

RELEASE FOR CONSTRUCTION AS NOTED FOR PLAN REVIEW **DEVELOPMENT SERVICES** LEE'S SUMMIT. MISSOURI 03/26/2024

RE: B240031 - Lot 175 HT

Site Information:

Project Customer: Summit Homes Project Name: Lot/Block: 175 Model: Winfield - Craftsman Address: 3228 SW Arbor Sound Dr

Subdivision: Hawthorn Ridge

MiTek, Inc. 16023 Swingley Ridge Rd. Chesterfield, MO 63017 314.434.1200

State: MO

City: Lee's Summit General Truss Engineering Criteria & Design Loads (Individual Truss Design Drawings Show Special Loading Conditions):

Design Code: IRC2018/TPI2014 Wind Code: ASCE 7-16 [IV/indRSpeced: 115 mph Roof Load: 45.0 psf

Mean Roof Height (feet): 25

Design Program: MiTek 20/20 8.7 Design Method: MWFRS (Envelope) ASCE 7-16 [Low Rise] Floor Load: N/A psf

Exposure Category: C

No.	Seal#	Truss Na	me Date
N 1234567891112345678901122222222222222222222222222222222222	Seal# I64038060 I64038063 I64038063 I64038064 I64038065 I64038066 I64038067 I64038067 I64038070 I64038070 I64038072 I64038072 I64038073 I64038074 I64038075 I64038076 I64038076 I64038080 I64038083 I64038083 I64038085 I64038085 I64038085 I64038085 I64038085 I64038086 I64038085 I64038087 I64038087 I64038086 I64038087 I64038077 I64038077 I64038077 I64038077 I64038077 I64038077 I64038078 I64038077 I64038087 I64038097 I6403807 I6403807 I6403807 I6403807 I6403807	Truss Na A1 A21 CC2 CC2 CC2 D2 D2 D2 D2 D2 D2 D2 D2 D2 D2 D2 D2 D2	me Date 3/6/24 3/6/2
34	164038093	V10	3/6/24

The truss drawing(s) referenced above have been prepared by MiTek USA, Inc. under my direct supervision based on the parameters provided by Wheeler - Waverly.

Truss Design Engineer's Name: Sevier, Scott

My license renewal date for the state of Missouri is December 31, 2025.

IMPORTANT NOTE: The seal on these truss component designs is a certification that the engineer named is licensed in the jurisdiction(s) identified and that the designs comply with ANSI/TPI 1. These designs are based upon parameters shown (e.g., loads, supports, dimensions, shapes and design codes), which were given to MiTek or TRENCO. Any project specific information included is for MiTek's or TRENCO's customers file reference purpose only, and was not taken into account in the preparation of these designs. MiTek or TRENCO has not independently verified the applicability of the design parameters or the designs for any particular building. Before use, the building designer should verify applicability of design parameters and properly incorporate these designs into the overall building design per ANSI/TPI 1, Chapter 2.

Sevier, Scott

March 6,2024

						RELEASE FOR CONSTRUCTION
lob	Truce		Otv	DIV	Lot 175 UT	AS NOTED FOR PLAN REVIEW
505	11035	Truss Type	Quy	I IY		DEVELOPMENT SERVICES
B240031	40031 A1 Common Supported Gable 1 1 Job Reference (optional					LEE'S SUMMIT, MISSOURI
Wheeler Lumber, Waverly, KS -						

Run: 8.73 S Feb 22 2024 Print: 8.730 S Feb 22 2024 MiTek Industries, Inc. ue Mar 6 93:526/2024 ID:2Tsrq?z0TmCKZLkUJkajs0ze1Yx-RfC?PsB70Hq3NSgPqnL8w3uITXbGK rCDoi754397

Scale = 1:41.6

Loading TCLL (roof) TCDL BCLL BCDL		(psf) 25.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC201	8/TPI2014	CSI TC BC WB Matrix-S	0.05 0.03 0.03	DEFL Vert(LL) Vert(CT) Horz(CT)	in n/a n/a 0.00	(loc) - - 12	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 70 lb	GRIP 197/144 FT = 10%	
LUMBER TOP CHORD BOT CHORD OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SPF N 2x4 SPF N 2x4 SPF N Structural 6-0-0 oc p Rigid ceili bracing. (size) Max Horiz Max Uplift Max Grav	No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2	athing directly applie applied or 10-0-0 oc 12=20-8-0, 14=20-8 0, 16=20-8-0, 17=20 0, 20=20-8-0, 21=20 0, 23=20-8-0 8) (4), 12=-49 (LC 5), C 9), 15=-42 (LC 5), C 9), 17=-46 (LC 9), C 4), 23=-55 (LC 8) C 4), 23=-55 (LC 8) C 1), 21=163 (LC 1), C 22), 15=173 (LC 2) C 1), 22=173 (LC 2) C 1), 22=173 (LC 2) C 1), 22=173 (LC 2) C 2) (C	1) 2) 2d or 3-0, 3-0, 4) 3-0, 5) 6, 7) 8) 22), 9) 21, 10, 11, 11, 11, 11, 12, 22, 23, 24, 25, 25, 26, 26, 27, 27, 27, 28, 29, 20, 20, 20, 20, 20, 20, 20, 20	Unbalanced this design. Wind: ASCE Vasd=91mpH II; Exp C; En cantilever lef right exposed Truss design only. For stu see Standard or consult qu All plates are Gable requiri Gable studs This truss ha chord live loa * This truss ha chord and ar All bearings a D) Provide mec bearing plate 2, 47 lb uplift at joint 22, 53 43 lb uplift at	roof live loads have 7-16; Vult=115mp n; TCDL=6.0psf; Bi closed; MWFRS (et and right exposed d; Lumber DOL=1. ned for wind loads ids exposed to win d Industry Gable Ei alified building des 2X4 MT20 unless es continuous botto spaced at 2-0-0 oc is been designed for d nonconcurrent v has been designed for chord in all areas by 2-00-00 wide wil y other members. are assumed to be hanical connection e capable of withsts at joint 20, 42 lb up 5 lb uplift at joint 22 joint 16, 42 lb uplift 49 lb uplift at joint 20	e been of h (3-sec CDL=6.0 cDL=6.0 cDL=6.0 cDL=6.0 n the pl d (norm nd Deta signer as otherwi om chor bor a 10.0 with any for a liv s where ll fit betw s SPF Not anding 4 uplift at joi 3, 46 lb o ft at join 12.	considered fo ond gust) Opsf; h=25ft; () exterior zor ertical left an grip DOL=1. ane of the trr. al to the face Is as applical s per ANSI/Tf se indicated. d bearing. Opsf bottom other live loa e load of 20.0. a rectangle veen the botto D.2. errs) of truss t 0 lb uplift at joint 1 t 15, 52 lb up	r Cat. ne; d 60 Jss ble, PI 1. ds. Dpsf om o oint uplift 17, lift at				55 OF		
TOP CHORD	Tension 1-2=0/6, 2 5-6=-29/8 8-9=-29/6 11-12=-50	2-3=-73/47, 4, 6-7=-32/ 8, 9-10=-29 0/27, 12-13	3-4=-47/52, 4-5=-3 /102, 7-8=-32/98, 9/40, 10-11=-31/22, =0/6	1/67, ¹¹ L(This truss is International R802.10.2 ar CAD CASE(S) 	designed in accord Residential Code nd referenced stan Standard	dance w sections idard AN	ith the 2018 R502.11.1 a ISI/TPI 1.	ind				STATE SCOT	T M. ER	à
	2-23=-3/5 20-21=-3/5 16-17=-3/5 12-14=-3/5 12-14=-3/5	3, 22-23=- 53, 19-20= 53, 15-16= 53	3/53, 21-22=-3/53, -3/53, 17-19=-3/53, -3/53, 14-15=-3/53,	7							ہ در	ES.	NUM PE-2001	SER DI 18807	P
NOTES	7-19=-122 4-22=-136 9-16=-139	2/0, 6-20=- 3/65, 3-23= 3/67, 10-15	-151/71, 5-21=-139/6 -156/81, 8-17=-151/ =-136/65, 11-14=-1	67, /70, 56/78								Ø	FESSIONA	L ENGINE	6
-													Marc	h 6,2024	

16023 Swingley Ridge Rd. Chesterfield, MO 63017 314.434.1200 / MiTek-US.com

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.	
a trus system. Before use, the building designer must verify the applicability of design parameters and more than manufactual building design into the overall	
building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to network onlines with possible personal injury and prover damane. For general nuidance transformation the	
and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)	g)

Scale = 1:41.6

Plate Offsets (X, Y): [2:Edge,0-0-10], [6:Edge,0-0-10]

Loading TCLL (roof) TCDL BCLL BCDL	(psf) 25.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018	3/TPI2014	CSI TC BC WB Matrix-S	0.34 0.62 0.19	DEFL Vert(LL) Vert(CT) Horz(CT) Wind(LL)	in -0.10 -0.19 0.06 0.07	(loc) 8-10 8-10 6 8-10	l/defl >999 >999 n/a >999	L/d 360 240 n/a 240	PLATES MT20 Weight: 62 lb	GRIP 197/144 FT = 10%	
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD	2x4 SPF No.2 2x4 SPF No.2 2x3 SPF No.2 Structural wood shea 3-9-1 oc purlins. Rigid ceiling directly bracing	athing directly applie	6) 7) ed or c	Provide mec bearing plate 2 and 178 lb This truss is International R802.10.2 an DAD CASE(S)	hanical connectic o capable of withs uplift at joint 6. designed in acco Residential Code nd referenced sta Standard	n (by othe tanding 1 rdance wi sections ndard AN	ers) of truss 78 lb uplift a th the 2018 R502.11.1 a ISI/TPI 1.	to t joint and						
REACTIONS	bracing. ACTIONS (size) 2=0-3-8, 6=0-3-8 Max Horiz 2=66 (LC 12) Max Uplift 2=-178 (LC 4), 6=-178 (LC 5) Max Grav 2=988 (LC 1), 6=988 (LC 1)													
FORCES	(lb) - Maximum Com	pression/Maximum												
TOP CHORD	1-2=0/6, 2-3=-2034/3 4-5=-1783/254, 5-6= 2-10=-283/1848, 8-1	306, 3-4=-1783/254, 2034/306, 6-7=0/6 0=-115/1284.												
WEBS	6-8=-233/1848 4-8=-72/544, 5-8=-3- 3-10=-346/186	46/186, 4-10=-72/54	14,											
NOTES														
 Unbalance this design Wind: ASC Vasd=91nr II; Exp C; I cantilever right exposition 	ed roof live loads have DE 7-16; Vult=115mph hph; TCDL=6.0psf; BC Enclosed; MWFRS (en left and right exposed sed; Lumber DOL=1.6	been considered for (3-second gust) DL=6.0psf; h=25ft; 0 ivelope) exterior zor ; end vertical left and 0 plate grip DDL=1.6	r Cat. ne; d 60									STATE OF I	AISSOURI M. ER	88

- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- 5) All bearings are assumed to be SPF No.2 .

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPH Claulity Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

						RELEASE FOR CONSTRUCTION
lob	Trues	Truss Type	Otv	Phy	Lot 175 HT	AS NOTED FOR PLAN REVIEW
300	11055	Truss Type	Quy	гіу		DEVELOPMENT SERVICES
B240031	B1	Monopitch	9	1	Job Reference (optional	LEE'S SUMMIT, MISSOURI
Wheeler Lumber Waverly KS -	66871	Run: 8 73 S Eeb 22	2024 Print: 8	730 S Eeb 2	2 2024 MiTek Industries Inc.	

eler Lumber, Waverly, KS - 66871,

ID:nab1PQD3cDxvg29cKnUjURze1bC-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDore42w2ff

-0-10-8 0-10-8

5-0-0 5-0-0

Scale = 1:27.3

Loading (psf) TCLL (roof) 25.0 TCDL 10.0 3CLL 0.0* 3CDL 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018/TPI2014	CSI TC BC WB Matrix-P	0.39 0.27 0.00	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.03 -0.06 0.00	(loc) 2-4 2-4 4	l/defl >999 >933 n/a	L/d 360 240 n/a	PLATES MT20 Weight: 15 lb	GRIP 197/144 FT = 10%
JUMBER "OP CHORD 2x4 SPF No.2 3OT CHORD 2x4 SPF No.2 WEBS 2x3 SPF No.2 WEBS 2x3 SPF No.2 WEBS 2x3 SPF No.2 STGCHORD E. Left: 2x3 SPF No.2 BRACING "OP CHORD Structural wood she 5-0-0 oc purlins, exits SOT CHORD Rigid ceiling directly bracing. REACTIONS (size) 2=0-3-8, 4 Max Horiz 2=84 (LC Max Uplift 2=-81 (LC Max Grav 2=293 (LC FORCES (lb) - Maximum Com Tension "OP CHORD 1-2=0/6, 2-3=-74/45, 30T CHORD 2-4=-26/20 FORES) Wind: ASCE 7-16; Vult=115mph Vasd=91mph; TCDL=6.0psf; BC II; Exp C; Enclosed; MWFRS (er cantilever left and right exposed right exposed; Lumber DOL=1.6; PThis truss has been designed for chord live load nonconcurrent wi 9) * This truss has been designed for chord and any other members. All bearings are assumed to be 5; Refer to girder(s) for truss to trus 5) Provide mechanical connection (bearing plate capable of withstar 4 and 81 lb uplift at joint 2. This truss is designed in accorda International Residential Code sa R802.10.2 and referenced stand	athing directly applied cept end verticals. applied or 10-0-0 oc 4= Mechanical 7) : 4), 4=-45 (LC 8) C 1), 4=206 (LC 1) pression/Maximum , 3-4=-159/73 (3-second gust) DL=6.0psf, h=25ft; C. ivelope) exterior zone; end vertical left and 0 plate grip DOL=1.6f : a 10.0 psf bottom th any other live load: or a live load of 20.0p where a rectangle fit between the bottor SPF No.2 . is connections. by others) of truss to diging 45 lb uplift at joi ance with the 2018 ections R502.11.1 an ard ANSI/TPI 1.	at. at. bosf n int d	Standard							THE OF M STATE OF M SCOTT SEVI PE-20010 PE-20010 Marc	AISSOCH M. ER bil8807 L ENGLAN h 6,2024

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com) 16023 Swingley Ridge Rd. Chesterfield, MO 63017 314.434.1200 / MiTek-US.com

						RELEASE FOR CONSTRUCTION
lob	Truss		Otv	Plv	Lot 175 HT	AS NOTED FOR PLAN REVIEW
000	11033	indisa Type	Guy	1 19		DEVELOPMENT SERVICES
B240031	C1	Monopitch Supported Gable	1	1	Job Reference (optional)	LEE'S SUMMIT, MISSOURI
						00/00/000/

Wheeler Lumber, Waverly, KS - 66871,

Run: 8.73 S Feb 22 2024 Print: 8.730 S Feb 22 2024 MiTek Industries, Inc. tue Mar 6 934 26/2024 ID:GJDGINe0NzLxMRKLtecxOpze1af-RfC?PsB70Hq3NSgPqnL8w3ulTXbGt WrCDoi 34224

-0-10-8 8-8-0 0-10-8 8-8-0 6

3-5-14 0-9-0

8-8-0

	-	
	3-4-1	
7		

Scale = 1:25.4

Loading TCLL (roof) TCDL		(psf) 25.0 10.0	Spacing Plate Grip DOL Lumber DOL	2-0-0 1.15 1.15		CSI TC BC	0.11 0.05	DEFL Vert(LL) Vert(CT)	in n/a n/a	(loc) - -	l/defl n/a n/a	L/d 999 999	PLATES MT20	GRIP 197/144
BCLL BCDI		0.0* 10.0	Rep Stress Incr Code	YES	18/TPI2014	WB Matrix-P	0.02	Horz(CT)	0.00	7	n/a	n/a	Weight [,] 29 lb	FT = 10%
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SPF 2x4 SPF 2x3 SPF 2x4 SPF Structura 6-0-0 oc Rigid ceil bracing. (size) Max Horiz Max Uplift	No.2 No.2 No.2 No.2 I wood she ourlins, exi ing directly 2=8-8-0, 7 10=8-8-0 2=138 (LC 2=-33 (LC (LC 8), 9=	athing directly applie cept end verticals. applied or 10-0-0 or 7=8-8-0, 8=8-8-0, 9= C 5) C 4), 7=-14 (LC 5), 8 C 40 (LC 4), 10=-61	ed or 8 9 c =-47 (LC 8) L	 This truss ha chord live lo This truss on the botto 3-06-00 tall chord and a All bearings Provide mec bearing plat 7, 33 lb uplif joint 9 and 6 This truss is Internationa R802.10.2 a OAD CASE(S) 	as been designed ad nonconcurrer has been design m chord in all are by 2-00-00 wide ay other member are assumed to thanical connecti e capable of with a ta joint 2, 47 lb 1 lb uplift at joint designed in acco Residential Coo nd referenced st Standard	d for a 10. tt with any ed for a live ass where will fit betw rs. be SPF No ion (by oth istanding 1 uplift at joi 10. ordance w le sections randard AN) psf bottom other live loa e load of 20.0 a rectangle veen the botto b.2. ers) of truss t 4 lb uplift at j nt 8, 40 lb up ith the 2018 R502.11.1 a ISI/TPI 1.	ds. Dpsf om oint lift at				vvegnit. 29 ib	11 = 1078
	Wax Grav	(LC 1), 9= 1)	159 (LC 1), 10=234	=201 (LC										
FORCES	(lb) - Max Tension	imum Com	pression/Maximum											
TOP CHORD	1-2=0/6, 2 4-5=-68/2	2-3=-110/3 [°] 24 5-6=-58	7, 3-4=-80/19, /26_6-7=-52/22											
BOT CHORD	2-10=-43/3	/33, 9-10=-/ 3	43/33, 8-9=-43/33,											
WEBS	5-8=-155	74, 4-9=-1	26/60, 3-10=-178/95	5										an
NOTES			,										OFI	AL DIN
1) Wind: AS Vasd=91r II; Exp C;	CE 7-16; Vu nph; TCDL= Enclosed; N	lt=115mph 6.0psf; BC 1WFRS (er	(3-second gust) DL=6.0psf; h=25ft; (velope) exterior zor	Cat. ne;								Å	STATE SCOT	T M.

cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60 2) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face),

- see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1. 3) All plates are 2x4 MT20 unless otherwise indicated.
- 4) Gable requires continuous bottom chord bearing.

