

MiTek, Inc. RE: P240213-01 - Roof - HR Lot 185 16023 Swingley Ridge Rd. Site Information: Project Customer: Clayton Properties Project Name: Basswood - Transitional 3Carte. 4.434.1200 Lot/Block: 185 Subdivision: Hawthorne Ridge Model: Address: 1605 SW Arborway Terr City: Lee's Summit State: MO General Truss Engineering Criteria & Design Loads (Individual Truss Design Drawings Show Special Loading Conditions): Design Code: IRC2018/TPI2014 Design Program: MiTek 20/20 8.6 Wind Code: ASCE 7-16 Wind Speed: 115 mph Design Method: MWFRS (Envelope)/C-C hybrid Wind ASCE 7-16 Floor Load: N/A psf Roof Load: 45.0 psf

Mean Roof Height (feet): 35

Exposure Category: C

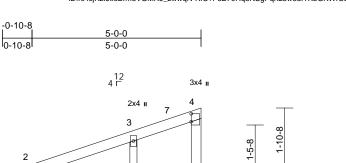
No. 1234 567 89 10 11	Seal# 164228546 164228547 164228549 164228550 164228551 164228553 164228553 164228553 164228555 164228555	Truss Name B01 B02 B04 B05 C01 C02 C03 C04 D01 D02 D03	Date 3/14/24 3/14/24 3/14/24 3/14/24 3/14/24 3/14/24 3/14/24 3/14/24 3/14/24 3/14/24
12 13 14 15 16 17 18 20 21 223 24 25 26 27	I64228557 I64228558 I64228559 I64228560 I64228561 I64228562 I64228563 I64228564 I64228565 I64228566 I64228566 I64228566 I64228566 I64228567 I64228568 I64228569 I64228570 I64228571 I64228572	E01 E02 E04 E05 E06 G01 G02 R01 V1 V2 V3 V4 V7 V7 V8 V9 V10	3/14/24 3/14/24 3/14/24 3/14/24 3/14/24 3/14/24 3/14/24 3/14/24 3/14/24 3/14/24 3/14/24 3/14/24 3/14/24 3/14/24 3/14/24 3/14/24

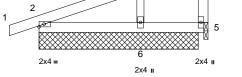
The truss drawing(s) referenced above have been prepared by MiTek USA, Inc. under my direct supervision based on the parameters provided by Premier Building Supply (Springhill, KS)20300 W 207th Street.

Truss Design Engineer's Name: Sevier, Scott

My license renewal date for the state of Missouri is December 31, 2025.

IMPORTANT NOTE: The seal on these truss component designs is a certification that the engineer named is licensed in the jurisdiction(s) identified and that the designs comply with ANSI/TPI 1. These designs are based upon parameters shown (e.g., loads, supports, dimensions, shapes and design codes), which were given to MiTek or TRENCO. Any project specific information included is for MiTek's or TRENCO's customers file reference purpose only, and was not taken into account in the preparation of these designs. MiTek or TRENCO has not independently verified the applicability of the design parameters or the designs for any particular building. Before use, the building designer should verify applicability of design parameters and properly incorporate these designs into the overall building design per ANSI/TPI 1, Chapter 2.

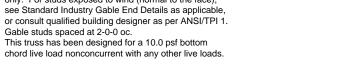

Sevier, Scott


Job	Truss	Truss Type	Qty	Ply	Roof - HR Lot 185	
P240213-01	B01	Monopitch Structural Gable	1	1	Job Reference (optional)	164228546

2-3-3

Run: 8.63 S Nov 1 2023 Print: 8.630 S Nov 1 2023 MiTek Industries, Inc. Wed Mar 13 16:07:24 ID:rc4sjKzIJtfsErm8VGMRJ_zwwqN-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1


Scale = 1:34.1

3)

4)

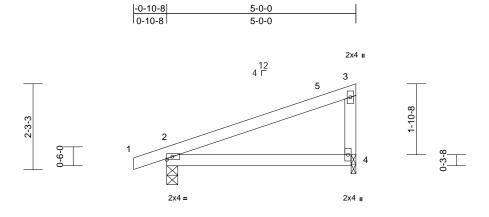
Plate Offsets (X, Y): [4:0-2-13,Edge]

Loading	(psf)	Spacing	2-0-0		csi		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15		TC	0.11	Vert(LL)	0.00	2-6	>999	240	MT20	244/190
TCDL	10.0	Lumber DOL	1.15		BC	0.07	Vert(CT)	-0.01	2-6	>999	180		
BCLL	0.0	Rep Stress Incr	YES		WB	0.07	Horz(CT)	0.00	4	n/a	n/a		
BCDL	10.0	Code	IRC201	18/TPI2014	Matrix-P	-						Weight: 20 lb	FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x4 SP No.2 2x3 SPF No.2 Structural wood she 5-0-0 oc purlins, ex Rigid ceiling directly bracing. (size) 2=4-8-8, Max Horiz 2=85 (LC Max Uplift 2=-49 (LC (LC 12) Max Grav 2=183 (LU	cept end verticals. applied or 10-0-0 o 4=0-3-8, 5=4-8-8, 6= 8) C 8), 4=-19 (LC 8), 6 C 1), 4=37 (LC 1), 5	c =4-8-8 =-78	 capacity of 5 Provide mec bearing plate 2, 78 lb uplif Beveled plat surface with This truss is International R802.10.2 a Gap betweel 	hanical connecti capable of with at joint 6 and 19 e or shim require truss chord at jo designed in acco Residential Cod do referenced sta i niside of top ch rertical web shall	on (by oth standing 4 9 lb uplift a ed to provi int(s) 4. ordance w le sections andard AN nord bearir	ers) of truss 19 lb uplift at 1t joint 4. de full bearin 1th the 2018 15 R502.11.1 at NSI/TPI 1. ang and first	joint g					
FORCES	(LC 3), 6 (Ib) - Maximum Con Tension	=269 (LC 1) npression/Maximum											
TOP CHORD	1-2=0/6, 2-3=-141/5	8 3-429/8 4-5-0/	/0										
BOT CHORD	,	0, 0 4= 20/0, 4 0=0/	0										
WEBS	3-6=-205/304												
NOTES													
 Wind: ASC Vasd=91n Ke=1.00; exterior zc Interior (1) exposed; and forces DOL=1.60 Truss des only. For 	CE 7-16; Vult=115mph nph; TCDL=6.0psf; BC Cat. II; Exp C; Enclose one and C-C Exterior(2)) 4-1-8 to 4-10-4 zone; end vertical left expos s & MWFRS for reactic 0 plate grip DOL=1.60 signed for wind loads i studs exposed to winc lard Industry Gable En	DL=6.0psf; h=35ft; d; MWFRS (envelop E) -0-10-8 to 4-1-8, cantilever left and r ed;C-C for member: ons shown; Lumber n the plane of the tru I (normal to the face	ight s uss),)		STATE OF SCOT	I M. P. M.

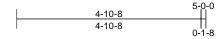
March 14,2024

EZ

PE-200101880


ONAL

Job	Truss	Truss Type	Qty	Ply	Roof - HR Lot 185	
P240213-01	B02	Monopitch	3	1	Job Reference (optional)	164228547


Run: 8.63 S Nov 1 2023 Print: 8.630 S Nov 1 2023 MiTek Industries, Inc. Wed Mar 13 16:07:25 ID:e7TpXHScubJ3pqIMwEXctQzdVwa-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

5-0-0

Scale = 1:30.5

	-			_								
Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15	TC	0.49	Vert(LL)	-0.03	2-4	>999	240	MT20	244/190
TCDL	10.0	Lumber DOL	1.15	BC	0.27	Vert(CT)	-0.06	2-4	>958	180		
BCLL	0.0	Rep Stress Incr	YES	WB	0.00	Horz(CT)	0.00	4	n/a	n/a		
BCDL	10.0	Code	IRC2018/TPI2014	Matrix-P							Weight: 19 lb	FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS BRACING			Ínternationa	s designed in acc al Residential Coc and referenced st b) Standard	de sections	R502.11.1						
TOP CHORD			ed or									
	5-0-0 oc purlins, ex											
BOT CHORD	 Rigid ceiling directly bracing. 	applied or 10-0-0 c	C									
REACTIONS	0	4=0-1-8										
	Max Horiz 2=89 (LC											
	Max Uplift 2=-91 (LC	,, (,										
	Max Grav 2=291 (L0	,, ()										
FORCES	(lb) - Maximum Corr Tension	npression/Maximum										
TOP CHORD		5. 3-4=-157/238										
BOT CHORD		0,01 101/200										
NOTES												
Vasd=91 Ke=1.00; exterior z Interior (1 exposed	SCE 7-16; Vult=115mph mph; TCDL=6.0psf; BC ; Cat. II; Exp C; Enclose cone and C-C Exterior(2 1) 4-1-8 to 4-10-4 zone; ; end vertical left and ri;	DL=6.0psf; h=35ft; ed; MWFRS (envelo 2E) -0-10-8 to 4-1-8, cantilever left and r ght exposed;C-C for	right r									
	s and forces & MWFRS DOL=1.60 plate grip DC		1;								OF	MISSO
2) This truss	s has been designed fo	r a 10.0 psf bottom								4	NEOF	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
	e load nonconcurrent wings are assumed to be \$		ids.							A	SCOT	TM. KEN
	of 565 psi.	or No.2 crushing								A	SEV	IER Y
using AN	at joint(s) 4 considers pa ISI/TPI 1 angle to grain should verify capacity o	formula. Building	9							Ø	ants	- Lon in
5) Provide n	mechanical connection		to						-	YA 7	NOM	BER TEA
	blate at joint(s) 4.	(by others) of truces	to							N.	PE-2001	018807
bearing p	blate capable of withstar bluplift at joint 4.									Y	RSSIONA	L ENGLES
											alle.	44.0004

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

16023 Swingley Ridge Rd. Chesterfield, MO 63017 314.434.1200 / MiTek-US.com

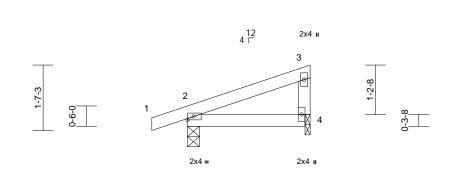
March 14,2024

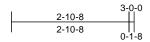
Job	Truss	Truss Type	Qty	Ply	Roof - HR Lot 185	
P240213-01	B04	Monopitch	6	1	Job Reference (optional)	164228548

3-0-0

3-0-0

-0-10-8


0-10-8


Premier Building Supply (Springhill, KS), Spring Hills, KS - 66083,

Run: 8.63 S Nov 1 2023 Print: 8.630 S Nov 1 2023 MiTek Industries, Inc. Wed Mar 13 16:07:25 ID:k?UxzaFoLR0qy8sWjXGIcLzwwoj-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:28.2

		1	•	i							1	· · · · · · · · · · · · · · · · · · ·
Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15	TC	0.13	Vert(LL)	0.00	2-4	>999	240	MT20	244/190
TCDL	10.0	Lumber DOL	1.15	BC	0.08	Vert(CT)	-0.01	2-4	>999	180		
BCLL	0.0	Rep Stress Incr	YES	WB	0.00	Horz(CT)	n/a	-	n/a	n/a		
BCDL	10.0	Code	IRC2018/TPI2014	Matrix-P							Weight: 12 lb	FT = 20%
LUMBER TOP CHORD	2x4 SP No.2		International	designed in accord Residential Code s	sections	R502.11.1 a	ind					
BOT CHORD	2x4 SP No.2		R802.10.2 a	nd referenced stand	dard AN	ISI/TPI 1.						
WEBS	2x4 SP No.2		LOAD CASE(S)	Standard								
BRACING												
TOP CHORD	Structural wood she 3-0-0 oc purlins, ex	cept end verticals.										
BOT CHORD	Rigid ceiling directly bracing.	applied or 10-0-0 oc	3									
REACTIONS												
	Max Horiz 2=56 (LC											
	Max Uplift 2=-72 (LC											
	Max Grav 2=207 (LC	,, ()										
FORCES	(lb) - Maximum Com	pression/Maximum										
	Tension											
TOP CHORD	1-2=0/6, 2-3=-61/28,	, 3-4=-81/124										
BOT CHORD	2-4=0/0											
NOTES		(a										
	CE 7-16; Vult=115mph											
	nph; TCDL=6.0psf; BC Cat. II; Exp C; Enclose		· • • •									
	one and C-C Exterior(2											
	exposed ; end vertical I											
	and forces & MWFRS											
Lumber D	OL=1.60 plate grip DO	L=1.60									COOL	TOP
2) This truss	has been designed for	r a 10.0 psf bottom									ATE OF M	MISC
	load nonconcurrent wi		ds.							1	750	-00,4
	s are assumed to be S	SP No.2 crushing								B	SCOT	TM X
capacity of										R	SEVI	
	i joint(s) 4 considers pa SI/TPI 1 angle to grain									a		
	should verify capacity c									XX		
	echanical connection (`								ROL-	RONNIS
	ate at joint(s) 4.		•								NUM	
	echanical connection ((by others) of truss to)							N	O PE-2001	018807 29
	ate capable of withstar									V	The second secon	120
2 and 32 ll	b uplift at joint 4.									1	ESSIONA	NO'B
											NONA CONA	LEIZ
											Jan	DIS

March 14,2024

16023 Swingley Ridge Rd. Chesterfield, MO 63017 314.434.1200 / MiTek-US.com

Job	Truss	Truss Type	Qty	Ply	Roof - HR Lot 185	
P240213-01	B05	Monopitch	1	1	Job Reference (optional)	164228549

Spacing

2-0-0

(psf)

