

RE: B240033 Lot 172 HT

Site Information:

Customer: Summit Homes Project Name: B240033 Lot/Block: 172 Model: So Address: 3216 SW Arbor Sound Dr City: Lee's Summit State: MC

Model: Somerset - Craftsman Subdivision: Hawthorn Ridge State: MO

General Truss Engineering Criteria & Design Loads (Individual Truss Design Drawings Show Special Loading Conditions):

Design Code: IRC2018/TPI2014 Wind Code: ASCE 7 - 16[Low Rise] Roof Load: 45.0 psf Design Program: MiTek 20/20 8.7 Wind Speed: 115 mph Floor Load: N/A psf

This package includes 40 individual, dated Truss Design Drawings and 0 Additional Drawings.

No.	Seal#	Truss Name	Date	No.	Seal#	Truss Name	Date
1	162692717	A1	12/26/2023	21	162692737	D1	12/26/2023
2	162692718	A2	12/26/2023	22	162692738	D2	12/26/2023
3	162692719	A3	12/26/2023	23	162692739	D3	12/26/2023
4	162692720	A4	12/26/2023	24	162692740	P1	12/26/2023
5	162692721	A5	12/26/2023	25	162692741	P2	12/26/2023
6	162692722	B1	12/26/2023	26	162692742	V1	12/26/2023
7	162692723	B2	12/26/2023	27	162692743	V2	12/26/2023
8	162692724	B3	12/26/2023	28	162692744	V3	12/26/2023
9	162692725	B4	12/26/2023	29	162692745	V4	12/26/2023
10	162692726	B5	12/26/2023	30	162692746	V5	12/26/2023
11	162692727	B6	12/26/2023	31	162692747	V6	12/26/2023
12	162692728	C1	12/26/2023	32	162692748	V7	12/26/2023
13	162692729	C2	12/26/2023	33	162692749	V8	12/26/2023
14	162692730	C3	12/26/2023	34	162692750	V9	12/26/2023
15	162692731	C4	12/26/2023	35	162692751	V10	12/26/2023
16	162692732	C5	12/26/2023	36	162692752	V11	12/26/2023
17	162692733	C6	12/26/2023	37	162692753	V12	12/26/2023
18	162692734	C7	12/26/2023	38	162692754	V13	12/26/2023
19	162692735	C8	12/26/2023	39	162692755	V14	12/26/2023
20	162692736	C9	12/26/2023	40	162692756	V15	12/26/2023

The truss drawing(s) referenced above have been prepared by MiTek USA, Inc under my direct supervision

based on the parameters provided by Wheeler - Waverly.

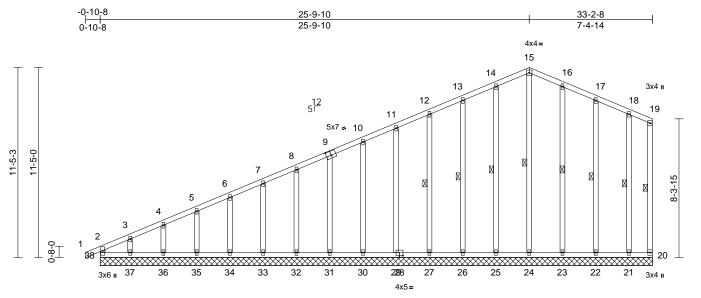
Truss Design Engineer's Name: Sevier, Scott

My license renewal date for the state of Missouri is December 31, 2025. Missouri COA: 001193

IMPORTANT NOTE: The seal on these truss component designs is a certification that the engineer named is licensed in the jurisdiction(s) identified and that the designs comply with ANSI/TPI 1. These designs are based upon parameters shown (e.g., loads, supports, dimensions, shapes and design codes), which were given to MiTek. Any project specific information included is for MiTek customers file reference purpose only, and was not taken into account in the preparation of these designs. MiTek has not independently verified the applicability of the design parameters or the designs for any particular building. Before use, the building designer should verify applicability of design parameters and properly incorporate these designs into the overall building design per ANSI/TPI 1, Chapter 2.

Sevier, Scott

December 26, 2023
RELEASE FOR CONSTRUCTION
AS NOTED ON PLANS REVIEW
DEVELOPMENT SERVICES
LEE'S SUMMIT, MISSOURI
04/09/2024 5:02:01


1 of 1

MiTek, Inc. 16023 Swingley Ridge Rd. Chesterfield, MO 63017 314.434.1200

Job	Truss	Truss Type	Qty	Ply	Lot 172 HT	
B240033	A1	Common Supported Gable	2	1	Job Reference (optional)	162692717

Run: 8,73 S Dec 14 2023 Print: 8,730 S Dec 14 2023 MiTek Industries, Inc. Thu Dec 21 09:06:32 ID:Hr0UloyIgMOrZQ4rpild7XzssyG-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:69.3 Plate Offsets (X, Y): [9:0-3-8,0-3-0], [28:0-2-8,0-1-4]

	(73, 1). [0.0	0 0,0 0 0],	, [20.0 2 0,0 1 4]			_								-		
Loading		(psf)	Spacing	2-0-0		csi		DEFL	in	(loc	c) l/defl	L/d	PLATES	GRIP		
TCLL (roof)		25.0	Plate Grip DOL	1.15		тс	0.29	Vert(LL)	n/a		- n/a	999	MT20	197/144		
TCDL		10.0	Lumber DOL	1.15		BC	0.12	Vert(CT)	n/a		- n/a	999				
BCLL		0.0*	Rep Stress Incr	YES		WB	0.15	Horz(CT)	-0.01	2	0 n/a	n/a				
BCDL		10.0	Code	IRC2	018/TPI2014	Matrix-R							Weight: 208 lb	FT = 10%		
	0.4005				FORCES	(lb) - Maximum C Tension	Compressi	on/Maximum					ntinuous bottom			
TOP CHORD					TOP CHORD	2-38=-184/0. 1-2	0/27 2 2	210/11						e face or securely .e. diagonal web).		
BOT CHORD					TOP CHORD	3-4=-262/37, 4-5	, ,	,		7) (able etue		ed at 2-0-0 oc.	.e. ulagoriai web).		
WEBS OTHERS	2x4 SPF 2x4 SPF					6-7=-191/29, 7-8	,	,	,	7) C 8) T	bie truce	has had	en designed for a	10.0 pef bottom		
	2X4 SPF	INO.Z				10-11=-135/68, 1			-,					any other live loads.		
BRACING	<u>.</u>					12-13=-108/121,								a live load of 20.0psf		
TOP CHORD						14-15=-85/173, 1		,					ord in all areas wh			
	6-0-0 oc purlins, except end verticals. HORD Rigid ceiling directly applied or 6-0-0 oc					16-17=-96/152, 1								between the bottom		
BOT CHORD	BOT CHORD Rigid ceiling directly applied or 6-0-0 oc bracing.					18-19=-152/125,							her members.			
WEDO		and also t	40 00 45 04 44 05		BOT CHORD	37-38=-116/88, 3							ssumed to be SP	F No.2 .		
WEBS	1 Row at	miapt	19-20, 15-24, 14-25 13-26, 12-27, 16-23	,		35-36=-116/88, 3								others) of truss to		
			17-22, 18-21	',		33-34=-116/88, 3	32-33=-11	6/88,						ng 31 lb uplift at joint		
	(-:)		,	~ ~		31-32=-116/88, 3	30-31=-11	6/87,						at joint 25, 50 lb uplift		
REACTIONS	(size)		8, 21=33-2-8, 22=33			29-30=-116/87, 2	27-29=-11	6/87,		а	t joint 26,	47 lb u	plift at joint 27, 48	3 lb uplift at joint 29,		
			8, 24=33-2-8, 25=33			26-27=-116/87, 2	25-26=-11	6/87,		4	7 lb uplift	at joint	30, 47 lb uplift at	joint 31, 49 lb uplift at		
			8, 27=33-2-8, 29=33			24-25=-116/87, 2	23-24=-11	6/87,		jo	2, 48 jint 32, 48	B lb upli	ft at joint 33, 47 lb	uplift at joint 34, 53		
			8, 31=33-2-8, 32=33			22-23=-116/87, 2	21-22=-11	6/87,		i	o uplift at j	oint 35	, 27 lb uplift at joir	nt 36, 148 lb uplift at		
			8, 34=33-2-8, 35=33			20-21=-116/87					oint 37, 47	' lb upli	ft at joint 23, 57 lb	o uplift at joint 22 and		
	Max Hariz	38=353 (L	8, 37=33-2-8, 38=33	-2-0	WEBS	15-24=-128/46, 1	14-25=-14	9/69,		29 lb uplift at joint 21.						
			_C 3) .C 4), 21=-29 (LC 4),			13-26=-139/74, 1	12-27=-14	0/71,					ned in accordanc			
	wax upint		.C 9), 23=-47 (LC 9),			11-29=-140/72, 1				International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.						
						9-31=-140/71, 8-	32=-142/7	73, 7-33=-139	/72,							
			C 20), 25=-45 (LC 8), .C 8), 27=-47 (LC 8),			6-34=-140/71, 5-			/61,							
			.C 8), 30=-47 (LC 8),			3-37=-116/126, 1							O DE I	and the second		
			.C 8), 30=-47 (LC 8), .C 8), 32=-49 (LC 8),			17-22=-144/73, 1	18-21=-12	2/101					F.OF I	MISS OF		
			.C 8), 34=-47 (LC 8),		NOTES							4	9.0	MISSOL		
		35=-53 (L	.C 8), 36=-27 (LC 8),		 Unbalance this design 	d roof live loads ha	ave been	considered fo	r			đ	SCOT	TM. Y		
	May Cray	37=-148 (`	0	E 7-16; Vult=115n	nph (3-seo	cond aust)				81	SEVI			
	wax Grav		C 16), 21=158 (LC 1)),		ph; TCDL=6.0psf;			Cat.			0		1 * 1		
			LC 22), 23=188 (LC 2			Enclosed; MWFRS						8	0			
			_C 15), 25=189 (LC 2 _C 21), 27=180 (LC 2			eft and right expos						N .	Anter	Acriel		
						ed; Lumber DOL=						N .		TANK TANK		
			_C 21), 30=178 (LC _C 1), 32=182 (LC 2			igned for wind load						N.	PE-2001	018807		
		•	LC 1), 32=182 (LC 2 LC 21), 34=180 (LC 2	1),		studs exposed to w						V V	1 The	158		
			LC 21), 34=180 (LC LC 21), 36=186 (LC			ard Industry Gable							N'S'SIG	ENUS		
					an annual terralification and a second and ANOL/TDL4								C'SSIONA	L		
		57 - 151 (1	LC 21), 38=223 (LC	10)		are 2x4 MT20 unle							and	5555		
					, , ,								Decembe			
													December	20,2020		

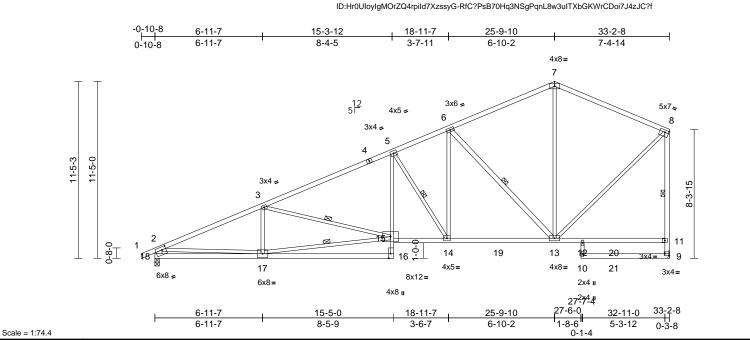
Continued on page 2 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. WARNING - Verify design parameters and KEAD KO LES ON THIS AND INCLUDED MILEK REFERENCE PAGE MIL-7473 rev. 17/2/2023 BEFORE USE. Design valid for use only with MITeK® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria**, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcscomponents.com)

TION IEW DEVELORMENT SERVICES LEE'S' SUMMIT'S MISSOURI 04/09/2024 5:02:01

Job	Truss	Truss Type	Qty	Ply	Lot 172 HT	
B240033	A1	Common Supported Gable	2	1	Job Reference (optional)	162692717
Wheeler Lumber, Waverly, KS -	66871,	Run: 8.73 S Dec 14 2	2023 Print: 8.	730 S Dec 1	4 2023 MiTek Industries, Inc. Thu Dec 21 09:06:32	Page: 2

LOAD CASE(S) Standard

ID:Hr0UloyIgMOrZQ4rpild7XzssyG-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f


RELEASE ICREDIATRUCTION AS NOTED ON PLANS REVIEW DEVELORMENTS SERVICES LEE'S SUMMIT'S MISSOURI 04/09/2024 5:02:01

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent toulsible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

Job	Truss	Truss Type	Qty	Ply	Lot 172 HT		
B240033	A2	Roof Special	1	1	Job Reference (optional)	162692718	

Run: 8.73 S Dec 14 2023 Print: 8.730 S Dec 14 2023 MiTek Industries, Inc. Thu Dec 21 09:06:34

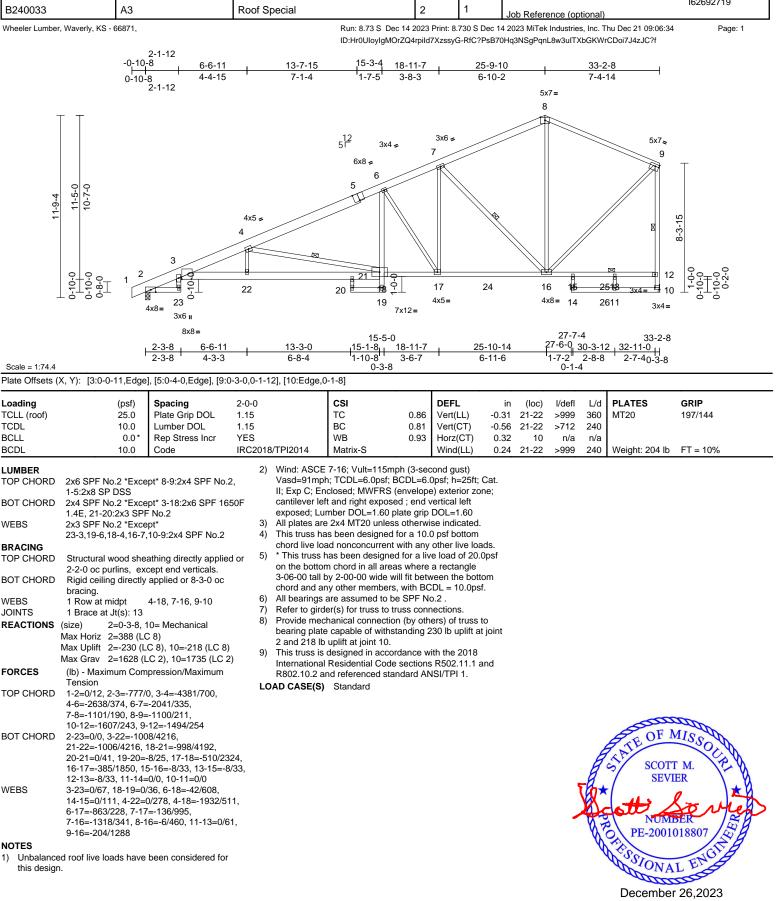
Wheeler Lumber, Waverly, KS - 66871,

Plate Offsets (X, Y): [8:0-3-0,0-1-12], [9:Edge,0-1-8], [16:0-3-8,Edge], [18:0-3-0,0-2-4]

		1			1								-
Loading	(psf)	Spacing	2-0-0		csi		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15		TC	0.90	Vert(LL)	-0.26	16-17	>999	360	MT20	197/144
TCDL	10.0	Lumber DOL	1.15		BC	0.79	Vert(CT)	-0.50	16-17	>781	240		
BCLL	0.0*	Rep Stress Incr	YES		WB	0.86	Horz(CT)	0.16	9	n/a	n/a		
BCDL	10.0	Code	IRC201	8/TPI2014	Matrix-S		Wind(LL)	0.14	14-15	>999	240	Weight: 161 lb	FT = 10%
LUMBER			,		7-16; Vult=115m			0.1					
TOP CHORD	2x4 SPF No.2 *Exce 1.8E	ept* 1-4:2x4 SPF 210)0F		h; TCDL=6.0psf; closed; MWFRS								
BOT CHORD WEBS	2x4 SPF No.2 *Exce 2x3 SPF No.2 *Exce				t and right expos mber DOL=1.60								
	No.2, 18-2:2x6 SPF No.2			This truss ha	is been designed	for a 10.	0 psf bottom						
BRACING					ad nonconcurrent								
TOP CHORD Structural wood sheathing directly applied, except end verticals.				on the botto	nas been designe m chord in all are	as where	a rectangle	•					
BOT CHORD					by 2-00-00 wide v								
WEBS		15-17, 3-15, 5-14, 6	12 5)		are assumed to b								
WEDS	T ROW at midpt	8-9	-13, 6)		er(s) for truss to t								
REACTIONS	(aiza) O Maaba	anical, 18=0-3-8	7)		hanical connectio			to					
REACTIONS	(size) 9= Mecha Max Horiz 18=374 (I		,	bearing plate	e capable of withs	standing 2	31 Ib uplift a	t joint					
			`		b uplift at joint 9.								
	Max Uplift 9=-218 (L Max Grav 9=1720 (L				designed in acco Residential Code			and					
FORCES	(lb) - Maximum Com	pression/Maximum			nd referenced sta			anu					
	Tension		LC	DAD CASE(S)	Standard								
TOP CHORD	1-2=0/30, 2-3=-2975		2,										
	5-6=-1993/335, 6-7=												
	7-8=-1094/214, 2-18 9-11=-1578/252, 8-1												
BOT CHORD	17-18=-484/797, 16		156									000	TIC
BOT CHORD	5-15=-85/678, 14-15		150,									OFM	ALC D
	13-14=-379/1799, 12	,	2/22									ACE	W Scin
	9-10=0/0	2-13=-9/33, 11-12=-	9/33,								A	TATE OF M	N.S
WEBS	10-12=0/120, 3-17=	-302/211									A	SCOT	M. P.V.
WEB3	15-17=-664/2498, 3	,									H	SEVI	
	5-14=-964/273, 6-14	,									86		1+12
5-14=-964/273, 6-14=-145/981, 6-13=-1265/334, 7-13=-5/448,											20	1 ++-	
	6-13=-1265/334, 7-13=-5/448, 2-17=-171/1883, 8-13=-206/1266									_	L.	au >	Alment
NOTES										-	N'S	NUM	BER S
	ed roof live loads have	been considered for									N	PE-2001	018807
i) Unbalance	Eu TUUT IIVE IUaus Have	Deen considered for										~~~	1.44

1) Unbalanced roof live loads have been considered for this design.

