

RELEASE FOR CONSTRUCTION AS NOTED ON PLANS REVIEW DEVELOPMENT SERVICES LEE'S SUMMIT, MISSOURI 03/18/2024 4:46:46

RE: B240016 Lot 175 WO

Site Information:

Customer: Summit Homes Project Name: B240016 Lot/Block: 175 Model: Cl Address: 2087 NW O'Brien Rd Subdivisio City: Lee's Summit State: MC

B240016 Model: Charleston - Modern Farmhouse Subdivision: Woodside Ridge State: MO

General Truss Engineering Criteria & Design Loads (Individual Truss Design Drawings Show Special Loading Conditions):

Design Code: IRC2018/TPI2014 Wind Code: ASCE 7 - 16[Low Rise] Roof Load: 45.0 psf Design Program: MiTek 20/20 8.7 Wind Speed: 115 mph Floor Load: N/A psf

MiTek, Inc.

314.434.1200

16023 Swingley Ridge Rd. Chesterfield, MO 63017

This package includes 48 individual, dated Truss Design Drawings and 0 Additional Drawings.

No.	Seal#	Truss Name	Date	No.	Seal#	Truss Name	Date
1	163738421	A1	2/21/2024	21	163738441	E2	2/21/2024
2	163738422	A2	2/21/2024	22	163738442	F1	2/21/2024
3	163738423	A3	2/21/2024	23	163738443	F2	2/21/2024
4	163738424	B1	2/21/2024	24	163738444	F3	2/21/2024
5	163738425	B2	2/21/2024	25	163738445	J1	2/21/2024
6	163738426	C1	2/21/2024	26	163738446	J2	2/21/2024
7	163738427	C2	2/21/2024	27	163738447	J3	2/21/2024
8	163738428	C3	2/21/2024	28	163738448	J4	2/21/2024
9	163738429	C4	2/21/2024	29	163738449	J5	2/21/2024
10	163738430	C5	2/21/2024	30	163738450	J6	2/21/2024
11	163738431	C6	2/21/2024	31	163738451	J7	2/21/2024
12	163738432	D1	2/21/2024	32	163738452	J8	2/21/2024
13	163738433	D2	2/21/2024	33	163738453	J9	2/21/2024
14	163738434	D3	2/21/2024	34	163738454	J10	2/21/2024
15	163738435	D4	2/21/2024	35	163738455	J11	2/21/2024
16	163738436	D5	2/21/2024	36	163738456	K1	2/21/2024
17	163738437	D6	2/21/2024	37	163738457	K2	2/21/2024
18	163738438	D7	2/21/2024	38	163738458	K3	2/21/2024
19	163738439	D8	2/21/2024	39	163738459	LAY1	2/21/2024
20	163738440	E1	2/21/2024	40	163738460	R1	2/21/2024

The truss drawing(s) referenced above have been prepared by MiTek USA, Inc under my direct supervision

based on the parameters provided by Wheeler - Waverly.

Truss Design Engineer's Name: Nathan Fox

My license renewal date for the state of Missouri is December 31, 2024. Missouri COA: 001193

IMPORTANT NOTE: The seal on these truss component designs is a certification that the engineer named is licensed in the jurisdiction(s) identified and that the designs comply with ANSI/TPI 1. These designs are based upon parameters shown (e.g., loads, supports, dimensions, shapes and design codes), which were given to MiTek. Any project specific information included is for MiTek customers file reference purpose only, and was not taken into account in the preparation of these designs. MiTek has not independently verified the applicability of the design parameters or the designs for any particular building. Before use, the building designer should verify applicability of design parameters and properly incorporate these designs into the overall building design per ANSI/TPI 1, Chapter 2.

Nathan Fox

RE: B240016 - Lot 175 WO

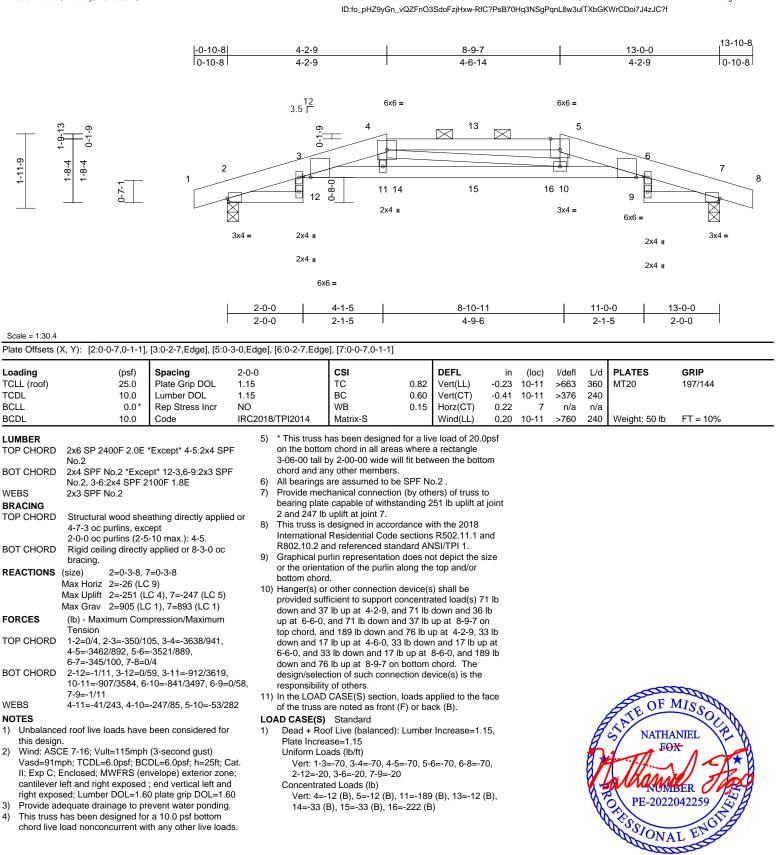
MiTek, Inc. 16023 Swingley Ridge Rd. Chesterfield, MO 63017 314.434.1200

Site Information:

Project Customer: Summit Homes Project Name: B240016 Lot/Block: 175 Subdivision: Woodside Ridge Address: 2087 NW O'Brien Rd City, County: Lee's Summit State: MO No Seal# Truss Name Date

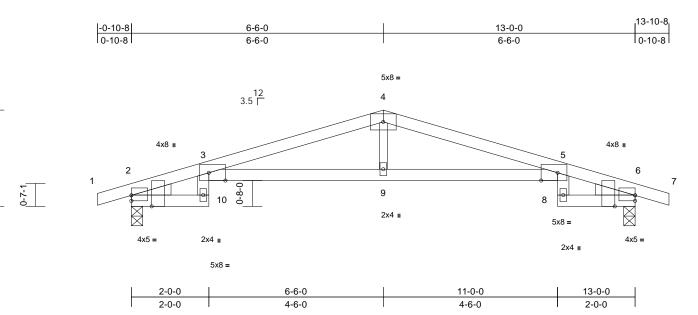
INO.	Ocai#	Truss Name	Date
41	163738461	V1	2/21/2024
42	163738462	V2	2/21/2024
43	163738463	V3	2/21/2024
44	163738464	V4	2/21/2024
45	163738465	V5	2/21/2024
46	163738466	V6	2/21/2024
47	163738467	V7	2/21/2024
48	163738468	V8	2/21/2024

Job	Truss	Truss Type	Qty	Ply	Lot 175 WO	
B240016	A1	Hip Girder	1	1	Job Reference (optional)	163738421


Run: 8.73 S Feb 6 2024 Print: 8.730 S Feb 6 2024 MiTek Industries, Inc. Tue Feb 20 09:51:44

Page: 1

February 21,2024


LEE'S' SUMMIT'S MISSOURI 03/18/2024 4:46:46

ΤΙΟΝ

Job	Truss	Truss Type	Qty	Ply	Lot 175 WO	
B240016	A2	Roof Special	2	1	Job Reference (optional)	163738422

