

MiTek, Inc.

314.434.1200

16023 Swingley Ridge Rd. Chesterfield, MO 63017

RE: 240612 Lot 116 MN

#### Site Information:

Customer: Avital Homes Project Name: 240612 Lot/Block: Address: State: City:

Model: Serenity - Craftsman 3rd Car Subdivision:

#### General Truss Engineering Criteria & Design Loads (Individual Truss Design Drawings Show Special Loading Conditions):

Design Code: IRC2018/TPI2014 Wind Code: ASCE 7 - 16[Low Rise] Roof Load: 45.0 psf

Design Program: MiTek 20/20 8.7 Wind Speed: 115 mph Floor Load: N/A psf

This package includes 49 individual, dated Truss Design Drawings and 0 Additional Drawings.

| No.<br>1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>11<br>12<br>13<br>14<br>15<br>16<br>17 | Seal#<br>I64102244<br>I64102245<br>I64102246<br>I64102247<br>I64102248<br>I64102250<br>I64102251<br>I64102252<br>I64102253<br>I64102255<br>I64102255<br>I64102255<br>I64102257<br>I64102258<br>I64102259<br>I64102259<br>I64102260<br>I64102260 | Truss Name<br>A1A<br>A2<br>A2A<br>A3<br>A4<br>B1<br>B2<br>B3<br>E1<br>E2<br>E3<br>E4<br>E5<br>E6<br>E7<br>E8<br>E9<br>E10 | Date<br>3/7/2024<br>3/7/2024<br>3/7/2024<br>3/7/2024<br>3/7/2024<br>3/7/2024<br>3/7/2024<br>3/7/2024<br>3/7/2024<br>3/7/2024<br>3/7/2024<br>3/7/2024<br>3/7/2024<br>3/7/2024<br>3/7/2024<br>3/7/2024<br>3/7/2024 | No.<br>21<br>22<br>23<br>24<br>25<br>26<br>27<br>28<br>29<br>30<br>31<br>32<br>33<br>34<br>35<br>36<br>37<br>28 | Seal#<br>I64102264<br>I64102265<br>I64102265<br>I64102267<br>I64102268<br>I64102270<br>I64102270<br>I64102271<br>I64102273<br>I64102273<br>I64102275<br>I64102276<br>I64102277<br>I64102277<br>I64102278<br>I64102279<br>I64102280<br>I64102280<br>I64102281 | Truss Name<br>G1<br>G2<br>G3<br>G4<br>H1<br>H2<br>J1<br>J2<br>J3<br>J4<br>J5<br>J6<br>J7<br>J8<br>J9<br>J10<br>J11<br>J12 | Date<br>3/7/2024<br>3/7/2024<br>3/7/2024<br>3/7/2024<br>3/7/2024<br>3/7/2024<br>3/7/2024<br>3/7/2024<br>3/7/2024<br>3/7/2024<br>3/7/2024<br>3/7/2024<br>3/7/2024<br>3/7/2024<br>3/7/2024<br>3/7/2024 |
|--------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 17<br>18<br>19<br>20                                                                             | I64102260<br>I64102261<br>I64102262<br>I64102263                                                                                                                                                                                                | E9<br>E10<br>E11<br>E12                                                                                                   | 3/7/2024<br>3/7/2024<br>3/7/2024<br>3/7/2024                                                                                                                                                                     | 37<br>38<br>39<br>40                                                                                            | I64102280<br>I64102281<br>I64102282<br>I64102282<br>I64102283                                                                                                                                                                                                | J11<br>J12<br>LAY1<br>LAY2                                                                                                | 3/7/2024<br>3/7/2024<br>3/7/2024<br>3/7/2024<br>3/7/2024                                                                                                                                             |
|                                                                                                  |                                                                                                                                                                                                                                                 |                                                                                                                           |                                                                                                                                                                                                                  |                                                                                                                 |                                                                                                                                                                                                                                                              |                                                                                                                           |                                                                                                                                                                                                      |

The truss drawing(s) referenced above have been prepared by MiTek USA, Inc under my direct supervision

based on the parameters provided by Wheeler - Waverly.

Truss Design Engineer's Name: Garcia, Juan

My license renewal date for the state of Kansas is April 30, 2024.

Kansas COA: E-943

IMPORTANT NOTE: The seal on these truss component designs is a certification that the engineer named is licensed in the jurisdiction(s) identified and that the designs comply with ANSI/TPI 1. These designs are based upon parameters shown (e.g., loads, supports, dimensions, shapes and design codes), which were given to MiTek. Any project specific information included is for MiTek customers file reference purpose only, and was not taken into account in the preparation of these designs. MiTek has not independently verified the applicability of the design parameters or the designs for any particular building. Before use, the building designer should verify applicability of design parameters and properly incorporate these designs into the overall building design per ANSI/TPI 1, Chapter 2.





RE: 240612 - Lot 116 MN

RELEASE FOR CONSTRUCTION AS NOTED FOR PLAN REVIEW DEVELOPMENT SERVICES LEE'S SUMMIT, MISSOURI 04/02/2024

#### MiTek, Inc.

16023 Swingley Ridge Rd. Chesterfield, MO 63017 314.434.1200

#### Site Information:

Project Customer: Avital HomesProject Name: 240612Lot/Block:Subdivision:Address:State:

| No. | Seal#     | Truss Name | Date     |
|-----|-----------|------------|----------|
| 41  | 164102284 | LAY3       | 3/7/2024 |
| 42  | 164102285 | V1         | 3/7/2024 |
| 43  | 164102286 | V2         | 3/7/2024 |
| 44  | 164102287 | V3         | 3/7/2024 |
| 45  | 164102288 | V4         | 3/7/2024 |
| 46  | 164102289 | V5         | 3/7/2024 |
| 47  | 164102290 | V6         | 3/7/2024 |
| 48  | 164102291 | V7         | 3/7/2024 |
| 49  | 164102292 | V8         | 3/7/2024 |
|     |           |            |          |



MiTek, Inc.

314.434.1200

16023 Swingley Ridge Rd. Chesterfield, MO 63017

RE: 240612 Lot 116 MN

#### Site Information:

Customer: Avital Homes Project Name: 240612 Lot/Block: Model Address: Subdiv City: State:

40612 Model: Serenity - Craftsman 3rd Car Subdivision: State:

## General Truss Engineering Criteria & Design Loads (Individual Truss Design Drawings Show Special Loading Conditions):

Design Code: IRC2018/TPI2014 Wind Code: ASCE 7 - 16[Low Rise] Roof Load: 45.0 psf Design Program: MiTek 20/20 8.7 Wind Speed: 115 mph Floor Load: N/A psf

This package includes 49 individual, dated Truss Design Drawings and 0 Additional Drawings.

| No.<br>1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>11<br>23<br>14<br>15<br>16<br>17<br>18 | Seal#<br>I64102244<br>I64102245<br>I64102246<br>I64102247<br>I64102248<br>I64102249<br>I64102250<br>I64102251<br>I64102252<br>I64102253<br>I64102255<br>I64102255<br>I64102256<br>I64102257<br>I64102258<br>I64102259<br>I64102260<br>I64102261 | Truss Name<br>A1A<br>A2<br>A2A<br>A3<br>A4<br>B1<br>B2<br>B3<br>E1<br>E2<br>E3<br>E4<br>E5<br>E6<br>E7<br>E8<br>E9<br>E10 | Date<br>3/7/2024<br>3/7/2024<br>3/7/2024<br>3/7/2024<br>3/7/2024<br>3/7/2024<br>3/7/2024<br>3/7/2024<br>3/7/2024<br>3/7/2024<br>3/7/2024<br>3/7/2024<br>3/7/2024<br>3/7/2024<br>3/7/2024<br>3/7/2024<br>3/7/2024<br>3/7/2024 | No.<br>21<br>22<br>23<br>24<br>25<br>26<br>27<br>28<br>29<br>30<br>31<br>32<br>33<br>34<br>35<br>36<br>37<br>38 | Seal#<br>I64102264<br>I64102265<br>I64102266<br>I64102267<br>I64102268<br>I64102269<br>I64102270<br>I64102270<br>I64102272<br>I64102273<br>I64102275<br>I64102276<br>I64102278<br>I64102279<br>I64102280<br>I64102281 | Truss Name<br>G1<br>G2<br>G3<br>G4<br>H1<br>H2<br>J1<br>J2<br>J3<br>J4<br>J5<br>J6<br>J7<br>J6<br>J7<br>J8<br>J9<br>J10<br>J11<br>J12 | Date<br>3/7/2024<br>3/7/2024<br>3/7/2024<br>3/7/2024<br>3/7/2024<br>3/7/2024<br>3/7/2024<br>3/7/2024<br>3/7/2024<br>3/7/2024<br>3/7/2024<br>3/7/2024<br>3/7/2024<br>3/7/2024<br>3/7/2024<br>3/7/2024<br>3/7/2024<br>3/7/2024 |
|--------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 17<br>18<br>19<br>20                                                                             | l64102260<br>l64102261<br>l64102262<br>l64102263                                                                                                                                                                                                | E9<br>E10<br>E11<br>E12                                                                                                   | 3/7/2024<br>3/7/2024<br>3/7/2024<br>3/7/2024                                                                                                                                                                                 | 37<br>38<br>39<br>40                                                                                            | l64102280<br>l64102281<br>l64102282<br>l64102283                                                                                                                                                                      | J11<br>J12<br>LAY1<br>LAY2                                                                                                            | 3/7/2024<br>3/7/2024<br>3/7/2024<br>3/7/2024                                                                                                                                                                                 |
| 10<br>11<br>12<br>13<br>14<br>15<br>16<br>17<br>18<br>19<br>20                                   | I64102253<br>I64102255<br>I64102255<br>I64102256<br>I64102257<br>I64102258<br>I64102259<br>I64102260<br>I64102261<br>I64102262<br>I64102263                                                                                                     | E2<br>E3<br>E4<br>E5<br>E6<br>E7<br>E8<br>E9<br>E10<br>E11<br>E12                                                         | 3/7/2024<br>3/7/2024<br>3/7/2024<br>3/7/2024<br>3/7/2024<br>3/7/2024<br>3/7/2024<br>3/7/2024<br>3/7/2024<br>3/7/2024<br>3/7/2024                                                                                             | 30<br>31<br>32<br>33<br>34<br>35<br>36<br>37<br>38<br>39<br>40                                                  | I64102273<br>I64102274<br>I64102275<br>I64102276<br>I64102277<br>I64102278<br>I64102279<br>I64102280<br>I64102281<br>I64102282<br>I64102283                                                                           | J4<br>J5<br>J6<br>J7<br>J8<br>J9<br>J10<br>J11<br>J12<br>LAY1<br>LAY2                                                                 | 3/1<br>3/1<br>3/1<br>3/1<br>3/1<br>3/1<br>3/1<br>3/1<br>3/1<br>3/1                                                                                                                                                           |

The truss drawing(s) referenced above have been prepared by MiTek USA, Inc under my direct supervision

based on the parameters provided by Wheeler - Waverly.

Truss Design Engineer's Name: Garcia, Juan

My license renewal date for the state of Missouri is December 31, 2024. Missouri COA: 001193

IMPORTANT NOTE: The seal on these truss component designs is a certification that the engineer named is licensed in the jurisdiction(s) identified and that the designs comply with ANSI/TPI 1. These designs are based upon parameters shown (e.g., loads, supports, dimensions, shapes and design codes), which were given to MiTek. Any project specific information included is for MiTek customers file reference purpose only, and was not taken into account in the preparation of these designs. MiTek has not independently verified the applicability of the design parameters or the designs for any particular building. Before use, the building designer should verify applicability of design parameters and properly incorporate these designs into the overall building design per ANSI/TPI 1, Chapter 2.



Garcia, Juan



RE: 240612 - Lot 116 MN

RELEASE FOR CONSTRUCTION AS NOTED FOR PLAN REVIEW DEVELOPMENT SERVICES LEE'S SUMMIT, MISSOURI 04/02/2024

#### MiTek, Inc.

16023 Swingley Ridge Rd. Chesterfield, MO 63017 314.434.1200

#### Site Information:

Project Customer: Avital HomesProject Name: 240612Lot/Block:Subdivision:Address:State:

| No. | Seal#     | Truss Name | Date     |
|-----|-----------|------------|----------|
| 41  | 164102284 | LAY3       | 3/7/2024 |
| 42  | 164102285 | V1         | 3/7/2024 |
| 43  | 164102286 | V2         | 3/7/2024 |
| 44  | 164102287 | V3         | 3/7/2024 |
| 45  | 164102288 | V4         | 3/7/2024 |
| 46  | 164102289 | V5         | 3/7/2024 |
| 47  | 164102290 | V6         | 3/7/2024 |
| 48  | 164102291 | V7         | 3/7/2024 |
| 49  | 164102292 | V8         | 3/7/2024 |
|     |           |            |          |



braced against lateral movement (i.e. diagonal web). 6)

BOT CHORD

WEBS

OTHERS

BRACING

TOP CHORD

BOT CHORD

FORCES

TOP CHORD

BOT CHORD

WFBS

NOTES

this design

1)

2)

3)

4)

**REACTIONS** (size)

2x4 SPF No.2

2x4 SPF No 2

Max Horiz 11=-69 (LC 28)

1-2=-352/159, 2-3=-1902/541,

1-11=-230/94. 5-7=-323/102

10-11=-529/1778, 8-10=-266/1277,

2-10=-191/229, 2-11=-1724/418,

Unbalanced roof live loads have been considered for

Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat.

II; Exp C; Enclosed; MWFRS (envelope) exterior zone;

cantilever left and right exposed ; end vertical left and

right exposed; Lumber DOL=1.60 plate grip DOL=1.60

Truss designed for wind loads in the plane of the truss

only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1. All plates are 2x4 MT20 unless otherwise indicated.

Wind: ASCE 7-16; Vult=115mph (3-second gust)

bracing

Tension

7-8=-427/1749

4-7=-1694/433

2x3 SPF No.2 \*Except\* 11-1,7-5:2x6 SPF

Structural wood sheathing directly applied or

7=0-3-8, 11= Mechanical

No.2, 12-13,13-14,14-15:2x4 SPF No.2

2-11-6 oc purlins, except end verticals.

Rigid ceiling directly applied or 7-8-11 oc

Max Uplift 7=-315 (LC 9), 11=-356 (LC 8)

Max Grav 7=1269 (LC 1), 11=1211 (LC 1)

(lb) - Maximum Compression/Maximum

3-4=-1881/502, 4-5=-356/102, 5-6=0/30,

3-8=-186/648. 4-8=-177/229. 3-10=-242/677.

Gable studs spaced at 2-0-0 oc.

- This truss has been designed for a 10.0 psf bottom 7) chord live load nonconcurrent with any other live loads.
- \* This truss has been designed for a live load of 20.0psf 8) on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- All bearings are assumed to be SPF No.2 .
- 10) Refer to girder(s) for truss to truss connections.
- 11) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 356 lb uplift at joint 11 and 315 lb uplift at joint 7.
- 12) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. 13) "NAILED" indicates 3-10d (0.148"x3") or 3-12d
- (0.148"x3.25") toe-nails per NDS guidlines.

14) Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 90 lb down and 121 lb up at 2-5-4 on bottom chord. The design/selection of such connection device(s) is the responsibility of others.

15) In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (F) or back (B).

#### LOAD CASE(S) Standard

- Dead + Roof Live (balanced): Lumber Increase=1.15, 1) Plate Increase=1.15 Uniform Loads (lb/ft) Vert: 1-3=-70, 3-5=-70, 5-6=-70, 7-11=-20
  - Concentrated Loads (lb) Vert: 9=-62 (F), 10=-62 (F), 25=-90 (F), 26=-62 (F),
  - 27=-62 (F), 28=-62 (F), 29=-62 (F), 30=-62 (F), 31=-62 (F)



16023 Swingley Ridge Rd. Chesterfield MO 63017

314.434.1200 / MiTek-US.com

🙏 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a trust system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria**, and **DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)



- 4) \* This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- 5) All bearings are assumed to be SPF No.2 .

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITEk® connectors. This design is based only upon parameters shown, and is for an individual building component, not and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponent.com)

16023 Swingley Ridge Rd. Chesterfield MO 63017 314.434.1200 / MiTek-US.com

|                                                                                                                                                                                                                                                 |                                                                                                                                                 |                                                                 |                                                                                                                         |                                         |                                                                                                                           |                                                                                                                                                               |                                                                                          |                                                                                  |                                      |                                    |                                       |                                 | RELEASE                                         | FOR CONSTRUCTION                   |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|---------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|--------------------------------------|------------------------------------|---------------------------------------|---------------------------------|-------------------------------------------------|------------------------------------|
| Job                                                                                                                                                                                                                                             |                                                                                                                                                 | Truss                                                           |                                                                                                                         | Truss T                                 | уре                                                                                                                       |                                                                                                                                                               | Qty                                                                                      | Ply                                                                              | L                                    | ot 116 MI                          | N                                     |                                 | AS NOTE<br>DEVEL                                | D FOR PLAN REVIEW                  |
| 240612                                                                                                                                                                                                                                          |                                                                                                                                                 | A2A                                                             |                                                                                                                         | Comm                                    | on                                                                                                                        |                                                                                                                                                               | 3                                                                                        | 1                                                                                | Jo                                   | ob Refere                          | ence (op                              | tional                          | LEE'S                                           | I64102246<br>SUMMIT, MISSOURI      |
| Wheeler Lumber, W                                                                                                                                                                                                                               | Vaverly, KS - 60                                                                                                                                | 6871,                                                           |                                                                                                                         |                                         |                                                                                                                           | Run: 8.73 S F<br>ID:9wV7C5iB8                                                                                                                                 | eb 22 2024 P<br>ZwNZTQMrri                                                               | rint: 8.730 S<br>F9XyKyAf-F                                                      | S Feb 22 20<br>RfC?PsB70             | )24 MiTek<br>)Hq3NSgP              | Industries<br>qnL8w3ul                | s, Inc. 1<br>TXbGH              | hu Mar (7) 146:76<br>WrCDoi794zJC? <del>f</del> | 02/2024                            |
|                                                                                                                                                                                                                                                 |                                                                                                                                                 |                                                                 | 4-2-8                                                                                                                   |                                         | 10-                                                                                                                       | -4-0                                                                                                                                                          |                                                                                          |                                                                                  | 16-5-8                               |                                    |                                       |                                 | 20-8-0                                          | 21-6-8                             |
|                                                                                                                                                                                                                                                 |                                                                                                                                                 |                                                                 | 4-2-8                                                                                                                   | I                                       | 6-                                                                                                                        | 1-8                                                                                                                                                           |                                                                                          |                                                                                  | 6-1-8                                |                                    |                                       |                                 | 4-2-8                                           | 0-10-8                             |
|                                                                                                                                                                                                                                                 |                                                                                                                                                 |                                                                 |                                                                                                                         |                                         |                                                                                                                           |                                                                                                                                                               | 4x8 =                                                                                    |                                                                                  |                                      |                                    |                                       |                                 |                                                 |                                    |
|                                                                                                                                                                                                                                                 |                                                                                                                                                 |                                                                 |                                                                                                                         |                                         |                                                                                                                           |                                                                                                                                                               | 3                                                                                        |                                                                                  |                                      |                                    |                                       |                                 |                                                 |                                    |
| T                                                                                                                                                                                                                                               |                                                                                                                                                 |                                                                 |                                                                                                                         | 1                                       | 2                                                                                                                         | /                                                                                                                                                             |                                                                                          |                                                                                  |                                      |                                    |                                       |                                 |                                                 |                                    |
|                                                                                                                                                                                                                                                 |                                                                                                                                                 |                                                                 |                                                                                                                         | 5                                       | _                                                                                                                         |                                                                                                                                                               | $/\!\!/\!\!\!\wedge$                                                                     | $\geq$                                                                           |                                      |                                    |                                       |                                 |                                                 |                                    |
|                                                                                                                                                                                                                                                 |                                                                                                                                                 |                                                                 |                                                                                                                         | 3x6 ≠                                   |                                                                                                                           |                                                                                                                                                               |                                                                                          | $\langle \rangle$                                                                | $\sim$                               |                                    |                                       | 3x6 👟                           |                                                 |                                    |
|                                                                                                                                                                                                                                                 |                                                                                                                                                 |                                                                 |                                                                                                                         | 2                                       |                                                                                                                           |                                                                                                                                                               |                                                                                          |                                                                                  |                                      |                                    | $\geq$                                | 4                               |                                                 |                                    |
| 5-1                                                                                                                                                                                                                                             |                                                                                                                                                 | 3x4 "                                                           |                                                                                                                         | Æ                                       |                                                                                                                           |                                                                                                                                                               |                                                                                          |                                                                                  | $\langle \rangle$                    |                                    | $\rightarrow$                         | Ð                               |                                                 | Зх4 II                             |
|                                                                                                                                                                                                                                                 |                                                                                                                                                 | 1                                                               |                                                                                                                         |                                         | $\sim$ /                                                                                                                  |                                                                                                                                                               |                                                                                          |                                                                                  |                                      | /                                  |                                       |                                 |                                                 | 5                                  |
|                                                                                                                                                                                                                                                 | 8                                                                                                                                               | Ø                                                               |                                                                                                                         |                                         |                                                                                                                           | <b>/</b>                                                                                                                                                      |                                                                                          |                                                                                  |                                      | $\checkmark$                       | /                                     |                                 |                                                 | 6                                  |
|                                                                                                                                                                                                                                                 | 5 11                                                                                                                                            | L.                                                              | ]                                                                                                                       |                                         | <u> </u>                                                                                                                  |                                                                                                                                                               |                                                                                          | •                                                                                |                                      |                                    |                                       |                                 |                                                 |                                    |
|                                                                                                                                                                                                                                                 |                                                                                                                                                 | 3x1                                                             | 0 =                                                                                                                     |                                         | 10                                                                                                                        |                                                                                                                                                               |                                                                                          | 9                                                                                |                                      | 8                                  |                                       |                                 |                                                 | 3x10 =                             |
|                                                                                                                                                                                                                                                 |                                                                                                                                                 |                                                                 |                                                                                                                         |                                         | 3x4 =                                                                                                                     |                                                                                                                                                               |                                                                                          | 3x4 =                                                                            |                                      | 3x4 =                              |                                       |                                 |                                                 |                                    |
|                                                                                                                                                                                                                                                 |                                                                                                                                                 |                                                                 | 6-4-12                                                                                                                  |                                         |                                                                                                                           |                                                                                                                                                               | 14-3-4                                                                                   |                                                                                  |                                      |                                    |                                       | 20                              | -8-0                                            |                                    |
| Scale = 1:41.5                                                                                                                                                                                                                                  |                                                                                                                                                 |                                                                 | 6-4-12                                                                                                                  |                                         |                                                                                                                           |                                                                                                                                                               | 7-10-7                                                                                   |                                                                                  |                                      | •                                  |                                       | 6-4                             | <del>1</del> -12                                | ·                                  |
| Loading<br>TCLL (roof)<br>TCDL<br>BCLL<br>BCDL                                                                                                                                                                                                  |                                                                                                                                                 | (psf)<br>25.0<br>10.0<br>0.0*<br>10.0                           | Spacing<br>Plate Grip DOL<br>Lumber DOL<br>Rep Stress Incr<br>Code                                                      | 2-0-0<br>1.15<br>1.15<br>YES<br>IRC2018 | 8/TPI2014                                                                                                                 | CSI<br>TC<br>BC<br>WB<br>Matrix-S                                                                                                                             | 0.56<br>0.48<br>0.67                                                                     | DEFL<br>Vert(LL)<br>Vert(CT)<br>Horz(CT)<br>Wind(LL)                             | in<br>-0.09<br>-0.20<br>0.04<br>0.04 | (loc)<br>8-10<br>8-10<br>7<br>8-10 | l/defl<br>>999<br>>999<br>n/a<br>>999 | L/d<br>360<br>240<br>n/a<br>240 | PLATES<br>MT20<br>Weight: 73 lb                 | <b>GRIP</b><br>197/144<br>FT = 10% |
| LUMBER<br>TOP CHORD 2<br>BOT CHORD 2<br>WEBS 2<br>WEBS 2<br>N<br>BRACING 5<br>BOT CHORD 5<br>BOT CHORD 6<br>C<br>BOT CHORD 6<br>C<br>BOT CHORD 6<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C | 2x4 SPF No.2<br>2x3 SPF No.2<br>2x3 SPF No.2<br>No.2<br>Structural wo<br>3-10-9 oc pur<br>Rigid ceiling o<br>oracing.<br>ize) 7=<br>ax Horiz 11 | 2<br>2<br>2 *Exce<br>dins, e<br>directly<br>0-3-8, 1<br>=-69 (I | ept* 11-1,7-5:2x6 SF<br>athing directly applie<br>xcept end verticals.<br>applied or 10-0-0 o<br>11= Mechanical<br>C 9) | 6)<br>7)<br>F 8)<br>ed or LC            | Refer to girc<br>Provide mec<br>bearing plat<br>11 and 141<br>This truss is<br>Internationa<br>R802.10.2 a<br>DAD CASE(S) | ler(s) for truss to<br>chanical connect<br>e capable of with<br>lb uplift at joint 7<br>designed in acc<br>I Residential Coo<br>and referenced st<br>Standard | truss conne<br>ion (by othe<br>istanding 11<br>ordance wit<br>de sections<br>randard ANS | ections.<br>rs) of truss<br>l6 lb uplift<br>h the 2018<br>R502.11.1<br>SI/TPI 1. | s to<br>at joint<br>}<br>and         |                                    |                                       |                                 | IN E OF                                         | MISSON                             |
| Ma<br>Ma<br>FORCES (I                                                                                                                                                                                                                           | ax Uplift 7=<br>ax Grav 7=<br>(lb) - Maximu                                                                                                     | -141 (L<br>989 (LC<br>m Com                                     | C 9), 11=-116 (LC 8<br>C 1), 11=907 (LC 1)<br>pression/Maximum                                                          | 3)                                      |                                                                                                                           |                                                                                                                                                               |                                                                                          |                                                                                  |                                      |                                    |                                       | in in                           | スマー<br>クロリレム<br>GAR                             |                                    |
| TOP CHORD 1                                                                                                                                                                                                                                     | 1 ension<br>1-2=-236/30,<br>1-5=-249/34,                                                                                                        | 2-3=-1<br>5-6=0/3                                               | 380/188, 3-4=-1372<br>30, 1-11=-179/42,                                                                                 | /186,                                   |                                                                                                                           |                                                                                                                                                               |                                                                                          |                                                                                  |                                      |                                    |                                       |                                 | NIL IN A                                        |                                    |
| BOT CHORD 1                                                                                                                                                                                                                                     | 5-7=-274/71<br>10-11=-228/1                                                                                                                     | 341, 8-                                                         | -10=-60/960,                                                                                                            |                                         |                                                                                                                           |                                                                                                                                                               |                                                                                          |                                                                                  |                                      |                                    |                                       |                                 | E-20001                                         | 62101                              |
| WEBS 3                                                                                                                                                                                                                                          | 7-8=-163/132<br>3-8=-49/404,<br>2-10=-254/18                                                                                                    | 25<br>4-8=-2<br>89, 2-11                                        | 43/187, 3-10=-50/4 <sup>-</sup><br>=-1340/206,                                                                          | 14,                                     |                                                                                                                           |                                                                                                                                                               |                                                                                          |                                                                                  |                                      |                                    |                                       |                                 | SSIONI                                          | LENGIII                            |
| 4<br>NOTES<br>1) Unbalanced r                                                                                                                                                                                                                   | 4-7=-1313/19                                                                                                                                    | 9<br>Is have                                                    | been considered fo                                                                                                      | r                                       |                                                                                                                           |                                                                                                                                                               |                                                                                          |                                                                                  |                                      |                                    |                                       |                                 |                                                 |                                    |
| this design.<br>2) Wind: ASCE<br>Vasd=91mph<br>II; Exp C; End<br>cantilever left                                                                                                                                                                | 7-16; Vult=1<br>n; TCDL=6.0<br>closed; MWF                                                                                                      | 15mph<br>psf; BC<br>FRS (er                                     | (3-second gust)<br>DL=6.0psf; h=25ft; (<br>ivelope) exterior zor                                                        | Cat.<br>ne;                             |                                                                                                                           |                                                                                                                                                               |                                                                                          |                                                                                  |                                      |                                    |                                       | -                               | LICE                                            | NSEO                               |
| <ul><li>right exposed</li><li>3) This truss has chord live load</li></ul>                                                                                                                                                                       | d; Lumber DO<br>is been desig                                                                                                                   | DL=1.6<br>Ined for                                              | 0 plate grip DOL=1.<br>r a 10.0 psf bottom<br>th any other live loa                                                     | -<br>60<br>ds.                          |                                                                                                                           |                                                                                                                                                               |                                                                                          |                                                                                  |                                      |                                    |                                       | 11111                           | 16                                              | 952                                |
| <ul> <li>4) * This truss h<br/>on the bottom<br/>3-06-00 tall b</li> </ul>                                                                                                                                                                      | nas been des<br>n chord in all<br>by 2-00-00 wi                                                                                                 | igned f<br>areas<br>de will                                     | or a live load of 20.0<br>where a rectangle<br>fit between the botto                                                    | )psf<br>om                              |                                                                                                                           |                                                                                                                                                               |                                                                                          |                                                                                  |                                      |                                    |                                       |                                 | BORKE                                           | ISAS SAL                           |
| <ul><li>chord and an</li><li>5) All bearings a</li></ul>                                                                                                                                                                                        | ny other mem<br>are assumed                                                                                                                     | bers.<br>to be \$                                               | SPF No.2 .                                                                                                              |                                         |                                                                                                                           |                                                                                                                                                               |                                                                                          |                                                                                  |                                      |                                    |                                       |                                 | S/ON                                            | ALENIN                             |



314.434.1200 / MiTek-US.com

March 7,2024

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)



WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANS/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

16023 Swingley Ridge Rd. Chesterfield, MO 63017 314.434.1200 / MITek-US.com



- TOP CHORD Structural wood sheathing directly applied or 5-11-5 oc purlins, except end verticals. BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing REACTIONS 7=0-5-8, 12=0-3-8 (size) Max Horiz 12=72 (LC 8)
- Max Uplift 7=-1164 (LC 9), 12=-989 (LC 8) Max Grav 7=7749 (LC 1), 12=5615 (LC 1) FORCES (Ib) - Maximum Compression/Maximum Tension TOP CHORD 1-2=0/30, 2-3=-11133/1966, 3-4=-9010/1513, 4-5=-9014/1513, 5-6=-11822/1817, 2-12=-5441/1006, 6-7=-5560/889 BOT CHORD 11-12=-469/2267. 10-11=-1819/10178. 8-10=-1632/10834, 7-8=-480/3110 WEBS 2-11=-1358/7955, 6-8=-1158/7768, 3-11=-326/1637, 3-10=-2200/584 4-10=-1048/6489, 5-10=-3021/434, 5-8=-182/2364

#### NOTES

3-ply truss to be connected together with 10d 1) (0.131"x3") nails as follows: Top chords connected as follows: 2x4 - 1 row at 0-6-0 oc, 2x6 - 2 rows staggered at 0-9-0 oc. Bottom chords connected as follows: 2x6 - 3 rows staggered at 0-4-0 oc. Web connected as follows: 2x4 - 1 row at 0-9-0 oc.

- 4) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
- 5) All plates are MT20 plates unless otherwise indicated. This truss has been designed for a 10.0 psf bottom 6)
- chord live load nonconcurrent with any other live loads.

7) \* This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.

- All bearings are assumed to be SPF No.2
- Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 989 lb uplift at joint 12 and 1164 lb uplift at joint 7.
- 10) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 11) Use Simpson Strong-Tie HGUS26-2 (20-10d Girder, 8-10d Truss) or equivalent at 6-0-13 from the left end to connect truss(es) to back face of bottom chord.
- 12) Use Simpson Strong-Tie HUS26 (14-10d Girder, 4-10d Truss) or equivalent spaced at 2-0-0 oc max. starting at 8-0-0 from the left end to 20-0-0 to connect truss(es) to back face of bottom chord.
- 13) Fill all nail holes where hanger is in contact with lumber. LOAD CASE(S) Standard
- Dead + Roof Live (balanced): Lumber Increase=1.15, 1) Plate Increase=1.15 Uniform Loads (lb/ft)
  - Vert: 1-2=-70, 2-4=-70, 4-6=-70, 7-12=-20

16023 Swingley Ridge Rd. Chesterfield MO 63017 314.434.1200 / MiTek-US.com

March 7,2024

ALL DI

JUAN

GARCIA

NUMBER

E-2000162101

ONALE

16952 Bon March 7,2024

minin

GIT

0

1X8 \* PROXI

8

S

S

FMIS

🙏 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a trust system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria**, and **DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

|                    |                     |                           |                   |                |                                                              | RELEASE FOR CONSTRUCTION                         |
|--------------------|---------------------|---------------------------|-------------------|----------------|--------------------------------------------------------------|--------------------------------------------------|
| Job                | Truss               | Truss Type                | Qty               | Ply            | Lot 116 MN                                                   | AS NOTED FOR PLAN REVIEW<br>DEVELOPMENT SERVICES |
| 240612             | B1                  | Monopitch Supported Gable | 1                 | 1              | Job Reference (optional                                      | 164102249<br>LEE'S SUMMIT, MISSOURI              |
| Wheeler Lumber, Wa | averly, KS - 66871, |                           | eb 22 2024 Print: | 8.730 S Feb    | 22 2024 MiTek Industries, Inc.<br>PsB70Ha3NSaPapi 8w3uITXbGI | hu Mar 146: 02/2024                              |
|                    |                     | 12.5wv765126              |                   | yrtyAi-110 : 1 |                                                              |                                                  |
|                    |                     | -0-10-8                   | 4-1-4             |                |                                                              |                                                  |
|                    |                     |                           |                   |                |                                                              |                                                  |
|                    |                     |                           | 12<br>5 Г         |                | 2x4 II                                                       |                                                  |
|                    | _                   |                           | 2x4 II            |                |                                                              |                                                  |

2

3x10 u

7

1

P

0

6

2x4 II

4-1-4

2-6-8

6 5

2x4 II

Scale = 1:26.9 Plate Offsets (X, Y): [7:0-5-8.0-1-8] 2-6-8

0-10-0

| Plate Offsets (                                                                                                                                                                                                                                                                                          | X, Y): [7:0-5-8,0-1-8]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                  |                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                      |                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                           |                      |                             |                          |                                                 |                                                                                                      |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|----------------------|-----------------------------|--------------------------|-------------------------------------------------|------------------------------------------------------------------------------------------------------|--|
| Loading<br>TCLL (roof)<br>TCDL<br>BCLL<br>BCDL                                                                                                                                                                                                                                                           | (psf)<br>25.0<br>10.0<br>0.0*<br>10.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Spacing<br>Plate Grip DOL<br>Lumber DOL<br>Rep Stress Incr<br>Code                                                                                                                                                                                                                                                                                                                                                                                                                       | 2-0-0<br>1.15<br>1.15<br>YES<br>IRC2018                                                                                                                                                                                          | 8/TPI2014                                                                                                                                                                                        | <b>CSI</b><br>TC<br>BC<br>WB<br>Matrix-R                                                                                                                                                                                                                                                             | 0.07<br>0.03<br>0.02                                                                                                          | DEFL<br>Vert(LL)<br>Vert(CT)<br>Horz(CT)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | in<br>n/a<br>n/a<br>0.00  | (loc)<br>-<br>-<br>5 | l/defl<br>n/a<br>n/a<br>n/a | L/d<br>999<br>999<br>n/a | PLATES<br>MT20<br>Weight: 14 lb                 | <b>GRIP</b><br>197/144<br>FT = 10%                                                                   |  |
| BCDL<br>LUMBER<br>TOP CHORD<br>BOT CHORD<br>WEBS<br>OTHERS<br>BRACING<br>TOP CHORD<br>BOT CHORD<br>REACTIONS<br>FORCES<br>TOP CHORD<br>BOT CHORD<br>BOT CHORD<br>WEBS<br>NOTES<br>1) Wind: ASC<br>Vasd=91m<br>II; Exp C; I<br>cantilever<br>right expc.<br>2) Truss to be<br>braced age<br>4) Gable stud | 10.0<br>2x4 SPF No.2<br>2x4 SPF No.2<br>2x4 SPF No.2 *Exce<br>2x4 SPF No.2 *Exce<br>2x4 SPF No.2<br>Structural wood she<br>4-1-4 oc purlins, exx<br>Rigid ceiling directly<br>bracing.<br>(size) 5=4-0-0, 6<br>Max Horiz 7=102 (LC<br>Max Uplift 5=-11 (LC<br>(LC 4)<br>Max Grav 5=76 (LC<br>(LC 1)<br>(lb) - Maximum Com<br>Tension<br>2-7=-141/41, 1-2=0/<br>3-4=-54/18, 4-5=-59,<br>6-7=-32/23, 5-6=-32<br>3-6=-141/84<br>CE 7-16; Vult=115mph<br>nph; TCDL=6.0psf; BC<br>Enclosed; MWFRS (er<br>left and right exposed<br>sed; Lumber DOL=1.6<br>signed for wind loads ir<br>studs exposed to wind<br>ard Industry Gable En-<br>qualified building desig<br>e fully sheathed from co<br>ainst lateral movement<br>ds spaced at 2-0-0 oc. | Code<br>ppt* 4-5:2x3 SPF No.<br>athing directly applie<br>cept end verticals.<br>applied or 10-0-0 oc<br>5), 6=-67 (LC 8), 7=<br>1), 6=183 (LC 1), 7=<br>pression/Maximum<br>27, 2-3=-67/21,<br>/22<br>/23<br>(3-second gust)<br>DL=6.0psf; h=25ft; C<br>nvelope) exterior zon<br>; end vertical left and<br>0 plate grip DOL=1.6<br>n the plane of the tru<br>1 (normal to the face)<br>d Details as applicat<br>gner as per ANSI/TP<br>pone face or securely<br>t (i.e. diagonal web). | IRC2018         6)         2         7)         8)         ed or         5         9)         10        29        29         -159         -159         Cat.         -e;         50         ss         >,         >,         -11. | 8/TPI2014 * This truss h<br>on the botton<br>3-06-00 tall b<br>chord and an<br>All bearing plate<br>7, 11 lb uplift<br>Non Standar 1) This truss is<br>International<br>R802.10.2 ar CAD CASE(S) | Matrix-R<br>has been designed<br>in chord in all areas<br>by 2-00-00 wide will<br>by other members.<br>are assumed to be<br>hanical connection<br>to capable of withsta<br>at joint 5 and 67 lt<br>d bearing condition<br>designed in accord<br>Residential Codes<br>and referenced stan<br>Standard | for a liv<br>where<br>I fit betw<br>SPF No<br>(by oth<br>anding 2<br>o uplift a<br>a. Revie<br>lance w<br>sections<br>dard AN | e load of 20.0<br>a rectangle<br>veen the botto<br>0.2.<br>ers) of truss ti<br>19 lb uplift at ju<br>19 lb uplift at ju<br>10 lb | ppsf<br>om<br>obint<br>nd |                      |                             |                          | Weight: 14 lb<br>JUA<br>GARI<br>NUME<br>E-20001 | FT = 10% $MISSO(R)$ $SER$ $62101$ $H$ $SER$ $G2101$ $H$ $GARCIA$ $SEO$ $SEO$ $SEO$ $SEO$ $SEO$ $SEO$ |  |
| chord live                                                                                                                                                                                                                                                                                               | load nonconcurrent wi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | th any other live load                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ds.                                                                                                                                                                                                                              |                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                      |                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                           |                      |                             |                          | Marc                                            | AL EN111                                                                                             |  |

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)



|                               |        |                      |                |              |                               | RELEASE FOR CONSTRUCTION |
|-------------------------------|--------|----------------------|----------------|--------------|-------------------------------|--------------------------|
| Job                           | Truss  | Truss Type           | Otv            | Plv          | Lot 116 MN                    | AS NOTED FOR PLAN REVIEW |
| 005                           | 11033  |                      | Giy            | i iy         |                               | DEVELOPMENT SERVICES     |
| 240612                        | B2     | Monopitch            | 5              | 1            | Job Reference (optional       | LEE'S SUMMIT, MISSOURI   |
| Wheeler Lumber, Waverly, KS - | 66871, | Run: 8.73 S Feb 22 2 | 2024 Print: 8. | .730 S Feb 2 | 2 2024 MiTek Industries, Inc. |                          |

Run: 8.73 S Feb 22 2024 Print: 8.730 S Feb 22 2024 MiTek Industries, Inc. Thu Mar (77) 46:38 2/299124 ID:9wV7C5iB8ZwNZTQMrrrF9XyKyAf-RfC?PsB70Hq3NSgPqnL8w3ulTXbGftWrCDoi794zJ07





