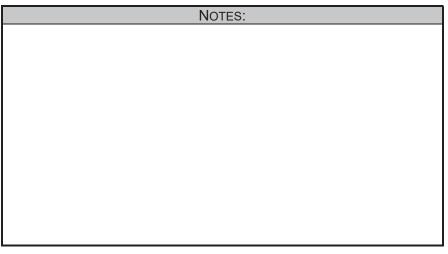
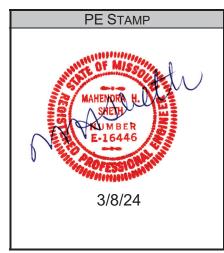


HYDRAULIC DESIGN COVER SHEET


CALCULATED BY: Isaiah Wiese


ORIGINAL DATE: 03/08/2024 REVISION DATE:

JOB INFORMATION							
JOB NAME: Residences At Blackwell - Clubhouse							
ADDRESS: 50 Hwy & Blackwell CITY, STATE: Lee's Summit, MO							
BUILDING INFO: New Construction Construction: Combustible, Unobstructed							
CONTRACTOR: Alliance Fire Protection, LLC	Contract #: NC-1429						

AREA SUMMARY							
AREA NO: 1	DESCRIPTION: Board Room - 0.10 FOR 940 SQ. FT.						
Area No: 2	DESCRIPTION: Interstitial – 0.10 FOR 1000 SQ. FT.						
Area No: 3	DESCRIPTION: Guest Suite - Residential 4 Heads						
Area No: 4	DESCRIPTION: Great Room - 0.10 for 2535 SQ. FT.						
Area No: 5	DESCRIPTION: Attic - Bottom 9 V-SD Heads						
Area No: 6	DESCRIPTION: Attic - All 10 Upright Heads						

WATER SUPPLY INFORMATION							
FLOW TEST? Yes	Pump? No						
DATE: 01/30/2024	RATED CAPACITY (GPM):						
Static Pressure (psi): 84	RATED PRESSURE (PSI):						
Residual Pressure (psi): 58	ELEVATION:						
FLOW (GPM): 2000	PUMP MOTOR TYPE:						
ELEVATION: 10'-0" Below 1st Fin FIr	TANK?						
LOCATION: SE Joel Ave	CAPACITY (GALLONS):						
Source: Lee's Summit Water Department	ELEVATION:						

Flow Test

From: Brad Boler

Sent: Friday, February 9, 2024 7:57 AM

isaiahwiese@bicdesign.net; Jeff Logan

Cc: 'John Hansen'

Subject: RE: Residences at Blackwell - info needed

Hydrant Flow Test

Date: 1/30/24 Time: 9:45 AM

Static PSI: 84 Residual PSI: 58 Flow GPM: 2000

Static PSI: 86 Residual PSI: 78

Said he takes Static and Residual from the two first to "dummy down" the line. He said there tying into the 12 in main he tested. But does do a 2 hydrant test.

Brad Boler | Pre-const. Coordinator

Alliance Fire protection

130 w 9th Ave. | North Kansas City, MO 64116

C: 913-915-1457 | 0: 913-888-0647

From: isaiahwiese@bicdesign.net <isaiahwiese@bicdesign.net>

Sent: Thursday, February 08, 2024 3:06 PM

To: Brad Boler <bboler@afpsprink.com>; Jeff Logan <jl@afpsprink.com>

Cc: 'John Hansen' <johnhansen@bicdesign.net> **Subject:** RE: Residences at Blackwell - info needed

Brad,

Great, thank you. Also, we'll need the location of the residual and flow hydrant(s) that they used.

Isaiah Wiese

Design Engineer

130 W. 9th Ave, Suite 102 North Kansas City, MO 64116 816-221-0551

<u>isaiahwiese@bicdesign.net</u> <u>http://bicdesign.net</u>

From: Brad Boler < bboler@afpsprink.com > Sent: Thursday, February 8, 2024 2:56 PM

To: Jeff Logan < jl@afpsprink.com>; isaiahwiese@bicdesign.net

Cc: 'John Hansen' < johnhansen@bicdesign.net > Subject: RE: Residences at Blackwell - info needed

Isaiah, about that flow test at Blackwell.

I have a call tomorrow with the guy from Lee Summit Water Department on how he does these tests.

Let you know. Thanks

Brad Boler | Pre-const. Coordinator

Alliance Fire protection

130 w 9th Ave. | North Kansas City, MO 64116

C: 913-915-1457 | 0: 913-888-0647

From: Jeff Logan < <u>jl@afpsprink.com</u>>
Sent: Thursday, February 08, 2024 2:38 PM

To: isaiahwiese@bicdesign.net; Brad Boler <bboler@afpsprink.com>

Cc: 'John Hansen' < johnhansen@bicdesign.net > Subject: RE: Residences at Blackwell - info needed

Brad,

Regarding the flow test on the Residences at Blackwell, can you answer Isaiah's question below....?

JEFF LOGAN ESTIMATOR - NEW CONSTRUCTION

Alliance Fire Protection

130 W 9^{TH} AVE., SUITE 101 | NORTH KANSAS CITY, MO 64116 0: 913-888-0647 | C: 913-927-0136 | F: 913-888-0618

From: <u>isaiahwiese@bicdesign.net</u> < <u>isaiahwiese@bicdesign.net</u>>

Sent: Thursday, February 8, 2024 2:30 PM

To: Jeff Logan < il@afpsprink.com>

Cc: 'John Hansen' < johnhansen@bicdesign.net > Subject: RE: Residences at Blackwell - info needed

Jeff,

Did you flow two different hydrants? Is that why there are two static/residual readings?

And I've got those items noted.

Thanks, Isaiah Wiese

Design Engineer

130 W. 9th Ave, Suite 102 North Kansas City, MO 64116 816-221-0551

<u>isaiahwiese@bicdesign.net</u> http://bicdesign.net

From: Jeff Logan < jl@afpsprink.com>

Sent: Thursday, February 8, 2024 12:28 PM

To: <u>isaiahwiese@bicdesign.net</u>

Cc: John Hansen < johnhansen@bicdesign.net > **Subject:** RE: Residences at Blackwell - info needed

- I'll follow up on the CAD, but I haven't heard back from them on it yet.

- Here is the flow test we got:

Date: 1/30/24 Time: 9:45 AM

Static PSI: 84 Residual PSI: 58 Flow GPM: 2000

Static PSI: 86 Residual PSI: 78

HYDRAULIC DESIGN COVER SHEET

AREA: Board Room

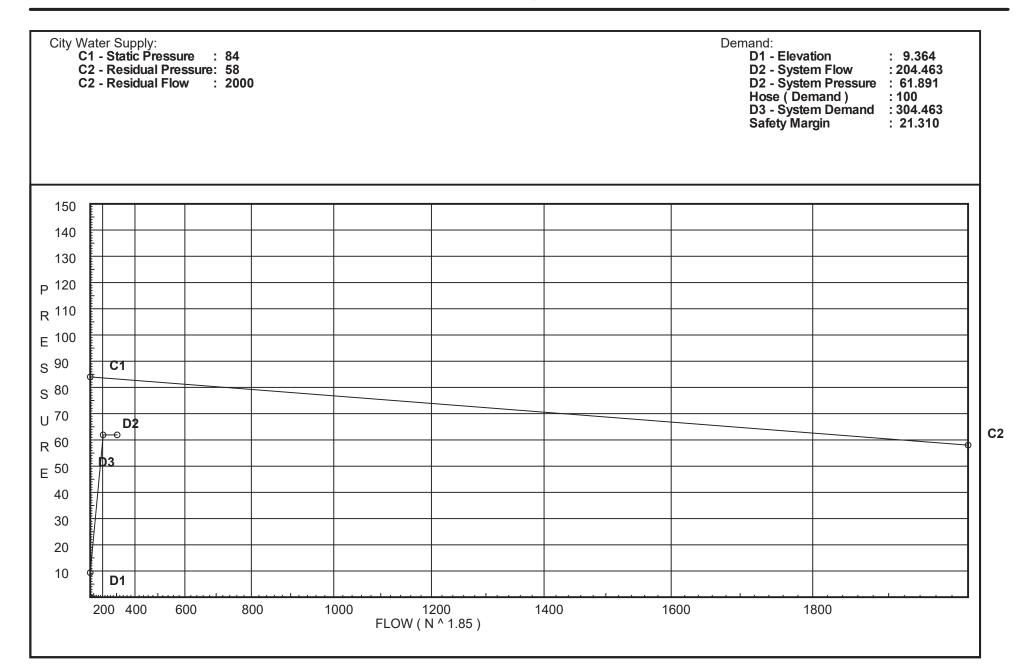
CALCULATED BY: Isaiah Wiese

ORIGINAL DATE: 03/08/2024

LATEST REVISION DATE:

JOB INFORMATION							
JOB NAME: Residences At Blackwell - Clubhouse							
ADDRESS: 50 Hwy & Blackwell CITY, STATE: Lee's Summit, MO							
BUILDING INFO: New Construction	Construction: Combustible, Unobstructed						
CONTRACTOR: Alliance Fire Protection, LLC	Contract #: NC-1429						

WATER SUPPLY INFORMATION							
FLOW TEST? See Front Cover Page	Pump? No						
DATE:	RATED CAPACITY (GPM):						
STATIC PRESSURE (PSI):	RATED PRESSURE (PSI):						
RESIDUAL PRESSURE (PSI):	ELEVATION:						
FLOW (GPM):	PUMP MOTOR TYPE:						
ELEVATION:	TANK?						
LOCATION:	CAPACITY (GALLONS):						
Source:	ELEVATION:						


OPERATING AREA INFORMATION						
AREA #: 1	SYSTEM TYPE: Wet	SHEET NUMBER: FP2				
CEILING HEIGHT: 11'-7 1/2"	STORAGE HEIGHT: N/A	QR Sprinkler Discount: Yes				

SPRINKLER INFORMATION						
Brand: Viking Model: VK302						
K-Factor: 5.6	Temperature (°F): 200					

System Design Information						
Design Per: NFPA 13 , 2016	HAZARD CLASSIFICATION: Light Hazard					
DESIGN CRITERIA:						
DENSITY (GPM/SQ FT): 0.10	OPERATING AREA (SQ FT): 940					
Area Per Sprinkler (sq ft): Varies	Total Sprinklers Operating: 12					
Min. Flow Per Head (GPM): N/A	Min. Pressure Per Head (psi): N/A					
Inside Hose Allowance (gpm): 0	Outside Hose Allowance (GPM): 100					
OVERHEAD PIPING C-FACTOR: 150	Underground Piping C-Factor: 150					

CALCULATION SUMMARY								
DEMAND @: Base of Riser	FLOW REQ'D (GPM): 204.46	Pressure Req'd (PSI): 56.602						
DEMAND @: Conn to City Main	FLOW REQ'D (GPM): 304.46	Pressure Req'd (psi): 61.891						
Area Safety Margin (psi): 21.310								

Notes:	PE STAMP
	6

Fittings Used Summary

B.I.C. Design Co.
Residences at Blackwell Clubhouse - LSMO - Area 1 - Board Room - 0.10 FOR 940 SQ. FT.

Page 2 Date

Fitting Le	egend																				
Abbrev.	Name	1/2	3/4	1	11/4	1½	2	2½	3	3½	4	5	6	8	10	12	14	16	18	20	24
В	NFPA 13 Butterfly Valve	0	0	0	0	0	6	7	10	0	12	9	10	12	19	21	0	0	0	0	0
E	NFPA 13 90' Standard Elbow	1	2	2	3	4	5	6	7	8	10	12	14	18	22	27	35	40	45	50	61
F	NFPA 13 45' Elbow	1	1	1	1	2	2	3	3	3	4	5	7	9	11	13	17	19	21	24	28
Fsp	Flow Switch Potter VSR	Fittin	g gene	rates a F	ixed Los	s Based	d on Flo	W													
G .	NFPA 13 Gate Valve	0	0	0	0	0	1	1	1	1	2	2	3	4	5	6	7	8	10	11	13
N *	CPVC 90' EII	0	4	5	6	7	9	12	13	0	0	0	0	0	0	0	0	0	0	0	0
O *	CPVC Branch Tee	0	3	5	6	8	10	12	15	0	0	0	0	0	0	0	0	0	0	0	0
S	NFPA 13 Swing Check	0	0	5	7	9	11	14	16	19	22	27	32	45	55	65					
T	NFPA 13 90' Flow thru Tee	3	4	5	6	8	10	12	15	17	20	25	30	35	50	60	71	81	91	101	121

Units Summary

Diameter Units Inches Length Units Feet

Flow Units US Gallons per Minute Pressure Units Pounds per Square Inch

Note: Fitting Legend provides equivalent pipe lengths for fittings types of various diameters. Equivalent lengths shown are standard for actual diameters of Sched 40 pipe and CFactors of 120 except as noted with *. The fittings marked with a * show equivalent lengths values supplied by manufacturers based on specific pipe diameters and CFactors and they require no adjustment. All values for fittings not marked with a * will be adjusted in the calculation for CFactors of other than 120 and diameters other than Sched 40 per NFPA.

Page 3 Date

SUPPLY ANALYSIS

Node at Source	Static Pressure	Residual Pressure	Flow	Available Pressure	Total Demand	Required Pressure
TEST	84.0	58	2000.0	83.201	304.46	61.891

NODE ANALYSIS

Node Tag	Elevation	Node Type	Pressure at Node	Discharge at Node	^	lotes	
A1 908 1A	10.04 10.5 12.12	5.6	8.17 8.53 7.9	16.0	0.1	150	
A2 910	11.62 12.12	5.6	8.13 8.16	15.97	0.1	150	
A12 A3	11.62 11.62	5.6 5.6	8.34 8.68	16.17 16.5	0.1 0.1	150 165	
911 909 2A 12A 3A	12.12 12.12 12.12 12.12 12.12		8.73 8.49 8.51 8.74 9.1				
A4 4A 101 102 103 104	9.12 9.58 12.12 12.12 9.58 9.58	5.6	13.44 13.63 10.3 12.14 14.17 14.59	20.53	0.1	150	
A5 902 5A	10.04 10.5 12.29	5.6	7.3 7.61 6.91	15.13	0.1	150	
A6 900	11.62 12.29	5.6	7.24 7.18	15.07	0.1	150	
A7 904 903 6A 7A	11.62 12.29 12.29 12.29 12.29	5.6	7.68 7.63 7.37 7.41 7.87	15.52	0.1	150	
A8 905 8A	10.04 10.5 12.29	5.6	9.37 10.1 9.41	17.14	0.1	100	
A9 907 906 9A 9 901	11.62 12.29 12.29 12.29 12.29 12.29	5.6	9.91 9.92 10.18 10.23 10.28 11.93	17.63	0.1	100	
A11 A10 912 10A 105	9.12 10.04 10.5 9.58 9.58	5.6 5.6	13.17 10.88 11.74 12.49 13.21	20.32 18.47	0.1 0.1	100 100	

Page 4 Date

NODE ANALYSIS (cont.)

				,	
Node Tag	Elevation	Node Type	Pressure at Node	Discharge at Node	Notes
11A	9.58		13.35		
106	9.58		14.67		
107	9.58		16.34		
108	9.58		23.87		
109	9.58		35.72		
110	9.58		37.35		
111	9.58		38.8		
112	9.58		40.42		
113	9.58		42.2		
TWR	9.58		43.65		
BWR	-11.19		56.6		
UG1	-3.19		57.49		
UG2	-3.19		58.44	100.0	
UG3	-3.19		58.68		
UG4	-3.19		58.68		
UG5	-3.19		58.72		
UG6	-3.19		58.85		
TEST	-10.0		61.89		

Page 5 Date

Residenc	ces at Bla	ackwell Clu	ıbhouse -	LSMO -	Area 1	- Board	Room - 0.10	FOR 940 S	Q. FT.	Date
Node1 to	Elev1	К	Qa	Nom	Fitting or		Pipe Ftngs	CFact	Pt Pe	****** Notes ***
Node2	Elev2	Fact	Qt	Act	Eqiv	Len	Total	Pf/Ft	Pf	
A 4	40.04	T 00	40.00	4	ONI	40.0	0.440	450	0.400	
A1 :o	10.04	5.60	16.00	1	2N	10.0	2.410 10.000	150	8.168 -0.199	
908	10.5		16.0	1.101			12.410	0.0450	0.559	Vel = 5.39
908 to	10.5		0.0	1			1.620	150	8.528 -0.702	
1A	12.12		16.0	1.101			1.620	0.0451	0.073	Vel = 5.39
1A	12.12		0.0	1	2N	10.0	3.060 10.000	150	7.899	
to 909	12.12		16.0	1.101			13.060	0.0451	0.0 0.589	Vel = 5.39
909			0.0 16.00						8.488	K Factor = 5.49
A2	11.62	5.60	15.97	1	N	5.0	0.500	150	8.129	
010	10.10		45.07	4 404			5.000	0.0440	-0.217	Val = . F. 20
910	12.12		15.97	1.101		E O	5.500	0.0449	0.247	Vel = 5.38
910 to	12.12		0.0	1	0	5.0	2.920 5.000	150	8.159 0.0	
2A	12.12		15.97	1.101			7.920	0.0448	0.355	Vel = 5.38
2A			0.0 15.97						8.514	K Factor = 5.47
A12	11.62	5.60	16.17	1	N	5.0	3.420	150	8.339	
:0					0	5.0	10.000		-0.217	
12A	12.120		16.17	1.101			13.420	0.0460	0.617	Vel = 5.45
12A			0.0 16.17						8.739	K Factor = 5.47
A3 to	11.62	5.60	16.50	1	N	5.0	0.500 5.000	150	8.681 -0.217	
911	12.12		16.5	1.101			5.500	0.0478	0.263	Vel = 5.56
911	12.12		0.0	1	0	5.0	2.920	150	8.727	
to 3A	12.12		16.5	1.101			5.000 7.920	0.0477	0.0 0.378	Vel = 5.56
<i>57</i> (14.14		0.0	1.101			1.020	0.0411	0.070	V 31 0.00
3A			16.50						9.105	K Factor = 5.47
909 :o	12.12		16.00	1.5			3.570	150	8.488 0.0	
2A	12.12		16.0	1.598			3.570	0.0073	0.026	Vel = 2.56
2A o	12.12		15.97	1.5			8.500	150	8.514 0.0	
12A	12.120		31.97	1.598			8.500	0.0265	0.225	Vel = 5.11
12A :o	12.120		16.17	1.5			6.500	150	8.739 0.0	
3A	12.12		48.14	1.598			6.500	0.0563	0.366	Vel = 7.70
3A o	12.12		16.50	1.5	N	7.0	5.330 7.000	150	9.105 0.0	
101	12.12		64.64	1.598			12.330	0.0971	1.197	Vel = 10.34
101			0.0 64.64						10.302	K Factor = 20.14
A4	9.12	5.60	20.53	1	N	5.0	0.460	150	13.443	-
to 4A	9.58		20.53	1.101		-	5.000 5.460	0.0714	-0.199 0.390	Vel = 6.92
-77 C	0.00		20.00	1.101			0.400	0.07 14	0.000	VOI 0.02

Page 6 Date

COIGCIIC	os at bit	ackwell Old	ibiliouse -	LOIVIO -	Aica	- Doard	Room - 0.10	1 011 340 0	۷.۱۱.	Date		
Node1 to	Elev1	К	Qa	Nom	Fitting or	9	Pipe Ftngs	CFact	Pt Pe	*****	Notes	****
Node2	Elev2	Fact	Qt	Act	Eqiv	Len	Total	Pf/Ft	Pf			
4A	9.58		0.0	1	N	5.0	3.410	150	13.634			
.O	9.00		0.0	'	Ö	5.0	10.000	150	0.0			
104	9.58		20.53	1.101			13.410	0.0714	0.958	Vel = 6.92		
104			0.0 20.53						14.592	K Factor =	5.37	
101	12.12		64.64	1.5	N	7.0	11.930	150	10.302			
to 102	12.12		64.64	1.598			7.000 18.930	0.0971	0.0 1.839	Vel = 10.34	1	
102	12.12		0.0	1.5	N	7.0	2.540	150	12.141	VOI 10.0		
0							7.000		1.100			
103	9.58		64.64	1.598			9.540	0.0972	0.927	Vel = 10.34	1	
103 to	9.58		0.0	1.5			4.360	150	14.168 0.0			
104	9.58		64.64	1.598			4.360	0.0972	0.424	Vel = 10.34	4	
104	9.58		20.53	1.5	0	8.0	2.830	150	14.592			
to	0.50		05.47	4 500			8.000	0.4040	0.0	\/-I = 40.00	_	
107	9.58		85.17	1.598			10.830	0.1618	1.752	Vel = 13.62		
107			0.0 85.17						16.344	K Factor =	21.07	
A5	10.04	5.60	15.13	1	2N	10.0	2.430	150	7.302			
to							10.000		-0.199			
902	10.5		15.13	1.101			12.430	0.0406	0.505	Vel = 5.10		
902 to	10.5		0.0	1			1.790	150	7.608 -0.775			
5A	12.29		15.13	1.101			1.790	0.0402	0.072	Vel = 5.10		
5A	12.29		0.0	1	2N	10.0	1.440	150	6.905			
to	12.20		15 12	1 101			10.000	0.0406	0.0	Val = 5 10		
903	12.29		15.13 0.0	1.101			11.440	0.0406	0.465	Vel = 5.10		
903			15.13						7.370	K Factor =	5.57	
A6	11.62	5.60	15.07	1	N	5.0	0.670	150	7.244			
to				4 404			5.000		-0.290	\/-! 5.00		
900	12.29		15.07	1.101		F 0	5.670	0.0404	0.229	Vel = 5.08	1	
900 to	12.29		0.0	1	0	5.0	0.670 5.000	150	7.183 0.0			
6A	12.29		15.07	1.101			5.670	0.0402	0.228	Vel = 5.08		
			0.0									
6A	44.00		15.07				0.070	450	7.411	K Factor =	5.54	
A7 to	11.62	5.60	15.52	1	N	5.0	0.670 5.000	150	7.681 -0.290			
904	12.29		15.52	1.101			5.670	0.0425	0.241	Vel = 5.23		
904	12.29		0.0	1	0	5.0	0.670	150	7.632			
to	40.00		45 50	4 404			5.000	0.0407	0.0	\/al =		
7A	12.29		15.52	1.101			5.670	0.0427	0.242	Vel = 5.23	1	
7A			0.0 15.52						7.874	K Factor =	5.53	
903	12.29		15.13	1.25			3.210	150	7.370	11. 40101 -	0.00	
to									0.0			
6A	12.29		15.13	1.394			3.210	0.0128	0.041	Vel = 3.18		

Page 7 Date

Node1	Elev1	K	Qa	Nom	Fitting	g	Pipe	CFact	Pt	
to					or		Ftngs		Pe	****** Notes ****
Node2	Elev2	Fact	Qt	Act	Eqiv	Len	Total	Pf/Ft	Pf	
6A	12.29		15.08	1.25			10.000	150	7.411	
0									0.0	
7A	12.29		30.21	1.394	NI	0.0	10.000	0.0463	0.463	Vel = 6.35
7A o	12.29		15.52	1.25	N O	6.0 6.0	12.150 12.000	150	7.874 0.0	
9	12.29		45.73	1.394			24.150	0.0995	2.404	Vel = 9.61
9			0.0 45.73						10.278	K Factor = 14.26
A8	10.04	5.60	17.14	1	3N	15.0	3.120	150	9.371	
o 905	10.5		17.14	1.101			15.000 18.120	0.0511	-0.199 0.926	Vel = 5.78
905	10.5		0.0	1			1.790	150	10.098	
o 8A	12.29		17.14	1.101			1.790	0.0514	-0.775 0.092	Vel = 5.78
8A o	12.29		0.0	1	N O	5.0 5.0	4.950 10.000	150	9.415 0.0	
906	12.29		17.14	1.101		0.0	14.950	0.0512	0.765	Vel = 5.78
906			0.0 17.14						10.180	K Factor = 5.37
A9	11.62	5.60	17.63	1	N	5.0	0.670	150	9.907	
o 907	12.29		17.63	1.101			5.000 5.670	0.0538	-0.290 0.305	Vel = 5.94
907	12.29		0.0	1	0	5.0	0.670	150	9.922	
0	12.20		17.60	1 101			5.000 5.670	0.0540	0.0	Val = 5.04
9A	12.29		17.63 0.0	1.101			5.670	0.0540	0.306	Vel = 5.94
9A			17.63						10.228	K Factor = 5.51
906	12.29		17.14	1.5			5.770	150	10.180	
o 9A	12.29		17.14	1.598			5.770	0.0083	0.0 0.048	Vel = 2.74
9A o	12.29		17.63	1.5			1.640	150	10.228 0.0	
9	12.29		34.77	1.598			1.640	0.0305	0.050	Vel = 5.56
9	12.29		45.72	1.5	N	7.0	4.360	150	10.278	
o 901	12.29		80.49	1.598			7.000 11.360	0.1458	0.0 1.656	Vel = 12.88
901	12.29		0.0	1.5	0	8.0	2.710	150	11.934	
o 106	9.58		80.49	1.598			8.000 10.710	0.1458	1.174 1.561	Vel = 12.88
106	0.00		0.0 80.49	1.000			10.710	0.1400	14.669	K Factor = 21.02
A11	9.12	5.60	20.32	1	0	5.0	0.460	150	13.171	N 1 actor - 21.02
0		0.00			0	0.0	5.000		-0.199	
11A	9.58		20.32	1.101			5.460	0.0700	0.382	Vel = 6.85
11A			0.0 20.32						13.354	K Factor = 5.56
A10	10.04	5.60	18.47	1	3N	15.0	3.050	150	10.879	
0	10 E			1 101			15.000	0.0507	-0.199	Val = 6.00
912	10.5		18.47	1.101			18.050	0.0587	1.060	Vel = 6.22

Page 8 Date

Node1	Elev1	K	Qa	Nom	Fitting		Pipe	CFact	Pt		
to					or		Ftngs		Pe	****** Notes	*****
Node2	Elev2	Fact	Qt	Act	Eqiv	Len	Total	Pf/Ft	Pf		
912	10.5		0.0	1	N	5.0	0.920	150	11.740		
to 10A	9.58		18.47	1.101			5.000 5.920	0.0588	0.398 0.348	Vel = 6.22	
10A	9.58		0.0	1	2N	10.0	2.360	150	12.486		
to 105	9.58		18.47	1.101			10.000 12.360	0.0587	0.0 0.726	Vel = 6.22	
105	9.58		0.0	1			2.420	150	13.212	V C1	
to									0.0	V I 0.00	
11A 11A	9.58 9.58		18.47 20.32	1.101 1	0	5.0	2.420 0.670	0.0587 150	0.142 13.354	Vel = 6.22	
to	9.50		20.32		O	3.0	5.000	150	0.0		
106	9.58		38.79	1.101			5.670	0.2319	1.315	Vel = 13.07	
106 to	9.58		80.50	2	N	9.0	7.680 9.000	150	14.669 0.0		
107	9.58		119.29	2.003			16.680	0.1004	1.675	Vel = 12.15	
107	9.58		85.17	2	N	9.0	18.660	150	16.344		
to 108	9.58		204.46	2.003			9.000 27.660	0.2722	0.0 7.528	Vel = 20.82	
108	9.58		0.0	2	N	9.0	34.520	150	23.872		
to 109	9.58		204.46	2.003			9.000 43.520	0.2722	0.0 11.844	Vel = 20.82	
109	9.58		0.0	2.5	N	12.0	3.170	150	35.716	Vei - 20.02	
to							12.000		0.0		
110	9.58		204.46	2.423			15.170	0.1077	1.634	Vel = 14.23	
110 to	9.58		0.0	2.5			13.420	150	37.350 0.0		
_111	9.58		204.46	2.423			13.420	0.1077	1.445	Vel = 14.23	
111 to	9.58		0.0	2.5	Ο	12.0	3.070 12.000	150	38.795 0.0		
112	9.58		204.46	2.423			15.070	0.1077	1.623	Vel = 14.23	
112	9.58		0.0	2.5	N	12.0	4.580	150	40.418		
to 113	9.58		204.46	2.423			12.000 16.580	0.1077	0.0 1.786	Vel = 14.23	
113	9.58		0.0	2.5	N	12.0	1.420	150	42.204		
to TMD	0.50		204.46	2.423			12.000	0 1077	0.0	Val = 14.22	
TWR TWR	9.58 9.58		0.0	<u>2.423</u> 4	E	13.167	7.580	0.1077 120	1.445 43.649	Vel = 14.23	
to				-	Τ	26.334	84.269		11.996	* * Fixed Loss = 3	
BWR	-11.190		204.46	4.26	B S	15.8 28.968	91.849	0.0104	0.957	Vel = 4.60	
					Fsp	0.0	10.000	4=-	=0.000		
BWR to	-11.190		0.0	4	2E	39.793	10.890 39.792	150	56.602 0.535	* * Fixed Loss = 4	
UG1	-3.190		204.46	4.26			50.682	0.0069	0.350	Vel = 4.60	
UG1	-3.190		0.0	4	G	3.186	60.000	150	57.487		
to UG2	-3.190		204.46	4.07	E T	15.932 31.864	50.982 110.982	0.0086	0.0 0.956	Vel = 5.04	
UG2	-3.190	H100	-52.09	8	5G	25.061	940.000	150	58.443		
to UG3	-3.190		152.37	7.68	T 3F		102.751 1042.751	0.0002	0.0 0.237	Vel = 1.06	
003	-5.180		102.01	1.00	JI	55.655	1042.731	0.0002	0.231	V CI - 1.00	

Final Calculations : Hazen-Williams

B.I.C. Design Co.

Residences at Blackwell Clubhouse - LSMO - Area 1 - Board Room - 0.10 FOR 940 SQ. FT.

Page 9
Date

									-,		
Node1 to		K	Qa	Nom	Fitting	-	Pipe Ftngs	CFact	Pt Pe	****** Note	S *****
Node2	Elev2	Fact	Qt	Act	Eqiv	Len	Total	Pf/Ft	Pf		
UG3	-3.190		0.0	12	3G	19.934	1060.000	150	58.680		
to					4F	57.587	143.966		0.0		
UG5	-3.190		152.37	11.2	Т	66.446	1203.966	0	0.043	Vel = 0.50	
			0.0								
UG5			152.37						58.723	K Factor = 19.88	3
UG2	-3.190		152.10	8	3G	15.037	880.000	150	58.443		
to	00				3F	33.833	181.695	.00	0.0		
UG4	-3.190		152.1	7.68	2T		1061.695	0.0002	0.240	Vel = 1.05	
					2E	45.11					
UG4	-3.190		0.0	12	2G	13.289	930.000	150	58.683		
to					7F	100.777	180.512		0.0		
UG5	-3.190		152.1	11.2	Т	66.446	1110.512	0	0.040	Vel = 0.50	
UG5	-3.190		152.36	12	2G	13.289	700.000	150	58.723		
to					Т	66.446	253.603		0.0		
UG6	-3.190		304.46	11.2	10F	143.967	953.603	0.0001	0.125	Vel = 0.99	
					E	29.901					
UG6	-3.190		0.0	12	Т	66.446	650.000	150	58.848	<u> </u>	<u> </u>
to					G	6.645	73.090		2.949		
TEST	-10		304.46	11.2			723.090	0.0001	0.094	Vel = 0.99	
			0.0								
TEST			304.46						61.891	K Factor = 38.70)

HYDRAULIC DESIGN COVER SHEET

AREA: Interstitial ORIGINAL DATE: 03/08/2024
CALCULATED BY: Isaiah Wiese LATEST REVISION DATE:

JOB INFORMATION					
JOB NAME: Residences At Blackwell - Clubhouse					
Address: 50 Hwy & Blackwell	CITY, STATE: Lee's Summit, MO				
BUILDING INFO: New Construction	Construction: Combustible, Unobstructed				
CONTRACTOR: Alliance Fire Protection, LLC	Contract #: NC-1429				

WATER SUPPLY INFORMATION					
FLOW TEST? See Front Cover Page	Pump? No				
Date:	RATED CAPACITY (GPM):				
STATIC PRESSURE (PSI):	RATED PRESSURE (PSI):				
Residual Pressure (psi):	ELEVATION:				
FLOW (GPM):	PUMP MOTOR TYPE:				
ELEVATION:	TANK?				
LOCATION:	Capacity (gallons):				
Source:	ELEVATION:				

OPERATING AREA INFORMATION							
AREA #: 2	System Type: Wet	SHEET NUMBER: FP2					
CEILING HEIGHT: N/A	STORAGE HEIGHT: N/A	QR Sprinkler Discount: No					

SPRINKLER INFORMATION					
Brand: Viking	Model: VK950				
K-Factor: 5.6	Temperature (°F): 200				

System Design Information					
DESIGN PER: NFPA 13 , 2016	HAZARD CLASSIFICATION: Light Hazard				
DESIGN CRITERIA:					
DENSITY (GPM/SQ FT): 0.10	OPERATING AREA (SQ FT): 1000				
Area Per Sprinkler (sq ft): Varies	Total Sprinklers Operating: 12				
Min. Flow Per Head (GPM): N/A	Min. Pressure Per Head (psi): N/A				
Inside Hose Allowance (gpm): 0	Outside Hose Allowance (GPM): 100				
OVERHEAD PIPING C-FACTOR: 150	Underground Piping C-Factor: 150				

CALCULATION SUMMARY										
DEMAND @: Base of Riser	FLOW REQ'D (GPM): 260.32	Pressure Req'd (PSI): 60.296								
DEMAND @: Conn to City Main	FLOW REQ'D (GPM): 360.32	Pressure Req'd (PSI): 66.502								
Area Safety Margin (psi): 16.406	***************************************									

Notes:	PE STAMP

10

D1

200 400

600

800

1000

City Water Supply:
C1 - Static Pressure : 84
C2 - Residual Pressure: 58 Demand: D1 - Elevation : 9.870 D2 - System Flow : 260.315
D2 - System Pressure : 66.502
Hose (Demand) : 100
D3 - System Demand : 360.315
Safety Margin : 16.406 C2 - Residual Flow 150 140 130 P 120 R 110 E 100 s 90 C1 S 80 U 70 C2 R 60 **D3** E ⁵⁰ 40 30 20

1400

1600

1800

1200

FLOW (N ^ 1.85)

Fittings Used Summary

B.I.C. Design Co.
Residences at Blackwell Clubhouse - LSMO - Area 2 - Interstitial - 0.10 FOR 1000 SQ. FT.

Page 2 Date

Fitting Le	egend																				
Abbrev.		1/2	3/4	1	11/4	1½	2	2½	3	3½	4	5	6	8	10	12	14	16	18	20	24
В	NFPA 13 Butterfly Valve	0	0	0	0	0	6	7	10	0	12	9	10	12	19	21	0	0	0	0	0
E	NFPA 13 90' Standard Elbow	1	2	2	3	4	5	6	7	8	10	12	14	18	22	27	35	40	45	50	61
F	NFPA 13 45' Elbow	1	1	1	1	2	2	3	3	3	4	5	7	9	11	13	17	19	21	24	28
Fsp	Flow Switch Potter VSR	Fittin	ig gene	rates a F	ixed Los	s Based	d on Flo	W													
G .	NFPA 13 Gate Valve	0	0	0	0	0	1	1	1	1	2	2	3	4	5	6	7	8	10	11	13
N *	CPVC 90' EII	0	4	5	6	7	9	12	13	0	0	0	0	0	0	0	0	0	0	0	0
O *	CPVC Branch Tee	0	3	5	6	8	10	12	15	0	0	0	0	0	0	0	0	0	0	0	0
S	NFPA 13 Swing Check	0	0	5	7	9	11	14	16	19	22	27	32	45	55	65					
Т	NFPA 13 90' Flow thru Tee	3	4	5	6	8	10	12	15	17	20	25	30	35	50	60	71	81	91	101	121

Units Summary

Diameter Units Inches Length Units Feet

Flow Units US Gallons per Minute Pressure Units Pounds per Square Inch

Note: Fitting Legend provides equivalent pipe lengths for fittings types of various diameters. Equivalent lengths shown are standard for actual diameters of Sched 40 pipe and CFactors of 120 except as noted with *. The fittings marked with a * show equivalent lengths values supplied by manufacturers based on specific pipe diameters and CFactors and they require no adjustment. All values for fittings not marked with a * will be adjusted in the calculation for CFactors of other than 120 and diameters other than Sched 40 per NFPA.

Page 3 Date

SUPPLY ANALYSIS

Node at Source	Static Pressure	Residual Pressure	Flow	Available Pressure	Total Demand	Required Pressure
TEST	84.0	58	2000.0	82.909	360.32	66.502

NODE ANALYSIS

A22 12 21A 12 22A 12 R1 12	.79 .79 .12 .12 .12	5.6 5.6	13.22 13.52	20.36			
21A 12 22A 12 R1 12	.12 .12	5.6	12 52	20.30	0.1	196	
22A 12 R1 12	.12		13.52	20.59	0.1	196	
R1 12			13.91				
	12		14.22				
400			15.03				
	.79	5.6	12.8	20.04	0.1	196	
	.12		13.48				
	.79	5.6	13.07	20.24	0.1	196	
	.12		13.75				
	.12		13.86				
	.12		14.45				
	.12		15.24				
	.125		16.03				
	.125		16.22				
	.125		16.37				
	.79	5.6	12.96	20.16	0.1	50	
	.12		13.65				
	.12		14.11				
	.125	5.6	14.58	21.38	0.1	150	
	.79	5.6	13.29	20.42	0.1	154	
	.12		13.98				
	.12		14.46				
	.79	5.6	14.87	21.59	0.1	154	
	.12		15.6				
	.12		16.58				
	.79	5.6	17.46	23.4	0.1	130	
	.125		14.96				
	.125		15.08				
	.125		15.31				
	.125		17.48				
	.125		18.78				
	.125		20.13		2.4		
	.79	5.6	17.64	23.52	0.1	80	
	.125		18.97		2.4		
	.79	5.6	18.33	23.98	0.1	80	
	.125	5 0	19.69	04.00	0.4	400	
	.79	5.6	19.34	24.63	0.1	168	
	.125		19.54				
	.125		20.27				
	.125		21.04				
	.125		21.39				
121 11	.125		22.46				

Page 4 Date

NODE ANALYSIS (cont.)

Node Tag	Elevation	Node Type	Pressure at Node	Discharge at Node	Notes
122	11.125		22.7		
123	11.125		29.22		
124	11.125		31.92		
125	9.58		34.88		
111	9.58		39.26		
112	9.58		41.79		
113	9.58		44.59		
TWR	9.58		46.85		
BWR	-11.19		60.3		
UG1	-3.19		61.38		
UG2	-3.19		62.87	100.0	
UG3	-3.19		63.2		
UG4	-3.19		63.2		
UG5	-3.19		63.26		
UG6	-3.19		63.42		
TEST	-10.0		66.5		

Page 5 Date

kesidend	es at Bla	ackwell Clu	ipnouse -	LSMO -	Area 2	- interstit	ial - 0.10 FO	K 1000 SQ.	FI.	Date
Node1 to	Elev1	K	Qa	Nom	Fitting or		Pipe Ftngs	CFact	Pt Pe	***** Notes **
Node2	Elev2	Fact	Qt	Act	Eqiv	Len	Total	Pf/Ft	Pf	
A21	12.79	5.60	20.36	1	N	5.0	0.670	150	13.221	
0		0.00				0.0	5.000		0.290	V-I - 0.00
21A	12.12		20.36	1.101			5.670	0.0704	0.399	Vel = 6.86
21A			20.36						13.910	K Factor = 5.46
A22	12.79	5.60	20.59	1	0	5.0	0.670	150	13.524	
o 22A	12.12		20.59	1.101			5.000 5.670	0.0720	0.290 0.408	Vel = 6.94
			0.0				0.0.0	0.0.20	01.00	
22A			20.59						14.222	K Factor = 5.46
21A o	12.12		20.36	1.25			14.000	150	13.910 0.0	
22A	12.12		20.36	1.394			14.000	0.0223	0.312	Vel = 4.28
22A	12.12		20.60	1.25	N	6.0	3.970	150	14.222	
o R1	12.12		40.96	1.394			6.000 9.970	0.0811	0.0 0.809	Vel = 8.61
R1	12.12		0.0	1.25	N	6.0	1.000	150	15.031	VCI - 0.01
0							6.000		0.431	
201	11.125		40.96	1.394			7.000	0.0813	0.569	Vel = 8.61
201			0.0 40.96						16.031	K Factor = 10.23
A23	12.79	5.60	20.04	1	N	5.0	0.670	150	12.800	
o 913	12.12		20.04	1.101			5.000 5.670	0.0683	0.290 0.387	Vel = 6.75
913	12.12		0.0	1.101	0	5.0	0.670	150	13.477	ver = 0.75
0					Ü	0.0	5.000		0.0	
23A	12.12		20.04	1.101			5.670	0.0683	0.387	Vel = 6.75
23A			0.0 20.04						13.864	K Factor = 5.38
A24	12.79	5.60	20.24	1	N	5.0	0.670	150	13.067	101001 0.00
0							5.000		0.290	V I 000
914 914	12.12 12.12		20.24 0.0	1.101 1	T	9.563	5.670 0.500	0.0697	0.395 13.752	Vel = 6.82
914	12.12		0.0	ı	I	ყ.ენა	9.562	150	0.0	
24A	12.12		20.24	1.101			10.062	0.0696	0.700	Vel = 6.82
24A			0.0 20.24						14.452	K Factor = 5.32
23A	12.12		20.04	1.25	2N	12.0	15.170	150	13.864	
o 24A	12.12		20.04	1.394			12.000 27.170	0.0216	0.0 0.588	Vel = 4.21
24A 24A	12.12		20.04	1.25	N	6.0	3.970	150	14.452	v Ci - 4.2 l
0						0.0	6.000		0.0	
R2	12.12		40.28	1.394		0.0	9.970	0.0787	0.785	Vel = 8.47
R2 o	12.12		0.0	1.25	0	6.0	1.000 6.000	150	15.237 0.431	
202	11.125		40.28	1.394			7.000	0.0787	0.551	Vel = 8.47
000			0.0						40.040	
202			40.28						16.219	K Factor = 10.00

Page 6 Date

Jes at bia	ickwell Cit	ibhouse -	LSMO -	Area 2	- intersti	tiai - 0.10 FO	R 1000 SQ.	F1.	Date		
Elev1	K	Qa	Nom	Fitting or		Pipe Ftngs	CFact	Pt Pe	*****	Notes	*****
Elev2	Fact	Qt	Act	Eqiv	Len	Total	Pf/Ft	Pf			
11 125		40.96	2			13 560	150	16 031			
							100	0.0			
							0.0139	0.188	Vel = 4.17		
								0.0			
									Vel = 8.27		
				N O	9.0 10.0	19.000		0.0			
11.125			2.003			48.710	0.0494	2.404	Vel = 8.27		
		0.0 81.23						18.776	K Factor =	18.75	
12.79	5.60	20.16	1	N	5.0	5.000	150	12.964 0.290			
									Vel = 6.79		
				N	5.0	5.000		0.0			
									Vel = 6.79		
				N	5.0	5.000		0.431			
11.125			1.101			6.000	0.0692	0.415	Vel = 6.79		
		0.0 20.16						14.957	K Factor =	5.21	
11.125	5.60	21.38	1	0	5.0	1.500 5.000	150	14.577 0.0			
11.125		21.38	1.101			6.500	0.0771	0.501	Vel = 7.20		
		0.0 21.38						15.078	K Factor =	5.51	
12.79	5.60	20.42	1	0	5.0	0.670 5.000	150	13.292 0.290			
12.12		20.42	1.101			5.670	0.0707	0.401	Vel = 6.88		
12.12		0.0	1	N	5.0	1.740 5.000	150	13.983 0.0			
		20.42					0.0706	0.476	Vel = 6.88		
		0.0		0	5.0	5.000	150	14.459 0.431			
11.125		20.42	1.101			6.000	0.0707	0.424	Vel = 6.88		
		0.0 20.42						15.314	K Factor =	5.22	
12.79	5.60	21.59	1	N	5.0	0.670 5.000	150	14.869 0.290			
12.12		21.59	1.101			5.670	0.0785	0.445	Vel = 7.28		
12.12		0.0	1	N O	5.0 5.0	2.410 10.000	150	15.604 0.0			
12.12		21.59	1.101			12.410	0.0784	0.973	Vel = 7.28		
12.12		0.0	1	0	5.0	1.000	150	16.577			
12.12						5.000		0.431			
	Elev1 Elev2 11.125 11.125 11.125 11.125 11.125 11.125 12.79 12.12 12.12 11.125 11.125 11.125 11.125 11.125 12.79 12.12 12.12 12.12 12.12 12.12 12.12 12.12 12.12 12.12 12.12 12.12 12.12 12.12 12.12 12.12 12.12 12.12 12.12	Elev1 K Elev2 Fact 11.125 11.125 11.125 11.125 11.125 11.125 11.125 11.125 11.125 11.125 11.125 12.79 5.60 12.12 12.12 11.125 11.125 11.125 11.125 11.125 11.125 12.79 5.60 12.12	Elev1 K Qa Elev2 Fact Qt 11.125 40.96 11.125 40.96 11.125 40.27 11.125 81.23 11.125 81.23 11.125 81.23 12.79 5.60 20.16 12.12 20.16 12.12 0.0 11.125 20.16 12.12 0.0 11.125 20.16 11.125 20.16 11.125 20.16 11.125 20.16 11.125 20.16 11.125 20.16 11.125 20.16 12.12 0.0 21.38 0.0 21.38 0.0 21.38 0.0 21.38 0.0 12.12 0.0 12.12 0.0 12.12 0.0 12.12 0.0 12.12 0.0 12.12 0.0 12.12 0.0 12.12 0.0 </td <td>Elev1 K Qa Nom Elev2 Fact Qt Act 11.125 40.96 2 11.125 40.96 2.003 11.125 81.23 2.003 11.125 81.23 2.003 11.125 81.23 2.003 11.125 81.23 2.003 12.79 5.60 20.16 1 12.12 20.16 1.101 12.12 0.0 1 12.12 20.16 1.101 12.12 0.0 1 11.125 20.16 1.101 10.0 20.16 1.101 11.125 20.16 1.101 10.0 20.16 1.101 11.125 20.16 1.101 11.125 20.16 1.101 11.125 20.16 1.101 11.125 20.42 1 12.12 20.42 1.101 12.12 20.42 1.</td> <td>Elev1 K Qa Nom cor eqiv Fitting or eqiv 11.125 40.96 2 11.125 40.96 2.003 11.125 40.27 2 11.125 81.23 2.003 11.125 81.23 2.003 11.125 81.23 2.003 11.125 81.23 2.003 12.79 5.60 20.16 1 12.12 20.16 1.101 12.12 20.16 1.101 12.12 20.16 1.101 12.12 0.0 1 N 11.125 5.60 21.38 1 O 11.125 5.60 21.38 1 O 11.125 21.38 1.101 O 12.12 20.42 1.101 O 12.12 20.42 1 O 12.12 20.42 1.101 O 12.12 20.42 1.101 O 12.12<td>Elev1 K Qa Nom or equivalent and port of equivalent and port of</td><td> Filting or Fitting or Fitting Fings Fings Fings Fings or Fitting or Fitting or Fitting Fings Fings Fings Fings Fings</td><td> Flev1</td><td> Find Find </td><td> Elev1 K</td><td> Elev1 K</td></td>	Elev1 K Qa Nom Elev2 Fact Qt Act 11.125 40.96 2 11.125 40.96 2.003 11.125 81.23 2.003 11.125 81.23 2.003 11.125 81.23 2.003 11.125 81.23 2.003 12.79 5.60 20.16 1 12.12 20.16 1.101 12.12 0.0 1 12.12 20.16 1.101 12.12 0.0 1 11.125 20.16 1.101 10.0 20.16 1.101 11.125 20.16 1.101 10.0 20.16 1.101 11.125 20.16 1.101 11.125 20.16 1.101 11.125 20.16 1.101 11.125 20.42 1 12.12 20.42 1.101 12.12 20.42 1.	Elev1 K Qa Nom cor eqiv Fitting or eqiv 11.125 40.96 2 11.125 40.96 2.003 11.125 40.27 2 11.125 81.23 2.003 11.125 81.23 2.003 11.125 81.23 2.003 11.125 81.23 2.003 12.79 5.60 20.16 1 12.12 20.16 1.101 12.12 20.16 1.101 12.12 20.16 1.101 12.12 0.0 1 N 11.125 5.60 21.38 1 O 11.125 5.60 21.38 1 O 11.125 21.38 1.101 O 12.12 20.42 1.101 O 12.12 20.42 1 O 12.12 20.42 1.101 O 12.12 20.42 1.101 O 12.12 <td>Elev1 K Qa Nom or equivalent and port of equivalent and port of</td> <td> Filting or Fitting or Fitting Fings Fings Fings Fings or Fitting or Fitting or Fitting Fings Fings Fings Fings Fings</td> <td> Flev1</td> <td> Find Find </td> <td> Elev1 K</td> <td> Elev1 K</td>	Elev1 K Qa Nom or equivalent and port of	Filting or Fitting or Fitting Fings Fings Fings Fings or Fitting or Fitting or Fitting Fings Fings Fings Fings Fings	Flev1	Find Find	Elev1 K	Elev1 K

7 B.I.C. Design Co. Page Residences at Blackwell Clubhouse - LSMO - Area 2 - Interstitial - 0.10 FOR 1000 SQ. FT. Date Node1 Elev1 K Qa Nom Fitting Pipe **CFact** Pt ***** ***** **Ftngs** Рe to or Notes Node2 Elev2 Fact Qt Act Eqiv Len Total Pf/Ft Pf 28A 21.59 17.479 K Factor = 5.165.60 1 20 10.0 A32 12.79 23.40 11.410 150 17.462 10.000 0.721 to 32A 23.4 1.101 21.410 0.0909 1.947 11.125 Vel = 7.890.0 32A 23.40 20.130 K Factor = 5.2225A 11.125 20.16 1.25 5.530 150 14.957 to 0.0 20.16 1.394 5.530 0.0219 0.121 26A 11.125 Vel = 4.2426A 2.840 15.078 11.125 21.38 1.25 150 to 0.0 27A 11.125 41.54 1.394 2.840 0.0831 0.236 Vel = 8.7327A 11.125 20.42 1.25 12.390 150 15.314 0.0 to 28A 11.125 61.96 1.394 12.390 0.1747 2.165 Vel = 13.0228A 11.125 21.59 1.25 4.270 150 17.479 0.0 to 204 11.125 83.55 1.394 4.270 0.3037 1.297 Vel = 17.56204 2 18.776 11.125 81.24 7.420 150 to 0.0 32A 11.125 164.79 2.003 7.420 0.1825 1.354 Vel = 16.7832A 2 10.0 1.000 20.130 11.125 23.40 0 150 to 10.000 0.0 122 11.125 188.19 2.003 11.000 0.2335 2.568 Vel = 19.160.0 122 188.19 22.698 K Factor = 39.50 A29 12.79 5.60 23.52 1 Ν 5.0 1.660 150 17.642 5.000 0.721 to 920 11.125 23.52 1.101 6.660 0.0917 0.611 Vel = 7.93920 18.974 11.125 0.0 1 Ν 5.0 1.110 150 to 5.000 0.0 29A 11.125 23.52 1.101 6.110 0.0920 0.562 Vel = 7.930.0 29A 19.536 23.52 K Factor = 5.32A30 12.79 5.60 23.98 1 Ν 5.0 1.660 150 18.334 5.000 0.721 to 919 11.125 23.98 1.101 6.660 0.0952 0.634 Vel = 8.08919 11.125 0.0 1 0 5.0 1.110 150 19.689 5.000 0.0 to 30A 11.125 23.98 1.101 6.110 0.0951 0.581 Vel = 8.080.0 30A 20.270 23.98 K Factor = 5.33A31 5.60 20 10.0 150 19.337 12.79 24.63 1 3.320 10.000 0.721 to 31A 11.125 24.63 1.101 13.320 0.1000 1.332 Vel = 8.300.0 31A 24.63 21.390 K Factor = 5.3329A 11.125 23.52 1 8.000 150 19.536 to 0.0 30A 11.125 23.52 1.101 8.000 0.0918 0.734 Vel = 7.93

Page 8 Date

Node1	Elev1	K	Qa	Nom	Fitting		Pipe	CFact	Pt	****** Notoo *	****
to Node2	Elev2	Fact	Qt	Act	or Eqiv	Len	Ftngs Total	Pf/Ft	Pe Pf	****** Notes *	^^^^
30A :o	11.125		23.98	1			2.290	150	20.270 0.0		
30B	11.125		47.5	1.101			2.290	0.3371	0.772	Vel = 16.01	
30B to	11.125		0.0	1.5			6.330	150	21.042 0.0		
31A	11.125		47.5	1.598			6.330	0.0550	0.348	Vel = 7.60	
31A to	11.125		24.62	1.5	Ο	8.0	1.000 8.000	150	21.390		
121	11.125		72.12	1.598			9.000	0.1190	1.071	Vel = 11.54	
121 to	11.125		0.0	2			6.000	150	22.461 0.0		
122	11.125		72.12	2.003			6.000	0.0395	0.237	Vel = 7.34	
122 to	11.125		188.20 260.32	2 2.003	N	9.0	6.330 9.000	150	22.698 0.0	Vol 26 54	
123 123	11.125 11.125		0.0	2.003	N	12.0	15.330 4.020	0.4255 150	6.523 29.221	Vel = 26.51	
to 124	11.125		260.32	2.423	IN	12.0	12.000		0.0 2.697	Vel = 18.11	
124	11.125		0.0	2.423	N	12.0	16.020 1.620	0.1684 150	31.918	vei – 10.11	
124 to 125	9.58		260.32	2.423	IN	12.0	12.000 13.620	0.1684	0.669 2.293	Vel = 18.11	
125	9.58		0.0	2.5	0	12.0	14.000	150	34.880	V 01 10.11	
to 111	9.58		260.32	2.423			12.000 26.000	0.1683	0.0 4.377	Vel = 18.11	
111	9.58		0.0	2.5	0	12.0	3.070	150	39.257	-	
to 112	9.58		260.32	2.423			12.000 15.070	0.1683	0.0 2.537	Vel = 18.11	
112	9.58		0.0	2.5	N	12.0	4.580	150	41.794		
to	0.50		000.00	0.400			12.000	0.4004	0.0	10.44	
113	9.58		260.32	2.423	NI.	40.0	16.580	0.1684	2.792	Vel = 18.11	
113 to	9.58		0.0	2.5	N	12.0	1.420 12.000	150	44.586 0.0		
TWR	9.58		260.32	2.423			13.420	0.1683	2.259	Vel = 18.11	
TWR	9.58		0.0	4	E	19.896	7.580	150	46.845		
to	11 100		260.22	4.06	T	39.793 23.876	127.336	0.0400	11.996	* * Fixed Loss = 3	
BWR	-11.190		260.32	4.26	B S Fsp	43.772	134.916	0.0108	1.455	Vel = 5.86	
BWR	-11.190		0.0	4	2E	39.793	10.890	150	60.296		
to UG1	-3.190		260.32	4.26			39.792 50.682	0.0108	0.535 0.547	* * Fixed Loss = 4 Vel = 5.86	
UG1	-3.190		0.0	4.20	G	3.186	60.000	150	61.378	v O1 0.00	
io UG2	-3.190		260.32	4.07	E T	15.932 31.864	50.982 110.982	0.0135	0.0 1.494	Vel = 6.42	
UG2	-3.190	H100	-80.00	8	5G	25.061	940.000	150	62.872		
to					Т	43.857	102.751		0.0		
UG3	-3.190		180.32	7.68	3F		1042.751	0.0003	0.324	Vel = 1.25	
UG3 to	-3.190		0.0	12	3G 4F	57.587	1060.000 143.966	150	63.196 0.0		
UG5	-3.190		180.32	11.2	T	66.446	1203.966	0	0.059	Vel = 0.59	

Final Calculations : Hazen-Williams

B.I.C. Design Co. Page 9 Residences at Blackwell Clubhouse - LSMO - Area 2 - Interstitial - 0.10 FOR 1000 SQ. FT. Date Node1 Elev1 Κ Qa Nom Fitting Pipe **CFact** Pt ***** ***** **Ftngs** Pe Notes to or Node2 Elev2 Fact Qt Act Eqiv Len Total Pf/Ft Pf 0.0 UG5 180.32 63.255 K Factor = 22.67UG2 -3.190 180.00 8 3G 15.037 880.000 150 62.872 3F 33.833 181.695 0.0 to UG4 180.0 7.68 2T 87.715 1061.695 0.0003 0.328 -3.190Vel = 1.252E 45.11 UG4 -3.1900.0 12 2G 13.289 930.000 150 63.200 7F 100.777 180.512 to 0.0 UG5 -3.190180.0 11.2 Т 66.446 1110.512 0 0.055 Vel = 0.592G UG5 -3.190 180.32 12 13.289 700.000 150 63.255 66.446 253.603 0.0 to Τ 11.2 UG6 360.32 10F 143.967 953.603 0.0002 0.169 -3.190Vel = 1.1729.901 Ε UG6 -3.1900.0 12 Τ 66.446 650.000 150 63.424 G 6.645 73.090 2.949 to **TEST** -10 360.32 11.2 723.090 0.0002 0.129 Vel = 1.17 0.0 **TEST** 360.32 66.502 K Factor = 44.18

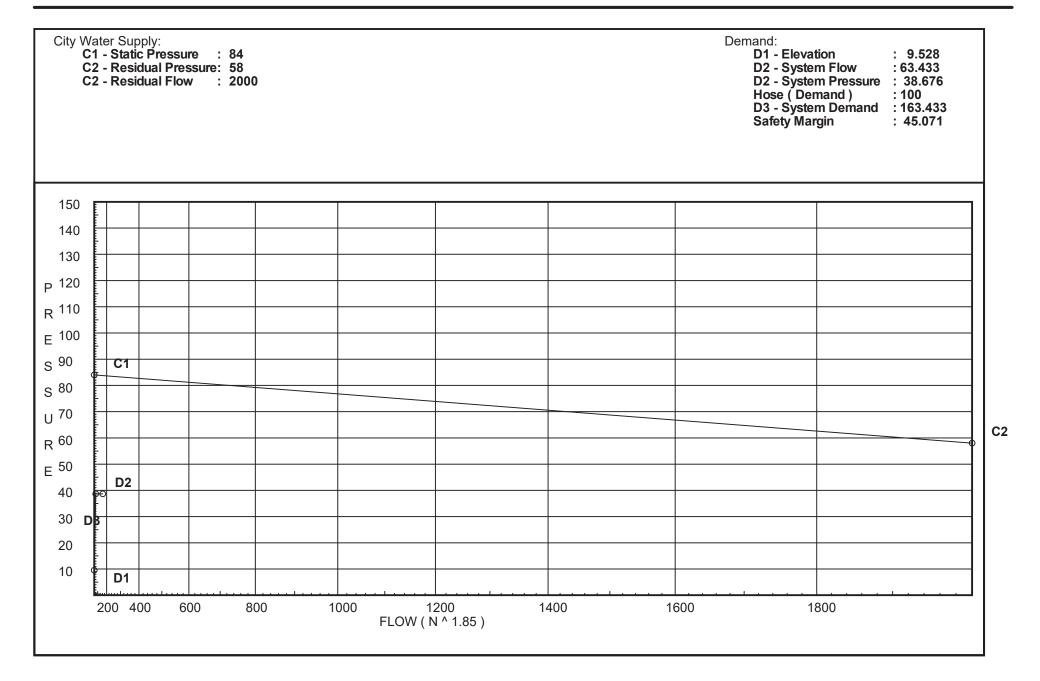
HYDRAULIC DESIGN COVER SHEET

AREA: Guest Suite
CALCULATED BY: Isaiah Wiese
ORIGINAL DATE: 03/08/2024
LATEST REVISION DATE:

JOB INFORMATION							
JOB NAME: Residences At Blackwell - Clubhouse							
Address: 50 Hwy & Blackwell	CITY, STATE: Lee's Summit, MO						
Building Info: New Construction	Construction: Combustible, Unobstructed						
CONTRACTOR: Alliance Fire Protection, LLC	Contract #: NC-1429						

WATER SUPPLY INFORMATION									
FLOW TEST? See Front Cover Page	Pump? No								
Date:	RATED CAPACITY (GPM):								
STATIC PRESSURE (PSI):	RATED PRESSURE (PSI):								
Residual Pressure (psi):	ELEVATION:								
FLOW (GPM):	PUMP MOTOR TYPE:								
ELEVATION:	TANK?								
LOCATION:	Capacity (gallons):								
Source:	ELEVATION:								

OPERATING AREA INFORMATION								
AREA #: 3	System Type: Wet	SHEET NUMBER: FP3						
CEILING HEIGHT: Varies	STORAGE HEIGHT: N/A	QR Sprinkler Discount: No						


SPRINKLER INFORMATION					
Brand: Viking	Model: VK484				
K-Factor: 5.6	Temperature (°F): 175				

System Design Information						
Design Per: NFPA 13 , 2016	HAZARD CLASSIFICATION: NFPA 13 Residential					
DESIGN CRITERIA:						
DENSITY (GPM/SQ FT): 0.10	Operating Area (sq ft): 4 Heads					
Area Per Sprinkler (sq ft): Varies	Total Sprinklers Operating: 4					
Min. Flow Per Head (gpm): N/A	Min. Pressure Per Head (psi): N/A					
Inside Hose Allowance (gpm): 0	Outside Hose Allowance (GPM): 100					
OVERHEAD PIPING C-FACTOR: 150	Underground Piping C-Factor: 150					

	CALCULATION SUMMARY	
DEMAND @: Base of Riser	FLOW REQ'D (GPM): 63.43	Pressure Req'd (psi): 34.884
DEMAND @: Conn to City Main	FLOW REQ'D (GPM): 163.43	Pressure Req'd (psi): 38.676
Area Safety Margin (psi): 45.071		

Notes:	PE STAMP

Date

Fittings Used Summary

B.I.C. Design Co.
Residences at Blackwell Clubhouse - LSMO - Area 3 - Guest Suite - Residential 4 Heads

Page 2 Date

Fitting L	egend																				
Abbrev.	Name	1/2	3/4	1	11/4	1½	2	21/2	3	3½	4	5	6	8	10	12	14	16	18	20	24
В	NFPA 13 Butterfly Valve	0	0	0	0	0	6	7	10	0	12	9	10	12	19	21	0	0	0	0	0
E	NFPA 13 90' Standard Elbow	1	2	2	3	4	5	6	7	8	10	12	14	18	22	27	35	40	45	50	61
F	NFPA 13 45' Elbow	1	1	1	1	2	2	3	3	3	4	5	7	9	11	13	17	19	21	24	28
Fsp	Flow Switch Potter VSR	Fittin	g genei	rates a F	ixed Los	s Based	d on Flo	W													
G ·	NFPA 13 Gate Valve	0	0	0	0	0	1	1	1	1	2	2	3	4	5	6	7	8	10	11	13
N *	CPVC 90' EII	0	4	5	6	7	9	12	13	0	0	0	0	0	0	0	0	0	0	0	0
O *	CPVC Branch Tee	0	3	5	6	8	10	12	15	0	0	0	0	0	0	0	0	0	0	0	0
S	NFPA 13 Swing Check	0	0	5	7	9	11	14	16	19	22	27	32	45	55	65					
T	NFPA 13 90' Flow thru Tee	3	4	5	6	8	10	12	15	17	20	25	30	35	50	60	71	81	91	101	121

Units Summary

Diameter Units Inches Length Units Feet

Flow Units US Gallons per Minute Pressure Units Pounds per Square Inch

Note: Fitting Legend provides equivalent pipe lengths for fittings types of various diameters. Equivalent lengths shown are standard for actual diameters of Sched 40 pipe and CFactors of 120 except as noted with *. The fittings marked with a * show equivalent lengths values supplied by manufacturers based on specific pipe diameters and CFactors and they require no adjustment. All values for fittings not marked with a * will be adjusted in the calculation for CFactors of other than 120 and diameters other than Sched 40 per NFPA.

B.I.C. Design Co. Residences at Blackwell Clubhouse - LSMO - Area 3 - Guest Suite - Residential 4 Heads Page 3 Date

SI	IPP	ΙV	ΔΛ	VΔ	۱)	12	15
Ju	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		\neg	~~	_ ,		-

Node at Source	Static Pressure	Residual Pressure	Flow	Available Pressure	Total Demand	Required Pressure
TEST	84.0	58	2000.0	83.747	163.43	38.676

NODE ANALYSIS

Node Tag	Elevation	Node Type	Pressure at Node	Discharge at Node		Notes	
A41	12.0	4.2	16.17	16.89	0.1	150	
41	12.0		16.18		• • • • • • • • • • • • • • • • • • • •		
41A	12.0		17.03				
41B	12.0		17.67				
A42	12.0	4.2	12.95	15.12	0.1	150	
A43	12.0	4.2	12.76	15.0	0.1	150	
42	12.0		12.97				
42A	12.0		15.43				
A44	12.0	4.2	15.3	16.43	0.1	150	
44	12.0		16.03				
44A	12.0		16.59				
42B	12.0		17.01				
42C	12.0		17.1				
41C	12.0		17.96				
42D	12.0		17.98				
42E	12.0		18.28				
42F	11.21		19.73				
121	11.21		20.17				
122	11.21		20.35				
123	11.21		20.83				
124	11.21		21.03				
125	9.58		21.9				
111	9.58		22.22				
112	9.58		22.41				
113	9.58		22.62				
TWR	9.58		22.78				
BWR UG1	-11.19		34.88 35.46				
UG2	-3.19 -3.19		35.46 35.57	100.0			
UG3	-3.19 -3.19		35.64	100.0			
UG4	-3.19 -3.19		35.64				
UG5	-3.19 -3.19		35.66				
UG6	-3.19		35.7				
TEST	-10.0		38.68				
1201	-10.0		30.00				

B.I.C. Design Co.
Residences at Blackwell Clubhouse - LSMO - Area 3 - Guest Suite - Residential 4 Heads

Page 4 Date

es *****
9
3
20
80
7
.9

B.I.C. Design Co. Residences at Blackwell Clubhouse - LSMO - Area 3 - Guest Suite - Residential 4 Heads

Page 5 Date

Node1	Flev1	K	Qa	Nom	Fitting	1	Pipe	CFact	Pt	
to	Elevi	r.	Qa	NOIII	or	}	Fings	Craci	Pe Pe	****** Notes *****
Node2	Elev2	Fact	Qt	Act	Eqiv	Len	Total	Pf/Ft	Pf	
400			40.55						47.004	K 5 1 40.00
42D	40		46.55				0.000	450	17.984	K Factor = 10.98
41C to	12		16.89	2			8.290	150	17.961 0.0	
42D	12		16.89	2.003			8.290	0.0028	0.023	Vel = 1.72
42D	12		46.54	2	Ν	9.0	0.650	150	17.984	
to 42E	12		63.43	2.003			9.000 9.650	0.0312	0.0 0.301	Vel = 6.46
42E	12		0.0	2	3N	27.0	8.430	150	18.285	
to	44.040		00.40	0.000			27.000	0.0040	0.342	V-1 - 0.40
42F 42F	11.210 11.210		63.43	2.003			35.430 13.830	0.0312 150	1.106 19.733	Vel = 6.46
to	11.210		0.0	۷			13.030	150	0.0	
121	11.21		63.43	2.003			13.830	0.0312	0.432	Vel = 6.46
121	11.21		0.0	2			6.000	150	20.165 0.0	
to 122	11.21		63.43	2.003			6.000	0.0313	0.0	Vel = 6.46
122	11.21		0.0	2	N	9.0	6.330	150	20.353	
to 123	11.21		63.43	2.003			9.000 15.330	0.0312	0.0 0.478	Vel = 6.46
123	11.21		0.0	2.5	N	12.0	4.020	150	20.831	V 61 - 0.40
to							12.000		0.0	
124	11.21		63.43	2.423		40.0	16.020	0.0124	0.198	Vel = 4.41
124 to	11.21		0.0	2.5	N	12.0	1.620 12.000	150	21.029 0.706	
125	9.58		63.43	2.423			13.620	0.0123	0.168	Vel = 4.41
125	9.58		0.0	2.5	0	12.0	14.000	150	21.903	
to 111	9.58		63.43	2.423			12.000 26.000	0.0124	0.0 0.322	Vel = 4.41
111	9.58		0.0	2.5	0	12.0	3.070	150	22.225	
to	0.50		00.40	0.400			12.000	0.0400	0.0	V-1 - 4 44
112 112	9.58 9.58		63.43 0.0	2.423	N	12.0	15.070 4.580	0.0123 150	0.186 22.411	Vel = 4.41
to					IN	12.0	12.000	150	0.0	
113	9.58		63.43	2.423			16.580	0.0124	0.205	Vel = 4.41
113 to	9.58		0.0	2.5	N	12.0	1.420 12.000	150	22.616 0.0	
TWR	9.58		63.43	2.423			13.420	0.0124	0.0	Vel = 4.41
TWR	9.58		0.0	4	E	19.896	7.580	150	22.782	
to BWR	-11.190		63.43	4.26	T B	39.793 23.876	127.336 134.916	0.0008	11.996 0.106	* * Fixed Loss = 3 Vel = 1.43
DVVK	-11.190	'	03.43	4.20	S Fsp	43.772 0.0	134.910	0.0008	0.100	vei – 1.43
BWR	-11.190		0.0	4	2E	39.793	10.890	150	34.884	
to UG1	-3.190		63.43	4.26			39.792 50.682	0.0008	0.535 0.040	* * Fixed Loss = 4 Vel = 1.43
UG1	-3.190		0.0	4.20	G	3.186	60.000	150	35.459	v di = 1.40
to					E	15.932	50.982		0.0	
UG2	-3.190		63.43	4.07	Т	31.864	110.982	0.0010	0.110	Vel = 1.56

B.I.C. Design Co. Residences at Blackwell Clubhouse - LSMO - Area 3 - Guest Suite - Residential 4 Heads Page 6 Date

Notes	*****
'	
13.70	
26.28	
	13.70

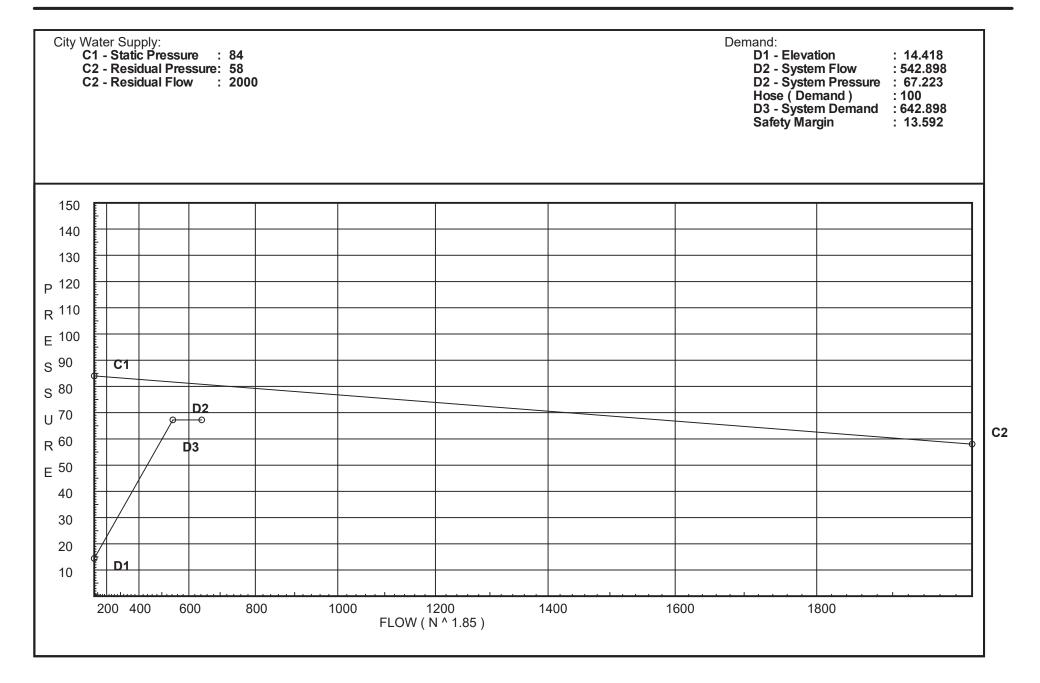
HYDRAULIC DESIGN COVER SHEET

AREA: Great Room
CALCULATED BY: Isaiah Wiese
CALCULATED BY: Isaiah Wiese
CALCULATED BY: Isaiah Wiese
CALCULATED BY: Isaiah Wiese

JOB INFORMATION						
JOB NAME: Residences At Blackwell - Clubhouse						
Address: 50 Hwy & Blackwell	CITY, STATE: Lee's Summit, MO					
Building Info: New Construction	Construction: Combustible, Unobstructed					
CONTRACTOR: Alliance Fire Protection, LLC	Contract #: NC-1429					

WATER SUPPLY INFORMATION							
FLOW TEST? See Front Cover Page	Pump? No						
Date:	RATED CAPACITY (GPM):						
STATIC PRESSURE (PSI):	RATED PRESSURE (PSI):						
Residual Pressure (psi):	ELEVATION:						
FLOW (GPM):	PUMP MOTOR TYPE:						
ELEVATION:	TANK?						
LOCATION:	CAPACITY (GALLONS):						
Source:	ELEVATION:						

OPERATING AREA INFORMATION								
Area #: 4	SYSTEM TYPE: Dry	SHEET NUMBER: FP3						
Ceiling Height: Varies	STORAGE HEIGHT: N/A	QR Sprinkler Discount: No						


SPRINKLER INFORMATION						
Brand: Viking	Model: Varies					
K-Factor: 5.6	Temperature (°F): 200					

System Design Information						
Design Per: NFPA 13 , 2016	HAZARD CLASSIFICATION: Light Hazard					
DESIGN CRITERIA:						
DENSITY (GPM/SQ FT): 0.10	OPERATING AREA (SQ FT): 2535					
Area Per Sprinkler (sq ft): Varies	Total Sprinklers Operating: 29					
Min. Flow Per Head (GPM): N/A	Min. Pressure Per Head (psi): N/A					
Inside Hose Allowance (gpm): 0	Outside Hose Allowance (GPM): 100					
OVERHEAD PIPING C-FACTOR: 100	Underground Piping C-Factor: 150					

CALCULATION SUMMARY									
DEMAND @: Base of Riser	FLOW REQ'D (GPM): 542.9	Pressure Req'd (psi): 43.471							
DEMAND @: Conn to City Main	FLOW REQ'D (GPM): 642.9	Pressure Req'd (psi): 67.223							
AREA SAFETY MARGIN (PSI): 13.592									

Notes:	PE STAMP

Date

Fittings Used Summary

B.I.C. Design Co. Residences at Blackwell Clubhouse - LSMO - Area 4 - Great Room - 0.10 FOR 2535 SQ. FT.

Page 2 Date

Fitting L Abbrev		1/2	3/4	1	11⁄4	1½	2	2½	3	3½	4	5	6	8	10	12	14	16	18	20	24
B Dvc	NFPA 13 Butterfly Valve Dry Vic 768 NXT	0	0	0	0	0	6 9	7 8	10 17	0	12 21	9	10 22	12 50	19	21	0	0	0	0	0
E	NFPA 13 90' Standard Elbow	1	2	2	3	4	5	6	7	8	10	12	14	18	22	27	35	40	45	50	61
F	NFPA 13 45' Elbow	1	1	1	1	2	2	3	3	3	4	5	7	9	11	13	17	19	21	24	28
G	NFPA 13 Gate Valve	0	0	0	0	0	1	1	1	1	2	2	3	4	5	6	7	8	10	11	13
T	NFPA 13 90' Flow thru Tee	3	4	5	6	8	10	12	15	17	20	25	30	35	50	60	71	81	91	101	121

Units Summary

Diameter Units Inches Length Units Feet

Flow Units US Gallons per Minute Pressure Units Pounds per Square Inch

Note: Fitting Legend provides equivalent pipe lengths for fittings types of various diameters. Equivalent lengths shown are standard for actual diameters of Sched 40 pipe and CFactors of 120 except as noted with *. The fittings marked with a * show equivalent lengths values supplied by manufacturers based on specific pipe diameters and CFactors and they require no adjustment. All values for fittings not marked with a * will be adjusted in the calculation for CFactors of other than 120 and diameters other than Sched 40 per NFPA.

Page 3 Date

SUPPLY ANALYSIS

Node at Source	Static Pressure	Residual Pressure	Flow	Available Pressure	Total Demand	Required Pressure
TEST	84.0	58	2000.0	80.815	642.9	67.223

NODE ANALYSIS

Node Tag	Elevation	Node Type	Pressure at Node	Discharge at Node	٨	lotes	
B1	11.08	5.6	9.55	17.3	0.15	100	
809	12.65		9.28				
B2	11.08	5.6	10.23	17.91	0.15	100	
808	12.62		10.01				
1B	12.65		9.58				
2B	12.62		10.64				
В3	23.29	5.6	7.17	15.0	0.1	150	
B4	23.29	5.6	7.17	15.0	0.1	150	
B5	19.47	5.6	8.82	16.63	0.1	150	
B6	19.47	5.6	8.82	16.63	0.1	150	
3B	23.29		7.88				
5B	19.47		9.67				
800	17.27		11.14				
801	17.28	5.0	11.36	47.7	0.45	400	
B7	11.08	5.6	9.99	17.7	0.15	100	
811	12.64	F.0	9.75	40.45	0.45	400	
B8	11.08	5.6	10.51	18.15	0.15	100	
810 7B	12.6		10.3 10.05				
7Б 8В	12.64						
ов В9	12.6 23.25	5.6	10.95 7.49	15.33	0.1	150	
В9 В10	23.25	5.6	7.49 7.49	15.33	0.1	150	
B10	19.43	5.6	9.14	16.93	0.1	150	
B12	19.43	5.6	9.14	16.93	0.1	150	
9B	23.25	5.0	8.22	10.93	0.1	150	
11B	19.43		10.02				
802	17.24		11.51				
803	17.24		11.74				
B13	9.08	5.6	10.43	18.08	0.1	100	
805	12.68	0.0	9.63	10.00	0.1	.00	
B14	9.08	5.6	10.76	18.37	0.1	155	
804	12.64	0.0	10.0		• • • • • • • • • • • • • • • • • • • •		
13B	12.68		10.27				
14B	12.64		10.66				
B15	11.99	5.6	10.98	18.55	0.1	172	
B16	12.03	5.6	10.89	18.48	0.1	172	
15B	11.99		11.65				
16B	14.21		11.61				
807	14.21		12.8				
B17	11.7	5.6	11.49	18.98	0.1	100	
B18	11.08	5.6	11.77	19.21	0.1	100	
812	11.68		11.86				

Page 4 Date

NODE ANALYSIS (cont.)

			NODE ANA	L 1313 (COIII.)			
Node Tag	Elevation	Node Type	Pressure at Node	Discharge at Node		Notes	
B19	11.08	5.6	13.01	20.2	0.1	100	
814	11.65		13.13				
17B	11.7		12.45				
18B	11.68		12.57				
19B	11.65		13.92				
813	11.63		16.03				
B20	11.7	5.6	12.56	19.85	0.1	100	
B21	11.08	5.6	12.9	20.12	0.1	100	
815	11.68		13.02				
B22	11.08	5.6	14.25	21.14	0.1	100	
817	11.65		14.41				
20B	11.7		13.67				
21B	11.68		13.8				
22B	11.65		15.26				
816	11.63	5.0	17.56	00.04	0.4	400	
B23	9.08	5.6	13.84	20.84	0.1	100	
821	12.65	F.C	14.41	04.0	0.4	100	
B24	9.08	5.6	15.16	21.8	0.1	100	
822	12.62	E G	14.69	24 50	0.1	100	
B25 819	9.08	5.6	14.85	21.58	0.1	100	
25B	12.64		14.35 15.32				
B26	12.64 9.08	5.6	13.84	20.83	0.1	100	
820	12.63	5.0	13.28	20.03	0.1	100	
26B	12.63		14.18				
B27	9.08	5.6	15.64	22.15	0.1	100	
823	12.6	0.0	15.21	22.10	0.1	100	
B28	9.08	5.6	14.37	21.23	0.1	100	
818	12.61	0.0	13.85	21.20	0.1	100	
28B	12.61		15.27				
B29	11.0	5.6	16.34	22.63	0.1	100	
824	12.58	0.0	16.34		• • • • • • • • • • • • • • • • • • • •		
502	12.61		14.0				
503	12.61		14.0				
504	12.6		14.04				
505	12.59		14.11				
506	12.59		14.12				
507	12.58		14.24				
508	12.57		14.37				
509	12.57		14.4				
510	12.56		14.61				
514	12.58		14.4				
515	12.58		14.41				
516	12.57		14.51				
517	12.55		14.76				
518	12.55		14.8				
519	12.55		14.84				
520	10.52		17.22				
521	10.5		18.4				
522	10.48		20.11				
523	10.47		20.39				

Page 5 Date

NODE ANALYSIS (cont.)