Run: 8,73 S Feb 6 2024 Print: 8,730 S Feb 6 2024 MiTek Industries, Inc. Tue Feb 20 09:51:46 ID:nfvsr4LQAuL?Adkc8fCcnwzjHwO-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Scale = 1:29.7

2-5-13

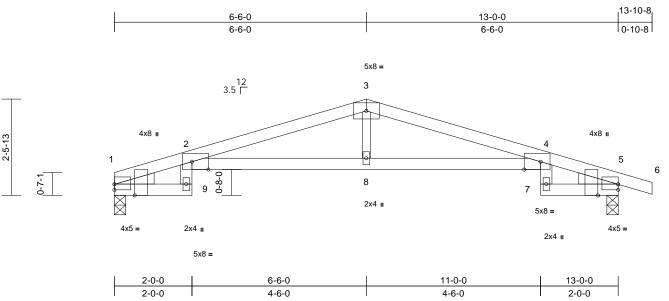
Plate Offsets (X, Y): [2:Edge,0-1-11], [2:0-3-7,Edge], [3:0-5-2,Edge], [5:0-5-2,Edge], [6:Edge,0-1-11], [6:0-3-7,Edge]

Loading TCLL (roof) TCDL	(psf) 25.0 10.0	Spacing Plate Grip DOL Lumber DOL	2-0-0 1.15 1.15	CSI TC BC	0.93 0.97	DEFL Vert(LL) Vert(CT)	in -0.31 -0.56	(loc) 3-9 3-9	l/defl >495 >272	L/d 360 240	PLATES MT20	GRIP 197/144
BCLL	0.0*	Rep Stress Incr	YES	WB	0.08	Horz(CT)	0.46	6	n/a	n/a		
BCDL	10.0	Code	IRC2018/TPI2014	Matrix-S		Wind(LL)	0.22	3-9	>680	240	Weight: 37 lb	FT = 10%
LUMBER TOP CHORD BOT CHORD WEBS WEDGE			bearing plat 2 and 127 ll 7) This truss is Internationa R802.10.2 a	chanical connecti te capable of withs o uplift at joint 6. s designed in acco Il Residential Cod and referenced sta	standing 1 ordance wi e sections	27 lb uplift a th the 2018 R502.11.1 a	t joint					
BRACING TOP CHORD	Structural wood she 2-2-0 oc purlins.	athing directly applie	LOAD CASE(S ed or) Standard								
BOT CHORD		applied or 2-2-0 oc										
REACTIONS	(size) 2=0-3-8, 6 Max Horiz 2=38 (LC Max Uplift 2=-127 (L Max Grav 2=643 (LC	8) C 4), 6=-127 (LC 5)										
FORCES	(lb) - Maximum Com Tension	<i>,,, , , ,</i>										
TOP CHORD												
BOT CHORD	,	/109, 3-9=-116/1429),									
WEBS	4-9=0/256											
NOTES	ad reaf live leads have	haan aanaldan d.f.									STA	alle
this design	ed roof live loads have n.	been considered to									F. OF	MISC
 Wind: AS(Vasd=91n II; Exp C; cantilever right expo This truss chord live * This trus 	 CE 7-16; Vult=115mph nph; TCDL=6.0psf; BC Enclosed; MWFRS (er left and right exposed sed; Lumber DOL=1.6 has been designed fo load nonconcurrent wi ss has been designed f ttom chord in all areas	DL=6.0psf; h=25ft; (ivelope) exterior zor ; end vertical left an 0 plate grip DOL=1.0 r a 10.0 psf bottom th any other live load or a live load of 20.0	ne; d 60 ds.						T	R.	STILL OF J	

ord in all areas wh 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.

5) All bearings are assumed to be SPF No.2 .

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent colleges with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)


E

February 21,2024

SSIONAL

Job	Truss	Truss Type	Qty	Ply	Lot 175 WO	
B240016	A3	Roof Special	2	1	Job Reference (optional)	163738423

Run: 8.73 S Feb 6 2024 Print: 8.730 S Feb 6 2024 MiTek Industries, Inc. Tue Feb 20 09:51:47 ID:Gf2Wmsz1xsucQcjcBa8ottzjHva-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Scale = 1:29.7

Plate Offsets (X, Y): [1:Edge,0-1-11], [1:0-3-7,Edge], [2:0-5-2,Edge], [4:0-5-2,Edge], [5:Edge,0-1-11], [5:0-3-7,Edge]

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15	TC	0.97	Vert(LL)	-0.32	2-8	>476	360	MT20	197/144
TCDL	10.0	Lumber DOL	1.15	BC	0.99	Vert(CT)	-0.58	2-8	>264	240		
BCLL	0.0*	Rep Stress Incr	YES	WB	0.08	Horz(CT)	0.48	5	n/a	n/a		
BCDL	10.0	Code	IRC2018/TPI2014	Matrix-S		Wind(LL)	0.24	2-8	>641	240	Weight: 36 lb	FT = 10%
LUMBER 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 127 lb uplift at joint 5 and 82 lb uplift at joint 1. BOT CHORD 2x4 SPF No.2 5 and 82 lb uplift at joint 1. WEBS 2x3 SPF No.2 7) WEDGE Left: 2x4 SPF No.2 7) Right: 2x4 SPF No.2 7) BRACING LOAD CASE(S) TOP CHORD Structural wood sheathing directly applied. BOT CHORD Rigid ceiling directly applied or 2-2-0 oc												
	bracing.											
REACTIONS	(size) 1=0-3-8, 5											
	Max Horiz 1=39 (LC	,										
	Max Uplift 1=-82 (LC											
	Max Grav 1=569 (LC											
FORCES	(lb) - Maximum Com Tension	pression/Maximum										
TOP CHORD	1-2=-302/58, 2-3=-1 4-5=-311/52, 5-6=-2/	,	/175,									
BOT CHORD	1-9=-3/27, 2-9=-4/10 4-8=-126/1445, 4-7=											

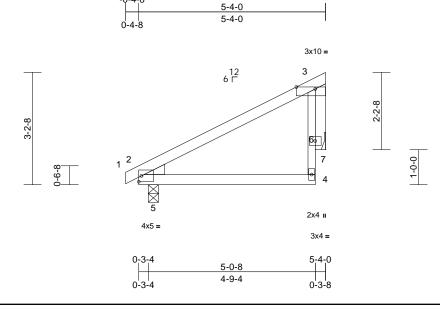
WEBS

NOTES1) Unbalanced roof live loads have been considered for

3-8=0/257

- this design.
 Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed; end vertical left and
- right exposed; Lumber DOL=1.60 plate grip DOL=1.60 3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 4) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- 5) All bearings are assumed to be SPF No.2 .

Page: 1


February 21,2024

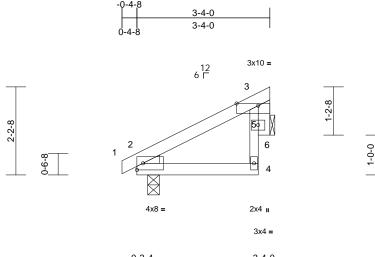
Job	Truss	Truss Type	Qty	Ply	Lot 175 WO	
B240016	B1	MONOPITCH	7	1	Job Reference (optional)	163738424

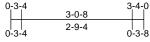
Run: 8.73 S Feb 6 2024 Print: 8.730 S Feb 6 2024 MiTek Industries, Inc. Tue Feb 20 09:51:47 ID:Lek3CAANj_gYbKvtCQHtmQzKvNM-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

Scale = 1:32.9

Plate Offsets (X, Y): [3:0-6-8,Edge]