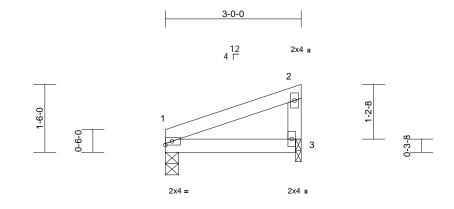
Run: 8,63 E Feb 2 2024 Print: 8,630 E Feb 2 2024 MiTek Industries, Inc. Thu Mar 14 13:32:06 ID:k?UxzaFoLR0qy8sWjXGlcLzwwoj-zjh7Llr0NKkhvOxK0_OB90u9NjwloGyO1Sdf6Gzb?fN

3-0-0

0-1-8

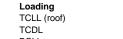
DEFL

(loc)


in

l/defl

L/d PLATES


GRIP

Page: 1

2-10-8 2-10-8

CSI

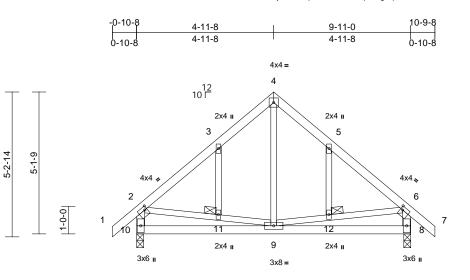
Scale = 1:25.4

TCLL (roof)	25.0	Plate Grip DOL	1.15	TC	0.16	Vert(LL)	0.00	1-3	>999	240	MT20	244/190	
TCDL	10.0	Lumber DOL	1.15	BC	0.08	Vert(CT)	-0.01	1-3	>999	180			
BCLL	0.0	Rep Stress Incr	YES	WB	0.00	Horz(CT)	n/a	-	n/a	n/a			
BCDL	10.0	Code	IRC2018/TPI2014	Matrix-P							Weight: 10 lb	FT = 20%	
LUMBER													
TOP CHORD	2x4 SP No.2												
BOT CHORD	2x4 SP No.2												
WEBS	2x4 SP No.2												
BRACING													
TOP CHORD	Structural wood she		ed or										
	3-0-0 oc purlins, ex												
BOT CHORD	Rigid ceiling directly	applied or 10-0-0 or	0										
REACTIONS	bracing. (lb/size) 1=122/0-3	3-8, 3=122/0-1-8											
	Max Horiz 1=50 (LC	,											
	Max Uplift 1=-16 (LC												
FORCES			250										
FURCES	 (lb) - Max. Comp./Ma (lb) or less except w 		250										
NOTES		nen snown.											
	E 7-16; Vult=115mph	(3-second quet)											
	iph; TCDL=6.0psf; BC												
	Cat. II; Exp C; Enclose)e)										
	ne and C-C Exterior(2												
	xposed ; end vertical l												
	and forces & MWFRS		:										
	DL=1.60 plate grip DO		2										
	has been designed for												
	load nonconcurrent wi		ds.										
	ioint(s) 3 considers pa										000	TOL	

- Bearing at joint(s) 3 considers parallel to grain valuusing ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.
- Provide mechanical connection (by others) of truss to 4) bearing plate at joint(s) 3.
- 5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 16 lb uplift at joint 1 and 37 lb uplift at joint 3.
- This truss is designed in accordance with the 2018 6) International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard

March 14,2024


 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.
 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not besign value to dury with with where outputs into design is based only door parameters shown, and is for an individual building design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members and property incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TPH1 Quality Criteria**, and **DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcscomponents.com)

Job	Truss	Truss Type	Qty	Ply	Roof - HR Lot 185	
P240213-01	C01	Common	1	1	Job Reference (optional)	164228550

Run: 8.63 S Nov 1 2023 Print: 8.630 S Nov 1 2023 MiTek Industries, Inc. Wed Mar 13 16:07:25 ID:os2IQe2rb3WdASKT3MJryMzdWOp-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

4-11-8	9-11-0	
4-11-8	4-11-8	

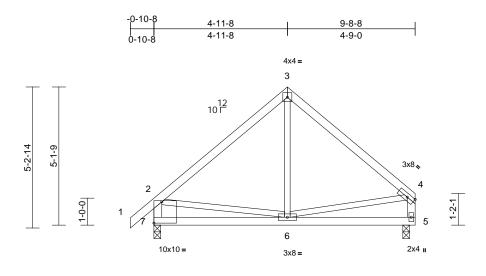
Plate Offsets (X, Y): [2:0-1-0,0-1-8], [6:0-1-0,0-1-8]

Scale = 1:41.7

grip DOL=1.60

	Λ, Τ). [2.0-1-0,0-1-0],	[0.0-1-0,0-1-0]											
Loading TCLL (roof) TCDL BCLL BCDL LUMBER	(psf) 25.0 10.0 0.0 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code			CSI TC BC WB Matrix-S				(loc) 9-10 9-10 8	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 55 lb	GRIP 197/144 FT = 20%
TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD JOINTS	2x4 SP No.2 2x4 SP No.2 2x3 SPF No.2 *Exce 2x3 SPF No.2 Structural wood she 6-0-0 oc purlins, ex Rigid ceiling directly bracing. 1 Brace at Jt(s): 11, 12	athing directly applie	4 ed or 5 6 c	 see Standar or consult qu Truss to be to braced again Gable studs This truss ha chord live loc All bearings capacity of 5 Provide medicing 	hanical connectio	End Deta esigner as m one fac ent (i.e. c oc. for a 10.0 with any be SP No.	ils as applicat s per ANSI/TF e or securely liagonal web). O psf bottom other live load 2 crushing	ble, il 1. ds.					
REACTIONS	(size) 8=0-3-0, 2 Max Horiz 10=168 (L Max Uplift 8=-77 (LC Max Grav 8=505 (LC	_C 11) C 13), 10=-77 (LC 12	2)	 bearing plate at joint(s) 10. Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 77 lb uplift at joint 10 and 77 lb uplift at joint 8. This truss is designed in accordance with the 2018 									
FORCES TOP CHORD	(Ib) - Maximum Compression/Maximum International Residential Code sections R502.11.1 and Tension R802.10.2 and referenced standard ANSI/TPI 1.												
BOT CHORD WEBS	2-10=-458/442, 6-8= 9-10=-272/265, 8-9= 4-9=-393/189, 2-11= 9-12=-118/188, 6-12 5-12=-36/42	=-213/163 =-106/179, 9-11=-11										ATE OF I	MISS-
this design 2) Wind: ASC Vasd=91n Ke=1.00; (exterior zc Interior (1) Interior (1) exposed ; and right e	CE 7-16; Vult=115mph nph; TCDL=6.0psf; BC Cat. II; Exp C; Enclose one and C-C Exterior(2) 4-1-8 to 4-11-8, Exter) 9-9-4 to 10-9-8 zone; end vertical left and rig exposed;C-C for memb or reactions shown; Lu	(3-second gust) DL=6.0psf; h=35ft; d; MWFRS (envelop E) -0-10-8 to 4-1-8, rior(2R) 4-11-8 to 9-5 cantilever left and ri ght exposed; porch I bers and forces &	be) 9-4, ight left							4		SCOT SEV. NUM PE-2001	I M. HER BER 018807

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)


March 14,2024

tree

Job	Truss	Truss Type	Qty	Ply	Roof - HR Lot 185	
P240213-01	C02	Common	1	1	Job Reference (optional)	164228551

Run: 8.63 S Nov 1 2023 Print: 8.630 S Nov 1 2023 MiTek Industries, Inc. Wed Mar 13 16:07:25 ID:1KZHkvxqUcWICDixbgAzdgzdWOx-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

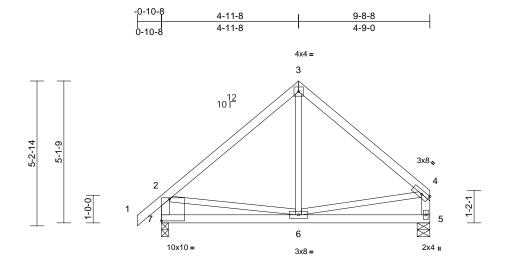
;	Scale =	1:42.8	

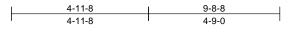
Plate Offsets (X, Y): [7:Edge,0-9-8]

	(A, T). [7.Edge,0-9-0]				-							
Loading	(psf)	Spacing	2-0-0	csi		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15	TC	0.33	Vert(LL)	0.04	6-7	>999	240	MT20	197/144
TCDL	10.0	Lumber DOL	1.15	BC	0.23	Vert(CT)	0.03	6-7	>999	180		
BCLL	0.0	Rep Stress Incr	YES	WB	0.19	Horz(CT)	0.00	5	n/a	n/a		
BCDL	10.0	Code	IRC2018/TPI2014	Matrix-S							Weight: 49 lb	FT = 20%
LUMBER			6) This truss is	s designed in acco	ordance wi	ith the 2018						
TOP CHORD	2x4 SP No.2		Internationa	al Residential Code	e sections	R502.11.1 a	and					
BOT CHORD	2x4 SP No.2		R802.10.2	and referenced sta	andard AN	ISI/TPI 1.						
WEBS	2x3 SPF No.2 *Exce	ept* 7-2,5-4:2x4 SP	No.2 LOAD CASE(S) Standard								
BRACING												
TOP CHORD			ed or									
BOT CHORD	 6-0-0 oc purlins, ex Rigid ceiling directly 											
Derenend	bracing.											
REACTIONS	(size) 5=0-3-0, 7	7=0-3-0										
	Max Horiz 7=162 (LC											
	Max Uplift 5=-49 (LC											
	Max Grav 5=420 (L0	C 1), 7=499 (LC 1)										
FORCES	(lb) - Maximum Com	pression/Maximum										
	Tension	100 0 1 101/110										
TOP CHORD	1-2=0/46, 2-3=-414/ 2-7=-455/413, 4-5=-	, , ,										
BOT CHORD												
WEBS	3-6=-339/178, 2-6=-		164									
NOTES	0 0= 000/170, 2 0=	120/100, 4 0= 111/										
	ed roof live loads have	been considered fo	r									
this desig		been considered to	I									
	CE 7-16; Vult=115mph	(3-second aust)										and the second s
	mph; TCDL=6.0psf; BC										O OF	ALL
Ke=1.00;	Cat. II; Exp C; Enclose	d; MWFRS (envelop	be)							6	TATE OF	WIISS W
	one and C-C Exterior(2									A		N.S.
	 4-1-8 to 4-11-8, Exter 									R	SCOT	TM. CM
	ntilever left and right exp									2	/ SEV	IER \ Y
	exposed; porch left and and forces & MWFRS									U A		
	OOL=1.60 plate grip DO		,							80	the	0 - det
	s has been designed for								0		Contra in	ANNO
	e load nonconcurrent wi		ds.						_	W7	DE 2001	019907
4) All bearin	igs are assumed to be \$	SP No.2 crushing								N.	OX PE-2001	01000/ 0001

4) All bearings are assumed to be SP No.2 crushing capacity of 565 psi.

5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 76 lb uplift at joint 7 and 49 lb uplift at joint 5.





Job	Truss	Truss Type	Qty	Ply	Roof - HR Lot 185	
P240213-01	C03	Common	1	1	Job Reference (optional)	164228552

Run: 8.63 S Nov 1 2023 Print: 8.630 S Nov 1 2023 MiTek Industries, Inc. Wed Mar 13 16:07:25 ID:5Czyu17ExDPdVXMp_KxUkrzdWOi-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

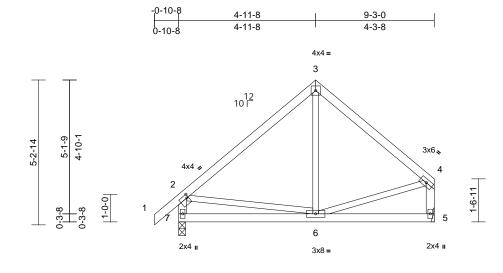
Page: 1

Scale = 1:41.7 Plate Offsets (X, Y): [7:Edge.0-9-8]

Plate Offsets	(X, Y): [7:Edge,0-9-8]			_								
Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15	TC	0.33	Vert(LL)	0.04	6-7	>999	240	MT20	197/144
TCDL	10.0	Lumber DOL	1.15	BC	0.23	Vert(CT)	0.03	6-7	>999	180		
BCLL	0.0	Rep Stress Incr	YES	WB	0.19	Horz(CT)	0.00	5	n/a	n/a		
BCDL	10.0	Code	IRC2018/TPI2014	Matrix-S							Weight: 49 lb	FT = 20%
LUMBER			6) This truss i	s designed in acco	ordance wi	ith the 2018						
TOP CHORD	2x4 SP No.2			al Residential Code			ind					
BOT CHORD	2x4 SP No.2		R802.10.2	and referenced sta	andard AN	ISI/TPI 1.						
WEBS	2x3 SPF No.2 *Exce	ept* 7-2,5-4:2x4 SP	No.2 LOAD CASE(S	Standard								
BRACING												
TOP CHORD			ed or									
	6-0-0 oc purlins, ex											
BOT CHORD	 Rigid ceiling directly bracing. 	applied or 9-4-6 oc										
REACTIONS	0	7 0 2 0										
REACTIONS	Max Horiz 7=162 (L0											
	Max Uplift 5=-49 (LC	,										
	Max Grav 5=420 (LC											
FORCES	(lb) - Maximum Com											
	Tension											
TOP CHORD												
	2-7=-455/413, 4-5=-											
BOT CHORD												
WEBS	3-6=-339/178, 2-6=-	123/199, 4-6=-117/	164									
NOTES												
 Unbalance this designed 	ed roof live loads have	been considered fo	r									
	CE 7-16; Vult=115mph	(3-second aust)										The second
	mph; TCDL=6.0psf; BC										OF I	AP IN
	Cat. II; Exp C; Enclose		pe)							6	ALEUT	MIS'S
	one and C-C Exterior(2									6	TAN'	1.5
· · ·) 4-1-8 to 4-11-8, Exter	()								R	STATE OF SCOT	TM. YEY
	ntilever left and right exposed; porch left and									Я.	SEV	IER \ Y
	and forces & MWFRS									0		$0 \rightarrow 4$
	OOL=1.60 plate grip DC		,								1.17	Jankel
	s has been designed fo								1		NUM	BER 2
	e load nonconcurrent wi		ds.							17		
All bearin	gs are assumed to be	SP No.2 crushing								N	PE-2001	10001 SB

4) capacity of 565 psi.