E

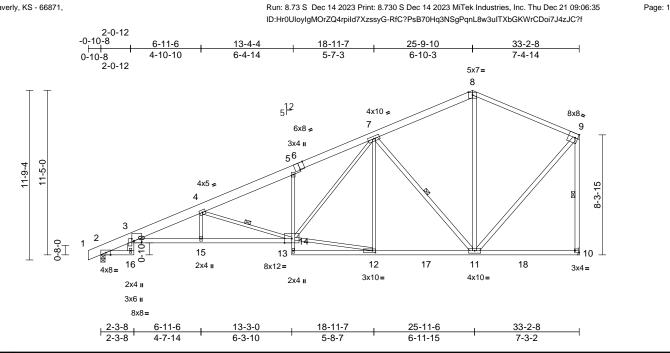

ONAL

December 26,2023

Page: 1

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent colleges with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

Job	Truss	Truss Type	Qty	Ply	Lot 172 HT	
B240033	A3	Roof Special	2	1	Job Reference (optional)	162692719



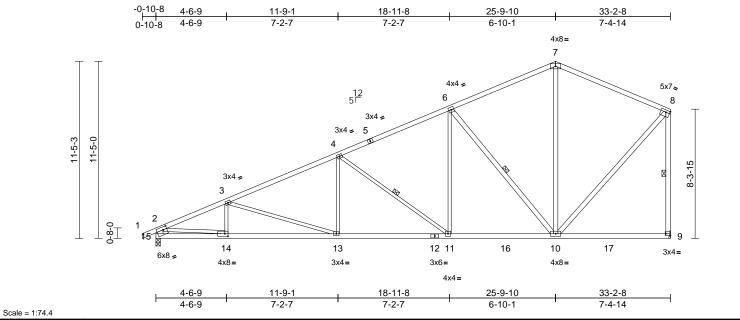
WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponent.com)

Job	Truss	Truss Type	Qty	Ply	Lot 172 HT	
B240033	A4	Roof Special	2	1	Job Reference (optional)	162692720

Scale = 1:80

	(, .). [9-1, [,=-									
Loading	(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15		тс	0.86		-0.30		>999	360	MT20	197/144
TCDL	10.0	Lumber DOL	1.15		BC	0.73	Vert(CT)	-0.53	14-15	>744	240		
BCLL	0.0*	Rep Stress Incr	YES		WB	0.65	Horz(CT)	0.27	10	n/a	n/a		
BCDL	10.0	Code	IRC2018	8/TPI2014	Matrix-S	-	Wind(LL)	0.17	14-15	>999	240	Weight: 195 lb	FT = 10%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD WEBS REACTIONS	2x6 SPF No.2 *Exce 1-6:2x8 SP DSS 2x4 SPF No.2 *Exce 1.8E, 5-13:2x3 SPF 2x3 SPF No.2 *Exce 11-7,11-8,10-9,11-9 Structural wood she 2-2-0 oc purlins, ex Rigid ceiling directly bracing. 1 Row at midpt	Appt* 3-14:2x4 SPF 2* No.2 2pt* 16-3:2x6 SPF N :2x4 SPF No.2 2x4 spF No.2 2x6 spF No.2 2x7 spF N	3) .2, 4) 100F o.2, 5) ed or 7) c 8) LC	This truss ha chord live loa * This truss h on the bottor 3-06-00 tall b chord and ar All bearings Refer to gird Provide mec bearing plate 2 and 42 lb o This truss is International	Is been designer as been designer as been design n chord in all are by 2-00-00 wide yo ther member are assumed to er(s) for truss to hanical connecti e capable of with uplift at joint 10. designed in acco Residential Coo nd referenced st	nt with any ed for a liv eas where will fit betw rs, with BC be SPF Ne truss conr truss conr toon (by oth standing 3 ordance w de sections	D psf bottom other live lo: e load of 20 a rectangle veen the bot DL = 10.0ps o.2 . nections. ers) of truss 8 lb uplift at ith the 2018 \$ R502.11.1	ads. .0psf tom sf. to joint					
FORCES	(lb) - Maximum Com		,										
TOP CHORD	Tension 1-2=0/12, 2-3=-758/ 4-5=-2796/94, 5-7=- 8-9=-975/78, 9-10=-	2735/165, 7-8=-978	/67,										
BOT CHORD	,	5/3895, 14-15=-353/ 339/112, 12-13=-15/	,									OF I	ALS SIN
WEBS	,	173, 4-14=-1479/15 -14=-147/1458,	,									STATE OF I	
this design 2) Wind: ASC Vasd=91n II; Exp C; and right e	ed roof live loads have n. CE 7-16; Vult=115mph mph; TCDL=6.0psf; BC Enclosed; MWFRS (er exposed ; end vertical 0 plate grip DOL=1.60	i (3-second gust) :DL=6.0psf; h=25ft; (nvelope); cantilever	Cat. left								and the second s	PE-2001	LENGT

December 26,2023



Job	Truss	Truss Type	Qty	Ply	Lot 172 HT	
B240033	A5	Common	1	1	Job Reference (optional)	162692721

Run: 8.73 S Dec 14 2023 Print: 8.730 S Dec 14 2023 MiTek Industries, Inc. Thu Dec 21 09:06:35 ID:Hr0UloyIgMOrZQ4rpild7XzssyG-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Plate Offsets (X, Y): [8:0-3-0,0-1-12], [9:Edge,0-1-8], [14:0-2-8,0-2-0], [15:0-3-0,0-2-4]

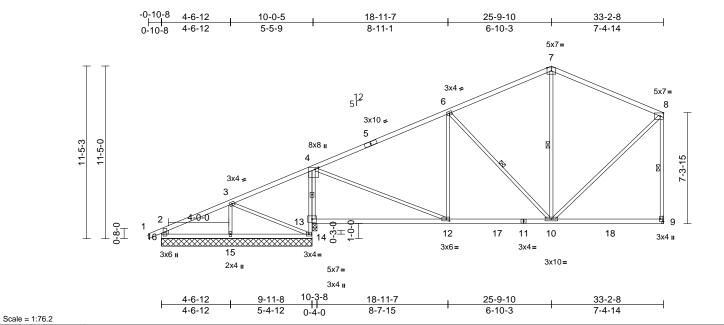
Loading TCLL (roof) TCDL BCLL BCDL	(psf) 25.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018/TP	CSI TC BC WB Pl2014 Matr	0.91 0.90 0.74 rix-S	DEFL Vert(LL) Vert(CT) Horz(CT) Wind(LL)	-0.19 1 -0.35 1 0.08	(loc) l/c 3-14 >9 3-14 >9 9 1 3-14 >9	99 360 99 240 n/a n/a	PLATES MT20 Weight: 154 lb	GRIP 197/144 FT = 10%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD WEBS REACTIONS	2x4 SPF No.2 2x3 SPF No.2 *Exce 10-6,10-7,9-8,10-8:2 SPF No.2 Structural wood she except end verticals Rigid ceiling directly bracing. 1 Row at midpt	x4 SPF No.2, 15-2:2 athing directly applie - applied or 10-0-0 oc 4-11, 6-10, 8-9 unical, 15=0-3-8 -C 8) 2 8), 15=-38 (LC 8)	on 3-(ch 2x6 5) All 6) Re 7) Pro 15 8) Th 15 8) Th 10 15 8) Th 10 10 8 10 10 10 10 10 10 10 10 10 10 10 10 10	the bottom chor 06-00 tall by 2-00 lord and any othe I bearings are as efer to girder(s) fr rovide mechanica baring plate capa 5 and 42 lb uplift ins truss is design ternational Resid	ned in accordance w lential Code sections erenced standard Al	a rectangle ween the bottor CDL = 10.0psf. o.2. nections. ners) of truss to 38 lb uplift at jo vith the 2018 s R502.11.1 an	m int				
FORCES	(lb) - Maximum Com Tension	pression/Maximum									
TOP CHORD		985/69, 7-8=-982/80	,								
BOT CHORD	11-13=-195/2288, 10 9-10=-3/21	0-11=-116/1577,								55000	aller .
WEBS	3-14=-131/81, 3-13= 4-11=-880/98, 6-11= 7-10=0/381, 2-14=-3	=0/792, 6-10=-1178/1	132,						A		MISSOLU
 NOTES Unbalanced roof live loads have been considered for this design. Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope); cantilever left and right exposed ; end vertical left exposed; Lumber DOI =1 60 plate grip DOI =1 60 										SCOT SEVI	er *

DOL=1.60 plate grip DOL=1.60 This truss has been designed for a 10.0 psf bottom 3)

chord live load nonconcurrent with any other live loads.

December 26,2023

SSIONAL


E

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent colleges with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

Job	Truss	Truss Type	Qty	Ply	Lot 172 HT	
B240033	B1	Roof Special	1	1	Job Reference (optional)	162692722

Run: 8.73 S Dec 14 2023 Print: 8.730 S Dec 14 2023 MiTek Industries, Inc. Thu Dec 21 09:06:35 ID:Hr0UloyIgMOrZQ4rpild7XzssyG-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

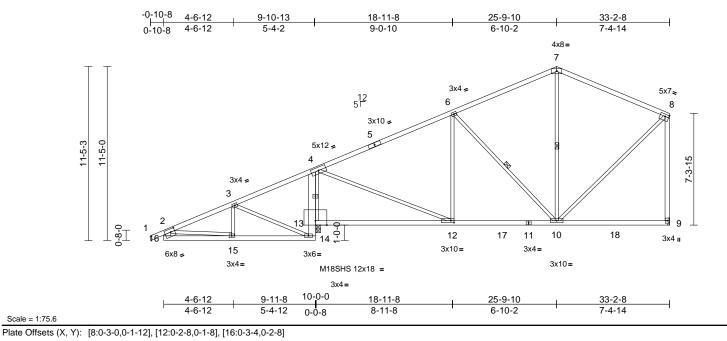
Plate Offsets (X, Y): [4:0-1-8,0-2-12], [9:Edge,0-2-8], [12:0-2-8,0-1-8]

right exposed; Lumber DOL=1.60 plate grip DOL=1.60

Plate Olisets	(A, 1). [4.0-1-0,0-2-12	.], [9.Euge,0-2-0], [12	2.0-2-0,0-1	-0]								-	
Loading TCLL (roof) TCDL BCLL BCDL	(psf) 25.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC201	8/TPI2014	CSI TC BC WB Matrix-S	0.94 0.61 0.47	DEFL Vert(LL) Vert(CT) Horz(CT) Wind(LL)		(loc) 12-13 12-13 9 9-10	l/defl >999 >779 n/a >999	L/d 360 240 n/a 240	PLATES MT20 Weight: 136 lb	GRIP 197/144 FT = 10%
TOP CHORD 2x4 SPF No.2 cha BOT CHORD 2x4 SPF No.2 *Except* 14-4:2x3 SPF No.2 4) * T BOT CHORD 2x3 SPF No.2 *Except* 16-2:2x6 SPF No.2 on BRACING 3-C TOP CHORD Structural wood sheathing directly applied, except end verticals. 3-C BOT CHORD Structural wood sheathing directly applied, except end verticals. 5) Be BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing. 6) Re WEBS 1 Row at midpt 6-10, 7-10, 8-9 7) Be REACTIONS (size) 9= Mechanical, 13=9-11-8, 14=9-11-8, 14=9-11-8, 15=9-11-8, 16=9-11-8, 14=9-11-8, 15=9-11-8, 16=9-11-8, 14=-52 (LC 5), 16=-52 (LC 4) 8) Provide the structural way of the structural w			chord live lo. * This truss I on the bottoo 3-06-00 tall I chord and an Bearings are 13 SPF No.2 Refer to gird Bearing at joint using ANSI/ designer sho Provide mean bearing plata 16, 274 lb up lb uplift at joint This truss is International	designed in accor Residential Code	with any I for a liv s where II fit betv with BC oint 15 \$ 2. uss com s paralle n formul of bear h (by oth anding \$ b uplift a dance w sections	other live loa e load of 20.0 a rectangle veen the bott DL = 10.0psi SPF No.2, Jc hections. I to grain valu a. Building ing surface. ers) of truss t i2 Ib uplift at j ti t joint 14 and ith the 2018 s R502.11.1 a	Opsf om f. int ie to joint J 109						
FORCES		pression/Maximum	LC	DAD CASE(S)	nd referenced star Standard	iuaru Ar	NSI/TFTT.						
TOP CHORD	1-2=0/30, 2-3=-209/2 4-6=-1090/154, 6-7= 2-16=-264/76, 8-9=-	-714/169, 7-8=-688/	186,										
BOT CHORD	,	5=-227/99, 13-14=0, -13=-63/115,	/0,									E OF M	MISSOL
WEBS	3-14=-105/198, 4-12 6-12=-119/163, 6-10 7-10=-59/194, 8-10=)=-517/183,	56								A	S SCOT	TM. R
 NOTES 1) Unbalanced roof live loads have been considered for this design. 2) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed ; end vertical left and construction of the proceed sectors and the proceed sectors and the proceed sectors and the proceed sectors and the proceed sectors are an analyzed and the proceeding sectors are an an											PE-2001	15 B	

 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.
 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not besign value to dury with with where outputs into design is based only door parameters shown, and is for an individual building design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members and property incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TPH1 Quality Criteria**, and **DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcscomponents.com)

ΤΙΟΝ IEW DEVELORMENT SERVICES LEE'S'SUMMIT'SMISSOURI 04/09/2024 5:02:02


ONAL E

December 26,2023

Job	Truss	Truss Type	Qty	Ply	Lot 172 HT	
B240033	B2	Roof Special	3	1	Job Reference (optional)	162692723

Run; 8.73 S Dec 14 2023 Print; 8.730 S Dec 14 2023 MiTek Industries, Inc. Thu Dec 21 09:06:36 ID:Hr0UloyIgMOrZQ4rpild7XzssyG-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Loading TCLL (roof) TCDL	(psf)	Spacing	2-0-0										
()	05.0		2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCDL	25.0	Plate Grip DOL	1.15		TC	0.91	Vert(LL)	-0.18	12-13	>999	360	MT20	197/144
	10.0	Lumber DOL	1.15		BC	0.53	Vert(CT)	-0.35	12-13	>806	240	M18SHS	197/144
BCLL	0.0*	Rep Stress Incr	YES		WB	0.61	Horz(CT)	-0.01	9	n/a	n/a		
BCDL	10.0	Code	IRC201	8/TPI2014	Matrix-S		Wind(LL)	0.18	12-13	>999	240	Weight: 147 lb	FT = 10%
LUMBER TOP CHORD 2x4 SPF No.2 BOT CHORD 2x4 SPF No.2 *Except* 14-4:2x6 SP DSS WEBS 2x3 SPF No.2 *Except* 16-2:2x6 SPF No.2,				chord live loa * This truss h	s been designed f ad nonconcurrent has been designed n chord in all area	with any I for a liv	other live loa e load of 20.0						
WEBS BRACING TOP CHORD	2x3 SPF No.2 *Exce 9-8:2x4 SPF No.2 Structural wood shea 2-2-0 oc purlins, exc	athing directly applie	, C)	3-06-00 tall b chord and ar	by 2-00-00 wide wind by other members, Required bearing s	II fit betw with BC	veen the botto DL = 10.0pst	ŀ.					
BOT CHORD	Rigid ceiling directly bracing.		8)	 All bearings are assumed to be SPF No.2. Refer to girder(s) for truss to truss connections. 									
WEBS REACTIONS		C 5), 13=-388 (LC 4)	 9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 388 lb uplift at joint 13 and 217 lb uplift at joint 9. 10) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. 									
FORCES	(lb) - Maximum Com Tension	pression/Maximum	LC	DAD CASE(S)		idai d 7 il							
TOP CHORD													
BOT CHORD	15-16=-11/42, 14-15 13-14=-72/338, 4-13 12-13=-1130/130, 10 9-10=-5/25	=-1794/279,										Contraction of the local sector	and the

NOTES

WEBS

Unbalanced roof live loads have been considered for 1) this design.

3-15=-59/264, 3-14=-676/147, 4-12=-268/1788, 6-12=-460/88, 6-10=-180/153, 7-10=-140/126,

2-15=-487/114, 8-10=-148/580

- 2) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope); cantilever left exposed ; end vertical left exposed; porch left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
- All plates are MT20 plates unless otherwise indicated. 3)

OF MISSO SCOTT M. SEVIER NUMB PE-2001018807 C SSIONAL E

December 26,2023

 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.
 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not besign value to dury with with where outputs into design is based only door parameters shown, and is for an individual building design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members and property incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TPH1 Quality Criteria**, and **DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcscomponents.com)

Job	Truss	Truss Type	Qty	Ply	Lot 172 HT	
B240033	B3	Roof Special	4	1	Job Reference (optional)	162692724

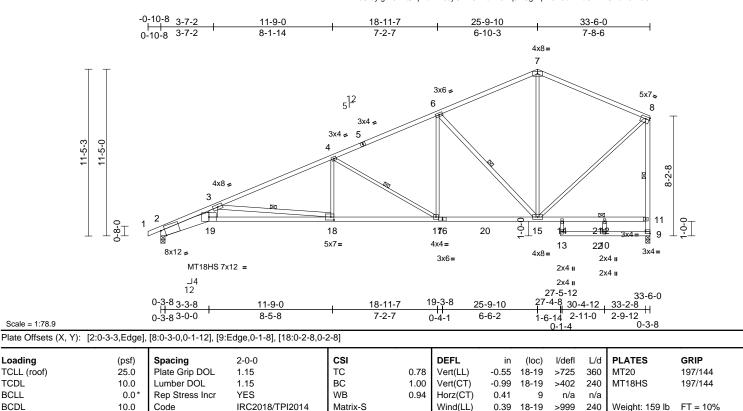
Run: 8.73 S Dec 14 2023 Print: 8.730 S Dec 14 2023 MiTek Industries, Inc. Thu Dec 21 09:06:36 ID:Hr0UloyIgMOrZQ4rpild7XzssyG-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Plate Offsets (X, Y): [9:Edge,0-2-8], [12:0-2-8,0-1-8], [16:0-3-4,0-2-8]

Loading	(psf)	Spacing	2-0-0	csi		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15	TC	0.99	Vert(LL)	-0.16	9-10	>999	360	MT20	197/144
TCDL	10.0	Lumber DOL	1.15	BC	0.50	Vert(CT)	-0.28	12-13	>999	240	M18SHS	197/144
BCLL	0.0*	Rep Stress Incr	YES	WB	0.91	Horz(CT)	-0.01	9	n/a	n/a		
BCDL	10.0	Code	IRC2018/TPI2014	Matrix-S		Wind(LL)	0.14	12-13	>999	240	Weight: 146 lb	FT = 10%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD WEBS REACTIONS	2x4 SPF No.2 *Exce 13-11:2x4 SPF 2100 2x3 SPF No.2 *Exce Structural wood she except end verticals Rigid ceiling directly bracing. 1 Row at midpt	F 1.8E pt* 16-2:2x6 SPF No athing directly applie applied or 6-0-0 oc 7-10, 8-9, 6-10 13=0-3-8 C 8) C 5), 13=-591 (LC 4	chord liv S, 5) * This tri on the b 5.2 3-06-00 chord ar 9d, 6) Bearing: Joint 9 S 7) Provide bearing 13 and 2 8) This trus Internati R802.10)	s has been designed e load nonconcurrent iss has been designed ottom chord in all are- tall by 2-00-00 wide v d any other members are assumed to be: PF No.2. mechanical connection plate capable of withs 95 lb uplift at joint 9. s is designed in accoon nal Residential Code 2. and referenced stat (S) Standard	t with any ed for a liv as where will fit betw s, with BC Joint 13 \$ on (by oth standing 5 ordance w e sections	other live loa e load of 20.0 a rectangle veen the botto DL = 10.0psf SPF 2100F 1. ers) of truss t 591 lb uplift at ith the 2018 s R502.11.1 a	Dpsf 5. 8E , ⊙ : joint					
FORCES	(lb) - Maximum Corr	,. , ,)									
1 ONOLO	Tension	procession/maximum										
TOP CHORD	1-2=0/30, 2-3=-164/ 4-6=-706/266, 6-7=- 8-9=-809/270, 2-16=	587/235, 7-8=-565/2	224,									
BOT CHORD	,	5=-453/179, 3=-1805/452,									1 1111	all the second
WEBS	7-10=-145/134, 3-15 6-12=-468/153, 6-10 2-15=-487/174, 8-10 4-12=-401/1799, 3-1)=-169/166,)=-190/606,								ł	STATE OF M	
NOTES										4	SEVI	
 Unbalanced roof live loads have been considered for this design. Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone; cantilever left exposed; end vertical left exposed; porch left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60 All plates are MT20 plates unless otherwise indicated. 										A A A A A A A A A A A A A A A A A A A	PE-20010	LENGINE

December 26,2023



WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent colleges with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

Job	Truss	Truss Type	Qty	Ply	Lot 172 HT	
B240033	B4	Roof Special	2	1	Job Reference (optional)	162692725

Run; 8.73 S Dec 14 2023 Print; 8.730 S Dec 14 2023 MiTek Industries, Inc. Thu Dec 21 09:06:36 ID:Hr0UloyIgMOrZQ4rpild7XzssyG-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

BCDL		ode	IRC2018	3/TPI2014	Matrix-S	0.04	Wind(LL)			
LUMBER			2)		7-16; Vult=115					
TOP CHORD	2x4 SPF 2100F 1.8E *E No.2	xcept* 5-7:2x4 SPI	F	Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=2 II; Exp C; Enclosed; MWFRS (envelope) exterio						
BOT CHORD	2x4 SPF No.2 *Except* 19-16:2x4 SPF 2100F 1			cantilever left and right exposed ; end veright exposed; Lumber DOL=1.60 plate of						
WEBS	2x3 SPF No.2 *Except* 9-8,12-10,6-15,18-3:2x4	19-3:2x8 SP DSS,	3) 4)	All plates are This truss ha						
BRACING	, - , ,			This truss has been designed for a 10.0 psf b chord live load nonconcurrent with any other						
TOP CHORD	Structural wood sheathi 2-4-0 oc purlins, except	neathing directly applied or 5) * This truss has been designed for a								
BOT CHORD	Rigid ceiling directly app	plied or 10-0-0 oc			y 2-00-00 wide					
	bracing, Except:		6)		y other member					
	8-1-3 oc bracing: 2-19 1-4-12 oc bracing: 18-19	0	0)	 Bearings are assumed to be: Joint SPF No.2. 		. 00111 2 01	000,000			
WEBS		9. 0, 6-15, 3-18, 4-17	7)	Bearing at jo	int(s) 2 conside	ers parallel t	to grain valu			
JOINTS	1 Brace at Jt(s): 12	, 0 10, 0 10, 1 11		using ANSI/TPI 1 angle to grain formula. Buildir						
REACTIONS	()	-3-8			uld verify capa					
	Max Horiz 2=341 (LC 7)		8)		hanical connec					
	Max Uplift 2=-253 (LC 8), 9=-196 (LC 8)			capable of with uplift at joint 9.					
	Max Grav 2=1627 (LC 2), 9=1743 (LC 2)		9)		designed in acc		ith the 2018			
FORCES	(lb) - Maximum Compre Tension	ssion/Maximum	0)	International	Residential Co	de sections	R502.11.1			
TOP CHORD	1-2=0/9, 2-3=-7667/139		LC	AD CASE(S)						
	4-6=-2094/353, 6-7=-11									
	7-8=-1143/257, 9-11=-1	608/223,								
BOT CHORD	8-11=-1489/244 2-19=-1489/7107, 18-19	- 1205/5017								
BOTCHORD	17-18=-526/2958, 15-17									
	14-15=-130/100, 12-14=									
	11-12=-130/100, 10-13=									
WEBS	13-14=0/116, 3-19=-367	7/2419, 7-15=-46/4	83,							
	8-15=-164/1283, 10-12=									
	6-15=-1279/330, 3-18=-	,								
	4-18=0/595, 4-17=-1286	6/316, 6-17=-77/89	9							
NOTES										

oh; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. nclosed; MWFRS (envelope) exterior zone; eft and right exposed ; end vertical left and ed; Lumber DOL=1.60 plate grip DOL=1.60 re MT20 plates unless otherwise indicated. as been designed for a 10.0 psf bottom bad nonconcurrent with any other live loads. has been designed for a live load of 20.0psf

- om chord in all areas where a rectangle by 2-00-00 wide will fit between the bottom any other members, with BCDL = 10.0psf. e assumed to be: Joint 2 SP DSS , Joint 9
- oint(s) 2 considers parallel to grain value /TPI 1 angle to grain formula. Building ould verify capacity of bearing surface.

chanical connection (by others) of truss to te capable of withstanding 253 lb uplift at joint b uplift at joint 9.

s designed in accordance with the 2018 al Residential Code sections R502.11.1 and and referenced standard ANSI/TPI 1.