			,	
Elevation	Node Type	Pressure at Node	Discharge at Node	Notes
12.65		15.54		
12.62		15.56		
12.62		15.58		
12.61		15.84		
12.6		16.1		
12.59		16.99		
12.58		17.35		
12.58		18.95		
10.47		22.36		
10.47		22.47		
-3.19				
-3.19				
-3.19				
-11.19				
-11.19				
-3.19		56.46		
-3.19		62.29	100.0	
-3.19		63.23		
-3.19		63.24		
-3.19		63.4		
-3.19		63.9		
-10.0		67.22		
	12.65 12.62 12.62 12.61 12.6 12.59 12.58 12.58 10.47 10.47 10.47 10.47 -3.19 -3.19 -3.19 -3.19 -3.19 -3.19 -3.19 -3.19 -3.19 -3.19 -3.19 -3.19 -3.19 -3.19	12.65 12.62 12.62 12.61 12.6 12.59 12.58 12.58 10.47 10.47 10.47 10.47 -3.19 -3.19 -3.19 -3.19 -3.19 -3.19 -3.19 -3.19 -3.19 -3.19 -3.19 -3.19 -3.19 -3.19 -3.19 -3.19	Elevation Node Type at Node 12.65 15.54 12.62 15.56 12.62 15.58 12.61 15.84 12.6 16.1 12.59 16.99 12.58 17.35 12.58 18.95 10.47 22.36 10.47 22.47 10.47 22.47 10.47 23.44 -3.19 30.57 -3.19 33.02 -3.19 34.83 -11.19 43.47 -11.19 43.57 -3.19 63.23 -3.19 63.23 -3.19 63.24 -3.19 63.24 -3.19 63.4 -3.19 63.9	Elevation Node Type at Node at Node 12.65 15.54 12.62 15.56 12.62 15.58 12.61 15.84 12.6 16.1 12.59 16.99 12.58 17.35 12.58 18.95 10.47 22.36 10.47 22.47 10.47 22.47 10.47 23.44 -3.19 30.57 33.02 -3.19 33.02 34.83 -11.19 43.47 43.47 -11.19 43.57 56.46 -3.19 62.29 100.0 -3.19 63.23 3.19 -3.19 63.24 3.19 -3.19 63.24 3.19 -3.19 63.4 3.19 -3.19 63.9 63.9

Page 6 Date

Node1	Elev1	K	Qa	Nom	Fitting		Pipe	CFact	Pt	*****	Notos	*****
to Node2	Elev2	Fact	Qt	Act	or Eqiv	Len	Ftngs Total	Pf/Ft	Pe Pf		Notes	
B1 to	11.080	5.60	17.30	1	E	1.427	1.570 1.427	100	9.546 -0.680			
809	12.65		17.3	1.049			2.997	0.1395	0.418	Vel = 6.4	2	
809 to	12.65		0.0	1	E	1.427	0.670 1.427	100	9.284 0.0			
1B	12.65		17.3	1.049			2.097	0.1392	0.292	Vel = 6.4	2	
1B			0.0 17.30						9.576	K Factor =	= 5.59	
B2 to	11.08	5.60	17.91	1	E	1.427	1.540 1.427	100	10.231 -0.667			
808	12.62		17.91	1.049			2.967	0.1486	0.441	Vel = 6.6	55	
808 to	12.62		0.0	1	Т	3.568	0.670 3.568	100	10.005 0.0			
2B	12.620		17.91	1.049			4.238	0.1487	0.630	Vel = 6.6	55	
2B			0.0 17.91						10.635	K Factor =	5.49	
1B to	12.65		17.30	1			7.500	100	9.576 0.013			
2B	12.620		17.3	1.049			7.500	0.1395	1.046	Vel = 6.4	2	
2B to	12.620		17.91	1	Т	3.568	2.900 3.568	100	10.635 0.004			
502	12.61		35.21	1.049			6.468	0.5193	3.359	Vel = 13.	07	
502			0.0 35.21						13.998	K Factor =	= 9.41	
B3	23.29	5.60	15.00	1	Т	3.568	3.000	100	7.175			
to 3B	23.29		15.0	1.049			3.568 6.568	0.1070	0.0 0.703	Vel = 5.5	57	
3B			0.0 15.00						7.878	K Factor =	= 5.34	
B4	23.29	5.60	15.00	1	Т	3.568	3.000	100	7.175			
to	00.00		45.0	4 0 4 0			3.568	0.4070	0.0	\/-I - 5.5		
3B	23.29		15.0 0.0	1.049			6.568	0.1070	0.703	Vel = 5.5) /	
3B			15.00						7.878	K Factor =	= 5.34	
B5	19.47	5.60	16.63	1	Т	3.568	3.000	100	8.820			
to 5B	19.47		16.63	1.049			3.568 6.568	0.1297	0.0 0.852	Vel = 6.1	7	
5B			0.0 16.63						9.672	K Factor =	- 535	
B6	19.47	5.60	16.63	1	Т	3.568	3.000	100	8.820	K i actor -	- 0.00	
to		0.00			'	0.000	3.568		0.0			
5B	19.47		16.63	1.049			6.568	0.1297	0.852	Vel = 6.1	7	
5B			0.0 16.63						9.672	K Factor =	= 5.35	
3B	23.29		30.00	2			12.080	100	7.878			
to 5B	19.47		30.0	2.157			12.080	0.0116	1.654 0.140	Vel = 2.6	3	
5B	19.47		33.26	2	E	4.392	6.950	100	9.672		-	
to 800	17.27		63.26	2.157			4.391 11.341	0.0459	0.953 0.520	Vel = 5.5	55	

Page 7 Date

Node1 to	Elev1	K	Qa	Nom	Fitting or		Pipe Ftngs	CFact	Pt Pe	*****	Notes	*****
	Elev2	Fact	Qt	Act	Eqiv	Len	Total	Pf/Ft	Pf			
900	17.07		0.0	2	E	4 202	0.450	100	11.145			
800 o 801	17.27 17.28		0.0 63.26	2.157	_	4.392	0.450 4.391 4.841	100 0.0457	-0.004 0.221	Vel = 5.5	5	
801	17.28		0.0	2.137	Т	8.783	4.670	100	11.362	VEI - 3.3	<u> </u>	
001	17.20		0.0	2		0.703	8.783	100	2.023			
503	12.61		63.26	2.157			13.453	0.0459	0.617	Vel = 5.5	5	
503			0.0 63.26						14.002	K Factor =	: 16.91	
B7	11.08	5.60	17.70	1	Е	1.427	1.550	100	9.988			
044	40.04		477	4.040			1.427	0.4450	-0.676	\/\	7	
811	12.64		17.7	1.049		1 107	2.977	0.1458	0.434	Vel = 6.5	/	
811 to	12.64		0.0	1	E	1.427	0.670 1.427	100	9.746 0.0			
7B	12.64		17.7	1.049			2.097	0.1454	0.305	Vel = 6.5	7	
7B			0.0 17.70						10.051	K Factor =	: 5.58	
B8	11.08	5.60	18.15	1	E	1.427	1.520	100	10.508			
O							1.427		-0.658			
810	12.6		18.15	1.049			2.947	0.1524	0.449	Vel = 6.7	4	
810 o	12.6		0.0	1	Т	3.568	0.670 3.568	100	10.299 0.0			
8B	12.6		18.15	1.049			4.238	0.1524	0.646	Vel = 6.7	4	
8B			0.0 18.15						10.945	K Factor =	5.49	
7B	12.64		17.70	1			7.500	100	10.051			
O D	10.6		177	1 007			7 500	0.4460	0.017	\/al = 60	4	
8B 8B	12.6 12.6		17.7 18.15	1.097	T	4.437	7.500 2.900	0.1169 100	0.877 10.945	Vel = 6.0	1	
.O	12.0		10.15	1	1	4.431	4.437	100	0.004			
506	12.59		35.85	1.097			7.337	0.4318	3.168	Vel = 12.1	17	
506			0.0 35.85						14.117	K Factor =	. 0.54	
B9	23.25	5.60	15.33	1	Т	3.568	3.000	100	7.492	ו ו מטנטו –	3.04	
.O	20.20	5.00	10.00	'	1	0.000	3.568	100	0.0			
9B	23.25		15.33	1.049			6.568	0.1114	0.732	Vel = 5.6	9	
9B			0.0 15.33						8.224	K Factor =	5.35	
B10	23.25	5.60	15.33	1	Т	3.568	3.000	100	7.492	45001	2.00	
O							3.568		0.0			
9B	23.25		15.33	1.049			6.568	0.1114	0.732	Vel = 5.6	9	
9B			0.0 15.33						8.224	K Factor =	5 3 5	
<u>яь</u> В11	19.43	5.60	16.93	1	T	3.568	3.000	100	9.144	ו ו מטנטו –	- 0.00	
0	19.40	5.00	10.33	•	1	0.000	3.568	100	0.0			
11B	19.43		16.93	1.049			6.568	0.1340	0.880	Vel = 6.2	8	
11B			0.0 16.93						10.024	K Factor =	5.35	
B12	19.43	5.60	16.93	1	Т	3.568	3.000	100	9.144			
0							3.568		0.0		_	
11B	19.43		16.93	1.049			6.568	0.1340	0.880	Vel = 6.2	8	

Final Calculations: Hazen-Williams B.I.C. Design Co. Page 8 Residences at Blackwell Clubhouse - LSMO - Area 4 - Great Room - 0.10 FOR 2535 SQ. FT. Date Node1 Elev1 K Qa Fitting Pipe **CFact** Pt Nom Pe ***** ***** **Ftngs** to or Notes Node2 Elev2 Fact Qt Act Eqiv Len Total Pf/Ft Pf 0.0 11B 16.93 10.024 K Factor = 5.359B 23.25 30.66 2 12.080 100 8.224 1.654 to 11B 19.43 30.66 2.157 12.080 0.0121 0.146 Vel = 2.6911B 33.86 2 Ε 4.392 6.950 100 10.024 19.43 4.391 0.948 to 802 17.24 64.52 2.157 11.341 0.0476 0.540 Vel = 5.662 Ε 802 17.24 0.0 4.392 0.450 100 11.512 to 4.391 0.0 803 0.230 17.24 64.52 2.157 4.841 0.0475 Vel = 5.66803 17.24 0.0 2 Τ 8.783 4.670 100 11.742 8.783 2.023 to 509 12.57 64.52 2.157 13.453 0.0475 0.639 Vel = 5.660.0 509 14.404 K Factor = 17.0064.52 **B13** 9.08 5.60 18.08 1 Ε 1.427 3.600 100 10.428 1.427 -1.559 to 805 12.68 18.08 1.049 5.027 0.1512 0.760 Vel = 6.711 Τ 805 12.68 0.0 3.568 0.670 100 9.629 to 3.568 0.0 13B 18.08 4.238 0.1513 0.641 12.68 1.049 Vel = 6.710.0 13B 18.08 10.270 K Factor = 5.64**B14** 9.08 5.60 18.37 1 Ε 1.427 3.560 100 10.761 1.427 -1.542to 4.987 0.1558 804 12.64 18.37 1.049 0.777 Vel = 6.82804 12.64 0.0 1 Т 3.568 0.670 100 9.996 3.568 0.0 to 4.238 14B 12.64 18.37 1.049 0.1557 0.660 Vel = 6.820.0 14B 18.37 10.656 K Factor = 5.6313B 9.250 100 10.270 12.68 18.08 1.25 to 0.017

9.250

21.490

6.423

0.670 3.568

4.238

3.420

7.137

10.557

27.913

0.0399

0.1456

100

100

100

0.1575

0.1586

0.369

10.656

0.039

4.064

14.759

10.978

0.672

11.650

10.890

-0.944

1.663

0.0

Vel = 3.88

Vel = 7.82

Vel = 6.89

Vel = 6.86

K Factor = 9.49

K Factor = 5.43

14B

14B

517

B15

15B

15B

B16

16B

to

to

to 517 12.64

12.64

12.55

11.99

11.99

12.030

14.21

5.60

5.60

18.08

18.37

36.45

0.0

36.45

18.55

18.55

0.0

18.55

18.48

18.48

1.38

1.25

1.38

1

1

1.049

1.049

Ε

Т

Τ

2T

2.141

4.282

3.568

7.137

Final Calculations: Hazen-Williams B.I.C. Design Co. Page 9 Residences at Blackwell Clubhouse - LSMO - Area 4 - Great Room - 0.10 FOR 2535 SQ. FT. Date Pt Node1 Elev1 Κ Qa Nom Fitting Pipe **CFact** ***** Ftngs Pe Notes to or Eqiv Total Pf Node2 Elev2 Fact Qt Act Len Pf/Ft 0.0 16B 18.48 11.609 K Factor = 5.4215B 11.99 18.55 1.25 4E 8.564 13.480 100 11.650 8.564 -0.961 to 22.044 0.920 16B 14.21 18.55 1.38 0.0417 Vel = 3.98

100	14.21		10.55	1.50			22.044	0.0417	0.920	VEI - 3.90
16B to	14.21		18.48	1.25	Е	2.141	5.830 2.141	100	11.609 0.0	
807	14.21		37.03	1.38			7.971	0.1499	1.195	Vel = 7.94
807 to	14.21		0.0	1.25	Т	4.282	1.630 4.282	100	12.804 0.706	
514	12.58		37.03	1.38			5.912	0.1499	0.886	Vel = 7.94
514			0.0 37.03						14.396	K Factor = 9.76
B17	11.7	5.60	18.98	1	2E	2.855	2.970	100	11.489	
to			10.00				2.855	0.40==	0.0	
_17B	11.7		18.98	1.049			5.825	0.1655	0.964	Vel = 7.05
17B			0.0 18.98						12.453	K Factor = 5.38
B18	11.08	5.60	19.21	1	Е	1.427	0.600	100	11.772	
to	44.00		40.04	4 0 4 0			1.427	0.4000	-0.260	V-1 - 7.40
812	11.68		19.21	1.049	_	0.500	2.027	0.1692	0.343	Vel = 7.13
812 to	11.68		0.0	1	Т	3.568	0.670 3.568	100	11.855 0.0	
18B	11.68		19.21	1.049			4.238	0.1692	0.717	Vel = 7.13
18B			0.0 19.21						12.572	K Factor = 5.42
B19	11.08	5.60	20.20	1	E	1.427	0.570	100	13.011	N I actor = 3.42
to	11.00	3.00	20.20	'	_	1.421	1.427	100	-0.247	
814	11.65		20.2	1.049			1.997	0.1858	0.371	Vel = 7.50
814 to	11.65		0.0	1	Т	3.568	0.670 3.568	100	13.135 0.0	
19B	11.65		20.2	1.049			4.238	0.1857	0.787	Vel = 7.50
19B			0.0 20.20						13.922	K Factor = 5.41
17B to	11.7		18.98	1.25			2.550	100	12.453 0.009	
18B	11.68		18.98	1.38			2.550	0.0431	0.110	Vel = 4.07
18B to	11.68		19.21	1.25			8.420	100	12.572 0.013	
19B	11.65		38.19	1.38			8.420	0.1588	1.337	Vel = 8.19
19B	11.65		20.20	1.25	Е	2.141	3.890	100	13.922	
to	44.00						2.141	0.0400	0.009	
813	11.63		58.39	1.38		4 000	6.031	0.3480	2.099	Vel = 12.52
813	11.63		0.0	1.25	Т	4.282	1.130 4.282	100	16.030 0.489	
to 521	10.5		58.39	1.38			4.282 5.412	0.3481	0.489 1.884	Vel = 12.52
			0.0				J. 112	0.0101		
521			58.39						18.403	K Factor = 13.61

Page 10 Date

Node2 Elev2 Fact Qt Act Eqiv Len Total Pf/Ft Pf Pf Notes ***** Notes **** Notes *** Notes **** Notes *** Notes **** Notes *** Notes **** Notes *** Notes *** Notes **** Notes *** Notes **								oom - 0.10 I			Date		
Node Elev Fact		Elev1	K	Qa	Nom	Fitting or		Pipe Ftnas	CFact	Pt Pe	*****	Notes	*****
288		Elev2	Fact	Qt	Act		Len		Pf/Ft				
288	R20	11 7	5.60	10.85	1	25	2 855	3 300	100	12 561			
13.668 K Factor = 5.37		11.7	5.00	19.00	ı	ZC	2.000		100				
19.85	20B	11.7			1.049			6.155	0.1799	1.107	Vel = 7.37	,	
1.427	20B			19.85							K Factor =	5.37	
11.68		11.08	5.60	20.12	1	E	1.427		100				
11.68		11.68		20.12	1.049				0.1845		Vel = 7.47	,	
218	815					Т	3.568	0.670					
21B	.0 .04 D	11.00		20.42	1 0 1 0				0.4040		\/al = 7.47	,	
218	218	11.68			1.049			4.238	0.1843	0.781	Vei = 7.47		
B22 11.08 5.60 21.14 1 E 1.427 0.570 100 14.250 0.247 0.248 0.2020 0.856 Vel = 7.85 0.258 0.0 </td <td>21B</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>13.797</td> <td>K Factor =</td> <td>5.42</td> <td></td>	21B									13.797	K Factor =	5.42	
817 11.65 21.14 1.049 1.997 0.2023 0.404 Vel = 7.85 817 11.65 0.0 1 T 3.568 0.670 100 14.407 0.0 22B 11.65 21.14 1.049 4.238 0.2020 0.856 Vel = 7.85 22B 11.65 21.14 1.049 4.238 0.2020 0.856 Vel = 7.85 22B 21.14 1.049 4.238 0.2020 0.856 Vel = 7.85 22B 11.61 1.985 1.25 2.550 100 13.668 0 0 0.0471 0.120 Vel = 4.26 0.0471 0.120 Vel = 4.26 21B 11.68 20.11 1.25 8.420 0.01726 1.453 Vel = 8.57 22B 11.65 39.96 1.38 8.420 0.1726 1.453 Vel = 8.57 22B 11.65 21.14 1.25 E 2.141 3.890 10.012 Vel = 8.57	B22	11.08	5.60		1	Е	1.427		100				
11.65	0 817	11 65		21 11	1 040				0 2023		\/el = 7.95		
Second Part						Т	3 568				vei – 1.00	,	
228	O					•	0.000	3.568		0.0			
228	22B	11.65			1.049			4.238	0.2020	0.856	Vel = 7.85	j	
11.7	22B									15 263	K Factor =	5 41	
21B 11.68 19.85 1.38 2.550 0.0471 0.120 Vel = 4.26 21B 11.68 20.11 1.25 8.420 100 13.797 0.013 22B 11.65 39.96 1.38 8.420 0.1726 1.453 Vel = 8.57 22B 11.65 21.14 1.25 E 2.141 3.890 100 15.263 0 11.63 61.1 1.38 6.031 0.3785 2.283 Vel = 13.11 816 11.63 0.0 1.25 T 4.282 1.160 100 17.555 0.498 522 10.48 61.1 1.38 5.442 0.3785 2.060 Vel = 13.11 522 61.10 2.85 7.870 100 13.844 0.048 522 61.10 2.855 7.870 100 13.844 0.048 601 12.65 20.84 1.049 10.725 0.1966 2.109 Vel = 7.74 <	20B	11.7			1.25			2.550	100	13.668	TT dotor –	0.41	
21B		11.68		19.85	1.38			2.550	0.0471		Vel = 4.26	3	
22B 11.65 39.96 1.38 8.420 0.1726 1.453 Vel = 8.57 22B 11.65 21.14 1.25 E 2.141 3.890 100 15.263 0 0.009 61.1 1.38 6.031 0.3785 2.283 Vel = 13.11 816 11.63 0.0 1.25 T 4.282 1.160 100 17.555 0 4.282 0.3785 2.060 Vel = 13.11 0.0 5.22 61.10 20.113 K Factor = 13.62 823 9.08 5.60 20.84 1 2E 2.855 7.870 100 13.844 0 2.855 7.870 100 13.844 10.26 10.266 2.109 Vel = 7.74 821 12.65 20.84 1.049 5.738 2.170 100 14.407 0 3.568 2.170 100 14.407 0.0 601 20.84 1.049 5.738 0.1968 1.129 Vel = 7.74 822 12.62 21.8 1	21B									13.797	701 1.20	<u> </u>	
2.141	22B	11.65		39.96	1.38			8.420	0.1726		Vel = 8.57	,	
816	to					Е	2.141	2.141		0.009			
0 4.282 0.498 522 10.48 61.1 1.38 5.442 0.3785 2.060 Vel = 13.11 0.0 522 61.10 20.113 K Factor = 13.62 B23 9.08 5.60 20.84 1 2E 2.855 7.870 100 13.844 0 2.855 -1.546 <td></td> <td>Vel = 13.1</td> <td>1</td> <td></td>											Vel = 13.1	1	
522 10.48 61.1 1.38 5.442 0.3785 2.060 Vel = 13.11 522 61.10 20.113 K Factor = 13.62 B23 9.08 5.60 20.84 1 2E 2.855 7.870 100 13.844 0 2.855 -1.546 821 12.65 20.84 1.049 10.725 0.1966 2.109 Vel = 7.74 821 12.650 20.84 1.049 5.738 0.1968 1.129 Vel = 7.74 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 601 20.84 1.049 5.738 0.1968 1.129 Vel = 7.74 0.0 0.0 15.536 K Factor = 5.29 B24 9.08 5.60 21.80 1 E 1.427 3.540 100 15.161 0 1.427 -1.533 -1.533 1.062 Vel = 8.09 822 12.62 21.8 1.049 4.967 0.2138 1.062 Vel = 8.09 822 12.62 0.0 1 T 3.568 0.500 100 14.690 0.0 3.568 0.00 0.0		11.63		0.0	1.25	T	4.282		100				
522 61.10 20.113 K Factor = 13.62 B23 9.08 5.60 20.84 1 2E 2.855 7.870 100 13.844 0 2.855 -1.546 -1.546 -1.546 -1.546 -1.546 821 12.65 20.84 1.049 10.725 0.1966 2.109 Vel = 7.74 821 12.650 0.0 1 T 3.568 2.170 100 14.407 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 601 12.650 20.84 1.049 5.738 0.1968 1.129 Vel = 7.74 0.0 <td>522</td> <td>10.48</td> <td></td> <td>61.1</td> <td>1.38</td> <td></td> <td></td> <td></td> <td>0.3785</td> <td></td> <td>Vel = 13.1</td> <td>1</td> <td></td>	522	10.48		61.1	1.38				0.3785		Vel = 13.1	1	
B23 9.08 5.60 20.84 1 2E 2.855 7.870 100 13.844 60 12.65 20.84 1.049 10.725 0.1966 2.109 Vel = 7.74 821 12.65 0.0 1 T 3.568 2.170 100 14.407 0 3.568 0.0 <td>522</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>20.113</td> <td>K Factor =</td> <td>13.62</td> <td></td>	522									20.113	K Factor =	13.62	
821 12.65 20.84 1.049 10.725 0.1966 2.109 Vel = 7.74 821 12.65 0.0 1 T 3.568 2.170 100 14.407 0.0 601 12.650 20.84 1.049 5.738 0.1968 1.129 Vel = 7.74 601 20.84 15.536 K Factor = 5.29 B24 9.08 5.60 21.80 1 E 1.427 3.540 100 15.161 0 1.427 -1.533 -1.533 -1.533 1.062 Vel = 8.09 822 12.62 21.8 1.049 4.967 0.2138 1.062 Vel = 8.09 822 12.62 0.0 1 T 3.568 0.500 100 14.690 0 3.568 0.00 0.0 0.0 14.690 0.0	B23	9.08	5.60		1	2E	2.855		100	13.844			
0 3.568 0.0 601 12.650 20.84 1.049 5.738 0.1968 1.129 Vel = 7.74 0.0 0.0 15.536 K Factor = 5.29 B24 9.08 5.60 21.80 1 E 1.427 3.540 100 15.161 0 1.427 -1.533 822 12.62 21.8 1.049 4.967 0.2138 1.062 Vel = 8.09 822 12.62 0.0 1 T 3.568 0.500 100 14.690 0 3.568 0.0	821	12.65		20.84				10.725	0.1966	2.109	Vel = 7.74		
0.0 20.84 15.536 K Factor = 5.29 B24 9.08 5.60 21.80 1 E 1.427 3.540 100 15.161 0 1.427 -1.533 822 12.62 21.8 1.049 4.967 0.2138 1.062 Vel = 8.09 822 12.62 0.0 1 T 3.568 0.500 100 14.690 0 3.568 0.0	821 to					Т	3.568	3.568		0.0			
601 20.84 15.536 K Factor = 5.29 B24 9.08 5.60 21.80 1 E 1.427 3.540 100 15.161 o 1.427 -1.533 822 12.62 21.8 1.049 4.967 0.2138 1.062 Vel = 8.09 822 12.62 0.0 1 T 3.568 0.500 100 14.690 o 3.568 0.0	601	12.650			1.049			5.738	0.1968	1.129	Vel = 7.74	ļ	
0 1.427 -1.533 822 12.62 21.8 1.049 4.967 0.2138 1.062 Vel = 8.09 822 12.62 0.0 1 T 3.568 0.500 100 14.690 0 3.568 0.0	601			20.84							K Factor =	5.29	
822 12.62 21.8 1.049 4.967 0.2138 1.062 Vel = 8.09 822 12.62 0.0 1 T 3.568 0.500 100 14.690 0 3.568 0.0	B24	9.08	5.60	21.80	1	E	1.427		100				
822 12.62 0.0 1 T 3.568 0.500 100 14.690 o 3.568 0.0	.0 822	12.62		21.8	1.049				0.2138		Vel = 8.09)	
	822					Т	3.568	0.500		14.690			
	602	12.620		21.8	1.049				0.2141		Vel = 8.09)	

Page 11 Date

kesidend	ces at Bla	ackwell Clu	ipnouse -	LSMO -	Area 4 -	Great R	oom - 0.10 F	-UR 2535 S	Q.FI.	Date		
Node1 to	Elev1	K	Qa	Nom	Fitting or		Pipe Ftngs	CFact	Pt Pe	*****	Notes	****
Node2	Elev2	Fact	Qt	Act	Eqiv	Len	Total	Pf/Ft	Pf			
602			0.0 21.80						15.561	K Factor =	5.53	
B25 o	9.08	5.60	21.58	1	E	1.427	3.560 1.427	100	14.845 -1.542			
819	12.64		21.58	1.049			4.987	0.2099	1.047	Vel = 8.01	1	
819 o	12.64		0.0	1	Т	3.568	1.042 3.568	100	14.350 0.0			
25B	12.64		21.58	1.049			4.610	0.2098	0.967	Vel = 8.01	1	
25B			0.0 21.58						15.317	K Factor =	5.51	
25B	12.64		21.58	1.5	Т	7.065	4.850	100	15.317			
to						- 7-	7.066		0.009			
603	12.620		21.58	1.682			11.916	0.0210	0.250	Vel = 3.12	2	
603			0.0 21.58						15.576	K Factor =	5.47	
B26	9.08	5.60	20.83	1	E	1.427	3.550	100	13.841			
0							1.427		-1.538			
820	12.63		20.83	1.049			4.977	0.1967	0.979	Vel = 7.73	3	
820 to	12.63		0.0	1	T	3.568	1.000 3.568	100	13.282 0.0			
26B	12.63		20.83	1.049			4.568	0.1966	0.898	Vel = 7.73	3	
26B			0.0 20.83						14.180	K Factor =	5.53	
26B	12.63		20.83	1	Т	3.568	4.850 3.568	100	14.180			
to 604	12.610		20.83	1.049			3.306 8.418	0.1966	0.009 1.655	Vel = 7.73	3	
	12.010		0.0	1.0.10			0.110	0.1000	1.000	701 7.77		
604			20.83						15.844	K Factor =	5.23	
B27	9.08	5.60	22.15	1	E	1.427	3.520 1.427	100	15.643 -1.525			
823	12.6		22.15	1.049			4.947	0.2203	1.090	Vel = 8.22	2	
823 to	12.6		0.0	1	Т	3.568	0.500 3.568	100	15.208 0.0			
605	12.600		22.15	1.049			4.068	0.2203	0.896	Vel = 8.22	2	
605			0.0 22.15						16.104	K Factor =	5 52	
B28	9.08	5.60	21.23	1	E	1.427	3.530	100	14.367	40101 -	0.02	
0	0.00	0.00	21.20	•	_	1.721	1.427	100	-1.529			
818	12.61		21.23	1.049			4.957	0.2036	1.009	Vel = 7.88	3	
818 o	12.61		0.0	1	Т	3.568	3.420 3.568	100	13.847 0.0			
28B	12.61		21.23	1.049			6.988	0.2035	1.422	Vel = 7.88	3	
28B			0.0 21.23						15.269	K Factor =	5.43	
28B	12.61		21.23	1	Т	3.568	4.850	100	15.269		20	
to 606	12.590		21.23	1.049			3.568 8.418	0.2035	0.009 1.713	Vel = 7.88	3	
500	12.000		21.23	1.043			0.710	0.2000	1.7 10	v OI = 1.00		

Page 12 Date

Nodo1	Flov4	K	00	Nom	Eittina		Dino	CEast	D+			
Node1 to	⊏ievT	K	Qa	Nom	Fitting or		Pipe Ftngs	CFact	Pt Pe	*****	Notes	*****
Node2	Elev2	Fact	Qt	Act	Eqiv	Len	Total	Pf/Ft	Pf			
606			21.23						16.991	K Factor :	= 5.15	
B29	11	5.60	22.63	1	E	1.427	1.580	100	16.336	Ter dotor	0.10	
to		0.00			_		1.427		-0.684			
824	12.58		22.63	1.049			3.007	0.2291	0.689	Vel = 8.4	10	
824	12.58		0.0	1	Т	3.568	0.830 3.568	100	16.341 0.0			
to 607	12.580		22.63	1.049			4.398	0.2292	1.008	Vel = 8.4	10	
			0.0								-	
607			22.63						17.349	K Factor :	= 5.43	
502	12.61		35.21	3			1.700	100	13.998			
to 503	12.61		35.21	3.26			1.700	0.0024	0.0 0.004	Vel = 1.3	35	
503	12.61		63.27	3			2.080	100	14.002	70. 1.0		
to									0.004			
504	12.6		98.48	3.26			2.080	0.0139	0.029	Vel = 3.7	79	
504 to	12.6		0.0	3			5.180	100	14.035 0.004			
505	12.59		98.48	3.26			5.180	0.0141	0.073	Vel = 3.7	79	
505	12.59		0.0	3			0.380	100	14.112			
to	10.50		00.40	2.20			0.200	0.0422	0.0	\/al = 0.7	70	
506 506	12.59 12.59		98.48 35.85	3.26			0.380 4.800	0.0132 100	0.005 14.117	Vel = 3.7	79	
to	12.59		33.65	3			4.000	100	0.004			
507	12.58		134.33	3.26			4.800	0.0248	0.119	Vel = 5.1	16	
507	12.58		0.0	3			5.180	100	14.240			
to 508	12.57		134.33	3.26			5.180	0.0247	0.004 0.128	Vel = 5.1	16	
508	12.57		0.0	3			1.310	100	14.372	V 01 0.		
to									0.0			
509	12.57		134.33	3.26			1.310	0.0244	0.032	Vel = 5.1	16	
509 to	12.57		64.52	3			3.870	100	14.404 0.004			
510	12.56		198.85	3.26			3.870	0.0512	0.198	Vel = 7.6	64	
510	12.56		0.0	3			4.500	100	14.606			
to 510	10 55		100 05	2 26			4 500	0.0511	0.004	Vel = 7.6	24	
519	12.55		198.85 0.0	3.26			4.500	0.0511	0.230	vei – 7.0)4	
519			198.85						14.840	K Factor :	= 51.62	
514	12.58		37.03	2			0.950	100	14.396			
to E1E	10.50		27.00	0 457			0.050	0.0460	0.0	\/al = 0.0) E	
515	12.58		37.03	2.157			0.950	0.0168	0.016	Vel = 3.2	(5)	
515 to	12.58		0.0	2			5.280	100	14.412 0.004			
516	12.57		37.03	2.157			5.280	0.0172	0.091	Vel = 3.2	25	
516	12.57		0.0	2	2E	8.783	5.510	100	14.507			
to 517	12.55		37.03	2.157			8.783 14.293	0.0170	0.009 0.243	Vel = 3.2	25	
517	12.55		36.46	2.137			0.670	100	14.759	V OI - 0.2		
to	12.00		50.40	_			5.070	100	0.0			
i.U												

Page 13 Date

Node1 to	Elev1	K	Qa	Nom	Fitting or		Pipe Ftngs	CFact	Pt Pe	****** Notes	*****
Node2	Elev2	Fact	Qt	Act	Eqiv	Len	Total	Pf/Ft	Pf	Notes	
518	12.55		0.0	2			0.680	100	14.799		
to 519	12.55		73.49	2.157			0.680	0.0603	0.0 0.041	Vel = 6.45	
519 to	12.55		198.85	3	Т	14.388	2.030 14.387	100	14.840 0.879		
520	10.52		272.34	3.26			16.417	0.0914	1.501	Vel = 10.47	
520 to	10.52		0.0	3	E	6.714	6.150 6.714	100	17.220 0.009		
521	10.5		272.34	3.26			12.864	0.0913	1.174	Vel = 10.47	
521 to	10.5		58.40	3			13.000	100	18.403 0.009		
522	10.48		330.74	3.26			13.000	0.1308	1.701	Vel = 12.71	
522 to	10.48		61.10	3			1.500	100	20.113 0.004		
523	10.47		391.84	3.26			1.500	0.1793	0.269	Vel = 15.06	
523 to	10.47		0.0	3	T	14.388	2.650 14.387	100	20.386		
612	10.470		391.84	3.26			17.037	0.1791	3.051	Vel = 15.06	
612			0.0 391.84						23.437	K Factor = 80.94	
601 to	12.650		20.84	2			2.000	100	15.536 0.013		
602	12.620		20.84	2.157			2.000	0.0060	0.012	Vel = 1.83	
602 to	12.620		21.80	2			0.710	100	15.561 0.0		
603	12.620		42.64	2.157			0.710	0.0211	0.015	Vel = 3.74	
603 to	12.620		21.58	2			5.590	100	15.576 0.004		
604	12.610		64.22	2.157			5.590	0.0472	0.264	Vel = 5.64	
604 to	12.610		20.83	2			3.220	100	15.844 0.004		
605	12.600		85.05	2.157			3.220	0.0795	0.256	Vel = 7.47	
605 to	12.600		22.15	2			7.260	100	16.104 0.004		
606	12.590		107.2	2.157			7.260	0.1216	0.883	Vel = 9.41	
606 to	12.590		21.23	2			2.080	100	16.991 0.004	V-1 - 44 00	
607	12.580		128.43	2.157	_	4.000	2.080	0.1702	0.354	Vel = 11.28	
607 to	12.580		22.63	2	E	4.392	2.580 4.391	100	17.349 0.0		
608	12.580		151.06	2.157			6.971	0.2295	1.600	Vel = 13.26	
608 to	12.580		0.0	2	T	8.783	2.100 8.783	100	18.949 0.914	V 1 42.25	
609	10.47		151.06	2.157			10.883	0.2294	2.497	Vel = 13.26	
609 to	10.47		0.0	3			3.460	100	22.360 0.0		
610	10.47		151.06	3.26			3.460	0.0306	0.106	Vel = 5.81	
610 to	10.47		0.0	3	E	6.714	2.410 6.714	100	22.466 0.0		
611	10.47		151.06	3.26			9.124	0.0307	0.280	Vel = 5.81	

Page 14 Date

Residence	ces at Bla	ickwell Cli	ubhouse -	LSMO -	· Area 4	i - Great i	Room - 0.10	FOR 2535 S	Q. F1.	Date	
Node1	Elev1	K	Qa	Nom	Fitting	-	Pipe Ftngs	CFact	Pt Pe	****** Notes	*****
Node2	Elev2	Fact	Qt	Act	Eqiv	Len	Total	Pf/Ft	Pf		
611 to	10.47		0.0	3	E T	6.714 14.388	1.390 21.101	100	22.746 0.0		
612	10.470		151.06	3.26			22.491	0.0307	0.691	Vel = 5.81	
612			0.0 151.06						23.437	K Factor = 31.20	
612 to	10.470		542.90	4			13.660	100	23.437 5.916		
613	-3.190		542.9	4.26			13.660	0.0889	1.215	Vel = 12.22	
613 to	-3.190		0.0	4	Е	9.397	15.250 9.397	100	30.568 0.0		
614	-3.190		542.9	4.26			24.647	0.0889	2.192	Vel = 12.22	
614 to	-3.190		0.0	4			2.930	100	32.760 0.0		
615	-3.190		542.9	4.26			2.930	0.0891	0.261	Vel = 12.22	
615 to	-3.190		0.0	4	2E	18.795	1.500 18.795	100	33.021 0.0		
TDR	-3.190		542.9	4.26			20.295	0.0889	1.805	Vel = 12.22	
TDR to	-3.190		0.0	4	T B	18.795 11.277	8.430 49.806	100	34.826 3.465		
BDR	-11.190		542.9	4.26	Dvc	19.734	58.236	0.0889	5.180	Vel = 12.22	
BDR to	-11.190		0.0	4			1.500	120	43.471 0.0		
BWR	-11.190		542.9	4.26			1.500	0.0633	0.095	Vel = 12.22	
BWR to	-11.190		0.0	4	2E	26.334	10.890 26.334	120	43.566 10.535	* * Fixed Loss = 1	4
UG1	-3.190		542.9	4.26		0.400	37.224	0.0635	2.364	Vel = 12.22	
UG1 to UG2	-3.190 -3.190		0.0 542.9	4.07	G E T	3.186 15.932 31.864	60.000 50.982 110.982	150 0.0525	56.465 0.0 5.822	Vel = 13.39	
		H100		8	5G		940.000	150		Vei - 13.39	
UG2 to UG3	-3.190 -3.190	птоо	-221.16 321.74	7.68	T 3F	43.857	102.751 1042.751	0.0009	62.287 0.0 0.944	Vel = 2.23	
UG3	-3.190		0.0	12	3G		1060.000	150	63.231	Vei – 2.23	
to UG5	-3.190		321.74	11.2	4F T	57.587	143.966 1203.966	0.0001	0.0 0.173	Vel = 1.05	
UG5	0.100		0.0 321.74	11.2		55.440	.200.000	0.0001	63.404	K Factor = 40.41	
UG2	-3.190		321.16	8	3G	15 027	880.000	150	62.287	1 1 aoioi - 40.41	
to	-0.180		J∠ 1.1U	U	3F	33.833		150	0.0		
UG4	-3.190		321.16	7.68	2T 2E		1061.695	0.0009	0.958	Vel = 2.22	
UG4 to	-3.190		0.0	12	2G 7F	13.289 100.777		150	63.245 0.0		
UG5	-3.190		321.16	11.2	T		1110.512	0.0001	0.159	Vel = 1.05	
UG5 to	-3.190		321.74	12	2G T	13.289 66.446		150	63.404 0.0		
UG6	-3.190		642.9	11.2	10F E	143.967 29.901	953.603	0.0005	0.495	Vel = 2.09	

Final Calculations: Hazen-Williams

B.I.C. De	_		lubhouse -	LSMO -	Area 4	- Great F	Room - 0.10	FOR 2535 S	SQ. FT.		age 15 ate	
Node1 to	Elev1	K	Qa	Nom	Fitting or		Pipe Ftngs	CFact	Pt Pe	*****	Notes	*****
Node2	Elev2	Fact	Qt	Act	Eqiv	Len	Total	Pf/Ft	Pf			
UG6	-3.190		0.0	12	T	66.446	650.000	150	63.899			
to TEST	-10		642.9	11.2	G	6.645	73.090 723.090	0.0005	2.949 0.375	Vel =	2.09	
TEST			0.0 642.90						67.223	K Fact	or = 78.41	

HYDRAULIC DESIGN COVER SHEET

AREA: Attic – Bottom 9 V-SD Heads CALCULATED BY: Isaiah Wiese

ORIGINAL DATE: 03/08/2024 LATEST REVISION DATE:

JOB INFORMATION								
JOB NAME: Residences At Blackwell - Clubhouse								
Address: 50 Hwy & Blackwell	CITY, STATE: Lee's Summit, MO							
BUILDING INFO: New Construction	CONSTRUCTION: Combustible, Unobstructed							
CONTRACTOR: Alliance Fire Protection, LLC	Contract #: NC-1429							

WATER SUPPL	Y INFORMATION
FLOW TEST? See Front Cover Page	Pump? No
DATE:	RATED CAPACITY (GPM):
STATIC PRESSURE (PSI):	RATED PRESSURE (PSI):
RESIDUAL PRESSURE (PSI):	ELEVATION:
FLOW (GPM):	PUMP MOTOR TYPE:
ELEVATION:	TANK?
LOCATION:	Capacity (gallons):
Source:	ELEVATION:

OPERATING AREA INFORMATION									
AREA #: 5	System Type: Dry	SHEET NUMBER: FP4							
CEILING HEIGHT: N/A	STORAGE HEIGHT: N/A	QR Sprinkler Discount: No							

	SPRINKLER INFORMATION
Brand: Viking	Model: VK693
K-Factor: 5.6	Temperature (°F): 200

System Design Information									
DESIGN PER: NFPA 13 , 2016	Hazard Classification: Light Hazard								
DESIGN CRITERIA: 9 SINGLE DIRECTIONAL HEADS									
DENSITY (GPM/SQ FT): N/A	OPERATING AREA (SQ FT): N/A								
Area Per Sprinkler (sq ft): 145	Total Sprinklers Operating: 9								
Min. Flow Per Head (GPM): 24	Min. Pressure Per Head (psi): 18.4								
Inside Hose Allowance (gpm): 0	Outside Hose Allowance (GPM): 100								
OVERHEAD PIPING C-FACTOR: 100	Underground Piping C-Factor: 150								

	CALCULATION SUMMARY	
DEMAND @: Base of Riser	FLOW REQ'D (GPM): 224.61	Pressure Req'd (psi): 42.523
DEMAND @: Conn to City Main	FLOW REQ'D (GPM): 324.61	Pressure Req'd (psi): 58.187
Area Safety Margin (PSI): 24.914		

,	PE STAMP	Notes:

Page 1 Date

City Water Supply:
C1 - Static Pressure : 84 Demand: D1 - Elevation : 12.053 D2 - System Flow : 224.613 D2 - System Pressure : 58.187 Hose (Demand) : 100 D3 - System Demand : 324.613 Safety Margin : 24.914 C2 - Residual Pressure: 58 C2 - Residual Flow 150 140 130 P 120 R 110 E 100 s 90 C1 s 80 U 70 C2 D₂ R 60 p o E^{50} **D**3 40 30 20 10 **D1** 1200 200 400 600 800 1000 1400 1600 1800 FLOW (N ^ 1.85)

Fittings Used Summary

B.I.C. Design Co.
Residences at Blackwell Clubhouse - LSMO - Area 5 - Attic - Bottom 9 V-SD Heads

Page 2 Date

Fitting Lo		1/2	3/4	1	11/4	1½	2	2½	3	3½	4	5	6	8	10	12	14	16	18	20	24
B Dvc	NFPA 13 Butterfly Valve Dry Vic 768 NXT	0	0	0	0	0	6 9	7 8	10 17	0	12 21	9	10 22	12 50	19	21	0	0	0	0	0
E	NFPA 13 90' Standard Elbow	1	2	2	3	4	5	6	7	8	10	12	14	18	22	27	35	40	45	50	61
F	NFPA 13 45' Elbow	1	1	1	1	2	2	3	3	3	4	5	7	9	11	13	17	19	21	24	28
G	NFPA 13 Gate Valve	0	0	0	0	0	1	1	1	1	2	2	3	4	5	6	7	8	10	11	13
T	NFPA 13 90' Flow thru Tee	3	4	5	6	8	10	12	15	17	20	25	30	35	50	60	71	81	91	101	121

Units Summary

Diameter Units Inches Length Units Feet

Flow Units US Gallons per Minute Pressure Units Pounds per Square Inch

Note: Fitting Legend provides equivalent pipe lengths for fittings types of various diameters. Equivalent lengths shown are standard for actual diameters of Sched 40 pipe and CFactors of 120 except as noted with *. The fittings marked with a * show equivalent lengths values supplied by manufacturers based on specific pipe diameters and CFactors and they require no adjustment. All values for fittings not marked with a * will be adjusted in the calculation for CFactors of other than 120 and diameters other than Sched 40 per NFPA.

B.I.C. Design Co. Residences at Blackwell Clubhouse - LSMO - Area 5 - Attic - Bottom 9 V-SD Heads Page 3 Date

SUPPLY ANALYSIS

Node at Source	Static Pressure	Residual Pressure	Flow	Available Pressure	Total Demand	Required Pressure
TEST	84.0	58	2000.0	83.1	324.61	58.187

NODE ANALYSIS

Node Tag	Elevation	Node Type	Pressure at Node	Discharge at Node	Notes
B44 B45 B46 B47 B48 B49 B43 B42 B41 507 508 509 510 511	17.83 17.83 17.83 17.83 17.83 17.83 17.83 17.83 12.58 12.57 12.57 12.57 12.56 12.625	5.6 5.6 5.6 5.6 5.6 5.6 5.6 5.6 5.6	21.33 21.35 21.37 19.32 18.85 18.57 18.44 18.4 26.19 26.2 26.2 26.2 22.91 22.95	25.86 25.87 25.88 25.89 24.61 24.31 24.13 24.05 24.05	0.1 145 0.1 145 0.1 145 0.1 145 0.1 145 0.1 145 0.1 145 0.1 145 0.1 145 0.1 145 0.1 145 0.1 145
513 514 515 516 517 518 519 520 521 522 523 612 613 614 615 TDR BDR	12.58 12.58 12.57 12.55 12.55 12.55 10.52 10.5 10.48 10.47 10.47 -3.19 -3.19 -3.19 -3.19		23.12 23.37 23.43 23.96 26.15 26.25 26.27 28.2 29.03 29.87 29.97 31.06 37.21 37.64 37.69 38.05 42.52		
BWR UG1 UG2 UG3 UG4 UG5 UG6 TEST	-11.19 -3.19 -3.19 -3.19 -3.19 -3.19 -10.0		42.54 53.54 54.68 54.94 54.95 54.99 55.13 58.19	100.0	

B.I.C. Design Co. Residences at Blackwell Clubhouse - LSMO - Area 5 - Attic - Bottom 9 V-SD Heads

Page 4 Date

kesidend	ces at Bla	ackwell Clu	ubhouse -	LSMO -	Area 5 -	- Attic - Bo	ottom 9 V-S	∪ Heads		Date	<u> </u>	
Node1 to	Elev1	K	Qa	Nom	Fitting or		Pipe Ftngs	CFact	Pt Pe	*****	Notes	****
Node2	Elev2	Fact	Qt	Act	Eqiv	Len	Total	Pf/Ft	Pf			
D44	17 020	F 60	25.06	4	T	2 560	E 250	100	24 220			
B44 o	17.830	5.60	25.86	1	Т	3.568	5.250 3.568	100	21.328 2.274			
507	12.58		25.86	1.049			8.818	0.2933	2.586	Vel = 9.6	0	
507			0.0 25.86						26.188	K Factor =	= 5.05	
B45	17.830	5.60	25.87	1	Т	3.568	5.250	100	21.333			
o 508	12.57		25.87	1.049			3.568 8.818	0.2934	2.278 2.587	Vel = 9.6	60	
	12.01		0.0	1.0.10			0.010	0.2001	2.001			
508			25.87						26.198	K Factor =	= 5.05	
B46	17.830	5.60	25.88	1	T	3.568	5.250	100	21.353			
to 510	12.56		25.88	1.049			3.568 8.818	0.2937	2.282 2.590	Vel = 9.6	61	
J. U			0.0				0.010	5.2001		. 5. 0.0		
510			25.88						26.225	K Factor =	= 5.05	
B47	17.830	5.60	25.89	1	T	3.568	5.250	100	21.371			
o 518	12.55		25.89	1.049			3.568 8.818	0.2938	2.287 2.591	Vel = 9.6	§1	
2.0	50		0.0				0.010	3.2000		. 5. 0.0		
518			25.89						26.249	K Factor =	5.05	
B48	17.830	5.60	24.61	1	Т	3.568	5.250	100	19.320			
to 516	12.57		24.61	1.049			3.568 8.818	0.2677	2.278 2.361	Vel = 9.1	4	
			0.0									
516			24.61						23.959	K Factor =	5.03	
B49	17.830	5.60	24.31	1	Т	3.568	5.250	100	18.845			
to 515	12.58		24.31	1.049			3.568 8.818	0.2616	2.274 2.307	Vel = 9.0)2	
			0.0									
515			24.31						23.426	K Factor =	5.02	
B43	17.830	5.60	24.13	1	T	3.568	5.250	100	18.567 2.274			
to 513	12.580		24.13	1.049			3.568 8.818	0.2581	2.274 2.276	Vel = 8.9	96	
			0.0									
513			24.13						23.117	K Factor =	5.02	
B42	17.830	5.60	24.04	1	T	3.568	5.250 3.568	100	18.436 2.254			
o 512	12.625		24.04	1.049			3.306 8.818	0.2564	2.254	Vel = 8.9	92	
			0.0									
512			24.04						22.951	K Factor =	5.02	
B41	17.830	5.60	24.02	1	T	3.568	5.250	100	18.400			
o 511	12.625		24.02	1.049			3.568 8.818	0.2560	2.254 2.257	Vel = 8.9	92	
			0.0									
511			24.02						22.911	K Factor =	5.02	
507	12.58		25.86	3			5.180	100	26.188			
o 508	12.57		25.86	3.26			5.180	0.0012	0.004 0.006	Vel = 0.9	9	

B.I.C. Design Co. Residences at Blackwell Clubhouse - LSMO - Area 5 - Attic - Bottom 9 V-SD Heads

Page 5 Date

Node1 to	Elev1	K	Qa	Nom	Fitting or		Pipe Ftngs	CFact	Pt Pe	****** Notes ***
Node2	Elev2	Fact	Qt	Act	Eqiv	Len	Total	Pf/Ft	Pf	
508	12.57		25.87	3			1.310	100	26.198	
0									0.0	
509	12.57		51.73	3.26			1.310	0.0046	0.006	Vel = 1.99
509 o	12.57		0.0	3			3.870	100	26.204 0.004	
510	12.56		51.73	3.26			3.870	0.0044	0.017	Vel = 1.99
510 to	12.56		25.87	3			4.500	100	26.225 0.004	
519	12.55		77.6	3.26			4.500	0.0089	0.040	Vel = 2.98
519			0.0 77.60						26.269	K Factor = 15.14
511	12.625		24.02	2			5.290	100	22.911	200
to 512	12.625		24.02	2.157			5.290	0.0076	0.0 0.040	Vel = 2.11
512	12.625		24.05	2			5.290	100	22.951	VOI 2.11
to 513	12.580		48.07	2.157			5.290	0.0278	0.019 0.147	Vel = 4.22
513	12.580		24.13	2			4.330	100	23.117	VGI - 4.22
to 514	12.580		72.2	2.157			4.330	0.0584	0.0 0.253	Vel = 6.34
514	12.580		0.0	2.157			0.950	100	23.370	vei = 0.34
to	12.500			۷			0.930	100	0.0	
515	12.58		72.2	2.157			0.950	0.0589	0.056	Vel = 6.34
515 to	12.58		24.31	2			5.280	100	23.426 0.004	
516	12.57		96.51	2.157			5.280	0.1002	0.529	Vel = 8.47
516 to	12.57		24.61	2	2E	8.783	5.510 8.783	100	23.959 0.009	
517	12.55		121.12	2.157			14.293	0.1525	2.179	Vel = 10.63
517	12.55		0.0	2			0.670	100	26.147 0.0	
to 518	12.55		121.12	2.157			0.670	0.1522	0.0	Vel = 10.63
518	12.55		25.89	3			0.680	100	26.249	
to 519	12.55		147.01	3.26			0.680	0.0294	0.0 0.020	Vel = 5.65
519			0.0 147.01						26.269	K Factor = 28.68
519	12.55		224.61	3	Т	14.388	2.030	100	26.269	
to 520	10.52		224.61	3.26			14.387 16.417	0.0640	0.879 1.050	Vel = 8.63
520	10.52		0.0	3.20	E	6.714	6.150	100	28.198	v G1 - 0.03
0					_	0.7 14	6.714		0.009	
521	10.5		224.61	3.26			12.864	0.0640	0.823	Vel = 8.63
521 to	10.5		0.0	3			13.000	100	29.030 0.009	
522	10.48		224.61	3.26			13.000	0.0639	0.831	Vel = 8.63
522 o	10.48		0.0	3			1.500	100	29.870 0.004	
523	10.47		224.61	3.26			1.500	0.0640	0.096	Vel = 8.63

B.I.C. Design Co. Residences at Blackwell Clubhouse - LSMO - Area 5 - Attic - Bottom 9 V-SD Heads

Page 6 Date

Node1 to	Elev1	K	Qa	Nom	Fittin or	-	Pipe Ftngs	CFact	Pt Pe	****** Notes ****
Node2	Elev2	Fact	Qt	Act	Eqiv		Total	Pf/Ft	Pf	
523	10.47		0.0	3	T	14.388	2.650	100	29.970	
612	10.470		224.61	3.26	•	11.000	14.387 17.037	0.0640	0.0 1.090	Vel = 8.63
612	10.470		0.0	4			13.660	100	31.060	vei – 0.03
o 613	-3.190		224.61	4.26			13.660	0.0174	5.916 0.238	Vel = 5.06
613 o	-3.190		0.0	4	Е	9.397	15.250 9.397	100	37.214 0.0	
614	-3.190		224.61	4.26			24.647	0.0174	0.428	Vel = 5.06
614 o	-3.190		0.0	4			2.930	100	37.642 0.0	
615	-3.190		224.61	4.26		10.705	2.930	0.0174	0.051	Vel = 5.06
615 to	-3.190		0.0	4	2E	18.795	1.500 18.795	100	37.693 0.0	V.I. 5.00
TDR TDR	-3.190 -3.190		224.61 0.0	4.26	T	18.795	20.295 8.430	0.0174 100	0.353 38.046	Vel = 5.06
o BDR	-11.190		224.61	4.26	B Dvc	11.277 19.734	49.806 58.236	0.0174	3.465 1.012	Vel = 5.06
BDR	-11.190		0.0	4.20	DVC	19.734	1.500	120	42.523	Vei = 3.00
io BWR	-11.190		224.61	4.26			1.500	0.0120	0.0 0.018	Vel = 5.06
BWR to	-11.190		0.0	4	2E	26.334	10.890 26.334	120	42.541 10.535	* * Fixed Loss = 14
UG1 UG1	-3.190		224.61	4.26		2 106	37.224 60.000	0.0124 150	0.462 53.538	Vel = 5.06
0	-3.190		0.0		G E	3.186 15.932	50.982		0.0	
UG2 UG2	-3.190 -3.190	H100	-62.16	4.07 8	T 5G	31.864 25.061	110.982 940.000	0.0103 150	1.138 54.676	Vel = 5.54
.0		11100			Τ	43.857	102.751		0.0	
UG3 UG3	-3.190 -3.190		162.45 0.0	7.68 12	3F 3G		1042.751 1060.000	0.0003 150	0.267 54.943	Vel = 1.13
o UG5	-3.190		162.45	11.2	4F T	57.587	143.966 1203.966	0	0.0 0.049	Vel = 0.53
	-3.190		0.0	11.2	<u> </u>	00.440	1203.900	0	0.049	vei - 0.33
UG5	0.400		162.45			45.007	202 202	450	54.992	K Factor = 21.91
UG2 o	-3.190		162.16	8	3G 3F	15.037 33.833	880.000 181.695	150	54.676 0.0	
UG4	-3.190		162.16	7.68	2T 2E	87.715 45.11	1061.695	0.0003	0.271	Vel = 1.12
UG4	-3.190		0.0	12	2G 7F	13.289 100.777	930.000 180.512	150	54.947 0.0	
UG5	-3.190		162.16	11.2	T		1110.512	0	0.045	Vel = 0.53
UG5 o	-3.190		162.45	12	2G T	13.289 66.446	700.000 253.603	150	54.992 0.0	
UG6	-3.190		324.61	11.2	10F E	143.967 29.901	953.603	0.0001	0.139	Vel = 1.06
UG6	-3.190		0.0	12	T G	66.446 6.645	650.000 73.090	150	55.131 2.949	
TEST	-10		324.61	11.2	G	0.040	723.090	0.0001	0.107	Vel = 1.06

Final Calculations: Hazen-Williams

B.I.C. De Residenc	•		lubhouse -	LSMO -	Area 5 -	Attic - E	ottom 9 V-S	D Heads		Page Date	7	
Node1 to	Elev1	K	Qa	Nom	Fitting or		Pipe Ftngs	CFact	Pt Pe	*****	Notes	*****
Node2	Elev2	Fact	Qt	Act	Eqiv	Len	Total	Pf/Ft	Pf			
TEST			0.0 324.61						58.187	K Factor =	42.55	

HYDRAULIC DESIGN COVER SHEET

130 W 9th Ave, Suite 102 North Kansas City, MO 64116 816.221.0551 bicdesign@bicdesign.net

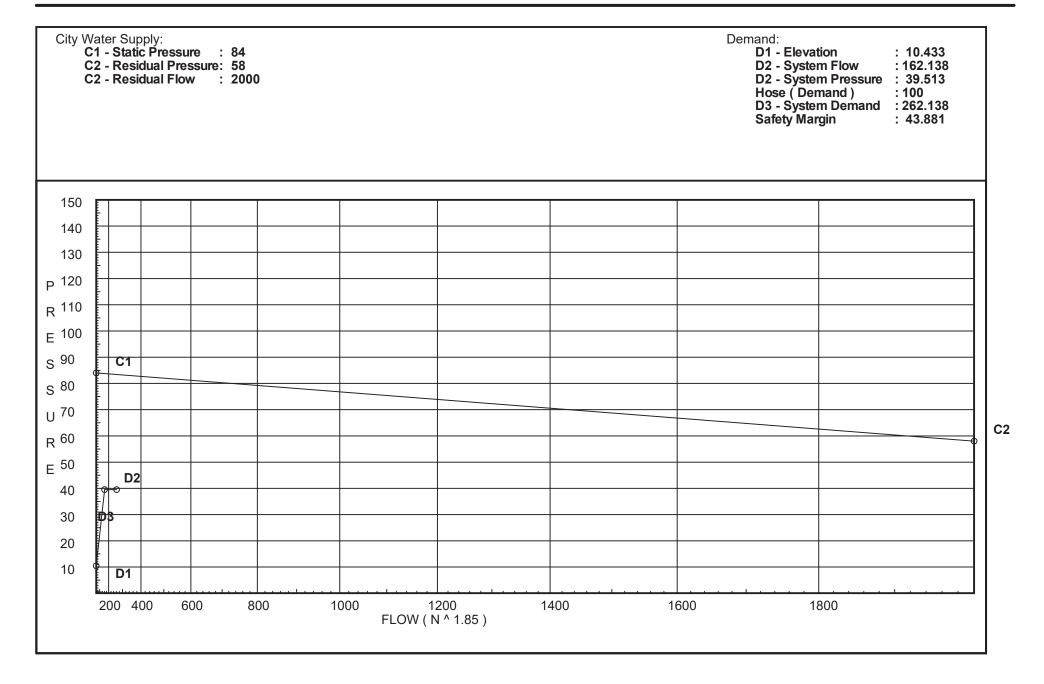
ORIGINAL DATE: 03/08/2024 LATEST REVISION DATE:

AREA: Attic – All 10 Upright Heads CALCULATED BY: Isaiah Wiese

JOB INFORMATION								
JOB NAME: Residences At Blackwell - Clubhouse								
Address: 50 Hwy & Blackwell	CITY, STATE: Lee's Summit, MO							
BUILDING INFO: New Construction	CONSTRUCTION: Combustible, Unobstructed							
CONTRACTOR: Alliance Fire Protection, LLC	Contract #: NC-1429							

WATER SUPPLY INFORMATION							
FLOW TEST? See Front Cover Page	Pump? No						
DATE:	RATED CAPACITY (GPM):						
STATIC PRESSURE (PSI):	RATED PRESSURE (PSI):						
RESIDUAL PRESSURE (PSI):	ELEVATION:						
FLOW (GPM):	PUMP MOTOR TYPE:						
ELEVATION:	TANK?						
LOCATION:	Capacity (gallons):						
Source:	ELEVATION:						

OPERATING AREA INFORMATION							
Area #: 6	System Type: Dry	SHEET NUMBER: FP4					
CEILING HEIGHT: N/A	STORAGE HEIGHT: N/A	QR Sprinkler Discount: No					


SPRINKLER INFORMATION						
Brand: Viking	Model: VK300					
K-Factor: 5.6	Temperature (°F): 200					

System Design Information							
Design Per: NFPA 13, 2016	HAZARD CLASSIFICATION: Light Hazard						
Design Criteria:							
DENSITY (GPM/SQ FT): 0.10	OPERATING AREA (SQ FT): All 10 Heads						
AREA PER SPRINKLER (SQ FT): 120	TOTAL SPRINKLERS OPERATING: 10						
Min. Flow Per Head (gpm): N/A	Min. Pressure Per Head (PSI): N/A						
Inside Hose Allowance (gpm): 0	Outside Hose Allowance (GPM): 100						
OVERHEAD PIPING C-FACTOR: 100	UNDERGROUND PIPING C-FACTOR: 150						

	CALCULATION SUMMARY	
DEMAND @: Base of Riser	FLOW REQ'D (GPM): 162.14	Pressure Req'd (PSI): 24.765
DEMAND @: Conn to City Main	FLOW REQ'D (GPM): 262.14	Pressure Req'd (psi): 39.513
Area Safety Margin (psi): 43.881	***************************************	

Notes:	PE STAMP

Date

Fittings Used Summary

B.I.C. Design Co. Residences at Blackwell Clubhouse - LSMO - Area 6 - Attic - all 10 Upright heads

Page 2 Date

Fitting Lo	egend																				
Abbrev.		1/2	3/4	1	11/4	11/2	2	21/2	3	31/2	4	5	6	8	10	12	14	16	18	20	24
В	NFPA 13 Butterfly Valve	0	0	0	0	0	6	7	10	0	12	9	10	12	19	21	0	0	0	0	0
Dvc	Dry Vic 768 NXT					3	9	8	17		21		22	50							
Ε	NFPA 13 90' Standard Elbow	1	2	2	3	4	5	6	7	8	10	12	14	18	22	27	35	40	45	50	61
F	NFPA 13 45' Elbow	1	1	1	1	2	2	3	3	3	4	5	7	9	11	13	17	19	21	24	28
G	NFPA 13 Gate Valve	0	0	0	0	0	1	1	1	1	2	2	3	4	5	6	7	8	10	11	13
Τ	NFPA 13 90' Flow thru Tee	3	4	5	6	8	10	12	15	17	20	25	30	35	50	60	71	81	91	101	121

Units Summary

Diameter Units Inches Length Units Feet

Flow Units US Gallons per Minute Pressure Units Pounds per Square Inch

Note: Fitting Legend provides equivalent pipe lengths for fittings types of various diameters. Equivalent lengths shown are standard for actual diameters of Sched 40 pipe and CFactors of 120 except as noted with *. The fittings marked with a * show equivalent lengths values supplied by manufacturers based on specific pipe diameters and CFactors and they require no adjustment. All values for fittings not marked with a * will be adjusted in the calculation for CFactors of other than 120 and diameters other than Sched 40 per NFPA.

B.I.C. Design Co. Residences at Blackwell Clubhouse - LSMO - Area 6 - Attic - all 10 Upright heads Page 3 Date

SL	IP	P	١ ١	~	Δ	N	Δ	<i>I</i> 1	2	10
Ju		_	_ /		~	IV.	~	_		

Node at Source	Static Pressure	Residual Pressure	Flow	Available Pressure	Total Demand	Required Pressure
TEST	84.0	58	2000.0	83.394	262.14	39.513

NODE ANALYSIS

Node Tag	Elevation	Node Type	Pressure at Node	Discharge at Node		Notes	
B51	18.0	5.6	7.5	15.33	0.1	120	
51B	12.625		10.79				
26B	12.63		11.05				
B52	18.0	5.6	8.11	15.95	0.1	120	
52B	12.625		11.47	40.00		400	
B53	15.83	5.6	8.56	16.38	0.1	120	
53B	12.625		10.76				
28B B54	12.61 15.83	5.6	11.07 9.53	17.29	0.1	120	
54B	12.59	5.0	11.83	17.29	0.1	120	
B55	14.09	5.6	7.0	14.82	0.1	120	
B56	12.625	5.6	7.65	15.49	0.1	120	
B57	12.59	5.6	8.71	16.52	0.1	120	
55B	0.0	0.0	14.58	10.02	0.1	120	
57B	0.0		15.12				
B58	12.59	5.6	8.54	16.37	0.1	120	
B59	12.59	5.6	8.78	16.59	0.1	120	
B60	12.59	5.6	9.65	17.4	0.1	120	
58B	0.0		14.93				
59B	0.0		15.2				
60B	0.0		16.16				
61B	0.0		17.65				
62B	0.0		17.91				
523	10.47		14.01				
604	12.61		12.0				
605	12.6		12.05				
606 607	12.59 12.58		12.14 12.25				
608	12.58		12.58				
609	10.47		14.02				
610	10.47		14.04				
611	10.47		14.1				
612	10.47		14.25				
613	-3.19		20.29				
614	-3.19		20.53				
615	-3.19		20.55				
TDR	-3.19		20.75				
BDR	-11.19		24.77				
BOR	-11.19		24.78				
UG1	- 3.19		35.56				
UG2	-3.19		36.19	100.0			
UG3	-3.19		36.37				

B.I.C. Design Co. Residences at Blackwell Clubhouse - LSMO - Area 6 - Attic - all 10 Upright heads Page 4 Date

NODE ANALYSIS (cont.)

Node Tag	Elevation	Node Type	Pressure at Node	Discharge at Node	Notes
UG4	-3.19		36.37		
UG5	-3.19		36.4		
UG6	-3.19		36.49		
TEST	-10.0		39.51		

B.I.C. Design Co. Residences at Blackwell Clubhouse - LSMO - Area 6 - Attic - all 10 Upright heads

Page 5 Date

Node1	Elev1	K	Qa	Nom	Fitting		Pipe	CFact	Pt	****** Notoc	*****
to Node2	Elev2	Fact	Qt	Act	or Eqiv	Len	Ftngs Total	Pf/Ft	Pe Pf	****** Notes	
B51 to	18	5.60	15.33	1	2E	2.855	5.750 2.855	100	7.498 2.328		
51B	12.625		15.33	1.049			8.605	0.1116	0.960	Vel = 5.69	
51B to	12.625		0.0	1	E	1.427	1.000 1.427	100	10.786 -0.002		
26B	12.63		15.33	1.049			2.427	0.1112	0.270	Vel = 5.69	
26B	12.63		0.0	1	Т	3.568	4.850	100	11.054		
o 604	12.610		15.33	1.049			3.568 8.418	0.1115	0.009 0.939	Vel = 5.69	
			0.0								
604			15.33						12.002	K Factor = 4.43	
B52 to	18	5.60	15.95	1	2E	2.855	5.750 2.855	100	8.108 2.328		
52B	12.625		15.95	1.049			8.605	0.1199	1.032	Vel = 5.92	
52B	12.625		0.0	1	Т	3.568	0.830	100	11.468		
o 604	12.610		15.95	1.049			3.568 4.398	0.1201	0.006 0.528	Vel = 5.92	
			0.0								
604	4= 000		15.95						12.002	K Factor = 4.60	
B53 to	15.830	5.60	16.38	1	2E	2.855	3.580 2.855	100	8.560 1.388		
53B	12.625		16.38	1.049			6.435	0.1260	0.811	Vel = 6.08	
53B to	12.625		0.0	1	E	1.427	1.000 1.427	100	10.759 0.006		
28B	12.61		16.38	1.049			2.427	0.1265	0.307	Vel = 6.08	
28B	12.61		0.0	1	Т	3.568	4.850	100	11.072		
to 606	12.590		16.38	1.049			3.568 8.418	0.1259	0.009 1.060	Vel = 6.08	
	12.000		0.0	1.0.10			0.110	0.1200	1.000	701 0.00	
606			16.38						12.141	K Factor = 4.70	
B54 :o	15.830	5.60	17.29	1	2E	2.855	3.580 2.855	100	9.528 1.403		
54B	12.590		17.29	1.049			6.435	0.1392	0.896	Vel = 6.42	
54B	12.590		0.0	1	E	1.427	0.830	100	11.827		
o 606	12.590		17.29	1.049			1.427 2.257	0.1391	0.0 0.314	Vel = 6.42	
			0.0							-	
606			17.29						12.141	K Factor = 4.96	
B55 :o	14.090	5.60	14.82	1	2E T	2.855 3.568	7.710 6.423	100	7.000 6.102		
55B	0		14.82	1.049	•	0.000	14.133	0.1047	1.480	Vel = 5.50	
55B			0.0 14.82						14.582	K Factor = 3.88	
B56	12.625	5.60	15.49	1	3E	4.282	5.040	100	7.649	1	
0		2.30			T	3.568	7.850		5.468		
55B	0		15.49	1.049			12.890	0.1137	1.465	Vel = 5.75	
55B			0.0 15.49						14.582	K Factor = 4.06	

B.I.C. Design Co. Residences at Blackwell Clubhouse - LSMO - Area 6 - Attic - all 10 Upright heads

Page 6 Date

Node1	Elev1	K	Qa	Nom	Fitting		Pipe	CFact	Pt			
to Node2	Elev2	Fact	Qt	Act	or Eqiv	Len	Ftngs Total	Pf/Ft	Pe Pf	*****	Notes	*****
B57	12.590	5.60	16.52	1	2E	2.855	1.040	100	8.707			
to 57B	0		16.52	1.049	T	3.568	6.423 7.463	0.1281	5.453 0.956	Vel = 6.1	13	
			0.0									
_57B			16.52	4.05			F 400	400	15.116	K Factor	= 4.25	
55B to	0		30.30	1.25			5.160	100	14.582 0.0			
_57B	0		30.3	1.38			5.160	0.1035	0.534	Vel = 6.5	50	
57B to	0		16.53	1.25	Т	4.282	6.660 4.282	100	15.116 0.0			
61B	0		46.83	1.38			10.942	0.2314	2.532	Vel = 10.	05	
0.45			0.0						47.040	W.E. (44.45	
61B B58	12.590	5.60	46.83 16.37	1	2E	2.855	1.000	100	17.648 8.543	K Factor	= 11.15	
to	12.590	5.00	10.37	1	ZE T	3.568	6.423	100	5.453			
58B	0		16.37	1.049			7.423	0.1258	0.934	Vel = 6.0	08	
58B			0.0 16.37						14.930	K Factor	= 424	
B59	12.590	5.60	16.59	1	2E	2.855	1.040	100	8.779	TOT GOLOT	7.27	
to				4 0 40	Т	3.568	6.423		5.453	\	10	
59B	0		16.59 0.0	1.049			7.463	0.1290	0.963	Vel = 6.	16	
59B			16.59						15.195	K Factor	= 4.26	
B60	12.590	5.60	17.40	1	2E	2.855	1.080	100	9.652			
to 60B	0		17.4	1.049	Т	3.568	6.423 7.503	0.1409	5.453 1.057	Vel = 6.4	16	
			0.0									
60B			17.40						16.162	K Factor	= 4.33	
58B to	0		16.37	1.25			8.000	100	14.930 0.0			
59B	0		16.37	1.38			8.000	0.0331	0.265	Vel = 3.5	51	
59B	0		16.59	1.25			8.000	100	15.195			
to 60B	0		32.96	1.38			8.000	0.1209	0.0 0.967	Vel = 7.0)7	
60B	0		17.40		Т	4.282	1.330	100	16.162			
to 61B	0		50.36	1.38			4.282 5.612	0.2648	0.0 1.486	Vel = 10.	80	
OID	0		0.0	1.00			0.012	0.2040	1.400	VCI - 10.	00	
61B			50.36						17.648	K Factor	= 11.99	
61B	0		97.19	2			2.125	100	17.648 0.0			
to _62B	0		97.19	2.067			2.125	0.1247	0.0	Vel = 9.2	29	
62B	0		0.0	2			5.090	100	17.913			
to 523	10.47		97.19	2.067			5.090	0.1250	-4.535 0.636	Vel = 9.2	29	
			0.0				0.000	0.1200	0.000			
523			97.19						14.014	K Factor	= 25.96	
523 to	10.47		97.19	3	Т	14.388	2.650 14.387	100	14.014 0.0			
612	10.470		97.19	3.26			17.037	0.0136	0.231	Vel = 3.7	74	

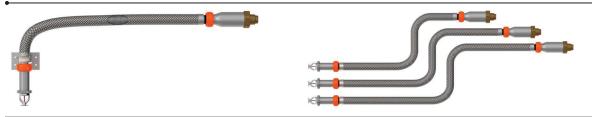
Computer Programs by Hydratec Inc. Revision: 50.5520.727

B.I.C. Design Co. Residences at Blackwell Clubhouse - LSMO - Area 6 - Attic - all 10 Upright heads

Page 7 Date

Node1 to	Elev1	K	Qa	Nom	Fitting or		Pipe Ftngs	CFact	Pt Pe	****** Notes ***
Node2	Elev2	Fact	Qt	Act	Eqiv	Len	Total	Pf/Ft	Pf	
612			0.0 97.19						14.245	K Factor = 25.75
604	12.610		31.28	2			3.220	100	12.002 0.004	
605	12.600		31.28	2.157			3.220	0.0127	0.041	Vel = 2.75
605 o	12.600		0.0	2			7.260	100	12.047 0.004	
606	12.590		31.28	2.157			7.260	0.0124	0.090	Vel = 2.75
606	12.590		33.67	2			2.080	100	12.141	V. 1 570
607	12.580		64.95	2.157	_	4.000	2.080	0.0486	0.101	Vel = 5.70
607	12.580 12.580		0.0 64.95	2 2.157	E	4.392	2.580 4.391	100 0.0482	12.246 0.0 0.336	Vol. = . 5.70
608 608	12.580		0.0	2.157	T	8.783	6.971 2.100	100	12.582	Vel = 5.70
609	10.47		64.95	2.157	ı	0.703	8.783 10.883	0.0481	0.914 0.523	Vel = 5.70
609	10.47		0.0	3			3.460	100	14.019 0.0	
610	10.47		64.95	3.26			3.460	0.0066	0.023	Vel = 2.50
610 :o	10.47		0.0	3	E	6.714	2.410 6.714	100	14.042 0.0	
611	10.47		64.95	3.26			9.124	0.0064	0.058	Vel = 2.50
611	10.47		0.0	3	E T	6.714 14.388	1.390 21.101	100	14.100 0.0	
612	10.470		64.95	3.26			22.491	0.0064	0.145	Vel = 2.50
612			0.0 64.95						14.245	K Factor = 17.21
612 o	10.470		162.14	4			13.660	100	14.245 5.916	
613	-3.190		162.14	4.26			13.660	0.0095	0.130	Vel = 3.65
613	-3.190		0.0	4	E	9.397	15.250 9.397	100	20.291 0.0	V.I. 0.05
614	-3.190		162.14	4.26			24.647	0.0095	0.235	Vel = 3.65
614	-3.190		0.0	4			2.930	100	20.526	V-I - 0.05
615 615	-3.190		162.14 0.0	4.26	2E	18.795	2.930 1.500	0.0096 100	0.028 20.554	Vel = 3.65
o TDR	-3.190 -3.190		162.14	4.26	2E	16.795	18.795 20.295	0.0095	0.0 0.193	Vel = 3.65
TDR	-3.190		0.0	4.20	Т	18.795	8.430	100	20.747	VOI 0.00
o BDR	-11.190		162.14	4.26	B Dvc	11.277 19.734	49.806 58.236	0.0095	3.465 0.553	Vel = 3.65
BDR to	-11.190		0.0	4			1.500	120	24.765 0.0	5.55
BOR	-11.190		162.14	4.26			1.500	0.0073	0.011	Vel = 3.65
BOR	-11.190		0.0	4	2E	26.334	10.890 26.334	120	24.776 10.535	* * Fixed Loss = 14
UG1	-3.190		162.14	4.26			37.224	0.0068	0.252	Vel = 3.65

B.I.C. Design Co. Residences at Blackwell Clubhouse - LSMO - Area 6 - Attic - all 10 Upright heads


Page 8 Date

1 (00)40110	oo at Bit	201111011 011	45110400	200	,	, , , , , ,	an ro oprigi	it iioaao		Du	.0	
Node1 to	Elev1	К	Qa	Nom	Fitting	-	Pipe Ftngs	CFact	Pt Pe	*****	Notes	*****
Node2	Elev2	Fact	Qt	Act	Eqiv	Len	Total	Pf/Ft	Pf			
UG1 to	-3.190		0.0	4	G E	3.186 15.932	60.000 50.982	150	35.563 0.0			
UG2	-3.190		162.14	4.07	Τ	31.864	110.982	0.0056	0.623	Vel = 4	.00	
UG2 to	-3.190	H100	-30.96	8	5G T	25.061 43.857	940.000 102.751	150	36.186 0.0			
UG3	-3.190		131.18	7.68	3F	33.833	1042.751	0.0002	0.179	Vel = 0	.91	
UG3 to	-3.190		0.0	12	3G 4F		1060.000 143.966	150	36.365 0.0			
UG5	-3.190		131.18	11.2	Т	66.446	1203.966	0	0.033	Vel = 0	.43	
UG5			0.0 131.18						36.398	K Factor	= 21.74	
UG2 to	-3.190		130.95	8	3G 3F	15.037 33.833	880.000 181.695	150	36.186 0.0			
UG4	-3.190		130.95	7.68	2T 2E	87.715 45.11	1061.695	0.0002	0.182	Vel = 0	.91	
UG4 to	-3.190		0.0	12	2G 7F	13.289 100.777	930.000 180.512	150	36.368 0.0			
UG5	-3.190		130.95	11.2	Т	66.446	1110.512	0	0.030	Vel = 0	.43	
UG5 to	-3.190		131.19	12	2G T	13.289 66.446	700.000 253.603	150	36.398 0.0			
UG6	-3.190		262.14	11.2	10F E	143.967 29.901	953.603	0.0001	0.094	Vel = 0	.85	
UG6 to	-3.190		0.0	12	T G	66.446 6.645	650.000 73.090	150	36.492 2.949			
TEST	-10		262.14	11.2			723.090	0.0001	0.072	Vel = 0	.85	
TEST			0.0 262.14						39.513	K Factor	= 41.70	

Victaulic® VicFlex™ Series FL-DRY/VS1

Dry, Quick/Standard Response Sprinklers, K5.6 (80)

PRODUCT DESCRIPTION

STANDARD RESPONSE SLEEVE AND SKIRT PENDENT SPRINKLER					
SIN	V3505				
ORIENTATION	Pendent				
NOMINAL K-FACTOR/METRIC K-FACTOR	5.6/80				
RESPONSE	Standard				
CONNECTION	1" NPT/25mm BSPT				
MAX. WORKING PRESSURE	175 psi (1200 kPa)				
ESCUTCHEON	Sleeve and Skirt				
LENGTHS	38"/965mm, 50"/1270mm and 58"/1473mm				

STANDARD RESPONSE RECESSED PENDENT SPRINKLER					
SIN	V3505				
ORIENTATION	Pendent				
NOMINAL K-FACTOR/METRIC K-FACTOR	5.6/80				
RESPONSE	Standard				
CONNECTION	1" NPT/25mm BSPT				
MAX. WORKING PRESSURE	175 psi (1200 kPa)				
ESCUTCHEON	Recessed				
LENGTHS	38"/965mm, 50"/1270mm and 58"/1473mm				

QUICK RESPONSE SLEEVE AND SKIRT PENDENT SPRINKLER					
SIN	V3506				
ORIENTATION	Pendent				
NOMINAL K-FACTOR/METRIC K-FACTOR	5.6/80				
RESPONSE	Quick				
CONNECTION	1" NPT/25mm BSPT				
MAX. WORKING PRESSURE	175 psi (1200 kPa)				
ESCUTCHEON	Sleeve and Skirt				
LENGTHS	38"/965mm, 50"/1270mm and 58"/1473mm				

QUICK RESPONSE RECESSED PENDENT SPRINKLER						
SIN	V3506					
ORIENTATION	Pendent					
NOMINAL K-FACTOR/METRIC K-FACTOR	5.6/80					
RESPONSE	Quick					
CONNECTION	1" NPT/25mm BSPT					
MAX. WORKING PRESSURE	175 psi (1200 kPa)					
ESCUTCHEON	Recessed					
LENGTHS	38"/965mm, 50"/1270mm and 58"/1473mm					

STANDARD RESPONSE SLEEVE AND SKIRT HORIZONTAL SIDEWALL SPRINKLER					
SIN	V3509				
ORIENTATION	Horizontal Sidewall				
NOMINAL K-FACTOR/METRIC K-FACTOR	5.6/80				
RESPONSE	Standard				
CONNECTION	1" NPT/25mm BSPT				
MAX. WORKING PRESSURE	175 psi (1200 kPa)				
ESCUTCHEON	Sleeve and Skirt				
LENGTHS	38"/965mm, 50"/1270mm and 58"/1473mm				

ALWAYS REFER TO ANY NOTIFICATIONS AT THE END OF THIS DOCUMENT REGARDING PRODUCT INSTALLATION, MAINTENANCE OR SUPPORT.

1.0 PRODUCT DESCRIPTION (CONTINUED)

STANDARD RESPONSE RECESSED HORIZONTAL SIDEWALL SPRINKLER					
SIN	V3509				
ORIENTATION	Horizontal Sidewall				
NOMINAL K-FACTOR/METRIC K-FACTOR	5.6/80				
RESPONSE	Standard				
CONNECTION	1" NPT/25mm BSPT				
MAX. WORKING PRESSURE	175 psi (1200 kPa)				
ESCUTCHEON	Recessed				
LENGTHS	38"/965mm, 50"/1270mm and 58"/1473mm				

QUICK RESPONSE SLEEVE AND SKIRT HORIZONTAL SIDEWALL SPRINKLER					
SIN V3510					
ORIENTATION	Horizontal Sidewall				
NOMINAL K-FACTOR/METRIC K-FACTOR	5.6/80				
RESPONSE	Quick				
CONNECTION	1" NPT/25mm BSPT				
MAX. WORKING PRESSURE	175 psi (1200 kPa)				
ESCUTCHEON	Sleeve and Skirt				
LENGTHS	38"/965mm, 50"/1270mm and 58"/1473mm				

QUICK RESPONSE RECESSED HORIZONTAL SIDEWALL SPRINKLER						
SIN	V3510					
ORIENTATION	Horizontal Sidewall					
NOMINAL K-FACTOR/METRIC K-FACTOR	5.6/80					
RESPONSE	Quick					
CONNECTION	1" NPT/25mm BSPT					
MAX. WORKING PRESSURE	175 psi (1200 kPa)					
ESCUTCHEON	Recessed					
LENGTHS	38"/965mm, 50"/1270mm and 58"/1473mm					

STANDARD RESPONSE CONCEALED PENDENT SPRINKLER			
SIN V3517			
ORIENTATION Concealed Pendent			
NOMINAL K-FACTOR/METRIC K-FACTOR 5.6/80			
RESPONSE Standard			
CONNECTION 1" NPT/25mm BSPT			
MAX. WORKING PRESSURE 175 psi (1200 kPa)			
ESCUTCHEON Concealed			
LENGTHS 38"/965mm, 50"/1270mm and 58"/1473mm			

QUICK RESPONSE CONCEALED PENDENT SPRINKLER			
SIN V3518			
ORIENTATION	Concealed Pendent		
NOMINAL K-FACTOR/METRIC K-FACTOR 5.6/80			
RESPONSE	Quick		
CONNECTION 1" NPT/25mm BSPT			
MAX. WORKING PRESSURE 175 psi (1200 kPa)			
ESCUTCHEON Concealed			
LENGTHS 38"/965mm, 50"/1270mm and 58"/1473mm			

Factory Hydrostatic Test: 100% @ 500 psi/3447 kPa/34 bar

Min. Operating Pressure:Pendent: 7 psi/48 kPa/.5 barTemperature Rating:See tables in section 2.0Hazard Classifications:Light and Ordinary Hazard

2.0 CERTIFICATION/LISTINGS

APPROVALS/LISTINGS					
SIN	V3505	V3505	V3506	V3506	V3509
Nominal K Factor (gpm/(psi)^1/2)	5.6	5.6	5.6	5.6	5.6
Metric K-Factor (lpm/(bar)^1/2)	80	80	80	80	80
Response	Standard	Standard	Quick	Quick	Standard
Deflector Type	Sleeve and Skirt	Recessed	Sleeve and Skirt	Recessed	Sleeve and Skirt SW
		Approv	ed Temperature Rating	s F°/C°	
FM	135°F/57°C 155°F/68°C 175°F/79°C 200°F/93°C 286°F/141°C	135°F/57°C 155°F/68°C 175°F/79°C 200°F/93°C	135°F/57°C 155°F/68°C 175°F/79°C 200°F/93°C	135°F/57°C 155°F/68°C 175°F/79°C 200°F/93°C	135°F/57°C 155°F/68°C 175°F/79°C 200°F/93°C 286°F/141°C
cULus	135°F/57°C 155°F/68°C 175°F/79°C 200°F/93°C 286°F/141°C	135°F/57°C 155°F/68°C 175°F/79°C 200°F/93°C 286°F/141°C	135°F/57°C 155°F/68°C 175°F/79°C 200°F/93°C 286°F/141°C	135°F/57°C 155°F/68°C 175°F/79°C 200°F/93°C 286°F/141°C	135°F/57°C 155°F/68°C 175°F/79°C 200°F/93°C 286°F/141°C

APPROVALS/LISTINGS					
SIN	V3509	V3510	V3510	V3517 ³	V3518 ³
Nominal K Factor (gpm/(psi)^1/2)	5.6	5.6	5.6	5.6	5.6
Metric K-Factor (Ipm/(bar)^1/2)	80	80	80	80	80
Response	Standard	Quick	Quick	Standard	Quick ¹
Deflector Type	Recessed SW	Sleeve and Skirt SW	Recessed SW	Concealed	Concealed ²
FM	135°F/57°C 155°F/68°C 175°F/79°C 200°F/93°C	135°F/57°C 155°F/68°C 175°F/79°C 200°F/93°C	135°F/57°C 155°F/68°C 175°F/79°C 200°F/93°C	-	135°F/57°C 155°F/68°C 175°F/79°C 200°F/93°C
cULus	135°F/57°C 155°F/68°C 175°F/79°C 200°F/93°C 286°F/141°C	135°F/57°C 155°F/68°C 175°F/79°C 200°F/93°C 286°F/141°C	135°F/57°C 155°F/68°C 175°F/79°C 200°F/93°C 286°F/141°C	135°F/57°C 155°F/68°C 175°F/79°C 200°F/93°C	135°F/57°C 155°F/68°C 175°F/79°C 200°F/93°C

 $^{^{\}rm 1}$ $\,$ Model V3518 is a Standard Response FM sprinkler.

NOTES

- The VicFlex Series VS1/Style V35 has been tested and evaluated by Spears® for acceptable use with Spears® CPVC products and therefore is covered under the Spears® FlameGuard® Installer Protection Plan.
- For system design purposes, no equivalent length calculations are required.

MAXIMUM ALLOWABLE NUMBER OF BENDS				
Nominal Sprinkler Length				
inches	Maximum Allowable Number of 90° Bends at	Maximum Allowable Number of 90° Bends at		
mm	2"/51mm Bend Radius for UL Listing	7"/178mm Bend Radius for FM Approval		
38.0	4	2		
965	4	2		
50.0	4	3		
1270	7	3		
58.0	4	Λ		
1473	4	7		

Agency	Approved/Listed Bracket Styles
UL	VB1, VB2, VB3, VB4
FM	VB1, VB2, VB3, VB4

Model V3518 is listed as a standard response UL sprinkler when installed in a clean room using a gasketed cover plate. Clean room gaskets are optional and ordered separately.