5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 76 lb uplift at joint 7 and 49 lb uplift at joint 5.



Job	Truss	Truss Type	Qty	Ply	Roof - HR Lot 185	
P240213-01	C04	Common	1	1	Job Reference (optional)	164228553

Run: 8.63 S Nov 1 2023 Print: 8.630 S Nov 1 2023 MiTek Industries, Inc. Wed Mar 13 16:07:26 ID:OZubMQCdINHdrcO9uIZ7WJzdWOb-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

-0f

Scale = 1:41.7

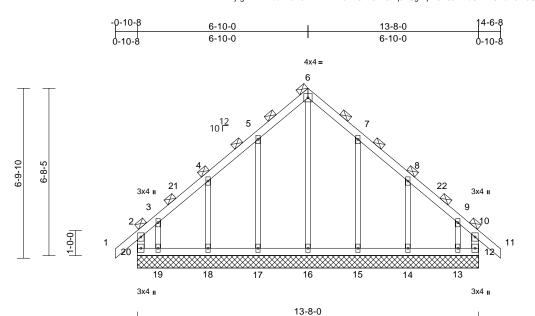
Plate Offsets (X, Y): [2:0-0-12,0-1-8]

	(,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	1											
Loading	(psf)	Spacing	2-0-0		csi		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15		тс	0.33	Vert(LL)	0.04	6-7	>999	240	MT20	197/144
TCDL	10.0	Lumber DOL	1.15		BC	0.22	Vert(CT)	0.03	6-7	>999	180		
BCLL	0.0	Rep Stress Incr	YES		WB	0.17	Horz(CT)	0.00	5	n/a	n/a		
BCDL	10.0	Code	IRC201	8/TPI2014	Matrix-S							Weight: 47 lb	FT = 20%
LUMBER			6)	Provide me	chanical connection	on (by oth	ers) of truss	to					
TOP CHORD	2x4 SP No.2		,	bearing plat	e capable of withs	standing 7	'3 lb uplift at j	joint					
BOT CHORD				7 and 50 lb	uplift at joint 5.								
WEBS	2x3 SPF No.2 *Exce	ept* 7-2,5-4:2x4 SP	No.2 7)		designed in acco								
BRACING					Residential Code			and					
TOP CHORD			ed or		ind referenced sta	andard AN	NSI/TPI 1.						
	6-0-0 oc purlins, ex			DAD CASE(S)	Standard								
BOT CHORD	0 0 ,	applied or 8-10-1 c	C										
	bracing.												
REACTIONS	· /	anical, 7=0-3-0											
	Max Horiz 7=168 (LC Max Uplift 5=-50 (LC	,											
	Max Grav 5=399 (LC	,, , , ,)										
FORCES	(lb) - Maximum Corr	,, , ,											
FURCES	Tension	ipression/waximum											
TOP CHORD		401. 3-4=-359/419.											
	2-7=-434/398, 4-5=-	, ,											
BOT CHORD	6-7=-405/265, 5-6=-	88/64											
WEBS	3-6=-308/156, 2-6=-	127/202, 4-6=-181/	166										
NOTES													
1) Unbalance	ced roof live loads have	been considered for	or										
this desig													
	CE 7-16; Vult=115mph											San	ann
	mph; TCDL=6.0psf; BC Cat. II; Exp C; Enclose		no)									OF J	MISCO
	cone and C-C Exterior(2											4 SE	-20 M
	I) 4-1-8 to 4-11-8, Exter										R	N SCOT	N Con
	ntilever left and right exp										R.	STATE OF SCOT	
and right	exposed; porch left and	d right exposed;C-C	for								12h	_/ SEV	
	and forces & MWFRS		ו;								1		
Lumbor F	$\Omega = 1.60$ plate aria DC	1 -1 60									V 1	// /	0 + 11

Lumber DOL=1.60 plate grip DOL=1.60 3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

 Bearings are assumed to be: Joint 7 SP No.2 crushing capacity of 565 psi.

5) Refer to girder(s) for truss to truss connections.



16023 Swingley Ridge Rd. Chesterfield, MO 63017 314.434.1200 / MiTek-US.com

Job	Truss	Truss Type	Qty	Ply	Roof - HR Lot 185	
P240213-01	D01	Roof Special Supported Gable	1	1	Job Reference (optional)	164228554

Run: 8.63 S Nov 1 2023 Print: 8.630 S Nov 1 2023 MiTek Industries, Inc. Wed Mar 13 16:07:26 ID:wijvgVRNMEbdXh3iv6zXHnzww7s-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

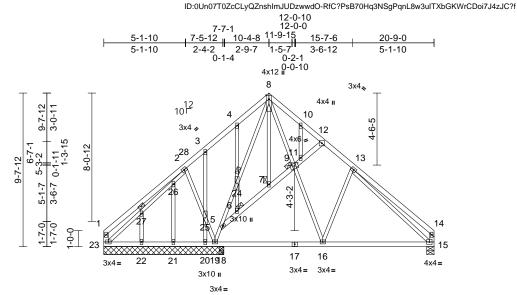
Page: 1

Sca	le ·	- 1	· AF	31

Loading TCLL (roof) TCDL BCLL BCDL		(psf) 25.0 10.0 0.0 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	4-0-0 1.15 1.15 NO IRC201	8/TPI2014	CSI TC BC WB Matrix-R	0.20 0.17 0.40	DEFL Vert(LL) Vert(CT) Horz(CT)	in n/a n/a 0.00	(loc) - - 12	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 71 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP N 2x3 SPF 2-0-0 oc verticals (Switchee Rigid ceil bracing.	lo.2 lo.2 No.2 d from shee ing directly 12=13-8-(15=13-8-(-0 max.), except en eted: Spacing > 2-8-(applied or 10-0-0 oc), 13=13-8-0, 14=13), 16=13-8-0, 17=13	2) d 0). 	Vasd=91mpł Ke=1.00; Ca exterior zone Interior (1) 4- 11-10-0, Inte left and right exposed;C-C reactions sho DOL=1.60 Truss design	roof live loads 7-16; Vult=11! h; TCDL=6.0ps t. II; Exp C; En e and C-C Exte 1-8 to 6-10-0, rior (1) 11-10-(exposed ; end c for members own; Lumber E ned for wind lo ds exposed to	5mph (3-sec f; BCDL=6.0 closed; MW rior(2E) -0-7 Exterior(2R 0 to 14-6-8 z vertical left and forces a OOL=1.60 pl ads in the p	cond gust) Opsf; h=35ft; (FRS (envelo 10-8 to 4-1-8,) 6-10-0 to zone; cantilev and right & MWFRS fo ate grip lane of the tr	pe) ver r					
	·	20=423 (L 12=-247 (14=-203 (17=-198 (19=-389 (12=397 (L 14=396 (L 16=423 (L	LC 9), 13=-364 (LC LC 13), 15=-196 (LC LC 12), 18=-201 (LC LC 12), 20=-330 (LC .C 19), 13=388 (LC .C 20), 15=407 (LC .C 22), 17=410 (LC .C 19), 19=445 (LC	13), 4) 2 13), 5) 2 12), 6) 2 8) 11), 7) 20), 8) 19), 8)	see Standard or consult qu All plates are Gable requiri Truss to be f braced again Gable studs This truss ha chord live loa All bearings a	d Industry Gab alified building 2x4 MT20 un es continuous ully sheathed f ist lateral move spaced at 2-0- s been design ad nonconcurre are assumed to	le End Deta designer as less otherwi bottom chor from one fac ement (i.e. d 0 oc. ed for a 10.0 ent with any	ils as applica s per ANSI/T se indicated. of bearing. ce or securely liagonal web 0 psf bottom other live loa	ble, PI 1.					
FORCES	Tension 2-20=-34 3-4=-212 6-7=-276	kimum Com 9/228, 1-2= /205, 4-5=- /442, 7-8=-	pression/Maximum 0/91, 2-3=-335/302, 178/286, 5-6=-276/4 162/269, 8-9=-170/1 1=0/91, 10-12=-302	54, 62,	joint 20, 247 201 lb uplift a uplift at joint		thstanding 3 t 12, 198 lb lb uplift at jo	330 lb uplift a uplift at joint oint 19, 196 l	t 17, b			đ	STATE OF I	
BOT CHORD	19-20=-1 17-18=-1 15-16=-1	98/239, 18- 98/239, 16- 98/239, 14-	19=-198/239, 17=-198/239, 15=-198/239, 15=-198/239, 13=-198/239	11		Residential Conductor	ode sections standard AN	s R502.11.1 a NSI/TPI 1.				B	SEVI	Ser
WEBS	4-18=-31	6/290, 3-19 7/267, 8-14	′=-329/268, =-267/282, =-318/291,			ation of the pur			5126			No.	PE-2001	018807
NOTES													NA	L

NOTES

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)



and March 14,2024

Job	Truss	Truss Type	Qty	Ply	Roof - HR Lot 185	
P240213-01	D02	Roof Special Structural Gable	1	1	Job Reference (optional)	164228555

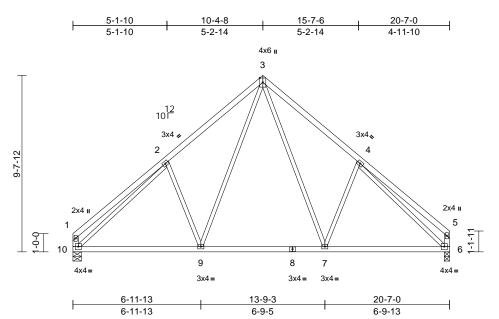
Run: 8.63 S Nov 1 2023 Print: 8.630 S Nov 1 2023 MiTek Industries. Inc. Wed Mar 13 16:07:26

Page: 1

Scale = 1:72.4 6-11-13 0-4-15 6-4-7 6-11-13		6-11-13	7-4-12 13-9-3	20-9-0
	Scale = 1:72.4	6-11-13	0-4-15 6-4-7	6-11-13

Loading	(ps		2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25		1.15		тс	0.31	Vert(LL)	-0.05		>999	240	MT20	244/190
TCDL	10		1.15		BC	0.39	Vert(CT)	-0.11		>999	180		
BCLL		.0 Rep Stress Incr	YES		WB	0.42	Horz(CT)	0.01	15	n/a	n/a		
BCDL	10	.0 Code	IRC201	8/TPI2014	Matrix-S							Weight: 140 lb	FT = 20%
LUMBER			W	'EBS	8-9=-217/478, 9-1	16=-149/4	403, 5-19=-49	91/50,	11) Gra	aphical p	urlin re	presentation doe	es not depict the size
TOP CHORD	2x4 SP No.2			4	5-24=-390/0, 8-24	4=-328/0,	13-16=-258/	243,	or t	he orien	tation (of the purlin along	g the top and/or
BOT CHORD	2x4 SP No.2				2-25=-300/284, 1		,		bot	tom cho	rd.		
WEBS		Except* 23-1,15-14:2x4	4 SP		23-27=-171/118, : 2-26=-212/143, 1;		,	60	LOAD	CASE(S) Sta	ndard	
OTHERS	No.2 2x3 SPF No.2				2-26=-212/143, 1 4-24=-135/81, 6-2		,	,					
BRACING	2/0 011 110.2				20-25=-28/25, 21		,	,					
TOP CHORD	Structural wood	I sheathing directly app	lied or		10-11=-116/102								
		, except end verticals.		OTES									
BOT CHORD		ectly applied or 10-0-0			roof live loads ha	ve been	considered fo	or					
	bracing.			this design.	7 40 1/14 415								
JOINTS	1 Brace at Jt(s) 7, 24, 6, 27	: 9,	2)		7-16; Vult=115m h; TCDL=6.0psf; I								
REACTIONS		-5-8, 18=0-3-8, 19=7-6			t. II; Exp C; Enclo			pe)					
REACTIONS	()	-6-8, 21=7-6-8, 22=7-6	,		and C-C Exterio								
	23=7		,		-0-15 to 10-6-3, E								
	Max Horiz 23=2	67 (LC 9)			ior (1) 15-8-1 to 2			left					
		92 (LC 13), 19=-392 (L			osed ; end vertic			_					
		9 (LC 8), 23=-73 (LC 1			C for members an own; Lumber DOI			ſ					
		30 (LC 1), 18=484 (LC 64 (LC 1), 20=117 (LC		DOL=1.60	Swill, Editiber Del	L=1.00 pi	ate grip						
		4 (LC 1), 20=117 (LC 3)	· · · · · · · · · · · · · · · · · · ·		ned for wind load	s in the p	lane of the tr	uss					
		96 (LC 1)	<i>.</i> ,		uds exposed to wi								
FORCES		Compression/Maximur	m		d Industry Gable								
	Tension	·	4)		alified building de			PI 1.					an
TOP CHORD	,	2-3=-189/160, 3-4=-150	0/172, 4) 5)		e 2x4 MT20 unles ully sheathed fror			,				THE OF M	MICON
	4-8=-187/221, 8	,	5)		ist lateral movem							FIE	-050 M
		3, 12-13=-538/208,	6)		spaced at 2-0-0 d						A	N	NE
	13-14=-348/175	5, 1-23=-252/167,	7)	This truss ha	s been designed	for a 10.					H	S SCOI	
		5-6=-100/79, 6-7=-70/5	0.		ad nonconcurrent			ads.			1.	SEVI	
	7-9=-86/70		8)		are assumed to b	e SP No	.2 crushing				87	1 11-	NA 171
BOT CHORD	22-23=-135/233	3, 21-22=-135/233,	~	capacity of 5				4.0			<u>a</u> _		X
		3, 19-20=-135/233,	9)		hanical connection capable of withs					>	LA A	NUM	RENNER /
	18-19=-26/259,	16-18=-26/259,			blift at joint 19, 92					-	12	PE-2001	018807
	15-16=-31/429			uplift at joint		io upint c					N	The second secon	12 A
			10		designed in acco	rdance w	ith the 2018				X	C'SSIONA	NON
					Residential Code			and				ONA	LEFA
				R802.10.2 a	nd referenced sta	Indard AN	ISI/TPI 1.					UNA	

International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.