5) Gable studs spaced at 2-0-0 oc.

 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.
 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not besign value for use only with with twit even connectors. This design is based only upon parameters shown, and is for an individual building designer must verify the applicability of design parameters and properly incorporate this design into the overall building designer must verify the applicability of design parameters and properly incorporate this design into the overall building designer. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcscomponents.com)

						RELEASE FOR CONSTRUCTION
Joh	Truss	Truss Type	Otv	Plv	Lot 175 HT	AS NOTED FOR PLAN REVIEW
005	11033		Giy	1 19		DEVELOPMENT SERVICES
B240031	C2	Monopitch	1	1	Job Reference (optional	LEE'S SUMMIT, MISSOURI
						00/00/0001

Wheeler Lumber, Waverly, KS - 66871,

Run: 8.73 S Feb 22 2024 Print: 8.730 S Feb 22 2024 MiTek Industries, Inc. ue Mar 6 33: 18 26/20:24 ID:NpVATqoAJz_5QRqr8sL_QZze1aS-RfC?PsB70Hq3NSgPqnL8w3ulTXbC

Scale = 1:35.8

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15	TC	0.26	Vert(LL)	-0.06	2-6	>999	360	MT20	197/144
TCDL	10.0	Lumber DOL	1.15	BC	0.34	Vert(CT)	-0.12	2-6	>643	240		
BCLL	0.0*	Rep Stress Incr	YES	WB	0.11	Horz(CT)	0.00	5	n/a	n/a		
BCDL	10.0	Code	IRC2018/1PI2014	Matrix-P							Weight: 29 lb	FI = 10%
LUMBER			7) This truss is	designed in accorda	ance w	ith the 2018						
TOP CHORD	2x4 SPF No.2		International	Residential Code s	ections	R502.11.1 a	nd					
BOT CHORD	2x4 SPF No.2		R802.10.2 a	nd referenced stand	lard AN	ISI/TPI 1.						
WEBS	2x3 SPF No.2		LOAD CASE(S)	Standard								
BRACING TOP CHORD	Structural wood she 6-0-0 oc purlins, ex	eathing directly applie acept end verticals.	ed or									
BOT CHORD	Rigid ceiling directly bracing.	applied or 10-0-0 or	0									
REACTIONS	(size) 2=0-3-8, Max Horiz 2=138 (L	5= Mechanical, 6=0- C 5)	3-8									
	Max Uplift 2=-89 (LC	C 4), 5=-74 (LC 3), 6=	=-86									
	Max Grav 2=341 (L (LC 1)	C 1), 5=-13 (LC 8), 6	=544									
FORCES	(lb) - Maximum Con	nression/Maximum										
IONOLO	Tension	ipression/maximum										
TOP CHORD	1-2=0/6. 2-3=-316/8	8. 3-4=-74/135. 4-5=	-7/31									
BOT CHORD	2-6=-111/254.5-6=	-43/33										
WEBS	3-6=-418/208, 4-6=	-204/76										
NOTES	,											
1) Wind AS(CE 7-16: Vult=115mpt	(3-second qust)										
Vasd=91n	nph: TCDL=6.0psf: BC	DL=6.0psf: h=25ft: 0	Cat.									
II; Exp C;	Enclosed; MWFRS (e	nvelope) exterior zor	ne;									
cantilever	left and right exposed	; end vertical left and	d								CODI	ADD.
right expo	sed; Lumber DOL=1.6	0 plate grip DOL=1.6	60								OF N	IISO
2) This truss	has been designed for	r a 10.0 psf bottom								1	750	~0, W
chord live	load nonconcurrent w	ith any other live load	ds.							R	NY SCOTT	New Y
This trus	s has been designed	for a live load of 20.0	lpsf							4	s scorr	M. YAY
on the bot	tom chord in all areas	where a rectangle								Kr.	/ SEVI	SK X
3-06-00 ta chord and	all by 2-00-00 wide will I anv other members.	fit between the botto	m							₿ð		0
4) All bearing	as are assumed to be	SPF No.2 .								M.	the states	Kanlink
5) Refer to a	irder(s) for truss to tru	ss connections.								W-	NUM	- All
6) Provide m	echanical connection	(by others) of truss to	0							N	ON PE-20010	18807 128

bearing plate capable of withstanding 74 lb uplift at joint 5, 89 lb uplift at joint 2 and 86 lb uplift at joint 6.

March 6,2024

ONAL ET

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent colleges with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

						RELEASE FOR CONSTRUCTION
Job	Truss	Truss Type	Qty	Ply	Lot 175 HT	
B240031	С3	Monopitch	8	1	Job Reference (optional	LEE'S SUMMIT, MISSOURI
Wheeler Lumber, Waverly, KS - 6	66871,	Run: 8.73 S Feb 22 2 ID:CzsRkttxvpkE8MH	2024 Print: 8. ?U7SOgqze	730 S Feb 22 1aM-RfC?Ps	2 2024 MiTek Industries, Inc. ⁻ B70Hq3NSgPqnL8w3uITXbG	ue Mar 69347826/2024

6-8-0

(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
25.0	Plate Grip DOL	1.15	TC	0.78	Vert(LL)	-0.10	2-4	>757	360	MT20	197/144
10.0	Lumber DOL	1.15	BC	0.45	Vert(CT)	-0.20	2-4	>379	240		
0.0*	Rep Stress Incr	YES	WB	0.00	Horz(CT)	0.00	4	n/a	n/a		
10.0	Code	IRC2018/TPI2014	Matrix-P							Weight: 19 lb	FT = 10%
	(psf) 25.0 10.0 0.0* 10.0	(psf)Spacing25.0Plate Grip DOL10.0Lumber DOL0.0*Rep Stress Incr10.0Code	(psf) Spacing 2-0-0 25.0 Plate Grip DOL 1.15 10.0 Lumber DOL 1.15 0.0* Rep Stress Incr YES 10.0 Code IRC2018/TPI2014	(psf) Spacing 2-0-0 CSI 25.0 Plate Grip DOL 1.15 TC 10.0 Lumber DOL 1.15 BC 0.0* Rep Stress Incr YES WB 10.0 Code IRC2018/TPI2014 Matrix-P	(psf) Spacing 2-0-0 CSI 25.0 Plate Grip DOL 1.15 TC 0.78 10.0 Lumber DOL 1.15 BC 0.45 0.0* Rep Stress Incr YES WB 0.00 10.0 Code IRC2018/TPI2014 Matrix-P	(psf) Spacing 2-0-0 CSI DEFL 25.0 Plate Grip DOL 1.15 TC 0.78 Vert(LL) 10.0 Lumber DOL 1.15 BC 0.45 Vert(CT) 0.0* Rep Stress Incr YES WB 0.00 Horz(CT) 10.0 Code IRC2018/TPI2014 Matrix-P Horz(CT)	(psf) Spacing 2-0-0 CSI DEFL in 25.0 Plate Grip DOL 1.15 TC 0.78 Vert(LL) -0.10 10.0 Lumber DOL 1.15 BC 0.45 Vert(CT) -0.20 0.0* Rep Stress Incr YES WB 0.00 Horz(CT) 0.00 10.0 Code IRC2018/TPI2014 Matrix-P Matrix-P DEFL in	(psf) Spacing 2-0-0 CSI DEFL in (loc) 25.0 Plate Grip DOL 1.15 TC 0.78 Vert(LL) -0.10 2-4 10.0 Lumber DOL 1.15 BC 0.45 Vert(CT) -0.20 2-4 0.0* Rep Stress Incr YES WB 0.00 Horz(CT) 0.00 4 10.0 Code IRC2018/TPI2014 Matrix-P Horz(CT) 0.00 4	(psf) Spacing 2-0-0 CSI DEFL in (loc) l/defl 25.0 Plate Grip DOL 1.15 TC 0.78 Vert(LL) -0.10 2-4 >757 10.0 Lumber DOL 1.15 BC 0.45 Vert(CT) -0.20 2-4 >379 0.0* Rep Stress Incr YES WB 0.00 Horz(CT) 0.00 4 n/a 10.0 Code IRC2018/TPI2014 Matrix-P -	(psf) Spacing 2-0-0 CSI DEFL in (loc) l/defl L/d 25.0 Plate Grip DOL 1.15 TC 0.78 Vert(LL) -0.10 2-4 >757 360 10.0 Lumber DOL 1.15 BC 0.45 Vert(CT) -0.20 2-4 >379 240 0.0* Rep Stress Incr YES WB 0.00 Horz(CT) 0.00 4 n/a n/a 10.0 Code IRC2018/TPI2014 Matrix-P Attrix-P Attrix Attrix	(psf) Spacing 2-0-0 CSI DEFL in (loc) l/defl L/d PLATES 25.0 Plate Grip DOL 1.15 TC 0.78 Vert(LL) -0.10 2-4 >757 360 MT20 10.0 Lumber DOL 1.15 BC 0.45 Vert(CT) -0.20 2-4 >379 240 0.0* Rep Stress Incr YES WB 0.00 Horz(CT) 0.00 4 n/a n/a 10.0 Code IRC2018/TPI2014 Matrix-P Vertice Vertice

LUMBER

- TOP CHORD 2x4 SPF No.2 BOT CHORD 2x4 SPF No.2
- 2x3 SPF No.2 WEBS
- BRACING TOP CHORD Structural wood sheathing directly applied or 6-0-0 oc purlins, except end verticals. BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing.
- REACTIONS (size) 2=0-3-8, 4= Mechanical Max Horiz 2=108 (LC 5) Max Uplift 2=-92 (LC 4), 4=-61 (LC 8) Max Grav 2=366 (LC 1), 4=283 (LC 1) (lb) - Maximum Compression/Maximum
- FORCES
- Tension TOP CHORD 1-2=0/6, 2-3=-95/61, 3-4=-219/100 BOT CHORD 2-4=-34/26

NOTES

- Wind: ASCE 7-16; Vult=115mph (3-second gust) 1) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
- 2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 3) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- 4) All bearings are assumed to be SPF No.2
- Refer to girder(s) for truss to truss connections. 5)
- Provide mechanical connection (by others) of truss to 6) bearing plate capable of withstanding 61 lb uplift at joint 4 and 92 lb uplift at joint 2.
- This truss is designed in accordance with the 2018 7) International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not beigh valid for use only with with with with the contractions. This design is based only door plantaters shown, and is for an individual dualing component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria**, and **DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcscomponents.com)

0

X

5

2

P

 \bigotimes

0-9-0

			2x4 =						2x4	4 u		
			I		6-1	11-8			1			
Scale = 1:27.6												
Loading TCLL (roof)	(psf) 25.0	Spacing Plate Grip DOL	2-0-0 1.15	CSI TC	0.84	DEFL Vert(LL)	in -0.12	(loc) 2-5	l/defl >663	L/d 360	PLATES MT20	GRIP 197/144
TCDL BCLL	10.0 0.0*	Lumber DOL Rep Stress Incr	1.15 YES	BC WB Motrix B	0.49 0.00	Vert(CT) Horz(CT)	-0.24 0.00	2-5 5	>331 n/a	240 n/a	Woight: 20 lb	ET 10%
BCDL	10.0	Code	IRG2018/1PI2014	Matrix-P							weight: 20 lb	F1 = 10%
TOP CHORD BOT CHORD WEBS	2x4 SPF No.2 2x4 SPF No.2 2x3 SPF No.2											
TOP CHORD	3-9-12 oc purlins, e	atiling directly applie xcept end verticals.	a or									
BOT CHORD	Rigid ceiling directly bracing.	applied or 10-0-0 oc	\$									
REACTIONS	(size) 2=0-3-8, 5 Max Horiz 2=124 (LC Max Uplift 2=-89 (LC Max Grav 2=375 (LC	5=0-3-8 C 5) S 4), 5=-88 (LC 8) C 1), 5=357 (LC 1)										
FORCES	(lb) - Maximum Com Tension	pression/Maximum										
TOP CHORD	1-2=0/6, 2-3=-103/6 3-5=-290/128	5, 3-4=-18/0,										
BOT CHORD	2-5=-35/27											
 Wind: ASC Vasd=91rr II; Exp C; I cantilever right expos This truss 	CE 7-16; Vult=115mph nph; TCDL=6.0psf; BC Enclosed; MWFRS (er left and right exposed sed; Lumber DOL=1.6 has been designed for	(3-second gust) DL=6.0psf; h=25ft; C ivelope) exterior zon ; end vertical left and 0 plate grip DOL=1.6 c a 10.0 psf bottom	Cat. e; d 60									- CE
 a) * This trust on the bott 3-06-00 ta 	load nonconcurrent wi s has been designed f tom chord in all areas II by 2-00-00 wide will	th any other live load or a live load of 20.0 where a rectangle fit between the botto	ds. psf m							ł	STATE OF M	MISSOUR M. FR
 All bearing Provide model bearing plate 5 and 89 lb 	any other members. gs are assumed to be s echanical connection (ate capable of withstar b uplift at joint 2.	SPF No.2 . (by others) of truss to nding 88 lb uplift at jo	o bint						ζ	L.	att.	Servier
6) This truss Internation R802.10.2	is designed in accordanal Residential Code set and referenced stand	ance with the 2018 ections R502.11.1 ar ard ANSI/TPI 1.	nd							Ø	PE-2001	018807 5 F
LOAD CASE(s) Standard										WANA	L L'EST

March 6,2024

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

Sca	e =	= 1	:28	.4
Sca	e =	= 1	:28	.4

Loading TCLL (roof) TCDL BCLL BCDL	(psf) 25.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC20	8/TPI2014	CSI TC BC WB Matrix-S	0.17 0.32 0.03	DEFL Vert(LL) Vert(CT) Horz(CT) Wind(LL)	in -0.03 -0.05 0.00 0.02	(loc) 8-9 8-9 7 8-9	l/defl >999 >999 n/a >999	L/d 360 240 n/a 240	PLATES MT20 Weight: 23 lb	GRIP 197/144 FT = 10%	
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SPF No.2 2x4 SPF No.2 2x3 SPF No.2 2x4 SPF No.2 Structural wood sh 6-0-0 cc purlins, e Rigid ceiling direct bracing. (size) 2=2-3-8, Max Horiz 2=124 (I Max Uplift 2=-30 (L	eathing directly appli- except end verticals. ly applied or 10-0-0 o , 7=0-3-8, 10=0-3-8 LC 5) .C 4), 7=-63 (LC 8), 1	5 ed or c 8 L 0=-82	 * This truss I on the bottor 3-06-00 tall I chord and ar All bearings Provide mec bearing plate 7, 30 lb uplif This truss is International R802.10.2 a OAD CASE(S) 	has been desig m chord in all a by 2-00-00 wide y other membrare assumed to chanical connect e capable of witt t at joint 2 and a designed in ac Residential Co nd referenced s Standard	ned for a liv reas where e will fit betw ers. b be SPF No thost of by oth thost and ing 6 82 lb uplift a cordance wi bde sections standard AN	e load of 20. a rectangle veen the bott 0.2. ers) of truss 3 lb uplift at t joint 10. th the 2018 R502.11.1 a SI/TPI 1.	Opsf tom to joint and						
	(LC 8) Max Grav 2=128 (I 10=353	LC 1), 7=254 (LC 1), (LC 1)												
FORCES	(lb) - Maximum Co Tension	mpression/Maximum												
TOP CHORD	1-2=0/6, 2-3=-118/	/9, 3-4=-92/0, 4-5=-50)/16,											

5-6=-18/0, 5-7=-186/62 BOT CHORD 2-10=-29/27, 9-10=-29/27, 8-9=-29/27, 7-8=-29/27 WEBS 3-9=-222/107, 4-8=0/51

NOTES

- Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
- Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 3) Gable studs spaced at 2-0-0 oc.
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
 - WARNING Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPH Claulity Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

						RELEASE FOR CONSTRUCTION
Job	Truss	Truss Type	Qtv	Plv	Lot 175 HT	AS NOTED FOR PLAN REVIEW
000			ς.,	,	Lot no m	DEVELOPMENT SERVICES 164038068
B240031	D1	Common Supported Gable	1	1	Job Reference (optional	LEE'S SUMMIT, MISSOURI
	-		-			00/00/000

