(LC 1), 5=63 (LC 3), 8	=368									
	(LC 1)											
FORCES	(lb) - Maximum C	ompression/Maximum	1									
	Tension											
TOP CHORD		=0/45, 2-3=-104/0,										
	3-4=-19/30											
BOT CHORD	7-8=-32/52, 6-7=0	/44, 3-6=-9/53, 5-6=0	/0									
NOTES												

- NOTES
- 1) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
- This truss has been designed for a 10.0 psf bottom 2) chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf 3) on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- All bearings are assumed to be SPF No.2 4)
- 5) Refer to girder(s) for truss to truss connections.
- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 119 lb uplift at joint 8, 41 lb uplift at joint 4 and 6 lb uplift at joint 5.

 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.
 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not besign value to dury with with where outputs into design is based only door parameters shown, and is for an individual building design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members and property incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TPH1 Quality Criteria**, and **DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcscomponents.com)

Job	Truss		Truss Type	Qty	Ply	Lot 146 WO	RELEASE FOR CONSTRUCTION AS NOTED FOR PLAN REVIEW
B240051	J31		Jack-Open	1	1	Job Reference (optional	DEVELOPMENT SERVICES 164360279 LEE'S SUMMIT, MISSOURI
Wheeler Lumber, Waverly, H	KS - 66871,		Run: 8.73 S Feb 22 ID:460pJgATn6f5Qv	2024 Print: 8 /_RYxRc1fz4	.730 S Feb SeV-RfC?P	22 2024 MiTek Industries, Inc. V sB70Hq3NSgPqnL8w3uITXbGk	/ed Mar 2009 9/18 1 / Pag : 1 /
			5-	-6-3			
			4	1 <u>2</u>		2	
						Δ	
	2-6-1		1				2-6-1
		0-8-0	4			3	
			3х6 ш				
			T	-6-3 5-11			

Scale -	= 1:24.5

Loading (psf) TCLL (roof) 25.0 TCDL 10.0 BCLL 0.0* BCDL 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018/TPI2014	CSI TC BC WB Matrix-R	0.46 0.27 0.00	DEFL Vert(LL) Vert(CT) Horz(CT) Wind(LL)	in -0.04 -0.08 0.03 0.04	(loc) 3-4 3-4 2 3-4	l/defl >999 >764 n/a >999	L/d 360 240 n/a 240	PLATES MT20 Weight: 13 lb	GRIP 197/144 FT = 10%
LUMBER TOP CHORD 2x4 SPF No.2 BOT CHORD 2x4 SPF No.2 WEBS 2x4 SPF No.2 BRACING TOP CHORD Structural wood she 5-6-3 oc purlins, ex BOT CHORD Rigid ceiling directly bracing. REACTIONS (size) 2= Mecha 4=0-3-8 Max Horiz 4=66 (LC Max Uplift 2=-77 (LC Max Grav 2=170 (LC	cept end verticals. applied or 10-0-0 or anical, 3= Mechanica 8) 2 8), 4=-27 (LC 4)	2 I,	Standard								
 (LC 1) FORCES (b) - Maximum Com Tension TOP CHORD 1-4=-201/75, 1-2=-7 BOT CHORD 3-4=0/0 NOTES 1) Wind: ASCE 7-16; Vult=115mph Vasd=91mph; TCDL=6.0psf; BC II; Exp C; Enclosed; MWFRS (er cantilever left and right exposed right exposed; Lumber DOL=1.6 2) This truss has been designed fo chord live load nonconcurrent wi 3) * This truss has been designed fo on the bottom chord in all areas 3-06-00 tall by 2-00-00 wide will chord and any other members. 4) All bearings are assumed to be 5 5) Refer to girder(s) for truss to tru bearing plate capable of withstat 4 and 77 lb uplift at joint 2. 7) This truss is designed in accorda International Residential Code s R802.10.2 and referenced stand 	(3-second gust) DL=6.0psf; h=25ft; (nvelope) exterior zor ; end vertical left an 0 plate grip DOL=1.0 r a 10.0 psf bottom th any other live load or a live load of 20.0 where a rectangle fit between the botto SPF No.2. ss connections. (by others) of truss the ance with the 2018 ections R502.11.1 a	ne; d 50 ds. ipsf om D							D	PE-2022	BER ALL

16023 Swingley Ridge Rd. Chesterfield, MO 63017 314.434.1200 / MiTek-US.com

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

						RELEASE FOR CONSTRUCTION
Job	Truss	Truss Type	Qty	Ply	Lot 146 WO	AS NOTED FOR PLAN REVIEW
B240051	J32	Jack-Open	1	1	Job Reference (optional	DEVELOPMENT SERVICES 164360280 LEE'S SUMMIT, MISSOURI
						and the second s

Run: 8.73 S Feb 22 2024 Print: 8.730 S Feb 22 2024 MiTek Industries, Inc. Ved Mar 2009 18 ID:8kG3u?8DFUPNAbq2RWO8yEz4SeX-RfC?PsB70Hq3NSgPqnL8w3uITX GKWrCDer7J4z4C?f

					3	-6-3		_				
Scale = 1:23.1								I				
Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15	TC	0.15	Vert(LL)	-0.01	4-5	>999	360	MT20	197/144
TCDL	10.0	Lumber DOL	1.15	BC	0.09	Vert(CT)	-0.01	4-5	>999	240		
BCLL	0.0*	Rep Stress Incr	YES	WB	0.00	Horz(CT)	0.00	3	n/a	n/a		
BCDL	10.0	Code	IRC2018/TPI2014	Matrix-R		Wind(LL)	0.00	4-5	>999	240	Weight: 10 lb	FT = 10%