	X, T). [3.0-0-0,Euge]											
Loading TCLL (roof) TCDL BCLL BCDL	(psf) 25.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018/TPI2014	CSI TC BC WB Matrix-R	0.23 0.22 0.00	DEFL Vert(LL) Vert(CT) Horz(CT) Wind(LL)	in -0.01 -0.03 0.00 0.00	(loc) 4-5 4-5 7 4-5	l/defl >999 >999 n/a >999	L/d 360 240 n/a 240	PLATES MT20 Weight: 18 lb	GRIP 197/144 FT = 10%
	2x3 SPF No.2 2x4 SPF No.2 Left: 2x4 SP No.3 Structural wood shee 5-4-0 oc purlins, exc Rigid ceiling directly bracing. (size) 5=0-3-8, 7 Max Horiz 5=92 (LC Max Uplift 5=-28 (LC	cept end verticals. applied or 10-0-0 od 7= Mechanical 8) 5 8), 7=-63 (LC 8)	Internationa R802.10.2 a LOAD CASE(S)	designed in accor I Residential Code Ind referenced star Standard	sections	R502.11.1	and					
Max Grav 5=266 (LC 1), 7=185 (LC 1) FORCES (b) - Maximum Compression/Maximum Tension TOP CHORD 1-2=-30, 2-3=-180/0, 4-6=-0/94, 3-6=-151/125 BOT CHORD 2-5=-0/101, 4-5=-26/87 WEBS 3-7=-52/11 NOTES 1) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0pst; BCDL=6.0pst; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60 2) This truss has been designed for a 10.0 pst bottom chord live load nonconcurrent with any other live loads. 3) * This truss has been designed for a 10.0 pst bottom chord and any other members. 4) All bearings are assumed to be SPF No.2. 5) Refer to girder(s) for truss to truss connection. (by others) of truss to bearing plate capable of withstanding 28 lb uplift at joint 5 and 63 lb uplift at joint 7.												


February 21,2024


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent toulsable personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcscomponents.com)

RELEASE IOR CONTRUCTION AS NOTED ON PLANS REVIEW DEVELORMENT: SERVICES LEE'S SUMMIT: MISSOURI 03/18/2024 4:46:46

Job	Truss	Truss Type	Qty	Ply	Lot 175 WO	
B240016	B2	Monopitch	6	1	Job Reference (optional)	163738425

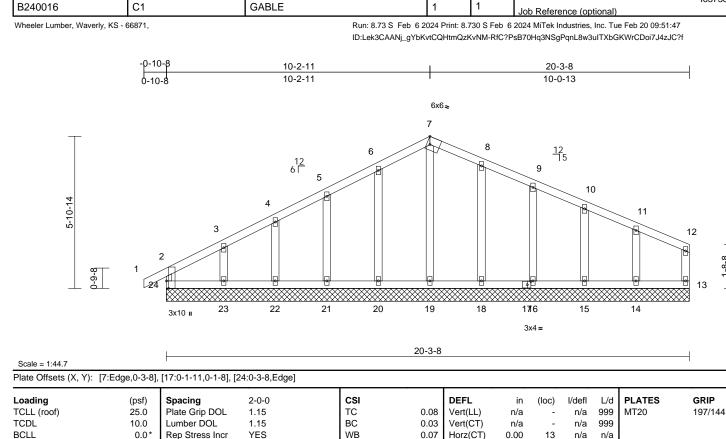
Run: 8.73 S Feb 6 2024 Print: 8.730 S Feb 6 2024 MiTek Industries, Inc. Tue Feb 20 09:51:47 ID:Lek3CAANj_gYbKvtCQHtmQzKvNM-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

Scale = 1:28.9

Plate Offsets (X, Y): [3:0-6-8,Edge]

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15	тс	0.11	Vert(LL)	0.00	2-4	>999	360	MT20	197/144
TCDL	10.0	Lumber DOL	1.15	BC	0.09	Vert(CT)	0.00	2-4	>999	240		
BCLL	0.0*	Rep Stress Incr	YES	WB	0.00	Horz(CT)	0.00	6	n/a	n/a		
BCDL	10.0	Code	IRC2018/TPI2014	Matrix-R		Wind(LL)	0.00	2-4	>999	240	Weight: 11 lb	FT = 10%
LUMBER TOP CHORD BOT CHORD WEBS OTHERS WEDGE BRACING TOP CHORD BOT CHORD REACTIONS (s M M FORCES	2x4 SPF No.2 2x4 SPF No.2 2x3 SPF No.2 2x4 SPF No.2 Left: 2x3 SPF No.2 Structural wood she 3-4-0 oc purlins, ex Rigid ceiling directly bracing.	athing directly applie cept end verticals. applied or 10-0-0 or 6= Mechanical 5) 5), 6=-37 (LC 8) C 1), 6=109 (LC 1)	7) This true Internati R802.10 LOAD CAS	is is designed in acco onal Residential Cod .2 and referenced str E(S) Standard	le sections	ith the 2018 R502.11.1 a		27		270	- rogni, i i b	
	1-2=-3/0, 2-3=-118/0), 4-5=0/60, 3-5=-69	/54									
	2-4=-20/59	.,										
WEBS	3-6=-22/0											
NOTES												
 Wind: ASCE Vasd=91mp II; Exp C; Err cantilever le right expose This truss ha chord live lo * This truss on the botto 3-06-00 tall chord and at All bearings Refer to gird Provide mee bearing plate 	E 7-16; Vult=115mph wh; TCDL=6.0psf; BC nclosed; MWFRS (er fit and right exposed ad; Lumber DOL=1.6 as been designed for ad nonconcurrent with has been designed for m chord in all areas by 2-00-00 wide will ny other members. are assumed to be sider(s) for truss to tru chanical connection (e capable of withstar uplift at joint 6.	DL=6.0psf; h=25ft; (ivelope) exterior zor ; end vertical left an 0 plate grip DOL=1.1 r a 10.0 psf bottom th any other live loa or a live load of 20.0 where a rectangle fit between the botto SPF No.2. ss connections. (by others) of truss t	ne; d 60 ds. Dpsf om						•		PE-2022	DAL ENGL

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent toulsable personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)



February 21,2024

Job	Truss	Truss Type	Qty	Ply	Lot 175 WO	
B240016	C1	GABLE	1	1	Job Reference (optional)	163738426

Page: 1

8-8-

DOLL	0.0		160			0.01	11012(01)	0.00	10	1 <i>i</i> /u 11	/u	
BCDL	10.0	Code	IRC2018	3/TPI2014	Matrix-R						Weight: 86 lb	FT = 10%
LUMBER			WE	EBS	7-19=-128/0, 6·	-20=-151/80	, 5-21=-138/	80,				
TOP CHORD	2x4 SPF No.2				4-22=-141/71,3	3-23=-140/1	03, 8-18=-15	51/72,				
BOT CHORD	2x4 SPF No.2			1	9-16=-139/73,	10-15=-139	69, 11-14=-1	48/84				
WEBS	2x3 SPF No.2 *Exce	ept* 12-13:2x4 SPF N	No.2 NC	DTES								
OTHERS	2x4 SPF No.2		1)	Unbalanced	roof live loads	have been	considered for	or				
BRACING			,	this design.								
TOP CHORD	Structural wood she	athing directly applie	ed or 2)	Wind: ASCE	7-16; Vult=115	5mph (3-seo	ond gust)					
	6-0-0 oc purlins, ex	cept end verticals.		Vasd=91mp	h; TCDL=6.0ps	f; BCDL=6.	0psf; h=25ft;	Cat.				
BOT CHORD	Rigid ceiling directly	applied or 10-0-0 oc	;	· · ·	closed; MWFR	· ·	/	,				
	bracing.				t and right exp	,						
REACTIONS	(size) 13=20-3-8	8, 14=20-3-8, 15=20-		0 1	d; Lumber DOL		01					
	16=20-3-8	8, 18=20-3-8, 19=20-	-3-8, 3)	0	ned for wind lo							
	20=20-3-8	8, 21=20-3-8, 22=20-	-3-8,	only. For stu	ids exposed to	wind (norm	al to the face	e),				