³ These sprinklers are required to be vented. Installations with a pressurized air plenum above the housing is not permitted.

3.0 MATERIAL SPECIFICATIONS

Deflector: Brass

Bulb Nominal Diameter: Quick Response: 3.0mm Standard Response: 5.0mm Split Spacer: Stainless Steel

Load Screw: Brass **Pip Cap:** Stainless Steel

Spring Seal Assembly: PTFE coated Beryllium nickel alloy and stainless steel

Frame: Brass

Flexible Hose: Stainless Steel
Collar/Weld Fitting: Stainless Steel
Gasket Seal: Victaulic EPDM

Isolation Ring: Nylon

Hose Fittings: Carbon steel, zinc-plated

Inlet Fitting: Brass

Outer Tube: Stainless Steel

Concealed Cup: Carbon steel, zinc-plated

Concealed Cover Plate Gasket: White nitrile (Clean room use only)

Brackets: Carbon steel, zinc-plated

Escutcheon: Stainless Steel

Inlet Reducer Fitting: Carbon steel, zinc-plated

Tamper Resistant Cover: Polypropylene

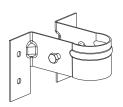
3.1 ACCESSORIES SPECIFICATIONS

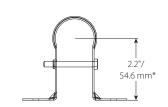
Sprinkler Finishes:
☐ Standard: VC-250

☐ White painted RAL 9010

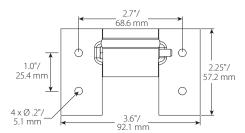
4.0 DIMENSIONS

Product Details and Optional Components


Series VS1 Dry Sprinkler



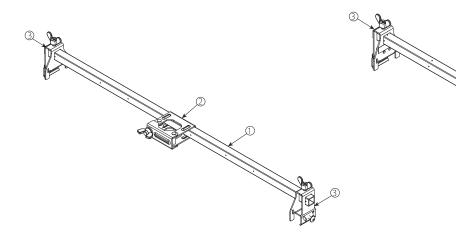
Sprinkler Length	Overall Length (pendent) L	Live Length B	Outlet End Length C	Maximum OD D
inches	inches	inches	inches	inches
mm	mm	mm	mm	mm
38	39.2	25.1	6.5	2.2
965	995	638	165	56
50	51.2	37.1	6.5	2.2
1270	1300	943	165	56
58	59.2	45.1	6.5	2.2
1475	1505	1145	165	56


NOTE

Style VB1 Bracket

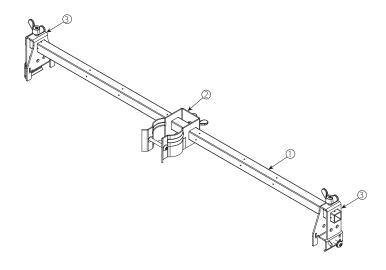
*Note: Theoretical center point of sprinkler in bracket.

[•] Add ½" to Overall Length and Outlet End Length for increased length of sidewall deflector


4.0 DIMENSIONS (CONTINUED)

Style VB2 Bracket **Recessed Pendent, Suspended Ceilings**

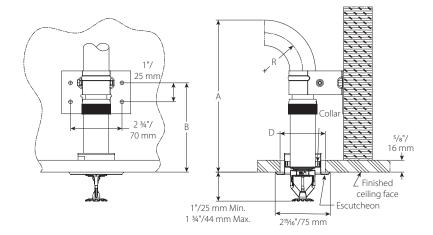
Item	Description
1	24"/610 mm or 48"/1220 mm Square Bar
2	Patented 1-Bee Center Bracket
3	Fnd Bracket


Style VB3 Bracket **Concealed Pendent, Suspended Ceilings**

Item	Description
1	24"/610 mm or 48"/1220 mm Square Bar
2	Patented 1-Bee Center Bracket
3	End Bracket

Style VB4 Bracket Sleeve and Skirt Pendent, Suspended Ceilings

Item	Description
1	24"/610 mm or 48"/1220 mm Square Bar
2	Center Bracket
3	End Bracket


4.1 DIMENSIONS

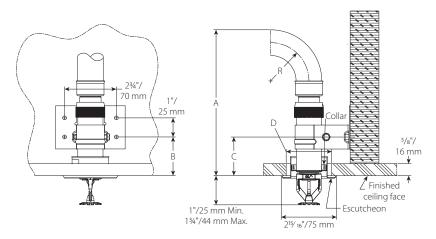
Sprinkler Finishes: Dimensions and Mounting Conditions

NOTE

• Drawings are shown with %" finished ceiling thickness. Adjustments to "B" and "C" dimensions will be required if finished ceiling thickness deviate from drawing.

Recessed Pendent:

Clearance Chart			
	inches		
Dimension	mm		
"R" Minimum Bend Radius	2	7	
K Willillium Bena Radius	50	175	
"A" Minimum Required Installation Space	7 5/8	12 5/8	
A Millimum Required installation Space	193	320	
"P" Mounting Carou Hala Lagation	4 3/4		
"B" Mounting Screw Hole Location	119		
Cailing Hala Diameter "D"	2 –	2 – 2 3/8	
Ceiling Hole Diameter "D"	50 – 60		

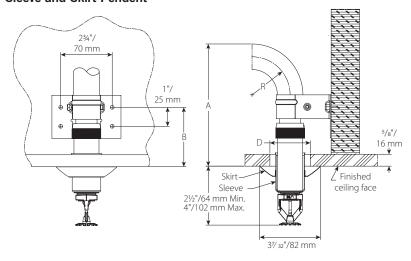

NOTE

• Dimensions are shown with 3/4" escutcheon at middle of height adjustment range.

4.2 DIMENSIONS

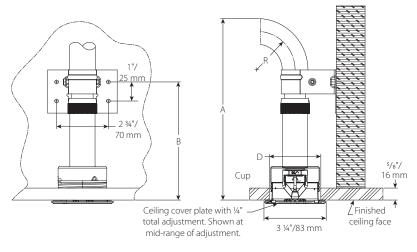
Recessed Pendent Alternative Bracket Location

Clearance Chart			
inches Dimension mm			
IIDII Minimum David David	2	7	
"R" Minimum Bend Radius	50	175	
"A" Minimum Required Installation Space	7 %	12 %	
A Willimum Required mistaliation Space	193	320	
"B" Mounting Screw Hole Location	2		
B Woulding Sciew Hole Location	50		
Ceiling Hole Diameter "D"	2 – 2 3/8		
Cennig Hole Diameter D	50 – 60		


NOTE

• Dimensions are shown with 3/4" escutcheon at middle of height adjustment range.

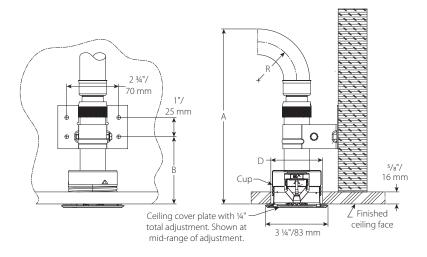
4.3 DIMENSIONS


Sleeve and Skirt Pendent

Clearance Chart		
	inc	hes
Dimension	m	m
"R" Minimum Bend Radius	2	7
K Willillium Dena Kadius	50	175
"A" Minimum Required Installation Space	61/2	111/2
A Millimum Required mistaliation Space	163	290
"B" Mounting Screw Hole Location	3	1/8
B Mounting Screw Hole Location	7	9
Ceiling Hole Diameter "D"	1 3/4 -	- 21/8
Cennig riole Diameter D	44 -	- 54

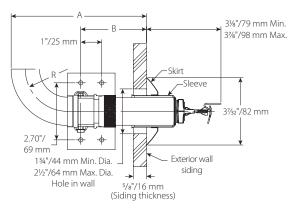
4.4 DIMENSIONS

Concealed Pendent


Clearance Chart		
Dimension		hes
Dimension	m	m
"R" Minimum Bend Radius	2	7
K Willing Delia Radias	50	175
"A" Minimum Required Installation Space	91/2	141/2
A Millimum Required installation Space	241	369
"P" Maunting Carour Hala Lagation	6	1/4
"B" Mounting Screw Hole Location	1:	57
Cailing Halo Diameter "D"	2 % -	- 2 ¾
Ceiling Hole Diameter "D"	67 -	- 70

10.91 9374 Rev N Updated 11/2023 © 2023 Victaulic Company. All rights reserved.

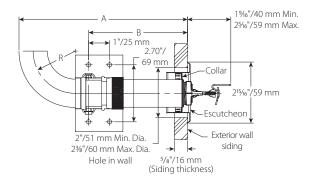
4.5 DIMENSIONS


Concealed Pendent Alternative Bracket Location

Clearance Chart		
	inc	hes
Dimension	m	m
"R" Minimum Bend Radius	2	7
N Willilliam Della Radius	50	175
"A" Minimum Required Installation Space	91/8	141/8
A Willimidili Required ilistaliation Space	231	358
"B" Mounting Screw Hole Location	3	1/2
B Mounting Screw Hole Location	8	9
Coiling Hole Diameter "D"	2 5/8 -	- 2 3/4
Ceiling Hole Diameter "D"	67 -	- 70

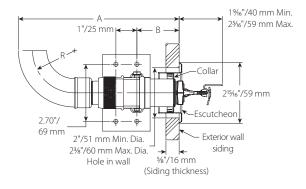
4.6 DIMENSIONS

Sleeve and Skirt Sidewall



Clearance Chart		
	inc	hes
Dimension	m	m
"R" Minimum Bend Radius	2	7
K Willilliam Bena Radius	50	175
"A" Minimum Required Installation Space	6 1/2	111/2
A Willimum Required installation Space	163	290
"B" Mounting Screw Hole Location	3	1/8
B Mounting Screw Hole Location	7	9
Coiling Holo Diameter "D"	1 3/4 -	- 21/8
Ceiling Hole Diameter "D"	44 -	- 54

4.7 DIMENSIONS

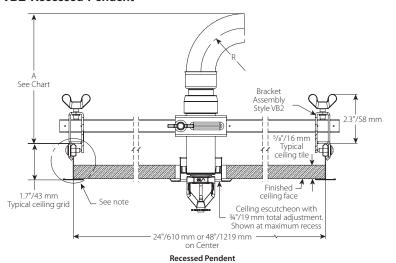

Recessed Sidewall

Clearance Chart		
	inc	hes
Dimension	m	m
"R" Minimum Bend Radius	2	7
K Willilliam Della Radius	50	175
"A" Minimum Required Installation Space	8	13
A Willimum Required installation Space	203	330
"B" Mounting Screw Hole Location	4	3/4
b Mounting Sciew Hole Location	1	19
Cailing Hala Diameter "D"	2 –	2 3/8
Ceiling Hole Diameter "D"	51 -	- 60

4.8 DIMENSIONS

Recessed Sidewall Alternative Bracket Location

Clearance Chart		
	inc	hes
Dimension	m	m
"R" Minimum Bend Radius	2	7
K Willilliam Dena Kadius	50	175
"A" Minimum Poquired Installation Space	8	13
"A" Minimum Required Installation Space	203	330
"B" Mounting Screw Hole Location		2
b Mounting Screw Hole Location	5	1
Cailing Hala Diameter "D"	2 –	2 3/8
Ceiling Hole Diameter "D"	51 -	- 60



10.91 9374 Rev N Updated 11/2023 © 2023 Victaulic Company. All rights reserved.

victaulic.com 11

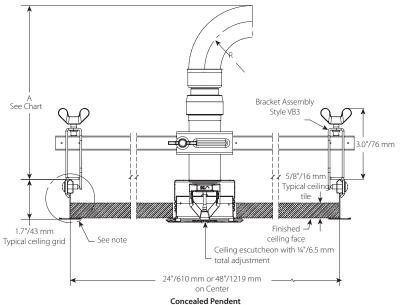
4.9 DIMENSIONS

VB2 Recessed Pendent

 Clearance Chart

 Dimension
 inches mm

 "R" Minimum Bend Radius
 2 7 50 175


 "A" Minimum Required Installation Space
 6½ 11½ 163 290

NOTE

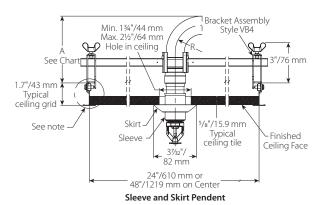
• Victaulic VicFlex Style VB2 Bracket assemblies shall be used only with Series VS1 recessed pendent sprinklers.

4.10 DIMENSIONS

VB3 Concealed Pendent

concedied i citae		
Clearance Chart		
	inc	hes
Dimension	m	m
"R" Minimum Bend Radius	2	7
R Minimum Bend Radius	50	175
"A" Minimum Required Installation Space	7 %	12%
A Millimum Required histaliation Space	193	320

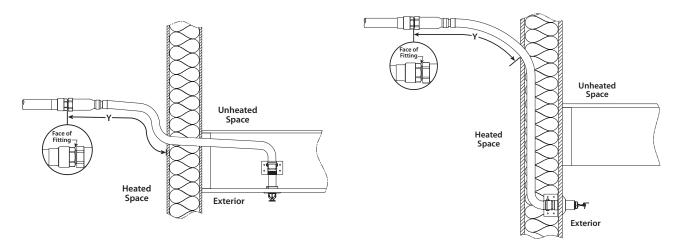
NOTE


• Victaulic VicFlex Style VB3 Bracket assemblies shall be used only with Series VS1 concealed pendent sprinklers.

10.91 9374 Rev N Updated 11/2023 © 2023 Victaulic Company. All rights reserved.

4.11 DIMENSIONS

VB4 Sleeve and Skirt Pendent


Clearance Chart Bend Radius inches inches mm mm 2 7 "R" Minimum Bend Radius 51 178 5 10 "A" Minimum Required Installation Space 127 254

NOTE

• Victaulic VicFlex Style VB4 Bracket assemblies shall be used only with Series VS1 sleeve and skirt pendent sprinklers.

5.0 PERFORMANCE

Freeze Protection

Ambient Temperature Exposed to Discharge End of Sprinkler		Exposed Minimum Barrel Length "Y" inches mm	
°F °C	40°F/4°C	50°F/10°C	60°F/16°C
40 4	0	0	0 0
30 -1	0	0 0	0 0
20	4	0 0	0
-7	100		0
10	8	1	0
-12	200	25	0
0	12	3	0
-18	300	75	0
-10	14	4	1
-23	350	100	25
-20	14	6	3
-29	350	150	75
-30	16	8	4
-34	400	200	100
-40	18	8	4
-40	450	200	100
-50	20	10	6
-46	500	250	150
-60	20	10	6
-51	500	250	150

NOTE

Maximum Allowable Number of Bends

Sprinkler Length inches mm	Maximum Allowable Number of 90° Bends at 2"/51mm Bend Radius for UL Listing	Maximum Allowable Number of 90° Bends at 7"/178mm Bend Radius for FM Approval
38 965	4	2
50 1270	4	3
58 1475	4	4

14 **Victauli**

victaulic.com

[•] Exposed minimum barrel lengths are inclusive up to 30-mph/48-kph wind velocities.

6.0 NOTIFICATIONS

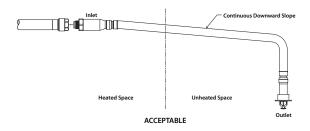
WARNING

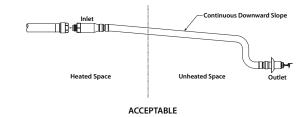
- Read and understand all instructions before attempting to install any Victaulic products.
- Always verify that the piping system has been completely depressurized and drained immediately prior to installation, removal, adjustment, or maintenance of any Victaulic products.
- Wear safety glasses, hardhat, and foot protection.
- These products shall be used only in fire protection systems that are designed and installed in accordance with current, applicable National Fire Protection Association (NFPA 13, 13D, 13R, etc.) standards, or equivalent standards, and in accordance with applicable building and fire codes. These standards and codes contain important information regarding protection of systems from freezing temperatures, corrosion, mechanical damage, etc.
- The installer shall understand the use of this product and why it was specified for the particular application.
- The installer shall understand common industry safety standards and potential consequences of improper product installation.

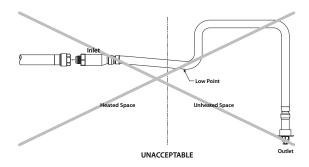
WARNING

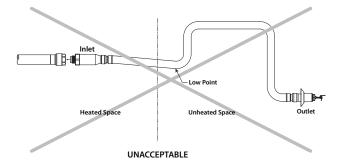
- It is the responsibility of the system designer to verify suitability of 300-series stainless steel flexible hose for use with the intended fluid media within the piping system and external environments.
- The effect of chemical composition, pH level, operating temperature, chloride level, oxygen level, and flow rate
 on 300-series stainless steel flexible hose must be evaluated by the material specifier to confirm system life will
 be acceptable for the intended service.
- It is the responsibility of the owner of a building or their authorized agent to provide the sprinkler system installer
 with any knowledge that the water supply might be contaminated with or conducive to the development of
 microbiologically influenced corrosion (MIC), including as required by NFPA 13. Failure to identify adverse water
 quality issues may affect the VicFlex product and void the manufacturer's warranty.

Failure to follow these instructions could cause product failure, resulting in serious personal injury and/or property damage.

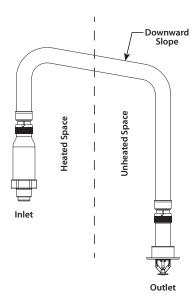

DO NOT paint, coat, or firestop the outlet/inlet portion of the Series VS1 Sprinkler Assembly. Braided hose and fitting portions of the Series VS1 Sprinkler Assembly may be painted or coated, provided that the paint or coating is compatible with stainless steel material. This includes penetrating through firestop-filled annular space of a firewall. The firestop material in direct contact with the flexible braided hose will not impede the functionality of the Series VS1 Sprinkler Assembly, provided that the components are installed in accordance with Victaulic's installation instructions.




6.0 NOTIFICATIONS (CONTINUED)


Important Installation Notes

- 1. Shall be installed only in accordance with NFPA 13 Standard for the Installation of Sprinkler Systems and applicable FM Data Sheets.
- 2. Install and tighten swivel hex nut at inlet of sprinkler fitting only.
- 3. Do not remove deflector or inlet end of sprinkler.


6.0 NOTIFICATIONS (CONTINUED)

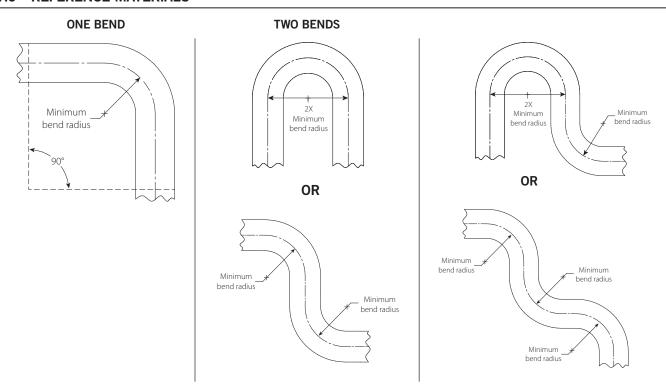
FOR DRY SYSTEMS ONLY:

• The Series VS1 Dry Sprinkler's inlet shall be installed only into the outlet of a fitting (excluding elbows) or welded outlet that meets the dimensional requirements of ANSI B16.3 and ANSI B16.4, Class 125 and Class 150. Use a sample fitting to confirm proper engagement and to verify that there is no interference between the sprinkler and the fitting

Series VS1 Dry Sprinklers in an unheated space shall be installed with a continuous downward slope along its entire length from the branch line fitting to the sprinkler. No localized low points shall be present along the length of the Series VS1 Dry Sprinkler. Series VS1 Dry Sprinklers in an unheated space are not permitted to be installed into the top of the branch line piping.

Series VS1 Dry Sprinklers shall be installed into the side or from the bottom of the branch line piping. In a heated space, if a portion of the Series VS1 Dry Sprinkler is installed from the top of a branch line and then extends into an unheated space, it shall be installed with a continuous downward slope along the entire length from the inside wall to the outlet of the sprinkler. No localized low points shall be present along the length of the sprinkler in the unheated space. Refer to the drawing below.

FOR WET SYSTEMS ONLY:


- DO NOT install Victaulic® VicFlex™ Series VS1 Dry Sprinklers into any threaded elbow, threaded-by-thread coupling, or fitting that interferes with thread penetration. The inlet of the Victaulic® VicFlex™ Series VS1 Dry Sprinkler SHALL NOT bottom out in the fitting. Use a sample fitting to confirm proper engagement.
- To ensure unobstructed flow during operation, the Victaulic® VicFlex™ Series VS1 Dry Sprinkler shall be installed into a fitting that will prevent water and debris from accumulating at the dry sprinkler's inlet.
- Verify that the exposed minimum barrel length in the heated space is measured and maintained in accordance with the table on page 1.

In a heated space, if a portion of the Series VS1 Dry Sprinkler extends into an unheated space, it shall be installed with a continuous downward slope along the entire length from the inside wall to the outlet end of the dry sprinkler. No localized low points shall be present along the length of the sprinkler in the unheated space. Refer to the drawing above.

victaulic.com 17

7.0 REFERENCE MATERIALS

NOTE

For out-of-plane (three-dimensional) bends, care must be taken to avoid imparting torsional stress on the sprinkler.

7.0 REFERENCE MATERIALS

Aictaulic VICFLEX" STYLE VS1 DRY SPRINKLER ORDER FORM

SHIP TO:	
Name:	Date of Order:
Address:	Purchase Order:
	Ship Via:
City:	Tag:
State/Prov.:	Signature*:
Zip/Postal Code:	* I agree to purchase the dry sprinklers specified on this form, which are NON-RETURNABLE & NOT CANCELLABLE.

PART CODE CONFIGURATOR: Configure the part code with options from chart below. DO NOT circle pipe order lengths and increments. Input appropriate length and quantity for each in the chart below. Please attach additional forms if extra ordering space is needed. Separate forms must be completed for each configuration ordered.

•	Escutcheon Style	12 = Recessed 13 = Sleeve & Skirt 15 = Concealed
•	Flexible Sprinkler Length	380 = 38° 500 = 50° 580 = 58°
•	Escutcheon Finish	X = Stainless Steel W = White (RAL 9010) Painted Stainless Steel O = Concealed, No Escutcheon ^{2,4}
•	Sprinkler Finish	4 = White (RAL 9010) ¹ N = VC-250 ^{2,3}
4	K-Factor	4 = 5.6K
•	Response	Q = Quick S = Standard
•	Temperature	A = 135°F/57°C C = 155°F/68°C E = 175°F/79°° F = 200°F/93°C J = 286°F/141°C
•	Deflector	B = Pendent C = Horizontal Sidewall P = Concealed
•	Connection	3 = 1" NPT 8 = 25mm BSPT
3F	Style	3F = V35
A	Class	$\mathbf{A} = \text{VicFex}^w$

Not available with Deflector P = Concealed.

Deflector P = Concealed, No Escutcheon.

Deflector P = Concealed is only available with Sprinkler Finish N = VC-250 Coating and Escutcheon Finish 0 = Concealed, No Escutcheon. VC-250 coating is only available with stainless steel escutcheons. UL and FM approved corrosion resistant coating, and VdS and LPCB recognized

Send completed order form to pickvic@victaulic.com

Total Sprinklers with specs identical to part code configuration above

Coverplates sold separately.

Bracket	Size	Victaulic Part No.	Boxes (5 Brackets per Box)
Style VB1 Wood and metal stud or joist		A000000SLV	
Style VB2	24"	A24TBAR000	
Recessed pendent, suspended lay-in tile ceilings	48"	A48TBAR000	
Style VB3	24"	A240AQBVB3	
Concealed pendent, suspended lay-in tile ceilings	48"	A480AQBVB3	
Style VB4	24"	A240VB4VS1	
Sleeve and skirt pendent, suspended lay-in tile ceilings	48"	A480VB4VS1	

SF-DRYSPRINKLERS 17227 REV G 10/2023 © 2023 VICTAULIC COMPANY. ALL RIGHTS RESERVED.

7.0 REFERENCE MATERIALS (CONTINUED)

29.01: Victaulic Terms and Conditions of Sale I-VICFLEX: Field Installation Handbook

User Responsibility for Product Selection and Suitability

Each user bears final responsibility for making a determination as to the suitability of Victaulic products for a particular end-use application, in accordance with industry standards and project specifications, and the applicable building codes and related regulations as well as Victaulic performance, maintenance, safety, and warning instructions. Nothing in this or any other document, nor any verbal recommendation, advice, or opinion from any Victaulic employee, shall be deemed to alter, vary, supersede, or waive any provision of Victaulic Company's standard conditions of sale, installation guide, or this disclaimer.

Intellectual Property Rights

No statement contained herein concerning a possible or suggested use of any material, product, service, or design is intended, or should be constructed, to grant any license under any patent or other intellectual property right of Victaulic or any of its subsidaries or affiliates covering such use or design, or as a recommendation for the use of such material, product, service, or design in the infringement of any patent or other intellectual property right. The terms "Patented" or "Patent Pending" refer to design or utility patents or patent applications for articles and/or methods of use in the United States and/or other countries.

Note

This product shall be manufactured by Victaulic or to Victaulic specifications. All products to be installed in accordance with current Victaulic installation/assembly instructions. Victaulic reserves the right to change product specifications, designs and standard equipment without notice and without incurring obligations.

Installation

Reference should always be made to the Victaulic installation handbook or installation instructions of the product you are installing. Handbooks are included with each shipment of Victaulic products, providing complete installation and assembly data, and are available in PDF format on our website at www.victaulic.com.

Warranty

Refer to the Warranty section of the current Price List or contact Victaulic for details.

Trademarks

Victaulic and all other Victaulic marks are the trademarks or registered trademarks of Victaulic Company, and/or its affiliated entities, in the U.S. and/or other countries.

QUICK RESPONSE DRY PENDENT SPRINKLERS

The Viking Corporation, 210 N Industrial Park Drive, Hastings MI 49058

Telephone: 269-945-9501 Technical Services: 877-384-5464 Fax: 269-818-1680 Email: techsvcs@vikingcorp.com Visit the Viking website for the latest edition of this technical data page: www.vikinggroupinc.com

1. DESCRIPTION

Viking Quick Response Dry Pendent Sprinklers are thermosensitive spray sprinklers suitable for use in areas subject to freezing. The sprinklers are designed for dry systems and preaction systems where it is necessary to prevent water or condensation from entering the drop nipple before sprinkler operation. They may also be installed in spaces subject to freezing and supplied from a wet system in an adjacent heated area.

Viking Quick Response Dry Pendent Sprinklers are available in various finishes and temperature ratings to meet design requirements. The special Polyester and Electroless Nickel PTFE (ENT) coatings have been investigated for installation in corrosive atmospheres and are listed/approved as corrosion resistant as indicated in the Approval Charts. (Note: FM Global has no approval classification for Polyester coatings as corrosion resistant.)

WARNING: Cancer and Reproductive Harmwww.P65Warnings.ca.gov

2. LISTINGS AND APPROVALS

c(UL)us culus Listed: Category VNIV

FM Approved: Classes 2013 and 2015 NYC Approved: MEA 89-92-E Volume 15

Refer to Approval Chart 1 and Design Criteria on page 105d for cULus Listing requirements, and refer to Approval Chart 2 and Design Criteria on page 105e for FM Approval requirements that must be followed.

3. TECHNICAL DATA

Specifications:

Minimum Operating Pressure: 7 psi (0.5 bar) Maximum Working Pressure: 175 psi (12 bar). Factory tested hydrostatically to 500 psi (34.5 bar)

Thread size: 1" NPT or 25 mm BSP

Nominal K-Factor: 5.6 U.S. (80.6 metric*) for all listed and approved lengths.

* Metric K-factor measurement shown is when pressure is measured in Bar. When pressure is measured in kPa, divide the metric K-factor shown by 10.0.

Glass-bulb fluid temperature rated to -65 °F (-55 °C)

Covered by the following U.S. Patents: 8,636,075 and 10,220,231

Material Standards:

Frame Casting: Brass UNS-C84400 Deflector: Brass UNS-C26000 Bulb: Glass, nominal 3 mm diameter

Belleville Spring Sealing Assembly: Nickel Alloy, coated on both sides with PTFE Tape

Compression Screw: Brass UNS-C36000 Pip Cap: Brass UNS-C31400 or UNS-C31600 Pip Cap Adapter: Brass UNS-C36000 Orifice: Copper UNS-C22000 or UNS-C11000

Tube: ERW Hydraulic Steel Tube

Support (Internal): Stainless Steel UNS-S30400

Barrel: Steel Pipe UNS-G10260, Electrodeposited Epoxy Base finish

Barrel End and Threads: QM Brass

Sleeve (for Adjustable Standard style only): Brass UNS-C26000 or UNS-C26800

Escutcheon Materials:

Adjustable Standard Dry Escutcheons: Brass UNS-C26000 or UNS-C26800

Recessed Dry Escutcheons: Cold Rolled Steel UNS-G10080

ENT Coated Adjustable and Recessed Escutcheons: Stainless Steel UNS-S30400

Ordering Information: (Also refer to the current Viking price list.)

QUICK RESPONSE DRY PENDENT SPRINKLERS

The Viking Corporation, 210 N Industrial Park Drive, Hastings MI 49058

Telephone: 269-945-9501 Technical Services: 877-384-5464 Fax: 269-818-1680 Email: techsvcs@vikingcorp.com Visit the Viking website for the latest edition of this technical data page: www.vikinggroupinc.com

Order Quick Response Dry Pendent Sprinklers by first adding the appropriate suffix for the sprinkler finish, the appropriate suffix for the temperature rating, and then the suffix for the length ("A" dimension) to sprinkler base part number. Order in a specific length noted as the "A" dimension. The "A" dimension is the distance from the face of the fitting (tee) to the desired finished surface of the ceiling.

These sprinklers are listed and approved in lengths from 1-1/2" to 45-1/2" (38.1 mm to 1,156 mm) for the adjustable standard style, 3" to 47" (76.2 mm to 1,194 mm) for the plain barrel style, and 3-1/4" to 47-1/2" (82.5 mm to 1,207 mm) for the adjustable recessed style. Lengths exceeding the standard lengths are available, with no approvals, on a "made-to-order" basis: Recessed Dry Pendent up to 65-1/2" (1,664 mm). Adjustable Standard Dry Pendent up to 63-1/2" (1,613 mm). Plain Barrel Dry Pendent up to 65" (1,651 mm). Contact the manufacturer for more information.

Finish Suffix: Brass = A, Chrome = F, White Polyester = M-/W, and ENT = JN

Temperature Suffix: 155 °F (68 °C) = B, 175 °F (79 °C) = D, 200 °F (93 °C) = E, 286 °F (141 °C) = G

For example, sprinkler VK176 with a Chrome finish and a 155 °F (68 °C) temperature rating, and "A" length of 10" = Part No. 08383UFB10.

Available Finishes And Temperature Ratings: Refer to Table 1.

Accessories: (Also refer to the "Sprinkler Accessories" section of the Viking data book.)

Sprinkler Wrenches:

A. Standard Wrench: Part No. 07297W/B (available since 1991)

B. Wrench for recessed sprinklers: Part No. 07565W/B** (available since 1991)

**A 1/2" ratchet is required (not available from Viking).

Sprinkler Guard: Chrome, with no listings or approvals, for installation on dry pendent sprinklers made after May 1994 only (Part No. 08954). **Replacement Escutcheons:**

A. Adjustable Standard Dry Escutcheon: Base Part No. 07741

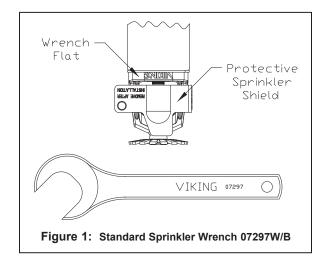
B. Recessed Dry Escutcheon Cup: Base Part No. 05459A

4. INSTALLATION

Refer to appropriate NFPA Installation Standards.

5. OPERATION

During fire conditions, the heat-sensitive liquid in the glass bulb expands, causing the glass to shatter, releasing the internal parts to open the waterway. Water flowing through the sprinkler orifice strikes the sprinkler deflector, forming a uniform spray pattern to extinguish or control the fire.


INSPECTIONS, TESTS & MAINTENANCE Refer to NFPA 25 for Inspection, Testing and Maintenance requirements.

7. AVAILABILITY

The Viking Quick Response Dry Pendent Sprinkler is available through a network of domestic and international distributors. See The Viking Corporation web site for the closest distributor or contact The Viking Corporation.

8. GUARANTEE

For details of warranty, refer to Viking's current list price schedule or contact Viking directly.

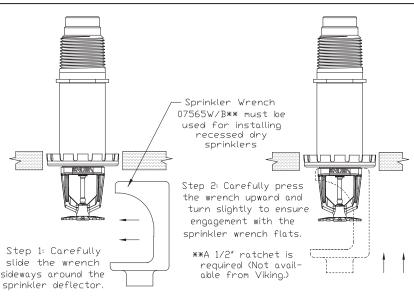


Figure 2: Wrench 07565W/B for Adjustable Recessed Dry Pendent Sprinklers

QUICK RESPONSE DRY PENDENT SPRINKLERS

The Viking Corporation, 210 N Industrial Park Drive, Hastings MI 49058
Telephone: 269-945-9501 Technical Services: 877-384-5464 Fax: 269-818-1680 Email: techsvcs@vikingcorp.com
Visit the Viking website for the latest edition of this technical data page: www.vikinggroupinc.com

TABLE 1: AVAILABLE SPRINKLER TEMPERATURE RATINGS AND FINISHES								
Sprinkler Temperature Classification	Sprinkler Nominal Temperature Rating ¹	Maximum Ambient Ceiling Temperature ²	Bulb Color					
Ordinary	155 °F (68 °C)	100 °F (38 °C)	Red					
Intermediate	175 °F (79 °C)	150 °F (65 °C)	Yellow					
Intermediate	200 °F (93 °C)	150 °F (65 °C)	Green					
High	286 °F (141 °C)	225 °F (107 °C)	Blue					

Sprinkler Finishes: Brass, Chrome, White Polyester, and ENT

Corrosion-Resistant Coating^{3,4}: White Polyester and ENT in all temperature ratings

Footnotes

- ¹ The sprinkler temperature rating is stamped on the deflector.
- ² Based on NFPA-13. Other limits may apply, depending on fire loading, sprinkler location, and other requirements of the Authority Having Jurisdiction. Refer to specific installation standards.
- ³ The corrosion-resistant Polyester and ENT coatings have passed the standard corrosion test required by the approving agencies indicated in the Approval Charts. These tests cannot and do not represent all possible corrosive environments. Note: These coatings are NOT corrosion proof. Prior to installation, verify through the end-user that the coatings are compatible with or suitable for the proposed environment. Polyester and ENT coatings are applied to the exposed exterior surfaces only. Note that the spring is exposed on sprinklers with Polyester and ENT coatings.
- ⁴ When installed in some corrosive environments, the Polyester finish may change color. This natural discoloration over time is not in itself an indication of corrosion and should not be treated as such. All sprinklers installed in corrosive environments should be replaced or tested as described in NFPA 25 on a more frequent basis.

For "A" Dimension: 1. Determine the distance from the face of the tee to the finished ceiling, 2. Round to the nearest 1/2" (12.7 mm) between 1-1/2" and 45-1/2" (38.1 mm and 1,156 mm). NDTE: The deflector will be located approximately 3-7/16'' (87.3 mm) below the ceiling. with 1'' (25.4 mm) upward and 1'' (25.4 mm) downward adjustment. Deflector at minimum distance below ceiling To locate the deflector at the minimum distance below the ceiling, with no downward adjustment 7/16" available, order the Minimum ceiling opening (61.9 mm) dry pendent sprinkler diameter: 1-3/4" (44.5 mm). Miņimum 1" (25.4 mm) shorter Maximum ceiling opening than the "A" dimension. diameter: 2-1/4" (57 mm). 13/16" ΝΠΤΕ: (20.6 mm)To locate the deflector Finished at the maximum distance Ceiling 4-7/16" below the ceiling, with 1-1/2"-(112.7 mm) -Sleeve finish no downward adjustment (38.1 mm) Maximum matches escutcheon. available, order the diameter dry pendent sprinkler 3-1/161" (25.4 mm) longer than the "A" dimension. (77.8 mm)Deflector at maximum distance below ceiling.

Figure 3: Adjustable Standard Dry Pendent Sprinkler

QUICK RESPONSE DRY PENDENT SPRINKLERS

The Viking Corporation, 210 N Industrial Park Drive, Hastings MI 49058
Telephone: 269-945-9501 Technical Services: 877-384-5464 Fax: 269-818-1680 Email: techsvcs@vikingcorp.com
Visit the Viking website for the latest edition of this technical data page: www.vikinggroupinc.com

					App	oroval C	hart 1 (UL	.)				perature	KEY	1
Quick Response Dry Pendent Sprinklers Maximum 175 PSI (12 bar) WWP														
Sprinkler SIN	SIN	Style	Thre	ad Size	Nomina	I K-Factor ²	Order Length	Increment				Approv		
Base Part No.1			NPT	BSP	U.S.	metric ³	Inches	mm	cULus⁵	NYC ⁶	VdS	LPCB	ϵ	0
08383U	VK176	Adjustable	1"		5.6	80.6	1/2"	12.7	A1, A5	A1				
16457U	VICI70	Standard		25 mm		80.6	1/2"	12.7	A1, A5					
08385U	VK180	Adjustable	1"		5.6	80.6	1/4"	6.35	B2, B6	B2				
16453U	VK100	Recessed		25 mm		80.6	1/4"	6.35	B2, B6					
08387U	VK172	Plain	1"		5.6	80.6	1/2"	12.7	A3	A4				
16455U	VN1/2	Barrel		25 mm		80.6	1/2"	12.7	A3					

Approved Temperature Ratings

- A 155 °F (68 °C), 175 °F (79°C), 200 °F (93 °C), and 286 °F (141 °C)
- B 155 °F (68 °C), 175 °F (79°C), and 200 °F (93 °C)

Approved Finishes and "A" Dimensions

- 1 Chrome or White Polyester⁷ sprinkler with a Chrome or White Polyester Sleeve and Escutcheon with "A" dimensions 1-1/2" to 45-1/2" (38.1 mm to 1,156 mm)
- 2 Chrome or White Polyester⁷ with "A" dimensions 3-1/4" to 47-1/2" (82.5 mm to 1,207 mm)
- 3 Chrome, Brass, White Polyester⁷, or ENT⁷ with "A" dimensions 3" to 47" (76.2 mm to 1,194 mm)
- 4 Chrome or Brass with "A" dimensions 3" to 47" (76.2 mm to 1,194 mm)
- 5 ENT⁷ sprinkler with an ENT⁷ Sleeve and Escutcheon with "A" dimensions 1-1/2" to 45-1/2" (38.1 mm to 1,156 mm)
- 6 ENT⁷ with "A" dimensions 3-1/4" to 47-1/2" (82.5 mm to 1,207 mm)

Footnotes

- ¹ Part number shown is the base part number. For complete part number, refer to current Viking price list schedule.
- ² K-Factor applies for standard lengths ("A" Dimensions indicated above).
- ³ Metric K-factor measurement shown is when pressure is measured in Bar. When pressure is measured in kPa, divide the metric K-factor shown by 10.0.
- ⁴ This chart shows the listings and approvals available at the time of printing. Other approvals may be in process. Check with the manufacturer for any additional approvals.
- ⁵ Listed by Underwriter's Laboratories for use in the U.S. and Canada.
- ⁶ Accepted for use, City of New York Department of Buildings, MEA Number 89-92-E, Vol. 15.
- 7 cULus Listed as corrosion resistant.

DESIGN CRITERIA - UL

(Also refer to Approval Chart 1 above.)

NOTE: When using CPVC fittings with Viking dry sprinklers, use only new Nibco Model 5012-S-BI tees. When selecting other CPVC fittings, contact Viking Technical Services.

cULus Listing Requirements:

Standard Dry Pendent Sprinklers are cULus Listed as indicated in Approval Chart 1 for installation in accordance with the latest edition of NFPA 13 for standard spray sprinklers.

- Designed for use in Light and Ordinary Hazard occupancies.
- The sprinkler installation and obstruction rules contained in NFPA 13 for standard spray pendent sprinklers must be followed.

IMPORTANT: Always refer to Bulletin Form No. F_091699 - Care and Handling of Sprinklers. Also refer to Form F_080614 for general care, installation, and maintenance information. Viking sprinklers are to be installed in accordance with the latest edition of Viking technical data, the appropriate standards of NFPA, LPCB, APSAD, VdS or other similar organizations, and also with the provisions of governmental codes, ordinances, and standards, whenever applicable.

QUICK RESPONSE DRY PENDENT SPRINKLERS

The Viking Corporation, 210 N Industrial Park Drive, Hastings MI 49058

Telephone: 269-945-9501 Technical Services: 877-384-5464 Fax: 269-818-1680 Email: techsvcs@vikingcorp.com Visit the Viking website for the latest edition of this technical data page: www.vikinggroupinc.com

	Temperature KEY										
	Quick Response Dry Pendent Sprinklers Maximum 175 PSI (12 bar) WWP										
Sprinkler Base	Thread Size Nominal K-Factor ² Order Length Increment							h Increment	FM Approvals⁴		
Part No.1	SIN	Style	NPT	BSP	U.S.	metric ³	Inches	mm	(Refer also to Design Criteria below.)		
08383U	\///17G	VK176	Adjustable Standard	1"		5.6	80.6	1/2"	12.7	A1	
16457U	VK1/0	Adjustable Standard		25 mm		80.6	1/2"	12.7	A1		
08385U	VK180	Adjustable Recessed	1"		5.6	80.6	1/4"	6.35	B2		
16453U	VICTOU	Aujustable Necesseu		25 mm		80.6	1/4"	6.35	B2		
08387U	VK172	Plain Barrel	1"		5.6	80.6	1/2"	12.7	A3		
16455U	VKI/Z	Piairi Darrei		25 mm		80.6	1/2"	12.7	A3		

Approved Temperature Ratings

- A 155 °F (68 °C), 175 °F (79 °C), 200 °F (93 °C), and 286 °F (141 °C)
- B 155 °F (68 °C), 175 °F (79°C), and 200 °F (93 °C)

Approved Finishes and "A" Dimensions

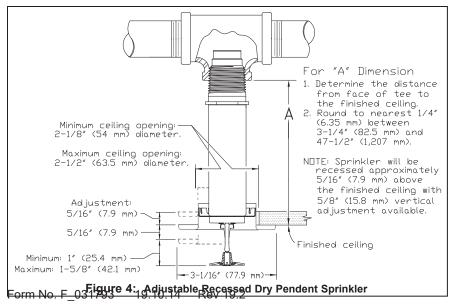
- 1 Brass, Chrome, White Polyester, or ENT⁵ sprinkler with a Brass, Chrome, White Polyester, or ENT⁵ Sleeve and Escutcheon with "A" dimensions 1-1/2" to 45-1/2" (38.1 mm to 1,156 mm)
- 2 Brass, Chrome, White Polyester, or ENT5 with "A" dimensions 3-1/4" to 47-1/2" (82.5 mm to 1,207 mm)
- 3 Brass, Chrome, White Polyester, or ENT⁵ with "A" dimensions 3" to 47" (76.2 mm to 1,194 mm)

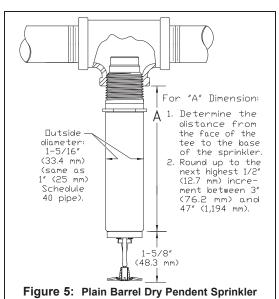
Footnotes

- ¹ Part number shown is the base part number. For complete part number, refer to current Viking price list schedule.
- ² K-Factor applies for standard lengths ("A" Dimensions indicated above).
- Metric K-Factor measurement shown is when pressure is measured in Bar. When pressure is measured in kPa, divide the metric K-factor shown by 10.0.
- ⁴ This chart shows the FM Approvals available at the time of printing. Other approvals may be in process. Check with the manufacturer for any additional approvals.
- ⁵ FM approved as corrosion resistant

DESIGN CRITERIA - FM

(Also refer to Approval Chart 2 above.)


NOTE: When using CPVC fittings with Viking dry sprinklers, use only new Nibco Model 5012-S-BI tees. When selecting other CPVC fittings, contact Viking Technical Services.


FM Approval Requirements:

The Dry Pendent Sprinklers in the Approval Chart above are FM Approved as quick response **Non-storage** standard spray sprinklers as indicated in the FM Approval Guide. For specific application and installation requirements, reference the latest applicable FM Loss Prevention Data Sheets (including 2-0) and Technical Advisory Bulletins. FM Global Loss Prevention Data Sheets and Technical Advisory Bulletins contain guidelines relating to, but not limited to: minimum water supply requirements, hydraulic design, ceiling slope and obstructions, minimum and maximum allowable spacing, and deflector distance below the ceiling.

NOTE: The FM installation guidelines may differ from cULus and/or NFPA criteria.

IMPORTANT: Always refer to Bulletin Form No. F_091699 - Care and Handling of Sprinklers. Also refer to Form F_080614 for general care, installation, and maintenance information. Viking sprinklers are to be installed in accordance with the latest edition of Viking technical data, the appropriate standards of NFPA, FM Global, LPCB, APSAD, VdS or other similar organizations, and also with the provisions of governmental codes, ordinances, and standards, whenever applicable.

QUICK RESPONSE DRY PENDENT SPRINKLERS

The Viking Corporation, 210 N Industrial Park Drive, Hastings MI 49058
Telephone: 269-945-9501 Technical Services: 877-384-5464 Fax: 269-818-1680 Email: techsvcs@vikingcorp.com
Visit the Viking website for the latest edition of this technical data page: www.vikinggroupinc.com

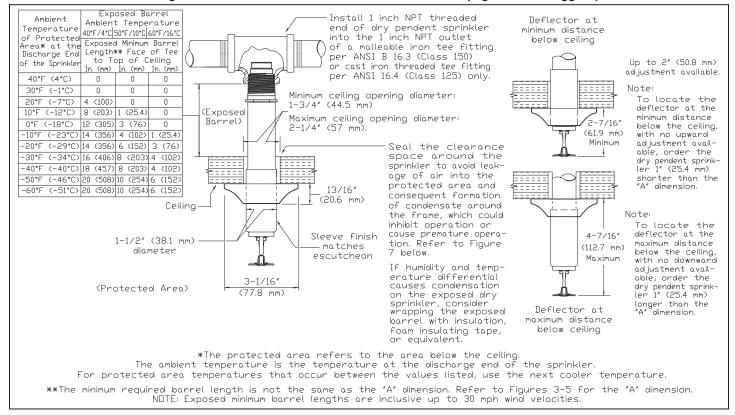


Figure 6: Dry Pendent Sprinkler Required Minimum Barrel Length Based on Ambient Temperature in the Protected Area (Adjustable Standard Dry Pendent Sprinkler is Shown)

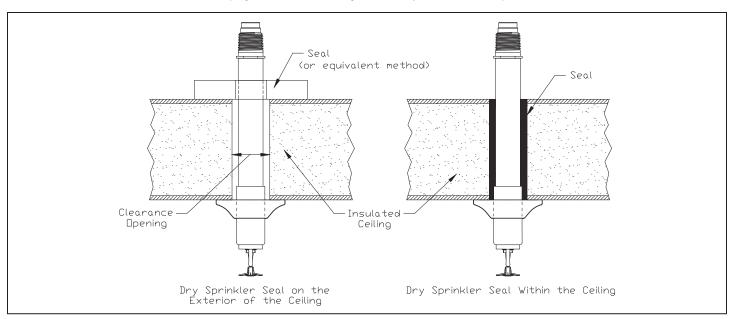


Figure 7: Dry Sprinkler Seal (Adjustable Standard Dry Pendent Sprinkler is Shown)

CARE AND HANDLING OF SPRINKLERS

The Viking Corporation, 210 N Industrial Park Drive, Hastings MI 49058

Telephone: 269-945-9501 Technical Services: 877-384-5464 Fax: 269-818-1680 Email: techsycs@vikingcorp.com

SPRINKLERS ARE FRAGILE - HANDLE WITH CARE!

General Handling and Storage:

- · Store sprinklers in a cool, dry place.
- Protect sprinklers during storage, transport, handling, and after installation.
- · Use the original shipping containers. DO NOT place sprinklers loose in boxes, bins, or buckets.
- · Keep sprinklers separated at all times. DO NOT allow metal parts to contact sprinkler operating elements.

For Pre-Assembled Drops:

- · Protect sprinklers during handling and after installation.
- For recessed assemblies, use the protective sprinkler cap (Viking Part Number 10364).

Sprinklers with Protective Shields or Caps:

- DO NOT remove shields or caps until after sprinkler installation and there no longer is potential for mechanical damage to the sprinkler operating elements.
- · Sprinkler shields or caps MUST be removed BEFORE placing the system in
- Remove the sprinkler shield by carefully pulling it apart where it is snapped together.
- · Remove the cap by turning it slightly and pulling it off the sprinkler.

Sprinkler Installation:

- · DO NOT use the sprinkler deflector or operating element to start or thread the sprinkler into a fitting.
- · Use only the designated sprinkler head wrench! Refer to the current sprinkler technical data page to determine the correct wrench for the model of sprinkler used.
- · DO NOT install sprinklers onto piping at the floor level.
- · Install sprinklers after the piping is in place to prevent mechanical damage.
- · DO NOT allow impacts such as hammer blows directly to sprinklers or to fittings, pipe, or couplings in close proximity to sprinklers. Sprinklers can be damaged from direct or indirect impacts.
- DO NOT attempt to remove drywall, paint, etc., from sprinklers.
- Take care not to over-tighten the sprinkler and/or damage its operating parts! **Maximum Torque:**

1/2" NPT: 14 ft-lbs. (19.0 N-m) 3/4" NPT: 20 ft-lbs. (27.1 N-m) 1" NPT: 30 ft-lbs. (40.7 N-m)

(Original container used)

INCORRECT (Placed loose in box)

(Protected with caps)

INCORRECT (Protective caps not used)

CORRECT (Piping is in place at the ceiling)

INCORRECT (Sprinkler at floor level)

CORRECT (Special installation wrenches)

INCORRECT (Designated wrench not used)

A WARNING

Any sprinkler with a loss of liquid from the glass bulb or damage to the fusible element should be destroyed. Never install sprinklers that have been dropped, damaged, or exposed to temperatures exceeding the maximum ambient temperature allowed. Sprinklers that have been painted in the field must be replaced per NFPA 13. Protect sprinklers from paint and paint overspray in accordance with the installation standards. Do not clean sprinklers with soap and water, ammonia, or any other cleaning fluid. Do not use adhesives or solvents on sprinklers or their operating elements.

Refer to the appropriate technical data page and NFPA standards for complete care, handling, installation, and maintenance instructions. For additional product and system information Viking data pages and installation instructions are available on the Viking Web site at www.vikinggroupinc.com.

CARE AND HANDLING OF SPRINKLERS

The Viking Corporation, 210 N Industrial Park Drive, Hastings MI 49058

Telephone: 269-945-9501 Technical Services: 877-384-5464 Fax: 269-818-1680 Email: techsycs@vikingcorp.com

PROTECTIVE SPRINKLER SHIELDS AND CAPS

General Handling and Storage:

Many Viking sprinklers are available with a plastic protective cap or shield temporarily covering the operating elements. The snapon shields and caps are factory installed and are intended to help protect the operating elements from mechanical damage during shipping, storage, and installation. NOTE: It is still necessary to follow the care and handling instructions on the appropriate sprinkler technical data sheets* when installing sprinklers with bulb shields or caps.

WHEN TO REMOVE THE SHIELDS AND CAPS:

NOTE: SHIELDS AND CAPS MUST BE REMOVED FROM SPRINKLERS BEFORE PLACING THE SYSTEM IN SERVICE!

Remove the shield or cap from the sprinkler only after checking all of the following:

- · The sprinkler has been installed*.
- The wall or ceiling finish work is completed where the sprinkler is installed and there no longer is a potential for mechanical damage to the sprinkler operating elements.

SHIELDS AND CAPS MUST BE REMOVED FROM SPRINKLERS BEFORE PLACING THE SYSTEM IN SERVICE!

Figure 1: Sprinkler shield being removed from a pendent sprinkler.

Figure 2: Sprinkler cap being removed from a pendent sprinkler.

Figure 3: Sprinkler cap being removed from and upright sprinkler.

HOW TO REMOVE SHIELDS AND CAPS:

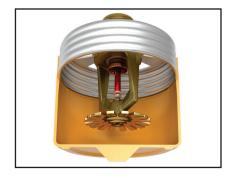
No tools are necessary to remove the shields or caps from sprinklers. DO NOT use any sharp objects to remove them! Take care not to cause mechanical damage to sprinklers when removing the shields or caps. When removing caps from fusible element sprinklers, use care to prevent dislodging ejector springs or damaging fusible elements. NOTE: Squeezing the sprinkler cap excessively could damage sprinkler fusible elements.

- To remove the shield, simply pull the ends of the shield apart where it is snapped together. Refer to Figure 1.
- To remove the cap, turn it slightly and pull it off the sprinkler. Refer to Figures 2 and 3.

NOTICE Refer to the current sprinkler technical data page to determine the correct sprinkler wrench for the model of sprinkler used.

Never install sprinklers that have been dropped, damaged, or exposed to temperatures in excess of the maximum ambient temperature allowed.

* Refer to the appropriate current technical data pages for complete care, handling, and installation instructions. Data pages are included with each shipment from Viking or Viking distributors. They can also be found on the Web site at www. vikinggroupinc.com.



CARE AND HANDLING OF SPRINKLERS

The Viking Corporation, 210 N Industrial Park Drive, Hastings MI 49058
Telephone: 269-945-9501 Technical Services: 877-384-5464 Fax: 269-818-1680 Email: techsvcs@vikingcorp.com

▲ CAUTION CONCEALED COVER ASSEMBLIES ARE FRAGILE!

TO ASSURE SATISFACTORY PERFORMANCE OF THE PRODUCT, HANDLE WITH CARE.

Concealed Sprinkler and Adapter Assembly with Protective Cap

Concealed Sprinkler and Adapter Assembly (Protective Cap Removed)

Cover Plate Assembly (Pendent Cover 12381 shown)

GENERAL HANDLING AND STORAGE INSTRUCTIONS:

- Do not store in temperatures exceeding 100 °F (38 °C). Avoid direct sunlight and confined areas subject to heat.
- · Protect sprinklers and cover assemblies during storage, transport, handling, and after installation.
- -- Use original shipping containers.
- -- Do not place sprinklers or cover assemblies loose in boxes, bins, or buckets.
- Keep the sprinkler bodies covered with the protective sprinkler cap any time the sprinklers are shipped or handled, during testing of the system, and while ceiling finish work is being completed.
- Use only the designated Viking recessed sprinkler wrench (refer to the appropriate sprinkler data page) to install these sprinklers. **NOTE:** The protective cap is temporarily removed during installation and then placed back on the sprinkler for protection until finish work is completed.
- Do not over-tighten the sprinklers into fittings during installation.
- Do not use the sprinkler deflector to start or thread the sprinklers into fittings during installation.
- · Do not attempt to remove drywall, paint, etc., from the sprinklers.
- Remove the plastic protective cap from the sprinkler before attaching the cover plate assembly. PROTECTIVE CAPS <u>MUST</u> BE REMOVED FROM SPRINKLERS BEFORE PLACING THE SYSTEM IN SERVICE!

Refer to the appropriate current technical data pages for complete care, handling, and installation instructions. Data pages are included with each shipment from Viking or Viking distributors. They can also be found on the Web site at www. vikinggroupinc.com.

CARE AND HANDLING OF SPRINKLERS

The Viking Corporation, 210 N Industrial Park Drive, Hastings MI 49058

Telephone: 269-945-9501 Technical Services: 877-384-5464 Fax: 269-818-1680 Email: techsvcs@vikingcorp.com

USE THE FOLLOWING PRECAUTIONS WHEN HANDLING WAX-COATED SPRINKLERS

Many of Viking's sprinklers are available with factory-applied wax coating for corrosion resistance. These sprinklers MUST receive appropriate care and handling to avoid damaging the wax coating and to assure satisfactory performance of the product.

General Handling and Storage of Wax-Coated Sprinklers:

- Store the sprinklers in a cool, dry place (in temperatures below the maximum ambient temperature allowed for the sprinkler temperature rating. Refer to Table 1 below.)
- · Store containers of wax-coated sprinklers separate from other sprinklers.
- · Protect the sprinklers during storage, transport, handling, and after installation.
- · Use original shipping containers.
- · Do not place sprinklers in loose boxes, bins, or buckets.

Installation of Wax-Coated Sprinklers:

Use only the special sprinkler head wrench designed for installing wax-coated Viking sprinklers (any other wrench may damage the unit).

- · Take care not to crack the wax coating on the units.
- For touching up the wax coating after installation, wax is available from Viking in bar form. Refer to Table 1 below. The coating MUST be repaired after sprinkler installation to protect the corrosion-resistant properties of the sprinkler.
- Use care when locating sprinklers near fixtures that can generate heat. Do not install sprinklers where they would be exposed to temperatures exceeding the maximum recommended ambient temperature for the temperature rating used.
- Inspect the coated sprinklers frequently soon after installation to verify the integrity of the corrosion resistant coating. Thereafter, inspect representative samples of the coated sprinklers in accordance with NFPA 25. Close up visual inspections are necessary to determine whether the sprinklers are being affected by corrosive conditions.

		TABLE 1		
Sprinkler Temperature Rating (Fusing Point)	Wax Part Number	Wax Melting Point	Maximum Ambient Ceiling Temperature ¹	Wax Color
155 °F (68 °C) / 165 °F (74 °C)	02568A	148 °F (64 °C)	100 °F (38 °C)	Light Brown
175 °F (79 °C)	04146A	161 °F (71 °C)	150 °F (65 °C)	Brown
200 °F (93 °C)	04146A	161 °F (71 °C)	150 °F (65 °C)	Brown
220 °F (104 °C)	02569A	170 °F (76 °C)	150 °F (65 °C)	Dark Brown
286 °F (141 °C)	02569A	170 °F (76 °C)	150 °F (65 °C)	Dark Brown

¹Based on NFPA-13. Other limits may apply, depending on fire loading, sprinkler location, and other requirements of the Authority Having Jurisdiction. Refer to specific installation standards.

▲WARNING

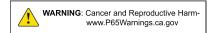
Never install sprinklers that have been dropped, damaged, or exposed to temperatures in excess of the maximum ambient temperature allowed.

Refer to the appropriate current technical data pages for complete care, handling, and installation instructions. Data pages are included with each shipment from Viking or Viking distributors. They can also be found on the Web site at www. vikinggroupinc.com.

SPRINKLER OVERVIEW

The Viking Corporation, 210 N Industrial Park Drive, Hastings MI 49058

Telephone: 269-945-9501 Technical Services: 877-384-5464 Fax: 269-818-1680 Email: techsvcs@vikingcorp.com


1. DESCRIPTION

Viking fire sprinklers consist of a threaded frame with a specific waterway or orifice size and a deflector for distributing water in a specified pattern. A closed or sealed sprinkler refers to a complete assembly, including the thermosensitive operating element. An open sprinkler does not use an operating element and is open at all times. The distribution of water is intended to extinguish a fire or to control its spread.

Viking sprinklers are available in several models and styles. Refer to specific sprinkler technical data pages for available styles, finishes, temperature ratings, thread sizes, and nominal K-Factors for the particular model selected.

2. LISTINGS AND APPROVALS

Refer to the Approval Charts on the appropriate sprinkler technical data page(s) and/or approval agency listings.

3. TECHNICAL DATA

Pressure Ratings:

Maximum allowable water working pressure is 175 psig (12 Bar) unless rated and specified for high water working pressure [250 psig (17.2 bar)].

Sprinkler Identification:

Viking sprinklers are identified and marked with the word "Viking", the sprinkler identification number (SIN) consisting of "VK" plus a three digit number*, the model letter, and the year of manufacture.

Available Finishes:

Viking sprinklers are available in several decorative finishes. Some models are available with corrosion-resistant coatings or are fabricated from non-corrosive material. Refer to the sprinkler technical data page for additional information.

Available Temperature Ratings:

Viking sprinklers are available in several temperature ratings that relate to a specific temperature classification. Applicable installation rules mandate the use and limitations of each temperature classification. In selecting the appropriate temperature classification, the maximum expected ceiling temperature must be known. When there is doubt as to the maximum temperature at the sprinkler location, a maximum-reading thermometer should be used to determine the temperature under conditions that would show the highest readings to be expected. In addition, recognized installation rules may require a higher temperature classification, depending upon sprinkler location, occupancy classification, commodity classification, storage height, and other hazards. In all cases, the maximum expected ceiling temperature dictates the lowest allowable temperature classification. Sprinklers located immediately adjacent to a heat source may require a higher temperature rating.

K-Factors:

Viking sprinklers are available in several orifice sizes with related K-Factors. The orifice is a tapered waterway and, therefore, the K-Factor given is nominal. Nominal U.S. K-Factors are provided in accordance with the 1999 edition of NFPA 13, Section 3-2.3. Refer to the specific data page for appropriate K-Factor information.

Available Styles:

Viking sprinklers are available for installation in several positions as indicated by a stamping on the deflector. The deflector style dictates the appropriate installation position of the sprinkler; it breaks the solid stream of water issuing from the sprinkler orifice to form a specific spray pattern. The following list indicates the various styles and identification of Viking sprinklers.

<u>UPRIGHT SPRINKLER:</u> A sprinkler intended to be installed with the deflector above the frame so water flows upward through the orifice, striking the deflector and forming an umbrella-shaped spray pattern downward. Marked "SSU" (Standard Sprinkler Upright) or "UPRIGHT" on the deflector.

Viking Technical Data may be found on

<u>PENDENT SPRINKLER:</u> A sprinkler intended to be oriented with the deflector below the frame so water flows downward through the orifice, striking the deflector and forming an umbrella-shaped spray pattern downward. Marked "SSP" (Standard Sprinkler Pendent) or "PENDENT" on the deflector.

Viking Technical Data may be found on The Viking Corporation's Web site at http://www.vikinggroupinc.com. The Web site may include a more recent edition of this Technical Data Page.

CONVENTIONAL SPRINKLER: An "old style" sprinkler intended to be installed with the deflector in either the upright or pendent position. The deflector provides a spherical type pattern with 40 to 60 percent of the water initially directed downward and a proportion directed upward. Must be installed in accordance with installation rules for conventional or old style sprinklers. DO NOT USE AS A REPLACEMENT FOR STANDARD SPRAY SPRINKLERS. Marked "C U/P" (Conventional Upright/Pendent) on the deflector.

SPRINKLER OVERVIEW

The Viking Corporation, 210 N Industrial Park Drive, Hastings MI 49058
Telephone: 269-945-9501 Technical Services: 877-384-5464 Fax: 269-818-1680 Email: techsvcs@vikingcorp.com

- <u>VERTICAL SIDEWALL (VSW) SPRINKLER:</u> A sprinkler intended for installation near the wall and ceiling. The deflector provides a water spray pattern outward in a quarter-spherical pattern and can be installed in the upright or pendent position with the flow arrow in the direction of discharge. Marked "SIDEWALL" on the deflector with an arrow and the word "FLOW". (Note: Some vertical sidewall sprinklers can only be installed in the upright or pendent position—in this case, the sprinkler will also be marked "UPRIGHT" or "PENDENT".)
- <u>HORIZONTAL SIDEWALL (HSW) SPRINKLER:</u> A sprinkler intended for installation near the wall and ceiling. The special deflector provides a water spray pattern outward in a quarter-spherical pattern. Most of the water is directed away from the nearby wall with a small portion directed at the wall behind the sprinkler. The top of the deflector is oriented parallel with the ceiling or roof. The flow arrows point in the direction of discharge. Marked "SIDEWALL" and "TOP" with an arrow and the word "FLOW".
- EXTENDED COVERAGE (EC) SPRINKLER: A spray sprinkler designed to discharge water over an area having the maximum dimensions indicated in the individual listings. Maximum area of coverage, minimum flow rate, orifice size, and nominal K-Factor are specified in the individual listings. EC sprinklers are intended for Light-Hazard occupancies with smooth, flat, horizontal ceilings unless otherwise specified. In addition to the above markings, the sprinkler is marked "EC".
- QUICK RESPONSE (QR) SPRINKLER: A spray sprinkler with a fast- actuating operating element. The use of quick response sprinklers may be limited due to occupancy and hazard. Refer to the Authority Having Jurisdiction (AHJ) prior to installing.
- QUICK RESPONSE EXTENDED COVERAGE (QREC) SPRINKLER: A spray sprinkler designed to discharge water over an area having the maximum dimensions indicated in the individual listing. This is a sprinkler with an operating element that meets the criteria for quick response. QREC sprinklers are only intended for Light Hazard occupancies. The sprinkler is marked "QREC".
- <u>FLUSH SPRINKLER:</u> A decorative spray sprinkler intended for installation with a concealed piping system. The unit is mounted flush with the ceiling or wall, with the fusible link exposed. Upon actuation, the deflector extends beyond the ceiling or wall to distribute water discharge. The sprinkler is marked "SSP", "PEND", or "SIDEWALL" and "TOP".
- CONCEALED SPRINKLER: A decorative spray sprinkler intended for installation with a concealed piping system. The sprinkler is hidden from view by a cover plate installed flush with the ceiling or wall. During fire conditions, the cover plate detaches, and upon sprinkler actuation, the deflector extends beyond the ceiling or wall to distribute water discharge. The sprinkler is marked "SSP", "PEND", or "SIDEWALL" and "TOP".
- RECESSED SPRINKLER: A spray sprinkler assembly intended for installation with a concealed piping system. The assembly consists of a sprinkler installed in a decorative adjustable recessed escutcheon that minimizes the protrusion of the sprinkler beyond the ceiling or wall without adversely affecting the sprinkler distribution or sensitivity. Refer to the appropriate technical data page for allowable sprinkler models, temperature ratings, and occupancy classifications. DO NOT RECESS ANY SPRINKLER NOT LISTED FOR USE WITH THE ESCUTCHEON.
- <u>CORROSION-RESISTANT SPRINKLER</u>: A special service sprinkler with non-corrosive protective coatings, or that is fabricated from non-corrosive material, for use in atmospheres that would normally corrode sprinklers.
- <u>DRY SPRINKLER:</u> A special-service sprinkler intended for installation on dry pipe systems or wet pipe systems where the sprinkler is subject to freezing temperatures. The unit consists of a sprinkler permanently secured to an extension nipple with a sealed inlet end to prevent water from entering the nipple until the sprinkler operates. The unit MUST be installed in a tee fitting. Dry upright sprinklers are marked with the "B" dimension [distance from the face of the fitting (tee) to the top of the deflector]. Dry pendent and sidewall sprinklers are marked with the "A" dimension [the distance from the face of fitting (tee) to the finished surface of the ceiling or wall].
- LARGE DROP SPRINKLER: A type of special application sprinkler used to provide fire control of specific high-challenge fire hazards. Large drop sprinklers are designed to produce an umbrella-shaped spray pattern downward with a higher percentage of "large" water droplets than standard spray sprinklers. The sprinkler has an extra-large orifice with a nominal K-Factor of 11.2. Marked "HIGH CHALLENGE" and "UPRIGHT".
- EARLY SUPPRESSION FAST-RESPONSE (ESFR) SPRINKLER: A sprinkler intended to provide fire suppression of specific high-challenge fire hazards through the use of a fast response fusible link, 14.0, 16.8, or 25.2 nominal K-Factor, and special deflector. ESFR sprinklers are designed to produce high-momentum water droplets in a hemispherical pattern below the deflector. This permits penetration of the fire plume and direct wetting of the burning fuel surface while cooling the atmosphere early in the development of a high-challenge fire. Marked "ESFR" and "UPRIGHT" or "PEND".
- <u>INTERMEDIATE LEVEL/RACK STORAGE SPRINKLER:</u> A standard spray sprinkler assembly designed to protect its operating element from the spray of sprinklers installed at higher elevations. The assembly consists of a standard or large orifice upright or pendent sprinkler with an integral upright or pendent water shield and guard assembly. Use only those sprinklers that have been tested and listed for use with the assembly. Refer to the technical data page for allowable sprinkler models.
- RESIDENTIAL SPRINKLER: A sprinkler intended for use in the following occupancies: one- and two-family dwellings with the fire protection sprinkler system installed in accordance with NFPA 13D; residential occupancies up to four stories in height with the fire protection system installed in accordance with NFPA 13R; and where allowed by the Authority Having Jurisdiction in residential portions of any occupancy with the fire protection system installed in accordance with NFPA 13.

SPRINKLER OVERVIEW

The Viking Corporation, 210 N Industrial Park Drive, Hastings MI 49058
Telephone: 269-945-9501 Technical Services: 877-384-5464 Fax: 269-818-1680 Email: techsvcs@vikingcorp.com

Residential sprinklers have a unique distribution pattern and utilize a "fast response" heat sensitive operating element. They enhance survivability in the room of fire origin and are designed to provide a life safety environment for a minimum of ten minutes. For this reason, residential sprinklers must not be used to replace standard sprinklers unless tested for and approved by the Authority Having Jurisdiction. In addition to standard markings, the unit is identified as "RESIDENTIAL SPRINKLER" or "RES".

4. INSTALLATION

Refer to appropriate NFPA Installation Standards.

5. OPERATION

Refer to the appropriate sprinkler technical data page(s).

6. INSPECTIONS, TESTS AND MAINTENANCE

Refer to NFPA 25 for Inspection, Testing and Maintenance requirements.

7. AVAILABILITY

Viking sprinklers are available through a network of domestic and international distributors. See The Viking Corporation web site for the closest distributor or contact The Viking Corporation.

8. GUARANTEE

For details of warranty, refer to Viking's current list price schedule or contact Viking directly.

IMPORTANT: Always refer to Bulletin Form No. F_091699 - Care and Handling of Sprinklers and the appropriate sprinkler general care, installation, and maintenance guide. Viking sprinklers are to be installed in accordance with the latest edition of Viking technical data, the appropriate standards of NFPA, FM Global, LPCB, APSAD, VdS or other similar organizations, and also with the provisions of governmental codes, ordinances, and standards, whenever applicable. The sprinkler technical data page may contain installation requirements specific for the sprinkler model selected. The use of certain types of sprinklers may be limited due to occupancy and hazard. Refer to the Authority Having Jurisdiction prior to installation.

SPRINKLER GENERAL CARE, INSTALLATION, AND MAINTENANCE GUIDE

The Viking Corporation, 210 N Industrial Park Drive, Hastings MI 49058
Telephone: 269-945-9501 Technical Services: 877-384-5464 Fax: 269-818-1680 Email: techsvcs@vikingcorp.com
Visit the Viking website for the latest edition of this technical data page.

DESCRIPTION - STANDARD RESPONSE, QUICK RESPONSE, EXTENDED COVERAGE, AND DRY SPRINKLERS

Viking thermosensitive spray sprinklers consist of a small frame and either a glass bulb or a fusible operating element. Available styles include pendent, flush pendent, concealed pendent, upright, horizontal sidewall, vertical sidewall, or conventional, depending on the particular sprinkler model selected.

Viking sprinklers are available with various finishes, temperature ratings, responses, and K-Factors to meet design requirements†. Used in conjunction with one of the corrosion-resistant coatings (for frame style sprinklers), the units provide protection against many corrosive environments. In addition, the special Polyester or Teflon® coatings can be used in decorative applications where colors are desired.

† Refer to the sprinkler technical data page for available styles, finishes, temperature ratings, responses, and nominal K-Factors for specific sprinkler models.

2. LISTINGS AND APPROVALS

Refer to the Approval Charts on the appropriate sprinkler technical data page(s) and/or approval agency listings.

3. TECHNICAL DATA

Specifications:

Refer to the appropriate sprinkler technical data sheet.

Material Standards:

Refer to the appropriate sprinkler technical data sheet.

WARNING: Cancer and Reproductive Harmwww.P65Warnings.ca.gov

4. INSTALLATION

NOTE: Take care not to over-tighten the sprinkler and/or damage its operating parts!

Maximum Torque:

1/2" NPT: 14 ft-lbs. (19.0 N-m) 3/4" NPT: 20 ft-lbs. (27.1 N-m) 1" NPT: 30 ft-lbs. (40.7 N-m)

A. Care and Handling (also refer to Bulletin - Care and Handling of Sprinklers, Form No. F_091699.)

Sprinklers must be handled with care. They must be stored in a cool, dry place in their original shipping container. Never install sprinklers that have been dropped, damaged, or exposed to temperatures exceeding the maximum ambient temperature allowed (refer to the temperature chart on the sprinkler technical data page). Never install any glass-bulb sprinkler if the bulb is cracked or if there is a loss of liquid from the bulb. A small air bubble should be present in the glass bulb. Any sprinkler with a loss of liquid from the glass bulb or damage to the fusible element should be destroyed immediately. (Note: Installing glass bulb sprinklers in direct sunlight (ultraviolet light) may affect the color of the dye used to color code the bulb. This color change does not affect the integrity of the bulb.)

Sprinklers must be protected from mechanical damage during storage, transport, handling, and after installation. Sprinklers subject to mechanical damage must be protected with an approved sprinkler guard.

Use only sprinklers listed as corrosion resistant when subject to corrosive environments. When installing corrosion-resistant sprinklers, take care not to damage the corrosion-resistant coating. Use only the special wrench designed for installing coated or recessed Viking sprinklers (any other wrench may damage the unit).

Concealed sprinklers must be installed in neutral or negative pressure plenums only!

Use care when locating sprinklers near fixtures that can generate heat. Do not install sprinklers where they could be exposed to temperatures exceeding the maximum recommended ambient temperature for the temperature rating used.

Wet pipe systems must be provided with adequate heat. Sprinklers supplied from dry systems in areas subject to freezing must be listed dry sprinklers, upright, or horizontal sidewall sprinklers installed so that water is not trapped. For dry systems, pendent sprinklers and sidewall sprinklers installed on return bends are permitted, where the sprinklers, return bend, and branch line piping are in an area maintained at or above 40 °F (4 °C).

B. Installation Instructions - Standard Spray Sprinklers

Viking sprinklers are manufactured and tested to meet the rigid requirements of approving agencies. They are designed to be installed in accordance with recognized installation standards. Deviation from the standards or any alteration to sprinklers or cover plate assemblies after they leave the factory including, but not limited to: painting, plating, coating, or modification, may render them inoperative and will automatically nullify the approvals and any guarantee made by The Viking Corporation.

SPRINKLER GENERAL CARE, INSTALLATION, AND MAINTENANCE GUIDE

The Viking Corporation, 210 N Industrial Park Drive, Hastings MI 49058
Telephone: 269-945-9501 Technical Services: 877-384-5464 Fax: 269-818-1680 Email: techsvcs@vikingcorp.com
Visit the Viking website for the latest edition of this technical data page.

Before installation, be sure to have the appropriate sprinkler model and style, with the correct K-Factor, temperature rating, and response characteristics. Sprinklers must be installed after the piping is in place to prevent mechanical damage. Keep sprinklers with protective caps or bulb shields contained within the caps or shields during installation and testing, and any time the sprinkler is shipped or handled.

- 1a. For frame-style sprinklers, install escutcheon (if used), which is designed to thread onto the external threads of the sprinkler. Refer to the appropriate sprinkler data page to determine approved escutcheons for use with specific sprinkler models.
- 1b. For flush and concealed style sprinklers: Cut the sprinkler nipple so that the ½" or 3/4" (15 mm or 20 mm)* NPT outlet of the reducing coupling is at the desired location, and centered in the opening* in the ceiling or wall.

 *Size depends on the sprinkler model used. Refer to the sprinkler technical data page.
- 2. Apply a small amount of pipe-joint compound or tape to the external threads of the sprinkler only, taking care not to allow a build-up of compound in the sprinkler inlet. **NOTE:** Sprinklers with protective caps or bulb shields must have the caps or shields kept on them when applying pipe-joint compound or tape. *Exception: For domed concealed sprinklers, remove the protective cap for installation, and then place it back on the sprinkler temporarily.*
- 3. Refer to the appropriate sprinkler technical data page to determine the correct sprinkler wrench for the model of sprinkler used. DO NOT use the deflector or fusible element to start or thread the sprinkler into a fitting.
 - a. Install the sprinkler onto the piping using the special sprinkler wrench only, taking care not to over-tighten or damage the sprinkler.
 - b. For flush and concealed style sprinklers: the internal diameter of the special sprinkler installation wrench is designed for use with the sprinkler contained in the protective cap. *Exception: For domed concealed sprinklers, remove the protective cap for installation, and then place it back on the sprinkler temporarily.* Thread the flush or concealed sprinkler into the ½" or 3/4" (15 mm or 20 mm)* NPT outlet of the coupling by turning it clockwise with the special sprinkler wrench. *Thread size depends on the particular sprinkler model used. Refer to the sprinkler technical data page.

C. Installation Instructions - Dry Sprinklers

WARNING: Viking dry sprinklers are to be installed in the 1" outlet (for dry and preaction systems), or run of malleable, ductile iron, or Nibco CPVC* threaded tee fittings (for wet systems) that meet the dimensional requirements of ANSI B16.3 (Class 150), or cast iron threaded tee fittings that meet the dimensional requirements of ANSI B16.4 (Class 125), even at branch line ends. The threaded end of the dry sprinkler is designed to allow the seal to penetrate and extend into the fitting to a predetermined depth. This prevents condensation from accumulating and freezing over the sprinkler seal. *NOTE: When using CPVC fittings with Viking dry sprinklers, use only new Nibco Model 5012-S-BI. When selecting other CPVC fittings, contact Viking Technical Services.

- 1. **DO NOT** install the dry sprinkler into a threaded elbow, coupling, or any other fitting that could interfere with thread penetration. Such installation would damage the brass seal.
- 2. **DO NOT** install dry sprinklers into couplings or fittings that would allow condensation to accumulate above the seal when the sprinkler is located in an area subject to freezing.
- 3. NEVER try to modify dry sprinklers. They are manufactured for specific "A" or "B" dimensions and cannot be modified.

The dry sprinkler must be installed after the piping is in place to prevent mechanical damage. Before installation, be sure to have the correct sprinkler model and style, with the appropriate "A" or "B" dimension(s), temperature rating, orifice size, and response characteristics. Keep sprinklers with protective caps or bulb shields contained within the caps or shields during installation and testing, and any time the sprinkler is shipped or handled. *Exception:* For concealed and adjustable recessed dry sprinklers, the protective caps and shields are removed for installation.

To install the dry sprinkler, refer to the instructions below and the appropriate sprinkler technical data page for illustrated instructions.

Dry upright sprinklers must be installed above the piping, in the upright position only. When installing dry upright or plain barrel style vertical sidewall sprinklers on piping located close to the ceiling, it may be necessary to lower the sprinkler into the fitting from above the ceiling. When installing dry upright or plain barrel vertical sidewall sprinklers from below the ceiling, verify that the opening in the ceiling is a minimum 1-1/2" (38.1 mm) in diameter.

For dry upright or plain barrel vertical sidewall sprinklers in the upright position: First, install the escutcheon (if used) over the threaded end of the sprinkler barrel. Slide the escutcheon past the external threads. NOTE: When installing the dry upright or plain barrel vertical sidewall sprinkler from above the ceiling, it will be necessary to install the escutcheon after lowering the threaded end of the sprinkler through the ceiling penetration.

A. **For all dry sprinklers:** Apply a small amount of pipe-joint compound or tape to the external threads of the sprinkler barrel only, taking care not to allow a build-up of compound or tape over the brass inlet and seal. **NOTE:** Sprinklers with protective caps or bulb shields must be contained within the caps or shields before applying pipe-joint compound or tape.

SPRINKLER GENERAL CARE, INSTALLATION, AND MAINTENANCE GUIDE

The Viking Corporation, 210 N Industrial Park Drive, Hastings MI 49058
Telephone: 269-945-9501 Technical Services: 877-384-5464 Fax: 269-818-1680 Email: techsvcs@vikingcorp.com
Visit the Viking website for the latest edition of this technical data page.

- B. Refer to the appropriate sprinkler technical data page to determine the correct sprinkler wrench for the model of sprinkler used.
- C. Install the dry sprinkler on the piping using the special dry sprinkler wrench only, while taking care not to damage the sprinkler. **NOTE:** Thread the sprinkler into the fitting hand tight, plus 1/2 turn with the dry sprinkler wrench.
- D. For adjustable standard and adjustable recessed dry pendent and sidewall sprinklers: Escutcheons can be installed after the sprinklers have been installed onto the piping. Refer to the appropriate sprinkler technical data page for escutcheon installation instructions and illustrations.

D. Installation Instructions - Testing

- 4. After installation, the entire sprinkler system must be tested. The test must be conducted to comply with the installation standards. Viking *high pressure* sprinklers may be hydrostatically tested at a maximum of 300 psi (20.7 bar) for limited periods of time (two hours), for the purpose of acceptance by the Authority Having Jurisdiction.
 - a. Make sure the sprinkler is properly tightened. If a thread leak occurs, normally the sprinkler must be removed, new pipe-joint compound or tape applied, and then reinstalled. This is due to the fact that when the joint seal is damaged, the sealing compound or tape is washed out of the joint. Air testing [do not exceed 40 psi (2.76 bar)] the sprinkler piping prior to testing with water may be considered in areas where leakage during testing must be prevented. Refer to the Installation Standards and the Authority Having Jurisdiction.
 - b. Remove plastic protective sprinkler caps or bulb shields AFTER the wall or ceiling finish work is completed where the sprinkler is installed and there no longer is a potential for mechanical damage to the sprinkler operating elements. To remove the bulb shields, simply pull the ends of the shields apart where they are snapped together. To remove caps from frame style sprinklers, turn the caps slightly and pull them off the sprinklers. SPRINKLER CAPS OR BULB SHIELDS MUST BE REMOVED FROM SPRINKLERS <u>BEFORE</u> PLACING THE SYSTEM IN SERVICE! Retain a protective cap or shield in the spare sprinkler cabinet.
- 5. For flush style sprinklers: the ceiling ring can now be installed onto the sprinkler body. Align the ceiling ring with the sprinkler body and thread or push it on (depends on sprinkler model) until the outer flange touches the surface of the ceiling. Note the maximum adjustment is 1/4" (6.35 mm). DO NOT MODIFY THE UNIT, If necessary, re-cut the sprinkler drop nipple as required.
- 6. For concealed sprinklers: the cover assembly can now be attached.
 - a. Remove the cover from the protective box, taking care not to damage the cover plate assembly.
 - b. Gently place the base of the cover plate assembly over the sprinkler protruding through the opening in the ceiling.
 - c. Push the cover plate assembly onto the sprinkler until the unfinished brass flange of the cover plate base (or the cover adapter, if used) touches the surface of the ceiling.
 - d. Refer to the applicable technical data sheet to determin the maximum adjustment available for concealed sprinklers. DO NOT MODIFY THE UNIT. If necessary, re-cut the sprinkler drop nipple.

NOTE: If it is necessary to remove the entire sprinkler unit, the system must be taken out of service. See section 6. INSPECTIONS, TESTS AND MAINTENANCE and follow all warnings and instructions.

5. OPERATION

Refer to the appropriate sprinkler technical data page(s). During fire conditions, the operating element fuses or shatters (depending on the type of sprinkler), releasing the pip cap and sealing assembly. Water flowing through the sprinkler orifice strikes the sprinkler deflector, forming a uniform spray pattern to extinguish or control the fire.

IMPORTANT: Always refer to Bulletin Form No. F_091699 - Care and Handling of Sprinklers. Viking sprinklers are to be installed in accordance with the latest edition of Viking technical data, the appropriate standards of NFPA, FM Global, LPCB, APSAD, VdS or other similar organizations, and also with the provisions of governmental codes, ordinances, and standards, whenever applicable. The sprinkler technical data page may contain installation requirements specific for the sprinkler model selected. The use of certain types of sprinklers may be limited due to occupancy and hazard. Refer to the Authority Having Jurisdiction prior to installation.

SPRINKLER GENERAL CARE, INSTALLATION, AND MAINTENANCE GUIDE

The Viking Corporation, 210 N Industrial Park Drive, Hastings MI 49058

Telephone: 269-945-9501 Technical Services: 877-384-5464 Fax: 269-818-1680 Email: techsvcs@vikingcorp.com Visit the Viking website for the latest edition of this technical data page.