Wheeler Lumber, Waverly, KS - 66871,

Scale = 1:64.7

Loading		(psf)	Spacing	2-0-0	1	cs			DEFL	in	(lo	oc)	l/defl	L/d	PLATES	GRIP	
TCLL (roof)		25.0	Plate Grip DOL	1.15		TC		0.07	Vert(LL)	n/a		-	n/a	999	MT20	197/144	
TCDL		10.0	Lumber DOL	1.15		BC		0.06	Vert(CT)	n/a		-	n/a	999			
BCLL		0.0*	Rep Stress Incr	YES		WB		0.17	Horz(CT)	0.01		22	n/a	n/a			
BCDL		10.0	Code	IRC2	018/TPI2014	Mat	rix-R								Weight: 176	b FT = 10%	
			•			Max Gr	av 22=100) (C 9)	23=161 (I C 2	2)	2)	Winc		7-16	· Vult=115mph	(3-second gust)	
TOP CHORD	2x4 SPF	No 2				indix of	24=184	4 (LC 1).	25=179 (LC 2)	2).	-/	Vasc	l=91mp	h: TC	DL=6.0psf: BC	DL=6.0psf: h=25ft: Cat.	
BOT CHORD	2x4 SPF	No 2					26=180) (LC 1).	27=180 (LC 2	2).		II: Ex	DC: EI	nclose	d: MWFRS (en	velope) exterior zone:	
WEBS	2x4 SPF	No 2 *Exce	ont* 21-22:2x3 SPF I	No 2			28=180) (LC 1).	29=179 (LC 1)).		canti	lever le	ft and	right exposed	: end vertical left and	
OTHERS	2x4 SPF	No 2		10.2			30=190) (LC 22)	, 32=214 (LC	18),		right	expose	d; Lu	mber DOL=1.60) plate grip DOL=1.60	
PRACINC	241011	10.2					33=190) (LC 21)	, 34=179 (LC	1),	3)	Trus	s desid	ned fo	or wind loads ir	the plane of the truss	
	Structuro		athing directly applic	od or			35=180) (LC 1), 🤅	36=180 (LC 2	1),	,	only.	For st	uds ex	xposed to wind	(normal to the face),	
TOF CHORD	6-0-0 00	nurline ov	cent end verticals	50 01			37=181	1 (LC 1), 3	38=178 (LC 2	1),		see S	Standa	d Indu	ustry Gable End	Details as applicable,	
	Bigid coil	ing directly	cept end verticals.	~			39=190) (LC 1), -	40=135 (LC 1	5),		or co	nsult q	ualifie	d building desig	ner as per ANSI/TPI 1.	
BOT CHORD	bracing	ing unecuy	applied of 10-0-0 of	6			41=173	3 (LC 17)			4)	All pl	ates ar	e 2x4	MT20 unless o	therwise indicated.	
WEBS	1 Row at	midpt	12-32		FORCES	(lb) - l	laximum C	ompressi	on/Maximum		5)	Gabl	e requi	res co	ntinuous bottor	n chord bearing.	
REACTIONS	(size)	22=34-10	-8, 23=34-10-8,			Tensi	on				6)	Trus	s to be	fully s	heathed from o	ne face or securely	
	()	24=34-10	-8. 25=34-10-8.		TOP CHORD	2-41=	141/47, 1-2	2=0/32, 2	-3=-197/80,			brace	ed agai	nst lat	teral movement	(i.e. diagonal web).	
		26=34-10	-8, 27=34-10-8,			3-4=-1	43/84, 4-5=	=-107/97,	5-6=-78/123,		()	Gabi	e studs	spac	ed at 2-0-0 oc.	10.0 (1	
		28=34-10	-8, 29=34-10-8,			6-7=-6	6/149, 7-9=	=-55/175,	9-10=-44/201	l,	8)	Inis	truss n	as bee	en designed for	a 10.0 pst bottom	
		30=34-10	-8, 32=34-10-8,			10-11	=-38/227, 1	1-12=-41	/250, 21-22=-0	68/3,	0)	* Thi		au no	nconcurrent wi	In any other live loads.	
		33=34-10	-8, 34=34-10-8,			12-13	=-42/242, 1	3-14=-38	/199,		9)	on th	s iruss	mas D	een designed in	ubara a reatangla	
		35=34-10	-8, 36=34-10-8,			14-15	-39/151, 1	10 20/0		14.4		2 06		hy 2 (0 00 wide will	fit botwoon the bottom	
		37=34-10	-8, 38=34-10-8,			10-17	=-30/92, 17	24 427	/20	/44,		chor	d and a	by Z-C	or mombors	it between the bottom	
		39=34-10	-8, 40=34-10-8,			19-20	- 27/112 20	0 40- 27	/30		10)		a anu a arings	are a	sumed to be S	SPE No 2	
		41=34-10	-8		BOT CHORD	20 20	- 27/112, 3	9-40=-27 7 20_ 27	/113, /112		10)	711 01	sanngs	arca		///////////////////////////////////////	
	Max Horiz	41=156 (l	_C 8)			36-33	27/113,3	5-3627	/113, /113								
	Max Uplift	23=-108 (LC 9), 24=-47 (LC 9),		34-35	27/113 3	3-3427	/113,								
		25=-56 (L	C 9), 26=-53 (LC 9),	,		32-33	= 27/113, 3	0-32=-27	/113								
		27=-54 (L	C 9), 28=-53 (LC 9)	,		29-30	=-27/113 2	8-29=-27	/113							alle	
		29=-58 (L	.C 9), 30=-48 (LC 9),	,		27-28	=-27/113. 2	6-27=-27	/113.						8 OF	MIC	
		33=-51 (L	C 8), 34=-57 (LC 8),	,		25-26	=-27/113, 24	4-25=-27	/113,					- 1	BIE	0.0	
		35=-53 (L	(L 8), 36 = -54 (L C 8), 0 = -54 (L C 8)	,		23-24	=-27/113, 2	2-23=-27	/113					E	15	Nov N	
		37=-53 (L	(L 0), 38 = -36 (L 0), 0.000	,	WEBS	12-32	=-174/0, 11	-33=-150	/75,					R	S/ SCO	TT M. Yr Y	
		39=-44 (L	C 8), 40=-116 (LC 8	o),		10-34	=-139/81, 9	-35=-140	/77, 7-36=-140	0/78,			-	0	SE	VIER \ Y	
		41=-49 (L	.0 4)			6-37=	140/78, 5-3	38=-138/7	79, 4-39=-147/	/74,			<u></u>	1			
						3-40=	100/105, 13	3-30=-15	0/72,					N			_
						14-29	=-139/82, 1	5-28=-14	0/77,					W	HColl	Aeren	J
						16-27	=-140/78, 1	7-26=-14	0/78,					27	al - NOI	MBEN A	
						18-25	=-139/78, 1	9-24=-14	3/76,					N	ON PE-200	1018807	
						20-23	-125/98							(V	1 and	188	
					NOTES										SSIC	ENG	
					1) Unbalance	ed roof li	ve loads ha	ve been	considered for	r					ALON N	AL	

1) Jnbalanced oof live loads have been this design.

March 6,2024

Conne

Continued on page 2 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

							RELEASE FOR CONSTRUCTION
ĺ	lob	Trues		Otv	Plv	Lot 175 HT	AS NOTED FOR PLAN REVIEW
	000	11035		Guy	l''y		DEVELOPMENT SERVICES
	B240031	D1	Common Supported Gable	1	1	Job Reference (optional	LEE'S SUMMIT, MISSOURI
	Wheeler Lumber, Waverly, KS - 6	66871,	Run: 8.73 S Feb 22 2 ID:W03MuP0zDB17t1	2024 Print: 8. YJ0Mo7uL9z	730 S Feb 2 e1Xb-RfC?P	2 2024 MiTek Industries, Inc. 7 sB70Hq3NSgPqnL8w3uITXb0	ue Mar 093:/926/2024 KWrCDdy:/4207f

- 11) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 49 lb uplift at joint 41, 51 lb uplift at joint 33, 57 lb uplift at joint 34, 53 lb uplift at joint 35, 54 lb uplift at joint 36, 53 lb uplift at joint 37, 56 lb uplift at joint 38, 44 lb uplift at joint 39, 116 lb uplift at joint 40, 48 lb uplift at joint 30, 58 lb uplift at joint 29, 53 lb uplift at joint 28, 54 lb uplift at joint 27, 53 lb uplift at joint 26, 56 lb uplift at joint 25, 47 lb uplift at joint 24 and 108 lb uplift at joint 23.
- 12) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent oulgase with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TPI1 Quality Criteria, and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcscomponents.com)

									RELEAS	
Job	Truss		Truss Type		Qty	Ply	Lot 175 HT		AS NOT DEVEL	ED FOR PLAN REVIEW
B240031	D2		Common		7	1	Job Refere	nce (optional	LEE'S	SUMMIT, MISSOURI
Wheeler Lumber, Wa	verly, KS - 66871,			Run: 8.73 S F	eb 22 2024 Print: 8.7 01 urTl91_9VbOze1W	30 S Feb 22	2 2024 MiTek I 70Ha3NSaPar	ndustries, Inc.	ue Mar (5)9:34:39	26/2024
					02011101_011102011		i i i qoi togi qi		1020110420011	
	-0-10-8 5	-1-10	10-8-9	17-6-0		24-3-7		29-10-3	3 3	4-10-8
	0-10-8 5	-1-10	5-6-15	6-9-7	6x6=	6-9-7		5-6-12		5-0-5
					6					
ΤT				3x6 ≠						
			3×4 ~	5			3x4			
			6 ¹² 4				7	~		
ကု ဝု			K				A			
0-0 0-2		3x10 =				/		$\mathbb{N} \rightarrow \mathbb{N}$	3x10	
		3		N A		\$			°	
	8x8 =		_ //							6x8=
0	1									
⊥ ⊥ ¦⊤			15 17	18 14	13	12 1	9	20 11		
			3x4=	4x8=	4x8=	4x8=		3x4=		
		<u>8-1-4</u> 8-1-4		<u>17-6-0</u> 9-4-12		<u>26-1</u> 9-4	0-10 I-10		<u>34-10-8</u> 7-11-14	<u>3</u>
Scale = 1:64.7										
Plate Offsets (X, Y): [2:0-3-5,0-5-12	2], [9:Edge,0-2-0]		1					I.	
Loading TCLL (roof)	(psf) 25.0	Spacing Plate Grip DOL	2-0-0 1.15	CSI TC	0.62 Vert(L	L) -0.	in (loc) 24 11-13	l/defl L/d >999 360	PLATES MT20	GRIP 197/144
TCDL	10.0	Lumber DOL Rep Stress Incr	1.15 VES	BC	0.59 Vert(0	-0. (Τ) -0.	42 11-13	>975 240		
BCDL	10.0	Code	IRC2018/TPI2014	Matrix-S	Wind(LL) 0.	09 13-15	>999 240	Weight: 133 lb	FT = 10%
	4 SPE No 2		4) * This trus on the bot	s has been designe	ed for a live load o	of 20.0psf				
BOT CHORD 2x	4 SPF 2400F 2.0E	E *Except* 14-12:2x4	3-06-00 ta	Il by 2-00-00 wide	will fit between the	e bottom				
WEBS 2x	3 SPF No.2 *Exce	ept* 16-2,10-9:2x6 SF	PF 5) All bearing	are assumed to	be SPF 2400F 2.0)E.				
BRACING			bearing pl	ate at joint(s) 10.	on (by others) of t					
TOP CHORD St 3-2	ructural wood she 2-8 oc purlins, ex	eathing directly applie cept end verticals.	d or () Flowide in bearing pl	ate capable of with	standing 218 lb u	plift at joint				
BOT CHORD Ri	gid ceiling directly acing.	applied or 10-0-0 oc	8) This truss	is designed in acco	ordance with the 2	2018				
WEBS 1 I REACTIONS (size	Row at midpt e) 10=0-2-0,	3-16, 8-10, 4-13, 7-1 , 16=0-3-8	3 Internation R802.10.2	and referenced st	andard ANSI/TPI	1. 1 and 1.				
Max Max	Horiz 16=156 (l	LC 8) (I C 9) 16=-218 (I C 8	LOAD CASE(S) Standard						
Max	Grav 10=1636	(LC 2), 16=1701 (LC	2)							
	insion									
4-6	2=0/35, 2-3=-866/ 6=-1889/278, 6-7=	=-1889/278,								
2-	8=-2610/320, 8-9= 16=-608/164, 9-10	=-632/108,)=-405/104								
BOT CHORD 15 11	-16=-387/2352, 1 -13=-132/2112, 1	3-15=-267/2125, 0-11=-252/2318							STATE	Jon
WEBS 6-' 8-'	13=-96/1243, 3-16 10=-2125/239, 4-1	6=-1920/182, 13=-702/266,							TE OF	MISSOL
7-' 3-'	13=-687/265, 4-15 15=-170/165, 8-11	5=0/441, 7-11=0/425, 1=-158/164						B	S SCOT	тм.
NOTES	of live loads have	been considered for						Real Providence	SEV	
this design.	16: \/ult_115mph	(2 socond quist)							att	Spring
Vasd=91mph;	TCDL=6.0psf; BC	CDL=6.0psf; h=25ft; C	cat.					N.	PE-2001	018807
cantilever left a	and right exposed	; end vertical left and	e, 1					N N	THE	
right exposed;3) This truss has	Lumber DOL=1.6 been designed fo	o plate grip DOL=1.6 r a 10.0 psf bottom							SIONA	LEN
chord live load	nonconcurrent wi	ith any other live load	IS.						Mar	ch 6,2024
										,

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

									RELEASE	
Job	Truss		Truss Type		Qty	Ply	Lot 175 H	г	AS NOTE DEVEL	ED FOR PLAN REVIEW
B240031	D3		Common		1	1	Job Refere	ence (optiona	I LEE'S	SUMMIT, MISSOURI
Wheeler Lumber, Wave	erly, KS - 66871,			Run: 8.73 S Feb 2 ID:kLRLKMPf07Lo	2 2024 Print: 8 N2oCSr3Pwlz	3.730 S Feb 2 2e1Mm-RfC?F	2 2024 MiTek PsB70Hq3NSg	Industries, Inc. PqnL8w3uITXt	ue Mar (5)9:34:40 KWrCDorrJ4zac?f	26/2024
	-0-10-8 5 0-10-8 5	i-1-10 i-1-10	10-8-9 5-6-15	17-6-0 6-9-7	6x6=	<u>24-3-7</u> 6-9-7		<u>29-10</u> 5-6-1	-6 5	35-0-0 35-10-8 5-1-10 0-10-8
Scale = 1:64.6	8x8 = 1 2 18 1 18 1 18 1 18 1 19 1 19 1 19 1 19 1	3x10 = 3 8-1-5 8-1-5	$ \begin{array}{c} 3x4 \\ 6 \\ \hline 1^2 \\ 4 \end{array} $ $ \begin{array}{c} 17 \\ 19 \\ 3x4 \\ \hline \end{array} $	3x6 = 5 20 16 4x8= 17-6-0 9-4-11	6 15 4x8=	3x 3x 14 14 4x8= 26- 9-	5. 7 3x4 21 21 4-11	4 s 3 22 13 3x4	3x10 \$ 9 = 35-0-0 8-1-5	8x8 10 12 12
Plate Offsets (X, Y):	[2:0-3-5,0-5-12	2], [10:0-3-5,0-5-12]								
Loading TCLL (roof) TCDL BCLL BCDL LUMBER TOP CHORD 2x4 BOT CHORD 2x4 BOT CHORD 2x4 BOT CHORD 2x4 COP CHORD 2x3 No.2 BRACING TOP CHORD Stru 3-2- BOT CHORD Rigi brac WEBS 1 RC REACTIONS (size) Max H Max C FORCES (lb) TEN TOP CHORD 1-2= 4-6= 8-9= 2-18 BOT CHORD 17-1 13-1 WEBS 6-15 9-12 8-15 3-17 NOTES 1) Unbalanced root	(psf) 25.0 10.0 0.0* 10.0 SPF No.2 SPF No.2 *Exca SPF No.2 *Exca 2 ictural wood she 7 oc purlins, ex- id ceiling directly id ceiling directly ping. ow at midpt 12=0-3-8 Horiz 18=-146 Uplift 12=-219 Grav 12=1706 - Maximum Con sion =0/35, 2-3=-846, =-2641/322, 9-81 3=-600/163, 10- 18=-378/2358, 11 5=-96/1256, 3-11 15=-96/1256, 3-11 5=-700/268, 4-1 7=-166/164, 9-13 f live loads have	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code Path Grip DOL Lumber DOL Rep Stress Incr Code Path Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018/TPI2014 4) * This truss is on the botto 3-06-00 tall chord and a pF 5) All bearings 6) Provide mee bearing plate 18 and 219 7) This truss is Internationa R802.10.2 a LOAD CASE(S)) 2) 35,	CSI TC BC WB Matrix-S has been designed f m chord in all areas by 2-00-00 wide will ny other members, w are assumed to be S chanical connection (e capable of withstar Ib uplif at joint 12. designed in accorda I Residential Code s and referenced stand Standard	0.61 0.63 0.63 0.63 0.63 0.63 0.63 0.63 0.63 0.63 0.63 0.64 0.75	EL (LL) -0 (CT) -0 z(CT) 0 d(LL) 0 d of 20.0psf tangle he bottom 10.0psf. f truss to uplift at join 2018 2.11.1 and P1.	in (loc) 28 13-15 49 13-15 12 12 10 15-17 t	I/defi L/d >999 36(>840 240 n/a n/a >999 240	PLATES MT20 Weight: 134 lb Weight: 134 lb	GRIP 197/144 FT = 10%
 this design. Wind: ASCE 7-1 Vasd=91mph; Tr II; Exp C; Enclos cantilever left an right exposed; L This truss has be chord live load n 	16; Vult=115mph CDL=6.0psf; BC sed; MWFRS (e nd right exposed umber DOL=1.6 een designed fo nonconcurrent w	h (3-second gust) DL=6.0psf; h=25ft; C: nvelope) exterior zone ; end vertical left and 00 plate grip DOL=1.60 r a 10.0 psf bottom ith any other live load:	at. ;) 3.						PE-2001	EER 018807