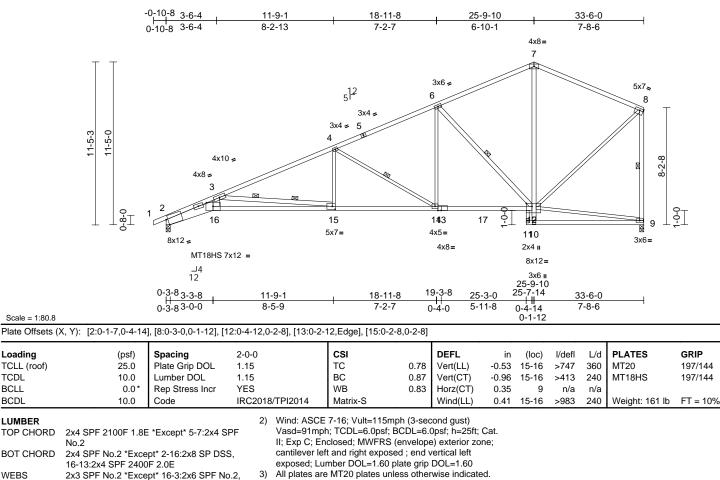
Loading

TCDL

BCLL

TCLL (roof)

Unbalanced roof live loads have been considered for 1) this design.


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponent.com)

Job	Truss	Truss Type	Qty	Ply	Lot 172 HT	
B240033	B5	Roof Special	2	1	Job Reference (optional)	162692726

Run: 8.73 S Dec 14 2023 Print: 8.730 S Dec 14 2023 MiTek Industries. Inc. Thu Dec 21 09:06:37 ID:Hr0UloyIgMOrZQ4rpild7XzssyG-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

3)	All plates are MT20 plates unless otherwise indicated.
4)	This truss has been designed for a 10.0 psf bottom
	chord live load nonconcurrent with any other live loads.
5)	* This truss has been designed for a live load of 20.0psf

- 5) on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf. 6) Bearings are assumed to be: Joint 2 SP DSS , Joint 9
- SPF No.2 7) Bearing at joint(s) 2 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.
- Provide mechanical connection (by others) of truss to 8) bearing plate capable of withstanding 233 lb uplift at joint 2 and 211 lb uplift at joint 9. This truss is designed in accordance with the 2018

International Residential Code sections R502.11.1 and

R802.10.2 and referenced standard ANSI/TPI 1.

Max Grav 2=1617 (LC 2), 9=1573 (LC 2) FORCES (Ib) - Maximum Compression/Maximum Tension 1-2=0/9, 2-3=-7522/1515, 3-4=-3223/481, TOP CHORD 4-6=-2073/317, 6-7=-1103/208, 7-8=-1099/225.8-9=-1433/258 BOT CHORD 2-16=-1766/6967, 15-16=-1566/5984, 14-15=-667/2927, 12-14=-379/1831, 10-11=0/146, 9-10=0/243 WEBS 11-12=-510/0, 3-16=-438/2307, 3-15=-3071/903, 4-15=0/582, 4-14=-1274/335, 6-14=-76/943, 6-12=-1316/326, 10-12=0/686, 7-12=-18/450, 9-12=-233/0, 8-12=-212/1242

15-3,12-6,9-8,10-7:2x4 SPF No.2

2-4-4 oc purlins, except end verticals.

2=0-3-8, 9=0-3-8

Max Uplift 2=-233 (LC 8), 9=-211 (LC 8)

Rigid ceiling directly applied or 6-7-5 oc

Structural wood sheathing directly applied or

4-14, 6-12, 8-9

NOTES

Scale = 1:80.8

Loading

TCDL

BCLL

BCDL

WEBS

WEBS

WEBS

BRACING

TOP CHORD

BOT CHORD

REACTIONS (size)

bracing.

1 Row at midpt

2 Rows at 1/3 pts 3-15

Max Horiz 2=380 (LC 8)

LUMBER

TOP CHORD

BOT CHORD

TCLL (roof)

1) Unbalanced roof live loads have been considered for this design.

OF MISS SCOTT M. SEVIER NUMBER PE-2001018807 SIONAL F

December 26,2023

LEE'S'SUMMIT'SMISSOURI 04/09/2024 5:02:02

LOAD CASE(S) Standard

Job	Truss	Truss Type	Qty	Ply	Lot 172 HT	
B240033	B6	Roof Special	1	1	Job Reference (optional)	162692727

Run: 8.73 S Dec 14 2023 Print: 8.730 S Dec 14 2023 MiTek Industries, Inc. Thu Dec 21 09:06:37 ID:Hr0UloyIgMOrZQ4rpild7XzssyG-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

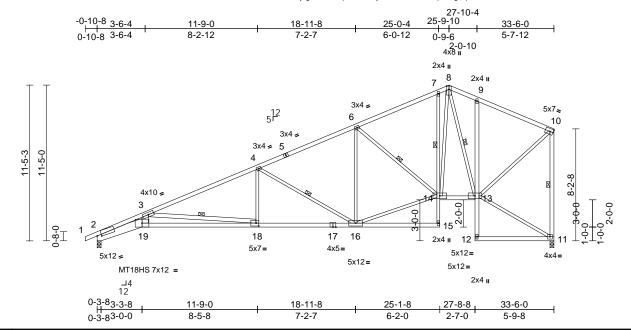


Plate Offsets (X, Y): [2:0-3-15,0-1-6], [18:0-2-8,0-2-8]

Scale = 1:84.5

Loading TCLL (roof) TCDL BCLL BCDL	(psf) 25.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018	8/TPI2014	CSI TC BC WB Matrix-S	0.78 0.91 0.98	DEFL Vert(LL) Vert(CT) Horz(CT) Wind(LL)	-0.91 0.40	(loc) 18-19 18-19 11 18-19	l/defl >869 >438 n/a >938	L/d 360 240 n/a 240	PLATES MT20 MT18HS Weight: 177 lb	GRIP 197/144 197/144 FT = 10%
	1.8E 2x4 SPF No.2 *Exce 19-17:2x4 SPF 2100 No.2 2x3 SPF No.2 *Exce 18-3,11-10:2x4 SPF Structural wood shea 2-2-0 oc purlins, exc Rigid ceiling directly bracing. Except: t 7-14 1 Row at midpt	2, 3) 2, 4) 5)	Vasd=91mph II; Exp C; En cantilever lef exposed; Lur All plates are This truss ha chord live loa * This truss h on the bottor 3-06-00 tall b chord and ar Bearings are SPF No.2. Bearing at jo using ANSI/1 designer sho Provide mec bearing plate	7-16; Vult=115mpl n; TCDL=6.0psf; BC closed; MWFRS (et and right exposed mber DOL=1.60 plate s been designed for d nonconcurrent we has been designed for d nonconcurrent we as been designed for a chord in all areasily y 2-00-00 wide will by other members. assumed to be: Joc int(s) 2 considers p TPI 1 angle to grain uld verify capacity hanical connection o capable of withsta uplift at joint 11.	CDL=6. nvelopol i; end v ate grip ss other or a 10. vith any for a liv where fit betw int 2 SI arallel formul of bear (by oth	Dpsf; h=25ft; e) exterior zo vertical left DOL=1.60 wise indicate D psf bottom other live loa e load of 20.0 a rectangle veen the botto DDSS, Joint to grain value a. Building ng surface. ers) of truss f	ne; ed. ds. Opsf om : 11						
FORCES	Max Grav 2=1567 (L (lb) - Maximum Com Tension		9)	This truss is International	designed in accord Residential Code s	ections	R502.11.1 a	and					
TOP CHORD	1-2=0/9, 2-3=-7214/ 4-6=-1969/320, 6-7= 7-8=-1326/337, 8-9= 9-10=-1115/214, 10-	-1093/249, 11=-1440/249	LC	R802.10.2 ar	nd referenced stand Standard	Jaru Ar	101/1711.					TATE OF M	AISSO
BOT CHORD	7-14=-249/161, 13-1	5-16=-1/35, 14-15=0/1	07,									S SCOTT SEVI	
WEBS NOTES 1) Unbalance this design	3-19=-443/2120, 3-1 4-18=0/526, 4-16=-1 14-16=-399/1771, 6- 8-14=-368/1317, 8-1 10-13=-218/1293 ed roof live loads have	8=-2982/901, 252/338, 6-16=0/320, 14=-710/202, 3=-560/123, 11-13=-1									and the second	PE-20010	LENGI

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

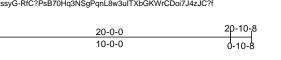
December 26,2023

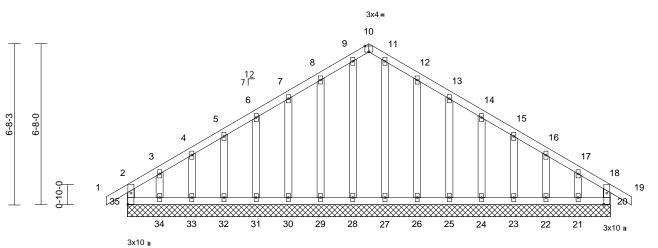
Job	Truss	Truss Type	Qty	Ply	Lot 172 HT	
B240033	C1	GABLE	1	1	Job Reference (optional)	162692728

10-0-0

10-0-0

Wheeler Lumber, Waverly, KS - 66871,


Run: 8.73 S Dec 14 2023 Print: 8.730 S Dec 14 2023 MiTek Industries, Inc. Thu Dec 21 09:06:38 ID:Hr0UloyIgMOrZQ4rpild7XzssyG-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f


Page: 1

December 26,2023

DEVELORMENT: SERVICES LEE'S'SUMMIT, MISSOURI 04/09/2024 5:02:02

TION IEW

20-0-0

Scale = 1:47.7

Plate Offsets (X, Y):	[10:0-2-0,Edge], [20:0-5-10,0-1-8], [35:0-5-10,0-1-8]

-0-10-8 0-10-8

	(;;;;;): [:0:0 ± 0;=0g0	j, [20:0 0 10,0 1 0], [0										
Loading TCLL (roof) TCDL BCLL BCDL	(psf) 25.0 10.0 0.0* 10.0	Plate Grip DOL Lumber DOL Rep Stress Incr	2-0-0 1.15 1.15 YES IRC2018/TPI2	CSI TC BC WB 014 Matrix-R	0.07 0.05 0.07	DEFL Vert(LL) Vert(CT) Horz(CT)	in n/a n/a 0.00	(loc) - - 20	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 107 lb	GRIP 197/144 FT = 10%
LUMBER TOP CHORD BOT CHORD BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SPF No.2 2x4 SPF No.2 2x4 SPF No.2 2x4 SPF No.2 Structural wood she 6-0-0 oc purlins, ex Rigid ceiling directly bracing. (size) 20=20-0-0 23=20-0-0 32=20-0-0 35=20-0-0 35=20-0-0 35=20-0-0 35=20-0-0 35=20-0-0 40 35=-189 (Max Uplift 20=-42 (L 24=-40 (L 30=-41 (L 32=-44 (L 32=-44 (L 32=-44 (L 32=-14 (L 22=-127 (L 24=123 (L 24=123 (L 26=-126 (L 28=-136 (L 30=-123 (L 32=-125 (L)	applied or 6-0-0 oc 0, 21=20-0-0, 22=20-0 0, 24=20-0-0, 28=20-0 0, 27=20-0-0, 28=20-0 0, 30=20-0-0, 31=20-0 0, 33=20-0-0, 34=20-0 0 C 5), 21=-97 (LC 9), C 9), 23=-44 (LC 9), C 9), 23=-44 (LC 9), C 9), 29=-56 (LC 8), C 8), 31=-40 (LC 8), C 8), 33=-26 (LC 8), C 8), 33=-26 (LC 8), C 8), 33=-26 (LC 8), C 15), 21=123 (LC 16 C 16), 25=123 (LC 16 C 16), 25=123 (LC 17 C 18), 29=123 (LC 15 C 15), 31=127 (LC 21 C 15), 35=184 (LC 16 C 15), 35=184 (LC 16) C 15),	BOT CH -0, -0, -0, -0, WEBS -0, NOTES 1) Unb this 2) Win Vas II; E 2) Win Vas II; E (), 3) Tru (), 5) Gab 6) Trus bras 7) Gab 8) This	3-4=-95/94, 4 6-7=-67/14, 9-10=-36/13' 12-13=-24/1' 15-16=-48/5' 18-19=0/36, ORD 34-35=-81/97 31-32=-81/97 28-29=-81/97 22-23=-81/97 3-34=-100/88 6-31=-96/57, 9-28=-110/5, 13-25=-96/57	115mph (3-sec rpsf; BCDL=6.1 FRS (envelope yposed ; end v OL=1.60 plate loads in the p to wind (norm able End Deta ng designer a: unless otherwi is bottom chor d from one fac overnent (i.e. of 4-0 oc. gned for a 10.1	6=-78/94, 8-9=-47/164, 28, 11-12=-3; 95, 14-15=-44 95, 14-15=-44 7, 32-33=-81, 7, 29-30=-81, 7, 29-30=-81, 7, 20-27=-81, 7, 20-27=-81, 7, 20-21=-81, 5-32=-96/52, 5-32=-96/52, 12-26=-99/7 7, 15-23=-96, 2 considered for ond gust) Dpsf; h=25ft; C ane of the true al to the face) ils as applicat se indicated. d bearing. e or securely iagonal web). D psf bottom	0/74, /76, /97, /97, /97, /97, /97, /97, /97, /97	on t 3-00 cho 10) All t 11) Pro bea 35, upli 31, upli 24, upli 12) This Inte	the botto 6-00 tall rd and a bearings vide me tring pla 42 lb up ft at join 44 lb up ft at join 44 lb up ft at join s truss is prnationa 02.10.2 s	om cho by 2-C any oth s chanic te capa jlift at j t 23, 4 Jlift at j t 23, 4 Jlift at j t 23, 4 Jlift at j t 24, 4 Jlift at j t 21. s design and refe	rd in all areas wh 00-00 wide will fit I her members. ssumed to be SPI al connection (by able of withstandii oint 20, 110 lb up 4 lb uplift at joint 2 oint 30, 56 lb uplift 1 lb uplift at joint 2 oint 23, 29 lb uplift upled in accordance dential Code sect ferenced standard	The set ween the bottom F No.2. others) of truss to rg 81 lb uplift at joint lift at joint 34, 26 lb 32, 40 lb uplift at joint t at joint 29, 58 lb 25, 40 lb uplift at joint t at joint 22 and 97 lb e with the 2018 ions R502.11.1 and ANSI/TPI 1.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent colleges with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

Job	Truss	Truss Type	Qty	Ply	Lot 172 HT	
B240033	C2	Common	1	1	Job Reference (optional)	162692729

Run: 8.73 S Dec 14 2023 Print: 8.730 S Dec 14 2023 MiTek Industries, Inc. Thu Dec 21 09:06:38

Wheeler Lumber, Waverly, KS - 66871,

ID:Hr0UloyIgMOrZQ4rpild7XzssyG-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f 0-10-8 20-10-8 4-9-0 15-2-15 10-0-0 20-0-0 0-10-8 4-9-0 5-2-15 5-3-0 0-10-8 4-9-1 4x8= 4 12 7 Г 2x4~ 2x4 🍬 3 5 6-8-3 6-8-0 18-9-8 <u></u>β-10-ρ ĕ 9 10x12 🕫 10x12 3x10= 10-0-0 20-0-0 10-0-0 10-0-0

Scale	= 1:48.4

Plate Offsets (X, Y): [8:0-3-11,0-8-1], [10:0-2-9,0-4-7]												
Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15	TC	0.85	Vert(LL)	-0.17	8-9	>999	360	MT20	197/144
TCDL	10.0	Lumber DOL	1.15	BC	0.74	Vert(CT)	-0.35	8-9	>667	240		
BCLL	0.0*	Rep Stress Incr	YES	WB	0.24	Horz(CT)	0.03	8	n/a	n/a		
BCDL	10.0	Code	IRC2018/TPI2014	Matrix-S		Wind(LL)	0.06	9	>999	240	Weight: 70 lb	FT = 10%

LUMBER

WEBS BRACING

TOP CHORD 2x4 SPF No.2

BOT CHORD 2x4 SPF No.2 7) This truss is designed in accordance with the 2018

International Residential Code sections R502.11.1 and

R802.10.2 and referenced standard ANSI/TPI 1.

2x3 SPF No.2 *Except* 10-2,8-6:2x8 SP DSS LOAD CASE(S) Standard

or

TOP CHORD	Structural	wood sheathing directly applied
	3-1-0 oc p	ourlins, except end verticals.
BOT CHORD	Rigid ceili	ng directly applied or 10-0-0 oc
	bracing.	
REACTIONS	(size)	8=0-3-8, 10=0-3-8
	Max Horiz	10=-192 (LC 6)
	Max Uplift	8=-130 (LC 9), 10=-130 (LC 8)
	Max Grav	8=955 (LC 1), 10=955 (LC 1)
FORCES	(lb) - Max	imum Compression/Maximum
	Tension	
TOP CHORD	1-2=0/42,	2-3=-1148/182, 3-4=-875/141,

4-5=-875/141, 5-6=-1148/183, 6-7=0/42, 2-10=-852/178, 6-8=-852/178 BOT CHORD 9-10=-167/901, 8-9=-79/881 WEBS 4-9=-6/460, 5-9=-255/206, 3-9=-254/206

NOTES

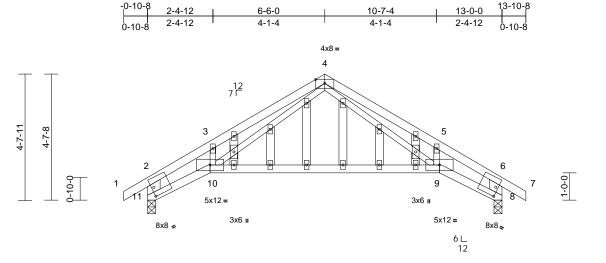
- 1) Unbalanced roof live loads have been considered for this design.
- Wind: ASCE 7-16; Vult=115mph (3-second gust) 2) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
- This truss has been designed for a 10.0 psf bottom 3)
- chord live load nonconcurrent with any other live loads. 4) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.

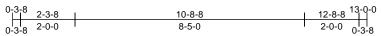
All bearings are assumed to be SPF No.2 . 5)

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 130 lb uplift at joint 10 and 130 lb uplift at joint 8.

Page: 1

December 26,2023


ΤΙΟΝ



Job	Truss	Truss Type	Qty	Ply	Lot 172 HT	
B240033	C3	GABLE	1	1	Job Reference (optional)	162692730

Run: 8.73 S Dec 14 2023 Print: 8.730 S Dec 14 2023 MiTek Industries, Inc. Thu Dec 21 09:06:38 ID:Hr0UloyIgMOrZQ4rpild7XzssyG-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:42.3

- 1410 0110010 ((,,, ,). [ele : ele : e],	[1.1.6 1 6,6 1 6]											
Loading TCLL (roof) TCDL BCLL BCDL	(psf) 25.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC20	18/TPI2014	CSI TC BC WB Matrix-S	0.85 0.68 0.18	DEFL Vert(LL) Vert(CT) Horz(CT) Wind(LL)	in -0.21 -0.48 0.19 0.10	(loc) 9-10 9-10 8 9-10	l/defl >716 >312 n/a >999	L/d 360 240 n/a 240	PLATES MT20 Weight: 59 lb	GRIP 197/144 FT = 10%
	2x4 SPF No.2 *Exce 1.8E 2x3 SPF No.2 *Exce 2x4 SPF No.2 Structural wood she 3-3-12 oc purlins, e Rigid ceiling directly bracing. (size) 8=0-3-8, ' Max Horiz 11=-138 (Max Uplift 8=-91 (LC Max Grav 8=642 (LC (lb) - Maximum Com Tension	ept* 11-2,8-6:2x6 SF athing directly applia xcept end verticals. applied or 10-0-0 o 11=0-3-8 LC 6) 5 9), 11=-91 (LC 8) 5 1), 11=642 (LC 1) apression/Maximum 4/144, 3-4=-1083/25 =-1244/83, 6-7=0/39 =-962/88 -10=-21/507, 8-9=-2	7 100F 8 P DSS ed or 9 1 c 1 c 1 2, , 2, , 26/989	 This truss h chord live lc * This truss on the botto 3-06-00 tall chord and a All bearings Bearing at 1 using ANSI, designer sh Provide me bearing plat 11 and 91 ll This truss is Internationa 	s spaced at 1-4-0 as been designer bad nonconcurrer has been design om chord in all are by 2-00-00 wide any other member are assumed to oint(s) 11, 8 cons (TPI 1 angle to gr ould verify capac chanical connecti te capable of with b uplift at joint 8. a designed in accu and referenced st) Standard	d for a 10.0 th with any ed for a liv eas where will fit betw rs. be SPF No siders para ain formula ity of beari- ion (by oth standing 9 ordance w de sections	other live loa e load of 20.0 a rectangle veen the botti b.2. illel to grain vi a. Building ing surface. ers) of truss t i1 lb uplift at j ith the 2018 s R502.11.1 a	0psf om alue to joint					
this desigr 2) Wind: ASC Vasd=91n II; Exp C; I cantilever right expos	ed roof live loads have	(3-second gust) DL=6.0psf; h=25ft; (nvelope) exterior zor ; end vertical left an 0 plate grip DOL=1.	Cat. ne; id 60								E.	STATE OF SCOT	MISSOLP T.M. HER Service

- Truss designed for wind loads in the plane of the truss 3) only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4)
- All plates are 2x4 MT20 unless otherwise indicated. Truss to be fully sheathed from one face or securely 5) braced against lateral movement (i.e. diagonal web).