LUMBER			LOAD CASE(S)	Standard
TOP CHORD				
BOT CHORD				
WEBS	2x4 SPF	No.2		
BRACING	-			
TOP CHORD		I wood sheathing directly applied or		
BOT CHORD		purlins, except end verticals. ling directly applied or 10-0-0 oc		
BOTCHORD	bracing.	ing directly applied of 10-0-0 oc		
REACTIONS	0	3= Mechanical, 4= Mechanical, 5=0-3-8		
	Max Horiz	5=57 (LC 4)		
		3=-48 (LC 8), 5=-64 (LC 4)		
	Max Grav	3=100 (LC 1), 4=62 (LC 3), 5=231 (LC 1)		
FORCES	(lb) - Max Tension	kimum Compression/Maximum		
TOP CHORD	2-5=-203	/92, 1-2=0/23, 2-3=-45/24		
BOT CHORD	4-5=0/0			
NOTES				
		Ilt=115mph (3-second gust)		
		=6.0psf; BCDL=6.0psf; h=25ft; Cat.		
		MWFRS (envelope) exterior zone; ht exposed ; end vertical left and		
		er DOL=1.60 plate grip DOL=1.60		
		lesigned for a 10.0 psf bottom		
		ncurrent with any other live loads.		
		designed for a live load of 20.0psf		
		n all areas where a rectangle		
3-06-00 tal		00 wide will fit between the bottom		
		med to be SPF No.2 .		
		truss to truss connections.		
		connection (by others) of truss to		
		e of withstanding 64 lb uplift at joint		
5 and 48 lb				
		d in accordance with the 2018		
	a kesiden	tial Code sections R502.11.1 and		

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent college with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

Plate Offsets (X, Y): [4:Edge,0-2-8]

										i	
Loading (psf)	Spacing	2-0-0	csi		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof) 25.0	Plate Grip DOL	1.15	TC	0.63	Vert(LL)	-0.06	4-5	>999	360	MT20	197/144
TCDL 10.0	Lumber DOL	1.15	BC	0.35	Vert(CT)	-0.12	4-5	>613	240		
BCLL 0.0*	Rep Stress Incr	NO	WB	0.00	Horz(CT)	0.00	4	n/a	n/a		
BCDL 10.0	Code	IRC2018/TPI2014	Matrix-R		Wind(LL)	-0.02	4-5	>999	240	Weight: 21 lb	FT = 10%
BRACING TOP CHORD Structural wood she 6-0-0 oc purlins, ex BOT CHORD Rigid ceiling directly bracing.	applied or 10-0-0 oc inical, 5=0-4-9 C 5) 8), 5=-190 (LC 4) C 1), 5=517 (LC 1) ipression/Maximum	or (s) is the LOAD CASE 1) Dead + Plate In Uniform Vert: Concer	i) or other connection sufficient to support of d 32 lb up at 3-10-4, at (0-4 on top chord, and nd 9 lb down and 9 lb he design/selection of responsibility of other AD CASE(S) section, as are noted as front i (S) Standard Roof Live (balanced): crease=1.15 Loads (lb/ft) 1-2=-70, 2-3=-70, 4-5 trated Loads (lb) 7=19 (F=9, B=9)	concentra and 70 lb 1 9 lb dov up at 3 f such cc 's. loads a (F) or ba : Lumber	ited load(s) 7 o down and 3 wn and 9 lb u -10-4 on bott nnection dev oplied to the ck (B).	2 lb ip at om <i>v</i> ice face					

NOTES

- Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- 4) All bearings are assumed to be SPF No.2
- 5) Refer to girder(s) for truss to truss connections.
- Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 190 lb uplift at joint 5 and 46 lb uplift at joint 4.
- 7) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and properly damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANS/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

Additional and the second seco

						4-3-0							
Scale = 1:23.4									I				
Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP	
TCLL (roof)	25.0	Plate Grip DOL	1.15	TC	0.28	Vert(LL)	-0.02	4-5	>999	360	MT20	197/144	
TCDL	10.0	Lumber DOL	1.15	BC	0.18	Vert(CT)	-0.04	4-5	>999	240			
BCLL	0.0*	Rep Stress Incr	YES	WB	0.00	Horz(CT)	0.02	3	n/a	n/a			
BCDL	10.0	Code	IRC2018/TPI2014	Matrix-R		Wind(LL)	0.01	4-5	>999	240	Weight: 14 lb	FT = 10%	

BUDL		10.0	Code	IRC2016/1FI2014	Matrix-R
LUMBER				LOAD CASE(S)	Standard
TOP CHORD	2x4 SPF	No.2			
BOT CHORD	2x4 SPF	No.2			
WEBS	2x4 SPF	No.2			
BRACING					
TOP CHORD			athing directly applied	d or	
			cept end verticals.		
BOT CHORD	Rigid ceil bracing.	ing directly	applied or 10-0-0 oc		
REACTIONS	(size)	3= Mecha 5=0-3-8	nical, 4= Mechanical	,	
	Max Horiz	5=86 (LC	4)		
	Max Uplift	3=-65 (LC	8), 5=-120 (LC 4)		
	Max Grav	3=129 (LC (LC 1)	C 1), 4=83 (LC 3), 5=3	377	
FORCES		imum Com	pression/Maximum		
TOP CHORD	Tension	450 4 0 0	45 0 0 00/04		
BOT CHORD		156, 1-2=0	/45, 2-3=-63/31		
	4-3=0/0				
NOTES		lt_115mph	(3-second gust)		
			DL=6.0psf; h=25ft; Ca	at	
			velope) exterior zone		
			; end vertical left and		
right expo	sed; Lumbe	r DOL=1.6) 0 plate grip DOL=1.60	0	
2) This truss	has been d	esigned for	a 10.0 psf bottom		
			th any other live load		
			or a live load of 20.0p	osf	
			where a rectangle		
	all by 2-00-0 I any other r		fit between the bottor	n	
 All bearing 			SPE No 2		
,	0		ss connections.		
			by others) of truss to		
			iding 120 lb uplift at jo		
	Ib uplift at jo		,		
7) This truss	is designed	l in accorda	ince with the 2018		

 This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent colleges with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

						RELEASE FOR CONSTRUCTION
Job	Truss	Truss Type	Qty	Ply	Lot 146 WO	AS NOTED FOR PLAN REVIEW
005	11000		Guy	,		DEVELOPMENT SERVICES 164360283
B240051	J35	Jack-Open	4	1	Job Reference (optional	
Wheeler Lumber, Waverly, KS -	Wheeler Lumber, Waverly, KS - 66871, Run: 8.73 S Feb 22 2024 Print: 8.730 S Feb 22 2024 MiTek Industries, Inc. N					
	/ed Mar 2009:09/18 GKWrCDef7J4z4C?f					