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent toules bible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

														RELEASE	FOR CONSTRUCTION
Job		Truss		Truss Ty	rpe		Qt	/ F	ly	Lot 1	175 HT			AS NOTE	D FOR PLAN REVIEW OPMENT SERVICES
B240031		D4		Roof Sp	pecial		1	1		Job	Refere	nce (op	tional	LEE'S	I64038071 SUMMIT, MISSOURI
Wheeler Lumber	r, Waverly, KS -	66871,				Run: 8.73 S Feb ID:i2_wq2jXUJtw	22 2024 O9ksVOz	Print: 8.73) S Feb 2 RfC?PsB7	2 2024 0Hq3N	MiTek I ISgPqnL	ndustries .8w3uIT)	s, Inc. T KbGKV	ue Mar (5)9:34:40 rCDoi7J4zJC	26/2024
		-0-10-8 0-10-8	5-1-10 5-1-10	<u>10-8</u> 5-6-1	-9 5	<u>17-6-0</u> 6-9-7		<u>21-4-12</u> 3-10-12	23- 2-	5-13 1-1	<u>28</u> 4	<u>8-0-0</u> -6-3	-+	<u>35-0-0</u> 7-0-0	35-10-8
9-6-3	<u> 3.0.0 9.5.0 </u> 3.0.0 6.5.0 ⊟1	8xi 1 2 2 2 2 2 4	3x10 3 3 2	2 2 5x	6 ¹² 4 0 12=	3x6 = 5	6 17 5x12 19 2x4	18 2x4 2x4 15x1	4x8 ≈ 7 14 14 2x4 II 2=	3x6			3x6z 9 13 5x12	-	10 11 12 8x8=
		ŀ	<u>8-3-0</u> 8-3-0			<u>17-6-0</u> 9-3-0	18- 17-7- 0-1-4	-8-8 <u>4 21-3</u> 1 2-7-	- <u>8</u> 0		<u>28-0-0</u> 6-8-8	1		<u>35-0-0</u> 7-0-0	
Scale = 1:70.6 Plate Offsets (X, Y): [2:0-3-	5,0-5-12	, [12:0-3-12,0-6-4], [15:0-6-4,0-	-4-4], [17:0-5- ⁻	12,0-2-8]	1-	1-4							
Loading TCLL (roof) TCDL BCLL BCDL	,,,,,,	(psf) 25.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018	/TPI2014	CSI TC BC WB Matrix-S	0.92 0.76 0.85	DEFL Vert(LL) Vert(CT Horz(C ⁻ Wind(Ll)	-0.) -0. [) 0. _) 0.	in .28 .57 1 .29 .17	(loc) 14 9-20 12 14	l/defl >999 >730 n/a >999	L/d 360 240 n/a 240	PLATES MT20 Weight: 154 lb	GRIP 197/144 FT = 10%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD WEBS TOP CHORD BOT CHORD BOT CHORD BOT CHORD WEBS	2x4 SPF Nc 2x4 SPF Nc No.2, 17-15 2x3 SPF Nc No.2 Structural w except end Rigid ceiling bracing. 1 Row at m 1 Brace at , (size) 1 Max Horiz 2 Max Uplift 1 Max Grav 1 (lb) - Maxim Tension 1-2=0/35, 2 4-6=-2571/, 7-9=-3716/, 2-21=-598/, 20-21=-379 16-18=-159 15-16=-142, 2-15=-69/1, 17-19=0/38 7-17=-1462 9-15=-44/9, 3-21=-1864 3-20=-170/, 17-20=-315	2.2 *Exce :2x4 SPF .2 *Exce vood sheat verticals. g directly idpt Jt(s): 17 2=0-3-8, 1=-146 (1 2=-219 (1 2	pt* 18-16,7-14:2x3 S 2100F 1.8E pt* 21-2,12-10:2x6 S athing directly applied applied or 9-5-0 oc 7-17, 3-21 21=0-3-8 LC 9), 21=-219 (LC & LC 1), 21=1632 (LC pression/Maximum 164, 3-4=-2460/319, -2555/319, =-2640/318, 10-11=(2=-1561/254 D-20=0/39, 18-19=-2/ =-138/3186, 1-5=-0/113, 4=0/34, 12-13=-193/ 143/1868, 15=-212/2475, -1048/185, 13=-34/1495, =-511/109, 17=-313/235	2) PF 3) d, 4) 5) 6) 7) 1) LO 0/35, 28, 770	Wind: ASCE Vasd=91mp ¹ II; Exp C; En cantilever lef right exposed * This truss ha chord live loa * This truss h on the bottor 3-06-00 tall b chord and ar All bearings i Provide mec bearing plate 12 and 219 II This truss is International R802.10.2 ar AD CASE(S)	7-16; Vult=115mp 1; TCDL=6.0psf; Bi closed; MWFRS (et t and right exposed d; Lumber DOL=1. Is been designed find ad nonconcurrent with has been designed with yo 2-00-00 wide with yo other members. are assumed to be hanical connection e capable of withsta b uplift at joint 21. designed in accorrc Residential Code and referenced stand Standard	h (3-sec CDL=6.0 enveloped ; end \ 60 plate or a 10.0 vith any for a liv s where Il fit betv SPF No (by oth anding 2 dance w sections dard AN	cond gust Opsf; h=2 e) exterio vertical lei grip DOI 0 psf botth 0 psf botth e load of a rectang veen the l 0.2 . ers) of tr. (19 lb upli ith the 20 ; R502.11 ISI/TPI 1.	5ft; Cat. zone; t and =1.60 om loads. 20.0psf le bottom ss to ft at join 18 .1 and	t		e		STATE OF M SCOTT SEVI NUMI PE-20010	AISSOUR M. ER BER D18807
 Unbalance this design 	ed roof live loa n.	ads have	been considered for										Q	FESSIONA	L ENGLA

March 6,2024

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

						RELEASE FOR CONSTRUCTION
Job	Truss	Truss Type	Qty	Ply	Lot 175 HT	
B240031	D5	Roof Special	2	1	Job Reference (optional	LEE'S SUMMIT, MISSOURI
Wheeler Lumber, Waverly, KS - 6	66871,	Run: 8.73 S Feb 2 ID:WZ8IgtTAPrSy8	2 2024 Print: 8 3VQ8QvLWx8	3.730 S Feb : e1?R-RfC?F	22 2024 MiTek Industries, Inc. PsB70Hq3NSgPqnL8w3uITXbG	ue Mar 193: #26/219:24 (WrCDon 423) of 26/219 :24
	-0- - 0-1	10-8 5-1-10 10-8-9 10-8 5-1-10 5-6-15		<u>17-6-0</u> 6-9-7	21-4-8 3-10-8	

	8-3-1 8-3-1	17-7-12 9-4-11	18-9-4 21-4-8 18-9-4 21-4-8 1-1-8 2-6-0 0-1-4	
Y): [14:0-1-10,0-3-4]				

Plate Offsets ((X, Y): [14:0-1-10,0-3-4	4]											
Loading TCLL (roof) TCDL BCLL BCDL	(psf) 25.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC20	18/TPI2014	CSI TC BC WB Matrix-S	0.87 0.58 0.79	DEFL Vert(LL) Vert(CT) Horz(CT) Wind(LL)	in -0.13 -0.30 0.01 0.07	(loc) 12-13 12-13 8 12-13	l/defl >999 >836 n/a >999	L/d 360 240 n/a 240	PLATES MT20 Weight: 97 lb	GRIP 197/144 FT = 10%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD JOINTS REACTIONS	2x4 SPF No.2 2x4 SPF No.2 2x3 SPF No.2 *Exce 2.0E Structural wood shea 2-2-0 oc purlins, exc Rigid ceiling directly bracing. 1 Brace at Jt(s): 10 (size) 8=0-3-2, 1 Max Horiz 14=284 (L Max Uplift 8=-158 (LC Max Grav 8=941 (LC	pt* 14-2:2x8 SP 240 athing directly applie sept end verticals. applied or 9-8-5 oc 4=0-3-8 C 5) C 8), 14=-155 (LC 8) (1), 14=1028 (LC 1)	4)0F 5 6 d or 7 L	 * This truss h on the bottor 3-06-00 tall b chord and ar All bearings i Provide mec bearing plate 14 and 158 ll This truss is International R802.10.2 ar CAD CASE(S) 	has been designe in chord in all are by 2-00-00 wide w hy other members are assumed to thanical connection capable of with buplift at joint 8. designed in acco Residential Cod- ind referenced sta Standard	ed for a liv as where vill fit betw s. De SPF No on (by oth standing 1 ordance w e sections andard AN	e load of 20. a rectangle veen the bott o.2. ers) of truss : 55 lb uplift a ith the 2018 s R502.11.1 a ISI/TPI 1.	Opsf om to t joint and					
FORCES	(lb) - Maximum Com	pression/Maximum											
TOP CHORD BOT CHORD	l ension 1-2=0/37, 2-3=-1442 4-6=-680/135, 6-7=-{ 7-8=-912/171 13-14=-356/1184, 12 10-12=0/355, 6-10=- 9 Q= 50/45	/219, 3-4=-1199/185 595/165, 2-14=-939/ 2-13=0/46, 11-12=0/0 8/242, 9-10=-59/45,	5, '193, 0,										
WEBS	3-13=-209/172, 4-13 10-13=-289/1058, 4- 7-10=-116/741, 9-11	=-38/184, 10=-597/244, =-118/0										TE OF	MISSO
NOTES 1) Unbalance this design 2) Wind: ASG Vasd=91n II; Exp C; cantilever right expo 3) This truss chord live	ed roof live loads have n. CE 7-16; Vult=115mph nph; TCDL=6.0psf; BCI Enclosed; MWFRS (en left and right exposed : sed; Lumber DOL=1.6(has been designed for load nonconcurrent wit	been considered for (3-second gust) DL=6.0psf; h=25ft; C velope) exterior zon ; end vertical left and 0 plate grip DOL=1.6 a 10.0 psf bottom th any other live load	Cat. le; d 60 ds.									SCOT SEV SEV PE-2001	T M. HER 018807

Scale = 1:70

16023 Swingley Ridge Rd. Chesterfield, MO 63017 314.434.1200 / MiTek-US.com

March 6,2024

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

							RELEASE FOR CONSTRUCTION
Job	Truss	Truss Type		Qty	Ply	Lot 175 HT	AS NOTED FOR PLAN REVIEW DEVELOPMENT SERVICES
B240031	D6	Roof Special		3	1	Job Reference (optional	LEE'S SUMMIT, MISSOURI
Wheeler Lumber, Wav	verly, KS - 66871,		Run: 8.73 S Feb 22 20 ID:6mwc4kq6XSjKEKe	24 Print: 8 EENntF3ze	3.730 S Feb 2 e0tD-RfC?Ps	2 2024 MiTek Industries, Inc. ⁻ B70Hq3NSgPqnL8w3uITXbGI	ue Mar 6934/126/2024 WrCDoine4298/126/2024
		-0-10-8 5-1-10 	10-8-9		17-6-0 6-9-7	21-4-8 3-10-8	
						6x6=	
	9-6-3 9-5-0	3	6 ¹² 4	×4 =	3x6 = 5	6 4x5	4-5-12

								6x6=	
9-6-3	9-5-0	0-8-0	1 2	2x4, 3	6 ^{]2} 4	x4 = 5	3x6 =	5x12	4x5 × 7
		0	⊠ 8x8 ≠		13 3x10=	12 3x6=		3x4 II	10 2x4 ш
									2x4 II
			ŀ	<u>8-3-1</u> 8-3-1	<u>12-0-</u> 3-8-1	0 5	<u>17-7-12</u> 5-7-12	<u>21-1</u> 3-5-	<u>-0</u> 21-4-8 H 4 0-3-8

Plate Offse	ets (X, Y	′): [14	:0-1-10,0-3	-4]
-------------	-----------	---------	-------------	-----

Scale = 1:67.6

Loading	(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15		TC	0.87	Vert(LL)	-0.14	11-13	>999	360	MT20	197/144
TCDL	10.0	Lumber DOL	1.15		BC	0.59	Vert(CT)	-0.31	11-13	>793	240		
BCLL	0.0*	Rep Stress Incr	YES		WB	0.79	Horz(CT)	0.01	8	n/a	n/a		
BCDL	10.0	Code	IRC2018/	/TPI2014	Matrix-S		Wind(LL)	0.07	11-13	>999	240	Weight: 100 lb	FT = 10%
TCDL BCLL BCDL LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD JOINTS REACTIONS FORCES TOP CHORD BOT CHORD BOT CHORD WEBS NOTES 1) Unbalance this design 2) Wind: ASC Vasd=91m II; Exp C; E cantilever1 right expos 3) This truss	10.0 0.0* 10.0 2x4 SPF No.2 2x4 SPF No.2 2x3 SPF No.2 *Exce 2.0E Structural wood she 2-2-0 oc purlins, ex Rigid ceiling directly bracing. 1 Brace at Jt(s): 9 (size) 8=0-3-2, Max Horiz 14=284 (I) Max Grav 8=1008 (I) (Ib) - Maximum Com Tension 6-7=-596/147, 2-14: 1-2=0/37, 2-3=-144: 4-6=-679/118 13-14=-349/1183, 1 9-13=-208/173, 4-13 3-13=-208/173, 4-13 -7-9=-101/789, 8-10= 20 d roof live loads have 5 E 7-16; Vult=115mph ph; TCDL=6.0psf; BC Enclosed; MWFRS (er left and right exposed has been designed for	Lumber DOL Rep Stress Incr Code ept* 14-2:2x8 SP 240 eathing directly applie to the stress of the stress of the stress applied or 6-0-0 oc 14=0-3-8 LC 5) LC 1), 14=1028 (LC 1) pression/Maximum =-939/189, 7-8=-948/ 2/210, 3-4=-1199/176 1-13=0/42, 10-11=0/- 267, 8-9=-68/47 3=-37/177, 9=-598/248, =0/25 e been considered for a (3-second gust) CDL=6.0psf; h=25ft; C nvelope) exterior zon ; end vertical left and 00 plate grip DOL=1.6 r a 10.0 psf bottom	1.15 YES IRC2018/ 4) 0F 5) 6) d or 7) LO/ 151, 5, 1, 1, sat. e; 10	TPI2014 * This truss h on the bottom 3-06-00 tall b chord and an All bearings a Provide mect bearing plate that 120 lt This truss is of International R802.10.2 ar AD CASE(S)	BC WB Matrix-S as been designed of chord in all areas y 2-00-00 wide will y other members. The assumed to be nanical connection capable of withsta ouplift at joint 8. designed in accord Residential Code s d referenced stand Standard	0.59 0.79 for a live where fit betw SPF No (by othen nding 1 ance wis sections dard AN	Vert(CT) Horz(CT) Wind(LL) e load of 20.0 a rectangle veen the botto 0.2. ers) of truss to 50 lb uplift at th the 2018 R502.11.1 ar SI/TPI 1.	-0.31 0.01 0.07 lpsf pm p joint nd	11-13 8 11-13	>793 n/a >999	240 n/a 240	Weight: 100 lb	FT = 10%
chord live I	load nonconcurrent w	ith any other live load	s.								Ŷ	29 H	IS B
												SIONA	LENS
												Marc	h 6,2024