Max Horiz	24=91 (LC 8)		or co
Max Uplift	13=-19 (LC 8), 14=-64 (LC 9),	4)	All p
	15=-44 (LC 9), 16=-50 (LC 9),	5)	Gab
	18=-48 (LC 9), 20=-56 (LC 8),	6)	Trus
	21=-57 (LC 8), 22=-43 (LC 8),		brac
	23=-94 (LC 8), 24=-53 (LC 4)	7)	Gab
Max Grav	13=77 (LC 1), 14=190 (LC 22),	8)	This
	15=178 (LC 22), 16=179 (LC 1),		chor
	18=190 (LC 22), 19=168 (LC 18),	9)	* Th
	20=191 (LC 21), 21=179 (LC 1),		on th

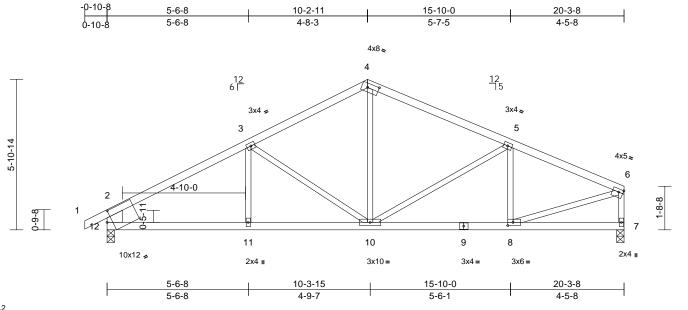
23=20-3-8, 24=20-3-8

22=179 (LC 1), 23=185 (LC 21), 24=170 (LC 1) FORCES (lb) - Maximum Compression/Maximum

Tension 2-24=-151/56, 1-2=0/31, 2-3=-98/78, TOP CHORD 3-4=-63/84, 4-5=-41/106, 5-6=-38/133, 6-7=-42/157, 7-8=-37/147, 8-9=-34/110, 9-10=-34/80, 10-11=-35/59, 11-12=-40/39, 12-13=-60/25

BOT CHORD 23-24=-18/29, 22-23=-18/29, 21-22=-18/29, 20-21=-18/29, 19-20=-18/29, 18-19=-18/29, 16-18=-18/29, 15-16=-18/29, 14-15=-18/29, 13-14=-18/29

- see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1. plates are 2x4 MT20 unless otherwise indicated.
- ble requires continuous bottom chord bearing. ss to be fully sheathed from one face or securely
- ced against lateral movement (i.e. diagonal web). ble studs spaced at 2-0-0 oc.
- s truss has been designed for a 10.0 psf bottom rd live load nonconcurrent with any other live loads.
- nis truss has been designed for a live load of 20.0psf the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- 10) All bearings are assumed to be SPF No.2 .
- 11) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 53 lb uplift at joint 24, 19 lb uplift at joint 13, 56 lb uplift at joint 20, 57 lb uplift at joint 21, 43 lb uplift at joint 22, 94 lb uplift at joint 23, 48 lb uplift at joint 18, 50 lb uplift at joint 16, 44 lb uplift at joint 15 and 64 lb uplift at joint 14.
- 12) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. LOAD CASE(S) Standard



WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponent.com)

Job	Truss	Truss Type	Qty	Ply	Lot 175 WO	
B240016	C2	Roof Special	1	1	Job Reference (optional)	163738427

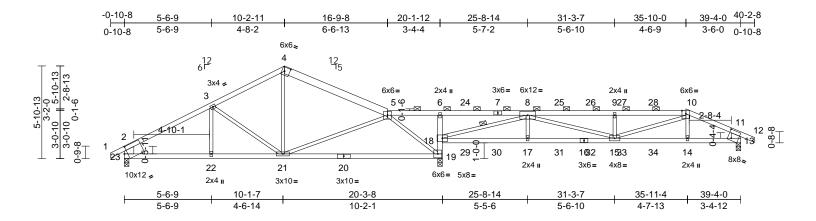
Run: 8,73 S Feb 6 2024 Print: 8,730 S Feb 6 2024 MiTek Industries, Inc. Tue Feb 20 09:51:48 ID:Lek3CAANj_gYbKvtCQHtmQzKvNM-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

Scale = 1:45.2

chord and any other members. 5) All bearings are assumed to be SPF No.2 .

Plate Offsets (X, Y): [4:0-5-4,0-2-0], [6:0-2-0,0-1-8], [8:0-2-8,0-1-8], [12:0-2-7,0-4-14]

Loa	ading	(psf)	Spacing	2-0-0	csi		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TC	LL (roof)	25.0	Plate Grip DOL	1.15	тс	0.86	Vert(LL)		10-11	>999	360	MT20	197/144
TC	DL	10.0	Lumber DOL	1.15	BC	0.74	Vert(CT)	-0.17	10-11	>999	240		
BC	LL	0.0*	Rep Stress Incr	YES	WB	0.35	Horz(CT)	0.03	7	n/a	n/a		
BC	DL	10.0	Code	IRC2018/TPI2014	Matrix-S		Wind(LL)	0.05	10-11	>999	240	Weight: 75 lb	FT = 10%
_											-		
LU	MBER				echanical connection								
ΤO	P CHORD	2x4 SPF No.2			ate capable of withst	tanding 1	137 lb uplift at	joint					
BO	T CHORD	2x4 SPF No.2			2 lb uplift at joint 7.								
WE	BS	2x3 SPF No.2 *Exce	ept* 12-2:2x8 SP 240		is designed in accor								
		2.0E			al Residential Code			nd					
BR	ACING			R802.10.2	and referenced star	ndard Al	NSI/TPI 1.						
ΤO	P CHORD	Structural wood she	athing directly applie	ed or LOAD CASE(Standard 								
		2-2-0 oc purlins, ex	cept end verticals.										
BO	T CHORD	Rigid ceiling directly	applied or 10-0-0 or	C									
		bracing.											
RE.	ACTIONS	(size) 7=0-3-8, 2	12=0-3-8										
		Max Horiz 12=-90 (L	.C 6)										
		Max Uplift 7=-112 (L	.C 9), 12=-137 (LC 8	5)									
		Max Grav 7=892 (LC	C 1), 12=980 (LC 1)	,									
FO	RCES	(lb) - Maximum Com											
. •	Tension												
то	P CHORD		5/161. 3-4=-965/158										
		4-5=-974/155, 5-6=-	,										
		2-12=-874/167, 6-7=											
BO	T CHORD												
		8-10=-118/992, 7-8=	,										
WE	BS	3-11=0/152, 3-10=-3	327/150, 4-10=-26/3	88,									
		5-10=-269/127, 5-8=	-226/101, 6-8=-106	/1005									
NO	TES											TATE OF	Jan
1)	Unbalance	ed roof live loads have	been considered for	r								A. OF	MISC
,	this design										1	950	N.O.
2)	Wind: ASC	CE 7-16; Vult=115mph	(3-second gust)								R	NATHA	NIET XXX
,	Vasd=91m	nph; TCDL=6.0psf; BC	DL=6.0psf; h=25ft; 0	Cat.							8	~/	
	II; Exp C; I								N I PO	X			
		left and right exposed							N M	I H.	10000		
	right expos							2	The	1 the			
3)	This truss							N t	NUMAN	KER OVON			
		load nonconcurrent wi							14 1	DE 2022	042250 1498		
4)	* This trus							N	PE-2022	042239			
		tom chord in all areas	0								Y	100	154
		II by 2-00-00 wide will	fit between the botto	om							6	CSSIONA	FNUA
		any other members.								WANA			
5)	All bearing	is are assumed to be 9	SPE No 2									ALL	~~~


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent toulsable personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