March 14,2024

Job	Truss	Truss Type	Qty	Ply	Roof - HR Lot 185	
P240213-01	D03	Common	7	1	Job Reference (optional)	164228556

Run: 8.63 S Nov 1 2023 Print: 8.630 S Nov 1 2023 MiTek Industries. Inc. Wed Mar 13 16:07:26 ID:pwt0jO1hEphDIMFL4rqrrezwwfy-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:63

Scale = 1:63												
Loading	(psf)	Spacing	2-0-0	csi		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15	тс	0.40	Vert(LL)	-0.05	9-10	>999	240	MT20	244/190
TCDL	10.0	Lumber DOL	1.15	BC	0.43	Vert(CT)	-0.11	9-10	>999	180		
BCLL	0.0	Rep Stress Incr	YES	WB	0.91	Horz(CT)	0.02	6	n/a	n/a		
BCDL	10.0	Code	IRC2018/TPI2014	Matrix-S							Weight: 107 lb	FT = 20%

TOP CHORD	ZX4 SP NO.Z
BOT CHORD	2x4 SP No.2
WEBS	2x3 SPF No.2 *Except* 10-1,6-5:2x4 SP No.2
BRACING	
TOP CHORD	Structural wood sheathing directly applied or
	5-5-11 oc purlins, except end verticals.
BOT CHORD	Rigid ceiling directly applied or 10-0-0 oc
	bracing.
REACTIONS	(size) 6=0-3-8, 10=0-5-8
	Max Horiz 10=264 (LC 11)
	Max Uplift 6=-111 (LC 13), 10=-113 (LC 12)
	Max Grav 6=913 (LC 1), 10=913 (LC 1)
FORCES	(lb) - Maximum Compression/Maximum
	Tension
TOP CHORD	1-2=-333/158, 2-3=-959/306, 3-4=-947/302,
	4-5=-291/136, 1-10=-311/152, 5-6=-280/135
BOT CHORD	9-10=-172/794, 7-9=-23/530, 6-7=-97/710
WEBS	3-7=-196/428, 4-7=-284/289, 3-9=-201/450,
	2-9=-304/295, 2-10=-771/85, 4-6=-816/95
NOTES	

1) Unbalanced roof live loads have been considered for this design.

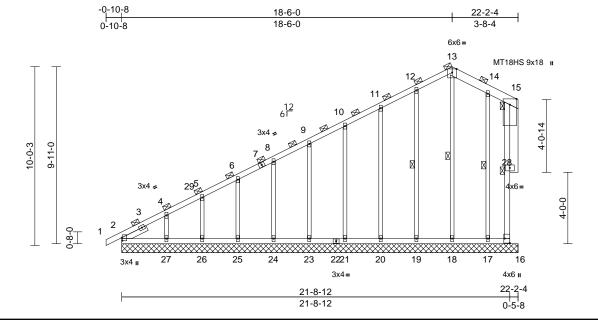
2) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=35ft; Ke=1.00; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) 0-1-12 to 5-0-15, Interior (1) 5-0-15 to 10-4-8, Exterior(2R) 10-4-8 to 15-8-1, Interior (1) 15-8-1 to 20-5-4 zone; cantilever left and right exposed ; end vertical right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. All bearings are assumed to be SP No.2 crushing 4)

capacity of 565 psi. 5) Provide mechanical connection (by others) of truss to

bearing plate capable of withstanding 113 lb uplift at joint 10 and 111 lb uplift at joint 6.

International Residential Code sections R502. 11.1 and R802.10.2 and referenced standard ANSI/TPI 1. LOAD CASE(S) Standard



Job	Truss	Truss Type	Qty	Ply	Roof - HR Lot 185	
P240213-01	E01	Common Supported Gable	1	1	Job Reference (optional)	164228557

Run: 8.63 S Nov 1 2023 Print: 8.630 S Nov 1 2023 MiTek Industries, Inc. Wed Mar 13 16:07:26 ID:bSBHIwRtVwODq1AP3GRETazww5H-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

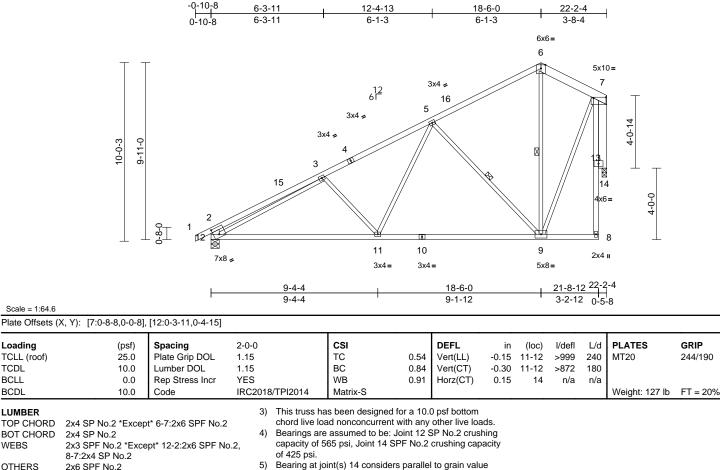
Page: 1

Plate Offsets (X, Y): [2:0-2-1,0-0-5], [16:Edge,0-3-8]

Scale = 1:64.5

Loading		(psf)	Spacing	4-0-0		csi		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)		25.0	Plate Grip DOL	1.15		тс	0.90	Vert(LL)	n/a	-	n/a	999	MT20	244/190
TCDL		10.0	Lumber DOL	1.15		BC	0.44	Vert(CT)	n/a	-	n/a	999	MT18HS	197/144
BCLL		0.0	Rep Stress Incr	NO		WB	0.40	Horz(CT)	0.01	16	n/a	n/a		
BCDL		10.0	Code	IRC20	18/TPI2014	Matrix-S							Weight: 139 lb	FT = 20%
LUMBER				г	OP CHORD	1-2=0/11, 2-4=-994	1/671.4	-5=-783/568.		9) All	bearings	are a	ssumed to be SP	No.2 crushing
TOP CHORD	2x4 SP N	lo 2 *Excer	ot* 13-15:2x6 SPF No			5-6=-694/545, 6-8=			68,		pacity of			
BOT CHORD						9-10=-415/430, 10-	-11=-38	3/471,	,	10) Pro	ovide me	chanic	al connection (by	others) of truss to
WEBS	2x4 SP N					11-12=-393/585, 12	2-13=-4	18/669,						ng 172 lb uplift at
OTHERS			ept* 28-15:2x6 SPF N	No.2		13-14=-442/673, 14	4-15=-5	15/693,		joir	nt 16, 170) lb up	lift at joint 18, 111	I lb uplift at joint 19,
SLIDER		SP No.2						128 lb uplift at joint 20, 121 lb uplift at joint 21, 123 lb						
BRACING				E		T CHORD 2-27=-276/355, 26-27=-276/355, uplift at joint 23, 121 lb uplift								
TOP CHORD	2-0-0 oc	purlins (5-6	6-6 max.), except en	d		25-26=-276/355, 24								lb uplift at joint 27, 74
	verticals		,,	-		23-24=-276/355, 2		,					and 47 lb uplift a	
		d from she	eted: Spacing > 2-8-0	0).		20-21=-276/355, 1							ned in accordance	
BOT CHORD	Rigid cei	ling directly	applied or 10-0-0 or	c [´]		18-19=-276/355, 1	7-18=-2	76/355,						ions R502.11.1 and
	bracing.	• •				16-17=-276/355	0 4 0 0	05/000					ferenced standar	
WEBS	1 Row at	midpt	15-16, 13-18, 12-19), V		13-18=-440/271, 12 11-20=-279/207, 10							of the purlin along	es not depict the size
			14-17			9-23=-280/193, 8-2					tom cho		or the punin along	g the top and/or
REACTIONS	(size)	2=22-2-4	, 16=22-2-4, 17=22-2	2-4,		6-25=-282/202, 5-2							ماميما	
		18=22-2-	4, 19=22-2-4, 20=22	-2-4,		4-27=-326/408, 14		,		LUAD	CASE(S) Sia	ndard	
			4, 23=22-2-4, 24=22			+ 27 = 320/400, 14	17 = 55	5/550						
			4, 26=22-2-4, 27=22			roof live loads hav		oonoidorod for						
	Max Horiz				this design.	TOOL IIVE IOAUS HAV	e been							
	Max Uplift		C 8), 16=-172 (LC 8),		0	7-16; Vult=115mp	h (3-se	cond aust)						
			LC 13), 18=-170 (LC	11),	,	h; TCDL=6.0psf; B								
			(LC 12), 20=-128 (LC			at. II; Exp C; Enclos			e)					
			(LC 12), 23=-123 (LC (LC 12), 25=-129 (LC			e and C-C Corner(3			-,					The
			LC 12), 25=-129 (LC LC 12), 27=-258 (LC			4-1-8 to 18-6-0, Co							O TE	ALL ALL
	Max Grav		C 20), 16=230 (LC 2		21-8-12 zon	e; cantilever left an	d right e	exposed ; end					RE OF I	MISSOL
	wax Grav		LC 1), 18=384 (LC 1)		vertical left a	and right exposed;C	C-C for r	nembers and				4	THE OF I	N.S.
			LC 1), 20=359 (LC 2)		forces & MV	VFRS for reactions	shown;	Lumber				H	SCOT	TM XPN
			LC 1), 23=360 (LC 2)			late grip DOL=1.60						B	SEVI	
			LC 1), 25=365 (LC 2			ned for wind loads						Ra		
			LC 1), 27=432 (LC 2			uds exposed to win						2X		
FORCES	(lb) - Max	kimum Con	npression/Maximum			d Industry Gable E					_			Since
	Tension					ualified building des						03	NUM	BER / S
				4		e MT20 plates unle			J.			N	NUM PE-2001	018807
						e 2x4 MT20 unless res continuous botte						N	The second	12A
				7		spaced at 2-0-0 oc		u bearing.				X	A YYA	C'A
				7 8		as been designed f		0 pef bottom					SIONA	LEFA
				0		ad nonconcurrent v			ls.				UNA	DIS

- 7) Gable studs spaced at 2-0-0 oc.
- 8) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.


16023 Swingley Ridge Rd. Chesterfield, MO 63017 314.434.1200 / MiTek-US.com

March 14,2024

Job	Truss	Truss Type	Qty	Ply	Roof - HR Lot 185		
P240213-01	E02	Common	7	1	Job Reference (optional)	164228558	

Run: 8.63 S Nov 1 2023 Print: 8.630 S Nov 1 2023 MiTek Industries, Inc. Wed Mar 13 16:07:26 ID:X3j9csSdTd?hyQgxh8rn6OzwvzW-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

using ANSI/TPI 1 angle to grain formula. Building

designer should verify capacity of bearing surface.

joint 12 and 227 lb uplift at joint 14.

LOAD CASE(S) Standard

Provide mechanical connection (by others) of truss to

bearing plate capable of withstanding 162 lb uplift at

This truss is designed in accordance with the 2018

R802.10.2 and referenced standard ANSI/TPI 1.

International Residential Code sections R502.11.1 and

6)

7)

- OTHERS 2x6 SPF No.2 BRACING TOP CHORD Structural wood sheathing directly applied or 5-0-3 oc purlins, except end verticals. BOT CHORD Rigid ceiling directly applied or 8-4-10 oc bracing. WEBS 1 Row at midpt 6-9, 5-9 **REACTIONS** (size) 12=0-5-8, 14=0-3-2 Max Horiz 12=371 (LC 12) Max Uplift 12=-162 (LC 12), 14=-227 (LC 12) Max Grav 12=1061 (LC 1), 14=938 (LC 1) FORCES (lb) - Maximum Compression/Maximum Tension TOP CHORD 1-2=0/35, 2-3=-749/212, 3-5=-1253/186. 5-6=-467/110, 6-7=-372/124, 2-12=-586/232, 8-13=-9/18. 7-13=-9/18 BOT CHORD 11-12=-474/1260, 9-11=-286/833, 8-9=-14/48 WEBS 6-9=-43/105, 5-9=-748/301, 5-11=-63/505, 3-11=-331/239, 3-12=-782/27, 7-9=-195/769, 7-14=-943/261
- NOTES

Scale = 1:64.6

Loading

TCDL

BCLL

BCDL

WEBS

LUMBER

TOP CHORD

BOT CHORD

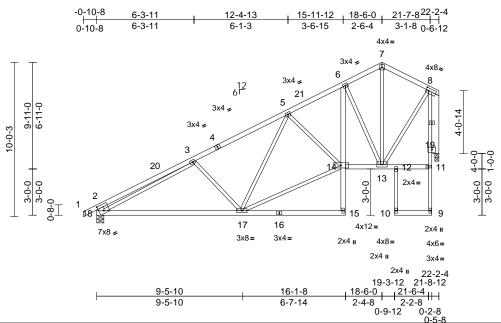
TCLL (roof)

- 1) Unbalanced roof live loads have been considered for this design.
- Wind: ASCE 7-16; Vult=115mph (3-second gust) 2) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=35ft; Ke=1.00; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) -0-10-8 to 4-1-8, Interior (1) 4-1-8 to 18-6-0, Exterior(2E) 18-6-0 to 21-7-0 zone: cantilever left and right exposed : end vertical left exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