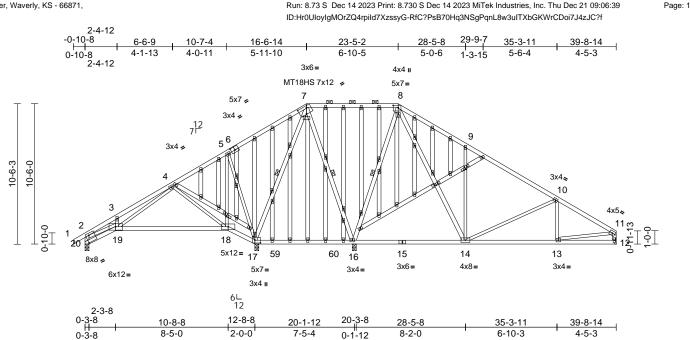
December 26,2023

NUMBER

PE-200101880

SIONAL

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent colleges with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)


E

Job	Truss	Truss Type	Qty	Ply	Lot 172 HT	
B240033	C4	Piggyback Base Structural Gable	1	1	Job Reference (optional)	162692731

Run: 8.73 S Dec 14 2023 Print: 8.730 S Dec 14 2023 MiTek Industries, Inc. Thu Dec 21 09:06:39

Wheeler Lumber, Waverly, KS - 66871,

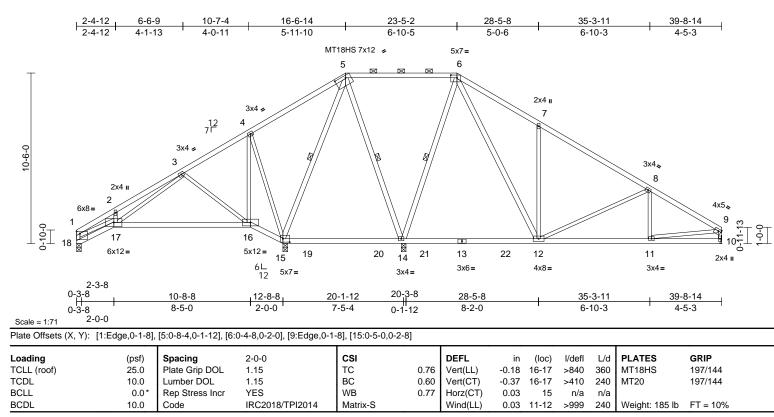
2-0-0

Scale = 1:86.2 [6:0-3-8,0-3-0], [7:0-8-4,0-1-12], [7:0-3-0,0-2-7], [8:0-4-8,0-2-0], [8:0-1-1,0-2-0], [17:0-5-0,0-2-8], [17:0-1-6,0-1-8], [20:0-3-0,0-6-4], [21:0-1-12,0-0-4], [23:0-12,0-0-4], [23:0-12,0-4], [23:0-12, Plate Offsets (X, Y): [24:0-1-8,0-1-0]

	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,				_		·						
Loading	(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15		тс	0.76	Vert(LL)	-0.18	18-19	>835	360	MT18HS	197/144
TCDL	10.0	Lumber DOL	1.15		BC	0.54	Vert(CT)	-0.37	18-19	>409	240	MT20	197/144
BCLL	0.0*	Rep Stress Incr	YES		WB	0.77	Horz(CT)	0.03	17	n/a	n/a		
BCDL	10.0	Code	IRC20	18/TPI2014	Matrix-S	_	Wind(LL)	0.03	13-14	>999	240	Weight: 321 lb	FT = 10%
LUMBER TOP CHORD BOT CHORD WEBS	2x4 SPF No.2 2x4 SPF No.2 2x4 SPF No.2 *Exce 19-3,18-5,17-5,18-4	, 19-4,19-2,14-9,13- [,]		VEBS	3-19=-211/152, 5 5-17=-593/194, 4 4-19=-242/1015, 7-16=-382/70, 2- 9-14=-466/279, 8	1-18=-431 8-16=-10 19=-20/52 3-14=-294	/188, 96/193, 23, 7-17=-550 /1080,	/168,	bea 20, 144 15) This	aring plat 327 lb u lb uplift s truss is	te capa plift at at join desig	able of withstandi joint 17, 138 lb u it 16. ned in accordanc	
OTUEDO	10,13-11:2x3 SPF N	lo.2			10-13=-10/167, 1 11-13=-114/676	10-14=-54	9/182,		International Residential Code sectior R802.10.2 and referenced standard A				
OTHERS	2x4 SPF No.2				11-13=-114/070								s not depict the size
BRACING	o				l reaf live leads is	nie her-	o o o o i do vo d f-	-				of the purlin along	
TOP CHORD	P CHORD Structural wood sheathing directly applied of 5-7-6 oc purlins, except end verticals, and			 Unbalanced this design. 	d roof live loads ha	ave been	considered fo	r		tom cho			
	2-0-0 oc purlins, ex		and		E 7-16; Vult=115n	anh (2 co	cond quet)		LOAD			ndard	
BOT CHORD	Rigid ceiling directly				oh; TCDL=6.0psf;			Cat	LOAD		, 014	naara	
BOT CHORD	bracing.	applied of 6-0-0 oc			nclosed; MWFRS								
WEBS		8-16, 7-16, 7-17			eft and right expos								
		nanical, 16=0-3-8,			ed; Lumber DOL=								
REACTIONS		, 20=0-3-8	3		aned for wind load								
	Max Horiz 20=287 (I			only. For st	tuds exposed to w	, ind (norm	al to the face),					
	Max Uplift 12=-138 (9)	see Standa	rd Industry Gable	End Deta	ils as applica	ble,					
		(LC 8), 20=-49 (LC 9			ualified building d								
	Max Grav 12=733 (I		C2), ⁴		equate drainage to								
		(LC 15), 20=352 (LC	C 21) 5		re MT20 plates un			d.					
FORCES	(lb) - Maximum Corr	pression/Maximum	ý 6		re 2x4 MT20 unles								
	Tension		7		fully sheathed fro							000	TO
TOP CHORD	1-2=0/36, 2-3=-661/	65, 3-4=-706/180,			inst lateral movem		liagonal web)					THE OF N	AIG Th
	4-5=-131/690, 5-7=-	79/860, 7-8=0/560,	8		s spaced at 1-4-0		0					BIE	1050 0
	8-9=-501/358, 9-10=	-515/187,	g		as been designed						6	AN	N.S.
	10-11=-938/202, 2-2	20=-374/73,	1		bad nonconcurren has been designe						R	SCOT	M. YZY
	11-12=-671/155		I		om chord in all are			Jpsi			R	SEVI	ER \ Y
BOT CHORD	OT CHORD 19-20=-302/321, 18-19=-239/132,				by 2-00-00 wide			nm			12 Mil		
	17-18=-504/196, 16-17=-462/197,				any other member						W	1 THS	$\cdot X_{-1}$
	14-16=-227/159, 13	-14=-136/747,	1		are assumed to I			•				rou	eene
	12-13=-23/81				der(s) for truss to						YL-	NUM	
					oint(s) 20 conside			е			N	OX PE-2001	018807
				c, _coning arj				•			N N	D.	

using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.

 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.
 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)


E

SIONAL

December 26,2023

Job	Truss	Truss Type	Qty	Ply	Lot 172 HT	
B240033	C5	Piggyback Base	3	1	Job Reference (optional)	162692732

Run: 8.73 S Dec 14 2023 Print: 8.730 S Dec 14 2023 MiTek Industries, Inc. Thu Dec 21 09:06:39 ID:Hr0UloyIgMOrZQ4rpild7XzssyG-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

LUMBER TOP CHORD 2x4 SPF No.2 2x4 SPF No.2 BOT CHORD 2x3 SPF No.2 *Except* WEBS 14-5,14-6,5-15,6-12:2x4 SPF No.2 BRACING Structural wood sheathing directly applied or TOP CHORD 5-7-2 oc purlins, except end verticals, and 2-0-0 oc purlins (10-0-0 max.): 5-6. BOT CHORD Rigid ceiling directly applied or 6-0-0 oc bracing. WEBS 1 Row at midpt 5-14, 6-14, 5-15 **REACTIONS** (size) 10= Mechanical, 14=0-3-8, 15=0-3-8, 18=0-3-8 Max Horiz 18=277 (LC 5) 10=-138 (LC 9), 14=-146 (LC 9), Max Uplift 15=-330 (LC 8), 18=-45 (LC 9) 10=738 (LC 16), 14=1750 (LC 2) Max Grav 15=1398 (LC 15), 18=285 (LC 16) FORCES (Ib) - Maximum Compression/Maximum Tension TOP CHORD 1-2=-667/67, 2-3=-722/185, 3-4=-135/716, 4-5=-79/886, 5-6=0/580, 6-7=-514/358, 7-8=-509/187, 8-9=-946/204, 1-18=-299/47, 9-10=-673/156 BOT CHORD 17-18=-299/325, 16-17=-254/132, 15-16=-522/196, 14-15=-479/198, 12-14=-235/160. 11-12=-136/754. 10-11 = -22/78WEBS 2-17=-227/157, 3-17=-250/1055, 3-16=-436/189, 4-16=-18/261, 4-15=-591/193, 5-14=-387/72 6-14=-1109/194, 1-17=-26/522 5-15=-565/171, 6-12=-294/1125 7-12=-465/279, 8-12=-544/184, 8-11=-5/167, 9-11=-116/685 NOTES

 Unbalanced roof live loads have been considered for this design.

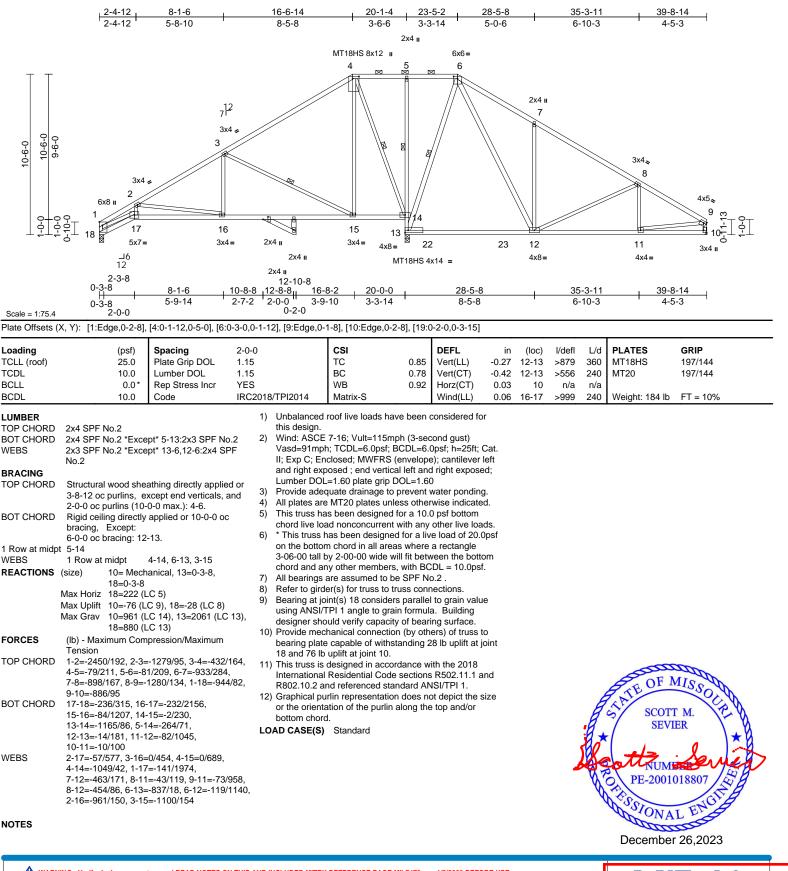
- Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
- Provide adequate drainage to prevent water ponding.
 All plates are MT20 plates unless otherwise indicated.
- All plates are MT20 plates unless otherwise indicated
 This trues have been designed for a 10.0 pet better
- 5) This truss has been designed for a 10.0 psf bottom
- chord live load nonconcurrent with any other live loads.
 * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
 7) All bearings are assumed to be SPF No.2.
- 8) Refer to girder(s) for truss to truss connections.
- 9) Bearing at joint(s) 18 considers parallel to grain value
- using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.
- Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 45 lb uplift at joint 18, 330 lb uplift at joint 15, 146 lb uplift at joint 14 and 138 lb uplift at joint 10.
- 11) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 12) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

LOAD CASE(S) Standard

Page: 1

December 26,2023

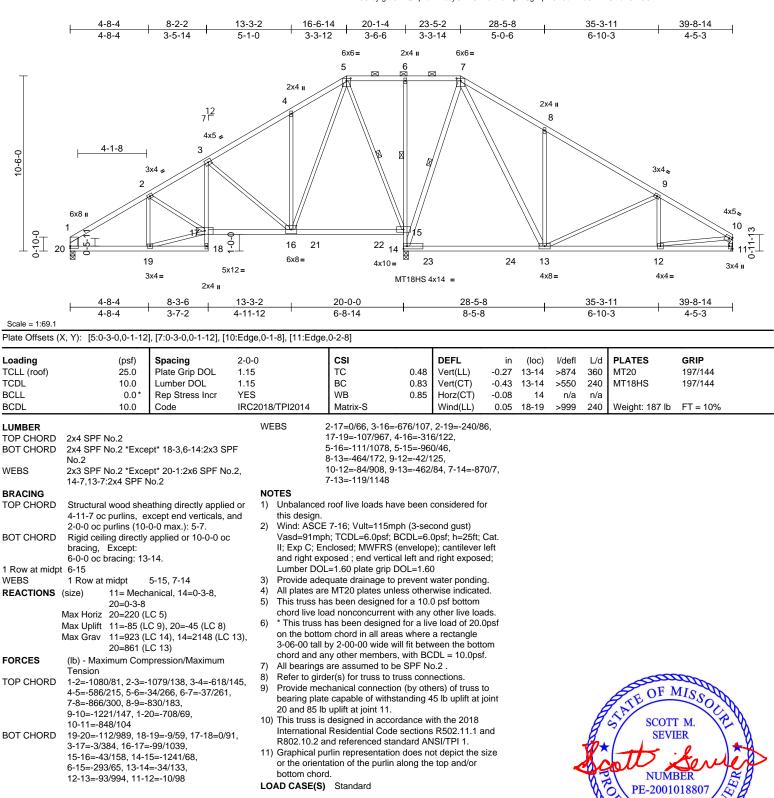
WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI Claulity Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

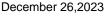


Job	Truss	Truss Type	Qty	Ply	Lot 172 HT	
B240033	C6	Piggyback Base	2	1	Job Reference (optional)	162692733

Run: 8.73 S Dec 14 2023 Print: 8.730 S Dec 14 2023 MiTek Industries, Inc. Thu Dec 21 09:06:40 ID:Hr0UloyIgMOrZQ4rpild7XzssyG-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

LEE'S'SUMMIT'S MISSOURI 04/09/2024 5:02:03


Page: 1


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponent.com)

Job	Truss	Truss Type	Qty	Ply	Lot 172 HT	
B240033	C7	Piggyback Base	1	1	Job Reference (optional)	162692734

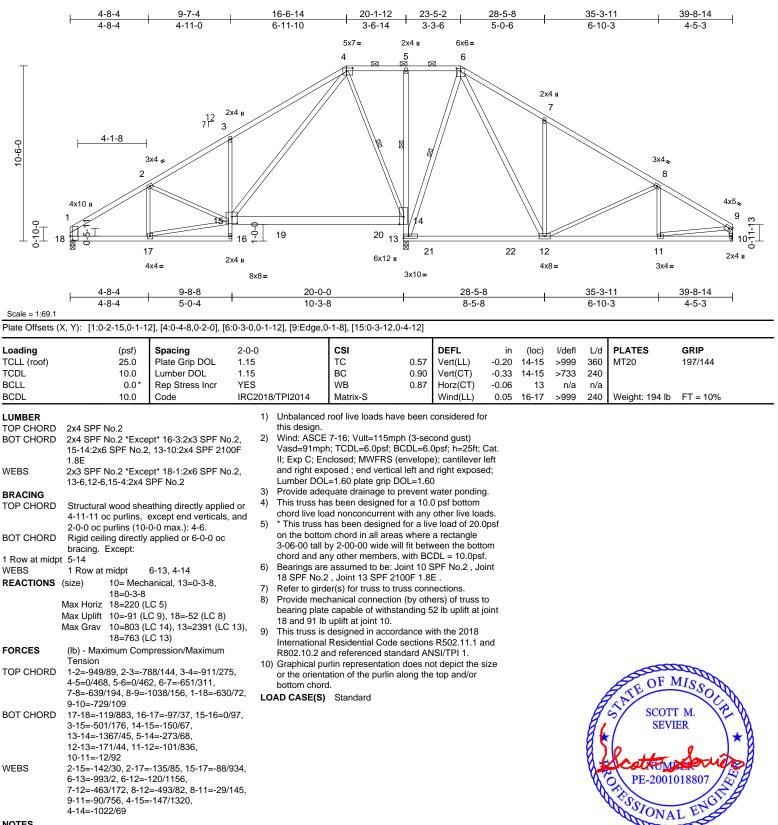
Run: 8.73 S Dec 14 2023 Print: 8.730 S Dec 14 2023 MiTek Industries, Inc. Thu Dec 21 09:06:40 ID:Hr0UloyIgMOrZQ4rpild7XzssyG-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

LOAD CASE(S) Standard

PE-2001018807

SSIONAL

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponent.com)



E

Page: 1

Job	Truss	Truss Type	Qty	Ply	Lot 172 HT	
B240033	C8	Piggyback Base	3	1	Job Reference (optional)	162692735

Run: 8.73 S Dec 14 2023 Print: 8.730 S Dec 14 2023 MiTek Industries, Inc. Thu Dec 21 09:06:41 ID:Hr0UloyIgMOrZQ4rpild7XzssyG-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

NOTES

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a trust system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria**, and **DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

December 26,2023

Page: 1

Job	Truss	Truss Type	Qty	Ply	Lot 172 HT	
B240033	C9	Piggyback Base Girder	1	4	Job Reference (optional)	162692736

Scale = 1:72.2

WEBS

WEBS

BRACING

TOP CHORD

BOT CHORD

REACTIONS

FORCES

TOP CHORD

BOT CHORD

WEBS

NOTES

1)

bracing

Tension

(0.131"x3") nails as follows:

(size)

1 Row at midpt

1-11 = -6465/505

4-ply truss to be connected together with 10d

oc, 2x8 - 2 rows staggered at 0-9-0 oc.

Max Horiz 11=314 (LC 20)

6-7

7=0-3-8, 11=0-3-8

Max Uplift 7=-967 (LC 5), 11=-765 (LC 8)

(lb) - Maximum Compression/Maximum

1-2=-11359/883, 2-4=-6042/541,

10-11=-691/3856, 9-10=0/1119,

2-8=-5191/458, 5-8=-865/8938,

5-7=-5947/557, 1-10=-254/6049

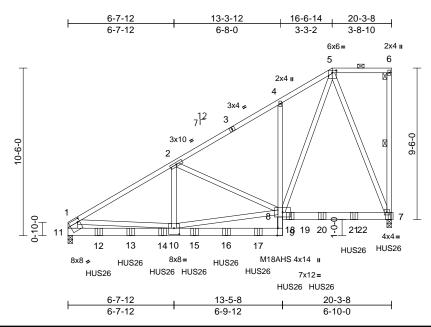
Top chords connected as follows: 2x4 - 1 row at 0-9-0

Bottom chords connected as follows: 2x6 - 3 rows

Web connected as follows: 2x4 - 1 row at 0-9-0 oc.

Attach BC w/ 1/2" diam. bolts (ASTM A-307) in the center of the member w/washers at 4-0-0 oc.

staggered at 0-4-0 oc, 2x4 - 1 row at 0-9-0 oc.