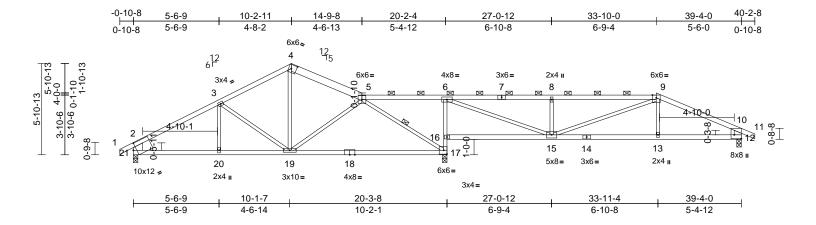
February 21,2024

Job	Truss	Truss Type	Qty	Ply	Lot 175 WO	
B240016	C3	Roof Special Girder	1	1	Job Reference (optional)	163738428

Run: 8,73 S Feb 6 2024 Print: 8,730 S Feb 6 2024 MiTek Industries, Inc. Tue Feb 20 09:51:49 ID:Lek3CAANj_gYbKvtCQHtmQzKvNM-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Scale = 1:73.5

Plate Offsets (2	Plate Offsets (X, Y): [4:0-3-15,0-3-0], [13:0-2-13,0-6-6], [23:0-2-7,0-4-14]												
Loading	(psf)	Spacing	2-0-0		CSI TC	0.05	DEFL Vert(LL)	in	(loc)	l/defl >999	L/d 360	PLATES MT20	GRIP
TCLL (roof) TCDL	25.0 10.0	Plate Grip DOL Lumber DOL	1.15 1.15		BC	0.85 0.99	Vert(LL)		19-21 19-21	>999 >526	360 240	101120	197/144
BCLL	0.0*	Rep Stress Incr	NO		WB	0.99	Horz(CT)	0.02	19-21	>520 n/a	240 n/a		
BCDL	10.0	Code		8/TPI2014	Matrix-S	0.52	Wind(LL)		15-17		240	Weight: 141 lb	FT = 10%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD WEBS REACTIONS	 2x4 SPF No.2 *Except* 4-5:2x6 SPF No.2, 10-12:2x4 SPF 2100F 1.8E 2x4 SPF No.2 *Except* 23-20,20-19:2x4 SPF 2100F 1.8E 2x3 SPF No.2 *Except* 23-2,13-11:2x8 SP 2400F 2.0E Structural wood sheathing directly applied or 4-3-1 oc purlins, except end verticals, and 2-0-0 oc purlins (3-1-1 max.): 5-10. Rigid ceiling directly applied or 9-0-13 oc bracing. 1 Row at midpt 8-18 			Unbalanced this design. Wind: ASCE Vasd=91mpf II; Exp C; En cantilever lef right expose Provide aded This truss ha chord live loa * This truss h on the bottor 3-06-00 tall b chord and ar All bearings Provide mec bearing plate	Unbalanced roof live loads have been considered for 11) In the LOAD CASE(S) section, loads applied to the								As applied to the face r back (B). hber Increase=1.15, 20, 13-18=-20 33 (F), 17=-17 (F), (F), 26=-33 (F), (F), 30=-17 (F),
FORCES	(,	0	International R802.10.2 a	Residential Code s nd referenced stan	sections dard AN	s R502.11.1 a NSI/TPI 1.						
TOP CHORD	1-2=0/37, 2-3=-1133 4-5=-841/179, 5-6=- 8-9=-2657/624, 9-10 10-11=-1696/374, 11	79/443, 6-8=-106/63 =-2657/624, I-12=0/32,	34,	 Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord. Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 83 lb down and 56 lb up at 21-9-4, 83 lb down and 56 lb up at 							MISSOL		
BOT CHORD	2-23=-790/189, 11-13=-951/237			23-9-4, 83 lb and 56 lb up 29-9-4, 83 lb down and 56	b lb up at 21-9-4, 8 down and 56 lb up at 27-9-4, 83 lb do down and 56 lb up b lb up at 33-9-4, a	o at 25- own and o at 31- nd 195	9-4, 83 lb do 1 56 lb up at 9-4, and 83 l lb down and	iwn Ib			h	S NATHA FO	
WEBS NOTES	13-14=-295/1483 3-22=-20/71, 3-21=-293/170, 4-21=-35/343, 5-21=-19/399, 5-19=-1096/196, 8-17=0/281, 8-15=-162/720, 9-15=-484/227, 10-15=-292/1257, 10-14=-15/124, 8-18=-2704/604			21-9-4, 23 lb lb down at 2 31-9-4, and 2 35-9-4 on bo	10-0 on top chord, a down at 23-9-4, 2 (7-9-4, 23 lb down at 23 lb down at 33-9 ottom chord. The d levice(s) is the resp	23 lb dov at 29-9 I-4, and esign/se	wn at 25-9-4 -4, 23 lb dow 56 lb down a election of su	/n at at			and the second s	PE-2022	LENGINE


 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.
 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not besign value to dury with with where outputs into design is based only door parameters shown, and is for an individual building design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members and property incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TPH1 Quality Criteria**, and **DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcscomponents.com)

ION EW DEVELORMENT SERVICES LEE'S'SUMMIT'SMISSOURI 03/18/2024 4:46:46

February 21,2024

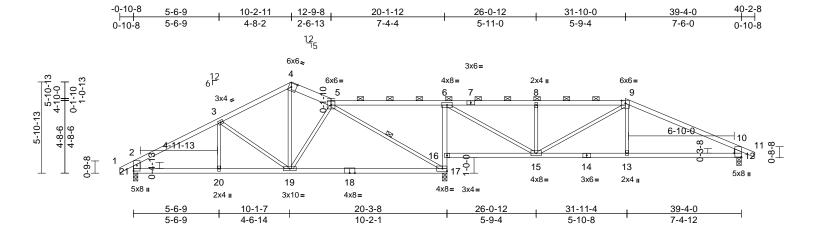
Job	Truss	Truss Type	Qty	Ply	Lot 175 WO	
B240016	C4	Roof Special	1	1	Job Reference (optional)	163738429

Run: 8,73 S Feb 6 2024 Print: 8,730 S Feb 6 2024 MiTek Industries, Inc. Tue Feb 20 09:51:49 ID:Lek3CAANj_gYbKvtCQHtmQzKvNM-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Scale = 1:74.5