March 6,2024

	(X, 1): [14.0 1 4,0 2 0]												
Loading TCLL (roof) TCDL BCLL BCDL	(psf) 25.0 10.0 0.0 * 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018	3/TPI2014	CSI TC BC WB Matrix-S	0.77 0.72 0.79	DEFL Vert(LL) Vert(CT) Horz(CT) Wind(LL)	in -0.25 -0.49 0.05 0.08	(loc) 13-14 13-14 8 13	l/defl >999 >508 n/a >999	L/d 360 240 n/a 240	PLATES MT20 M18AHS Weight: 101 lb	GRIP 197/144 142/136 FT = 10%	
LUMBER TOP CHORE BOT CHORE WEBS TOP CHORE BOT CHORE WEBS JOINTS REACTIONS	 2x4 SPF No.2 2x4 SPF No.2 2x3 SPF No.2 *Exce 2.0E Structural wood sheat 3-2-4 oc purlins, exc Rigid ceiling directly bracing. 1 Row at midpt 1 Brace at Jt(s): 9 (size) 8=0-3-2, 1 Max Horiz 14=284 (L 	pt* 14-2:2x6 SP 240 athing directly applie cept end verticals. applied or 6-0-0 oc 4-9 14=0-3-8 .C 5)	5) 10F 6) 7) 1d or 8) LO	* This truss h on the bottor 3-06-00 tall h chord and ar All bearings. Provide mecc bearing plate 14 and 121 I This truss is International R802.10.2 at AD CASE(S)	has been designen n chord in all are by 2-00-00 wide v ny other members are assumed to b hanical connection c capable of with b uplift at joint 8. designed in acco Residential Cod nd referenced sta Standard	ed for a liv as where will fit betw s. De SPF No on (by othe standing 1 ordance wi e sections andard AN	e load of 20.0 a rectangle veen the botto o.2. ers) of truss t 49 lb uplift at th the 2018 R502.11.1 a SI/TPI 1.	Dpsf om i joint ind						
FORCES	Max Uplift 8=-121 (L Max Grav 8=1012 (L (lb) - Maximum Com Tension	C 8), 14=-149 (LC 8) .C 1), 14=1026 (LC 1 pression/Maximum) 1)											
BOT CHORE	 1-2=0/35, 2-3=-1414 4-6=-701/116, 6-7=-{ 7-8=-944/153 13-14=-348/1157, 12 	/220, 3-4=-1361/231 594/150, 2-14=-924/ 2-13=-179/779,	1, 207,											
WEBS	4-12=0/209, 11-12=(9-11=0/281, 6-9=0/2 3-13=-1161/394, 3-1 9-12=-324/1239, 4-9 7-9=-107/793, 8-10=	0/68, 10-11=0/3, 51, 8-9=-68/47 2=-279/1087, 9=-792/285, 60/35									B	ATE OF M	IISSOL	h
NOTES 1) Unbaland this desig 2) Wind: AS Vasd=91 II; Exp C cantileve right exp 3) All plates chord live	ced roof live loads have gn. CE 7-16; Vult=115mph mph; TCDL=6.0psf; BC Enclosed; MWFRS (er r left and right exposed osed; Lumber DOL=1.6i are MT20 plates unless s has been designed for bload nonconcurrent wi	been considered for (3-second gust) DL=6.0psf; h=25ft; C vivelope) exterior zon ; end vertical left and 0 plate grip DOL=1.6 s otherwise indicated r a 10.0 psf bottom th any other live load	e; d 30 d. ds.							а		SCOTI SEVII DE LOUNE PE-20010 PE-20010	M. P. ER 118807	

March 6,2024

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent toulsible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbsccomponents.com)

											RELEAS	E FOR CONSTRUCTION
Job		Truss		Truss Type	e		Qty	Ply	Lot 175 HT		AS NOT	ED FOR PLAN REVIEW
B240031		D8		Roof Spe	cial Struct	ural Gable	1	1	Job Refere	nce (optional	LEE'S	164038075 SUMMIT, MISSOURI
Wheeler Lumbe	r, Waverly, KS -	66871,				Run: 8.73 S Feb 22 ID:zrzGvAy?WdG6	2 2024 Print: 8 ESRC1oJDyZz	730 S Feb 2 e0ik-RfC?Ps	2 2024 MiTek I B70Hq3NSgPo	ndustries, Inc. qnL8w3uITXbG	ue Mar (5)9:34:4 (WrCDoi7:42521f	26/2024
	-0-10 0-10)-8 -8	5-9-9 5-9-9	<u>9-8-12</u> 3-11-3		17-6-0 7-9-4		<u>22-8-0</u> 5-2-6	3	27-10-1 5-2-6	3 3 4	<u>2-8-8</u> ∣-9-11
							4x8=					
9-6-3	01 £9£99	2 7x12 =	3x10 3	61 =	2 4x8 = 5 4 28 29 8x8 = 6x	7 3x4 = 6 3 32 31 88=	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	9 8 33 3×6 = 26	4x5, 10 11 34 3x6 II 25	12 13 310 2223 236 3x4= 3x4=	14 14 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	5 3x10 u 16 17 18 5 18 5 19
		1	9-10-0		1	17-6-0	1		25-4-2	3x4=	32-8-8	
Scale = 1:62		Γ	9-10-0		Ι	7-8-0	I		7-10-2	I	7-4-6	1
Plate Offsets ((X, Y): [17:0-3	3-8,Edge]	, [29:Edge,0-3-8], [30	:0-1-4,0-2-8	3]							
Loading TCLL (roof) TCDL BCLL BCDL		(psf) 25.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018/T	PI2014	CSI TC BC WB Matrix-S	0.70 Vert(0.67 Vert(0.83 Horz Wind	- LL) -0. CT) -0. (CT) 0. (LL) 0.	in (loc) 22 29-30 43 29-30 06 25 08 27-28	l/defl L/d >999 360 >588 240 n/a n/a >999 240	PLATES MT20 Weight: 164 lb	GRIP 197/144 FT = 10%
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD JOINTS REACTIONS	2x4 SPF No 2x4 SPF No 2100F 1.8E 2x3 SPF No 2x3 SPF No 2x4 SPF No Structural w 4-0-15 oc p Nigid ceiling bracing, E 10-0-0 oc b 1 Brace at 32, 33 (size) 1 2	0.2 0.2 *Excep 2.2 *Excep 2.x6 SP 2-2 2.2 x0 SP	ot* 30-29:2x4 SPF 3 SPF No.2 ot* 27-8,18-17:2x4 SF 400F 2.0E athing directly applied tcept end verticals. applied or 6-0-0 oc 3-30,27-28. , 19=11-7-8, 20=11-7 , 22=11-7-8, 24=11-7 , 30=0-3-8	BOT PF WEB or -8, -8, -8,	CHORD 2 2 3 3 3 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	29-30=-296/1088, 28 4-28=-13/417, 27-28; 26-27=-360/132, 25-28 24-25=-360/132, 22-28; 24-25=-335/95, 20-2; 19-20=-335/95, 18-11; 3-29=-1218/370, 3-21; 4-32=-950/298, 31-3; 27-31=-979/312, 8-2; 27-33=-139/954, 33-3; 11-34=-146/1002, 11; 22-35=-359/27, 22-3; 36-37=-299/82, 14-3; 36-37=-29/82, 14-3; 36-37=-29/82, 14-3; 36-32=-23/16, 9-33=-6; 10-34=-543/109, 25-3; 12-35=-679/125, 24-3; 13-36=-115/91, 21-3; 15-20=-78/60, 16-19;	-29=-172/83 =-232/1145, 26=-360/132 24=-360/132 1=-335/95, 9=-335/95 8=-251/1125 2=-961/306, 7=-61/171, 34=-138/956 -35=-401/33 6=-335/159, 7=-240/85, 7 34=-480/106 35=-726/131 7=-21/102, =-266/87	1, , , -31=-37/12 =-58/66, ,	 8) * Th on ti 3-06 choi 9) Bea Join 10) Prov bea 30, ⁻ uplif joint , 11) This Intei R80 LOAD C 	is truss has t he bottom ch 5-00 tall by 2- d and any ot rings are ass t 19 SPF No. vide mechani ring plate cap 72 lb uplift at t at joint 25, 21, 35 lb upli t truss is desi mational Res 2.10.2 and re CASE(S) St	een designed for ord in all areas wi 00-00 wide will fit her members. umed to be: Joint 2. cal connection (by able of withstand joint 22, 381 lb joint 22, 381 lb jift at joint 20 and gned in accordan idential Code sec ferenced standar andard	a live load of 20.0psf here a rectangle between the bottom 30 SPF 2100F 1.8E , y others) of truss to ing 153 lb uplift at joint blift at joint 18, 102 lb t 24, 56 lb uplift at 81 lb uplift at joint 19. ce with the 2018 tions R502.11.1 and d ANSI/TPI 1.
FORCES TOP CHORD	Max Horiz 3 Max Uplift 1 2 2 2 Max Grav 1 2 2 2 (lb) - Maxim Tension 1-2=0/35, 2 4-6=-459/93 8-9=-330/13 10-11=-198 13-14=-76% 15-16=-68% 2-30=-880/2	U = 179 (L U = 179 (L U = -179 (L U = -135 (L U = -135 (L U = -135 (L U = -137 (L U = -1	C 8) C 21), 19=-81 (LC 8) C 21), 21=-56 (LC 21) C 3), 24=-110 (LC 8), C 9), 30=-153 (LC 8), C 9), 30=-153 (LC 8), C 1), 24=734 (LC 1), C 1), 24=734 (LC 1), C 1), 30=985 (LC 1) pression/Maximum /229, 3-4=-1275/236, I5/107, 7-8=-304/119 -403/144, 2=0/367, 12-13=-54/6 5=-56/414, 7=-104/434, 8=-67/274	(1) (1) (1) (1) (1) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2	Jnbalanced his design. Nind: ASCE /asd=91mph I; Exp C; En- antilever lef ight exposer Truss design only. For stu see Standarc or consult qu All plates are Fruss to be fi praced again Gable studs i Chis truss ha chord live loa	roof live loads have l 7-16; Vult=115mph n; TCDL=6.0psf; BCI closed; MWFRS (en t and right exposed ; 4; Lumber DOL=1.66 ned for wind loads in ids exposed to wind d Industry Gable Enc alified building desig 2x4 MT20 unless of ully sheathed from o ist lateral movement spaced at 2-0-0 oc. s been designed for ad nonconcurrent wit	(3-second gr DL=6.0psf; h velope) exte end vertical) plate grip D the plane of (normal to th d Details as a pner as per A therwise indi ne face or se (i.e. diagona a 10.0 psf b h any other l	ered for ust) =25ft; Cat. rior zone; left and OL=1.60 the truss e face), pplicable, NSI/TPI 1. cated. ecurely I web). ottom ive loads.			SCOT SEV SEV PE-2001 PE-2001	MISSOLUE T M. HER 018807

March 6,2024

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

- FORCES
 (lb) Maximum Compression/Maximum Tension

 TOP CHORD
 2-25=-171/45, 1-2=0/32, 2-3=-98/59,
- 2-23=-17/145, 1-2=0/32, 2-3=-96/39, 3-4=-65/86, 4-5=-54/112, 5-6=-48/138, 6-7=-51/162, 7-8=-51/155, 8-9=-48/115, 9-10=-48/88, 10-11=-51/63, 11-12=-79/40, 12-13=0/32, 12-14=-171/33 BOT CHORD 24-25=-17/74, 23-24=-17/74, 22-23=-17/74,
- 21-22=-17/74, 20-21=-17/74, 19-20=-17/74, 18-19=-17/74, 16-18=-17/74, 15-16=-17/74, 14-15=-17/74
- 10) All bearings are assumed to be SPF No.2.
 11) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 33 lb uplift at joint 25, 18 lb uplift at joint 14, 55 lb uplift at joint 21, 58 lb uplift at joint 22, 42 lb uplift at joint 23, 90 lb uplift at joint 24, 54 lb uplift at joint 19, 57 lb uplift at joint 18, 44 lb uplift at joint 16 and 84 lb uplift at joint 15.
- 12) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

```
LOAD CASE(S) Standard
```


16023 Swingley Ridge Rd. Chesterfield, MO 63017 314.434.1200/ MITek-US.com

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANS/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

												RELEAS	SE FOR CONSTRUCTIO	N
Job		Truss		Truss Type		Qty	Ply	Lot 1	75 HT			AS NO DEVE	LOPMENT SERVICES	v
B240031		G1		Common Support	ed Gable	1	1	Job R	Reference	ce (optio	nal	LEE	S SUMMIT, MISSOURI	Ļ
Wheeler Lumbe	r, Waverly, KS -	66871,			Run: 8.73 S Fel ID:3qN5bCOfIW	o 22 2024 Print wz6m0dn8zolt	: 8.730 S Fe ze1Hc-RfC?	eb 22 2024 M PsB70Hq3N	MiTek Ind NSgPqnL	dustries, li .8w3uITXI	nc. 1 bGK	ue Mar (5)9:34:4 WrCDoi754z39:1	26/2024	4
			1	7 2 0		1			14	6.0				
				7-3-0					7-3	3-0			\neg	
						4x5 =								
						5								
	T			12										
				6	4			6						
				3	P			P		. 7				
	4-3-8			P						-				
			2									8	3x6 I	
			1									P	9	
	-8-0		18										10	
			17	16	15			12		12	***		×	
			3x6 II	10	15	14		15		12		11		
Casta 4:00 C						14-6-0								
		(nsf)	Spacing	2-0-0	CSI			in (l/defl	I /d		GRIP	
TCLL (roof)		(psi) 25.0	Plate Grip DOL	1.15	TC	0.05 Ve	ert(LL)	n/a	-	n/a 9	999	MT20	197/144	
BCLL		0.0*	Rep Stress Incr	YES	WB Matrix P	0.02 Ve 0.03 Ho	oriz(TL)	0.00	10	n/a	n/a	Woight: 52 lb	ET - 10%	
		10.0	Code	2) Wind: ASC	F 7-16: Vult=115m	oh (3-second	aust)					Weight. 52 lb	FT = 10%	
TOP CHORD BOT CHORD	2x4 SPF N 2x4 SPF N	o.2 o.2		Vasd=91m II; Exp C; E	oh; TCDL=6.0psf; E nclosed; MWFRS (CDL=6.0psf envelope) ex	; h=25ft; C (terior zone	at. e;						
WEBS	2x3 SPF N 2x4 SPF N	5.2 5.2		cantilever le right expos	eft and right expose ed; Lumber DOL=1	ed ; end verti .60 plate grip	cal left and DOL=1.6	0						
BRACING	Structural	vood she	athing directly applie	3) Truss desi d or only. For s	gned for wind loads tuds exposed to wi	s in the plane nd (normal to	of the true the face),	SS						
BOT CHORD	6-0-0 oc pu Rigid ceilin	rlins, ex q directly	cept end verticals. applied or 10-0-0 oc	see Standa or consult o	rd Industry Gable E qualified building de	End Details a signer as pe	s applicabl r ANSI/TPI	le, I 1.						
REACTIONS	bracing. (size)	0 10=14-6-0). 11=14-6-0. 12=14	4) All plates a 5) Gable requ	re 2x4 MT20 unless ires continuous bot	s otherwise in tom chord be	ndicated. earing.							
	· · · ·	3=14-6-0 6=14-6-0), 14=14-6-0, 15=14), 17=14-6-0, 18=14	-6-0, 6) Truss to be -6-0, braced aga	fully sheathed from	n one face or ent (i.e. diago	securely onal web).							
	Max Horiz ' Max Uplift '	18=62 (LC 10=-6 (LC	C 5) C 8), 11=-68 (LC 9),	 B) This truss h Chord live h 	as been designed	c. for a 10.0 ps with any oth	f bottom	lc.						
		12=-53 (L 15=-58 (L	C 9), 13=-58 (LC 9), C 8), 16=-52 (LC 8),	9) * This truss	has been designed	d for a live lo	ad of 20.0p	osf						
	Max Grav	17=-73 (L 10=50 (L(.C 8), 18=-16 (LC 9) C 18), 11=156 (LC 22	^{2),} chord and a	by 2-00-00 wide w	ill fit betweer	the bottor	m						
	-	12=183 (L 14=158 (L	_C 1), 13=190 (LC 22 _C 1), 15=190 (LC 22	2), 10) All bearings 1), 11) Provide me	s are assumed to be chanical connectio	e SPF No.2 . n (by others)	of truss to)						
		16=183 (L 18=57 (LC	LC 1), 17=156 (LC 2 ⁻ C 17)	^{1),} bearing pla 18, 6 lb upl	te capable of withs ift at joint 10, 58 lb	tanding 16 lb uplift at joint	uplift at jo 15, 52 lb u	int Iplift						
FORCES	(lb) - Maxin Tension		pression/Maximum	at joint 16, 53 lb uplift	73 lb uplift at joint 1 at joint 12 and 68 lb	7, 58 lb uplif uplift at join	t at joint 13 t 11.	3,				6000	Jose	
TOP CHORD	1-18=-41/1 3-4=-41/78 6-7=-41/66 9-10=-36/1	7, 1-2=-6 , 4-5=-44 , 7-8=-40	2/34, 2-3=-51/51, /103, 5-6=-44/95, /40, 8-9=-49/25,	12) This truss in Internationa R802.10.2	s designed in accor al Residential Code and referenced star	dance with the sections R5	he 2018 02.11.1 an FPI 1.	nd			A	TATE OF	MISSOL	
BOT CHORD	17-18=-20/ 14-15=-20/	- 40, 16-17 40, 13-14	/=-20/40, 15-16=-20/ =-20/40_12-13=-20/	40, LOAD CASE(S) Standard					1	g.,	SEV	VIER YIER	
WEBS	11-12=-20/ 5-14=-118/	40, 10-11 0, 4-15=-	=-20/40 150/82, 3-16=-142/7	8,							I	1 ++=	· la 1-4	<u> </u>
-	2-17=-122/ 8-11=-122/	80, 6-13= 78	-150/81, 7-12=-142/	79,						4	07	PE 200	1018807 AR	
NOTES	ed roof live lo	ads have	been considered for								Ø	PE-200		
this design	1.	230 11076										SION.	AL ENGL	
												Mai	rch 6,2024	

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcscomponents.com)