2-10=-329/4603, 8-10=-948/8827,

Max Grav 7=7842 (LC 13), 11=8648 (LC 13)

4-5=-6070/637, 5-6=-122/85, 6-7=-129/50,

8-9=-12/2264, 4-8=-401/147, 7-8=-267/2226

Run: 8 73 S. Dec 14 2023 Print: 8 730 S.Dec 14 2023 MiTek Industries. Inc. Thu Dec 21 09:06:41 ID:Hr0UloyIgMOrZQ4rpild7XzssyG-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Plate Offsets (X, Y): [5:0-3-0,0-1-12], [9:0-5-8,Edge], [10:0-4-0,0-4-8], [11:0-1-8,0-2-8]

			1	1								
Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15	TC	0.64	Vert(LL)	-0.12	9-10	>999	360	MT20	197/144
TCDL	10.0	Lumber DOL	1.15	BC	0.76	Vert(CT)	-0.21	9-10	>999	240	M18AHS	142/136
BCLL	0.0*	Rep Stress Incr	NO	WB	0.60	Horz(CT)	0.03	7	n/a	n/a		
BCDL	10.0	Code	IRC2018/TPI2014	Matrix-S		Wind(LL)	0.07	7-8	>999	240	Weight: 567 lb	FT = 10%
LUMBER TOP CHORD BOT CHORD	2x4 SPF No.2 2) All loads are considered equally appendent of the second front (F) or back (Incomposition CASE(S) section. Ply to ply connect to distribute only loads not provided to distribute only loads not to dist					ace in the LOss have been	DAD	[′] Trus 13-'	ss) or eo 11-4 fror	quivale m the l	nt spaced at 2-2-	4-10d Girder, 4-10d 8 oc max. starting at 2 to connect truss(es)

unless otherwise indicated. 2x4 SPF No.2 *Except* 11-1:2x8 SP DSS Wind: ASCE 7-16; Vult=115mph (3-second gust) 3) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. Structural wood sheathing directly applied or II; Exp C; Enclosed; MWFRS (envelope); cantilever left 6-0-0 oc purlins, except end verticals, and and right exposed ; end vertical left and right exposed; 2-0-0 oc purlins (6-0-0 max.): 5-6. Lumber DOL=1.60 plate grip DOL=1.60 Rigid ceiling directly applied or 10-0-0 oc 4) Provide adequate drainage to prevent water ponding. 5) All plates are MT20 plates unless otherwise indicated.

- 6) This truss has been designed for a 10.0 psf bottom
- chord live load nonconcurrent with any other live loads.
- 7) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf. All bearings are assumed to be SPF No.2 8)
- 9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 967 lb uplift at joint 7 and 765 lb uplift at joint 11.
- 10) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 11) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord
- 12) Use Simpson Strong-Tie HUS26 (14-10d Girder, 6-10d Truss) or equivalent spaced at 2-0-0 oc max. starting at 1-11-4 from the left end to 5-11-4 to connect truss(es) to back face of bottom chord.
- 13) Use Simpson Strong-Tie HUS26 (14-10d Girder, 6-10d Truss, Single Ply Girder) or equivalent spaced at 2-0-0 oc max. starting at 7-11-4 from the left end to 11-11-4 to connect truss(es) to back face of bottom chord.

ick face of bottom chord

Page: 1

- 15) Fill all nail holes where hanger is in contact with lumber. LOAD CASE(S) Standard
- Dead + Roof Live (balanced): Lumber Increase=1.15, 1) Plate Increase=1.15 Uniform Loads (lb/ft)
 - Vert: 1-5=-70, 5-6=-70, 9-11=-20, 7-8=-20
 - Concentrated Loads (lb)
 - Vert: 7=-831 (B), 12=-1456 (B), 13=-1460 (B), 14=-1460 (B), 15=-1460 (B), 16=-1460 (B), 17=-1456
 - (B), 18=-1016 (B), 20=-823 (B), 21=-823 (B)

LEE'S' SUMMIT'S MISSOURI 04/09/2024 5:02:03

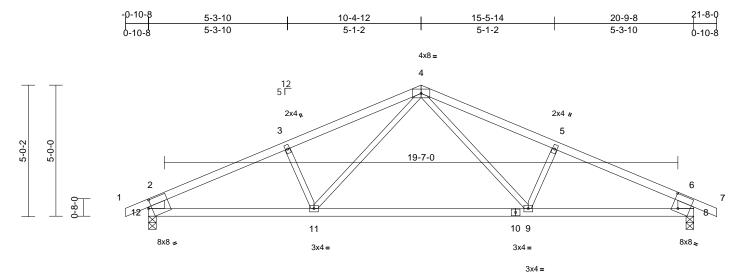
WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a trust system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria**, and **DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

Job	Truss	Truss Type	Qty	Ply	Lot 172 HT	
B240033	D1	Common Supported Gable	1	1	Job Reference (optional)	162692737

Run: 8,73 S Dec 14 2023 Print: 8,730 S Dec 14 2023 MiTek Industries, Inc. Thu Dec 21 09:06:42 ID:Hr0UloyIgMOrZQ4rpild7XzssyG-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

-0-10-8 21-8-0 10-4-12 20-9-8 0-10-8 10-4-12 10-4-12 0-10-8 4x4 = 7 6 8 12 5 Г 6 5 9 10 4 5-0-2 5-0-0 3 11 12 2 13 0-8-0 0 25 14] 24 23 22 21 20 19 1817 16 15 3x6 II 3x6 II 3x4 = 20-9-8 Scale = 1:41.9


Loading TCLL (roof)	(psf) 25.0	Spacing Plate Grip DOL	2-0-0 1.15		CSI TC	0.07	DEFL Vert(LL)	in n/a	(loc) -	l/defl n/a	L/d 999	PLATES MT20	GRIP 197/144
TCDL	10.0	Lumber DOL	1.15		BC	0.03	Vert(CT)	n/a	-	n/a	999	-	
BCLL	0.0*	Rep Stress Incr	YES		WB	0.05	Horz(CT)	0.00	14	n/a	n/a		FT 4004
BCDL	10.0	Code	IRC201	8/TPI2014	Matrix-R							Weight: 79 lb	FT = 10%
LUMBER	_			OTES									
TOP CHORD	2x4 SPF No.2		1	·	roof live loads l	have been	considered fo	r					
BOT CHORD	2x4 SPF No.2		2	this design.	7-16; Vult=115	mph (2 cor	cond quet)						
NEBS OTHERS	2x4 SPF No.2 2x4 SPF No.2		Ζ.		n; TCDL=6.0pst			Cat					
	2X4 3FF NU.2				closed; MWFR								
OP CHORD	Structural wood shea	othing directly opplie	dor		t and right expo								
	6-0-0 oc purlins, exc		u or		d; Lumber DOL								
BOT CHORD	Rigid ceiling directly		3) Truss desig	ned for wind loa	ads in the p	lane of the tru	JSS					
	bracing.	app			ids exposed to								
REACTIONS	(size) 14=20-9-8	8, 15=20-9-8, 16=20-	9-8.		d Industry Gabl								
		8, 19=20-9-8, 20=20-	. q_ 8		alified building			ין 1.					
	21=20-9-8	8, 22=20-9-8, 23=20-	9-8, 4 5	, I	e 2x4 MT20 unle es continuous b								
		8, 25=20-9-8	6	,	ully sheathed fr								
	Max Horiz 25=-68 (LC	,	-	·	ist lateral move		,						
	Max Uplift 14=-33 (L0	,, ,, ,,			spaced at 2-0-0		lagena nez,						
	(C 9), 17=-49 (LC 9),	×		s been designe		0 psf bottom						
		C 9), 21=-50 (LC 8), C 8), 23=-41 (LC 8),		chord live loa	ad nonconcurre	nt with any	other live loa	ds.					
		C 8), 25=-33 (LC 4)	9		nas been desigi			Opsf					
	Max Grav 14=177 (L	,, , , ,	2).		n chord in all a		0						
		.C 22), 17=179 (LC 1			y 2-00-00 wide		veen the botto	om					
		.C 22), 20=162 (LC 1			ny other membe		~ 2						
		.C 21), 22=179 (LC 1	I), 1		are assumed to hanical connec			0					
		.C 21), 24=192 (LC 2	21), '		e capable of wit							an	all
	25=177 (L	,			ift at joint 14, 50							8 OF	MICON
FORCES	(lb) - Maximum Com	pression/Maximum			22, 41 lb uplift							THE OF I	-0.0
	Tension	07 0 0 70/50		24, 50 lb upl	ft at joint 19, 49) Ib uplift at	joint 17, 42 l	5			A	SI	- NON
TOP CHORD	2-25=-157/47, 1-2=0, 3-4=-45/68, 4-5=-33/			uplift at joint	16 and 66 lb up	lift at joint	15.				B	SCOT	
	6-7=-36/130, 7-8=-36		1:		designed in acc						B	SEV.	IER \
	9-10=-33/69, 10-11=		5		Residential Co			ind			TROM	1 anti-	0 1
	12-13=0/27, 12-14=-	,			nd referenced s	tandard AN	ISI/TPI 1.				<u>X</u> /	datt)	:XINI
BOT CHORD	24-25=-8/57, 23-24=		L	OAD CASE(S)	Standard					-		NUM	BER ~
	21-22=-8/57, 20-21=	-8/57, 19-20=-8/57,									17	PE-2001	BER 018807
	17-19=-8/57, 16-17=	-8/57, 15-16=-8/57,									N	2001	01000/29
	14-15=-8/57										Y	A CP	IN B
WEBS	7-20=-122/0, 6-21=-1											STONIA	TENA
	4-23=-139/67, 3-24=	,	,									NUM PE-2001	
	9-17=-139/73, 10-16	=-139/68, 11-15=-14	10/8/									Decembe	r 26 2022
												Decembe	1 20,2023

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent touls be personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

Job	Truss	Truss Type	Qty	Ply	Lot 172 HT	
B240033	D2	Common	4	1	Job Reference (optional)	162692738

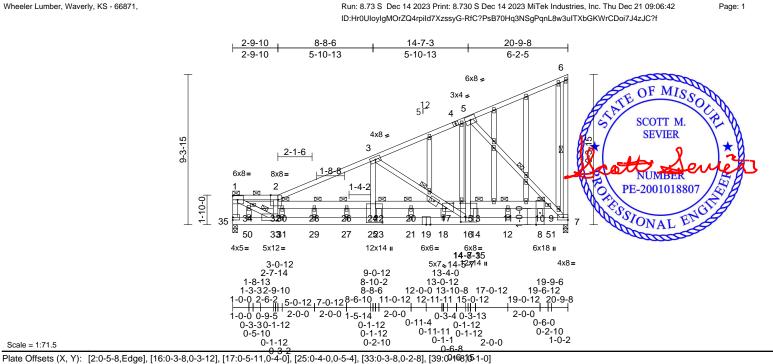
Run: 8.73 S Dec 14 2023 Print: 8.730 S Dec 14 2023 MiTek Industries, Inc. Thu Dec 21 09:06:42 ID:Hr0UloyIgMOrZQ4rpild7XzssyG-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

	6-3-12	14-5-12	20-9-8	
	6-3-12	8-2-1	6-3-12	
Scale = 1:43.9				

Plate Offsets (X, Y): [8:0-2-13,0-6-6], [12:0-1-8,0-3-9]

Plate Offsets ((X, Y): [8:0-2-13,0-6-6], [12:0-1-8,0-3-9]											
Loading TCLL (roof) TCDL	(psf) 25.0 10.0	Spacing Plate Grip DOL Lumber DOL	2-0-0 1.15 1.15		CSI TC BC	0.91 0.64	· · ·	in -0.17 -0.39	(loc) 9-11 9-11	l/defl >999 >621	L/d 360 240	PLATES MT20	GRIP 197/144
BCLL	0.0*	Rep Stress Incr	YES		WB	0.04	- (-)	-0.39	9-11	>021 n/a	240 n/a		
BCDL	10.0	Code	IRC2018/1	TPI2014	Matrix-S	0.10	Wind(LL)	0.04	9-11	>999	240	Weight: 68 lb	FT = 10%
UMBER TOP CHORD BOT CHORD VEBS BRACING	2x4 SPF No.2 2x3 SPF No.2 *Exce	• •	DSS 7)	bearing plate 12 and 143 lt This truss is o International	nanical connectior capable of withst o uplift at joint 8. designed in accorr Residential Code nd referenced star	anding 1 dance w sections	43 lb uplift a ith the 2018 8 R502.11.1 a	t joint					
FOP CHORD			30.01	D CASE(S)									
BOT CHORD	2-2-0 oc purlins, ex Rigid ceiling directly bracing.			12 0/102(0)	Clandard								
REACTIONS	(size) 8=0-3-8, 1 Max Horiz 12=-66 (L Max Uplift 8=-143 (L Max Grav 8=991 (LC	C 9) C 9), 12=-143 (LC 8	,										
ORCES	(lb) - Maximum Com Tension	pression/Maximum											
TOP CHORD		-1541/197, 6-7=0/3	,										
SOT CHORD	11-12=-185/1326, 9- 8-9=-119/1326	-11=-59/968,											
VEBS	4-9=-89/469, 5-9=-2 3-11=-251/176	51/176, 4-11=-88/46	69,										
NOTES													CC.
this design 2) Wind: AS	ed roof live loads have n. CE 7-16; Vult=115mph mph; TCDL=6.0psf; BC	(3-second gust)									B	STATE OF	MISSOLA
II; Exp C;	Enclosed; MWFRS (er	velope) exterior zoi	ne;								B	SEV	

- Vasd=91mph; ICDL=6.0pst; BCDL=6.0pst; n=25ft; Cat II; Exp C; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
 3) This truss has been designed for a 10.0 psf bottom
- chord live load nonconcurrent with any other live loads.
 * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- 5) All bearings are assumed to be SPF No.2.


Page: 1

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSITPTI Quality Criteria**, and **DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcscomponents.com)

Job	Truss	Truss Type	Qty	Ply	Lot 172 HT	
B240033	D3	Roof Special Girder	1	2	Job Reference (optional)	162692739

Scale = 1:71.5

(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP	
25.0	Plate Grip DOL	1.15	TC	0.60	Vert(LL)	-0.14	27-29	>999	360	MT20	197/144	
10.0	Lumber DOL	1.15	BC	0.46	Vert(CT)	-0.24	26-28	>999	240			
0.0*	Rep Stress Incr	NO	WB	0.83	Horz(CT)	0.04	7	n/a	n/a			
10.0	Code	IRC2018/TPI2014	Matrix-S		Wind(LL)	0.10	27-29	>999	240	Weight: 365 lb	FT = 10%	
		BOT CHORD	33-35=-325/206, 3	31-33=-1	341/8921,		3) Wir	d: ASCI	E 7-16;	; Vult=115mph (3	3-second gust)	
2x4 SPF No.2 *Exce	pt* 4-2:2x4 SPF 210	0F		,	,							
1.8E												
2x6 SP 2400F 2.0E				,	,							
	pt* 33-1:2x4 SPF 21	00F										
2x4 SPF No.2			,		,							
Structural wood she	athing directly applie	d or			,							
5-5-8 oc purlins, ex	cept end verticals, ar	nd										
2-0-0 oc purlins (4-8	-5 max.): 1-2.											
Rigid ceiling directly	applied or 6-0-0 oc											
bracing.			,								.e. diagonal web).	
1 Row at midpt	6-7, 3-16, 5-7	WEBS	,		,							
1 Brace at Jt(s): 1,												
30, 28, 26, 22, 20,												
13, 11, 10, 34												
(size) 7=0-3-8, (rea. 0-4-2). 35=0-3-8	3.										
		- ,									between the bottom	
			,		,							
,	,)									at joint(s) 35, 7	
	1.	,		10=-131	1038,		12) All I	pearings	are as	ssumed to be SP	PF No.2 .	
	pression/waximum		17-18=-146/989									
,	,			gether wi	th 10d							
		(U.131 X3)										
0-1		Top chords	s connected as follo	ws: 2x4	 1 row at 0-6 	-0	BLOCKS	, ETC.) A	RE TH	E RESPONSIBILIT	Y OF THE	
		OC.					TRUSS N	/ANUÉA	CTURE	R OR THE BUILDI	NG DESIGNER.	
		Bottom cho	ords connected as f	ollows: 2	$x_6 - 2 rows$							
	25.0 10.0 0.0* 10.0 2x4 SPF No.2 *Exce 1.8E 2x6 SP 2400F 2.0E 2x4 SPF No.2 *Exce 1.8E 2x4 SPF No.2 Structural wood she 5-5-8 oc purlins, exc 2-0-0 oc purlins (4-8 Rigid ceiling directly bracing, 1 Row at midpt 1 Brace at Jt(s): 1, 30, 28, 26, 22, 20, 13, 11, 10, 34 (size) 7=0-3-8, ((req. 0-4-6 Max Horiz 35=282 (L Max Grav 7=5236 (L (lb) - Maximum Com Tension 1-35=-4813/587, 1-2	25.0 10.0	25.0 Plate Grip DOL 1.15 10.0 Lumber DOL 1.15 0.0* Rep Stress Incr NO 10.0 Code IRC2018/TPI2014 BOT CHORD 2x4 SPF No.2 *Except* 4-2:2x4 SPF 2100F 1.8E 2x4 SPF No.2 *Except* 33-1:2x4 SPF 2100F 2x4 SPF No.2 Structural wood sheathing directly applied or 5-5-8 oc purlins, except end verticals, and 2-0-0 oc purlins, (4-8-5 max.): 1-2. Rigid ceiling directly applied or 6-0 oc bracing. 1 Row at midpt 6-7, 3-16, 5-7 WEBS Max Grav 7=0-3-8, (req. 0-4-2), 35=0-3-8, (req. 0-4-6) Max Uplift Max Grav 7=5236 (LC 8), 35=-730 (LC 8) Max Grav Max Grav 7=5236 (LC 18), 35=5607 (LC 18) (1) 2-ply truss (0.131"x3") (b) - Maximum Compression/Maxi	$\begin{array}{c} 25.0 \\ 10$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	25.0 Piate Grip DOL 1.15 TC 0.60 Vert(LL) -0.14 27.29 10.0 Lumber DOL 1.15 BC 0.64 Vert(CT) -0.24 26.28 0.0* Rep Stress Incr NO Matrix-S Wind(LL) 0.10 27.29 10.0 Code IRC2018/TPI2014 Matrix-S Wind(LL) 0.10 27.29 2x4 SPF No.2 *Except* 4-2:2x4 SPF 2100F 29.31=:1341/8921, 27.29=:1341/910, 27.29=:1341/910, 27.29=:1341/910, 27.29=:1341/910, 27.29=:1341/910, 27.	25.0 Plate Grip DOL 1.15 TC 0.60 Vert(LL) -0.14 27-29 >999 10.0 Lumber DOL 1.15 BC 0.46 Vert(LL) -0.14 27-29 >999 2x4 SPF No.2 Code IRC2018/TPI2014 Matrix-S Wind(LL) 0.10 27-29 >999 2x4 SPF No.2 *Except* 4-2:2x4 SPF 2100F 29-31=-1341/8921, 27-291341/8921, 27-291341/8921, 27-291341/8921, 27-291341/8921, 27-291341/8921, 27-291341/8921, 27-291341/8921, 27-2931431/302, 27-261341/8921, 27-2931431/302, 27-261341/8921, 27-2931431/302, 27-261341/8921, 27-293141/8921, 27-2931431/302, 27-261341/302, 27-261341/302, 27-261341/302, 27-261341/302, 27-29340/3463, 32-341441/302, 37-394/363, 32-341431/302, 37-324-343/363, 40 Truss design only for consult on consult of 2-24-98/7154, 20-22-98/7154, 20-2298/7154, 20-2298/7154, 20-2298/7154, 20-22	25.0 Plate Grip DOL 1.15 TC 0.60 Vert(LL) -0.14 27-29 >999 360 10.0 Lumber DOL 1.15 BC 0.46 Vert(CT) -0.24 26-28 >999 240 10.0 Code IRC2018/TPI2014 Matrix-S Wind(LL) 0.04 7 n/a n/a 2x4 SPF No.2 *Except* 4-2:2x4 SPF 2100F 25-27=-1341/8921, 27-29=-287/87/8, 17-29=-287/841/8, 27-29=-287/8	25.0 Plate Grip DOL 1.15 TC 0.60 Vert(LL) -0.14 27-29 >999 360 MT20 0.0° Reg Stress Incr NO WB 0.83 Hort(CT) 0.24 26-28 >999 240 Weight: 365 lb 0.0° Code IRC2018/TPI2014 Matrix-S Wind(LL) 0.10 27-29 >999 240 Weight: 365 lb 2x4 SPF No.2 *Except* 4-2:2x4 SPF 2100F BOT CHORD 33-35=-325/206, 31-33=-1341/8921, 27-29=-1341/8921, 2	

staggered at 0-9-0 oc. Web connected as follows: 2x4 - 1 row at 0-4-0 oc.

2) All loads are considered equally applied to all plies, except if noted as front (F) or back (B) face in the LOAD CASE(S) section. Ply to ply connections have been provided to distribute only loads noted as (F) or (B), unless otherwise indicated.

December 26,2023

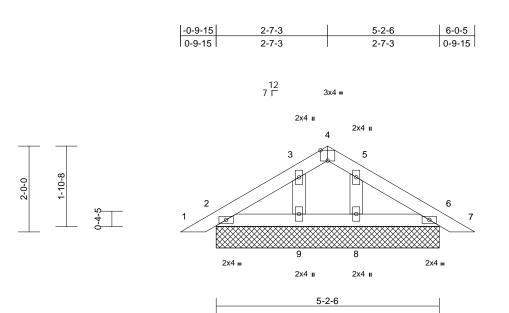
Job	Truss	Truss Type	Qty	Ply	Lot 172 HT	
B240033	D3	Roof Special Girder	1	2	Job Reference (optional)	162692739

- 13) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 730 lb uplift at joint 35 and 682 lb uplift at joint 7.
- 14) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 15) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.
- 16) Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 763 lb down and 149 lb up at 0-11-3, 769 lb down and 150 lb up at 3-0-12, 769 lb down and 150 lb up at 5-0-12, 769 lb down and 150 lb up at 7-0-12, 976 lb down and 88 lb up at 9-0-12, 976 lb down and 88 lb up at 11-0-12, 937 lb down and 97 lb up at 13-2-15, 837 lb down and 103 lb up at 15-0-12, 837 lb down and 103 lb up at 17-0-12, and 291 lb down and 57 lb up at 5-0-12, and 291 lb down and 57 lb up at 7-0-12 on bottom chord. The design/selection of such connection device(s) is the responsibility of others.