Scale = 1:28.7

Plate Offsets (X, Y): [5:0-5-8,0-1-8]

| _   |              |                     |              |                         |                 |          |      |          |       |       |        |     |                                       |          |
|-----|--------------|---------------------|--------------|-------------------------|-----------------|----------|------|----------|-------|-------|--------|-----|---------------------------------------|----------|
| Loa | ding         |                     | (psf)        | Spacing                 | 2-0-0           | CSI      |      | DEFL     | in    | (loc) | l/defl | L/d | PLATES                                | GRIP     |
| TCL | L (roof)     |                     | 25.0         | Plate Grip DOL          | 1.15            | TC       | 0.18 | Vert(LL) | -0.01 | 4-5   | >999   | 360 | MT20                                  | 197/144  |
| TCE | )L           |                     | 10.0         | Lumber DOL              | 1.15            | BC       | 0.12 | Vert(CT) | -0.02 | 4-5   | >999   | 240 |                                       |          |
| BCL | .L           |                     | 0.0*         | Rep Stress Incr         | YES             | WB       | 0.00 | Horz(CT) | 0.00  | 4     | n/a    | n/a |                                       |          |
| BCE | DL           |                     | 10.0         | Code                    | IRC2018/TPI2014 | Matrix-R |      | Wind(LL) | 0.00  | 4-5   | >999   | 240 | Weight: 13 lb                         | FT = 10% |
|     |              |                     |              |                         | LOAD CASE(S)    | Standard |      |          |       |       |        |     |                                       |          |
| TOF |              | 2v4 SPF             | No 2         |                         |                 | olandara |      |          |       |       |        |     |                                       |          |
| ROT |              | 2x4 OF 1            | No 2         |                         |                 |          |      |          |       |       |        |     |                                       |          |
| WF  | BS           | 2x3 SPF             | No 2 *Exce   | ont* 5-2:2x4 SPF No     | 2               |          |      |          |       |       |        |     |                                       |          |
| DD/ |              | 210 01 1            | 140.2 2.00   | pt 0 2.2x+ 011 140      | .2              |          |      |          |       |       |        |     |                                       |          |
|     |              | Structura           |              | athing directly applie  | ed or           |          |      |          |       |       |        |     |                                       |          |
| 101 | CHOILD       | 4-1-4 oc            | nurlins ev   | cent end verticals      |                 |          |      |          |       |       |        |     |                                       |          |
| BOT | CHORD        | Rigid ceil          | ina directly | applied or 10-0-0 or    | c               |          |      |          |       |       |        |     |                                       |          |
| 501 | I ONORD      | bracing.            | ing anoony   |                         | 0               |          |      |          |       |       |        |     |                                       |          |
| REA | ACTIONS      | (size)              | 4= Mecha     | anical, 5=0-3-8         |                 |          |      |          |       |       |        |     | NE OF                                 | NISS .   |
|     |              | Max Horiz           | 5=102 (LC    | C 5)                    |                 |          |      |          |       |       |        | 1   | A                                     | 0,1      |
|     |              | Max Uplift          | 4=-41 (LC    | 28), 5=-47 (LC 8)       |                 |          |      |          |       |       |        |     | A                                     | . 0-     |
|     |              | Max Grav            | 4=164 (LC    | C 1), 5=254 (LC 1)      |                 |          |      |          |       |       |        | -   | 🤊 JUA                                 | IN       |
| FOF | RCES         | (lb) - Max          | imum Com     | pression/Maximum        |                 |          |      |          |       |       |        | +   | GAR                                   |          |
|     |              | Tension             |              |                         |                 |          |      |          |       |       |        |     | :                                     | : 2 =    |
| TOF | P CHORD      | 1-2=0/27            | , 2-3=-94/2  | 6, 3-4=-118/57,         |                 |          |      |          |       |       |        | 5-1 | • • • • • • • • • • • • • • • • • • • | im E     |
|     |              | 2-5=-223            | /78          |                         |                 |          |      |          |       |       |        |     |                                       | BER :    |
| BOT | r Chord      | 4-5=-30/2           | 22           |                         |                 |          |      |          |       |       |        |     | C: E-20001                            | 62101 :4 |
| NOT | TES          |                     |              |                         |                 |          |      |          |       |       |        | 1   | A                                     | 1.2.1    |
| 1)  | Wind: ASC    | CE 7-16; Vu         | llt=115mph   | (3-second gust)         |                 |          |      |          |       |       |        |     | 1.80                                  | Gin      |
|     | Vasd=91m     | nph; TCDL=          | 6.0psf; BC   | DL=6.0psf; h=25ft; (    | Cat.            |          |      |          |       |       |        |     | I,ONA                                 | LENN     |
|     | II; Exp C; I | Enclosed; N         | /WFRS (er    | velope) exterior zor    | ne;             |          |      |          |       |       |        |     | - 400                                 | iiiii    |
|     | cantilever   | left and righ       | nt exposed   | ; end vertical left an  | d               |          |      |          |       |       |        |     |                                       |          |
| 2)  | right expos  | sed; Lumbe          | er DOL=1.6   | 0 plate grip DOL=1.     | 60              |          |      |          |       |       |        |     |                                       | uun.     |
| 2)  | chord live   | has been u          | esigned ioi  | r a 10.0 psi bollom     | da              |          |      |          |       |       |        |     | N AN C                                | ARO      |
| 3)  | * This true  | s has been          | designed f   | or a live load of 20 (  | us.<br>Inef     |          |      |          |       |       |        |     | 1. 70                                 | A        |
| 3)  | on the hot   | tom chord i         | n all areas  | where a rectande        | ipoi            |          |      |          |       |       |        |     | CE                                    | NSE      |
|     | 3-06-00 ta   | II by 2-00-0        | 0 wide will  | fit between the botto   | m               |          |      |          |       |       |        |     |                                       |          |
|     | chord and    | anv other r         | nembers.     |                         |                 |          |      |          |       |       |        |     | te di Anno 19                         | 1 2      |
| 4)  | All bearing  | are assu            | med to be S  | SPF No.2 .              |                 |          |      |          |       |       |        |     | 160                                   | 252      |
| 5)  | Refer to gi  | ,<br>irder(s) for t | russ to trus | ss connections.         |                 |          |      |          |       |       |        | -   | 10.                                   | 192      |
| 6)  | Provide m    | echanical c         | onnection (  | (by others) of truss t  | 0               |          |      |          |       |       |        |     | 7                                     | 1. 1.55  |
|     | bearing pla  | ate capable         | of withstar  | nding 41 lb uplift at j | oint            |          |      |          |       |       |        |     | 0                                     | My WE    |
|     | 4 and 47 II  | b uplift at jo      | int 5.       |                         |                 |          |      |          |       |       |        |     | AN                                    | SAS      |
| 7)  | This truss   | is designed         | l in accorda | ance with the 2018      |                 |          |      |          |       |       |        |     | 1,001                                 | ENGIN    |
|     | Internation  | nal Residen         | tial Code se | ections R502.11.1 a     | nd              |          |      |          |       |       |        |     | ON                                    | ALLIN    |
|     | R802 10 2    | and refere          | nced stand   | ard ANSI/TPL1           |                 |          |      |          |       |       |        |     |                                       |          |

March 7,2024



WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

|                           |       |                      |               |             |                              | RELEASE FOR CONSTRUCTION          |
|---------------------------|-------|----------------------|---------------|-------------|------------------------------|-----------------------------------|
| Job                       | Truss | Truss Type           | Qtv           | Plv         | Lot 116 MN                   | AS NOTED FOR PLAN REVIEW          |
|                           |       | 11000 1990           | ς.,           | ,           |                              | DEVELOPMENT SERVICES<br>164102251 |
| 240612                    | B3    | Monopitch            | 2             | 1           | Job Reference (optional      | LEE'S SUMMIT, MISSOURI            |
| Wheeler Lumber Weyerly KS | 66971 | Bun: 8 72 6 Ech 22 7 | 0004 Drint: 0 | 720 S Eab 2 | 2 2024 MiTek Industrias Inc. |                                   |

n: 8.73 S Feb 22 2024 Print: 8.730 S Feb 22 2024 MiTek Ind



| 0-1-4      | 5-1-4 |
|------------|-------|
| ∏<br>0-1-4 | 5-0-0 |

Scale = 1:30.3

Plate Offsets (X, Y): [5:0-5-8,0-1-8]

| Loading<br>TCLL (roof)         (psf)         Spacing<br>Plate Grip DOL<br>1.15         2-0-0<br>1.15         CSI<br>TC         DEFL<br>0.01         in         (loc)         //deft         L/deft           BCL         10.0         Lumber DOL<br>10.0         1.15         BC         0.19         Vert(L1)         -0.02         4.5         >999         240           BCD         10.0         Rep Stress incr         YES         BC         0.19         Vert(CT)         0.00         4         n/a         m/a           BCD         10.0         Code         IRC2018/TPI2014         Matrix-R         00         4         n/a         n/a           BCD         10.0         Zx4 SPF No.2         Except * 5-2:2x4 SPF No.2         Standard         Vert(CT)         0.01         4.5         >999         240         Weight: 16 lb         FT = 10%           LUMBER         LOAD CASE(S)         Standard         Standard         Standard         Vert(CT)         0.01         4.5         >999         240         Weight: 16 lb         FT = 10%           LUMBER         LOAD CASE(S)         Standard         Standard         Vert(CT)         0.01         4.5         >999         240         Weight: 16 lb         FT = 10%           BCD CHORD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| TCLL (root)       25.0       Plate Grip DOL       1.15       TC       0.31       Vert(LI)       -0.02       4-5       >999       240         TCDL       10.0       Lumber DOL       1.15       BC       0.19       Vert(CT)       -0.02       4-5       >999       240         BCL       0.0*       Rep Stress Incr       YES       BC       0.19       Vert(CT)       -0.02       4-5       >999       240         BCL       0.0*       Rep Stress Incr       YES       BC       0.19       Vert(CT)       -0.02       4-5       >999       240         BCDL       10.0       Rep Stress Incr       YES       WB       0.00       4       n/a       n/a         BCDL       10.0       Rep Stress Incr       YES       Standard       Wind(LL)       0.01       4-5       >999       240       Weight: 16 ib       FT = 10%         LUMBER       LOAD CASE(S)       Standard       Standard       Standard       Standard       Standard       Standard         TOP CHORD       Structural wood sheathing directly applied or 10-0-0 combracing.       Standard       Standard       Standard       Standard         FOR CHORD       4-9 Mchanical, 5=073.0       Max Horiz       5=2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| TCDL       10.0       Lumber DOL       1.15       BC       0.19       Vert(CT)       -0.05       4-5       >999       240         BCLL       0.0*       Cod       Rep Stress Incr       YES       WB       0.00       Horz(CT)       0.00       4       n/a       n/a         BCDL       0.0*       Cod       IVES       Matrix-R       Wind(LL)       0.01       4-5       >999       240         LUMBER       LOAD CASE(S)       Standard       Matrix-R       Wind(LL)       0.01       4-5       >999       240         TOP CHORD       2x4 SPF No.2       EXASPF No                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| BCLL         0.0*         Rep Stress Incr         YES         WB         0.00         Horz(CT)         0.00         4         n/a         n/a           BCDL         10.0         Code         IRC2018/TPI2014         Matrix-R         Wind(LL)         0.01         4-5         >999         240         Weight: 16 lb         FT = 10%           LUMBER         LOAD CASE(S)         Standard           TOP CHORD         2x4 SPF No.2         BOTCHORD         2x4 SPF No.2         BRACING           TOP CHORD         Structural wood sheathing directly applied or 5-1-4 oc purlins, except end verticals.         BOT CHORD         Structural wood sheathing directly applied or 10-0-0 oc bracing.           REACTIONS         (size)         4= Mechanical, 5=0-3.8 Max Horiz 5=120 (LC 5) Max Upit 4=-52 (LC 8), 5=-53 (LC 8) Max Grav         Julan         GARCIA           Max Upit 4=-52 (LC 8), 5=-53 (LC 1)         FORCES         (b) - Maximum Compression/Maximum Tension         GARCIA         JULAN         GARCIA           TOP CHORD         1/2=0/27, 2-3=-119/30, 3-4=-151/71, 2-52-260/92         BOT CHORD 1-2=0/27, 2-3=-119/30, 3-4=-151/71, 2-52-260/92         BOT CHORD 4-5=-33/31         NUMBER         E-2000162101         NUMBER         E-2000162101         NUMBER         E-2000162101         NUMBER         E-2000162101         NUMBER         E-2000162101         NU                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| BCDL         10.0         Code         IRC2018/TPI2014         Matrix-R         Wind(LL)         0.01         4-5         >999         240         Weight: 16 lb         FT = 10%           LUMBER         LOAD CASE(S)         Standard         Standard         Standard         FT = 10%         FT = 10%         FT = 10%           LUMBER         LOAD CASE(S)         Standard         Standard         FT = 10%         FT = 10%           Store ChORD         2x4 SPF No.2         BCACINOS         Standard         FT = 10%         FT = 10%           BRACING         TOP CHORD         Structural wood sheathing directly applied or<br>5-1-4 oc purlins, except end verticals.         Standard         FT = 10%         FT = 10%           BOT CHORD         Rigid ceiling directly applied or 10-0-0 oc<br>bracing.         FT = 10%         FT = 10%         FT = 10%           REACTIONS         (size)         4= Mechanical, 5=0-3-8<br>Max Horiz 5=120 (LC 5)<br>Max Grav 4=211 (LC 1), 5=297 (LC 1)         FT = 10%         FT = 10%         FT = 10%           FORCES         (b) - Maximum Compression/Maximum<br>Tension         FT = 10%         JUAN         GARCIA           Top CHORD         1-2e0/27, 2-3119/30, 3-4=-151/71,<br>2-5=-260/92         FT = 10%         FT = 2000162101         FT = 2000162101         FT = 2000162101         FT = 2000162101         FT =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| LUMBER<br>TOP CHORD 2x4 SPF No.2<br>BOT CHORD 2x4 SPF No.2<br>BOT CHORD 2x4 SPF No.2<br>BRACING<br>TOP CHORD Structural wood sheathing directly applied or<br>5-1-4 oc purlins, except end verticals.<br>BOT CHORD Rigid ceiling directly applied or 10-0-0 oc<br>bracing.<br>REACTIONS (size) 4= Mechanical, 5=0-3-8<br>Max Horiz 5=120 (LC 5)<br>Max Uplift 4=-52 (LC 8), 5=-53 (LC 8)<br>Max Grav 4=211 (LC 1), 5=297 (LC 1)<br>FORCES (lb) - Maximum Compression/Maximum<br>Tension<br>TOP CHORD 1-2=027, 2-3=-119/30, 3-4=-151/71,<br>2-5=-260/92<br>BOT CHORD 4-5=-33/31<br>NOTES<br>1) Wind: ASCE 7-16; Vult=115mph (3-second gust)<br>Vasd=91mph; TCDL=6.0psf; h=25f; Cat.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| TOP CHORD 2x4 SPF No.2<br>BOT CHORD 2x4 SPF No.2<br>WEBS 2x3 SPF No.2 *Except* 5-2:2x4 SPF No.2<br>BRACING<br>TOP CHORD Structural wood sheathing directly applied or<br>5-1-4 oc purlins, except end verticals.<br>BOT CHORD Rigid ceiling directly applied or 10-0-0 oc<br>bracing.<br>REACTIONS (size) 4= Mechanical, 5=0-3-8<br>Max Horiz 5=120 (LC 5)<br>Max Uplit 4=-52 (LC 8), 5=-53 (LC 8)<br>Max Uplit 4=-52 (LC 8), 5=-53 (LC 1)<br>FORCES (lb) - Maximum Compression/Maximum<br>Tension<br>TOP CHORD 1-2=0/27, 2-3=-119/30, 3-4=-151/71,<br>2-5=-260/92<br>BOT CHORD 4-5=-33/31<br>NOTES<br>1) Wind: ASCE 7-16; Vult=115mph (3-second gust)<br>Vasd=91mph; TCDL=6.0psf; h=25f; Cat.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| BOT CHORD 2x4 SPF No.2<br>WEBS 2x3 SPF No.2 "Except" 5-2:2x4 SPF No.2<br>BRACING<br>TOP CHORD Structural wood sheathing directly applied or<br>5-1-4 oc purlins, except end verticals.<br>BOT CHORD Rigid ceiling directly applied or 10-0-0 oc<br>bracing.<br>REACTIONS (size) 4= Mechanical, 5=0-3-8<br>Max Horiz 5=120 (LC 5)<br>Max Uplift 4=-52 (LC 8), 5=-53 (LC 8)<br>Max Grav 4=211 (LC 1), 5=297 (LC 1)<br>FORCES (lb) - Maximum Compression/Maximum<br>Tension<br>TOP CHORD 1-2=0/27, 2-3=-119/30, 3-4=-151/71,<br>2-5=-200/92<br>BOT CHORD 4-5=-33/31<br>NUMBER<br>0 E-2000162101<br>Viadd=91mph; TCDL=6.0psf; BCDL=6.0psf; BCDL=6.0psf |
| WEBS 2x3 SPF No.2 *Except* 5-2:2x4 SPF No.2<br>BRACING<br>TOP CHORD Structural wood sheathing directly applied or<br>5-1-4 oc purlins, except end verticals.<br>BOT CHORD Rigid ceiling directly applied or 10-0 oc<br>bracing.<br>REACTIONS (size) 4 = Mechanical, 5=0-3-8<br>Max Horiz 5=120 (LC 5)<br>Max Uplift 4=-52 (LC 8), 5=-53 (LC 8)<br>Max Grav 4=211 (LC 1), 5=297 (LC 1)<br>FORCES (lb) - Maximum Compression/Maximum<br>Tension<br>TOP CHORD 1-2=0/27, 2-3=-119/30, 3-4=-151/71,<br>2-5=-260/92<br>BOT CHORD 4-5=-33/31<br>NUMBER<br>1) Wind: ASCE 7-16; Vult=115mph (3-second gust)<br>Vasd=91mpb; TCDL=6.0psf; BCDL=6.0psf; h=25f; Cat.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| BRACING<br>TOP CHORD Structural wood sheathing directly applied or<br>5-1-4 oc purlins, except end verticals.<br>BOT CHORD Rigid ceiling directly applied or 10-0 oc<br>bracing.<br>REACTIONS (size) 4= Mechanical, 5=0-3-8<br>Max Horiz 5=120 (LC 5)<br>Max Uplit 4=-52 (LC 8), 5=-53 (LC 8)<br>Max Grav 4=211 (LC 1), 5=297 (LC 1)<br>FORCES (b) - Maximum Compression/Maximum<br>Tension<br>TOP CHORD 1-2=0/27, 2-3=-119/30, 3-4=-151/71,<br>2-5=-260/92<br>BOT CHORD 4-5=-33/31<br>NUMBER<br>1) Wind: ASCE 7-16; Vult=115mph (3-second gust)<br>Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| TOP CHORD Structural wood sheathing directly applied or<br>5-1-4 oc purlins, except end verticals.<br>BOT CHORD Rigid ceiling directly applied or 10-0-0 oc<br>bracing.<br><b>REACTIONS</b> (size) 4= Mechanical, 5=0-3-8<br>Max Horiz 5=120 (LC 5)<br>Max Uplift 4=-52 (LC 8), 5=-53 (LC 8)<br>Max Grav 4=211 (LC 1), 5=297 (LC 1)<br><b>FORCES</b> (b) - Maximum Compression/Maximum<br>Tension<br>TOP CHORD 1-2=0/27, 2-3=-119/30, 3-4=-151/71,<br>2-5=-260/92<br>BOT CHORD 4-5=-33/31<br><b>NUMBER</b><br>E-2000162101<br>Wind: ASCE 7-16; Vult=115mph (3-second gust)<br>Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| <ul> <li>For CHORD Bigid ceiling directly applied or 10-0-0 oc bracing.</li> <li>REACTIONS (size) 4= Mechanical, 5=0-3-8 Max Horiz 5=120 (LC 5) Max Uplift 4=-52 (LC 8), 5=-53 (LC 8) Max Grav 4=211 (LC 1), 5=297 (LC 1)</li> <li>FORCES ((b) - Maximum Compression/Maximum Tension</li> <li>TOP CHORD 1-2=0/27, 2-3=-119/30, 3-4=-151/71, 2-5=-260/92</li> <li>BOT CHORD 4-5=-33/31</li> <li>NOTES</li> <li>1) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; b=25f; Cat.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| BOT CHORD Rigid ceiling directly applied or 10-0-0 oc<br>bracing.<br>REACTIONS (size) 4= Mechanical, 5=0-3-8<br>Max Horiz 5=120 (LC 5)<br>Max Uplift 4=-52 (LC 8), 5=-53 (LC 8)<br>Max Grav 4=211 (LC 1), 5=297 (LC 1)<br>FORCES (lb) - Maximum Compression/Maximum<br>Tension<br>TOP CHORD 1-2=0/27, 2-3=-119/30, 3-4=-151/71,<br>2-5=-260/92<br>BOT CHORD 4-5=-33/31<br>NUMBER<br>E-2000162101<br>Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| bracing.         REACTIONS (size)       4= Mechanical, 5=0-3-8<br>Max Horiz 5=120 (LC 5)<br>Max Uplift 4=-52 (LC 8), 5=-53 (LC 8)<br>Max Grav 4=211 (LC 1), 5=297 (LC 1)         FORCES       (lb) - Maximum Compression/Maximum<br>Tension         TOP CHORD       1-2=0/27, 2-3=-119/30, 3-4=-151/71,<br>2-5=-260/92         BOT CHORD       4-5=-33/31         NOTES       1) Wind: ASCE 7-16; Vult=115mph (3-second gust)<br>Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| REACTIONS       (size)       4= Mechanical, 5=0-3-8<br>Max Horiz       5=120 (LC 5)<br>Max Uplift         Max Uplift       4=-52 (LC 8), 5=-53 (LC 8)<br>Max Grav       4=211 (LC 1), 5=297 (LC 1)         FORCES       (lb) - Maximum Compression/Maximum<br>Tension       JUAN         TOP CHORD       1-2=0/27, 2-3=-119/30, 3-4=-151/71,<br>2-5=-260/92       GARCIA         BOT CHORD       4-5=-33/31       NUMBER<br>E-2000162101         NOTES       1)       Wind: ASCE 7-16; Vult=115mph (3-second gust)<br>Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Max Horiz 5=120 (LC 5)<br>Max Uplift 4=-52 (LC 8), 5=-53 (LC 8)<br>Max Grav 4=211 (LC 1), 5=297 (LC 1)<br>FORCES (lb) - Maximum Compression/Maximum<br>Tension<br>TOP CHORD 1-2=0/27, 2-3=-119/30, 3-4=-151/71,<br>2-5=-260/92<br>BOT CHORD 4-5=-33/31<br>NOTES<br>1) Wind: ASCE 7-16; Vult=115mph (3-second gust)<br>Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Max Uplift 4=-52 (LC 8), 5=-53 (LC 8)<br>Max Grav 4=211 (LC 1), 5=297 (LC 1)<br>FORCES (lb) - Maximum Compression/Maximum<br>Tension<br>TOP CHORD 1-2=0/27, 2-3=-119/30, 3-4=-151/71,<br>2-5=-260/92<br>BOT CHORD 4-5=-33/31<br>NOTES<br>1) Wind: ASCE 7-16; Vult=115mph (3-second gust)<br>Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Max Grav       4=211 (LC 1), 5=297 (LC 1)         FORCES       (lb) - Maximum Compression/Maximum<br>Tension         TOP CHORD       1-2=0/27, 2-3=-119/30, 3-4=-151/71,<br>2-5=-260/92         BOT CHORD       4-5=-33/31         NOTES       Image: Comparison of the second gust)<br>Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| FORCES       (lb) - Maximum Compression/Maximum<br>Tension       GARCIA         TOP CHORD       1-2-0/27, 2-3=-119/30, 3-4=-151/71,<br>2-5=-260/92       NUMBER         BOT CHORD       4-5=-33/31       E-2000162101         NOTES       1)       Wind: ASCE 7-16; Vult=115mph (3-second gust)<br>Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat.       Social Content of the second gust (Astronomy Content of the second gust)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Tension<br>TOP CHORD 1-2=0/27, 2-3=-119/30, 3-4=-151/71,<br>2-5=-260/92<br>BOT CHORD 4-5=-33/31<br>NOTES<br>1) Wind: ASCE 7-16; Vult=115mph (3-second gust)<br>Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| TOP CHORD       1-2=0/27, 2-3=-119/30, 3-4=-151/71,<br>2-5=-260/92         BOT CHORD       4-5=-33/31         NOTES         1)       Wind: ASCE 7-16; Vult=115mph (3-second gust)<br>Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 2-5=-260/92<br>BOT CHORD 4-5=-33/31<br>NOTES<br>1) Wind: ASCE 7-16; Vult=115mph (3-second gust)<br>Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| NOTES         E-2000162101           1) Wind: ASCE 7-16; Vult=115mph (3-second gust)         Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| NOTES         1) Wind: ASCE 7-16; Vult=115mph (3-second gust)         Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 1) Wind: ASCE 7-16; Vult=115mph (3-second gust)<br>Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| vasa=9  fmpn;  fGDL=0.0psi;  BGDL=0.0psi;  n=25i;  Gal.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| III Eve C: Engloced: MW/EBS (any globa) outgrier zonay                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| in, Exp C, Enclosed, MWFRS (eliverol/e) exterior zone,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| right exposed   umber DOI = 1 60 ndist artin DOI = 1 60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 2) This truss has been designed for a 10.0 psf bottom                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| chord live load nonconcurrent with any other live loads.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 3) * This truss has been designed for a live load of 20.0psf                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| on the bottom chord in all areas where a rectangle                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 3-06-00 tall by 2-00-00 wide will fit between the bottom                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| chord and any other members.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 4) All bearings are assumed to be SPF No.2.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 5) Refer to girder(s) for truss to truss connections.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 6) Provide mechanical connection (by others) of truss to                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| bearing plate capable of withstanding 52 ib uplift at joint                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 4 and 53 to upplit at joint 5.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| () This truss is designed in accordance with the 2018                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| R802 10 2 and referenced standard ANSI/TP1 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |

## March 7,2024

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)





#### Plate Offsets (X, Y): [3:0-0-11,Edge], [7:0-4-12,0-1-12], [15:0-8-0,0-4-12]

| Loading     |                         | (psf)                    | Spacing                           | 2-0-0  |                               | CSI                                     |              | DEFL            | in       | (loc)          | l/defl               | L/d                | PLATES                               | GRIP                                         |
|-------------|-------------------------|--------------------------|-----------------------------------|--------|-------------------------------|-----------------------------------------|--------------|-----------------|----------|----------------|----------------------|--------------------|--------------------------------------|----------------------------------------------|
| TCLL (roof) |                         | 25.0                     | Plate Grip DOL                    | 1.15   |                               | тс                                      | 0.73         | Vert(LL)        | -0.44    | 14             | >790                 | 360                | MT20                                 | 197/144                                      |
| TCDL        |                         | 10.0                     | Lumber DOL                        | 1.15   |                               | BC                                      | 0.80         | Vert(CT)        | -0.80    | 14             | >436                 | 240                | M18AHS                               | 142/136                                      |
| BCLL        |                         | 0.0*                     | Rep Stress Incr                   | NO     |                               | WB                                      | 0.77         | Horz(CT)        | 0.29     | 11             | n/a                  | n/a                |                                      |                                              |
| BCDL        |                         | 10.0                     | Code                              | IRC201 | 8/TPI2014                     | Matrix-S                                |              | Wind(LL)        | 0.38     | 14             | >919                 | 240                | Weight: 343 lb                       | FT = 10%                                     |
| LUMBER      |                         | =                        |                                   | 1)     | 2-ply truss to                | be connected tog                        | jether wi    | th 10d          |          | 13) Gra        | phical p             | urlin re           | epresentation doe                    | s not depict the size                        |
| TOP CHORD   | 2x6 SPF N<br>2.0E       | lo.2 *Exce               | pt* 4-1:2x8 SP 2400               | F      | (0.131 x3") n<br>Top chords c | connected as follows:                   | ws: 2x6      | 2 rows          |          | or t<br>bot    | tom choi             | rd.                | of the purlin along                  | ) the top and/or                             |
| BOT CHORD   | 2x6 SPF N<br>2.0E, 6-14 | lo.2 *Exce<br>:2x4 SPF 2 | pt* 3-15:2x6 SP 240<br>2100F 1.8E | 0F     | staggered at<br>rows stagger  | 0-9-0 oc, 2x4 - 1 i<br>red at 0-9-0 oc. | row at 0-    | 9-0 oc, 2x8 -   | 2        | 14) Use<br>Lef | e Simpso<br>t Hand F | on Stro<br>lip) or | ong-Tie LTHJA26<br>equivalent at 5-1 | (LTHJA26 on 2 ply,<br>1-10 from the left end |
| WEBS        | 2x4 SPF N               | lo.2 *Exce               | pt* 18-3:2x6 SPF No               | .2     | Bottom chore                  | ds connected as fo                      | ollows: 2    | x6 - 2 rows     |          | to c           | onnect t             | russ(e             | s) to front face of                  | bottom chord.                                |
| BRACING     |                         |                          |                                   |        | staggered at                  | 0-9-0 oc, 2x4 - 1 i                     | row at 0-    | 9-0 oc.         |          | 15) Fill       | all nail h           | oles v             | here hanger is in                    | contact with lumber.                         |
| TOP CHORD   | Structural              | wood shea                | athing directly applie            | d or   | Web connec                    | ted as follows: 2x6                     | 6 - 2 row    | s staggered a   | at       | 16) "NA        | ALED" ir             | ndicate            | s 3-10d (0.148"x                     | 3") or 3-12d                                 |
|             | 6-0-0 oc pi             | urlins, exc              | cept end verticals, ar            | nd 🔹   | 0-9-0 oc, 2x4                 | 1 - 1 row at 0-9-0 c                    | ю.           |                 |          | (0.1           | 48"x3.2              | 5") toe            | ⊦nails per NDS gu                    | uidlines.                                    |
|             | 2-0-0 oc pi             | urlins (3-6              | -1 max.): 4-10.                   | 2)     | All loads are                 | considered equal                        | y applie     | d to all plies, |          | LOAD           | CASE(S               | ) Sta              | ndard                                |                                              |
| BOT CHORD   | Rigid ceilir            | ng directly              | applied or 10-0-0 oc              |        | CASE(S) set                   | ed as front (F) or b                    | ack (B)      | race in the LC  | JAD      | 1) De          | ead + Ro             | of Liv             | e (balanced): Lur                    | nber Increase=1.15,                          |
|             | bracing.                |                          |                                   |        | provided to d                 | listribute only load                    | s noted      | as (F) or (B)   |          | PI             | ate Incre            | ase='              | .15                                  |                                              |
| REACTIONS   | (size)                  | 2=0-3-8, 1               | 1= Mechanical                     |        | unless other                  | wise indicated.                         | onotou       | uo (i ) oi (b), |          | U              | Mort 4               | Jaus (             | D/IL)                                | 20 11 14 20                                  |
|             | Max Horiz               | 2=121 (LC                | C 5)                              | 3)     | Unbalanced                    | roof live loads hav                     | e been       | considered fo   | r        |                | 1_470                | 10=-70             | ), 2-16=-20, 3-15=                   | =-20, 11-14=-20,                             |
|             | Max Uplift              | 2=-463 (L                | C 4), 11=-520 (LC 5)              | ,      | this design.                  |                                         |              |                 |          | C              | oncentra             | ted I c            | ads (lb)                             |                                              |
|             | Max Grav                | 2=2536 (L                | .C 1), 11=2491 (LC 1              | ) 4)   | Wind: ASCE                    | 7-16; Vult=115mp                        | oh (3-seo    | cond gust)      |          |                | Vert 6=              | -110 (             | E) 17=-440 (E) 5                     | 5=-102 (E) 16=-65 (E)                        |
| FORCES      | (lb) - Maxir            | mum Com                  | pression/Maximum                  |        | Vasd=91mph                    | n; TCDL=6.0psf; B                       | CDL=6.       | 0psf; h=25ft; ( | Cat.     |                | 15=-51               | (F), 13            | B=-51 (F), 7=-110                    | (F), 4=-102 (F),                             |
|             | I ension                | 14007 F C                | 0074/4007                         |        | II; Exp C; En                 | closed; MWFRS (                         | envelop      | e) exterior zor | ne;      |                | 19=-102              | 2 (F), 2           | 20=-102 (F), 21=-                    | 110 (F), 22=-110 (F),                        |
| TOP CHORD   | 4-5=-9974               | /1907, 5-0<br>4/2569 7-  | =-9974/1907,<br>93940/844         |        | cantilever lef                | t and right expose                      | d; end \     | ertical left an | id<br>60 |                | 23=-110              | ) (F), 2           | 24=-110 (F), 25=-1                   | 110 (F), 26=-110 (F),                        |
|             | 9-10=-394               | 0/844 10-                | 11=-2382/550 1-2=(                | )/6 E) | Brovido ador                  | u, Lumber DOLET.                        | orovont      | votor ponding   | 00       |                | 27=-65               | (F), 28            | 8=-65 (F), 29=-51                    | (F), 30=-51 (F),                             |
|             | 2-3=-1345               | /238. 3-4=               | -7804/1500                        | 6)     |                               | MT20 plates unle                        | es other     | wise indicate   | ч.<br>Ч  |                | 31=-51               | (F), 32            | ?=-51 (F), 33=-51                    | (F), 34=-51 (F)                              |
| BOT CHORD   | 2-18=0/0, 3             | 3-17=-151                | 5/7508,                           | 7)     | This truss ha                 | is been designed f                      | or a 10      | ) psf bottom    | u.       |                |                      |                    |                                      |                                              |
|             | 16-17=-15               | 16/7564, 1               | 5-16=-2705/13024,                 | • • •  | chord live loa                | ad nonconcurrent                        | with any     | other live loa  | ds.      |                |                      |                    |                                      |                                              |
|             | 14-15=0/2               | 10, 6-15=-               | 66/994                            | 8)     | * This truss h                | nas been designed                       | l for a liv  | e load of 20.0  | Opsf     |                |                      |                    |                                      |                                              |
|             | 13-14=-22               | 7/1165, 12               | 418-1339/6384,                    |        | on the bottor                 | n chord in all area                     | s where      | a rectangle     |          |                |                      |                    | MAULANC                              | ARC                                          |
|             | 11-12=-3/               |                          | 10/004                            |        | 3-06-00 tall b                | oy 2-00-00 wide wi                      | ill fit betw | veen the botto  | om       |                |                      |                    | Nº JOINTE                            | NO                                           |
| WEBS        | 3-18=-80/2              | 212, 4-17=<br>0/742 5 1  | -18/631;                          |        | chord and ar                  | ny other members.                       |              | _               |          |                |                      |                    | UCE                                  | ED                                           |
|             | 1-16-548                | /2701 7-1                | 5-1310/6311                       | 9)     | All bearings                  | are assumed to be                       | SPF N        | 5.2.            |          |                |                      |                    |                                      | 1 2                                          |
|             | 10-12=-92               | 2/449AR                  | 434-1177/430                      | 10     | ) Refer to gird               | er(s) for truss to tr                   | uss conr     | nections.       | ~        |                |                      | -                  | 1                                    |                                              |
|             | 13-15=-11               | 49/5390, 7               | -12=-2787/563,                    |        | bearing plate                 | canable of withst                       | anding F     | 20 lb unlift at | ioint    |                |                      | -                  | : 169                                | 952 : =                                      |
|             | 9-12=-570               | /304                     | :m=                               |        | 11 and 463 l                  | b uplift at joint 2                     | anung        |                 | John     |                |                      | -                  | DI                                   |                                              |
| NOTES       | = 1:                    | NUME                     | BER                               | 12     | ) This truss is               | designed in accord                      | dance w      | ith the 2018    |          |                |                      |                    | -H.                                  | 4. 145                                       |
|             | -0.1                    | E-20001                  | 62101 :4                          |        | International                 | Residential Code                        | sections     | R502.11.1 a     | ind      |                |                      |                    | - A KAN                              | ISAS SAS                                     |
|             | 1.                      |                          | . 7.                              |        | R802.10.2 a                   | nd referenced star                      | ndard AN     | ISI/TPI 1.      |          |                |                      |                    | 1.50                                 | NG'N                                         |
|             | 1.5                     | 0                        |                                   |        |                               |                                         |              |                 |          |                |                      |                    | PON                                  | ALE                                          |
|             | 11                      | ONA                      | LEIN                              |        |                               |                                         |              |                 |          |                |                      |                    | 100                                  | IIIII.                                       |
|             |                         | 200                      | IIII.                             |        |                               |                                         |              |                 |          |                |                      |                    | Marc                                 | ch 7,2024                                    |



16023 Swingley Ridge Rd. Chesterfield MO 63017 314.434.1200 / MiTek-US.com

|                                                                                  |                      |              |                                |                                   |                             |                                                         | RELEAS                                    | E FOR CONSTRUCTION |
|----------------------------------------------------------------------------------|----------------------|--------------|--------------------------------|-----------------------------------|-----------------------------|---------------------------------------------------------|-------------------------------------------|--------------------|
| Job                                                                              | Truss                | Truss Type   |                                | Qty                               | Ply                         | Lot 116 MN                                              | AS NOT                                    | ED FOR PLAN REVIEW |
| 240612                                                                           | E2                   | Half Hip     |                                | 1                                 | 1                           | Job Reference (option                                   | ali LEE'S                                 | SUMMIT, MISSOURI   |
| Wheeler Lumber, Wave                                                             | rly, KS - 66871,     | •            | Run: 8.73 S Fe<br>ID:OeXX5Apq0 | eb 22 2024 Print:<br>K368rc5sEWM0 | 8.730 S Feb 2<br>QyKyAW-RfC | 22 2024 MiTek Industries, Ind<br>?PsB70Hq3NSgPqnL8w3uIT | : Thu Mar (7) 1/6:79<br>Xt GKWrCDer7J42JC | 02/2024            |
|                                                                                  |                      |              |                                |                                   |                             |                                                         |                                           |                    |
|                                                                                  | -0-10-82-0-12 7-<br> | 11-4<br>10-8 | <u>14-0-4</u><br>6-1-0         |                                   | <u>21-6-12</u><br>7-6-8     | ł                                                       | 29-5-0<br>7-10-4                          |                    |
| - 0                                                                              |                      | 6x12=        |                                | 2x4 II                            |                             | 3x6= 3                                                  | x6=                                       | 6x6=               |
| 12<br>14<br>14<br>14<br>14<br>14<br>14<br>14<br>14<br>14<br>14<br>14<br>14<br>14 | 5 <sup>12</sup>      | 4<br>+=<br>4 |                                |                                   |                             |                                                         |                                           |                    |
|                                                                                  |                      | 13           | 11                             | 12                                |                             |                                                         |                                           |                    |
| _ 0                                                                              | 14 = 4x8 = 2x4  II   | 274 1        | 6x12=                          | 3x6 II                            |                             | 10<br>5x12=                                             |                                           | О<br>4x5 ш         |
|                                                                                  | 3х6 и                |              |                                |                                   |                             |                                                         |                                           |                    |
|                                                                                  | 2-3-8 5              | 5-9-0        | 5-10-8                         |                                   | <u>21-6-12</u><br>7-7-12    | ł                                                       | <u>29-5-0</u><br>7-10-4                   |                    |

#### Scale = 1:58.1

| Plate Offsets (                                                                                                             | (X, Y): [3:0-6-0,Edge],                                                                                                                                                                                                                                                                                                                                                                       | [3:0-1-14,0-1-15], [4                                                                                                                                                                                                                                                                                                         | 4:0-6-0,0-2                                    | -10], [6:0-2-8,0                                                                                                                                                                                                                                                        | -1-8], [9:Edge,0-                                                                                                                                                                                                                                                                                                                  | 2-8]                                                                                                                                                                                        |                                                                                                                                                                           |                                            |                                       |                                       |                                 |                                  |                                    | _ |
|-----------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------|---------------------------------------|---------------------------------------|---------------------------------|----------------------------------|------------------------------------|---|
| Loading<br>TCLL (roof)<br>TCDL<br>BCLL<br>BCDL                                                                              | (psf)<br>25.0<br>10.0<br>0.0*<br>10.0                                                                                                                                                                                                                                                                                                                                                         | <b>Spacing</b><br>Plate Grip DOL<br>Lumber DOL<br>Rep Stress Incr<br>Code                                                                                                                                                                                                                                                     | 2-0-0<br>1.15<br>1.15<br>YES<br>IRC2018        | 8/TPI2014                                                                                                                                                                                                                                                               | CSI<br>TC<br>BC<br>WB<br>Matrix-S                                                                                                                                                                                                                                                                                                  | 0.69<br>0.91<br>0.80                                                                                                                                                                        | DEFL<br>Vert(LL)<br>Vert(CT)<br>Horz(CT)<br>Wind(LL)                                                                                                                      | in<br>-0.32<br>-0.60<br>0.30<br>0.26       | (loc)<br>12-13<br>12-13<br>9<br>12-13 | l/defl<br>>999<br>>585<br>n/a<br>>999 | L/d<br>360<br>240<br>n/a<br>240 | PLATES<br>MT20<br>Weight: 124 lb | <b>GRIP</b><br>197/144<br>FT = 10% |   |
| LUMBER<br>TOP CHORD<br>BOT CHORD<br>WEBS<br>BRACING<br>TOP CHORD<br>BOT CHORD<br>REACTIONS<br>FORCES<br>TOP CHORD           | 2x4 SPF 2100F 1.8E<br>2400F 2.0E<br>2x4 SPF No.2 *Exce<br>2x3 SPF No.2 *Exce<br>Structural wood shea<br>5-0-4 oc purlins, exc<br>2-0-0 oc purlins (3-7<br>Rigid ceiling directly<br>bracing.<br>(size) 2=0-3-8, 9<br>Max Horiz 2=163 (LC<br>Max Uplift 2=-198 (L<br>Max Grav 2=1385 (L<br>(lb) - Maximum Com<br>Tension<br>1-2=0/0, 2-3=-702/86<br>4-5=-3580/651, 5-6=<br>6-8=-2147/417, 8-9= | E *Except* 1-4:2x8 S<br>pt* 5-11:2x3 SPF N<br>pt* 14-3:2x6 SPF N<br>athing directly applie<br>cept end verticals, a<br>-11 max.): 4-8.<br>applied or 8-0-9 oc<br>De Mechanical<br>C 5)<br>C 4), 9=-241 (LC 5)<br>C 4), 9=-241 (LC 5)<br>C 1), 9=1311 (LC 1)<br>pression/Maximum<br>6, 3-4=-3040/462,<br>3548/651,<br>1241/276 | 4)<br>SP<br>o.2 5)<br>ed or 7)<br>ind 8)<br>9) | * This truss h<br>on the bottor<br>3-06-00 tall b<br>chord and ar<br>All bearings a<br>Refer to gird<br>Provide mec<br>bearing plate<br>9 and 198 lb<br>This truss is<br>International<br>R802.10.2 ar<br>Graphical pu<br>or the orientz<br>bottom chorc<br>DAD CASE(S) | has been designe<br>in chord in all are<br>by 2-00-00 wide v<br>by other members<br>are assumed to b<br>rer(s) for truss to the<br>hanical connections<br>a capable of withs<br>uplift at joint 2.<br>designed in accor<br>Residential Code<br>and referenced star<br>rlin representation<br>ation of the purlin<br>d.<br>Standard | ed for a liv<br>as where<br>will fit betw<br>s.<br>De SPF No<br>truss conn-<br>truss conn-<br>no (by oth-<br>standing 2<br>ordance wi<br>e sections<br>andard AN<br>on does no<br>along the | e load of 20.1<br>a rectangle<br>veen the bott<br>0.2.<br>ers) of truss t<br>41 lb uplift al<br>th the 2018<br>R502.11.1 a<br>ISI/TPI 1.<br>ot depict the s<br>top and/or | Opsf<br>om<br>to<br>t joint<br>and<br>size |                                       |                                       |                                 | JUA<br>GARO<br>NUME<br>C-20001   | N CIA                              |   |
| BOT CHORD                                                                                                                   | 2-14=0/0, 3-13=-538<br>11-12=0/130, 5-12=-<br>9-10=-48/38<br>3-14=0/53, 4-13=0/2                                                                                                                                                                                                                                                                                                              | 2/2876, 12-13=-533/<br>449/194, 10-11=-24<br>28, 4-12=-204/769,                                                                                                                                                                                                                                                               | 2876,<br>4/191,                                |                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                             |                                                                                                                                                                           |                                            |                                       |                                       |                                 | III ONA                          | LENIN                              |   |
| NOTES<br>1) Wind: AS(<br>Vasd=91n<br>II; Exp C;<br>cantilever<br>right expo<br>2) Provide at<br>3) This truss<br>chord live | 10-12=-401/1973, 6-<br>6-10=-1108/351, 8-1<br>CE 7-16; Vult=115mph<br>nph; TCDL=6.0psf; BC<br>Enclosed; MWFRS (er<br>left and right exposed<br>sed; Lumber DOL=1.6<br>dequate drainage to pri-<br>has been designed for<br>load nonconcurrent wi                                                                                                                                              | 12=-298/1489,<br>0=-427/2342<br>(3-second gust)<br>DL=6.0psf; h=25ft; (<br>ivelope) exterior zor<br>; end vertical left an<br>0 plate grip DOL=1.<br>event water ponding<br>• a 10.0 psf bottom<br>th any other live loa                                                                                                      | Cat.<br>he;<br>d<br>60<br>g.<br>ds.            |                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                             |                                                                                                                                                                           |                                            |                                       |                                       | CHINNE.                         | PROPROSION                       | AROLA<br>NSEO<br>952<br>ALENO      |   |