Job Truss B240031 G2 Wheeler Lumber, Waverly, KS - 66871, $\begin{array}{c} 0 - 10 - 8 \\ 0 - 10 - 8 \end{array}$	Truss Type Common Supported Gab Rur ID:u 8-4-0 8-4-0	DIE Qty F 1 1 In: 8.73 S Feb 22 2024 Print: 8.73 uFGnQ3g4taqiNIH2dUuBkkze1HF	Ply Lot 175 HT 1 Job Reference (optional 30 S Feb 22 2024 MiTek Industries, Inc. 7 F-RfC?PsB70Hq3NSgPqnL8w3uITXbGk	AS NOTED FOR PLAN REVIEW DEVELOPMENT SERVICES IEE'S SUMMIT, MISSOURI VIE Mar 093: 26/2024
B240031 G2 Wheeler Lumber, Waverly, KS - 66871, $\frac{0.10-8}{0.10-8}$ $\frac{0.10-8}{0.00-8}$	Common Supported Gab Rur ID:u 8-4-0 8-4-0	ble 1 1 n: 8.73 S Feb 22 2024 Print: 8.73 uFGnQ3g4taqiNIH2dUuBkkze1HF	Job Reference (optional 30 S Feb 22 2024 MiTek Industries, Inc. F-RfC?PsB70Hq3NSgPqnL8w3uITXbGk	LEE'S SUMMIT, MISSOURI ue Mar 093: 26/2024
Wheeler Lumber, Waverly, KS - 66871, $ \begin{array}{c} 1 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0$	Rur ID:t <u>8-4-0</u> 8-4-0	n: 8.73 S Feb 22 2024 Print: 8.73 uFGnQ3g4taqiNIH2dUuBkkze1HF	30 S Feb 22 2024 MiTek Industries, Inc. F-RfC?PsB70Hq3NSgPqnL8w3uITXbGK	ue Mar 6 53: 26/2024 WrCDoi79-23-
$\begin{array}{c} 10-10-8\\ 0-10-8\\ \hline $	<u> </u>		-NC: - SDIO IQUOGE UILOWSUIT XDGR	
$\begin{array}{c} \begin{array}{c} 0 - 10 - 8 \\ 0 - 10 - 8 \end{array} \\ \hline \bigg $ \\ \hline \bigg \\ \\ \hline \bigg \\ \hline \bigg \\ \\ \\ \hline \bigg \\ \\ \\ \\ \\ \bigg \\ \\ \bigg \\ \\	<u> </u>			
$0-10-8^{1}$ $0-10-8^{1}$ $0-10-8^{1}$ $0-10-8^{1}$ $0-10-8^{1}$ $0-10-8^{1}$ 1 20 3x6 II 20 3x6 II 20 3x6 II 20 3x6 II 1 20 3x6 II 1 20 3x6 II 1 20 3x6 II 1 20 3x6 II 1 20 3x6 II 1 20 3x6 II 1 20 3x6 II 1 1 20 3x6 II 1 1 20 3x6 II 1 1 20 3x6 II 1 1 20 3x6 II 1 1 20 3x6 II 1 1 1 20 3x6 II 1 1 1 1 20 3x6 II 1 1 1 1 1 1 1 1	8-4-0	I	16-8-0	17-6-8
Scale = 1:36.2 $Scale = 1:36.2$ $Scal$			8-4-0	0-10-8
$\begin{array}{c c} & & & \\ & & & \\ & & & \\ \hline & & \\ \hline & \\ \hline$		4x5 =		
Scale = 1:36.2 $CDL (roof) = 1:36.2$ $CDL (roof) = 1:36.2$ $CDL = 1:00 C C C C C C C C C C C C C C C C C C$		6		
Scale = 1:36.2 $CLL (roof) = CLL (roof) =$	12		7	
$\begin{array}{c c} & & & & \\ & & & & \\ \hline & & & & \\ \hline & & & &$	6	3		
$\begin{array}{c c} & & & & \\ & & & & \\ \hline & & & & \\ \hline & & & &$	4		8	
Image: Scale = 1:36.2 Image: Scale = 1:36.2 Image: Scale = 1:36.2 Image: Scale = 1:36.2 Imag	3			
Scale = 1:36.2 Spacing CLL (roof) 25.0 TCLL (roof) 25.0 Loading 0.0* BCLL 0.0* Code 10.0	3			e e
Scale = 1:36.2 Spacing Loading (psf) TCLL (roof) 25.0 TCDL 10.0 BCLL 0.0* Rep Stress Scole				10
Scale = 1:36.2 Spacing CLL (roof) 25.0 TCLL (roof) 25.0 Loading 0.0* BCLL 0.0*				
Scale = 1:36.2 Spacing Loading (psf) Spacing TCLL (roof) 25.0 Plate Grip D TCDL 10.0 Lumber DOI BCLL 0.0* Rep Stress SCOL 10.0 Code				
Scale = 1:36.2 Spacing Loading (psf) Spacing TCLL (roof) 25.0 Plate Grip D TCDL 10.0 Lumber DOI BCLL 0.0* Rep Stress BCDI 10.0 Code	19 18	17 16	15 14	13 3x6 II
Scale = 1:36.2 Spacing Loading (psf) Spacing TCLL (roof) 25.0 Plate Grip D TCDL 10.0 Lumber DOI BCLL 0.0* Rep Stress SCOL 10.0 Code		16-8-0		
Loading(psf)SpacingTCLL (roof)25.0Plate Grip DTCDL10.0Lumber DOIBCLL0.0*Rep StressBCDL10.0Code				1
TCDL 10.0 Lumber DOI BCLL 0.0* Rep Stress BCDL 10.0 Code	2-0-0 CSI	DEFL	in (loc) l/defl L/d	PLATES GRIP
BCLL 0.0* Rep Stress	. 1.15 BC	0.03 Vert(CT	Γ) n/a - n/a 999	197/144
	ncr YES WB IRC2018/TPI2014 Matri	0.04 Horz(C	T) 0.00 12 n/a n/a	Weight: 64 lb FT = 10%
LUMBER TOP CHORD 2x4 SPF No.2 BOT CHORD 2x4 SPF No.2 WEBS 2x4 SPF No.2 WEBS 2x4 SPF No.2 BRACING TOP CHORD Structural wood sheathing directly 6-0-0 cc purlins, except end vertil BOT CHORD Rigid ceiling directly applied or 10 bracing. REACTIONS (size) 12=16-8-0, 13=16-8-0, 15=16-8-0, 13=16-8-0, 15=16-8-0, 19=16-8-0, 18=16-8-0, 19=16-8-0, 18=16-8-0, 19=16-8-0, 18=16-8-0, 19=16-8-0, 18=16-8-0, 19=16-8-0, 17=-59 (LC 9), 13=-72 (14=-49 (LC 9), 15=-58 (17=-59 (LC 8), 18=-48 (19=-77 (LC 8), 20=-29 (Max Grav 12=176 (LC 1), 15=192 16=161 (LC 1), 15=192 16=161 (LC 1), 15=192 16=161 (LC 1), 15=192 16=161 (LC 1), 19=188 20=176 (LC 1) FORCES (b) - Maximum Compression/Max Tension TOP CHORD 2-20=-155/39, 1-2=0/32, 2-3=-72/5 3-4=-48/75, 4-5=-37/101, 5-6=-41/ 6-7=-41/118, 7-8=-37/84, 8-9=-38 9-10=-59/40, 10-11=0/32, 10-12=- BOT CHORD 19-20=-16/59, 18-19=-16/59, 14-1 13-14=-16/59, 12-13=-16/59 WEBS 6-16=-121/0, 5-17=-51/82, 4-18 3-19=-143/95, 7-15=-151/82, 8-14	 Wind: ASCE 7-16; 'Vasd=91mph; TCD II; Exp C; Enclosed cantilever left and ri right exposed; Lum Truss designed for only. For studs exp see Standard Indus or consult qualified All plates are 2x4 M Gable requires com Truss to be fully sh- braced against later Gable studs spacer This truss has beer chord live load nom CC 2), (LC 22), (LC 21), Mum All blates are 2x4 M Gable studs spacer This truss has beer chord live load nom All bearings are ass 20, 18 lb uplift at joint 18, 77 This truss is design uplift at joint 18, 77 This truss is design international Resid R802.10.2 and refe Tai7/73, =-137/74. 	Vult=115mph (3-second gust DL=6.0psf; BCDL=6.0psf; h=2 d; MWFRS (envelope) exterior right exposed ; end vertical ler ber DOL=1.60 plate grip DOL r wind loads in the plane of th posed to wind (normal to the li- stry Gable End Details as application building designer as per ANS WT20 unless otherwise indication thinuous bottom chord bearing teathed from one face or sect aral movement (i.e. diagonal vi- d at 2-0-0 oc. n designed for a 10.0 psf botth concurrent with any other live tean designed for a live load of rd in all areas where a rectang 0-00 wide will fit between the ler- remembers. Issued to be SPF No.2. of the ble of withstanding 29 lb uplifit bint 12, 59 lb uplift at joint 17, . ' lb uplift at joint 19, 58 lb uplift bint 12, 59 lb uplift at joint need in accordance with the 201 lernial Code sections R502.11 arenced standard ANSI/TPI 1. rdard	t) 25ft; Cat. or zone; ff and L=1.60 ne truss face), plicable, SJ/TPI 1. tted. g. urely web). tom e loads. i 20.0psf gle bottom uss to t at joint 48 lb ff at joint 13. D18 1.1 and	SCOTT M. SEVIER SEVIER
 NOTES 1) Unbalanced roof live loads have been conside this design. 	red for		N.	PE-2001018807 574

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

liTek° 16023 Swingley Ridge Rd. Chesterfield, MO 63017 314.434.1200 / MiTek-US.com

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15	тс	0.95	Vert(LL)	-0.09	7-8	>999	360	MT20	197/144
TCDL	10.0	Lumber DOL	1.15	BC	0.55	Vert(CT)	-0.18	7-8	>999	240		
BCLL	0.0*	Rep Stress Incr	YES	WB	0.11	Horz(CT)	0.02	6	n/a	n/a		
BCDL	10.0	Code	IRC2018/TPI2014	Matrix-R		Wind(LL)	0.05	7-8	>999	240	Weight: 47 lb	FT = 10%

- LUMBER
- TOP CHORD 2x4 SPF No.2
- BOT CHORD 2x4 SPF No.2
- 2x6 SPF No.2 *Except* 7-3:2x3 SPF No.2 WEBS BRACING Structural wood sheathing directly applied, TOP CHORD except end verticals. BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing. REACTIONS (size) 6=0-3-8, 8=0-3-8 Max Horiz 8=77 (LC 7) Max Uplift 6=-116 (LC 9), 8=-116 (LC 8) Max Grav 6=807 (LC 1), 8=807 (LC 1) FORCES (Ib) - Maximum Compression/Maximum Tension TOP CHORD 1-2=0/35, 2-3=-950/126, 3-4=-950/126,
- 4-5=0/35, 2-8=-745/174, 4-6=-745/174 BOT CHORD 7-8=-29/728, 6-7=-29/728 WFBS 3-7=0/362 NOTES
- Unbalanced roof live loads have been considered for 1) this design
- 2) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
- 3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 4) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- All bearings are assumed to be SPF No.2 . 5)
- Provide mechanical connection (by others) of truss to 6) bearing plate capable of withstanding 116 lb uplift at joint 8 and 116 lb uplift at joint 6.

7) This truss is designed in accordance with the 2018

International Residential Code sections R502.11.1 and

R802.10.2 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponent.com)

												_ [RELEASE	FOR CONSTRUCTION
Job		Truss		Truss Type		Qty	'	Ply	Lot '	175 HT			AS NOTE DEVEL	D FOR PLAN REVIEW
B240031		G4		Roof Special		1		1	Job	Referer	nce (opi	tional	LEE'S	164038080 SUMMIT, MISSOURI
Wheeler Lumber,	Waverly, KS - 6	6871,			Run: 8.73 E Ja ID:8KxK8Cp2IS	n 4 2024 P fNelT68Dal	rint: 8.73 EYZze1F	0 E Jan 4 n-Ev5DCl	4 2024 N UNgP9IN	/liTek Ind NR1WfNi	lustries, l 20ulcEk	Inc. Tu 4StBlj	e Mar 05 12:0230 zooP_tzoyAl	26/2024
			I	8-4	4-0		I			16-	-8-0		i	17-6-8
				8-4	4-0		l			8-	4-0		(0-10-8
							4x8 =							
							3							
	ΤT			1	2									
				6	Ē //			\sim						
	3-10-0	2	1-	6-8						\searrow				
	4-11-	0	6x6 II								\sim			
			2				•					\geq	4	
	0.0	ç -					10							>
		6 6		12 <u>∽</u>		:	2x4 II					8		×
				M18AHS 8x16 ॥								N	🗵 M18AHS 8x16	
													6x6	5 II
			2-3	8-8	8-4-0		I		14-4	4-8			16-8-0	
Scale = 1:40.2			2-3	3-8	6-0-8				6-0)-8			2-3-8	
Plate Offsets (X	, Y): [4:Edge	,0-11-11	1], [7:Edge,0-5-8], [1	2:Edge,0-11-11]										
Loading		(psf)	Spacing	2-0-0	CSI	0.05	DEFL		in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (root)		25.0 10.0	Lumber DOL	1.15	BC	0.95 0.96	Vert(L	L) -(T) -(0.27 1 0.51 1	10-11 10-11	>708 >382	360 240	M120 M18AHS	142/136
BCLL BCDL		0.0* 10.0	Rep Stress Incr Code	YES IRC2018/TPI2014	WB Matrix-R	0.16	Horz(C Wind(L	CT) (_L) (0.42 0.25 1	7 10-11	n/a >779	n/a 240	Weight: 49 lb	FT = 10%
LUMBER				6) All bearing	gs are assumed to b	e SPF No	o.2 crusl	hing						
TOP CHORD BOT CHORD	2x4 SPF No.: 2x4 SPF No.:	2 2 *Excep	pt* 2-4:2x4 SPF 240	capacity c 0F 7) Provide m	of 425 psi. Iechanical connectio	on (by othe	ers) of ti	russ to						
WEBS	2.0E 2x6 SPF No.:	2 *Excep	pt* 10-3:2x3 SPF No	bearing pl .2 13 and 11	ate capable of withs 6 lb uplift at joint 7.	standing 9	0 lb upli	ift at joint	t					
BRACING TOP CHORD	Structural wo	od shea	athing directly applie	8) This truss d. Internation	is designed in acco nal Residential Code	rdance wi e sections	th the 2 R502.1	018 1.1 and						
BOT CHORD	except end v Rigid ceiling	erticals. directly a	applied or 10-0-0 oc	R802.10.2 LOAD CASE(2 and referenced sta S) Standard	Indard AN	ISI/TPI [·]	1.						
REACTIONS (bracing.	809/0-3	-8 13=727/0-3-8											
N N	Max Horiz 13	=-81 (LC	C(4)											
FORCES	(lb) - Maximu	m Comp	pression/Maximum											
TOP CHORD	l ension 1-2=-735/121	, 2-3=-1	224/118,											
	3-4=-1225/14 1-13=-737/11	18, 4-5=- 0, 5-7=-	-729/135, 5-6=0/35, -832/127											
BOT CHORD	12-13=-128/4 10-11=-44/10	160, 11-1)29, 9-1(12=0/59, 2-11=0/569 0=-44/1029,	9,										
WEBS	4-9=-10/585, 3-10=0/497	8-9=0/6	69, 7-8=-82/445											
NOTES	t roof live load	ls have l	heen considered for										Canal	ADD.
this design.	= 7-16 [.] Vult-1	15mph	(3-second quist)										TEOFA	AISSO
Vasd=91mp	bh; TCDL=6.0	psf; BCE	DL=6.0psf; h=25ft; C	at.								A	ST SCOTT	Г M.
cantilever le	eft and right ex	(posed ;	end vertical left and	s, I								8	SEVI	ER
 All plates ar 	e MT20 plate	s unless	otherwise indicated									g 1	R -a	A LA
4) This truss h chord live lo	as been desig ad nonconcu	ned for	a 10.0 pst bottom h any other live load	s.								RA	PE_2001	018807 A
5) * This truss on the botto	has been des	areas v	or a live load of 20.0 where a rectangle	ost								Ø	TE-2001	
3-06-00 tall chord and a	by 2-00-00 w any other men	ide will f nbers.	it between the botto	m								0	SIONA	L EN
													Vaca	555