OF MISS TF. SCOTT M. SEVIER OFF PE-200101880' SSIONAL March 14,2024

GRIP

244/190



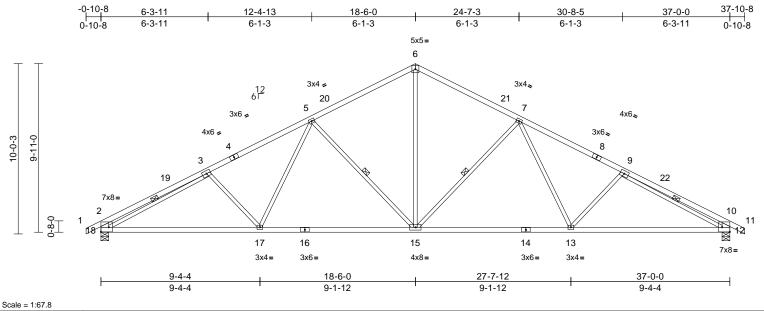
WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponent.com)

Job	Truss	Truss Type	Qty	Ply	Roof - HR Lot 185	
P240213-01	E04	Roof Special	3	1	Job Reference (optional)	164228559

Run: 8,63 S Nov 1 2023 Print: 8,630 S Nov 1 2023 MiTek Industries, Inc. Wed Mar 13 16:07:26 ID:X3j9csSdTd?hyQgxh8rn6OzwvzW-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:74.7	
Plate Offsets (X, Y):	[8:0-2-0,0-2-0], [18:0-3-11,0-4-15]


Loading TCLL (roof)	(psf) 25.0	Spacing Plate Grip DOL	2-0-0 1.15		CSI TC	0.47	DEFL Vert(LL)		(loc) 17-18	l/defl >999	L/d 240	PLATES MT20	GRIP 244/190
TCDL	10.0	Lumber DOL	1.15		BC	0.78	Vert(CT)		17-18	>709	180		
BCLL	0.0	Rep Stress Incr	YES		WB	0.88	Horz(CT)	0.03	19	n/a	n/a		
BCDL	10.0	Code	IRC201	8/TPI2014	Matrix-S							Weight: 141 lb	FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS	2x4 SP No.2 2x4 SP No.2 *Excep No.2 2x3 SPF No.2 *Exce No.2	,		Vasd=91mpl Ke=1.00; Ca exterior zone Interior (1) 4 zone; cantile	7-16; Vult=115m h; TCDL=6.0psf; E tt. II; Exp C; Enclo e and C-C Exterior -1-8 to 18-6-0, Ext ever left and right e C for members and	3CDL=6. sed; MW r(2E) -0- terior(2E exposed							
BRACING				r									
TOP CHORD	Structural wood she 4-11-12 oc purlins,		d or	DOL=1.60	own; Lumber DOL	_=1.60 pl	ate grip						
BOT CHORD	Rigid ceiling directly bracing, Except: 8-3-15 oc bracing: 1 6-0-0 oc bracing: 9-	applied or 10-0-0 oc 7-18 10. 19=0-3-2	4)	 This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. Bearings are assumed to be: Joint 18 SP No.2 crushing capacity of 565 psi, Joint 19 SPF No.2 crushing capacity of 425 psi. Bearing at joint(s) 19 considers parallel to grain value 									
	Max Uplift 18=-156 (Max Grav 18=1042)	LC 12), 19=-233 (LC		designer sho	TPI 1 angle to grain ould verify capacity	y of bear							
FORCES	(lb) - Maximum Com		·/ 6)	bearing plate	hanical connectio	tanding 1							
TOP CHORD	Tension 1-2=0/35, 2-3=-737/ 5-6=-911/232, 6-7=- 9-11=0/44, 11-19=0/ 2-18=-575/221	481/165, 7-8=-493/1		 joint 18 and 233 lb uplift at joint 19. 7) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. 									
BOT CHORD	17-18=-474/1228, 18 6-14=-222/756, 13-1 11-12=-6/9, 10-12=0	4=-232/748, 12-13=-	93,	DAD CASE(S)	Standard							TE OF M	AISSO
WEBS	5-17=-20/154, 3-17= 7-13=-61/241, 8-13= 5-14=-354/151, 14-1 6-13=-825/294	-356/251, 3-18=-755 -200/737,	5/43,								Real Provide P	ST SCOTT	ГМ. СУ
NOTES 1) Unbalance this design	ed roof live loads have n.	been considered for										NUMI PE-2001	

Job	Truss	Truss Type	Qty	Ply	Roof - HR Lot 185	
P240213-01	E05	Common	7	1	Job Reference (optional)	164228560

Run: 8,63 S Nov 1 2023 Print: 8,630 S Nov 1 2023 MiTek Industries, Inc. Wed Mar 13 16:07:27 ID:TnZ3x61kRmd3IVZaqXdQQ5zwvtc-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

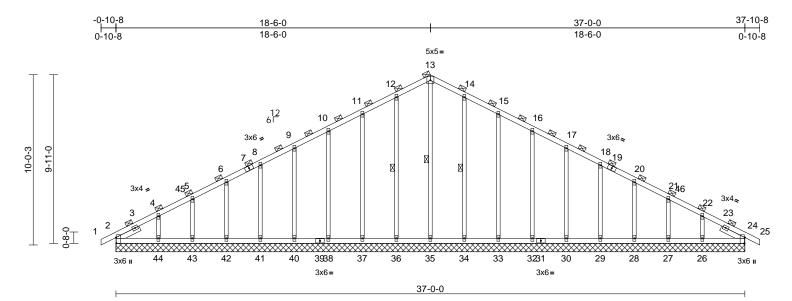
Plate Offsets (X, Y): [2:Edge,0-3-4], [12:Edge,0-3-4]

	, , ,). [2:20g0;0 0 .],	[[:=:=:::::::::::::::::::::::::::::::::											
Loading	(psf)	Spacing	2-0-0		csi		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15		тс	0.66	Vert(LL)	-0.17	13-15	>999	240	MT20	244/190
TCDL	10.0	Lumber DOL	1.15		BC	0.94	Vert(CT)	-0.38	13-15	>999	180		
BCLL	0.0	Rep Stress Incr	YES		WB	0.83	Horz(CT)	0.13	12	n/a	n/a		
BCDL	10.0	Code	IRC201	8/TPI2014	Matrix-S							Weight: 172 lb	FT = 20%
LUMBER TOP CHORD BOT CHORD	2x4 SP No.2		2)	Vasd=91mp	7-16; Vult=115m h; TCDL=6.0psf; it. II: Exp C: Enclo	BCDL=6.	Opsf; h=35ft;	pe)					
WEBS	S 2x3 SPF No.2 *Except* 18-2,12-10:2x6 SPF exterior zone and C-C Exterior(2E) -0-10-8 to 4-1-8, Interior (1) 4-1-8 to 18-6-0, Exterior(2R) 18-6-0 to												
BRACING					ior (1) 23-6-0 to 3			er ieft					
TOP CHORD	Structural wood she 3-1-14 oc purlins, e	xcept end verticals.		exposed;C-C	bosed ; end vertic C for members an	d forces a	& MWFRS fo	r					
BOT CHORD	Rigid ceiling directly bracing.	applied or 2-2-0 oc		DOL=1.60	own; Lumber DO								
WEBS	1 Row at midpt	7-15, 5-15, 3-18, 9-	-12 3)		as been designed								
REACTIONS	(size) 12=0-5-8, Max Horiz 18=-165 (ad nonconcurrent are assumed to b	,		ias.							
Max Uplift 12=-277 (LC 13), 18=-277 (LC 12) Max Grav 12=1722 (LC 1), 18=1722 (LC 1)				Provide med	hanical connection								
			,		e capable of withs		77 lb uplift at	t					
FORCES	(lb) - Maximum Com	pression/Maximum			277 lb uplift at joi								
TOP CHORD	Tension 1-2=0/35, 2-3=-1015		6)		designed in acco								
TOP CHORD	5-6=-1878/425, 6-7=		ю,		Residential Code nd referenced sta			and					
	7-9=-2580/446, 9-10	,	-0/35			andard Ar	151/TPLT.						
	2-18=-719/240, 10-1		-0/00, L	DAD CASE(S)	Standard								
BOT CHORD	17-18=-466/2390, 1												
	13-15=-189/2058, 12												
WEBS	6-15=-193/1202, 7-1											2000	TOP
-	7-13=-52/439, 9-13=											STATE OF M	Alson
	5-15=-719/298, 5-17											450	N.O.
	3-17=-271/223, 3-18										A	N	New
	9-12=-1821/244										H	SCOT	M. YOY
NOTES											81	SEVI	ER \ X
	d roof live loade have	been considered fo									2		1+4

1)

Unbalanced roof live loads have been considered for this design.

Page: 1


 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.
 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not besign value for use only with with twit even connectors. This design is based only upon parameters shown, and is for an individual building designer must verify the applicability of design parameters and properly incorporate this design into the overall building designer must verify the applicability of design parameters and properly incorporate this design into the overall building designer. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcscomponents.com)

Job	Truss	Truss Type	Qty	Ply	Roof - HR Lot 185	
P240213-01	E06	Common Supported Gable	1	1	Job Reference (optional)	164228561

Run: 8,63 S Nov 1 2023 Print: 8,630 S Nov 1 2023 MiTek Industries, Inc. Wed Mar 13 16:07:27 ID:30TC0Xcr8WgF3uEpecUgNDzwvss-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:67.8

Plate Offsets (X, Y): [2:0-4-1,Edge], [24:0-4-1,Edge]

	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	- 1,Eugo],	[2 1.0 1 1,Edg0]			_								
Loading		(psf)	Spacing	4-0-0	1	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)		25.0	Plate Grip DOL	1.15	,	TC	0.20	Vert(LL)	n/a	(100)	n/a	999	MT20	244/190
TCDL		10.0	Lumber DOL	1.15		BC	0.12	Vert(CT)	n/a	-	n/a	999	101120	244/100
BCLL		0.0	Rep Stress Incr	NO		WB	0.12	Horz(CT)	0.02	24		n/a		
					018/TPI2014		0.40	11012(01)	0.02	27	Π/a	n/a	Weight [,] 195 lb	FT – 20%
DODL		10.0	Code	11102	010/11/2014	Wath-0	-						Weight. 195 lb	11 = 2070
BCDL LUMBER TOP CHORD BOT CHORD OTHERS SLIDER BRACING TOP CHORD BOT CHORD WEBS REACTIONS	2x4 SP No 2x3 SPF N Left 2x4 SI 1-6-7 2-0-0 oc pr (Switched Rigid ceilir bracing. 1 Row at n (size) Max Horiz Max Uplift Max Uplift	b.2 lo.2 P No.2 1 urlins (6-0 from shee ng directly nidpt 2=37-0-0, 27=37-0-0, 27=37-0-0 34=37-0-0 34=37-0-0 37=37-0-0 44=37-0-0 2=-53 (LC 2=-53 (LC 2=-5	tted: Spacing > 2-8-0 applied or 10-0-0 oc 13-35, 12-36, 14-34 24-37-0-0, 26-37-0 0, 28-37-0-0, 29-37- 0, 32-37-0-0, 33-37- 0, 38-37-0-0, 40-37- 0, 38-37-0-0, 40-37- 0, 42-37-0-0, 43-37- 13), 26-211 (LC 13 LC 13), 28-127 (LC LC 13), 30-123 (LC LC 13), 30-123 (LC LC 13), 30-123 (LC LC 13), 36-109 (LC LC 12), 38-121 (LC LC 12), 43-96 (LC 12)	-0, -0, 0-0, 0-0, 0-0, 0-0, 13), 12), 12), 12), 12), (5),),), (5),),	018/TPI2014 FORCES TOP CHORD BOT CHORD WEBS NOTES 1) Unbalancee this design.	Tension 1-2=0/11, 2-4 5-6=-257/208 9-10=-146/33 11-12=-222/2 13-14=-257/6 15-16=-183/4 17-18=-117/2 20-21=-147/6 20-21=-147/6 20-24=-331/2 2-24=-331/2 2-24=-331/2 2-24=-331/2 2-24=-36/38 33-34=-96/38 33-34=-96/38 33-34=-96/38 33-34=-96/38 33-34=-96/38 33-34=-96/38 33-34=-96/38 33-34=-96/38 33-34=-96/38 33-34=-96/38 33-34=-96/38 33-35=-452/8 11-37=-279/2 9-40=-280/18 4-44=-321/42 15-33=-279/2 20-28=-282/12 22-26=-321/42 d roof live load		5=-324/179, 2, 8-9=-165/3 3/473, 57/681, 22/588, 16/367, 17/151, 17/151, 17/151, 17/151, 17/151, 17/151, 17/151, 17/151, 17/151, 17/44, 11 85, 387, 30/191, 30/193, 71/203,	817,	Va Ke ex 23 lef ex DC 3) Ti se or 4) All 5) Ga 6) Ga 7) Th ch 8) All	sd=91m; =1.00; C terior zor terior zor terior (2N- 6-0, Exti t and righ posed;C- actions sh DL=1.60 russ desig ly. For si e Standa consult q plates an able requi able studs is truss h	bh; TCI at. II; E le and) 4-1-8 erior(21 t expo C for n rown; I gned for tuds ex rd Indu, ualificer re 2x4 tres coo s space as bee boad noo s are as 565 ps	C-C Corner(3E) to 18-6-0, Corne N) 23-6-0 to 37-11 sed ; end vertical nembers and forc Lumber DOL=1.6 or wind loads in th typosed to wind (n istry Gable End E d building designe MT20 unless oth ntinuous bottom (ad at 2-0-0 oc. en designed for a nconcurrent with ssumed to be SP i.	-second gust) =6.0psf; h=35ft; MWFRS (envelope) -0-10-8 to 4-1-8, er(3R) 18-6-0 to 0-8 zone; cantilever I left and right zes & MWFRS for i0 plate grip the plane of the truss iormal to the face), Details as applicable, er as per ANSI/TPI 1. erwise indicated. chord bearing. 10.0 psf bottom any other live loads. No.2 crushing MISSOL T.M. ER
		44=426 (L	.C 25)										March	14,2024