						2-7-15						
Scale = 1:21.9					1							
Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15	TC	0.28	Vert(LL)	0.00	4-5	>999	360	MT20	197/144
TCDL	10.0	Lumber DOL	1.15	BC	0.07	Vert(CT)	0.00	4-5	>999	240		
BCLL	0.0*	Rep Stress Incr	YES	WB	0.00	Horz(CT)	-0.01	3	n/a	n/a		
BCDL	10.0	Code	IRC2018/TPI2014	Matrix-R		Wind(LL)	0.00	4-5	>999	240	Weight: 9 lb	FT = 10%

			N- 0	LOAD CASE(S)	Standard
	P CHORD				
	BS	2x4 SPF 2x4 SPF			
BR	ACING				
то	P CHORD		I wood sheathing directly applied or purlins, except end verticals.		
BO	T CHORD	Rigid ceil bracing.	ing directly applied or 10-0-0 oc		
RE	ACTIONS	(size)	3= Mechanical, 4= Mechanical, 5=0-3-8		
		Max Horiz	5=58 (LC 4)		
		Max Uplift	3=-29 (LC 8), 5=-121 (LC 4)		
		Max Grav	3=43 (LC 1), 4=41 (LC 3), 5=310 (LC 1)		
=0	RCES	(lb) - Max Tension	imum Compression/Maximum		
т∩	P CHORD		/137, 1-2=0/45, 2-3=-41/8		
	T CHORD		137, 1-2-0/43, 2-3-41/0		
	TES	+ 0=0/0			
		CE 7-16: \/u	It=115mph (3-second gust)		
''			=6.0psf; BCDL=6.0psf; h=25ft; Cat.		
			/WFRS (envelope) exterior zone;		
			nt exposed ; end vertical left and		
			r DOL=1.60 plate grip DOL=1.60		
2)	This truss	has been d	esigned for a 10.0 psf bottom		
			ncurrent with any other live loads.		
3)			designed for a live load of 20.0psf		
			n all areas where a rectangle		
			0 wide will fit between the bottom		
4)		any other r	med to be SPF No.2.		
-) 5)			truss to truss connections.		
6)			onnection (by others) of truss to		
•)			of withstanding 121 lb uplift at joint		
	5 and 29	Ib uplift at jo	int 3.		
7)	This truss	is designed	in accordance with the 2018		
	Internatio	nal Residen	tial Code sections R502.11.1 and		
	R802.10.2	2 and refere	nced standard ANSI/TPI 1.		
		NING - Verifv d	esign parameters and READ NOTES ON THIS	AND INCLUDED MITEK	REFERENCE PAGE MII-7
1	Design v	alid for use only	y with MiTek® connectors. This design is based	d only upon parameters s	hown, and is for an individ

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MI-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

N 1 -	4 0 4	7	

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15	тс	0.63	Vert(LL)	0.00	4-5	>999	360	MT20	197/144
TCDL	10.0	Lumber DOL	1.15	BC	0.10	Vert(CT)	-0.01	4-5	>999	240		
BCLL	0.0*	Rep Stress Incr	NO	WB	0.00	Horz(CT)	0.00	4	n/a	n/a		
BCDL	10.0	Code	IRC2018/TPI2014	Matrix-R		Wind(LL)	0.00	4-5	>999	240	Weight: 12 lb	FT = 10%

LUMBER

- TOP CHORD 2x4 SPF No.2 BOT CHORD 2x4 SPF No.2
- 2x4 SPF No.2 *Except* 3-4:2x3 SPF No.2 WEBS

BRACING

BIUUGINO		
TOP CHORD		wood sheathing directly applied or purlins, except end verticals.
BOT CHORD	Rigid ceili bracing.	ng directly applied or 6-0-0 oc
REACTIONS	(size)	4= Mechanical, 5=0-4-9
	Max Horiz	5=72 (LC 5)

	Max Uplift 4=-9 (LC 5), 5=-192 (LC 4)	
	Max Grav 4=67 (LC 3), 5=423 (LC 1)	
FORCES	(lb) - Maximum Compression/Maximun Tension	n
	rension	
TOP CHORD	2-5=-372/200, 1-2=0/45, 2-3=-36/25,	

3-4=-39/24 BOT CHORD 4-5=-31/34

NOTES

- 1) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
- This truss has been designed for a 10.0 psf bottom 2) chord live load nonconcurrent with any other live loads.
- 3) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- 4) All bearings are assumed to be SPF No.2 .
- Refer to girder(s) for truss to truss connections. 5)
- Provide mechanical connection (by others) of truss to 6) bearing plate capable of withstanding 192 lb uplift at joint 5 and 9 lb uplift at joint 4.
- This truss is designed in accordance with the 2018 7) International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard

 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.
 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not beigh valid for use only with with with sets outputs into design is based only door parameters shown, and is for an individual dualing component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria**, and **DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcscomponents.com)

						RELEASE FOR CONSTRUCTION
Job	Truss	Truss Type	Qty P		Lot 146 WO	AS NOTED FOR PLAN REVIEW
300	11055	Truss Type	Qty	- iy		DEVELOPMENT SERVICES 164360285
B240051	J37	Jack-Open	2 1	1	Job Reference (optional	
						0.4/4.4/0.004