6. INSPECTIONS, TESTS AND MAINTENANCE

NOTICE: Refer to NFPA 25 for Inspection, Testing and Maintenance requirements. **NOTICE:** The owner is responsible for having the fire-protection system and devices inspected, tested, and maintained in proper operating condition in accordance with this guide, and applicable NFPA standards. In addition, the Authority Having Jurisdiction may have additional maintenance, testing, and inspection requirements that must be followed.

- A. Sprinklers must be inspected on a regular basis for corrosion, mechanical damage, obstructions, paint, etc. Frequency of inspections may vary due to corrosive atmospheres, water supplies, and activity around the sprinkler unit.
- B. Sprinklers or cover plate assemblies that have been field painted, caulked, or mechanically damaged must be replaced immediately. Sprinklers showing signs of corrosion shall be tested and/or replaced immediately as required. Installation standards require sprinklers to be tested and, if necessary, replaced after a specified term of service. Refer to NFPA 25 and the Authority Having Jurisdiction for the specified period of time after which testing and/or replacement is required. Never attempt to repair or reassemble a sprinkler. Sprinklers and cover assemblies that have operated cannot be reassembled or re-used, but must be replaced. When replacement is necessary, use only new sprinklers and cover assemblies with identical performance characteristics.
- C. The sprinkler discharge pattern is critical for proper fire protection. Therefore, nothing should be hung from, attached to, or otherwise obstruct the discharge pattern. All obstructions must be immediately removed or, if necessary, additional sprinklers installed.
- D. When replacing existing sprinklers, the system must be removed from service. Refer to the appropriate system description and/ or valve instructions. Prior to removing the system from service, notify all Authorities Having Jurisdiction. Consideration should be given to employment of a fire patrol in the affected area.
 - 1. Remove the system from service, drain all water, and relieve all pressure on the piping.
 - 2a. For frame-style sprinklers, use the special sprinkler wrench to remove the old sprinkler by turning it counterclockwise to unthread it from the piping.
 - 2b. For flush and concealed style sprinklers: Remove the ceiling ring or cover plate assembly before unthreading the sprinkler body from the piping. Ceiling rings and cover plates can be removed either by gently unthreading them or pulling them off the sprinkler body (depends on the sprinkler model used). After the ceiling ring or cover plate assembly has been removed from the sprinkler body, place the plastic protective cap (from the spare sprinkler cabinet) over the sprinkler to be removed and then fit the sprinkler wrench over the cap. Then use the wrench to unthread the sprinkler from the piping. Exception: Domed concealed sprinklers are removed without the plastic cap.
 - 3. Install the new sprinkler unit by following the instructions in section 4. INSTALLATION. Care must be taken to ensure that the replacement sprinkler is the proper model and style, with the correct K-Factor, temperature rating, and response characteristics. A fully stocked spare sprinkler cabinet should be provided for this purpose. For flush or concealed sprinklers: stock of spare ceiling rings or cover plates should also be available in the spare sprinkler cabinet.
- E. Place the system back in service and secure all valves. Check for and repair all leaks. Sprinkler systems that have been subjected to a fire must be returned to service as soon as possible. The entire system must be inspected for damage, and repaired or replaced as necessary. Sprinklers that have been exposed to corrosive products of combustion or high ambient temperatures, but have not operated, should be replaced. Refer to the Authority Having Jurisdiction for minimum replacement requirements.

7. AVAILABILITY

Viking sprinklers are available through a network of domestic and international distributors. See The Viking Corporation web site for the closest distributor or contact The Viking Corporation.

8. GUARANTEE

For details of warranty, refer to Viking's current list price schedule or contact Viking directly.

REGULATORY AND HEALTH WARNINGS

The Viking Corporation, 210 N Industrial Park Drive, Hastings MI 49058
Telephone: 269-945-9501 Technical Services: 877-384-5464 Fax: 269-818-1680 Email: techsvcs@vikingcorp.com
Visit the Viking website for the latest edition of this technical data page www.vikinggroupinc.com

1. DESCRIPTION

Regulatory and Health Warnings applying to materials used in the manufacture and construction of fire protection products are provided herin as they relate to legally mandated jurisdictional regions.

A WARNING

STATE OF CALIFORNIA, USA

Installing or servicing fire protection products such as sprinklers, valves, piping etc. can expose you to chemicals including, but not limited to, lead, nickel, butadiene, titaninum dioxide, chromium, carbon black, and acrylonitrile which are known to the State of California to cause cancer or birth defects or other reproductive harm.

For more information, go to www.P65Warnings.ca.gov

2. WARRANTY TERMS AND CONDITIONS

For details of warranty, refer to Viking's current list price schedule at www.vikinggroupinc.com or contact Viking directly.

QUICK RESPONSE DRY HORIZONTAL SIDEWALL SPRINKLERS

The Viking Corporation, 210 N Industrial Park Drive, Hastings MI 49058

Telephone: 269-945-9501 Technical Services: 877-384-5464 Fax: 269-818-1680 Email: techsvcs@vikingcorp.com Visit the Viking website for the latest edition of this technical data page: www.vikinggroupinc.com

1. DESCRIPTION

Viking Quick Response Dry Horizontal Sidewall Sprinklers are thermosensitive spray sprinklers suitable for use in areas subject to freezing. The sprinklers are designed for dry systems and preaction systems where it is necessary to prevent water or condensation from entering the drop nipple before sprinkler operation. They may also be installed in spaces subject to freezing and supplied from a wet system in an adjacent heated area.

Viking Quick Response Dry HSW Sprinklers are available in various finishes and temperature ratings to meet design requirements. The special Polyester and Electroless Nickel PTFE (ENT) coatings have been investigated for installation in corrosive atmospheres and are listed/approved as corrosion resistant as indicated in the Approval Charts. (Note: FM Global has no approval classification for Polyester coatings as corrosion resistant.)

For Light Hazard Occupancies Only

WARNING: Cancer and Reproductive Harm-

www.P65Warnings.ca.gov

2. LISTINGS AND APPROVALS

c(UL)us

cULus Listed: Category VNIV

FM Approved: Classes 2013 and 2015 NYC Approved: MEA 89-92-E, Volume 15

Refer to Approval Charts and Design Criteria for Listing and Approval that must be followed.

3. TECHNICAL DATA

Specifications:

Available since 1993.

Minimum Operating Pressure: 7 psi (0.5 bar) Maximum Working Pressure: 175 psi (12 bar). Factory tested hydrostatically to 500 psi (34.5 bar)

Thread size: 1" NPT or 25 mm BSPT

Nominal K-Factor: 5.6 U.S. (80.6 metric*) for all listed and approved lengths.

* Metric K-factor measurement shown is when pressure is measured in Bar. When pressure is measured in kPa, divide the metric K-factor shown by 10.0. Glass-bulb fluid temperature rated to -65 °F (-55 °C)

Covered by the following U.S. Patent numbers: 8,636,075 and 8,376,060 and 10,220,231

Material Standards:

Frame Casting: Brass UNS-C84400 Deflector: Phosphor Bronze UNS-C51000 Bulb: Glass, nominal 3 mm diameter

Belleville Spring Sealing Assembly: Nickel Alloy, coated on both sides with PTFE Tape

Compression Screw: Brass UNS-C36000 Pip Cap: Brass UNS-C31400 or UNS-C31600 Pip Cap Adapter: Brass UNS-C36000 Orifice: Copper UNS-C22000 or UNS-C11000

Tube: ERW Hydraulic Steel Tube

Support (Internal): Stainless Steel UNS-S30400

Barrel: Steel Pipe UNS-G10260, Electrodeposited Epoxy Base finish

Barrel End and Threads: QM Brass

Sleeve (for Adjustable Standard style only): Brass UNS-C26000 or UNS-C26800

Escutcheon Materials:

Adjustable Standard Dry Escutcheons: Brass UNS-C26000 or UNS-C26800

Recessed Dry Escutcheons: Cold Rolled Steel UNS-G10080

ENT Coated Adjustable and Recessed Escutcheons: Stainless Steel UNS-S30400

Ordering Information: (Also refer to the current Viking price list.)

Order QR Dry HSW Sprinklers by first adding the appropriate suffix for the sprinkler finish, the appropriate suffix for the temperature rating, and then the suffix for the length ("A" dimension) to sprinkler base part number. Order in a specific length noted as the "A" dimension. The "A" dimension is the distance from the face of the fitting (tee) to the desired finished surface of the wall in which it is to be installed.

These sprinklers are listed and approved in lengths from 1-1/2" to 45-1/2" (38.1 mm to 1,156 mm) for the adjustable standard style, 3" to 47" (76.2 mm to 1,194 mm) for the plain barrel style, and 3-1/4" to 47-1/2" (82.5 mm to 1,207 mm) for the adjustable recessed style. Lengths exceeding the standard lengths are available, with no approvals, on a "made-to-order" basis: Recessed Dry HSW up to 65-1/2" (1,664 mm). Adjustable Standard Dry HSW up to 63-1/2" (1,613 mm). Plain Barrel Dry HSW up to 65" (1,651 mm). Contact

the manufacturer for more information.

Finish Suffix: Brass = A, Chrome = F, White Polyester = M-/W, and ENT = JN

QUICK RESPONSE DRY HORIZONTAL SIDEWALL SPRINKLERS

The Viking Corporation, 210 N Industrial Park Drive, Hastings MI 49058

Telephone: 269-945-9501 Technical Services: 877-384-5464 Fax: 269-818-1680 Email: techsvcs@vikingcorp.com Visit the Viking website for the latest edition of this technical data page: www.vikinggroupinc.com

Temperature Suffix: 155 °F (68 °C) = B, 175 °F (79 °C) = D, 200 °F (93 °C) = E, 286 °F (141 °C) = G

Escutcheon Suffix = Y for the adj. recessed sprinkler with the Model G-1 Escutcheon (no suffix needed for the Model E-1 Escutcheon).

For example, sprinkler VK182 with 1" NPT Threads, a Chrome finish, a 155 °F (68 °C) temperature rating, the Model G-1 Escutcheon, and "A" length of 10" = Part No. 08386UFBY10.

Available Finishes And Temperature Ratings: Refer to Table 1. **Accessories:** (Also refer to the "Sprinkler Accessories" section.)

Sprinkler Wrenches:

A. Standard Wrench: Part No. 07297W/B (available since 1991)

B. Wrench for recessed sprinklers: Part No. 07565W/B** (available since 1991) **A ½" ratchet is required (not available from Viking).

Replacement Escutcheons:

A. Adjustable Standard Dry Escutcheon: Base Part No. 08086F

- B. Model E-1 Recessed Dry Escutcheon Cup: Base Part No. 05459A
- C. Model G-1 Recessed Dry Escutcheon Cup: Base Part No. 20133

4. INSTALLATION

Refer to appropriate NFPA Installation Standards.

5. OPERATION

During fire conditions, the heat-sensitive liquid in the glass bulb expands, causing the glass to shatter, releasing the internal parts to open the waterway. Water flowing through the sprinkler orifice strikes the sprinkler deflector, forming a uniform spray pattern to extinguish or control the fire.

6. INSPECTIONS, TESTS AND MAINTENANCE

Refer to NFPA 25 for Inspection, Testing and Maintenance requirements.

7. AVAILABILITY

The Viking Quick Response Dry Horizontal Sidewall Sprinkler is available through a network of domestic and international distributors. See The Viking Corporation web site for the closest distributor or contact The Viking Corporation.

8. GUARANTEE

For details of warranty, refer to Viking's current list price schedule or contact Viking directly.

for clarity. (Refer to Figures 2-7 for correct deflector orientation.)
Protective — Sprinkler Shield
Wrench Flat
VIKING 07297 O

NOTE: Sprinkler is turned sideways

Figure 1: Standard Sprinkler Wrench 07297W/B

TABLE 1: AVAILABLE SPRINKLER TEMPERATURE RATINGS AND FINISHES								
Sprinkler Temperature Classification	Sprinkler Nominal Temperature Rating ¹	Maximum Ambient Ceiling Temperature ²	Bulb Color					
Ordinary	155 °F (68 °C)	100 °F (38 °C)	Red					
Intermediate	175 °F (79 °C)	150 °F (65 °C)	Yellow					
Intermediate	200 °F (93 °C)	150 °F (65 °C)	Green					
High	286 °F (141 °C)	225 °F (107 °C)	Blue					

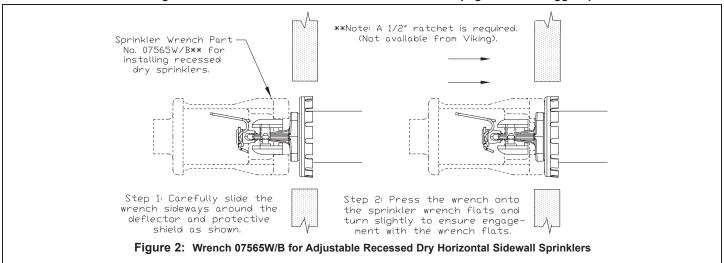
Sprinkler Finishes: Brass, Chrome, White Polyester, and ENT

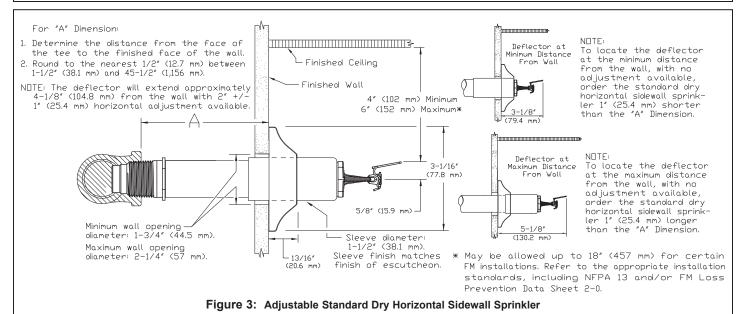
Corrosion-Resistant Coating^{3,4}: White Polyester and ENT in all temperature ratings

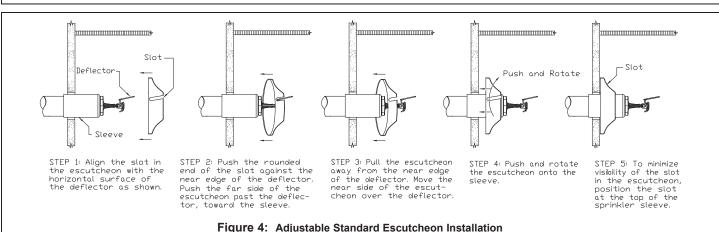
Footnotes

¹ The sprinkler temperature rating is stamped on the deflector.

² Based on NFPA-13. Other limits may apply, depending on fire loading, sprinkler location, and other requirements of the Authority Having Jurisdiction. Refer to specific installation standards.


³ The corrosion-resistant Polyester and ENT coatings have passed the standard corrosion test required by the approving agencies indicated in the Approval Charts. These tests cannot and do not represent all possible corrosive environments. Note: These coatings are NOT corrosion proof. Prior to installation, verify through the end-user that the coatings are compatible with or suitable for the proposed environment. Polyester and ENT coatings are applied to the exposed exterior surfaces only. Note that the spring is exposed on sprinklers with Polyester and ENT coatings.


⁴ When installed in some corrosive environments, the Polyester finish may change color. This natural discoloration over time is not in itself an indication of corrosion and should not be treated as such. All sprinklers installed in corrosive environments should be replaced or tested as described in NFPA 25 on a more frequent basis.



QUICK RESPONSE DRY HORIZONTAL SIDEWALL SPRINKLERS

The Viking Corporation, 210 N Industrial Park Drive, Hastings MI 49058
Telephone: 269-945-9501 Technical Services: 877-384-5464 Fax: 269-818-1680 Email: techsvcs@vikingcorp.com
Visit the Viking website for the latest edition of this technical data page: www.vikinggroupinc.com

QUICK RESPONSE DRY HORIZONTAL SIDEWALL SPRINKLERS

The Viking Corporation, 210 N Industrial Park Drive, Hastings MI 49058

Telephone: 269-945-9501 Technical Services: 877-384-5464 Fax: 269-818-1680 Email: techsvcs@vikingcorp.com Visit the Viking website for the latest edition of this technical data page: www.vikinggroupinc.com

Approval Chart 1 (UL)														
	Quick Response Dry Horizontal Sidewall Sprinklers For Light Hazard Occupancies Only A1X ← Escutcheon (if applicable)													
	Maximum 175 PSI (12 bar) WWP													
	Operinded Size Nominal Order Length Listings and Approvals ⁴													
Sprinkler Base	SIN	Style	Thre	ad Size	_	K-Factor ²		nent	(Ref			iteria on pag		
Part No.1		1	NPT	BSPT	U.S.	metric ³	Inches	mm	cULus⁵	NYC ⁶	VdS	LPCB	(€	0
08384U	VK178	Adjustable	1"		5.6	80.6	1/2"	12.7	A1, A5	A1				
16458U	VK170	Standard		25 mm		80.6	1/2"	12.7	A1, A5					
08386U	VK182	Adjustable	1"		5.6	80.6	1/4"	6.35	B2, B6	B2				
16454U	VICTOZ	Recessed		25 mm		80.6	1/4"	6.35	B2, B6					
08388U	VK174	Plain Barrel	1"		5.6	80.6	1/2"	12.7	A3	A4				
16456U	VIX174	Fiaili bailei		25 mm		80.6	1/2"	12.7	A3					
			Approved Finishes and "A" Dimensions											
			1* - Chrome, or White Polyester ⁷ sprinkler with a Chrome, Brass, or White Polyester Sleeve and											
			Escutcheon with "A" dimensions 1-1/2" to 45-1/2" (38.1 mm to 1,156 mm)											
Approved Te	•	•	2* - Chrome, or White Polyester ⁷ with "A" dimensions 3-1/4" to 47-1/2" (82.5 mm to 1,207 mm)									,		
A - 155 °F (68 °C	•	•										mm)		
(93 °C), and 2	`	,	4 - Chrome or Brass with "A" dimensions 3" to 47" (76.2 mm to 1,194 mm)											
B - 155 °F (68 °C	,	⁼ (79 °C), and	5 - ENT ⁷ sprinkler with an ENT ⁷ Sleeve and Escutcheon with "A" dimensions 1-1/2" to 45-1/2" (38.1)											
200 °F (93 °C)			n to 1,156	,										
			6 - EN	T ⁷ with "A	\" dime	nsions 3-	1/4" to 4	7-1/2" (82.5 mm	to 1,207	mm)			
*Brass Finish is listed and appro						oproved but	not standar	d offering	, lead times	of 6-8 wee	ks requi	red.		

Footnotes

(Matching Brass escutcheons are not available.)

- ¹ Part number shown is the base part number. For complete part number, refer to current Viking price list schedule. ² K-Factor applies for standard lengths ("A" Dimensions indicated above).
- 3 Metric K-factor shown is for use when pressure is measured in bar. When pressure is measured in kPa, divide the metric K-factor shown by 10.0.
- ⁴ This chart shows the listings and approvals available at the time of printing. Other approvals may be in process. Check with the manufacturer for any additional approvals.
- ⁵ Listed by Underwriter's Laboratories for use in the U.S. and Canada for Light Hazard occupancies only.
- ⁶ Accepted for use, City of New York Department of Buildings, MEA Number 89-92-E, Vol. 15.
- OULus Listed as corrosion resistant.

DESIGN CRITERIA - UL

(Also refer to Approval Chart 1 above.)

cULus Listing Requirements:

Quick Response Dry Horizontal Sidewall Sprinklers are cULus Listed as indicated in Approval Chart 1 for installation in accordance with the latest edition of NFPA 13 for standard spray sprinklers.

- · Limited to Light Hazard occupancies only.
- · Protection areas and maximum spacing shall be in accordance with the tables provided in NFPA 13.
- · Minimum spacing allowed is 6 ft. (1.8 m).
- Deflector must be positioned between 4" and 6" (102 mm and 152 mm) below the ceiling. Keep the top of the deflector oriented parallel with
- Locate no less than 4" (102 mm) from end walls.
- · Maximum distance from end walls shall be no more than one-half of the allowable distance between sprinklers. The distance shall be measured perpendicular to the wall.
- · The sprinkler installation and obstruction rules contained in NFPA 13 for sidewall standard spray sprinklers must be followed.

IMPORTANT: Always refer to Bulletin Form No. F_091699 - Care and Handling of Sprinklers. Also refer to Form No. F_080614 for general care, installation, and maintenance information. Viking sprinklers are to be installed in accordance with the latest edition of Viking technical data, the appropriate standards of NFPA, LPCB, APSAD, VdS or other similar organizations, and also with the provisions of governmental codes, ordinances, and standards, whenever applicable.

QUICK RESPONSE DRY HORIZONTAL SIDEWALL SPRINKLERS

The Viking Corporation, 210 N Industrial Park Drive, Hastings MI 49058
Telephone: 269-945-9501 Technical Services: 877-384-5464 Fax: 269-818-1680 Email: techsvcs@vikingcorp.com
Visit the Viking website for the latest edition of this technical data page: www.vikinggroupinc.com

Approval Chart 2 (FM)

Quick Response Dry Horizontal Sidewall Sprinklers For Light Hazard Occupancies Only A1X ← Escutcheon (if applicable)											
Sprinkler Base Style Style Style Maximum 175 PSI (12 bar) WWP Thread Size Nominal K-Factor ² Order Length Increment FM Approvals ⁴											
Part No.1	SIN	Style	NPT	BSP	U.S.	metric ³	Inches	mm	(Refer also to Design Criteria below.)		
08384U	VK178	Adjustable Standard	1"		5.6	80.6	1/2"	12.7	A1		
16458U	VK176	Aujustable Staridard		25 mm		80.6	1/2"	12.7	A1		
08386U	VK182	Adjustable Besses	1"		5.6	80.6	1/4"	6.35	B2		
16454U	VK 102	Adjustable Recessed		25 mm		80.6	1/4"	6.35	B2		
08388U	\ // (4 7 4	1////	1///474	Disir Damei	1"		5.6	80.6	1/2"	12.7	A3
16456U	VK174	Plain Barrel		25 mm		80.6	1/2"	12.7	A3		

Approved Temperature Ratings

- A 155 °F (68 °C), 175 °F (79 °C), 200 °F (93 °C), and 286 °F (141 °C)
- B 155 °F (68 °C), 175 °F (79 °C), and 200 °F (93 °C)

Approved Finishes and "A" Dimensions

- 1* Bright Brass, Chrome, White Polyester, or ENT⁵ with "A" dimensions 1-1/2" to 45-1/2" (38.1 mm to 1,156 mm)
- 2* Bright Brass, Chrome, White Polyester, or ENT⁵ with "A" dimensions 3-1/4" to 47-1/2" (82.5 mm to 1,207 mm)
- 3 Brass, Bright Brass, Chrome, White Polyester, or ENT⁵ "A" dimensions 3" to 47" (76.2 mm to 1,194 mm)

*Brass Finish is listed and approved but not standard offering, lead times of 6-8 weeks required. (Matching Brass escutcheons are not available.)

Footnotes

- ¹ Part number shown is the base part number. For complete part number, refer to current Viking price list schedule.
- ² K-Factor applies for standard lengths ("A" Dimensions indicated above).
- 3 Metric K-factor shown is for use when pressure is measured in bar. When pressure is measured in kPa, divide the metric K-factor shown by 10.0.
- ⁴ This chart shows the FM Approvals available at the time of printing. Other approvals may be in process. Check with the manufacturer for any additional approvals.
- ⁵ FM approved as corrosion resistant.

DESIGN CRITERIA - FM

(Also refer to Approval Chart 2 above.)

FM Approval Requirements:

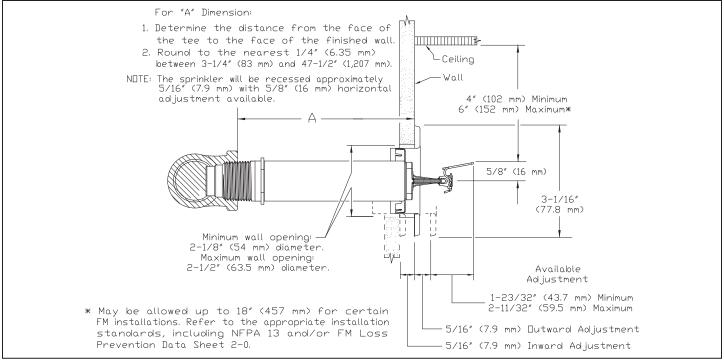
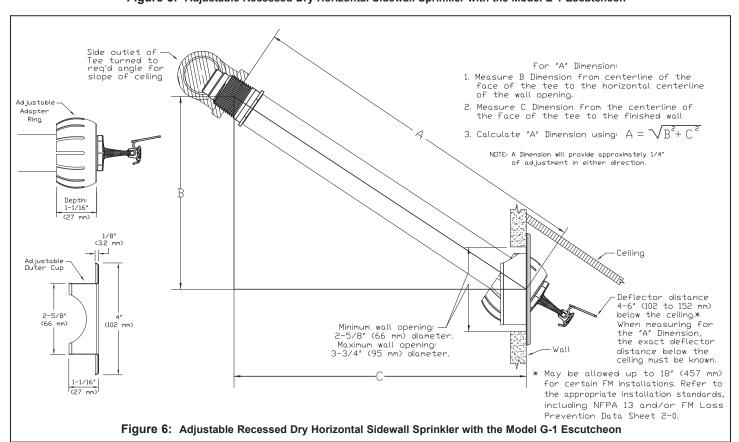
The Dry HSW Sprinklers in the Approval Chart above are FM Approved as quick response **Non-storage** standard spray sprinklers as indicated in the FM Approval Guide. For specific application and installation requirements, reference the latest applicable FM Loss Prevention Data Sheets (including 2-0) and Technical Advisory Bulletins. FM Global Loss Prevention Data Sheets and Technical Advisory Bulletins contain guidelines relating to, but not limited to: minimum water supply requirements, hydraulic design, ceiling slope and obstructions, minimum and maximum allowable spacing, and deflector distance below the ceiling.

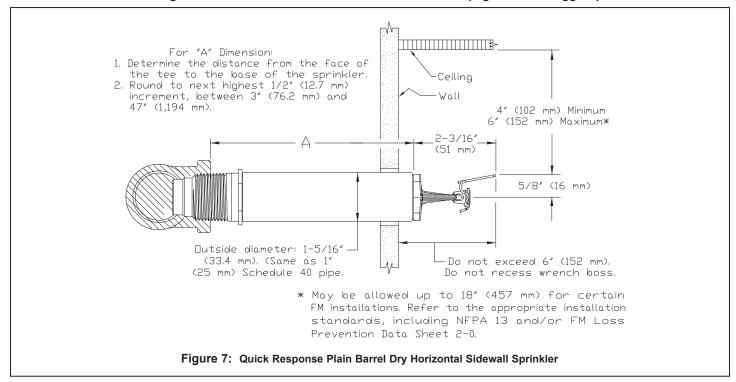
NOTE: The FM installation guidelines may differ from cULus and/or NFPA criteria.

IMPORTANT: Always refer to Bulletin Form No. F_091699 - Care and Handling of Sprinklers. Also refer to Form No. F_080614 for general care, installation, and maintenance information. Viking sprinklers are to be installed in accordance with the latest edition of Viking technical data, the appropriate standards of NFPA, FM Global, LPCB, APSAD, VdS or other similar organizations, and also with the provisions of governmental codes, ordinances, and standards, whenever applicable.

QUICK RESPONSE DRY HORIZONTAL SIDEWALL SPRINKLERS

The Viking Corporation, 210 N Industrial Park Drive, Hastings MI 49058
Telephone: 269-945-9501 Technical Services: 877-384-5464 Fax: 269-818-1680 Email: techsvcs@vikingcorp.com
Visit the Viking website for the latest edition of this technical data page: www.vikinggroupinc.com


Figure 5: Adjustable Recessed Dry Horizontal Sidewall Sprinkler with the Model E-1 Escutcheon

QUICK RESPONSE DRY HORIZONTAL SIDEWALL SPRINKLERS

The Viking Corporation, 210 N Industrial Park Drive, Hastings MI 49058
Telephone: 269-945-9501 Technical Services: 877-384-5464 Fax: 269-818-1680 Email: techsvcs@vikingcorp.com
Visit the Viking website for the latest edition of this technical data page: www.vikinggroupinc.com

QUICK RESPONSE DRY HORIZONTAL SIDEWALL SPRINKLERS

The Viking Corporation, 210 N Industrial Park Drive, Hastings MI 49058

Telephone: 269-945-9501 Technical Services: 877-384-5464 Fax: 269-818-1680 Email: techsvcs@vikingcorp.com

Visit the Viking website for the latest edition of this technical data page: www.vikinggroupinc.com

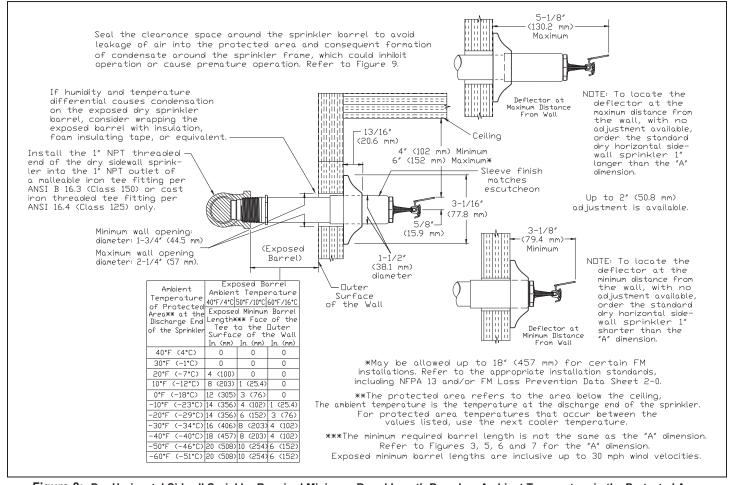


Figure 8: Dry Horizontal Sidwall Sprinkler Required Minimum Barrel Length Based on Ambient Temperature in the Protected Area (Adjustable Standard Dry HSW Sprinkler is Shown)

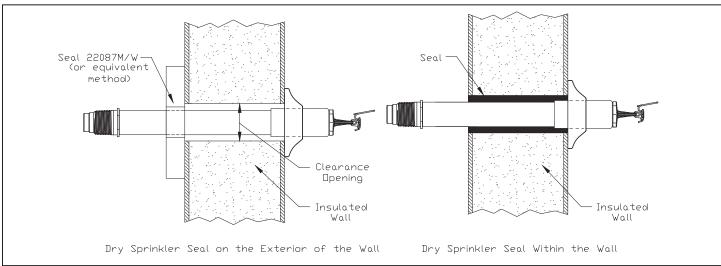


Figure 9: Dry Sprinkler Seal (Adjustable Standard Dry HSW Sprinkler is Shown)

CARE AND HANDLING OF SPRINKLERS

The Viking Corporation, 210 N Industrial Park Drive, Hastings MI 49058

Telephone: 269-945-9501 Technical Services: 877-384-5464 Fax: 269-818-1680 Email: techsycs@vikingcorp.com

SPRINKLERS ARE FRAGILE - HANDLE WITH CARE!

General Handling and Storage:

- · Store sprinklers in a cool, dry place.
- Protect sprinklers during storage, transport, handling, and after installation.
- · Use the original shipping containers. DO NOT place sprinklers loose in boxes, bins, or buckets.
- · Keep sprinklers separated at all times. DO NOT allow metal parts to contact sprinkler operating elements.

For Pre-Assembled Drops:

- · Protect sprinklers during handling and after installation.
- For recessed assemblies, use the protective sprinkler cap (Viking Part Number 10364).

Sprinklers with Protective Shields or Caps:

- DO NOT remove shields or caps until after sprinkler installation and there no longer is potential for mechanical damage to the sprinkler operating elements.
- · Sprinkler shields or caps MUST be removed BEFORE placing the system in
- Remove the sprinkler shield by carefully pulling it apart where it is snapped together.
- · Remove the cap by turning it slightly and pulling it off the sprinkler.

Sprinkler Installation:

- · DO NOT use the sprinkler deflector or operating element to start or thread the sprinkler into a fitting.
- · Use only the designated sprinkler head wrench! Refer to the current sprinkler technical data page to determine the correct wrench for the model of sprinkler used.
- · DO NOT install sprinklers onto piping at the floor level.
- · Install sprinklers after the piping is in place to prevent mechanical damage.
- · DO NOT allow impacts such as hammer blows directly to sprinklers or to fittings, pipe, or couplings in close proximity to sprinklers. Sprinklers can be damaged from direct or indirect impacts.
- DO NOT attempt to remove drywall, paint, etc., from sprinklers.
- Take care not to over-tighten the sprinkler and/or damage its operating parts! **Maximum Torque:**

1/2" NPT: 14 ft-lbs. (19.0 N-m) 3/4" NPT: 20 ft-lbs. (27.1 N-m) 1" NPT: 30 ft-lbs. (40.7 N-m)

(Original container used)

INCORRECT (Placed loose in box)

(Protected with caps)

INCORRECT (Protective caps not used)

CORRECT (Piping is in place at the ceiling)

INCORRECT (Sprinkler at floor level)

CORRECT (Special installation wrenches)

INCORRECT (Designated wrench not used)

A WARNING

Any sprinkler with a loss of liquid from the glass bulb or damage to the fusible element should be destroyed. Never install sprinklers that have been dropped, damaged, or exposed to temperatures exceeding the maximum ambient temperature allowed. Sprinklers that have been painted in the field must be replaced per NFPA 13. Protect sprinklers from paint and paint overspray in accordance with the installation standards. Do not clean sprinklers with soap and water, ammonia, or any other cleaning fluid. Do not use adhesives or solvents on sprinklers or their operating elements.

Refer to the appropriate technical data page and NFPA standards for complete care, handling, installation, and maintenance instructions. For additional product and system information Viking data pages and installation instructions are available on the Viking Web site at www.vikinggroupinc.com.

CARE AND HANDLING OF SPRINKLERS

The Viking Corporation, 210 N Industrial Park Drive, Hastings MI 49058

Telephone: 269-945-9501 Technical Services: 877-384-5464 Fax: 269-818-1680 Email: techsycs@vikingcorp.com

PROTECTIVE SPRINKLER SHIELDS AND CAPS

General Handling and Storage:

Many Viking sprinklers are available with a plastic protective cap or shield temporarily covering the operating elements. The snapon shields and caps are factory installed and are intended to help protect the operating elements from mechanical damage during shipping, storage, and installation. NOTE: It is still necessary to follow the care and handling instructions on the appropriate sprinkler technical data sheets* when installing sprinklers with bulb shields or caps.

WHEN TO REMOVE THE SHIELDS AND CAPS:

NOTE: SHIELDS AND CAPS MUST BE REMOVED FROM SPRINKLERS BEFORE PLACING THE SYSTEM IN SERVICE!

Remove the shield or cap from the sprinkler only after checking all of the following:

- · The sprinkler has been installed*.
- The wall or ceiling finish work is completed where the sprinkler is installed and there no longer is a potential for mechanical damage to the sprinkler operating elements.

SHIELDS AND CAPS MUST BE REMOVED FROM SPRINKLERS BEFORE PLACING THE SYSTEM IN SERVICE!

Figure 1: Sprinkler shield being removed from a pendent sprinkler.

Figure 2: Sprinkler cap being removed from a pendent sprinkler.

Figure 3: Sprinkler cap being removed from and upright sprinkler.

HOW TO REMOVE SHIELDS AND CAPS:

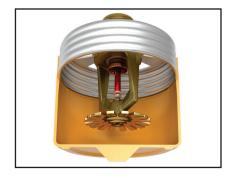
No tools are necessary to remove the shields or caps from sprinklers. DO NOT use any sharp objects to remove them! Take care not to cause mechanical damage to sprinklers when removing the shields or caps. When removing caps from fusible element sprinklers, use care to prevent dislodging ejector springs or damaging fusible elements. NOTE: Squeezing the sprinkler cap excessively could damage sprinkler fusible elements.

- To remove the shield, simply pull the ends of the shield apart where it is snapped together. Refer to Figure 1.
- To remove the cap, turn it slightly and pull it off the sprinkler. Refer to Figures 2 and 3.

NOTICE Refer to the current sprinkler technical data page to determine the correct sprinkler wrench for the model of sprinkler used.

Never install sprinklers that have been dropped, damaged, or exposed to temperatures in excess of the maximum ambient temperature allowed.

* Refer to the appropriate current technical data pages for complete care, handling, and installation instructions. Data pages are included with each shipment from Viking or Viking distributors. They can also be found on the Web site at www. vikinggroupinc.com.



CARE AND HANDLING OF SPRINKLERS

The Viking Corporation, 210 N Industrial Park Drive, Hastings MI 49058
Telephone: 269-945-9501 Technical Services: 877-384-5464 Fax: 269-818-1680 Email: techsvcs@vikingcorp.com

▲ CAUTION CONCEALED COVER ASSEMBLIES ARE FRAGILE!

TO ASSURE SATISFACTORY PERFORMANCE OF THE PRODUCT, HANDLE WITH CARE.

Concealed Sprinkler and Adapter Assembly with Protective Cap

Concealed Sprinkler and Adapter Assembly (Protective Cap Removed)

Cover Plate Assembly (Pendent Cover 12381 shown)

GENERAL HANDLING AND STORAGE INSTRUCTIONS:

- Do not store in temperatures exceeding 100 °F (38 °C). Avoid direct sunlight and confined areas subject to heat.
- · Protect sprinklers and cover assemblies during storage, transport, handling, and after installation.
- -- Use original shipping containers.
- -- Do not place sprinklers or cover assemblies loose in boxes, bins, or buckets.
- Keep the sprinkler bodies covered with the protective sprinkler cap any time the sprinklers are shipped or handled, during testing of the system, and while ceiling finish work is being completed.
- Use only the designated Viking recessed sprinkler wrench (refer to the appropriate sprinkler data page) to install these sprinklers. **NOTE:** The protective cap is temporarily removed during installation and then placed back on the sprinkler for protection until finish work is completed.
- Do not over-tighten the sprinklers into fittings during installation.
- Do not use the sprinkler deflector to start or thread the sprinklers into fittings during installation.
- · Do not attempt to remove drywall, paint, etc., from the sprinklers.
- Remove the plastic protective cap from the sprinkler before attaching the cover plate assembly. PROTECTIVE CAPS <u>MUST</u> BE REMOVED FROM SPRINKLERS BEFORE PLACING THE SYSTEM IN SERVICE!

Refer to the appropriate current technical data pages for complete care, handling, and installation instructions. Data pages are included with each shipment from Viking or Viking distributors. They can also be found on the Web site at www. vikinggroupinc.com.

CARE AND HANDLING OF SPRINKLERS

The Viking Corporation, 210 N Industrial Park Drive, Hastings MI 49058

Telephone: 269-945-9501 Technical Services: 877-384-5464 Fax: 269-818-1680 Email: techsvcs@vikingcorp.com

USE THE FOLLOWING PRECAUTIONS WHEN HANDLING WAX-COATED SPRINKLERS

Many of Viking's sprinklers are available with factory-applied wax coating for corrosion resistance. These sprinklers MUST receive appropriate care and handling to avoid damaging the wax coating and to assure satisfactory performance of the product.

General Handling and Storage of Wax-Coated Sprinklers:

- Store the sprinklers in a cool, dry place (in temperatures below the maximum ambient temperature allowed for the sprinkler temperature rating. Refer to Table 1 below.)
- · Store containers of wax-coated sprinklers separate from other sprinklers.
- · Protect the sprinklers during storage, transport, handling, and after installation.
- · Use original shipping containers.
- · Do not place sprinklers in loose boxes, bins, or buckets.

Installation of Wax-Coated Sprinklers:

Use only the special sprinkler head wrench designed for installing wax-coated Viking sprinklers (any other wrench may damage the unit).

- · Take care not to crack the wax coating on the units.
- For touching up the wax coating after installation, wax is available from Viking in bar form. Refer to Table 1 below. The coating MUST be repaired after sprinkler installation to protect the corrosion-resistant properties of the sprinkler.
- Use care when locating sprinklers near fixtures that can generate heat. Do not install sprinklers where they would be exposed to temperatures exceeding the maximum recommended ambient temperature for the temperature rating used.
- Inspect the coated sprinklers frequently soon after installation to verify the integrity of the corrosion resistant coating. Thereafter, inspect representative samples of the coated sprinklers in accordance with NFPA 25. Close up visual inspections are necessary to determine whether the sprinklers are being affected by corrosive conditions.

		TABLE 1		
Sprinkler Temperature Rating (Fusing Point)	Wax Part Number	Wax Melting Point	Maximum Ambient Ceiling Temperature ¹	Wax Color
155 °F (68 °C) / 165 °F (74 °C)	02568A	148 °F (64 °C)	100 °F (38 °C)	Light Brown
175 °F (79 °C)	04146A	161 °F (71 °C)	150 °F (65 °C)	Brown
200 °F (93 °C)	04146A	161 °F (71 °C)	150 °F (65 °C)	Brown
220 °F (104 °C)	02569A	170 °F (76 °C)	150 °F (65 °C)	Dark Brown
286 °F (141 °C)	02569A	170 °F (76 °C)	150 °F (65 °C)	Dark Brown

¹Based on NFPA-13. Other limits may apply, depending on fire loading, sprinkler location, and other requirements of the Authority Having Jurisdiction. Refer to specific installation standards.

▲WARNING

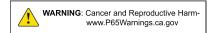
Never install sprinklers that have been dropped, damaged, or exposed to temperatures in excess of the maximum ambient temperature allowed.

Refer to the appropriate current technical data pages for complete care, handling, and installation instructions. Data pages are included with each shipment from Viking or Viking distributors. They can also be found on the Web site at www. vikinggroupinc.com.

SPRINKLER OVERVIEW

The Viking Corporation, 210 N Industrial Park Drive, Hastings MI 49058

Telephone: 269-945-9501 Technical Services: 877-384-5464 Fax: 269-818-1680 Email: techsvcs@vikingcorp.com


1. DESCRIPTION

Viking fire sprinklers consist of a threaded frame with a specific waterway or orifice size and a deflector for distributing water in a specified pattern. A closed or sealed sprinkler refers to a complete assembly, including the thermosensitive operating element. An open sprinkler does not use an operating element and is open at all times. The distribution of water is intended to extinguish a fire or to control its spread.

Viking sprinklers are available in several models and styles. Refer to specific sprinkler technical data pages for available styles, finishes, temperature ratings, thread sizes, and nominal K-Factors for the particular model selected.

2. LISTINGS AND APPROVALS

Refer to the Approval Charts on the appropriate sprinkler technical data page(s) and/or approval agency listings.

3. TECHNICAL DATA

Pressure Ratings:

Maximum allowable water working pressure is 175 psig (12 Bar) unless rated and specified for high water working pressure [250 psig (17.2 bar)].

Sprinkler Identification:

Viking sprinklers are identified and marked with the word "Viking", the sprinkler identification number (SIN) consisting of "VK" plus a three digit number*, the model letter, and the year of manufacture.

Available Finishes:

Viking sprinklers are available in several decorative finishes. Some models are available with corrosion-resistant coatings or are fabricated from non-corrosive material. Refer to the sprinkler technical data page for additional information.

Available Temperature Ratings:

Viking sprinklers are available in several temperature ratings that relate to a specific temperature classification. Applicable installation rules mandate the use and limitations of each temperature classification. In selecting the appropriate temperature classification, the maximum expected ceiling temperature must be known. When there is doubt as to the maximum temperature at the sprinkler location, a maximum-reading thermometer should be used to determine the temperature under conditions that would show the highest readings to be expected. In addition, recognized installation rules may require a higher temperature classification, depending upon sprinkler location, occupancy classification, commodity classification, storage height, and other hazards. In all cases, the maximum expected ceiling temperature dictates the lowest allowable temperature classification. Sprinklers located immediately adjacent to a heat source may require a higher temperature rating.

K-Factors:

Viking sprinklers are available in several orifice sizes with related K-Factors. The orifice is a tapered waterway and, therefore, the K-Factor given is nominal. Nominal U.S. K-Factors are provided in accordance with the 1999 edition of NFPA 13, Section 3-2.3. Refer to the specific data page for appropriate K-Factor information.

Available Styles:

Viking sprinklers are available for installation in several positions as indicated by a stamping on the deflector. The deflector style dictates the appropriate installation position of the sprinkler; it breaks the solid stream of water issuing from the sprinkler orifice to form a specific spray pattern. The following list indicates the various styles and identification of Viking sprinklers.

<u>UPRIGHT SPRINKLER:</u> A sprinkler intended to be installed with the deflector above the frame so water flows upward through the orifice, striking the deflector and forming an umbrella-shaped spray pattern downward. Marked "SSU" (Standard Sprinkler Upright) or "UPRIGHT" on the deflector.

Viking Technical Data may be found on

<u>PENDENT SPRINKLER:</u> A sprinkler intended to be oriented with the deflector below the frame so water flows downward through the orifice, striking the deflector and forming an umbrella-shaped spray pattern downward. Marked "SSP" (Standard Sprinkler Pendent) or "PENDENT" on the deflector.

Viking Technical Data may be found on The Viking Corporation's Web site at http://www.vikinggroupinc.com. The Web site may include a more recent edition of this Technical Data Page.

CONVENTIONAL SPRINKLER: An "old style" sprinkler intended to be installed with the deflector in either the upright or pendent position. The deflector provides a spherical type pattern with 40 to 60 percent of the water initially directed downward and a proportion directed upward. Must be installed in accordance with installation rules for conventional or old style sprinklers. DO NOT USE AS A REPLACEMENT FOR STANDARD SPRAY SPRINKLERS. Marked "C U/P" (Conventional Upright/Pendent) on the deflector.

SPRINKLER OVERVIEW

The Viking Corporation, 210 N Industrial Park Drive, Hastings MI 49058
Telephone: 269-945-9501 Technical Services: 877-384-5464 Fax: 269-818-1680 Email: techsvcs@vikingcorp.com

- <u>VERTICAL SIDEWALL (VSW) SPRINKLER:</u> A sprinkler intended for installation near the wall and ceiling. The deflector provides a water spray pattern outward in a quarter-spherical pattern and can be installed in the upright or pendent position with the flow arrow in the direction of discharge. Marked "SIDEWALL" on the deflector with an arrow and the word "FLOW". (Note: Some vertical sidewall sprinklers can only be installed in the upright or pendent position—in this case, the sprinkler will also be marked "UPRIGHT" or "PENDENT".)
- <u>HORIZONTAL SIDEWALL (HSW) SPRINKLER:</u> A sprinkler intended for installation near the wall and ceiling. The special deflector provides a water spray pattern outward in a quarter-spherical pattern. Most of the water is directed away from the nearby wall with a small portion directed at the wall behind the sprinkler. The top of the deflector is oriented parallel with the ceiling or roof. The flow arrows point in the direction of discharge. Marked "SIDEWALL" and "TOP" with an arrow and the word "FLOW".
- EXTENDED COVERAGE (EC) SPRINKLER: A spray sprinkler designed to discharge water over an area having the maximum dimensions indicated in the individual listings. Maximum area of coverage, minimum flow rate, orifice size, and nominal K-Factor are specified in the individual listings. EC sprinklers are intended for Light-Hazard occupancies with smooth, flat, horizontal ceilings unless otherwise specified. In addition to the above markings, the sprinkler is marked "EC".
- QUICK RESPONSE (QR) SPRINKLER: A spray sprinkler with a fast- actuating operating element. The use of quick response sprinklers may be limited due to occupancy and hazard. Refer to the Authority Having Jurisdiction (AHJ) prior to installing.
- QUICK RESPONSE EXTENDED COVERAGE (QREC) SPRINKLER: A spray sprinkler designed to discharge water over an area having the maximum dimensions indicated in the individual listing. This is a sprinkler with an operating element that meets the criteria for quick response. QREC sprinklers are only intended for Light Hazard occupancies. The sprinkler is marked "QREC".
- <u>FLUSH SPRINKLER:</u> A decorative spray sprinkler intended for installation with a concealed piping system. The unit is mounted flush with the ceiling or wall, with the fusible link exposed. Upon actuation, the deflector extends beyond the ceiling or wall to distribute water discharge. The sprinkler is marked "SSP", "PEND", or "SIDEWALL" and "TOP".
- CONCEALED SPRINKLER: A decorative spray sprinkler intended for installation with a concealed piping system. The sprinkler is hidden from view by a cover plate installed flush with the ceiling or wall. During fire conditions, the cover plate detaches, and upon sprinkler actuation, the deflector extends beyond the ceiling or wall to distribute water discharge. The sprinkler is marked "SSP", "PEND", or "SIDEWALL" and "TOP".
- RECESSED SPRINKLER: A spray sprinkler assembly intended for installation with a concealed piping system. The assembly consists of a sprinkler installed in a decorative adjustable recessed escutcheon that minimizes the protrusion of the sprinkler beyond the ceiling or wall without adversely affecting the sprinkler distribution or sensitivity. Refer to the appropriate technical data page for allowable sprinkler models, temperature ratings, and occupancy classifications. DO NOT RECESS ANY SPRINKLER NOT LISTED FOR USE WITH THE ESCUTCHEON.
- <u>CORROSION-RESISTANT SPRINKLER</u>: A special service sprinkler with non-corrosive protective coatings, or that is fabricated from non-corrosive material, for use in atmospheres that would normally corrode sprinklers.
- <u>DRY SPRINKLER:</u> A special-service sprinkler intended for installation on dry pipe systems or wet pipe systems where the sprinkler is subject to freezing temperatures. The unit consists of a sprinkler permanently secured to an extension nipple with a sealed inlet end to prevent water from entering the nipple until the sprinkler operates. The unit MUST be installed in a tee fitting. Dry upright sprinklers are marked with the "B" dimension [distance from the face of the fitting (tee) to the top of the deflector]. Dry pendent and sidewall sprinklers are marked with the "A" dimension [the distance from the face of fitting (tee) to the finished surface of the ceiling or wall].
- LARGE DROP SPRINKLER: A type of special application sprinkler used to provide fire control of specific high-challenge fire hazards. Large drop sprinklers are designed to produce an umbrella-shaped spray pattern downward with a higher percentage of "large" water droplets than standard spray sprinklers. The sprinkler has an extra-large orifice with a nominal K-Factor of 11.2. Marked "HIGH CHALLENGE" and "UPRIGHT".
- EARLY SUPPRESSION FAST-RESPONSE (ESFR) SPRINKLER: A sprinkler intended to provide fire suppression of specific high-challenge fire hazards through the use of a fast response fusible link, 14.0, 16.8, or 25.2 nominal K-Factor, and special deflector. ESFR sprinklers are designed to produce high-momentum water droplets in a hemispherical pattern below the deflector. This permits penetration of the fire plume and direct wetting of the burning fuel surface while cooling the atmosphere early in the development of a high-challenge fire. Marked "ESFR" and "UPRIGHT" or "PEND".
- <u>INTERMEDIATE LEVEL/RACK STORAGE SPRINKLER:</u> A standard spray sprinkler assembly designed to protect its operating element from the spray of sprinklers installed at higher elevations. The assembly consists of a standard or large orifice upright or pendent sprinkler with an integral upright or pendent water shield and guard assembly. Use only those sprinklers that have been tested and listed for use with the assembly. Refer to the technical data page for allowable sprinkler models.
- RESIDENTIAL SPRINKLER: A sprinkler intended for use in the following occupancies: one- and two-family dwellings with the fire protection sprinkler system installed in accordance with NFPA 13D; residential occupancies up to four stories in height with the fire protection system installed in accordance with NFPA 13R; and where allowed by the Authority Having Jurisdiction in residential portions of any occupancy with the fire protection system installed in accordance with NFPA 13.

SPRINKLER OVERVIEW

The Viking Corporation, 210 N Industrial Park Drive, Hastings MI 49058
Telephone: 269-945-9501 Technical Services: 877-384-5464 Fax: 269-818-1680 Email: techsvcs@vikingcorp.com

Residential sprinklers have a unique distribution pattern and utilize a "fast response" heat sensitive operating element. They enhance survivability in the room of fire origin and are designed to provide a life safety environment for a minimum of ten minutes. For this reason, residential sprinklers must not be used to replace standard sprinklers unless tested for and approved by the Authority Having Jurisdiction. In addition to standard markings, the unit is identified as "RESIDENTIAL SPRINKLER" or "RES".

4. INSTALLATION

Refer to appropriate NFPA Installation Standards.

5. OPERATION

Refer to the appropriate sprinkler technical data page(s).

6. INSPECTIONS, TESTS AND MAINTENANCE

Refer to NFPA 25 for Inspection, Testing and Maintenance requirements.

7. AVAILABILITY

Viking sprinklers are available through a network of domestic and international distributors. See The Viking Corporation web site for the closest distributor or contact The Viking Corporation.

8. GUARANTEE

For details of warranty, refer to Viking's current list price schedule or contact Viking directly.

IMPORTANT: Always refer to Bulletin Form No. F_091699 - Care and Handling of Sprinklers and the appropriate sprinkler general care, installation, and maintenance guide. Viking sprinklers are to be installed in accordance with the latest edition of Viking technical data, the appropriate standards of NFPA, FM Global, LPCB, APSAD, VdS or other similar organizations, and also with the provisions of governmental codes, ordinances, and standards, whenever applicable. The sprinkler technical data page may contain installation requirements specific for the sprinkler model selected. The use of certain types of sprinklers may be limited due to occupancy and hazard. Refer to the Authority Having Jurisdiction prior to installation.

SPRINKLER GENERAL CARE, INSTALLATION, AND MAINTENANCE GUIDE

The Viking Corporation, 210 N Industrial Park Drive, Hastings MI 49058
Telephone: 269-945-9501 Technical Services: 877-384-5464 Fax: 269-818-1680 Email: techsvcs@vikingcorp.com
Visit the Viking website for the latest edition of this technical data page.

DESCRIPTION - STANDARD RESPONSE, QUICK RESPONSE, EXTENDED COVERAGE, AND DRY SPRINKLERS

Viking thermosensitive spray sprinklers consist of a small frame and either a glass bulb or a fusible operating element. Available styles include pendent, flush pendent, concealed pendent, upright, horizontal sidewall, vertical sidewall, or conventional, depending on the particular sprinkler model selected.

Viking sprinklers are available with various finishes, temperature ratings, responses, and K-Factors to meet design requirements†. Used in conjunction with one of the corrosion-resistant coatings (for frame style sprinklers), the units provide protection against many corrosive environments. In addition, the special Polyester or Teflon® coatings can be used in decorative applications where colors are desired.

† Refer to the sprinkler technical data page for available styles, finishes, temperature ratings, responses, and nominal K-Factors for specific sprinkler models.

2. LISTINGS AND APPROVALS

Refer to the Approval Charts on the appropriate sprinkler technical data page(s) and/or approval agency listings.

3. TECHNICAL DATA

Specifications:

Refer to the appropriate sprinkler technical data sheet.

Material Standards:

Refer to the appropriate sprinkler technical data sheet.

WARNING: Cancer and Reproductive Harmwww.P65Warnings.ca.gov

4. INSTALLATION

NOTE: Take care not to over-tighten the sprinkler and/or damage its operating parts!

Maximum Torque:

1/2" NPT: 14 ft-lbs. (19.0 N-m) 3/4" NPT: 20 ft-lbs. (27.1 N-m) 1" NPT: 30 ft-lbs. (40.7 N-m)

A. Care and Handling (also refer to Bulletin - Care and Handling of Sprinklers, Form No. F_091699.)

Sprinklers must be handled with care. They must be stored in a cool, dry place in their original shipping container. Never install sprinklers that have been dropped, damaged, or exposed to temperatures exceeding the maximum ambient temperature allowed (refer to the temperature chart on the sprinkler technical data page). Never install any glass-bulb sprinkler if the bulb is cracked or if there is a loss of liquid from the bulb. A small air bubble should be present in the glass bulb. Any sprinkler with a loss of liquid from the glass bulb or damage to the fusible element should be destroyed immediately. (Note: Installing glass bulb sprinklers in direct sunlight (ultraviolet light) may affect the color of the dye used to color code the bulb. This color change does not affect the integrity of the bulb.)

Sprinklers must be protected from mechanical damage during storage, transport, handling, and after installation. Sprinklers subject to mechanical damage must be protected with an approved sprinkler guard.

Use only sprinklers listed as corrosion resistant when subject to corrosive environments. When installing corrosion-resistant sprinklers, take care not to damage the corrosion-resistant coating. Use only the special wrench designed for installing coated or recessed Viking sprinklers (any other wrench may damage the unit).

Concealed sprinklers must be installed in neutral or negative pressure plenums only!

Use care when locating sprinklers near fixtures that can generate heat. Do not install sprinklers where they could be exposed to temperatures exceeding the maximum recommended ambient temperature for the temperature rating used.

Wet pipe systems must be provided with adequate heat. Sprinklers supplied from dry systems in areas subject to freezing must be listed dry sprinklers, upright, or horizontal sidewall sprinklers installed so that water is not trapped. For dry systems, pendent sprinklers and sidewall sprinklers installed on return bends are permitted, where the sprinklers, return bend, and branch line piping are in an area maintained at or above 40 °F (4 °C).

B. Installation Instructions - Standard Spray Sprinklers

Viking sprinklers are manufactured and tested to meet the rigid requirements of approving agencies. They are designed to be installed in accordance with recognized installation standards. Deviation from the standards or any alteration to sprinklers or cover plate assemblies after they leave the factory including, but not limited to: painting, plating, coating, or modification, may render them inoperative and will automatically nullify the approvals and any guarantee made by The Viking Corporation.

SPRINKLER GENERAL CARE, INSTALLATION, AND MAINTENANCE GUIDE

The Viking Corporation, 210 N Industrial Park Drive, Hastings MI 49058
Telephone: 269-945-9501 Technical Services: 877-384-5464 Fax: 269-818-1680 Email: techsvcs@vikingcorp.com
Visit the Viking website for the latest edition of this technical data page.

Before installation, be sure to have the appropriate sprinkler model and style, with the correct K-Factor, temperature rating, and response characteristics. Sprinklers must be installed after the piping is in place to prevent mechanical damage. Keep sprinklers with protective caps or bulb shields contained within the caps or shields during installation and testing, and any time the sprinkler is shipped or handled.

- 1a. For frame-style sprinklers, install escutcheon (if used), which is designed to thread onto the external threads of the sprinkler. Refer to the appropriate sprinkler data page to determine approved escutcheons for use with specific sprinkler models.
- 1b. For flush and concealed style sprinklers: Cut the sprinkler nipple so that the ½" or 3/4" (15 mm or 20 mm)* NPT outlet of the reducing coupling is at the desired location, and centered in the opening* in the ceiling or wall.

 *Size depends on the sprinkler model used. Refer to the sprinkler technical data page.
- 2. Apply a small amount of pipe-joint compound or tape to the external threads of the sprinkler only, taking care not to allow a build-up of compound in the sprinkler inlet. **NOTE:** Sprinklers with protective caps or bulb shields must have the caps or shields kept on them when applying pipe-joint compound or tape. *Exception: For domed concealed sprinklers, remove the protective cap for installation, and then place it back on the sprinkler temporarily.*
- 3. Refer to the appropriate sprinkler technical data page to determine the correct sprinkler wrench for the model of sprinkler used. DO NOT use the deflector or fusible element to start or thread the sprinkler into a fitting.
 - a. Install the sprinkler onto the piping using the special sprinkler wrench only, taking care not to over-tighten or damage the sprinkler.
 - b. For flush and concealed style sprinklers: the internal diameter of the special sprinkler installation wrench is designed for use with the sprinkler contained in the protective cap. *Exception: For domed concealed sprinklers, remove the protective cap for installation, and then place it back on the sprinkler temporarily.* Thread the flush or concealed sprinkler into the ½" or 3/4" (15 mm or 20 mm)* NPT outlet of the coupling by turning it clockwise with the special sprinkler wrench. *Thread size depends on the particular sprinkler model used. Refer to the sprinkler technical data page.

C. Installation Instructions - Dry Sprinklers

WARNING: Viking dry sprinklers are to be installed in the 1" outlet (for dry and preaction systems), or run of malleable, ductile iron, or Nibco CPVC* threaded tee fittings (for wet systems) that meet the dimensional requirements of ANSI B16.3 (Class 150), or cast iron threaded tee fittings that meet the dimensional requirements of ANSI B16.4 (Class 125), even at branch line ends. The threaded end of the dry sprinkler is designed to allow the seal to penetrate and extend into the fitting to a predetermined depth. This prevents condensation from accumulating and freezing over the sprinkler seal. *NOTE: When using CPVC fittings with Viking dry sprinklers, use only new Nibco Model 5012-S-BI. When selecting other CPVC fittings, contact Viking Technical Services.

- 1. **DO NOT** install the dry sprinkler into a threaded elbow, coupling, or any other fitting that could interfere with thread penetration. Such installation would damage the brass seal.
- 2. **DO NOT** install dry sprinklers into couplings or fittings that would allow condensation to accumulate above the seal when the sprinkler is located in an area subject to freezing.
- 3. NEVER try to modify dry sprinklers. They are manufactured for specific "A" or "B" dimensions and cannot be modified.

The dry sprinkler must be installed after the piping is in place to prevent mechanical damage. Before installation, be sure to have the correct sprinkler model and style, with the appropriate "A" or "B" dimension(s), temperature rating, orifice size, and response characteristics. Keep sprinklers with protective caps or bulb shields contained within the caps or shields during installation and testing, and any time the sprinkler is shipped or handled. *Exception:* For concealed and adjustable recessed dry sprinklers, the protective caps and shields are removed for installation.

To install the dry sprinkler, refer to the instructions below and the appropriate sprinkler technical data page for illustrated instructions.

Dry upright sprinklers must be installed above the piping, in the upright position only. When installing dry upright or plain barrel style vertical sidewall sprinklers on piping located close to the ceiling, it may be necessary to lower the sprinkler into the fitting from above the ceiling. When installing dry upright or plain barrel vertical sidewall sprinklers from below the ceiling, verify that the opening in the ceiling is a minimum 1-1/2" (38.1 mm) in diameter.

For dry upright or plain barrel vertical sidewall sprinklers in the upright position: First, install the escutcheon (if used) over the threaded end of the sprinkler barrel. Slide the escutcheon past the external threads. NOTE: When installing the dry upright or plain barrel vertical sidewall sprinkler from above the ceiling, it will be necessary to install the escutcheon after lowering the threaded end of the sprinkler through the ceiling penetration.

A. **For all dry sprinklers:** Apply a small amount of pipe-joint compound or tape to the external threads of the sprinkler barrel only, taking care not to allow a build-up of compound or tape over the brass inlet and seal. **NOTE:** Sprinklers with protective caps or bulb shields must be contained within the caps or shields before applying pipe-joint compound or tape.

SPRINKLER GENERAL CARE, INSTALLATION, AND MAINTENANCE GUIDE

The Viking Corporation, 210 N Industrial Park Drive, Hastings MI 49058
Telephone: 269-945-9501 Technical Services: 877-384-5464 Fax: 269-818-1680 Email: techsvcs@vikingcorp.com
Visit the Viking website for the latest edition of this technical data page.

- B. Refer to the appropriate sprinkler technical data page to determine the correct sprinkler wrench for the model of sprinkler used.
- C. Install the dry sprinkler on the piping using the special dry sprinkler wrench only, while taking care not to damage the sprinkler. **NOTE:** Thread the sprinkler into the fitting hand tight, plus 1/2 turn with the dry sprinkler wrench.
- D. For adjustable standard and adjustable recessed dry pendent and sidewall sprinklers: Escutcheons can be installed after the sprinklers have been installed onto the piping. Refer to the appropriate sprinkler technical data page for escutcheon installation instructions and illustrations.

D. Installation Instructions - Testing

- 4. After installation, the entire sprinkler system must be tested. The test must be conducted to comply with the installation standards. Viking *high pressure* sprinklers may be hydrostatically tested at a maximum of 300 psi (20.7 bar) for limited periods of time (two hours), for the purpose of acceptance by the Authority Having Jurisdiction.
 - a. Make sure the sprinkler is properly tightened. If a thread leak occurs, normally the sprinkler must be removed, new pipe-joint compound or tape applied, and then reinstalled. This is due to the fact that when the joint seal is damaged, the sealing compound or tape is washed out of the joint. Air testing [do not exceed 40 psi (2.76 bar)] the sprinkler piping prior to testing with water may be considered in areas where leakage during testing must be prevented. Refer to the Installation Standards and the Authority Having Jurisdiction.
 - b. Remove plastic protective sprinkler caps or bulb shields AFTER the wall or ceiling finish work is completed where the sprinkler is installed and there no longer is a potential for mechanical damage to the sprinkler operating elements. To remove the bulb shields, simply pull the ends of the shields apart where they are snapped together. To remove caps from frame style sprinklers, turn the caps slightly and pull them off the sprinklers. SPRINKLER CAPS OR BULB SHIELDS MUST BE REMOVED FROM SPRINKLERS <u>BEFORE</u> PLACING THE SYSTEM IN SERVICE! Retain a protective cap or shield in the spare sprinkler cabinet.
- 5. For flush style sprinklers: the ceiling ring can now be installed onto the sprinkler body. Align the ceiling ring with the sprinkler body and thread or push it on (depends on sprinkler model) until the outer flange touches the surface of the ceiling. Note the maximum adjustment is 1/4" (6.35 mm). DO NOT MODIFY THE UNIT, If necessary, re-cut the sprinkler drop nipple as required.
- 6. For concealed sprinklers: the cover assembly can now be attached.
 - a. Remove the cover from the protective box, taking care not to damage the cover plate assembly.
 - b. Gently place the base of the cover plate assembly over the sprinkler protruding through the opening in the ceiling.
 - c. Push the cover plate assembly onto the sprinkler until the unfinished brass flange of the cover plate base (or the cover adapter, if used) touches the surface of the ceiling.
 - d. Refer to the applicable technical data sheet to determin the maximum adjustment available for concealed sprinklers. DO NOT MODIFY THE UNIT. If necessary, re-cut the sprinkler drop nipple.

NOTE: If it is necessary to remove the entire sprinkler unit, the system must be taken out of service. See section 6. INSPECTIONS, TESTS AND MAINTENANCE and follow all warnings and instructions.

5. OPERATION

Refer to the appropriate sprinkler technical data page(s). During fire conditions, the operating element fuses or shatters (depending on the type of sprinkler), releasing the pip cap and sealing assembly. Water flowing through the sprinkler orifice strikes the sprinkler deflector, forming a uniform spray pattern to extinguish or control the fire.

IMPORTANT: Always refer to Bulletin Form No. F_091699 - Care and Handling of Sprinklers. Viking sprinklers are to be installed in accordance with the latest edition of Viking technical data, the appropriate standards of NFPA, FM Global, LPCB, APSAD, VdS or other similar organizations, and also with the provisions of governmental codes, ordinances, and standards, whenever applicable. The sprinkler technical data page may contain installation requirements specific for the sprinkler model selected. The use of certain types of sprinklers may be limited due to occupancy and hazard. Refer to the Authority Having Jurisdiction prior to installation.

SPRINKLER GENERAL CARE, INSTALLATION, AND MAINTENANCE GUIDE

The Viking Corporation, 210 N Industrial Park Drive, Hastings MI 49058

Telephone: 269-945-9501 Technical Services: 877-384-5464 Fax: 269-818-1680 Email: techsvcs@vikingcorp.com Visit the Viking website for the latest edition of this technical data page.

6. INSPECTIONS, TESTS AND MAINTENANCE

NOTICE: Refer to NFPA 25 for Inspection, Testing and Maintenance requirements. **NOTICE:** The owner is responsible for having the fire-protection system and devices inspected, tested, and maintained in proper operating condition in accordance with this guide, and applicable NFPA standards. In addition, the Authority Having Jurisdiction may have additional maintenance, testing, and inspection requirements that must be followed.

- A. Sprinklers must be inspected on a regular basis for corrosion, mechanical damage, obstructions, paint, etc. Frequency of inspections may vary due to corrosive atmospheres, water supplies, and activity around the sprinkler unit.
- B. Sprinklers or cover plate assemblies that have been field painted, caulked, or mechanically damaged must be replaced immediately. Sprinklers showing signs of corrosion shall be tested and/or replaced immediately as required. Installation standards require sprinklers to be tested and, if necessary, replaced after a specified term of service. Refer to NFPA 25 and the Authority Having Jurisdiction for the specified period of time after which testing and/or replacement is required. Never attempt to repair or reassemble a sprinkler. Sprinklers and cover assemblies that have operated cannot be reassembled or re-used, but must be replaced. When replacement is necessary, use only new sprinklers and cover assemblies with identical performance characteristics.
- C. The sprinkler discharge pattern is critical for proper fire protection. Therefore, nothing should be hung from, attached to, or otherwise obstruct the discharge pattern. All obstructions must be immediately removed or, if necessary, additional sprinklers installed.
- D. When replacing existing sprinklers, the system must be removed from service. Refer to the appropriate system description and/ or valve instructions. Prior to removing the system from service, notify all Authorities Having Jurisdiction. Consideration should be given to employment of a fire patrol in the affected area.
 - 1. Remove the system from service, drain all water, and relieve all pressure on the piping.
 - 2a. For frame-style sprinklers, use the special sprinkler wrench to remove the old sprinkler by turning it counterclockwise to unthread it from the piping.
 - 2b. For flush and concealed style sprinklers: Remove the ceiling ring or cover plate assembly before unthreading the sprinkler body from the piping. Ceiling rings and cover plates can be removed either by gently unthreading them or pulling them off the sprinkler body (depends on the sprinkler model used). After the ceiling ring or cover plate assembly has been removed from the sprinkler body, place the plastic protective cap (from the spare sprinkler cabinet) over the sprinkler to be removed and then fit the sprinkler wrench over the cap. Then use the wrench to unthread the sprinkler from the piping. Exception: Domed concealed sprinklers are removed without the plastic cap.
 - 3. Install the new sprinkler unit by following the instructions in section 4. INSTALLATION. Care must be taken to ensure that the replacement sprinkler is the proper model and style, with the correct K-Factor, temperature rating, and response characteristics. A fully stocked spare sprinkler cabinet should be provided for this purpose. For flush or concealed sprinklers: stock of spare ceiling rings or cover plates should also be available in the spare sprinkler cabinet.
- E. Place the system back in service and secure all valves. Check for and repair all leaks. Sprinkler systems that have been subjected to a fire must be returned to service as soon as possible. The entire system must be inspected for damage, and repaired or replaced as necessary. Sprinklers that have been exposed to corrosive products of combustion or high ambient temperatures, but have not operated, should be replaced. Refer to the Authority Having Jurisdiction for minimum replacement requirements.

7. AVAILABILITY

Viking sprinklers are available through a network of domestic and international distributors. See The Viking Corporation web site for the closest distributor or contact The Viking Corporation.

8. GUARANTEE

For details of warranty, refer to Viking's current list price schedule or contact Viking directly.

REGULATORY AND HEALTH WARNINGS

The Viking Corporation, 210 N Industrial Park Drive, Hastings MI 49058

Telephone: 269-945-9501 Technical Services: 877-384-5464 Fax: 269-818-1680 Email: techsvcs@vikingcorp.com

Visit the Viking website for the latest edition of this technical data page www.vikinggroupinc.com

1. DESCRIPTION

Regulatory and Health Warnings applying to materials used in the manufacture and construction of fire protection products are provided herin as they relate to legally mandated jurisdictional regions.

A WARNING

STATE OF CALIFORNIA, USA

Installing or servicing fire protection products such as sprinklers, valves, piping etc. can expose you to chemicals including, but not limited to, lead, nickel, butadiene, titaninum dioxide, chromium, carbon black, and acrylonitrile which are known to the State of California to cause cancer or birth defects or other reproductive harm.

For more information, go to www.P65Warnings.ca.gov

2. WARRANTY TERMS AND CONDITIONS

For details of warranty, refer to Viking's current list price schedule at www.vikinggroupinc.com or contact Viking directly.

MICROFAST® QUICK RESPONSE UPRIGHT SPRINKLER VK300 (K5.6)

The Viking Corporation, 210 N Industrial Park Drive, Hastings MI 49058

Telephone: 269-945-9501 Technical Services: 877-384-5464 Fax: 269-818-1680 Email: techsvcs@vikingcorp.com Visit the Viking website for the latest edition of this technical data page: www.vikinggroupinc.com

1. DESCRIPTION

The Viking Microfast® Quick Response Upright Sprinkler VK300 is a small, thermosensitive, glass-bulb spray sprinkler available in several different finishes and temperature ratings to meet design requirements. The special Polyester and Electroless Nickel PTFE (ENT) coatings can be used in decorative applications where colors are desired. In addition, these coatings have been investigated for installation in corrosive atmospheres and are listed/approved as corrosion resistant as indicated in the Approval Charts.

2. LISTINGS AND APPROVALS

ւ(Սլ)սs cULus Listed: Category VNIV

FM Approved: Classes 2002 and 2020

Refer to Approval Charts and Design Criteria for listing and approval requirements that must be followed.

3. TECHNICAL DATA

Specifications:

Minimum Operating Pressure: 7 psi (0.5 bar)* Maximum Working Pressure: 175 psi (12 bar) wwp. Factory tested hydrostatically to 500 psi (34.5 bar)

Testing: U.S.A. Patent No. 4,831,870 Thread size: 1/2" NPT, 15 mm BSP Nominal K-Factor: 5.6 U.S. (80.6 metric**)

Glass-bulb fluid temperature rated to -65 °F (-55 °C)

Overall Length: 2-3/16" (56 mm)

*cULus Listing, FM Approval, and NFPA 13 installs require a minimum of 7 psi (0.5 bar). The minimum operating pressure for LPCB and CE Approvals ONLY is 5 psi (0.35 bar).

Material Standards:

Frame Casting: Brass UNS-C84400 or QM Brass Deflector: Brass UNS-C23000 or Copper UNS-C19500

Bulb: Glass, nominal 3 mm diameter

Belleville Spring Sealing Assembly: Nickel Alloy, coated on both sides with PTFE Tape

Screw: Brass UNS-C36000

Pip Cap and Insert Assembly: Copper UNS-C11000 and Stainless Steel UNS-S30400

For Polyester Coated Sprinklers: Belleville Spring-Exposed

For ENT Coated Sprinklers: Belleville Spring-Exposed, Screw and Pipcap - ENT plated

Ordering Information: (Also refer to the current Viking price list.)

Order Viking Microfast® Quick Response Upright Sprinkler VK300 by first adding the appropriate suffix for the sprinkler finish and then the appropriate suffix for the temperature rating to the sprinkler base part number.

Finish Suffix: Brass = A, Chrome = F, White Polyester = M-/W, Black Polyester = M-/B, and ENT = JN

Temperature Suffix (°F/°C): 135°/57° = A, 155°/68° = B, 175°/79° = D, 200°/93° = E, and 286°/141° = G

For example, sprinkler VK300 with a 1/2" NPT thread, Brass finish and a 155 °F/68 °C temperature rating = Part No. 12978AB

Available Finishes And Temperature Ratings: Refer to Table 1.

Accessories: (Also refer to the Viking website.)

Sprinkler Wrench: Standard Wrench: Part No. 21475M/B (available since 2017)

Sprinkler Cabinets:

A. Six-head capacity: Part No. 01724A (available since 1971) B. Twelve-head capacity: Part No. 01725A (available since 1971)

4. INSTALLATION

Refer to appropriate NFPA Installation Standards.

MICROFAST® QUICK RESPONSE UPRIGHT SPRINKLER VK300 (K5.6)

The Viking Corporation, 210 N Industrial Park Drive, Hastings MI 49058

Telephone: 269-945-9501 Technical Services: 877-384-5464 Fax: 269-818-1680 Email: techsvcs@vikingcorp.com Visit the Viking website for the latest edition of this technical data page: www.vikinggroupinc.com

5. OPERATION

During fire conditions, the heat-sensitive liquid in the glass bulb expands, causing the glass to shatter, releasing the pip cap and sealing spring assembly. Water flowing through the sprinkler orifice strikes the sprinkler deflector, forming a uniform spray pattern to extinguish or control the fire.

6. INSPECTIONS, TESTS AND MAINTENANCE

Refer to NFPA 25 for Inspection, Testing and Maintenance requirements.

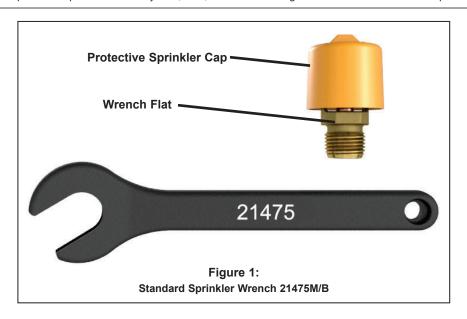
7. AVAILABILITY

The Viking Microfast® Quick Response Upright Sprinkler VK300 is available through a network of domestic and international distributors. See The Viking Corporation web site for the closest distributor or contact The Viking Corporation.

8. GUARANTEE

For details of warranty, refer to Viking's current list price schedule or contact Viking directly.

TABLE 1:	TABLE 1: AVAILABLE SPRINKLER TEMPERATURE RATINGS AND FINISHES											
Sprinkler Temperature Classification	Sprinkler Nominal Temperature Rating ¹	Maximum Ambient Ceiling Temperature ²	Bulb Color									
Ordinary	135 °F (57 °C)	100 °F (38 °C)	Orange									
Ordinary	155 °F (68 °C)	100 °F (38 °C)	Red									
Intermediate	175 °F (79 °C)	150 °F (65 °C)	Yellow									
Intermediate	200 °F (93 °C)	150 °F (65 °C)	Green									
High	286 °F (141 °C)	225 °F (107 °C)	Blue									


Sprinkler Finishes: Brass, Chrome, White Polyester, Black Polyester, and ENT

Corrosion-Resistant Coatings3: White Polyester, Black Polyester, and Black PTFE. ENT in all temperature ratings except 135 °F (57 °C)

Footnotes

¹ The sprinkler temperature rating is stamped on the deflector.
 ² Based on NFPA-13. Other limits may apply, depending on fire loading, sprinkler location, and other requirements of the Authority Having Jurisdiction.
 Refer to specific installation standards.

The corrosion-resistant coatings have passed the standard corrosion test required by the approving agencies indicated in the Approval Charts. These tests cannot and do not represent all possible corrosive environments. Prior to installation, verify through the end-user that the coatings are compatible with or suitable for the proposed environment. For automatic sprinklers, the coatings indicated are applied to the exposed exterior surfaces only. Note that the spring is exposed on sprinklers with Polyester, ENT, and PTFE coatings. For ENT coated automatic sprinklers, the waterway is coated.

MICROFAST® QUICK RESPONSE UPRIGHT SPRINKLER VK300 (K5.6)

The Viking Corporation, 210 N Industrial Park Drive, Hastings MI 49058
Telephone: 269-945-9501 Technical Services: 877-384-5464 Fax: 269-818-1680 Email: techsvcs@vikingcorp.com
Visit the Viking website for the latest edition of this technical data page: www.vikinggroupinc.com

Approval Chart 1 (UL) Microfast® Quick Response Upright Sprinkler VK300 Maximum 175 PSI (12 bar) WWP												
Base Part SIN Thread Size Nominal K-Factor Overall L									Listing	s and Ap	provals³	
Number ¹	Number ¹ NPT BSP U.S. metric ² Inches								VdS	LPCB	NYC8	(€
12978	VK300	1/2"	15 mm	5.6	80.6	2-3/16	56	A1, B2			See footnote 7.	
			NOTICE - H	Product B	elow - Limite	ed Availabil	ity (Cont	act Local V	iking Office)		
06661B	VK300	1/2"	15 mm	5.6	80.6	2-3/16	56	A1, B2			See footnote 7.	
Approved Temperature Ratings A - 135 °F (57 °C), 155 °F (68 °C), 175 °F (79 °C), 200 °F (93 °C), and 286 °F (141°C) B - 155 °F (68 °C), 175 °F (79 °C), 200 °F (93 °C), and 286 °F (141°C) Approved Temperature Ratings Approved Finishes 1 - Brass, Chrome, White Polyester ^{5,6} , and Black Polyester ^{5,6} 2 - ENT ⁶											er ^{5,6}	
	Footnotes											

Footnotes

- ¹Base part number is shown. For complete part number, refer to Viking's current price schedule.
- ² Metric K-factor measurement shown is when pressure is measured in Bar. When pressure is measured in kPa, divide the metric K-factor shown by 10.0.
- ³ This table shows the listings and approvals available at the time of printing. Check with the manufacturer for any additional approvals.
- ⁴ Listed by Underwriters Laboratories Inc. for us in the U.S. and Canada
- ⁵ Other colors are available on request with the same Listings and Approvals as the standard colors.
- ⁶ cULus Listed as corrosion resistant.
- ⁷ Meets New York City requirements, effective July 1, 2008
- 8 Accepted for use, City of New York Board of Standards and Appeals, Calendar Number 219-76-SA and City of New York Department of Buildings, MEA 89-92-E, Vol. 16.

DESIGN CRITERIA - UL

(Also refer to Approval Chart 1 above.)

cULus Listing Requirements:

The Viking Microfast® Quick Response Upright Sprinkler VK300 is cULus Listed as indicated in Approval Chart 1 for installation in accordance with the latest edition of NFPA 13 for standard spray sprinklers.

- Designed for use in Light and Ordinary Hazard occupancies.
- The sprinkler installation rules contained in NFPA 13 for standard spray upright sprinklers must be followed.

IMPORTANT: Always refer to Bulletin Form No. F_091699 - Care and Handling of Sprinklers. Also refer to Form No. F_080614 for general care, installation, and maintenance information. Viking sprinklers are to be installed in accordance with the latest edition of Viking technical data, the appropriate standards of NFPA, FM Global, LPCB, APSAD, VdS or other similar organizations, and also with the provisions of governmental codes, ordinances, and standards, whenever applicable.

MICROFAST® QUICK RESPONSE UPRIGHT SPRINKLER VK300 (K5.6)

The Viking Corporation, 210 N Industrial Park Drive, Hastings MI 49058
Telephone: 269-945-9501 Technical Services: 877-384-5464 Fax: 269-818-1680 Email: techsvcs@vikingcorp.com
Visit the Viking website for the latest edition of this technical data page: www.vikinggroupinc.com

			t 2 (FM) Response VK300 2 bar) WWP		Temperature KEY Finish A1X Escutcheon (if applicable)			
Base Part	SIN	Threa	ad Size	Nominal	K-Factor	Overall L	-ength	FM Approvals ³
Number ¹	SIN	NPT	BSP	U.S.	metric ²	Inches	mm	(Refer also to Design Criteria below.)
12978	VK300	1/2"	15 mm	5.6	80.6	2-3/16	56	A1, B2
		NOTIC	E - Product	Below - Lim	ited Availabi	lity (Contact L	Local Vikin	g Office)
06661B	VK300	1/2"	15 mm	5.6	80.6	2-3/16	56	A1, B2
Approved Temperature Ratings A - 135 °F (57 °C), 155 °F (68 °C), 175 °F (79 °C), 200 °F (93 °C), and 286 °F (141 °C) B - 155 °F (68 °C), 175 °F (79 °C), 200 °F (93 °C), and 286 °F (141 °C)								Approved Finishes s, Chrome, White Polyester ⁵ , and Black ster ⁵

Footnotes

- ¹Base part number is shown. For complete part number, refer to Viking's current price schedule.
- ² Metric K-factor measurement shown is when pressure is measured in Bar. When pressure is measured in kPa, divide the metric K-factor shown by 10.0.
- ³ This table shows the FM Approvals available at the time of printing. Check with the manufacturer for any additional approvals.
- ⁵ Other colors are available on request with the same Approvals as the standard colors.
- ⁶ FM approved as corrosion resistant.

DESIGN CRITERIA - FM

(Also refer to Approval Chart 2 above.)

FM Approval Requirements:

The Microfast® Quick Response Upright Sprinkler VK300 is FM Approved as a quick response Non-Storage upright sprinkler as indicated in the FM Approval Guide. For specific application and installation requirements, reference the latest applicable FM Loss Prevention Data Sheets (including Data Sheet 2-0). FM Global Loss Prevention Data Sheets contain guidelines relating to, but not limited to: minimum water supply requirements, hydraulic design, ceiling slope and obstructions, minimum and maximum allowable spacing, and deflector distance below the ceiling.

NOTE: The FM installation guidelines may differ from cULus and/or NFPA criteria.

IMPORTANT: Always refer to Bulletin Form No. F_091699 - Care and Handling of Sprinklers. Also refer to Form No. F_080614 for general care, installation, and maintenance information. Viking sprinklers are to be installed in accordance with the latest edition of Viking technical data, the appropriate standards of NFPA, FM Global, LPCB, APSAD, VdS or other similar organizations, and also with the provisions of governmental codes, ordinances, and standards, whenever applicable.