March 7,2024

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent buckling of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)





```
Scale = 1:58.1
```

| Plate Offsets                                                                                                             | (X, Y): [3:0-4-4,0-1-2                                                                                                                                                                            | ], [3:0-1-1,0-8-8], [4:0                                                                                                                                                                           | 0-6-0,0-2-10                                          | )], [6:0-2-8,0-1                                                                                                                                                    | -8], [8:Edge,0-1-8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 8]                                                                                                                     |                                                                                                                    |                               |                            |                               |                          |                |                        |
|---------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|-------------------------------|----------------------------|-------------------------------|--------------------------|----------------|------------------------|
| Loading<br>TCLL (roof)<br>TCDL<br>BCLL                                                                                    | (psf)<br>25.0<br>10.0<br>0.0*                                                                                                                                                                     | Spacing<br>Plate Grip DOL<br>Lumber DOL<br>Rep Stress Incr                                                                                                                                         | 2-0-0<br>1.15<br>1.15<br>YES                          |                                                                                                                                                                     | CSI<br>TC<br>BC<br>WB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.95<br>0.92<br>0.72                                                                                                   | DEFL<br>Vert(LL)<br>Vert(CT)<br>Horz(CT)                                                                           | in<br>-0.28<br>-0.60<br>0.32  | (loc)<br>3-12<br>3-12<br>8 | l/defl<br>>999<br>>584<br>n/a | L/d<br>360<br>240<br>n/a | PLATES<br>MT20 | <b>GRIP</b><br>197/144 |
| BCDL                                                                                                                      | 10.0                                                                                                                                                                                              | Code                                                                                                                                                                                               | IRC2018                                               | 3/TPI2014                                                                                                                                                           | Matrix-S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                        | Wind(LL)                                                                                                           | 0.22                          | 3-12                       | >999                          | 240                      | Weight: 131 lb | FT = 10%               |
| LUMBER<br>TOP CHORD<br>BOT CHORD<br>WEBS<br>BRACING<br>TOP CHORD                                                          | 2x8 SP 2400F 2.0E<br>2100F 1.8E<br>2x4 SPF No.2 *Exc<br>2x3 SPF No.2 *Exc<br>Structural wood sh<br>4-10-14 oc purlins,<br>2-0-0 oc purlins (4-                                                    | E *Except* 4-7:2x4 SI<br>eept* 5-10:2x3 SPF N<br>eept* 13-3:2x6 SPF N<br>eathing directly appli<br>except end verticals<br>3-0 max.): 4-7.                                                         | 4)<br>PF<br>lo.2 5)<br>6)<br>ed or 7)<br>s, and<br>8) | * This truss h<br>on the bottor<br>3-06-00 tall h<br>chord and ar<br>All bearings<br>Refer to gird<br>Provide mec<br>bearing plate<br>8 and 181 lb<br>This truss is | has been designe<br>n chord in all are<br>by 2-00-00 wide v<br>y other members<br>are assumed to b<br>er(s) for truss to the<br>hanical connections<br>uplift at joint 2.<br>designed in according<br>to be the second second second<br>designed in according<br>to be the second second second<br>to be the second second second second<br>to be the second sec | ed for a live<br>as where<br>will fit betw<br>s.<br>De SPF No<br>truss conn<br>on (by othe<br>standing 2<br>ordance wi | e load of 20.<br>a rectangle<br>een the bott<br>0.2.<br>ections.<br>ers) of truss<br>38 lb uplift a<br>th the 2018 | 0psf<br>tom<br>to<br>ti joint |                            |                               |                          | NY OF A        |                        |
| REACTIONS                                                                                                                 | Rigid ceiling direct<br>bracing.<br>(size) 2=0-3-8<br>Max Horiz 2=199 (I<br>Max Uplift 2=-181 (<br>Max Grav 2=1385                                                                                | 8= Mechanical<br>.C 7)<br>LC 4), 8=-238 (LC 5)<br>(LC 1), 8=1311 (LC 1                                                                                                                             | 9)                                                    | International<br>R802.10.2 a<br>Graphical pu<br>or the orienta<br>bottom chore                                                                                      | Residential Code<br>nd referenced sta<br>Irlin representation<br>ation of the purlin<br>d.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | e sections<br>andard AN<br>on does no<br>along the                                                                     | R502.11.1 a<br>SI/TPI 1.<br>It depict the<br>top and/or                                                            | and<br>size                   |                            |                               | *****                    | S JUA<br>GARG  | N DIA                  |
| FORCES                                                                                                                    | (lb) - Maximum Co                                                                                                                                                                                 | mpression/Maximum                                                                                                                                                                                  |                                                       | JAD CASE(S)                                                                                                                                                         | Standard                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                        |                                                                                                                    |                               |                            |                               | En                       |                |                        |
| TOP CHORD                                                                                                                 | 1 ension<br>1-2=0/0, 2-3=-702/<br>4-5=-2713/486, 5-6<br>6-7=-1759/348, 7-8                                                                                                                        | 71, 3-4=-2701/375,<br>5=-2709/489,<br>3=-1243/272                                                                                                                                                  |                                                       |                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                        |                                                                                                                    |                               |                            |                               | in in                    | E-20001        | 62101                  |
| BOT CHORD                                                                                                                 | 2-13=0/0, 3-12=-46<br>10-11=0/129, 5-11<br>8-9=-61/45                                                                                                                                             | 61/2504, 11-12=-457/<br>=-359/164, 9-10=-2/1                                                                                                                                                       | /2506,<br>67,                                         |                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                        |                                                                                                                    |                               |                            |                               |                          | S/ONA          | LENIN                  |
| WEBS                                                                                                                      | 3-13=0/53, 4-11=-7<br>6-11=-206/1050, 6<br>7-9=-361/2012, 4-1                                                                                                                                     | 26/273, 9-11=-354/1<br>·9=-1062/344,<br>2=0/286                                                                                                                                                    | 606,                                                  |                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                        |                                                                                                                    |                               |                            |                               |                          | IN AN G        | ARC                    |
| NOTES<br>1) Wind: AS<br>Vasd=911<br>II; Exp C;<br>cantilever<br>right expo<br>2) Provide a<br>3) This truss<br>chord live | CE 7-16; Vult=115mp<br>mph; TCDL=6.0psf; B<br>Enclosed; MWFRS ( <i>i</i><br>left and right expose<br>osed; Lumber DOL=1.<br>Idequate drainage to p<br>has been designed f<br>load nonconcurrent v | h (3-second gust)<br>CDL=6.0psf; h=25ft;<br>envelope) exterior zoi<br>d ; end vertical left ar.<br>60 plate grip DOL=1.<br>revent water ponding<br>or a 10.0 psf bottom<br>with any other live loa | Cat.<br>ne;<br>id<br>60<br>g.<br>ids.                 |                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                        |                                                                                                                    |                               |                            |                               | CHIMAN,                  | PROCESSION     | NSEO<br>952            |
|                                                                                                                           |                                                                                                                                                                                                   |                                                                                                                                                                                                    |                                                       |                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                        |                                                                                                                    |                               |                            |                               |                          | Marc           | h 7,2024               |







| Scale = | 1:56.6 |
|---------|--------|
|---------|--------|

TOP CHORD

BOT CHORD

REACTIONS

FORCES

TOP CHORD

BOT CHORD

WEBS

NOTES

this design

1)

2)

3)

4)

bracing

Tension

7-8=-1229/179

8-9=-76/408

(size)

Structural wood sheathing directly applied or

3-1-10 oc purlins, except end verticals, and

8= Mechanical, 14=0-3-8

Rigid ceiling directly applied or 10-0-0 oc

Max Uplift 8=-144 (LC 9), 14=-170 (LC 8)

Max Grav 8=1302 (LC 1), 14=1382 (LC 1)

(lb) - Maximum Compression/Maximum

1-2=0/30, 2-3=-2290/239, 3-4=-1909/231,

3-13=-43/132, 3-12=-419/167, 4-12=-24/352, 4-10=-177/179, 5-10=0/356, 6-10=-437/173, 6-9=-61/125, 2-13=-71/1498, 7-9=-112/1645

4-5=-1694/235, 5-6=-1913/232, 6-7=-2299/241, 2-14=-1310/205,

Unbalanced roof live loads have been considered for

cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60 Provide adequate drainage to prevent water ponding.

This truss has been designed for a 10.0 psf bottom

chord live load nonconcurrent with any other live loads.

Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone;

13-14=-197/538, 12-13=-226/2029, 10-12=-97/1693. 9-10=-168/2046.

2-0-0 oc purlins (3-8-8 max.): 4-5.

Max Horiz 14=80 (LC 12)

| Plate Offsets ()                         | X, Y): [7:0-3-4,0-2-4], [9:0                                  | 0-2-8,0-1-8], [13:0- | 2-8,0-1-8] | , [14:0-3-0,0-2                                                                     | 2-4]                                                                                        |                                                                        |                                                          |            |       |        |     |                |          |  |
|------------------------------------------|---------------------------------------------------------------|----------------------|------------|-------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|------------------------------------------------------------------------|----------------------------------------------------------|------------|-------|--------|-----|----------------|----------|--|
| Loading                                  | (psf) S                                                       | pacing               | 2-0-0      |                                                                                     | csi                                                                                         |                                                                        | DEFL                                                     | in         | (loc) | l/defl | L/d | PLATES         | GRIP     |  |
| TCLL (roof)                              | 25.0 P                                                        | late Grip DOL        | 1.15       |                                                                                     | тс                                                                                          | 0.59                                                                   | Vert(LL)                                                 | -0.12      | 9-10  | >999   | 360 | MT20           | 197/144  |  |
| TCDL                                     | 10.0 Lu                                                       | umber DOL            | 1.15       |                                                                                     | BC                                                                                          | 0.55                                                                   | Vert(CT)                                                 | -0.22      | 10-12 | >999   | 240 |                |          |  |
| BCLL                                     | 0.0* R                                                        | ep Stress Incr       | YES        |                                                                                     | WB                                                                                          | 0.57                                                                   | Horz(CT)                                                 | 0.06       | 8     | n/a    | n/a |                |          |  |
| BCDL                                     | 10.0 C                                                        | ode                  | IRC2018    | /TPI2014                                                                            | Matrix-S                                                                                    |                                                                        | Wind(LL)                                                 | 0.07       | 9-10  | >999   | 240 | Weight: 111 lb | FT = 10% |  |
| LUMBER<br>TOP CHORD<br>BOT CHORD<br>WEBS | 2x4 SPF No.2<br>2x4 SPF No.2<br>2x3 SPF No.2 *Except*<br>No.2 | 14-2,8-7:2x6 SPF     | 5)<br>6)   | * This truss h<br>on the botton<br>3-06-00 tall b<br>chord and an<br>All bearings a | has been design<br>n chord in all a<br>by 2-00-00 wide<br>by other member<br>are assumed to | ned for a live<br>reas where<br>e will fit betw<br>ers.<br>o be SPF No | e load of 20.0<br>a rectangle<br>reen the botte<br>0.2 . | Opsf<br>om |       |        |     |                |          |  |
| BRACING                                  |                                                               |                      | 7)         | Refer to girde                                                                      | er(s) for truss to                                                                          | o truss conn                                                           | ections.                                                 |            |       |        |     |                |          |  |

- Provide mechanical connection (by others) of truss to 8) bearing plate capable of withstanding 170 lb uplift at joint 14 and 144 lb uplift at joint 8.
- This truss is designed in accordance with the 2018 9) International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 10) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

LOAD CASE(S) Standard



11111

0

MIS

ONAL ENGINE

### WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITEK® connectors. This design is based only upon parameters shown, and is for an individual building component, not a trust system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria**, and **DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

16023 Swingley Ridge Rd. Chesterfield MO 63017 314.434.1200 / MiTek-US.com



#### Scale = 1:56.7

| Plate Offsets                                                                                                                                | (X, Y): [7:0-3-4,0-2-4], [                                                                                                                                                                                                                                                                | [9:0-2-8,0-1-8], [13:0                                                                                                                                                         | )-2-8,0-1-                                    | 8], [14:0-3-0,0-:                                                                                                                                                                                                                                                                                                                                                     | 2-4]                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                 |                                                                                                                                                                                                                   |                                      |                                       |                                       |                                 |                                  |                                    |
|----------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|---------------------------------------|---------------------------------------|---------------------------------|----------------------------------|------------------------------------|
| Loading<br>TCLL (roof)<br>TCDL<br>BCLL<br>BCDL                                                                                               | (psf)<br>25.0<br>10.0<br>0.0*<br>10.0                                                                                                                                                                                                                                                     | <b>Spacing</b><br>Plate Grip DOL<br>Lumber DOL<br>Rep Stress Incr<br>Code                                                                                                      | 2-0-0<br>1.15<br>1.15<br>YES<br>IRC201        | 8/TPI2014                                                                                                                                                                                                                                                                                                                                                             | CSI<br>TC<br>BC<br>WB<br>Matrix-S                                                                                                                                                                                                                                                                                                                   | 0.85<br>0.63<br>1.00                                                                                                                                                                            | DEFL<br>Vert(LL)<br>Vert(CT)<br>Horz(CT)<br>Wind(LL)                                                                                                                                                              | in<br>-0.12<br>-0.27<br>0.06<br>0.08 | (loc)<br>12-13<br>12-13<br>8<br>12-13 | l/defl<br>>999<br>>999<br>n/a<br>>999 | L/d<br>360<br>240<br>n/a<br>240 | PLATES<br>MT20<br>Weight: 115 lb | <b>GRIP</b><br>197/144<br>FT = 10% |
| LUMBER<br>TOP CHORD<br>BOT CHORD<br>WEBS<br>BRACING<br>TOP CHORD<br>BOT CHORD<br>WEBS<br>REACTIONS                                           | 2x4 SPF No.2<br>2x4 SPF No.2<br>2x3 SPF No.2 *Excep<br>No.2<br>Structural wood shea<br>except end verticals,<br>(4-4-0 max.): 4-5.<br>Rigid ceiling directly a<br>bracing.<br>1 Row at midpt 6<br>(size) 8= Mechar<br>Max Horiz 14=94 (LC<br>Max Uplift 8=-161 (LC<br>Max Grav 8=1302 (LC | ot* 14-2,8-7:2x6 SPF<br>thing directly applied<br>and 2-0-0 oc purlins<br>applied or 10-0-0 oc<br>6-11<br>hical, 14=0-3-8<br>8)<br>2 9), 14=-186 (LC 8)<br>C 1), 14=1382 (LC 1 | 4)<br>= 5)<br>d, 6)<br>5 8)<br>9)<br>9)<br>1( | <ul> <li>This truss ha<br/>chord live loa</li> <li>* This truss h<br/>on the bottor</li> <li>3-06-00 tall b<br/>chord and ar</li> <li>All bearings</li> <li>Refer to gird</li> <li>Provide mec<br/>bearing plate</li> <li>14 and 161 l</li> <li>This truss is<br/>International<br/>R802.10.2 au</li> <li>Graphical pu<br/>or the orienta<br/>bottom chord</li> </ul> | s been designed<br>ad nonconcurrent<br>has been designe<br>n chord in all are:<br>by 2-00-00 wide<br>yo other members<br>are assumed to b<br>er(s) for truss to t<br>hanical connectic<br>e capable of withs<br>o uplift at joint 8.<br>designed in acco<br>Residential Code<br>dr deferenced sta<br>rlin representatio<br>tion of the purlin<br>l. | for a 10.0<br>with any<br>d for a liv<br>as where<br>vill fit betv<br>s.<br>ee SPF No<br>russ conr<br>no (by oth<br>standing 1<br>rdance w<br>e sections<br>undard AN<br>n does no<br>along the | D psf bottom<br>other live loa<br>e load of 20.0<br>a rectangle<br>veen the botto<br>0.2.<br>ers) of truss t<br>86 lb uplift at<br>ith the 2018<br>5 R502.11.1 a<br>ISI/TPI 1.<br>ot depict the s<br>e top and/or | ds.<br>Dpsf<br>om<br>joint<br>nd     |                                       |                                       |                                 | JUA<br>GAR                       | MISSOUR<br>CIA                     |
| FORCES<br>TOP CHORD                                                                                                                          | (lb) - Maximum Comp<br>Tension<br>1-2=0/30, 2-3=-2329/<br>4-5=-1532/233, 5-6=-<br>6-7=-2335/283, 2-14=<br>7-8=-1233/191<br>13-14187/454, 12-1                                                                                                                                             | oression/Maximum<br>281, 3-4=-1764/206<br>1767/207,<br>1315/218,<br>13–-284/2074                                                                                               | Li                                            | OAD CASE(S)                                                                                                                                                                                                                                                                                                                                                           | Standard                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                 |                                                                                                                                                                                                                   |                                      |                                       |                                       | in in                           | E-20001                          | 62101                              |
| WEBS                                                                                                                                         | 11-12=-88/1530, 9-11<br>8-9=-67/359<br>3-13=-30/179, 3-12=-<br>4-11=-231/242, 5-11=<br>6-9=-44/171, 2-13=-9                                                                                                                                                                               | l=-210/2087,<br>637/214, 4-12=-35/3<br>=-56/405, 6-11=-649<br>8/1628, 7-9=-144/1                                                                                               | 345,<br>)/218,<br>736                         |                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                 |                                                                                                                                                                                                                   |                                      |                                       |                                       |                                 | UNICE                            | SARCIA<br>NSE                      |
| NOTES                                                                                                                                        |                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                |                                               |                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                 |                                                                                                                                                                                                                   |                                      |                                       |                                       |                                 |                                  | 0                                  |
| <ol> <li>Unbalanc<br/>this desig</li> <li>Wind: ASG<br/>Vasd=91r<br/>II; Exp C;<br/>cantilever<br/>right expo</li> <li>Provide ac</li> </ol> | ed roof live loads have b<br>n.<br>CE 7-16; Vult=115mph (<br>mph; TCDL=6.0psf; BCC<br>Enclosed; MWFRS (env<br>left and right exposed ;<br>ssed; Lumber DOL=1.60<br>dequate drainage to pre                                                                                                | eeen considered for<br>(3-second gust)<br>DL=6.0psf; h=25ft; C<br>velope) exterior zone<br>end vertical left and<br>plate grip DOL=1.6<br>vvent water ponding.                 | at.<br>e;<br>I<br>0                           |                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                 |                                                                                                                                                                                                                   |                                      |                                       |                                       | THINK.                          | PROCESSION                       | ALENGIN                            |

March 7,2024

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent toulsable personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcscomponents.com)









|                                               |                            |                         |                                          |               |                                 |                                             |                       |                     |                                                                                                                               |              |                  |              | RELEASE          |                             | TION |
|-----------------------------------------------|----------------------------|-------------------------|------------------------------------------|---------------|---------------------------------|---------------------------------------------|-----------------------|---------------------|-------------------------------------------------------------------------------------------------------------------------------|--------------|------------------|--------------|------------------|-----------------------------|------|
| Job                                           |                            | Truss                   |                                          | Truss Ty      | /pe                             |                                             | Qt                    | /                   | Ply                                                                                                                           | Lot 116      | 6 MN             |              | AS NOTE          | D FOR PLAN RE               | VIEW |
| 240612                                        |                            | E7                      |                                          | Roof S        | pecial                          |                                             | 1                     |                     | 1                                                                                                                             | Job Re       | eference (c      | otional      | LEE'S            | 164102258<br>SUMMIT, MISSOL | JRI  |
| Wheeler Lumber                                | r, Waverly, KS -           | 66871,                  |                                          |               |                                 | Run: 8.73 S Feb 2                           | 22 2024               | Print: 8.           | 730 S Feb 2                                                                                                                   | 2 2024 Mi    | Tek Industri     | es, Inc. T   | hu Mar 🕜 1,36:41 | $12/20^{\circ}$             | 94   |
|                                               |                            |                         |                                          |               |                                 | ID:ZVAGr6k4QUI                              | /Qw9xW                | zPyn9ył             | <yac-rfc?p< td=""><td>'sB70Hq3l</td><td>NSgPqnL8w</td><td>3ulTXbG</td><td>KWrCDol7J4zJO?f</td><td></td><td></td></yac-rfc?p<> | 'sB70Hq3l    | NSgPqnL8w        | 3ulTXbG      | KWrCDol7J4zJO?f  |                             |      |
|                                               |                            | -0-10-8                 | 8-11                                     | -7            |                                 | 14-8-8                                      |                       | 18-3                | 3-12                                                                                                                          | 22           | -10-5            |              | 29-5-0           |                             |      |
|                                               |                            | 0-10-8                  | 8-11                                     | -7            |                                 | 5-9-1                                       | 4.4                   | 3-1                 | 7-4                                                                                                                           | 4            | -6-9             |              | 6-6-11           |                             |      |
|                                               |                            |                         |                                          |               |                                 |                                             | 420                   | • 11                |                                                                                                                               |              |                  |              |                  |                             |      |
| ΤT                                            | Γ                          |                         |                                          |               |                                 | /                                           |                       |                     | 6x6                                                                                                                           | ) <b>=</b>   |                  |              |                  |                             |      |
| ဝု                                            | ဂု                         |                         |                                          |               | _1 <u>2</u> 3x4 .               | • //                                        |                       |                     |                                                                                                                               | 5            |                  |              |                  |                             |      |
| 6-11                                          | 3-11                       |                         |                                          |               | 51 3                            |                                             |                       |                     |                                                                                                                               | $\sim$       |                  | 4x8 <b>≈</b> |                  |                             |      |
| 11-9                                          |                            |                         |                                          |               |                                 |                                             |                       | $\swarrow$          |                                                                                                                               | 11           |                  | 6            |                  |                             |      |
| - فُ                                          | -                          |                         |                                          |               |                                 |                                             | 13                    | 12                  |                                                                                                                               | $\sqrt[n]{}$ |                  |              | $\sim$           |                             |      |
| 0-0                                           | 0-0                        | 2                       |                                          |               |                                 |                                             | 5x1                   | 2=                  | 2x4 u                                                                                                                         | 0-0          |                  |              |                  | 7                           |      |
| ,<br>ч                                        | -0 <sup>3</sup>            | 1                       | ¥                                        |               |                                 |                                             |                       |                     |                                                                                                                               | က်           |                  |              |                  |                             | -    |
|                                               | ∟ 5⊤                       | 17                      |                                          |               | 16                              |                                             | 15                    | <u> </u>            | 4 10 🖺                                                                                                                        |              |                  | 9            |                  | 8 ú<br>0                    | L    |
|                                               |                            | M18/                    | AHS 8x12 🝃                               |               | 5x12:                           |                                             | 2x4                   | u                   | 2x4                                                                                                                           | 4 u          |                  | 6x12=        |                  | 8x8≈                        |      |
|                                               |                            |                         |                                          |               |                                 |                                             |                       | 2x4 ı               | I                                                                                                                             |              |                  |              |                  |                             |      |
|                                               |                            |                         |                                          |               |                                 |                                             | 45                    | MT1                 | 8HS 12x20                                                                                                                     | =            |                  |              |                  |                             |      |
|                                               |                            | L                       | 8-11                                     | -7            | I                               | 14-8-8                                      | 15-<br>14-9-          | -11-8<br>12         | 18-2-8                                                                                                                        | 22-          | 10-5             | 1            | 29-5-0           |                             |      |
|                                               |                            | I                       | 8-11                                     | -7            | I                               | 5-9-1                                       | 0-1-<br>1·            | 4<br>1-12           | 2-3-0                                                                                                                         | 4-           | 7-13             | I            | 6-6-11           | ļ                           |      |
| Scale = 1:59.1<br>Plate Offsets (2            | X, Y): [8:0-3              | -4,0-2-4],              | [17:0-5-0,0-2-0]                         |               |                                 |                                             | -                     |                     |                                                                                                                               |              |                  |              |                  |                             |      |
| Looding                                       | , , ,                      | (nof)                   | Specing                                  | 200           |                                 | CSI                                         |                       | DEEL                |                                                                                                                               | in (le       |                  | L /d         |                  |                             |      |
| TCLL (roof)                                   |                            | (psi)<br>25.0           | Plate Grip DOL                           | 2-0-0<br>1.15 |                                 | TC                                          | 0.98                  | Vert(l              | -<br>_L) -0                                                                                                                   | .34          | 10 >999          | 360          | MT20             | 197/144                     |      |
| TCDL<br>BCLL                                  |                            | 10.0<br>0.0*            | Lumber DOL<br>Rep Stress Incr            | 1.15<br>YES   |                                 | BC<br>WB                                    | 0.60<br>0.91          | Vert(0<br>Horz(     | CT) -0<br>CT) 0                                                                                                               | .61<br>.34   | 10 >572<br>8 n/a | 240<br>n/a   | MT18HS<br>M18AHS | 197/144<br>142/136          |      |
| BCDL                                          |                            | 10.0                    | Code                                     | IRC2018       | 3/TPI2014                       | Matrix-S                                    |                       | Wind                | (LL) 0                                                                                                                        | .21          | 10 >999          | 240          | Weight: 124 lb   | FT = 10%                    |      |
|                                               |                            | - 0                     |                                          | 2)            | Wind: ASCE                      | 7-16; Vult=115mpl                           | וס:<br>- וס:          | cond gu             | ist)<br>-25ft: Cot                                                                                                            |              |                  |              |                  |                             |      |
| BOT CHORD                                     | 2x4 SPF No<br>2x4 SPF No   | 0.2<br>0.2 *Exce        | pt* 14-12,5-10:2x3 S                     | PF            | II; Exp C; En                   | closed; MWFRS (e                            | nvelop                | e) exter            | ior zone;                                                                                                                     |              |                  |              |                  |                             |      |
| WEBS                                          | No.2, 13-11<br>2x3 SPF No  | I:2x4 SPF<br>0.2 *Exce  | F 2100F 1.8E<br>pt* 17-2,8-7:2x6 SP      |               | right expose                    | d; Lumber DOL=1.6                           | i ; end v<br>60 plate | grip D              | OL=1.60                                                                                                                       |              |                  |              |                  |                             |      |
| BRACING                                       | 2400F 2.0E                 |                         |                                          | 3)<br>4)      | All plates are<br>This truss ha | e MT20 plates unles<br>is been designed fo  | s othei<br>or a 10.   | wise in<br>) psf bo | dicated.                                                                                                                      |              |                  |              |                  |                             |      |
| TOP CHORD                                     | Structural v               | wood she                | athing directly applie                   | d, 5)         | chord live loa                  | ad nonconcurrent w                          | ith any               | other li            | ive loads.                                                                                                                    |              |                  |              |                  | un.                         |      |
| BOT CHORD                                     | except end<br>Rigid ceilin | g directly              | applied or 9-8-5 oc                      | 3)            | on the bottor                   | n chord in all areas                        | where                 | a recta             | ingle                                                                                                                         |              |                  |              | NE OF !          | MISS                        |      |
| JOINTS                                        | bracing.<br>1 Brace at     | Jt(s): 13               |                                          |               | chord and ar                    | by 2-00-00 wide will<br>by other members.   | ni beiv               | veen in             | e bollom                                                                                                                      |              |                  | 1            | A                | - 00                        |      |
| REACTIONS                                     | (size) 8                   | B= Mecha                | nical, 17=0-3-8                          | 6)<br>7)      | All bearings<br>Refer to gird   | are assumed to be<br>er(s) for truss to tru | SPF N<br>ss conr      | o.2 .<br>nections   | s.                                                                                                                            |              |                  | E            | S. JUA           | IN 2                        | 5    |
|                                               | Max Uplift 8               | 3=-166 (L               | C 9), 17=-192 (LC 8)                     | 8)            | Provide med                     | hanical connection                          | (by oth<br>nding 1    | ers) of<br>92 lb u  | truss to<br>Inlift at ioin                                                                                                    | ıt           |                  | =*           | GAR              |                             | E    |
| FORCES                                        | Max Grav 8<br>(Ib) - Maxin | 3=1302 (L<br>num Com    | .C 1), 17=1382 (LC 1<br>pression/Maximum | )             | 17 and 166 l                    | b uplift at joint 8.                        |                       | ith tho             | 2019                                                                                                                          |              |                  | = 7          |                  |                             | -    |
|                                               | Tension                    |                         | 1220/200 1 2 0/2                         | 9)<br>0       | International                   | Residential Code s                          | ections               | R502.               | 11.1 and                                                                                                                      |              |                  |              | C. E-20001       | 62101                       | 5    |
| TOP CHORD                                     | 2-3=-2248/                 | 268, 3-4=               | -2849/287,                               | u,<br>LO      | R802.10.2 a                     | nd referenced stand<br>Standard             | dard AN               | ISI/TPI             | 1.                                                                                                                            |              |                  | 1            | 1                |                             |      |
|                                               | 4-5=-2847/<br>6-7=-2296/   | 308, 5-6=<br>282        | -4787/417,                               |               |                                 |                                             |                       |                     |                                                                                                                               |              |                  |              | I,SONI           | LENIN                       |      |
| BOT CHORD                                     | 16-17=-354<br>12-14=-11/   | 4/895, 15-<br>45, 12-13 | ·16=-2/28, 14-15=-3/3<br>=-229/4317.     | 22,           |                                 |                                             |                       |                     |                                                                                                                               |              |                  |              |                  | III).                       |      |
|                                               | 11-12=-231                 | 1/4343, 10              | 0-3/40 8 $0-87/41$                       | 7             |                                 |                                             |                       |                     |                                                                                                                               |              |                  |              | annin (          | AD                          |      |
| WEBS                                          | 3-16=-899/                 | 216, 3-13               | 6=0/614, 13-15=0/110                     | ),            |                                 |                                             |                       |                     |                                                                                                                               |              |                  |              | IN JUAN          | NOR                         |      |
|                                               | 4-13=-139/<br>9-11=-245/   | 1840, 5-1<br>2435, 6-1  | 3=-2043/279,<br>1=-132/2305,             |               |                                 |                                             |                       |                     |                                                                                                                               |              |                  |              | UCE              | ED                          | 1    |
|                                               | 6-9=-1448/<br>7-9=-117/1   | 230, 2-16<br>633. 13-1  | i=-3/1068,<br>6=-276/2169                |               |                                 |                                             |                       |                     |                                                                                                                               |              |                  | 3            | 1 10             | 0F0                         | Ξ    |
| NOTES                                         |                            |                         |                                          |               |                                 |                                             |                       |                     |                                                                                                                               |              |                  | Ξ            | 16               | 952                         | Ξ    |
| <ol> <li>Unbalance<br/>this design</li> </ol> | ea roof live lo:<br>1.     | ads have                | been considered for                      |               |                                 |                                             |                       |                     |                                                                                                                               |              |                  | -            | B                | M. 1#                       | Ξ    |
| 5                                             |                            |                         |                                          |               |                                 |                                             |                       |                     |                                                                                                                               |              |                  |              | - Color          | ISAS GR                     |      |
|                                               |                            |                         |                                          |               |                                 |                                             |                       |                     |                                                                                                                               |              |                  |              | O/ON             | ALENI                       |      |
|                                               |                            |                         |                                          |               |                                 |                                             |                       |                     |                                                                                                                               |              |                  |              | Marc             | ch 7,2024                   |      |



16023 Swingley Ridge Rd. Chesterfield, MO 63017

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling or individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)





Scale = 1:56.1

| Plate Offsets (                                                                                                                                | (X, Y): [9:0-3-0,0-2-4],                                                                                                                                                           | [10:0-2-8,0-1-8], [14                                                                                                                                             | :0-2-8,0-1-                             | 8], [15:0-3-0,0                                                                                                                                                                             | -2-4]                                                                                                                                                                                                                       |                                                                                                                                     |                                                                                                                             |                                      |                                       |                                       |                                 |                                  |                                    |
|------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|--------------------------------------|---------------------------------------|---------------------------------------|---------------------------------|----------------------------------|------------------------------------|
| Loading<br>TCLL (roof)<br>TCDL<br>BCLL<br>BCDL                                                                                                 | (psf)<br>25.0<br>10.0<br>0.0*<br>10.0                                                                                                                                              | <b>Spacing</b><br>Plate Grip DOL<br>Lumber DOL<br>Rep Stress Incr<br>Code                                                                                         | 2-0-0<br>1.15<br>1.15<br>YES<br>IRC2018 | 3/TPI2014                                                                                                                                                                                   | <b>CSI</b><br>TC<br>BC<br>WB<br>Matrix-S                                                                                                                                                                                    | 0.85<br>0.63<br>1.00                                                                                                                | DEFL<br>Vert(LL)<br>Vert(CT)<br>Horz(CT)<br>Wind(LL)                                                                        | in<br>-0.12<br>-0.27<br>0.06<br>0.08 | (loc)<br>13-14<br>13-14<br>9<br>13-14 | l/defl<br>>999<br>>999<br>n/a<br>>999 | L/d<br>360<br>240<br>n/a<br>240 | PLATES<br>MT20<br>Weight: 116 lb | <b>GRIP</b><br>197/144<br>FT = 10% |
| LUMBER<br>TOP CHORD<br>BOT CHORD<br>WEBS<br>BRACING<br>TOP CHORD<br>BOT CHORD                                                                  | 2x4 SPF No.2<br>2x4 SPF No.2<br>2x3 SPF No.2 *Exce<br>No.2<br>Structural wood shere<br>except end verticals,<br>(4-3-13 max.): 4-5.<br>Rigid ceiling directly<br>bracino.          | pt* 15-2,9-7:2x6 SPI<br>athing directly applie<br>, and 2-0-0 oc purlins<br>applied or 10-0-0 oc                                                                  | 4)<br>5)<br>F<br>d, 6)<br>5 7)<br>; 8)  | This truss ha<br>chord live loa<br>* This truss h<br>on the bottom<br>3-06-00 tall b<br>chord and an<br>All bearings a<br>Provide mecl<br>bearing plate<br>15 and 186 ll<br>This truss is o | s been designed<br>d nonconcurrent<br>as been designe<br>n chord in all are:<br>y 2-00-00 wide v<br>y other members<br>are assumed to b<br>nanical connecti<br>capable of withs<br>o uplift at joint 9.<br>designed in acco | l for a 10.0<br>t with any<br>ed for a liv<br>as where<br>will fit betw<br>s.<br>be SPF No<br>on (by oth<br>standing 1<br>ordance w | 0 psf bottom<br>other live loa<br>e load of 20.1<br>a rectangle<br>veen the bott<br>0.2.<br>86 lb uplift at<br>ith the 2018 | ads.<br>Opsf<br>om<br>to<br>t joint  |                                       |                                       |                                 | UNITE OF                         | MISSO                              |
| REACTIONS                                                                                                                                      | (size) 9=0-3-8, 1<br>Max Horiz 15=86 (LC<br>Max Uplift 9=-186 (L<br>Max Grav 9=1380 (L                                                                                             | 15=0-3-8<br>C 8)<br>C 9), 15=-186 (LC 8)<br>C 1), 15=1380 (LC 7)                                                                                                  | )<br>9)<br>1)                           | International<br>R802.10.2 ar<br>Graphical pu<br>or the orienta<br>bottom chore                                                                                                             | Residential Code<br>nd referenced sta<br>rlin representatio<br>tion of the purlin                                                                                                                                           | e sections<br>andard AN<br>on does no<br>along the                                                                                  | R502.11.1 a<br>ISI/TPI 1.<br>ISI depict the s<br>top and/or                                                                 | and<br>size                          |                                       |                                       |                                 | JUA<br>GAR                       | N<br>CIA                           |
| FORCES                                                                                                                                         | (lb) - Maximum Com<br>Tension<br>1-2=0/30, 2-3=-2325<br>4-5=-1529/233, 5-6=<br>6-7=-2324/281, 7-8<br>7-9=-1313/218                                                                 | pression/Maximum<br>5/281, 3-4=-1761/206<br>5-1763/206,<br>50/30, 2-15=-1314/21                                                                                   | LO<br>5,<br>8,                          | OAD CASE(S)                                                                                                                                                                                 | Standard                                                                                                                                                                                                                    |                                                                                                                                     |                                                                                                                             |                                      |                                       |                                       | Philip                          | NUME<br>E-20001                  | BER 44                             |
| BOT CHORD                                                                                                                                      | 14-15=-179/453, 13-<br>12-13=-80/1527, 10-<br>9-10=-99/455                                                                                                                         | 14=-276/2071,<br>12=-189/2069,                                                                                                                                    |                                         |                                                                                                                                                                                             |                                                                                                                                                                                                                             |                                                                                                                                     |                                                                                                                             |                                      |                                       |                                       |                                 | 1,0/ONA                          |                                    |
| WEBS                                                                                                                                           | 3-14=-29/179, 3-13=<br>4-12=-230/244, 5-12<br>6-12=-634/214, 6-10<br>2-14=-97/1625, 7-10                                                                                           | 637/214, 4-13=-35/<br>≥55/401,<br>)=-31/177,<br>)=-91/1622                                                                                                        | 345,                                    |                                                                                                                                                                                             |                                                                                                                                                                                                                             |                                                                                                                                     |                                                                                                                             |                                      |                                       |                                       |                                 | JUAN CE                          | ARCIA                              |
| NOTES                                                                                                                                          |                                                                                                                                                                                    |                                                                                                                                                                   |                                         |                                                                                                                                                                                             |                                                                                                                                                                                                                             |                                                                                                                                     |                                                                                                                             |                                      |                                       |                                       |                                 |                                  |                                    |
| <ol> <li>Unbalance<br/>this design</li> <li>Wind: ASG<br/>Vasd=91n<br/>II; Exp C;<br/>cantilever<br/>right expo</li> <li>Provide ad</li> </ol> | ed roof live loads have<br>n.<br>CE 7-16; Vult=115mph<br>nph; TCDL=6.0psf; BCI<br>Enclosed; MWFRS (en<br>left and right exposed<br>sed; Lumber DOL=1.6(<br>dequate drainage to pro | been considered for<br>(3-second gust)<br>DL=6.0psf; h=25ft; C<br>ivelope) exterior zon<br>; end vertical left and<br>0 plate grip DOL=1.6<br>event water ponding | Cat.<br>e;<br>d<br>50                   |                                                                                                                                                                                             |                                                                                                                                                                                                                             |                                                                                                                                     |                                                                                                                             |                                      |                                       |                                       | THINK.                          | PROCESSION                       | AL ENGINI                          |

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent toulsable personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcscomponents.com)

March 7,2024

#### 16023 Swingley Ridge Rd. Chesterfield MO 63017 314.434.1200 / MiTek-US.com



Scale = 1:56

| 00010 - 1100                                                                                                                                           |                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                         |                                                       |                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                   |                                                                                                                                                        |                                                                                                                                                         |                                      |                                       |                                       |                                 |                                  |                                    |                                                                                                                 |
|--------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|---------------------------------------|---------------------------------------|---------------------------------|----------------------------------|------------------------------------|-----------------------------------------------------------------------------------------------------------------|
| Plate Offsets                                                                                                                                          | (X, Y): [9:0-3-0,0-2-4], [                                                                                                                                                                                                                                                     | 10:0-2-8,0-1-8], [14                                                                                                                                                                                    | :0-2-8,0-1                                            | -8], [15:0-3-0,0                                                                                                                                                                                                                     | -2-4]                                                                                                                                                                                                                                                                                             |                                                                                                                                                        |                                                                                                                                                         |                                      |                                       |                                       |                                 |                                  |                                    |                                                                                                                 |
| Loading<br>TCLL (roof)<br>TCDL<br>BCLL<br>BCDL                                                                                                         | (psf)<br>25.0<br>10.0<br>0.0*<br>10.0                                                                                                                                                                                                                                          | Spacing<br>Plate Grip DOL<br>Lumber DOL<br>Rep Stress Incr<br>Code                                                                                                                                      | 2-0-0<br>1.15<br>1.15<br>YES<br>IRC201                | 8/TPI2014                                                                                                                                                                                                                            | CSI<br>TC<br>BC<br>WB<br>Matrix-S                                                                                                                                                                                                                                                                 | 0.59<br>0.54<br>0.51                                                                                                                                   | DEFL<br>Vert(LL)<br>Vert(CT)<br>Horz(CT)<br>Wind(LL)                                                                                                    | in<br>-0.11<br>-0.22<br>0.06<br>0.07 | (loc)<br>13-14<br>11-13<br>9<br>13-14 | l/defl<br>>999<br>>999<br>n/a<br>>999 | L/d<br>360<br>240<br>n/a<br>240 | PLATES<br>MT20<br>Weight: 112 lb | <b>GRIP</b><br>197/144<br>FT = 10% |                                                                                                                 |
| LUMBER<br>TOP CHORD<br>BOT CHORD<br>WEBS<br>BRACING<br>TOP CHORD<br>BOT CHORD<br>REACTIONS                                                             | 2x4 SPF No.2<br>2x4 SPF No.2<br>2x3 SPF No.2 *Excep<br>No.2<br>Structural wood sheat<br>3-4-3 oc purlins, exce<br>2-0-0 oc purlins (3-8-1<br>Rigid ceiling directly a<br>bracing.<br>(size) 9=0-3-8, 15<br>Max Horiz 15=72 (LC<br>Max Uplift 9=-170 (LC<br>Max Grav 9=1380 (LC | thing directly applie<br>ept end verticals, ar<br>12 max.): 4-5.<br>applied or 10-0-0 oc<br>5=0-3-8<br>12)<br>2 9), 15=-170 (LC 8)<br>2 1), 15=1380 (LC 1                                               | 5)<br>F 6)<br>7)<br>d or<br>nd 8)<br>:<br>9)<br>1) L( | * This truss I<br>on the bottor<br>3-06-00 tall I<br>chord and an<br>All bearings<br>Provide mec<br>bearing plate<br>15 and 170 I<br>This truss is<br>International<br>R802.10.2 a<br>Graphical pu<br>or the orients<br>bottom chore | has been designe<br>n chord in all are:<br>by 2-00-00 wide v<br>by other members<br>are assumed to b<br>hanical connectic<br>capable of withs<br>b uplift at joint 9.<br>designed in acco<br>Residential Code<br>at referenced sta<br>rlin representatio<br>ation of the purlin<br>b.<br>Standard | d for a liv<br>as where<br>vill fit betv<br>s.<br>be SPF No<br>n (by oth<br>tanding 1<br>rdance w<br>a sections<br>indard AN<br>n does no<br>along the | e load of 20.0<br>a rectangle<br>veen the botto<br>o.2.<br>TO Ib uplift at<br>ith the 2018<br>R 502.11.1<br>st JCPT 1.<br>ot depict the s<br>top and/or | Dpsf<br>om<br>; joint<br>ind<br>size |                                       |                                       | *                               | JUA<br>GAR                       | MISSOUR<br>CIA                     | 11111<br>1                                                                                                      |
| FORCES<br>TOP CHORD<br>BOT CHORD                                                                                                                       | (lb) - Maximum Comp<br>Tension<br>1-2=0/30, 2-3=-2287/2<br>4-5=-1690/234, 5-6=-<br>6-7=-2287/239, 7-8=0<br>7-9=-1309/205<br>14-15=-189/538, 13-1                                                                                                                               | vression/Maximum<br>239, 3-4=-1905/231<br>1906/231,<br>J/30, 2-15=-1309/20<br>4=-218/2026,                                                                                                              | ,<br>)5,                                              |                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                   |                                                                                                                                                        |                                                                                                                                                         |                                      |                                       |                                       | Philip                          | NUM<br>E-20001                   | BER<br>62101                       | illin.                                                                                                          |
| WEBS                                                                                                                                                   | 11-13=-80/1690, 10-1<br>9-10=-122/538<br>3-14=-43/132, 3-13=-4<br>4-11=-177/178, 5-11=<br>6-10=-44/132, 2-14=-7                                                                                                                                                                | 1=-146/2025,<br>419/167, 4-13=-24/<br>0/353, 6-11=-418/1<br>71/1495, 7-10=-71/                                                                                                                          | 352,<br>67,<br>1495                                   |                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                   |                                                                                                                                                        |                                                                                                                                                         |                                      |                                       |                                       |                                 | IN UAN C                         | ARCIA                              |                                                                                                                 |
| NOTES<br>1) Unbalanc<br>this desig<br>2) Wind: AS<br>Vasd=91r<br>II; Exp C;<br>cantilever<br>right expc<br>3) Provide a<br>4) This truss<br>chord live | ed roof live loads have b<br>n.<br>CE 7-16; Vult=115mph (<br>mph; TCDL=6.0psf; BCD<br>Enclosed; MWFRS (env<br>left and right exposed ;<br>used; Lumber DOL=1.60<br>dequate drainage to pre-<br>has been designed for a<br>load nonconcurrent with                              | been considered for<br>3-second gust)<br>DL=6.0psf; h=25ft; C<br>velope) exterior zon<br>end vertical left anc<br>plate grip DOL=1.6<br>vent water ponding<br>a 10.0 psf bottom<br>a no other live loac | Cat.<br>e;<br>d<br>50                                 |                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                   |                                                                                                                                                        |                                                                                                                                                         |                                      |                                       |                                       | . THINK                         | PROCESSION                       | NSEO<br>952<br>ALENGIN             | ALL DATE OF THE OF T |