17) Studding applied to ply: 1(Front)

- LOAD CASE(S) Standard
- Dead + Roof Live (balanced): Lumber Increase=1.15, Plate Increase=1.15 Uniform Loads (lb/ft)

Vert: 1-2=-70, 2-6=-70, 7-35=-20, 9-34=-20


Concentrated Loads (lb) Vert: 31=-671 (B), 29=-920 (F=-249, B=-671), 27=-920 (F=-249, B=-671), 23=-806 (B), 21=-806 (B), 14=-741 (B), 12=-741 (B), 8=-741 (B), 18=-797 (B), 50=-674 (B) Run: 8.73 S Dec 14 2023 Print: 8.730 S Dec 14 2023 MiTek Industries, Inc. Thu Dec 21 09:06:42 ID:Hr0UloyIgMOrZQ4rpild7XzssyG-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC?f Page: 2

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSITPTI Quality Criteria**, and **DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcscomponents.com)

Job	Truss	Truss Type	Qty	Ply	Lot 172 HT	
B240033	P1	Piggyback	1	1	Job Reference (optional)	162692740

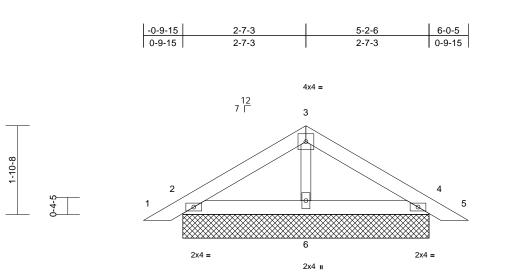
Run: 8.73 S Dec 14 2023 Print: 8.730 S Dec 14 2023 MiTek Industries, Inc. Thu Dec 21 09:06:43 ID:Hr0UloyIgMOrZQ4rpild7XzssyG-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Scale = 1:26.8

Plate Offsets (X, Y): [4:0-2-0,Edge], [5:0-0-0,Edge]

	X, Y): [4:0-2-0,Edge],	[5:0-0-0,Edge]										-	
Loading TCLL (roof) TCDL BCLL BCDL	(psf) 25.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018	3/TPI2014	CSI TC BC WB Matrix-P	0.05 0.02 0.02	DEFL Vert(LL) Vert(CT) Horz(CT)	in n/a n/a 0.00	(loc) - - 6	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 17 lb	GRIP 197/144 FT = 10%
	2x4 SPF No.2 2x4 SPF No.2 Structural wood shea 6-0-0 oc purlins. Rigid ceiling directly bracing. (size) 2=5-2-6, 6 Max Horiz 2=-48 (LC Max Uplift 2=-5 (LC 3 9), 9=-52 Max Grav 2=114 (LC	applied or 6-0-0 oc 6=5-2-6, 8=5-2-6, 9= 6) 8), 6=-8 (LC 9), 8=-4 (LC 8)	8) 9) 5-2-6 ¹⁰⁾ 9 (LC ₁₁₎	on the bottom 3-06-00 tall b chord and an All bearings a Provide mecl bearing plate 8 lb uplift at ji joint 8.) This truss is International R802.10.2 ar) See Standard Detail for Con	as been designed n chord in all area y 2-00-00 wide w y other members are assumed to b hanical connectio capable of withs oint 6, 52 lb uplift designed in accor Residential Code nd referenced sta d Industry Piggyb nnection to base f fied building desig	as where iill fit betw e SPF No n (by oth tanding 5 at joint 9 rdance w sections ndard AN ack Truss truss as a	a rectangle veen the botto o.2. ers) of truss t lb uplift at joi and 49 lb up th the 2018 R502.11.1 a SI/TPI 1. s Connection	om o int 2, lift at nd					
FORCES TOP CHORD BOT CHORD WEBS	(Ib) - Maximum Com Tension 1-2=0/17, 2-3=-51/5 5-6=-47/50, 6-7=0/1 2-9=-26/68, 8-9=-26, 3-9=-130/73, 5-8=-1:	pression/Maximum 4, 3-4=-20/6, 4-5=-20 7 /68, 6-8=-26/68	LO	OAD CASE(S)	Standard								
 this design Wind: ASC Vasd=91m II; Exp C; E cantilever right exposion Truss design only. For sister size standion or consult Gable requipable studies This truss 	ed roof live loads have b. CE 7-16; Vult=115mph nph; TCDL=6.0psf; BC Enclosed; MWFRS (er left and right exposed sed; Lumber DOL=1.6 igned for wind loads ir studs exposed to wind ard Industry Gable End qualified building desig uires continuous bottor ds spaced at 1-4-0 oc. has been designed for load nonconcurrent wi	(3-second gust) DL=6.0psf; h=25ft; C ivelope) exterior zon; end vertical left and 0 plate grip DOL=1.6 the plane of the tru (normal to the face) d Details as applicat gner as per ANSI/TP m chord bearing.	Cat. le; d 50 ss , ple, 21 1.								X	STATE OF J SCOT SEV SEV PE-2001	ER BER 018807

December 26,2023


Page: 1

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent toulsable personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

Job	Truss	Truss Type	Qty	Ply	Lot 172 HT	
B240033	P2	Piggyback	9	1	Job Reference (optional)	162692741

2-0-0

Run: 8.73 S Dec 14 2023 Print: 8.730 S Dec 14 2023 MiTek Industries, Inc. Thu Dec 21 09:06:43 ID:Hr0UloyIgMOrZQ4rpild7XzssyG-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

5-2-6

Scale =	1:24.3
---------	--------

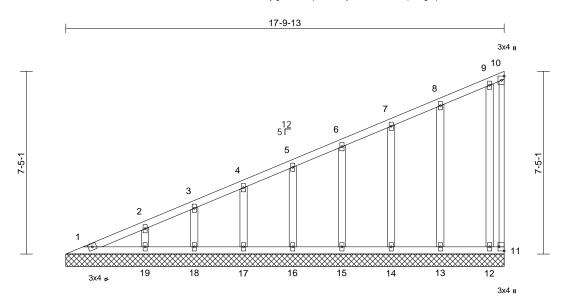
Loading	(psf)	Spacing	2-0-0	CSI	0.44	DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15	TC	0.11	Vert(LL)	n/a	-	n/a	999	MT20	197/144
TCDL	10.0	Lumber DOL	1.15	BC	0.06	Vert(CT)	n/a	-	n/a	999		
BCLL	0.0*	Rep Stress Incr	YES	WB	0.03	Horz(CT)	0.00	4	n/a	n/a		
BCDL	10.0	Code	IRC2018/TPI2014	Matrix-P							Weight: 16 lb	FT = 10%
LUMBER TOP CHORD BOT CHORD OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	2x3 SPF No.2 Structural wood she 6-0-0 oc purlins. Rigid ceiling directly bracing.	applied or 10-0-0 oc 4=5-2-6, 6=5-2-6 2 6) 2 8), 4=-49 (LC 9)	 9) Provide merbearing plat 2 and 49 lb 10) This truss is Internationa R802.10.2 at 11) See Standa Detail for Co consult qua LOAD CASE(S) 	are assumed to b chanical connection e capable of withs uplift at joint 4. designed in accoon I Residential Codu and referenced sta rd Industry Piggyt connection to base lifted building desi) Standard	on (by oth standing 4 ordance w e sections andard AN oack Trus truss as a	ers) of truss t 3 lb uplift at j ith the 2018 i R502.11.1 a ISI/TPI 1. s Connection	oint Ind					
FORCES	(lb) - Maximum Com Tension	pression/Maximum										
TOP CHORD		1 3-471/29 4-5-0	/17									
BOT CHORD	,		/ 11									
WEBS	3-6=-142/35	,										
NOTES	0 0- 112/00											
 Unbalance this design Wind: ASC Vasd=91m II; Exp C; cantilever 	ed roof live loads have CE 7-16; Vult=115mph nph; TCDL=6.0psf; BC Enclosed; MWFRS (er left and right exposed sed; Lumber DOL=1.6	(3-second gust) DL=6.0psf; h=25ft; C velope) exterior zon ; end vertical left and	Cat. e; d								TE OF M	MISSO
3) Truss des	signed for wind loads in	n the plane of the tru	SS							B	SCOT	

- Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
 Gable requires continuous bottom chord bearing.
- 5) Gable studs spaced at 2-0-0 oc.
- 6) This truss has been designed for a 10.0 psf bottom
- chord live load nonconcurrent with any other live loads.
- This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.

SCOTT M. SEVIER NUMBER PE-2001018807

Page: 1

December 26,2023



Job	Truss	Truss Type	Qty	Ply	Lot 172 HT	
B240033	V1	Valley	1	1	Job Reference (optional)	162692742

Run: 8.73 S Dec 14 2023 Print: 8.730 S Dec 14 2023 MiTek Industries, Inc. Thu Dec 21 09:06:44 ID:Hr0UloyIgMOrZQ4rpild7XzssyG-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

1 4

1	7	-9-	1	3	

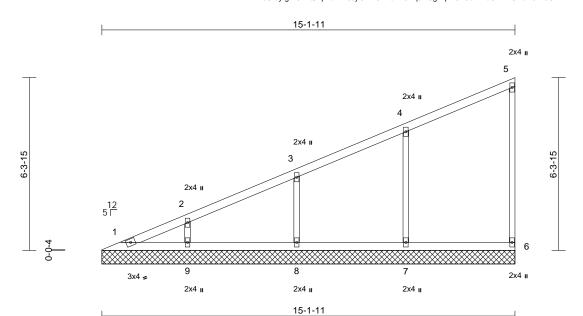
Scale = 1:46.8

Plate Offsets (X, Y): [11:Edge,0-2-8]

Loading	(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15		тс	0.44	Vert(LL)	n/a	-	n/a	999	MT20	197/144
TCDL	10.0	Lumber DOL	1.15		BC	0.10	Vert(TL)	n/a	-	n/a	999		
BCLL	0.0*	Rep Stress Incr	YES		WB	0.10	Horiz(TL)	0.00	11	n/a	n/a		
BCDL	10.0	Code	IRC201	18/TPI2014	Matrix-S							Weight: 81 lb	FT = 10%
LUMBER			V	VEBS 2	2-19=-179/90, 3- ²	18=-128/6	6, 4-17=-14	3/73,					
TOP CHORD	2x4 SPF No.2			:	5-16=-139/72, 6-1	15=-141/7	71, 7-14=-13	8/74,					
BOT CHORD	2x4 SPF No.2			8	3-13=-150/65, 9-1	12=-95/97	7						
WEBS	2x3 SPF No.2		N	IOTES									
OTHERS	2x4 SPF No.2		1		7-16; Vult=115m								
BRACING					n; TCDL=6.0psf;								
TOP CHORD			d or		closed; MWFRS								
	6-0-0 oc purlins, ex				t and right expos								
BOT CHORD	Rigid ceiling directly bracing.	applied or 10-0-0 oc	: 2		d; Lumber DOL= ⁻ ned for wind load								
REACTIONS	0	3, 11=17-9-13,			ids exposed to w								
	· · ·	13, 13=17-9-13,			d Industry Gable								
	14=17-9-1	13, 15=17-9-13,			alified building de								
		13, 17=17-9-13,			2x4 MT20 unles								
		13, 19=17-9-13	4		es continuous bo		d bearing.						
	Max Horiz 1=309 (LC		5		spaced at 2-0-0 o		0						
	Max Uplift 11=-113 (/,		s been designed ad nonconcurrent			ade					
		C 8), 14=-52 (LC 8),			as been designe								
		C 8), 16=-48 (LC 8),			n chord in all are			opsi					
	•	C 8), 18=-43 (LC 8),			y 2-00-00 wide v			tom					
	19=-63 (L Max Grav 1=130 (L0				y other members								
		_C 16), 11=76 (LC 4), _C 16), 13=191 (LC ²	n 8		are assumed to b		0.2.						
		_C 1), 15=181 (LC 1)	· <i>)</i> ,		hanical connection			to				200	an
		_C 1), 17=185 (LC 1)		bearing plate	capable of withs	standing 1	13 lb uplift a	it joint				OF	MIG
		_C 1), 19=238 (LC 1)		11, 63 lb upli	ft at joint 19, 43 I	b uplift at	joint 18, 49 l	b				TE OF	UISS W
FORCES	(lb) - Maximum Com	,, , , ,			17, 48 lb uplift at						6	T.T.	N.S
1 ONOLO	Tension				ft at joint 14, 35 I	b uplift at	joint 13 and	84 lb			A	SCOT	TM.
TOP CHORD		32/23. 3-4=-208/28.		uplift at joint							a	7 SEV	IER \ V
	4-5=-184/27, 5-6=-1		1		designed in acco						81		
	7-8=-142/42, 8-9=-1	21/64, 9-10=-68/49,			Residential Code			and				NATT?	XXXXX
	10-11=-71/55				nd referenced sta	andard Af	NOI/TPT1.			-		pur ,	enter
BOT CHORD	,	,	L	OAD CASE(S)	Standard						73	S NUM	BER /S
	17-18=-101/76, 16-1	,									N'	PE-2001	BER 018807
	15-16=-101/76, 14-1										V	1 and	158
	13-14=-101/76, 12-1	3=-101/76,										ESSIONA	ENU'S
	11-12=-101/76											UNA NA	LEY
												Car	June -

December 26,2023

DEVELORMENT: SERVICES LEE'S'SUMMIT'SMISSOURI 04/09/2024 5:02:03


TION /IEW

Job	Truss	Truss Type	Qty	Ply	Lot 172 HT	
B240033	V2	Valley	1	1	Job Reference (optional)	162692743

Run: 8.73 S Dec 14 2023 Print: 8.730 S Dec 14 2023 MiTek Industries, Inc. Thu Dec 21 09:06:44 ID:Hr0UloyIgMOrZQ4rpild7XzssyG-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC?f

Page: 1

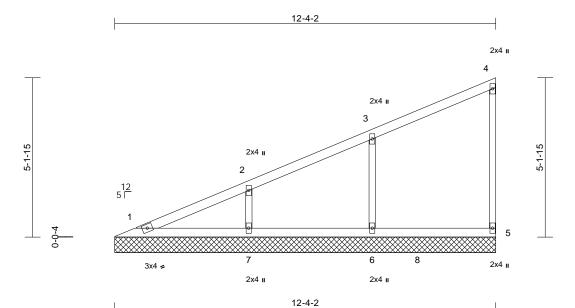
Scale = 1:42.2

		-										
Loading TCLL (roof) TCDL	(psf) 25.0 10.0	Spacing Plate Grip DOL Lumber DOL	2-0-0 1.15 1.15	CSI TC BC	0.31 0.14	DEFL Vert(LL) Vert(TL)	in n/a n/a	(loc) -	l/defl n/a n/a	L/d 999 999	PLATES MT20	GRIP 197/144
BCLL	0.0*	Rep Stress Incr	YES	WB	0.15	Horiz(TL)	0.00	6	n/a	n/a		
BCDL	10.0	Code	IRC2018/TPI201					-			Weight: 46 lb	FT = 10%
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SPF No.2 2x3 SPF No.2 2x3 SPF No.2 Structural wood she 6-0-0 oc purlins, exi Rigid ceiling directly bracing. (size) 1=15-1-11 8=15-1-11 Max Horiz 1=261 (LC Max Uplift 6=-33 (LC (LC 8), 9= Max Grav 1=117 (LC	cept end verticals. applied or 10-0-0 o 1, 6=15-1-11, 7=15- 1, 9=15-1-11 2 5) 2 5), 7=-104 (LC 8), 87 (LC 8)	chord I 7) * This on the 3-06-0 chord I 8) All bea 9) Provid bearing 6, 104 1-11, 10) This tri Interna 88-96 LOAD CAS	iss has been designed ve load nonconcurrent russ has been designe bottom chord in all area o tall by 2-00-00 wide w and any other members rings are assumed to b a mechanical connection plate capable of withs b uplift at joint 7, 96 lb ; joint 9. iss is designed in acco tional Residential Code 0.2 and referenced sta SE(S) Standard	with any ad for a liv as where vill fit betw s, with BC be SPF No on (by oth standing 3 uplift at ju rdance w e sections	other live loa e load of 20.0 a rectangle ween the botto DL = 10.0psf 5.2. ers) of truss t i3 lb uplift at j boint 8 and 87 ith the 2018 s R502.11.1 a	Opsf om f. oint Ib					
FORCES	(lb) - Maximum Com Tension	pression/Maximum										
TOP CHORD												
BOT CHORD												
WEBS	4-7=-306/143, 3-8=-	280/147, 2-9=-251/*	128								000	ADD
Vasd=91n II; Exp C;	CE 7-16; Vult=115mph nph; TCDL=6.0psf; BC Enclosed; MWFRS (er left and right exposed	DL=6.0psf; h=25ft; (nvelope) exterior zor	ne;								STATE OF SCOT	MISSOUR

- II; Exp C; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
 Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face),
- see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
 All plates are 2x4 MT20 unless otherwise indicated.
- 4) Gable requires continuous bottom chord bearing.
- 5) Gable studs spaced at 4-0-0 oc.

04/09/2024 5:02:03

NUMBER


PE-200101880

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent colleges with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

Job	Truss	Truss Type	Qty	Ply	Lot 172 HT	
B240033	V3	Valley	1	1	Job Reference (optional)	162692744

Run: 8.73 S Dec 14 2023 Print: 8.730 S Dec 14 2023 MiTek Industries, Inc. Thu Dec 21 09:06:44 ID:Hr0UloyIgMOrZQ4rpild7XzssyG-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:37.3

Loading	(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15		TC	0.20	Vert(LL)	n/a	-	n/a	999	MT20	197/144
TCDL	10.0	Lumber DOL	1.15		BC	0.13	Vert(TL)	n/a	-	n/a	999		
BCLL	0.0*	Rep Stress Incr	YES		WB	0.09	Horiz(TL)	0.00	5	n/a	n/a		
BCDL	10.0	Code	IRC2018	/TPI2014	Matrix-S							Weight: 36 lb	FT = 10%
LUMBER TOP CHORD 30T CHORD WEBS DTHERS BRACING TOP CHORD 30T CHORD REACTIONS	2x4 SPF No.2 2x3 SPF No.2 2x3 SPF No.2 Structural wood she 6-0-0 oc purlins, ex Rigid ceiling directly bracing.	cept end verticals. applied or 10-0-0 o , 5=12-4-2, 6=12-4-2 C 5) C 5), 6=-103 (LC 8),	c 9)	on the botto 3-06-00 tall chord and a All bearings Provide med bearing plate 5, 103 lb up This truss is International	has been design m chord in all are by 2-00-00 wide ny other membel are assumed to thanical connect e capable of with if at joint 6 and designed in acc Residential Coo nd referenced st Standard	eas where will fit betw rs, with BC be SPF No ion (by oth standing 2 101 lb uplit ordance w le sections	a rectangle veen the bott DL = 10.0psi o.2. ers) of truss t 9 lb uplift at j t at joint 7. ith the 2018 R502.11.1 a	om f. to joint					
	Max Grav 1=159 (L		,										
FORCES	(lb) - Maximum Com Tension	pression/Maximum											
TOP CHORD	1-2=-172/54, 2-3=-1 4-5=-110/43	35/51, 3-4=-116/40,											
BOT CHORD WEBS	1-7=-68/51, 6-7=-68 3-6=-304/148, 2-7=-	,											
Vasd=91r II; Exp C; cantilever right expo 2) Truss dea	CE 7-16; Vult=115mph mph; TCDL=6.0psf; BC Enclosed; MWFRS (er left and right exposed sed; Lumber DOL=1.6 signed for wind loads in studs exposed to wing	DL=6.0psf; h=25ft; (nvelope) exterior zor ; end vertical left an 0 plate grip DOL=1. n the plane of the tru	ne; d 60 iss									STATE OF J	MISSOURIER

2 only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

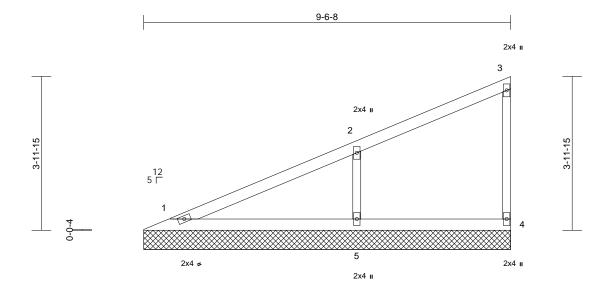
3) Gable requires continuous bottom chord bearing.

4) Gable studs spaced at 4-0-0 oc.