CARE AND HANDLING OF SPRINKLERS

The Viking Corporation, 210 N Industrial Park Drive, Hastings MI 49058

Telephone: 269-945-9501 Technical Services: 877-384-5464 Fax: 269-818-1680 Email: techsycs@vikingcorp.com

SPRINKLERS ARE FRAGILE - HANDLE WITH CARE!

General Handling and Storage:

- · Store sprinklers in a cool, dry place.
- Protect sprinklers during storage, transport, handling, and after installation.
- · Use the original shipping containers. DO NOT place sprinklers loose in boxes, bins, or buckets.
- · Keep sprinklers separated at all times. DO NOT allow metal parts to contact sprinkler operating elements.

For Pre-Assembled Drops:

- · Protect sprinklers during handling and after installation.
- For recessed assemblies, use the protective sprinkler cap (Viking Part Number 10364).

Sprinklers with Protective Shields or Caps:

- DO NOT remove shields or caps until after sprinkler installation and there no longer is potential for mechanical damage to the sprinkler operating elements.
- · Sprinkler shields or caps MUST be removed BEFORE placing the system in
- Remove the sprinkler shield by carefully pulling it apart where it is snapped together.
- · Remove the cap by turning it slightly and pulling it off the sprinkler.

Sprinkler Installation:

- · DO NOT use the sprinkler deflector or operating element to start or thread the sprinkler into a fitting.
- · Use only the designated sprinkler head wrench! Refer to the current sprinkler technical data page to determine the correct wrench for the model of sprinkler used.
- · DO NOT install sprinklers onto piping at the floor level.
- · Install sprinklers after the piping is in place to prevent mechanical damage.
- · DO NOT allow impacts such as hammer blows directly to sprinklers or to fittings, pipe, or couplings in close proximity to sprinklers. Sprinklers can be damaged from direct or indirect impacts.
- DO NOT attempt to remove drywall, paint, etc., from sprinklers.
- Take care not to over-tighten the sprinkler and/or damage its operating parts! **Maximum Torque:**

1/2" NPT: 14 ft-lbs. (19.0 N-m) 3/4" NPT: 20 ft-lbs. (27.1 N-m) 1" NPT: 30 ft-lbs. (40.7 N-m)

(Original container used)

INCORRECT (Placed loose in box)

(Protected with caps)

INCORRECT (Protective caps not used)

CORRECT (Piping is in place at the ceiling)

INCORRECT (Sprinkler at floor level)

CORRECT (Special installation wrenches)

INCORRECT (Designated wrench not used)

A WARNING

Any sprinkler with a loss of liquid from the glass bulb or damage to the fusible element should be destroyed. Never install sprinklers that have been dropped, damaged, or exposed to temperatures exceeding the maximum ambient temperature allowed. Sprinklers that have been painted in the field must be replaced per NFPA 13. Protect sprinklers from paint and paint overspray in accordance with the installation standards. Do not clean sprinklers with soap and water, ammonia, or any other cleaning fluid. Do not use adhesives or solvents on sprinklers or their operating elements.

Refer to the appropriate technical data page and NFPA standards for complete care, handling, installation, and maintenance instructions. For additional product and system information Viking data pages and installation instructions are available on the Viking Web site at www.vikinggroupinc.com.

CARE AND HANDLING OF SPRINKLERS

The Viking Corporation, 210 N Industrial Park Drive, Hastings MI 49058

Telephone: 269-945-9501 Technical Services: 877-384-5464 Fax: 269-818-1680 Email: techsycs@vikingcorp.com

PROTECTIVE SPRINKLER SHIELDS AND CAPS

General Handling and Storage:

Many Viking sprinklers are available with a plastic protective cap or shield temporarily covering the operating elements. The snapon shields and caps are factory installed and are intended to help protect the operating elements from mechanical damage during shipping, storage, and installation. NOTE: It is still necessary to follow the care and handling instructions on the appropriate sprinkler technical data sheets* when installing sprinklers with bulb shields or caps.

WHEN TO REMOVE THE SHIELDS AND CAPS:

NOTE: SHIELDS AND CAPS MUST BE REMOVED FROM SPRINKLERS BEFORE PLACING THE SYSTEM IN SERVICE!

Remove the shield or cap from the sprinkler only after checking all of the following:

- · The sprinkler has been installed*.
- The wall or ceiling finish work is completed where the sprinkler is installed and there no longer is a potential for mechanical damage to the sprinkler operating elements.

SHIELDS AND CAPS MUST BE REMOVED FROM SPRINKLERS BEFORE PLACING THE SYSTEM IN SERVICE!

Figure 1: Sprinkler shield being removed from a pendent sprinkler.

Figure 2: Sprinkler cap being removed from a pendent sprinkler.

Figure 3: Sprinkler cap being removed from and upright sprinkler.

HOW TO REMOVE SHIELDS AND CAPS:

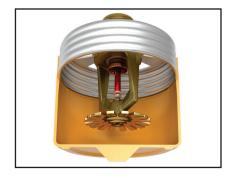
No tools are necessary to remove the shields or caps from sprinklers. DO NOT use any sharp objects to remove them! Take care not to cause mechanical damage to sprinklers when removing the shields or caps. When removing caps from fusible element sprinklers, use care to prevent dislodging ejector springs or damaging fusible elements. NOTE: Squeezing the sprinkler cap excessively could damage sprinkler fusible elements.

- To remove the shield, simply pull the ends of the shield apart where it is snapped together. Refer to Figure 1.
- To remove the cap, turn it slightly and pull it off the sprinkler. Refer to Figures 2 and 3.

NOTICE Refer to the current sprinkler technical data page to determine the correct sprinkler wrench for the model of sprinkler used.

Never install sprinklers that have been dropped, damaged, or exposed to temperatures in excess of the maximum ambient temperature allowed.

* Refer to the appropriate current technical data pages for complete care, handling, and installation instructions. Data pages are included with each shipment from Viking or Viking distributors. They can also be found on the Web site at www. vikinggroupinc.com.



CARE AND HANDLING OF SPRINKLERS

The Viking Corporation, 210 N Industrial Park Drive, Hastings MI 49058
Telephone: 269-945-9501 Technical Services: 877-384-5464 Fax: 269-818-1680 Email: techsvcs@vikingcorp.com

▲ CAUTION CONCEALED COVER ASSEMBLIES ARE FRAGILE!

TO ASSURE SATISFACTORY PERFORMANCE OF THE PRODUCT, HANDLE WITH CARE.

Concealed Sprinkler and Adapter Assembly with Protective Cap

Concealed Sprinkler and Adapter Assembly (Protective Cap Removed)

Cover Plate Assembly (Pendent Cover 12381 shown)

GENERAL HANDLING AND STORAGE INSTRUCTIONS:

- Do not store in temperatures exceeding 100 °F (38 °C). Avoid direct sunlight and confined areas subject to heat.
- · Protect sprinklers and cover assemblies during storage, transport, handling, and after installation.
- -- Use original shipping containers.
- -- Do not place sprinklers or cover assemblies loose in boxes, bins, or buckets.
- Keep the sprinkler bodies covered with the protective sprinkler cap any time the sprinklers are shipped or handled, during testing of the system, and while ceiling finish work is being completed.
- Use only the designated Viking recessed sprinkler wrench (refer to the appropriate sprinkler data page) to install these sprinklers. **NOTE:** The protective cap is temporarily removed during installation and then placed back on the sprinkler for protection until finish work is completed.
- Do not over-tighten the sprinklers into fittings during installation.
- Do not use the sprinkler deflector to start or thread the sprinklers into fittings during installation.
- · Do not attempt to remove drywall, paint, etc., from the sprinklers.
- Remove the plastic protective cap from the sprinkler before attaching the cover plate assembly. PROTECTIVE CAPS <u>MUST</u> BE REMOVED FROM SPRINKLERS BEFORE PLACING THE SYSTEM IN SERVICE!

Refer to the appropriate current technical data pages for complete care, handling, and installation instructions. Data pages are included with each shipment from Viking or Viking distributors. They can also be found on the Web site at www. vikinggroupinc.com.

CARE AND HANDLING OF SPRINKLERS

The Viking Corporation, 210 N Industrial Park Drive, Hastings MI 49058

Telephone: 269-945-9501 Technical Services: 877-384-5464 Fax: 269-818-1680 Email: techsvcs@vikingcorp.com

USE THE FOLLOWING PRECAUTIONS WHEN HANDLING WAX-COATED SPRINKLERS

Many of Viking's sprinklers are available with factory-applied wax coating for corrosion resistance. These sprinklers MUST receive appropriate care and handling to avoid damaging the wax coating and to assure satisfactory performance of the product.

General Handling and Storage of Wax-Coated Sprinklers:

- Store the sprinklers in a cool, dry place (in temperatures below the maximum ambient temperature allowed for the sprinkler temperature rating. Refer to Table 1 below.)
- · Store containers of wax-coated sprinklers separate from other sprinklers.
- · Protect the sprinklers during storage, transport, handling, and after installation.
- · Use original shipping containers.
- · Do not place sprinklers in loose boxes, bins, or buckets.

Installation of Wax-Coated Sprinklers:

Use only the special sprinkler head wrench designed for installing wax-coated Viking sprinklers (any other wrench may damage the unit).

- · Take care not to crack the wax coating on the units.
- For touching up the wax coating after installation, wax is available from Viking in bar form. Refer to Table 1 below. The coating MUST be repaired after sprinkler installation to protect the corrosion-resistant properties of the sprinkler.
- Use care when locating sprinklers near fixtures that can generate heat. Do not install sprinklers where they would be exposed to temperatures exceeding the maximum recommended ambient temperature for the temperature rating used.
- Inspect the coated sprinklers frequently soon after installation to verify the integrity of the corrosion resistant coating. Thereafter, inspect representative samples of the coated sprinklers in accordance with NFPA 25. Close up visual inspections are necessary to determine whether the sprinklers are being affected by corrosive conditions.

		TABLE 1		
Sprinkler Temperature Rating (Fusing Point)	Wax Part Number	Wax Melting Point	Maximum Ambient Ceiling Temperature ¹	Wax Color
155 °F (68 °C) / 165 °F (74 °C)	02568A	148 °F (64 °C)	100 °F (38 °C)	Light Brown
175 °F (79 °C)	04146A	161 °F (71 °C)	150 °F (65 °C)	Brown
200 °F (93 °C)	04146A	161 °F (71 °C)	150 °F (65 °C)	Brown
220 °F (104 °C)	02569A	170 °F (76 °C)	150 °F (65 °C)	Dark Brown
286 °F (141 °C)	02569A	170 °F (76 °C)	150 °F (65 °C)	Dark Brown

¹Based on NFPA-13. Other limits may apply, depending on fire loading, sprinkler location, and other requirements of the Authority Having Jurisdiction. Refer to specific installation standards.

▲WARNING

Never install sprinklers that have been dropped, damaged, or exposed to temperatures in excess of the maximum ambient temperature allowed.

Refer to the appropriate current technical data pages for complete care, handling, and installation instructions. Data pages are included with each shipment from Viking or Viking distributors. They can also be found on the Web site at www. vikinggroupinc.com.

REGULATORY AND HEALTH WARNINGS

The Viking Corporation, 210 N Industrial Park Drive, Hastings MI 49058

Telephone: 269-945-9501 Technical Services: 877-384-5464 Fax: 269-818-1680 Email: techsvcs@vikingcorp.com

Visit the Viking website for the latest edition of this technical data page www.vikinggroupinc.com

1. DESCRIPTION

Regulatory and Health Warnings applying to materials used in the manufacture and construction of fire protection products are provided herin as they relate to legally mandated jurisdictional regions.

A WARNING

STATE OF CALIFORNIA, USA

Installing or servicing fire protection products such as sprinklers, valves, piping etc. can expose you to chemicals including, but not limited to, lead, nickel, butadiene, titaninum dioxide, chromium, carbon black, and acrylonitrile which are known to the State of California to cause cancer or birth defects or other reproductive harm.

For more information, go to www.P65Warnings.ca.gov

2. WARRANTY TERMS AND CONDITIONS

For details of warranty, refer to Viking's current list price schedule at www.vikinggroupinc.com or contact Viking directly.

MICROFAST® QUICK RESPONSE PENDENT SPRINKLER VK302 (K5.6)

The Viking Corporation, 210 N Industrial Park Drive, Hastings MI 49058
Telephone: 269-945-9501 Technical Services: 877-384-5464 Fax: 269-818-1680 Email: techsvcs@vikingcorp.com
Visit the Viking website for the latest edition of this technical data page: www.vikinggroupinc.com

1. DESCRIPTION

The Viking Microfast® Quick Response Pendent Sprinkler VK302 is a small thermosensitive glass bulb spray sprinkler available with various finishes and temperature ratings to meet design requirements. The special Polyester and Electroless Nickel PTFE (ENT) coatings can be used in decorative applications where colors are desired. In addition, these coatings have been investigated for installation in corrosive environments and are Listed and Approved as indicated in the Approval Charts.

2. LISTINGS AND APPROVALS

ւ(Սլ)սs cULus Listed: Category VNIV

FM Approved: Class Series 2000

VdS Approved: Certificates G414009, G414010, G4040095, and 4880045

LPCB Approved: Certificate 096e/06

CE: Standard EN 12259-1, Declaration of Performance DOP_Sprinklers_LPCB_5-2-19, DOP_VK302ENT_29-1-20 & DOP_VK302-57C_30-9-20

China Approval: Approved according to China GB standard

MED Certified: Standard EN 12259-1, EC-certificate of conformity 0832-MED-1003

Refer to Approval Chart 1 and Design Criteria cULus Listing requirements, and refer to Approval Chart 2 and Design Criteria for FM Approval requirements that must be followed.

3. TECHNICAL DATA

Specifications:

Minimum Operating Pressure: 7 psi (0.5 bar) Rated to 175 psi (12 bar) water working pressure Factory tested hydrostatically to 500 psi (34.5 bar)

Thread size: 1/2" NPT, 15 mm BSP Nominal K-Factor: 5.6 U.S. (80.6 metric**)

Glass-bulb fluid temperature rated to -65 °F (-55 °C)

Overall Length: 2-1/4" (58 mm)

*cULus Listing, FM Approval, and NFPA 13 installs require a minimum of 7 psi (0.5 bar). The minimum operating pressure for LPCB and CE Approvals ONLY is 5 psi (0.35 bar).

Material Standards:

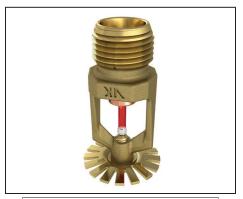
Frame Casting: Brass UNS-C84400 or QM Brass

Deflector: Phosphor Bronze UNS-C51000 or Copper UNS-C19500

Bulb: Glass, nominal 3 mm diameter

Belleville Spring Sealing Assembly: Nickel Alloy, coated on both sides with PTFE Tape

Screw: Brass UNS-C36000


Pip Cap and Insert Assembly: Copper UNS-C11000 and Stainless Steel UNS-S30400

For Polyester Coated Sprinklers: Belleville Spring-Exposed

For ENT Coated Sprinklers: Belleville Spring-Exposed, Screw and Pipcap - ENT plated.

Ordering Information: (Also refer to the current Viking price list.)

Order Quick Response Pendent Sprinklers by first adding the appropriate suffix for the sprinkler finish and then the appropriate suffix for the temperature rating to the sprinkler base part number.

MICROFAST® QUICK RESPONSE PENDENT SPRINKLER VK302 (K5.6)

The Viking Corporation, 210 N Industrial Park Drive, Hastings MI 49058
Telephone: 269-945-9501 Technical Services: 877-384-5464 Fax: 269-818-1680 Email: techsvcs@vikingcorp.com
Visit the Viking website for the latest edition of this technical data page: www.vikinggroupinc.com

Finish Suffix: Brass = A, Chrome = F, White Polyester = M-/W, Black Polyester = M-/B, and ENT = JN Temperature Suffix: 135 °F (57 °C) = A, 155 °F (68 °C) = B, 175 °F (79 °C) = D, 200 °F (93 °C) = E, 286 °F (141 °C) = G For example, sprinkler VK302 with a Brass finish and a 155 °F (68 °C) temperature rating = Part No. 12979AB

Available Finishes And Temperature Ratings: Refer to Table 1.

Accessories: (Also refer to the current Viking price list.)

Sprinkler Wrenches:

- A. Standard Wrench: Part No. 21475M/B.
- B. Wrench for Recessed Pendent Sprinklers: Part No. 13655W/B** (available since 2006)
- C. Optional Protective Sprinkler Cap Remover/Escutcheon Installer Tool*** Part No. 15915 (available since 2010)

 **A ½" ratchet is required (not available from Viking).
- ***Allows use from the floor by attaching a length of 1" diameter CPVC tubing to the tool. Ideal for sprinkler cabinets. Refer to Bulletin F 051808.

Sprinkler Cabinets:

- A. Six-head capacity: Part No. 01724A (available since 1971)
- B. Twelve-head capacity: Part No. 01725A (available since 1971)

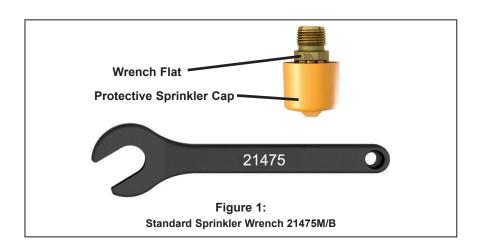
4. INSTALLATION

Refer to appropriate NFPA Installation Standards.

5. OPERATION

During fire conditions, the heat-sensitive liquid in the glass bulb expands, causing the glass to shatter, releasing the pip cap and sealing spring assembly. Water flowing through the sprinkler orifice strikes the sprinkler deflector, forming a uniform spray pattern to extinguish or control the fire.

6. INSPECTIONS, TESTS AND MAINTENANCE


Refer to NFPA 25 for Inspection, Testing and Maintenance requirements.

7. AVAILABILITY

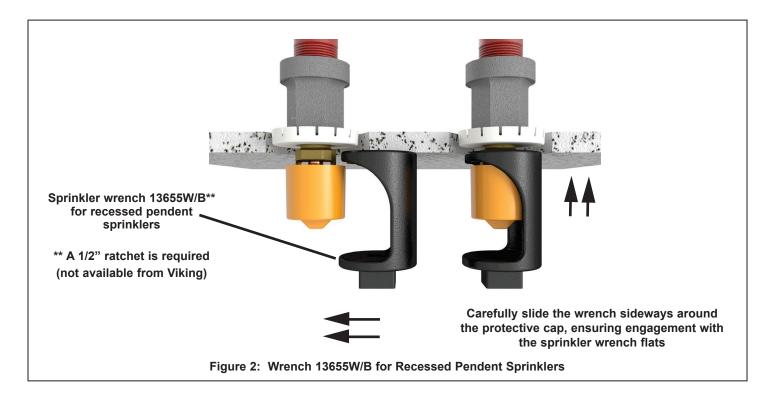
The Viking Microfast® Quick Response Pendent Sprinkler VK302 is available through a network of domestic and international distributors. See The Viking Corporation web site for the closest distributor or contact The Viking Corporation.

8. GUARANTEE

For details of warranty, refer to Viking's current list price schedule or contact Viking directly.

MICROFAST® QUICK RESPONSE PENDENT SPRINKLER VK302 (K5.6)

The Viking Corporation, 210 N Industrial Park Drive, Hastings MI 49058
Telephone: 269-945-9501 Technical Services: 877-384-5464 Fax: 269-818-1680 Email: techsvcs@vikingcorp.com
Visit the Viking website for the latest edition of this technical data page: www.vikinggroupinc.com


TABLE 1:	TABLE 1: AVAILABLE SPRINKLER TEMPERATURE RATINGS AND FINISHES											
Sprinkler Temperature Classification	Sprinkler Nominal Temperature Rating ¹	Maximum Ambient Ceiling Temperature ²	Bulb Color									
Ordinary	135 °F (57 °C)	100 °F (38 °C)	Orange									
Ordinary	155 °F (68 °C)	100 °F (38 °C)	Red									
Intermediate	175 °F (79 °C)	150 °F (65 °C)	Yellow									
Intermediate	200 °F (93 °C)	150 °F (65 °C)	Green									
High	286 °F (141 °C)	225 °F (107 °C)	Blue									

Sprinkler Finishes: Brass, Chrome, White Polyester, Black Polyester, and ENT

Corrosion-Resistant Coatings3: White Polyester, and Black Polyester. ENT in all temperature ratings except 135 °F (57 °C)

Footnotes

- ¹ The sprinkler temperature rating is stamped on the deflector.
- ² Based on NFPA-13. Other limits may apply, depending on fire loading, sprinkler location, and other requirements of the Authority Having Jurisdiction. Refer to specific installation standards.
- ³ The corrosion-resistant coatings have passed the standard corrosion test required by the approving agencies indicated in the Approval Charts. These tests cannot and do not represent all possible corrosive environments. Prior to installation, verify through the end-user that the coatings are compatible with or suitable for the proposed environment. For automatic sprinklers, the coatings indicated are applied to the exposed exterior surfaces only. Note that the spring is exposed on sprinklers with Polyester and ENT coatings. For ENT coated automatic sprinklers, the waterway is coated.

MICROFAST® QUICK RESPONSE PENDENT SPRINKLER VK302 (K5.6)

The Viking Corporation, 210 N Industrial Park Drive, Hastings MI 49058 Telephone: 269-945-9501 Technical Services: 877-384-5464 Fax: 269-818-1680 Email: techsvcs@vikingcorp.com Visit the Viking website for the latest edition of this technical data page: www.vikinggroupinc.com

Base Part Number SIN Sprinkler Style Thread Size Nominal K-Factor Length Clust Refer also to Design Criteria.)		Approval Chart 1 (UL) The Viking Microfast® Quick Response Pendent Sprinkler VK302 Maximum 175 PSI (12 Bar) WWP Temperature KEY Finish A1X ← Escutcheon (if applicable)													
Number Number NPT BSP U.S. metric Inches mm CULus VdS LPCB CE7 MED8 Approval		SIN		Thre	ad Size						(R	•	• •		
129/9 VK302 Pendent			Style	NPT	BSP	U.S.	metric ²	Inches	mm	cULus⁴	VdS	LPCB	CE ⁷	MED ⁸	
NOTICE - Product Below - Limited Availability (Contact Local Viking Office) 06662B	12979	VK302	Pendent	1/2"	15 mr	m 5.6	80.6	2-1/4						D1	
06662B	21354 ⁹	VK302	Pendent		15 mr	m 5.6	80.6	2-1/4	58 D3					D3	
18021 VK302 Pendent 1/2" 15 mm 5.6 80.6 2-1/4 58 A1Z, B1Y A1 A1Z, B1Y D1Z, C1Y, D2 D1					NO	TICE - Pro	duct Belo	w - Limi	ted Av	ailability (Contact Lo	ocal Vi	king Office)			
Approved Temperature Ratings A - 135 °F (57 °C), 155 °F (68 °C), 175 °F (79 °C), 200 °F (93 °C), 286 °F (141 °C) B - 135 °F (57 °C), 155 °F (68 °C), 175 °F (79 °C), and 200 °F (93 °C) C - 155 °F (68 °C), 175 °F (79 °C), and 200 °F (93 °C) D - 155 °F (68 °C), 175 °F (79 °C), 200 °F Approved Finishes 1 - Brass, Chrome, White Polyester ^{5,6} , Black Polyes- ter ^{5,6} 2 - ENT ⁵ 3 - Chrome X - Standard surface-mounted escutcheon or recessed with the Viking Micromatic® Y - Standard surface-mounted escutcheon Y - Standard surface-mounted escutcheon Z - Standard surface-mounted escutcheon X - Standard surface-mounted escutcheon Y - Standard surface-mounted escutcheon X - Standard surface-mounted escutcheon Y - Standard surface-mounted escutcheon X - Standard surface-mounted escutcheon X - Standard surface-mounted escutcheon Y - Standard surface-mounted escutcheon X - Standard surface-mounted escutcheon Y - Standard surface-mounted escutcheon X - Standard surface-mounted escutcheon	06662B	VK302	Pendent	1/2"	15 mr	m 5.6	80.6	2-1/4	58	A1Z, B1Y, D2, C2X					
A - 135 °F (57 °C), 155 °F (68 °C), 175 °F (79 °C), 200 °F (93 °C), 286 °F (141 °C) B - 135 °F (57 °C), 155 °F (68 °C), 175 °F (79 °C), and 200 °F (93 °C) C - 155 °F (68 °C), 175 °F (79 °C), and 200 °F (93 °C) D - 155 °F (68 °C), 175 °F (79 °C), 200 °F 1 - Brass, Chrome, White Polyester 5.6, Black Pol	18021	VK302	Pendent	1/2"	15 mr	m 5.6	80.6	2-1/4	58	A1Z, B1Y	A1	A1Z, B1Y	D1Z, C1Y, D2	D1	
(93 °C), 286 °F (141 °C)	omatic®														

- ¹ Base part number shown. For complete part number, refer to Viking's current price schedule.
- ² Metric K-factor measurement shown is when pressure is measured in Bar. When pressure is measured in kPa, divide the metric K-factor shown by 10.0.
- ³ This table shows the listings and approvals available at the time of printing. Other approvals may be in process.
- ⁴ Listed by Underwriters Laboratories Inc. for use in the U.S. and Canada.
- ⁵ cULus Listed as corrosion-resistant.
- ⁶ Other colors are available on request with the same Listings and Approvals as the standard colors.
- 7 CE: Standard EN 12259-1, Declaration of Performance DOP_Sprinklers_LPCB_5-2-19, DOP_VK302ENT_29-1-20 & DOP_VK302-57C_30-9-20.
- ⁸ MED Certified, Standard EN 12259-1, EC-0832-MED-1003.
- ⁹ Approved according to China GB Standard.

DESIGN CRITERIA - UL

(Also refer to Approval Chart 1 above.)

cULus Listing Requirements:

The Viking Microfast® Quick Response Pendent Sprinkler VK302 is cULus Listed as indicated in the Approval Chart for installation in accordance with the latest edition of NFPA 13 for standard spray sprinklers.

- · Designed for use in Light and Ordinary occupancies.
- · The sprinkler installation rules contained in NFPA 13 for standard spray pendent sprinklers must be followed.
- · Venting is not required.

IMPORTANT: Always refer to Bulletin Form No. F_091699 - Care and Handling of Sprinklers. Also refer to Form No. F_080614 for general care, installation, and maintenance information. Viking sprinklers are to be installed in accordance with the latest edition of Viking technical data, the appropriate standards of NFPA, LPCB, APSAD, VdS or other similar organizations, and also with the provisions of governmental codes, ordinances, and standards, whenever applicable.

MICROFAST® QUICK RESPONSE PENDENT SPRINKLER VK302 (K5.6)

The Viking Corporation, 210 N Industrial Park Drive, Hastings MI 49058
Telephone: 269-945-9501 Technical Services: 877-384-5464 Fax: 269-818-1680 Email: techsvcs@vikingcorp.com
Visit the Viking website for the latest edition of this technical data page: www.vikinggroupinc.com

				The V	iking/ Per	g Microfa ndent Sp	Chart 2 (I est® Quick R rinkler VK3 PSI (12 Bar) V	Respo 02	nse		Temperature KEY Finish A1X ← Escutcheon (if applicable)
Base Part	SIN	Sprinkler	Thre	ad Size	е	Nomina	I K-Factor	Ov	erall L	ength	FM Approvals ³
Number ¹	SIN	Style	NPT	BSI	Р	U.S.	metric ²	Inc	hes	mm	(Refer also to Design Criteria.)
12979	VK302	Pendent	1/2"	15 m	nm	5.6	80.6	2-	1/4	58	A1Z, B1Y, D2X, C2
21354 ⁶ VK302 Pendent 15						5.6	80.6	2-	2-1/4 58		C3
	NOTICE - Product Below - Limited Availability (Conta									Viking (Office)
06662B	VK302	Pendent	1/2"	15 m	nm	5.6	80.6	2-	2-1/4 58		A1Z, B1Y, D2X, C2
18021	VK302	Pendent	1/2"	15 m	nm	5.6	80.6	2-	1/4	58	A1Z, B1Y
Approved Temperature Ratings A - 135 °F (57 °C), 155 °F (68 °C), 175 °F (79 °C), 200 °F (93 °C), 286 °F (141 °C) B - 135 °F (57 °C), 155 °F (68 °C), 175 °F (79 °C), and 200 °F (93 °C) C - 155 °F (68 °C), 175 °F (79 °C), 200 °F (93 °C), 286 °F (141 °C) D - 155 °F (68 °C), 175 °F (79 °C), 200 °F (93 °C)						ass, Chrom nd Black Po NT ⁵	ed Finishes ne, White Polyo olyester ⁴	ester⁴,	Vi Y - St wi Re	king Mico andard s th the ecessed	Approved Escutcheons d surface-mounted escutcheon or the romatic® Model E-1 Recessed Escutcheon surface-mounted escutcheon or recessed Viking Micromatic® Model E-1 or E-2 Escutcheon surface-mounted escutcheon

Footnotes

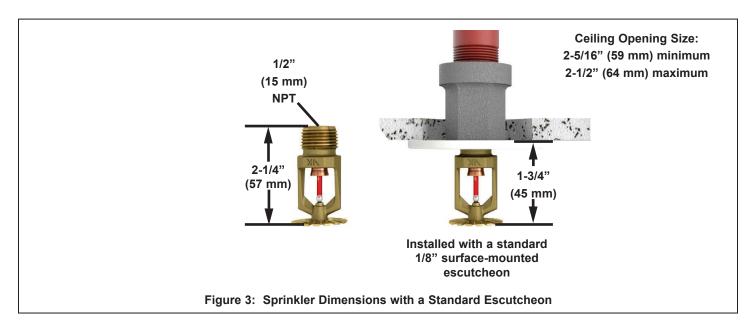
- ¹ Base part number shown. For complete part number, refer to Viking's current price schedule.
- ² Metric K-factor measurement shown is when pressure is measured in Bar. When pressure is measured in kPa, divide the metric K-factor shown by 10.0.
- ³ This table shows the FM Approvals available at the time of printing. Other approvals may be in process.
- ⁴ Other colors are available on request with the same Approvals as the standard colors.
- ⁵ FM approved as corrosion resistant.
- ⁶ Approved according to China GB Standard.

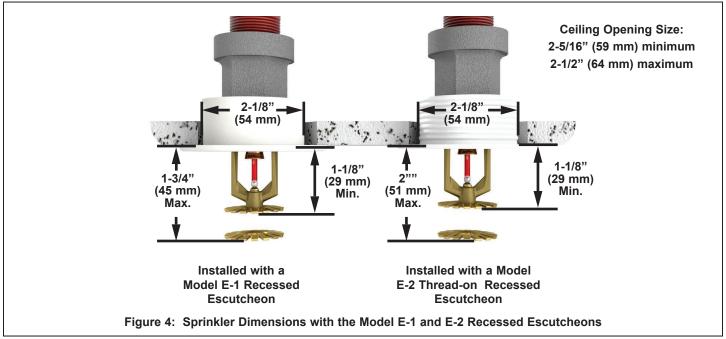
DESIGN CRITERIA - FM

(Also refer to Approval Chart 2 above.)

FM Approval Requirements:

The Viking Microfast® Quick Response Pendent Sprinkler VK302 is FM Approved as quick response **Non-storage** pendent sprinklers as indicated in the FM Approval Guide. For specific application and installation requirements, reference the latest applicable FM Loss Prevention Data Sheets (including Data Sheet 2-0). FM Global Loss Prevention Data Sheets contain guidelines relating to, but not limited to: minimum water supply requirements, hydraulic design, ceiling slope and obstructions, minimum and maximum allowable spacing, and deflector distance below the ceiling.


NOTE: The FM installation guidelines may differ from cULus and/or NFPA criteria.


IMPORTANT: Always refer to Bulletin Form No. F_091699 - Care and Handling of Sprinklers. Also refer to Form No. F_080614 for general care, installation, and maintenance information. Viking sprinklers are to be installed in accordance with the latest edition of Viking technical data, the appropriate standards of NFPA, FM Global, LPCB, APSAD, VdS or other similar organizations, and also with the provisions of governmental codes, ordinances, and standards, whenever applicable.

MICROFAST® QUICK RESPONSE PENDENT SPRINKLER VK302 (K5.6)

The Viking Corporation, 210 N Industrial Park Drive, Hastings MI 49058
Telephone: 269-945-9501 Technical Services: 877-384-5464 Fax: 269-818-1680 Email: techsvcs@vikingcorp.com
Visit the Viking website for the latest edition of this technical data page: www.vikinggroupinc.com

OF SPRINKLERS

The Viking Corporation, 210 N Industrial Park Drive, Hastings MI 49058

Telephone: 269-945-9501 Technical Services: 877-384-5464 Fax: 269-818-1680 Email: techsvcs@vikingcorp.com

SPRINKLERS ARE FRAGILE - HANDLE WITH CARE!

General Handling and Storage:

- · Store sprinklers in a cool, dry place.
- Protect sprinklers during storage, transport, handling, and after installation.
- Use the original shipping containers. DO NOT place sprinklers loose in boxes, bins, or buckets.
- Keep sprinklers separated at all times. DO NOT allow metal parts to contact sprinkler operating elements.

For Pre-Assembled Drops:

- · Protect sprinklers during handling and after installation.
- · For recessed assemblies, use the protective sprinkler cap (Viking Part Number 10364).

Sprinklers with Protective Shields or Caps:

- DO NOT remove shields or caps until after sprinkler installation and there no longer is potential for mechanical damage to the sprinkler operating elements.
- Sprinkler shields or caps MUST be removed BEFORE placing the system in service!
- Remove the sprinkler shield by carefully pulling it apart where it is snapped together.
- · Remove the cap by turning it slightly and pulling it off the sprinkler.

Sprinkler Installation:

- DO NOT use the sprinkler deflector or operating element to start or thread the sprinkler into a fitting.
- Use only the designated sprinkler head wrench! Refer to the current sprinkler technical data page to determine the correct wrench for the model of sprinkler used.
- DO NOT install sprinklers onto piping at the floor level.
- · Install sprinklers after the piping is in place to prevent mechanical damage.
- DO NOT allow impacts such as hammer blows directly to sprinklers or to fittings, pipe, or couplings in close proximity to sprinklers. Sprinklers can be damaged from direct or indirect impacts.
- DO NOT attempt to remove drywall, paint, etc., from sprinklers.
- Take care not to over-tighten the sprinkler and/or damage its operating parts!

 Maximum Torque:

1/2" NPT: 14 ft-lbs. (19.0 N-m) 3/4" NPT: 20 ft-lbs. (27.1 N-m) 1" NPT: 30 ft-lbs. (40.7 N-m)

(Original container used)

INCORRECT (Placed loose in box)

(Protected with caps)

INCORRECT (Protective caps not used)

CORRECT (Piping is in place at the ceiling)

INCORRECT (Sprinkler at floor level)

CORRECT (Special installation wrenches)

INCORRECT (Designated wrench not used)

A WARNING

Any sprinkler with a loss of liquid from the glass bulb or damage to the fusible element should be destroyed. Never install sprinklers that have been dropped, damaged, or exposed to temperatures exceeding the maximum ambient temperature allowed. Sprinklers that have been painted in the field must be replaced per NFPA 13. Protect sprinklers from paint and paint overspray in accordance with the installation standards. Do not clean sprinklers with soap and water, ammonia, or any other cleaning fluid. Do not use adhesives or solvents on sprinklers or their operating elements.

Refer to the appropriate technical data page and NFPA standards for complete care, handling, installation, and maintenance instructions. For additional product and system information Viking data pages and installation instructions are available on the Viking Web site at www.vikinggroupinc.com.

CARE AND HANDLING OF SPRINKLERS

The Viking Corporation, 210 N Industrial Park Drive, Hastings MI 49058

Telephone: 269-945-9501 Technical Services: 877-384-5464 Fax: 269-818-1680 Email: techsycs@vikingcorp.com

PROTECTIVE SPRINKLER SHIELDS AND CAPS

General Handling and Storage:

Many Viking sprinklers are available with a plastic protective cap or shield temporarily covering the operating elements. The snapon shields and caps are factory installed and are intended to help protect the operating elements from mechanical damage during shipping, storage, and installation. NOTE: It is still necessary to follow the care and handling instructions on the appropriate sprinkler technical data sheets* when installing sprinklers with bulb shields or caps.

WHEN TO REMOVE THE SHIELDS AND CAPS:

NOTE: SHIELDS AND CAPS MUST BE REMOVED FROM SPRINKLERS BEFORE PLACING THE SYSTEM IN SERVICE!

Remove the shield or cap from the sprinkler only after checking all of the following:

- · The sprinkler has been installed*.
- The wall or ceiling finish work is completed where the sprinkler is installed and there no longer is a potential for mechanical damage to the sprinkler operating elements.

SHIELDS AND CAPS MUST BE REMOVED FROM SPRINKLERS BEFORE PLACING THE SYSTEM IN SERVICE!

Figure 1: Sprinkler shield being removed from a pendent sprinkler.

Figure 2: Sprinkler cap being removed from a pendent sprinkler.

Figure 3: Sprinkler cap being removed from and upright sprinkler.

HOW TO REMOVE SHIELDS AND CAPS:

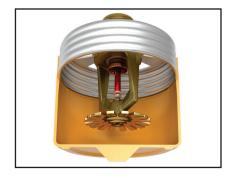
No tools are necessary to remove the shields or caps from sprinklers. DO NOT use any sharp objects to remove them! Take care not to cause mechanical damage to sprinklers when removing the shields or caps. When removing caps from fusible element sprinklers, use care to prevent dislodging ejector springs or damaging fusible elements. NOTE: Squeezing the sprinkler cap excessively could damage sprinkler fusible elements.

- To remove the shield, simply pull the ends of the shield apart where it is snapped together. Refer to Figure 1.
- To remove the cap, turn it slightly and pull it off the sprinkler. Refer to Figures 2 and 3.

NOTICE Refer to the current sprinkler technical data page to determine the correct sprinkler wrench for the model of sprinkler used.

Never install sprinklers that have been dropped, damaged, or exposed to temperatures in excess of the maximum ambient temperature allowed.

* Refer to the appropriate current technical data pages for complete care, handling, and installation instructions. Data pages are included with each shipment from Viking or Viking distributors. They can also be found on the Web site at www. vikinggroupinc.com.



CARE AND HANDLING OF SPRINKLERS

The Viking Corporation, 210 N Industrial Park Drive, Hastings MI 49058
Telephone: 269-945-9501 Technical Services: 877-384-5464 Fax: 269-818-1680 Email: techsvcs@vikingcorp.com

▲ CAUTION CONCEALED COVER ASSEMBLIES ARE FRAGILE!

TO ASSURE SATISFACTORY PERFORMANCE OF THE PRODUCT, HANDLE WITH CARE.

Concealed Sprinkler and Adapter Assembly with Protective Cap

Concealed Sprinkler and Adapter Assembly (Protective Cap Removed)

Cover Plate Assembly (Pendent Cover 12381 shown)

GENERAL HANDLING AND STORAGE INSTRUCTIONS:

- Do not store in temperatures exceeding 100 °F (38 °C). Avoid direct sunlight and confined areas subject to heat.
- · Protect sprinklers and cover assemblies during storage, transport, handling, and after installation.
- -- Use original shipping containers.
- -- Do not place sprinklers or cover assemblies loose in boxes, bins, or buckets.
- Keep the sprinkler bodies covered with the protective sprinkler cap any time the sprinklers are shipped or handled, during testing of the system, and while ceiling finish work is being completed.
- Use only the designated Viking recessed sprinkler wrench (refer to the appropriate sprinkler data page) to install these sprinklers. **NOTE:** The protective cap is temporarily removed during installation and then placed back on the sprinkler for protection until finish work is completed.
- Do not over-tighten the sprinklers into fittings during installation.
- Do not use the sprinkler deflector to start or thread the sprinklers into fittings during installation.
- · Do not attempt to remove drywall, paint, etc., from the sprinklers.
- Remove the plastic protective cap from the sprinkler before attaching the cover plate assembly. PROTECTIVE CAPS <u>MUST</u> BE REMOVED FROM SPRINKLERS BEFORE PLACING THE SYSTEM IN SERVICE!

Refer to the appropriate current technical data pages for complete care, handling, and installation instructions. Data pages are included with each shipment from Viking or Viking distributors. They can also be found on the Web site at www. vikinggroupinc.com.

CARE AND HANDLING OF SPRINKLERS

The Viking Corporation, 210 N Industrial Park Drive, Hastings MI 49058

Telephone: 269-945-9501 Technical Services: 877-384-5464 Fax: 269-818-1680 Email: techsvcs@vikingcorp.com

USE THE FOLLOWING PRECAUTIONS WHEN HANDLING WAX-COATED SPRINKLERS

Many of Viking's sprinklers are available with factory-applied wax coating for corrosion resistance. These sprinklers MUST receive appropriate care and handling to avoid damaging the wax coating and to assure satisfactory performance of the product.

General Handling and Storage of Wax-Coated Sprinklers:

- Store the sprinklers in a cool, dry place (in temperatures below the maximum ambient temperature allowed for the sprinkler temperature rating. Refer to Table 1 below.)
- · Store containers of wax-coated sprinklers separate from other sprinklers.
- · Protect the sprinklers during storage, transport, handling, and after installation.
- · Use original shipping containers.
- · Do not place sprinklers in loose boxes, bins, or buckets.

Installation of Wax-Coated Sprinklers:

Use only the special sprinkler head wrench designed for installing wax-coated Viking sprinklers (any other wrench may damage the unit).

- · Take care not to crack the wax coating on the units.
- For touching up the wax coating after installation, wax is available from Viking in bar form. Refer to Table 1 below. The coating MUST be repaired after sprinkler installation to protect the corrosion-resistant properties of the sprinkler.
- Use care when locating sprinklers near fixtures that can generate heat. Do not install sprinklers where they would be exposed to temperatures exceeding the maximum recommended ambient temperature for the temperature rating used.
- Inspect the coated sprinklers frequently soon after installation to verify the integrity of the corrosion resistant coating. Thereafter, inspect representative samples of the coated sprinklers in accordance with NFPA 25. Close up visual inspections are necessary to determine whether the sprinklers are being affected by corrosive conditions.

		TABLE 1		
Sprinkler Temperature Rating (Fusing Point)	Wax Part Number	Wax Melting Point	Maximum Ambient Ceiling Temperature ¹	Wax Color
155 °F (68 °C) / 165 °F (74 °C)	02568A	148 °F (64 °C)	100 °F (38 °C)	Light Brown
175 °F (79 °C)	04146A	161 °F (71 °C)	150 °F (65 °C)	Brown
200 °F (93 °C)	04146A	161 °F (71 °C)	150 °F (65 °C)	Brown
220 °F (104 °C)	02569A	170 °F (76 °C)	150 °F (65 °C)	Dark Brown
286 °F (141 °C)	02569A	170 °F (76 °C)	150 °F (65 °C)	Dark Brown

¹Based on NFPA-13. Other limits may apply, depending on fire loading, sprinkler location, and other requirements of the Authority Having Jurisdiction. Refer to specific installation standards.

▲WARNING

Never install sprinklers that have been dropped, damaged, or exposed to temperatures in excess of the maximum ambient temperature allowed.

Refer to the appropriate current technical data pages for complete care, handling, and installation instructions. Data pages are included with each shipment from Viking or Viking distributors. They can also be found on the Web site at www. vikinggroupinc.com.

REGULATORY AND HEALTH WARNINGS

The Viking Corporation, 210 N Industrial Park Drive, Hastings MI 49058

Telephone: 269-945-9501 Technical Services: 877-384-5464 Fax: 269-818-1680 Email: techsvcs@vikingcorp.com

Visit the Viking website for the latest edition of this technical data page www.vikinggroupinc.com

1. DESCRIPTION

Regulatory and Health Warnings applying to materials used in the manufacture and construction of fire protection products are provided herin as they relate to legally mandated jurisdictional regions.

A WARNING

STATE OF CALIFORNIA, USA

Installing or servicing fire protection products such as sprinklers, valves, piping etc. can expose you to chemicals including, but not limited to, lead, nickel, butadiene, titaninum dioxide, chromium, carbon black, and acrylonitrile which are known to the State of California to cause cancer or birth defects or other reproductive harm.

For more information, go to www.P65Warnings.ca.gov

2. WARRANTY TERMS AND CONDITIONS

For details of warranty, refer to Viking's current list price schedule at www.vikinggroupinc.com or contact Viking directly.

MICROFAST® QUICK **RESPONSE HORIZONTAL** SIDEWALL SPRINKLER VK305 (K5.6)

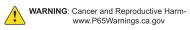
The Viking Corporation, 210 N Industrial Park Drive, Hastings MI 49058 Telephone: 269-945-9501 Technical Services: 877-384-5464 Fax: 269-818-1680 Email: techsvcs@vikingcorp.com Visit the Viking website for the latest edition of this technical data page: www.vikinggroupinc.com

1. DESCRIPTION

The Viking Microfast® Quick Response Horizontal Sidewall Sprinkler VK305 is a small thermosensitive glass bulb spray sprinkler available with various finishes and temperature ratings to meet design requirements. The special Polyester and Electroless Nickel PTFE (ENT) coatings can be used in decorative applications where colors are desired. In addition, these coatings have been investigated for installation in corrosive atmospheres and are listed/approved as corrosion resistant as indicated in Approval Charts.

2. LISTINGS AND APPROVALS

շ(⁽/L)սs cULus Listed: Category VNIV



FM Approved: Class 2020

China Approval: Approved according to China GB Standard

Refer to Approval Charts and Design Criteria for listing and approval requirements that must be followed.

3. TECHNICAL DATA

Specifications:

Minimum Operating Pressure: 7 psi (0.5 bar) Rated to 175 psi (12 bar) water working pressure Factory tested hydrostatically to 500 psi (34.5 bar)

Nominal K-Factor: 5.6 U.S. (80.6 metric*)

* Metric K-factor measurement shown is when pressure is measured in Bar. When pressure is measured in kPa, divide the metric K-factor shown by 10.0.

Overall Length: 2-3/4" (68 mm)

Material Standards:

Frame Casting: Brass UNS-C84400 or QM Brass

Deflector: Copper UNS-C19500 Bulb: Glass, nominal 3 mm diameter

Belleville Spring Sealing Assembly: Nickel Alloy, coated on both sides with PTFE Tape

Screw: Brass UNS-C36000

Pip Cap and Insert Assembly: Copper UNS-C11000 and Stainless Steel UNS-S30400

For Polyester Coated Sprinklers: Belleville Spring-Exposed

For ENT Coated Sprinklers: Belleville Spring - Exposed, Screw and Pip cap - ENT plated.

Ordering Information: (Also refer to the current Viking price list.)

Order Viking Microfast® Quick Response Horizontal Sidewall Sprinkler VK305 by first adding the appropriate suffix for the sprinkler finish and then the appropriate suffix for the temperature rating to the sprinkler base part number.

Finish Suffix: Brass = A, Chrome = F, White Polyester = M-/W, Black Polyester = M-/B, and ENT = JN

Temperature Suffix: 135 °F / 57 °C = A, 155 °F / 68 °C = B, 175 °F / 79 °C = D, 200 °F / 93 °C = E, and 286 °F / 141 °C = G

For example, sprinkler 12997 with a Brass finish and a 155 °F / 68 °C temperature rating = Part No. 12997AB

Available Finishes And Temperature Ratings: Refer to Table 1.

Accessories: (Also refer to the Viking website.)

Sprinkler Wrenches:

A. Standard Wrench: Part No. 21475M/B (available since 2017).

B. Wrench for recessed and/or wax coated sprinklers: Part No. 13655W/B** (available since 2006)

**A 1/2" ratchet is required (not available from Viking).

MICROFAST® QUICK RESPONSE HORIZONTAL SIDEWALL SPRINKLER VK305 (K5.6)

The Viking Corporation, 210 N Industrial Park Drive, Hastings MI 49058
Telephone: 269-945-9501 Technical Services: 877-384-5464 Fax: 269-818-1680 Email: techsvcs@vikingcorp.com
Visit the Viking website for the latest edition of this technical data page: www.vikinggroupinc.com

Sprinkler Cabinets:

A. Six-head capacity: Part No. 01724A (available since 1971)

B. Twelve-head capacity: Part No. 01725A (available since 1971)

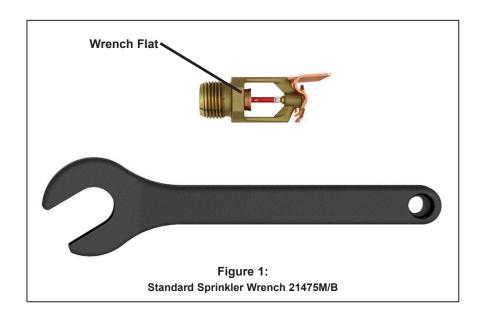
4. INSTALLATION

Refer to appropriate NFPA Installation Standards.

5. OPERATION

During fire conditions, the heat-sensitive fusible link disengages, the pip cap and spring are released, and the waterway is opened. Water flowing through the sprinkler orifice strikes the sprinkler deflector, forming a uniform spray pattern to extinguish or control the fire.

6. INSPECTIONS, TESTS AND MAINTENANCE


Refer to NFPA 25 for Inspection, Testing and Maintenance requirements.

7. AVAILABILITY

Viking Microfast® Quick Response Horizontal Sidewall Sprinkler VK305 is available through a network of domestic and international distributors. See The Viking Corporation web site for the closest distributor or contact The Viking Corporation.

8. GUARANTEE

For details of warranty, refer to Viking's current list price schedule or contact Viking directly.

MICROFAST® QUICK RESPONSE HORIZONTAL SIDEWALL SPRINKLER VK305 (K5.6)

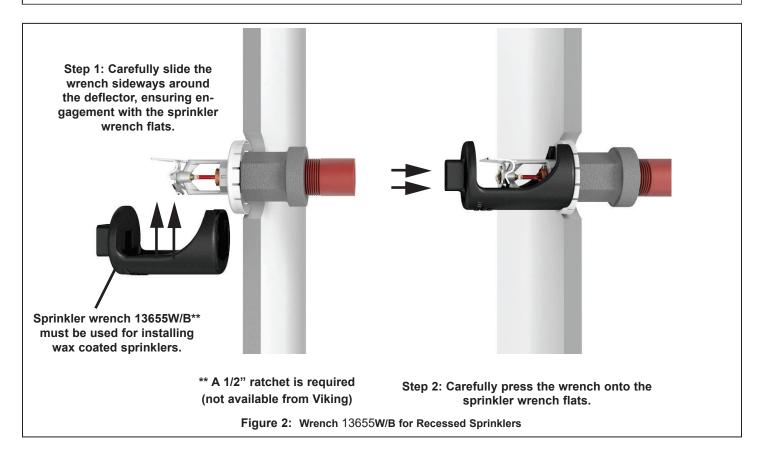

The Viking Corporation, 210 N Industrial Park Drive, Hastings MI 49058
Telephone: 269-945-9501 Technical Services: 877-384-5464 Fax: 269-818-1680 Email: techsvcs@vikingcorp.com
Visit the Viking website for the latest edition of this technical data page: www.vikinggroupinc.com

TABLE 1:	TABLE 1: AVAILABLE SPRINKLER TEMPERATURE RATINGS AND FINISHES						
Sprinkler Temperature Classification	Sprinkler Nominal Temperature Rating ¹	Maximum Ambient Ceiling Temperature ²	Bulb Color				
Ordinary	135 °F (57 °C)	100 °F (38 °C)	Orange				
Ordinary	155 °F (68 °C)	100 °F (38 °C)	Red				
Intermediate	175 °F (79 °C)	150 °F (65 °C)	Yellow				
Intermediate	200 °F (93 °C)	150 °F (65 °C)	Green				
High	286 °F (141 °C)	225 °F (107 °C)	Blue				

Sprinkler Finishes: Brass, Chrome, White Polyester, Black Polyester, and ENT **Corrosion-Resistant Coatings**³: White Polyester, Black Polyester, and ENT

Footnotes

- ¹ The sprinkler temperature rating is stamped on the deflector.
- ² Based on NFPA-13. Other limits may apply, depending on fire loading, sprinkler location, and other requirements of the Authority Having Jurisdiction. Refer to specific installation standards.
- ³ The corrosion-resistant coatings have passed the standard corrosion test required by the approving agencies indicated in the Approval Charts. These tests cannot and do not represent all possible corrosive environments. Prior to installation, verify through the end-user that the coatings are compatible with or suitable for the proposed environment. For automatic sprinklers, the coatings indicated are applied to the exposed exterior surfaces only. For ENT coated sprinklers, the waterway is coated. Note that the spring is exposed on sprinklers with Polyester, and ENT coatings.

MICROFAST® QUICK **RESPONSE HORIZONTAL** SIDEWALL SPRINKLER VK305 (K5.6)

The Viking Corporation, 210 N Industrial Park Drive, Hastings MI 49058 Telephone: 269-945-9501 Technical Services: 877-384-5464 Fax: 269-818-1680 Email: techsvcs@vikingcorp.com Visit the Viking website for the latest edition of this technical data page: www.vikinggroupinc.com

Approval Chart 1 (UL) Temperature KEY Finish Microfast® Quick Response Horizontal Sidewall Sprinkler VK305 A1X ← Escutcheon (if applicable) For Light or Ordinary Hazard Occupancies Maximum 175 PSI (12 Bar) WWP Deflector must be located 4" to 12" (102 mm to 305 mm) below the ceiling. Listings and Approvals³ **Thread Size Nominal K-Factor Overall Length** (Refer also to UL Design Criteria.) **BSPT** U.S. metric² Inches mm cULus⁴ China Approval 15 mm 5.6 80.6 2-11/16 68 A1W, B1X, C2W, D2Z 2-11/16 5.6 80.6 68 E3 NOTICE - Product Below - Limited Availability (Contact Local Viking Office) A1W, B1X, C2W, D2Z 15 mm 80.6 2-11/16 5.6 68

1/2" **Approved Temperature Ratings**

NPT

1/2"

1/2"

- A 135 °F (57 °C), 155 °F (68 °C), 175 °F (79 °C), 200 °F (93 °C), and 286 °F (141 °C)
- B 135 °F (57 °C), 155 °F (68 °C), 175 °F (79 °C), and 200 °F (93 °C)
- C 155 °F (68 °C), 175 °F (79 °C), 200 °F (93 °C), and 286 °F (141 °C)
- D 155 °F (68 °C), 175 °F (79 °C), and 200 °F (93 °C)
- E 155 °F (68 °C)

Sprinkler

Base Part

Number¹

12997

197827

12121

SIN

VK305

VK305

VK305

Approved Finishes

- 1 Brass, Chrome, White Poly-ester^{5,6}, and Black Polyester^{5,6}
- 2 ENT5

Approved Escutcheons

- W Installed with standard surface-mounted escutcheons
- X Installed with standard surface-mounted escutcheons or recessed with the Viking Micromatic® Model E-1, E-2, or G-1 Recessed Escutcheon
- Z Installed with standard surface-mounted escutcheons or recessed with the Viking Micromatic Model

Footnotes

- ¹ Base part number shown. For complete part number, refer to Viking's current price schedule.
- ² Metric K-factor measurement shown is when pressure is measured in Bar. When pressure is measured in kPa, divide the metric K-factor shown by 10.0.
- ³ This table shows the listings and approvals available at the time of printing. Other approvals may be in process.
- ⁴ Listed by Underwriters Laboratories Inc. for use in the U.S. and Canada.
- ⁵ cULus Listed as corrosion-resistant.
- Other colors are available on request with the same Listings and Approvals as the standard colors. Approved according to China GB Standard.

DESIGN CRITERIA - UL

(Also refer to Approval Chart 1.)

cULus Listing Requirements:

Quick Response Horizontal Sprinkler VK305 is cULus Listed as indicated in Approval Chart 1 for installation in accordance with the latest edition of NFPA 13 for sidewall standard spray sprinklers.

- · Designed for use in Light and Ordinary Hazard occupancies.
- Locate with the deflector 4" to 12" (102 mm to 305 mm) below the ceiling.
- · Protection areas and maximum spacing shall be in accordance with the tables provided in NFPA 13.
- · Minimum spacing allowed is 6 ft. (1.8 m).
- · Align the top of the deflector parallel with the ceiling.
- · Locate no less than 4" (102 mm) from end walls.
- · Maximum distance from end walls shall be no more than one-half of the allowable distance between sprinklers. The distance shall be measured perpendicular to the wall.
- · The sprinkler installation and obstruction rules contained in NFPA 13 for sidewall standard spray sprinklers must be followed.

IMPORTANT: Always refer to Bulletin Form No. F 091699 - Care and Handling of Sprinklers. Also refer to Bulletin Form No. F_080614 for general care, installation, and maintenance information. Viking sprinklers are to be installed in accordance with the latest edition of Viking technical data, the appropriate standards of NFPA, LPCB, APSAD, VdS or other similar organizations, and also with the provisions of governmental codes, ordinances, and standards, whenever applicable.

MICROFAST® QUICK RESPONSE HORIZONTAL SIDEWALL SPRINKLER VK305 (K5.6)

The Viking Corporation, 210 N Industrial Park Drive, Hastings MI 49058
Telephone: 269-945-9501 Technical Services: 877-384-5464 Fax: 269-818-1680 Email: techsvcs@vikingcorp.com
Visit the Viking website for the latest edition of this technical data page: www.vikinggroupinc.com

Approval Chart 1 (FM) Microfast® Quick Response Sidewall Sprinklers Maximum 175 PSI WWP										
Sprinkler Base Part	SIN	Threa	ad Size	Nomina	I K-Factor	Overall Length		FM Approvals ^{3,4}		
Number ¹		NPT	BSPT	U.S.	metric ²	Inches	mm	(Refer also to Design Criteria below.)		
12997	VK305	1/2"	15 mm	5.6	80.6	2-11/16	68	A	1Y, B1X	
			NOTIC	CE - Produ	ıct Below - Li	mited Availab	oility (Contac	t Local Viking Office)		
12121	VK305	1/2"	15 mm	5.6	80.6	2-11/16	68	A1W, B1X, C2W, D2Z		
Арр	roved Te	mperatı	ıre Rating	s				Approve	d Escutcheons	
°C), 200 B - 135 °F (5	A - 135 °F (57 °C), 155 °F (68 °C), 175 °F (79 °C), 200 °F (93 °C), and 286 °F (141 °C) B - 135 °F (57 °C), 155 °F (68 °C), 175 °F (79 °C), and 200 °F (93 °C)			eons or recessed wit E-1, E-2, E-3, or G-1	ard surface-mounted escutch- h the Viking Micromatic® Model Recessed Escutcheon ard surface-mounted escutch-					

Footnotes

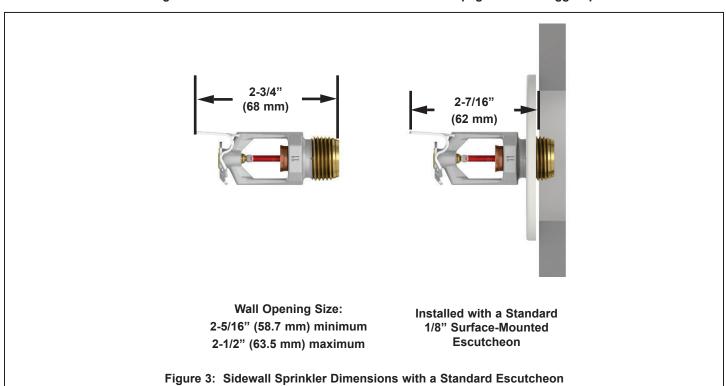
- ¹ Base part number shown. For complete part number, refer to Viking's current price schedule.
- ² Metric K-factor measurement shown is when pressure is measured in Bar. When pressure is measured in kPa, divide the metric K-factor shown by 10.0.
- ³This table shows the FM Approvals available at the time of printing. Other approvals may be in process.
- ⁴ Viking vertical sidewall sprinklers may be installed pendent or upright.
- ⁵ Approved according to China GB Standard.

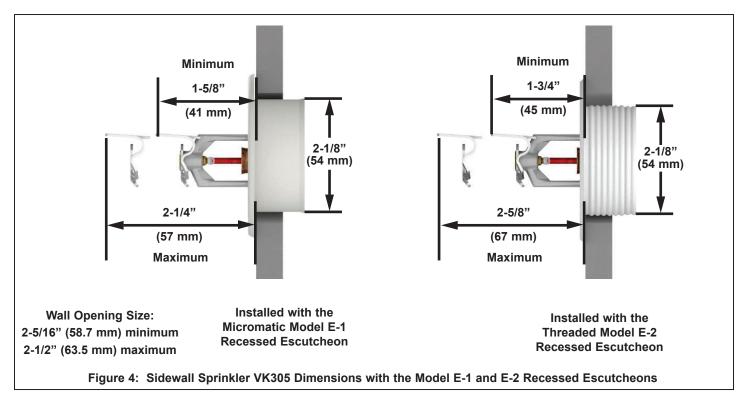
DESIGN CRITERIA - FM

(Also refer to Approval Chart 2 above.)

FM Approval Requirements:

Horizontal Sidewall Sprinkler VK305 is FM Approved as a quick response **Non-Storage** sidewall sprinkler as indicated in the FM Approval Guide. For specific application and installation requirements, reference the latest applicable FM Loss Prevention Data Sheets (including Data Sheet 2-0). FM Global Loss Prevention Data Sheets contain guidelines relating to, but not limited to: minimum water supply requirements, hydraulic design, ceiling slope and obstructions, minimum and maximum allowable spacing, and deflector distance below the ceiling.


NOTE: The FM installation guidelines may differ from cULus and/or NFPA criteria.


IMPORTANT: Always refer to Bulletin Form No. F_091699 - Care and Handling of Sprinklers. Also refer to Bulletin Form No. F_080614 for general care, installation, and maintenance information. Viking sprinklers are to be installed in accordance with the latest edition of Viking technical data, the appropriate standards of NFPA, FM Global, LPCB, APSAD, VdS or other similar organizations, and also with the provisions of governmental codes, ordinances, and standards, whenever applicable.

MICROFAST® QUICK RESPONSE HORIZONTAL SIDEWALL SPRINKLER VK305 (K5.6)

The Viking Corporation, 210 N Industrial Park Drive, Hastings MI 49058
Telephone: 269-945-9501 Technical Services: 877-384-5464 Fax: 269-818-1680 Email: techsvcs@vikingcorp.com
Visit the Viking website for the latest edition of this technical data page: www.vikinggroupinc.com

CARE AND HANDLING OF SPRINKLERS

The Viking Corporation, 210 N Industrial Park Drive, Hastings MI 49058

Telephone: 269-945-9501 Technical Services: 877-384-5464 Fax: 269-818-1680 Email: techsycs@vikingcorp.com

SPRINKLERS ARE FRAGILE - HANDLE WITH CARE!

General Handling and Storage:

- · Store sprinklers in a cool, dry place.
- Protect sprinklers during storage, transport, handling, and after installation.
- · Use the original shipping containers. DO NOT place sprinklers loose in boxes, bins, or buckets.
- · Keep sprinklers separated at all times. DO NOT allow metal parts to contact sprinkler operating elements.

For Pre-Assembled Drops:

- · Protect sprinklers during handling and after installation.
- For recessed assemblies, use the protective sprinkler cap (Viking Part Number 10364).

Sprinklers with Protective Shields or Caps:

- DO NOT remove shields or caps until after sprinkler installation and there no longer is potential for mechanical damage to the sprinkler operating elements.
- · Sprinkler shields or caps MUST be removed BEFORE placing the system in
- Remove the sprinkler shield by carefully pulling it apart where it is snapped together.
- · Remove the cap by turning it slightly and pulling it off the sprinkler.

Sprinkler Installation:

- · DO NOT use the sprinkler deflector or operating element to start or thread the sprinkler into a fitting.
- · Use only the designated sprinkler head wrench! Refer to the current sprinkler technical data page to determine the correct wrench for the model of sprinkler used.
- · DO NOT install sprinklers onto piping at the floor level.
- · Install sprinklers after the piping is in place to prevent mechanical damage.
- · DO NOT allow impacts such as hammer blows directly to sprinklers or to fittings, pipe, or couplings in close proximity to sprinklers. Sprinklers can be damaged from direct or indirect impacts.
- DO NOT attempt to remove drywall, paint, etc., from sprinklers.
- Take care not to over-tighten the sprinkler and/or damage its operating parts! **Maximum Torque:**

1/2" NPT: 14 ft-lbs. (19.0 N-m) 3/4" NPT: 20 ft-lbs. (27.1 N-m) 1" NPT: 30 ft-lbs. (40.7 N-m)

(Original container used)

INCORRECT (Placed loose in box)

(Protected with caps)

INCORRECT (Protective caps not used)

CORRECT (Piping is in place at the ceiling)

INCORRECT (Sprinkler at floor level)

CORRECT (Special installation wrenches)

INCORRECT (Designated wrench not used)

A WARNING

Any sprinkler with a loss of liquid from the glass bulb or damage to the fusible element should be destroyed. Never install sprinklers that have been dropped, damaged, or exposed to temperatures exceeding the maximum ambient temperature allowed. Sprinklers that have been painted in the field must be replaced per NFPA 13. Protect sprinklers from paint and paint overspray in accordance with the installation standards. Do not clean sprinklers with soap and water, ammonia, or any other cleaning fluid. Do not use adhesives or solvents on sprinklers or their operating elements.

Refer to the appropriate technical data page and NFPA standards for complete care, handling, installation, and maintenance instructions. For additional product and system information Viking data pages and installation instructions are available on the Viking Web site at www.vikinggroupinc.com.

CARE AND HANDLING OF SPRINKLERS

The Viking Corporation, 210 N Industrial Park Drive, Hastings MI 49058

Telephone: 269-945-9501 Technical Services: 877-384-5464 Fax: 269-818-1680 Email: techsycs@vikingcorp.com

PROTECTIVE SPRINKLER SHIELDS AND CAPS

General Handling and Storage:

Many Viking sprinklers are available with a plastic protective cap or shield temporarily covering the operating elements. The snapon shields and caps are factory installed and are intended to help protect the operating elements from mechanical damage during shipping, storage, and installation. NOTE: It is still necessary to follow the care and handling instructions on the appropriate sprinkler technical data sheets* when installing sprinklers with bulb shields or caps.

WHEN TO REMOVE THE SHIELDS AND CAPS:

NOTE: SHIELDS AND CAPS MUST BE REMOVED FROM SPRINKLERS BEFORE PLACING THE SYSTEM IN SERVICE!

Remove the shield or cap from the sprinkler only after checking all of the following:

- · The sprinkler has been installed*.
- The wall or ceiling finish work is completed where the sprinkler is installed and there no longer is a potential for mechanical damage to the sprinkler operating elements.

SHIELDS AND CAPS MUST BE REMOVED FROM SPRINKLERS BEFORE PLACING THE SYSTEM IN SERVICE!

Figure 1: Sprinkler shield being removed from a pendent sprinkler.

Figure 2: Sprinkler cap being removed from a pendent sprinkler.

Figure 3: Sprinkler cap being removed from and upright sprinkler.

HOW TO REMOVE SHIELDS AND CAPS:

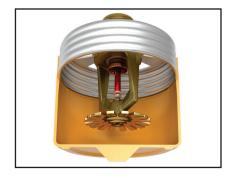
No tools are necessary to remove the shields or caps from sprinklers. DO NOT use any sharp objects to remove them! Take care not to cause mechanical damage to sprinklers when removing the shields or caps. When removing caps from fusible element sprinklers, use care to prevent dislodging ejector springs or damaging fusible elements. NOTE: Squeezing the sprinkler cap excessively could damage sprinkler fusible elements.

- To remove the shield, simply pull the ends of the shield apart where it is snapped together. Refer to Figure 1.
- To remove the cap, turn it slightly and pull it off the sprinkler. Refer to Figures 2 and 3.

NOTICE Refer to the current sprinkler technical data page to determine the correct sprinkler wrench for the model of sprinkler used.

Never install sprinklers that have been dropped, damaged, or exposed to temperatures in excess of the maximum ambient temperature allowed.

* Refer to the appropriate current technical data pages for complete care, handling, and installation instructions. Data pages are included with each shipment from Viking or Viking distributors. They can also be found on the Web site at www. vikinggroupinc.com.



CARE AND HANDLING OF SPRINKLERS

The Viking Corporation, 210 N Industrial Park Drive, Hastings MI 49058
Telephone: 269-945-9501 Technical Services: 877-384-5464 Fax: 269-818-1680 Email: techsvcs@vikingcorp.com

▲ CAUTION CONCEALED COVER ASSEMBLIES ARE FRAGILE!

TO ASSURE SATISFACTORY PERFORMANCE OF THE PRODUCT, HANDLE WITH CARE.

Concealed Sprinkler and Adapter Assembly with Protective Cap

Concealed Sprinkler and Adapter Assembly (Protective Cap Removed)

Cover Plate Assembly (Pendent Cover 12381 shown)

GENERAL HANDLING AND STORAGE INSTRUCTIONS:

- Do not store in temperatures exceeding 100 °F (38 °C). Avoid direct sunlight and confined areas subject to heat.
- · Protect sprinklers and cover assemblies during storage, transport, handling, and after installation.
- -- Use original shipping containers.
- -- Do not place sprinklers or cover assemblies loose in boxes, bins, or buckets.
- Keep the sprinkler bodies covered with the protective sprinkler cap any time the sprinklers are shipped or handled, during testing of the system, and while ceiling finish work is being completed.
- Use only the designated Viking recessed sprinkler wrench (refer to the appropriate sprinkler data page) to install these sprinklers. **NOTE:** The protective cap is temporarily removed during installation and then placed back on the sprinkler for protection until finish work is completed.
- Do not over-tighten the sprinklers into fittings during installation.
- Do not use the sprinkler deflector to start or thread the sprinklers into fittings during installation.
- · Do not attempt to remove drywall, paint, etc., from the sprinklers.
- Remove the plastic protective cap from the sprinkler before attaching the cover plate assembly. PROTECTIVE CAPS <u>MUST</u> BE REMOVED FROM SPRINKLERS BEFORE PLACING THE SYSTEM IN SERVICE!

Refer to the appropriate current technical data pages for complete care, handling, and installation instructions. Data pages are included with each shipment from Viking or Viking distributors. They can also be found on the Web site at www. vikinggroupinc.com.

CARE AND HANDLING OF SPRINKLERS

The Viking Corporation, 210 N Industrial Park Drive, Hastings MI 49058

Telephone: 269-945-9501 Technical Services: 877-384-5464 Fax: 269-818-1680 Email: techsvcs@vikingcorp.com

USE THE FOLLOWING PRECAUTIONS WHEN HANDLING WAX-COATED SPRINKLERS

Many of Viking's sprinklers are available with factory-applied wax coating for corrosion resistance. These sprinklers MUST receive appropriate care and handling to avoid damaging the wax coating and to assure satisfactory performance of the product.

General Handling and Storage of Wax-Coated Sprinklers:

- Store the sprinklers in a cool, dry place (in temperatures below the maximum ambient temperature allowed for the sprinkler temperature rating. Refer to Table 1 below.)
- · Store containers of wax-coated sprinklers separate from other sprinklers.
- · Protect the sprinklers during storage, transport, handling, and after installation.
- · Use original shipping containers.
- · Do not place sprinklers in loose boxes, bins, or buckets.

Installation of Wax-Coated Sprinklers:

Use only the special sprinkler head wrench designed for installing wax-coated Viking sprinklers (any other wrench may damage the unit).

- · Take care not to crack the wax coating on the units.
- For touching up the wax coating after installation, wax is available from Viking in bar form. Refer to Table 1 below. The coating MUST be repaired after sprinkler installation to protect the corrosion-resistant properties of the sprinkler.
- Use care when locating sprinklers near fixtures that can generate heat. Do not install sprinklers where they would be exposed to temperatures exceeding the maximum recommended ambient temperature for the temperature rating used.
- Inspect the coated sprinklers frequently soon after installation to verify the integrity of the corrosion resistant coating. Thereafter, inspect representative samples of the coated sprinklers in accordance with NFPA 25. Close up visual inspections are necessary to determine whether the sprinklers are being affected by corrosive conditions.

		TABLE 1		
Sprinkler Temperature Rating (Fusing Point)	Wax Part Number	Wax Melting Point	Maximum Ambient Ceiling Temperature ¹	Wax Color
155 °F (68 °C) / 165 °F (74 °C)	02568A	148 °F (64 °C)	100 °F (38 °C)	Light Brown
175 °F (79 °C)	04146A	161 °F (71 °C)	150 °F (65 °C)	Brown
200 °F (93 °C)	04146A	161 °F (71 °C)	150 °F (65 °C)	Brown
220 °F (104 °C)	02569A	170 °F (76 °C)	150 °F (65 °C)	Dark Brown
286 °F (141 °C)	02569A	170 °F (76 °C)	150 °F (65 °C)	Dark Brown

¹Based on NFPA-13. Other limits may apply, depending on fire loading, sprinkler location, and other requirements of the Authority Having Jurisdiction. Refer to specific installation standards.

▲WARNING

Never install sprinklers that have been dropped, damaged, or exposed to temperatures in excess of the maximum ambient temperature allowed.

Refer to the appropriate current technical data pages for complete care, handling, and installation instructions. Data pages are included with each shipment from Viking or Viking distributors. They can also be found on the Web site at www. vikinggroupinc.com.

REGULATORY AND HEALTH WARNINGS

The Viking Corporation, 210 N Industrial Park Drive, Hastings MI 49058

Telephone: 269-945-9501 Technical Services: 877-384-5464 Fax: 269-818-1680 Email: techsvcs@vikingcorp.com

Visit the Viking website for the latest edition of this technical data page www.vikinggroupinc.com

1. DESCRIPTION

Regulatory and Health Warnings applying to materials used in the manufacture and construction of fire protection products are provided herin as they relate to legally mandated jurisdictional regions.

A WARNING

STATE OF CALIFORNIA, USA

Installing or servicing fire protection products such as sprinklers, valves, piping etc. can expose you to chemicals including, but not limited to, lead, nickel, butadiene, titaninum dioxide, chromium, carbon black, and acrylonitrile which are known to the State of California to cause cancer or birth defects or other reproductive harm.

For more information, go to www.P65Warnings.ca.gov

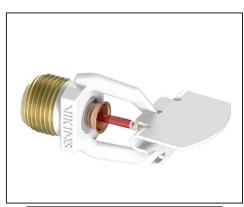
2. WARRANTY TERMS AND CONDITIONS

For details of warranty, refer to Viking's current list price schedule at www.vikinggroupinc.com or contact Viking directly.

FREEDOM® RESIDENTIAL HORIZONTAL SIDEWALL SPRINKLER VK484 (K4.2)

The Viking Corporation, 210 N Industrial Park Drive, Hastings MI 49058

Telephone: 269-945-9501 Technical Services: 877-384-5464 Fax: 269-818-1680 Email: techsvcs@vikingcorp.com Visit the Viking website for the latest edition of this technical data page www.vikinggroupinc.com


1. DESCRIPTION

Viking Freedom® Residential Horizontal Sidewall Sprinkler VK484 is a small, thermosensitive, glass-bulb residential sprinkler available in several different finishes and temperature ratings to meet varying design requirements. The Electroless Nickel PTFE (ENT) coating has been investigated for installation in corrosive atmospheres and is cULus Listed as corrosion resistant as indicated in the Approval Chart. The sprinkler orifice design, with a K-factor of 4.2, allows efficient use of available water supplies for the hydraulically designed fire-protection system. The glass bulb operating element and special deflector characteristics meet the challenges of residential sprinkler standards.

2. LISTINGS AND APPROVALS

Refer to the Approval Chart and Design Criteria for cULus Listing requirements that must be followed.

3. TECHNICAL DATA

Specifications:

Available since 2011.

Minimum Operating Pressure: Refer to the Approval Chart.

Maximum Working Pressure: 175 psi (12 bar). Factory tested hydrostatically to 500 psi (34.5 bar).

Thread size: 1/2" (15 mm) NPT

Nominal K-Factor: 4.2 U.S. (57 metric†)

† Metric K-factor measurement shown is in Bar. When pressure is measured in kPa, divide the metric K-factor shown by 10.0.

Glass-bulb fluid temperature rated to -65 °F (-55 °C)

Overall Length: 3" (76 mm)

Material Standards:
Frame Casting: QM Brass
Deflector: Brass UNS-C23000
Bulb: Glass, nominal 3 mm diameter

Belleville Spring Sealing Assembly: Nickel Alloy, coated on both sides with Polytetrafluoroethylene (PTFE)

Compression Screw: Brass UNS-C36000

Pip Cap and Insert Assembly: Copper UNS-C11000 and Stainless Steel UNS-S30400

Pip Cap Attachment: Brass UNS-C36000

For ENT coated sprinklers: Belleville spring - Exposed, Screw and Pipcap - ENT plated.

Ordering Information: (Also refer to the current Viking price list.)

Sprinkler: Base Part No. 16240

Order Sprinkler VK484 by first adding the appropriate suffix for the sprinkler finish and then the appropriate suffix for the temperature rating to the sprinkler base part number.

Finish Suffix: Brass = A, Chrome = F, White Polyester = M-W, Black Polyester = M-B, and ENT = JN

Temperature Suffix: 155 °F (68 °C) = B, 175 °F (79 °C) = D

For example, sprinkler VK484 with a Brass finish and a 155 °F (68 °C) temperature rating = Part No. 16240AB.

Available Finishes And Temperature Ratings:

Refer to Table 1.

Accessories: (Also refer to the Viking website.)

Sprinkler Wrenches:

A. Standard Wrench: Part No. 21475MB (available since 2017)

B. Wrench for recessed sprinklers: Part No. 13655WB†† (available since 2006) ††A ½" ratchet is required (not available from Viking).

Sprinkler Cabinets:

A. Six-head capacity: Part No. 01724A (available since 1971)

B. Twelve-head capacity: Part No. 01725A (available since 1971)

FREEDOM® RESIDENTIAL HORIZONTAL SIDEWALL SPRINKLER VK484 (K4.2)

The Viking Corporation, 210 N Industrial Park Drive, Hastings MI 49058
Telephone: 269-945-9501 Technical Services: 877-384-5464 Fax: 269-818-1680 Email: techsvcs@vikingcorp.com
Visit the Viking website for the latest edition of this technical data page www.vikinggroupinc.com

4. INSTALLATION

Refer to appropriate NFPA Installation Standards.

5. OPERATION

During fire conditions, the heat-sensitive liquid in the glass bulb expands, causing the glass to shatter, releasing the pip cap and sealing spring assembly. Water flowing through the sprinkler orifice strikes the sprinkler deflector, forming a uniform spray pattern to extinguish or control the fire.

6. INSPECTIONS, TESTS AND MAINTENANCE

Refer to NFPA 25 for Inspection, Testing and Maintenance requirements.

7. AVAILABILITY

The Viking Model VK484 Sprinkler is available through a network of domestic and international distributors. See The Viking Corporation web site for the closest distributor or contact The Viking Corporation.

8. GUARANTEE

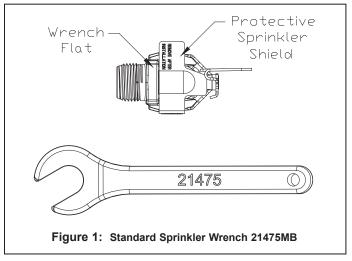

For details of warranty, refer to Viking's current list price schedule or contact Viking directly.

TABLE 1: AVAILABLE SPRINKLER TEMPERATURE RATINGS AND FINISHES						
Sprinkler Temperature Classification	Maximum Ambient Ceiling Temperature ²	Bulb Color				
Ordinary	155 °F (68 °C)	100 °F (38 °C)	Red			
Intermediate	175 °F (79 °C)	150 °F (65 °C)	Yellow			

Sprinkler Finishes: Brass, Chrome, White Polyester 3, Black Polyester 3, and ENT 3,4

Footnotes

- ¹ The sprinkler temperature rating is stamped on the deflector.
- ² Based on NFPA-13. Other limits may apply, depending on fire loading, sprinkler location, and other requirements of the Authority Having Jurisdiction. Refer to specific installation standards.
- ³ Sprinklers with ENT, White Polyester, and Black Polyester finishes are C-UL-US-EU Listed as corrosion resistant.
- ⁴ The ENT coating has passed the standard corrosion test required by the approving agencies indicated in the Approval Chart. These tests cannot and do not represent all possible corrosive environments. Prior to installation, verify through the end-user that the coatings are compatible with or suitable for the proposed environment. For ENT coated sprinklers, the waterway is coated. Note that the spring is exposed on sprinklers with ENT coating.

FREEDOM® RESIDENTIAL HORIZONTAL SIDEWALL SPRINKLER VK484 (K4.2)

The Viking Corporation, 210 N Industrial Park Drive, Hastings MI 49058
Telephone: 269-945-9501 Technical Services: 877-384-5464 Fax: 269-818-1680 Email: techsvcs@vikingcorp.com
Visit the Viking website for the latest edition of this technical data page www.vikinggroupinc.com

Approval Chart Viking VK484, 4.2 K-Factor Residential Horizontal Sidewall Sprinkler

For systems designed to NFPA 13D or NFPA 13R. For systems designed to NFPA 13, refer to the design criteria. For Ceiling types refer to NFPA 13, 13R or 13D current editions

Sprinkler Base Part	SIN	NPT Thr	ead Size	Nominal K-Factor		Nominal K-Factor		Maximum Water Working Pressure		Maximum Water Working		Overall Length		h							
Number ¹	SIN	Inches	mm	U.S.	metric ²	Inches					mm										
16240	VK484	1/2	15	4.2	57	175 p	si (12 bar)	3			76										
Max. Coverage Area ⁴	Max.	Ordinary Te (155 °F		Intermediate Temp Rating (175 °F/79 °C)				Listings and	l Approva	als ³	Minimum										
Width X Length Ft. X Ft. (m X m)	Spacing Ft. (m)	Flow ⁴ GPM (L/min)	Pressure ⁴ PSI (bar)	Flow ⁴ GPM (L/min)	Pressure ⁴ PSI (bar)	Deflector to Ceiling Installation Type	I IVna I	C-UL-US- EU⁵	NYC		Spacing Ft. (m)										
12 X 12 (3.7 X 3.7)	12 (3.7)	13 (49.2)	9.6 (0.66)	13 (49.2)	9.6 (0.66)															Ì	
14 X 14 (4.3 X 4.3)	14 (4.3)	14 (53.0)	11.1 (0.77)	15 (56.8)	12.8 (0.88)		Standard surface- mounted escutcheons or recessed														
16 X 16 (4.9 X 4.9)	16 (4.9)	16 (60.6)	14.5 (1.00)	17 (64.4)	16.4 (1.13)	4 to 6 inches		s surface- mounted escutcheons or recessed													
16 X 18 (4.9 X 5.5)	16 (4.9)	19 (71.9)	20.5 (1.41)	19 (71.9)	20.5 (1.41)																
16 X 20 (4.9 X 6.1)	16 (4.9)	22 (83.3)	27.4 (1.89)	22 (83.3)	27.4 (1.89)	or recessed			See Footnotes 7	See		8									
12 X 12 (3.7 X 3.7)	12 (3.7)	14 (53.0)	11.1 (0.77)	14 (53.0)	11.1 (0.77)		with the Micromatic®	and 9.	Footnot	9 6 │	(2.4)										
14 X 14 (4.3 X 4.3)	14 (4.3)	16 (60.6)	14.5 (1.00)	16 (60.6)	14.5 (1.00)		Model E-1, E-2, E-3, or 6 to 12 G-1 Recessed inches Escutcheon														
16 X 16 (4.9 X 4.9)	16 (4.9)	18 (68.1)	18.4 (1.27)	18 (68.1)	18.4 (1.27)	6 to 12 inches															
16 X 18 (4.9 X 5.5)	16 (4.9)	20 (75.7)	22.7 (1.56)	20 (75.7)	22.7 (1.56)																
16 X 20 (4.9 X 6.1)	16 (4.9)	25 (94.6)	35.4 (2.44)	25 (94.6)	35.4 (2.44)																

Footnotes

- ¹ Part number shown is the base part number. For complete part number, refer to Viking's current price schedule.
- ² Metric K-factor measurement shown is when pressure is measured in Bar. When pressure is measured in kPa, divide the metric K-factor shown by 10.0.
- ³ This chart shows the listings and approvals available at the time of printing. Other approvals may be in process. Check with the manufacturer for any additional approvals. Refer also to Design Criteria.
- ⁴ For areas of coverage smaller than shown, use the "Flow" and "Pressure" for the next larger area listed. Flows and pressures listed are per sprinkler.
- ⁵Listed by Underwriter's Laboratories, Inc. for use in the U.S., Canada, and the European Union.
- ⁶ Meets New York City requirements, effective July 1, 2008.
- ⁷Approved Finishes are: Brass, Chrome, White Polyester, and Black Polyester ⁸
- ⁸ Other paint colors are available on request with the same cULus listings as the standard finish colors.
- ⁹ Approved finish is Electroless Nickel PTFE (ENT). Sprinklers with ENT, White Polyester, and Black Polyester finishes are C-UL-US-EU Listed as corrosion resistant. ENT is available with standard surface-mounted escutcheons or the Model E-1 Recessed Escutcheon.