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)



|                          |               |              |                            |                                             |                              |                                                     | RELEASE FOR CONSTRUCTION                         |
|--------------------------|---------------|--------------|----------------------------|---------------------------------------------|------------------------------|-----------------------------------------------------|--------------------------------------------------|
| Job                      | Truss         | Truss Typ    | pe                         | Qty                                         | Ply L                        | ot 116 MN                                           | AS NOTED FOR PLAN REVIEW<br>DEVELOPMENT SERVICES |
| 240612                   | E10           | Hip          |                            | 1                                           | 1 J                          | ob Reference (optional                              | I64102261<br>LEE'S SUMMIT, MISSOURI              |
| Wheeler Lumber, Waverly, | KS - 66871,   |              | Run: 8.73 S<br>ID:sr5vJWqT | Feb 22 2024 Print: 8.7<br>neBzm?BHQx1bZdyKy | 30 S Feb 22 2<br>/AV-RfC?PsB | 024 MiTek Industries, Inc.<br>70Hq3NSgPqnL8w3uITXbC | hu Mar 0143/2024<br>KWrCD0742.077                |
|                          | 0 10 8        |              |                            |                                             |                              |                                                     |                                                  |
|                          | 0-10-8 4-1-15 | 9-1          | 9-5 4                      | -8-8<br>-9-4                                | <u>19-5-12</u><br>4-9-4      | 25-3                                                | - <u>1 29-5-0</u><br>-5 4-1-15                   |
| <b>F</b> -               | 0 10 0        |              | 6x6=                       | 2x4 <b>u</b>                                |                              | 6x6=                                                |                                                  |
|                          |               | 512<br>3x4 = |                            |                                             |                              | 6                                                   | 3x4 <b>.</b>                                     |
| -10-0<br>-10-0           |               | 3            |                            |                                             |                              |                                                     | 7<br>8x8≈<br>8                                   |
|                          | X             | 15           | 14                         | 13                                          | 12                           | 11                                                  | 10                                               |
|                          | 8x8 =         | 4x8=         | 3x4=                       | 3x10=                                       |                              | 3x4 =                                               | 4x8=                                             |
|                          |               |              |                            |                                             | 3x4 =                        |                                                     |                                                  |

| 4-1-15 5-8-1 4-10-8 4-10-8 | 5-8-1 | 4-1-15 |
|----------------------------|-------|--------|

Scale = 1:54.6

| Plate Offsets (                                                                                                                                   | X, Y): [8:Edge,0-2-4],                                                                                                                                                                         | [10:0-2-8,0-2-0], [15                                                                                                                                            | :0-2-8,0-2-                                         | -0], [16:0-3-0,0                                                                                                                                                                                                        | -2-4]                                                                                                                                                                                                                                                                                    |                                                                                                                                            |                                                                                                                                                          |                                      |                                 |                                       |                                 |                                  |                                    |      |
|---------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|---------------------------------|---------------------------------------|---------------------------------|----------------------------------|------------------------------------|------|
| Loading<br>TCLL (roof)<br>TCDL<br>BCLL<br>BCDL                                                                                                    | (psf)<br>25.0<br>10.0<br>0.0*<br>10.0                                                                                                                                                          | <b>Spacing</b><br>Plate Grip DOL<br>Lumber DOL<br>Rep Stress Incr<br>Code                                                                                        | 2-0-0<br>1.15<br>1.15<br>YES<br>IRC2018             | 3/TPI2014                                                                                                                                                                                                               | CSI<br>TC<br>BC<br>WB<br>Matrix-S                                                                                                                                                                                                                                                        | 0.61<br>0.58<br>0.63                                                                                                                       | DEFL<br>Vert(LL)<br>Vert(CT)<br>Horz(CT)<br>Wind(LL)                                                                                                     | in<br>-0.13<br>-0.23<br>0.07<br>0.09 | (loc)<br>13<br>11-13<br>9<br>13 | l/defl<br>>999<br>>999<br>n/a<br>>999 | L/d<br>360<br>240<br>n/a<br>240 | PLATES<br>MT20<br>Weight: 111 lb | <b>GRIP</b><br>197/144<br>FT = 10% |      |
| LUMBER<br>TOP CHORD<br>BOT CHORD<br>WEBS<br>BRACING<br>TOP CHORD<br>BOT CHORD<br>REACTIONS                                                        | 2x4 SPF No.2<br>2x4 SPF No.2<br>2x3 SPF No.2 *Exce<br>No.2<br>Structural wood shea<br>3-0-15 oc purlins, ex<br>2-0-0 oc purlins (3-9-<br>Rigid ceiling directly<br>bracing.<br>(size) 9= Mecha | pt* 16-2,9-8:2x6 SPI<br>athing directly applie<br>kcept end verticals, a<br>-15 max.): 4-6.<br>applied or 10-0-0 oc<br>nical, 16=0-3-8                           | 4)<br>5)<br>F<br>d or 6)<br>and 7)<br>8)<br>;<br>9) | This truss ha<br>chord live loa<br>* This truss h<br>on the bottor<br>3-06-00 tall b<br>chord and ar<br>All bearings<br>Refer to gird<br>Provide mec<br>bearing plate<br>16 and 128 l<br>This truss is<br>International | is been designed f<br>ad nonconcurrent<br>has been designed<br>in chord in all area<br>by 2-00-00 wide wi<br>hy other members,<br>are assumed to be<br>er(s) for truss to tr<br>hanical connection<br>capable of withst<br>b uplift at joint 9.<br>designed in accor<br>Residential Code | for a 10.0<br>with any<br>d for a liv<br>is where<br>ill fit betw<br>e SPF No<br>uss conr<br>n (by oth<br>ianding 1<br>dance w<br>sections | ) psf bottom<br>other live loa<br>e load of 20.<br>a rectangle<br>veen the bott<br>0.2.<br>ers) of truss<br>63 lb uplift a<br>th the 2018<br>R502.11.1 a | ads.<br>Opsf<br>om<br>to<br>t joint  |                                 |                                       | 11.                             | VA.                              | AISSOUT                            |      |
| FORCES                                                                                                                                            | Max Horiz 16=65 (LC<br>Max Uplift 9=-128 (LC<br>Max Grav 9=1302 (L<br>(lb) - Maximum Com                                                                                                       | C 12)<br>C 5), 16=-163 (LC 4)<br>C 1), 16=1382 (LC 1<br>pression/Maximum                                                                                         | ) 10<br>1)                                          | ) Graphical pu<br>or the orienta<br>bottom chore                                                                                                                                                                        | rtesidential code<br>nd referenced star<br>rlin representation<br>ation of the purlin a<br>d.                                                                                                                                                                                            | ndard AN<br>n does no<br>along the                                                                                                         | ISI/TPI 1.<br>of depict the s<br>top and/or                                                                                                              | size                                 |                                 |                                       | it P                            | GAR                              |                                    | **** |
| TOP CHORD                                                                                                                                         | 1-2=0/30, 2-3=-2222<br>4-5=-2105/329, 5-6=<br>6-7=-2086/281, 7-8=<br>2-16=-1326/178, 82                                                                                                        | /239, 3-4=-2082/279<br>-2105/329,<br>-2235/243,<br>=-1245/143<br>5 - 216/2002                                                                                    | ), LC                                               | OAD CASE(S)                                                                                                                                                                                                             | Standard                                                                                                                                                                                                                                                                                 |                                                                                                                                            |                                                                                                                                                          |                                      |                                 |                                       | 1111                            | E-20001                          | 62101 W                            |      |
| BOICHORD                                                                                                                                          | 15-16=-78/243, 14-1<br>13-14=-166/1852, 11<br>10-11=-206/2022, 9-                                                                                                                              | 5=-216/2003,<br> -13=-175/1855,<br>10=-27/223                                                                                                                    |                                                     |                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                          |                                                                                                                                            |                                                                                                                                                          |                                      |                                 |                                       |                                 | 2000                             | inn                                |      |
| WEBS                                                                                                                                              | 3-14=-194/148, 4-14<br>6-13=-80/476, 6-11=<br>2-15=-177/1783, 8-1<br>5-13=-411/159, 3-15                                                                                                       | =0/263, 4-13=-80/47<br>0/266, 7-11=-210/15<br>0=-182/1821,<br>=-211/95, 7-10=-217                                                                                | 79,<br>51,<br>7/96                                  |                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                          |                                                                                                                                            |                                                                                                                                                          |                                      |                                 |                                       |                                 | NIN JUAN C                       | ARCIA                              | 1    |
| NOTES                                                                                                                                             |                                                                                                                                                                                                |                                                                                                                                                                  |                                                     |                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                          |                                                                                                                                            |                                                                                                                                                          |                                      |                                 |                                       |                                 |                                  |                                    | -    |
| <ol> <li>Unbalance<br/>this design</li> <li>Wind: ASC<br/>Vasd=91n<br/>II; Exp C;<br/>cantilever<br/>right export</li> <li>Provide act</li> </ol> | ed roof live loads have<br>n.<br>CE 7-16; Vult=115mph<br>nph; TCDL=6.0psf; BCI<br>Enclosed; MWFRS (en<br>left and right exposed :<br>sed; Lumber DOL=1.60<br>dequate drainage to pre           | been considered for<br>(3-second gust)<br>DL=6.0psf; h=25ft; C<br>velope) exterior zon<br>; end vertical left and<br>0 plate grip DOL=1.6<br>event water ponding | Cat.<br>e;<br>d<br>50                               |                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                          |                                                                                                                                            |                                                                                                                                                          |                                      |                                 |                                       | THINK'S                         | PROKESSION                       | AL ENOLI                           |      |

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent buckling of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)



|                                           |                |            |                                                              |                           |                                                            | RELEASE FOR CONSTRUCTION                         |
|-------------------------------------------|----------------|------------|--------------------------------------------------------------|---------------------------|------------------------------------------------------------|--------------------------------------------------|
| Job                                       | Truss          | Truss Type | Qty                                                          | Ply                       | Lot 116 MN                                                 | AS NOTED FOR PLAN REVIEW<br>DEVELOPMENT SERVICES |
| 240612                                    | E11            | Hip        | 1                                                            | 1                         | Job Reference (optiona                                     | LEE'S SUMMIT, MISSOURI                           |
| Wheeler Lumber, Waverly                   | /, KS - 66871, |            | Run: 8.73 S Feb 22 2024 Print:<br>ID:RGQngUoaUjpOvYTilpTux?y | 8.730 S Feb<br>KyAY-RfC?F | 22 2024 MiTek Industries, Inc.<br>PsB70Hq3NSgPqnL8w3uITXb0 | hu Mar 014:/02/29:24                             |
|                                           |                |            |                                                              |                           |                                                            |                                                  |
|                                           | -0-10-8 7-     | 11-4       | 14-8-8                                                       |                           | 21-5-12                                                    | 29-5-0                                           |
|                                           | 0-10-8 7-      | 11-4       | 6-9-4                                                        |                           | 6-9-4                                                      | 7-11-4                                           |
|                                           |                | 6x8=       | 2x4                                                          | II                        | 6x8=                                                       |                                                  |
| +-1-11<br>+-0-1<br>+-0-1<br>+-0-1<br>1-10 | 1              |            |                                                              |                           |                                                            | 8x8±<br>6<br>7                                   |
| C                                         | ⊠<br>8x8 ≤     | 11         | 10                                                           | 9                         | 8                                                          |                                                  |
|                                           |                | 3x6=       | 3x10                                                         | =<br>3x6 =                | 3x6=                                                       |                                                  |
|                                           | 7-             | 10-0       | 14-8-8 ı                                                     |                           | 21-7-0                                                     | 29-5-0                                           |
|                                           | 7-             | 10-0       | 6-10-8                                                       |                           | 6-10-8                                                     | 7-10-0                                           |

Scale = 1:54.5

| Plate Offsets (                                                                                                                                                                                                                                                                                     | (X, Y): [3:0-4-2,Edge],                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | [5:0-4-2,Edge], [6:Ed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | dge,0-2-4]                                                           | , [8:0-2-8,0-1-8                                                                                                                                                                                                                                                           | 8], [11:0-2-8,0-1-8                                                                                                                                                                                                                                                         | 3], [12:0-3·                                                                                                                                                                  | -0,0-2-4]                                                                                                                                                            |                                            |                                |                                       |                                 |                                                                                                                                         |                                                                                         |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------|--------------------------------|---------------------------------------|---------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|
| Loading<br>TCLL (roof)<br>TCDL<br>BCLL<br>BCDL                                                                                                                                                                                                                                                      | (psf)<br>25.0<br>10.0<br>0.0*<br>10.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Spacing<br>Plate Grip DOL<br>Lumber DOL<br>Rep Stress Incr<br>Code                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2-0-0<br>1.15<br>1.15<br>YES<br>IRC2018                              | 3/TPI2014                                                                                                                                                                                                                                                                  | CSI<br>TC<br>BC<br>WB<br>Matrix-S                                                                                                                                                                                                                                           | 0.96<br>0.60<br>0.50                                                                                                                                                          | DEFL<br>Vert(LL)<br>Vert(CT)<br>Horz(CT)<br>Wind(LL)                                                                                                                 | in<br>-0.16<br>-0.30<br>0.06<br>0.12       | (loc)<br>10<br>8-10<br>7<br>10 | l/defl<br>>999<br>>999<br>n/a<br>>999 | L/d<br>360<br>240<br>n/a<br>240 | <b>PLATES</b><br>MT20<br>Weight: 104 lb                                                                                                 | <b>GRIP</b><br>197/144<br>FT = 10%                                                      |
| LUMBER<br>TOP CHORD<br>BOT CHORD<br>WEBS<br>BRACING<br>TOP CHORD<br>BOT CHORD<br>REACTIONS<br>FORCES<br>TOP CHORD<br>BOT CHORD<br>WEBS<br>NOTES<br>1) Unbalance<br>this desig<br>2) Wind: AS(<br>Vasd=91n<br>II; Exp C;<br>cantilever<br>right expo<br>3) Provide ar<br>4) This truss<br>chord live | 2x4 SPF No.2 *Exce<br>1.8E<br>2x4 SPF No.2<br>2x3 SPF No.2 *Exce<br>No.2<br>Structural wood she<br>except end verticals<br>(2-2-0 max.): 3-5.<br>Rigid ceiling directly<br>bracing.<br>(size) 7= Mecha<br>Max Horiz 12=50 (LC<br>Max Uplift 7=-153 (L<br>Max Grav 7=1302 (L<br>(Ib) - Maximum Com<br>Tension<br>1-2=0/30, 2-3=-2284<br>4-5=-2632/449, 5-6=<br>2-12=-1307/229, 6-7<br>11-12=-290/789, 10-<br>8-10=-241/2015, 7-8<br>3-11=0/230, 3-10=-1<br>5-10=-156/835, 5-8=<br>6-8=-155/1444<br>ed roof live loads have<br>n.<br>CE 7-16; Vult=115mph<br>mph; TCDL=6.0psf; BC<br>Enclosed; MWFRS (er<br>left and right exposed<br>dequate drainage to pr<br>has been designed for<br>load nonconcurrent wi | ept* 5-6:2x4 SPF 210<br>ept* 12-2,7-6:2x6 SPF<br>athing directly applied<br>, and 2-0-0 oc purlins<br>applied or 10-0-0 oc<br>anical, 12=0-3-8<br>C 5), 12=-187 (LC 4)<br>.C 1), 12=-1382 (LC 1)<br>.pression/Maximum<br>1/314, 3-4=-2632/449<br>-2285/315,<br>'=-1225/194<br>.11=-229/2004,<br>3=-140/577<br>159/843, 4-10=-577/2<br>e0/224, 2-11=-86/134<br>been considered for<br>(3-second gust)<br>DL=6.0psf; h=25ft; C<br>velope) exterior zone;<br>; end vertical left and<br>0 plate grip DOL=1.6<br>event water ponding,<br>r a 10.0 psf bottom<br>th any other live load | 5)<br>OF<br>()<br>()<br>()<br>()<br>()<br>()<br>()<br>()<br>()<br>() | * This truss h<br>on the bottor<br>3-06-00 tall b<br>chord and ar<br>All bearings a<br>Refer to gird<br>Provide mec<br>bearing plate<br>12 and 153 ll<br>This truss is<br>International<br>R802.10.2 ar<br>) Graphical pu<br>or the orienta<br>bottom chorc<br>DAD CASE(S) | as been designe<br>n chord in all are:<br>by 2-00-00 wide v<br>ay other members<br>are assumed to b<br>capable of withs<br>o uplift at joint 7.<br>designed in acco<br>Residential Code<br>do referenced sta<br>rlin representatio<br>ation of the purlin<br>t.<br>Standard | ed for a live<br>as where<br>vill fit betw<br>s.<br>De SPF No<br>truss conna<br>on (by oth-<br>standing 1<br>ordance wi<br>e sections<br>andard AN<br>on does no<br>along the | e load of 20.<br>a rectangle<br>veen the bott<br>b.2.<br>ers) of truss<br>87 lb uplift a<br>ith the 2018<br>R502.11.1 a<br>ISI/TPI 1.<br>ot depict the<br>top and/or | Opsf<br>om<br>to<br>t joint<br>and<br>size |                                |                                       |                                 | JUAN C<br>GARG<br>NUME<br>E-20001<br>SS/ONA<br>160<br>BO<br>SS/ONA<br>160<br>BO<br>SS/ONA<br>160<br>BO<br>SS/ONA<br>160<br>BO<br>SS/ONA | NCIA<br>BER<br>62101<br>LENG<br>SARCIA<br>NSEO<br>52<br>SAS<br>SAS<br>SAS<br>SAS<br>SAS |

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent toules bible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)



|                                          |                        |                 |              |           |               |                         |                           |                       |                         |                          |                             | RE                       | LEASE FO             |                         |        |
|------------------------------------------|------------------------|-----------------|--------------|-----------|---------------|-------------------------|---------------------------|-----------------------|-------------------------|--------------------------|-----------------------------|--------------------------|----------------------|-------------------------|--------|
| Job                                      | Truss                  |                 | Truss Typ    | е         |               |                         | Qty                       | Ply                   | Lot                     | 116 MN                   |                             | A                        | S NOTED I<br>DEVELOP | OR PLAN                 | REVIEW |
| 240612                                   | E12                    |                 | Hip Girde    | ər        |               |                         | 1                         | 2                     | Jol                     | Reference                | e (optiona                  | ľ                        | LEE'S SU             | 164102263<br>MMIT, MISS | OURI   |
| Wheeler Lumber, Waverly,                 | KS - 66871,            |                 |              |           | Run:<br>ID:Oe | 8.73 S Feb<br>XX5Apq0K3 | 22 2024 Prir<br>68rc5sEWN | t: 8.730 S<br>0QyKyAW | Feb 22 202<br>-RfC?PsB7 | 4 MiTek Ind<br>0Hq3NSgPo | ustries, Inc.<br>qnL8w3uITX | hu Mar (7)<br>trGKWrCD97 | <b>14/0</b>          | 2/20                    | 924    |
|                                          |                        |                 |              |           |               |                         |                           |                       |                         |                          |                             |                          |                      |                         |        |
|                                          | -0-10-8                | 5-11-4          |              | 11-8      | -13           |                         | 17-8                      | -3                    |                         | 23-                      | <u>-5-12</u>                |                          | 29                   | 5-0                     | —      |
|                                          | 0-10-8                 | 5-11-4          |              | 5-9       | -9            |                         | 5-11                      | -0                    |                         | 0-                       | 9-9                         |                          | 5-1                  | 1-4                     |        |
|                                          |                        |                 | NAILED       | NAILED    | NAILED        | NAILED                  | NAILED                    | IAILED                | NAILED                  | NAILED                   | NAILED                      | NAILED                   |                      |                         |        |
|                                          |                        |                 | 6x6=         |           |               | 3x4 =                   |                           |                       | 2x4 🛚                   |                          |                             | 6x6=                     |                      |                         |        |
| + <del>2</del> − 6                       |                        | 12 9<br>5 +=    | 3            | 15        | 16            | 4                       | 17                        | 18                    | 5                       | 19                       | 20                          | 6                        |                      |                         |        |
| e e                                      |                        | 6               |              |           | Ш             |                         |                           | ш                     | <u>P</u>                | ш                        |                             |                          | $\leq$               |                         |        |
| <u>3-11</u><br>-2-5                      | . /                    |                 |              |           |               |                         |                           |                       |                         |                          |                             |                          |                      | $\searrow$              | 6×8≈   |
|                                          | 1                      |                 |              |           |               |                         |                           |                       |                         |                          |                             |                          |                      |                         |        |
| $\bot$ $\bot$ $\stackrel{5}{\leftarrow}$ |                        |                 |              | 0.0       | 0.0           |                         | 0.0                       | m I.                  |                         | 0.0                      | 0.0                         |                          | 0.0                  | ПЛ                      | 8      |
|                                          | ⊠<br>6x8 <             |                 | 13           | 21        | 22            | 12                      | 23                        | 24 11                 | 10                      | 25                       | 26                          | 9                        | 27                   | 28                      |        |
|                                          |                        |                 | 4x8=         |           |               |                         |                           | 6X6=                  | 4x8=                    |                          |                             | 4x8=                     | 111524               | 111524                  |        |
|                                          |                        |                 | LIHJAZO      | NAILED    | NAILED        | NAILED                  | NAILLD                    | IAILED                | NAILED                  | NAILED                   | NAILLD                      | NAILED                   | 20024                | 20024                   |        |
|                                          | L                      | 5-9-8           |              | 11-8-     | -13           |                         | 17-8                      | -3                    |                         | 23                       | 8-7-8                       |                          | 29                   | -5-0                    |        |
|                                          | I                      | 5-9-8           | I            | 5-11      | -5            | I                       | 5-11                      | -5                    | I                       | 5-                       | 11-5                        | I                        | 5-                   | 9-8                     | I      |
|                                          |                        |                 |              |           |               |                         |                           |                       |                         |                          |                             |                          |                      |                         |        |
| Scale = 1:54.5                           |                        |                 |              |           |               |                         |                           |                       |                         |                          |                             |                          |                      |                         |        |
| Plate Offects (X V): [7                  | ·····3-0 0-2-01 [0·0-4 | 3-8 0-2-01 [13- | 0-3-8 0-2-01 | [14.0-3-0 | 0-2-41        |                         |                           |                       |                         |                          |                             |                          |                      |                         |        |

|                                                                                                | ( ) <b>) [</b> )];                                                                                                                                                                                                 | [;];[                                                                                                                                                                                              | , -                                                                                                                                                              | -1/L /-                                                                                                                                                                                                      |                                                                                                                                                                                                                                                         |                                                                                                                                              |                                                                                                                                                                                               |                                          |                                                       |                                                                                                                                                         |                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                           |
|------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------|-------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Loading                                                                                        | (psf)                                                                                                                                                                                                              | Spacing                                                                                                                                                                                            | 2-0-0                                                                                                                                                            |                                                                                                                                                                                                              | csi                                                                                                                                                                                                                                                     |                                                                                                                                              | DEFL                                                                                                                                                                                          | in                                       | (loc)                                                 | l/defl                                                                                                                                                  | L/d                                                                                                                  | PLATES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | GRIP                                                                                                                                                                                                      |
| TCLL (roof)                                                                                    | 25.0                                                                                                                                                                                                               | Plate Grip DOI                                                                                                                                                                                     | 1 15                                                                                                                                                             |                                                                                                                                                                                                              | TC                                                                                                                                                                                                                                                      | 0.96                                                                                                                                         | Vert(LL)                                                                                                                                                                                      | -0.22                                    | 10-12                                                 | >999                                                                                                                                                    | 360                                                                                                                  | MT20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 197/144                                                                                                                                                                                                   |
| TCDI                                                                                           | 10.0                                                                                                                                                                                                               | Lumber DOI                                                                                                                                                                                         | 1 15                                                                                                                                                             |                                                                                                                                                                                                              | BC                                                                                                                                                                                                                                                      | 0.73                                                                                                                                         | Vert(CT)                                                                                                                                                                                      | -0.40                                    | 10-12                                                 | >878                                                                                                                                                    | 240                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                           |
| BCU                                                                                            | 0.0*                                                                                                                                                                                                               | Ren Stress Incr                                                                                                                                                                                    | NO                                                                                                                                                               |                                                                                                                                                                                                              | WB                                                                                                                                                                                                                                                      | 0.42                                                                                                                                         | Horz(CT)                                                                                                                                                                                      | 0.05                                     |                                                       | n/a                                                                                                                                                     |                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                           |
| BCDI                                                                                           | 10.0                                                                                                                                                                                                               | Code                                                                                                                                                                                               | IRC201                                                                                                                                                           | 8/TPI2014                                                                                                                                                                                                    | Matrix-S                                                                                                                                                                                                                                                | 02                                                                                                                                           | Wind(LL)                                                                                                                                                                                      | 0.19                                     | 10-12                                                 | >999                                                                                                                                                    | 240                                                                                                                  | Weight <sup>,</sup> 268 lb                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | FT = 10%                                                                                                                                                                                                  |
|                                                                                                |                                                                                                                                                                                                                    | 0000                                                                                                                                                                                               |                                                                                                                                                                  | 0, 11 12011                                                                                                                                                                                                  |                                                                                                                                                                                                                                                         |                                                                                                                                              |                                                                                                                                                                                               | 0.1.0                                    | 10 12                                                 | 1000                                                                                                                                                    | 2.0                                                                                                                  | 11019111 200 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                           |
| LUMBER<br>TOP CHORD<br>BOT CHORD<br>WEBS<br>BRACING<br>TOP CHORD<br>BOT CHORD<br>REACTIONS     | 2x4 SPF No.2<br>2x6 SPF No.2<br>2x4 SPF No.2 *Exce<br>No.2<br>Structural wood she<br>5-3-14 oc purlins, e<br>2-0-0 oc purlins (3-8<br>Rigid ceiling directly<br>bracing.<br>(size) 8= Mecha<br>Max Horiz, 14-39 (J | ept* 14-2,8-7:2x6 SPF<br>athing directly applied<br>xcept end verticals, ar<br>-2 max.): 3-6.<br>applied or 10-0-0 oc<br>anical, 14=0-3-8                                                          | 2)<br>3)<br>or<br>4)<br>5)                                                                                                                                       | All loads are<br>except if note<br>CASE(S) sec<br>provided to c<br>unless othen<br>Unbalanced<br>this design.<br>Wind: ASCE<br>Vasd=91mph<br>II; Exp C; En<br>cantilever lef<br>right expose<br>Provide adec | considered equa<br>ad as front (F) or l<br>tition. Ply to ply cc<br>iistribute only load<br>wise indicated.<br>roof live loads ha<br>7-16; Vult=115m<br>r; TCD=6.0psf; E<br>closed; MWFRS<br>t and right expose<br>t; Lumber DOL=1<br>quate drainage to | Ily applie<br>back (B)<br>onnection<br>ds noted<br>ve been of<br>ph (3-sec<br>BCDL=6.0<br>(envelope<br>ed; end v<br>1.60 plate<br>prevent of | d to all plies,<br>face in the LC<br>s have been<br>as (F) or (B),<br>considered for<br>cond gust)<br>Opsf; h=25ft; (<br>e) exterior zor<br>vertical left an<br>grip DOL=1.6<br>water ponding | DAD<br>r<br>Cat.<br>le;<br>d<br>60<br>j. | 16) "NA<br>(0.1<br>LOAD (<br>1) De<br>Pla<br>Ur<br>Cc | ILED" ir<br>48"x3.2<br>CASE(S)<br>aad + Ro<br>ate Incre-<br>inform Lo<br>Vert: 1-2<br>Orncentra<br>Vert: 3=<br>(B), 4=-<br>15=-110<br>19=-110<br>23=-51 | ndicate<br>5") toe<br>of Live<br>ase=1<br>bads (1<br>2=-70,<br>tee Lo<br>-110 (8<br>110 (8), 1<br>0 (8), 2<br>(8), 2 | s 3-10d (0.148"x<br>-nails per NDS c<br>ndard<br>(halanced): Lur<br>+5<br>23=-70, 3-6+7/<br>ads (lb)<br>23=-110 (B), 10<br>(5=-110 (B), 17<br>(5=-110 (B), 17)(17)(17)(17)(17)(17)(17)(17)(17)(17)( | :3") or 3-12d<br>juidlines.<br>Hold Cherease=1.15,<br>0,16-7=-70, 8 14=20<br>(CIA<br>3=-410 (B), 12=61<br>)=-51 (B), 9=-51 (B),<br>-110 (B), 18=-100 (B),<br>-51 (B), 22=-61 (B),<br>-51 (B), 22=-61 (B), |
| FORCES                                                                                         | Max Holiz 14=59 (LC<br>Max Uplift 8=-539 (L<br>Max Grav 8=2593 (L<br>(lb) - Maximum Com                                                                                                                            | .C 5), 14=-524 (LC 4)<br>.C 1), 14=2523 (LC 1)<br>.pression/Maximum                                                                                                                                | 6)<br>7)                                                                                                                                                         | This truss ha<br>chord live loa<br>* This truss h<br>on the bottor                                                                                                                                           | s been designed<br>ad nonconcurrent<br>as been designe<br>n chord in all area                                                                                                                                                                           | for a 10.0<br>with any<br>d for a liv<br>as where                                                                                            | 0 psf bottom<br>other live load<br>re load of 20.0<br>a rectangle                                                                                                                             | ds.<br>Ipsf                              |                                                       | 27=-230                                                                                                                                                 | (B), 2<br>) (B), 2                                                                                                   | 8=230 (B)<br>\$\$<br>\$\$<br>ON                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ALENGI                                                                                                                                                                                                    |
| TOP CHORD                                                                                      | Tension<br>1-2=0/30, 2-3=-4775<br>4-5=-6496/1437, 5-6<br>6-7=-4687/992, 2-14<br>7-8=-2254/478                                                                                                                      | 5/1017, 3-4=-6596/146<br>5=-6500/1439,<br>I=-2404/534,                                                                                                                                             | 66,<br>8)<br>9)<br>10                                                                                                                                            | 3-06-00 tall b<br>chord and ar<br>All bearings<br>Refer to girde                                                                                                                                             | by 2-00-00 wide w<br>by other members<br>are assumed to b<br>er(s) for truss to the<br>banical connection                                                                                                                                               | vill fit betv<br>s.<br>e SPF No<br>russ conr<br>on (by oth                                                                                   | veen the botto<br>c.2 .<br>nections.<br>ers) of truss to                                                                                                                                      | om<br>S                                  |                                                       |                                                                                                                                                         |                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                           |
| BOT CHORD                                                                                      | 13-14=-287/1014, 12<br>10-12=-1406/6592, 9<br>8-9=-273/1102                                                                                                                                                        | 2-13=-902/4331,<br>9-10=-888/4262,                                                                                                                                                                 | 11                                                                                                                                                               | bearing plate<br>14 and 539 ll<br>) This truss is                                                                                                                                                            | capable of withs<br>o uplift at joint 8.                                                                                                                                                                                                                | itanding 5                                                                                                                                   | ith the 2018                                                                                                                                                                                  | joint                                    |                                                       |                                                                                                                                                         |                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                           |
| WEBS                                                                                           | 3-13=0/307, 3-12=-5<br>4-10=-155/53, 5-10=<br>6-10=-554/2564, 6-9<br>7-9=-635/3182                                                                                                                                 | 563/2588, 4-12=-836/3<br>=-849/394,<br>9=0/272, 2-13=-692/33                                                                                                                                       | 885,<br>890, 12                                                                                                                                                  | International<br>R802.10.2 ar<br>) Graphical pu<br>or the orienta                                                                                                                                            | Residential Code<br>nd referenced sta<br>rlin representation<br>ation of the purlin                                                                                                                                                                     | e sections<br>indard AN<br>n does no<br>along the                                                                                            | s R502.11.1 a<br>NSI/TPI 1.<br>ot depict the s                                                                                                                                                | nd<br>ize                                |                                                       |                                                                                                                                                         |                                                                                                                      | JUAN CE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | GARCIA                                                                                                                                                                                                    |
| NOTES                                                                                          |                                                                                                                                                                                                                    |                                                                                                                                                                                                    |                                                                                                                                                                  | bottom chore                                                                                                                                                                                                 | l.                                                                                                                                                                                                                                                      |                                                                                                                                              |                                                                                                                                                                                               |                                          |                                                       |                                                                                                                                                         |                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                           |
| 1) 2-ply truss<br>(0.131"x3"<br>Top chord<br>oc, 2x6 - 2<br>Bottom ch<br>staggered<br>Web conn | s to be connected toged<br>') nails as follows:<br>Is connected as follows<br>2 rows staggered at 0-5<br>rords connected as follows<br>at 0-9-0 oc.<br>lected as follows: 2x4 -                                    | <ul> <li>B) Use Simpsor<br/>Right Hand F<br/>end to conner</li> <li>Use Simpsor<br/>Truss) or equivariant of equivariant<br/>25-5-0 from to<br/>back face of</li> <li>Fill all nail hor</li> </ul> | Strong-Tie LTH,<br>tip) or equivalent<br>ct truss(es) to ba<br>n Strong-Tie LUSS;<br>uivalent spaced a<br>he left end to 27-<br>bottom chord.<br>les where hange | JA26 (LT<br>at 5-11-1<br>ick face o<br>24 (4-10c<br>t 2-0-0 oc<br>5-0 to co<br>r is in cor                                                                                                                   | HJA26 on 2 p<br>10 from the lef<br>f bottom chore<br>d Girder, 2-10<br>c max. starting<br>nnect truss(es<br>ntact with lumb                                                                                                                             | ly,<br>it<br>d.<br>g at<br>s) to<br>per.                                                                                                     |                                                                                                                                                                                               |                                          | THINK.                                                | PROCESSION                                                                                                                                              | 952<br>VSAS                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                           |

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent buckling of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)





WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSUTPH Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcsccomponents.com) Read to the second seco



Scale = 1:42.3

#### Loading 2-0-0 CSI DEFL in l/defl L/d PLATES GRIP (psf) Spacing (loc) TCLL (roof) 25.0 Plate Grip DOL 1.15 тс 0.46 Vert(LL) -0.15 9-11 >999 360 MT20 197/144 TCDL 10.0 Lumber DOL 1.15 BC 0.64 Vert(CT) -0.34 9-11 >723 240 BCLL 0.0\* Rep Stress Incr YES WB Horz(CT) 0.03 8 0.32 n/a n/a BCDL 10.0 Code IRC2018/TPI2014 Matrix-S Wind(LL) 0.05 9-11 >999 240 Weight: 73 lb FT = 10% LUMBER 5) \* This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle TOP CHORD 2x4 SPF No.2 3-06-00 tall by 2-00-00 wide will fit between the bottom BOT CHORD 2x4 SPF No.2 chord and any other members. 2x3 SPF No.2 \*Except\* 12-2,8-6:2x4 SPF WEBS 6) All bearings are assumed to be SPF No.2 . No 2 Provide mechanical connection (by others) of truss to 7) BRACING bearing plate capable of withstanding 135 lb uplift at joint TOP CHORD Structural wood sheathing directly applied or 12 and 135 lb uplift at joint 8. 4-3-7 oc purlins, except end verticals, and This truss is designed in accordance with the 2018 11111 8) 2-0-0 oc purlins (4-10-15 max.): 3-5. MIS International Residential Code sections R502.11.1 and 0 BOT CHORD Rigid ceiling directly applied or 10-0-0 oc R802.10.2 and referenced standard ANSI/TPI 1. NS \* PROIN bracing 9) Graphical purlin representation does not depict the size REACTIONS 8=0-3-8, 12=0-3-8 (size) or the orientation of the purlin along the top and/or Max Horiz 12=-29 (LC 13) JUAN bottom chord. Max Uplift 8=-135 (LC 5), 12=-135 (LC 4) GARCIA LOAD CASE(S) Standard Max Grav 8=988 (LC 1), 12=988 (LC 1) FORCES (lb) - Maximum Compression/Maximum NUMBER Tension TOP CHORD 1-2=0/27, 2-3=-1533/188, 3-4=-1333/194, F 2000162101 4-5=-1333/194, 5-6=-1533/188, 6-7=0/27, GIT 2-12=-943/157, 6-8=-943/157 BOT CHORD 11-12=-163/422, 9-11=-226/1613, ONALE 8-9=-136/422

# WEBS

 Unbalanced roof live loads have been considered for this design.

3-11=0/310, 4-11=-427/136, 4-9=-427/136,

5-9=0/310, 2-11=-38/932, 6-9=-38/932

Plate Offsets (X, Y): [8:Edge,0-5-11], [12:Edge,0-5-11]

 Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60

Provide adequate drainage to prevent water ponding.
 This truss has been designed for a 10.0 psf bottom

chord live load nonconcurrent with any other live loads.

# 16952 March 7,2024

min

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSUTPP1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcsccomponents.com)





BOT CHORD 2x4 SPF No.2 2x3 SPF No.2 \*Except\* 11-2,7-5:2x6 SPF WEBS No.2 BRACING Structural wood sheathing directly applied or TOP CHORD 3-4-15 oc purlins, except end verticals, and 2-0-0 oc purlins (5-2-10 max.): 3-4. BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing REACTIONS 7=0-3-8, 11=0-3-8 (size) Max Horiz 11=42 (LC 8) Max Uplift 7=-122 (LC 9), 11=-122 (LC 8)

- Max Grav 7=987 (LC 1), 11=987 (LC 1) FORCES (lb) - Maximum Compression/Maximum Tension 1-2=0/30, 2-3=-1404/152, 3-4=-1189/169, TOP CHORD 4-5=-1405/152, 5-6=0/30, 2-11=-911/168, 5-7=-912/167 BOT CHORD 10-11=-276/731, 9-10=-62/1189,
- 7-9=-237/730 WEBS 3-10=0/221, 3-9=-150/150, 4-9=0/221,

#### NOTES

1) Unbalanced roof live loads have been considered for this design.

2-10=0/619, 5-9=0/620

- 2) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Provide adequate drainage to prevent water ponding. This truss has been designed for a 10.0 psf bottom 4)
- chord live load nonconcurrent with any other live loads.