16023 Swingley Ridge Rd. Chesterfield, MO 63017 314.434.1200 / MiTek-US.com

Job	Truss	Truss Type	Qty	Ply	Roof - HR Lot 185	
P240213-01	E06	Common Supported Gable	1	1	Job Reference (optional)	164228561

- 9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 53 lb uplift at joint 2, 109 lb uplift at joint 36, 131 lb uplift at joint 37, 121 lb uplift at joint 38, 123 lb uplift at joint 40, 121 lb uplift at joint 41, 128 lb uplift at joint 42, 96 lb uplift at joint 43, 238 lb uplift at joint 44, 101 lb uplift at joint 34, 134 lb uplift at joint 33, 120 lb uplift at joint 32, 123 lb uplift at joint 30, 121 lb uplift at joint 29, 127 lb uplift at joint 28, 102 lb uplift at joint 27 and 211 lb uplift at joint 26.
- 10) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

LOAD CASE(S) Standard

Run: 8.63 S Nov 1 2023 Print: 8.630 S Nov 1 2023 MiTek Industries, Inc. Wed Mar 13 16:07:27 ID:30TC0Xcr8WgF3uEpecUgNDzwvss-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 2

Job	Truss	Truss Type	Qty	Ply	Roof - HR Lot 185	
P240213-01	G01	Common Supported Gable	1	1	Job Reference (optional)	164228562

¢

3x4 =

 \otimes

22

21

23

Run: 8.63 S Nov 1 2023 Print: 8.630 S Nov 1 2023 MiTek Industries, Inc. Wed Mar 13 16:07:27 ID:OniToTBJcu5e4i7ZBJU?9SypbwQ-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

 \bigotimes

16

 \bigotimes

15

14

Page: 1

22-11-0

0-10-8

12

10

3x4 =

13

-0-10-8 0-10-8 11-0-4 22-0-8 11-0-4 11-0-4 4x4 = 7 F 12 4 Г 6 8 5 9 24 25 4 10 3 11 1 6 2 0-9-0 1

20

19 18

22-0-8

17

3x4 =

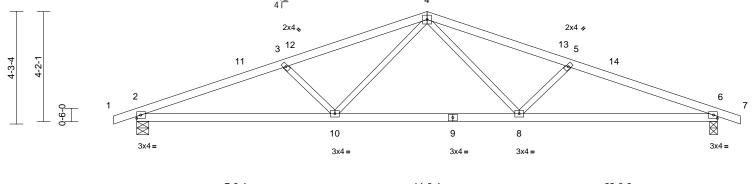
4-3-4

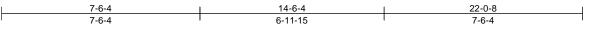
4-2-1

Scale = 1:43.7													
Loading TCLL (roof) TCDL BCLL BCDL	(psf) 25.0 10.0 0.0 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC201	8/TPI2014	CSI TC BC WB Matrix-S	0.10 0.06 0.05	Vert(CT)	in n/a n/a 0.00	(loc) - - 12	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 86 lb	GRIP 197/144 FT = 20%
	$\begin{array}{c} \text{6-0-0 oc purlins.} \\ \text{Rigid ceiling directly} \\ \text{bracing.} \\ (size) \\ 2=22-0-3 \\ 19=22-0-4 \\ 22=22-0-4 \\ 22=22-0-4 \\ 22=22-0-4 \\ 22=22-0-4 \\ 22=22-0-4 \\ 19=22-0-5 \\ 14=-75 \\ (L \\ 20=-52 \\ L \\ 22=-43 \\ (L \\ 20=-52 \\ L \\ 22=-43 \\ (L \\ 14=262 \\ 14=262 \\ (I \\ 1$	$\begin{array}{c} 28), 12=-60 \ (LC 9),\\ C 13), 15=-43 \ (LC 9),\\ C 13), 17=-52 \ (LC 12),\\ C 13), 17=-52 \ (LC 12),\\ C 12), 21=-51 \ (LC 12),\\ C 1), 12=188 \ (LC 1),\\ LC 26), 15=151 \ (LC 26),\\ LC 1), 17=189 \ (LC 26),\\ LC 1), 20=189 \ (LC 25),\\ LC 25) \ (LC 25),\\ Topression/Maximum,\\ 3.4=-50/62, 4-5=-31,\\ 15/159, 7-8=-55/154,\\ 31/74, 10-11=-37/41,\\ 3=0/6,\\ 3=-16/67, 12-12=-16/6,\\ 5=-16/67, 14-15=-16/6,\\ 5=-16/67, 14-15=-16/6,\\ 5=-143/129,\\ \end{array}$	2; d or -8, -8, -0-8, 3), 5; 2), 6, 7; 26), 8), 9; 3), 9; 3), 9; 3), 9; 3), 9; 3), 9; 3), 9; 3), 9; 3), 10, 7; 26), 8; 11, 7; 26, 7; 26, 7; 26, 7; 27, 7; 27, 7; 20, 8; 9; 20, 8; 11, 7; 21, 7; 22, 7; 24, 7; 26, 7; 26, 7; 27, 7; 26, 7; 27, 7; 26, 7; 27, 27, 7; 27, 27, 27, 27, 27, 27, 27, 27, 27, 27,	 this design. Wind: ASCE Vasd=91mpl Ke=1.00; Ca exterior zone Exterior(2N) 16-0-4, Exte left and right exposed;C-C reactions shi DOL=1.60 Truss desig only. For st see Standard or consult qu All plates are Gable studies This truss has chord live los All bearings capacity of 5 Provide mec bearing plate 12, 52 lb upl uplift at joint 17, 51 lb upl uplift at joint D) This truss is International 	hanical connection capable of withsta ft at joint 20, 51 lb 22, 77 lb uplift at ju ft at joint 16, 43 lb 14 and 50 lb uplift designed in accorr Residential Code nd referenced stan	h (3-sec CDL=6. sed; MW 3E) -0-1 orner(3F 22-11-0 tical left forces a =1.60 pl in the p d (norm nd Deta signer a: otherwi om chor c. or a 10. with any s SP No. h (by oth anding 6 uplift at opint 23, 3 uplift at at joint 23 dance w sections	cond gust) Opsf; h=35ft; (FRS (envelop 0-8 to 4-1-8, R) 11-0-4 to zone; cantilev and right & MWFRS for ate grip lane of the tru- val to the face s per ANSI/TF se indicated. d bearing. 0 psf bottom other live loa 2 crushing ers) of truss t 50 lb uplift at j joint 15, 75 lt 2. th the 2018 s R502.11.1 a	oe) /er uss), ble, PI 1. ds. o oint) joint				STATE OF I SCOT SEVI PE-2001 PE-2001	1 M. ER ★ 018807 50 6 018807 50 6 50 7 50 6 50 7 50 6 50 7 50
NOTES													14,2024

M liTol 16023 Swingley Ridge Rd. Chesterfield, MO 63017 314.434.1200 / MiTek-US.com .org)

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.or and BCS) Building Component Stafety Information available from the Structural Building Component storage.
and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)


Job	Truss	Truss Type	Qty	Ply	Roof - HR Lot 185	
P240213-01	G02	Common	4	1	Job Reference (optional)	164228563


-p-10-8

0-10-8

Run: 8.63 S Nov 1 2023 Print: 8.630 S Nov 1 2023 MiTek Industries, Inc. Wed Mar 13 16:07:27 ID:dEDR6k5IVQ5m7TW0ieK7amyobwY-RfC?PsR70Ha3NSaPaal 8w3uITXbGKWrCDoi7.14z.IC?f

 $\frac{5-7-15}{5-7-15} + \frac{11-0-4}{5-7-15} + \frac{16-4-9}{5-4-5} + \frac{22-0-8}{5-7-15} + \frac{22-11-0}{0-10-8}$

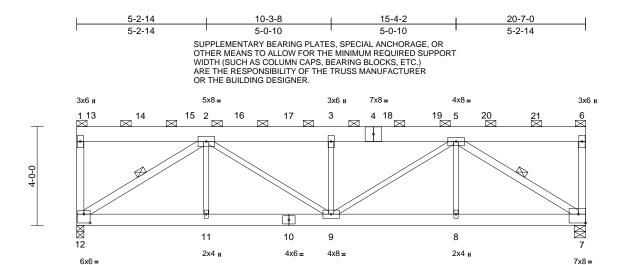
Scale = 1:43.7

TCLL (roof) 25.0 Plate Grip DOL 1.15 TC 0.46 Vert(LL) -0.11 8-10 >999 240 MT20 197 TCDL 10.0 Lumber DOL 1.15 BC 0.73 Vert(CT) -0.23 6-8 >999 180 BCLL 0.0 Rep Stress Incr YES WB 0.20 Horz(CT) 0.06 6 n/a n/a	
TOP CHORD 2x4 SP No.2 bearing plate capable of withstanding 219 lb uplift at joint 6 and 222 lb uplift at joint 6. BOT CHORD 2x4 SP No.2 joint 6 and 222 lb uplift at joint 2. WEBS 2x3 SPF No.2 6) This truss is designed in accordance with the 2018 BRACING P8902 10.2 and referenced standard ANSI/TEI 1	97/144 T = 20%
Image: Sector of Sector and the one of the angle of Sector and Secto	

NOTES

- Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=35ft; Ke=1.00; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) -0-10-8 to 4-1-8, Interior (1) 4-1-8 to 11-0-4, Exterior(2R) 11-0-4 to 16-0-4, Interior (1) 16-0-4 to 22-11-0 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 4) All bearings are assumed to be SP No.2 crushing capacity of 565 psi.

Page: 1



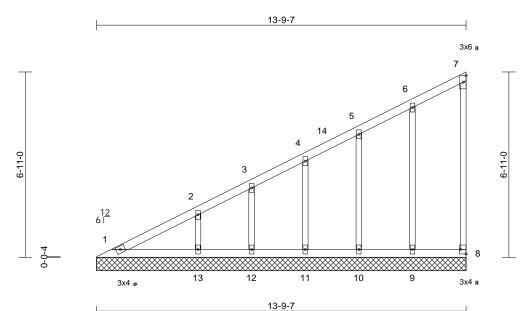
Job	Truss	Truss Type	Qty	Ply	Roof - HR Lot 185	
P240213-01	R01	Flat Girder	1	2	Job Reference (optional)	164228564

Run: 8,63 S Nov 1 2023 Print: 8,630 S Nov 1 2023 MiTek Industries, Inc. Wed Mar 13 16:07:27 ID:X3j9csSdTd?hyQgxh8rn6OzwvzW-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

	5-2-14	10-3-8	15-4-2	20-7-0
	5-2-14	5-0-10	5-0-10	5-2-14
Scale = 1:46.6				

Plate Offsets (X, Y): [7:Edge,0-4-4], [12:0-3-0,0-4-4]


March 14,2024

16023 Swingley Ridge Rd. Chesterfield, MO 63017 314.434.1200 / MiTek-US.com

Job	Truss	Truss Type	Qty	Ply	Roof - HR Lot 185	
P240213-01	V1	Valley	1	1	Job Reference (optional)	164228565

Run: 8.63 S Nov 1 2023 Print: 8.630 S Nov 1 2023 MiTek Industries, Inc. Wed Mar 13 16:07:28 ID:9TR7X_t7mZkbh6rSI1VQ2DzJtkh-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

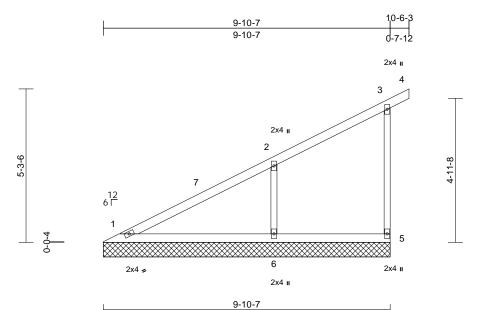
Page: 1

13	3-9	-

Scale = 1:43

Plate Offsets (X, Y): [8:Edge,0-2-8]