FREEDOM® RESIDENTIAL HORIZONTAL SIDEWALL SPRINKLER VK484 (K4.2)

The Viking Corporation, 210 N Industrial Park Drive, Hastings MI 49058

Telephone: 269-945-9501 Technical Services: 877-384-5464 Fax: 269-818-1680 Email: techsvcs@vikingcorp.com

Visit the Viking website for the latest edition of this technical data page www.vikinggroupinc.com

DESIGN CRITERIA

(Also refer to the Approval Chart.)

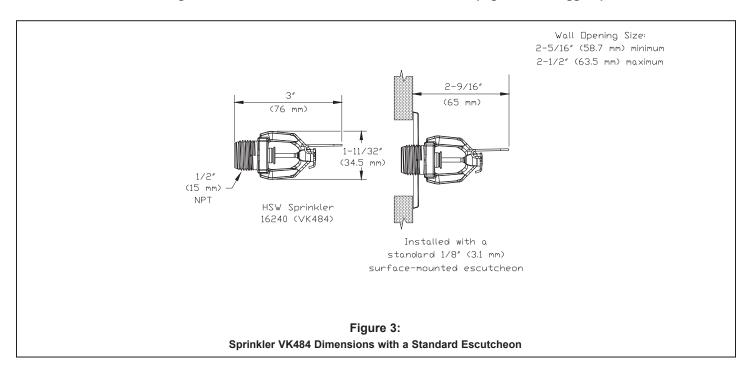
cULus Listing Requirements:

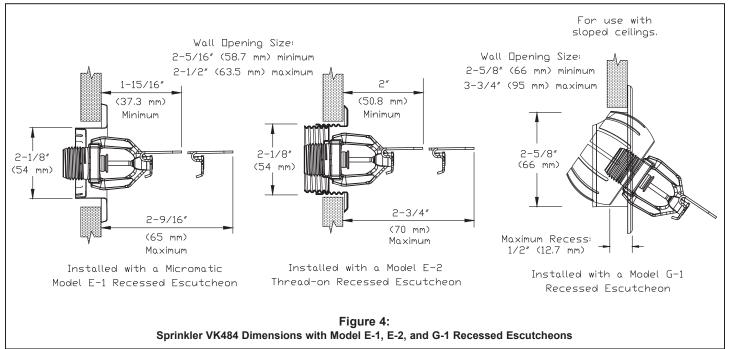
When using Viking Residential Sprinkler VK484 for systems designed to NFPA 13D or NFPA 13R, apply the listed areas of coverage and minimum water supply requirements shown in the Approval Chart.

<u>For systems designed to NFPA 13:</u> The number of design sprinklers is to be the four contiguous most hydraulically demanding sprinklers. The minimum required discharge from each of the four sprinklers is to be the greater of the following:

- The flow rates given in the Approval Chart for NFPA 13D and NFPA13R applications for each listed area of coverage, or
- Calculated based on a minimum discharge of 0.1 gpm/sq. ft. over the "design area" in accordance with sections 8.5.2.1 or 8.6.2.1.2 of NFPA 13.
- · Minimum distance between residential sprinklers: 8 ft. (2.4 m).
- The VK484 horizontal sidewall sprinkler deflector shall be located a minimum of 1-3/4" (44.5 mm) and a maximum of 6" (152 mm) from the wall on which it is installed.

DEFLECTOR POSITION: Install Viking Residential Horizontal Sidewall Sprinkler VK484 with the leading edge of the deflector oriented parallel with the ceiling and the sprinkler frame arms oriented perpendicular to the ceiling. Refer to the Approval Chart for the required distance between the top of the deflector and the ceiling.


IMPORTANT: Always refer to Bulletin Form No. F_091699 - Care and Handling of Sprinklers. Also refer to Form No. F_080614 for general care, installation, and maintenance information. Viking sprinklers are to be installed in accordance with the latest edition of Viking technical data, the appropriate standards of NFPA and any other similar Authorities Having Jurisdiction, and also with the provisions of governmental codes, ordinances, and standards, whenever applicable. Final approval and acceptance of all residential sprinkler installations must be obtained from the Authorities Having Jurisdiction.



FREEDOM® RESIDENTIAL **HORIZONTAL SIDEWALL** SPRINKLER VK484 (K4.2)

The Viking Corporation, 210 N Industrial Park Drive, Hastings MI 49058 Telephone: 269-945-9501 Technical Services: 877-384-5464 Fax: 269-818-1680 Email: techsvcs@vikingcorp.com Visit the Viking website for the latest edition of this technical data page www.vikinggroupinc.com

Viking Residential Sprinkler Installation Guide

October 25, 2018

FREEDOM® RESIDENTIAL SPRINKLER INSTALLATION GUIDE

The Viking Corporation, 210 N Industrial Park Drive, Hastings MI 49058

Telephone: 269-945-9501 Technical Services: 877-384-5464 Fax: 269-818-1680 Email: techsvcs@vikingcorp.com

1. DESCRIPTION

Viking residential automatic sprinklers are equipped with a "fast response" heat-sensitive operating element designed to respond individually and quickly to a specific high temperature. Viking residential sprinklers are designed to combine speed of operation with water distribution characteristics to help in the control of residential fires and to improve life safety by prolonging the time available for occupants to escape or be evacuated.

2. LISTINGS AND APPROVALS

Refer to the Approval Charts on the appropriate sprinkler technical data page(s) and/or approval agency listings.

- A. Viking residential sprinklers are intended for use in the following occupancies: one- and two-family dwellings and mobile homes with the fire protection sprinkler system installed in accordance with NFPA 13D; residential occupancies up to four stories in height with the fire protection system installed in accordance with NFPA 13R; or residential portions of any occupancy with the fire protection system installed in accordance with NFPA 13. Information contained in this guide is based on NFPA 13, "Standard for the Installation of Sprinkler Systems".
- B. The design criteria for residential sprinklers contained in the NFPA installation standards must be followed except as modified by the individual UL 1626 listing information provided in the technical data pages and this Residential Sprinkler Installation Guide. For listed areas of coverage, technical data, and specific design and installation instructions, refer to the appropriate Viking technical data page for the sprinkler model used.
- C. Viking residential sprinklers listed by Underwriters Laboratories, Inc. (UL) have passed fire tests designed to represent fire conditions for the sprinkler's listed area of coverage. The standards for residential sprinkler performance and spray patterns are printed in Underwriters Laboratories Publication UL 1626, "Standard for Residential Sprinklers for Fire Protection Service". All listed Viking residential sprinklers meet or exceed UL 1626 performance requirements and spray pattern criteria for their listed areas of coverage.
- D. NFPA standards allow use of residential sprinklers with rates, design areas, areas of coverage, and minimum design pressures other than those specified in the standards when they have been listed for such specific residential installation conditions.

3. TECHNICAL DATA

Specifications:

Refer to the appropriate sprinkler technical data sheet.

Material Standards:

Refer to the appropriate sprinkler technical data sheet.

Viking Technical Data may be found on The Viking Corporation's Web site at http://www.vikinggroupinc.com. The Web site may include a more recent edition of this Technical Data Page.

4. INSTALLATION

NOTE: Take care not to over-tighten the sprinkler and/or damage its operating parts!

Maximum Torque: 1/2" NPT: 14 ft-lbs. (19.0 N-m) 3/4" NPT: 20 ft-lbs. (27.1 N-m)

A. Care and Handling (also refer to Bulletin - Care and Handling of Sprinklers, Form No. F_091699.)

Sprinklers must be handled with care and protected from mechanical damage during storage, transport, handling, and after installation. Store sprinklers in a cool, dry place in their original container.

Use care when locating sprinklers near fixtures that can generate heat.

Never install sprinklers that have been dropped, damaged in any way, or exposed to temperatures exceeding the maximum ambient temperature allowed (refer to Table 1.)

Never install any glass-bulb sprinkler if the bulb is cracked or if there is a loss of liquid from the bulb. A small air bubble should be present in the glass bulb. Any sprinkler with a loss of liquid from the glass bulb or damage to the fusible element should be destroyed immediately. (Note: Installing glass bulb sprinklers in direct sunlight (ultraviolet light) may affect the color of the dye used to color code the bulb. This color change does not affect the integrity of the bulb.)

Viking residential sprinklers are intended for use on wet pipe residential systems only. Adequate heat must be provided for wetpipe systems. DO NOT use Viking residential sprinklers on dry systems unless specifically allowed by recognized installation standards or the Authority Having Jurisdiction.

Residential concealed sprinklers must be installed in neutral or negative pressure plenums only!

Corrosion-resistant sprinklers must be installed when subject to corrosive atmospheres. **NOTE:** Viking residential sprinklers are not intended for use in corrosive environments.

Replaces pages 1-17, dated December 1, 2016. (Added P65 Warning.)

FREEDOM® RESIDENTIAL SPRINKLER INSTALLATION GUIDE

The Viking Corporation, 210 N Industrial Park Drive, Hastings MI 49058

Telephone: 269-945-9501 Technical Services: 877-384-5464 Fax: 269-818-1680 Email: techsvcs@vikingcorp.com

TABLE 1: RESIDENTIAL SPRINKLER TEMPERATURE RATINGS							
Sprinkler Temperature Classification	Sprinkler Nominal Temperature Rating¹	Maximum Ambient Ceiling Temperature ³	Bulb Color				
	Residential Glass Bulb Style Sprinklers						
Ordinary	155 °F (68 °C)	100 °F (38 °C)	Red				
Intermediate	175 °F (79 °C)	150 °F (65 °C)	Yellow				
Sprinkler Temperature Classification							
	Residential Fusible Element Style Sprinklers						
Ordinary	165 °F (74 °C)	100 '	°F (38 °C)				
Sprinkler Temperature Classification	Sprinkler Nominal Temperature Rating (Fusing Point)	Maximum Ambient Ceiling Temperature ³	Temperature Identification Stamp				
	Residential Flush Style Sprin	klers					
Ordinary	165 °F (74 °C)	100 °F (38 °C)	On Cover or Sprinkler Inlet (VK476)				
Intermediate	220 °F (104 °C)	150 °F (65 °C)	On Cover				
Sprinkler Temperature Classification	Sprinkler Nominal Temperature Rating (Fusing Point)	Maximum Ambient Ceiling Temperature ³	Cover Plate Temperature Rating				
	Residential Concealed Style Sprinklers						
Ordinary	135 °F (57 °C)¹, 140 °F (60 °C)², 155 °F (68 °C)¹, or 165 °F (74 °C)¹	100 °F (38 °C)	135 °F (57 °C)				

Footnotes

- ¹ The sprinkler temperature rating is stamped on the deflector or flow shaper.
- ² The temperature rating is stamped on the sprinkler.

B. Installation Instructions

Viking sprinklers are manufactured and tested to meet the rigid requirements of approving agencies. They are designed to be installed in accordance with recognized installation standards NFPA 13, NFPA 13R, and NFPA 13D, and any associated TIAs.

Deviation from the standards or any alteration to the sprinklers or cover plate assemblies after they leave the factory including, but not limited to: painting, plating, coating, or modification, may render the sprinklers inoperative and will automatically nullify the approval and any guarantee made by Viking.

The use of residential sprinklers may be limited due to occupancy and hazard. Residential fire protection systems must be designed and installed only by those who are completely familiar with the appropriate standards and codes, and thoroughly experienced in fire protection design, hydraulic calculations, and sprinkler system installation.

Before installation, be sure to have the appropriate sprinkler model and style, with the correct K-Factor, temperature rating, and response characteristics. Viking residential sprinklers must be installed after the piping is in place to prevent mechanical damage. Keep sprinklers with protective caps or bulb shields contained within the caps or shields during installation and testing, and any time the sprinkler is shipped or handled.

- 1a. For frame-style sprinklers, install escutcheon (if used), which is designed to thread onto the external threads of the sprinkler*.

 *Refer to the appropriate sprinkler technical data page to determine approved escutcheons for use with specific sprinkler models.
- 1b. For flush and concealed style sprinklers: Cut the sprinkler nipple so that the ½" or 3/4" (15 mm or 20 mm) NPT** outlet of the reducing coupling is at the desired location and centered in the opening** in the ceiling or wall.

 **Size depends on the sprinkler model used. Refer to appropriate sprinkler data page.

³ Based on NFPA-13. Other limits may apply, depending on fire loading, sprinkler location, and other requirements of the Authority Having Jurisdiction. Refer to specific installation standards.

FREEDOM® RESIDENTIAL SPRINKLER INSTALLATION GUIDE

The Viking Corporation, 210 N Industrial Park Drive, Hastings MI 49058

Telephone: 269-945-9501 Technical Services: 877-384-5464 Fax: 269-818-1680 Email: techsvcs@vikingcorp.com

DESIGN CRITERIA

<u>For Systems Designed to NFPA 13D or NFPA 13R:</u> Apply the listed areas of coverage and minimum water supply requirements shown in the approval charts on the residential sprinkler data pages. The sprinkler flow rate is the minimum required discharge from each of the total number of design sprinklers as specified in NFPA 13D or NFPA 13R.

<u>For Systems Designed to the latest edition of NFPA 13:</u> The number of design sprinklers is to be the four most hydraulically demanding sprinklers. The minimum required discharge from each of the four sprinklers is to be the greater of the following:

- The flow rates given in the approval charts on the data pages for NFPA 13D and NFPA13R for each area of coverage listed, or
- Calculated based on a minimum discharge of 0.1 gpm/sq. ft. over the "design area" in accordance with sections 8.5.2.1 or 8.6.2.1.2 of NFPA 13. The greatest dimension of the coverage area cannot be any greater than the maximum areas of coverage shown on the data pages.

Flow Rates

All residential sprinklers manufactured on or after July 12, 2002 are listed with a single minimum flow rate. Where rooms have more than one sprinkler, multiple-sprinkler calculations are still required, but the first sprinkler and any additional sprinkler or sprinklers must be calculated flowing at identical minimum flow rates, based on the area of sprinkler coverage, using the minimum flow and pressure listed for the sprinkler model used.

Consult the appropriate standards and the Authorities Having Jurisdiction to determine the number of sprinklers to hydraulically calculate to verify adequate water supply for multiple-sprinkler operation.

Operating Pressure: The minimum operating pressure of any sprinkler shall be the minimum operating pressure specified by the listing, or 7 psi (0.5 bar), whichever is greater. The maximum allowable operating pressure is 175 psi (12 bar).

Areas of Coverage

If the actual area of coverage is less than the listed area of coverage, use the minimum water supply for the next larger area of coverage listed. DO NOT interpolate. Residential sprinkler systems must be hydraulically calculated according to NFPA standards to verify that the water supply is adequate for proper operation of the sprinklers. Hydraulic calculations are required to verify adequate water supply at the hydraulically most remote single sprinkler when it is operating at the minimum gpm and psi listed for single-sprinkler operation for the sprinkler model used.

Viking residential sprinklers may be listed for more than one area of coverage. Suggested practice in selecting area of coverage is to select the one that can be adequately supplied by the available water supply and still allow for the installation of as few sprinklers in a compartment as possible while observing all guidelines pertaining to obstructions and spacing. This maximizes the use of the available water supply, which is often limited on residential fire protection systems. After selecting an appropriate area of coverage, sprinklers must be spaced according to guidelines set forth in the installation standards.

Definition of "COMPARTMENT": A space completely enclosed by walls and a ceiling. Openings to an adjoining space are allowed, provided the openings have a minimum lintel depth of 8 in. (203.2 mm) from the ceiling.

Spacing Guidelines

For guidelines concerning spacing of Viking residential sprinklers near beams, obstructions, heat sources, and sloped ceilings [slopes more than a 2/12 (9.5°) pitch], refer to the Viking residential sprinkler data pages and installation guide, the appropriate NFPA standard, and the Authority Having Jurisdiction. NOTE: Sloped, beamed, and pitched ceilings could require special design features such as larger flow, or a design for more sprinklers to operate in the compartment, or both.

Distance from Walls: Install not more than one-half the listed sprinkler spacing nor less than 4" (102 mm) from walls, partitions, or obstructions as defined in the standards.

Minimum Sprinkler Spacing: The minimum distance between residential sprinklers to prevent cold soldering (i.e., the spray from one operating sprinkler onto an adjacent sprinkler that could prevent its proper activation) is 8 ft. (2.4 m).

Maximum Sprinkler Spacing: Locate adjacent sprinklers no farther apart than the listed spacing.

Deflector Position: Install frame style residential *pendent* sprinklers with the deflector between 1" and 4" (25.4 mm to 102 mm) below smooth ceilings, unless the sprinkler data page indicates otherwise. Install pendent sprinklers in the pendent position only, with the deflector oriented parallel with the ceiling or roof.

Refer to the individual listings in the residential sprinkler data pages for horizontal sidewall sprinkler deflector or sprinkler centerline distance below the ceiling. Install horizontal sidewall sprinklers in the horizontal position only below smooth ceilings, with the leading edge of the deflector or element assembly oriented parallel with the ceiling.

IMPORTANT: Always refer to Bulletin Form No. F_091699 - Care and Handling of Sprinklers. Also refer to the appropriate sprinkler data page. Viking sprinklers are to be installed in accordance with the latest edition of Viking technical data, the appropriate standards of NFPA and any other similar Authorities Having Jurisdiction, and also with the provisions of governmental codes, ordinances, and standards, whenever applicable. Final approval and acceptance of all residential sprinkler installations must be obtained from the Authorities Having Jurisdiction.

FREEDOM® RESIDENTIAL SPRINKLER INSTALLATION GUIDE

The Viking Corporation, 210 N Industrial Park Drive, Hastings MI 49058
Telephone: 269-945-9501 Technical Services: 877-384-5464 Fax: 269-818-1680 Email: techsvcs@vikingcorp.com

- 2. Apply a small amount of pipe-joint compound or tape to the external threads of the sprinkler only, taking care not to allow a build-up of compound in the sprinkler inlet. **NOTE:** Sprinklers with protective caps or bulb shields must be contained within the caps or shields before applying pipe-joint compound or tape. *Exception: For concealed sprinklers (i.e., VK457, VK458, VK468, VK474, and VK4570) the protective cap is removed for installation.*
- 3. Care must be taken when installing sprinklers on CPVC and copper piping systems. Never install the sprinkler into the reducing fitting before attaching the reducing fitting to the piping. Sprinklers must be installed on CPVC systems after the reducing fitting has been installed and the primer and/or cement manufacturer's recommended curing time has elapsed. When installing sprinklers on copper piping systems, take care to brush the inside of the sprinkler supply piping and reducing fitting to ensure that no flux accumulates in the sprinkler orifice. Excess flux can cause corrosion and may impair the ability of the sprinkler to operate properly.
- 4. Refer to the appropriate sprinkler technical data page to determine the correct sprinkler wrench for the model of sprinkler used. DO NOT use the sprinkler deflector or fusible element to start or thread the sprinkler into a fitting.
 - a. Install the sprinkler onto the piping using the special sprinkler wrench only, while taking care not to over-tighten or damage the sprinkler operating parts.
 - b. Thread the flush or concealed sprinkler into the ½" or 3/4" (15 mm or 20 mm) NPT** outlet of the coupling by turning it clockwise with the special sprinkler wrench. NOTE: For flush and concealed sprinklers with protective shells, the internal diameter of the special flush and concealed sprinkler installation wrench is designed for use with the sprinkler contained within the shell. Exception: For concealed sprinklers VK457, VK458, VK468, VK474, and VK4570 the protective cap is removed for installation, and then placed back on the sprinkler temporarily.
- 5. After installation, the entire sprinkler system must be tested. The test must be conducted to comply with the installation standards.
 - a. Make sure the sprinkler has been properly tightened. If a thread leak occurs, normally the unit must be removed, new pipe-joint compound or tape applied, and then reinstalled. This is due to the fact that when the joint seal leaks, the sealing compound is washed out of the joint.
 - b. Remove plastic protective sprinkler caps or bulb shields AFTER the wall or ceiling finish work is completed where the sprinkler is installed and there no longer is a potential for mechanical damage to the sprinkler operating elements. To remove the bulb shields, simply pull the ends of the shields apart where they are snapped together. To remove caps from frame style sprinklers, turn the caps slightly and pull them off the sprinklers. SPRINKLER CAPS OR BULB SHIELDS MUST BE REMOVED FROM SPRINKLERS <u>BEFORE</u> PLACING THE SYSTEM IN SERVICE! Retain a protective cap or shield in the spare sprinkler cabinet.
- 6. For residential flush sprinklers, the ceiling ring can now be installed onto the sprinkler body. Align the ceiling ring with the sprinkler body and thread on or push it on until the flange touches the ceiling. Note the maximum vertical adjustment is ½" (12,7 mm) for sprinkler VK420 and 5/8" for VK476. DO NOT MODIFY THE UNIT. If necessary, re-cut the sprinkler drop nipples as required.
- 7. For residential concealed sprinklers, the cover plate assembly can now be attached.
 - a. Remove the cover plate assembly from the protective box, taking care not to damage the assembly.
 - b. From below the ceiling, gently place the base of the cover plate assembly over the sprinkler protruding through the opening in the ceiling or wall.
 - c. Carefully push the cover plate assembly onto the sprinkler, using even pressure with the palm of the hand, until the unfinished brass flange of the cover plate base touches the ceiling or wall.
 - d. The maximum adjustment available for residential concealed sprinklers is ½" (12.7 mm) [1/4" (6.4 mm) for sprinkler VK480]. DO NOT MODIFY THE UNIT. If necessary, re-cut the sprinkler nipples.

NOTE: If it is necessary to remove the entire sprinkler unit, the system must be taken out of service. See Maintenance instructions below and follow all warnings and instructions.

5. OPERATION

During fire conditions, the operating element fuses or shatters (depending on the type of sprinkler), releasing the pip cap and sealing assembly. Water flowing through the sprinkler orifice strikes the sprinkler deflector or flow shaper, forming a uniform, high-wall wetting spray pattern to extinguish or control the fire.

FREEDOM® RESIDENTIAL SPRINKLER INSTALLATION GUIDE

The Viking Corporation, 210 N Industrial Park Drive, Hastings MI 49058

Telephone: 269-945-9501 Technical Services: 877-384-5464 Fax: 269-818-1680 Email: techsvcs@vikingcorp.com

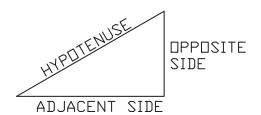
6. INSPECTIONS, TESTS AND MAINTENANCE

Refer to NFPA 25 for Inspection, Testing and Maintenance requirements. **NOTICE:** The owner is responsible for having the fire-protection system and devices inspected, tested, and maintained in proper operating condition in accordance with this guide, and applicable NFPA standards. In addition, the Authority Having Jurisdiction may have additional maintenance, testing, and inspection requirements that must be followed.

- A. Sprinklers must be inspected on a regular basis for signs of corrosion, mechanical damage, obstructions, paint, etc. Frequency of the inspections may vary due to corrosive atmospheres, water supplies, and activity around the device.
- B. Sprinklers or cover plate assemblies that have been field painted, caulked, or mechanically damaged must be replaced immediately. Sprinklers showing signs of corrosion shall be tested and/or replaced immediately as required. Installation standards require sprinklers to be tested and, if necessary, replaced immediately after a specified term of service. Refer to NFPA 25 and the Authorities Having Jurisdiction for the specified period of time after which testing and/or replacement of residential sprinklers is required. Never attempt to repair or reassemble a sprinkler. Sprinklers and cover assemblies that have operated cannot be reassembled or re-used, but must be replaced. When replacement is necessary, use only new sprinklers and cover assemblies with identical performance characteristics.
- C. The sprinkler discharge pattern is critical for proper fire protection. Nothing should be hung from, attached to, or otherwise obstruct the discharge pattern of the sprinkler. All obstructions must be immediately removed or, if necessary, additional sprinklers installed.
- D. When replacing existing sprinklers, the system must be removed from service. Refer to the appropriate system description and/ or valve instructions. Prior to removing the system from service, notify all Authorities Having Jurisdiction. Consideration should be given to employment of a fire patrol in the effected area.
 - 1. Remove the system from service, drain all water, and relieve all pressure on the piping.
 - 2a. For frame-style sprinklers, use the special sprinkler wrench and remove the old sprinkler by turning it counterclockwise to unthread it from the piping.
 - 2b. Forresidential flush pendent and concealed style sprinklers: Remove the ceiling ring or cover plate assembly before unthreading the sprinkler body from the piping. To remove a ceiling ring, grasp it from below the ceiling and gently turn it counterclockwise. Cover plates can be removed either by gently unthreading them or pulling them off the sprinkler body (depends on the sprinkler model used). After the ceiling ring or cover plate assembly has been removed from the sprinkler, use the sprinkler wrench to unthread the sprinkler from the piping. NOTE: For flush and concealed sprinklers with protective shells, the internal diameter of the special flush and concealed sprinkler installation wrench is designed for use with the sprinkler contained within the shell. Place a plastic protective shell (from the spare sprinkler cabinet) over the sprinkler to be removed and then fit the sprinkler wrench over the shell. Exception: Concealed sprinklers VK457, VK458, VK468, VK474, and VK4570 are removed without the plastic cap.
 - 3. Follow instructions in section 4B. Installation Instructions to install the new unit. Be sure the replacement sprinkler is the correct model and style, with the appropriate K-Factor, temperature rating, and response characteristics. A fully stocked sprinkler cabinet should be provided for this purpose. (For flush or concealed style sprinklers, stock of spare ceiling rings or cover plates should also be available in the spare sprinkler cabinet.)
 - 4. Place the system back in service and secure all valves. Check for and repair all leaks.
- E. Sprinkler systems that have been subjected to a fire must be returned to service as soon as possible. The entire system must be inspected for damage, and repaired or replaced as necessary. Sprinklers that have been exposed to corrosive products of combustion or high ambient temperatures, but have not operated, should be replaced. Refer to the Authority Having Jurisdiction for minimum replacement requirements.

7. AVAILABILITY

Viking Residential Sprinklers are available through a network of domestic and international distributors. See The Viking Corporation web site for the closest distributor or contact The Viking Corporation.


8. GUARANTEE

For details of warranty, refer to Viking's current list price schedule or contact Viking directly.

FREEDOM® RESIDENTIAL SPRINKLER INSTALLATION GUIDE

The Viking Corporation, 210 N Industrial Park Drive, Hastings MI 49058
Telephone: 269-945-9501 Technical Services: 877-384-5464 Fax: 269-818-1680 Email: techsvcs@vikingcorp.com

TANGENT =

DPPDSITE SIDE (RISE)

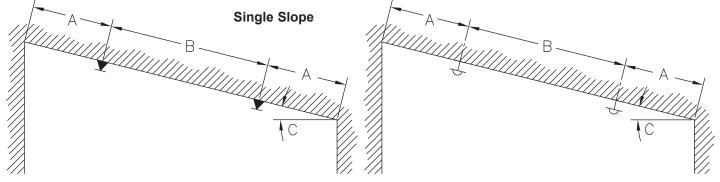
ADJACENT SIDE (RUN)

$$\frac{\mathsf{RISE}}{\mathsf{RUN}} = \mathsf{TANGENT}$$

$$ANGLE = TAN^{-1} \left(\frac{RISE}{RUN} \right)$$

	F	RISE		
	RUN			
	ANGLE			SLOPE
RISE	RUN	TANGENT	ANGLE	DISTANCE
2	12	.1666	9,45°	12.1
3	12	.2500	14°	12.3
4	12	.3333	18.4°	12.6
5	12	.4166	22.6*	13
6	12	.5000	26.5°	13.4
7	12	.5833	30.2°	13.8
8	12	.6666	33,6*	14.4
9	12	.7500	36.8°	15
10	12	.8333	39,8°	15.6
11	12	.9166	42.5°	16.2
12	12	1	45°	16.97

 Table 2


 Rise Over Run Conversion to Degrees of Slope

FREEDOM® RESIDENTIAL **SPRINKLER INSTALLATION GUIDE**

The Viking Corporation, 210 N Industrial Park Drive, Hastings MI 49058 Telephone: 269-945-9501 Technical Services: 877-384-5464 Fax: 269-818-1680 Email: techsvcs@vikingcorp.com

SPACING OF RESIDENTIAL SPRINKLERS LISTED FOR USE BELOW SLOPED CEILINGS UP TO AN 8/12 (33.7°) PITCH (Refer to the appropriate residential sprinkler technical data page for listings.)

Pendent Sprinklers

Horizontal Sidewall Sprinklers (Spray Across the Slope)

Figure 1

- (A) One-half listed spacing of sprinkler maximum, 0'-4" (0-102 mm) minimum.
- (B) Listed spacing of sprinkler, maximum, 8'-0" (2.4 m) minimum.
- (C) Where angle "C" is greater than an 8/12 (33.7°) pitch, see Figure 2 below.

SPACING OF RESIDENTIAL SPRINKLERS BELOW SLOPED CEILINGS WITH GREATER THAN 8/12 (33.7°) PITCH (NOTE: Refer to NFPA 13D or NFPA 13R, and the Authority Having Jurisdiction.)

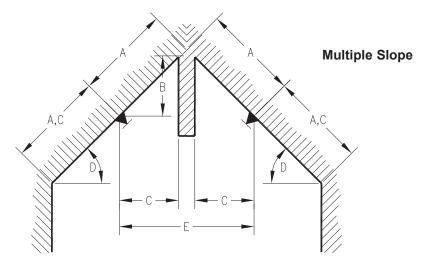


Figure 2

- (A) One-half listed spacing of sprinkler, maximum.
- (B) 3'-0" (.91 m) maximum.
- (C) 0'-4" (0-102 mm) minimum.
- (D) Slopes greater than an 8/12 (33.7°) pitch.
- (E) For distance less than 8'-0" (2.4 m), baffle required.

FREEDOM® RESIDENTIAL **SPRINKLER INSTALLATION GUIDE**

The Viking Corporation, 210 N Industrial Park Drive, Hastings MI 49058

Telephone: 269-945-9501 Technical Services: 877-384-5464 Fax: 269-818-1680 Email: techsvcs@vikingcorp.com

SPACING OF RESIDENTIAL SPRINKLERS LISTED FOR USE BELOW SLOPED CEILINGS UP TO AN 8/12 (33.7°) PITCH

(Refer to the appropriate residential sprinkler technical data page for listings.)

Figure 3

- (A) One-half listed spacing of sprinkler, maximum.
- (B) 8'-0" (2.4 m) minimum.
- (C) 0'-4" (0-102 mm) minimum.
- (D) 3'-0" (.91 m) maximum.
- (E) Acceptable for slopes of 0/12 to 8/12 (0° to 33.7°) pitch.

SPACING OF RESIDENTIAL PENDENT SPRINKLERS AT PEAK OF SLOPED CEILINGS WITH PITCH LESS THAN 8/12 (33.7°) (Refer to the appropriate residential sprinkler technical data page for listings.)

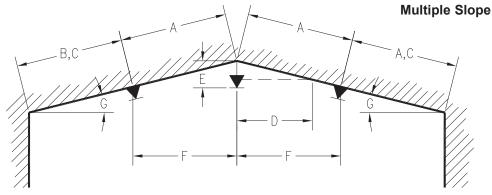


Figure 4

- (A) Listed spacing of sprinkler, maximum.
- (B) One-half listed spacing of sprinkler, maximum.
- (C) 0'-4" minimum.
- (D) Refer to page 10 for minimum distance between sprinkler and intersecting sloped ceiling.
- (E) Refer to the appropriate residential sprinkler technical data page for deflector distance below ceiling.
- (F) 8'-0" minimum.
- (G)Reference: 4/12 (18.0°) pitch maximum for 12' (3.7 m) spacing.

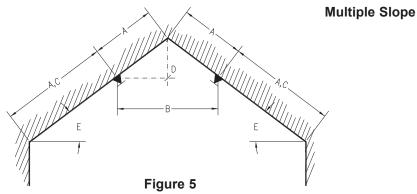
2.5/12 (12.0°) pitch maximum for 14' (4.3 m) spacing.

2/12 (10.0°) pitch maximum for 16' (4.9 m) spacing.

2/12 (10.0°) pitch maximum for 18' (5.5 m) spacing.

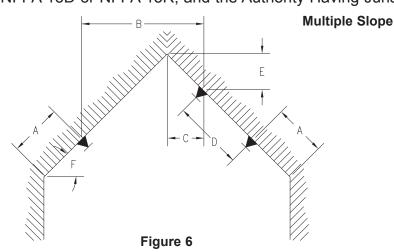
1.9/12 (9.0°) pitch maximum for 20' (6.1 m) spacing. Angles based on sprinklers installed 0'-4" (0-102 mm) from peak.

NOTE: Whenever possible, utilize design as shown in Figure 3 above.



FREEDOM® RESIDENTIAL SPRINKLER INSTALLATION GUIDE

The Viking Corporation, 210 N Industrial Park Drive, Hastings MI 49058


Telephone: 269-945-9501 Technical Services: 877-384-5464 Fax: 269-818-1680 Email: techsvcs@vikingcorp.com

SPACING OF RESIDENTIAL SPRINKLERS BELOW SLOPED CEILINGS WITH GREATER THAN 8/12 (33.7°) PITCH WITH NO BAFFLE AND A MAXIMUM OF 2 SPRINKLERS IN THE ROOM (NOTE: Refer to NFPA 13D or NFPA 13R, and the Authority Having Jurisdiction.)

- (A) One-half listed spacing of sprinkler, maximum.
- (B) 8'-0" (2.4 m) minimum.
- (C) 0'-4" (0-102 mm) minimum.
- (D) 3'-0" (.91 m) maximum.
- (E) Acceptable for slopes greater than an 8/12 (33.7°) pitch.
- (F) When this design is used, refer to the appendices of NFPA 13D or NFPA 13R, and the Authority Having Jurisdiction regarding the number of design sprinklers to hydraulically calculate.

SPACING OF RESIDENTIAL SPRINKLERS BELOW CEILINGS WITH SLOPES EXCEEDING 8/12 (33.7°) PITCH WITH NO BAFFLE AND A MAXIMUM OF 3 SPRINKLERS IN THE ROOM (NOTE: Refer to NFPA 13D or NFPA 13R, and the Authority Having Jurisdiction.)

- (A) 0'-4" (0-102 mm) minimum, to one-half listed spacing, maximum.
- (B) One-half listed spacing, maximum, 8'-0" (2.4 m) minimum.
- (C) 0'-4" (0-102 mm) minimum.
- (D) Listed spacing maximum, 8'-0" (2.4 m) minimum.
- (E) 3'-0" (.91 m) maximum.
- (F) Slopes greater than 8/12 up to a 21/12 (33.7° up to 60°) pitch.

NOTES: In addition to the above limits, rooms requiring this type of installation must be hydraulically calculated to supply a minimum of three operating sprinklers. Layout similar for horizontal sidewall sprinklers with throw <u>across</u> slope. Refer to the appropriate residential sprinkler technical data sheets.

FREEDOM® RESIDENTIAL SPRINKLER INSTALLATION GUIDE

The Viking Corporation, 210 N Industrial Park Drive, Hastings MI 49058

Telephone: 269-945-9501 Technical Services: 877-384-5464 Fax: 269-818-1680 Email: techsvcs@vikingcorp.com

SPACING OF RESIDENTIAL SPRINKLERS BELOW CEILINGS WITH SLOPES EXCEEDING 8/12 (33.7°) PITCH WITH NO BAFFLE AND A MAXIMUM OF 2 SPRINKLERS IN THE ROOM (NOTE: Refer to NFPA 13D or NFPA 13R, and the Authority Having Jurisdiction.)

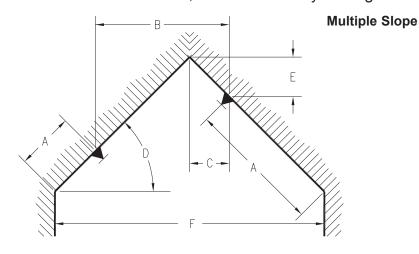


Figure 7

- (A) 0'-4" (0-102 mm) minimum, to one-half listed spacing, maximum.
- (B) One-half listed spacing, maximum, 8'-0" (2.4 m) minimum.
- (C) 0'-4" (0-102 mm) minimum.
- (D) Slopes greater than 8/12 pitch up to a 21/12 (33.7° up to a 60°) pitch.
- (E) 3'-0" (.91 m) maximum.
- (F) When dimension "F" exceeds 16' (4.9 m), utilize design configuration shown in Figure 6.

NOTES: Layout similar for horizontal sidewall sprinklers with throw across slope. Refer to the appropriate residential sprinkler technical data sheets.

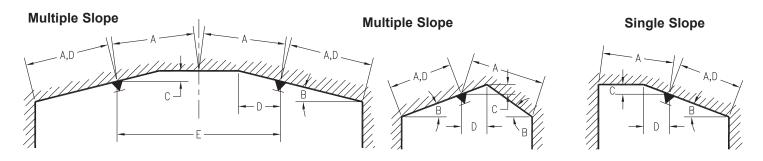
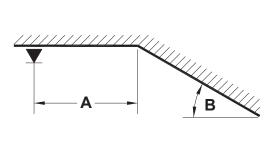
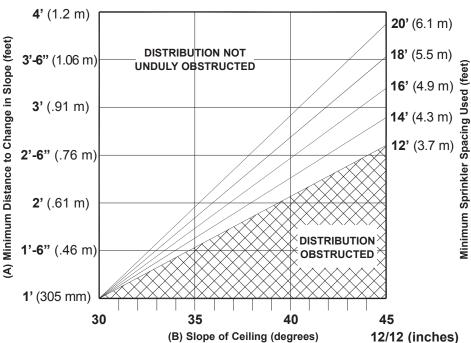


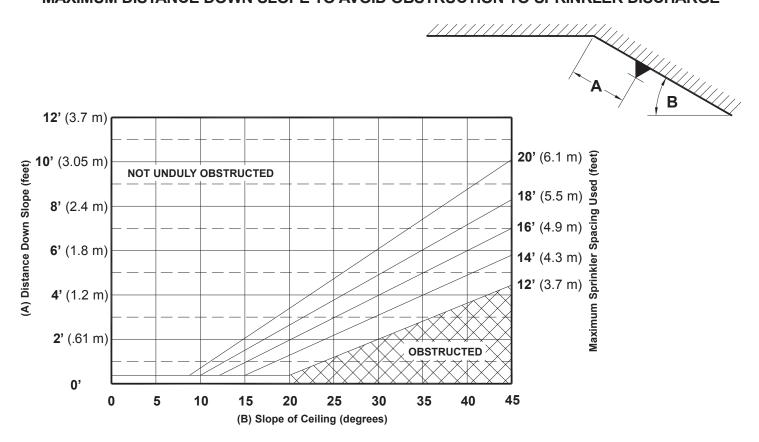
Figure 8

- (A) One-half listed spacing, maximum.
- (B) Refer to the appropriate residential sprinkler technical data pages for listings of sprinklers for use below slopes up to and including a 8/12 (33.7°) pitch.
- (C) 3'-0" (.91 m) maximum.
- (D) 0'-4" (0-102 mm) minimum.
- (E) 8'-0" (2.4 m) minimum without baffle.


NOTES: Layout similar for horizontal sidewall sprinklers with throw across slope. Refer to the appropriate residential sprinkler technical data sheets.


FREEDOM® RESIDENTIAL SPRINKLER INSTALLATION GUIDE

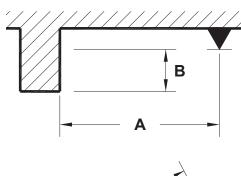
The Viking Corporation, 210 N Industrial Park Drive, Hastings MI 49058
Telephone: 269-945-9501 Technical Services: 877-384-5464 Fax: 269-818-1680 Email: techsvcs@vikingcorp.com

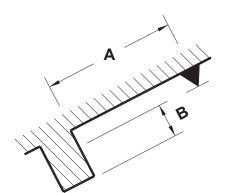

MINIMUM DISTANCE BETWEEN SPRINKLER AND INTERSECTING SLOPED CEILINGS

NOTES: For any ceiling slope under 7/12 (30°), distribution is considered Not Unduly Obstructed.

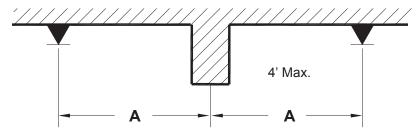
MAXIMUM DISTANCE DOWN SLOPE TO AVOID OBSTRUCTION TO SPRINKLER DISCHARGE

FREEDOM® RESIDENTIAL SPRINKLER INSTALLATION GUIDE

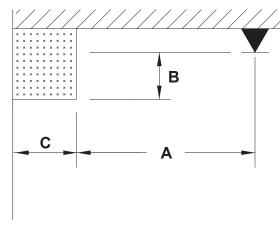

The Viking Corporation, 210 N Industrial Park Drive, Hastings MI 49058


Telephone: 269-945-9501 Technical Services: 877-384-5464 Fax: 269-818-1680 Email: techsvcs@vikingcorp.com

AVOIDING OBSTRUCTIONS TO SPRINKLER DISCHARGE


(Obstruction rules for residential sprinklers are found in section 8.10 of the 2010 edition of NFPA 13.)

Positioning Residential Pendent Sprinklers - Obstructions at the Ceiling



Distance from Sprinkler to Side of Ceiling	Deflector to Bo	istance from ottom of Ceiling Dimension B)
Obstruction (Dimension A)	Inches	mm
Less than 1 ft. 6 in. (Less than 457 mm)	0	0
1 ft. 6 in. to less than 3 ft. (457 mm to less than .94 m)	1	25.4
3 ft. to less than 4 ft. (.91 m to less than 1.2 m)	3	76
4 ft. to less than 4 ft. 6 in. (1.2 m to less than 1.37 m)	5	127
4 ft. 6 in. to less than 6 ft. (1.37 m to less than 1.8 m)	7	178
6 ft. to less than 6 ft. 6 in. (1.8 m to less than 2 m)	9	229
6 ft. 6 in. to less than 7 ft. (2 m to less than 2.1 m)	11	279
7 ft. or greater (2.1 m or greater)	14	356

Residential pendent sprinklers may be located on opposite sides of continuous obstructions up to 4 ft. (1.2 m) wide at the ceiling, as long as the distance from the centerline of the obstruction to the sprinklers (A) does not exceed one-half the maximum spacing allowed between sprinklers.

Positioning Residential Pendent Sprinklers - Obstructions Along Walls

- (A) Distance from centerline of sprinkler to side of obstruction.
- (B) Distance from deflector to bottom of obstruction.
- (C) Width of the obstruction.

Obstructions up to 30 in. (.8 m) wide (C) located against the wall are permitted to be protected when (A) is greater than or equal to (C) minus 8 in. (.2 m) plus (B).

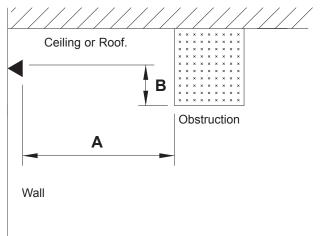
$$C \le 30 \text{ in.}$$

A $\ge (C - 8 \text{ in.}) + B$

for metric
$$C \le .8 \text{ m}$$

 $A \ge (C - .2 \text{ m}) + B$

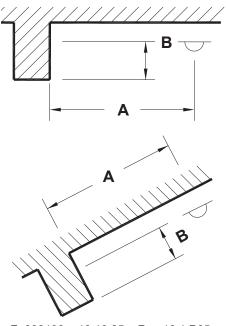
FREEDOM® RESIDENTIAL SPRINKLER INSTALLATION GUIDE


The Viking Corporation, 210 N Industrial Park Drive, Hastings MI 49058

Telephone: 269-945-9501 Technical Services: 877-384-5464 Fax: 269-818-1680 Email: techsvcs@vikingcorp.com

AVOIDING OBSTRUCTIONS TO SPRINKLER DISCHARGE

(Obstruction rules for residential sprinklers are found in section 8.10 of the 2010 edition of NFPA 13.)


Positioning Residential Horizontal Sidewall Sprinklers - Obstructions at the Ceiling

- (A) Distance from sprinkler to side of obstruction.
- (B) Distance from deflector to bottom of obstruction.

Distance from Sprinkler to Side of Ceiling Obstruction	to Bottom of Cei	ce from Deflector lling Obstruction sion B)
(Dimension A)	Inches	mm
Less than 8 ft. (Less than 2.4 m)	No Obstruct	ions Allowed
8 ft. to less than 10 ft. (2.4 m to less than 3.05 m)	1	25.4
10 ft. to less than 11 ft. (3.05 m to less than 3.35 m)	2	50.8
11 ft. to less than 12 ft. (3.35 m to less than 3.7 m)	3	76
12 ft. to less than 13 ft. (3.7 m to less than 4 m)	4	102
13 ft. to less than 14 ft. (4 m to less than 4.3 m)	6	152
14 ft. to less than 15 ft. (4.3 m to less than 4.6 m)	7	178
15 ft. to less than 16 ft. (4.6 m to less than 4.9 m)	9	229
16 ft. to less than 17 ft. (4.9 m to less than 5.2 m)	11	279
17 ft. or greater (5.2 m or greater)	14	356

Positioning Residential Horizontal Sidewall Sprinklers - Obstructions Along Walls

Form No. F_080190 18.10.25 Rev 16.1.P65

Distance from Sprinkler to Side of Obstruction Along	Maximum Distance from Deflector to Bottom of Obstruction (Dimension B)		
Wall (Dimension A)	Inches	mm	
Less than 1 ft. 6 in. (Less than 457 mm)	0	0	
1 ft. 6 in. to less than 3 ft. (457 mm to less than .94 m)	1	25.4	
3 ft. to less than 4 ft. (.91 m to less than 1.2 m)	3	76	
4 ft. to less than 4 ft. 6 in. (1.2 m to less than 1.37 m)	5	127	
4 ft. 6 in. to less than 6 ft. (1.37 m to less than 1.8 m)	7	178	
6 ft. to less than 6 ft. 6 in. (1.8 m to less than 2 m)	9	229	
6 ft. 6 in. to less than 7 ft. (2 m to less than 2.1 m)	11	279	
7 ft. or greater (2.1 m or greater)	14	356	

- (A) Distance from sprinkler to side of obstruction.
- (B) Distance from deflector to bottom of obstruction.

FREEDOM® RESIDENTIAL SPRINKLER INSTALLATION GUIDE

The Viking Corporation, 210 N Industrial Park Drive, Hastings MI 49058

Telephone: 269-945-9501 Technical Services: 877-384-5464 Fax: 269-818-1680 Email: techsvcs@vikingcorp.com

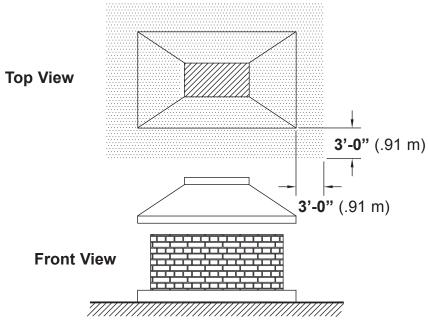
LOCATING RESIDENTIAL SPRINKLERS NEAR HEAT SOURCES

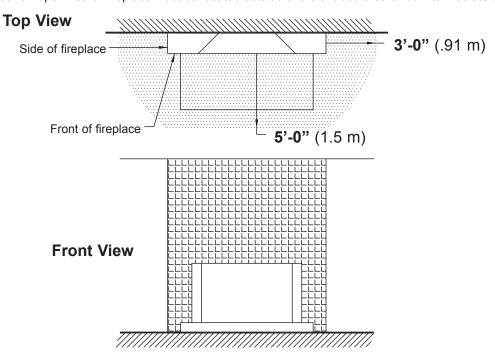
Ordinary temperature rated residential sprinklers (135 °F to 170 °F rated) are only to be installed where the maximum ambient ceiling temperature will not exceed 100 °F. Where the maximum ambient ceiling temperature will be from 101 °F to 150 °F, use intermediate temperature rated residential sprinklers (175 °F to 225 °F rated).

Residential sprinklers must be positioned a sufficient distance away from heat sources that include fireplaces, stoves, kitchen ranges, wall ovens, hot water pipes, water heaters, furnaces and associated flues and ducts, and light fixtures. The following minimum distances must be maintained for both ordinary and intermediate temperature rated residential sprinklers as indicated.

Heat Source	Minimum Dis Edge of Source Temperature Ra	e to Ordinary	Minimum Distance from Edge of Source to Intermediate Temperature Rated Sprinkler		
	Inches	metric	Inches	metric	
Side of open or recessed fireplace	36	.91 m	12	305 mm	
Front of recessed fire place	60	1.5 m	36	.91 m	
Coal- or wood-burning stove	42	1.1 m	12	305 mm	
Kitchen range	18	457 mm	9	229 mm	
Wall oven	18	457 mm	9	229 mm	
Hot air flues	18	457 mm	9	229 mm	
Uninsulated heat ducts	18	457 mm	9	229 mm	
Uninsulated hot water pipes	12	305 mm	6	152 mm	
Side of ceiling- or wall-mounted hot air diffusers	24	.61 m	12	305 mm	
Front of wall-mounted hot air diffusers	36	.91 m	18	457 mm	
Hot water heater or furnace	6	152 mm	3	76 mm	
Light fixture less than 250W	6	152 mm	3	76 mm	
Light fixture 250W to 499W	12	305 mm	6	152 mm	

Where residential sprinklers will be exposed to the rays of the sun passing through glass or plastic skylights, use intermediate temperature rated sprinklers.

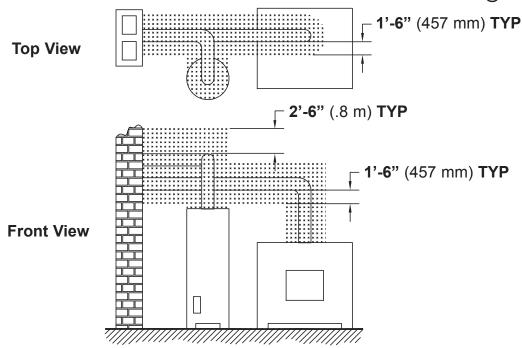

When locating residential sprinklers in an unventilated concealed compartment, under an unventilated attic or uninsulated roof, where the maximum ambient temperature does not exceed 150 $^{\circ}$ F, use intermediate temperature rated sprinklers.


FREEDOM® RESIDENTIAL SPRINKLER INSTALLATION GUIDE

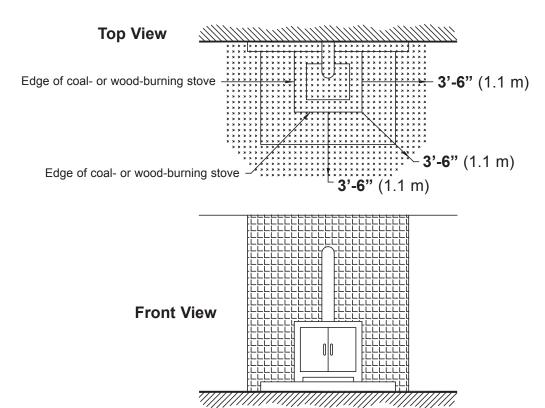
The Viking Corporation, 210 N Industrial Park Drive, Hastings MI 49058
Telephone: 269-945-9501 Technical Services: 877-384-5464 Fax: 269-818-1680 Email: techsvcs@vikingcorp.com

NOTE: The dimensions shown are intended to apply to residential sprinklers installed in ceilings above fireplaces used to burn products that cause elevated temperatures at or near the ceiling in areas surrounding the fireplace. The recommendations should not be construed to apply to decorative non-opening fireplaces such as gas fire units that will not cause elevated temperatures at the ceiling.

Sprinklers near an open hearth fireplace must be located outside of the shaded area or be intermediate degree rated.



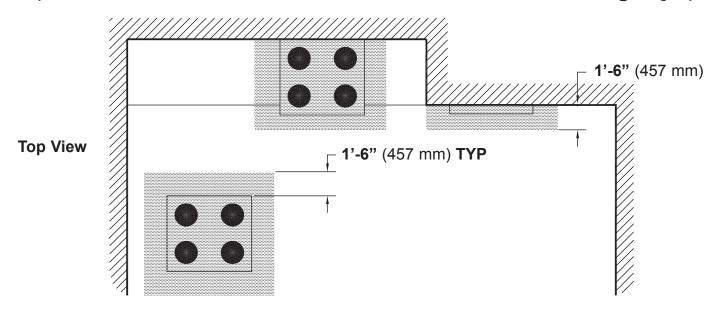
Sprinklers near a recessed hearth fireplace must be located outside of the shaded area [at least 3'-0" (.91 m)] from the side of a recessed fireplace and at least 5'-0" (1.5 m) from the front) or be intermediate degree rated.

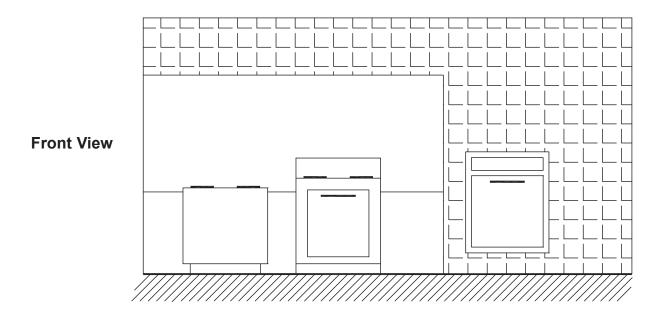


FREEDOM® RESIDENTIAL SPRINKLER INSTALLATION GUIDE

The Viking Corporation, 210 N Industrial Park Drive, Hastings MI 49058
Telephone: 269-945-9501 Technical Services: 877-384-5464 Fax: 269-818-1680 Email: techsvcs@vikingcorp.com

Sprinklers near a furnace or water heater must be located outside of the shaded area or be intermediate degree rated.




Sprinklers near a coal- or wood-burning stove must be located outside of shaded area or be intermediate degree rated.

FREEDOM® RESIDENTIAL SPRINKLER INSTALLATION GUIDE

The Viking Corporation, 210 N Industrial Park Drive, Hastings MI 49058
Telephone: 269-945-9501 Technical Services: 877-384-5464 Fax: 269-818-1680 Email: techsvcs@vikingcorp.com

Sprinklers near a range or wall oven must be located outside of shaded areas or be intermediate degree rated.

CARE AND HANDLING OF SPRINKLERS

The Viking Corporation, 210 N Industrial Park Drive, Hastings MI 49058

Telephone: 269-945-9501 Technical Services: 877-384-5464 Fax: 269-818-1680 Email: techsycs@vikingcorp.com

SPRINKLERS ARE FRAGILE - HANDLE WITH CARE!

General Handling and Storage:

- · Store sprinklers in a cool, dry place.
- Protect sprinklers during storage, transport, handling, and after installation.
- · Use the original shipping containers. DO NOT place sprinklers loose in boxes, bins, or buckets.
- · Keep sprinklers separated at all times. DO NOT allow metal parts to contact sprinkler operating elements.

For Pre-Assembled Drops:

- · Protect sprinklers during handling and after installation.
- For recessed assemblies, use the protective sprinkler cap (Viking Part Number 10364).

Sprinklers with Protective Shields or Caps:

- DO NOT remove shields or caps until after sprinkler installation and there no longer is potential for mechanical damage to the sprinkler operating elements.
- · Sprinkler shields or caps MUST be removed BEFORE placing the system in
- Remove the sprinkler shield by carefully pulling it apart where it is snapped together.
- · Remove the cap by turning it slightly and pulling it off the sprinkler.

Sprinkler Installation:

- · DO NOT use the sprinkler deflector or operating element to start or thread the sprinkler into a fitting.
- · Use only the designated sprinkler head wrench! Refer to the current sprinkler technical data page to determine the correct wrench for the model of sprinkler used.
- · DO NOT install sprinklers onto piping at the floor level.
- · Install sprinklers after the piping is in place to prevent mechanical damage.
- · DO NOT allow impacts such as hammer blows directly to sprinklers or to fittings, pipe, or couplings in close proximity to sprinklers. Sprinklers can be damaged from direct or indirect impacts.
- DO NOT attempt to remove drywall, paint, etc., from sprinklers.
- Take care not to over-tighten the sprinkler and/or damage its operating parts! **Maximum Torque:**

1/2" NPT: 14 ft-lbs. (19.0 N-m) 3/4" NPT: 20 ft-lbs. (27.1 N-m) 1" NPT: 30 ft-lbs. (40.7 N-m)

(Original container used)

INCORRECT (Placed loose in box)

(Protected with caps)

INCORRECT (Protective caps not used)

CORRECT (Piping is in place at the ceiling)

INCORRECT (Sprinkler at floor level)

CORRECT (Special installation wrenches)

INCORRECT (Designated wrench not used)

A WARNING

Any sprinkler with a loss of liquid from the glass bulb or damage to the fusible element should be destroyed. Never install sprinklers that have been dropped, damaged, or exposed to temperatures exceeding the maximum ambient temperature allowed. Sprinklers that have been painted in the field must be replaced per NFPA 13. Protect sprinklers from paint and paint overspray in accordance with the installation standards. Do not clean sprinklers with soap and water, ammonia, or any other cleaning fluid. Do not use adhesives or solvents on sprinklers or their operating elements.

Refer to the appropriate technical data page and NFPA standards for complete care, handling, installation, and maintenance instructions. For additional product and system information Viking data pages and installation instructions are available on the Viking Web site at www.vikinggroupinc.com.

CARE AND HANDLING OF SPRINKLERS

The Viking Corporation, 210 N Industrial Park Drive, Hastings MI 49058

Telephone: 269-945-9501 Technical Services: 877-384-5464 Fax: 269-818-1680 Email: techsycs@vikingcorp.com

PROTECTIVE SPRINKLER SHIELDS AND CAPS

General Handling and Storage:

Many Viking sprinklers are available with a plastic protective cap or shield temporarily covering the operating elements. The snapon shields and caps are factory installed and are intended to help protect the operating elements from mechanical damage during shipping, storage, and installation. NOTE: It is still necessary to follow the care and handling instructions on the appropriate sprinkler technical data sheets* when installing sprinklers with bulb shields or caps.

WHEN TO REMOVE THE SHIELDS AND CAPS:

NOTE: SHIELDS AND CAPS MUST BE REMOVED FROM SPRINKLERS BEFORE PLACING THE SYSTEM IN SERVICE!

Remove the shield or cap from the sprinkler only after checking all of the following:

- · The sprinkler has been installed*.
- The wall or ceiling finish work is completed where the sprinkler is installed and there no longer is a potential for mechanical damage to the sprinkler operating elements.

SHIELDS AND CAPS MUST BE REMOVED FROM SPRINKLERS BEFORE PLACING THE SYSTEM IN SERVICE!

Figure 1: Sprinkler shield being removed from a pendent sprinkler.

Figure 2: Sprinkler cap being removed from a pendent sprinkler.

Figure 3: Sprinkler cap being removed from and upright sprinkler.

HOW TO REMOVE SHIELDS AND CAPS:

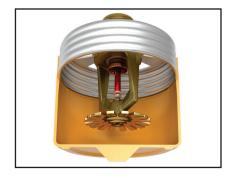
No tools are necessary to remove the shields or caps from sprinklers. DO NOT use any sharp objects to remove them! Take care not to cause mechanical damage to sprinklers when removing the shields or caps. When removing caps from fusible element sprinklers, use care to prevent dislodging ejector springs or damaging fusible elements. NOTE: Squeezing the sprinkler cap excessively could damage sprinkler fusible elements.

- To remove the shield, simply pull the ends of the shield apart where it is snapped together. Refer to Figure 1.
- To remove the cap, turn it slightly and pull it off the sprinkler. Refer to Figures 2 and 3.

NOTICE Refer to the current sprinkler technical data page to determine the correct sprinkler wrench for the model of sprinkler used.

Never install sprinklers that have been dropped, damaged, or exposed to temperatures in excess of the maximum ambient temperature allowed.

* Refer to the appropriate current technical data pages for complete care, handling, and installation instructions. Data pages are included with each shipment from Viking or Viking distributors. They can also be found on the Web site at www. vikinggroupinc.com.



CARE AND HANDLING OF SPRINKLERS

The Viking Corporation, 210 N Industrial Park Drive, Hastings MI 49058
Telephone: 269-945-9501 Technical Services: 877-384-5464 Fax: 269-818-1680 Email: techsvcs@vikingcorp.com

▲ CAUTION CONCEALED COVER ASSEMBLIES ARE FRAGILE!

TO ASSURE SATISFACTORY PERFORMANCE OF THE PRODUCT, HANDLE WITH CARE.

Concealed Sprinkler and Adapter Assembly with Protective Cap

Concealed Sprinkler and Adapter Assembly (Protective Cap Removed)

Cover Plate Assembly (Pendent Cover 12381 shown)

GENERAL HANDLING AND STORAGE INSTRUCTIONS:

- Do not store in temperatures exceeding 100 °F (38 °C). Avoid direct sunlight and confined areas subject to heat.
- · Protect sprinklers and cover assemblies during storage, transport, handling, and after installation.
- -- Use original shipping containers.
- -- Do not place sprinklers or cover assemblies loose in boxes, bins, or buckets.
- Keep the sprinkler bodies covered with the protective sprinkler cap any time the sprinklers are shipped or handled, during testing of the system, and while ceiling finish work is being completed.
- Use only the designated Viking recessed sprinkler wrench (refer to the appropriate sprinkler data page) to install these sprinklers. **NOTE:** The protective cap is temporarily removed during installation and then placed back on the sprinkler for protection until finish work is completed.
- Do not over-tighten the sprinklers into fittings during installation.
- Do not use the sprinkler deflector to start or thread the sprinklers into fittings during installation.
- · Do not attempt to remove drywall, paint, etc., from the sprinklers.
- Remove the plastic protective cap from the sprinkler before attaching the cover plate assembly. PROTECTIVE CAPS <u>MUST</u> BE REMOVED FROM SPRINKLERS BEFORE PLACING THE SYSTEM IN SERVICE!

Refer to the appropriate current technical data pages for complete care, handling, and installation instructions. Data pages are included with each shipment from Viking or Viking distributors. They can also be found on the Web site at www. vikinggroupinc.com.

CARE AND HANDLING OF SPRINKLERS

The Viking Corporation, 210 N Industrial Park Drive, Hastings MI 49058

Telephone: 269-945-9501 Technical Services: 877-384-5464 Fax: 269-818-1680 Email: techsvcs@vikingcorp.com

USE THE FOLLOWING PRECAUTIONS WHEN HANDLING WAX-COATED SPRINKLERS

Many of Viking's sprinklers are available with factory-applied wax coating for corrosion resistance. These sprinklers MUST receive appropriate care and handling to avoid damaging the wax coating and to assure satisfactory performance of the product.

General Handling and Storage of Wax-Coated Sprinklers:

- Store the sprinklers in a cool, dry place (in temperatures below the maximum ambient temperature allowed for the sprinkler temperature rating. Refer to Table 1 below.)
- · Store containers of wax-coated sprinklers separate from other sprinklers.
- · Protect the sprinklers during storage, transport, handling, and after installation.
- · Use original shipping containers.
- · Do not place sprinklers in loose boxes, bins, or buckets.

Installation of Wax-Coated Sprinklers:

Use only the special sprinkler head wrench designed for installing wax-coated Viking sprinklers (any other wrench may damage the unit).

- · Take care not to crack the wax coating on the units.
- For touching up the wax coating after installation, wax is available from Viking in bar form. Refer to Table 1 below. The coating MUST be repaired after sprinkler installation to protect the corrosion-resistant properties of the sprinkler.
- Use care when locating sprinklers near fixtures that can generate heat. Do not install sprinklers where they would be exposed to temperatures exceeding the maximum recommended ambient temperature for the temperature rating used.
- Inspect the coated sprinklers frequently soon after installation to verify the integrity of the corrosion resistant coating. Thereafter, inspect representative samples of the coated sprinklers in accordance with NFPA 25. Close up visual inspections are necessary to determine whether the sprinklers are being affected by corrosive conditions.

		TABLE 1		
Sprinkler Temperature Rating (Fusing Point)	Wax Part Number	Wax Melting Point	Maximum Ambient Ceiling Temperature ¹	Wax Color
155 °F (68 °C) / 165 °F (74 °C)	02568A	148 °F (64 °C)	100 °F (38 °C)	Light Brown
175 °F (79 °C)	04146A	161 °F (71 °C)	150 °F (65 °C)	Brown
200 °F (93 °C)	04146A	161 °F (71 °C)	150 °F (65 °C)	Brown
220 °F (104 °C)	02569A	170 °F (76 °C)	150 °F (65 °C)	Dark Brown
286 °F (141 °C)	02569A	170 °F (76 °C)	150 °F (65 °C)	Dark Brown

¹Based on NFPA-13. Other limits may apply, depending on fire loading, sprinkler location, and other requirements of the Authority Having Jurisdiction. Refer to specific installation standards.

▲WARNING

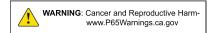
Never install sprinklers that have been dropped, damaged, or exposed to temperatures in excess of the maximum ambient temperature allowed.

Refer to the appropriate current technical data pages for complete care, handling, and installation instructions. Data pages are included with each shipment from Viking or Viking distributors. They can also be found on the Web site at www. vikinggroupinc.com.

SPRINKLER OVERVIEW

The Viking Corporation, 210 N Industrial Park Drive, Hastings MI 49058

Telephone: 269-945-9501 Technical Services: 877-384-5464 Fax: 269-818-1680 Email: techsvcs@vikingcorp.com


1. DESCRIPTION

Viking fire sprinklers consist of a threaded frame with a specific waterway or orifice size and a deflector for distributing water in a specified pattern. A closed or sealed sprinkler refers to a complete assembly, including the thermosensitive operating element. An open sprinkler does not use an operating element and is open at all times. The distribution of water is intended to extinguish a fire or to control its spread.

Viking sprinklers are available in several models and styles. Refer to specific sprinkler technical data pages for available styles, finishes, temperature ratings, thread sizes, and nominal K-Factors for the particular model selected.

2. LISTINGS AND APPROVALS

Refer to the Approval Charts on the appropriate sprinkler technical data page(s) and/or approval agency listings.

3. TECHNICAL DATA

Pressure Ratings:

Maximum allowable water working pressure is 175 psig (12 Bar) unless rated and specified for high water working pressure [250 psig (17.2 bar)].

Sprinkler Identification:

Viking sprinklers are identified and marked with the word "Viking", the sprinkler identification number (SIN) consisting of "VK" plus a three digit number*, the model letter, and the year of manufacture.

Available Finishes:

Viking sprinklers are available in several decorative finishes. Some models are available with corrosion-resistant coatings or are fabricated from non-corrosive material. Refer to the sprinkler technical data page for additional information.

Available Temperature Ratings:

Viking sprinklers are available in several temperature ratings that relate to a specific temperature classification. Applicable installation rules mandate the use and limitations of each temperature classification. In selecting the appropriate temperature classification, the maximum expected ceiling temperature must be known. When there is doubt as to the maximum temperature at the sprinkler location, a maximum-reading thermometer should be used to determine the temperature under conditions that would show the highest readings to be expected. In addition, recognized installation rules may require a higher temperature classification, depending upon sprinkler location, occupancy classification, commodity classification, storage height, and other hazards. In all cases, the maximum expected ceiling temperature dictates the lowest allowable temperature classification. Sprinklers located immediately adjacent to a heat source may require a higher temperature rating.

K-Factors:

Viking sprinklers are available in several orifice sizes with related K-Factors. The orifice is a tapered waterway and, therefore, the K-Factor given is nominal. Nominal U.S. K-Factors are provided in accordance with the 1999 edition of NFPA 13, Section 3-2.3. Refer to the specific data page for appropriate K-Factor information.

Available Styles:

Viking sprinklers are available for installation in several positions as indicated by a stamping on the deflector. The deflector style dictates the appropriate installation position of the sprinkler; it breaks the solid stream of water issuing from the sprinkler orifice to form a specific spray pattern. The following list indicates the various styles and identification of Viking sprinklers.

<u>UPRIGHT SPRINKLER:</u> A sprinkler intended to be installed with the deflector above the frame so water flows upward through the orifice, striking the deflector and forming an umbrella-shaped spray pattern downward. Marked "SSU" (Standard Sprinkler Upright) or "UPRIGHT" on the deflector.

Viking Technical Data may be found on

<u>PENDENT SPRINKLER:</u> A sprinkler intended to be oriented with the deflector below the frame so water flows downward through the orifice, striking the deflector and forming an umbrella-shaped spray pattern downward. Marked "SSP" (Standard Sprinkler Pendent) or "PENDENT" on the deflector.

Viking Technical Data may be found on The Viking Corporation's Web site at http://www.vikinggroupinc.com. The Web site may include a more recent edition of this Technical Data Page.

CONVENTIONAL SPRINKLER: An "old style" sprinkler intended to be installed with the deflector in either the upright or pendent position. The deflector provides a spherical type pattern with 40 to 60 percent of the water initially directed downward and a proportion directed upward. Must be installed in accordance with installation rules for conventional or old style sprinklers. DO NOT USE AS A REPLACEMENT FOR STANDARD SPRAY SPRINKLERS. Marked "C U/P" (Conventional Upright/Pendent) on the deflector.

SPRINKLER OVERVIEW

The Viking Corporation, 210 N Industrial Park Drive, Hastings MI 49058
Telephone: 269-945-9501 Technical Services: 877-384-5464 Fax: 269-818-1680 Email: techsvcs@vikingcorp.com

- <u>VERTICAL SIDEWALL (VSW) SPRINKLER:</u> A sprinkler intended for installation near the wall and ceiling. The deflector provides a water spray pattern outward in a quarter-spherical pattern and can be installed in the upright or pendent position with the flow arrow in the direction of discharge. Marked "SIDEWALL" on the deflector with an arrow and the word "FLOW". (Note: Some vertical sidewall sprinklers can only be installed in the upright or pendent position—in this case, the sprinkler will also be marked "UPRIGHT" or "PENDENT".)
- <u>HORIZONTAL SIDEWALL (HSW) SPRINKLER:</u> A sprinkler intended for installation near the wall and ceiling. The special deflector provides a water spray pattern outward in a quarter-spherical pattern. Most of the water is directed away from the nearby wall with a small portion directed at the wall behind the sprinkler. The top of the deflector is oriented parallel with the ceiling or roof. The flow arrows point in the direction of discharge. Marked "SIDEWALL" and "TOP" with an arrow and the word "FLOW".
- EXTENDED COVERAGE (EC) SPRINKLER: A spray sprinkler designed to discharge water over an area having the maximum dimensions indicated in the individual listings. Maximum area of coverage, minimum flow rate, orifice size, and nominal K-Factor are specified in the individual listings. EC sprinklers are intended for Light-Hazard occupancies with smooth, flat, horizontal ceilings unless otherwise specified. In addition to the above markings, the sprinkler is marked "EC".
- QUICK RESPONSE (QR) SPRINKLER: A spray sprinkler with a fast- actuating operating element. The use of quick response sprinklers may be limited due to occupancy and hazard. Refer to the Authority Having Jurisdiction (AHJ) prior to installing.
- QUICK RESPONSE EXTENDED COVERAGE (QREC) SPRINKLER: A spray sprinkler designed to discharge water over an area having the maximum dimensions indicated in the individual listing. This is a sprinkler with an operating element that meets the criteria for quick response. QREC sprinklers are only intended for Light Hazard occupancies. The sprinkler is marked "QREC".
- <u>FLUSH SPRINKLER:</u> A decorative spray sprinkler intended for installation with a concealed piping system. The unit is mounted flush with the ceiling or wall, with the fusible link exposed. Upon actuation, the deflector extends beyond the ceiling or wall to distribute water discharge. The sprinkler is marked "SSP", "PEND", or "SIDEWALL" and "TOP".
- CONCEALED SPRINKLER: A decorative spray sprinkler intended for installation with a concealed piping system. The sprinkler is hidden from view by a cover plate installed flush with the ceiling or wall. During fire conditions, the cover plate detaches, and upon sprinkler actuation, the deflector extends beyond the ceiling or wall to distribute water discharge. The sprinkler is marked "SSP", "PEND", or "SIDEWALL" and "TOP".
- RECESSED SPRINKLER: A spray sprinkler assembly intended for installation with a concealed piping system. The assembly consists of a sprinkler installed in a decorative adjustable recessed escutcheon that minimizes the protrusion of the sprinkler beyond the ceiling or wall without adversely affecting the sprinkler distribution or sensitivity. Refer to the appropriate technical data page for allowable sprinkler models, temperature ratings, and occupancy classifications. DO NOT RECESS ANY SPRINKLER NOT LISTED FOR USE WITH THE ESCUTCHEON.
- <u>CORROSION-RESISTANT SPRINKLER</u>: A special service sprinkler with non-corrosive protective coatings, or that is fabricated from non-corrosive material, for use in atmospheres that would normally corrode sprinklers.
- <u>DRY SPRINKLER:</u> A special-service sprinkler intended for installation on dry pipe systems or wet pipe systems where the sprinkler is subject to freezing temperatures. The unit consists of a sprinkler permanently secured to an extension nipple with a sealed inlet end to prevent water from entering the nipple until the sprinkler operates. The unit MUST be installed in a tee fitting. Dry upright sprinklers are marked with the "B" dimension [distance from the face of the fitting (tee) to the top of the deflector]. Dry pendent and sidewall sprinklers are marked with the "A" dimension [the distance from the face of fitting (tee) to the finished surface of the ceiling or wall].
- LARGE DROP SPRINKLER: A type of special application sprinkler used to provide fire control of specific high-challenge fire hazards. Large drop sprinklers are designed to produce an umbrella-shaped spray pattern downward with a higher percentage of "large" water droplets than standard spray sprinklers. The sprinkler has an extra-large orifice with a nominal K-Factor of 11.2. Marked "HIGH CHALLENGE" and "UPRIGHT".
- EARLY SUPPRESSION FAST-RESPONSE (ESFR) SPRINKLER: A sprinkler intended to provide fire suppression of specific high-challenge fire hazards through the use of a fast response fusible link, 14.0, 16.8, or 25.2 nominal K-Factor, and special deflector. ESFR sprinklers are designed to produce high-momentum water droplets in a hemispherical pattern below the deflector. This permits penetration of the fire plume and direct wetting of the burning fuel surface while cooling the atmosphere early in the development of a high-challenge fire. Marked "ESFR" and "UPRIGHT" or "PEND".
- <u>INTERMEDIATE LEVEL/RACK STORAGE SPRINKLER:</u> A standard spray sprinkler assembly designed to protect its operating element from the spray of sprinklers installed at higher elevations. The assembly consists of a standard or large orifice upright or pendent sprinkler with an integral upright or pendent water shield and guard assembly. Use only those sprinklers that have been tested and listed for use with the assembly. Refer to the technical data page for allowable sprinkler models.
- RESIDENTIAL SPRINKLER: A sprinkler intended for use in the following occupancies: one- and two-family dwellings with the fire protection sprinkler system installed in accordance with NFPA 13D; residential occupancies up to four stories in height with the fire protection system installed in accordance with NFPA 13R; and where allowed by the Authority Having Jurisdiction in residential portions of any occupancy with the fire protection system installed in accordance with NFPA 13.

SPRINKLER OVERVIEW

The Viking Corporation, 210 N Industrial Park Drive, Hastings MI 49058
Telephone: 269-945-9501 Technical Services: 877-384-5464 Fax: 269-818-1680 Email: techsvcs@vikingcorp.com

Residential sprinklers have a unique distribution pattern and utilize a "fast response" heat sensitive operating element. They enhance survivability in the room of fire origin and are designed to provide a life safety environment for a minimum of ten minutes. For this reason, residential sprinklers must not be used to replace standard sprinklers unless tested for and approved by the Authority Having Jurisdiction. In addition to standard markings, the unit is identified as "RESIDENTIAL SPRINKLER" or "RES".

4. INSTALLATION

Refer to appropriate NFPA Installation Standards.

5. OPERATION

Refer to the appropriate sprinkler technical data page(s).

6. INSPECTIONS, TESTS AND MAINTENANCE

Refer to NFPA 25 for Inspection, Testing and Maintenance requirements.

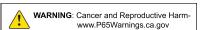
7. AVAILABILITY

Viking sprinklers are available through a network of domestic and international distributors. See The Viking Corporation web site for the closest distributor or contact The Viking Corporation.

8. GUARANTEE

For details of warranty, refer to Viking's current list price schedule or contact Viking directly.

IMPORTANT: Always refer to Bulletin Form No. F_091699 - Care and Handling of Sprinklers and the appropriate sprinkler general care, installation, and maintenance guide. Viking sprinklers are to be installed in accordance with the latest edition of Viking technical data, the appropriate standards of NFPA, FM Global, LPCB, APSAD, VdS or other similar organizations, and also with the provisions of governmental codes, ordinances, and standards, whenever applicable. The sprinkler technical data page may contain installation requirements specific for the sprinkler model selected. The use of certain types of sprinklers may be limited due to occupancy and hazard. Refer to the Authority Having Jurisdiction prior to installation.



BEST PRACTICES FOR RESIDENTIAL SPRINKLER HANDLING & INSTALLATION

The Viking Corporation, 210 N Industrial Park Drive, Hastings MI 49058
Telephone: 269-945-9501 Technical Services: 877-384-5464 Fax: 269-818-1680 Email: techsvcs@vikingcorp.com
Visit the Viking website for the latest edition of this technical data page.

SPRINKLERS ARE FRAGILE - HANDLE WITH CARE!

- Always keep sprinklers in a cool dry place.
- Protect sprinklers during storage, transport and handling as well as before, during and after installation. Refer
 to Viking's Care and Handling of Sprinklers Bulletin Form No. F 091699².
- Proper transit, storage and installation of sprinklers in a high-heat environment is a must. Care should be taken to prevent sprinklers from being exposed to ambient heat conditions in excess of those referenced in installation standards.
- Do not stage or store sprinklers on the job site in advance in a non-conditioned space prior to installation.
- Keep sprinklers in the original packaging and check temperature indicators on box label prior to installation. If the indicator has turned black, DO NOT install any product contained in the box. Refer to Viking product return policies.
- Temperatures exceeding the maximum ambient temperature of the sprinkler temperature-rating during storage, transport, handling and installation must be avoided.
- Per NFPA standards 13, 13R, and 13D, sprinklers installed where maximum ambient temperatures are
 at or over 101 °F (38 °C) through 150 °F (66 °C) shall be intermediate temperature-rated sprinklers.
 Additionally, if sprinklers are installed in an unventilated concealed space under an uninsulated roof or in
 an unventilated attic, they shall be of intermediate temperature classification.
- Sprinklers installed where ambient temperatures are at or below 100 °F (38 °C) may be either ordinary or intermediate temperature-rated sprinklers. Refer to NFPA standards 13R 6.2.3.1 and 13D 7.5.6.1.
- Rough-in of sprinkler piping during hot weather conditions should not include the installation of sprinklers unless reasonable ambient temperatures can be maintained. Ambient temperatures that are considered when choosing the temperature rating for a sprinkler should take into account the range of ambient temperatures that are expected from installation through establishment and maintenance of temperature in a conditioned space. Appropriate insulation may be considered. **Example**: An ordinary temperature sprinkler should not be exposed to maximum ambient temperature higher than 100 °F (38 °C) or more. Refer to NFPA 13, Table 6.2.5.1, NFPA 13R, 6.2.3.1 and NFPA 13D, 7.5.6.1.
- CPVC fire sprinkler products exposed to high ambient temperatures (e.g. installed in unventilated, concealed spaces such as attics) should be insulated to maintain a cooler environment. Refer to Viking Plastics Installation and Design Manual, Form No. F_080712², for care and handling procedures.
- Protect all sprinklers and connecting CPVC piping in attic spaces and unvented concealed spaces from excessive heat exposure above 100 °F (38 °C). To separate excessive attic heat, properly tent and fully insulate all pipe in unconditioned spaces.
- Pressure relief valves should be installed on wet sprinkler systems where there is a risk of over-pressurization of a checked water supply, due to thermal expansion. Refer to NFPA 13, 7.1.2.1 and NFPA 13D, A.5.2.2.2.
- Fire sprinkler systems should be installed per current referenced editions of building codes and installation standards adopted in the jurisdiction where work is being performed.

INCORRECT (Heat exposure)

INCORRECT (Unconditioned at rough-in)

INCORRECT (Exposed piping)

INCORRECT (No pressure relief valve)

¹Hot weather condition is defined as temperatures that can reach the maximum ambient temperature-rating of the sprinkler. ²Clicking on blue hyperlink will open referenced document.

A WARNING

Any sprinkler with a loss of liquid from the glass bulb or damage to the fusible element should be destroyed. Never install sprinklers that have been dropped, damaged, or exposed to temperatures exceeding the maximum ambient temperature allowed. Sprinklers that have been painted in the field must be replaced per NFPA 13. Protect sprinklers from paint and paint overspray in accordance with the installation standards. Do not clean sprinklers with soap and water, ammonia, or any other cleaning fluid. Do not use adhesives or solvents on sprinklers or their operating elements.

Refer to the appropriate technical data page and NFPA standards for complete care, handling, installation, and maintenance instructions. For additional product and system information Viking data pages and installation instructions are available on the Viking Web site at www. vikinggroupinc.com.

REGULATORY AND HEALTH WARNINGS

The Viking Corporation, 210 N Industrial Park Drive, Hastings MI 49058

Telephone: 269-945-9501 Technical Services: 877-384-5464 Fax: 269-818-1680 Email: techsvcs@vikingcorp.com

Visit the Viking website for the latest edition of this technical data page www.vikinggroupinc.com

1. DESCRIPTION

Regulatory and Health Warnings applying to materials used in the manufacture and construction of fire protection products are provided herin as they relate to legally mandated jurisdictional regions.

A WARNING

STATE OF CALIFORNIA, USA

Installing or servicing fire protection products such as sprinklers, valves, piping etc. can expose you to chemicals including, but not limited to, lead, nickel, butadiene, titaninum dioxide, chromium, carbon black, and acrylonitrile which are known to the State of California to cause cancer or birth defects or other reproductive harm.

For more information, go to www.P65Warnings.ca.gov

2. WARRANTY TERMS AND CONDITIONS

For details of warranty, refer to Viking's current list price schedule at www.vikinggroupinc.com or contact Viking directly.

MODEL V-SD SPECIFIC APPLICATION ATTIC SPRINKLER

The Viking Corporation, 210 N Industrial Park Drive, Hastings MI 49058

Telephone: 269-945-9501 Technical Services: 877-384-5464 Fax: 269-818-1680 Email: techsvcs@vikingcorp.com Visit the Viking website for the latest edition of this technical data page www.vikinggroupinc.com.

1. DESCRIPTION

The Model V-SD (Single Directional) Specific Application Attic Sprinkler is designed to provide superior fire protection in combustible and non-combustible sloped attic spaces when compared to standard spray attic protection. With specific application criteria for use with Model V-BB (Back to Back) and VK696 Attic Upright Specific Application Sprinklers, Viking attic sprinklers provide an extended coverage spacing alternative to standard spray sprinklers. They make it possible to use a single line of piping at the attic peak, eliminating the need for branch lines and greatly reducing the number of required sprinklers and associated material and installation costs. Model V-SD models also have lower minimum flow and pressure requirements than competitive products.

Viking Attic Sprinklers can be installed with either steel or CPVC piping (CPVC allowed on wet pipe systems only), and are available in brass or with corrosion-resistant Electroless Nickel PTFE (ENT) coatings where salt water and other corrosive elements are a consideration. They are cULus Listed with specific application guidelines for use as special sprinklers as defined by the National Fire Protection Association (NFPA), and are cULus Listed for extended coverage in combustible and non-combustible construction. The cULus Listing was achieved using full-scale fire tests within wood truss construction.

The Model V-SD (Single Directional) sprinkler provides a reduced response time due to its narrow ridge spacing of 6 ft. (1,8 m) and long throw pattern (up to 40 ft. in a single direction measured horizontally) and is offered in three different slope ranges and one orifice size (K=5.6). Listed for specific pitches 4:12<7:12, 7:12<10:12 and 10:12≤12:12, and spans 40 ft. and 30 ft.

V-SD Sprinkler						
5.6K	Pitch					
VK693	4:12 < 7:12					
VK694	7:12 < 10:12					
VK695	10:12 ≤ 12:12					

WARNING: Cancer and Reproductive Harm-

www.P65Warnings.ca.gov

2. LISTINGS AND APPROVALS

cULus Listed: Category VNIV Refer to the Approval Chart on page 3.