Scale = 1:25.4

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d		GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15	TC	0.28	Vert(LL)	0.00	4-5	>999	360	MT20	197/144
TCDL	10.0	Lumber DOL	1.15	BC	0.05	Vert(CT)	0.00	4-5	>999	240		
BCLL	0.0		YES	WB	0.01	Horz(CT)	0.00	3	n/a	n/a		
BCDL	10.0	Code	IRC2018/TPI2014	Matrix-P							Weight: 11 lb	FT = 10%
LUMBER			7) This truss i	s designed in ac	cordance w	ith the 2018						
TOP CHORD	2x4 SPF No.2			al Residential Co			and					
BOT CHORD	2x4 SPF No.2		R802.10.2	and referenced s	standard AN	ISI/TPI 1.						
WEBS	2x4 SPF No.2		LOAD CASE(S) Standard								
BRACING			(-	,								
TOP CHORD												
2-5-4 oc purlins, except end verticals.												
BOT CHORD		tly applied or 10-0-0 o	C									
	bracing.											
REACTIONS	(size) 3= Mec	hanical, 4= Mechanic	al,									
	5=0-3-8	1										
	Max Horiz 5=54 (L	,										
		LC 8), 4=-6 (LC 4), 5=	-123									
	(LC 4)											
		.C 18), 4=46 (LC 3), 5	=307									
	(LC 1)											
FORCES	(Ib) - Maximum Co Tension	ompression/Maximum										
TOP CHORD												
BOT CHORD												
WEBS	2-4=-8/64											
	2 0/04											
NOTES												

- Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
 * This truss has been designed for a live load of 20.0psf
- This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- 4) All bearings are assumed to be SPF No.2 .
- 5) Refer to girder(s) for truss to truss connections.
- Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 123 lb uplift at joint 5, 13 lb uplift at joint 3 and 6 lb uplift at joint 4.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPH Claulity Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

						RELEASE FOR CONSTRUCTION
Job	Truss	Truss Type	Qty	Plv	Lot 146 WO	AS NOTED FOR PLAN REVIEW
300	Tuss	Truss Type	Quy	гіу	LUI 146 WO	DEVELOPMENT SERVICES 164360286
B240051	J38	Jack-Closed Girder	1	1	Job Reference (optional	

Run: 8.73 S Feb 22 2024 Print: 8.730 S Feb 22 2024 MiTek Industries, Inc. Ved Mar 2002/19/181 1/2 9:24 ID:AkL9FCVdPSLHkOZjk2RZv0z_kTA-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKWrCDore4zjDeft

1-9-12

Scale = 1:21

Plate Offsets (X, Y): [3:Edge,0-2-8], [4:0-4-2,0-1-8]

1-9-12

Loading (psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof) 25.0	Plate Grip DOL	1.15	TC	0.06	Vert(LL)	0.00	3-4	>999	360	MT20	197/144
TCDL 10.0	Lumber DOL	1.15	BC	0.08	Vert(CT)	0.00	3-4	>999	240		
BCLL 0.0*	Rep Stress Incr	YES	WB	0.00	Horz(CT)	0.00	3	n/a	n/a		
BCDL 10.0	Code	IRC2018/TPI2014	Matrix-R		Wind(LL)	0.00	3-4	>999	240	Weight: 11 lb	FT = 10%
BRACING TOP CHORD Structural wood she 2-5-4 oc purlins, ex BOT CHORD Rigid ceiling directly bracing.	ept* 2-3:2x3 SPF No.2 eathing directly applied cept end verticals. applied or 10-0-0 oc anical, 4=0-3-8 7) 2 8), 4=-161 (LC 4) C 1), 4=1103 (LC 1) apression/Maximum	or 9) In the LOAD of the truss a LOAD CASE(S) 1) Dead + Ro Plate Increa Uniform Lo Vert: 1-2 Concentrat	CASE(S) section, are noted as front (I Standard of Live (balanced): ase=1.15	oncentra on bott ction de loads a F) or ba	ited load(s) 1 om chord. Th vice(s) is the oplied to the t ck (B).	he face					

NOTES

- Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- 4) Bearings are assumed to be: Joint 4 SP 2400F 2.0E , Joint 3 SPF No.2 .
- 5) Refer to girder(s) for truss to truss connections.
- Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 161 lb uplift at joint 4 and 50 lb uplift at joint 3.
- 7) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPH Claulity Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

1-8-1

in

0.00

0.00

0.00

0.00

(loc)

4-5

4-5

4

4-5

l/defl

>999

>999

>999

L/d

360

240

n/a n/a

240

PLATES

Weight: 8 lb

MT20

GRIP

197/144

FT = 10%

DEFL

Vert(LL)

Vert(CT)

Horz(CT)

Wind(LL)

0.63

0.07

0.00

BCDL

TCLL (roof)

TCDI

BCLL

Scale = 1:20.9

- LUMBER

 TOP CHORD
 2x4 SPF No.2

 BOT CHORD
 2x4 SPF No.2

 WEBS
 2x4 SPF No.2 *Except* 3-4:2x3 SPF No.2

 BRACING
 TOP CHORD

 TOP CHORD
 Structural wood sheathing directly applied or 1-8-1 oc purlins, except end verticals.

 BOT CHORD
 Rigid ceiling directly applied or 6-0-0 oc bracing.
- REACTIONS
 (size)
 4= Mechanical, 5=0-4-9

 Max Horiz
 5=70 (LC 7)

 Max Uplift
 4=-129 (LC 1), 5=-241 (LC 4)

 Max Grav
 4=98 (LC 4), 5=452 (LC 1)

 FORCES
 (lb) Maximum Compression/Maximum Tension

Spacing

Code

Plate Grip DOL

Rep Stress Incr

Lumber DOL

(psf)

25.0

10.0

10.0

0.0*

2-0-0

1.15

1 15

NO

IRC2018/TPI2014

CSI

тс

BC

WB

Matrix-R

TOP CHORD 2-5=-397/229, 1-2=0/45, 2-3=-16/25, 3-4=-70/102 BOT CHORD 4-5=-49/40

NOTES

- Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
- 2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- 4) All bearings are assumed to be SPF No.2 .
- 5) Refer to girder(s) for truss to truss connections.
- Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 241 lb uplift at joint 5 and 129 lb uplift at joint 4.
- This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTPIT Quality Criteria, and DSE-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcscomponents.com)

						RELEASE FOR CONSTRUCTION
Job	Truss	Truss Type	Qty	Plv	Lot 146 WO	AS NOTED FOR PLAN REVIEW
000	11035	Truss Type	Gety	i iy		DEVELOPMENT SERVICES 164360288
B240051	J40	Jack-Open	3	1	Job Reference (optional)	
						0.4.4.4.000.4