- on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- 6) All bearings are assumed to be SPF No.2 .
- Provide mechanical connection (by others) of truss to 7) bearing plate capable of withstanding 122 lb uplift at joint 11 and 122 lb uplift at joint 7.
- This truss is designed in accordance with the 2018 8) International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 9) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

LOAD CASE(S) Standard



WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a trust system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria**, and **DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)



|                                                                                                            |                                                                                                                        |                                                                       |                                                                                                                    |                             |                                                                                                                                                             |                                                                                                                                                                                                                                 |                                                                                     |                                                                                                    |                                                                                |                                           |                                                                                         | _ [                                                                    | RELEASE                                                                                           | FOR CONSTRUCTIO                                                      | N  |
|------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|-----------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|-------------------------------------------|-----------------------------------------------------------------------------------------|------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|----|
| Job                                                                                                        |                                                                                                                        | Truss                                                                 |                                                                                                                    | Truss Ty                    | ре                                                                                                                                                          |                                                                                                                                                                                                                                 | Qty                                                                                 | ,                                                                                                  | Ply                                                                            | Lot 116 N                                 | IN                                                                                      |                                                                        | AS NOTE                                                                                           | D FOR PLAN REVIEW                                                    | V  |
| 240612                                                                                                     |                                                                                                                        | G4                                                                    |                                                                                                                    | Hip Giro                    | der                                                                                                                                                         |                                                                                                                                                                                                                                 | 1                                                                                   |                                                                                                    | 2                                                                              | Job Refer                                 | ence (or                                                                                | otional                                                                | LEE'S                                                                                             | I64102267<br>SUMMIT, MISSOURI                                        |    |
| Wheeler Lumber                                                                                             | , Waverly, KS - 6                                                                                                      | 66871,                                                                |                                                                                                                    | 1                           |                                                                                                                                                             | Run: 8.73 S Feb 2<br>ID:7cJ1dLgdDu7c?                                                                                                                                                                                           | 2 2024 I<br>iyLFrlZx                                                                | Print: 8.7:<br>3zdKeC-                                                                             | 30 S Feb 2<br>RfC?PsB7                                                         | 2 2024 MiTel<br>0Hq3NSgPqr                | Industrie<br>L8w3uIT                                                                    | s, Inc. 1<br>(bGKW                                                     | hu Mar (7) 1/56:/5<br>CDoi7J4zJC?f                                                                | )2/202                                                               | 4  |
|                                                                                                            |                                                                                                                        |                                                                       | -0-10-8<br>0-10-8                                                                                                  | <u>4-11-11</u><br>4-11-11   |                                                                                                                                                             | 9-8-14<br>4-9-3                                                                                                                                                                                                                 |                                                                                     | 10-11-2<br>1-2-4                                                                                   | 2                                                                              | <u>15-8-5</u><br>4-9-3                    |                                                                                         | -                                                                      | 20-8-0<br>4-11-11                                                                                 | ———————————————————————————————————————                              |    |
| -                                                                                                          | +                                                                                                                      |                                                                       |                                                                                                                    |                             | 12<br>5 Г                                                                                                                                                   |                                                                                                                                                                                                                                 | 4                                                                                   | 5×6 =                                                                                              | 4x5 =                                                                          |                                           |                                                                                         |                                                                        |                                                                                                   |                                                                      |    |
| 4-10-4                                                                                                     | 4-9-1<br>0<br>0                                                                                                        | 10-0                                                                  | 1                                                                                                                  |                             | 3x4                                                                                                                                                         |                                                                                                                                                                                                                                 |                                                                                     |                                                                                                    |                                                                                |                                           |                                                                                         | 8×6 ≈<br>6                                                             |                                                                                                   | 6x8=                                                                 |    |
| -                                                                                                          |                                                                                                                        | <u>-</u>                                                              | ₩14                                                                                                                |                             | 13                                                                                                                                                          |                                                                                                                                                                                                                                 | 12                                                                                  | 2                                                                                                  | <br>11 10                                                                      | 1                                         | 11<br>5                                                                                 | 9 16                                                                   | 17                                                                                                | ∐o                                                                   |    |
|                                                                                                            |                                                                                                                        |                                                                       | 6x6 ≠                                                                                                              |                             | 4x5 =                                                                                                                                                       |                                                                                                                                                                                                                                 | 3x                                                                                  | 4=                                                                                                 | 3x10=                                                                          |                                           |                                                                                         | 6x6 =                                                                  |                                                                                                   |                                                                      |    |
|                                                                                                            |                                                                                                                        |                                                                       |                                                                                                                    |                             |                                                                                                                                                             |                                                                                                                                                                                                                                 |                                                                                     |                                                                                                    | 4x8                                                                            | HU:                                       | S26                                                                                     | HUS26                                                                  | HUS26                                                                                             | HUS26                                                                |    |
| Scale = 1:46                                                                                               |                                                                                                                        |                                                                       |                                                                                                                    | <u>4-11-11</u><br>4-11-11   |                                                                                                                                                             | 9-7-2<br>4-7-7                                                                                                                                                                                                                  |                                                                                     | <u>11-0-14</u><br>1-5-12                                                                           | <u>+</u>                                                                       | <u>15-8-5</u><br>4-7-7                    |                                                                                         |                                                                        | <u>20-8-0</u><br>4-11-11                                                                          |                                                                      |    |
| Plate Offsets (2                                                                                           | X, Y): [7:0-3-4                                                                                                        | 4,0-5-4],                                                             | [9:0-3-0,0-4-4], [14:0                                                                                             | )-1-4,0-2-8]                |                                                                                                                                                             |                                                                                                                                                                                                                                 |                                                                                     |                                                                                                    |                                                                                |                                           |                                                                                         |                                                                        |                                                                                                   |                                                                      |    |
| Loading<br>TCLL (roof)<br>TCDL<br>BCLL                                                                     |                                                                                                                        | (psf)<br>25.0<br>10.0<br>0.0*                                         | <b>Spacing</b><br>Plate Grip DOL<br>Lumber DOL<br>Rep Stress Incr                                                  | 2-0-0<br>1.15<br>1.15<br>NO |                                                                                                                                                             | CSI<br>TC<br>BC<br>WB                                                                                                                                                                                                           | 0.29<br>0.67<br>0.39                                                                | DEFL<br>Vert(LI<br>Vert(C<br>Horz(C                                                                | L) -0.<br>T) -0.<br>CT) 0.                                                     | in (loc)<br>.07 9-11<br>.12 9-11<br>.02 8 | l/defl<br>>999<br>>999<br>n/a                                                           | L/d<br>360<br>240<br>n/a                                               | PLATES<br>MT20                                                                                    | <b>GRIP</b><br>197/144                                               |    |
| BCDL                                                                                                       |                                                                                                                        | 10.0                                                                  | Code                                                                                                               | IRC2018                     | /TPI2014                                                                                                                                                    | Matrix-S                                                                                                                                                                                                                        | 0.00                                                                                | Wind(L                                                                                             | _L) 0.                                                                         | .05 9-11                                  | >999                                                                                    | 240                                                                    | Weight: 210 lb                                                                                    | FT = 10%                                                             |    |
| LUMBER<br>TOP CHORD<br>BOT CHORD<br>WEBS<br>BRACING<br>TOP CHORD<br>BOT CHORD                              | 2x4 SPF No<br>2x6 SPF No<br>2x4 SPF No<br>No.2<br>Structural w<br>5-6-9 oc pur<br>2-0-0 oc pur<br>Rigid ceiling        | .2<br>.2 *Exce<br>lood shea<br>lins, exc<br>lins (6-0-<br>directly    | pt* 14-2,8-7:2x6 SPF<br>athing directly applie<br>xept end verticals, ar<br>-0 max.): 4-5.<br>applied or 10-0-0 oc | 2)<br>=<br>3)<br>d or 4)    | All loads are<br>except if note<br>CASE(S) sec<br>provided to d<br>unless otherw<br>Unbalanced<br>this design.<br>Wind: ASCE<br>Vasd=91mph<br>II; Exp C; Em | considered equally<br>ed as front (F) or bar<br>tion. Ply to ply conr<br>istribute only loads<br>vise indicated.<br>roof live loads have<br>7-16; Vult=115mph<br>; TCDL=6.0psf; BC<br>closed; MWFRS (er<br>: and right expected | applied<br>ck (B) f<br>hections<br>noted a<br>been c<br>(3-sec<br>DL=6.0<br>ivelope | to all p<br>ace in the<br>s have to<br>as (F) or<br>consider<br>ond gus<br>opsf; h=2<br>e) exterio | lies,<br>he LOAD<br>been<br>r (B),<br>red for<br>st)<br>25ft; Cat.<br>or zone; | LOAD<br>1) D<br>P<br>U<br>C               | CASE(S<br>ead + Re<br>late Incre<br>niform L<br>Vert: 1-<br>oncentra<br>Vert: 8=<br>(B) | ) Star<br>pof Live<br>ease=1<br>oads (II<br>2=-70,<br>ited Los<br>1198 | ndard<br>(balanced): Lum<br>.15<br>./ft)<br>2-4=-70, 4-5=-70<br>ads (lb)<br>(B), 15=-887 (B),<br> | ber Increase=1.15,<br>5-7=-70, 8-14=-20<br>16=-887 (B), 17=-8<br>115 | 87 |
| REACTIONS                                                                                                  | bracing.<br>(size) 8=<br>Max Horiz 14<br>Max Uplift 8=                                                                 | =0-3-8, 1<br>4=66 (LC<br>=-777 (L(                                    | 4=0-3-8<br>\$ 8)<br>C 9), 14=-218 (LC 8)                                                                           | 5)<br>6)                    | right exposed<br>Provide aded<br>This truss ha<br>chord live loa                                                                                            | d; Lumber DOL=1.6<br>uate drainage to prosent<br>s been designed for<br>d nonconcurrent wi                                                                                                                                      | , end v<br>0 plate<br>event v<br>a 10.0<br>th any                                   | grip DC<br>vater po<br>) psf bot<br>other liv                                                      | DL=1.60<br>onding.<br>tom<br>re loads.                                         |                                           |                                                                                         | ······                                                                 | D JUA<br>GARO                                                                                     | N DIA                                                                |    |
| FORCES                                                                                                     | (lb) - Maxim                                                                                                           | =4205 (L<br>um Com                                                    | pression/Maximum                                                                                                   | ) 7)                        | * This truss h<br>on the botton                                                                                                                             | as been designed for<br>the chord in all areas                                                                                                                                                                                  | or a live<br>where                                                                  | e load o<br>a rectan                                                                               | f 20.0psf<br>igle                                                              |                                           |                                                                                         | E                                                                      |                                                                                                   | -                                                                    |    |
| TOP CHORD                                                                                                  | Tension<br>1-2=0/30, 2-<br>4-5=-2471/3<br>6-7=-4912/6                                                                  | 3=-2627<br>66, 5-6=<br>70, 2-14                                       | /340, 3-4=-2499/331<br>-2758/369,<br>=-1445/237,                                                                   | ,<br>8)<br>9)               | 3-06-00 tall b<br>chord and an<br>All bearings a<br>Provide mech                                                                                            | y 2-00-00 wide will<br>y other members.<br>are assumed to be S<br>nanical connection (                                                                                                                                          | fit betw<br>SPF No<br>by othe                                                       | een the<br>0.2 .<br>ers) of tr                                                                     | bottom                                                                         |                                           |                                                                                         | 1111                                                                   | E-20001                                                                                           | 62101                                                                |    |
| BOT CHORD                                                                                                  | 7-8=-2395/3<br>13-14=-157/<br>11-12=-232/<br>8-9=-200/13                                                               | 59<br>583, 12-<br>2256, 9-<br>40                                      | 13=-322/2361,<br>11=-579/4472,                                                                                     | 10)                         | bearing plate<br>14 and 777 lk<br>This truss is o                                                                                                           | capable of withstar<br>o uplift at joint 8.<br>designed in accorda                                                                                                                                                              | nding 2                                                                             | 18 lb up<br>th the 2                                                                               | olift at join<br>018<br>1 1 and                                                | t                                         |                                                                                         |                                                                        | III SONA                                                                                          | LENIN                                                                |    |
| WEBS                                                                                                       | 3-13=-198/9<br>4-12=-141/1<br>5-11=-115/8<br>6-9=-173/16<br>7-9=-381/31                                                | 1, 3-12=<br>00, 4-11<br>19, 6-11<br>62, 2-13<br>53                    | -160/240,<br>=-166/892,<br>=-2291/413,<br>=-167/1789,                                                              | 11)                         | Graphical pu<br>or the orienta<br>bottom chord                                                                                                              | Residential Code se<br>ad referenced stand<br>rlin representation d<br>tion of the purlin alc                                                                                                                                   | ard AN<br>loes no<br>ong the                                                        | SI/TPI 1<br>SI/TPI 1<br>top and<br>top and                                                         | the size                                                                       |                                           |                                                                                         |                                                                        | JUAN C                                                                                            | ARCIA                                                                |    |
| NOTES<br>1) 2-ply truss<br>(0.131"x3"<br>Top chords<br>oc, 2x6 - 2<br>Bottom cho<br>staggered<br>Web conne | to be connect<br>) nails as follo<br>s connected a<br>rows stagger<br>ords connecte<br>at 0-9-0 oc.<br>ected as follow | ted toget<br>ws:<br>s follows<br>ed at 0-9<br>d as follo<br>vs: 2x4 - | her with 10d<br>: 2x4 - 1 row at 0-9-(<br>-0 oc.<br>wws: 2x6 - 2 rows<br>1 row at 0-9-0 oc.                        | ) 13)<br>14)                | Truss) or equ<br>14-2-0 from t<br>back face of<br>Fill all nail ho<br>Hanger(s) or<br>provided suff<br>lb down and<br>design/select<br>responsibility       | wivalent spaced at 2:<br>he left end to 20-2-(<br>bottom chord.<br>les where hanger is<br>other connection de<br>cicient to support cor<br>364 lb up at 20-5-4<br>ion of such connect<br>of others.                             | in con<br>vice(s)<br>on bot                                                         | tact with<br>shall b<br>ted load<br>tom cho                                                        | tarting at<br>uss(es) to<br>h lumber.<br>e<br>d(s) 1198<br>ord. The<br>s the   |                                           |                                                                                         | THINK.                                                                 | PROKESSION                                                                                        | ALENCHII                                                             |    |

- staggered at 0-9-0 oc.
- Web connected as follows: 2x4 1 row at 0-9-0 oc.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)



|                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                             |                                      |                             |                          | RELEASE                                                       | FOR CONSTRUCTION                                             |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|-----------------------------|--------------------------|---------------------------------------------------------------|--------------------------------------------------------------|
| Job                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                 | Truss                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Truss Type                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Qty                                                                                                                                                                                                                                                                                                                                                                            | Ply                                                                                                                                                                                                                                                                                                                         | Lot 116 MM                           | N                           |                          | AS NOTE<br>DEVEL                                              | D FOR PLAN REVIEW                                            |
| 240612                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                 | H1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Common Supporte                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | d Gable                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1                                                                                                                                                                                                                                                                                                                                                                              | 1                                                                                                                                                                                                                                                                                                                           | Job Refere                           | ence (opt                   | tional                   | LEE'S                                                         | I64102268<br>SUMMIT, MISSOURI                                |
| Wheeler Lumber                                                                                                                                                                           | , Waverly, KS                                                                                                                                                                                                                                                                                   | - 66871,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Run: 8.73 S Feb                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 22 2024 Print: 8                                                                                                                                                                                                                                                                                                                                                               | .730 S Feb 2                                                                                                                                                                                                                                                                                                                | 2 2024 MiTek                         | Industries                  | , Inc.                   | hu Mar (7) 1,6:46                                             | 02/2024                                                      |
|                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ID. ITIKezoliboQp                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 24K74gwbJiviyK                                                                                                                                                                                                                                                                                                                                                                 | YAD-RIC (FS                                                                                                                                                                                                                                                                                                                 | влопцзімодец                         | nrowani                     | ADGh                     | WICD01734230?                                                 |                                                              |
|                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -0-10-8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 5-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 7-10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | I                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                             | 11                                   | -3-4                        |                          | 12                                                            | -1-12                                                        |
|                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0-10-8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 5-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 7-10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                             | 5-7                                  | 7-10                        |                          | 0-                                                            | 10-8                                                         |
|                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                             |                                      |                             |                          |                                                               |                                                              |
|                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 4x5                                                                                                                                                                                                                                                                                                                                                                            | -                                                                                                                                                                                                                                                                                                                           |                                      |                             |                          |                                                               |                                                              |
|                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 5                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                             |                                      |                             |                          |                                                               |                                                              |
|                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | J                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                             | 6                                    |                             |                          |                                                               |                                                              |
|                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                             |                                      |                             |                          |                                                               |                                                              |
|                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                             |                                      | $\sim$                      |                          | 7                                                             |                                                              |
|                                                                                                                                                                                          | 3-2                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                             |                                      |                             | -<br>-                   | 8                                                             |                                                              |
|                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                 | <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                             |                                      |                             |                          |                                                               | 9                                                            |
|                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                 | 0-10-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                             |                                      |                             |                          |                                                               | 10                                                           |
|                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                             |                                      |                             |                          |                                                               |                                                              |
|                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3x <sup>2</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 15<br>0 u                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 13                                                                                                                                                                                                                                                                                                                                                                             | ~~~~~~                                                                                                                                                                                                                                                                                                                      | 12                                   |                             | 11                       | 3x10                                                          |                                                              |
|                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                             |                                      |                             |                          |                                                               |                                                              |
| Scolo - 1:20 2                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 11-3-4                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                             |                                      |                             |                          |                                                               |                                                              |
| Plate Offsets (                                                                                                                                                                          | X, Y): [10:0-                                                                                                                                                                                                                                                                                   | 5-8,0-1-8]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | , [16:0-5-8,0-1-8]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                             |                                      |                             |                          |                                                               |                                                              |
| Loading<br>TCLL (roof)<br>TCDL<br>BCLL<br>BCDL                                                                                                                                           |                                                                                                                                                                                                                                                                                                 | (psf)<br>25.0<br>10.0<br>0.0*<br>10.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Spacing<br>Plate Grip DOL<br>Lumber DOL<br>Rep Stress Incr<br>Code                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2-0-0<br>1.15<br>1.15<br>YES<br>IRC2018/TPI2014                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | CSI<br>TC<br>BC<br>WB<br>Matrix-R                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.07 Verti<br>0.02 Verti<br>0.02 Horz                                                                                                                                                                                                                                                                                                                                          | L<br>(LL)<br>(CT)<br>:(CT) 0                                                                                                                                                                                                                                                                                                | in (loc)<br>n/a -<br>n/a -<br>.00 10 | l/defl<br>n/a<br>n/a<br>n/a | L/d<br>999<br>999<br>n/a | PLATES<br>MT20<br>Weight: 39 lb                               | <b>GRIP</b><br>197/144<br>FT = 10%                           |
| LUMBER<br>TOP CHORD<br>BOT CHORD<br>WEBS<br>OTHERS<br>BRACING<br>TOP CHORD<br>BOT CHORD<br>REACTIONS<br>FORCES<br>TOP CHORD<br>BOT CHORD<br>WEBS<br>NOTES<br>1) Unbalance<br>this design | 2x4 SPF N<br>2x4 SPF N<br>2x4 SPF N<br>2x4 SPF N<br>Structural v<br>10-0-0 cc p<br>Rigid ceilin<br>bracing.<br>(size)<br>Max Horiz<br>Max Uplift<br>Max Grav<br>(lb) - Maxin<br>Tension<br>2-16=-129/<br>3-4=-16/53<br>8-10=-129/<br>15-16=-13/<br>12-13=-134/<br>6-12=-158/<br>ed roof live lo | 0.2<br>0.2<br>0.2<br>0.2<br>0.2<br>0.2<br>10=11-3-4<br>13=11-3-4<br>16=128 (L1<br>12=-52 (L1<br>15=-51 (L1<br>12=-52 (L1)))))))))))))))))))))))))))))))))))) | athing directly applied<br>ccept end verticals.<br>applied or 6-0-0 oc<br>, 11=11-3-4, 12=11-3<br>, 14=11-3-4, 15=11-3<br>C 9)<br>C 5), 11=-49 (LC 9),<br>C 9), 14=-52 (LC 8),<br>C 8), 16=-42 (LC 4)<br>C 22), 13=174 (LC 1)<br>C 22), 13=174 (LC 1)<br>C 21), 15=144 (LC 1)<br>C 21), 15=144 (LC 1)<br>C 21), 15=144 (LC 1)<br>C 21), ression/Maximum<br>/27, 2-3=-25/42,<br>72, 5-6=-23/68,<br>38, 8-9=0/27,<br>=-13/28, 13-14=-13/2<br>=-13/28, 13-14=-13/2<br>[58/77, 3-15=-108/67<br>-108/66<br>been considered for | <ol> <li>Wind: ASCE<br/>Vasd=91mpi<br/>II; Exp C; Ern<br/>cantilever lei<br/>right expose</li> <li>Truss desig<br/>only. For stt<br/>see Standar<br/>or consult qu</li> <li>All plates are</li> <li>Gable requir</li> <li>Truss to be 1<br/>braced agair</li> <li>Gable studs</li> <li>This truss he<br/>chord live loi</li> <li>* This truss 1<br/>on the botton<br/>3-06-00 tall 1<br/>chord and ar</li> <li>All bearings</li> <li>Provide mec<br/>bearing plate<br/>16, 41 lb upl<br/>uplift at joint<br/>11.</li> <li>This truss is<br/>International<br/>R802.10.2 a</li> <li>LOAD CASE(S)</li> </ol> | 7-16; Vult=115mp<br>1; TCDL=6.0psf; Bi<br>closed; MWFRS (et<br>t and right exposed<br>d; Lumber DOL=1.<br>ned for wind loads<br>uds exposed to wind<br>l Industry Gable E<br>alified building des<br>2x4 MT20 unless<br>es continuous bott<br>ully sheathed from<br>stal tateral moveme<br>spaced at 2-0-0 oc<br>is been designed fi<br>ad nonconcurrent v<br>as been designed fi<br>ad nonconcurrent v<br>as been designed in al areas<br>by 2-00-00 wide will<br>y other members.<br>are assumed to be<br>thanical connection<br>c capable of withsta<br>ift at joint 10, 52 lb<br>15, 52 lb uplift at jc<br>designed in accord<br>Residential Code<br>nd referenced stan<br>Standard | h (3-second g<br>CDL=6.0psf; h<br>envelope) exte<br>d; end vertica<br>60 plate grip I<br>in the plane o<br>id (normal to the<br>otherwise ind<br>om chord beai<br>or ne face or s<br>nt (i.e. diagon<br>c.<br>or a 10.0 psf b<br>with any other<br>or a live load<br>s where a rect<br>Il fit between the<br>sections R502<br>dance with the<br>sections R502<br>idard ANSI/TP | ust)<br>=25ft; Cat.<br>erior zone;<br>I left and<br>DOL=1.60<br>f the truss<br>he face),<br>applicable,<br>ANSI/TPI 1.<br>icated.<br>rring.<br>ecurely<br>al web).<br>bottom<br>live loads.<br>I of 20.0psf<br>angle<br>he bottom<br>f truss to<br>plift at joint<br>4, 51 lb<br>lb uplift at<br>2018<br>2.11.1 and<br>1 1. |                                      |                             |                          | DUA<br>GAR<br>NUME<br>E-20001<br>SS/ONA<br>LCE<br>169<br>NONA | MISSOCIA<br>BER<br>62101<br>ALENO<br>ALENO $ALENOALENOALENO$ |

Astitute (www.tpinst.org) Mittee Ket Monte Stringley Ridge Rd. Chesterfield, MO 63017 314.434.1200 / Mittek-US.com

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

|                                 |        |                      |               |              |                               | RELEASE FOR CONSTRUCTION |
|---------------------------------|--------|----------------------|---------------|--------------|-------------------------------|--------------------------|
| lob                             | Trues  |                      | Otv           | Plv          | Lot 116 MN                    | AS NOTED FOR PLAN REVIEW |
| 000                             | 11033  |                      | Quy           | l''y         |                               | DEVELOPMENT SERVICES     |
| 240612                          | H2     | Common Girder        | 1             | 2            | Job Reference (optional       | LEE'S SUMMIT, MISSOURI   |
| Wheeler Lumber, Waverly, KS - 6 | 66871, | Run: 8.73 S Feb 22 2 | 024 Print: 8. | 730 S Feb 22 | 2 2024 MiTek Industries, Inc. |                          |

ID:oDDgjBrjJFRg?JLgYM33e2yKyAT-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi794zJC?



|                |   |       | 166    | 020-2 11002 | 10020  |   |
|----------------|---|-------|--------|-------------|--------|---|
|                | 1 | 3-7-8 | 7-7-12 | 2           | 11-3-4 | 1 |
|                |   | 3-7-8 | 4-0-4  |             | 3-7-8  |   |
| Scale = 1:33.4 |   |       |        |             |        |   |

#### Plate Offsets (X, Y): [2:Edge,0-1-0], [6:Edge,0-1-0], [7:0-4-0,0-4-12], [8:0-4-0,0-4-12]

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)



|                               |        |                                          |                             |                             |                                                                       | RELEASE FOR CONSTRUCTION |
|-------------------------------|--------|------------------------------------------|-----------------------------|-----------------------------|-----------------------------------------------------------------------|--------------------------|
| Job                           | Truss  | Truss Type                               | Qty                         | Ply                         | Lot 116 MN                                                            |                          |
| 240612                        | J1     | Diagonal Hip Girder                      | 2                           | 1                           | Job Reference (optional                                               | LEE'S SUMMIT, MISSOURI   |
| Wheeler Lumber, Waverly, KS - | 66871, | Run: 8.73 S Feb 22<br>ID:1hke2SliBoQp24k | 2024 Print: 8<br>74gwBJMyKy | .730 S Feb 2<br>/Ab-RfC?PsE | 2 2024 MiTek Industries, Inc. <sup>–</sup><br>370Hq3NSgPqnL8w3ulTXbGk | hu Mar 0146, 02/2024     |
|                               |        | 1 1                                      |                             |                             | l                                                                     |                          |
|                               |        | -1-2-14                                  | 3-3-14                      | 1                           |                                                                       |                          |
|                               |        | 1-2-14                                   | 3-3-14                      | 1                           |                                                                       |                          |



| 3-3-14 | 1 |
|--------|---|
|        |   |
|        |   |

Scale = 1:23.5

Plate Offsets (X, Y): [5:0-5-6,0-1-8]

| Loading                                                                         | (psf)                                                  | Spacing                  | 2-0-0   |                | CSI               |             | DEFL          | in   | (loc) | l/defl | L/d | PLATES        | GRIP       |
|---------------------------------------------------------------------------------|--------------------------------------------------------|--------------------------|---------|----------------|-------------------|-------------|---------------|------|-------|--------|-----|---------------|------------|
| TCLL (roof)                                                                     | 25.0                                                   | Plate Grip DOL           | 1.15    |                | TC                | 0.14        | Vert(LL)      | 0.00 | 4-5   | >999   | 360 | MT20          | 197/144    |
| TCDL                                                                            | 10.0                                                   | Lumber DOL               | 1.15    |                | BC                | 0.05        | Vert(CT)      | 0.00 | 4-5   | >999   | 240 |               |            |
| BCLL                                                                            | 0.0*                                                   | Rep Stress Incr          | NO      |                | WB                | 0.00        | Horz(CT)      | 0.00 | 4     | n/a    | n/a |               |            |
| BCDL                                                                            | 10.0                                                   | Code                     | IRC2018 | /TPI2014       | Matrix-R          |             | Wind(LL)      | 0.00 | 4-5   | >999   | 240 | Weight: 11 lb | FT = 10%   |
|                                                                                 |                                                        |                          | 8)      | In the LOAD    | CASE(S) section   | n. loads ar | oplied to the | face |       |        |     |               |            |
| TOP CHORD                                                                       | 2x4 SPF No 2                                           |                          | -,      | of the truss a | re noted as front | (F) or ba   | ck (B).       |      |       |        |     |               |            |
| BOT CHORD                                                                       | 2x4 SPE No 2                                           |                          | 10      | AD CASE(S)     | Standard          | ( )         |               |      |       |        |     |               |            |
| WEBS                                                                            | 2x4 SPF No.2 *Exce                                     | ot* 3-4:2x3 SPF No.:     | 2 1)    | Dead + Roc     | of Live (balanced | ). Lumber   | Increase=1    | 15   |       |        |     |               |            |
| BRACING                                                                         | 2/1 0/1 10/2 2/00                                      |                          | ,       | Plate Increa   | se=1.15           | ). Euriboi  | 11010000-11   | 10,  |       |        |     |               |            |
| TOP CHORD                                                                       | Structural wood she                                    | athing directly applie   | d or    | Uniform Loa    | ads (lb/ft)       |             |               |      |       |        |     |               |            |
|                                                                                 | 3-3-14 oc purlins, except end verticals. Vert: 1-2=-70 |                          |         |                |                   |             |               |      |       |        |     |               |            |
| BOT CHORD Rigid ceiling directly applied or 10-0-0 oc Trapezoidal Loads (lb/ft) |                                                        |                          |         |                |                   |             |               |      |       |        | 111 |               |            |
| bracing. Vert: 2=-3 (F=34, B=34)-to-3=-58 (F=6, B=6), 5=0                       |                                                        |                          |         |                |                   |             |               |      |       |        |     |               |            |
| REACTIONS (size) 4= Mechanical, 5=0-4-9 (F=10, B=10)-to-4=-17 (F=2, B=2)        |                                                        |                          |         |                |                   |             |               |      |       | VISSI  |     |               |            |
| Max Horiz 5=87 (LC 7)                                                           |                                                        |                          |         |                |                   |             |               |      |       | 0,4    |     |               |            |
| Max Uplift 4=-38 (LC 12), 5=-77 (LC 4)                                          |                                                        |                          |         |                |                   |             |               |      | X     | . 0-   |     |               |            |
|                                                                                 | Max Grav 4=59 (LC                                      | 3), 5=160 (LC 1)         |         |                |                   |             |               |      |       |        |     | JUA :         | IN         |
| FORCES                                                                          | (lb) - Maximum Com                                     | pression/Maximum         |         |                |                   |             |               |      |       |        | 24  | GAR           |            |
|                                                                                 | Tension                                                | '                        |         |                |                   |             |               |      |       |        | - ^ |               |            |
| TOP CHORD                                                                       | 2-5=-147/91, 1-2=0/                                    | 27, 2-3=-28/12,          |         |                |                   |             |               |      |       |        | -   | 1             | ·~ -       |
|                                                                                 | 3-4=-43/48                                             |                          |         |                |                   |             |               |      |       |        | =7  | NUME          | BER :      |
| BOT CHORD                                                                       | 4-5=-33/19                                             |                          |         |                |                   |             |               |      |       |        |     | E-20001       | 62101 :4   |
| NOTES                                                                           |                                                        |                          |         |                |                   |             |               |      |       |        | 1   | A             |            |
| 1) Wind: ASC                                                                    | CE 7-16; Vult=115mph                                   | (3-second gust)          |         |                |                   |             |               |      |       |        | 1   | 150000        | GN         |
| Vasd=91m                                                                        | nph; TCDL=6.0psf; BC                                   | DL=6.0psf; h=25ft; C     | at.     |                |                   |             |               |      |       |        |     | IN ONL        | LENN       |
| II; Exp C; I                                                                    | Enclosed; MWFRS (er                                    | nvelope) exterior zon    | e;      |                |                   |             |               |      |       |        |     | 1111          | iiiii      |
| cantilever                                                                      | left and right exposed                                 | ; end vertical left and  |         |                |                   |             |               |      |       |        |     |               |            |
| right expos                                                                     | sed; Lumber DOL=1.6                                    | 0 plate grip DOL=1.6     | 0       |                |                   |             |               |      |       |        |     |               | 1111.      |
| 2) I NIS TRUSS                                                                  | has been designed for                                  | r a 10.0 psr bottom      |         |                |                   |             |               |      |       |        |     | NN C          | JARO !!    |
| 2) * This true                                                                  | s has been designed f                                  | in any other live load   | IS.     |                |                   |             |               |      |       |        |     | N JUN         | ····· A 11 |
| on the bot                                                                      | tom chord in all areas                                 | where a rectangle        | 551     |                |                   |             |               |      |       |        |     | CE            | NSE        |
| 3-06-00 ta                                                                      | II by 2-00-00 wide will                                | fit between the botto    | m       |                |                   |             |               |      |       |        |     |               |            |
| chord and                                                                       | any other members.                                     |                          |         |                |                   |             |               |      |       |        | -   | 1 - E         | 1 2        |
| 4) All bearing                                                                  | as are assumed to be S                                 | SPF No.2 .               |         |                |                   |             |               |      |       |        |     | 160           | 252        |
| 5) Refer to gi                                                                  | irder(s) for truss to tru                              | ss connections.          |         |                |                   |             |               |      |       |        | -   | 10.           |            |
| 6) Provide m                                                                    | echanical connection (                                 | (by others) of truss to  | )       |                |                   |             |               |      |       |        | -   | T             |            |
| bearing pla                                                                     | ate capable of withstar                                | nding 77 lb uplift at jo | int     |                |                   |             |               |      |       |        |     | 0.            | 145        |
| 5 and 38 ll                                                                     | b uplift at joint 4.                                   |                          |         |                |                   |             |               |      |       |        |     | A MAN         | ISA3       |
| 7) This truss                                                                   | is designed in accorda                                 | ance with the 2018       |         |                |                   |             |               |      |       |        |     | 1,00/01       | ENUI       |
| Internation                                                                     | nal Residential Code s                                 | ections R502.11.1 ar     | d       |                |                   |             |               |      |       |        |     | III ON        | AL         |
| R802.10.2                                                                       | and referenced stand                                   | iard ANSI/TPI 1.         |         |                |                   |             |               |      |       |        |     | - 41          | 110.       |

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

16023 Swingley Ridge Rd. Chesterfield, MO 63017 314.434.1200 / MiTek-US.com

|        |       |             |     |     |                         | RELEASE FOR CONSTRUCTION |
|--------|-------|-------------|-----|-----|-------------------------|--------------------------|
| lob    | Trucc | Truce Type  | 011 | DIV | Lot 116 MN              | AS NOTED FOR PLAN REVIEW |
| 300    | TTUSS | Truss Type  | Qly | Fiy | LOU I TO IVIN           | DEVELOPMENT SERVICES     |
| 240612 | J2    | Jack-Closed | 9   | 1   | Job Reference (optional | LEE'S SUMMIT, MISSOURI   |
|        | •     |             |     |     |                         |                          |

Run: 8.73 S Feb 22 2024 Print: 8.730 S Feb 22 2024 MiTek Industries, Inc. hu Mar 0143, 02/2024 ID:1hke2SliBoQp24k74gwBJMyKyAb-RfC?PsB70Hq3NSgPqnL8w3uITXbGK WrCDoi7, 2.0?





|                         |                |         |       | 2   | 2-5-4 | -  |       |        |     |        |      |  |
|-------------------------|----------------|---------|-------|-----|-------|----|-------|--------|-----|--------|------|--|
| Scale = 1:23.6          |                |         |       |     |       | I  |       |        |     |        |      |  |
| Plate Offsets (X, Y): [ | 5:0-5-8,0-1-8] |         |       |     |       |    |       |        |     |        |      |  |
| Loading                 | (psf)          | Spacing | 2-0-0 | CSI | DEFL  | in | (loc) | l/defl | L/d | PLATES | GRIP |  |

| LUMBER      |       |                 | LOAD CASE(S)    | Standard |      |          |      |       |        |     |              |          |
|-------------|-------|-----------------|-----------------|----------|------|----------|------|-------|--------|-----|--------------|----------|
| BCDL        | 10.0  | Code            | IRC2018/TPI2014 | Matrix-R |      | Wind(LL) | 0.00 | 4-5   | >999   | 240 | Weight: 8 lb | FT = 10% |
| BCLL        | 0.0*  | Rep Stress Incr | YES             | WB       | 0.00 | Horz(CT) | 0.00 | 4     | n/a    | n/a |              |          |
| TCDL        | 10.0  | Lumber DOL      | 1.15            | BC       | 0.03 | Vert(CT) | 0.00 | 4-5   | >999   | 240 |              |          |
| TCLL (roof) | 25.0  | Plate Grip DOL  | 1.15            | TC       | 0.07 | Vert(LL) | 0.00 | 4-5   | >999   | 360 | MT20         | 197/144  |
| Loading     | (psr) | Spacing         | 2-0-0           | CSI      |      | DEFL     | IN   | (IOC) | i/defi | L/a | PLATES       | GRIP     |

| LUMBER    |                                               |
|-----------|-----------------------------------------------|
| TOP CHORD | 2x4 SPF No.2                                  |
| BOT CHORD | 2x4 SPF No.2                                  |
| WEBS      | 2x4 SPF No.2 *Except* 3-4:2x3 SPF No.2        |
| BRACING   |                                               |
| TOP CHORD | Structural wood sheathing directly applied or |
|           | 2-5-4 oc purlins, except end verticals.       |
| BOT CHORD | Rigid ceiling directly applied or 10-0-0 oc   |
|           | bracing.                                      |
| REACTIONS | (size) 4= Mechanical, 5=0-3-8                 |
|           | Max Horiz 5=71 (LC 5)                         |
|           | Max Uplift 4=-25 (LC 5), 5=-41 (LC 4)         |
|           | Max Grav 4=82 (LC 1), 5=187 (LC 1)            |
| FORCES    | (lb) - Maximum Compression/Maximum            |
|           | Tension                                       |
| TOP CHORD | 2-5=-165/56, 1-2=0/27, 2-3=-54/12,            |
|           | 3-4=-60/31                                    |
| BOT CHORD | 4-5=-23/15                                    |

#### NOTES

- Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- 4) All bearings are assumed to be SPF No.2.
- 5) Refer to girder(s) for truss to truss connections.
- Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 41 lb uplift at joint 5 and 25 lb uplift at joint 4.
- This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

JUAN GARCIA NUMBER E-2000162101 JUAN GARCIA ICENSES 16952 BO NAL ENGINE March 7,2024

MIS

0



WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional lemporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

|        |       |                     |     |      |                          | RELEASE FOR CONSTRUCTION |
|--------|-------|---------------------|-----|------|--------------------------|--------------------------|
| loh    | Trues |                     | Otv | DIV  | Lot 116 MN               | AS NOTED FOR PLAN REVIEW |
| 500    | 11035 | Truss Type          | QUY | i iy |                          | DEVELOPMENT SERVICES     |
| 240612 | J3    | Diagonal Hip Girder | 1   | 1    | Job Reference (optional) | LEE'S SUMMIT, MISSOURI   |
|        |       |                     |     |      |                          | 0.1.00.000.1             |

Run: 8.73 S Feb 22 2024 Print: 8.730 S Feb 22 2024 MiTek Industries, Inc. Thu Mar 0146:402/2022 Rev 10:NolcwgPn\_VH2sx6ndDyC0ozyQWS-RfC?PsB70Hq3NSgPqnL8w3ulTXb0 KWrCD0w342y0?



#### Plate Offsets (X, Y): [3:0-10-3,0-2-8], [5:Edge,0-2-8]

| Loading<br>TCLL (root)         (psf)         Spacing<br>25.0         Spacing<br>Plate Ging DOL<br>Lumber DOL<br>1.15         2-0-0         CSI<br>TC         DEFL<br>TC         in         (loc)         //det         L/det         PLATES<br>MT20         GRIP<br>197/144           TCDL         10.0         Plate Ging DOL<br>Lumber DOL<br>BCDL         1.15         BC         0.46         Vert(LL)         -0.13         6         >721         360         MT20         197/144           BCLL         0.00         Rep Stress Incr         NO         Code         IRC2018/TP12014         WE         Vert(LL)         -0.13         6         >728         240         Weight: 31 lb         FT = 10%           LUMBER<br>TOP CHORD         10.0         Z46 SPF No.2         Z65 SPF No.2         -         7)         This truss is designed in accordance with the 2018<br>International Residential Code sections R502.11.1 and<br>R802.10.2 and referenced standard ANS/TP1 1.         80         NALED* indicates 3-104 (0.148*X37) or 2-12d<br>(0.148*X3.25*) toe-nails per NOS guidlines.         9)         10 the LoAD CASE(S) section, loads applied to the face<br>of the truss are noted as front (F) or back (B).         5         Hodd CASE(S)         Section, loads applied to the face<br>of the truss are noted as front (F) or back (B).         10 bead + Root Live (balanced): Lumber Increase=1.15,<br>Plate Increase=1.15,<br>Plate Increase=1.15,<br>Plate Increase=1.16         1         Dead + Root Live (balanced): Lumber Increase=1.15,<br>Plate                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 10:DL       10:0       Lumber DOL       1.15       BC       0.46       Vert(C1)       -0.25       6       >375       240         BCLL       0.0°       Rep Stress Incr       NO       WB       0.02       Horz(CT)       0.10       5       n/a         BCDL       10.0       Code       IRC2018/TPI2014       Matrix-R       Wind(LL)       0.13       6       >728       240       Weight: 31 lb       FT = 10%         LUMBER       Code       IRC2018/TPI2014       Matrix-R       Wind(LL)       0.13       6       >728       240       Weight: 31 lb       FT = 10%         LUMBER       Zx6 SPF No.2       Kept No.2       Recent Additional Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.       802.10.2 and referenced standard ANSI/TPI 1.       802.10.2 and referenced standard ANSI/TPI 1.       802.10.2 and referenced standard ANSI/TPI 1.       80       NUALED' indicates 3-100 (0.148'x3') or 2.12d       0.148'x3.25'') toe-nails per NDS guidlines.       9)       10 in the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (F) or back (B).       COAD CASE(S)       Standard       1)       Dead + Root Live (Dalanced): Lumber Increase=1.15, Plate Increase=1.15, Plate Increase=1.15       Uniform Loads (Ib/ft)       Vert: 9=-18 (F=-9, B=-9), 10=4 (F=2, B=2), 12=-59 (F=-29, B=-29)       Fe=29, B=-29)       Fe=29, B=-29)<                                                                                                                                                                                                                                                                                                                                                              | (psf)         Spacing         2-0-0         CSI         DEFL         in         (loc)         I/defl         L/d         PLATES         GRIP           25.0         Plate Grip DOL         1.15         TC         0.67         Vert(LL)         -0.13         6         >721         360         MT20         197/144                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| BCLL         0.0         Rep Stress incr         NO         WB         0.02         Horz(C1)         0.10         5         n/a         n/a           BCDL         10.0         Code         IRC2018/TPI2014         Mark         Wind(LL)         0.13         6         >728         240         Weight: 31 lb         FT = 10%           LUMBER         TOP CHORD         2x6 SPF No.2         7)         This truss is designed in accordance with the 2018         International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANS/TPI 1.         80         No         No         0.12         0.14 of 48/3.25") toe-nails per NDS guidlines.         9)         In the ICADD CASE(S) section, loads applied to the face of the truss are noted as front (F) or back (B).         10.04 CASE(S) Standard         10.04 R8/3.25") toe-nails per NDS guidlines.         10.04 CASE(S) Standard         10.04 (F=2, B=2), 12=-59         10.04                                                                                                                                                                                                                                                              | 10.0 Lumber DOL 1.15 BC 0.46 Vert(C1) -0.25 6 >375 240                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| BCDL         10.0         Code         IRC2018/TPI2014         Matrix-R         Wind(LL)         0.13         6         >728         240         Weight: 31 lb         FT = 10%           LUMBER<br>TOP CHORD         2x6 SPF No.2         This truss is designed in accordance with the 2018<br>International Residential Code sections R502.11.1 and<br>R802.10.2 and referenced standard ANSI/TP11.         This truss is designed in accordance with the 2018<br>International Residential Code sections R502.11.1 and<br>R802.10.2 and referenced standard ANSI/TP11.         NUALED" indicates 3-104 (0.148"x3") or 2-12d<br>(0.148"x3.25") to enails per NDS guidlenes.           BACING<br>TOP CHORD         Structural wood sheathing directly applied or<br>6-0-0 cc purlins, except end verticals.         NUALED" indicates 3-104 (0.148"x3") or 2-12d<br>(0.148"x3.25") to enails per NDS guidlenes.         NUALED" indicates 3-104 (0.148"x3") or 2-12d<br>(0.148"x3.25") to enails per NDS guidlenes.           BOT CHORD         Structural wood sheathing directly applied or<br>6-0-0 oc purlins, except end verticals.         Not All the LOAD CASE(S) Standard         Note of the truss are noted as front (F) or back (B).         LOAD CASE(S) Standard           10         Dead + R001 Live (balanced): Lumber Increase=1.15<br>Wax Upilf 5-771 (LC 8), 7=-115 (LC 5)<br>Max Upilf 5-771 (LC 8), 7=-115 (LC 1)<br>Max Grav 5=403 (LC 1), 7=505 (LC 1)<br>TOP CHORD         Standard         NUMBER<br>(F=-29, B=-29)         JUAN           Vert: 9-=18 (F=-9, B=-9), 10=4 (F=2, B=2), 12=-59<br>(F=-29, B=-29)         NUMBER<br>E-2000162101         FT = 2000162101         NUMBER<br>E-2000162101 <td>0.0* Rep Stress Incr NO WB 0.02 Horz(C1) 0.10 5 n/a n/a</td> | 0.0* Rep Stress Incr NO WB 0.02 Horz(C1) 0.10 5 n/a n/a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| LUMBER       7) This truss is designed in accordance with the 2018         TOP CHORD       2x6 SPF No.2         BCT CHORD       2x4 SPF No.2         2x6 SPF No.2 "Except" 4-5:2x3 SPF No.2, 6-3:2x4 SPF No.2, 6-3:2x4 SPF No.2, 6-3:2x4 SPF No.2         BRACING         TOP CHORD         Structural wood sheathing directly applied or 6-0-0 oc bracing.         BOT CHORD         REACTIONS         (size)       5 = Mechanical, 7=0-4-9         Max Horiz       7=115 (LC 5)         Max Horiz       7=115 (LC 5)         Max Grav       5=403 (LC 1), 7=505 (LC 1)         TOP CHORD       2-7=-481/136, 1-2=0/29, 2-3=-137/19, 3-4=-156/19, 4-5=-291/107         BOT CHORD       6-7-3/7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 10.0 Code IRC2018/TPI2014 Matrix-R Wind(LL) 0.13 6 >728 240 Weight: 31 lb FT = 10%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| <ul> <li>NOTES</li> <li>1) Wind: ASCE 7-16; Vult=115mph (3-second gust)<br/>Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat.<br/>II; Exp C; Enclosed; MWFRS (envelope) exterior zone;<br/>cantilever left and right exposed; umber DOL=1.60 plate grip DOL=1.60</li> <li>2) This truss has been designed for a 10.0 psf bottom<br/>chord live load nonconcurrent with any other live loads.</li> <li>3) * This truss has been designed for a live load of 20.0psf<br/>on the bottom chord in all areas where a rectangle<br/>3-06-00 tall by 2-00-00 wide will fit between the bottom<br/>chord and any other members.</li> <li>4) All bearings are assumed to be SPF No.2.</li> <li>5) Refer to girder(s) for truss to truss connections.</li> <li>6) Provide mechanical connection (by others) of truss to<br/>bearing plate capable of withstanding 115 lb uplift at joint</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <ul> <li>di SPF No.2</li> <li>di SPF No.2</li> <li>di SPF No.2</li> <li>di SPF No.2</li> <li>SZK SPF No.2</li> <li>SZK SPF No.2</li> <li>Thutmational Registed in accordance with the 2018<br/>International Registed standard ANS/TP11.</li> <li>NMLED' Indicates 3-10d (0.148 x37) or 2-12d<br/>(0.148 x325) (be-nails per NDS guildines.</li> <li>in the LOAD CASE(S) section, loads applied to the face<br/>of the trusts are noted as front (F) or back (B).</li> <li>DOAD CASE(S) Standard</li> <li>Dead + Root Live (Balanced): Lumber Increase=1.15,<br/>Plate Increase=1.15<br/>Uniform Loads (Up/1)<br/>vert: 12–e70, 24=-70, 67=-20, 3-5=-20<br/>Concentrated Loads (Ib)<br/>Vert: 32–115 (LC 6),<br/>x Lpilt 5=-71 (LC 8), 7=-115 (LC 4)<br/>w Korav 5=-403 (LC 1), 7=505 (LC 1)</li> <li>b) Maximum Compression/Maximum<br/>ension<br/>7-r=481/136, 1-2=0/29, 2-3=-137/19,<br/>-4=-156/19, 4-5=-2381/107<br/>7-r=47/0, 3-5=-19/91</li> <li>d-B-OT Z</li> <li>r16; Vult-115mph (3-second gust)<br/>1: Lomber DOL=1.60 plate grip DOL=1.60<br/>been designed for a live loads to forth<br/>u and right exposed: end vertical left and<br/>1: Lumber DOL=1.60 plate grip DOL=1.60<br/>been designed for a live loads of 20.0pst<br/>chord in all areas where a rectangle<br/>y 20-00- wide lift between the bottom<br/>y other members.</li> <li>re assumed to be SPF No.2.</li> <li>r(f) for truss to truss to truss connections.<br/>anical connection (by others) of truss to<br/>capable of withstanding 115 lb up/lift at joint.</li> </ul> |





|        |       |            |         |     |                         | RELEASE FOR CONSTRUCTION |  |
|--------|-------|------------|---------|-----|-------------------------|--------------------------|--|
| loh    | Truce |            | Otv     | DIV | Lot 116 MN              | AS NOTED FOR PLAN REVIEW |  |
| 300    | Truss | Truss Type | Qly Ply |     |                         | DEVELOPMENT SERVICES     |  |
| 240612 | J4    | Jack-Open  | 8       | 1   | Job Reference (optional | LEE'S SUMMIT, MISSOURI   |  |
|        | •     |            |         | •   |                         |                          |  |