3. TECHNICAL DATA

Specifications:

Minimum Operating Pressure: See Design Criteria - UL on page 4.

Rated to 175 psi (12 bar) water working pressure Factory tested hydrostatically to 500 psi (34.5 bar)

Thread size: 1/2" (15 mm) NPT

Nominal K-Factor: 5.6 U.S. (80.6 metric*)

* Metric K-factor measurement shown is when pressure is measured in Bar. When pressure is measured in kPa, divide the metric K-factor shown by 10.0.

Glass-bulb fluid temperature rated to -65 °F (-55 °C)

Overall Length: 2-3/4" (69 mm)

Material Standards:

Frame Casting: Brass UNS-C84400 or QM Brass

Deflector: Brass UNS-C51000 Bulb: Glass, nominal 3 mm diameter

Belleville Spring Sealing Assembly: Nickel Alloy, coated on both sides with Teflon Tape

Screw: 18-8 Stainless Steel

Pip Cap and Insert Assembly: Copper UNS-C11000 and Stainless Steel UNS-S30400

Yoke: Phosphor Bronze - UNS-C51000 Deflector Screw: 316 Stainless Steel

Ordering Information: (Also refer to the current Viking price list.)

To order the Attic Sprinkler, add the appropriate suffix for the sprinkler finish and then the appropriate suffix for the temperature rating to the sprinkler base part number.

Finish Suffix: Brass = A, ENT = JN Temperature Suffix: E = 200 °F (93.3 °C)

MODEL V-SD SPECIFIC APPLICATION ATTIC SPRINKLER

The Viking Corporation, 210 N Industrial Park Drive, Hastings MI 49058
Telephone: 269-945-9501 Technical Services: 877-384-5464 Fax: 269-818-1680 Email: techsvcs@vikingcorp.com
Visit the Viking website for the latest edition of this technical data page www.vikinggroupinc.com.

Available Finishes And Temperature Ratings:

Refer to the approval chart on page 3.

Accessories: (Also refer to the "Sprinkler Accessories" section of the Viking website under Technical Data)

Sprinkler Wrench:

Standard Wrench: Part No. 10896W/B

Sprinkler Cabinets:

A. Six-head capacity: Part No. 01724A

B. Twelve-head capacity: Part No. 01725A

4. INSTALLATION

Refer to appropriate NFPA Installation Standards.

5. OPERATION

During a fire condition, the heat sensitive liquid in the glass bulb expands, causing the glass to shatter, releasing the pip cap and sealing spring assembly. Water flowing through the sprinkler orifice strikes the deflector, forming a uniform spray pattern to extinguish or control the fire, and protect the piping in the interstitial space.

6. INSPECTIONS, TESTS AND MAINTENANCE

Refer to NFPA 25 for Inspection, Testing and Maintenance requirements.

7. AVAILABILITY

The Viking V-SD Specific Application Sprinkler is available through a network of domestic and international distributors. See The Viking Corporation web site for the closest distributor or contact The Viking Corporation.

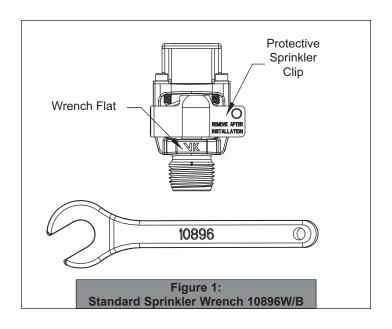
8. GUARANTEE

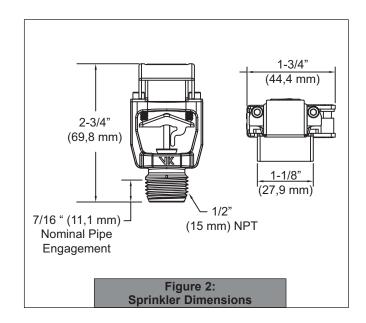
For details of warranty, refer to Viking's current list price schedule or contact Viking directly.

TABLE 1: AVAILABLE SPRINKLER TEMPERATURE RATINGS AND FINISHES								
Sprinkler Temperature Classification	Sprinkler Nominal Temperature Rating ¹	Maximum Ambient Ceiling Temperature ²	Bulb Color					
Intermediate	Intermediate 200 °F (93.3 °C)		Green					

Sprinkler Finishes: Brass, ENT³

¹ The sprinkler temperature rating is stamped on the deflector.


² Based on NFPA-13. Other limits may apply, depending on fire loading, sprinkler location, and other requirements of the Authority Having Jurisdiction. Refer to specific installation standards.


³ cULus Listed as corrosion resistant.

MODEL V-SD SPECIFIC APPLICATION ATTIC SPRINKLER

The Viking Corporation, 210 N Industrial Park Drive, Hastings MI 49058
Telephone: 269-945-9501 Technical Services: 877-384-5464 Fax: 269-818-1680 Email: techsvcs@vikingcorp.com
Visit the Viking website for the latest edition of this technical data page www.vikinggroupinc.com.

Approval Chart Viking V-SD Specific Application Sprinkler For Combustible and Non-Combustible Sloped Attic Spaces Temperature KEY Finish A1X ← Escutcheon (if applicable)													
Part Number ¹	SIN	Maximum	Threa	nd Size		minal actor	Overall Length Listings and		igs and Ap	Approvals ³			
		Pressure	NPT	BSP	U.S.	metric ²	Inches	mm	cULus⁴	FM	LPCB	((0
19578	VK693	175 psi	1/2"	15 mm	5.6	80.6	2-3/4	69	A1, A2				
19799	VK694	175 psi	1/2"	15 mm	5.6	80.6	2-3/4	69	A1, A2				
19759	VK695	175 psi	1/2"	15 mm	5.6	80.6	2-3/4	69	A1, A2				
	Approved Temperature Rating A - 200 °F (93.3 °C)									pproved - Brass, 2			

¹ Also refer to Viking's current price schedule.

² Metric K-factor measurement shown is when pressure is measured in Bar. When pressure is measured in kPa, divide the metric K-factor shown by 10.0.

³ This table shows the listings and approvals available at the time of printing. Other approvals may be in process.

⁴ Listed by Underwriters Laboratories Inc. for use in the United States and Canada.

⁵ cULus Listed as corrosion resistant.

MODEL V-SD SPECIFIC APPLICATION ATTIC SPRINKLER

The Viking Corporation, 210 N Industrial Park Drive, Hastings MI 49058
Telephone: 269-945-9501 Technical Services: 877-384-5464 Fax: 269-818-1680 Email: techsvcs@vikingcorp.com
Visit the Viking website for the latest edition of this technical data page www.vikinggroupinc.com.

DESIGN CRITERIA - UL (Also refer to Approval Chart 1) Allowable Roof Span, Flow, Pressure and Slope for Specific Application Sprinkler Protecting Attics													
Sprinkler Base Part	SIN	Туре	Threa	nd Size		ninal actor	Allowable Roof Span		Minimum Flow		mum sure	Pitch ¹	Dry Pipe System Maximum Water
Number		Туре	NPT	BSP	U.S.	metric	Ft. (M)	GPM	LPM	PSI	BAR	Fitch	Delivery Time ²
19578	VK693	V-SD	1/2"	15 mm	5.6	80.6	≤30 (12,2)	24	91	18.4	1,3	4:12 < 7:12	See footnote 2
19578	VK693	V-SD	1/2"	15 mm	5.6	80.6	<u>≤</u> 40 (12,2)	36	137	41.3	2,8	4:12 < 7:12	See footnote 2
19799	VK694	V-SD	1/2"	15 mm	5.6	80.6	≤30 (12,2)	24	91	18.4	1,3	7:12 < 10:12	See footnote 2
19799	VK694	V-SD	1/2"	15 mm	5.6	80.6	<u>≤</u> 40 (12,2)	35	133	39.1	2,7	7:12 < 10:12	See footnote 2
19759	VK695	V-SD	1/2"	15 mm	5.6	80.6	≤30 (12,2)	24	91	18.4	1,3	10:12 ≤ 12:12	See footnote 2
19759	VK695	V-SD	1/2"	15 mm	5.6	80.6	<u>≤</u> 40 (12,2)	35	133	39.1	2,7	10:12 ≤ 12:12	See footnote 2

¹ Pitch and slope indicate the incline of a roof, expressed as a proportion of the vertical rise to the horizontal run.

IMPORTANT: Always refer to Bulletin Form No. F_091699 - Care and Handling of Sprinklers. Also refer to page F_080614 for general care, installation, and maintenance information. Viking sprinklers are to be installed in accordance with the latest edition of Viking technical data, the appropriate standards of NFPA, LPCB, APSAD, VdS or other similar organizations, and also with the provisions of governmental codes, ordinances, and standards, whenever applicable.

² Refer to NFPA 13, 2013, Section 7.2.3.

MODEL V-SD SPECIFIC APPLICATION ATTIC SPRINKLER

The Viking Corporation, 210 N Industrial Park Drive, Hastings MI 49058
Telephone: 269-945-9501 Technical Services: 877-384-5464 Fax: 269-818-1680 Email: techsvcs@vikingcorp.com
Visit the Viking website for the latest edition of this technical data page www.vikinggroupinc.com.

ADDITIONAL DESIGN CRITERIA - UL Chart 2

(Also refer to DESIGN CRITERA Chart 1)

Allowable roof span, flow, pressure and slope for attic protection using Viking V-SD Sprinklers

Design Criteria: Flow and Pressures refer to Design Chart 1.

System Type:

Wet systems and dry systems.

Antifreeze Systems:

Use only listed antifreeze in accordance with the applicable NFPA standard as follows:

Option 1: Use any listed antifreeze in accordance with the manfacturer's installation instructions.

Option 2: For a Light Hazard Unoccupied attic

- 1. Use freezemaster™ antifreeze (refer to Manufacturer's documentation)
- 2. Viking Attic Sprinklers (V-BB, V-HIP, V-SD, VK696, VK697)

Piping Types:

Steel (wet and dry) CPVC (wet systems only).

Occupancy Classification: Light hazard only.

NOTE: The Model V-SD Specific Application Attic sprinklers have not been evaluated for use with sprayed on foam insulation.

Viking V-SD Sprinkler Spacing

Maximum Coverage Area:

339 ft² (31.5 m²) as measured along the slope.

Coverage area is determined by the maximum distance thrown measured along the slope, multiplied by the distance along the branch line.

Along the Branch Line:

Minimum Spacing: 4'-0" (1,22 m) between V-SD's and from V-BB's. 7'-0" (2,13 m) from Viking Attic Uprights. 6'-0" (1,83 m) from Standard Spray Sprinklers.

Maximum Spacing: 6'-0" (1,83 m) between V-SD's and from V-BB's.

Measured Down the Slope:

Minimum Spacing: 26'-0" (7,92 m) from Viking Attic Uprights and Standard Spray Sprinklers.

Deflector Position below Peak, Ridge, or Deck:

For all roof pitches as per the listing from 4:12 - 12:12 the maximum deflector distance down is 22" (559 mm), and the minimum deflector distance down is 16" (406 mm).

Deflector Position above Scissor Truss:

For all roof pitches as per the listing from 4:12 – 12:12 the minimum distance above a Scissor Truss is 18" (457 mm).

Maximum distance from center line of the ridge:

6" (152 mm) on either side of the center line.

Minimum distance from Truss:

6" (152 mm) from nearest edge of the truss.

Distance from Shear Wall:

4" - 6" (102 - 152 mm) from face of wall.

Distance from Draft Curtain:

4" - 6" (102 - 152 mm) from face of draft curtain and a minimum of 8" above the bottom.

MODEL V-SD SPECIFIC APPLICATION ATTIC SPRINKLER

The Viking Corporation, 210 N Industrial Park Drive, Hastings MI 49058
Telephone: 269-945-9501 Technical Services: 877-384-5464 Fax: 269-818-1680 Email: techsvcs@vikingcorp.com
Visit the Viking website for the latest edition of this technical data page www.vikinggroupinc.com.

Draft Curtains:

Where used to allow Attic Sprinkler installation shall be constructed to contain heat, may be constructed of ½" plywood.

Asymmetrical Slopes:

Refer to Figure 4.

Use of UL Listed CPVC Blazemaster Piping (Wet Systems Only):

Can be used to supply the sprinklers protecting the floor below the combustible concealed space when covered with 6" (152 mm) of non-combustible insulation over the horizontal or vertical piping, and extending 12" (304 mm) on both sides of the center line of the piping. If the piping is located in the joist, the width of the joist channel must be entirely covered to 6" (152 mm) above the top of the piping. The area above the piping must be protected with the Viking Model V-BB's, V-SD's, or the Attic Upright Sprinklers.

Listed CPVC Blazemaster piping may also be used exposed to feed wet systems using Viking V-SD sprinklers in accordance with the following requirements, and in accordance with Figure 5:

- Risers are vertical and protected by V-SD or V-BB sprinklers located a maximum of 12" away from the riser centerline.
- Model V-SD or V-BB sprinklers are mounted directly to the branchline.
- Model V-SD or V-BB sprinklers are installed on arm-overs a maximum of 6" (152 mm) laterally from the center line of the branch line.
- Model V-SD or V-BB sprinklers are installed on Vertical Sprigs attached to the branchline.
- Model V-SD or V-BB sprinklers are installed on angled sprigs a maximum of 6" (152 mm) laterally from the centerline of the branchline.
- Installed with a minimum lateral distance of 18" (457 mm) from any device that produces and releases heat, i.e Attic furnace, Kitchen
 or Bathroom Exhaust fan, Flue Vents, Heat Lamps, and other such devices.

Insulation requirements are provided solely for Fire Protection purposes and not for freeze protection.

Non-combustible insulation being used needs to be verified for chemical compatibility with the CPVC piping at www.lubrizol.com

Obstruction Criteria:

Refer to Figures 6—12

Refer to Sections 8.8.5.2.1.3 and 8.8.5.2.1.7 of NFPA 13, 2013 for requirements if installed on greater than 2-1/2" diameter piping.

Hydraulic Requirements:

Viking V-SD Sprinklers must be calculated in accordance with the following figures and guidelines.

The design area shall include the most hydraulically demanding sprinklers, and in certain cases may require more than one set of calculations to verify the systems design.

The following figure's cover Hydraulic Requirements for Viking V-SD Sprinklers only, and when installed with Standard Spray Sprinklers. For areas using Viking V-BB Sprinklers and/or Viking Attic Upright Sprinklers refer to the applicable data sheets.

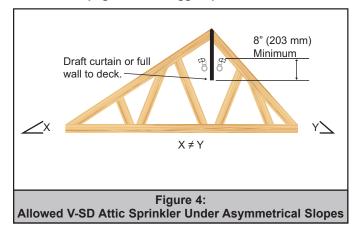
Refer to Figures:

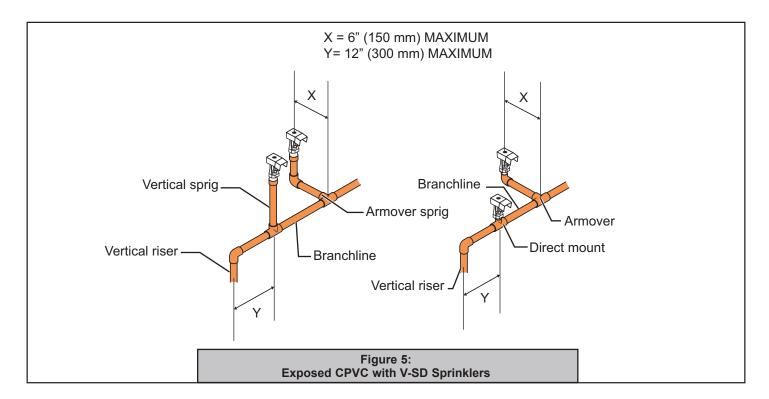
Figure 13 V-SD Sprinklers

Figure 14 V-SD Sprinklers & Attic Upright or Standard Spray Sprinklers at the ridge.

Figure 15 V-SD Sprinklers & Attic Upright or Standard Spray Sprinklers by compartmentalization.

V-BB (Back to Back)	V-SD (Single Directional)	Attic Upright
Top Side	Top Side	Top Side
# 8	8	

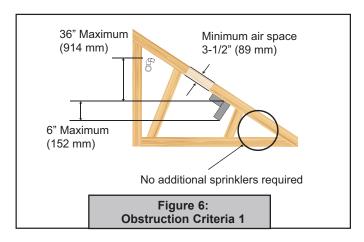

Figure 3: Sprinkler Type Legend

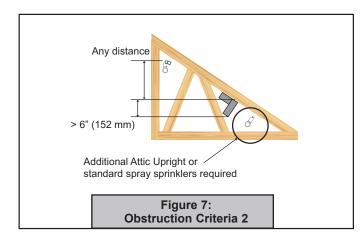


MODEL V-SD SPECIFIC APPLICATION ATTIC SPRINKLER

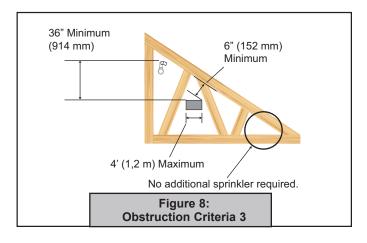
The Viking Corporation, 210 N Industrial Park Drive, Hastings MI 49058
Telephone: 269-945-9501 Technical Services: 877-384-5464 Fax: 269-818-1680 Email: techsvcs@vikingcorp.com
Visit the Viking website for the latest edition of this technical data page www.vikinggroupinc.com.

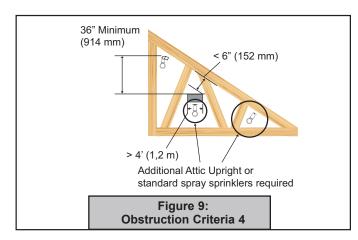
Refer to Figure 4. V-SD Sprinklers are permitted when the slope angles are not equal to each other. In this situation, install the appropriate sprinklers for each respective slope as shown at right.



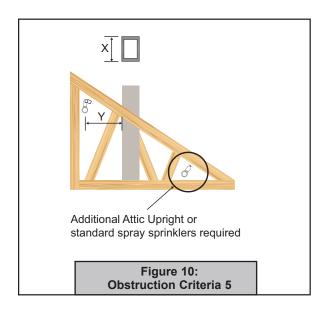


MODEL V-SD SPECIFIC APPLICATION ATTIC SPRINKLER


The Viking Corporation, 210 N Industrial Park Drive, Hastings MI 49058
Telephone: 269-945-9501 Technical Services: 877-384-5464 Fax: 269-818-1680 Email: techsvcs@vikingcorp.com
Visit the Viking website for the latest edition of this technical data page www.vikinggroupinc.com.


Refer to Figures 6 and 7 below. Maximum 6" (152 mm) obstruction allowed provided it sits at least 36" (914 mm) vertically below the Viking V-SD Sprinkler. Larger or closer obstructions require an additional sprinkler on the opposite side of the obstruction. This criteria only limits the obstructions that run across the trusses or rafters, not the top chord of the trusses or the depth of the rafter.

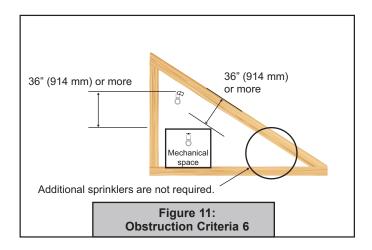
Refer to Figures 8 and 9 below where the maximum spacing for Attic Upright Sprinklers is 12 ft. (3,7m) and standard spray sprinklers is 15 ft (4,6m). Any horizontal obstruction that is 4 ft. (1,2 m) or less in width requires minimum 6" (152 mm) clearance over the top to allow for sufficient water flow over and under. The clearance must be measured perpendicular to and from the bottom of the rafter. If the clearance is less than 6" (152 mm), an additional sprinkler is required on the opposite side of the obstruction. If the obstruction is more than 4 ft. (1,2 m) wide, an additional sprinkler is required underneath.

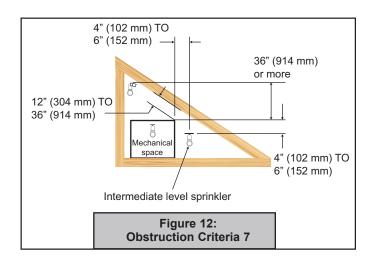


MODEL V-SD SPECIFIC APPLICATION ATTIC SPRINKLER

The Viking Corporation, 210 N Industrial Park Drive, Hastings MI 49058
Telephone: 269-945-9501 Technical Services: 877-384-5464 Fax: 269-818-1680 Email: techsvcs@vikingcorp.com
Visit the Viking website for the latest edition of this technical data page www.vikinggroupinc.com.

Refer to Figure 10 below. For vertical obstructions, the maximum dimension of the obstruction is the width and the horizontal distance is measured horizontally.

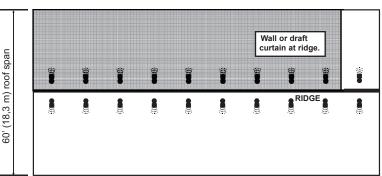

TABLE 2: OBSTRUCTION CRITERIA									
Dimension X	Distance Y	Additional Sprinklers Required Beyond Obstruction							
Maximum Horizontal Dimension of Obstruction	Minimum Horizontal Distance to Obstruction								
All vertical obstructions	< 6" (152 mm)	YES							
1/2" - 1" (13 mm - 25 mm)	6" (152 mm)	NO							
1" - 4" (25 mm - 102 mm)	12" (304 mm)	NO							
4" - 8" (101 mm - 203 mm)	24" (610 mm)	NO							
8" - 10 " (203 mm - 254 mm)	5'-0" (1,52 m)	NO							
10" - 20" (254 mm - 508 mm)	10'-0" (3,05 m)	NO							
20" - 30" (508 mm - 762 mm)	15'-0" (4,57 m)	NO							
30" - 40 " (762 mm - 1016 mm)	20'-0" (6,10 m)	NO							
40" - 48" (1016 mm - 1219 mm)	25'-0" (7,62 m)	NO							
> 48" (1219 mm)	Any distance	YES							


MODEL V-SD SPECIFIC APPLICATION ATTIC SPRINKLER

The Viking Corporation, 210 N Industrial Park Drive, Hastings MI 49058
Telephone: 269-945-9501 Technical Services: 877-384-5464 Fax: 269-818-1680 Email: techsvcs@vikingcorp.com
Visit the Viking website for the latest edition of this technical data page www.vikinggroupinc.com.

If a V-SD Sprinkler is 36" (914 mm) or greater above the space, and 36" (914 mm) or greater clearance above the space is present, additional sprinklers are not required.

If a V-SD sprinkler is 36" (914 mm) or greater above the space, and a 12" - 36" (304 - 914 mm) clearance above the space is present, intermediate level standard sprinklers are required.



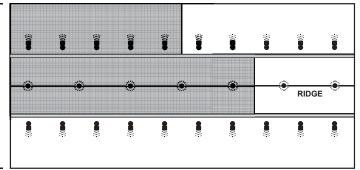
MODEL V-SD SPECIFIC APPLICATION ATTIC SPRINKLER

The Viking Corporation, 210 N Industrial Park Drive, Hastings MI 49058
Telephone: 269-945-9501 Technical Services: 877-384-5464 Fax: 269-818-1680 Email: techsvcs@vikingcorp.com
Visit the Viking website for the latest edition of this technical data page www.vikinggroupinc.com.

Wet Systems: Calculate the most demanding 5 V-SD sprinklers.

Dry Systems: Calculate the most demanding 9 V-SD sprinklers.

NOTE: Dry system shown.


Figure 13: V-SD Sprinklers

Wet Systems: Calculate the most demanding 5 sprinklers of one type. Use the most demanding calculation.

Dry Systems: Calculate the most demanding 9 SD Sprinklers, and then calculate the most demanding 7 Attic Upright or Standard Spray sprinklers. Use the most demanding calculation.

(18,3 m) roof span

90,

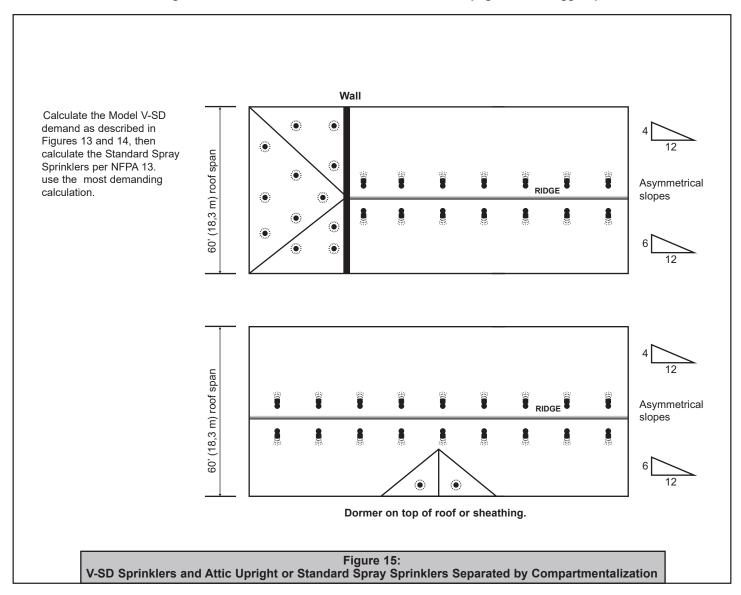

NOTE: Wet system shown.

Figure 14:
V-SD Sprinklers and Attic Upright or Standard Spray Sprinklers at the Ridge

MODEL V-SD SPECIFIC APPLICATION ATTIC SPRINKLER

The Viking Corporation, 210 N Industrial Park Drive, Hastings MI 49058
Telephone: 269-945-9501 Technical Services: 877-384-5464 Fax: 269-818-1680 Email: techsvcs@vikingcorp.com
Visit the Viking website for the latest edition of this technical data page www.vikinggroupinc.com.

CARE AND HANDLING OF SPRINKLERS

The Viking Corporation, 210 N Industrial Park Drive, Hastings MI 49058

Telephone: 269-945-9501 Technical Services: 877-384-5464 Fax: 269-818-1680 Email: techsvcs@vikingcorp.com

SPRINKLERS ARE FRAGILE - HANDLE WITH CARE!

General Handling and Storage:

- · Store sprinklers in a cool, dry place.
- Protect sprinklers during storage, transport, handling, and after installation.
- Use the original shipping containers. DO NOT place sprinklers loose in boxes, bins, or buckets.
- Keep sprinklers separated at all times. DO NOT allow metal parts to contact sprinkler operating elements.

For Pre-Assembled Drops:

- · Protect sprinklers during handling and after installation.
- For recessed assemblies, use the protective sprinkler cap (Viking Part Number 10364).

Sprinklers with Protective Shields or Caps:

- DO NOT remove shields or caps until after sprinkler installation and there no longer is potential for mechanical damage to the sprinkler operating elements.
- Sprinkler shields or caps MUST be removed BEFORE placing the system in service!
- Remove the sprinkler shield by carefully pulling it apart where it is snapped together.
- · Remove the cap by turning it slightly and pulling it off the sprinkler.

Sprinkler Installation:

- DO NOT use the sprinkler deflector or operating element to start or thread the sprinkler into a fitting.
- Use only the designated sprinkler head wrench! Refer to the current sprinkler technical data page to determine the correct wrench for the model of sprinkler used.
- DO NOT install sprinklers onto piping at the floor level.
- · Install sprinklers after the piping is in place to prevent mechanical damage.
- DO NOT allow impacts such as hammer blows directly to sprinklers or to fittings, pipe, or couplings in close proximity to sprinklers. Sprinklers can be damaged from direct or indirect impacts.
- DO NOT attempt to remove drywall, paint, etc., from sprinklers.
- Take care not to over-tighten the sprinkler and/or damage its operating parts!

 Maximum Torque:

1/2" NPT: 14 ft-lbs. (19.0 N-m) 3/4" NPT: 20 ft-lbs. (27.1 N-m) 1" NPT: 30 ft-lbs. (40.7 N-m)

CORRECT (Original container used)

INCORRECT (Placed loose in box)

(Protected with caps)

INCORRECT (Protective caps not used)

CORRECT (Piping is in place at the ceiling)

INCORRECT (Sprinkler at floor level)

CORRECT (Special installation wrenches)

INCORRECT (Designated wrench not used)

A WARNING

Any sprinkler with a loss of liquid from the glass bulb or damage to the fusible element should be destroyed. Never install sprinklers that have been dropped, damaged, or exposed to temperatures exceeding the maximum ambient temperature allowed. Sprinklers that have been painted in the field must be replaced per NFPA 13. Protect sprinklers from paint and paint overspray in accordance with the installation standards. Do not clean sprinklers with soap and water, ammonia, or any other cleaning fluid. Do not use adhesives or solvents on sprinklers or their operating elements.

Refer to the appropriate technical data page and NFPA standards for complete care, handling, installation, and maintenance instructions. For additional product and system information Viking data pages and installation instructions are available on the Viking Web site at www.vikinggroupinc.com.

CARE AND HANDLING OF SPRINKLERS

The Viking Corporation, 210 N Industrial Park Drive, Hastings MI 49058

Telephone: 269-945-9501 Technical Services: 877-384-5464 Fax: 269-818-1680 Email: techsycs@vikingcorp.com

PROTECTIVE SPRINKLER SHIELDS AND CAPS

General Handling and Storage:

Many Viking sprinklers are available with a plastic protective cap or shield temporarily covering the operating elements. The snapon shields and caps are factory installed and are intended to help protect the operating elements from mechanical damage during shipping, storage, and installation. NOTE: It is still necessary to follow the care and handling instructions on the appropriate sprinkler technical data sheets* when installing sprinklers with bulb shields or caps.

WHEN TO REMOVE THE SHIELDS AND CAPS:

NOTE: SHIELDS AND CAPS MUST BE REMOVED FROM SPRINKLERS BEFORE PLACING THE SYSTEM IN SERVICE!

Remove the shield or cap from the sprinkler only after checking all of the following:

- · The sprinkler has been installed*.
- The wall or ceiling finish work is completed where the sprinkler is installed and there no longer is a potential for mechanical damage to the sprinkler operating elements.

SHIELDS AND CAPS MUST BE REMOVED FROM SPRINKLERS BEFORE PLACING THE SYSTEM IN SERVICE!

Figure 1: Sprinkler shield being removed from a pendent sprinkler.

Figure 2: Sprinkler cap being removed from a pendent sprinkler.

Figure 3: Sprinkler cap being removed from and upright sprinkler.

HOW TO REMOVE SHIELDS AND CAPS:

No tools are necessary to remove the shields or caps from sprinklers. DO NOT use any sharp objects to remove them! Take care not to cause mechanical damage to sprinklers when removing the shields or caps. When removing caps from fusible element sprinklers, use care to prevent dislodging ejector springs or damaging fusible elements. NOTE: Squeezing the sprinkler cap excessively could damage sprinkler fusible elements.

- To remove the shield, simply pull the ends of the shield apart where it is snapped together. Refer to Figure 1.
- To remove the cap, turn it slightly and pull it off the sprinkler. Refer to Figures 2 and 3.

NOTICE Refer to the current sprinkler technical data page to determine the correct sprinkler wrench for the model of sprinkler used.

Never install sprinklers that have been dropped, damaged, or exposed to temperatures in excess of the maximum ambient temperature allowed.


* Refer to the appropriate current technical data pages for complete care, handling, and installation instructions. Data pages are included with each shipment from Viking or Viking distributors. They can also be found on the Web site at www. vikinggroupinc.com.

CARE AND HANDLING OF SPRINKLERS

The Viking Corporation, 210 N Industrial Park Drive, Hastings MI 49058 Telephone: 269-945-9501 Technical Services: 877-384-5464 Fax: 269-818-1680 Email: techsvcs@vikingcorp.com

> **ACAUTION** CONCEALED COVER ASSEMBLIES ARE FRAGILE! TO ASSURE SATISFACTORY PERFORMANCE OF THE PRODUCT, HANDLE WITH CARE.

Concealed Sprinkler and Adapter Assembly with Protective Cap

Concealed Sprinkler and Adapter Assembly (Protective Cap Removed)

Cover Plate Assembly (Pendent Cover 12381 shown)

GENERAL HANDLING AND STORAGE INSTRUCTIONS:

- · Do not store in temperatures exceeding 100 °F (38 °C). Avoid direct sunlight and confined areas subject to heat.
- · Protect sprinklers and cover assemblies during storage, transport, handling, and after installation.
- -- Use original shipping containers.
- -- Do not place sprinklers or cover assemblies loose in boxes, bins, or buckets.
- · Keep the sprinkler bodies covered with the protective sprinkler cap any time the sprinklers are shipped or handled, during testing of the system, and while ceiling finish work is being completed.
- Use only the designated Viking recessed sprinkler wrench (refer to the appropriate sprinkler data page) to install these sprinklers. NOTE: The protective cap is temporarily removed during installation and then placed back on the sprinkler for protection until finish work is completed.
- Do not over-tighten the sprinklers into fittings during installation.
- Do not use the sprinkler deflector to start or thread the sprinklers into fittings during installation.
- · Do not attempt to remove drywall, paint, etc., from the sprinklers.
- · Remove the plastic protective cap from the sprinkler before attaching the cover plate assembly. PROTECTIVE CAPS MUST BE REMOVED FROM SPRINKLERS BEFORE PLACING THE SYSTEM IN SERVICE!

Refer to the appropriate current technical data pages for complete care, handling, and installation instructions. Data pages are included with each shipment from Viking or Viking distributors. They can also be found on the Web site at www. vikinggroupinc.com.

CARE AND HANDLING OF SPRINKLERS

The Viking Corporation, 210 N Industrial Park Drive, Hastings MI 49058

Telephone: 269-945-9501 Technical Services: 877-384-5464 Fax: 269-818-1680 Email: techsvcs@vikingcorp.com

USE THE FOLLOWING PRECAUTIONS WHEN HANDLING WAX-COATED SPRINKLERS

Many of Viking's sprinklers are available with factory-applied wax coating for corrosion resistance. These sprinklers MUST receive appropriate care and handling to avoid damaging the wax coating and to assure satisfactory performance of the product.

General Handling and Storage of Wax-Coated Sprinklers:

- Store the sprinklers in a cool, dry place (in temperatures below the maximum ambient temperature allowed for the sprinkler temperature rating. Refer to Table 1 below.)
- · Store containers of wax-coated sprinklers separate from other sprinklers.
- · Protect the sprinklers during storage, transport, handling, and after installation.
- · Use original shipping containers.
- · Do not place sprinklers in loose boxes, bins, or buckets.

Installation of Wax-Coated Sprinklers:

Use only the special sprinkler head wrench designed for installing wax-coated Viking sprinklers (any other wrench may damage the unit).

- · Take care not to crack the wax coating on the units.
- For touching up the wax coating after installation, wax is available from Viking in bar form. Refer to Table 1 below. The coating MUST be repaired after sprinkler installation to protect the corrosion-resistant properties of the sprinkler.
- Use care when locating sprinklers near fixtures that can generate heat. Do not install sprinklers where they would be exposed to temperatures exceeding the maximum recommended ambient temperature for the temperature rating used.
- Inspect the coated sprinklers frequently soon after installation to verify the integrity of the corrosion resistant coating. Thereafter, inspect representative samples of the coated sprinklers in accordance with NFPA 25. Close up visual inspections are necessary to determine whether the sprinklers are being affected by corrosive conditions.

		TABLE 1		
Sprinkler Temperature Rating (Fusing Point)			Maximum Ambient Ceiling Temperature ¹	Wax Color
155 °F (68 °C) / 165 °F (74 °C)	02568A	148 °F (64 °C)	100 °F (38 °C)	Light Brown
175 °F (79 °C)	04146A	161 °F (71 °C)	150 °F (65 °C)	Brown
200 °F (93 °C)	04146A	161 °F (71 °C)	150 °F (65 °C)	Brown
220 °F (104 °C)	02569A	170 °F (76 °C)	150 °F (65 °C)	Dark Brown
286 °F (141 °C)	02569A	170 °F (76 °C)	150 °F (65 °C)	Dark Brown

¹Based on NFPA-13. Other limits may apply, depending on fire loading, sprinkler location, and other requirements of the Authority Having Jurisdiction. Refer to specific installation standards.

AWARNING

Never install sprinklers that have been dropped, damaged, or exposed to temperatures in excess of the maximum ambient temperature allowed.

Refer to the appropriate current technical data pages for complete care, handling, and installation instructions. Data pages are included with each shipment from Viking or Viking distributors. They can also be found on the Web site at www. vikinggroupinc.com.

SPRINKLER GENERAL CARE, INSTALLATION, AND MAINTENANCE GUIDE

The Viking Corporation, 210 N Industrial Park Drive, Hastings MI 49058
Telephone: 269-945-9501 Technical Services: 877-384-5464 Fax: 269-818-1680 Email: techsvcs@vikingcorp.com
Visit the Viking website for the latest edition of this technical data page.

1. DESCRIPTION - STANDARD RESPONSE, QUICK RESPONSE, EXTENDED COVERAGE, AND DRY SPRINKLERS

Viking thermosensitive spray sprinklers consist of a small frame and either a glass bulb or a fusible operating element. Available styles include pendent, flush pendent, concealed pendent, upright, horizontal sidewall, vertical sidewall, or conventional, depending on the particular sprinkler model selected.

Viking sprinklers are available with various finishes, temperature ratings, responses, and K-Factors to meet design requirements†. Used in conjunction with one of the corrosion-resistant coatings (for frame style sprinklers), the units provide protection against many corrosive environments. In addition, the special Polyester or Teflon® coatings can be used in decorative applications where colors are desired.

† Refer to the sprinkler technical data page for available styles, finishes, temperature ratings, responses, and nominal K-Factors for specific sprinkler models.

2. LISTINGS AND APPROVALS

Refer to the Approval Charts on the appropriate sprinkler technical data page(s) and/or approval agency listings.

3. TECHNICAL DATA

Specifications:

Refer to the appropriate sprinkler technical data sheet.

Material Standards:

Refer to the appropriate sprinkler technical data sheet.

4. INSTALLATION

NOTE: Take care not to over-tighten the sprinkler and/or damage its operating parts!

Maximum Torque:

1/2" NPT: 14 ft-lbs. (19.0 N-m) 3/4" NPT: 20 ft-lbs. (27.1 N-m) 1" NPT: 30 ft-lbs. (40.7 N-m)

A. Care and Handling (also refer to Bulletin - Care and Handling of Sprinklers, Form No. F_091699.)

Sprinklers must be handled with care. They must be stored in a cool, dry place in their original shipping container. Never install sprinklers that have been dropped, damaged, or exposed to temperatures exceeding the maximum ambient temperature allowed (refer to the temperature chart on the sprinkler technical data page). Never install any glass-bulb sprinkler if the bulb is cracked or if there is a loss of liquid from the bulb. A small air bubble should be present in the glass bulb. Any sprinkler with a loss of liquid from the glass bulb or damage to the fusible element should be destroyed immediately. (Note: Installing glass bulb sprinklers in direct sunlight (ultraviolet light) may affect the color of the dye used to color code the bulb. This color change does not affect the integrity of the bulb.)

Sprinklers must be protected from mechanical damage during storage, transport, handling, and after installation. Sprinklers subject to mechanical damage must be protected with an approved sprinkler guard.

Use only sprinklers listed as corrosion resistant when subject to corrosive environments. When installing corrosion-resistant sprinklers, take care not to damage the corrosion-resistant coating. Use only the special wrench designed for installing coated or recessed Viking sprinklers (any other wrench may damage the unit).

Concealed sprinklers must be installed in neutral or negative pressure plenums only!

Use care when locating sprinklers near fixtures that can generate heat. Do not install sprinklers where they could be exposed to temperatures exceeding the maximum recommended ambient temperature for the temperature rating used.

Wet pipe systems must be provided with adequate heat. Sprinklers supplied from dry systems in areas subject to freezing must be listed dry sprinklers, upright, or horizontal sidewall sprinklers installed so that water is not trapped. For dry systems, pendent sprinklers and sidewall sprinklers installed on return bends are permitted, where the sprinklers, return bend, and branch line piping are in an area maintained at or above 40 °F (4 °C).

B. Installation Instructions - Standard Spray Sprinklers

Viking sprinklers are manufactured and tested to meet the rigid requirements of approving agencies. They are designed to be installed in accordance with recognized installation standards. Deviation from the standards or any alteration to sprinklers or cover plate assemblies after they leave the factory including, but not limited to: painting, plating, coating, or modification, may render them inoperative and will automatically nullify the approvals and any guarantee made by The Viking Corporation.

SPRINKLER GENERAL CARE, INSTALLATION, AND MAINTENANCE GUIDE

The Viking Corporation, 210 N Industrial Park Drive, Hastings MI 49058
Telephone: 269-945-9501 Technical Services: 877-384-5464 Fax: 269-818-1680 Email: techsvcs@vikingcorp.com
Visit the Viking website for the latest edition of this technical data page.

Before installation, be sure to have the appropriate sprinkler model and style, with the correct K-Factor, temperature rating, and response characteristics. Sprinklers must be installed after the piping is in place to prevent mechanical damage. Keep sprinklers with protective caps or bulb shields contained within the caps or shields during installation and testing, and any time the sprinkler is shipped or handled.

- 1a. For frame-style sprinklers, install escutcheon (if used), which is designed to thread onto the external threads of the sprinkler. Refer to the appropriate sprinkler data page to determine approved escutcheons for use with specific sprinkler models.
- 1b. For flush and concealed style sprinklers: Cut the sprinkler nipple so that the ½" or 3/4" (15 mm or 20 mm)* NPT outlet of the reducing coupling is at the desired location, and centered in the opening* in the ceiling or wall.

 *Size depends on the sprinkler model used. Refer to the sprinkler technical data page.
- 2. Apply a small amount of pipe-joint compound or tape to the external threads of the sprinkler only, taking care not to allow a build-up of compound in the sprinkler inlet. **NOTE:** Sprinklers with protective caps or bulb shields must have the caps or shields kept on them when applying pipe-joint compound or tape. *Exception: For domed concealed sprinklers, remove the protective cap for installation, and then place it back on the sprinkler temporarily.*
- 3. Refer to the appropriate sprinkler technical data page to determine the correct sprinkler wrench for the model of sprinkler used. DO NOT use the deflector or fusible element to start or thread the sprinkler into a fitting.
 - a. Install the sprinkler onto the piping using the special sprinkler wrench only, taking care not to over-tighten or damage the sprinkler.
 - b. For flush and concealed style sprinklers: the internal diameter of the special sprinkler installation wrench is designed for use with the sprinkler contained in the protective cap. *Exception: For domed concealed sprinklers, remove the protective cap for installation, and then place it back on the sprinkler temporarily.* Thread the flush or concealed sprinkler into the ½" or 3/4" (15 mm or 20 mm)* NPT outlet of the coupling by turning it clockwise with the special sprinkler wrench. *Thread size depends on the particular sprinkler model used. Refer to the sprinkler technical data page.

C. Installation Instructions - Dry Sprinklers

WARNING: Viking dry sprinklers are to be installed in the 1" outlet (for dry and preaction systems), or run of malleable, ductile iron, or Nibco CPVC* threaded tee fittings (for wet systems) that meet the dimensional requirements of ANSI B16.3 (Class 150), or cast iron threaded tee fittings that meet the dimensional requirements of ANSI B16.4 (Class 125), even at branch line ends. The threaded end of the dry sprinkler is designed to allow the seal to penetrate and extend into the fitting to a predetermined depth. This prevents condensation from accumulating and freezing over the sprinkler seal. *NOTE: When using CPVC fittings with Viking dry sprinklers, use only new Nibco Model 5012-S-BI. When selecting other CPVC fittings, contact Viking Technical Services.

- 1. **DO NOT** install the dry sprinkler into a threaded elbow, coupling, or any other fitting that could interfere with thread penetration. Such installation would damage the brass seal.
- 2. **DO NOT** install dry sprinklers into couplings or fittings that would allow condensation to accumulate above the seal when the sprinkler is located in an area subject to freezing.
- 3. NEVER try to modify dry sprinklers. They are manufactured for specific "A" or "B" dimensions and cannot be modified.

The dry sprinkler must be installed after the piping is in place to prevent mechanical damage. Before installation, be sure to have the correct sprinkler model and style, with the appropriate "A" or "B" dimension(s), temperature rating, orifice size, and response characteristics. Keep sprinklers with protective caps or bulb shields contained within the caps or shields during installation and testing, and any time the sprinkler is shipped or handled. *Exception:* For concealed and adjustable recessed dry sprinklers, the protective caps and shields are removed for installation.

To install the dry sprinkler, refer to the instructions below and the appropriate sprinkler technical data page for illustrated instructions.

Dry upright sprinklers must be installed above the piping, in the upright position only. When installing dry upright or plain barrel style vertical sidewall sprinklers on piping located close to the ceiling, it may be necessary to lower the sprinkler into the fitting from above the ceiling. When installing dry upright or plain barrel vertical sidewall sprinklers from below the ceiling, verify that the opening in the ceiling is a minimum 1-1/2" (38.1 mm) in diameter.

For dry upright or plain barrel vertical sidewall sprinklers in the upright position: First, install the escutcheon (if used) over the threaded end of the sprinkler barrel. Slide the escutcheon past the external threads. NOTE: When installing the dry upright or plain barrel vertical sidewall sprinkler from above the ceiling, it will be necessary to install the escutcheon after lowering the threaded end of the sprinkler through the ceiling penetration.

A. **For all dry sprinklers:** Apply a small amount of pipe-joint compound or tape to the external threads of the sprinkler barrel only, taking care not to allow a build-up of compound or tape over the brass inlet and seal. **NOTE:** Sprinklers with protective caps or bulb shields must be contained within the caps or shields before applying pipe-joint compound or tape.

SPRINKLER GENERAL CARE, INSTALLATION, AND MAINTENANCE GUIDE

The Viking Corporation, 210 N Industrial Park Drive, Hastings MI 49058
Telephone: 269-945-9501 Technical Services: 877-384-5464 Fax: 269-818-1680 Email: techsvcs@vikingcorp.com
Visit the Viking website for the latest edition of this technical data page.

- B. Refer to the appropriate sprinkler technical data page to determine the correct sprinkler wrench for the model of sprinkler used.
- C. Install the dry sprinkler on the piping using the special dry sprinkler wrench only, while taking care not to damage the sprinkler.

 NOTE: Thread the sprinkler into the fitting hand tight, plus 1/2 turn with the dry sprinkler wrench.
- D. For adjustable standard and adjustable recessed dry pendent and sidewall sprinklers: Escutcheons can be installed after the sprinklers have been installed onto the piping. Refer to the appropriate sprinkler technical data page for escutcheon installation instructions and illustrations.

D. Installation Instructions - Testing

- 4. After installation, the entire sprinkler system must be tested. The test must be conducted to comply with the installation standards. Viking *high pressure* sprinklers may be hydrostatically tested at a maximum of 300 psi (20.7 bar) for limited periods of time (two hours), for the purpose of acceptance by the Authority Having Jurisdiction.
 - a. Make sure the sprinkler is properly tightened. If a thread leak occurs, normally the sprinkler must be removed, new pipe-joint compound or tape applied, and then reinstalled. This is due to the fact that when the joint seal is damaged, the sealing compound or tape is washed out of the joint. Air testing [do not exceed 40 psi (2.76 bar)] the sprinkler piping prior to testing with water may be considered in areas where leakage during testing must be prevented. Refer to the Installation Standards and the Authority Having Jurisdiction.
 - b. Remove plastic protective sprinkler caps or bulb shields AFTER the wall or ceiling finish work is completed where the sprinkler is installed and there no longer is a potential for mechanical damage to the sprinkler operating elements. To remove the bulb shields, simply pull the ends of the shields apart where they are snapped together. To remove caps from frame style sprinklers, turn the caps slightly and pull them off the sprinklers. SPRINKLER CAPS OR BULB SHIELDS MUST BE REMOVED FROM SPRINKLERS <u>BEFORE</u> PLACING THE SYSTEM IN SERVICE! Retain a protective cap or shield in the spare sprinkler cabinet.
- 5. For flush style sprinklers: the ceiling ring can now be installed onto the sprinkler body. Align the ceiling ring with the sprinkler body and thread or push it on (depends on sprinkler model) until the outer flange touches the surface of the ceiling. Note the maximum adjustment is 1/4" (6.35 mm). DO NOT MODIFY THE UNIT, If necessary, re-cut the sprinkler drop nipple as required.
- 6. For concealed sprinklers: the cover assembly can now be attached.
 - a. Remove the cover from the protective box, taking care not to damage the cover plate assembly.
 - b. Gently place the base of the cover plate assembly over the sprinkler protruding through the opening in the ceiling.
 - c. Push the cover plate assembly onto the sprinkler until the unfinished brass flange of the cover plate base (or the cover adapter, if used) touches the surface of the ceiling.
 - d. Refer to the applicable technical data sheet to determin the maximum adjustment available for concealed sprinklers. DO NOT MODIFY THE UNIT. If necessary, re-cut the sprinkler drop nipple.

NOTE: If it is necessary to remove the entire sprinkler unit, the system must be taken out of service. See section 6. INSPECTIONS, TESTS AND MAINTENANCE and follow all warnings and instructions.

5. OPERATION

Refer to the appropriate sprinkler technical data page(s). During fire conditions, the operating element fuses or shatters (depending on the type of sprinkler), releasing the pip cap and sealing assembly. Water flowing through the sprinkler orifice strikes the sprinkler deflector, forming a uniform spray pattern to extinguish or control the fire.

IMPORTANT: Always refer to Bulletin Form No. F_091699 - Care and Handling of Sprinklers. Viking sprinklers are to be installed in accordance with the latest edition of Viking technical data, the appropriate standards of NFPA, FM Global, LPCB, APSAD, VdS or other similar organizations, and also with the provisions of governmental codes, ordinances, and standards, whenever applicable. The sprinkler technical data page may contain installation requirements specific for the sprinkler model selected. The use of certain types of sprinklers may be limited due to occupancy and hazard. Refer to the Authority Having Jurisdiction prior to installation.

SPRINKLER GENERAL CARE, INSTALLATION, AND MAINTENANCE GUIDE

The Viking Corporation, 210 N Industrial Park Drive, Hastings MI 49058

Telephone: 269-945-9501 Technical Services: 877-384-5464 Fax: 269-818-1680 Email: techsvcs@vikingcorp.com Visit the Viking website for the latest edition of this technical data page.

6. INSPECTIONS, TESTS AND MAINTENANCE

NOTICE: Refer to NFPA 25 for Inspection, Testing and Maintenance requirements. **NOTICE:** The owner is responsible for having the fire-protection system and devices inspected, tested, and maintained in proper operating condition in accordance with this guide, and applicable NFPA standards. In addition, the Authority Having Jurisdiction may have additional maintenance, testing, and inspection requirements that must be followed.

- A. Sprinklers must be inspected on a regular basis for corrosion, mechanical damage, obstructions, paint, etc. Frequency of inspections may vary due to corrosive atmospheres, water supplies, and activity around the sprinkler unit.
- B. Sprinklers or cover plate assemblies that have been field painted, caulked, or mechanically damaged must be replaced immediately. Sprinklers showing signs of corrosion shall be tested and/or replaced immediately as required. Installation standards require sprinklers to be tested and, if necessary, replaced after a specified term of service. Refer to NFPA 25 and the Authority Having Jurisdiction for the specified period of time after which testing and/or replacement is required. Never attempt to repair or reassemble a sprinkler. Sprinklers and cover assemblies that have operated cannot be reassembled or re-used, but must be replaced. When replacement is necessary, use only new sprinklers and cover assemblies with identical performance characteristics.
- C. The sprinkler discharge pattern is critical for proper fire protection. Therefore, nothing should be hung from, attached to, or otherwise obstruct the discharge pattern. All obstructions must be immediately removed or, if necessary, additional sprinklers installed.
- D. When replacing existing sprinklers, the system must be removed from service. Refer to the appropriate system description and/ or valve instructions. Prior to removing the system from service, notify all Authorities Having Jurisdiction. Consideration should be given to employment of a fire patrol in the affected area.
 - 1. Remove the system from service, drain all water, and relieve all pressure on the piping.
 - 2a. For frame-style sprinklers, use the special sprinkler wrench to remove the old sprinkler by turning it counterclockwise to unthread it from the piping.
 - 2b. For flush and concealed style sprinklers: Remove the ceiling ring or cover plate assembly before unthreading the sprinkler body from the piping. Ceiling rings and cover plates can be removed either by gently unthreading them or pulling them off the sprinkler body (depends on the sprinkler model used). After the ceiling ring or cover plate assembly has been removed from the sprinkler body, place the plastic protective cap (from the spare sprinkler cabinet) over the sprinkler to be removed and then fit the sprinkler wrench over the cap. Then use the wrench to unthread the sprinkler from the piping. Exception: Domed concealed sprinklers are removed without the plastic cap.
 - 3. Install the new sprinkler unit by following the instructions in section 4. INSTALLATION. Care must be taken to ensure that the replacement sprinkler is the proper model and style, with the correct K-Factor, temperature rating, and response characteristics. A fully stocked spare sprinkler cabinet should be provided for this purpose. For flush or concealed sprinklers: stock of spare ceiling rings or cover plates should also be available in the spare sprinkler cabinet.
- E. Place the system back in service and secure all valves. Check for and repair all leaks. Sprinkler systems that have been subjected to a fire must be returned to service as soon as possible. The entire system must be inspected for damage, and repaired or replaced as necessary. Sprinklers that have been exposed to corrosive products of combustion or high ambient temperatures, but have not operated, should be replaced. Refer to the Authority Having Jurisdiction for minimum replacement requirements.

7. AVAILABILITY

Viking sprinklers are available through a network of domestic and international distributors. See The Viking Corporation web site for the closest distributor or contact The Viking Corporation.

8. GUARANTEE

For details of warranty, refer to Viking's current list price schedule or contact Viking directly.

SPRINKLER OVERVIEW

The Viking Corporation, 210 N Industrial Park Drive, Hastings MI 49058

Telephone: 269-945-9501 Technical Services: 877-384-5464 Fax: 269-818-1680 Email: techsvcs@vikingcorp.com

1. DESCRIPTION

Viking fire sprinklers consist of a threaded frame with a specific waterway or orifice size and a deflector for distributing water in a specified pattern. A closed or sealed sprinkler refers to a complete assembly, including the thermosensitive operating element. An open sprinkler does not use an operating element and is open at all times. The distribution of water is intended to extinguish a fire or to control its spread.

Viking sprinklers are available in several models and styles. Refer to specific sprinkler technical data pages for available styles, finishes, temperature ratings, thread sizes, and nominal K-Factors for the particular model selected.

2. LISTINGS AND APPROVALS

Refer to the Approval Charts on the appropriate sprinkler technical data page(s) and/or approval agency listings.

3. TECHNICAL DATA

Pressure Ratings:

Maximum allowable water working pressure is 175 psig (12 Bar) unless rated and specified for high water working pressure [250 psig (17.2 bar)].

Sprinkler Identification:

Viking sprinklers are identified and marked with the word "Viking", the sprinkler identification number (SIN) consisting of "VK" plus a three digit number*, the model letter, and the year of manufacture.

Available Finishes:

Viking sprinklers are available in several decorative finishes. Some models are available with corrosion-resistant coatings or are fabricated from non-corrosive material. Refer to the sprinkler technical data page for additional information.

Available Temperature Ratings:

Viking sprinklers are available in several temperature ratings that relate to a specific temperature classification. Applicable installation rules mandate the use and limitations of each temperature classification. In selecting the appropriate temperature classification, the maximum expected ceiling temperature must be known. When there is doubt as to the maximum temperature at the sprinkler location, a maximum-reading thermometer should be used to determine the temperature under conditions that would show the highest readings to be expected. In addition, recognized installation rules may require a higher temperature classification, depending upon sprinkler location, occupancy classification, commodity classification, storage height, and other hazards. In all cases, the maximum expected ceiling temperature dictates the lowest allowable temperature classification. Sprinklers located immediately adjacent to a heat source may require a higher temperature rating.

K-Factors:

Viking sprinklers are available in several orifice sizes with related K-Factors. The orifice is a tapered waterway and, therefore, the K-Factor given is nominal. Nominal U.S. K-Factors are provided in accordance with the 1999 edition of NFPA 13, Section 3-2.3. Refer to the specific data page for appropriate K-Factor information.

Available Styles:

Viking sprinklers are available for installation in several positions as indicated by a stamping on the deflector. The deflector style dictates the appropriate installation position of the sprinkler; it breaks the solid stream of water issuing from the sprinkler orifice to form a specific spray pattern. The following list indicates the various styles and identification of Viking sprinklers.

<u>UPRIGHT SPRINKLER:</u> A sprinkler intended to be installed with the deflector above the frame so water flows upward through the orifice, striking the deflector and forming an umbrella-shaped spray pattern downward. Marked "SSU" (Standard Sprinkler Upright) or "UPRIGHT" on the deflector.

<u>PENDENT SPRINKLER:</u> A sprinkler intended to be oriented with the deflector below the frame so water flows downward through the orifice, striking the deflector and forming an umbrella-shaped spray pattern downward. Marked "SSP" (Standard Sprinkler Pendent) or "PENDENT" on the deflector.

<u>CONVENTIONAL SPRINKLER:</u> An "old style" sprinkler intended to be installed with the deflector in either the upright or pendent position. The

Viking Technical Data may be found on The Viking Corporation's Web site at http://www.vikinggroupinc.com.

The Web site may include a more recent edition of this Technical Data Page.

deflector provides a spherical type pattern with 40 to 60 percent of the water initially directed downward and a proportion directed upward. Must be installed in accordance with installation rules for conventional or old style sprinklers. DO NOT USE AS A REPLACEMENT FOR STANDARD SPRAY SPRINKLERS. Marked "C U/P" (Conventional Upright/Pendent) on the deflector.

SPRINKLER OVERVIEW

The Viking Corporation, 210 N Industrial Park Drive, Hastings MI 49058
Telephone: 269-945-9501 Technical Services: 877-384-5464 Fax: 269-818-1680 Email: techsvcs@vikingcorp.com

- <u>VERTICAL SIDEWALL (VSW) SPRINKLER:</u> A sprinkler intended for installation near the wall and ceiling. The deflector provides a water spray pattern outward in a quarter-spherical pattern and can be installed in the upright or pendent position with the flow arrow in the direction of discharge. Marked "SIDEWALL" on the deflector with an arrow and the word "FLOW". (Note: Some vertical sidewall sprinklers can only be installed in the upright or pendent position—in this case, the sprinkler will also be marked "UPRIGHT" or "PENDENT".)
- <u>HORIZONTAL SIDEWALL (HSW) SPRINKLER:</u> A sprinkler intended for installation near the wall and ceiling. The special deflector provides a water spray pattern outward in a quarter-spherical pattern. Most of the water is directed away from the nearby wall with a small portion directed at the wall behind the sprinkler. The top of the deflector is oriented parallel with the ceiling or roof. The flow arrows point in the direction of discharge. Marked "SIDEWALL" and "TOP" with an arrow and the word "FLOW".
- EXTENDED COVERAGE (EC) SPRINKLER: A spray sprinkler designed to discharge water over an area having the maximum dimensions indicated in the individual listings. Maximum area of coverage, minimum flow rate, orifice size, and nominal K-Factor are specified in the individual listings. EC sprinklers are intended for Light-Hazard occupancies with smooth, flat, horizontal ceilings unless otherwise specified. In addition to the above markings, the sprinkler is marked "EC".
- QUICK RESPONSE (QR) SPRINKLER: A spray sprinkler with a fast- actuating operating element. The use of quick response sprinklers may be limited due to occupancy and hazard. Refer to the Authority Having Jurisdiction (AHJ) prior to installing.
- QUICK RESPONSE EXTENDED COVERAGE (QREC) SPRINKLER: A spray sprinkler designed to discharge water over an area having the maximum dimensions indicated in the individual listing. This is a sprinkler with an operating element that meets the criteria for guick response. QREC sprinklers are only intended for Light Hazard occupancies. The sprinkler is marked "QREC".
- <u>FLUSH SPRINKLER:</u> A decorative spray sprinkler intended for installation with a concealed piping system. The unit is mounted flush with the ceiling or wall, with the fusible link exposed. Upon actuation, the deflector extends beyond the ceiling or wall to distribute water discharge. The sprinkler is marked "SSP", "PEND", or "SIDEWALL" and "TOP".
- CONCEALED SPRINKLER: A decorative spray sprinkler intended for installation with a concealed piping system. The sprinkler is hidden from view by a cover plate installed flush with the ceiling or wall. During fire conditions, the cover plate detaches, and upon sprinkler actuation, the deflector extends beyond the ceiling or wall to distribute water discharge. The sprinkler is marked "SSP", "PEND", or "SIDEWALL" and "TOP".
- RECESSED SPRINKLER: A spray sprinkler assembly intended for installation with a concealed piping system. The assembly consists of a sprinkler installed in a decorative adjustable recessed escutcheon that minimizes the protrusion of the sprinkler beyond the ceiling or wall without adversely affecting the sprinkler distribution or sensitivity. Refer to the appropriate technical data page for allowable sprinkler models, temperature ratings, and occupancy classifications. DO NOT RECESS ANY SPRINKLER NOT LISTED FOR USE WITH THE ESCUTCHEON.
- <u>CORROSION-RESISTANT SPRINKLER</u>: A special service sprinkler with non-corrosive protective coatings, or that is fabricated from non-corrosive material, for use in atmospheres that would normally corrode sprinklers.
- <u>DRY SPRINKLER:</u> A special-service sprinkler intended for installation on dry pipe systems or wet pipe systems where the sprinkler is subject to freezing temperatures. The unit consists of a sprinkler permanently secured to an extension nipple with a sealed inlet end to prevent water from entering the nipple until the sprinkler operates. The unit MUST be installed in a tee fitting. Dry upright sprinklers are marked with the "B" dimension [distance from the face of the fitting (tee) to the top of the deflector]. Dry pendent and sidewall sprinklers are marked with the "A" dimension [the distance from the face of fitting (tee) to the finished surface of the ceiling or wall].
- <u>LARGE DROP SPRINKLER:</u> A type of special application sprinkler used to provide fire control of specific high-challenge fire hazards. Large drop sprinklers are designed to produce an umbrella-shaped spray pattern downward with a higher percentage of "large" water droplets than standard spray sprinklers. The sprinkler has an extra-large orifice with a nominal K-Factor of 11.2. Marked "HIGH CHALLENGE" and "UPRIGHT".
- EARLY SUPPRESSION FAST-RESPONSE (ESFR) SPRINKLER: A sprinkler intended to provide fire suppression of specific high-challenge fire hazards through the use of a fast response fusible link, 14.0, 16.8, or 25.2 nominal K-Factor, and special deflector. ESFR sprinklers are designed to produce high-momentum water droplets in a hemispherical pattern below the deflector. This permits penetration of the fire plume and direct wetting of the burning fuel surface while cooling the atmosphere early in the development of a high-challenge fire. Marked "ESFR" and "UPRIGHT" or "PEND".
- INTERMEDIATE LEVEL/RACK STORAGE SPRINKLER: A standard spray sprinkler assembly designed to protect its operating element from the spray of sprinklers installed at higher elevations. The assembly consists of a standard or large orifice upright or pendent sprinkler with an integral upright or pendent water shield and guard assembly. Use only those sprinklers that have been tested and listed for use with the assembly. Refer to the technical data page for allowable sprinkler models.
- RESIDENTIAL SPRINKLER: A sprinkler intended for use in the following occupancies: one- and two-family dwellings with the fire protection sprinkler system installed in accordance with NFPA 13D; residential occupancies up to four stories in height with the fire protection system installed in accordance with NFPA 13R; and where allowed by the Authority Having Jurisdiction in residential portions of any occupancy with the fire protection system installed in accordance with NFPA 13.

SPRINKLER OVERVIEW

The Viking Corporation, 210 N Industrial Park Drive, Hastings MI 49058
Telephone: 269-945-9501 Technical Services: 877-384-5464 Fax: 269-818-1680 Email: techsvcs@vikingcorp.com

Residential sprinklers have a unique distribution pattern and utilize a "fast response" heat sensitive operating element. They enhance survivability in the room of fire origin and are designed to provide a life safety environment for a minimum of ten minutes. For this reason, residential sprinklers must not be used to replace standard sprinklers unless tested for and approved by the Authority Having Jurisdiction. In addition to standard markings, the unit is identified as "RESIDENTIAL SPRINKLER" or "RES".

4. INSTALLATION

Refer to appropriate NFPA Installation Standards.

5. OPERATION

Refer to the appropriate sprinkler technical data page(s).

6. INSPECTIONS, TESTS AND MAINTENANCE

Refer to NFPA 25 for Inspection, Testing and Maintenance requirements.

7. AVAILABILITY

Viking sprinklers are available through a network of domestic and international distributors. See The Viking Corporation web site for the closest distributor or contact The Viking Corporation.

8. GUARANTEE

For details of warranty, refer to Viking's current list price schedule or contact Viking directly.

IMPORTANT: Always refer to Bulletin Form No. F_091699 - Care and Handling of Sprinklers and the appropriate sprinkler general care, installation, and maintenance guide. Viking sprinklers are to be installed in accordance with the latest edition of Viking technical data, the appropriate standards of NFPA, FM Global, LPCB, APSAD, VdS or other similar organizations, and also with the provisions of governmental codes, ordinances, and standards, whenever applicable. The sprinkler technical data page may contain installation requirements specific for the sprinkler model selected. The use of certain types of sprinklers may be limited due to occupancy and hazard. Refer to the Authority Having Jurisdiction prior to installation.

REGULATORY AND HEALTH WARNINGS

The Viking Corporation, 210 N Industrial Park Drive, Hastings MI 49058

Telephone: 269-945-9501 Technical Services: 877-384-5464 Fax: 269-818-1680 Email: techsvcs@vikingcorp.com

Visit the Viking website for the latest edition of this technical data page www.vikinggroupinc.com

1. DESCRIPTION

Regulatory and Health Warnings applying to materials used in the manufacture and construction of fire protection products are provided herin as they relate to legally mandated jurisdictional regions.

A WARNING

STATE OF CALIFORNIA, USA

Installing or servicing fire protection products such as sprinklers, valves, piping etc. can expose you to chemicals including, but not limited to, lead, nickel, butadiene, titaninum dioxide, chromium, carbon black, and acrylonitrile which are known to the State of California to cause cancer or birth defects or other reproductive harm.

For more information, go to www.P65Warnings.ca.gov

2. WARRANTY TERMS AND CONDITIONS

For details of warranty, refer to Viking's current list price schedule at www.vikinggroupinc.com or contact Viking directly.

COIN® QUICK RESPONSE UPRIGHT **SPRINKLER VK950** (SPECIFIC APPLICATION)

The Viking Corporation, 210 N Industrial Park Drive, Hastings MI 49058 Telephone: 269-945-9501 Technical Services: 877-384-5464 Fax: 269-818-1680 Email: techsvcs@vikingcorp.com Visit the Viking website for the latest edition of this technical data page: www.vikinggroupinc.com

1. DESCRIPTION

Viking QR COIN® Sprinklers are quick response specific application sprinklers for combustible interstitial (concealed) spaces (i.e., between floors, as well as low pitch attics that meet the criteria shown in the figures in this data page). These upright sprinklers are designed for use in specific light hazard combustible, as well as non-combustible, concealed spaces requiring sprinkler protection. The orifice design of the Viking QR COIN® Sprinkler, with a nominal K-factor of 5.6 (80 metric*), allows efficient use of available water supplies for hydraulically designed fire protection systems. The glass bulb operating element and special deflector combine speed of operation and area of coverage to meet the crucial fire protection requirement for shallow space combustible concealed spaces. The Electroless Nickel PTFE (ENT) coating has been investigated for installation in corrosive environments and is listed/approved as indicated in the Approval Charts.

FEATURES

- In some cases COIN® Sprinklers can allow the use of CPVC piping within the concealed spaces of applications requiring sprinkler protection in open truss construction of both wood and steel trusses (see Figure 3) and solid wood or composite wood joist with upper deck filled with non-combustible insulation
- (see Figure 5).
 COIN® Sprinklers can also be installed with steel pipe in protected areas constructed of solid wood joists (see Figure 7), and solid wood or composite wood joist with upper deck filled with non-combustible insulation (see Figure 8), and in unobstructed open truss construction of both wood and steel trusses (see Figures 9 and 10) as well as obstructed wood truss construction (see Figure 11).
- When using steel pipe, COIN® Sprinklers can be applied as a dry system
- using air or gas as a supervisory medium (see Figures 7–11). In certain scenarios, draft curtains are **NOT** required when sprinkler spacing meets either of the following criteria (also refer to Design Criteria):
 - 14' X 14' (4,3 m X 4,3 m) for solid wood joists or trusses on edge 16' X 16' (4,9 m X 4,9 m) for truss construction on face (not on edge)
 - For examples of trusses on face or edge see Figures 13A and 13B.

COIN	[®] Sprinkler
VK950	5.6K (80 metric)

2. LISTINGS AND APPROVALS

շ(Սլ)սs cULus Listed: Category VNIV

Refer to the Approval Chart and Design Criteria in this technical data sheet for cULus Listing requirements that must be followed.

The COIN® Sprinkler has been tested to address the proper application density for shallow concealed combustible space fire protection when installed in accordance with this technical data page. The COIN® Sprinkler must be installed in the upright position as specified in the appropriate application described in Figures 3–12. The clearance from the sprinkler deflector to the roof is critical to operation of the sprinkler (refer to Figures 3–12). The clearances from pipe to lower ceiling for CPVC pipe is critical for protection

For open truss and joist spaces, the maximum detection area is important for proper installation.

In certain installations, draft curtains or heat collection baffles or solid walls are required using wood or other product that will not allow heat to escape. In these installations, the maximum detection space shall be **limited** to 1000 ft² (93 m²) or 2000 ft² (185 m²) for solid wood joists. The draft curtain is required to protrude down from the top deck surface as specified herein.

Additionally, draft curtains are not required and the maximum detection space shall be unlimited for open truss construction with the top chord member on their face (not on edge) when sprinkler spacing is up to 16' X 16' (4,9 m X 4,9 m) and for solid wood joists or trusses on edge when sprinkler spacing is up to 14' X 14' (4,3 m X 4,3 m). In these cases, draft curtains are **not required**.

COIN® QUICK
RESPONSE UPRIGHT
SPRINKLER VK950
(SPECIFIC APPLICATION)

The Viking Corporation, 210 N Industrial Park Drive, Hastings MI 49058
Telephone: 269-945-9501 Technical Services: 877-384-5464 Fax: 269-818-1680 Email: techsvcs@vikingcorp.com

Visit the Viking website for the latest edition of this technical data page: www.vikinggroupinc.com

3. TECHNICAL DATA

Specifications:

Minimum Operating Pressure: Refer to Design Criteria in this technical data sheet.

Rated to 175 psi (12 bar) water working pressure Factory tested hydrostatically to 500 psi (34.5 bar)

Thread size: 1/2" (15 mm) NPT

Nominal K-Factor: 5.6 U.S. (80 metric*)

* Metric K-factor measurement shown is when pressure is measured in Bar. When pressure is measured in kPa, divide the metric K-factor shown by 10.0.

Glass-bulb fluid temperature rated to -65 °F (-55 °C)

Overall Length: 2-1/4" (57 mm)

Material Standards:

Frame Casting: Brass UNS-C84400 or QM Brass Deflector: Phosphor Bronze UNS-C51000 Bulb: Glass, nominal 3 mm diameter

Belleville Spring Sealing Assembly: Nickel Alloy, coated on both sides with PTFE Tape

Screw: Brass UNS-C36000

Pip Cap and Insert Assembly: Copper UNS-C11000 and Stainless Steel UNS-S30400

Ordering Information: (Refer to Table 1.)

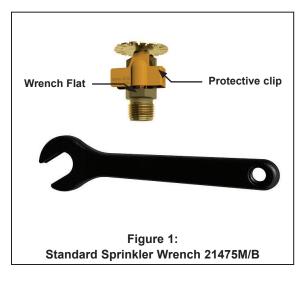
4. INSTALLATION

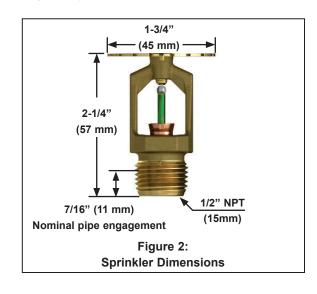
Refer to appropriate NFPA Installation Standards.

5. OPERATION

During a fire condition, the heat sensitive liquid in the glass bulb expands, causing the glass to shatter, releasing the pip cap and sealing spring assembly. Water flowing through the sprinkler orifice strikes the deflector, forming a uniform spray pattern to extinguish or control the fire, and protect the piping in the interstitial space.

6. INSPECTIONS, TESTS AND MAINTENANCE


Refer to NFPA 25 for Inspection, Testing and Maintenance requirements.


7. AVAILABILITY

The Viking QR COIN® Sprinkler is available through a network of domestic and international distributors. See The Viking Corporation web site for the closest distributor or contact The Viking Corporation.

8. GUARANTEE

For details of warranty, refer to Viking's current list price schedule or contact Viking directly.

COIN® QUICK
RESPONSE UPRIGHT
SPRINKLER VK950
(SPECIFIC APPLICATION)

The Viking Corporation, 210 N Industrial Park Drive, Hastings MI 49058
Telephone: 269-945-9501 Technical Services: 877-384-5464 Fax: 269-818-1680 Email: techsvcs@vikingcorp.com
Visit the Viking website for the latest edition of this technical data page: www.vikinggroupinc.com

_		
	` ,	r the desired Temperature Rating.
	(1) add the si	uffix for the desired Finish
	Instructions: Using	the sprinkler base part number,
	IABLE 1: OR	DERING INFORMATION

Sprinkler	Size	1: Finishes		2: Temperature Ratings⁴ Classification: Intermediate					
Base Part No.	NPT Inch	Description	Suffix	Nominal Rating	Bulb Color	Max. Ambient Ceiling Temperature ¹	Suffix		
20757	1/2	Brass	Α	200 °F (93 °C)	Green	150 °F (65 °C)	E		
		ENT ^{2,3}	JN						

Corrosion-Resistant Coating:

ENT^{2,3}

Example: 20757AE = VK950 with Brass Finish and 200 °F (93 °C) Nominal temperature rating. This sprinkler is to be installed into an area with a maximum ambient temperature of 150 °F (65 °C) meaning if the area will experience temperatures above the maximum ambient rating, you shall use a higher temperature-rated sprinkler.

Accessories

Sprinkler Wrenches (see Figure 1):

A. Standard Wrench: Part No. 21475MB.

Sprinkler Cabinet:

A. Up to 6 sprinklers: Part number 01724A. B. 6-12 Sprinklers: Part number 01725A.

Footnotes

- Based on NFPA 13, NFPA 13R, and NFPA 13D. Other limits may apply, depending on fire loading, sprinkler location, and other requirements of the Authority Having Jurisdiction. Refer to specific installation standards.
- 2. cULus Listed as corrosion resistant.
- 3. The corrosion resistant coatings have passed the standard corrosion test required by the approving agencies indicated in the Approval Chart. These tests cannot and do not represent all possible corrosive environments. Prior to installation, verify through the end-user that the coatings are compatible with or suitable for the proposed environment. For automatic sprinklers, the ENT coating is applied to all exposed exterior surfaces, including the waterway. For ENT coated sprinklers, the Belleville spring is exposed.
- 4. The sprinkler temperature rating is stamped on the deflector.

Approval Chart Temperature KEY COIN® Specific Application QR Upright Sprinkler VK950 A1X ← Escutcheon (if applicable) For Light Hazard Occupancies Only **Nominal** Listings and Approvals³ Part Maximum **Thread Size Overall Length** K-Factor (Refer also to Design Criteria.) SIN Number¹ **Pressure BSPT** U.S. metric² NPT cULus⁴ Inches mm 20757 VK950 175 psi 1/2" 15 mm 5.6 80 2-1/4 57 Α1 **Approved Temperature Rating** Approved Finish A - 200 °F (93 °C) 1 - Brass, ENT⁶

Footnotes

- ¹ Also refer to Viking's current price schedule.
- ² Metric K-factor measurement shown is when pressure is measured in Bar. When pressure is measured in kPa, divide the metric K-factor shown by 10.0.
- ³ This table shows the listings and approvals available at the time of printing. Other approvals may be in process.
- ⁴ Listed by Underwriters Laboratories Inc. for use in the U.S. and Canada.
- ⁵ Meets New York City requirements, effective July 1, 2008.
- ⁶ cULus Listed as corrosion resistant.

COIN® QUICK
RESPONSE UPRIGHT
SPRINKLER VK950
(SPECIFIC APPLICATION)

The Viking Corporation, 210 N Industrial Park Drive, Hastings MI 49058
Telephone: 269-945-9501 Technical Services: 877-384-5464 Fax: 269-818-1680 Email: techsvcs@vikingcorp.com
Visit the Viking website for the latest edition of this technical data page: www.vikinggroupinc.com

DESIGN CRITERIA - CPVC PIPE (See Figures 3-6)

(Also refer to the Approval Chart on page 3.)

The Viking COIN® Sprinkler MUST be installed in the upright position.

APPLICATION

For installation in horizontal interstitial concealed spaces constructed of engineered open wood trusses, open bar joist, and non-combustible insulation completely filling the upper joist for solid or composite wood joist construction having roof pitch of up to 2/12.

NOTE: In order to be considered "non- combustible insulation filled solid wood or composite wood joist construction", the insulation (including insulation provided with a combustible vapor barrier), must completely fill the pockets between the joists to the bottom of the joists, and the insulation must be secured in place with metal wire netting. The metal wire netting is intended to hold the insulation in place should the insulation become wetted by the operation of the COIN® Sprinklers in the event of a fire.

A. Concealed Space Limitations

The total concealed space is not limited; however, the following must be observed:

- Draft curtains (heat collection baffle) or full height walls must be provided to limit the maximum area in order to confine heat of localized detection area to 1000 ft² (93 m²) or, for solid wood joists and open truss construction with the top chord members on face (not on edge) to 2000 ft² (185 m²).
- Insulated top chord spaces (on edge) confine heat localized detection area to 2000 ft², non-insulated top chord spaces (on edge) confine heat localized area to 1000 ft² (93 m²).
- The draft curtain must be at least 1/3 the depth of the concealed space or 8" (200 mm), whichever is greater, for open truss construction, open bar joist, and non-combustible insulation filled solid or composite wood joist construction.
- The draft curtain must be constructed of material that will not allow heat to escape through or above it; this may be 1/4" (6 mm) thick plywood.
- Draft curtains are NOT required when sprinkler spacing is up to 14' X 14' (4,3 m X 4,3 m) for solid wood joists or trusses on edge; see Figure 13B.
- Draft curtains are NOT required when sprinkler spacing is up to 16' X 16' (4,9 m X 4,9 m) for truss construction on face (not on edge); see Figure 13A.
- Draft curtains are NOT required when using wood truss construction with chords on face and non-combustible insulation is provided to the bottom of the trusses (Figure 12).

B. Concealed Space Height

Open Wood Truss and Open Steel Joist Construction (Figure 3):

- Maximum height of the space: 60" (1.5 m).
- Minimum height: 6" (150 mm)
- Maximum roof pitch: 2/12 (9°)

Where applied to pitch roof and flat ceiling, maintain specified clearances from sprinkler deflector to truss and maximum height of pipe run to ceiling or non-combustible ceiling insulation in all locations. **NOTE:** The sprinkler deflector shall be installed parallel with the roof plane.

Solid wood or composite wood joist with non-combustible filled insulation only (Figure 5):

- · Maximum depth of concealed space is 60" (1500 mm) from bottom of upper deck joist to top of ceiling joist.
- · Minimum depth is 6" (152 mm) from bottom of upper deck joist to top of ceiling joist or non-combustible ceiling insulation.

C. System Type

· Light Hazard, Wet Pipe System

D. Minimum Density

• 0.10 gpm/ft² (4.1 mm/min).

E. Spacing of COIN® Sprinklers

- · Minimum Spacing: 6'-0"(1.8 m)
- Maximum Spacing: 16'-0" (4.9 m)

NOTE: Minimum spacing does not include additional sprinklers required for obstructions for use of CPVC pipe that includes offsets.

F. Maximum Area of Coverage

256 ft² (24 m²)

G. Minimum Operating Pressure

• 7.0 PSI (0.5 bar)

H. COIN® Sprinkler Deflector Position

The COIN® Sprinkler shall be installed in the upright position. The frame arms must be installed parallel with the pipe.

- 1-1/2" to 4" (40 100 mm) below upper deck for Open Wood Truss and Open Steel Open Joist Construction Using CPVC Pipe (see Figure 3).
- 1-1/2" to 4" (40 100 mm) below non-combustible insulation-filled upper deck for Open Wood Truss and Open Steel Open Joist Construction with Using CPVC Pipe (see Figure 4).
- 1-1/2" to 4" (40 100 mm) below non-combustible insulation-filled solid wood joists or composite wood joists (see Figure 5).

(continues on page 5.)

COIN® QUICK
RESPONSE UPRIGHT
SPRINKLER VK950
(SPECIFIC APPLICATION)

The Viking Corporation, 210 N Industrial Park Drive, Hastings MI 49058
Telephone: 269-945-9501 Technical Services: 877-384-5464 Fax: 269-818-1680 Email: techsvcs@vikingcorp.com
Visit the Viking website for the latest edition of this technical data page: www.vikinggroupinc.com

DESIGN CRITERIA - CPVC PIPE (See Figures 3-6)

(Also refer to the Approval Chart)

(continued from page 4.)

I. Remote Area

For wet pipe systems,

- 1. The remote area for open wood truss construction or open bar joist construction with the top chord members on face (not on edge) is 1000 ft² (93 m²) or 6 sprinklers, whichever is greater. See Table 2.
 - Draft curtains are NOT required when sprinkler spacing is up to 16' X 16' (4,9 m X 4,9 m). The remote area for this application is the same as above.
- 2. The remote area for solid wood joists is 1000 ft² (93 m²) or 6 sprinklers, whichever is greater. See Table 2.
- Draft curtains are NOT required when sprinkler spacing is up to 14' X 14' (4,3 m X 4,3 m). The remote area for this application is the same as above.
- 3. The remote area for open wood truss construction with the top chord members on edge is 1000 ft2 (93 m2) or 6 sprinklers, whichever is greater. See Table 2.
 - Draft curtains are NOT required when sprinkler spacing is up to 14' X 14' (4,3 m X 4,3 m) The remote area for this application is the same as above.
- 4. The remote area for composite wood joists is 1000 ft² (93 m²).

NOTE: This area does not include additional sprinklers for protection of CPVC pipe over obstructions.

J. UL Listed CPVC Pipe for use with COIN™ Sprinklers

The Viking COIN® Sprinkler is UL Listed for use with CPVC pipe products listed for use in concealed spaces with sprinklers**.

**Currently listed products are manufactured under the BlazeMaster®, FireLock®, and FlameGuard® trade names.

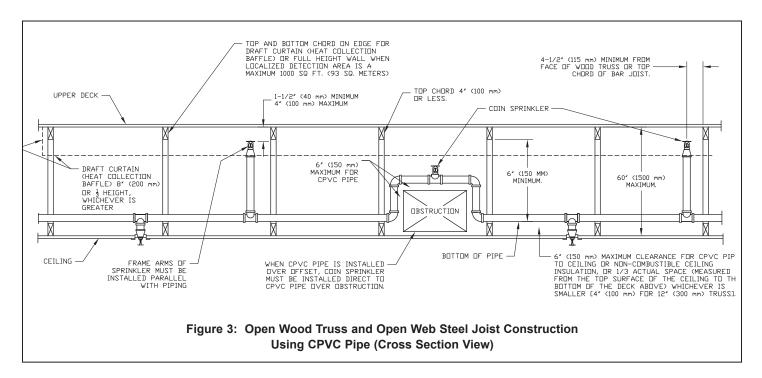
In order to use CPVC products, the bottom of the horizontal run must be no greater than 6" (150 mm) or 1/3 of the total space, whichever is smaller, above the ceiling or non-combustible insulation or 1/3 the depth of the space measured from the top surface of the ceiling to the bottom of the deck above. The CPVC pipe can supply the COIN® Sprinklers and the ceiling sprinklers below. Use all guidelines and installation instructions as specified by the CPVC pipe manufacturers unless specified differently in this data sheet. When using 1" (DN25) pipe or larger, a hanger must be located at the truss nearest the sprig for restraint. If using 3/4" (DN20), all sprigs over 12" (300 mm) must include lateral bracing.