-1-10-8	1-3-4
1-10-8	1-3-4

2x4 II

1-3-4

Scale = 1:21		Scale	=	1:21
--------------	--	-------	---	------

Scale = 1:21				_								
Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15	TC	0.28	Vert(LL)	0.00	4-5	>999	360	MT20	197/144
TCDL	10.0	Lumber DOL	1.15	BC	0.07	Vert(CT)	0.00	4-5	>999	240		
BCLL	0.0*	Rep Stress Incr	YES	WB	0.00	Horz(CT)	0.00	3	n/a	n/a		
BCDL	10.0	Code	IRC2018/TPI2014	Matrix-R		Wind(LL)	0.00	4-5	>999	240	Weight: 6 lb	FT = 10%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD	1-3-4 oc purlins, ex	eathing directly applie cept end verticals. / applied or 10-0-0	Internationa R802.10.2 LOAD CASE(S	s designed in ac al Residential Cc and referenced s) Standard	de sections	R502.11.1 a	and					
	bracing.	applied of 10-0-0 0	C .									
REACTIONS	(size) 3= Mecha 5=0-3-8	anical, 4= Mechanica	al,									
	Max Horiz 5=41 (LC	5)										
	Max Uplift 3=-57 (LC (LC 4)	C 1), 4=-21 (LC 1), 5	=-151									
	Max Grav 3=33 (LC (I C 1)	4), 4=13 (LC 4), 5=	320									

FORCES (lb) - Maximum Compression/Maximum Tension TOP CHORD 2-5=-277/151, 1-2=0/45, 2-3=-43/10

BOT CHORD 4-5=0/0

NOTES

- 1) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
- This truss has been designed for a 10.0 psf bottom 2) chord live load nonconcurrent with any other live loads.
- 3) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- All bearings are assumed to be SPF No.2 . 4)
- 5) Refer to girder(s) for truss to truss connections.
- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 151 lb uplift at joint 5, 21 lb uplift at joint 4 and 57 lb uplift at joint 3.

 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.
 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not beigh valid for use only with with with sets outputs into design is based only door parameters shown, and is for an individual dualing component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria**, and **DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcscomponents.com)

													CONSTRUCTION
Job	Truss		Truss Type	9			Qty	Ply	Lot 146	WO			NT SERVICES 1360289
B240051	LAY2		Lay-In Ga	able			1	1	Job Ref	ference (optio	nal		IT, MISSOURI
Wheeler Lumber, Wave	erly, KS - 66871,				Run: 8 ID:cwq	.73 S Feb 2 R5L9r0oXE	22 2024 Print: ColPF?DwNUF	8.730 S Fe Rz4SeW-Rf0	b 22 2024 MiT C?PsB70Hq3N	「ek Industries, Ir NSgPqnL8w3ul⊺	nc. Wed Mar 2 XbGKWrCDo	009.09/19 7J4zJC?f	/2024
	6-1						25-0-13					30-10-10	
	6-1	-0					18-11-13					5-9-13	0-3-4
		3x4									3x4		
		5	6	7	8	9	10	11	12 ⊠ □	13 14 ⊠ ⊠	15		
6-5-4 	3 2.65 T 1											17	18 19
	35	34 33	32	31	30	29	2827	26	25	24 23	22	21	20 _{3x4}
	3x4 🅢						3x4=						
	L						31-1-14						

Scale = 1:55.9

Plate Offsets (X, Y): [5:0-1-7,Edge], [15:0-1-7,Edge]

	X, Y): [5:0-1-7	',Edge],	[15:0-1-7,Edge]													
Loading TCLL (roof) TCDL BCLL BCDL	:	(psf) 25.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC20 ⁷	18/TPI2014	CSI TC BC WB Matrix-S	0.05 0.03 0.09	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.01	(loc) - - 19	n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 159 lb	GRIP 197/144 FT = 10%		
										7) 0						
LUMBER TOP CHORD BOT CHORD OTHERS BRACING	2x4 SPF No.2 2x4 SPF No.2	2 2		Т	ORCES	(lb) - Maximum Co Tension 1-2=-244/160, 2-3 4-5=-69/81, 5-6=- 7-8=-28/91, 8-9=- 10-11=-28/91, 11-	- =-143/12 28/91, 6- 28/91, 9-	23, 3-4=-106/9 7=-28/91, 10=-28/91,	,	 Gable studs spaced at 0-0-0 oc. This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. * This truss has been designed for a live load of 20.0ps on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom 						
TOP CHORD BOT CHORD	6-0-0 oc purli 2-0-0 oc purli	ins, exc ins (6-0-	athing directly applie ept -0 max.): 5-15. applied or 10-0-0 oc			13-14=-28/91, 14- 16-17=-81/53, 17- 18-19=-207/105	1, 15-16=-69/ /68,	,	 chord and any other members. 10) All bearings are assumed to be SPF No.2 . 11) Provide mechanical connection (by others) of truss to 							
REACTIONS			., 19=31-1-14, 4, 21=31-1-14,	В	BOT CHORD	1-35=-71/160, 34- 33-34=-71/160, 32 31-32=-71/160, 30 29-30=-71/160, 28	2-33=-71)-31=-71	(160, (160,		ing 86 lb uplift at joint ift at joint 35, 143 lb 33, 31 lb uplift at joint ift at joint 30, 34 lb						
	24 26 29 31 33	=31-1-1 =31-1-1 =31-1-1 =31-1-1	4, 23=31-1-14, 4, 25=31-1-14, 4, 28=31-1-14, 4, 30=31-1-14, 4, 32=31-1-14, 4, 34=31-1-14,	v	VEBS	29-30=-71/160, 22 26-28=-71/160, 22 24-25=-71/160, 22 22-23=-71/160, 22 20-21=-71/160, 19 2-35=-144/127, 3- 4-33=-137/60, 6-3	5-26=-71, 3-24=-71, 1-22=-71, 3-20=-71, 34=-172,	(160, (160, (160, (160, (168,	62,	up 26 up 21 12) Th	lift at joir , 33 lb u lift at joir and 108 is truss i	nt 29, 3 plift at j nt 23, 9 3 lb upli s desig	4 lb uplift at joint oint 25, 38 lb upli lb uplift at joint 2 ft at joint 20. ned in accordanc	28, 34 lb uplift at joint ift at joint 24, 31 lb 2, 146 lb uplift at joint ce with the 2018		
	Max Horiz 1= Max Uplift 1= 20 22	163 (L0 86 (LC)=-108 (l ?=-9 (LC		9),		8-30=-140/57, 9-2 11-26=-140/58, 12 13-24=-142/62, 14 16-22=-121/33, 17 18-20=-143/126	2-25=-14 1-23=-13	0/57, 6/55,	0/58,	 R802.10.2 and referenced standard ANSI/TPI 1 Graphical purlin representation does not depict or the orientation of the purlin along the top and bottom chord. 						
	26 29 31 33	6=-34 (L0)=-34 (L0 =-38 (L0	C 4), 28=-34 (LC 5), C 4), 30=-33 (LC 5), C 4), 32=-31 (LC 5), C 5), 34=-143 (LC 8)	1	this design Wind: ASC	d roof live loads ha E 7-16; Vult=115m ph; TCDL=6.0psf; E	ph (3-seo	cond gust)				Å	STATE OF I			
	Max Grav 1= 20 22 24 26 29 31 33	=169 (LC)=182 (L 2=161 (L !=182 (L i=180 (L)=180 (L =182 (L	28), 19=142 (LC 9), C 16), 21=217 (LC 1 C 22), 23=176 (LC 2 C 21), 25=180 (LC 2 C 21), 28=180 (LC 1 C 22), 30=180 (LC 2 C 22), 30=180 (LC 2 C 22), 32=176 (LC 2 C 15), 34=213 (LC 1	21), 3 22), 3), 21), 22), 4 5), 4 5), 5	 II; Exp C; E cantilever l right expos Truss desi only. For s see Standa or consult (Provide ad) All plates a 	Enclosed; MWFRS (envelope) exterior zone; left and right exposed ; end vertical left and sed; Lumber DOL=1.60 plate grip DOL=1.60 signed for wind loads in the plane of the truss studs exposed to wind (normal to the face), ard Industry Gable End Details as applicable, qualified building designer as per ANSI/TPI 1. dequate drainage to prevent water ponding. are 2x4 MT20 unless otherwise indicated. uires continuous bottom chord bearing.						xterior zone; ical left and p DDL=1.60 e of the truss o the face), as applicable, er ANSI/TPI 1. er ponding. indicated.				