Plate Offsets (2	(X, Y): [4:0-3-15,0-3-0]], [12:Edge,0-5-8], [2	1:0-2-7,0-	-4-14]									
Loading TCLL (roof) TCDL BCLL BCDL	(psf) 25.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2017	8/TPI2014	CSI TC BC WB Matrix-S	0.78 0.65 0.57	DEFL Vert(LL) Vert(CT) Horz(CT) Wind(LL)	-0.49 0.02	(loc) 17-19 17-19 17 13-15	l/defl >999 >492 n/a >999	L/d 360 240 n/a 240	PLATES MT20 Weight: 139 lb	GRIP 197/144 FT = 10%
UMBER OP CHORD SOT CHORD VEBS BRACING OP CHORD	2x4 SPF No.2 *Exce 2x4 SPF 2100F 1.8E No.2, 14-12,14-16:2v 2x3 SPF No.2 *Exce 2.0E, 12-10:2x6 SP 2 Structural wood shee 3-6-12 oc purlins, ev 2-0.0 oc purlins, (3-9)	*Except* 17-6:2x3 \$ 44 SPF No.2 pt* 21-2:2x8 SP 240 2400F 2.0E athing directly applie xcept end verticals, a	SPF 0F 3) 4) d or	Vasd=91mpl II; Exp C; En cantilever lef right expose Provide adeo This truss ha chord live loa * This truss h	7-16; Vult=115m n; TCDL=6.0psf; I closed; MWFRS t and right exposed d; Lumber DOL=1 quate drainage to s been designed ad nonconcurrent tas been designed n chord in all area	CDL=6.0 (envelope ed; end v 1.60 plate prevent for a 10.0 with any d for a liv	Dpsf; h=25ft; e) exterior zor rertical left an grip DOL=1 water pondin 0 psf bottom other live loa e load of 20.	one; nd .60 ng. ads.					
2-0-0 oc purlins (3-9-5 max.): 5-9. OT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing, Except: 6-0-0 oc bracing: 15-16. /EBS 1 Row at midpt 5-17 EACTIONS (size) 12–0-3-8, 17=0-3-8, 21=0-3-8 Max Horiz 21=101 (LC 8) Max Uplift 12=-176 (LC 9), 17=-286 (LC 9),			6) 7)	3-06-00 tall t chord and ar Bearings are Joint 17 SPF Provide mec bearing plate	y 2-00-00 wide w by other members assumed to be: 2100F 1.8E, Joi hanical connection capable of withs lift at joint 12 and	vill fit betv s. Joint 21 S int 12 SP in (by oth tanding 1	veen the both SPF 2100F 1 F No.2 . ers) of truss 36 lb uplift a	1.8E , to at joint					
ORCES	21=-136 (I Max Grav 12=890 (L 21=936 (L (Ib) - Maximum Com	.C 22), 17=1830 (LC .C 1)		International R802.10.2 a	designed in acco Residential Code nd referenced sta rlin representatio	e sections ndard AN	R502.11.1 a ISI/TPI 1.						
TOP CHORD	Tension 1-2=0/37, 2-3=-1195 4-5=-896/141, 5-6=0 8-9=-1396/305, 9-10 2-21=-820/170, 10-1	/154, 6-8=-1393/304 =-1349/252, 10-11=	^{I,} LC	or the orienta bottom chore OAD CASE(S)		along the	top and/or					TATE OF M	AISSO
BOT CHORD	20-21=-170/967, 19- 17-19=-70/777, 16-1 6-16=-1055/291, 15- 13-15=-170/1159, 12	7=-1128/258, 16=-187/67, 2-13=-167/1162									a	ST NATHA	NIEL / Y
WEBS NOTES 1) Unbalance this design	3-20=-28/63, 3-19=-2 5-19=-84/141, 5-17= 6-15=-296/1662, 8-1 9-15=-72/251, 9-13= ed roof live loads have h.	-1117/151, 5=-526/215, 0/211									ST. ST.	PE-20220	042259 E

 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.
 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not besign value to dury with with where outputs into design is based only door parameters shown, and is for an individual building design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members and property incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TPH1 Quality Criteria**, and **DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcscomponents.com)



February 21,2024

Job	Truss	Truss Type	Qty	Ply	Lot 175 WO	
B240016	C5	Roof Special	1	1	Job Reference (optional)	163738430

Run: 8,73 S Feb 6 2024 Print: 8,730 S Feb 6 2024 MiTek Industries, Inc. Tue Feb 20 09:51:50 ID:Lek3CAANj_gYbKvtCQHtmQzKvNM-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Scale = 1:74.5

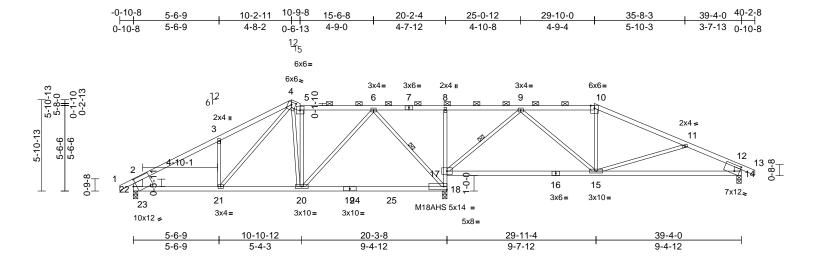
Plate Offsets (X, Y): [4:0-3-15,0-3-0]], [12:Edge,0-5-8], [2	1:0-4-5,0-2	2-8]									
Loading TCLL (roof) TCDL BCLL BCDL	(psf) 25.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018	8/TPI2014	CSI TC BC WB Matrix-S	0.96 0.64 0.78	DEFL Vert(LL) Vert(CT) Horz(CT) Wind(LL)	-0.50 0.02	(loc) 17-19 17-19 17 19-20	l/defl >978 >473 n/a >999	L/d 360 240 n/a 240	PLATES MT20 Weight: 168 lb	GRIP 197/144 FT = 10%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD	14-12,14-16:2x4 SP 2x3 SPF No.2 *Exce 2400F 2.0E Structural wood shear except end verticals,	ot* 17-6:2x4 SPF No.: No.2 opt* 21-2,12-10:2x6 S athing directly applie	;P 3) 4) d,	Vasd=91mp II; Exp C; Er cantilever let right expose Provide ade This truss ha chord live lo. * This truss l on the bottol	7-16; Vult=115mp h; TCDL=6.0psf; E hclosed; MWFRS (ft and right expose d; Lumber DOL=1 quate drainage to as been designed ad nonconcurrent has been designed m chord in all area	CDL=6. enveloped; end .60 plate prevent for a 10. with any d for a liv s where	Opsf; h=25ft; e) exterior zo vertical left ar grip DOL=1 water pondin 0 psf bottom other live loa re load of 20. a rectangle	ne; nd .60 g. ads. 0psf					
BOT CHORD	Rigid ceiling directly bracing, Except:	-7-10 max.): 5-9. gid ceiling directly applied or 10-0-0 oc acing, Except: 0-0 oc bracing: 15-16. Row at midpt 5-17			 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members. 6) Bearings are assumed to be: Joint 21 SP No.1, Joint 17 SP No.1, Joint 12 SP No.2. 								
		, 17=0-3-8, 21=0-3-8 _C 8) (LC 9), 17=-285 (LC §	,	Provide med bearing plate 21, 178 lb up	chanical connection e capable of withst plift at joint 12 and	anding 1 285 lb u	37 Ib uplift a plift a plift at joint 1	t joint					
	Max Grav 12=870 (L 21=907 (L	LC 22), 17=1886 (LC LC 1)	1), 8)	International	designed in accor Residential Code Ind referenced star	sections	s R502.11.1 a	and					
FORCES	(lb) - Maximum Com Tension 1-2=0/35, 2-3=-1172 4-5=-830/153, 5-6=0 8-9=-843/239, 9-10= 2-21=-801/171, 10-1	2/170, 3-4=-880/132, 0/212, 6-8=-840/237, 1210/243, 10-11=0/	9) _{/30,} LC					size				TATE OF M	MISS
BOT CHORD	20-21=-176/948, 19- 17-19=-66/759, 16-1 6-16=-1147/314, 15-	-20=-176/948, 17=-1215/283, -16=-293/78,								۰		S NATHA	
WEBS	13-15=-139/1011, 12 3-20=-7/80, 4-19=-5 6-15=-209/1265, 8-1 9-15=-221/35, 9-13= 5-19=-147/163	7/436, 5-17=-1133/1 15=-413/169,								1		PE-2022	BER 042259

NOTES

1) Unbalanced roof live loads have been considered for this design.