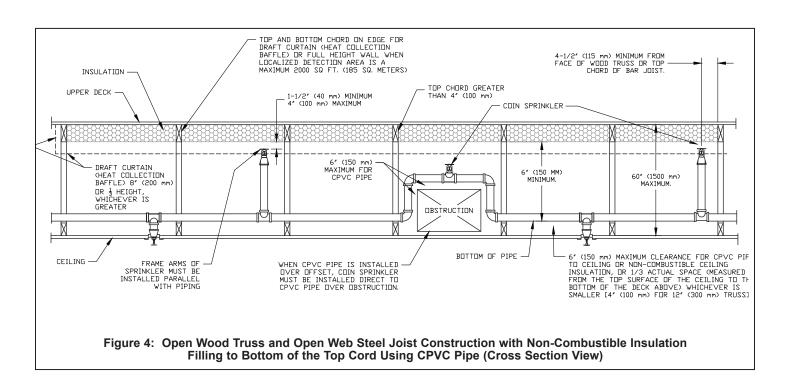
For use of listed CPVC pipe products in concealed spaces using the COIN® Sprinkler, a minimum lateral distance of 18" (450 mm) must be maintained between the CPVC pipe and the heat sources (e.g. HVAC heat pump units, fan motors, and heat lamps, etc.)

Where CPVC pipe must be installed above the maximum distance of 6" (150 mm) or 1/3 of the total space, whichever is smaller, above the ceiling or non-combustible insulation when piping around obstructions, additional COIN® Sprinklers must be installed as shown in Figures 3, 4, and 5 in order to protect the CPVC product.

NOTE: Where CPVC piping is installed as a vertical riser to the next floor above, refer to Figure 6 for acceptable options.

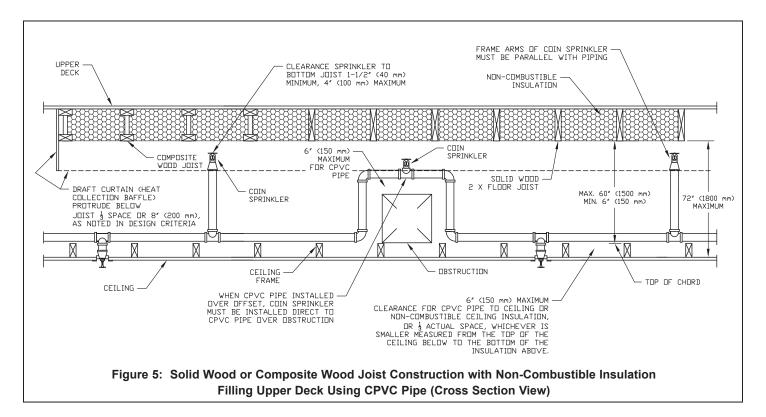
TABLE 2: PRESSURE VS. COVERAGE MATRIX All values based on 0.1 gpm/ft² density per sprinkler or 7 psi (0.5 bar) whichever is higher.											
Ft. (m)	PSI (bar)										
16 (4.8)	7 (0.4)	7.2 (0.4)	8.2 (0.5)	10.3 (0.7)	12.8 (0.8)	14.1 (0.9)	16.9 (1.1)	18.4 (1.2)	21.6 (1.4)		
15 (4.5)	7 (0.4)	7 (0.4)	7.2 (0.4)	9.2 (0.6)	10.3 (0.7)	12.8 (0.8)	14.1 (0.9)	16.9 (1.1)	18.4 (1.2)		
14 (4.2)	7 (0.4)	7 (0.4)	7 (0.4)	8.2 (0.5)	9.2 (0.6)	11.5 (0.7)	12.8 (0.8)	14.1 (0.9)	16.9 (1.1)		
13 (3.9)	7 (0.4)	7 (0.4)	7 (0.4)	7 (0.4)	8.2 (0.5)	9.2 (0.6)	11.5 (0.7)	12.8 (0.8)	14.1 (0.9)		
12 (3.6)	7 (0.4)	7 (0.4)	7 (0.4)	7 (0.4)	7 (0.4)	8.2 (0.5)	9.2 (0.6)	10.3 (0.7)	12.8 (0.8)		
11 (3.3)	7 (0.4)	7 (0.4)	7 (0.4)	7 (0.4)	7 (0.4)	7 (0.4)	8.2 (0.5)	9.2 (0.6)	10.3 (0.7)		
10 (3.0)	7 (0.4)	7 (0.4)	7 (0.4)	7 (0.4)	7 (0.4)	7 (0.4)	7 (0.4)	7.2 (0.4)	8.2 (0.5)		
9 (2.7)	7 (0.4)	7 (0.4)	7 (0.4)	7 (0.4)	7 (0.4)	7 (0.4)	7 (0.4)	7 (0.4)	7.2 (0.4)		
8 (2.4)	7 (0.4)	7 (0.4)	7 (0.4)	7 (0.4)	7 (0.4)	7 (0.4)	7 (0.4)	7 (0.4)	7 (0.4)		
Ft. (m)	8 (2.4)	9 (2.7)	10 (3.0)	11 (3.3)	12 (3.6)	13 (3.9)	14 (4.2)	15 (4.5)	16 (4.8)		

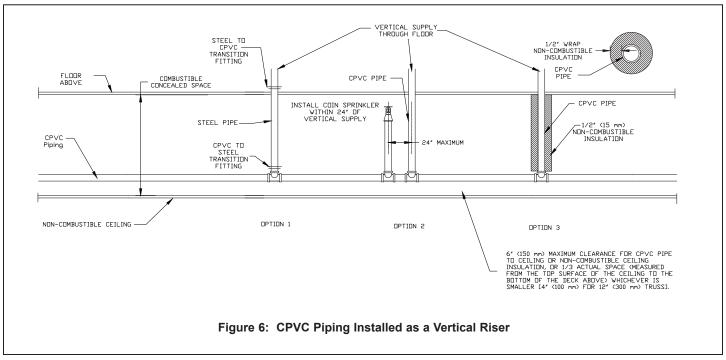

NOTES:


- This table applies to heat collection areas of 2000 ft² (185 m²) and greater (unlimited).
- Design areas between table spacing values need to be rounded up.
- This table does not apply to heat collection areas of 1000 ft² (93 m²).

COIN® QUICK
RESPONSE UPRIGHT
SPRINKLER VK950
(SPECIFIC APPLICATION)

The Viking Corporation, 210 N Industrial Park Drive, Hastings MI 49058
Telephone: 269-945-9501 Technical Services: 877-384-5464 Fax: 269-818-1680 Email: techsvcs@vikingcorp.com
Visit the Viking website for the latest edition of this technical data page: www.vikinggroupinc.com




COIN® QUICK
RESPONSE UPRIGHT
SPRINKLER VK950
(SPECIFIC APPLICATION)

The Viking Corporation, 210 N Industrial Park Drive, Hastings MI 49058

Telephone: 269-945-9501 Technical Services: 877-384-5464 Fax: 269-818-1680 Email: techsvcs@vikingcorp.com

Visit the Viking website for the latest edition of this technical data page: www.vikinggroupinc.com

COIN® QUICK RESPONSE UPRIGHT **SPRINKLER VK950** (SPECIFIC APPLICATION)

The Viking Corporation, 210 N Industrial Park Drive, Hastings MI 49058 Telephone: 269-945-9501 Technical Services: 877-384-5464 Fax: 269-818-1680 Email: techsvcs@vikingcorp.com

Visit the Viking website for the latest edition of this technical data page: www.vikinggroupinc.com

DESIGN CRITERIA - STEEL PIPE (See Figures 7 – 12)

(Also refer to the Approval Chart on page 3)

The Viking COIN® Sprinkler MUST be installed in the upright position.

For installation in horizontal concealed spaces of solid wood joist construction with a roof pitch of up to 2/12 maximum. The upper joist is constructed of solid wood or composite wood with a maximum depth of 12" (300 mm) and 16" (400 mm) on center minimum spacing. Also, steel pipe may be applied in truss construction and solid filled non-combustible insulation in upper deck and wood or composite joist construction similar to that shown in igures 3-5 with the exception of extra sprinklers are not required over obstructions. Also, there is no minimum clearance for supply pipe to upper joists. With the COIN® Sprinkler applied using steel pipe, the system may be wet, dry, or preaction type for wood truss or steel construction; solid wood or composite with non-combustible solid fill insulation (see Paragraph J on page 9).

NOTE: In order to be considered "non-combustible insulation filled solid wood or composite wood joist construction", the insulation (including insulation provided with a combustible vapor barrier), must completely fill the pockets between the joists to the bottom of the joists, and the insulation must be secured in place with metal wire netting. The metal wire netting is intended to hold the insulation in place should the insulation become wetted by the operation of the COIN® Sprinklers in the event of a fire.

A. Concealed Space Limitations

The total concealed space is not limited; however, the following must be observed:

- Blocking between joists and upper deck must be constructed of material that will not allow heat to escape through or above the blocking.
- Blocking between joists and upper deck must be constructed of material that will not allow hear to escape through or above the blocking. The blocking must be constructed to the full depth of the upper joist, and must be constructed using a non-combustible material or a material that is the same as that of the joist construction. A maximum channel space for blocking is 32 ft (10 m) intervals.

 Solid wall construction or draft curtains (heat collection baffles) must protrude below the joist a minimum of 6" (150 mm) or 1/3 the space, whichever is greatest, and run laterally with the joist spaced at 31 ft (9.4 m) width maximum to limit the heat detection space to a maximum of 1,000 ft² (93 m²) or with the truss spaced at 62 ft (19 m) width maximum to limit the heat detection space for open wood truss construction to 2000 ft² (185 m²) with their top chord members on face (not on edge) and 2000 ft² (185 m²) for solid wood joists.

 Insulated top chord spaces (on edge) confine heat localized detection area to 2000 ft² (185 m²), non-insulated top chord spaces on edge confine heat localized area to 1,000 ft² (93 m²).
- The draft curtain may be constructed of 1/4" (6 mm) thick plywood to prevent heat from escaping beyond.
- When non-combustible solid filled insulation is used, the wood blocking and draft curtains are not required for solid wood or composite wood joist
- Draft curtains are NOT required when sprinkler spacing is up to 14' X 14' (4,3 m X 4,3 m) for solid wood joists or trusses on edge for wet systems only; see Figure 13B.
- Draft curtains are NOT required when sprinkler spacing is up to 16' X 16' (4,9 m X 4,9 m) for truss construction on face (not on edge) for wet or dry systems; see Figure 13A.
- Draft curtains are NOT required when using wood truss construction with chords on face and non-combustible insulation is provided to the bottom of the trusses (Figure 12).

B. Concealed Space Height

Solid Wood or Composite Wood Joist Construction (See Figures 7 and 8):

- · Maximum depth or height of concealed space: 60" (1500 mm) from bottom of upper deck joist to top of ceiling joist.
- Maximum space from bottom of upper deck to ceiling surface (bottom of joist): 84" (2100 mm). See Figure 7.
- · Minimum depth or height of concealed space: 6" (150 mm) from bottom of upper deck joist to top of ceiling frame joist.

Open Wood Truss or Open Web Steel Joist (See Figure 10):

- Maximum height from inside ceiling to inside deck of concealed space: 60" (1500 mm).
- Minimum height from bottom of upper chords to top of lower chords: 6" (150 mm)
- The top and bottom chord members of these types of wood joists must be on face (not on edge).

Obstructed Wood Truss (See Figure 11):

- · Maximum depth of concealed space: 84" (2100 mm) from bottom of upper deck to top of ceiling.
- · Minimum depth of concealed space: 6" (150 mm) from bottom of upper chord to top of lower chord.

C. System Type

· Light hazard, wet pipe system or dry pipe system supervised with air or gas when using steel pipe only.

D. Minimum Density

0.10 gpm/ft². (4.1 mm/min).

E. Spacing of COIN® Sprinklers

- Minimum Space Between Sprinklers: 6'-0" (1.8 m)
- Maximum Space Between Sprinklers: 16'-0" (4.9 m)

F. Maximum Area of Coverage

- 256ft² (24 m²)
- G. Minimum Operating Pressure
- 7.0 PSI (0.5 bar)

H. COIN® Sprinkler Deflector Position

The COIN® Sprinkler shall be installed in the upright position. The frame arms must be installed parallel with the pipe.

- 1-1/2" to 2" (40 50 mm) below solid wood joist or top chord of obstructed wood truss construction. See Figures 7 and 11.
- 1-1/2" to 4" (40 100 mm) below upper deck for unobstructed open wood truss construction or concealed spaces of non-combustible open steel joist construction. See Figures 8 and 9.
- 1-1/2" to 4" (40 100 mm) below non-combustible insulation-filled solid wood joists or composite wood joists. See Figure 8.

(continues on page 9.)

COIN® QUICK
RESPONSE UPRIGHT
SPRINKLER VK950
(SPECIFIC APPLICATION)

The Viking Corporation, 210 N Industrial Park Drive, Hastings MI 49058
Telephone: 269-945-9501 Technical Services: 877-384-5464 Fax: 269-818-1680 Email: techsvcs@vikingcorp.com
Visit the Viking website for the latest edition of this technical data page: www.vikinggroupinc.com

DESIGN CRITERIA - STEEL PIPE (See Figures 7–12)

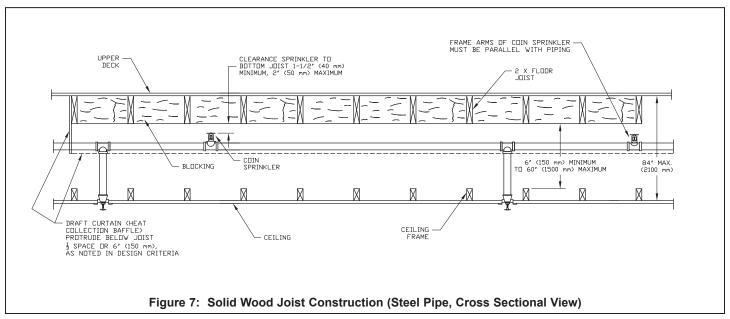
(Also refer to the Approval Chart on page 3)

(continued from page 8)

I. Remote Area

For wet pipe systems,

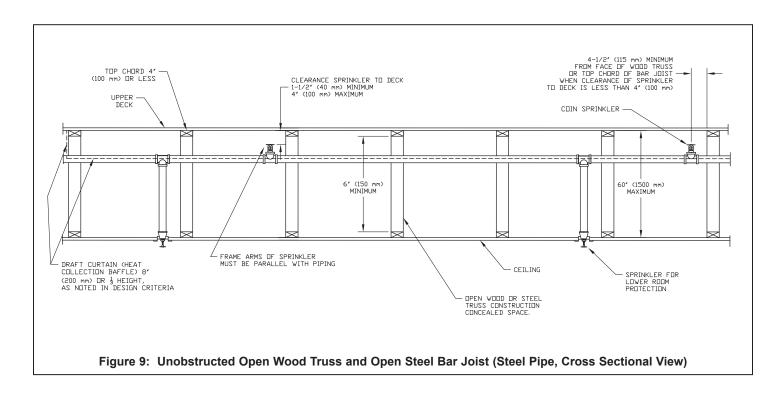
- 1. The remote area for open wood truss construction or open bar joist construction with the top chord members on face (not on edge) is 1000 ft² (93 m²) or 6 sprinklers, whichever is greater. See Table 2.
 - Draft curtains are NOT required when sprinkler spacing is up to 16' X 16' (4,9 m X 4,9 m). The remote area for this application is the same as above.
- 2. The remote area for solid wood joists is 1000 ft² (93 m²) or 6 sprinklers, whichever is greater. See Table 2.
 - Draft curtains are NOT required when sprinkler spacing is up to 14' X 14' (4,3 m X 4,3 m). The remote area for this application is the same as above.
- 3. The remote area for open wood truss construction with the top chord members on edge is 1000 ft² (93 m²) or 6 sprinklers, whichever is greater. See Table 2.
 - Draft curtains are NOT required when sprinkler spacing is up to 14' X 14' (4,3 m X 4,3 m) The remote area for this application is the same as above.
- 4. The remote area for composite wood joists is 1000 ft² (93 m²).

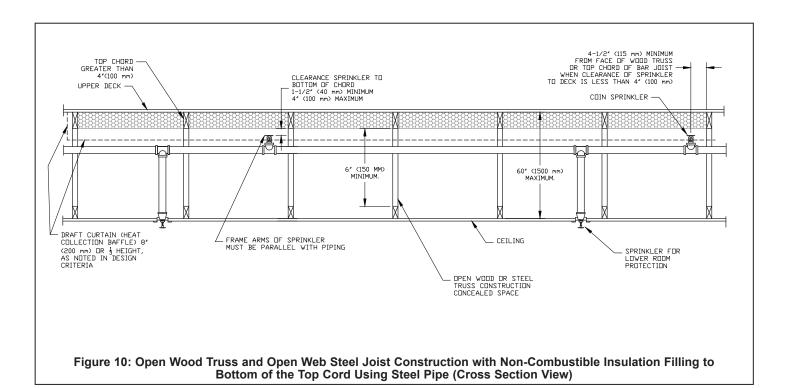

For dry pipe systems,

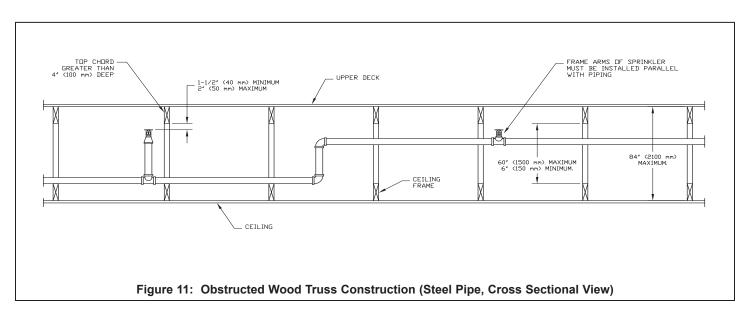
- 1. The remote area for open wood truss construction or open bar joist construction with the top chord members on face (not on edge) is 1000 ft² (93 m²) or 6 sprinklers, whichever is greater. See Table 2.
 - Draft curtains are NOT required when sprinkler spacing is up to 16' X 16' (4,9 m X 4,9 m). The remote area for this application is the same as above.
- 2. The remote area for solid wood joists is 2000 ft2 (185 m2) or 15 sprinklers, whichever is greater. See Table 2.
- 3. The remote area for open wood truss construction with the top chord members on edge is 1000 ft² (93 m²).
- 4. The remote area for composite wood joists is 1000 ft² (93 m²).

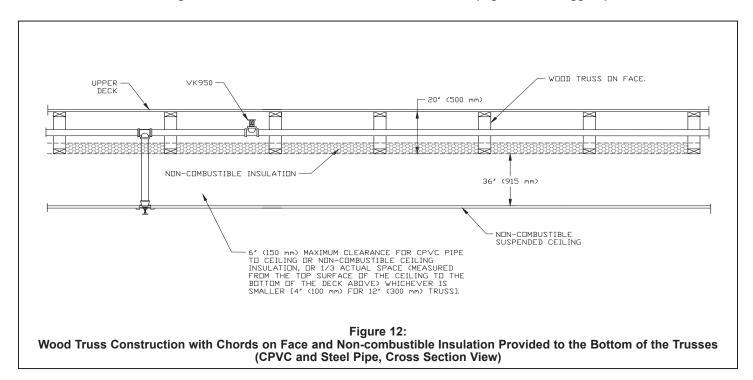
J. Piping System

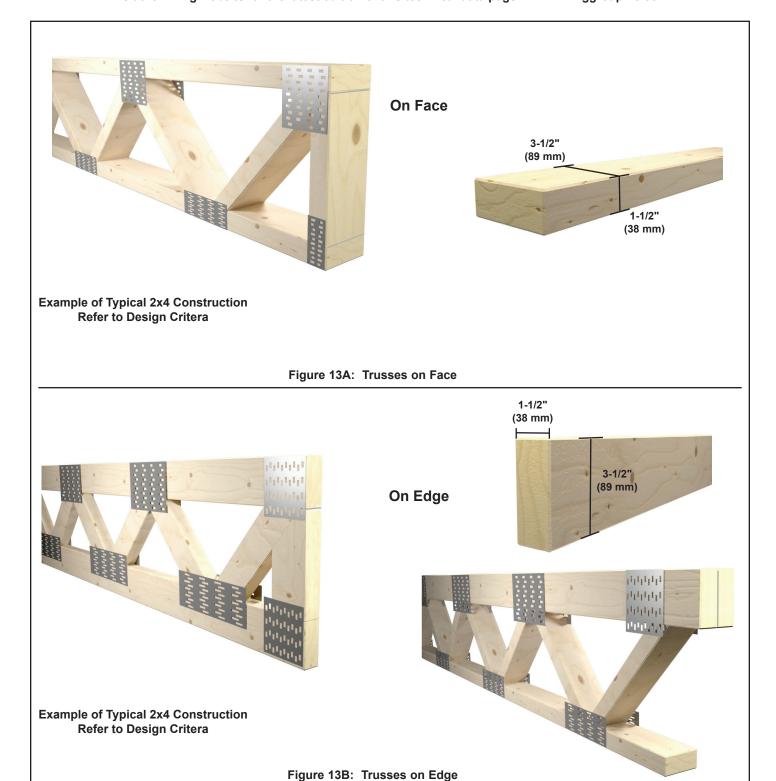
Steel pipe installed in accordance with NFPA 13 standards may be applied. The steel pipe may be hung from the upper joist or truss using proper supports. The sprinkler deflector must be positioned as indicated in paragraph H above. Extra sprinklers are not required for protection of pipe when offsetting for obstructions. Ceiling sprinklers below the concealed space may be fed from the same piping as the COIN® Sprinklers.


IMPORTANT: Always refer to Bulletin Form No. F_091699 - Care and Handling of Sprinklers. Also refer to Bulletin Form No. F_080614 for general care, installation, and maintenance information. Viking sprinklers are to be installed in accordance with the latest edition of Viking technical data, the appropriate standards of NFPA, FM Global, LPCB, APSAD, VdS or other similar organizations, and also with the provisions of governmental codes, ordinances, and standards, whenever applicable.


COIN® QUICK
RESPONSE UPRIGHT
SPRINKLER VK950
(SPECIFIC APPLICATION)




COIN® QUICK
RESPONSE UPRIGHT
SPRINKLER VK950
(SPECIFIC APPLICATION)



COIN® QUICK
RESPONSE UPRIGHT
SPRINKLER VK950
(SPECIFIC APPLICATION)

COIN® QUICK
RESPONSE UPRIGHT
SPRINKLER VK950
(SPECIFIC APPLICATION)

COIN® QUICK RESPONSE UPRIGHT **SPRINKLER VK950** (SPECIFIC APPLICATION)

The Viking Corporation, 210 N Industrial Park Drive, Hastings MI 49058 Telephone: 269-945-9501 Technical Services: 877-384-5464 Fax: 269-818-1680 Email: techsvcs@vikingcorp.com Visit the Viking website for the latest edition of this technical data page: www.vikinggroupinc.com

OBSTRUCTION CRITERIA - CPVC and STEEL PIPE

APPLIES TO BOTH CPVC AND STEEL PIPE (Also refer to the Approval Chart)

OBSTRUCTIONS

- All obstruction criteria for extended coverage sprinklers per NFPA 13 shall apply unless specified differently in this data sheet.
- For installations where the VK950 is installed up to a 15'-0" X 15'-0" spacing or less between
- sprinkler, the obstruction rules for standard coverage sprinklers shall apply. For installations where the VK950 exceeds 15'-0" X 15'-0" spacing, and up to 16'-0" X 16'-0" spacing, the obstruction rules for extended coverage sprinklers shall apply See illustrations below.

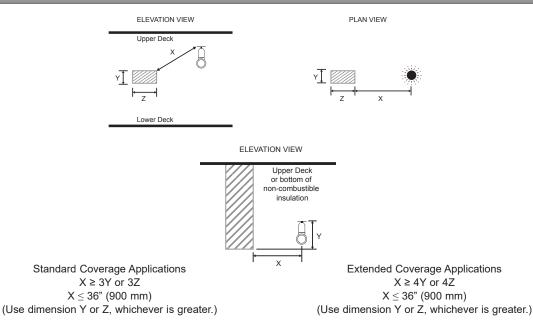


Figure 14: NFPA 13 Obstruction Criteria

NFPA 13 Obstruction Criteria - Standard Coverage ApplicationTable 10.2.7.1.2

Distance from of Obs	Allowable of Def Above B	mum Distance Flector Sottom of Ction (Y)				
< 1'-0"	<300 mm	0"	0 mm			
1'-0" to <1'-6"	300 mm to <450 mm	2½"	65 mm			
1'-6" to <2'-0"	450 mm to <600 mm	3½"	90 mm			
2'-0" to <2'-6"	600 mm to <750 mm	5½"	140 mm			
2'-6" to <3'-0"	750 mm to <900 mm	7½"	190 mm			
3'-0" to <3'-6"	900 mm to <1.1 m	9½"	240 mm			
3'-6" to <4'-0"	12"	300 mm				
4'-0" to <4'-6"	14"	350 mm				
4'-6" to <5'-0"	1.4 m to <1.5 m	16½"	45 mm			

NFPA 13 Obstruction Criteria - Extended Coverage ApplicationTable 11.2.5.1.2

Distance from of Obs	Allowable of Def Above B	mum Distance Flector Sottom of Ction (Y)			
< 1'-0"	<300 mm	0"	0 mm		
1'-0" to <1'-6"	300 mm to <450 mm	0"	0 mm		
1'-6" to <2'-0"	450 mm to <600 mm	1"	25 mm		
2'-0" to <2'-6"	600 mm to <750 mm	1"	25 mm		
2'-6" to <3'-0"	750 mm to <900 mm	1"	75 mm		
3'-0" to <3'-6"	900 mm to <1.1 m	3"	75 mm		
3'-6" to <4'-0"	3"	75 mm			
4'-0" to <4'-6"	4'-0" to <4'-6" 1.2 m to <1.4 m				
4'-6" to <5'-0"	1.4 m to <1.5 m	7"	175 mm		

SPRINKLER GENERAL CARE, INSTALLATION, AND MAINTENANCE GUIDE

The Viking Corporation, 210 N Industrial Park Drive, Hastings MI 49058
Telephone: 269-945-9501 Technical Services: 877-384-5464 Fax: 269-818-1680 Email: techsvcs@vikingcorp.com
Visit the Viking website for the latest edition of this technical data page.

DESCRIPTION - STANDARD RESPONSE, QUICK RESPONSE, EXTENDED COVERAGE, AND DRY SPRINKLERS

Viking thermosensitive spray sprinklers consist of a small frame and either a glass bulb or a fusible operating element. Available styles include pendent, flush pendent, concealed pendent, upright, horizontal sidewall, vertical sidewall, or conventional, depending on the particular sprinkler model selected.

Viking sprinklers are available with various finishes, temperature ratings, responses, and K-Factors to meet design requirements†. Used in conjunction with one of the corrosion-resistant coatings (for frame style sprinklers), the units provide protection against many corrosive environments. In addition, the special Polyester or Teflon® coatings can be used in decorative applications where colors are desired.

† Refer to the sprinkler technical data page for available styles, finishes, temperature ratings, responses, and nominal K-Factors for specific sprinkler models.

2. LISTINGS AND APPROVALS

Refer to the Approval Charts on the appropriate sprinkler technical data page(s) and/or approval agency listings.

3. TECHNICAL DATA

Specifications:

Refer to the appropriate sprinkler technical data sheet.

Material Standards:

Refer to the appropriate sprinkler technical data sheet.

WARNING: Cancer and Reproductive Harmwww.P65Warnings.ca.gov

4. INSTALLATION

NOTE: Take care not to over-tighten the sprinkler and/or damage its operating parts!

Maximum Torque:

1/2" NPT: 14 ft-lbs. (19.0 N-m) 3/4" NPT: 20 ft-lbs. (27.1 N-m) 1" NPT: 30 ft-lbs. (40.7 N-m)

A. Care and Handling (also refer to Bulletin - Care and Handling of Sprinklers, Form No. F_091699.)

Sprinklers must be handled with care. They must be stored in a cool, dry place in their original shipping container. Never install sprinklers that have been dropped, damaged, or exposed to temperatures exceeding the maximum ambient temperature allowed (refer to the temperature chart on the sprinkler technical data page). Never install any glass-bulb sprinkler if the bulb is cracked or if there is a loss of liquid from the bulb. A small air bubble should be present in the glass bulb. Any sprinkler with a loss of liquid from the glass bulb or damage to the fusible element should be destroyed immediately. (Note: Installing glass bulb sprinklers in direct sunlight (ultraviolet light) may affect the color of the dye used to color code the bulb. This color change does not affect the integrity of the bulb.)

Sprinklers must be protected from mechanical damage during storage, transport, handling, and after installation. Sprinklers subject to mechanical damage must be protected with an approved sprinkler guard.

Use only sprinklers listed as corrosion resistant when subject to corrosive environments. When installing corrosion-resistant sprinklers, take care not to damage the corrosion-resistant coating. Use only the special wrench designed for installing coated or recessed Viking sprinklers (any other wrench may damage the unit).

Concealed sprinklers must be installed in neutral or negative pressure plenums only!

Use care when locating sprinklers near fixtures that can generate heat. Do not install sprinklers where they could be exposed to temperatures exceeding the maximum recommended ambient temperature for the temperature rating used.

Wet pipe systems must be provided with adequate heat. Sprinklers supplied from dry systems in areas subject to freezing must be listed dry sprinklers, upright, or horizontal sidewall sprinklers installed so that water is not trapped. For dry systems, pendent sprinklers and sidewall sprinklers installed on return bends are permitted, where the sprinklers, return bend, and branch line piping are in an area maintained at or above 40 °F (4 °C).

B. Installation Instructions - Standard Spray Sprinklers

Viking sprinklers are manufactured and tested to meet the rigid requirements of approving agencies. They are designed to be installed in accordance with recognized installation standards. Deviation from the standards or any alteration to sprinklers or cover plate assemblies after they leave the factory including, but not limited to: painting, plating, coating, or modification, may render them inoperative and will automatically nullify the approvals and any guarantee made by The Viking Corporation.

SPRINKLER GENERAL CARE, INSTALLATION, AND MAINTENANCE GUIDE

The Viking Corporation, 210 N Industrial Park Drive, Hastings MI 49058
Telephone: 269-945-9501 Technical Services: 877-384-5464 Fax: 269-818-1680 Email: techsvcs@vikingcorp.com
Visit the Viking website for the latest edition of this technical data page.

Before installation, be sure to have the appropriate sprinkler model and style, with the correct K-Factor, temperature rating, and response characteristics. Sprinklers must be installed after the piping is in place to prevent mechanical damage. Keep sprinklers with protective caps or bulb shields contained within the caps or shields during installation and testing, and any time the sprinkler is shipped or handled.

- 1a. For frame-style sprinklers, install escutcheon (if used), which is designed to thread onto the external threads of the sprinkler. Refer to the appropriate sprinkler data page to determine approved escutcheons for use with specific sprinkler models.
- 1b. For flush and concealed style sprinklers: Cut the sprinkler nipple so that the ½" or 3/4" (15 mm or 20 mm)* NPT outlet of the reducing coupling is at the desired location, and centered in the opening* in the ceiling or wall.

 *Size depends on the sprinkler model used. Refer to the sprinkler technical data page.
- 2. Apply a small amount of pipe-joint compound or tape to the external threads of the sprinkler only, taking care not to allow a build-up of compound in the sprinkler inlet. **NOTE:** Sprinklers with protective caps or bulb shields must have the caps or shields kept on them when applying pipe-joint compound or tape. *Exception: For domed concealed sprinklers, remove the protective cap for installation, and then place it back on the sprinkler temporarily.*
- 3. Refer to the appropriate sprinkler technical data page to determine the correct sprinkler wrench for the model of sprinkler used. DO NOT use the deflector or fusible element to start or thread the sprinkler into a fitting.
 - a. Install the sprinkler onto the piping using the special sprinkler wrench only, taking care not to over-tighten or damage the sprinkler.
 - b. For flush and concealed style sprinklers: the internal diameter of the special sprinkler installation wrench is designed for use with the sprinkler contained in the protective cap. *Exception: For domed concealed sprinklers, remove the protective cap for installation, and then place it back on the sprinkler temporarily.* Thread the flush or concealed sprinkler into the ½" or 3/4" (15 mm or 20 mm)* NPT outlet of the coupling by turning it clockwise with the special sprinkler wrench. *Thread size depends on the particular sprinkler model used. Refer to the sprinkler technical data page.

C. Installation Instructions - Dry Sprinklers

WARNING: Viking dry sprinklers are to be installed in the 1" outlet (for dry and preaction systems), or run of malleable, ductile iron, or Nibco CPVC* threaded tee fittings (for wet systems) that meet the dimensional requirements of ANSI B16.3 (Class 150), or cast iron threaded tee fittings that meet the dimensional requirements of ANSI B16.4 (Class 125), even at branch line ends. The threaded end of the dry sprinkler is designed to allow the seal to penetrate and extend into the fitting to a predetermined depth. This prevents condensation from accumulating and freezing over the sprinkler seal. *NOTE: When using CPVC fittings with Viking dry sprinklers, use only new Nibco Model 5012-S-BI. When selecting other CPVC fittings, contact Viking Technical Services.

- 1. **DO NOT** install the dry sprinkler into a threaded elbow, coupling, or any other fitting that could interfere with thread penetration. Such installation would damage the brass seal.
- 2. **DO NOT** install dry sprinklers into couplings or fittings that would allow condensation to accumulate above the seal when the sprinkler is located in an area subject to freezing.
- 3. NEVER try to modify dry sprinklers. They are manufactured for specific "A" or "B" dimensions and cannot be modified.

The dry sprinkler must be installed after the piping is in place to prevent mechanical damage. Before installation, be sure to have the correct sprinkler model and style, with the appropriate "A" or "B" dimension(s), temperature rating, orifice size, and response characteristics. Keep sprinklers with protective caps or bulb shields contained within the caps or shields during installation and testing, and any time the sprinkler is shipped or handled. *Exception:* For concealed and adjustable recessed dry sprinklers, the protective caps and shields are removed for installation.

To install the dry sprinkler, refer to the instructions below and the appropriate sprinkler technical data page for illustrated instructions.

Dry upright sprinklers must be installed above the piping, in the upright position only. When installing dry upright or plain barrel style vertical sidewall sprinklers on piping located close to the ceiling, it may be necessary to lower the sprinkler into the fitting from above the ceiling. When installing dry upright or plain barrel vertical sidewall sprinklers from below the ceiling, verify that the opening in the ceiling is a minimum 1-1/2" (38.1 mm) in diameter.

For dry upright or plain barrel vertical sidewall sprinklers in the upright position: First, install the escutcheon (if used) over the threaded end of the sprinkler barrel. Slide the escutcheon past the external threads. NOTE: When installing the dry upright or plain barrel vertical sidewall sprinkler from above the ceiling, it will be necessary to install the escutcheon after lowering the threaded end of the sprinkler through the ceiling penetration.

A. **For all dry sprinklers:** Apply a small amount of pipe-joint compound or tape to the external threads of the sprinkler barrel only, taking care not to allow a build-up of compound or tape over the brass inlet and seal. **NOTE:** Sprinklers with protective caps or bulb shields must be contained within the caps or shields before applying pipe-joint compound or tape.

SPRINKLER GENERAL CARE, INSTALLATION, AND MAINTENANCE GUIDE

The Viking Corporation, 210 N Industrial Park Drive, Hastings MI 49058
Telephone: 269-945-9501 Technical Services: 877-384-5464 Fax: 269-818-1680 Email: techsvcs@vikingcorp.com
Visit the Viking website for the latest edition of this technical data page.

- B. Refer to the appropriate sprinkler technical data page to determine the correct sprinkler wrench for the model of sprinkler used.
- C. Install the dry sprinkler on the piping using the special dry sprinkler wrench only, while taking care not to damage the sprinkler. **NOTE:** Thread the sprinkler into the fitting hand tight, plus 1/2 turn with the dry sprinkler wrench.
- D. For adjustable standard and adjustable recessed dry pendent and sidewall sprinklers: Escutcheons can be installed after the sprinklers have been installed onto the piping. Refer to the appropriate sprinkler technical data page for escutcheon installation instructions and illustrations.

D. Installation Instructions - Testing

- 4. After installation, the entire sprinkler system must be tested. The test must be conducted to comply with the installation standards. Viking *high pressure* sprinklers may be hydrostatically tested at a maximum of 300 psi (20.7 bar) for limited periods of time (two hours), for the purpose of acceptance by the Authority Having Jurisdiction.
 - a. Make sure the sprinkler is properly tightened. If a thread leak occurs, normally the sprinkler must be removed, new pipe-joint compound or tape applied, and then reinstalled. This is due to the fact that when the joint seal is damaged, the sealing compound or tape is washed out of the joint. Air testing [do not exceed 40 psi (2.76 bar)] the sprinkler piping prior to testing with water may be considered in areas where leakage during testing must be prevented. Refer to the Installation Standards and the Authority Having Jurisdiction.
 - b. Remove plastic protective sprinkler caps or bulb shields AFTER the wall or ceiling finish work is completed where the sprinkler is installed and there no longer is a potential for mechanical damage to the sprinkler operating elements. To remove the bulb shields, simply pull the ends of the shields apart where they are snapped together. To remove caps from frame style sprinklers, turn the caps slightly and pull them off the sprinklers. SPRINKLER CAPS OR BULB SHIELDS MUST BE REMOVED FROM SPRINKLERS <u>BEFORE</u> PLACING THE SYSTEM IN SERVICE! Retain a protective cap or shield in the spare sprinkler cabinet.
- 5. For flush style sprinklers: the ceiling ring can now be installed onto the sprinkler body. Align the ceiling ring with the sprinkler body and thread or push it on (depends on sprinkler model) until the outer flange touches the surface of the ceiling. Note the maximum adjustment is 1/4" (6.35 mm). DO NOT MODIFY THE UNIT, If necessary, re-cut the sprinkler drop nipple as required.
- 6. For concealed sprinklers: the cover assembly can now be attached.
 - a. Remove the cover from the protective box, taking care not to damage the cover plate assembly.
 - b. Gently place the base of the cover plate assembly over the sprinkler protruding through the opening in the ceiling.
 - c. Push the cover plate assembly onto the sprinkler until the unfinished brass flange of the cover plate base (or the cover adapter, if used) touches the surface of the ceiling.
 - d. Refer to the applicable technical data sheet to determin the maximum adjustment available for concealed sprinklers. DO NOT MODIFY THE UNIT. If necessary, re-cut the sprinkler drop nipple.

NOTE: If it is necessary to remove the entire sprinkler unit, the system must be taken out of service. See section 6. INSPECTIONS, TESTS AND MAINTENANCE and follow all warnings and instructions.

5. OPERATION

Refer to the appropriate sprinkler technical data page(s). During fire conditions, the operating element fuses or shatters (depending on the type of sprinkler), releasing the pip cap and sealing assembly. Water flowing through the sprinkler orifice strikes the sprinkler deflector, forming a uniform spray pattern to extinguish or control the fire.

IMPORTANT: Always refer to Bulletin Form No. F_091699 - Care and Handling of Sprinklers. Viking sprinklers are to be installed in accordance with the latest edition of Viking technical data, the appropriate standards of NFPA, FM Global, LPCB, APSAD, VdS or other similar organizations, and also with the provisions of governmental codes, ordinances, and standards, whenever applicable. The sprinkler technical data page may contain installation requirements specific for the sprinkler model selected. The use of certain types of sprinklers may be limited due to occupancy and hazard. Refer to the Authority Having Jurisdiction prior to installation.

SPRINKLER GENERAL CARE, INSTALLATION, AND MAINTENANCE GUIDE

The Viking Corporation, 210 N Industrial Park Drive, Hastings MI 49058

Telephone: 269-945-9501 Technical Services: 877-384-5464 Fax: 269-818-1680 Email: techsvcs@vikingcorp.com Visit the Viking website for the latest edition of this technical data page.

6. INSPECTIONS, TESTS AND MAINTENANCE

NOTICE: Refer to NFPA 25 for Inspection, Testing and Maintenance requirements. **NOTICE:** The owner is responsible for having the fire-protection system and devices inspected, tested, and maintained in proper operating condition in accordance with this guide, and applicable NFPA standards. In addition, the Authority Having Jurisdiction may have additional maintenance, testing, and inspection requirements that must be followed.

- A. Sprinklers must be inspected on a regular basis for corrosion, mechanical damage, obstructions, paint, etc. Frequency of inspections may vary due to corrosive atmospheres, water supplies, and activity around the sprinkler unit.
- B. Sprinklers or cover plate assemblies that have been field painted, caulked, or mechanically damaged must be replaced immediately. Sprinklers showing signs of corrosion shall be tested and/or replaced immediately as required. Installation standards require sprinklers to be tested and, if necessary, replaced after a specified term of service. Refer to NFPA 25 and the Authority Having Jurisdiction for the specified period of time after which testing and/or replacement is required. Never attempt to repair or reassemble a sprinkler. Sprinklers and cover assemblies that have operated cannot be reassembled or re-used, but must be replaced. When replacement is necessary, use only new sprinklers and cover assemblies with identical performance characteristics.
- C. The sprinkler discharge pattern is critical for proper fire protection. Therefore, nothing should be hung from, attached to, or otherwise obstruct the discharge pattern. All obstructions must be immediately removed or, if necessary, additional sprinklers installed.
- D. When replacing existing sprinklers, the system must be removed from service. Refer to the appropriate system description and/ or valve instructions. Prior to removing the system from service, notify all Authorities Having Jurisdiction. Consideration should be given to employment of a fire patrol in the affected area.
 - 1. Remove the system from service, drain all water, and relieve all pressure on the piping.
 - 2a. For frame-style sprinklers, use the special sprinkler wrench to remove the old sprinkler by turning it counterclockwise to unthread it from the piping.
 - 2b. For flush and concealed style sprinklers: Remove the ceiling ring or cover plate assembly before unthreading the sprinkler body from the piping. Ceiling rings and cover plates can be removed either by gently unthreading them or pulling them off the sprinkler body (depends on the sprinkler model used). After the ceiling ring or cover plate assembly has been removed from the sprinkler body, place the plastic protective cap (from the spare sprinkler cabinet) over the sprinkler to be removed and then fit the sprinkler wrench over the cap. Then use the wrench to unthread the sprinkler from the piping. Exception: Domed concealed sprinklers are removed without the plastic cap.
 - 3. Install the new sprinkler unit by following the instructions in section 4. INSTALLATION. Care must be taken to ensure that the replacement sprinkler is the proper model and style, with the correct K-Factor, temperature rating, and response characteristics. A fully stocked spare sprinkler cabinet should be provided for this purpose. For flush or concealed sprinklers: stock of spare ceiling rings or cover plates should also be available in the spare sprinkler cabinet.
- E. Place the system back in service and secure all valves. Check for and repair all leaks. Sprinkler systems that have been subjected to a fire must be returned to service as soon as possible. The entire system must be inspected for damage, and repaired or replaced as necessary. Sprinklers that have been exposed to corrosive products of combustion or high ambient temperatures, but have not operated, should be replaced. Refer to the Authority Having Jurisdiction for minimum replacement requirements.

7. AVAILABILITY

Viking sprinklers are available through a network of domestic and international distributors. See The Viking Corporation web site for the closest distributor or contact The Viking Corporation.

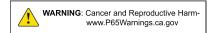
8. GUARANTEE

For details of warranty, refer to Viking's current list price schedule or contact Viking directly.

SPRINKLER OVERVIEW

The Viking Corporation, 210 N Industrial Park Drive, Hastings MI 49058

Telephone: 269-945-9501 Technical Services: 877-384-5464 Fax: 269-818-1680 Email: techsvcs@vikingcorp.com


1. DESCRIPTION

Viking fire sprinklers consist of a threaded frame with a specific waterway or orifice size and a deflector for distributing water in a specified pattern. A closed or sealed sprinkler refers to a complete assembly, including the thermosensitive operating element. An open sprinkler does not use an operating element and is open at all times. The distribution of water is intended to extinguish a fire or to control its spread.

Viking sprinklers are available in several models and styles. Refer to specific sprinkler technical data pages for available styles, finishes, temperature ratings, thread sizes, and nominal K-Factors for the particular model selected.

2. LISTINGS AND APPROVALS

Refer to the Approval Charts on the appropriate sprinkler technical data page(s) and/or approval agency listings.

3. TECHNICAL DATA

Pressure Ratings:

Maximum allowable water working pressure is 175 psig (12 Bar) unless rated and specified for high water working pressure [250 psig (17.2 bar)].

Sprinkler Identification:

Viking sprinklers are identified and marked with the word "Viking", the sprinkler identification number (SIN) consisting of "VK" plus a three digit number*, the model letter, and the year of manufacture.

Available Finishes:

Viking sprinklers are available in several decorative finishes. Some models are available with corrosion-resistant coatings or are fabricated from non-corrosive material. Refer to the sprinkler technical data page for additional information.

Available Temperature Ratings:

Viking sprinklers are available in several temperature ratings that relate to a specific temperature classification. Applicable installation rules mandate the use and limitations of each temperature classification. In selecting the appropriate temperature classification, the maximum expected ceiling temperature must be known. When there is doubt as to the maximum temperature at the sprinkler location, a maximum-reading thermometer should be used to determine the temperature under conditions that would show the highest readings to be expected. In addition, recognized installation rules may require a higher temperature classification, depending upon sprinkler location, occupancy classification, commodity classification, storage height, and other hazards. In all cases, the maximum expected ceiling temperature dictates the lowest allowable temperature classification. Sprinklers located immediately adjacent to a heat source may require a higher temperature rating.

K-Factors:

Viking sprinklers are available in several orifice sizes with related K-Factors. The orifice is a tapered waterway and, therefore, the K-Factor given is nominal. Nominal U.S. K-Factors are provided in accordance with the 1999 edition of NFPA 13, Section 3-2.3. Refer to the specific data page for appropriate K-Factor information.

Available Styles:

Viking sprinklers are available for installation in several positions as indicated by a stamping on the deflector. The deflector style dictates the appropriate installation position of the sprinkler; it breaks the solid stream of water issuing from the sprinkler orifice to form a specific spray pattern. The following list indicates the various styles and identification of Viking sprinklers.

<u>UPRIGHT SPRINKLER:</u> A sprinkler intended to be installed with the deflector above the frame so water flows upward through the orifice, striking the deflector and forming an umbrella-shaped spray pattern downward. Marked "SSU" (Standard Sprinkler Upright) or "UPRIGHT" on the deflector.

Viking Technical Data may be found on

<u>PENDENT SPRINKLER:</u> A sprinkler intended to be oriented with the deflector below the frame so water flows downward through the orifice, striking the deflector and forming an umbrella-shaped spray pattern downward. Marked "SSP" (Standard Sprinkler Pendent) or "PENDENT" on the deflector.

Viking Technical Data may be found on The Viking Corporation's Web site at http://www.vikinggroupinc.com.

The Web site may include a more recent edition of this Technical Data Page.

CONVENTIONAL SPRINKLER: An "old style" sprinkler intended to be installed with the deflector in either the upright or pendent position. The deflector provides a spherical type pattern with 40 to 60 percent of the water initially directed downward and a proportion directed upward. Must be installed in accordance with installation rules for conventional or old style sprinklers. DO NOT USE AS A REPLACEMENT FOR STANDARD SPRAY SPRINKLERS. Marked "C U/P" (Conventional Upright/Pendent) on the deflector.

SPRINKLER OVERVIEW

The Viking Corporation, 210 N Industrial Park Drive, Hastings MI 49058
Telephone: 269-945-9501 Technical Services: 877-384-5464 Fax: 269-818-1680 Email: techsvcs@vikingcorp.com

- <u>VERTICAL SIDEWALL (VSW) SPRINKLER:</u> A sprinkler intended for installation near the wall and ceiling. The deflector provides a water spray pattern outward in a quarter-spherical pattern and can be installed in the upright or pendent position with the flow arrow in the direction of discharge. Marked "SIDEWALL" on the deflector with an arrow and the word "FLOW". (Note: Some vertical sidewall sprinklers can only be installed in the upright or pendent position—in this case, the sprinkler will also be marked "UPRIGHT" or "PENDENT".)
- <u>HORIZONTAL SIDEWALL (HSW) SPRINKLER:</u> A sprinkler intended for installation near the wall and ceiling. The special deflector provides a water spray pattern outward in a quarter-spherical pattern. Most of the water is directed away from the nearby wall with a small portion directed at the wall behind the sprinkler. The top of the deflector is oriented parallel with the ceiling or roof. The flow arrows point in the direction of discharge. Marked "SIDEWALL" and "TOP" with an arrow and the word "FLOW".
- EXTENDED COVERAGE (EC) SPRINKLER: A spray sprinkler designed to discharge water over an area having the maximum dimensions indicated in the individual listings. Maximum area of coverage, minimum flow rate, orifice size, and nominal K-Factor are specified in the individual listings. EC sprinklers are intended for Light-Hazard occupancies with smooth, flat, horizontal ceilings unless otherwise specified. In addition to the above markings, the sprinkler is marked "EC".
- QUICK RESPONSE (QR) SPRINKLER: A spray sprinkler with a fast- actuating operating element. The use of quick response sprinklers may be limited due to occupancy and hazard. Refer to the Authority Having Jurisdiction (AHJ) prior to installing.
- QUICK RESPONSE EXTENDED COVERAGE (QREC) SPRINKLER: A spray sprinkler designed to discharge water over an area having the maximum dimensions indicated in the individual listing. This is a sprinkler with an operating element that meets the criteria for quick response. QREC sprinklers are only intended for Light Hazard occupancies. The sprinkler is marked "QREC".
- <u>FLUSH SPRINKLER:</u> A decorative spray sprinkler intended for installation with a concealed piping system. The unit is mounted flush with the ceiling or wall, with the fusible link exposed. Upon actuation, the deflector extends beyond the ceiling or wall to distribute water discharge. The sprinkler is marked "SSP", "PEND", or "SIDEWALL" and "TOP".
- CONCEALED SPRINKLER: A decorative spray sprinkler intended for installation with a concealed piping system. The sprinkler is hidden from view by a cover plate installed flush with the ceiling or wall. During fire conditions, the cover plate detaches, and upon sprinkler actuation, the deflector extends beyond the ceiling or wall to distribute water discharge. The sprinkler is marked "SSP", "PEND", or "SIDEWALL" and "TOP".
- RECESSED SPRINKLER: A spray sprinkler assembly intended for installation with a concealed piping system. The assembly consists of a sprinkler installed in a decorative adjustable recessed escutcheon that minimizes the protrusion of the sprinkler beyond the ceiling or wall without adversely affecting the sprinkler distribution or sensitivity. Refer to the appropriate technical data page for allowable sprinkler models, temperature ratings, and occupancy classifications. DO NOT RECESS ANY SPRINKLER NOT LISTED FOR USE WITH THE ESCUTCHEON.
- <u>CORROSION-RESISTANT SPRINKLER</u>: A special service sprinkler with non-corrosive protective coatings, or that is fabricated from non-corrosive material, for use in atmospheres that would normally corrode sprinklers.
- <u>DRY SPRINKLER:</u> A special-service sprinkler intended for installation on dry pipe systems or wet pipe systems where the sprinkler is subject to freezing temperatures. The unit consists of a sprinkler permanently secured to an extension nipple with a sealed inlet end to prevent water from entering the nipple until the sprinkler operates. The unit MUST be installed in a tee fitting. Dry upright sprinklers are marked with the "B" dimension [distance from the face of the fitting (tee) to the top of the deflector]. Dry pendent and sidewall sprinklers are marked with the "A" dimension [the distance from the face of fitting (tee) to the finished surface of the ceiling or wall].
- LARGE DROP SPRINKLER: A type of special application sprinkler used to provide fire control of specific high-challenge fire hazards. Large drop sprinklers are designed to produce an umbrella-shaped spray pattern downward with a higher percentage of "large" water droplets than standard spray sprinklers. The sprinkler has an extra-large orifice with a nominal K-Factor of 11.2. Marked "HIGH CHALLENGE" and "UPRIGHT".
- EARLY SUPPRESSION FAST-RESPONSE (ESFR) SPRINKLER: A sprinkler intended to provide fire suppression of specific high-challenge fire hazards through the use of a fast response fusible link, 14.0, 16.8, or 25.2 nominal K-Factor, and special deflector. ESFR sprinklers are designed to produce high-momentum water droplets in a hemispherical pattern below the deflector. This permits penetration of the fire plume and direct wetting of the burning fuel surface while cooling the atmosphere early in the development of a high-challenge fire. Marked "ESFR" and "UPRIGHT" or "PEND".
- <u>INTERMEDIATE LEVEL/RACK STORAGE SPRINKLER:</u> A standard spray sprinkler assembly designed to protect its operating element from the spray of sprinklers installed at higher elevations. The assembly consists of a standard or large orifice upright or pendent sprinkler with an integral upright or pendent water shield and guard assembly. Use only those sprinklers that have been tested and listed for use with the assembly. Refer to the technical data page for allowable sprinkler models.
- RESIDENTIAL SPRINKLER: A sprinkler intended for use in the following occupancies: one- and two-family dwellings with the fire protection sprinkler system installed in accordance with NFPA 13D; residential occupancies up to four stories in height with the fire protection system installed in accordance with NFPA 13R; and where allowed by the Authority Having Jurisdiction in residential portions of any occupancy with the fire protection system installed in accordance with NFPA 13.

SPRINKLER OVERVIEW

The Viking Corporation, 210 N Industrial Park Drive, Hastings MI 49058
Telephone: 269-945-9501 Technical Services: 877-384-5464 Fax: 269-818-1680 Email: techsvcs@vikingcorp.com

Residential sprinklers have a unique distribution pattern and utilize a "fast response" heat sensitive operating element. They enhance survivability in the room of fire origin and are designed to provide a life safety environment for a minimum of ten minutes. For this reason, residential sprinklers must not be used to replace standard sprinklers unless tested for and approved by the Authority Having Jurisdiction. In addition to standard markings, the unit is identified as "RESIDENTIAL SPRINKLER" or "RES".

4. INSTALLATION

Refer to appropriate NFPA Installation Standards.

5. OPERATION

Refer to the appropriate sprinkler technical data page(s).

6. INSPECTIONS, TESTS AND MAINTENANCE

Refer to NFPA 25 for Inspection, Testing and Maintenance requirements.

7. AVAILABILITY

Viking sprinklers are available through a network of domestic and international distributors. See The Viking Corporation web site for the closest distributor or contact The Viking Corporation.

8. GUARANTEE

For details of warranty, refer to Viking's current list price schedule or contact Viking directly.

IMPORTANT: Always refer to Bulletin Form No. F_091699 - Care and Handling of Sprinklers and the appropriate sprinkler general care, installation, and maintenance guide. Viking sprinklers are to be installed in accordance with the latest edition of Viking technical data, the appropriate standards of NFPA, FM Global, LPCB, APSAD, VdS or other similar organizations, and also with the provisions of governmental codes, ordinances, and standards, whenever applicable. The sprinkler technical data page may contain installation requirements specific for the sprinkler model selected. The use of certain types of sprinklers may be limited due to occupancy and hazard. Refer to the Authority Having Jurisdiction prior to installation.

CARE AND HANDLING OF SPRINKLERS

The Viking Corporation, 210 N Industrial Park Drive, Hastings MI 49058

Telephone: 269-945-9501 Technical Services: 877-384-5464 Fax: 269-818-1680 Email: techsycs@vikingcorp.com

SPRINKLERS ARE FRAGILE - HANDLE WITH CARE!

General Handling and Storage:

- · Store sprinklers in a cool, dry place.
- Protect sprinklers during storage, transport, handling, and after installation.
- · Use the original shipping containers. DO NOT place sprinklers loose in boxes, bins, or buckets.
- · Keep sprinklers separated at all times. DO NOT allow metal parts to contact sprinkler operating elements.

For Pre-Assembled Drops:

- · Protect sprinklers during handling and after installation.
- For recessed assemblies, use the protective sprinkler cap (Viking Part Number 10364).

Sprinklers with Protective Shields or Caps:

- DO NOT remove shields or caps until after sprinkler installation and there no longer is potential for mechanical damage to the sprinkler operating elements.
- · Sprinkler shields or caps MUST be removed BEFORE placing the system in
- Remove the sprinkler shield by carefully pulling it apart where it is snapped together.
- · Remove the cap by turning it slightly and pulling it off the sprinkler.

Sprinkler Installation:

- · DO NOT use the sprinkler deflector or operating element to start or thread the sprinkler into a fitting.
- · Use only the designated sprinkler head wrench! Refer to the current sprinkler technical data page to determine the correct wrench for the model of sprinkler used.
- · DO NOT install sprinklers onto piping at the floor level.
- · Install sprinklers after the piping is in place to prevent mechanical damage.
- · DO NOT allow impacts such as hammer blows directly to sprinklers or to fittings, pipe, or couplings in close proximity to sprinklers. Sprinklers can be damaged from direct or indirect impacts.
- DO NOT attempt to remove drywall, paint, etc., from sprinklers.
- Take care not to over-tighten the sprinkler and/or damage its operating parts! **Maximum Torque:**

1/2" NPT: 14 ft-lbs. (19.0 N-m) 3/4" NPT: 20 ft-lbs. (27.1 N-m) 1" NPT: 30 ft-lbs. (40.7 N-m)

(Original container used)

INCORRECT (Placed loose in box)

(Protected with caps)

INCORRECT (Protective caps not used)

CORRECT (Piping is in place at the ceiling)

INCORRECT (Sprinkler at floor level)

CORRECT (Special installation wrenches)

INCORRECT (Designated wrench not used)

A WARNING

Any sprinkler with a loss of liquid from the glass bulb or damage to the fusible element should be destroyed. Never install sprinklers that have been dropped, damaged, or exposed to temperatures exceeding the maximum ambient temperature allowed. Sprinklers that have been painted in the field must be replaced per NFPA 13. Protect sprinklers from paint and paint overspray in accordance with the installation standards. Do not clean sprinklers with soap and water, ammonia, or any other cleaning fluid. Do not use adhesives or solvents on sprinklers or their operating elements.

Refer to the appropriate technical data page and NFPA standards for complete care, handling, installation, and maintenance instructions. For additional product and system information Viking data pages and installation instructions are available on the Viking Web site at www.vikinggroupinc.com.

CARE AND HANDLING OF SPRINKLERS

The Viking Corporation, 210 N Industrial Park Drive, Hastings MI 49058

Telephone: 269-945-9501 Technical Services: 877-384-5464 Fax: 269-818-1680 Email: techsycs@vikingcorp.com

PROTECTIVE SPRINKLER SHIELDS AND CAPS

General Handling and Storage:

Many Viking sprinklers are available with a plastic protective cap or shield temporarily covering the operating elements. The snapon shields and caps are factory installed and are intended to help protect the operating elements from mechanical damage during shipping, storage, and installation. NOTE: It is still necessary to follow the care and handling instructions on the appropriate sprinkler technical data sheets* when installing sprinklers with bulb shields or caps.

WHEN TO REMOVE THE SHIELDS AND CAPS:

NOTE: SHIELDS AND CAPS MUST BE REMOVED FROM SPRINKLERS BEFORE PLACING THE SYSTEM IN SERVICE!

Remove the shield or cap from the sprinkler only after checking all of the following:

- · The sprinkler has been installed*.
- The wall or ceiling finish work is completed where the sprinkler is installed and there no longer is a potential for mechanical damage to the sprinkler operating elements.

SHIELDS AND CAPS MUST BE REMOVED FROM SPRINKLERS BEFORE PLACING THE SYSTEM IN SERVICE!

Figure 1: Sprinkler shield being removed from a pendent sprinkler.

Figure 2: Sprinkler cap being removed from a pendent sprinkler.

Figure 3: Sprinkler cap being removed from and upright sprinkler.

HOW TO REMOVE SHIELDS AND CAPS:

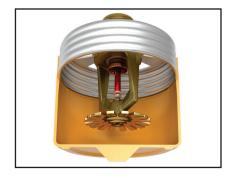
No tools are necessary to remove the shields or caps from sprinklers. DO NOT use any sharp objects to remove them! Take care not to cause mechanical damage to sprinklers when removing the shields or caps. When removing caps from fusible element sprinklers, use care to prevent dislodging ejector springs or damaging fusible elements. NOTE: Squeezing the sprinkler cap excessively could damage sprinkler fusible elements.

- To remove the shield, simply pull the ends of the shield apart where it is snapped together. Refer to Figure 1.
- To remove the cap, turn it slightly and pull it off the sprinkler. Refer to Figures 2 and 3.

NOTICE Refer to the current sprinkler technical data page to determine the correct sprinkler wrench for the model of sprinkler used.

Never install sprinklers that have been dropped, damaged, or exposed to temperatures in excess of the maximum ambient temperature allowed.

* Refer to the appropriate current technical data pages for complete care, handling, and installation instructions. Data pages are included with each shipment from Viking or Viking distributors. They can also be found on the Web site at www. vikinggroupinc.com.



CARE AND HANDLING OF SPRINKLERS

The Viking Corporation, 210 N Industrial Park Drive, Hastings MI 49058
Telephone: 269-945-9501 Technical Services: 877-384-5464 Fax: 269-818-1680 Email: techsvcs@vikingcorp.com

▲ CAUTION CONCEALED COVER ASSEMBLIES ARE FRAGILE!

TO ASSURE SATISFACTORY PERFORMANCE OF THE PRODUCT, HANDLE WITH CARE.

Concealed Sprinkler and Adapter Assembly with Protective Cap

Concealed Sprinkler and Adapter Assembly (Protective Cap Removed)

Cover Plate Assembly (Pendent Cover 12381 shown)

GENERAL HANDLING AND STORAGE INSTRUCTIONS:

- Do not store in temperatures exceeding 100 °F (38 °C). Avoid direct sunlight and confined areas subject to heat.
- · Protect sprinklers and cover assemblies during storage, transport, handling, and after installation.
- -- Use original shipping containers.
- -- Do not place sprinklers or cover assemblies loose in boxes, bins, or buckets.
- Keep the sprinkler bodies covered with the protective sprinkler cap any time the sprinklers are shipped or handled, during testing of the system, and while ceiling finish work is being completed.
- Use only the designated Viking recessed sprinkler wrench (refer to the appropriate sprinkler data page) to install these sprinklers. **NOTE:** The protective cap is temporarily removed during installation and then placed back on the sprinkler for protection until finish work is completed.
- Do not over-tighten the sprinklers into fittings during installation.
- Do not use the sprinkler deflector to start or thread the sprinklers into fittings during installation.
- · Do not attempt to remove drywall, paint, etc., from the sprinklers.
- Remove the plastic protective cap from the sprinkler before attaching the cover plate assembly. PROTECTIVE CAPS <u>MUST</u> BE REMOVED FROM SPRINKLERS BEFORE PLACING THE SYSTEM IN SERVICE!

Refer to the appropriate current technical data pages for complete care, handling, and installation instructions. Data pages are included with each shipment from Viking or Viking distributors. They can also be found on the Web site at www. vikinggroupinc.com.

CARE AND HANDLING OF SPRINKLERS

The Viking Corporation, 210 N Industrial Park Drive, Hastings MI 49058

Telephone: 269-945-9501 Technical Services: 877-384-5464 Fax: 269-818-1680 Email: techsvcs@vikingcorp.com

USE THE FOLLOWING PRECAUTIONS WHEN HANDLING WAX-COATED SPRINKLERS

Many of Viking's sprinklers are available with factory-applied wax coating for corrosion resistance. These sprinklers MUST receive appropriate care and handling to avoid damaging the wax coating and to assure satisfactory performance of the product.

General Handling and Storage of Wax-Coated Sprinklers:

- Store the sprinklers in a cool, dry place (in temperatures below the maximum ambient temperature allowed for the sprinkler temperature rating. Refer to Table 1 below.)
- · Store containers of wax-coated sprinklers separate from other sprinklers.
- · Protect the sprinklers during storage, transport, handling, and after installation.
- · Use original shipping containers.
- · Do not place sprinklers in loose boxes, bins, or buckets.

Installation of Wax-Coated Sprinklers:

Use only the special sprinkler head wrench designed for installing wax-coated Viking sprinklers (any other wrench may damage the unit).

- · Take care not to crack the wax coating on the units.
- For touching up the wax coating after installation, wax is available from Viking in bar form. Refer to Table 1 below. The coating MUST be repaired after sprinkler installation to protect the corrosion-resistant properties of the sprinkler.
- Use care when locating sprinklers near fixtures that can generate heat. Do not install sprinklers where they would be exposed to temperatures exceeding the maximum recommended ambient temperature for the temperature rating used.
- Inspect the coated sprinklers frequently soon after installation to verify the integrity of the corrosion resistant coating. Thereafter, inspect representative samples of the coated sprinklers in accordance with NFPA 25. Close up visual inspections are necessary to determine whether the sprinklers are being affected by corrosive conditions.

TABLE 1									
Sprinkler Temperature Rating (Fusing Point)	Wax Part Number	Wax Melting Point	Maximum Ambient Ceiling Temperature ¹	Wax Color					
155 °F (68 °C) / 165 °F (74 °C)	02568A	148 °F (64 °C)	100 °F (38 °C)	Light Brown					
175 °F (79 °C)	04146A	161 °F (71 °C)	150 °F (65 °C)	Brown					
200 °F (93 °C)	04146A	161 °F (71 °C)	150 °F (65 °C)	Brown					
220 °F (104 °C)	02569A	170 °F (76 °C)	150 °F (65 °C)	Dark Brown					
286 °F (141 °C)	02569A	170 °F (76 °C)	150 °F (65 °C)	Dark Brown					

¹Based on NFPA-13. Other limits may apply, depending on fire loading, sprinkler location, and other requirements of the Authority Having Jurisdiction. Refer to specific installation standards.

▲WARNING

Never install sprinklers that have been dropped, damaged, or exposed to temperatures in excess of the maximum ambient temperature allowed.

Refer to the appropriate current technical data pages for complete care, handling, and installation instructions. Data pages are included with each shipment from Viking or Viking distributors. They can also be found on the Web site at www. vikinggroupinc.com.

REGULATORY AND HEALTH WARNINGS

The Viking Corporation, 210 N Industrial Park Drive, Hastings MI 49058

Telephone: 269-945-9501 Technical Services: 877-384-5464 Fax: 269-818-1680 Email: techsvcs@vikingcorp.com

Visit the Viking website for the latest edition of this technical data page www.vikinggroupinc.com

1. DESCRIPTION

Regulatory and Health Warnings applying to materials used in the manufacture and construction of fire protection products are provided herin as they relate to legally mandated jurisdictional regions.

A WARNING

STATE OF CALIFORNIA, USA

Installing or servicing fire protection products such as sprinklers, valves, piping etc. can expose you to chemicals including, but not limited to, lead, nickel, butadiene, titaninum dioxide, chromium, carbon black, and acrylonitrile which are known to the State of California to cause cancer or birth defects or other reproductive harm.

For more information, go to www.P65Warnings.ca.gov

2. WARRANTY TERMS AND CONDITIONS

For details of warranty, refer to Viking's current list price schedule at www.vikinggroupinc.com or contact Viking directly.

Enc	inee	erina	Spe	cifica	ation
		<i>,,,,,</i> ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	Upe		

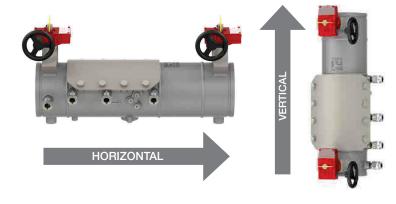
Job Name	Contractor
Job Location	Approval
Engineer	Contractor's P.O. No.
Approval	Representative

LEAD FREE*

Deringer[™]**20**Double Check Valve Assembly

2"-8"

The Deringer™ 20 Double Check Valve assembly is designed to prevent non-health hazard pollutants from entering the potable water supply system caused by backpressure and/or backsiphonage conditions.


Features

- Integral shutoff valves designed for indoor or outdoor application
- 100% stainless steel housing
- Tamper-resistant test cocks
- Patented Dual-action™ check modules
- Poppet action at low flow
- Swing action at high flow
- Silicone elastomer check discs
- Prewired supervisory switches
- Flange adapters available
- IPS grooved ends

Specification

Deringer 20 Double Check valve shall use two independent Dual-action check modules and two integral resiliently seated shut-off valves, all of which shall be contained within a single rigid valve housing constructed entirely of 304 stainless steel. Both integral shutoff valves shall include pre-wired supervisory tamper switches contained within a weatherproof actuator housing approved for both indoor and outdoor use. Dual-action check modules shall operate as a "poppet style" check under low flow conditions, operate as a "swing style" check under high flow conditions, and use replaceable silicone elastomer sealing discs. Assembly test cocks shall be handle-less and operate through a tamper resistant actuator. The assembly shall have a single full access service port and cover with an in-line replaceable elastomer seal. The assembly shall be serviceable without special tools and approved for both horizontal and vertical applications.

Noryl is a registered trademark of SHPP Global Technologies B.V.

Approved for Fire Protection, Waterworks, Plumbing, and Irrigation Applications

Materials

Valve Housing: 304 Stainless Steel
Valve Cover: 304 Stainless Steel
SOV Disks: EPDM/304SS
SOV Shafts: 304 Stainless Steel

SOV Bearings: PTFE Fluoropolymer/Bronze

Noryl® Polymer (NSF)

Non-wetted Bolts: Grade 8 Zinc Plated
Check Disks: Silicone (NSF)
Wetted Fasteners: 18-8 Stainless Steel
Check Springs: 17-7 Stainless Steel
Check Pins: 17-7/18-8 Stainless Steel

O-rings: Buna-N (NSF)

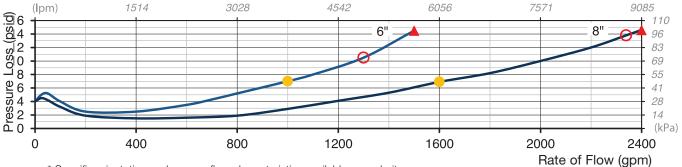
Pressure — Temperature

Temperature Range: 33°F – 140°F Working Pressure: 10 – 175 psi

NOTICE

Check Seats:


The information contained herein is not intended to replace the full product installation and safety information available or the experience of a trained product installer. You are required to thoroughly read all installation instructions and product safety information before beginning the installation of this product.


^{*}The wetted surface of this product contacted by consumable water contains less than 0.25% of lead by weight.

Flow Performance

* Specific orientation and agency flow characteristics available on website

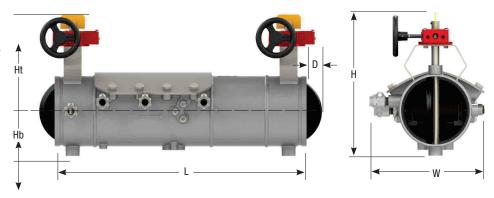
^{*} Specific orientation and agency flow characteristics available on website

Standards

AWWA C510-07 Compliant

ANSI/NSF/CAN 61 UL Certified Health Effects

UL Certified to ANSI/NSF/CAN 372 LEAD FREE


End Connections

- IPS Groove for Steel Pipe: AWWA C606
- Flange Adapters: ANSI B16.1 Class 125

Dimensions — Weights

Size	Model	Н	lt	ŀ	l b		L	D)		1	V	l	Wei	ght
in.		in.	mm	in.	mm	in.	mm	in.	mm	in.	mm	in.	mm	lb	kg
2 (21/2)**	20	7.1	180	2.9	74	22.3	566	0.0	0	10.0	254	11.0	279	52	24
21/2	20	7.1	180	2.9	74	18.7	475	0.0	0	10.0	254	11.0	279	38	17
3	20	7.4	188	2.9	74	18.7	475	0.0	0	10.3	262	11.0	279	40	18
4	20	7.9	201	2.9	74	18.7	475	0.2	5	10.3	262	11.0	279	42	19
6	20	10.1	257	4.5	114	25	726	1.0	25	14.6	370	13.8	351	90	41
8	20	10.4	264	5.4	137	30.7	780	1.8	46	15.8	401	13.8	351	141	64

^{**2&}quot; size uses a 21/2" assembly with 21/2" groove to 2" female NPT adapter and couplings. Adapter and couplings ship unassembled.

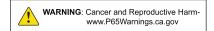
A **WATTS** Brand

USA: Backflow T: (978) 689-6066 • F: (978) 975-8350 • AmesFireWater.com

USA: Control Valves T: (713) 943-0688 • F: (713) 944-9445 • AmesFireWater.com
Canada: T: (888) 208-8927 • F: (905) 481-2316 • AmesFireWater.ca


Latin America: T: (52) 55-4122-0138 • AmesFireWater.com

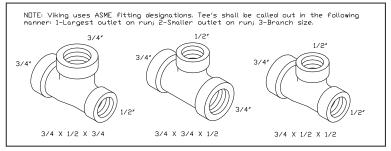
ES-A-Deringer 20 2324 © 2023 Watts



MODEL F2 DRY VALVE (PRETRIMMED)

The Viking Corporation, 210 N Industrial Park Drive, Hastings MI 49058
Telephone: 269-945-9501 Technical Services: 877-384-5464 Fax: 269-818-1680 Email: techsvcs@vikingcorp.com
Visit the Viking website for the latest edition of this technical data page.

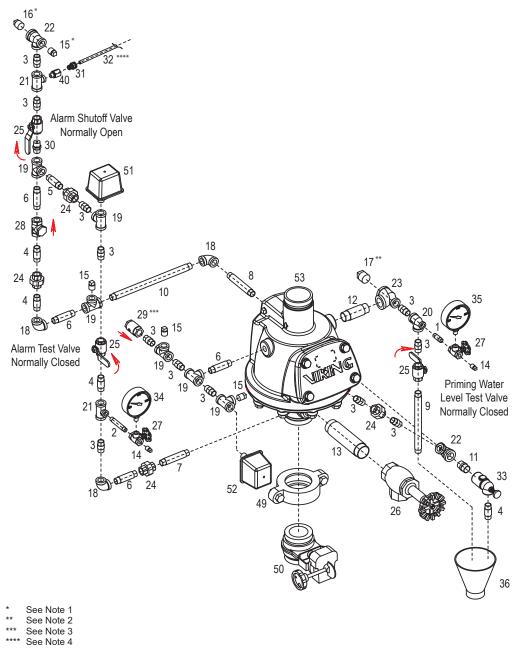
Model F Dry Valve with Trim							
Valve Size Part Number							
3"	3" 13764PTR						
4"	13765PTR						
6" 13766PTR							
Standard Trim Sets include galvanized							



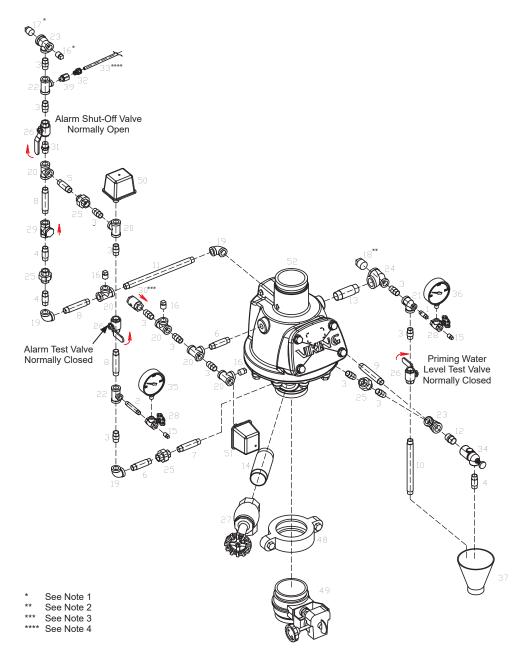
nipples and fittings.

Notes: For use with Trim Charts on Pages 2-4

General Notes:

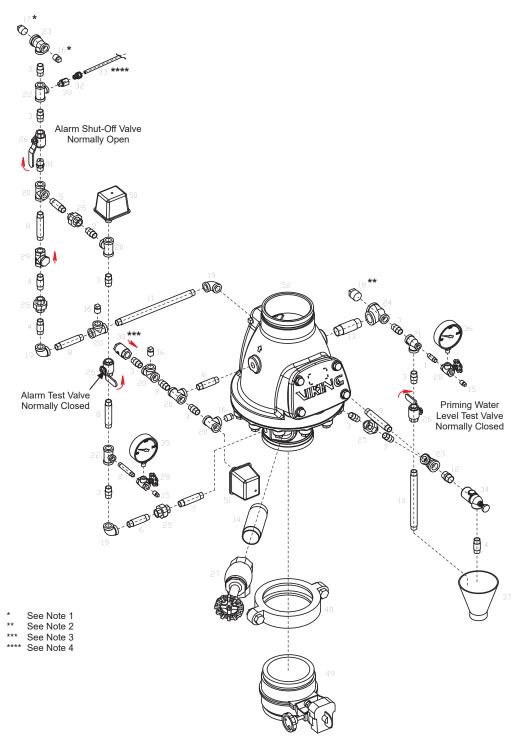

- Valve must be trimmed as shown. Any deviation from trim size or arrangement may affect the proper operation of the valve.
- All pipe, 3/4" (20 mm) and smaller, shall be galvanized steel except when other materials are specified in the Technical Data for the system used.
- Dimensions in parentheses are millimeter and may be approximations.
- Viking uses ASME fitting designations. Tees shall be called out in the following order: 1 Largest outlet on run; 2 Smaller outlet on run;
 3 Branch size.

- **Note 1:** Water flow alarm connections: 3/4" (20 mm) NPT for Water Motor Alarm (strainer required) and 1/2" (15 mm) NPT for electric Alarm Pressure Switch to activate electric alarm bells.
- Note 2: 1" (25 mm) NPT connection for sprinkler.
- **Note 3:** Locate listed Air Maintenance Device (order separately) as close to this connection as possible. Refer to installation standards. Recommended location for connection of optional Air Maintenance Compressor.
- **Note 4:** Tube must discharge TO OPEN DRAIN. DO NOT crimp or plug tube. Secure tube to 1/2" x 9" nipple below priming water level test valve with cable tie included in trim kit.


MODEL F2 DRY VALVE (PRETRIMMED)

Ref.	Description
1	1/4" x 1-1/2" (38 mm)
2	1/4" x 3" (76 mm)
3	1/2" x 1-1/2" (38 mm)
4	1/2" x 2" (51 mm)
5	1/2" x 2-1/2" (64 mm)
6	1/2" x 3" (76 mm)
7	1/2" x 4" (102 mm)
8	1/2" x 5" (127 mm)
9	1/2" x 9" (229 mm)
10	1/2" x 12" (305 mm)
11	3/4" x CL
12	1" x 3-1/2" (89 mm)
13	1-1/2" x 7" (178 mm)
14	1/4" Plug
15	1/2" Plug
16	3/4" Plug
17	1" Plug
18	1/2" Elbow
19	1/2" x 1/2" x 1/2" Tee
20	1/2" x 1/4" x 1/2" Tee
21	1/2 x 1/2" x 1/4" Tee
22	3/4" x 1/2" x 1/2" Tee
23	1" x 1/2" x 1" Tee
24	1/2" Union
25	1/2" Ball Valve
26	1-1/2" Angle Valve
27	Side Outlet Valve
28	Check Valve
29	Spring Loaded Check Valve
30	7/32" Restricted Orifice
31	3/8" Connection
32	3/8" Polyethylene Tube
33	Drip Check
34	Water Gauge
35	Air Gauge
36	Drain Cup
40	1/16" Restricted Orifice
49	Grooved Coupling
50	Butterfly Valve
51	Pressure Switch
52	Pressure Switch
53	F2 Dry Pipe Valve 3"

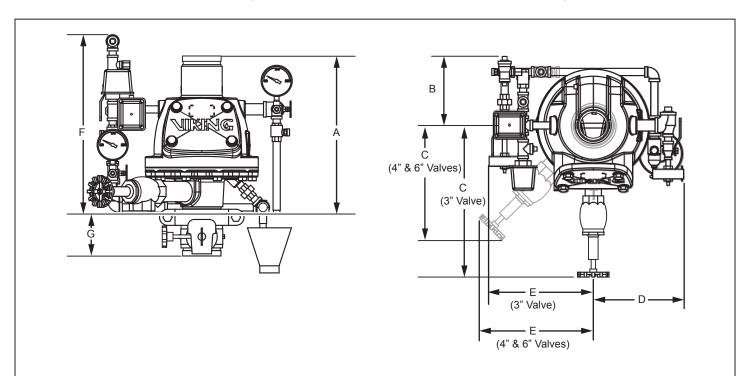
MODEL F2 DRY VALVE (PRETRIMMED)



	<u>, </u>
Ref.	Description
1	1/4" x 1-1/2" (38 mm)
2	1/4" x 3" (76 mm)
3	1/2" x 1-1/2" (38 mm)
4	1/2" x 2" (51 mm)
5	1/2" x 2-1/2" (64 mm)
6	1/2" x 3" (76 mm)
7	1/2" x 3-1/2" (89 mm)
8	1/2" x 4" (102 mm)
9	1/2" x 5" (127 mm)
10	1/2" x 9" (229 mm)
11	1/2" x 11-1/2" (292 mm)
12	3/4" x CL
13	1" x 3-1/2" (89 mm)
14	2" x 6" (152 mm)
15	1/4" Plug
16	1/2" Plug
17	3/4" Plug
18	1" Plug
19	1/2" Elbow
20	1/2" x 1/2" x 1/2" Tee
21	1/2" x 1/4" x 1/2" Tee
22	1/2 x 1/2" x 1/4" Tee
23	3/4" x 1/2" x 1/2" Tee
24	1" x 1/2" x 1" Tee
25	1/2" Union
26	1/2" Ball Valve
27	2" Angle Valve
28	Side Outlet Valve
29	Check Valve
30	Spring Loaded Check Valve
31	7/32" Restricted Orifice
32	3/8" Connection
33	3/8" Polyethylene Tube
34	Drip Check
35	Water Gauge
36	Air Gauge
37	Drain Cup
39	1/16" Restricted Orifice
48	Grooved Coupling
49	Butterfly Valve
50	Pressure Switch
51	Pressure Switch
52	F2 Dry Pipe Valve 4"

Figure 2: 4" Model F2 Dry Valve Trim Chart

MODEL F2 DRY VALVE (PRETRIMMED)



Ref.	Description
1	1/4" x 1-1/2" (38 mm)
2	1/4" x 3" (76 mm)
3	1/2" x 1-1/2" (38 mm)
4	1/2" x 2" (51 mm)
5	1/2" x 2-1/2" (64 mm)
6	1/2" x 3" (76 mm)
7	1/2" x 3-1/2" (89 mm)
8	1/2" x 4" (102 mm)
9	1/2" x 5" (127 mm)
10	1/2" x 9" (229 mm)
11	1/2" x 12" (305 mm)
12	3/4" x CL
13	1" x 3-1/2" (89 mm)
14	2" x 6" (152 mm)
15	1/4" Plug
16	1/2" Plug
17	3/4" Plug
18	1" Plug
19	1/2" Elbow
20	1/2" x 1/2" x 1/2" Tee
21	1/2" x 1/4" x 1/2" Tee
22	1/2 x 1/2" x 1/4" Tee
23	3/4" x 1/2" x 1/2" Tee
24	1" x 1/2" x 1" Tee
25	1/2" Union
26	1/2" Ball Valve
27	2" Angle Valve
28	Side Outlet Valve
29	Check Valve
30	Spring Loaded Check Valve
31	7/32" Restricted Orifice
32	3/8" Connection
33	3/8" Polyethylene Tube
34	Drip Check
35	Water Gauge
36	Air Gauge
37	Drain Cup
39	1/16" Restricted Orifice
48	Grooved Coupling
49	Butterfly Valve
50	Pressure Switch
51	Pressure Switch
52	F2 Dry Pipe Valve 6"

Figure 3: 6" Model F2 Dry Valve Trim Chart

MODEL F2 DRY VALVE (PRETRIMMED)

Valve Size	Α	В	С	D	E	F	G
3"	18-3/8" (467)	8-1/16" (205)	17-3/4" (451)	10-9/16" (268)	12-3/16" (309)	19-7/8" (506)	3-15/16" (100)
4"	18-7/16" (469)	7-7/8" (200)	13-1/2" (343)	10-1/2" (267)	13-5/16" (338)	20-15/16" (532)	4-13/16" (123)
6"	19-1/4" (488)	7-7/8" (200)	13-1/2" (343)	10-15/16" (278)	13-5/16" (338)	20-9/16" (523)	6-1/2" (166)

Figure 4 - Dry Valve with Conventional Trim with No Accelerator