March 21,2024

Continued on page 2 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSUTPTI Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

						RELEASE FOR CONSTRUCTION
Job	Truss	Truss Type	Qty	Ply	Lot 146 WO	AS NOTED FOR PLAN REVIEW
B240051	LAY2	Lay-In Gable	1	1	Job Reference (optional	DEVELOPMENT SERVICES 164360289 LEE'S SUMMIT, MISSOURI
Wheeler Lumber, Waverly, KS -	Ved Mar 2009 19/19 1/29 24					

LOAD CASE(S) Standard

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent buckling of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

						Г	RELEASE FOR CONSTRUCTION
Job	Truss	Truss Type	Qty	Ply	Lot 146 W0	0	AS NOTED FOR PLAN REVIEW DEVELOPMENT SERVICES 164360290
B240051	LAY3	Lay-In Gable	2	1	Job Refere	ence (optional	I64360290 LEE'S SUMMIT, MISSOURI
Wheeler Lumber, Wave	erly, KS - 66871,		n: 8.73 S Feb 22 2024 Print cwqR5L9r0oXEoIPF?DwNUI				
		<u>9-3-11</u> 9-3-11			<u>18-4-2</u> 9-0-7	18-7-6 0-3-4	
			4x5 = 6				
	T		5	7			

18-7-6

Scale = 1:60

00010 - 1100												
Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15	тс	0.06	Vert(LL)	n/a	-	n/a	999	MT20	197/144
TCDL	10.0	Lumber DOL	1.15	BC	0.04	Vert(TL)	n/a	-	n/a	999		
BCLL	0.0*	Rep Stress Incr	YES	WB	0.16	Horiz(TL)	0.01	11	n/a	n/a		
BCDL	10.0	Code	IRC2018/TPI2014	Matrix-S							Weight: 98 lb	FT = 10%
TCDL BCLL BCDL LUMBER TOP CHORD BOT CHORD BOT CHORD BOT CHORD BOT CHORD WEBS REACTIONS	10.0 0.0* 10.0 2x4 SPF No.2 2x4 SPF No.2 2x4 SPF No.2 2x4 SPF No.2 Structural wood she 6-0-0 oc purlins. Rigid ceiling directly bracing. 1 Row at midpt (size) 1=18-7-6 13=18-7- 16=18-7- 19=18-7- Max Horiz 1=251 (L Max Uplift 1=-140 (L 12=-106 14=-127 17=-124 19=-1277 (L 12=173 (L) 14=201 (L)	Lumber DOL Rep Stress Incr Code eathing directly applied applied or 10-0-0 oc 6-16 , 11=18-7-6, 12=18-7-16 , 17=18-7-6, 15=18-7 6, 17=18-7-6, 18=18-7 6, 20=18-7-6 C 7) C 6), 11=-98 (LC 7), (LC 9), 13=-127 (LC 9) (LC 8), 18=-126 (LC 8) (LC 8), 20=-106 (LC 8)	1.15 YES IRC2018/TPI2014 WEBS or NOTES 1) Unbalanced this design. 2) Wind: ASCE Vasd=91mp 6, II; Exp C; En -6, cantilever lef -6, right expose 3) Truss desig only. For st see Standar 0, 4) All plates are 0, 4) All plates are 1, 5) Gable requir 0, 6) Gable studs 7) This truss has chord live loc 5), 8) * This truss has on the bottom	BC WB	0.04 0.16 	Vert(TL) Horiz(TL) Horiz(TL) 48, (152, (146, (152, (152, (146, (152, (146, (152, (152, (164, (152, (164, (152, (164, (152, (164, (152, (164, (152, (164, (152, (164, (152, (164, (152, (164, (152, (164, (152, (164, (152, (164, (152, (15	n/a 0.01 r Cat. ne; d 60 iss), ble, PI 1. ds. 0psf		n/a		Weight: 98 lb	
	20=173 (,		ny other members. are assumed to be		. 2					OF	MIGON
FORCES TOP CHORD BOT CHORD	Tension 1-2=-362/220, 2-3=- 4-5=-139/128, 5-6=-	7-18=-108/233, 1-16=-108/233, 1-14=-108/233,	 Provide mec bearing plate 1, 98 lb uplif uplift at joint joint 20, 122 127 lb uplift This truss is International 	hanical connection a capable of withsta t at joint 11, 124 lb u 18, 127 lb uplift at ji lb uplift at joint 15, at joint 13 and 106 l designed in accord. Residential Code s nd referenced stance	(by oth nding 1 uplift at oint 19, 127 lb u b uplift ance w sections	ers) of truss to 40 lb uplift at joint 17, 126 106 lb uplift a uplift at joint 1 at joint 12. ith the 2018 5 R502.11.1 a	joint Ib at I4,			The second second	RESSIONA	042259