 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.
 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not besign value to dury with with where outputs into design is based only door parameters shown, and is for an individual building design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members and property incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TPH1 Quality Criteria**, and **DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcscomponents.com)

E


ESSIONAL

and

February 21,2024

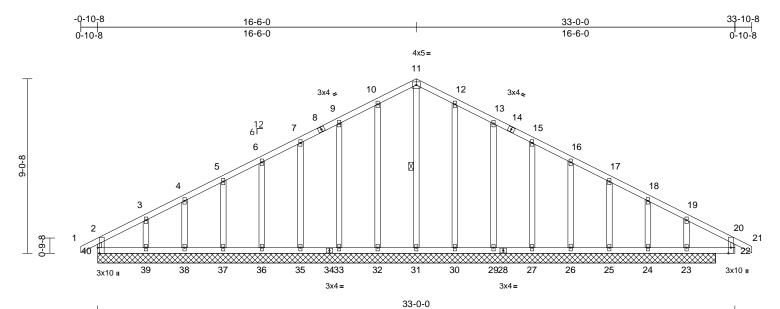
Job	Truss	Truss Type	Qty	Ply	Lot 175 WO	
B240016	C6	Roof Special	1	1	Job Reference (optional)	163738431

Run: 8.73 S Feb 6 2024 Print: 8.730 S Feb 6 2024 MiTek Industries, Inc. Tue Feb 20 09:51:50 ID:Lek3CAANj_gYbKvtCQHtmQzKvNM-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Scale = 1:74.5

Plate Offsets (X, Y):	[4:0-3-3,0-2-2], [14:0-3-15,0-4-14], [22:0-2-7,0-4-14]

-								-		-			
Loading	(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15		тс	0.96	Vert(LL)	-0.25	18-20	>960	360	MT20	197/144
TCDL	10.0	Lumber DOL	1.15		BC	0.84	Vert(CT)	-0.44	18-20	>539	240	M18AHS	142/136
BCLL	0.0*	Rep Stress Incr	YES		WB	0.45	Horz(CT)	-0.03	14	n/a	n/a		
BCDL	10.0	Code	IRC201	8/TPI2014	Matrix-S		Wind(LL)	0.06	15-17	>999	240	Weight: 147 lb	FT = 10%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD WEBS REACTIONS	2x4 SPF No.2 *Exce 2x4 SPF 2100F 1.8E No.2, 16-14,16-17:2: 2x3 SPF No.2 *Exce 2.0E, 14-12:2x6 SP Structural wood she except end verticals (5-11-2 max.): 5-10. Rigid ceiling directly bracing. 1 Row at midpt (size) 14=0-3-8, Max Horiz 22=101 (L Max Uplift 14=-186 (22=-143 (pt* 4-5:2x6 SPF No.: = *Except* 18-8:2x3 \$ x4 SPF No.2 pt* 22-2:2x8 SP 240 2400F 2.0E athing directly applie , and 2-0-0 oc purlins applied or 10-0-0 oc 9-17, 6-18 18=0-3-8, 22=0-3-8 .C 8) LC 9), 18=-268 (LC § LC 9)	2) 2 SPF 0F 3) 4) 4, 5) 6) 7) 3), 8)	Wind: ASCE Vasd=91mpl II; Exp C; En cantilever lef right expose Provide adec All plates are This truss ha chord live loa * This truss ha chord live loa * This truss ha chord live loa * This truss the on the bottor 3-06-00 tall b chord and ar Bearings are Joint 18 SPF Provide mec bearing plate	7-16; Vult=115mp r; TCDL=6.0psf; E closed; MWFRS (t and right expose d; Lumber DOL=1 quate drainage to e MT20 plates unle is been designed ad nonconcurrent has been designed n chord in all area by 2-00-00 wide w by 0 other members; assumed to be: J 2100F 1.8E, Join hanical connection e capable of withst lift at joint 14 and	BCDL=6.0 envelope d; end v. 60 plate prevent v ess other for a 10.0 with any d for a liv is where ill fit betv , with BC loint 22 s ho 14 SP n (by oth randing 1	cond gust) opps; h=25ft; s) exterior zon vertical left an grip DOL=1. water ponding wise indicate D psf bottom other live loa e load of 20.0 a rectangle veen the bott DL = 10.0psi SPF 2100F 1. F No.2. ers) of truss t 43 lb uplift at	Cat. ne; id 60 g. ids. Dpsf 8E , to to					
	Max Grav 14=887 (L 22=937 (L	.C 2)	2), 9)		designed in accor								
FORCES	(lb) - Maximum Com Tension	pression/iviaximum			Residential Code			and					
TOP CHORD	1-2=0/37, 2-3=-1204 4-5=-884/179, 5-6=- 8-9=0/219, 9-10=-93 11-12=-1309/344, 12 2-22=-809/175, 12-1	828/151, 6-8=0/206, 8/246, 10-11=-1061/ 2-13=0/30, 4=-782/228	224,) Graphical pu		n does no	ot depict the s	size				TE OF M	AISSO
BOT CHORD	21-22=-178/998, 20- 18-20=-53/452, 17-1 8-17=-346/138, 15-1 14-15=-263/1124	8=-1083/225, 7=-91/548,										S NATHA FO	NIEL
WEBS NOTES 1) Unbalance this design	3-21=-282/202, 4-21 4-20=-93/459, 6-20= 10-15=-29/156, 5-20 6-18=-950/141, 11-1 ed roof live loads have	-15/570, 9-17=-976/ =-438/146, 5=-266/190, 9-15=0/	,								A IN A	PE-20220	ER 5 502 042259 20 L EN


February 21,2024

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent toulsable personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

RELEASE ICROMETRUCTION AS NOTED ON PLANS REVIEW DEVELORMENT: SERVICES LEE'S SUMMIT'S MISSOURI 03/18/2024 4:46:47

Job	Truss	Truss Type	Qty	Ply	Lot 175 WO	
B240016	D1	GABLE	1	1	Job Reference (optional)	163738432

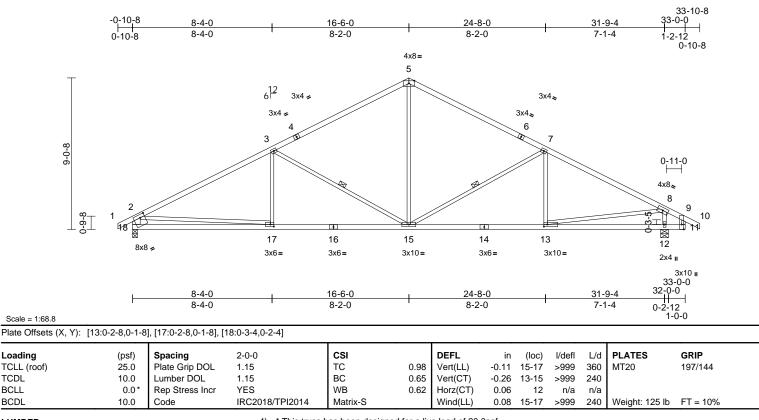
Run: 8.73 S Feb 6 2024 Print: 8.730 S Feb 6 2024 MiTek Industries, Inc. Tue Feb 20 09:51:50 ID:Lek3CAANj_gYbKvtCQHtmQzKvNM-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Scale = 1:59.7

Plate Offsets (X, Y): [40:0-3-8,Edge]