							-	-					
Loading	(psf)	Spacing	2-0-0		csi		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15		тс	0.55	Vert(LL)	n/a	-	n/a	999	MT20	244/190
TCDL	10.0	Lumber DOL	1.15		BC	0.18	Vert(TL)	n/a	-	n/a	999		
BCLL	0.0	Rep Stress Incr	YES		WB	0.12	Horiz(TL)	0.00	8	n/a	n/a		
BCDL	10.0	Code	IRC201	8/TPI2014	Matrix-S	-			-			Weight: 61 lb	FT = 20%
	2x4 SP No.2 2x3 SPF No.2 2x3 SPF No.2 2x3 SPF No.2 Structural wood she 6-0-0 oc purlins, ex Rigid ceiling directly bracing. (size) 1=13-9-7, 10=13-9-7 13=13-9-7 Max Horiz 1=292 (LC Max Uplift 8=-38 (LC 10=-58 (L 12=-47 (L Max Grav 1=156 (LC 9=193 (LC 11=190 (I 13=294 (I	applied or 10-0-0 oc 8=13-9-7, 9=13-9-7, 7, 11=13-9-7, 12=13-97 2 9) 9), 9=-67 (LC 12), C 12), 11=-65 (LC 12), C 12), 13=-100 (LC 12), C 12), 13=-100 (LC 12), C 1), 10=176 (LC 1), LC 1), 12=138 (LC 1), LC 1)	2) 7, 3) 4) 5) (), 6) 2) 7) 8)	Vasd=91mpl Ke=1.00; Ca exterior zone Interior (1) 5 right expose for members Lumber DOL Truss desig only. For stu see Standari or consult qu All plates are Gable requir Gable studs This truss ha chord live loa All bearings capacity of 5 Provide mec bearing plate	7-16; Vult=115mp 1; TCDL=6.0psf; B 1; II; Exp C; Enclose and C-C Exterior(9-15 to 13-8-11 zc d; end vertical left and forces & MWU =1.60 plate grip D ned for wind loads tds exposed to wind l Industry Gable E alified building dete 2 x4 MT20 unless es continuous bott spaced at 2-0-0 oc s been designed f ad onconcurrent y are assumed to be 65 psi. hanical connectione a capable of withsta at joint 9, 58 lb ug	CDL=6. sed; MW (2E) 0-7 one; can and righ FRS for OL=1.6(in the p and rough rough the p on the p and rough and potent signer as to therwith or chor c. or a 10.0 with any \Rightarrow SP No.	Dpsf; h=35ft; FRS (envelop 9 to 5-9-15, tilever left and t exposed;C- reactions sho) ane of the tru al to the face ils as applical s per ANSI/TF se indicated. d bearing. D psf bottom other live loa 2 crushing ers) of truss t 8 lb uplift at j	d C own; iss), ole, PI 1. ds. o					
FORCES	(lb) - Maximum Corr Tension	pression/Maximum			7 lb uplift at joint 12								
TOP CHORD	1-2=-441/258, 2-3=-	357/213, 3-4=-312/19 198/158, 6-7=-124/11		This truss is International	designed in accord Residential Code nd referenced stan	sections	R502.11.1 a	nd				STATE OF SCOT	MISSO
BOT CHORD	1-13=-132/143, 12-1 11-12=-132/143, 10 9-10=-132/143, 8-9=	-11=-132/143,	L	OAD CASE(S)							A	S SCOT	T M.
WEBS	6-9=-149/167, 5-10=		173								8		2 th
NOTES										_	N7	PE-2001	DI8807


16023 Swingley Ridge Rd. Chesterfield, MO 63017 314.434.1200 / MiTek-US.com

March 14,2024

SSIONAL EN

Job	Truss	Truss Type	Qty	Ply	Roof - HR Lot 185	
P240213-01	V2	Valley	1	1	Job Reference (optional)	164228566

Run: 8.63 S Nov 1 2023 Print: 8.630 S Nov 1 2023 MiTek Industries, Inc. Wed Mar 13 16:07:28 ID:k9HPTm2vTtVcNGw8ZzmicAzJtkT-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

Scale = 1:39.6

Loading TCLL (roof) TCDL BCLL BCDL	25.0 10.0 0.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018/TPI2014	CSI TC BC WB Matrix-S	0.42 0.22 0.09	DEFL Vert(LL) Vert(CT) Horz(CT)	in n/a n/a 0.00	(loc) - - 5	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 37 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x3 SPF No.2 2x3 SPF No.2 Structural wood sheat 6-0-0 oc purlins, exce Rigid ceiling directly a bracing. (size) 1=9-10-7, 5 Max Horiz 1=220 (LC Max Uplift 5=-65 (LC S	ept end verticals. applied or 10-0-0 oc 5=9-10-7, 6=9-10-7 9)	capacity of 5 7) Provide mec bearing platt 5 and 173 lb 8) This truss is International R802.10.2 a LOAD CASE(S)	hanical connecti e capable of with uplift at joint 6. designed in accor Residential Coo nd referenced st	on (by oth standing 6 ordance w le sections	ers) of truss t 5 lb uplift at j ith the 2018 5 R502.11.1 a	oint					

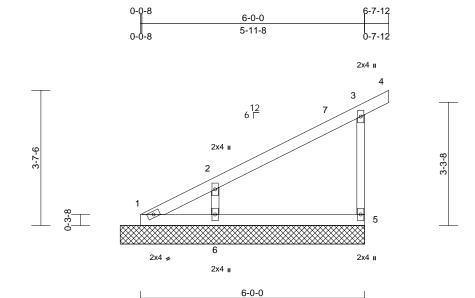
FORCES (Ib) - Maximum Compression/Maximum Tension TOP CHORD 1-2=-341/194, 2-3=-156/95, 3-4=-23/0,

3-5=-148/164 BOT CHORD 1-6=-92/102, 5-6=-92/102 WEBS 2-6=-388/348

- NOTES
- Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=35ft; Ke=1.00; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) 0-7-9 to 5-10-15, Interior (1) 5-10-15 to 10-6-11 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
 Gable requires continuous bottom chord bearing.

4) Gable studs spaced at 4-0-0 oc.

5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.



st.org) Mitek-US.com

Job	Truss	Truss Type	Qty	Ply	Roof - HR Lot 185	
P240213-01	V3	Valley	1	1	Job Reference (optional)	164228567

Run: 8.63 S Nov 1 2023 Print: 8.630 S Nov 1 2023 MiTek Industries. Inc. Wed Mar 13 16:07:28 ID:hYPAuS3A?UIKca3XhOoAhbzJtkR-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Scale = 1:30.8

Loading	(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	(53)	Plate Grip DOL	1.15		TC	0.20	Vert(LL)	n/a	(100)	n/a	999	MT20	244/190
TCDL	10.0	Lumber DOL	1.15		BC	0.12	Vert(CT)	n/a	-	n/a	999		211/100
BCLL	0.0	Rep Stress Incr	YES		WB	0.08	Horz(CT)	0.00	5	n/a	n/a	1	
BCDL	10.0	Code		3/TPI2014	Matrix-P	0.00		0.00		1,0		Weight: 23 lb	FT = 20%
	Max Horiz 1=146 (LC Max Uplift 5=-62 (LC	cept end verticals. applied or 10-0-0 o 5=6-6-7, 6=6-6-7 C 9) C 12), 6=-120 (LC 12	_{IC} LC	capacity of 5 Provide mec bearing plate 5 and 120 lb This truss is International	hanical connect capable of with uplift at joint 6. designed in acc Residential Coo nd referenced s	tion (by othe Instanding 6 cordance wi de sections	ers) of truss t 2 lb uplift at j th the 2018 R502.11.1 a	oint					
	Max Grav 1=59 (LC (LC 1)	9), 5=202 (LC 1), 6	=350										
FORCES	(lb) - Maximum Com Tension	pression/Maximum											
TOP CHORD	1-2=-311/154, 2-3=-156/79, 3-4=-23/0, 3-5=-170/210												
BOT CHORD	1-6=-60/65, 5-6=-60/	/65											
WEBS	2-6=-270/319												
NOTES													
1) Wind: ASC	E 7-16; Vult=115mph	(3-second gust)											

- Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=35ft; Ke=1.00; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) 0-8-11 to 5-8-11, Interior (1) 5-8-11 to 7-2-11 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1. 3) Gable requires continuous bottom chord bearing.

Gable studs spaced at 4-0-0 oc. 4)

- 5)
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

OF MISS P 0 SCOTT M. SEVIER 1 PE-2001018807 C SSIONAL E

March 14,2024

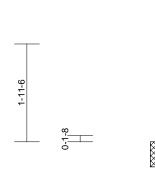
 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.
 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not besign value to dury with with where outputs into design is based only door parameters shown, and is for an individual building design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members and property incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TPH1 Quality Criteria**, and **DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcscomponents.com)

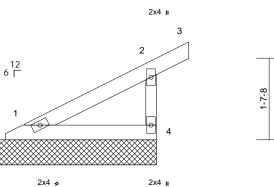
Job	Truss	Truss Type	Qty	Ply	Roof - HR Lot 185	
P240213-01	V4	Valley	1	1	Job Reference (optional)	164228568

3-0-0

3-0-0

3-0-0


Premier Building Supply (Springhill, KS), Spring Hills, KS - 66083,


Run: 8.63 S Nov 1 2023 Print: 8.630 S Nov 1 2023 MiTek Industries, Inc. Wed Mar 13 16:07:28 ID:9kzY5o4omouBEjejF6JPEpzJtkQ-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

3-7-12

0-7-12

Page: 1

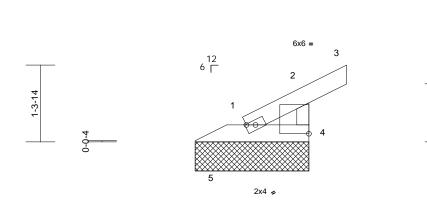
Loading	(psf)	Spacing	2-0-0	csi		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15	TC	0.11	Vert(LL)	n/a	-	n/a	999	MT20	244/190
TCDL	10.0	Lumber DOL	1.15	BC	0.07	Vert(CT)	n/a	-	n/a	999		
BCLL	0.0	Rep Stress Incr	YES	WB	0.00	Horz(CT)	0.00	4	n/a	n/a		
BCDL	10.0	Code	IRC2018/TPI2014	Matrix-P							Weight: 11 lb	FT = 20%
LUMBER				is designed in acc								
TOP CHORD				nal Residential Co			and					
BOT CHORD				2 and referenced st	tandard Ar	NSI/TPI 1.						
WEBS BRACING	2x3 SPF No.2		LUAD CASE	S) Standard								
TOP CHORD	Structural wood she	athing directly appli	ed or									
	3-2-15 oc purlins, e											
BOT CHORD	Rigid ceiling directly											
	bracing.											
REACTIONS												
	Max Horiz 1=72 (LC											
	Max Uplift 1=-7 (LC Max Grav 1=105 (LC											
FORCES	(lb) - Maximum Com											
- ONOLO	Tension	procoroninaximani										
TOP CHORD	1-2=-112/43, 2-3=-2	3/0, 2-4=-148/179										
BOT CHORD	1-4=-26/28											
NOTES												
	CE 7-16; Vult=115mph											
	nph; TCDL=6.0psf; BC Cat. II; Exp C; Enclose		ne)									
	one and C-C Exterior(2											
	exposed ; end vertical											
	C-C for members and f		r									an
DOL=1.60	shown; Lumber DOL=	1.60 plate grip									OF	MIG
	, signed for wind loads i	n the plane of the tru	JSS								TEOF	NOSCIE STREET
	studs exposed to wind									A	144	1 CAN
	lard Industry Gable En									A	SCOT	
	qualified building desi		PI 1.							Da.	SEV	
	uires continuous botto ds spaced at 4-0-0 oc.	m chord bearing.								Υ.	for the second s	0
	has been designed fo	r a 10.0 psf bottom								XX	our,	Emil
chord live	load nonconcurrent wi	ith any other live loa	ids.							83	NUM	
	gs are assumed to be	SP No.2 crushing								N.	PE-2001	018807
capacity o		(by others) of truce	to.							Y	A Pa	154
	echanical connection ate capable of withstar									2	ESSIONA	LENA
	uplift at joint 4.										Quin	The second secon
	-										March	n 14,2024
												111,2027
1											1	

16023 Swingley Ridge Rd. Chesterfield, MO 63017 314.434.1200 / MiTek-US.com

Job	Truss	Truss Type	Qty	Ply	Roof - HR Lot 185	
P240213-01	V7	Valley	1	1	Job Reference (optional)	164228569

1-11-7

1-11-7


1-11-7

Premier Building Supply (Springhill, KS), Spring Hills, KS - 66083,

Run: 8.63 S Nov 1 2023 Print: 8.630 S Nov 1 2023 MiTek Industries. Inc. Wed Mar 13 16:07:28 ID:X3j9csSdTd?hyQgxh8rn6OzwvzW-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

1-0-0

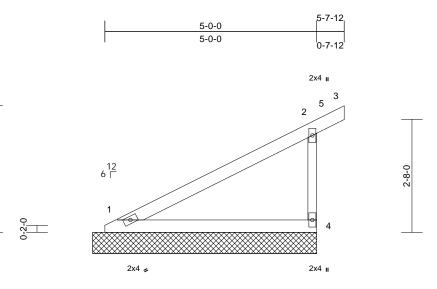
2-7-3 0-7-12 Page: 1

Scale =	1:19.8
---------	--------

Plate Offsets (X, Y): [2:Edge,0-1-13]

	(X, T). [Z:Eugo,o T To		_										-
Loading	(psf)	Spacing	2-0-0		csi		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15		TC	0.05	Vert(LL)	n/a	-	n/a	999	MT20	244/190
TCDL	10.0	Lumber DOL	1.15		BC	0.01	Vert(CT)	n/a	-	n/a	999		
BCLL	0.0	Rep Stress Incr	YES		WB	0.00	Horz(CT)	0.00	1	n/a	n/a		
BCDL	10.0	Code	IRC201	8/TPI2014	Matrix-P							Weight: 6 lb	FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x3 SPF No.2 Structural wood she 1-11-15 oc purlins, Rigid ceiling directly bracing.	except end verticals applied or 10-0-0 or 4=1-11-7, 5=1-11-7 12)	c L(bearing plat 4. This truss is Internationa	chanical connecti e capable of with designed in acco Residential Coo nd referenced st Standard	nstanding 5 ordance wi de sections	8 lb uplift at j ith the 2018 5 R502.11.1 a	joint					
	Max Grav 1=45 (LC (LC 3)		=6										
FORCES	(lb) - Maximum Com Tension	pression/Maximum											
TOP CHORD	1-2=-86/36, 2-3=-23	/0 2-4=-107/153											
BOT CHORD	1-5=-81/29, 1-4=0/0	,											
NOTES													
 Wind: ASC Vasd=91n Ke=1.00; exterior zc and right e members Lumber D Truss des only. For see Stand 	CE 7-16; Vult=115mph nph; TCDL=6.0psf; BC Cat. II; Exp C; Enclose one and C-C Exterior(2 exposed ; end vertical and forces & MWFRS IOL=1.60 plate grip DC signed for wind loads ir studs exposed to wind lard Industry Gable En qualified building desi	DL=6.0psf; h=35ft; d; MWFRS (envelop E) zone; cantilever left exposed;C-C for for reactions shown vL=1.60 n the plane of the tru l (normal to the face d Details as applical	left ; uss), ble,									STATE OF SCOT	MISSOLA T M. HER

- 3) Gable requires continuous bottom chord bearing.
- 4) Gable studs spaced at 4-0-0 oc.
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 5)
- All bearings are assumed to be SP No.2 crushing 6)
- capacity of 565 psi.