Com March 21,2024

16023 Swingley Ridge Rd. Chesterfield, MO 63017 314.434.1200 / MiTek-US.com

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

													RELEAS	E FOR CONSTRUCT	ΓΙΟΝ
Job	Truss	3		Truss Ty	/pe		Qty	/	Ply	Lot 146	WO			ED FOR PLAN REVI	
B240051	V3	V3 Valley					1		1	loh Po	foronco (c	ntional		LOPMENT SERVICE: 164360291 S SUMMIT, MISSOUR	
Wheeler Lumber, W	eler Lumber, Waverly, KS - 66871, Run: 8.73 S Feb 22 2024 Print: 8.73 O S Feb 22 2024 MiTek Industries, In									es, Inc. \					
						ID:46OpJgATn6f5	iQv_RYx	Rc1fz48	SeV-RfC?Psl	B70Hq3N	SgPqnL8w3	ulTXbGł	WrCDoi754zJC?	11/202	
		F			7-1-12							13-5-1		14-3-8	
		I			7-1-12				I			6-3-5		0-10-7	' I
									4x8 =						
	_							_	2 1~						
								4							
4-13 2-1-2			12 4 Г									_			
2-4-13		-	4		\bigcirc										
			1						_					3	
	-0-	Ŕ	××××××××××	~~~~~	****	*****	~~~~~			*****	~~~~~	~~~~~	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	ঈ
	0														8
			3x4	=					4					3x4 ≈	
									2x4 II						
								14	-3-8						_
Scale = 1:28.4		I													I
Loading	(psf)	Spaci	ng	2-0-0		CSI		DEFL	-	in (lo	c) l/def	L/d	PLATES	GRIP	
TCLL (roof) TCDL	25.0 10.0		Grip DOL er DOL	1.15 1.15		TC BC	0.57 0.32	Vert(I Vert(,	n/a n/a	- n/a - n/a		MT20	197/144	
BCLL	0.0*	Rep St	tress Incr	YES		WB	0.09	Horiz	,	.00	3 n/a				
BCDL	10.0	Code		•	3/TPI2014	Matrix-S							Weight: 33 lb	FT = 10%	
LUMBER TOP CHORD 2:	x4 SPF No.2			7)	on the bottom	as been designed n chord in all areas	where	a recta	ingle						
	x4 SPF No.2 x3 SPF No.2					y 2-00-00 wide wil y other members.	l fit betv	veen th	e bottom						
BRACING TOP CHORD S	Structural wood sh	eathing di	irectly applied	8) or 9)		are assumed to be nanical connection			truss to						
6	6-0-0 oc purlins.	Ū		01		capable of withsta at joint 3 and 58 lb									
b	Rigid ceiling direct pracing.			10) This truss is o	designed in accord Residential Code	lance w	ith the	2018						
REACTIONS (size Ma	ze) 1=14-3- ax Horiz 1=37 (L		-8, 4=14-3-8		R802.10.2 an	nd referenced stan									
Ma	ax Uplift 1=-54 (L (LC 4)	.C 4), 3=-5	58 (LC 9), 4=-	58 LU	AD CASE(S)	Standard									
Ma	ax Grav 1=253 (l 4=639 (l		=253 (LC 22),												
	lb) - Maximum Co	,	n/Maximum												
TOP CHORD 1	ension -2=-102/59, 2-3=-														
	-4=-1/39, 3-4=-1/3 2-4=-450/133	39													
NOTES 1) Unbalanced re	roof live loads hav	e been co	onsidered for												
this design.															
Vasd=91mph	7-16; Vult=115mp ; TCDL=6.0psf; B	CDL=6.0p	osf; h=25ft; Ca										A STORE	and	
cantilever left	closed; MWFRS (and right expose	d; end ve	rtical left and										TEOF	MISSO	
	I; Lumber DOL=1. ned for wind loads											A	S NATH	ANIEL	k
	ds exposed to wir I Industry Gable E			2								B	FC	X	8
or consult qua	alified building dealers continuous bott	signer as p	per ANSI/TPI									8	Nath a	NFIA	ğ
5) Gable studs s	spaced at 4-0-0 or).										8	yar u hach	VER OK	9
	s been designed f Id nonconcurrent v			i.								Ø	PE-2022	1042259	1
												Ċ	SSIONA	L ENGIE	
													ALL .	DO -	
													Marc	h 21,2024	

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANS/ITPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

2x4 SPF I	No.2
2x4 SPF I	No.2
2x3 SPF I	No.2
Structural	wood sheathing directly applied or
6-0-0 oc p	ourlins.
Rigid ceili	ing directly applied or 10-0-0 oc
bracing.	
(size)	1=10-3-8, 3=10-3-8, 4=10-3-8
Max Horiz	1=25 (LC 8)
Max Uplift	1=-37 (LC 4), 3=-40 (LC 9), 4=-40
	(LC 4)
Max Grav	1=172 (LC 21), 3=172 (LC 22),
	4=435 (LC 1)
(lb) - Max	imum Compression/Maximum
Tension	·
	2x4 SPF i 2x3 SPF i Structurai 6-0-0 oc p Rigid ceili bracing. (size) Max Horiz Max Uplift Max Grav (lb) - Max

TOP CHORD 1-2=-69/40, 2-3=-69/32 BOT CHORD 1-4=-1/26, 3-4=-1/26 2-4=-306/91 WEBS

NOTES

1) Unbalanced roof live loads have been considered for this design.