Run: 8.73 S Feb 22 2024 Print: 8.730 S Feb 22 2024 MiTek Industries, Inc. Thu Mar 71484 O2/2924 ID:jbu4Q2qcqFnefobcSC6TCAzyQYV-RfC?PsB70Hq3NSgPqnL8w3ulTXbGr WrCDoi7942J04







3x10 🛛

| 1-10-3 |
|--------|
|        |

Scale = 1:23

Plate Offsets (X, Y): [5:0-5-8,0-1-8]

| Loading        |                                         | (psf)         | Spacing                                         | 2-0-0            | csi                |         | DEFL         | in   | (loc) | l/defl | L/d        | PLATES       | GRIP      |
|----------------|-----------------------------------------|---------------|-------------------------------------------------|------------------|--------------------|---------|--------------|------|-------|--------|------------|--------------|-----------|
| TCLL (roof)    |                                         | 25.0          | Plate Grip DOL                                  | 1.15             | TC                 | 0.07    | Vert(LL)     | 0.00 | 4-5   | >999   | 360        | MT20         | 197/144   |
| TCDL           |                                         | 10.0          | Lumber DOL                                      | 1.15             | BC                 | 0.02    | Vert(CT)     | 0.00 | 4-5   | >999   | 240        |              |           |
| BCLL           |                                         | 0.0*          | Rep Stress Incr                                 | YES              | WB                 | 0.00    | Horz(CT)     | 0.00 | 3     | n/a    | n/a        |              |           |
| BCDL           |                                         | 10.0          | Code                                            | IRC2018/TPI2014  | Matrix-R           |         | Wind(LL)     | 0.00 | 4-5   | >999   | 240        | Weight: 6 lb | FT = 10%  |
|                |                                         |               |                                                 | 7) This truss is | designed in accord | dance w | ith the 2018 | nd   |       |        |            |              |           |
|                | 2X4 SPF                                 | NO.Z          |                                                 | R802 10 2 a      | nd referenced stan |         | ISI/TDI 1    | inu  |       |        |            |              |           |
| MERS           |                                         | NO.Z          |                                                 |                  | Stondard           |         | 101/11/11    |      |       |        |            |              |           |
|                | 284 366                                 | 110.2         |                                                 | LOAD CASE(S)     | Stanuaru           |         |              |      |       |        |            |              |           |
|                | Structure                               | lwood obo     | othing directly opplic                          | dor              |                    |         |              |      |       |        |            |              |           |
| TOP CHORD      | 1-10-3 oc putins. except end verticals. |               |                                                 |                  |                    |         |              |      |       |        |            |              |           |
| BOT CHORD      | Rigid ceil                              | ing directly  | applied or 10-0-0 or                            | <b>`</b>         |                    |         |              |      |       |        |            |              |           |
|                | bracing.                                |               |                                                 |                  |                    |         |              |      |       |        | MIS        |              |           |
| REACTIONS      | (size)                                  | 3= Mecha      | nical, 4= Mechanica                             | al,              |                    |         |              |      |       |        |            | NYE          | Sol       |
|                | Max Hariz                               | 5=0-3-8       | 5)                                              |                  |                    |         |              |      |       |        | 2          | 18           |           |
|                | Max Liplift                             | 328 (1 C      | 5)<br>8) 532 (I C A)                            |                  |                    |         |              |      |       |        | -0         | 2 . III      | IN 2      |
|                | Max Grav                                | 3-41 (LC      | 1) 4-30 (I C 3) 5-1                             | 169              |                    |         |              |      |       |        | -          | : GAR        | CIA       |
|                |                                         | (LC 1)        | 1), 4=00 (20 0), 0=                             | 105              |                    |         |              |      |       |        | <b>=</b> * | GAN          |           |
| FORCES         | (lb) - Max                              | timum Com     | pression/Maximum                                |                  |                    |         |              |      |       |        | =          | 1            | i _ =     |
|                | Tension                                 |               |                                                 |                  |                    |         |              |      |       |        | =7         | NUM          | BER :     |
| TOP CHORD      | 2-5=-148                                | /46, 1-2=0/2  | 27, 2-3=-31/11                                  |                  |                    |         |              |      |       |        |            | C. E-20001   | 162101 :4 |
| BOT CHORD      | 4-5=0/0                                 |               |                                                 |                  |                    |         |              |      |       |        | -          | A            | 121       |
| NOTES          |                                         |               |                                                 |                  |                    |         |              |      |       |        | 1          | 1.00.        | GN        |
| 1) Wind: ASC   | CE 7-16; Vu                             | llt=115mph    | (3-second gust)                                 |                  |                    |         |              |      |       |        |            | I,ONI        | ALENN     |
| Vasd=91n       | nph; TCDL=                              | 6.0psf; BC    | DL=6.0psf; h=25ft; 0                            | Cat.             |                    |         |              |      |       |        |            | - 1111       | inn       |
| II; Exp C;     | Enclosed; N                             | /IVVFRS (en   | ivelope) exterior zor                           | 1e;              |                    |         |              |      |       |        |            |              |           |
| right expo     | sed: Lumbe                              |               | ; end ventical left and $0$ plate grip DOI =1.6 | u<br>30          |                    |         |              |      |       |        |            | anni 1       | IIIII.    |
| 2) This truss  | has been d                              | lesigned for  | a 10.0 nsf bottom                               | 50               |                    |         |              |      |       |        |            | IN IAN       | GARC      |
| chord live     | load nonco                              | ncurrent wit  | th any other live load                          | ds.              |                    |         |              |      |       |        |            | N 30         | ····· A . |
| 3) * This trus | s has been                              | designed for  | or a live load of 20.0                          | psf              |                    |         |              |      |       |        |            | CE           | NSED      |
| on the bot     | tom chord in                            | n all areas v | where a rectangle                               |                  |                    |         |              |      |       |        | -          | 1 / Y        |           |
| 3-06-00 ta     | all by 2-00-0                           | 0 wide will f | fit between the botto                           | m                |                    |         |              |      |       |        | -          | 1.1          |           |
| chord and      | chord and any other members.            |               |                                                 |                  |                    |         |              |      |       | 952 =  |            |              |           |
| 4) All bearing | gs are assur                            | med to be S   | SPF No.2 .                                      |                  |                    |         |              |      |       |        | -          | T            |           |
| 5) Refer to g  | irder(s) for                            | truss to trus | ss connections.                                 | -                |                    |         |              |      |       |        | -          | D.           |           |
| booring pl     | echanical c                             | onnection (   | by others) of truss to                          | 0<br>pint        |                    |         |              |      |       |        |            | - Cart Harry | 10 NS     |
| 5 and 28 l     | h unlift at in                          | int 3         | iung oz in upint at je                          | JIIIL            |                    |         |              |      |       |        |            | 1.00         | GN        |
|                | ~ spint at jo                           |               |                                                 |                  |                    |         |              |      |       |        |            | IN ON        | ALENIN    |
|                |                                         |               |                                                 |                  |                    |         |              |      |       |        |            | 1111         | IIIIII.   |
|                |                                         |               |                                                 |                  |                    |         |              |      |       |        |            | Mar          | ch 7 2024 |

- chord and any other members. 4) All bearings are assumed to be SPF No.2 .
- 5) Refer to girder(s) for truss to truss connections.
- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 32 lb uplift at joint 5 and 28 lb uplift at joint 3.



March 7,2024

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent colleges with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

|        |       |           |     |      |                         | RELEASE FOR CONSTRUCTION |  |
|--------|-------|-----------|-----|------|-------------------------|--------------------------|--|
| lob    | Trues |           | Otv | DIV  | Lot 116 MN              | AS NOTED FOR PLAN REVIEW |  |
| 360    | 11035 |           |     | i iy |                         | DEVELOPMENT SERVICES     |  |
| 240612 | J5    | Jack-Open | 2   | 1    | Job Reference (optional | LEE'S SUMMIT, MISSOURI   |  |
|        |       | •         | •   | -    |                         | 0.1/0.0/0.001            |  |

Run: 8.73 S Feb 22 2024 Print: 8.730 S Feb 22 2024 MiTek Industries, Inc. Thu Mar 0148:402/20:24 ID:mUIIZA?11sgWy6EUqst?JIzyQYG-RfC?PsB70Hq3NSgPqnL8w3uITXbGH WrCDoi73-2JO?





Scale = 1:33.8

#### Plate Offsets (X, Y): [8:0-5-8,0-1-8]

| Loading<br>TCLL (roof)<br>TCDL<br>BCLL<br>BCDL                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | (psf)<br>25.0<br>10.0<br>0.0*<br>10.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | <b>Spacing</b><br>Plate Grip DOL<br>Lumber DOL<br>Rep Stress Incr<br>Code                                                                                                                                                                                                                                                      | 2-0-0<br>1.15<br>1.15<br>YES<br>IRC20    | 18/TPI2014                                                                                   | CSI<br>TC<br>BC<br>WB<br>Matrix-S                                           | 0.15<br>0.13<br>0.01         | DEFL<br>Vert(LL)<br>Vert(CT)<br>Horz(CT)<br>Wind(LL) | in<br>-0.01<br>-0.02<br>0.02<br>0.02 | (loc)<br>3-6<br>3-6<br>5<br>3-6 | l/defl<br>>999<br>>999<br>n/a<br>>999 | L/d<br>360<br>240<br>n/a<br>240 | PLATES<br>MT20<br>Weight: 13 lb | <b>GRIP</b><br>197/144<br>FT = 10%       |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------|----------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------|------------------------------|------------------------------------------------------|--------------------------------------|---------------------------------|---------------------------------------|---------------------------------|---------------------------------|------------------------------------------|
| LUMBER<br>TOP CHORD<br>BOT CHORD<br>WEBS<br>BRACING<br>TOP CHORD<br>BOT CHORD<br>REACTIONS                                                                                                                                                                                          | 2x4 SPF N<br>2x4 SPF N<br>2x4 SPF N<br>Structural<br>3-10-3 oc<br>Rigid ceili<br>bracing.<br>(size)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | No.2<br>No.2<br>No.2 *Exce<br>wood shea<br>purlins, ex<br>ng directly<br>4= Mecha                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | pt* 7-6:2x3 SPF No<br>athing directly applie<br>ccept end verticals.<br>applied or 10-0-0 oc<br>nical, 5= Mechanica                                                                                                                                                                                                            | 7<br>2 <b>L</b><br>d or                  | <ul> <li>This truss is of<br/>International<br/>R802.10.2 ar</li> <li>OAD CASE(S)</li> </ul> | designed in accord<br>Residential Code s<br>Id referenced stand<br>Standard | ance w<br>ections<br>lard AN | ith the 2018<br>⊧ R502.11.1 a<br>ISI/TPI 1.          | nd                                   |                                 |                                       |                                 | NIL OF A                        | 115<br>118                               |
| FORCES<br>TOP CHORD<br>BOT CHORD                                                                                                                                                                                                                                                    | Max Horiz<br>Max Uplift<br>Max Grav<br>(lb) - Maxi<br>Tension<br>2-8=-244/3<br>7-8=0/0,5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 8=0-3-8<br>8=68 (LC<br>4=-48 (LC<br>4=105 (LC<br>(LC 1)<br>imum Com<br>51, 1-2=0/2<br>3-6=0/0, 5-6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 8)<br>8), 8=-26 (LC 8)<br>2 1), 5=76 (LC 3), 8=<br>pression/Maximum<br>27, 2-3=-72/0, 3-4=-3<br>3=0/0                                                                                                                                                                                                                          | 257<br>33/33                             |                                                                                              |                                                                             |                              |                                                      |                                      |                                 |                                       | Min * Phin                      | JUA<br>GARC<br>NUME<br>E-20001  | N<br>CIA<br>62101                        |
| <ul> <li>NOTES</li> <li>1) Wind: ASC Vasd=91n II; Exp C; cantilever right expo:</li> <li>2) This truss chord live</li> <li>3) * This truss on the bot 3-06-00 ta chord and</li> <li>4) All bearing</li> <li>5) Refer to gi</li> <li>6) Provide m bearing plase and 48 II</li> </ul> | CE 7-16; Vul<br>nph; TCDL=<br>Enclosed; M<br>left and righ<br>sed; Lumbei<br>has been de<br>load noncor<br>is has been de<br>l | It=115mph<br>6.0psf; BCl<br>WFRS (en<br>t exposed<br>r DOL=1.60<br>esigned for<br>neurrent wit<br>designed for<br>neurent wit<br>designed for<br>neurren | (3-second gust)<br>DL=6.0psf; h=25ft; C<br>velope) exterior zon<br>; end vertical left and<br>0 plate grip DOL=1.6<br>a 10.0 psf bottom<br>th any other live load<br>or a live load of 20.0<br>where a rectangle<br>fit between the botto<br>SPF No.2.<br>ss connections.<br>by others) of truss to<br>ding 26 lb uplift at jo | cat.<br>e;<br>f<br>i0<br>ls.<br>psf<br>m |                                                                                              |                                                                             |                              |                                                      |                                      |                                 |                                       | . annua.                        | PROCESSION                      | ARCIA<br>SARCIA<br>SAS<br>SAS<br>ALENGII |

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)



|        |       |            |     |     |                         | 0.1/00/0001              |
|--------|-------|------------|-----|-----|-------------------------|--------------------------|
| 240612 | J6    | Jack-Open  | 4   | 1   | Job Reference (optional | LEE'S SUMMIT, MISSOURI   |
| 300    | 11055 | Truss Type | QIY | гіу |                         | DEVELOPMENT SERVICES     |
| leb    | Trucc |            | 011 | DIV | Lot 116 MN              | AS NOTED FOR PLAN REVIEW |
|        |       |            |     |     |                         | RELEASE FOR CONSTRUCTION |

Run: 8.73 S Feb 22 2024 Print: 8.730 S Feb 22 2024 MiTek Industries, Inc. hu Mar 0143 02/2022 01/2022 01/2022 01/2022 01/2022 01/2022 01/2022 01/2022 01/2022 01/2022 01/2022 01/2022 01/2022 01/2022 01/2022 01/2022 01/2022 01/2022 01/2022 01/2022 01/2022 01/2022 01/2022 01/2022 01/2022 01/2022 01/2022 01/2022 01/2022 01/2022 01/2022 01/2022 01/2022 01/2022 01/2022 01/2022 01/2022 01/2022 01/2022 01/2022 01/2022 01/2022 01/2022 01/2022 01/2022 01/2022 01/2022 01/2022 01/2022 01/2022 01/2022 01/2022 01/2022 01/2022 01/2022 01/2022 01/2022 01/2022 01/2022 01/2022 01/2022 01/2022 01/2022 01/2022 01/2022 01/2022 01/2022 01/2022 01/2022 01/2022 01/2022 01/2022 01/2022 01/2022 01/2022 01/2022 01/2022 01/2022 01/2022 01/2022 01/2022 01/2022 01/2022 01/2022 01/2022 01/2022 01/2022 01/2022 01/2022 01/2022 01/2022 01/2022 01/2022 01/2022 01/2022 01/2022 01/2022 01/2022 01/2022 01/2022 01/2022 01/2022 01/2022 01/2022 01/2022 01/2022 01/2022 01/2022 01/2022 01/2022 01/2022 01/2022 01/2022 01/2022 01/2022 01/2022 01/2022 01/2022 01/2022 01/2022 01/2022 01/2022 01/2022 01/2022 01/2022 01/2022 01/2022 01/2022 01/2022 01/2022 01/2022 01/2022 01/2022 01/2022 01/2022 01/2022 01/2022 01/2022 01/2022 01/2022 01/2022 01/2022 01/2022 01/2022 01/2022 01/2022 01/2022 01/2022 01/2022 01/2022 01/2022 01/2022 01/2022 01/2022 01/2022 01/2022 01/2022 01/2022 01/2022 01/2022 01/2022 01/2022 01/2022 01/2022 01/2022 01/2022 01/2022 01/2022 01/2022 01/2022 01/2022 01/2022 01/2022 01/2022 01/2022 01/2022 01/2022 01/2022 01/2022 01/2022 01/2022 01/2022 01/2022 01/2022 01/2022 01/2022 01/2022 01/2022 01/2022 01/2022 01/2022 01/2022 01/2022 01/2022 01/2022 01/2022 01/2022 01/2022 01/2022 01/2022 01/2022 01/2022 01/2022 01/2022 01/2022 01/2022 01/2022 01/2022 01/2022 01/2022 01/2022 01/2022 01/2022 01/2022 01/2022 01/2022 01/2022 01/2022 01/2022 01/2022 01/2022 01/2022 01/2022 01/2022 01/2022 01/2022 01/2022 01/2022 01/2022 01/2022 01/2022 01/2022 01/2022 01/2022 01/2022 01/2022 01/2022 01/2022 01/2022 01/2022 01/2022 01/2022 01/2022 01/2022 01/2022



Scale = 1:34.5

Plate Offsets (X, Y): [8:0-5-8,0-1-8]

|                                 | ( ) ) []                           |                          |                                 |                   |           |              |       |       |        |     |               |           |
|---------------------------------|------------------------------------|--------------------------|---------------------------------|-------------------|-----------|--------------|-------|-------|--------|-----|---------------|-----------|
| Loading                         | (psf)                              | Spacing                  | 2-0-0                           | CSI               |           | DEFL         | in    | (loc) | l/defl | L/d | PLATES        | GRIP      |
| TCLL (roof)                     | 25.0                               | Plate Grip DOL           | 1.15                            | тс                | 0.46      | Vert(LL)     | -0.07 | 5-6   | >999   | 360 | MT20          | 197/144   |
| TCDL                            | 10.0                               | Lumber DOL               | 1.15                            | BC                | 0.38      | Vert(CT)     | -0.14 | 5-6   | >500   | 240 |               |           |
| BCLL                            | 0.0*                               | Rep Stress Incr          | YES                             | WB                | 0.02      | Horz(CT)     | 0.08  | 5     | n/a    | n/a |               |           |
| BCDL                            | 10.0                               | Code                     | IRC2018/TPI2014                 | Matrix-S          |           | Wind(LL)     | 0.08  | 5-6   | >854   | 240 | Weiaht: 18 lb | FT = 10%  |
|                                 |                                    |                          |                                 |                   | -         |              | -     |       |        |     | 0             |           |
| LUMBER                          |                                    |                          | <ol><li>This truss is</li></ol> | designed in acco  | rdance wi | ith the 2018 |       |       |        |     |               |           |
| TOP CHORD                       | 2x4 SPF No.2                       |                          | Internationa                    | Residential Code  | esections | R502.11.1 a  | and   |       |        |     |               |           |
| BOT CHORD                       | 2x4 SPF No.2                       |                          | R802.10.2 a                     | nd referenced sta | indard AN | ISI/TPI 1.   |       |       |        |     |               |           |
| WEBS                            | 2x4 SPF No.2 *Exce                 | ept* 7-6:2x3 SPF No.     | 2 LOAD CASE(S)                  | Standard          |           |              |       |       |        |     |               |           |
| BRACING                         |                                    |                          |                                 |                   |           |              |       |       |        |     |               |           |
| TOP CHORD                       | Structural wood she                | eathing directly applie  | d or                            |                   |           |              |       |       |        |     |               |           |
|                                 | 5-11-4 oc purlins, e               | except end verticals.    |                                 |                   |           |              |       |       |        |     |               |           |
| BOT CHORD                       | Rigid ceiling directly<br>bracing. | / applied or 10-0-0 oc   |                                 |                   |           |              |       |       |        |     | WE            | MICH      |
| REACTIONS                       | (size) 4= Mecha<br>8=0-3-8         | anical, 5= Mechanica     | I,                              |                   |           |              |       |       |        |     | NYE.          | SSO!      |
|                                 | Max Horiz 8=104 (L                 | C 8)                     |                                 |                   |           |              |       |       |        | -   | Y             | -         |
|                                 | Max Uplift 4=-80 (LC               | C 8), 8=-34 (LC 8)       |                                 |                   |           |              |       |       |        | 20  | JUA           | N :==     |
|                                 | Max Grav 4=172 (L                  | C 1), 5=111 (LC 3), 8    | s=351                           |                   |           |              |       |       |        | = . | : GAR         |           |
|                                 | (LC 1)                             |                          |                                 |                   |           |              |       |       |        | - * |               | × -       |
| FORCES                          | (lb) - Maximum Con                 | npression/Maximum        |                                 |                   |           |              |       |       |        | =   | 1             |           |
|                                 | Tension                            |                          |                                 |                   |           |              |       |       |        | =7  | NUME          | BER :     |
| TOP CHORD                       | 2-8=-350/68, 1-2=0/                | /27, 2-3=-114/0,         |                                 |                   |           |              |       |       |        |     | C: E-20001    | 62101 :41 |
|                                 | 3-4=-62/54                         | C 0/0                    |                                 |                   |           |              |       |       |        | 1   | A             | 1.2.1     |
| MERS                            | 7-8=0/0, 3-6=0/0, 5-               | -6=0/0                   |                                 |                   |           |              |       |       |        |     | 1.80          | Gin       |
| WEB3                            | 0-7=-10/51                         |                          |                                 |                   |           |              |       |       |        |     | I,ONA         | LENN      |
| NOIES                           |                                    | (2 accord such)          |                                 |                   |           |              |       |       |        |     | - 1111        | inn.      |
| I) Wind: ASC                    | DE 7-16; Vuit=115mpr               | 1 (3-second gust)        | `ot                             |                   |           |              |       |       |        |     |               |           |
| II: Evp C:                      | Enclosed: MWERS (e)                | nvelope) exterior zon    | ο.                              |                   |           |              |       |       |        |     |               | $u_{III}$ |
| cantilever                      | left and right exposed             | end vertical left and    | 4                               |                   |           |              |       |       |        |     | IN AN C       | SARC      |
| right expo                      | sed; Lumber DOL=1.6                | 50 plate grip DOL=1.6    | 50                              |                   |           |              |       |       |        |     | N 70          | A         |
| 2) This truss                   | has been designed fo               | or a 10.0 psf bottom     |                                 |                   |           |              |       |       |        |     | CE            | NSED.     |
| chord live                      | load nonconcurrent w               | ith any other live load  | ds.                             |                   |           |              |       |       |        |     | ( / Č         | - TA - E  |
| 3) * This trus                  | s has been designed                | for a live load of 20.0  | psf                             |                   |           |              |       |       |        | -   | 1             |           |
| on the bot                      | tom chord in all areas             | where a rectangle        |                                 |                   |           |              |       |       |        | -   | 169           | 952       |
| 3-06-00 ta                      | all by 2-00-00 wide will           | fit between the botto    | m                               |                   |           |              |       |       |        | =   | D             |           |
| <ol> <li>All bearing</li> </ol> | any other members.                 | SPE No 2                 |                                 |                   |           |              |       |       |        | -   | D.            | h         |
| 5) Refer to a                   | irder(s) for truss to tru          | uss connections          |                                 |                   |           |              |       |       |        |     | - A KAN       |           |
| 6) Provide m                    | echanical connection               | (by others) of truss to  | )                               |                   |           |              |       |       |        |     | 1,58          | G         |
| bearing pl                      | ate capable of withsta             | nding 34 lb uplift at ic | pint                            |                   |           |              |       |       |        |     | ON ON         | ALEN      |
| 8 and 80 I                      | b uplift at joint 4.               |                          |                                 |                   |           |              |       |       |        |     | 1111          | IIIII.    |
|                                 |                                    |                          |                                 |                   |           |              |       |       |        |     | Marc          | ch 7,2024 |

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent colleges with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)



|                                 |        |            |                                            |                            |                             |                                                          | RELEASE FOR CONSTRUCTION               |
|---------------------------------|--------|------------|--------------------------------------------|----------------------------|-----------------------------|----------------------------------------------------------|----------------------------------------|
| Job                             | Truss  | Truss Type |                                            | Qty                        | Ply                         | Lot 116 MN                                               | AS NOTED FOR PLAN REVIEW               |
| 240612                          | J7     | Jack-Open  |                                            | 18                         | 1                           | Job Reference (optional                                  | I64102276<br>LEE'S SUMMIT, MISSOURI    |
| Wheeler Lumber, Waverly, KS - 6 | 66871, |            | Run: 8.73 S Feb 22 2<br>ID:1hke2SliBoQp24k | 2024 Print: 8<br>74gwBJMyK | .730 S Feb 2<br>yAb-RfC?PsE | 2 2024 MiTek Industries, Inc.<br>B70Hq3NSgPqnL8w3uITXbGK | hu Mar 0146.402/2024<br>WrCDoi7942J0?/ |
|                                 |        |            |                                            |                            |                             |                                                          |                                        |
|                                 |        | -0-10-8    |                                            | 5-11-4                     |                             |                                                          |                                        |
|                                 |        | 0-10-8     |                                            | 5-11-4                     |                             |                                                          |                                        |



Scale = 1:26.6

Plate Offsets (X, Y): [5:0-5-8,0-1-8]

| (                                                                                                                                                                                        | , , , , , , , , , , , , , , , , , , , ,                                                                                                                                                             |                                                                                                                                                                                     |                                                             |                                                                                 |                                      |                                                      |                                      |                                 |                                       |                                 |                                 |                                    |      |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------|---------------------------------------------------------------------------------|--------------------------------------|------------------------------------------------------|--------------------------------------|---------------------------------|---------------------------------------|---------------------------------|---------------------------------|------------------------------------|------|
| <b>Loading</b><br>TCLL (roof)<br>TCDL<br>BCLL<br>BCDL                                                                                                                                    | (psf)<br>25.0<br>10.0<br>0.0*<br>10.0                                                                                                                                                               | Spacing<br>Plate Grip DOL<br>Lumber DOL<br>Rep Stress Incr<br>Code                                                                                                                  | 2-0-0<br>1.15<br>1.15<br>YES<br>IRC2018/TPI2014             | CSI<br>TC<br>BC<br>WB<br>Matrix-R                                               | 0.52<br>0.31<br>0.00                 | DEFL<br>Vert(LL)<br>Vert(CT)<br>Horz(CT)<br>Wind(LL) | in<br>-0.05<br>-0.11<br>0.04<br>0.05 | (loc)<br>4-5<br>4-5<br>3<br>4-5 | l/defl<br>>999<br>>613<br>n/a<br>>999 | L/d<br>360<br>240<br>n/a<br>240 | PLATES<br>MT20<br>Weight: 16 lb | <b>GRIP</b><br>197/144<br>FT = 10% |      |
| LUMBER<br>TOP CHORD<br>BOT CHORD<br>WEBS<br>BRACING<br>TOP CHORD                                                                                                                         | 2x4 SPF No.2<br>2x4 SPF No.2<br>2x4 SPF No.2<br>Structural wood she<br>5-11-4 oc purlins, e                                                                                                         | athing directly applic<br>xcept end verticals.                                                                                                                                      | 7) This truss i<br>Internation:<br>R802.10.2<br>LOAD CASE(S | s designed in acco<br>al Residential Code<br>and referenced sta<br>and standard | rdance wi<br>e sections<br>andard AN | ith the 2018<br>i R502.11.1 a<br>ISI/TPI 1.          | ind                                  |                                 |                                       |                                 |                                 |                                    |      |
| BOT CHORD                                                                                                                                                                                | Rigid ceiling directly<br>bracing.<br>(size) 3= Mecha<br>5=0-3-8<br>Max Horiz 5=104 (LC<br>Max Uplift 3=-92 (LC<br>Max Grav 3=180 (LC<br>(LC 1)                                                     | applied or 10-0-0 o<br>anical, 4= Mechanica<br>C 8)<br>C 8), 5=-43 (LC 8)<br>C 1), 4=108 (LC 3), 5                                                                                  | c<br>al,<br>5=336                                           |                                                                                 |                                      |                                                      |                                      |                                 |                                       | ****                            | ALE OF                          |                                    |      |
| FORCES<br>TOP CHORD<br>BOT CHORD<br>NOTES<br>1) Wind: ASO<br>Vasd=91m<br>II; Exp C; I                                                                                                    | (lb) - Maximum Com<br>Tension<br>2-5=-292/97, 1-2=0/<br>4-5=0/0<br>CE 7-16; Vult=115mph<br>nph; TCDL=6.0psf; BC<br>Enclosed; MWFRS (er                                                              | pression/Maximum<br>27, 2-3=-95/54<br>(3-second gust)<br>IDL=6.0psf; h=25ff; (<br>hvelope) exterior zon                                                                             | Cat.<br>ne;                                                 |                                                                                 |                                      |                                                      |                                      |                                 |                                       | PHON                            | NUMI<br>E-20001                 | BER<br>62101                       | nin. |
| <ul> <li>cantilever<br/>right exposi-<br/>chord live</li> <li>This truss<br/>chord live</li> <li>* This trus<br/>on the bot<br/>3-06-00 ta<br/>chord and</li> <li>All bearing</li> </ul> | left and right exposed<br>sed; Lumber DOL=1.6<br>has been designed for<br>load nonconcurrent wi<br>s has been designed f<br>tom chord in all areas<br>II by 2-00-00 wide will<br>any other members. | ; end vertical left an<br>0 plate grip DOL=1.<br>r a 10.0 psf bottom<br>ith any other live loa<br>for a live load of 20.0<br>where a rectangle<br>fit between the botto<br>SPE No 2 | d<br>60<br>ds.<br>Dpsf<br>om                                |                                                                                 |                                      |                                                      |                                      |                                 |                                       | unu.                            | UCE<br>16                       | 952                                |      |

5) Refer to girder(s) for truss to truss connections.

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 43 lb uplift at joint 5 and 92 lb uplift at joint 3.



March 7,2024

NONAL ENGLISH

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent colleges with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)





Scale = 1:39.2

| Loading                         | (psf)<br>25.0                  | Spacing<br>Plate Grip DOI                      | 2-0-0<br>1 15 |               | CSI<br>TC           | 0 45      | DEFL<br>Vert(LL)          | in<br>-0.03 | (loc)<br>5-6 | l/defl<br>>999 | L/d<br>360 | PLATES<br>MT20 | <b>GRIP</b><br>197/144 |
|---------------------------------|--------------------------------|------------------------------------------------|---------------|---------------|---------------------|-----------|---------------------------|-------------|--------------|----------------|------------|----------------|------------------------|
| TCDL                            | 10.0                           | Lumber DOL                                     | 1.15          |               | BC                  | 0.31      | Vert(CT)                  | -0.05       | 5-6          | >999           | 240        | 11120          | 10//111                |
| BCLL                            | 0.0*                           | Rep Stress Incr                                | NO            |               | WB                  | 0.22      | Horz(CT)                  | 0.01        | 5            | n/a            | n/a        |                |                        |
| BCDL                            | 10.0                           | Code                                           | IRC2018/      | TPI2014       | Matrix-S            |           | Wind(LL)                  | 0.02        | 5-6          | >999           | 240        | Weight: 28 lb  | FT = 10%               |
| LUMBER                          | · ·                            |                                                | 8)            | "NAILED" ind  | licates 3-10d (0.14 | l8"x3") c | or 2-12d                  |             |              |                |            |                |                        |
| TOP CHORD                       | 2x4 SPF No.2                   |                                                |               | (0.148"x3.25' | ) toe-nails per ND  | S guidli  | nes.                      |             |              |                |            |                |                        |
| BOT CHORD                       | 2x4 SPF No.2                   |                                                | 9)            | In the LOAD   | CASE(S) section,    | loads a   | pplied to the f           | ace         |              |                |            |                |                        |
| WEBS                            | 2x3 SPF No.2 *Exce             | ept* 7-2:2x4 SPF No.2                          | 2 104         |               | Stondard            | r) or ba  | СК (Б).                   |             |              |                |            |                |                        |
| BRACING                         |                                |                                                | LUA<br>1)     | Dead + Roo    | f Live (balanced).  | Lumber    | Increase-1                | 15          |              |                |            |                |                        |
| TOP CHORD                       |                                | cent end verticals                             | or ')         | Plate Increa  | se=1.15             | Lumber    | mercase=1.                | 10,         |              |                |            |                |                        |
| BOT CHORD                       | Rigid ceiling directly         | applied or 10-0-0 oc                           |               | Uniform Loa   | ids (lb/ft)         |           |                           |             |              |                |            |                |                        |
|                                 | bracing.                       |                                                |               | Vert: 1-2=    | -70, 2-4=-70, 5-7   | =-20      |                           |             |              |                |            |                |                        |
| REACTIONS                       | (size) 5= Mecha                | anical, 7=0-4-9                                |               | Concentrate   | ed Loads (lb)       |           |                           |             |              |                |            |                | 1117.                  |
|                                 | Max Horiz 7=134 (LC            | C 5)                                           |               | Vert: 9=-2    | 26 (F=-13, B=-13),  | 10=4 (F   | <sup>=</sup> =2, B=2), 11 | =-28        |              |                |            | NE OF I        | MISSI                  |
|                                 | Max Uplift 5=-95 (LC           | C 8), 7=-130 (LC 4)                            |               | (F=-14, B     | =-14)               |           |                           |             |              |                | 1          | A              | 0,4                    |
|                                 | Max Grav 5=387 (L0             | C 1), 7=481 (LC 1)                             |               |               |                     |           |                           |             |              |                | 2          | A              | P -                    |
| FORCES                          | (lb) - Maximum Corr<br>Tension | npression/Maximum                              |               |               |                     |           |                           |             |              |                | Ξ.         | GAR            |                        |
| TOP CHORD                       | 2-7=-413/145, 1-2=0            | 0/27, 2-3=-531/99,<br>34/56                    |               |               |                     |           |                           |             |              |                | - *        |                | *=                     |
| BOT CHORD                       | 6-7=-127/443, 5-6=-            | 127/443                                        |               |               |                     |           |                           |             |              |                | = 0        | . NILINAE      |                        |
| WEBS                            | 3-6=0/171, 3-5=-470            | 0/140                                          |               |               |                     |           |                           |             |              |                | = 5        |                |                        |
| NOTES                           |                                |                                                |               |               |                     |           |                           |             |              |                |            | E-20001        | 02101                  |
| 1) Wind: ASC                    | CE 7-16; Vult=115mph           | (3-second gust)                                |               |               |                     |           |                           |             |              |                | 1          | £              | - GAN                  |
| Vasd=91m                        | nph; TCDL=6.0psf; BC           | DL=6.0psf; h=25ft; C                           | at.           |               |                     |           |                           |             |              |                |            | 1.S/ONIA       | ENIN                   |
| II; Exp C; I                    | Enclosed; MWFRS (er            | nvelope) exterior zone                         | е;            |               |                     |           |                           |             |              |                |            | 1111           | itil .                 |
| right expos                     | sed Lumber DOI –1 6            | , enu venicai ien anu<br>0 plate grip DOI –1 6 | 0             |               |                     |           |                           |             |              |                |            |                |                        |
| 2) This truss                   | has been designed fo           | r a 10.0 psf bottom                            | 0             |               |                     |           |                           |             |              |                |            |                | un.                    |
| chord live                      | load nonconcurrent wi          | ith any other live load                        | s.            |               |                     |           |                           |             |              |                |            | IN AN C        | ARC                    |
| 3) * This trus                  | s has been designed f          | or a live load of 20.0p                        | osf           |               |                     |           |                           |             |              |                |            | 1 20           | A                      |
| on the bot                      | tom chord in all areas         | where a rectangle                              |               |               |                     |           |                           |             |              |                |            | UCE            | NSED .                 |
| 3-06-00 ta                      | II by 2-00-00 wide will        | fit between the bottor                         | n             |               |                     |           |                           |             |              |                | -          |                | 1 2                    |
| <ol> <li>All bearing</li> </ol> | any other members.             | SPF No 2                                       |               |               |                     |           |                           |             |              |                | -          | 1 100          |                        |
| 5) Refer to gi                  | irder(s) for truss to trus     | ss connections.                                |               |               |                     |           |                           |             |              |                |            | 169            | 952 : =                |
| 6) Provide m                    | echanical connection           | (by others) of truss to                        |               |               |                     |           |                           |             |              |                | -          | P: 1           |                        |
| bearing pla                     | ate capable of withstar        | nding 130 lb uplift at j                       | oint          |               |                     |           |                           |             |              |                | -          | 20.            | m:14:                  |
| 7 and 95 lt                     | b uplift at joint 5.           |                                                |               |               |                     |           |                           |             |              |                |            | AN             | SAS                    |
| () I NIS TRUSS                  | is designed in accorda         | ance with the 2018<br>ections R502 11 1 an     | d             |               |                     |           |                           |             |              |                |            | 1, SION        | AL ENGIN               |
| R802.10.2                       | and referenced stand           | lard ANSI/TPI 1.                               | 4             |               |                     |           |                           |             |              |                |            | 11 N           | AL                     |
|                                 |                                |                                                |               |               |                     |           |                           |             |              |                |            | More           | b 7 2024               |
|                                 |                                |                                                |               |               |                     |           |                           |             |              |                |            | iviarc         | 117,2024               |

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent colleges with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcscomponents.com)



|        |       |            |     |     |                         | RELEASE FOR CONSTRUCTION |
|--------|-------|------------|-----|-----|-------------------------|--------------------------|
| Job    | Truss | Truss Type | Qty | Ply | Lot 116 MN              |                          |
| 240612 | J9    | Jack-Open  | 2   | 1   | Job Reference (optional | LEE'S SUMMIT, MISSOURI   |
|        | •     |            |     |     |                         | A 4 100 1000 1           |

Run: 8.73 S Feb 22 2024 Print: 8.730 S Feb 22 2024 MiTek Industries, Inc. hu Mar 014 + 02/2024 ID:JqnDVSPjX?qqPBGqGHzk8lzyQXI-RfC?PsB70Hq3NSgPqnL8w3ulTXbGl WrCDoi 04zJ0 + 02/2024





3-10-3

| Scale = 1:24.8   |     | _        |
|------------------|-----|----------|
| Plata Offecte (V | V١٠ | [E-0 E 9 |

| Plate Offsets                                                                                                                                                                                                                                                    | (X, Y): [5:0-5-8,0-                                                                                                                                                                                                                                                                                                                                                         | 1-8]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                      |                                                                              |                                        |                                                      |                                      |                                 |                                       |                                 |                                           |                                                     |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|------------------------------------------------------------------------------|----------------------------------------|------------------------------------------------------|--------------------------------------|---------------------------------|---------------------------------------|---------------------------------|-------------------------------------------|-----------------------------------------------------|--|
| Loading<br>TCLL (roof)<br>TCDL<br>BCLL<br>BCDL                                                                                                                                                                                                                   | (ps<br>25,<br>10,<br>0,<br>10,                                                                                                                                                                                                                                                                                                                                              | f) Spacing<br>0 Plate Grip DOL<br>0 Lumber DOL<br>0* Rep Stress Incr<br>0 Code                                                                                                                                                                                                                                                                                                                                                                                                                   | 2-0-0<br>1.15<br>1.15<br>YES<br>IRC2018/TPI2014                      | <b>CSI</b><br>TC<br>BC<br>WB<br>Matrix-R                                     | 0.19<br>0.12<br>0.00                   | DEFL<br>Vert(LL)<br>Vert(CT)<br>Horz(CT)<br>Wind(LL) | in<br>-0.01<br>-0.02<br>0.01<br>0.01 | (loc)<br>4-5<br>4-5<br>3<br>4-5 | l/defl<br>>999<br>>999<br>n/a<br>>999 | L/d<br>360<br>240<br>n/a<br>240 | PLATES<br>MT20<br>Weight: 11 lb           | <b>GRIP</b><br>197/144<br>FT = 10%                  |  |
| LUMBER<br>TOP CHORD<br>BOT CHORD<br>WEBS<br>BRACING<br>TOP CHORD<br>BOT CHORD<br>REACTIONS                                                                                                                                                                       | 2x4 SPF No.2<br>2x4 SPF No.2<br>2x4 SPF No.2<br>Structural wood<br>3-10-3 oc purlin<br>Rigid ceiling diru<br>bracing.<br>(size) 3= M<br>5=0-3<br>Max Horiz 5=68<br>Max Uplift 3=-60<br>Max Grav 3=11                                                                                                                                                                        | sheathing directly appl<br>s, except end verticals<br>ectly applied or 10-0-0<br>echanical, 4= Mechanic<br>I-8<br>(LC 8)<br>(LC 8), 5=-33 (LC 8)<br>2 (LC 1), 4=68 (LC 3), 5                                                                                                                                                                                                                                                                                                                     | 7) This truss i<br>Internation<br>R802.10.2<br>LOAD CASE(S<br>ied or | s designed in acco<br>al Residential Cod<br>and referenced sta<br>) Standard | ordance wi<br>le sections<br>andard AN | ith the 2018<br>R502.11.1 ;<br>ISI/TPI 1.            | and                                  |                                 |                                       |                                 | JU/<br>GAR                                | MISSOUR<br>AN<br>CIA                                |  |
| FORCES<br>TOP CHORD<br>BOT CHORD<br>NOTES<br>1) Wind: AS<br>Vasd=911<br>II; Exp C;<br>cantilever<br>right expc<br>chord live<br>3) * This trus<br>on the bo<br>3-06-00 t<br>chord and<br>4) All bearin<br>5) Refer to g<br>6) Provide n<br>bearing p<br>5 and 60 | (Ib) - Maximum<br>Tension<br>2-5=-215/69, 1-:<br>4-5=0/0<br>CE 7-16; Vult=115<br>mph; TCDL=6.0psf<br>Enclosed; MWFR3<br>left and right expo<br>sed; Lumber DOL<br>s has been design<br>tom chord in all ar<br>all by 2-00-00 wide<br>d any other membe<br>gs are assumed to<br>jirder(s) for truss t<br>nechanical connect<br>late capable of with<br>lb uplift at joint 3. | ,<br>Compression/Maximum<br>2=0/27, 2-3=-61/33<br>mph (3-second gust)<br>; BCDL=6.0psf; h=25ft;<br>S (envelope) exterior zc<br>sed ; end vertical left ai<br>=1.60 plate grip DOL=1<br>d for a 10.0 psf bottom<br>nt with any other live loa<br>d for a 10.0 psf bottom<br>nt with any other live loa<br>d for a live load of 20.<br>eas where a rectangle<br>will fit between the bott<br>rs.<br>be SPF No.2 .<br>o truss connections.<br>ion (by others) of truss<br>istanding 33 lb uplift at | Cat.<br>one;<br>nd<br>.60<br>ads.<br>Opsf<br>tom<br>to<br>joint      |                                                                              |                                        |                                                      |                                      |                                 |                                       |                                 | NUM<br>E-2000<br>SS/ON<br>UAN<br>CE<br>16 | BER<br>162101<br>ALENGIN<br>NSEO<br>952<br>Halengin |  |