Job	Truss	Truss Type	Qty	Ply	Roof - HR Lot 185	
P240213-01	V8	Valley	1	1	Job Reference (optional)	164228570

2-11-14

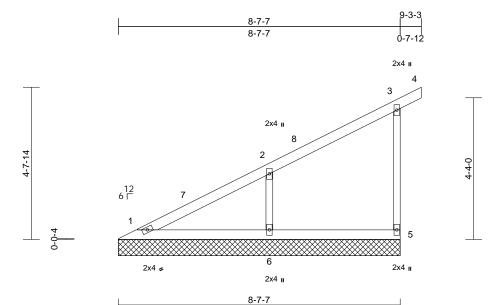
Run: 8.63 S Nov 1 2023 Print: 8.630 S Nov 1 2023 MiTek Industries, Inc. Wed Mar 13 16:07:28 ID:X3j9csSdTd?hyQgxh8rn6OzwvzW-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

5-0-0

Scale =	1:27.2
---------	--------

Scale = 1:27.2												
Loading	(psf)	Spacing	2-0-0	CSI	-	DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15	тс	0.46	Vert(LL)	n/a	-	n/a	999	MT20	244/190
TCDL	10.0	Lumber DOL	1.15	BC	0.26	Vert(CT)	n/a	-	n/a	999		
BCLL	0.0	Rep Stress Incr	YES	WB	0.00	Horz(CT)	n/a	-	n/a	n/a		
BCDL	10.0	Code	IRC2018/TPI2014	Matrix-P							Weight: 18 lb	FT = 20%
LUMBER				s designed in acc								
FOP CHORD				al Residential Co			nd					
OT CHORD				and referenced st	tandard AN	NSI/TPI 1.						
VEBS	2x3 SPF No.2		LOAD CASE(S	s) Standard								
BRACING		المحمد بالتحجيل حجال										
OP CHURD	Structural wood she 5-3-15 oc purlins, e		ed or									
BOT CHORD			с									
REACTIONS	•	4=5-3-7										
	Max Horiz 1=115 (LC											
	Max Uplift 1=-11 (LC											
	Max Grav 1=202 (L0											
ORCES	(lb) - Maximum Com Tension	npression/Maximum										
TOP CHORD		3/0 2-4=-218/260										
BOT CHORD		.0/0, 2 1 210/200										
NOTES												
	CE 7-16; Vult=115mph	(3-second aust)										
	nph; TCDL=6.0psf; BC											
	Cat. II; Exp C; Enclose		pe)									
	one and C-C Exterior(2											
) 5-7-9 to 5-11-11 zone											
	; end vertical left expos s & MWFRS for reaction		5								000	100
	0 plate grip DOL=1.60	nis showin, Lumber									TATE OF	MICON
	signed for wind loads in	n the plane of the tru	ISS								BIE	0.0
	studs exposed to wind									A	N	New
	ard Industry Gable En									H	SCOT	
	qualified building desi		기 1.							8 c	SEV	
	uires continuous botto									8		1*8
	ds spaced at 4-0-0 oc. has been designed fo									8	10 1	0 ~ 8
	load nonconcurrent w		de							23	Lotton	aner g
	gs are assumed to be									N3	ON PE-2001	018807
	of 565 psi.									V	The last	18A
	nechanical connection									1	138	ENO'S
	late capable of withsta	nding 11 lb uplift at j	oint								SSIONA	LEL
1 and 98 l	lb uplift at joint 4.										alle	
											Marc	h 14,2024
												-

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)



Page: 1

Job	Truss	Truss Type	Qty	Ply	Roof - HR Lot 185	
P240213-01	V9	Valley	1	1	Job Reference (optional)	164228571

Run: 8.63 S Nov 1 2023 Print: 8.630 S Nov 1 2023 MiTek Industries. Inc. Wed Mar 13 16:07:28 ID:X3j9csSdTd?hyQgxh8rn6OzwvzW-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Scale = 1:35.2

Loading TCLL (roof) TCDL BCLL BCDL	(psf) 25.0 10.0 0.0 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018/TPI2		CSI TC BC WB Matrix-P	0.29 0.16 0.08	DEFL Vert(LL) Vert(CT) Horz(CT)	in n/a n/a n/a	(loc) - -	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 32 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x4 SP No.2 2x3 SPF No.2 2x3 SPF No.2 Structural wood she 6-0-0 oc purlins, ex Rigid ceiling directly bracing. (size) 1=8-7-7, 5 Max Horiz 1=187 (LC Max Uplift 5=-73 (LC	cept end verticals. applied or 10-0-0 oc 5=8-7-7, 6=8-7-7 C 12)	capa 7) Prov beau 5 ar 8) This Inter R80 LOAD C	acity of 56 vide mecha ring plate o d 148 lb u truss is de rnational R	anical connecti capable of with plift at joint 6. esigned in acc Residential Coc d referenced st	on (by oth standing 7 ordance wi le sections	ers) of truss to 3 lb uplift at jo th the 2018 R502.11.1 ar	pint					

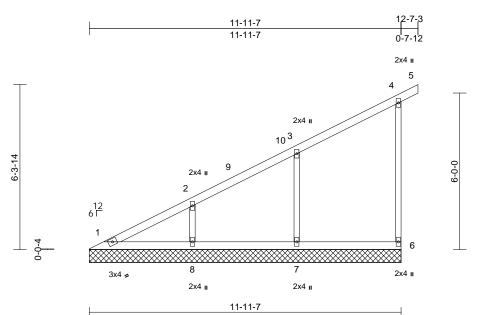
Max Grav 1=139 (LC 1), 5=189 (LC 1), 6=438 (LC 1) FORCES (lb) - Maximum Compression/Maximum Tension TOP CHORD 1-2=-261/120, 2-3=-94/48, 3-4=-23/0,

3-5=-160/155 BOT CHORD 1-6=0/0, 5-6=0/0 WEBS 2-6=-339/329

NOTES

- 1) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=35ft; Ke=1.00; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) 0-7-9 to 5-7-9, Interior (1) 5-7-9 to 9-3-11 zone; cantilever left and right exposed ; end vertical left exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1. 3) Gable requires continuous bottom chord bearing.

Gable studs spaced at 4-0-0 oc. 4)


- 5)
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

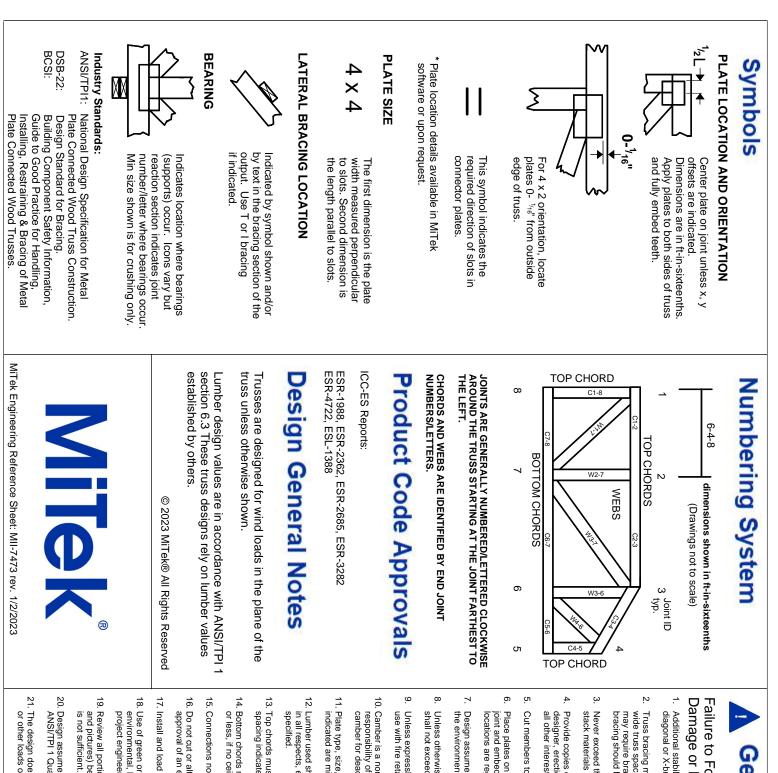
Job	Truss	Truss Type	Qty	Ply	Roof - HR Lot 185	
P240213-01	V10	Valley	1	1	Job Reference (optional)	164228572

Run: 8,63 S Nov 1 2023 Print: 8,630 S Nov 1 2023 MiTek Industries, Inc. Wed Mar 13 16:07:28 ID:X3j9csSdTd?hyQgxh8rn6OzwvzW-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:44.2

Loading TCLL (roof)	(psf) 25.0	Spacing Plate Grip DOL	2-0-0 1.15	CSI TC	0.23	DEFL Vert(LL)	in n/a	(loc)	l/defl n/a	L/d 999	PLATES MT20	GRIP 244/190
TCDL	10.0	Lumber DOL	1.15	BC	0.13	Vert(CT)	n/a	-	n/a	999	-	
BCLL	0.0	Rep Stress Incr	YES	WB	0.11	Horz(CT)	0.00	6	n/a	n/a		
BCDL	10.0	Code	IRC2018/TP	I2014 Matrix-S							Weight: 46 lb	FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING	2x4 SP No.2 2x3 SPF No.2 2x3 SPF No.2		ch 6) All ca 7) Pr be	is truss has been desig ord live load nonconcur bearings are assumed pacity of 565 psi. ovide mechanical conne aring plate capable of w 129 lb uplift at joint 7 ar	rent with any to be SP No. ection (by oth vithstanding 7	other live load 2 crushing ers) of truss to '8 lb uplift at jo	D					
TOP CHORD	 Structural wood she 6-0-0 oc purlins, ex 		8) Th	is truss is designed in a	ccordance w	ith the 2018						
BOT CHORD			c R8	ernational Residential C 302.10.2 and referenced			nd					
REACTIONS FORCES TOP CHORD	8=11-11- Max Horiz 1=260 (L0 Max Uplift 6=-78 (LC 8=-124 (L0 Max Grav 1=134 (L0 7=386 (L0 (lb) - Maximum Com Tension	C 12) C 12), 7=-129 (LC 12 C 12) C 21), 6=200 (LC 1) C 1), 8=363 (LC 1) apression/Maximum	2), ,	CASE(S) Standard								
	4-5=-23/0, 4-6=-168	/141										
BOT CHORD WEBS	1-8=-2/3, 7-8=-2/3, 0 3-7=-300/246, 2-8=-											
Vasd=91r Ke=1.00; exterior z: Interior (1 exposed ; and force DOL=1.6(2) Truss de only. For	CE 7-16; Vult=115mph mph; TCDL=6.0psf; BC Cat. II; Exp C; Enclose one and C-C Exterior(2) 5-7-9 to 12-7-11 zone; end vertical left expose s & MWFRS for reaction 0 plate grip DOL=1.60 signed for wind loads in s studs exposed to wind adrd Industry Gable En	DL=6.0psf; h=35ft; d; MWFRS (envelop E) 0-7-9 to 5-7-9, s; cantilever left and ed;C-C for members ons shown; Lumber the plane of the tru (normal to the face	right s uss),								STATE OF SCOT SEV	T M. IER BER


see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1. Gable requires continuous bottom chord bearing. 3)

4) Gable studs spaced at 4-0-0 oc.

PE-2001018807 0 SIONAL ET March 14,2024

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

16023 Swingley Ridge Rd. Chesterfield, MO 63017 314.434.1200 / MiTek-US.com

General Safety Notes

Failure to Follow Could Cause Property Damage or Personal Injury

- 1. Additional stability bracing for truss system, e.g. diagonal or X-bracing, is always required. See BCSI.
- Truss bracing must be designed by an engineer. For wide truss spacing, individual lateral braces themselves may require bracing, or alternative Tor1 bracing should be considered.
- Never exceed the design loading shown and never stack materials on inadequately braced trusses.
- Provide copies of this truss design to the building designer, erection supervisor, property owner and all other interested parties.
- 5. Cut members to bear tightly against each other
- Place plates on each face of truss at each joint and embed fully. Knots and wane at joint locations are regulated by ANSI/TPI 1.
- Design assumes trusses will be suitably protected from the environment in accord with ANSI/TPI 1.
- Unless otherwise noted, moisture content of lumber shall not exceed 19% at time of fabrication.
- Unless expressly noted, this design is not applicable for use with fire retardant, preservative treated, or green lumber.
- Camber is a non-structural consideration and is the responsibility of truss fabricator. General practice is to camber for dead load deflection.
- 11. Plate type, size, orientation and location dimensions indicated are minimum plating requirements.
- 12. Lumber used shall be of the species and size, and in all respects, equal to or better than that specified.
- Top chords must be sheathed or purlins provided at spacing indicated on design.
- 14. Bottom chords require lateral bracing at 10 ft. spacing, or less, if no ceiling is installed, unless otherwise noted.
- 15. Connections not shown are the responsibility of others.
- Do not cut or alter truss member or plate without prior approval of an engineer.
- 17. Install and load vertically unless indicated otherwise.
- Use of green or treated lumber may pose unacceptable environmental, health or performance risks. Consult with project engineer before use.
- Review all portions of this design (front, back, words and pictures) before use. Reviewing pictures alone is not sufficient.
- 20. Design assumes manufacture in accordance with ANSI/TPI 1 Quality Criteria.
- 21. The design does not take into account any dynamic or other loads other than those expressly stated.