- Wind: ASCE 7-16; Vult=115mph (3-second gust) 2) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
- Truss designed for wind loads in the plane of the truss 3) only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

Gable requires continuous bottom chord bearing. Gable studs spaced at 2-0-0 oc. 5)

6)

This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 7) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.

All bearings are assumed to be SPF No.2 . 8)

Provide mechanical connection (by others) of truss to 9) bearing plate capable of withstanding 37 lb uplift at joint 1, 40 lb uplift at joint 3 and 40 lb uplift at joint 4.

10) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard

16023 Swingley Ridge Rd. Chesterfield MO 63017 314.434.1200 / MiTek-US.com

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

			-								FOR CONSTRUCTION	
Job	Truss		Truss Type		Qty	Ply	Lot 146 W	0			D FOR PLAN REVIEW OPMENT SERVICES 164360293	
B240051	V5		Valley		1	1	Job Refere	ob Reference (optic		LEE'S	I64360293 S SUMMIT, MISSOURI	
Wheeler Lumber	, Waverly, KS - 66871,		Run: 8.73 S Feb 22 2024 Print: 8.730 S Feb 22 2024 MiTek Industries, Inc. Ved Mar 2002 ben 1 1/2 9 2 ID:460pJgATn6f5Qv, RYxRc1fz4SeV-Rfc?PsB70Hg3NSgPgnL8w3uITXbGr WrCDoi794zJG7									
				1D.460p3gA (11615QV_		430V-RIC?PS	Brongsinoge	queowou	TADGr	WICD0I7 34 2JC?4		
			_	<u>3-1-1</u> 3-1-1				5-5-1 2-3-5		6-3-8 0-10-7		
			I	5-1-1	12			2-3-5		0-10-7		
						3:	x4 =					
				12 4		2						
				4								
	1-0-13	0-9-2		1 🧹						3		
	-1-0-1			. [0]		-			-10			
		0-0-4-0-0	—						****			
			Ŕ									
				2x4 =					2x	4 =		
						6-3	-8					
Scale = 1:20.5 Plate Offsets (X, Y): [2:0-2-0,Edge]		ľ							1		
Loading	(psf)	Spacing	2-0-0	CSI	DEI	 FL	in (loc)	l/defl	L/d	PLATES	GRIP	
TCLL (roof) TCDL	25.0 10.0	Plate Grip DOL Lumber DOL	1.15 1.15				n/a - n/a -	n/a n/a	999 999	MT20	197/144	
BCLL	0.0*	Rep Stress Incr	YES	WB 0		. ,	.00 3	n/a	999 n/a			
BCDL	10.0	Code	IRC2018/TPI2014	Matrix-P						Weight: 13 lb	FT = 10%	
LUMBER TOP CHORD	2x4 SPF No.2			hanical connection (by capable of withstand								
BOT CHORD	2x4 SPF No.2			plift at joint 3. designed in accordan	o with th	a 2018						
BRACING TOP CHORD	Structural wood she	athing directly applie	d or International	Residential Code sec	tions R50	2.11.1 and						
BOT CHORD		applied or 10-0-0 oc	LOAD CASE(S)	nd referenced standar Standard	u Angi/ n	-11.						
REACTIONS												
	Max Horiz 1=-14 (LC Max Uplift 1=-30 (LC											
FORCES	Max Grav 1=204 (L0 (lb) - Maximum Com											
	Tension 1-2=-267/85, 2-3=-2											
BOT CHORD		.07/03										
	ed roof live loads have	been considered for										
	CE 7-16; Vult=115mph											
Vasd=91m	ph; TCDL=6.0psf; BC	DI =6 0psf: h=25ft: C	at									

- Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
- Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) Gable requires continuous bottom chord bearing.
- 5) Gable studs spaced at 2-0-0 oc.
- 6) This truss has been designed for a 10.0 psf bottom
- chord live load nonconcurrent with any other live loads.
 7) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle
- 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- 8) All bearings are assumed to be SPF No.2 .

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSITPTI Quality Criteria, and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcscomponents.com)

General Safety Notes

Failure to Follow Could Cause Property Damage or Personal Injury

- 1. Additional stability bracing for truss system, e.g. diagonal or X-bracing, is always required. See BCSI.
- Truss bracing must be designed by an engineer. For wide truss spacing, individual lateral braces themselves may require bracing, or alternative Tor I bracing should be considered.
- Never exceed the design loading shown and never stack materials on inadequately braced trusses.
- Provide copies of this truss design to the building designer, erection supervisor, property owner and all other interested parties.
- 5. Cut members to bear tightly against each other.
- Place plates on each face of truss at each joint and embed fully. Knots and wane at joint locations are regulated by ANSI/TPI 1.
- Design assumes trusses will be suitably protected from the environment in accord with ANSI/TPI 1.
- Unless otherwise noted, moisture content of lumber shall not exceed 19% at time of fabrication.
- Unless expressly noted, this design is not applicable for use with fire retardant, preservative treated, or green lumber.
- Camber is a non-structural consideration and is the responsibility of truss fabricator. General practice is to camber for dead load deflection.
- 11. Plate type, size, orientation and location dimensions indicated are minimum plating requirements.
- Lumber used shall be of the species and size, and in all respects, equal to or better than that specified.
- 13. Top chords must be sheathed or purlins provided at spacing indicated on design.
- Bottom chords require lateral bracing at 10 ft. spacing, or less, if no ceiling is installed, unless otherwise noted.
- 15. Connections not shown are the responsibility of others.
- Do not cut or alter truss member or plate without prior approval of an engineer.
- 17. Install and load vertically unless indicated otherwise.
- Use of green or treated lumber may pose unacceptable environmental, health or performance risks. Consult with project engineer before use.
- Review all portions of this design (front, back, words and pictures) before use. Reviewing pictures alone is not sufficient.
- 20. Design assumes manufacture in accordance with ANSI/TPI 1 Quality Criteria.
- 21. The design does not take into account any dynamic or other loads other than those expressly stated.