5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

SSIONAL E December 26,2023

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent colleges with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)



PE-200101880

Job	Truss	Truss Type	Qty	Ply	Lot 172 HT	
B240033	V4	Valley	1	1	Job Reference (optional)	162692745

Run: 8.73 S Dec 14 2023 Print: 8.730 S Dec 14 2023 MiTek Industries, Inc. Thu Dec 21 09:06:44 ID: Hr0U loy IgMOrZQ4 rpild7XzssyG-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?ff

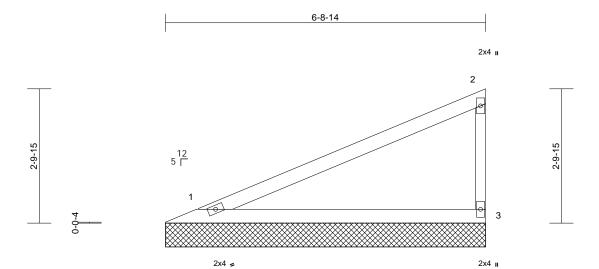
Page: 1

9-6-8

Scale = 1:30

· · · · · · · · · · · · · · · · · · ·										i	
Loading (psf)	Spacing	2-0-0	csi		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof) 25.0	Plate Grip DOL	1.15	тс	0.30	Vert(LL)	n/a	-	n/a	999	MT20	197/144
TCDL 10.0	Lumber DOL	1.15	BC	0.16	Vert(TL)	n/a	-	n/a	999		
BCLL 0.0*	Rep Stress Incr	YES	WB	0.07	Horiz(TL)	0.00	4	n/a	n/a		
BCDL 10.0	Code	IRC2018/TPI2014	Matrix-S							Weight: 26 lb	FT = 10%
LUMBER TOP CHORD 2x4 SPF No.2 BOT CHORD 2x4 SPF No.2 WEBS 2x3 SPF No.2 OTHERS 2x3 SPF No.2 BRACING TOP CHORD Structural wood shea 6-0-0 oc purlins, exc BOT CHORD Rigid ceiling directly is bracing. REACTIONS (size) 1=9-6-8, 4 Max Horiz 1=159 (LC Max Uplift 4=-23 (LC Max Grav 1=174 (LC	 cept end verticals. applied or 10-0-0 oc l=9-6-8, 5=9-6-8 c 5) c 5) c 5) c 5) c 5) c 5) c 6) c 7) <lic 7)<="" li=""> c 7) <lic 7)<="" li=""> <lic 7)<="" li=""> <lic 7)<="" li=""></lic></lic></lic></lic>	bearing plate 4 and 130 lb 9) This truss is International R802.10.2 ar LOAD CASE(S)	hanical connection be capable of withsta uplift at joint 5. designed in accorda Residential Code s nd referenced stand Standard	nding 2 ance w	3 lb uplift at j ith the 2018 s R502.11.1 a	oint					
FORCES (Ib) - Maximum Comp	, ,.										
Tension											
TOP CHORD 1-2=-123/72, 2-3=-10	06/29, 3-4=-96/39										
BOT CHORD 1-5=-51/39, 4-5=-51/3	39										
WEBS 2-5=-372/183											
NOTES											
 Wind: ASCE 7-16; Vult=115mph Vasd=91mph; TCDL=6.0psf; BCI II; Exp C; Enclosed; MWFRS (enclosed; MWFRS (enclosed; MWFRS) (enclosed; right exposed; Lumber DOL=1.60 Truss designed for wind loads in only. For studs exposed to wind see Standard Industry Gable Endlor or consult qualified building desig Gable requires continuous bottom Gable studs spaced at 4-0-0 oc. This truss has been designed for chord live load nonconcurrent witi * This truss has been designed for on the bottom chord in all areas v 3-06-00 tall by 2-00-00 wide will f chord and any other members. All bearings are assumed to be S 	DL=6.0psf; h=25ft; Ca velope) exterior zone ; end vertical left and 0 plate grip DOL=1.60 the plane of the trus (normal to the face), d Details as applicabl mer as per ANSI/TPI n chord bearing. a 10.0 psf bottom th any other live loads or a live load of 20.0p where a rectangle fit between the bottom	s; e, 1. s.						ć		STATE OF J SCOT SEV NUM PE-2001	I ENGLES

December 26,2023



4	WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.
	Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not
	a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall
	building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing
	is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the
	fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpins
	and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

ſ	Job	Truss	Truss Type	Qty	Ply	Lot 172 HT	
	B240033	V5	Valley	1	1	Job Reference (optional)	162692746

Run: 8.73 S Dec 14 2023 Print: 8.730 S Dec 14 2023 MiTek Industries, Inc. Thu Dec 21 09:06:45 ID:Hr0UloyIgMOrZQ4rpild7XzssyG-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

6-8-14

			0	011							
Scale = 1:24.3		I						I			
Loading (psf) TCLL (roof) 25.0 TCDL 10.0 BCLL 0.0*	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr	2-0-0 1.15 1.15 YES	BC	0.70 0.38 0.00	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 3	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20	GRIP 197/144
BCDL 10.0	Code	IRC2018/TPI2014	Matrix-P							Weight: 17 lb	FT = 10%
LUMBER TOP CHORD 2x4 SPF No.2 BOT CHORD 2x4 SPF No.2 WEBS 2x3 SPF No.2 BRACING TOP CHORD Structural wood she: 6-9-8 oc purlins, ext	athing directly applied	International R802.10.2 a LOAD CASE(S)	designed in accordar Residential Code se nd referenced standa Standard	ctions	R502.11.1 a	nd					
BOT CHORD Rigid ceiling directly											
bracing. REACTIONS (size) 1=6-8-14, Max Horiz 1=108 (LC Max Uplift 1=-39 (LC Max Grav 1=267 (LC	C 5) 8), 3=-61 (LC 8)										
FORCES (lb) - Maximum Com											
Tension TOP CHORD 1-2=-97/64, 2-3=-208 BOT CHORD 1-3=-35/27	8/96										
 NOTES Wind: ASCE 7-16; Vult=115mph Vasd=91mph; TCDL=6.0psf; BC II; Exp C; Enclosed; MWFRS (er cantilever left and right exposed right exposed; Lumber DCL=1.6(Truss designed for wind loads ir only. For studs exposed to wind see Standard Industry Gable End or consult qualified building desig Gable requires continuous bottor Gable studs spaced at 4-0-0 oc. This truss has been designed for chord live load nonconcurrent wi * This truss has been designed for on the bottom chord in all areas 3-06-00 tall by 2-00-00 wide will chord and any other members. All bearings are assumed to be S Provide mechanical connection (bearing plate capable of withstar 1 and 61 lb uplift at joint 3. 	DL=6.0psf; h=25ft; C ivelope) exterior zone; end vertical left and D plate grip DOL=1.6; the plane of the trus; (normal to the face), d Details as applicabl gner as per ANSI/TPI n chord bearing. a 10.0 psf bottom th any other live load or a live load of 20.0; where a rectangle fit between the bottor SPF No.2. by others) of truss to	e; 0 iss 1. 1. s. psf								STATE OF M SCOT SEVI OF PE-2001	

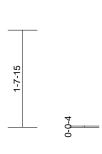
December 26,2023

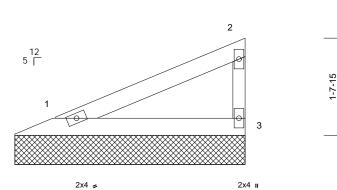
WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent toulsable personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcscomponents.com)

Job	Truss	Truss Type	Qty	Ply	Lot 172 HT	
B240033	V6	Valley	1	1	Job Reference (optional)	162692747

3-11-5

3-11-5


Wheeler Lumber, Waverly, KS - 66871,

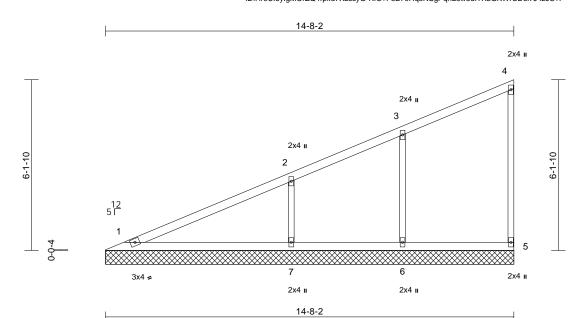

Run: 8.73 S Dec 14 2023 Print: 8.730 S Dec 14 2023 MiTek Industries, Inc. Thu Dec 21 09:06:45 ID:Hr0UloyIgMOrZQ4rpild7XzssyG-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

2x4 🛛

Page: 1

:19.7

Scale = 1:19.7											
Loading (psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof) 25.0	Plate Grip DOL	1.15	TC	0.17	Vert(LL)	n/a	-	n/a	999	MT20	197/144
TCDL 10.0	Lumber DOL	1.15	BC	0.09	Vert(TL)	n/a	-	n/a	999		
BCLL 0.0*	Rep Stress Incr	YES	WB	0.00	Horiz(TL)	0.00	3	n/a	n/a		
BCDL 10.0	Code	IRC2018/TPI2014	Matrix-P							Weight: 9 lb	FT = 10%
3-11-14 oc purlins, BOT CHORD Rigid ceiling directly bracing. REACTIONS (size) 1=3-11-5 Max Horiz 1=57 (LC Max Uplift 1=-21 (LC	C 8), 3=-32 (LC 8)	Internationa R802.10.2 a LOAD CASE(S) ed or	designed in acco I Residential Code nd referenced sta Standard	e sections	R502.11.1 a	and				<u> </u>	
Max Grav 1=141 (L	C 1), 3=141 (LC 1)										
FORCES (Ib) - Maximum Con	npression/Maximum										
Tension TOP CHORD 1-2=-51/34, 2-3=-11	0/51										
BOT CHORD 1-3=-19/14	0,01										
NOTES											
 Wind: ASCE 7-16; Vult=115mph Vasd=91mph; TCDL=6.0psf; BC II; Exp C; Enclosed; MWFRS (e cantilever left and right exposed right exposed; Lumber DOL=1.6 Truss designed for wind loads i only. For studs exposed to wind see Standard Industry Gable Er or consult qualified building desi Gable requires continuous botto Gable studs spaced at 4-0-0 oc. This truss has been designed for chord live load nonconcurrent w * This truss has been designed i on the bottom chord in all areas 3-06-00 tall by 2-00-00 wide will chord and any other members. All bearings are assumed to be Provide mechanical connection bearing plate capable of withsta 1 and 32 lb uplift at joint 3. 	iDL=6.0psf; h=25ff; C nvelope) exterior zon ; end vertical left and 00 plate grip DOL=1.6 n the plane of the tru 1 (normal to the face) d Details as applicat gner as per ANSI/TF m chord bearing. r a 10.0 psf bottom ith any other live load for a live load of 20.0 where a rectangle fit between the botto SPF No.2. (by others) of truss to	ne; d 30 ss ole, ole, ole, ole, ole, ole, ole, ole,								STATE OF SCOT SEV OF PE-200	TT M. TER 1018807
										all	er 26,2023


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent toulsable personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcscomponents.com)

Job	Truss	Truss Type	Qty	Ply	Lot 172 HT	
B240033	V7	Valley	1	1	Job Reference (optional)	162692748

Run: 8.73 S Dec 14 2023 Print: 8.730 S Dec 14 2023 MiTek Industries, Inc. Thu Dec 21 09:06:45 ID:Hr0UloyIgMOrZQ4rpild7XzssyG-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:41.4

Scale = 1.41.4													
Loading	(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15		TC	0.45	Vert(LL)	n/a	-	n/a	999	MT20	197/144
TCDL	10.0	Lumber DOL	1.15		BC	0.27	Vert(TL)	n/a	-	n/a	999		
BCLL	0.0*	Rep Stress Incr	YES		WB	0.11	Horiz(TL)	0.00	5	n/a	n/a		
BCDL	10.0	Code	IRC2018/	TPI2014	Matrix-S							Weight: 44 lb	FT = 10%
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD	2x4 SPF No.2 2x3 SPF No.2 2x3 SPF No.2 Structural wood shea 6-0-0 oc purlins, exx Rigid ceiling directly	cept end verticals.	7) 8) ed or 9)	on the bottor 3-06-00 tall b chord and ar All bearings a Provide meci bearing plate 5, 86 lb uplift This truss is	as been designed n chord in all area by 2-00-00 wide wi y other members, are assumed to be hanical connection capable of withst at joint 6 and 145 designed in accor Residential Code	s where ill fit betw , with BC e SPF No n (by oth anding 3 b b uplift dance wi	a rectangle veen the botto DL = 10.0psf 0.2. ers) of truss t 4 lb uplift at ju at joint 7. th the 2018	o o oint					
REACTIONS	bracing. (size) 1=14-8-2, 7=14-8-2 Max Horiz 1=253 (LC Max Uplift 5=-34 (LC (LC 8) Max Grav 1=248 (LC	5), 6=-86 (LC 8), 7=	' LOA		nd referenced star			na					
FORCES	(lb) - Maximum Com	C 2), 7=557 (LC 2) pression/Maximum											
TOP CHORD	Tension 1-2=-200/88, 2-3=-1 4-5=-118/46	55/37, 3-4=-123/49,											
BOT CHORD WEBS	1-7=-82/62, 6-7=-82/ 3-6=-260/123, 2-7=-/												
Vasd=91n II; Exp C; cantilever right expo 2) Truss des only. For see Stand or consult	CE 7-16; Vult=115mph mph; TCDL=6.0psf; BC Enclosed; MWFRS (er left and right exposed sed; Lumber DOL=1.6 signed for wind loads ir studs exposed to wind dard Industry Gable Enc qualified building desig juries continuous bottor	DL=6.0psf; h=25ft; C velope) exterior zon ; end vertical left and D plate grip DOL=1.6 the plane of the tru (normal to the face) d Details as applicat gner as per ANSI/TP	e; d 50 ss , lle,							٢		STATE OF I STATE OF I SEVI	MISSOLUT T.M. HER T.M.

4) Gable studs spaced at 4-0-0 oc.

5)

This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

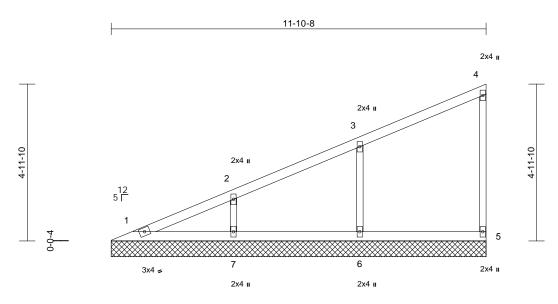
PE-200101880

December 26,2023

E

04/09/2024 5:02:04

TION IEW


SIONAL

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent colleges with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

Job	Truss	Truss Type	Qty	Ply	Lot 172 HT	
B240033	V8	Valley	1	1	Job Reference (optional)	162692749

Run: 8.73 S Dec 14 2023 Print: 8.730 S Dec 14 2023 MiTek Industries, Inc. Thu Dec 21 09:06:45 ID:Hr0UloyIgMOrZQ4rpild7XzssyG-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

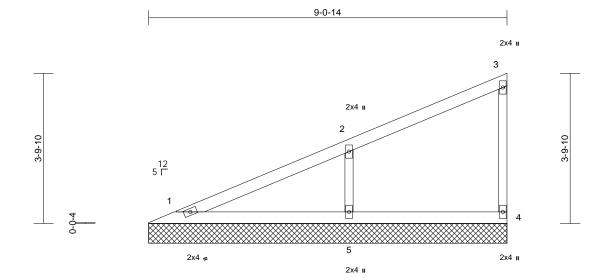
Page: 1

11-10-8

		-									_		
Scale = 1:36.5		-											
Loading	(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15		TC	0.19	Vert(LL)	n/a	-	n/a	999	MT20	197/144
TCDL	10.0	Lumber DOL	1.15		BC	0.11	Vert(TL)	n/a	-	n/a	999		
BCLL	0.0*	Rep Stress Incr	YES		WB	0.08	Horiz(TL)	0.00	5	n/a	n/a		
BCDL	10.0	Code	IRC2018	3/TPI2014	Matrix-S							Weight: 34 lb	FT = 10%
	2x4 SPF No.2 2x3 SPF No.2 2x3 SPF No.2 2x3 SPF No.2 Structural wood she 6-0-0 oc purlins, ex Rigid ceiling directly bracing. (size) 1=11-10-1 7=11-10-1 Max Horiz 1=202 (LC	cept end verticals. applied or 10-0-0 or 3, 5=11-10-8, 6=11- ⁻ 3	9)	on the bottor 3-06-00 tall b chord and ar All bearings Provide mec bearing plate 5, 104 lb upli This truss is International	has been design in chord in all arroy by 2-00-00 wide by other membe are assumed to hanical connect e capable of with ft at joint 6 and designed in acc Residential Coo nd referenced si Standard	eas where will fit betw rs. be SPF No ion (by oth astanding 2 93 lb uplift ordance wi de sections	a rectangle veen the botto o.2. ers) of truss t 9 lb uplift at j at joint 7. ith the 2018 R502.11.1 a	om to oint					
	Max Uplift 5=-29 (LC (LC 8) Max Grav 1=121 (LC	C 5), 6=-104 (LC 8), 7											
FORCES	(lb) - Maximum Corr Tension												
TOP CHORD	1-2=-166/48, 2-3=-1 4-5=-109/43	30/52, 3-4=-113/38,											
BOT CHORD WEBS	1-7=-65/49, 6-7=-65 3-6=-309/151, 2-7=-	,											
NOTES													~
Vasd=91m II; Exp C; I cantilever right expos 2) Truss des only. For s see Standa	CE 7-16; Vult=115mph ph; TCDL=6.0psf; BC Enclosed; MWFRS (er left and right exposed sed; Lumber DOL=1.6 igned for wind loads in studs exposed to wind ard Industry Gable En qualified building desi	DL=6.0psf; h=25ft; (nvelope) exterior zor ; end vertical left an 0 plate grip DOL=1.0 n the plane of the tru ((normal to the face) d Details as applicat	ne; d 60 iss i, ble,									STATE OF J	

- 3) Gable requires continuous bottom chord bearing.
- 4) Gable studs spaced at 4-0-0 oc.
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and perment bracing is always required for stability and to prevent collegement with the systems, see ANS//TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)



04/09/2024 5:02:04

Job	Truss	Truss Type	Qty	Ply	Lot 172 HT	
B240033	V9	Valley	1	1	Job Reference (optional)	162692750

Run; 8,73 S Dec 14 2023 Print; 8,730 S Dec 14 2023 MiTek Industries, Inc. Thu Dec 21 09:06:45 ID:Hr0UloyIgMOrZQ4rpild7XzssyG-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:29.2

Loading TCLL (roof) TCDI BCLL BCDL LUMBER

9.2			1							1			
	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP	
	25.0	Plate Grip DOL	1.15	тс	0.26	Vert(LL)	n/a	-	n/a	999	MT20	197/144	
	10.0	Lumber DOL	1.15	BC	0.14	Vert(TL)	n/a	-	n/a	999			
	0.0*	Rep Stress Incr	YES	WB	0.07	Horiz(TL)	0.00	4	n/a	n/a			
	10.0	Code	IRC2018/TPI2014	Matrix-S							Weight: 25 lb	FT = 10%	
			8) Provide mer	hanical connection	on (by oth	ers) of truss to	0				_		

9-0-14

TOP CHORD	2x4 SPF No.2	
BOT CHORD	2x4 SPF No.2	
WEBS	2x3 SPF No.2	
OTHERS	2x3 SPF No.2	
BRACING		
TOP CHORD	Structural wood sheathing directly applied or 6-0-0 oc purlins, except end verticals.	
BOT CHORD	Rigid ceiling directly applied or 10-0-0 oc bracing.	
REACTIONS	(size) 1=9-0-14, 4=9-0-14, 5=9-0-14	
	Max Horiz 1=151 (LC 5)	
	Max Uplift 4=-23 (LC 5), 5=-122 (LC 8)	
	Max Grav 1=155 (LC 1), 4=129 (LC 1), 5=460 (LC 1)	1
FORCES	(Ib) - Maximum Compression/Maximum Tension	
TOP CHORD	1-2=-117/64, 2-3=-103/27, 3-4=-101/42	

- BOT CHORD 1-5=-48/37. 4-5=-48/37 WEBS 2-5=-350/173 NOTES
- 1) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
- Truss designed for wind loads in the plane of the truss 2) only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- Gable requires continuous bottom chord bearing. 3)
- Gable studs spaced at 4-0-0 oc. 4)
- This truss has been designed for a 10.0 psf bottom 5) chord live load nonconcurrent with any other live loads. 6)
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- 7) All bearings are assumed to be SPF No.2 .

rovide mechanical connection (by othe bearing plate capable of withstanding 23 lb uplift at joint 4 and 122 lb uplift at joint 5.