March 7,2024

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)



| Plate Offsets | (X, Y): | [3:0-1-13.Edge], [5:0-5-8.0-1-8] |
|---------------|---------|----------------------------------|

| Loading     | (psf) | Spacing         | 2-0-0           | csi        |      | DEFL     | in    | (loc) | l/defl | L/d | PLATES        | GRIP     |
|-------------|-------|-----------------|-----------------|------------|------|----------|-------|-------|--------|-----|---------------|----------|
| TCLL (roof) | 25.0  | Plate Grip DOL  | 1.15            | TC         | 0.45 | Vert(LL) | -0.04 | 4-5   | >999   | 360 | MT20          | 197/144  |
| TCDL        | 10.0  | Lumber DOL      | 1.15            | BC         | 0.27 | Vert(CT) | -0.09 | 4-5   | >749   | 240 |               |          |
| BCLL        | 0.0*  | Rep Stress Incr | YES             | WB         | 0.00 | Horz(CT) | 0.00  | 4     | n/a    | n/a |               |          |
| BCDL        | 10.0  | Code            | IRC2018/TPI2014 | Matrix-R   |      | Wind(LL) | 0.02  | 4-5   | >999   | 240 | Weight: 18 lb | FT = 10% |
| LUMBER      |       |                 | LOAD CASE(S     | ) Standard |      |          |       |       |        |     |               |          |

LUMBER TOP CHORD 2x4 SPF No.2 BOT CHORD 2x4 SPF No.2 2x4 SPF No.2 \*Except\* 3-4:2x3 SPF No.2 WEBS BRACING TOP CHORD Structural wood sheathing directly applied or 6-0-0 oc purlins, except end verticals. BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing. REACTIONS (size) 4= Mechanical, 5=0-3-8 Max Horiz 5=135 (LC 5) Max Uplift 4=-61 (LC 8), 5=-58 (LC 8) Max Grav 4=250 (LC 1), 5=334 (LC 1) FORCES (Ib) - Maximum Compression/Maximum Tension TOP CHORD 2-5=-292/104, 1-2=0/27, 2-3=-140/33, 3-4=-178/84

#### BOT CHORD

#### NOTES

- Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- 4) All bearings are assumed to be SPF No.2

4-5=-37/38

- 5) Refer to girder(s) for truss to truss connections.
- Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 58 lb uplift at joint 5 and 61 lb uplift at joint 4.
- 7) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

JUAN GARCIA D NUMBER E-2000162101 S S/ONAL ENGINE 16952 D NAN SAS ONAL ENGINE March 7,2024

MIS

0

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and property incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent ocliapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTPIT Quality Criteria, and DSE-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcscomponents.com)



|        |       |                     |     |     |                         | RELEASE FOR CONSTRUCTION                         |
|--------|-------|---------------------|-----|-----|-------------------------|--------------------------------------------------|
| Job    | Truss | Truss Type          | Qty | Ply | Lot 116 MN              | AS NOTED FOR PLAN REVIEW<br>DEVELOPMENT SERVICES |
| 240612 | J11   | Diagonal Hip Girder | 2   | 1   | Job Reference (optional | I64102280<br>LEE'S SUMMIT, MISSOURI              |
|        |       | •                   |     |     |                         | 0.1/00/0001                                      |

Run: 8.73 S Feb 22 2024 Print: 8.730 S Feb 22 2024 MiTek Industries, Inc. hu Mar 014 + 02/2022 00:101/2020 - 24 ID:rzoXwxFY\_MenCOesJWofYVzdKrf-RfC?PsB70Hq3NSgPqnL8w3ulTXbGI WrCDoi 042/02/2022





5-5-5

Scale = 1:35

Plate Offsets (X, Y): [5:0-5-6,0-1-8]

| -              |                             |                          |                  |                     |            |               |       |       |        |      |               |              |
|----------------|-----------------------------|--------------------------|------------------|---------------------|------------|---------------|-------|-------|--------|------|---------------|--------------|
| Loading        | (psf)                       | Spacing                  | 2-0-0            | csi                 |            | DEFL          | in    | (loc) | l/defl | L/d  | PLATES        | GRIP         |
| TCLL (roof)    | 25.0                        | Plate Grip DOL           | 1.15             | TC                  | 0.38       | Vert(LL)      | -0.03 | 4-5   | >999   | 360  | MT20          | 197/144      |
| TCDL           | 10.0                        | Lumber DOL               | 1.15             | BC                  | 0.24       | Vert(CT)      | -0.06 | 4-5   | >999   | 240  |               |              |
| BCLL           | 0.0*                        | Rep Stress Incr          | NO               | WB                  | 0.00       | Horz(CT)      | 0.00  | 4     | n/a    | n/a  |               |              |
| BCDL           | 10.0                        | Code                     | IRC2018/TPI2014  | Matrix-R            |            | Wind(LL)      | 0.01  | 4-5   | >999   | 240  | Weight: 16 lb | FT = 10%     |
|                |                             |                          |                  |                     |            | ( )           |       |       |        |      | 0             |              |
| LUMBER         |                             |                          | 8) "NAILED" i    | ndicates 3-10d (0.1 | 48"x3") c  | or 2-12d      |       |       |        |      |               |              |
| TOP CHORD      | 2x4 SPF No.2                |                          | (0.148"x3.2      | 5") toe-nails per N | DS guidlii | nes.          |       |       |        |      |               |              |
| BOT CHORD      | 2x4 SPF No.2                |                          | 9) In the LOA    | D CASE(S) section   | , loads ap | oplied to the | face  |       |        |      |               |              |
| WEBS           | 2x4 SPF No.2 *Exce          | pt* 3-4:2x3 SPF No.      | 2 of the truss   | are noted as front  | (F) or ba  | ck (B).       |       |       |        |      |               |              |
| BRACING        |                             |                          | LOAD CASE(S      | ) Standard          |            |               |       |       |        |      |               |              |
| TOP CHORD      | Structural wood shea        | athing directly applie   | d or 1) Dead + R | oof Live (balanced) | : Lumber   | Increase=1.   | .15,  |       |        |      |               |              |
|                | 5-5-5 oc purlins, exe       | cept end verticals.      | Plate Incr       | ease=1.15           |            |               |       |       |        |      |               |              |
| BOT CHORD      | Rigid ceiling directly      | applied or 10-0-0 oc     | Uniform L        | oads (lb/ft)        |            |               |       |       |        |      |               | 111.         |
|                | bracing.                    |                          | Vert: 1-         | 2=-70, 2-3=-70, 4-  | 5=-20      |               |       |       |        |      | VI OF I       | MIG          |
| REACTIONS      | (size) 4= Mecha             | inical, 5=0-4-9          | Concentra        | ated Loads (Ib)     |            |               |       |       |        |      | NE            | Sol          |
|                | Max Horiz 5=98 (LC          | 5)                       | vert: /=         | =4 (F=2, B=2)       |            |               |       |       |        |      | · ····        |              |
|                | Max Uplift 4=-48 (LC        | 3), 5=-102 (LC 4)        |                  |                     |            |               |       |       |        | -    | 2             |              |
|                | Max Grav 4=219 (LC          | C 1), 5=342 (LC 1)       |                  |                     |            |               |       |       |        | -    | JUA           |              |
| FORCES         | (lb) - Maximum Com          | pression/Maximum         |                  |                     |            |               |       |       |        | - +  | GAR           |              |
|                | Tension                     |                          |                  |                     |            |               |       |       |        |      | :             | : ^ <b>I</b> |
| TOP CHORD      | 2-5=-302/140, 1-2=0         | )/27, 2-3=-126/14,       |                  |                     |            |               |       |       |        | = 11 |               | · · · ·      |
|                | 3-4=-158/71                 |                          |                  |                     |            |               |       |       |        |      | NUME          | BER :41      |
| BOT CHORD      | 4-5=-26/49                  |                          |                  |                     |            |               |       |       |        | -    | E-20001       | 62101        |
| NOTES          |                             |                          |                  |                     |            |               |       |       |        | 1    | A             |              |
| 1) Wind: AS    | CE 7-16; Vult=115mph        | (3-second gust)          |                  |                     |            |               |       |       |        |      | 1. So         |              |
| Vasd=91r       | mph; TCDL=6.0psf; BC        | DL=6.0psf; h=25ft; C     | at.              |                     |            |               |       |       |        |      | ONA           | LEIN         |
| II; Exp C;     | Enclosed; MWFRS (en         | velope) exterior zon     | e;               |                     |            |               |       |       |        |      |               | inn.         |
| cantilever     | rieft and right exposed     | ; end vertical left and  |                  |                     |            |               |       |       |        |      |               |              |
| 2) This trues  | bac been designed for       | o plate grip DOL=1.6     | 0                |                     |            |               |       |       |        |      |               | un,          |
| 2) This truss  | load popoopourront wi       | th any other live lead   | le.              |                     |            |               |       |       |        |      | I AN C        | ARC          |
| 3) * This true | s has been designed for     | or a live load of 20.0   | nsf              |                     |            |               |       |       |        |      | N. 70         | ····· A .    |
| on the bo      | ttom chord in all areas     | where a rectangle        | 551              |                     |            |               |       |       |        |      | CE            | NSE          |
| 3-06-00 ta     | all by 2-00-00 wide will    | fit between the botto    | m                |                     |            |               |       |       |        | -    |               |              |
| chord and      | any other members.          |                          |                  |                     |            |               |       |       |        |      | 1             | A 2          |
| 4) All bearing | gs are assumed to be S      | SPF No.2 .               |                  |                     |            |               |       |       |        |      | 160           | 252          |
| 5) Refer to g  | girder(s) for truss to trus | s connections.           |                  |                     |            |               |       |       |        | -    | 10.           | 552          |
| 6) Provide m   | nechanical connection (     | (by others) of truss to  | )                |                     |            |               |       |       |        | -    | PT:           |              |
| bearing p      | late capable of withstar    | nding 102 lb uplift at j | joint            |                     |            |               |       |       |        |      | 0             | Millis .     |
| 5 and 48       | lb uplift at joint 4.       |                          |                  |                     |            |               |       |       |        |      | AN            | SAS          |
| 7) This truss  | s is designed in accorda    | ance with the 2018       |                  |                     |            |               |       |       |        |      | 1, PSIC       | ENGIN        |
| Internatio     | nal Residential Code se     | ections R502.11.1 ar     | nd               |                     |            |               |       |       |        |      | ON            | ALL          |
| R802.10.2      | 2 and referenced stand      | ard ANSI/TPI 1.          |                  |                     |            |               |       |       |        |      |               |              |

- 5 and 48 lb uplift at joint 4.
- This truss is designed in accordance with the 2018 7) International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

16023 Swingley Ridge Rd. Chesterfield, MO 63017 314.434.1200 / MiTek-US.com

March 7,2024

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent colleges with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

|                               |        |                      |                |             |                               | RELEASE FOR CONSTRUCTION |
|-------------------------------|--------|----------------------|----------------|-------------|-------------------------------|--------------------------|
| Job                           | Truss  | Truss Type           | Otv            | Plv         | Lot 116 MN                    | AS NOTED FOR PLAN REVIEW |
| 000                           | 11400  |                      | QUY            | ,           |                               | DEVELOPMENT SERVICES     |
| 240612                        | J12    | Jack-Open            | 8              | 1           | Job Reference (optional       | LEE'S SUMMIT, MISSOURI   |
| Wheeler Lumber, Waverly, KS - | 66871, | Run: 8.73 S Feb 22 2 | 2024 Print: 8. | 730 S Feb 2 | 2 2024 MiTek Industries, Inc. |                          |

ID:Bf3?Pq61pg7UmYjZc?ar3zzdKrr-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7JazdC?r





|                                       | L | 3-1 | 1-4 |
|---------------------------------------|---|-----|-----|
| Scale = 1:24.9                        | Γ |     |     |
| Plate Offsets (X, Y): [5:0-5-8,0-1-8] |   |     |     |
|                                       |   |     |     |

| Loading<br>TCLL (roof)<br>TCDL<br>BCLL<br>BCDL                                                                                                                                                                                                                                         | ·                                                                                                                                                                                                                                                                                                                                             | (psf)<br>25.0<br>10.0<br>0.0*<br>10.0                                                                                                                                                                                       | Spacing<br>Plate Grip DOL<br>Lumber DOL<br>Rep Stress Incr<br>Code                                                                                                                                                                                                                                                                            | 2-0-0<br>1.15<br>1.15<br>YES<br>IRC2018/TPI2014                                   | <b>CSI</b><br>TC<br>BC<br>WB<br>Matrix-R                                      | 0.20<br>0.12<br>0.00         | DEFL<br>Vert(LL)<br>Vert(CT)<br>Horz(CT)<br>Wind(LL) | in<br>-0.01<br>-0.02<br>0.01<br>0.01 | (loc)<br>4-5<br>4-5<br>3<br>4-5 | l/defl<br>>999<br>>999<br>n/a<br>>999 | L/d<br>360<br>240<br>n/a<br>240 | <b>PLATES</b><br>MT20<br>Weight: 11 lb                  | <b>GRIP</b><br>197/144<br>FT = 10%     |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|-------------------------------------------------------------------------------|------------------------------|------------------------------------------------------|--------------------------------------|---------------------------------|---------------------------------------|---------------------------------|---------------------------------------------------------|----------------------------------------|
| LUMBER<br>TOP CHORD<br>BOT CHORD<br>WEBS<br>BRACING<br>TOP CHORD<br>BOT CHORD<br>REACTIONS                                                                                                                                                                                             | 2x4 SPF No<br>2x4 SPF No<br>2x4 SPF No<br>Structural w<br>3-11-4 oc pu<br>Rigid ceiling<br>bracing.<br>(size) 3-<br>5-<br>Max Horiz 5-<br>Max Horiz 5-<br>Max Uplift 3-<br>Max Grav 3-<br>(1)                                                                                                                                                 | .2<br>.2<br>.2<br>.2<br>.2<br>.2<br>.2<br>.2<br>.2<br>.2<br>.2<br>.2<br>.2                                                                                                                                                  | athing directly applie<br>ccept end verticals.<br>applied or 10-0-0 oc<br>nical, 4= Mechanica<br>8)<br>8), 5=-34 (LC 8)<br>1), 4=70 (LC 3), 5=                                                                                                                                                                                                | 7) This truss is<br>International<br>R802.10.2 at<br><b>LOAD CASE(S)</b><br>ed or | designed in accorda<br>Residential Code se<br>nd referenced stand<br>Standard | ance wi<br>ections<br>ard AN | ith the 2018<br>R502.11.1 ai                         | nd                                   |                                 |                                       | *                               | JUA<br>GAR                                              | MISSOURIE                              |
| FORCES<br>TOP CHORD<br>BOT CHORD<br>NOTES<br>1) Wind: ASC<br>Vasd=91m<br>II; Exp C; I<br>cantilever I<br>right expos<br>2) This truss<br>chord live<br>3) * This truss<br>on the bott<br>a chord and<br>4) All bearing<br>5) Refer to gi<br>6) Provide m<br>bearing pla<br>5 and 61 lt | (lb) - Maxim<br>Tension<br>2-5=-218/70<br>4-5=0/0<br>CE 7-16; Vult=<br>ph; TCDL=6.0<br>Enclosed; MW<br>left and right e<br>sed; Lumber D<br>has been desi<br>load nonconct<br>s has been de<br>tom chord in a<br>Il by 2-00-00 w<br>any other mer<br>s are assume<br>rder(s) for tru-<br>echanical com<br>ate capable of<br>o uplift at joint | um Comp<br>, 1-2=0/2<br>115mph<br>Dpsf; BCI<br>(FRS (en<br>exposed ;<br>00L=1.60<br>igned for<br>urrent wit<br>signed for<br>II areas v<br>vide will f<br>mbers.<br>d to be S<br>ss to trus<br>nection (I<br>withstan<br>3. | 27, 2-3=-63/34<br>(3-second gust)<br>DL=6.0psf; h=25ft; C<br>velope) exterior zon<br>end vertical left and<br>0 plate grip DOL=1.6<br>a 10.0 psf bottom<br>h any other live load<br>or a live load of 20.0<br>where a rectangle<br>it between the botto<br>SPF No.2 .<br>ss connections.<br>by others) of truss tr<br>ding 34 lb uplift at jo | Cat.<br>le;<br>d<br>30<br>ds.<br>psf<br>im                                        |                                                                               |                              |                                                      |                                      |                                 |                                       |                                 | NUME<br>E-20001<br>SS/ONA<br>JCEI<br>169<br>PROSCESSION | BER<br>62101<br>ALEN<br>SARCIA<br>NSEO |

March 7,2024



WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

|        |       |              |     |      |                          | RELEASE FOR CONSTRUCTION |
|--------|-------|--------------|-----|------|--------------------------|--------------------------|
| loh    | Truss | Truss Type   | Otv | Plv  | Lot 116 MN               | AS NOTED FOR PLAN REVIEW |
| 005    | 11033 |              | Guy | 1 19 |                          | DEVELOPMENT SERVICES     |
| 240612 | LAY1  | Lay-In Gable | 1   | 1    | Job Reference (optional) | LEE'S SUMMIT, MISSOURI   |
|        |       |              |     |      |                          |                          |

Run: 8.73 S Feb 22 2024 Print: 8.730 S Feb 22 2024 MiTek Industries, Inc. hu Mar 7148:402/2924 ID:Vtl0FomKy6ZgfEJKdORQsayKyAa-RfC?PsB70Hq3NSgPqnL8w3ulTXbGr WrCDoi w4zJ07



Scale = 1:60.3

Plate Offsets (X, Y): [6:Edge,0-3-0]

|                                                                                         |                                                                                                            |                                                                                                                                                             |                                                                                                                                                                                                                                                                    |                                                                                   |                                                                                                                                                                                                                                | _                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                |                                                                  |                                                            |                                                                                                                                        |                                                                                                    |                                                                                                                                                                                                                     |                                                                                                                                                                                                                            |                                     |
|-----------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------|------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------|
| <b>Loading</b><br>TCLL (roof)<br>TCDL<br>BCLL<br>BCDL                                   |                                                                                                            | (psf)<br>25.0<br>10.0<br>0.0*<br>10.0                                                                                                                       | <b>Spacing</b><br>Plate Grip DOL<br>Lumber DOL<br>Rep Stress Incr<br>Code                                                                                                                                                                                          | 2-0-0<br>1.15<br>1.15<br>YES<br>IRC2                                              | )<br>2018/TPI2014                                                                                                                                                                                                              |                                                                                  | CSI<br>TC<br>BC<br>WB<br>Matrix-S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.12<br>0.05<br>0.13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | <b>DEFL</b><br>Vert(LL)<br>Vert(TL)<br>Horiz(TL)                                                                                                                               | in<br>n/a<br>n/a<br>0.00                                         | (loc)<br>-<br>-<br>16                                      | l/defl<br>n/a<br>n/a<br>n/a                                                                                                            | L/d<br>999<br>999<br>n/a                                                                           | PLATES<br>MT20<br>Weight: 126 lb                                                                                                                                                                                    | <b>GRIP</b><br>197/144<br>FT = 10%                                                                                                                                                                                         |                                     |
| LUMBER<br>TOP CHORD<br>BOT CHORD<br>WEBS<br>OTHERS<br>BRACING<br>TOP CHORD<br>BOT CHORD | 2x4 SPF N<br>2x4 SPF N<br>2x4 SPF N<br>2x4 SPF N<br>Structural<br>6-0-0 oc p<br>2-0-0 oc p<br>Rigid ceilir | lo.2<br>lo.2<br>lo.2<br>lo.2<br>lo.2<br>wood shea<br>urlins, exo<br>urlins, (6-0-<br>ng directly                                                            | athing directly applie<br>xept end verticals, a<br>-0 max.): 9-15.<br>applied or 10-0-0 od                                                                                                                                                                         | ed or<br>nd<br>c                                                                  | TOP CHORD<br>BOT CHORD<br>WEBS                                                                                                                                                                                                 | 1-:<br>4-<br>7-<br>10<br>13<br>1-<br>24<br>21<br>24<br>21<br>18<br>2-:<br>4-     | 2=-364/308, 2-3=-<br>5=-251/256, 5-6=-<br>8=-183/185, 8-9=-<br>0-11=-59/43, 11-12<br>3-14=-59/43, 14-15<br>28=-67/52, 27-28=<br>4-26=-67/52, 20-21<br>3-19=-67/52, 17-18<br>28=-161/150, 3-27<br>26=_162/186, 5-27<br>26=_162/186, 5-27 26=_162/186, 5-27<br>26=_162/186, 5-27 26=_170/186, 5-27 26=_170/186, 5-27 26=_170/186, 5-27 26=_170/186, 5-27 26=_170/1 | 311/26<br>102/10<br>96/84,<br>2=-59/4<br>=-67/52<br>4=-67/5<br>1=-67/5<br>3=-67/5<br>3=-67/5<br>3=-67/5<br>7=-167/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 4, 3-4=-271/2<br>7, 6-7=-96/10<br>9-10=-59/43,<br>3, 12-13=-59,<br>3, 12-16=-53,<br>, 26-27=-67/5<br>2, 22-23=-67/<br>2, 19-20=-67/<br>2, 16-17=-67/<br>149,<br>162            | 248,<br>14,<br>143,<br>116<br>12,<br>152,<br>152,<br>152,<br>152 | 11) Pribe<br>1,<br>joi<br>lb<br>joi<br>22<br>12) Th<br>Int | ovide me<br>aring plat<br>21 lb upli<br>lift at join<br>nt 24, 45<br>uplift at join<br>t 20, 54<br>is truss is<br>ernationa<br>02 10 2 | chanic<br>te capa<br>ft at joi<br>t 27, 1<br>lb uplit<br>bint 18<br>lb uplit<br>s desig<br>and ref | al connection (by<br>able of withstandi<br>int 16, 13210 upi<br>61 lb upilitation<br>that joint 23, 47 lb<br>34 lb upilitation<br>that joint 21 and<br>that joint 21 and<br>that of accordance<br>dential Code sect | others) of truss to<br>ng 183 lb uplift at<br>1 at loint 28, 124<br>26 3 29 lb uplift at<br>1 uplift at goint 17,<br>19, 44 buplift at point<br>56 lb uplift at point<br>e with the 2018<br>ions R502.11.1 a<br>4 ANS/TP11 | o<br>ijoint<br>lb<br>at<br>37<br>at |
| WEBS<br>REACTIONS                                                                       | bracing.<br>1 Row at r<br>(size)<br>Max Horiz<br>Max Uplift                                                | nidpt<br>1=23-4-9,<br>18=23-4-9<br>21=23-4-9<br>24=23-4-9<br>28=23-4-9<br>1=299 (LC<br>1=-183 (LC<br>21=-54 (LC<br>23=-45 (LC<br>26=-161 (I)<br>28=-132 (I) | 5-24, 7-23<br>16=23-4-9, 17=23-4<br>, 19=23-4-9, 20=23<br>, 22=23-4-9, 23=23<br>, 26=23-4-9, 27=23<br>5<br>5)<br>C 6), 16=-21 (LC 5),<br>C 9), 18=-37 (LC 5),<br>C 9), 20=-44 (LC 5),<br>C 4), 22=-156 (LC 9)<br>C 7), 24=-129 (LC 7)<br>C 8), 27=-124 (LC<br>C 8) | 4-9,<br>;-4-9,<br>;-4-9,<br>;-4-9,<br>;-4-9,<br>,<br>;<br>,<br>)),<br>(7),<br>8), | NOTES<br>1) Unbalanced<br>this design.<br>2) Wind: ASCI<br>Vasd=91mp<br>II; Exp C; E<br>cantilever le<br>right expose<br>3) Truss desig<br>only. For st                                                                        | 4-<br>7-<br>13<br>11<br>8-<br>d ro<br>E 7<br>oh;<br>ncl<br>eft a<br>ed;<br>gne   | 22=-162/186, 5-22<br>23=-136/79, 14-17<br>3-18=-140/56, 12-1<br>1-20=-140/68, 10-2<br>22=-199/181<br>pof live loads have<br>7-16; Vult=115mph<br>TCDL=6.0psf; BC<br>losed; MWFRS (er<br>and right exposed<br>; Lumber DOL=1.6<br>ed for wind loads i<br>ls exposed to wind                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | H=-214/<br>Z=-146/<br>19=-146/<br>19=-146/<br>21=-149/<br>21=-149/<br>(0-140/<br>10-140/<br>10-140/<br>10-140/<br>10-140/<br>10-140/<br>10-140/<br>10-140/<br>10-140/<br>10-140/<br>10-140/<br>10-146/<br>10-146/<br>10-146/<br>10-146/<br>10-146/<br>10-146/<br>10-146/<br>10-146/<br>10-146/<br>10-146/<br>10-146/<br>10-146/<br>10-146/<br>10-146/<br>10-146/<br>10-146/<br>10-146/<br>10-146/<br>10-146/<br>10-146/<br>10-146/<br>10-146/<br>10-146/<br>10-146/<br>10-146/<br>10-146/<br>10-146/<br>10-146/<br>10-146/<br>10-146/<br>10-146/<br>10-146/<br>10-146/<br>10-146/<br>10-146/<br>10-146/<br>10-146/<br>10-146/<br>10-146/<br>10-146/<br>10-146/<br>10-146/<br>10-146/<br>10-146/<br>10-146/<br>10-146/<br>10-146/<br>10-146/<br>10-146/<br>10-146/<br>10-146/<br>10-146/<br>10-146/<br>10-146/<br>10-146/<br>10-146/<br>10-146/<br>10-146/<br>10-146/<br>10-146/<br>10-146/<br>10-146/<br>10-146/<br>10-146/<br>10-146/<br>10-146/<br>10-146/<br>10-146/<br>10-146/<br>10-146/<br>10-146/<br>10-146/<br>10-146/<br>10-146/<br>10-146/<br>10-146/<br>10-146/<br>10-146/<br>10-146/<br>10-146/<br>10-146/<br>10-146/<br>10-146/<br>10-146/<br>10-146/<br>10-146/<br>10-146/<br>10-146/<br>10-146/<br>10-146/<br>10-146/<br>10-146/<br>10-146/<br>10-146/<br>10-146/<br>10-146/<br>10-146/<br>10-146/<br>10-146/<br>10-146/<br>10-146/<br>10-146/<br>10-146/<br>10-146/<br>10-146/<br>10-146/<br>10-146/<br>10-146/<br>10-146/<br>10-146/<br>10-146/<br>10-146/<br>10-146/<br>10-146/<br>10-146/<br>10-146/<br>10-146/<br>10-146/<br>10-146/<br>10-146/<br>10-146/<br>10-146/<br>10-146/<br>10-146/<br>10-146/<br>10-146/<br>10-146/<br>10-146/<br>10-146/<br>10-146/<br>10-146/<br>10-146/<br>10-146/<br>10-146/<br>10-146/<br>10-146/<br>10-146/<br>10-146/<br>10-146/<br>10-146/<br>10-146/<br>10-146/<br>10-146/<br>10-146/<br>10-146/<br>10-146/<br>10-146/<br>10-146/<br>10-146/<br>10-146/<br>10-146/<br>10-146/<br>10-146/<br>10-146/<br>10-146/<br>10-146/<br>10-146/<br>10-146/<br>10-146/<br>10-146/<br>10-146/<br>10-146/<br>10-146/<br>10-146/<br>10-146/<br>10-146/<br>10-146/<br>10-146/<br>10-146/<br>10-146/<br>10-146/<br>10-146/<br>10-146/<br>10-146/<br>10-146/<br>10-146/<br>10-146/<br>10-146/<br>10-146/<br>10-146/<br>10-146/<br>10-146/<br>10-146/<br>10-146/<br>10-146/<br>10-146/<br>10-146/<br>10-146/<br>10-146/<br>10-146/<br>10-146/<br>10-146/<br>10-146/<br>10-146/<br>10-146/<br>10-146/<br>10-146/<br>10-146/<br>10-146/<br>10-146/<br>10-146/<br>10-146/<br>10-146/<br>10-146/<br>10-146/<br>10-146/<br>10-146/<br>10-146/<br>10-146/<br>10-146/<br>10-146/<br>10-146/<br>10-146/<br>10-146/<br>10-146/<br>10-146/<br>10-146/<br>10-146/<br>10-146/<br>10-146/<br>10-146/<br>10-146/<br>10-146/<br>10-146/<br>10-146/<br>10-146/<br>10-146/<br>10-146/<br>10-146/<br>10-146/<br>10-146/<br>10-146/<br>10-146/<br>10-146/<br>10-146/<br>10-146/<br>10-146/<br>10-146/ | 76,<br>5/58,<br>5/77,<br>considered for<br>ond gust)<br>0psf; h=25ft; (<br>e) exterior zon<br>ertical left an<br>grip DOL=1.6<br>ane of the tru<br>al to the face)             | Cat.<br>le;<br>d<br>S0<br>ss                                     | 13) Gr<br>or<br>bo                                         | aphical p<br>the orien<br>ttom choo<br>CASE(S                                                                                          | rd.<br>) Sta                                                                                       | presentation and<br>prime purification                                                                                                                                                                              | Shot depict he s                                                                                                                                                                                                           | iize                                |
| FORCES                                                                                  | Max Grav<br>(Ib) - Maxin<br>Tension                                                                        | 1=265 (LC<br>17=187 (L<br>19=180 (L<br>21=184 (L<br>23=169 (L<br>26=203 (L<br>28=207 (L<br>mum Com                                                          | 5), 16=69 (LC 1),<br>C 22), 18=179 (LC<br>C 22), 20=180 (LC<br>C 16), 22=240 (LC<br>C 15), 24=234 (LC<br>C 15), 27=205 (LC<br>C 15), 27=205 (LC<br>C 15)<br>pression/Maximum                                                                                       | 1),<br>22),<br>16),<br>4),<br>15),                                                | see Standa<br>or consult q<br>4) Provide ade<br>5) All plates ar<br>6) Gable requi<br>7) Gable studs<br>8) This truss h<br>chord live lc<br>9) * This truss<br>on the botto<br>3-06-00 tall<br>chord and a<br>10) All bearings | rd<br>lua<br>equ<br>re 2<br>ires<br>s sp<br>as<br>bad<br>ha<br>by<br>any<br>s ar | Industry Gable En<br>lified building desi<br>uate drainage to pr<br>Zx4 MT20 unless c<br>s continuous botto<br>paced at 2-0-0 oc.<br>been designed fo<br>d nonconcurrent wi<br>s been designed f<br>chord in all areas<br>c 2-00-00 wide will<br>o other members.<br>re assumed to be s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | d Deta<br>gner as<br>event v<br>otherwi<br>m chor<br>r a 10.0<br>ith any<br>for a liv<br>where<br>fit betw<br>SPF No                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Is as applicate<br>s per ANSI/TF<br>vater ponding<br>se indicated.<br>d bearing.<br>0 psf bottom<br>other live load<br>e load of 20.0<br>a rectangle<br>veen the botto<br>0,2. | ole,<br>PI 1.<br>J.<br>ds.<br>psf                                |                                                            |                                                                                                                                        | . annua.                                                                                           | PROTOCOLO                                                                                                                                                                                                           | ARCIA<br>NSEO<br>952                                                                                                                                                                                                       | ANNIHITS.                           |



March 7,2024

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent toulsable personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcscomponents.com)

| Job<br>240612<br>Wheeler Lumber, Waver | Truss<br>LAY2<br>rly, KS - 66871, | Truss Type<br>Lay-In Gable<br>Run: 8.73 S F<br>ID:9vTbYFfJxM | Qty<br>1<br>ieb 22 2024 Print:<br>AojOlvmmtEbxiyk | Ply<br>1<br>8.730 S Fe<br>SyiH-RfC?Ps | Lot 116 MN<br>Job Reference (d<br>b 22 2024 MiTek Industr<br>B70Hq3NSgPqnL8w3ul | optional<br>ries, Inc. <sup>–</sup> hu<br>ITXbGKW rC | RELEASE FOR CONSTRUCTION<br>AS NOTED FOR PLAN REVIEW<br>DEVELOPMENT SERVICES<br>164102283<br>LEE'S SUMMIT, MISSOURI |
|----------------------------------------|-----------------------------------|--------------------------------------------------------------|---------------------------------------------------|---------------------------------------|---------------------------------------------------------------------------------|------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|
|                                        |                                   | 8-8-1<br>8-8-1                                               | 3x4=                                              |                                       | <u>17-1-0</u><br>8-4-15                                                         | 17-4-3<br>                                           |                                                                                                                     |
|                                        | 9-5-0<br>4<br>4                   | 3<br>13 <sup>12</sup><br>1<br>3x4 * <sup>19</sup> 18 17      |                                                   | 8                                     | 9<br>9<br>11<br>12                                                              | 0<br>11<br>3x4                                       |                                                                                                                     |

17-4-3

Scale = 1:55.9

Plate Offsets (X, Y): [6:Edge,0-3-0]

| Loading     |               | (psf)                  | Spacing                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2-0-0         |                                     | CSI                                     | 0.00              | DEFL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | in         | (loc) | l/defl | L/d | PLATES         | GRIP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|-------------|---------------|------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|-------------------------------------|-----------------------------------------|-------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|-------|--------|-----|----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| TCLL (root) |               | 25.0                   | Plate Grip DOL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1.15          |                                     |                                         | 0.08              | Vert(LL)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | n/a        | -     | n/a    | 999 | MT20           | 197/144                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| DOLL        |               | 10.0                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.15          |                                     | BC                                      | 0.05              | Vert(TL)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | n/a        | -     | n/a    | 999 |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| BULL        |               | 0.0                    | Rep Stress Incr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | TEO           |                                     | VVB                                     | 0.11              | HOUS(IL)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.01       | 11    | n/a    | n/a |                | FT 400/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| BCDL        |               | 10.0                   | Code                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | IRC201        | 8/1912014                           | Matrix-S                                |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |            |       |        |     | vveight: 92 lb | FT = 10%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|             | 2x4 SPF No    | 2                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | W             | EBS 2                               | 2-19=-162/149, 3-1<br>-17=-172/174, 5-1 | 8=-165<br> 6=-128 | /151,<br>/42.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |            |       |        |     |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| BOT CHORD   | 2x4 SPE No    | ). <u>2</u>            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               | 1                                   | 0-12=-162/149.9                         | -13=-16           | 4/150.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |            |       |        |     |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| OTHERS      | 2x4 SPF No    | .2                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               | 8                                   | -14=-176/177, 7-1                       | 5=-103            | /9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |            |       |        |     |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| BRACING     | 2.0.0.1.110   |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | N             | OTES                                |                                         |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |            |       |        |     |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| TOP CHORD   | Structural w  | and she                | athing directly applie                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | dor 1)        | Unbalanced i                        | oof live loads hav                      | e been (          | considered for                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | r          |       |        |     |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|             | 6-0-0 oc pu   | rlins                  | annig anoony applie                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | u 01 · /      | this design.                        |                                         |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |            |       |        |     |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| BOT CHORD   | Rigid ceiling | g directly             | applied or 10-0-0 oc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2)            | Wind: ASCE                          | 7-16; Vult=115mp                        | h (3-sec          | cond gust)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | <b>`</b> + |       |        |     |                | un.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| WEDO        | 1 Pow of mi   | idet                   | E 16 7 1E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |               |                                     | n, TCDL=0.0psi, B                       |                   | (0) $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ $(0)$ | Jal.       |       |        |     | NOF            | MISSI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| DEACTIONS   |               |                        | J-10, 7-15<br>44 47 40 40 47 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2             | cantilever left                     | and right expose                        | d · end v         | ertical left an                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | d          |       |        |     | NYE            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| REACTIONS   | (SIZE) I      | =17-4-3,<br>2 17 4 2   | 11=17-4-3, 12=17-4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -3,<br>4 2    | right exposed                       | : Lumber DOL=1.                         | 60 plate          | arip DOL=1.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -<br>60    |       |        | 2   | 18             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|             | 1             | 3=17-4-3               | 0, 14=17-4-3, 10=17-<br>0 17_17 4 2 10_17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 4-3,<br>12 3) | Truss design                        | ed for wind loads                       | in the p          | lane of the tru                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ISS        |       |        | -   | 0. 111         | N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|             | 1             | 0=17-4-3               | , 17=17-4-3, 10=17-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 4-3, -/       | only. For stu                       | ds exposed to win                       | d (norm           | al to the face)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ).         |       |        | -   |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|             | Max Horiz 1   | -212 (I C              | 5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |               | see Standard                        | Industry Gable E                        | nd Deta           | ils as applicat                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ble,       |       |        | = * | GAR            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|             | Max Liplift 1 | 110 (LC                | (10, 0)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |               | or consult qu                       | alified building des                    | signer a          | s per ANSI/TF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ข1.        |       |        | -   |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|             |               | 2131 (L                | (C 0), 11 = 01 (C 7),<br>(C 0) 13 = 125 (C 0)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ລ) 4)         | All plates are                      | 2x4 MT20 unless                         | otherwi           | se indicated.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |            |       |        | = T | 1              | · · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|             | 1.            | 2= 101 (I<br>4=-153 (I | $ C  _{0}$ $ C   _{0}$ $ C   _{0}$ $ C   _{0}$ $ C   _{0}$ $ C   _{0}$ $ C   _{0}$ $ C   _{0}$ $ C   _{0}$ $ $ | 5), 5)        | Gable require                       | es continuous botte                     | om chor           | d bearing.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |            |       |        |     | NUM            | SER :41                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|             | 1             | 7=-149 (I              | (103), 10=22 (103)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | (,<br>3) 6)   | Gable studs                         | spaced at 2-0-0 oc                      | <b>)</b> .        | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |            |       |        | 1   | O: E-20001     | 62101                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|             | 1             | 9=-131 (I              | LC 8)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 7)            | This truss ha                       | s been designed f                       | or a 10.0         | 0 psf bottom                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |       |        | 1   | A              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|             | Max Grav 1    | =270 (1 C              | (100)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |               | chord live loa                      | d nonconcurrent v                       | vith any          | other live load                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ds.        |       |        | - 0 | ·····          | GN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|             | 1:            | 2=208 (I               | C 16) 13=203 (I C 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | (6) 8         | * This truss h                      | as been designed                        | for a liv         | e load of 20.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | )psf       |       |        |     | IN ONL         | LENN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|             | 1             | 4=217 (L               | .C 16), 15=137 (LC 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | (6).          | on the bottom                       | n chord in all areas                    | s where           | a rectangle                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |            |       |        |     | - 1111         | inn's                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|             | 1             | 6=161 (L               | .C 15), 17=214 (LC 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | (5).          | 3-06-00 tall b                      | y 2-00-00 wide wi                       | ll fit betv       | veen the botto                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | om         |       |        |     |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|             | 1             | 8=203 (L               | C 15), 19=207 (LC 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 5)            | chord and an                        | y other members.                        |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |            |       |        |     | 111.           | 1111.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| FORCES      | (lb) - Maxim  | um Com                 | nression/Maximum                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 9)            | All bearings a                      | are assumed to be                       | SPF No            | o.2 .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |            |       |        |     | AL AND         | SAD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 1011020     | Tension       |                        | procolori/maximam                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 10            | <ol> <li>Provide mech</li> </ol>    | nanical connection                      | ı (by oth         | ers) of truss to                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0          |       |        |     | NUAN           | CIA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| TOP CHORD   | 1-2=-382/20   | )9 2-3=-2              | 259/161 3-4=-131/1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 12            | bearing plate                       | capable of withsta                      | anding 1          | 10 lb uplift at                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | joint      |       |        |     | N CE           | NSA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|             | 4-5=-106/10   | )5, 5-6=-5             | 50/71.6-7=-46/67.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | •_,           | 1, 81 lb uplift                     | at joint 11, 131 lb                     | uplift at         | joint 19, 126                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | lb         |       |        | 1   |                | - O -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|             | 7-8=-75/77    | 8-9=-112               | 2/75 9-10=-233/122                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |               | uplift at joint                     | 18, 149 lb uplift at                    | joint 17,         | 22 lb uplift at                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | t          |       |        | -   |                | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|             | 10-11=-357/   | /170                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ,             | joint 16, 131                       | lb uplift at joint 12,                  | 125 lb            | uplift at joint 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 3          |       |        | -   | 1              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| BOT CHORD   | 1-19=-116/2   | 268, 18-1              | 9=-116/268.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |               | and 153 lb up                       | olift at joint 14.                      |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |            |       |        | -   | : 169          | 952 : =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|             | 17-18=-116/   | /268, 16-              | 17=-116/268,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 11            | <ol> <li>This truss is a</li> </ol> | designed in accord                      | dance w           | ith the 2018                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |       |        | -   | DI             | 1 :0-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|             | 15-16=-116/   | /268, 14-              | 15=-116/268,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |               | International                       | Residential Code                        | sections          | s K502.11.1 a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | nd         |       |        | 1   | <b>P</b> :     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|             | 13-14=-116/   | /268, 12-              | 13=-116/268,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |               | R802.10.2 ar                        | id referenced stan                      | dard AN           | ISI/TPL1.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |            |       |        | 10  | - On the had   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|             | 11-12=-116/   | /268                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | L             | DAD CASE(S)                         | Standard                                |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |            |       |        |     | 1. Col MAN     | Shi G                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|             |               |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |                                     |                                         |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |            |       |        |     | 1, SION        | AL ENIN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|             |               |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |                                     |                                         |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |            |       |        |     | 111.           | and the second s |
|             |               |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |                                     |                                         |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |            |       |        |     |                | 1001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |