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

Mitek® 16023 Swingley Ridge Rd. Chesterfield, MO 63017

314.434.1200 / MiTek-US.com

March 6,2024

									RELEASE	FOR CONSTRUCTION
Job	Truss	3	Truss Type	Qt	y Ply	Lo	t 175 HT		AS NOTE DEVEL	D FOR PLAN REVIEW
B240031	G5		Roof Special	4	1	Jo	b Reference (optional	LEE'S	I64038081 SUMMIT, MISSOURI
Wheeler Lumber, Waverly	y, KS - 66871,			Run: 8.73 E Jan 4 2024	Print: 8.730 E	Jan 4 2024 //PO7xwXa	MiTek Industrie	es, Inc. Tu 3w1eSS Iv	e Mar 05 14:0241 ZkA Tzk Dovience	26/2024
					101201014	n Orxwrq	LJOXYTOOEXII	W16000V		,
			<u> </u>				<u>16-6-8</u> 8-2-8			
					×8 =					
				:	3					
	Г									
			1 <u>2</u> 6 Г							
0-0	0-0	1-6-8								
-10-0 4-1	. r.	4x8 u								
4		2							4 ^{4x8}	\$ H
_		1			<u>.</u>				8 5	;
1-0-1		12			9			7		9-8-12
					X4 II				×	0
		r	/18AHS 8x16 ॥						3x4 II	
									M18AHS 8x12 =	
		2-3-8		8-4-0 6-0-8		<u>14</u> 6-	-4-8 0-8		2-2-0	
Scale = 1:38.9	1.0 / 12 0 2	0] [4:0 11 11 Edge] [/		0 11 11						
	1.0-4-13,0-2-	0, [4.0-11-11,Edge], [,0-2-0], [11.Euge	,0-11-11]	1					
Loading TCLL (roof)	(psf) 25.0	Spacing Plate Grip DOL	2-0-0 1.15	TC 0.95	Vert(LL)	in -0.27	(loc) l/de 9-10 >70	fl L/d 9 360	MT20	GRIP 197/144
TCDL BCLL	10.0 0.0*	Lumber DOL Rep Stress Incr	1.15 YES	BC 0.92 WB 0.16	Vert(CT) Horz(CT)	-0.50 0.41	9-10 >38 6 n/	3 240 a n/a	M18AHS	142/136
BCDL	10.0	Code	IRC2018/TPI2014	Matrix-R	Wind(LL)	0.25	9-10 >76	5 240	Weight: 48 lb	FT = 10%
			6) All bearings	are assumed to be SPF N	o.2 crushing					
BOT CHORD 2x4 SI	PF No.2 *Exc	cept* 2-4:2x4 SPF 240)F 7) Provide med bearing plate	chanical connection (by other at joint(s) 6	ers) of truss	to				
WEBS 2x6 SI	PF No.2 *Exc	cept* 9-3:2x3 SPF No.2	e 8) Provide med	chanical connection (by othe	ers) of truss	to				
BRACING TOP CHORD Struct	tural wood sh	eathing directly applied	i, 12 and 88 lb	uplift at joint 6.	15 15 upint at	Joint				
BOT CHORD Rigid	ot end vertica ceiling direct	ls. ly applied or 10-0-0 oc	International	Residential Code section	s R502.11.1	and				
bracin REACTIONS (lb/size)	ng.) 6=724/0	-2-0. 12=724/0-3-8	LOAD CASE(S)	Standard Al	NSI/TPI 1.					
Max Ho Max Ho	oriz 12=72 (l	_C 7)								
FORCES (Ib) - Max Op	Maximum Co	mpression/Maximum								
TOP CHORD 1-2=-7 3-4=-1	on 732/119, 2-3= 1215/152, 4-{	=-1213/127, 5=-683/125, 1-12=-733	/111,							
5-6=-7 BOT CHORD 11-12:	731/100 =-134/458, 1	0-11=0/59, 2-10=0/562	, А							
7-8=0/	/54, 6-7=-93/	406	-,							
NOTES 3-9=0,	/489									The
 Unbalanced roof li this design. 	ive loads hav	e been considered for							OF N	AISS
 Wind: ASCE 7-16; Vasd=91mph; TCI 	; Vult=115mp DI =6 0psf: B	h (3-second gust)	at					A	TAN	N 200
II; Exp C; Enclose	d; MWFRS (envelope) exterior zone	;					A	SCOT	ER
right exposed; Lun	nber DOL=1.	60 plate grip DOL=1.6)					10	1 4	8 +8
All plates are M12This truss has bee	o plates unle on designed f	or a 10.0 psf bottom							Chttp:	server
chord live load nor5) * This truss has be	nconcurrent v een designed	with any other live load for a live load of 20.0p	s. sf					Ø.	PE-2001	018807
on the bottom cho 3-06-00 tall by 2-0	rd in all area 0-00 wide wi	s where a rectangle Il fit between the bottor	n					V	128 Star	ENGI
chord and any oth	er members.								WANNA	LE
									Marc	:h 6,2024

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent buckling of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

											_	
Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15	TC	0.98	Vert(LL)	-0.09	5-6	>999	360	MT20	197/144
TCDL	10.0	Lumber DOL	1.15	BC	0.51	Vert(CT)	-0.19	5-6	>999	240		
BCLL	0.0*	Rep Stress Incr	YES	WB	0.11	Horz(CT)	0.02	4	n/a	n/a		
BCDL	10.0	Code	IRC2018/TPI2014	Matrix-R		Wind(LL)	0.04	5-6	>999	240	Weight: 45 lb	FT = 10%
LUMBER			7) Provide me	chanical connectior	ר (by oth	ers) of truss	to					
TOP CHORE	2x4 SPF 2100F 1.8	E *Except* 2-3:2x4 S	PF bearing plat	e capable of withst	anding 8	89 lb uplift at	joint					
	No.2		6 and 88 lb	uplift at joint 4.		:+h +h = 0010						
BOT CHORL	2x4 SPF No.2		8) This truss is	Designed in accord	dance w		ام مد م					
WEBS	2x6 SPF No.2 *Exce	ept* 5-2:2x3 SPF No.	2 Internationa	r Residential Code	sections	5 R5U2.11.18	and					
BRACING					iuaiu Ar	NGI/TETT.						
TOP CHORE	O Structural wood she except end verticals	eathing directly applie	d, LUAD CASE(S	Standard								
BOT CHORE	 Rigid ceiling directly bracing. 	/ applied or 10-0-0 oc	;									
REACTIONS	(size) 4=0-2-0,	6=0-3-8										
	Max Horiz 6=72 (LC	7)										
	Max Uplift 4=-88 (LC	C 9), 6=-89 (LC 8)										
	Max Grav 4=724 (L	C 1). 6=724 (LC 1)										
FORCES	(lb) - Maximum Con	noression/Maximum										
1011020	Tension	procolori/maximam										
TOP CHORE) 1-2=-932/123. 2-3=-	-931/122. 1-6=-647/1	42.									
	3-4=-644/141		,									
BOT CHORE	5-6=-36/719, 4-5=-3	86/719										
WEBS	2-5=0/345											
NOTES												
1) Unbalan	ced roof live loads have	been considered for										
this desi	an.											
2) Wind: AS	SCE 7-16: Vult=115mph	(3-second aust)									A TI	and the second
Vasd=91	mph; TCDL=6.0psf; BC	DL=6.0psf; h=25ft; C	Cat.								B.F. OF I	NISS D
II; Exp C	; Enclosed; MWFRS (er	nvelope) exterior zon	e;							6	- AL	N.V.
cantileve	r left and right exposed	; end vertical left and	b							B	SCOT	TM XP.V
right exp	osed; Lumber DOL=1.6	60 plate grip DOL=1.6	50							B	SEV	
This trus	s has been designed fo	r a 10.0 psf bottom								D _		
chord liv	e load nonconcurrent w	ith any other live load	ds.						1	1	h	
4) * This tru	iss has been designed i	for a live load of 20.0	psf						(-8U	1 th	the dealth
on the bo	ottom chord in all areas	where a rectangle									NUM	
3-06-00	tall by 2-00-00 wide will	tit between the botto	m							NY	PE-2001	018807
chord an	a any other members.									N	The second	12H
 All Dearli Dravidation 	igs are assumed to be	SMF NO.2.								Y	Sec.	JON H
bearing r	plate at joint(s) 4.		J								NONA	LER

ction (by others) of truss to bearing plate at joint(s) 4.

March 6,2024

an

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

16023 Swingley Ridge Rd. Chesterfield, MO 63017 314.434.1200 / MiTek-US.com

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.
Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not
a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall
building designe. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing
is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the
fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSUTPH Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org)
and BCSI Building Component Safety Information
available from the Structural Building Component Association (www.sbcscomponents.com)

Loading TCLL (roof) TCDL BCLL BCDL	(psf) 25.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC20	18/TPI2014	CSI TC BC WB Matrix-S	0.28 0.17 0.06	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 3	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 25 lb	GRIP 197/144 FT = 10%
LUMBER TOP CHORD BOT CHORD OTHERS BRACING TOP CHORD BOT CHORD REACTIONS FORCES TOP CHORD BOT CHORD	2x4 SPF No.2 2x4 SPF No.2 2x3 SPF No.2 2x3 SPF No.2 Structural wood sh 6-0-0 oc purlins. Rigid ceiling direct bracing. (size) 1=10-2- Max Horiz 1=40 (L Max Uplift 1=-39 (I (LC 8) Max Grav 1=191 (4=429 ((Ib) - Maximum Co Tension 1-2=-116/58, 2-3= 1-4=-2/48, 3-4=-2/	neathing directly applie tly applied or 10-0-0 or 0, 3=10-2-0, 4=10-2-0 C 8) _C 8), 3=-46 (LC 9), 4: LC 21), 3=191 (LC 22 LC 1) mpression/Maximum -116/42 48	ed or \$	 7) * This truss h on the bottor 3-06-00 tall b chord and ar 3) All bearings 9) Provide mec bearing plate 1, 46 lb uplift 10) This truss is International R802.10.2 ar LOAD CASE(S) 	has been desigr n chord in all ar by 2-00-00 wide by other membe are assumed to hanical connect c capable of with at joint 3 and 2 designed in acc Residential Co nd referenced s Standard	ned for a liv eas where will fit betw rs. be SPF No be SPF No be SPF No be SPF No be set ing 3 the lip uplift a cordance wi de sections tandard AN	e load of 20. a rectangle veen the bott o.2. ers) of truss 9 lb uplift at t joint 4. th the 2018 R502.11.1 a SI/TPI 1.	Opsf om to joint and					
WEBS NOTES 1) Unbalance	2-4=-293/77 d roof live loads hav	ve been considered fo											

- this design.
- Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) Gable requires continuous bottom chord bearing.
- 5) Gable studs spaced at 4-0-0 oc.
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

psf; BCDL=6.0psf; h=25ft; Cat. FRS (envelope) exterior zone; xposed ; end vertical left and OL=1.60 plate grip DOL=1.60 loads in the plane of the truss to wind (normal to the face),

Loading TCLL (roof) TCDL BCLL BCDL	(psf) S 25.0 F 10.0 L 0.0* F 10.0 C	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC201	18/TPI2014	CSI TC BC WB Matrix-P	0.11 0.05 0.03	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 3	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 14 lb	GRIP 197/144 FT = 10%
LUMBER TOP CHORD BOT CHORD OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SPF No.2 2x4 SPF No.2 2x3 SPF No.2 Structural wood sheath 6-0-0 oc purlins. Rigid ceiling directly ap bracing. (size) 1=6-2-0, 3=6 Max Horiz 1=-22 (LC 9) Max Uplift 1=-27 (LC 8) (LC 8) Max Grav 1=117 (LC 1) (LC 1)	ning directly applie oplied or 10-0-0 oc 6-2-0, 4=6-2-0)), 3=-31 (LC 9), 4=), 3=117 (LC 1), 4	7 d or 3 =215	 * This truss h on the bottor 3-06-00 tall b chord and ar All bearings Provide mec bearing plate 1, 31 lb uplift This truss is International R802.10.2 ar OAD CASE(S) 	has been design in chord in all ar by 2-00-00 wide by other membe are assumed to hanical connec e capable of wit t at joint 3 and 3 designed in acc Residential Co nd referenced s Standard	ned for a liv reas where e will fit betw ers. b be SPF Not tion (by oth hstanding 2 3 lb uplift at cordance w de sections standard AN	e load of 20. a rectangle veen the bott o.2. ers) of truss 7 lb uplift at joint 4. ith the 2018 c R502.11.1 a ISI/TPI 1.	Opsf com to joint and					
FORCES	(lb) - Maximum Compre Tension	ession/Maximum											
TOP CHORD	1-2=-56/31, 2-3=-56/22	2											
BOT CHORD	1-4=-1/25, 3-4=-1/25												
WEBS	2-4=-152/40												
NOTES													

- 1) Unbalanced roof live loads have been considered for
- this design.
 Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
- Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) Gable requires continuous bottom chord bearing.

5) Gable studs spaced at 2-0-0 oc.6) This truss has been designed for

6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. NUMBER PE-2001018807

March 6,2024

16023 Swingley Ridge Rd. Chesterfield, MO 63017 314.434.1200 / MTek-US.com

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPH Claulity Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

Loading TCLL (roof)	(psf) 25.0 10.0	Spacing Plate Grip DOL	2-0-0 1.15 1.15		CSI TC BC	0.23	DEFL Vert(LL)	in n/a n/a	(loc) -	l/defl n/a	L/d 999	PLATES MT20	GRIP 197/144
BCU	10.0	Ren Stress Incr	VES		WB	0.14	Horiz(TL)	0.00	5	n/a	999 n/a		
BCDL	10.0	Code	IRC2018/T	PI2014	Matrix-S	0.00	110112(112)	0.00	Ū	n/a	n/a	Weight: 33 lb	FT = 10%
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SPF No.2 2x4 SPF No.2 2x3 SPF No.2 2x3 SPF No.2 2x3 SPF No.2 Structural wood she 6-0-0 oc purlins, ex Rigid ceiling directly bracing. (size) 1=10-11-1 6=10-11-1 Max Horiz 1=213 (LC Max Uplift 5=-33 (LC (LC 8) Max Grav 1=108 (LC 6=433 (LC	athing directly applied cept end verticals. applied or 10-0-0 oc l2, 5=10-11-12, l2, 7=10-11-12 5), 6=-121 (LC 8), 7 C 16), 5=177 (LC 15), C 2), 7=312 (LC 2)	6) * 7) / 8) F 4 or 5 9) T F LOA	This truss h on the botton 3-06-00 tall b chord and an All bearings a Provide mect bearing plate 5, 121 lb upli This truss is on ternational R802.10.2 ar D CASE(S)	as been designed n chord in all area y 2-00-00 wide wi y other members, are assumed to be nanical connectior capable of withst ft at joint 6 and 94 designed in accorr Residential Code Id referenced star Standard	t for a liv s where III fit betw with BC SPF No b (by oth anding 3 Ib uplift dance w sections ndard AN	e load of 20.0 a rectangle veen the botto DL = 10.0psf 5.2 . ers) of truss t 3 lb uplift at jj at joint 7. ith the 2018 i R502.11.1 a ISI/TPI 1.	ipsf om o o oint nd					
FORCES	(lb) - Maximum Com Tension	pression/Maximum											
TOP CHORD	1-2=-183/56, 2-3=-1 4-5=-108/45	47/72, 3-4=-129/55,											
BOT CHORD WEBS	1-7=-72/56, 6-7=-72 3-6=-314/166, 2-7=-2	/56, 5-6=-72/56 239/136											
NOTES 1) Wind: ASC Vasd=91m II; Exp C; E cantilever l right expos	E 7-16; Vult=115mph ph; TCDL=6.0psf; BC Enclosed; MWFRS (er eft and right exposed sed; Lumber DOL=1.6	(3-second gust) DL=6.0psf; h=25ft; C ivelope) exterior zone ; end vertical left and 0 plate grip DOL=1.6	at. e; l								E.	STATE OF M	AISSOUR

 Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

3) Gable requires continuous bottom chord bearing.

4) Gable studs spaced at 4-0-0 oc.

 This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPH Claulity Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

E

NUM

SIONAL

PE-2001018807

00010 - 110110													
Loading TCLL (roof) TCDL BCLL	(psf) 25.0 10.0 0.0*	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr	2-0-0 1.15 1.15 YES		CSI TC BC WB	0.28 0.14 0.07	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 4	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20	GRIP 197/144
BCDL	10.0	Code	IRC2018	/TPI2014	Matrix-P		- ()					Weight: 26 lb	FT = 10%
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD	2x4 SPF No.2 2x4 SPF No.2 2x3 SPF No.2 2x3 SPF No.2 Structural wood she	•	8) 9) ed or LO	Provide med bearing plate 4 and 139 lb This truss is International R802.10.2 a AD CASE(S)	hanical connect capable of with uplift at joint 5. designed in aco Residential Co nd referenced s Standard	tion (by oth hstanding 2 cordance wi de sections tandard AN	ers) of truss t 7 lb uplift at j ith the 2018 R502.11.1 a ISI/TPI 1.	to joint and					
BOT CHORD	Rigid ceiling directly bracing.	y applied or 10-0-0 c	0C										
REACTIONS	(size) 1=8-11-1 Max Horiz 1=172 (L Max Uplift 4=-27 (LC Max Grav 1=152 (L 5=464 (L	2, 4=8-11-12, 5=8-1 C 7) C 5), 5=-139 (LC 8) C 16), 4=126 (LC 1) C 1)	1-12 ,										
FORCES	(lb) - Maximum Con Tension	npression/Maximum											
TOP CHORD BOT CHORD WEBS	1-2=-137/85, 2-3=-1 1-5=-59/44, 4-5=-59 2-5=-361/201	121/46, 3-4=-98/44 9/44											
NOTES 1) Wind: AS Vasd=91r II; Exp C; cantilever right expo 2) Truss de only. For see Stano or consult 3) Gable rec	CE 7-16; Vult=115mpf mph; TCDL=6.0psf; BC Enclosed; MWFRS (e r left and right exposed ssed; Lumber DOL=1.6 signed for wind loads i studs exposed to wind dard Industry Gable Er t qualified building des puires continuous hotto	n (3-second gust) CDL=6.0psf; h=25ft; nvelope) exterior zo I; end vertical left ar 30 plate grip DOL=1 in the plane of the trr d (normal to the face d Details as applica igner as per ANSI/T m chord bearing	Cat. ne; 60 uss e), ble, PI 1.									STATE OF I	MISSOURI I M. ER

- 4) Gable studs spaced at 4-0-0 oc.
- This truss has been designed for a 10.0 psf bottom 5) chord live load nonconcurrent with any other live loads. * This truss has been designed for a live load of 20.0psf
- 6) on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- 7) All bearings are assumed to be SPF No.2 .