This truss is designed in accordance with the 2018 9) International Residential Code sections R502.11.1 and

R802.10.2 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard

December 26,2023

DEVELORMENT SERVICES LEE'S'SUMMIT'SMISSOURI 04/09/2024 5:02:04

TION



Job	Truss	Truss Type	Qty	Ply	Lot 172 HT	
B240033	V10	Valley	1	1	Job Reference (optional)	162692751

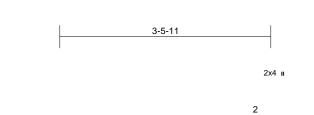
2-7-10

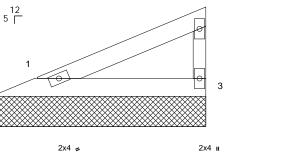
Run: 8.73 S Dec 14 2023 Print: 8.730 S Dec 14 2023 MiTek Industries, Inc. Thu Dec 21 09:06:46 ID:Hr0UloyIgMOrZQ4rpild7XzssyG-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

6-3-5

Scale = 1:23.5


Scale = 1:23.5												
Loading TCLL (roof) TCDL BCLL BCDL	(psf) 25.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018/TPI2014	CSI TC BC WB Matrix-P	0.58 0.32 0.00	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 3	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 16 lb	GRIP 197/144 FT = 10%
BCDL LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD BOT CHORD REACTIONS (M FORCES TOP CHORD BOT CHORD BOT CHORD BOT CHORD NOTES 1) Wind: ASCE Vasd=91mp II; Exp C; El cantilever le right expose 2) Truss desig only. For st see Standa or consult q 3) Gable requi	10.0 2x4 SPF No.2 2x4 SPF No.2 2x3 SPF No.2 Structural wood shee 6-3-14 oc purlins, e: Rigid ceiling directly bracing.	Code athing directly applie xcept end verticals. applied or 10-0-0 oc 3=6-3-5 C 5) 8), 3=-56 (LC 8) C 1), 3=246 (LC 1) pression/Maximum 1/89 (3-second gust) DL=6.0psf; h=25ft; C velope) exterior zom ; end vertical left and 0 plate grip DOL=1.6 n the plane of the tru (normal to the face) d Details as applicat gner as per ANSI/TP	IRC2018/TPI2014 9) This truss i Internation: R802.10.2 LOAD CASE(S ed or c Cat. le; d 50 ss b, ble,	Matrix-P s designed in accor al Residential Code and referenced star	dance w sections	ith the 2018 \$ R502.11.1 a		3	n/a	n/a	S SCOT	
 chord live lc * This truss on the botto 3-06-00 tall chord and a All bearings Provide me bearing plat 	as been designed for vad nonconcurrent wi has been designed for m chord in all areas v by 2-00-00 wide will iny other members. are assumed to be S chanical connection (te capable of withstar uplift at joint 3.	ith any other live load or a live load of 20.0 where a rectangle fit between the botto SPF No.2 (by others) of truss to	ipsf om o						4		NUM PE-2001	BER 018807


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent toulsible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

Job	Truss	Truss Type	Qty	Ply	Lot 172 HT	
B240033	V11	Valley	1	1	Job Reference (optional)	162692752

Run: 8.73 S Dec 14 2023 Print: 8.730 S Dec 14 2023 MiTek Industries, Inc. Thu Dec 21 09:06:46 ID:Hr0UloyIgMOrZQ4rpild7XzssyG-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Scale = 1:19	

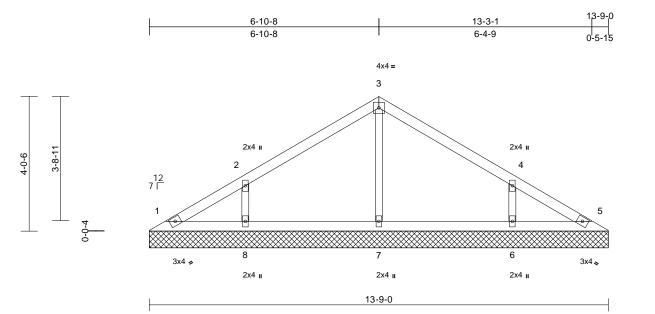
1-5-10

0-0-4

			I

00010 = 1.10												
Loading TCLL (roof)	(psf) 25.0	Spacing Plate Grip DOL	2-0-0 1.15	CSI TC	0.12	. ,	in n/a	(loc) -	l/defl n/a	L/d 999	PLATES MT20	GRIP 197/144
TCDL BCLL	10.0 0.0*	Lumber DOL Rep Stress Incr	1.15 YES	BC WB	0.07 0.00	Vert(TL) Horiz(TL)	n/a 0.00	- 3	n/a n/a	999 n/a		
BCDL	10.0	Code	IRC2018/TPI2014	Matrix-P	0.00	110112(11)	0.00	3	11/a	n/a	Weight: 8 lb	FT = 10%
											- 3	
LUMBER				designed in accor								
TOP CHORD				Residential Code nd referenced star			and					
BOT CHORD WEBS	2x4 SPF No.2 2x3 SPF No.2		LOAD CASE(S)			NOI/1111.						
BRACING	2.0 011 10.2		LOAD ONOL(O)	Otaridard								
TOP CHORD	Structural wood she	athing directly applie	ed or									
	3-6-5 oc purlins, ex											
BOT CHORD	0 0 ,	applied or 10-0-0 of	C									
	bracing.											
REACTIONS	(size) 1=3-5-11, Max Horiz 1=49 (LC											
	Max Uplift 1=-17 (LC											
	Max Grav 1=120 (LC	<i>,, , , ,</i>										
FORCES	(lb) - Maximum Com											
	Tension											
TOP CHORD	,	/43										
BOT CHORD	1-3=-16/12											
NOTES		(0										
	CE 7-16; Vult=115mph mph; TCDL=6.0psf; BC		Cat									
	Enclosed; MWFRS (er											
	left and right exposed											
	osed; Lumber DOL=1.6											
	signed for wind loads in											an
	studs exposed to wind dard Industry Gable End										TATE OF J	MIG. D
	t qualified building desig										FE	N.OSCILL
	uires continuous botto									A	NY and	New
	ids spaced at 4-0-0 oc.									A	S/ SCUI	
	has been designed for									2	SEV	
	load nonconcurrent wi ss has been designed f									8	6	
,	ttom chord in all areas		ipsi							8	X the	
	all by 2-00-00 wide will		om							1	COUM	a service of the serv
	d any other members.									N.	O PE-2001	018807
, ,	gs are assumed to be S									V	N. P.	154
,	nechanical connection (late capable of withstar									0	SIONA	LENG
	Ib uplift at joint 3.	iung in ib upilit at j	UIII								A DIA	
											ma	

December 26,2023



A WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.
Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not
a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall
building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing
is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the
fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org)
and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

Job	Truss	Truss Type	Qty	Ply	Lot 172 HT	
B240033	V12	Valley	1	1	Job Reference (optional)	162692753

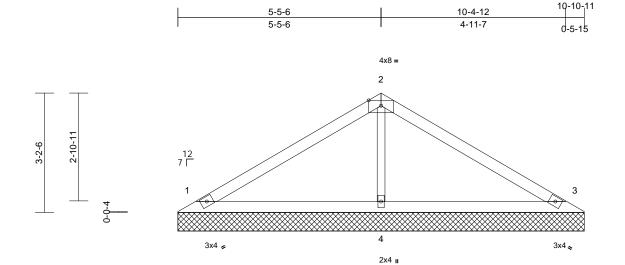
Run: 8.73 S Dec 14 2023 Print: 8.730 S Dec 14 2023 MiTek Industries, Inc. Thu Dec 21 09:06:46 ID:Hr0UloyIgMOrZQ4rpild7XzssyG-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale	=	1:34.5

Loading		(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)		25.0	Plate Grip DOL	1.15		тс	0.17	Vert(LL)	n/a	-	n/a	999	MT20	197/144
TCDL		10.0	Lumber DOL	1.15		BC	0.10	Vert(TL)	n/a	-	n/a	999		
BCLL		0.0*	Rep Stress Incr	YES		WB	0.08	Horiz(TL)	0.00	5	n/a	n/a		
BCDL		10.0	Code	IRC20	18/TPI2014	Matrix-S							Weight: 37 lb	FT = 10%
LUMBER TOP CHORD BOT CHORD OTHERS BRACING TOP CHORD	2x4 SPF No 2x4 SPF No 2x3 SPF No Structural w 6-0-0 oc pu	o.2 o.2 vood shea	athing directly applie	σ d or ε	 chord live lo * This truss on the botto 3-06-00 tall chord and a All bearings 	as been desigr ad nonconcurr has been desig m chord in all a by 2-00-00 wid ny other memb are assumed	ent with any gned for a liv areas where le will fit betw pers. to be SPF No	other live loa e load of 20. a rectangle veen the bott p.2.	0psf om					
BOT CHORD	Rigid ceiling bracing.	g directly	applied or 10-0-0 oc	; 5		chanical conne e capable of w								
	(size) 1 7 Max Horiz 1 Max Uplift 1 8 Max Grav 1 (I 1	=13-9-0, =97 (LC = =-11 (LC =-126 (LC =94 (LC LC 16), 7 5)	9), 6=-125 (LC 9), C 8) 16), 5=85 (LC 1), 6= =298 (LC 1), 8=353	1 م لائیں 353ء	 This truss is International 	Residential C nd referenced	ccordance w ode sections	ith the 2018 R502.11.1 a	and					
FORCES	(lb) - Maxim Tension	ium Comj	pression/Maximum											
TOP CHORD	1-2=-104/74 4-5=-77/37	4, 2-3=-12	28/93, 3-4=-124/73,											
BOT CHORD	1-8=-22/63, 5-6=-22/63	7-8=-22/	63, 6-7=-22/63,											
WEBS		8, 2-8=-28	32/167, 4-6=-282/16	7										
NOTES													San	alle
this desigr	l.		been considered for										TE OF	MISSO

- Wind: ASCE 7-16; Vult=115mph (3-second gust) 2) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1. 4) Gable requires continuous bottom chord bearing.
- 5) Gable studs spaced at 4-0-0 oc.


 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.
 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not besign value to dury with with where outputs into design is based only door parameters shown, and is for an individual building design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members and property incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TPH1 Quality Criteria**, and **DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcscomponents.com)

Job	Truss	Truss Type	Qty	Ply	Lot 172 HT	
B240033	V13	Valley	1	1	Job Reference (optional)	162692754

Run: 8,73 S Dec 14 2023 Print: 8,730 S Dec 14 2023 MiTek Industries, Inc. Thu Dec 21 09:06:46 ID:Hr0UloyIgMOrZQ4rpild7XzssyG-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

10-10-11

Scale = 1:30.9

Loading TCLL (roof) TCDL	2		ing Grip DOL ber DOL	2-0-0 1.15 1.15		CSI TC BC	0.34 0.21	DEFL Vert(LL) Vert(TL)	in n/a n/a	(loc) - -	l/defl n/a n/a	L/d 999 999	PLATES MT20	GRIP 197/144
BCLL BCDL		0.0* Rep \$ 0.0 Code	Stress Incr	YES IRC201	8/TPI2014	WB Matrix-S	0.08	Horiz(TL)	0.00	3	n/a	n/a	Weight: 28 lb	FT = 10%
LUMBER TOP CHORD BOT CHORD OTHERS BRACING TOP CHORD BOT CHORD REACTIONS		ns. irectly applied 0-10-11, 3=1 0-10-11 5 (LC 5) 43 (LC 8), 3= 8) 18 (LC 1), 3=	d or 10-0-0 oc 0-10-11, -53 (LC 9), 4=) 1(L(=-21	3-06-00 tall l chord and au All bearings Provide mec bearing plate 1, 53 lb uplif)) This truss is International	n chord in all by 2-00-00 win y other mem are assumed hanical conne capable of v t at joint 3 and designed in a Residential 0 nd reference	areas where de will fit betw bers. to be SPF Ne ection (by oth vithstanding 4 d 21 lb uplift a accordance w Code sections	a rectangle veen the bot 0.2. ers) of truss 3 lb uplift at t joint 4. ith the 2018 5 R502.11.1	tom to joint					
FORCES	(lb) - Maximum Tension	n Compressio	on/Maximum											
TOP CHORD	1-2=-151/73, 2	2-3=-150/54												
BOT CHORD	1-4=-14/68, 3-4	4=-14/68												
WEBS	2-4=-302/78													
NOTES														

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- Gable requires continuous bottom chord bearing. 4)
- Gable studs spaced at 4-0-0 oc. 5)
- 6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

December 26,2023

DEVELORMENT SERVICES LEE'S'SUMMIT'SMISSOURI 04/09/2024 5:02:04

CTION

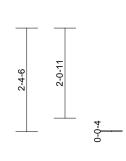
'IEW

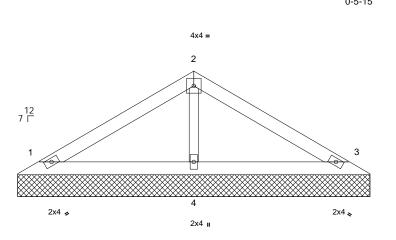
Job	Truss	Truss Type	Qty	Ply	Lot 172 HT	
B240033	V14	Valley	1	1	Job Reference (optional)	162692755

4-0-3

4-0-3

Wheeler Lumber, Waverly, KS - 66871,


Run: 8.73 S Dec 14 2023 Print: 8.730 S Dec 14 2023 MiTek Industries, Inc. Thu Dec 21 09:06:47 ID:Hr0UloyIgMOrZQ4rpild7XzssyG-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f



7-6-8

3-6-4

8-0-7

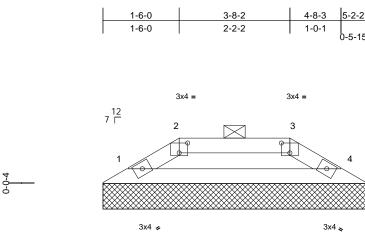
Scale = 1:26.3

Loading TCLL (roof) TCDL	(psf) 25.0 10.0	Spacing Plate Grip DOL Lumber DOL	2-0-0 1.15 1.15		CSI TC BC	0.23 0.11	DEFL Vert(LL) Vert(TL)	in n/a n/a	(loc) - -	l/defl n/a n/a	L/d 999 999	PLATES MT20	GRIP 197/144
BCLL BCDL	0.0* 10.0	Rep Stress Incr Code	YES IRC2018	/TPI2014	WB Matrix-P	0.04	Horiz(TL)	0.00	3	n/a	n/a	Weight: 20 lb	FT = 10%
LUMBER TOP CHORD BOT CHORD OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	 2x4 SPF No.2 2x3 SPF No.2 Structural wood she 6-0-0 cc purlins. Rigid ceiling directly bracing. (size) 1=8-0-7, 3 Max Horiz 1=-54 (LC) 	applied or 10-0-0 o 3=8-0-7, 4=8-0-7 ; 4)	9) 10) ed or	Provide mec bearing plate 1 and 45 lb u This truss is International	are assumed to hanical connecti o capable of with uplift at joint 3. designed in acco Residential Cod nd referenced st Standard	ion (by oth istanding 3 ordance wi le sections	ers) of truss t 9 lb uplift at j th the 2018 R502.11.1 a	joint					
	Max Uplift 1=-39 (LC Max Grav 1=171 (LC (LC 1)		4=290										
FORCES TOP CHORD BOT CHORD WEBS	(lb) - Maximum Com Tension 1-2=-97/50, 2-3=-93	/37											
NOTES	2-4=-202/32												
 Unbalance this design Wind: AS Vasd=91 II; Exp C; cantileve right expr 3) Truss de only. For see Stand 	ed roof live loads have n. CE 7-16; Vult=115mph mph; TCDL=6.0psf; BC Enclosed; MWFRS (er r left and right exposed osed; Lumber DOL=1.6 isigned for wind loads ir r studs exposed to wind dard Industry Gable En t qualified building desi	(3-second gust) DL=6.0psf; h=25ft; ivelope) exterior zo; ; end vertical left ar 0 plate grip DOL=1. o the plane of the tru (normal to the face d Details as applica	Cat. ne; id 60 uss), ble,								and the second se	STATE OF J	MISSOUR T M. HER

4) Gable requires continuous bottom chord bearing.

- 5) Gable studs spaced at 4-0-0 oc.
- This truss has been designed for a 10.0 psf bottom 6)
- chord live load nonconcurrent with any other live loads. * This truss has been designed for a live load of 20.0psf 7)
- on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.

PE-200101880 SSIONAL E December 26,2023


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent colleges with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

Job	Truss	Truss Type	Qty	Ply	Lot 172 HT	
B240033	V15	Valley	1	1	Job Reference (optional)	162692756

Run: 8,73 S Dec 14 2023 Print: 8,730 S Dec 14 2023 MiTek Industries, Inc. Thu Dec 21 09:06:47 ID:Hr0UloyIgMOrZQ4rpild7XzssyG-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

5-2-2

1:22.7			

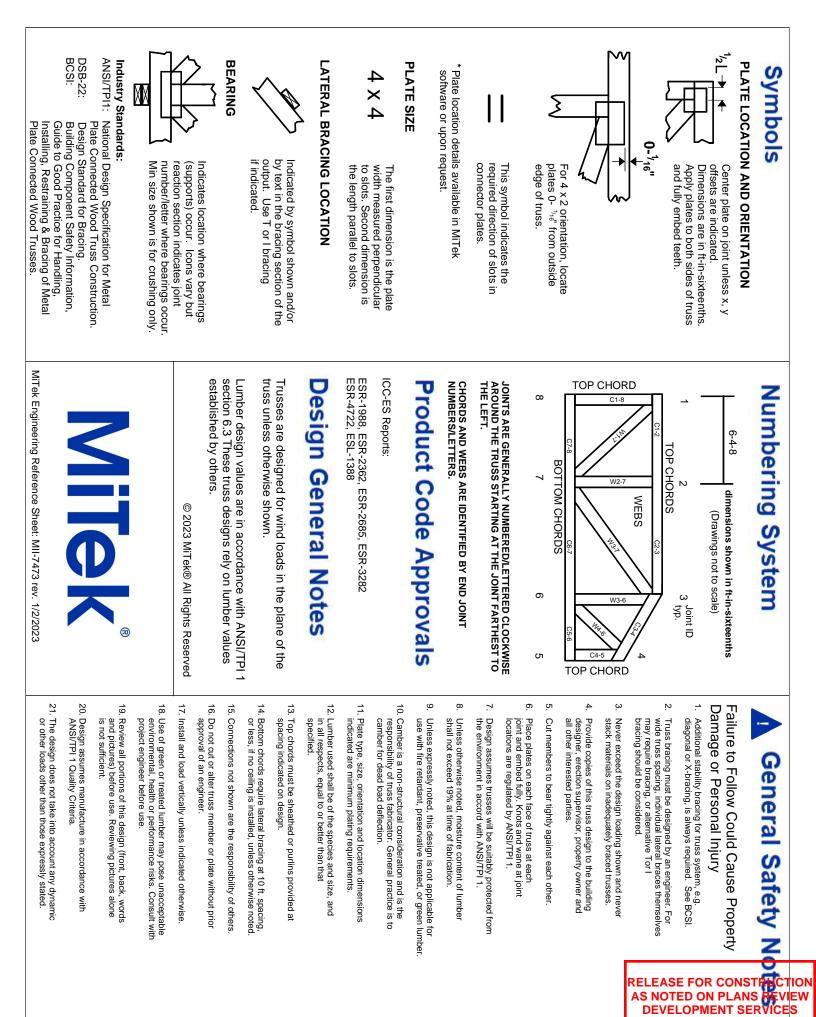
0-7-1

0-10-12

Plate Offsets (X, Y):	[2:0-2-0,0-2-5],	[3:0-2-0,0-2-5]
-----------------------	------------------	-----------------

Scale =

	λ, τ). [2.0-2-0,0-2-3],	[3.0-2-0,0-2-3]										
Loading TCLL (roof) TCDL BCLL BCDL	(psf) 25.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018/TPI2014	CSI TC BC WB Matrix-R	0.06 0.14 0.00	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 4	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 11 lb	GRIP 197/144 FT = 10%
LUMBER TOP CHORD BOT CHORD BRACING TOP CHORD BOT CHORD REACTIONS FORCES TOP CHORD BOT CHORD BOT CHORD BOT CHORD NOTES 1) Unbalance this design 2) Wind: ASC Vasd=91m II; Exp C; E cantilever 1 right expos 3) Truss desi only. For s see Standa or consult 4) Provide ad 5) Gable requ 6) Gable stud 7) This truss on the bott	2x4 SPF No.2 2x4 SPF No.2 Structural wood she 5-3-0 oc purlins, exc 2-0-0 oc purlins: 2-3 Rigid ceiling directly bracing. (size) 1=5-2-2, 4 Max Horiz 1=-16 (LC Max Uplift 1=-13 (LC Max Uplift 1=-13 (LC Max Grav 1=188 (LC (Ib) - Maximum Com Tension 1-2=-261/54, 2-3=-2 1-4=-44/221 ed roof live loads have be the comparison of the second transformer of the s	athing directly applie ept applied or 10-0-0 or 4=5-2-2 3 (LC 4) 5	9) All bearin 10) Provide m bearing p 1 and 13 ed or 11) This truss Internatio R802.10.2 c 12) Graphical or the orie bottom ch LOAD CASE(12) Graphical or the orie bottom ch LOAD CASE(13) Cat. ne; d 60 ISS), ble, PI 1. 3. ds. Opsf	gs are assumed to nechanical connecti late capable of with lb uplift at joint 4. s is designed in acco nal Residential Coc 2 and referenced st purlin representati entation of the purli	on (by oth standing 1 ordance w le sections andard AN on does no	ers) of truss t 3 lb uplift at j ith the 2018 5 R502.11.1 a ISI/TPI 1. ot depict the s	joint and			ß	VVeignt: 11 Ib VVeignt: 11 Ib STATE OF J STATE OF J SCOT SEV NUM PE-2001	MISSOUTH T M. ER BER 018807
	Il by 2-00-00 wide will any other members.		5								A COLOR	50


chord and any other members.

December 26,2023

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent toulsable personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

Page: 1

ASE FOR CONST **OTED ON PLANS** VELOPMENT SER LEE'S SUMMIT, MISSOURI 04/09/2024 5:02:05