**iTek** 16023 Swingley Ridge Rd. Chesterfield, MO 63017 314.434.1200 / MiTek-US.com

March 7,2024

\_

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling or individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

|                      |                   |               |                                                   |                           |                                       | Г                                        | RELEASE FOR CONSTRUCTION |
|----------------------|-------------------|---------------|---------------------------------------------------|---------------------------|---------------------------------------|------------------------------------------|--------------------------|
| Job                  | Truss             | Truss Type    | Qty                                               | Ply                       | Lot 116 MN                            |                                          | AS NOTED FOR PLAN REVIEW |
| 240612               | LAY3              | Lay-In Gable  | 1                                                 | 1                         | Job Referer                           | nce (optional)                           | LEE'S SUMMIT, MISSOURI   |
| Wheeler Lumber, Wave | erly, KS - 66871, | Run:<br>ID:LC | 8.73 S Feb 22 2024 Print:<br>0GJfTM8h0uSwkC3JHOhw | 8.730 S Fel<br>UzdKnf-RfC | b 22 2024 MiTek In<br>C?PsB70Hq3NSgPo | ndustries, Inc. Thu M<br>qnL8w3uITXbCiKW | Mar 0145:102/2024        |
|                      |                   | 5-11-11       | 6-7-8<br>0-7-13                                   |                           | 12-4-0<br>5-8-9                       | 12-7-3<br>0-3-3                          |                          |
|                      |                   |               | 5x12 =                                            |                           |                                       |                                          |                          |



Scale = 1:43.3

Plate Offsets (X, Y): [4:0-6-0,0-0-5]

| <b>Loading</b><br>TCLL (roof)<br>TCDL<br>BCLL<br>BCDL                                                                                                 |                                                                                                                                                                                                                                                                                                       | (psf)<br>25.0<br>10.0<br>0.0*<br>10.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <b>Spacing</b><br>Plate Grip DOL<br>Lumber DOL<br>Rep Stress Incr<br>Code                                                                                                                                                                                                                                                                                                                                                          | 2-0-0<br>1.15<br>1.15<br>YES<br>IRC201 | 8/TPI2014                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | <b>CSI</b><br>TC<br>BC<br>WB<br>Matrix-S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.05<br>0.03<br>0.06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | <b>DEFL</b><br>Vert(LL)<br>Vert(TL)<br>Horiz(TL)                                                                                                                                                                                                                                                                                                                                                                                                                            | in<br>n/a<br>n/a<br>0.00                                                                                                                                                                         | (loc)<br>-<br>-<br>8 | l/defl<br>n/a<br>n/a<br>n/a | L/d<br>999<br>999<br>n/a | <b>PLATES</b><br>MT20<br>Weight: 60 lb                       | <b>GRIP</b><br>197/144<br>FT = 10%                |        |
|-------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|-----------------------------|--------------------------|--------------------------------------------------------------|---------------------------------------------------|--------|
| LUMBER<br>TOP CHORD<br>BOT CHORD<br>OTHERS<br>BRACING<br>TOP CHORD<br>BOT CHORD<br>REACTIONS<br>FORCES<br>TOP CHORD<br>BOT CHORD<br>BOT CHORD<br>WEBS | 2x4 SPF<br>2x4 SPF<br>2x4 SPF<br>2x4 SPF<br>2x4 SPF<br>3tructura<br>6-0-0 oc (<br>2-0-0 oc (<br>Rigid ceil<br>bracing.<br>(size)<br>Max Horiz<br>Max Horiz<br>Max Uplift<br>Max Grav<br>(lb) - Max<br>Tension<br>1-2=-18&<br>4-5=-31/1<br>7-8=-15&<br>1-14=-6&<br>12-13=-6i<br>10-11=-6i<br>2-14=-15' | No.2 *Exce<br>No.2<br>No.2<br>No.2<br>I wood shea<br>burlins, exc<br>burlins, exc<br>1=12-7-3,<br>1=164 (LC<br>1=-63 (LC<br>1=-63 (LC<br>0), 10<br>5), 13=-13<br>1=132 (LC<br>9=204 (LC<br>11=111 (L<br>13=219 (L)) (L)) (L)) (L)) (L)) (L)) (L)) (L) | pt* 4-5:2x6 SPF No.<br>athing directly applie<br>tept<br>-0 max.): 4-5.<br>applied or 10-0-0 or<br>8=12-7-3, 9=12-7-3<br>8, 11=12-7-3, 12=12<br>8, 14=12-7-3<br>15)<br>6), 8=-29 (LC 7), 9:<br>=-135 (LC 9), 12=-1<br>36 (LC 8), 14=-130 (<br>C 17), 8=-115 (LC 18<br>C 16), 10=218 (LC 11<br>C 17), 12=127 (LC<br>pression/Maximum<br>129/99, 3-4=-104/14<br>5/119, 6-7=-94/54,<br>=-68/133,<br>=-68/133, 8-9=-68/1<br>=-178/162, | 2<br>ad or 3<br>- 4<br>                | <ul> <li>Wind: ASCE<br/>Vasd=91mpl<br/>II; Exp C; En<br/>cantilever lef<br/>right expose;</li> <li>Truss desigi<br/>only. For stu<br/>see Standarr<br/>or consult qu</li> <li>Provide adeq</li> <li>All plates are</li> <li>Gable requir</li> <li>Gable studs</li> <li>This truss ha<br/>chord live loa</li> <li>* This truss ha<br/>chord and ar</li> <li>All bearings</li> <li>All bearings</li> <li>Provide mec<br/>bearing plate</li> <li>1, 29 Ib uplifu<br/>uplift at joint<br/>joint 9 and 13</li> <li>This truss is<br/>International<br/>R802.10.2 ar</li> <li>Graphical pu<br/>or the orienta</li> </ul> | 7-16; Vult=115mpl<br>n; TCDL=6.0psf; BC<br>closed; MWFRS (e<br>t and right exposed<br>t and right exposed<br>t clumber DOL=1.4.<br>hed for wind loads<br>ds exposed to wind<br>loads ds exposed to wind<br>d industry Gable Er<br>ialified building des<br>yuate drainage to p<br>2x4 MT20 unless<br>es continuous botts<br>spaced at 2-0-0 oc<br>s been designed for<br>a nonconcurrent w<br>has been designed for<br>a nonconcurrent w<br>has been designed will<br>y other members.<br>are assumed to be<br>haciaable of withsta<br>at joint 8, 130 lb up<br>13, 18 lb uplift at joint 1<br>designed in accord<br>Residential Code s<br>nd referenced stam-<br>rlin representation<br>at port key for the purlin a | h (3-sec<br>CDL=6.<br>CDL=6.<br>CDL=6.<br>CDL=6.<br>CDL=6.<br>CDL=6.<br>CDL=6.<br>CDL=6.<br>CDL=6.<br>CDL=6.<br>CDL=6.<br>CDL=6.<br>CDL=6.<br>CDL=6.<br>CDL=6.<br>CDL=6.<br>CDL=6.<br>CDL=6.<br>CDL=6.<br>CDL=6.<br>CDL=6.<br>CDL=6.<br>CDL=6.<br>CDL=6.<br>CDL=6.<br>CDL=6.<br>CDL=6.<br>CDL=6.<br>CDL=6.<br>CDL=6.<br>CDL=6.<br>CDL=6.<br>CDL=6.<br>CDL=6.<br>CDL=6.<br>CDL=6.<br>CDL=6.<br>CDL=6.<br>CDL=6.<br>CDL=6.<br>CDL=6.<br>CDL=6.<br>CDL=6.<br>CDL=6.<br>CDL=6.<br>CDL=6.<br>CDL=6.<br>CDL=6.<br>CDL=6.<br>CDL=6.<br>CDL=6.<br>CDL=6.<br>CDL=6.<br>CDL=6.<br>CDL=6.<br>CDL=6.<br>CDL=6.<br>CDL=6.<br>CDL=6.<br>CDL=6.<br>CDL=6.<br>CDL=6.<br>CDL=6.<br>CDL=6.<br>CDL=6.<br>CDL=6.<br>CDL=6.<br>CDL=6.<br>CDL=6.<br>CDL=6.<br>CDL=6.<br>CDL=6.<br>CDL=6.<br>CDL=6.<br>CDL=6.<br>CDL=6.<br>CDL=6.<br>CDL=6.<br>CDL=6.<br>CDL=6.<br>CDL=6.<br>CDL=6.<br>CDL=6.<br>CDL=6.<br>CDL=6.<br>CDL=6.<br>CDL=6.<br>CDL=6.<br>CDL=6.<br>CDL=6.<br>CDL=6.<br>CDL=6.<br>CDL=6.<br>CDL=6.<br>CDL=6.<br>CDL=6.<br>CDL=6.<br>CDL=6.<br>CDL=6.<br>CDL=6.<br>CDL=6.<br>CDL=6.<br>CDL=6.<br>CDL=6.<br>CDL=6.<br>CDL=6.<br>CDL=6.<br>CDL=6.<br>CDL=6.<br>CDL=6.<br>CDL=6.<br>CDL=6.<br>CDL=6.<br>CDL=6.<br>CDL=6.<br>CDL=6.<br>CDL=6.<br>CDL=6.<br>CDL=6.<br>CDL=6.<br>CDL=6.<br>CDL=6.<br>CDL=6.<br>CDL=6.<br>CDL=6.<br>CDL=6.<br>CDL=6.<br>CDL=6.<br>CDL=6.<br>CDL=6.<br>CDL=6.<br>CDL=6.<br>CDL=6.<br>CDL=6.<br>CDL=6.<br>CDL=6.<br>CDL=6.<br>CDL=6.<br>CDL=6.<br>CDL=6.<br>CDL=6.<br>CDL=6.<br>CDL=6.<br>CDL=6.<br>CDL=6.<br>CDL=6.<br>CDL=6.<br>CDL=6.<br>CDL=6.<br>CDL=6.<br>CDL=6.<br>CDL=6.<br>CDL=6.<br>CDL=6.<br>CDL=6.<br>CDL=6.<br>CDL=6.<br>CDL=6.<br>CDL=6.<br>CDL=6.<br>CDL=6.<br>CDL=6.<br>CDL=6.<br>CDL=6.<br>CDL=6.<br>CDL=6.<br>CDL=6.<br>CDL=6.<br>CDL=6.<br>CDL=6.<br>CDL=6.<br>CDL=6.<br>CDL=6.<br>CDL=6.<br>CDL=6.<br>CDL=6.<br>CDL=6.<br>CDL=6.<br>CDL=6.<br>CDL=6.<br>CDL=6.<br>CDL=6.<br>CDL=6.<br>CDL=6.<br>CDL=6.<br>CDL=6.<br>CDL=6.<br>CDL=6.<br>CDL=6.<br>CDL=6.<br>CDL=6.<br>CDL=6.<br>CDL=6.<br>CDL=6.<br>CDL=6.<br>CDL=6.<br>CDL=6.<br>CDL=6.<br>CDL=6.<br>CDL=6.<br>CDL=6.<br>CDL=6.<br>CDL=6.<br>CDL=6.<br>CDL=6.<br>CDL=6.<br>CDL=6.<br>CDL=6.<br>CDL=6.<br>CDL=6.<br>CDL=6.<br>CDL=6.<br>CDL=6.<br>CDL=6.<br>CDL=6.<br>CDL=6.<br>CDL=6.<br>CDL=6.<br>CDL=6.<br>CDL=6.<br>CDL=6.<br>CDL=6.<br>CDL=6.<br>CDL=6.<br>CDL=6.<br>CDL=6.<br>CDL=6.<br>CDL=6.<br>CDL=6.<br>CDL=6.<br>CDL=6.<br>CDL=6.<br>CDL=6.<br>CDL=6.<br>CDL=6.<br>CDL=6.<br>CDL=6.<br>CDL=6.<br>CDL=6.<br>CDL=6.<br>CDL=6.<br>CDL=6.<br>CDL=6.<br>CDL=6.<br>CDL=6.<br>CDL=6.<br>CDL=6.<br>CDL=6.<br>CDL=6.<br>CDL=6.<br>CDL=6.<br>CDL=6.<br>CDL=6.<br>CDL=6.<br>CDL=6.<br>CDL=6.<br>CDL=6.<br>CDL=6.<br>CDL=6.<br>CDL=6.<br>CDL=6.<br>CDL=6.<br>CDL=6.<br>CDL=6.<br>CDL=6.<br>CDL=6.<br>CDL=6.<br>CDL=6.<br>CDL=6.<br>CDL=6.<br>CDL=6.<br>CDL=6.<br>CDL=6.<br>CDL=6.<br>CDL=6.<br>CDL=6.<br>CDL=6.<br>CDL=6.<br>CDL=6.<br>CDL=6.<br>CDL=6.<br>CDL=6.<br>CDL=6.<br>CDL=6.<br>CDL=6.<br>CDL=6.<br>CDL=6.<br>CDL=6.<br>CDL=6.<br>CDL=6.<br>CDL=6. | cond gust)<br>Dpsf; h=25ft; (<br>a) exterior zoro<br>rertical left an<br>grip DOL=1.<br>ane of the tru<br>al to the face<br>ils as applical<br>is per ANSI/TF<br>water ponding<br>se indicated.<br>d bearing.<br>D psf bottom<br>other live loa<br>e load of 20.0<br>a rectangle<br>ween the bottor<br>o.2.<br>ers) of truss t<br>i3 lb uplift at j<br>int 14, 136 lb<br>130 lb uplift at<br>isth the 2018<br>is R502.11.1 a<br>ISI/TP11.<br>ot depict the se<br>to pand/or | Cat.<br>ne;<br>d<br>60<br>iss<br>),<br>ole,<br>PI 1.<br>J.<br>ds.<br>opsf<br>om<br>o<br>t<br>nd<br>iss<br>iss<br>iss<br>iss<br>o<br>o<br>t<br>n<br>iss<br>iss<br>iss<br>iss<br>iss<br>iss<br>iss |                      |                             |                          | JUA<br>GAR<br>S<br>S<br>S<br>S<br>ONA<br>UAN<br>C<br>E-20001 | MISSOUR<br>N<br>CIA<br>BER<br>62101<br>U<br>ALENG |        |
| NOTES<br>1) Unbalance<br>this desigr                                                                                                                  | 4-12=-10:<br>5-11=-85,<br>ed roof live l<br>n.                                                                                                                                                                                                                                                        | 2/41, 7-9=-`<br>'8<br>loads have                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 160/148, 6-10=-177/<br>been considered for                                                                                                                                                                                                                                                                                                                                                                                         | <sup>/162,</sup> L                     | OAD CASE(S)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Standard                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                  |                      |                             | IIII.                    |                                                              | ALENGIN                                           | WHILE. |



March 7,2024

Tek



R802.10.2 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard

BRACING

TOP CHORD

BOT CHORD

FORCES

WFBS

NOTES

2)

3)

4)

5)

6)

7)

All bearings are assumed to be SPF No.2 .

Structural wood sheathing directly applied or 6-0-0 oc purlins, except end verticals.

Rigid ceiling directly applied or 10-0-0 oc



BAD TO STATE ONALENGI March

> 16023 Swingley Ridge Rd. Chesterfield MO 63017

314.434.1200 / MiTek-US.com

MIS

JUAN

GARCIA

NUMBER

2000162101

0

F





Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 36 lb uplift at joint 1 and 55 lb uplift at joint 3.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponent.com)

16023 Swingley Ridge Rd. Chesterfield MO 63017 314.434.1200 / MiTek-US.com

MILLIN N



TOP CHORD 1-2=-56/37, 2-3=-119/55 BOT CHORD 1-3=-20/15

#### NOTES

- Wind: ASCE 7-16; Vult=115mph (3-second gust) 1) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
- 2) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable or consult qualified building designer as per ANSI/TPI 1.
- Gable requires continuous bottom chord bearing. 3)
- Gable studs spaced at 4-0-0 oc. 4)
- 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 6) \* This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- All bearings are assumed to be SPF No.2 . 7)
- Provide mechanical connection (by others) of truss to 8) bearing plate capable of withstanding 22 lb uplift at joint 1 and 35 lb uplift at joint 3.

GARCIA NUMBER T F 2000162101 C 160 PROTOCOLOGICAL JOIN March



WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponent.com)

|        |       |            |      |     |                         | RELEASE FOR CONSTRUCTION |
|--------|-------|------------|------|-----|-------------------------|--------------------------|
| lah    | Truco | Truco Tupo | 0.54 | DIV |                         | AS NOTED FOR PLAN REVIEW |
| JOD    | Thuss | Truss Type | Qly  | Fiy | LOUTION                 | DEVELOPMENT SERVICES     |
| 240612 | V4    | Valley     | 1    | 1   | Job Reference (optional | LEE'S SUMMIT, MISSOURI   |
| L      | •     |            |      |     |                         |                          |

Run: 8.73 S Feb 22 2024 Print: 8.730 S Feb 22 2024 MiTek Industries, Inc. Thu Mar 0143: 02/2024 ID:gl31oaEvFtXxxAxZoYSGP\_yKxz3-RfC?PsB70Hq3NSgPqnL8w3uITXbGK VrCDoi702JCF

6x6 =









2x4 🚅



Scale = 1:16.9

Plate Offsets (X, Y): [2:Edge,0-1-15]

|                               | (/(, 1): [2::Edg0,0   | 10]          |                    |         |               |                   |             |                 |       |       |        |     |              |                    |
|-------------------------------|-----------------------|--------------|--------------------|---------|---------------|-------------------|-------------|-----------------|-------|-------|--------|-----|--------------|--------------------|
| Loading                       | (ps                   | ) Spa        | acing              | 2-0-0   |               | CSI               |             | DEFL            | in    | (loc) | l/defl | L/d | PLATES       | GRIP               |
| TCLL (roof)                   | 25.                   | ) Plat       | te Grip DOL        | 1.15    |               | TC                | 0.03        | Vert(LL)        | n/a   | -     | n/a    | 999 | MT20         | 197/144            |
| TCDL                          | 10.                   | ) Lun        | nber DOL           | 1.15    |               | BC                | 0.02        | Vert(TL)        | n/a   | -     | n/a    | 999 |              |                    |
| BCLL                          | 0.                    | )* Rec       | o Stress Incr      | YES     |               | WB                | 0.00        | Horiz(TL)       | 0.00  | 3     | n/a    | n/a |              |                    |
| BCDL                          | 10.                   | Coc          | de                 | IRC2018 | /TPI2014      | Matrix-P          |             |                 |       |       |        |     | Weight: 5 lb | FT = 10%           |
|                               |                       |              |                    |         |               |                   |             |                 |       |       |        |     | -            |                    |
| LUMBER                        |                       |              |                    | 8)      | Provide mech  | nanical connectio | on (by othe | ers) of truss t | 0     |       |        |     |              |                    |
| TOP CHORD                     | 2x4 SPF No.2          |              |                    |         | bearing plate | capable of withs  | standing 9  | ib uplift at jo | int 1 |       |        |     |              |                    |
| BOT CHORD                     | 2x4 SPF No.2          |              |                    | 0)      | and 15 lb upl | ift at joint 3.   |             | all the 0040    |       |       |        |     |              |                    |
| WEBS                          | 2x3 SPF No.2          |              |                    | 9)      |               | designed in acco  | rdance wi   | Ith the 2018    |       |       |        |     |              |                    |
| BRACING                       |                       |              |                    |         | International | Residential Code  | e sections  | R502.11.1 a     | ind   |       |        |     |              |                    |
| TOP CHORD                     | Structural wood       | sheathing    | g directly applied | dor     | R802.10.2 ar  | id referenced sta | indard AN   | ISI/TPI 1.      |       |       |        |     |              |                    |
|                               | 2-3-4 oc purlins,     | except e     | end verticals.     | LO      | AD CASE(S)    | Standard          |             |                 |       |       |        |     |              |                    |
| BOT CHORD                     | Rigid ceiling dire    | ctly appli   | ed or 10-0-0 oc    |         |               |                   |             |                 |       |       |        |     |              | 11.                |
|                               | bracing.              |              |                    |         |               |                   |             |                 |       |       |        |     | VI OF I      | MIG                |
| REACTIONS                     | (size) 1=2-2          | 10, 3=2-     | 2-10               |         |               |                   |             |                 |       |       |        |     | NE           | S                  |
|                               | Max Horiz 1=26        | LC 5)        |                    |         |               |                   |             |                 |       |       |        |     | 17           |                    |
|                               | Max Uplift 1=-9 (     | LC 8), 3=    | =-15 (LC 8)        |         |               |                   |             |                 |       |       |        | - 0 |              | N : P -            |
|                               | Max Grav 1=64         | LC 1), 3=    | =64 (LC 1)         |         |               |                   |             |                 |       |       |        | -   | :            |                    |
| FORCES                        | (lb) - Maximum (      | Compress     | sion/Maximum       |         |               |                   |             |                 |       |       |        | :*  | GAR          |                    |
|                               | Tension               | 40/00        |                    |         |               |                   |             |                 |       |       |        |     | ÷            |                    |
| TOP CHORD                     | 1-2=-23/15, 2-3=      | -49/23       |                    |         |               |                   |             |                 |       |       |        | = 0 | . NILINAT    |                    |
| BOT CHORD                     | 1-3=-9/6              |              |                    |         |               |                   |             |                 |       |       |        | - 1 |              | SER :41            |
| NOTES                         |                       |              |                    |         |               |                   |             |                 |       |       |        | - ( | O∴ E-20001   | 62101              |
| 1) Wind: AS                   | CE 7-16; Vult=115     | nph (3-se    | econd gust)        |         |               |                   |             |                 |       |       |        | -   | A            |                    |
| Vasd=91r                      | nph; TCDL=6.0psf      | BCDL=6       | 6.0psf; h=25ft; C  | at.     |               |                   |             |                 |       |       |        |     | 1. So        |                    |
| II; Exp C;                    | Enclosed; MWFRS       | (envelop     | be) exterior zone  | Э;      |               |                   |             |                 |       |       |        |     | ON/          | LEIN               |
| cantilever                    | left and right expo   | sea; ena     | vertical left and  | 0       |               |                   |             |                 |       |       |        |     |              | nn.                |
| 2) Truce do                   | sed, Lumber DOL       | n.ou piai    | e grip DOL=1.60    |         |               |                   |             |                 |       |       |        |     |              |                    |
| 2) Truss de:                  | signed for wind loa   | ind (norr    | piane of the face) | 5       |               |                   |             |                 |       |       |        |     | , unit       | un,                |
| see Stand                     | ard Industry Gable    | End Det      | ails as applicabl  | ۵       |               |                   |             |                 |       |       |        |     | IN AN C      | ARC                |
| or consult                    | qualified building    | lesigner a   | as per ANSI/TPI    | 1       |               |                   |             |                 |       |       |        |     | N 20         | A                  |
| 3) Gable reg                  | uires continuous b    | ottom cho    | ord bearing.       |         |               |                   |             |                 |       |       |        |     | CE           | NSED.              |
| <ol> <li>Gable stu</li> </ol> | ds spaced at 4-0-0    | OC.          |                    |         |               |                   |             |                 |       |       |        | -   | . / Y        |                    |
| 5) This truss                 | has been designe      | for a 10     | 0.0 psf bottom     |         |               |                   |             |                 |       |       |        |     | 1            | 1 - 1 - <b>2</b> - |
| chord live                    | load nonconcurrer     | t with any   | v other live load  | s.      |               |                   |             |                 |       |       |        |     | 160          | 952                |
| 6) * This trus                | s has been design     | ed for a li  | ive load of 20.0p  | osf     |               |                   |             |                 |       |       |        | =   |              |                    |
| on the bot                    | ttom chord in all are | as where     | e a rectangle      |         |               |                   |             |                 |       |       |        | -   | The last     | 4 155              |
| 3-06-00 ta                    | all by 2-00-00 wide   | will fit bet | tween the bottor   | n       |               |                   |             |                 |       |       |        |     | 0.           | 1 u · u ·          |
| chord and                     | any other membe       | s.           |                    |         |               |                   |             |                 |       |       |        |     | - AN         | SAS                |
| 7) All bearing                | gs are assumed to     | be SPF N     | No.2 .             |         |               |                   |             |                 |       |       |        |     | 1. SION      | ENUN               |
|                               |                       |              |                    |         |               |                   |             |                 |       |       |        |     | III ON       | AL                 |
|                               |                       |              |                    |         |               |                   |             |                 |       |       |        |     |              |                    |
|                               |                       |              |                    |         |               |                   |             |                 |       |       |        |     | Marc         | n 7,2024           |



WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

|                               |        |                                           |                              |                             |                                                                      | RELEASE FOR CONSTRUCTION                         |
|-------------------------------|--------|-------------------------------------------|------------------------------|-----------------------------|----------------------------------------------------------------------|--------------------------------------------------|
| Job                           | Truss  | Truss Type                                | Qty                          | Ply                         | Lot 116 MN                                                           | AS NOTED FOR PLAN REVIEW<br>DEVELOPMENT SERVICES |
| 240612                        | V5     | Valley                                    | 1                            | 1                           | Job Reference (optional                                              | LEE'S SUMMIT, MISSOURI                           |
| Wheeler Lumber, Waverly, KS - | 66871, | Run: 8.73 S Feb 22 2<br>ID:dgBnDFFAnUnfAT | 2024 Print: 8.<br>5ywzVkVPył | .730 S Feb 2<br>Kxz1-RfC?Ps | 2 2024 MiTek Industries, Inc. <sup>-</sup><br>B70Hq3NSgPqnL8w3uITXbG | hu Mar 0148,702/2024<br>(WrCDolfedzJEff          |
|                               |        | 3                                         | -2-10                        |                             |                                                                      |                                                  |
|                               |        |                                           |                              |                             |                                                                      |                                                  |
|                               |        |                                           |                              |                             | 2x4 II                                                               |                                                  |
|                               | ω      | 5 T                                       |                              |                             | 2                                                                    | φ                                                |

2x4 🚅

3

2x4 🛚

1

0-0-4

|                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                               |                                                                 |                                                                          | 3-2-1                              | 0                                                |                          | 4                    |                             |                          |                                       |                                    |             |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------|--------------------------------------------------------------------------|------------------------------------|--------------------------------------------------|--------------------------|----------------------|-----------------------------|--------------------------|---------------------------------------|------------------------------------|-------------|
| Scale = 1:18.6                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                               |                                                                 |                                                                          |                                    |                                                  |                          |                      |                             |                          |                                       |                                    |             |
| <b>Loading</b><br>TCLL (roof)<br>TCDL<br>BCLL<br>BCDL                                                                                                                                              | (psf)<br>25.0<br>10.0<br>0.0*<br>10.0                                                                                                                                                                                                                                                                                                                                                                 | Spacing<br>Plate Grip DOL<br>Lumber DOL<br>Rep Stress Incr<br>Code                                                                                                                                                                                                                            | 2-0-0<br>1.15<br>1.15<br>YES<br>IRC2018/TPI2014                 | CSI<br>TC<br>BC<br>WB<br>Matrix-P                                        | 0.10<br>0.05<br>0.00               | <b>DEFL</b><br>Vert(LL)<br>Vert(TL)<br>Horiz(TL) | in<br>n/a<br>n/a<br>0.00 | (loc)<br>-<br>-<br>3 | l/defl<br>n/a<br>n/a<br>n/a | L/d<br>999<br>999<br>n/a | <b>PLATES</b><br>MT20<br>Weight: 7 lb | <b>GRIP</b><br>197/144<br>FT = 10% |             |
| LUMBER<br>TOP CHORD<br>BOT CHORD<br>WEBS<br>BRACING<br>TOP CHORD<br>BOT CHORD<br>REACTIONS                                                                                                         | 2x4 SPF No.2<br>2x4 SPF No.2<br>2x3 SPF No.2<br>Structural wood shea<br>3-3-4 oc purlins, exc<br>Rigid ceiling directly<br>bracing.<br>(size) 1=3-2-10,<br>Max Horiz 1=44 (LC<br>Max Uplift 1=-16 (LC                                                                                                                                                                                                 | athing directly applie<br>sept end verticals.<br>applied or 10-0-0 oc<br>3=3-2-10<br>5)<br>8), 3=-25 (LC 8)                                                                                                                                                                                   | 9) This truss is<br>Internationa<br>R802.10.2 a<br>LOAD CASE(S) | designed in accou<br>l Residential Code<br>nd referenced sta<br>Standard | rdance w<br>9 sections<br>ndard AN | ith the 2018<br>; R502.11.1 ar<br>ISI/TPI 1.     | nd                       |                      |                             |                          | IN E OF                               | MISSO                              |             |
| FORCES<br>TOP CHORD<br>BOT CHORD<br>NOTES<br>1) Wind: AS(<br>Vasd=91n<br>II; Exp C;<br>cantilever<br>right expo<br>2) Truss des                                                                    | Max Grav 1=109 (LC<br>(lb) - Maximum Com<br>Tension<br>1-2=-40/26, 2-3=-84/<br>1-3=-14/11<br>CE 7-16; Vult=115mph<br>nph; TCDL=6.0psf; BCI<br>Enclosed; MWFRS (en<br>left and right exposed :<br>sed; Lumber DOL=1.60<br>signed for wind loads in<br>cude exposed to wind loads in                                                                                                                    | <ul> <li>21), 3=109 (LC 1)</li> <li>pression/Maximum</li> <li>'39</li> <li>(3-second gust)</li> <li>DL=6.0psf; h=25ft; C</li> <li>velope) exterior zon</li> <li>; end vertical left and</li> <li>D plate grip DOL=1.6</li> <li>the plane of the true</li> <li>(arrend te the foco)</li> </ul> | Cat.<br>e;<br>d<br>S0<br>SS                                     |                                                                          |                                    |                                                  |                          |                      |                             |                          | D JU/<br>GAR<br>NUMI<br>E-2000        | BER<br>62101                       | THEFT X     |
| only. For<br>see Stand<br>or consult<br>3) Gable req<br>4) Gable stu<br>5) This truss<br>chord live<br>6) * This truss<br>on the bot<br>3-06-00 tz<br>chord and<br>7) All bearing pl<br>1 and 25 l | studs exposed to wind<br>and Industry Gable Enc<br>qualified building desig<br>uires continuous bottor<br>ds spaced at 4-0-0 oc.<br>has been designed for<br>load nonconcurrent wii<br>s has been designed for<br>tom chord in all areas v<br>III by 2-00-00 wide will f<br>any other members.<br>gs are assumed to be S<br>echanical connection (<br>ate capable of withstan<br>b uplift at joint 3. | (normal to the face)<br>d Details as applicab<br>gner as per ANSI/TP<br>n chord bearing.<br>a 10.0 psf bottom<br>th any other live load<br>or a live load of 20.0<br>where a rectangle<br>fit between the botto<br>SPF No.2 .<br>by others) of truss to<br>dding 16 lb uplift at jo           | ,<br>le,<br>l 1.<br>ds.<br>psf<br>m<br>oint                     |                                                                          |                                    |                                                  |                          |                      |                             | .111111                  | PROTOCION MAR                         | 952<br>ALENO                       | LI CER HILL |

- chord live load nonconcurrent with any other live loads.
- \* This truss has been designed for a live load of 20.0psf 6) on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)





WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANS/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)



|                                                |                                                                                      |                                                                           |                                                             |                                                                               |                                                    |                                |                                      |                                             | RELEAS                             | E FOR CONSTRUCTION                 |
|------------------------------------------------|--------------------------------------------------------------------------------------|---------------------------------------------------------------------------|-------------------------------------------------------------|-------------------------------------------------------------------------------|----------------------------------------------------|--------------------------------|--------------------------------------|---------------------------------------------|------------------------------------|------------------------------------|
| Job                                            | Truss                                                                                |                                                                           | Truss Type                                                  |                                                                               | Qty                                                | Ply                            | Lot 116 M                            | N                                           | AS NOT                             | ED FOR PLAN REVIEW                 |
| 240612                                         | V7                                                                                   |                                                                           | Valley                                                      |                                                                               | 1                                                  | 1                              | Job Refer                            | ence (optional                              | LEE'S                              | I64102291<br>SUMMIT, MISSOURI      |
| Wheeler Lumber                                 | r, Waverly, KS - 66871,                                                              |                                                                           | •                                                           | Run: 8.73 S Fe<br>ID:7mfKFiwdL3                                               | eb 22 2024 Print:<br>EcTE4gELpKyoz                 | 8.730 S Feb<br>dKs4-RfC?F      | 22 2024 MiTek<br>sB70Hq3NSgF         | Industries, Inc. 1<br>qnL8w3uITXbGF         | hu Mar (7) 146:5<br>WrCDoi794zJC?i | 02/2024                            |
|                                                |                                                                                      |                                                                           | -                                                           |                                                                               | 3-10-2                                             |                                | 2x4                                  | 1                                           |                                    |                                    |
|                                                |                                                                                      |                                                                           |                                                             |                                                                               |                                                    |                                |                                      |                                             |                                    |                                    |
|                                                | A.1.7.8                                                                              | -0-0-                                                                     | 5                                                           |                                                                               |                                                    |                                | 2                                    | 3                                           | 1-7-8                              |                                    |
|                                                |                                                                                      |                                                                           |                                                             | 2x4 🚅                                                                         |                                                    |                                | 2x4                                  | 1                                           |                                    |                                    |
|                                                |                                                                                      |                                                                           |                                                             |                                                                               |                                                    |                                |                                      |                                             |                                    |                                    |
| Scale = 1:19.6                                 |                                                                                      |                                                                           | -                                                           |                                                                               | 3-10-2                                             |                                |                                      |                                             |                                    |                                    |
| Loading<br>TCLL (roof)<br>TCDL<br>BCLL<br>BCDL | (psf)<br>25.0<br>10.0<br>0.0*<br>10.0                                                | <b>Spacing</b><br>Plate Grip DOL<br>Lumber DOL<br>Rep Stress Incr<br>Code | 2-0-0<br>1.15<br>1.15<br>YES<br>IRC2018/TPI2014             | CSI<br>TC<br>BC<br>WB<br>Matrix-P                                             | 0.16 Ver<br>0.09 Ver<br>0.00 Hor                   | FL<br>t(LL)<br>t(TL)<br>iz(TL) | in (loc)<br>n/a -<br>n/a -<br>0.00 3 | l/defl L/d<br>n/a 999<br>n/a 999<br>n/a n/a | PLATES<br>MT20<br>Weight: 9 lb     | <b>GRIP</b><br>197/144<br>FT = 10% |
| LUMBER<br>TOP CHORD<br>BOT CHORD<br>WEBS       | 2x4 SPF No.2<br>2x4 SPF No.2<br>2x3 SPF No.2                                         |                                                                           | 9) This truss i<br>Internationa<br>R802.10.2<br>LOAD CASE(S | s designed in acco<br>al Residential Cod<br>and referenced sta<br>i) Standard | ordance with th<br>e sections R50<br>andard ANSI/T | e 2018<br>2.11.1 and<br>PI 1.  |                                      |                                             | -                                  |                                    |
| BRACING<br>TOP CHORD<br>BOT CHORD              | Structural wood she<br>3-10-12 oc purlins,<br>Rigid ceiling directly<br>bracing      | athing directly applie<br>except end verticals.<br>applied or 10-0-0 oc   | d or                                                        |                                                                               |                                                    |                                |                                      |                                             |                                    |                                    |
| REACTIONS                                      | (size) 1=3-10-2,<br>Max Horiz 1=56 (LC<br>Max Uplift 1=-20 (LC<br>Max Grav 1=137 (LC | 3=3-10-2<br>5)<br>8), 3=-31 (LC 8)<br>2 1), 3=137 (LC 1)                  |                                                             |                                                                               |                                                    |                                |                                      | \$                                          | XATE OF                            | MISSO                              |
| FORCES<br>TOP CHORD<br>BOT CHORD               | (lb) - Maximum Com<br>Tension<br>1-2=-50/33, 2-3=-10<br>1-3=-18/14                   | pression/Maximum<br>6/49                                                  |                                                             |                                                                               |                                                    |                                |                                      | in the                                      | GAF                                | AN<br>RCIA                         |
| NOTES<br>1) Wind: ASC<br>Vasd=91m              | CE 7-16; Vult=115mph<br>hph; TCDL=6.0psf; BC                                         | (3-second gust)<br>DL=6.0psf; h=25ft; C                                   | cat.                                                        |                                                                               |                                                    |                                |                                      |                                             | NUM                                | IBER 162101                        |

- II; Exp C; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
- 2) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1. 3) Gable requires continuous bottom chord bearing.
- Gable studs spaced at 4-0-0 oc. 4)
- 5) This truss has been designed for a 10.0 psf bottom
- chord live load nonconcurrent with any other live loads. 6) \* This truss has been designed for a live load of 20.0psf
- on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members. All bearings are assumed to be SPF No.2 . 7)
- Provide mechanical connection (by others) of truss to 8) bearing plate capable of withstanding 20 lb uplift at joint 1 and 31 lb uplift at joint 3.

iii) SSIONAL ENGI 16952 Bonoscon Minsas March 7,2024 March 7,2024



 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.
 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not besign value for use only with with twit even connectors. This design is based only upon parameters shown, and is for an individual building designer must verify the applicability of design parameters and properly incorporate this design into the overall building designer must verify the applicability of design parameters and properly incorporate this design into the overall building designer. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcscomponents.com)

|                                 |                      |                |                         |                               |            | RELEASE FOR CONSTRUCTION |
|---------------------------------|----------------------|----------------|-------------------------|-------------------------------|------------|--------------------------|
| lob                             | Truce                | Truss Type     | Otv                     | Plv                           | Lot 116 MN | AS NOTED FOR PLAN REVIEW |
| 000                             | 11033                |                | Giy                     | 1 19                          |            | DEVELOPMENT SERVICES     |
| 240612                          | V8 Valley 1 1        |                | Job Reference (optional | LEE'S SUMMIT, MISSOURI        |            |                          |
| Wheeler Lumber, Waverly, KS - ( | Run: 8.73 S Feb 22 2 | 2024 Print: 8. | .730 S Feb 2            | 2 2024 MiTek Industries, Inc. |            |                          |







1-10-2

0-9-8

4x8 =



Scale = 1:16.1

Plate Offsets (X, Y): [1:0-3-14 0-2-4]

| Frate Offsets (A, T). [1.0-3-14,0-2-4]                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                    |                                                                                                                                                       |                                                                  |                                                                                         |                          |                      |                             |                          |                                                                              |                                                                                       |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------|-----------------------------------------------------------------------------------------|--------------------------|----------------------|-----------------------------|--------------------------|------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|
| Loading<br>TCLL (roof)<br>TCDL<br>BCLL<br>BCDL                                                                                                                                                                                                                                                                                                                                                                                                       | (psf)<br>25.0<br>10.0<br>0.0*<br>10.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Spacing<br>Plate Grip DOL<br>Lumber DOL<br>Rep Stress Incr<br>Code                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2-0-0<br>1.15<br>1.15<br>YES<br>IRC2018/TPI2014                                                                                                                                                    | CSI<br>TC<br>BC<br>WB<br>Matrix-P                                                                                                                     | 0.02<br>0.01<br>0.00                                             | <b>DEFL</b><br>Vert(LL)<br>Vert(TL)<br>Horiz(TL)                                        | in<br>n/a<br>n/a<br>0.00 | (loc)<br>-<br>-<br>3 | l/defl<br>n/a<br>n/a<br>n/a | L/d<br>999<br>999<br>n/a | PLATES<br>MT20<br>Weight: 4 lb                                               | <b>GRIP</b><br>197/144<br>FT = 10%                                                    |
| LUMBER<br>TOP CHORD<br>BOT CHORD<br>WEBS<br>BRACING<br>TOP CHORD<br>BOT CHORD<br>REACTIONS<br>FORCES<br>TOP CHORD<br>BOT CHORD<br>BOT CHORD<br>BOT CHORD<br>NOTES<br>1) Wind: ASC<br>Vasd=91m<br>II; Exp C; I<br>cantilever<br>right expos<br>2) Truss des<br>only. For s<br>see Stand<br>or consult<br>3) Gable requ<br>4) Gable stuc<br>5) This truss<br>chord live<br>6) * This truss<br>on the bott<br>3-06-00 ta<br>chord and<br>7) All bearing | 2x4 SPF No.2<br>2x3 SPF No.2<br>2x3 SPF No.2<br>Structural wood she<br>1-10-12 oc purlins,<br>Rigid ceiling directly<br>bracing.<br>(size) 1=1-10-2,<br>Max Horiz 1=19 (LC<br>Max Grav 1=47 (LC<br>(lb) - Maximum Corr<br>Tension<br>1-2=-17/11, 2-3=-36<br>1-3=-6/5<br>CE 7-16; Vult=115mph<br>nph; TCDL=6.0psf; BC<br>Enclosed; MWFRS (er<br>left and right exposed<br>sed; Lumber DOL=1.6<br>isigned for wind loads in<br>studs exposed to wind<br>ard Industry Gable En<br>qualified building desi<br>uires continuous botto<br>ds spaced at 4-0-0 oc.<br>has been designed fo<br>load nonconcurrent wi<br>s has been designed fo | athing directly applie<br>except end verticals.<br>applied or 10-0-0 oc<br>3=1-10-2<br>5)<br>8), 3=-11 (LC 8)<br>1), 3=47 (LC 1)<br>apression/Maximum<br>/17<br>(3-second gust)<br>EDL=6.0psf; h=25ft; C<br>avelope) exterior zon<br>; end vertical left and<br>0 plate grip DOL=1.6<br>n the plane of the trus<br>I (normal to the face)<br>d Details as applicab<br>gner as per ANSI/TP<br>m chord bearing.<br>r a 10.0 psf bottom<br>ith any other live load<br>or a live load of 20.0<br>where a rectangle<br>fit between the botto<br>SPF No.2. | 8) Provide m<br>bearing pla<br>and 11 lb (<br>9) This truss<br>Internation<br>R802.10.2<br>LOAD CASE(<br>c<br>cat.<br>e;<br>d<br>b<br>cat.<br>e;<br>d<br>sss<br>,<br>le,<br>11.<br>ds.<br>psf<br>m | echanical connection<br>ate capable of withs<br>uplift at joint 3.<br>Is designed in acco<br>al Residential Code<br>and referenced sta<br>5) Standard | on (by oth<br>standing 7<br>ordance w<br>e sections<br>andard AN | ers) of truss to<br>' Ib uplift at joir<br>ith the 2018<br>; R502.11.1 an<br>ISI/TPI 1. | ht 1<br>ad               |                      |                             |                          | DONE-20001<br>GAR<br>NUMI<br>E-20001<br>SS/ON<br>ICE<br>160<br>SS/ON<br>Marc | MISSOLD<br>NCIA<br>BER<br>62101<br>ALENO<br>3ARCIANSEO952SASO $4ALENOALENOALENOALENO$ |

16023 Swingley Ridge Rd. Chesterfield, MO 63017 314.434.1200 / MiTek-US.com

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent buckling of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