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent colleges with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

E

March 6,2024

PE-200101880

SSIONAL

0

Scale = 1:27.9												
Loading TCLL (roof) TCDL	(psf) 25.0 10.0	Spacing Plate Grip DOL Lumber DOL	2-0-0 1.15 1.15	CSI TC BC	0.19 0.10	DEFL Vert(LL) Vert(TL)	in n/a n/a	(loc) - -	l/defl n/a n/a	L/d 999 999	PLATES MT20	GRIP 197/144
BCLL BCDL	0.0* 10.0	Rep Stress Incr Code	YES IRC2018/TPI2014	WB Matrix-P	0.05	Horiz(TL)	0.00	4	n/a	n/a	Weight: 19 lb	FT = 10%
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD	2x4 SPF No.2 2x4 SPF No.2 2x3 SPF No.2 2x3 SPF No.2 Structural wood she 6-0-0 oc purlins, ex Rigid ceiling directly	athing directly applic cept end verticals. applied or 10-0-0 0	8) Provide bearing 4 and 11 9) This trus Internati R802.10 ed or LOAD CASE	mechanical connecti blate capable of with 1 lb uplift at joint 5. s is designed in acco onal Residential Cod .2 and referenced st (S) Standard	on (by oth standing 2 ordance wi le sections andard AN	ers) of truss t 7 lb uplift at j ith the 2018 . R502.11.1 a ISI/TPI 1.	to oint and					
REACTIONS	bracing. (size) 1=6-11-12 Max Horiz 1=130 (LC Max Uplift 4=-27 (LC Max Grav 1=69 (LC (LC 1)	2, 4=6-11-12, 5=6-1 C 5) C 8), 5=-111 (LC 8) 16), 4=142 (LC 1), 5	1-12 5=369									
FORCES	(lb) - Maximum Com Tension	pression/Maximum										
TOP CHORD BOT CHORD WEBS	1-2=-110/58, 2-3=-1 1-5=-44/34, 4-5=-44 2-5=-287/160	06/43, 3-4=-111/46 /34										
NOTES 1) Wind: ASG Vasd=91r II; Exp C; cantilever right expo 2) Truss des only. For see Stand or consult 3) Gable req 4) Gable stur 5) This truss	CE 7-16; Vult=115mph mph; TCDL=6.0psf; BC Enclosed; MWFRS (er left and right exposed sed; Lumber DOL=1.6 signed for wind loads ir studs exposed to wind fard Industry Gable En qualified building desi qualified building desi quales continuous bottoi ds spaced at 4-0-0 oc.	(3-second gust) DL=6.0psf; h=25ft; (velope) exterior zor ; end vertical left an 0 plate grip DOL=1. h the plane of the tru (normal to the face) d Details as applical gner as per ANSI/TF m chord bearing. r a 10.0 psf bottom	Cat. he; d 60 uss), ble, PI 1.								STATE OF SCOT	MISSOUR TM. ER

- chord live load nonconcurrent with any other live loads.
 * This truss has been designed for a live load of 20.0psf
- on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- 7) All bearings are assumed to be SPF No.2 .

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent colleges with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com) March 6,2024

E

PE-200101880'

ONAL

S

 Max Uplift
 1=-25 (LC 8), 3=-47 (LC 8)

 Max Grav
 1=191 (LC 1), 3=191 (LC 1)

 FORCES
 (lb) - Maximum Compression/Maximum Tension

 TOP CHORD
 1-2=-81/53, 2-3=-149/72

BOT CHORD 1-3=-30/23

NOTES

- Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
- Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- Gable requires continuous bottom chord bearing.
 Gable studs spaced at 4-0-0 oc.
- 5) This truss has been designed for a 10.0 psf bottom
- chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- 7) All bearings are assumed to be SPF No.2.
- Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 25 lb uplift at joint 1 and 47 lb uplift at joint 3.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI Claulity Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com) Antitek Bandwick Straight Stra

							RELEASE FOR CONSTRUCTION
Job	Truss	Truss Type		Qty	Ply	Lot 175 HT	AS NOTED FOR PLAN REVIEW DEVELOPMENT SERVICES
B240031	V7	Valley		1	1	Job Reference (optiona	I64038090 LEE'S SUMMIT, MISSOURI
Wheeler Lumber, Wav	erly, KS - 66871,		Run: 8.73 S Feb 22 ID:_u5uxEDRZWEs	2024 Print: SBL?Rm26	8.730 S Feb Zeze1gN-Rf	o 22 2024 MiTek Industries, Inc. C?PsB70Hq3NSgPqnL8w3uITX	ue Mar (1993:/26/2024 LGKWrCD97342.C7
				3-5-4			
						2x4 II	
	1-8-14	4				2	1-8-14
			2x4 ≠			2x4 II	
Scolo - 1-20				3-5-4			

Scale = 1:20								1				
Loading TCLL (roof) TCDL BCLL	(psf) 25.0 10.0 0.0	Spacing Plate Grip DOL Lumber DOL * Rep Stress Incr	2-0-0 1.15 1.15 YES	CSI TC BC WB	0.13 0.07 0.00	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 3	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20	GRIP 197/144
BCDL	10.0	Code	IRC2018/TPI2014	Matrix-P							Weight: 8 lb	FT = 10%
LUMBER TOP CHOR BOT CHOR WEBS BRACING TOP CHOR BOT CHOR REACTION	 D 2x4 SPF No.2 D 2x4 SPF No.2 2x3 SPF No.2 D Structural wood s 3-5-12 oc purlins D Rigid ceiling direct bracing. S (size) 1=3-5- Max Horiz 1-57 (heathing directly appli except end verticals. tty applied or 10-0-0 c 12, 3=3-5-12	9) This truss Internation R802.10.2 LOAD CASE(ed or	is designed in acc al Residential Coc and referenced si 5) Standard	cordance w de sections tandard AN	ith the 2018 R502.11.1 a ISI/TPI 1.	and					
	Max Uplift 1=-16 Max Grav 1=124	(LC 8), 3=-30 (LC 8) (LC 1), 3=124 (LC 1)										
FORCES	(lb) - Maximum C Tension	ompression/Maximum										
TOP CHOR BOT CHOR	D 1-2=-52/34, 2-3=- D 1-3=-20/15	96/47										
NOTES												
 Wind: A Vasd=9 II; Exp (cantilev right ex) Truss C only. Fr see Sta or consi Gable rs Gable rs This tru chord lin * This tri on the b 3-06-00 chord a All bear Provide bearing and 3 	SCE 7-16; Vult=115m Imph; TCDL=6.0psf; 2; Enclosed; MWFRS er left and right expos- bosed; Lumber DOL= lesigned for wind load or studs exposed to w- ndard Industry Gable- ult qualified building d- equires continuous bo- tuds spaced at 2-0-0 uss has been designed ve load nonconcurrent uss has been designed ve load nonconcurrent uss has been designed tel loy 2-00-00 wide v- nd any other member- ings are assumed to b- mechanical connectitis plate capable of withs 0 lb uplift at ioint 3.	pn (3-second gust) BCDL=6.0psf; h=25ft; (envelope) exterior zo ed; end vertical left ar 1.60 plate grip DOL=1. s in the plane of the tri ind (normal to the face End Details as applica asigner as per ANSI/TI ttom chord bearing. bc. for a 10.0 psf bottom with any other live load d for a live load of 20. as where a rectangle vill fit between the bott s. e SPF No.2. n (by others) of truss i tanding 16 lb uplift at j	Cat. ne; nd 60 uss), ble, PI 1. dds. Opsf om to joint								STATE OF SEV SEV OF PE-2001	MISSOLP T.M. TER 1018807
											Mar	rch 6,2024

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent buckling of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

									[RELEASE	FOR CONSTRUCTION	1
Job	Truss		Truss Type		Qty	Ply	Lot 175 H	Г		AS NOTE	D FOR PLAN REVIEW	٦
B240031	V8		Valley		1	1	Job Refer	ence (onti	onali	LEE'S	164038091 SUMMIT, MISSOURI	
Wheeler Lumber, W	Vaverly, KS - 66871,			Run: 8.73 S Feb 22 ID:VR0594?9p_zQI	2024 Prin QzYN_jtqr.	t: 8.730 S Feb ze1gf-RfC?Psl	22 2024 MiTek 370Hq3NSgPqr	Industries, L8w3uITXb	Inc. Ti GKW	ue Mar (5)9:34:46 CDoi7J4zJC:1	26/2024	Ŧ
					-5-4							
							2×	4 u				
	-	0-04	6 ¹² 6 ⊤	2x4 =			2	3		2-8-14		
				274 2			27					
Scale = 1:23.9				5	-5-4							
Loading TCLL (roof) TCDL BCLL BCDL	(psf) 25.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018/TPI2014	CSI TC BC WB Matrix-P	0.43 V 0.23 V 0.00 H	EFL ert(LL) ert(TL) oriz(TL)	in (loc) n/a - n/a - 0.00 3	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 14 lb	GRIP 197/144 FT = 10%	_
LUMBER TOP CHORD 2 BOT CHORD 2 WEBS 2 BRACING TOP CHORD 3	2x4 SPF No.2 2x4 SPF No.2 2x3 SPF No.2 Structural wood she 5-5-12 oc purlins, e	athing directly applie xcept end verticals.	9) This truss i Internation R802.10.2 LOAD CASE(S	is designed in accorda al Residential Code se and referenced standa 5) Standard	nce with ctions R ard ANSI/	the 2018 502.11.1 and TPI 1.	I					
REACTIONS (si Mi	ize) 1=5-5-12, ax Horiz 1=99 (LC ax Uplift 1=-27 (LC	3=5-5-12 5) 8), 3=-52 (LC 8)										
FORCES (TOP CHORD 1 BOT CHORD 1	ax Grav 1=214 (L0 (lb) - Maximum Com Tension 1-2=-90/60, 2-3=-16 1-3=-34/26	6/81										
NOTES 1) Wind: ASCE Vasd=91mph II; Exp C; En- cantilever lefr right exposec 2) Truss design only. For stu see Standard or consult qu 3) Gable require	7-16; Vult=115mph r; TCDL=6.0psf; BC closed; MWFRS (er t and right exposed d; Lumber DCL=1.6 hed for wind loads in ids exposed to wind d Industry Gable En ialified building desi- es continuous botto	(3-second gust) DL=6.0psf; h=25ft; C rvelope) exterior zono; ; end vertical left and 0 plate grip DOL=1.6 h the plane of the trus (normal to the face), d Details as applicab gner as per ANSI/TPI m chord bearing.	at. 9; 0 ss le, 1.						ä	ATE OF M	MISSOL	

- Gable requires continuous botto
 Gable studs spaced at 4-0-0 oc.
- 5) This truss has been designed for a 10.0 psf bottom
- chord live load nonconcurrent with any other live loads. 6) * This truss has been designed for a live load of 20.0psf
- on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.

7) All bearings are assumed to be SPF No.2 .

 Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 27 lb uplift at joint 1 and 52 lb uplift at joint 3.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent oulgase with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

Loading	(psf)	Spacing Plate Grip DOI	2-0-0	CSI	0.20	DEFL	in n/a	(loc)	l/defl	L/d	PLATES	GRIP 197/1 <i>44</i>
TCDL	10.0	Lumber DOL	1.15	BC	0.10	Vert(TL)	n/a	-	n/a	999	11120	101/111
BCLL	0.0*	Rep Stress Incr	YES	WB	0.05	Horiz(TL)	0.00	4	n/a	n/a		
BCDL	10.0	Code	IRC2018/TP	I2014 Matrix-P							Weight: 21 lb	FT = 10%
LUMBER			8) Pr	ovide mechanical connec	ction (by oth	ers) of truss	to					
TOP CHOR	D 2x4 SPF No.2		be	aring plate capable of wit	thstanding 2	5 lb uplift at j	joint					
BOT CHOR	D 2x4 SPF No.2		4 a	and 116 lb uplift at joint 5								
WEBS	2x3 SPF No.2		9) Th	is truss is designed in ac	cordance w	ith the 2018						
OTHERS	2x3 SPF No.2		Int	ernational Residential Co	de sections	R502.11.1 a	and					
BRACING			RE	302.10.2 and referenced	standard AN	ISI/TPI 1.						
TOP CHOR	D Structural wood she	athing directly appli	ed or LOAD	CASE(S) Standard								
	6-0-0 oc purlins, ex	cept end verticals.										
BOT CHOR	D Rigid ceiling directly bracing	applied or 10-0-0 c	C									
REACTION	S (size) 1=7-5-12	4=7-5-12 5=7-5-1	2									
	Max Horiz 1=141 (L0	C 5)										
	Max Uplift 4=-25 (LC	8), 5=-116 (LC 8)										
	Max Grav 1=93 (LC	16), 4=140 (LC 1),	5=386									
	(LC 1)	-// - //										
FORCES	(lb) - Maximum Com Tension	pression/Maximum										
TOP CHOR	D 1-2=-117/63, 2-3=-1	09/44, 3-4=-109/44										
BOT CHOR	D 1-5=-48/36, 4-5=-48	/36										
WEBS	2-5=-300/168											
NOTES												
1) Wind: A	SCE 7-16; Vult=115mph	(3-second gust)										
Vasd=9	1mph; TCDL=6.0psf; BC	DL=6.0psf; h=25ft;	Cat.									
II; Exp (C; Enclosed; MWFRS (er	velope) exterior zo	ne;									The second second
cantilev	er left and right exposed	; end vertical left ar	nd								6 OF 1	ALL
right ex	posed; Lumber DOL=1.6	0 plate grip DOL=1.	.60								AFE OF I	WISS OF
 Iruss (anh) 	sesigned for wind loads in	the plane of the tr	uss							6		N.S.
	or study exposed to Wind	(normal to the face	e), Iblo							A	SCOT	TM. CR
See Sla	ult qualified building desi	u Details as applica	DI 1							H.	/ SEV	IER \ V
3) Gable r	equires continuous botto	m chord bearing.								8	-1 -2.1	1+1

- 4) Gable studs spaced at 4-0-0 oc.
- 5) This truss has been designed for a 10.0 psf bottom chord live load popogorgurrent with any other live load
- chord live load nonconcurrent with any other live loads.
 * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- 7) All bearings are assumed to be SPF No.2.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent oulgase with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com) March 6,2024

E

PE-200101880

SIONAL

Loading TCLL (roof) TCDL BCLL BCDL	(psf) 25.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC201	8/TPI2014	CSI TC BC WB Matrix-S	0.30 0.16 0.08	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 4	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 27 lb	GRIP 197/144 FT = 10%
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD	 B) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 28 lb uplift at joint 4 and 148 lb uplift at joint 5. B) 2x3 SPF No.2 B) 2x3 SPF No.2 C) 2												
REACTIONS	bracing. (size) 1=9-5-12, Max Horiz 1=182 (LC Max Uplift 4=-28 (LC Max Grav 1=174 (LC (LC 1)	4=9-5-12, 5=9-5-1 C 7) C 5), 5=-148 (LC 8) C 1), 4=121 (LC 1),											
FORCES TOP CHORD BOT CHORD WEBS	(lb) - Maximum Com Tension 1-2=-144/87, 2-3=-1: 1-5=-62/48, 4-5=-62, 2-5=-373/198												

NOTES

- 1) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
- 2) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- Gable requires continuous bottom chord bearing. 3)
- Gable studs spaced at 4-0-0 oc. 4)
- This truss has been designed for a 10.0 psf bottom 5) chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf 6) on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- 7) All bearings are assumed to be SPF No.2 .

 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.
 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not beigh valid for use only with with with with the contractions. This design is based only door plantaters shown, and is for an individual dualing component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria**, and **DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcscomponents.com)

E

OF MISS

SCOTT M.

SEVIER

PE-2001018807

SSIONAL

0

P

OFF

General Safety Notes

Failure to Follow Could Cause Property Damage or Personal Injury

- 1. Additional stability bracing for truss system, e.g. diagonal or X-bracing, is always required. See BCSI.
- . Truss bracing must be designed by an engineer. For wide truss spacing, individual lateral braces themselves may require bracing, or alternative Tor1 bracing should be considered.
- Never exceed the design loading shown and never stack materials on inadequately braced trusses.
- Provide copies of this truss design to the building designer, erection supervisor, property owner and all other interested parties.
- 5. Cut members to bear tightly against each other.
- Place plates on each face of truss at each joint and embed fully. Knots and wane at joint locations are regulated by ANSI/TPI 1.
- Design assumes trusses will be suitably protected from the environment in accord with ANSI/TPI 1.
- Unless otherwise noted, moisture content of lumber shall not exceed 19% at time of fabrication.
- . Unless expressly noted, this design is not applicable for use with fire retardant, preservative treated, or green lumber.
- Camber is a non-structural consideration and is the responsibility of truss fabricator. General practice is to camber for dead load deflection.
- 11. Plate type, size, orientation and location dimensions indicated are minimum plating requirements.
- 12. Lumber used shall be of the species and size, and in all respects, equal to or better than that specified
- Top chords must be sheathed or purlins provided at spacing indicated on design.
- 14. Bottom chords require lateral bracing at 10 ft. spacing, or less, if no ceiling is installed, unless otherwise noted.
- 15. Connections not shown are the responsibility of others.
- Do not cut or alter truss member or plate without prior approval of an engineer.
- 17. Install and load vertically unless indicated otherwise.
- Use of green or treated lumber may pose unacceptable environmental, health or performance risks. Consult with project engineer before use.
- Review all portions of this design (front, back, words and pictures) before use. Reviewing pictures alone is not sufficient.
- 20. Design assumes manufacture in accordance with ANSI/TPI 1 Quality Criteria.
- 21. The design does not take into account any dynamic or other loads other than those expressly stated.