	(⊼, 1). [40.0-3-0,⊏ug	ej										
Loading TCLL (roof) TCDL BCLL BCDL	(psf) 25.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018/TPI201	4 Matrix-R	0.18	DEFL Vert(LL) Vert(CT) Horz(CT)	in n/a n/a -0.01	(loc) - - 23	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 164 lb	GRIP 197/144 FT = 10%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD WEBS REACTIONS	2x4 SPF No.2 2x3 SPF No.2 2x4 SPF No.2 Structural wood sh 10-0-0 oc purlins, Rigid ceiling directl bracing. 1 Row at midpt (size) 23=32-0 30=32-0 33=32-0 33=32-0 40=32-0 Max Horiz 40=-135 Max Uplift 23=-74 (25=-53 (30=-47 (BOT CHO D-0, D-0, D-0, D-0, WEBS NOTES	3-4=-88/222, 4-5=-5 6-7=0/256, 7-9=0/26 10-11=0/277, 11-12 13-15=0/228, 15-16 17-18=0/208, 18-19 20-21=0/31, 20-22=	2/238, £ 55, 9-10: =0/269, =0/205, =-13/18 -28/20 99=-153, 97=-153, 92=-153, 92=-153, 92=-153, 92=-153, 92=-155/7, 140/77 188/12 29=-135, 29=-135, 24=-80/7	5-6=-23/246, =0/277, 12-13=0/255 16-17=0/202 1, 19=20=-68, /86, /86, /86, /86, /86, /86, /86, /	5, 2, /230, 7/81, '81, 51/98	on 3-0 cho 9) All 10) Pro bea 40, upl 37, upl 27, upl 11) No 12) Thi Inte R8	the botto 6-00 tall ord and a bearings wide mearing plat 51 lb up ift at join 34 lb up ift at join 54 lb up ift at join n Standa s truss is ernationa	om cho by 2-0 any oth a are as chanic te capa dift at jo t 35, 53 dift at jo t 30, 54 dift at jo t 24 an ard bea s desig al Resid and ref	rd in all areas wh 0-00 wide will fit I er members. ssumed to be SPI al connection (by able of withstandii oint 32, 57 lb uplif 3 lb uplift at joint 2 oint 26, 53 lb uplift d 74 lb uplift at joint ring condition. R ned in accordance dential Code sect erenced standarce	between the bottom F No.2 . others) of truss to ng 67 lb uplift at joint ft at joint 33, 54 lb 36, 59 lb uplift at joint lift at joint 39, 47 lb 29, 53 lb uplift at joint ft at joint 25, 56 lb int 23. review required. se with the 2018 ions R502.11.1 and
FORCES	36=-53 (38=-34 (40=-67 (Max Grav 23=399 25=212 27=183 30=197 32=195 35=181 37=187 39=265	LC 8), 37=-59 (LC 8), LC 8), 39=-120 (LC 8)	Vasd= II; Exp I; Exp right e: 8), 3) Truss only. f), see St or cons), 4) All plat 5) Truss t bracec 6) Gable 7) This tru	sign. ASCE 7-16; Vult=115mph 91mph; TCDL=6.0psf; BC C; Enclosed; MWFRS (er ver left and right exposed xposed; Lumber DOL=1.6 designed for wind loads in For studs exposed to wind andard Industry Gable En sult qualified building desi tes are 2x4 MT20 unless of to be fully sheathed from of I against lateral movemen studs spaced at 2-0-0 oc. uss has been designed fo live load nonconcurrent with	DL=6.0 nvelope) ; end ve 0 plate g n the plate (norma d Detail gner as otherwis one face t (i.e. dia r a 10.0	psf; h=25ft; C) exterior zon ertical left and grip DOL=1.6 ane of the tru- al to the face) is as applicab per ANSI/TP ie indicated. e or securely agonal web). psf bottom	e; d 60 ss , , ble, Pl 1.				TE OF M NATHA FO: PE-20220 PE-20220 PE-20220 PE-20220 PE-20220	NIEL YE

February 21,2024



RELEASE OR CONSTRUCTION AS NOTED ON PLANS REVIEW DEVELOPMENT: SERVICES LEE'S SUMMIT: MISSOURI 03/18/2024 4:46:47

Job	Truss	Truss Type	Qty	Ply	Lot 175 WO	
B240016	D2	Common	7	1	Job Reference (optional)	163738433

Run: 8.73 S Feb 6 2024 Print: 8.730 S Feb 6 2024 MiTek Industries, Inc. Tue Feb 20 09:51:51 ID:Lek3CAANj_gYbKvtCQHtmQzKvNM-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

LUMBER Т

Loading

TCDL

BCLL

BCDL

WEBS

NOTES

this design.

1)

2)

3)

TOP CHORD	2x4 SPF No.2
BOT CHORD	2x4 SPF No.2
WEBS	2x3 SPF No.2 *Except* 18-2:2x6 SPF No.2
BRACING	
TOP CHORD	Structural wood sheathing directly applied,
	except end verticals.
BOT CHORD	Rigid ceiling directly applied or 10-0-0 oc
	bracing.
WEBS	1 Row at midpt 3-15, 7-15
REACTIONS	(size) 12=0-5-8, 18=0-3-8
	Max Horiz 18=-134 (LC 13)
	Max Uplift 12=-213 (LC 9), 18=-204 (LC 8)
	Max Grav 12=1593 (LC 1), 18=1493 (LC 1)
FORCES	(lb) - Maximum Compression/Maximum
	Tension
TOP CHORD	1-2=0/35, 2-3=-2285/286, 3-5=-1600/249,
	5-7=-1599/256, 7-8=-2058/256, 8-9=-148/1,
	9-10=0/31, 2-18=-1413/249, 9-11=-84/0
BOT CHORD	17-18=-329/724, 15-17=-281/1931,

13-15=-114/1750, 12-13=-10/144,

8-13=-105/1625, 8-12=-1457/301,

Unbalanced roof live loads have been considered for

Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone;

cantilever left and right exposed ; end vertical left and

right exposed; Lumber DOL=1.60 plate grip DOL=1.60

chord live load nonconcurrent with any other live loads.

This truss has been designed for a 10.0 psf bottom

Wind: ASCE 7-16; Vult=115mph (3-second gust)

3-17=0/273, 3-15=-762/268, 5-15=-50/780, 7-15=-581/240, 7-13=-104/146,

11-12=-10/144

2-17=0/1211

- 4) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- All bearings are assumed to be SPF No.2 . 5)
- Provide mechanical connection (by others) of truss to 6)
- bearing plate capable of withstanding 204 lb uplift at joint 18 and 213 lb uplift at joint 12. 7) This truss is designed in accordance with the 2018
- International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard

DEVELOPMEN SERVICES LEE'S'SUMMIT'SMISSOURI 03/18/2024 4:46:47

TION

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponent.com)

Job	Truss	Truss Type	Qty	Ply	Lot 175 WO	
B240016	D3	Roof Special	5	1	Job Reference (optional)	163738434

Run: 8,73 S Feb 6 2024 Print: 8,730 S Feb 6 2024 MiTek Industries, Inc. Tue Feb 20 09:51:51 ID:Lek3CAANj_gYbKvtCQHtmQzKvNM-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

32-0-0 8-4-0 16-6-0 21-8-12 25-5-8 30-1-12 8-4-0 8-2-0 5-2-12 3-8-12 4-8-4 1-10-4 4x8= 5 12 6Г 3x4 🚽 3x6 👟 3x4 6 6-9-14 9-0-8 3x4 👟 3 9-0-8 7 4x8 =2x4 II 8 g I-2-10 2-2-10 2-2-10 9-9-9 ÷ 11 13 . 4x8= 3x4= 16 15 14 8x8 🞜 2x4 II 3x6= 3x6= 8x8= 4x10= 8-4-0 16-6-0 21-10-0 25-5-8 32-0-0 8-4-0 8-2-0 5-4-0 3-7-7 6-6-9

Scale = 1:61.5

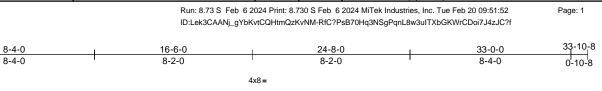
Plate Offsets (X, Y): [14:0-4-0,0-3-4], [16:0-2-8,0-1-8], [17:0-3-4,0-2-4]

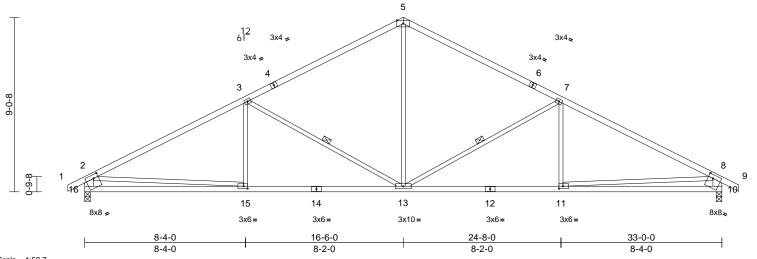
Loading (psf) TCLL (roof) 25.0 TCDL 10.0 BCLL 0.0* BCDL 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018	3/TPI2014	CSI TC BC WB Matrix-S	0.99 0.73 0.64	DEFL Vert(LL) Vert(CT) Horz(CT) Wind(LL)		(loc) 11-12 14-16 10 11-12	l/defl >999 >999 n/a >999	L/d 360 240 n/a 240	PLATES MT20 Weight: 130 lb	GRIP 197/144 FT = 10%
LUMBER TOP CHORD 2x4 SPF No.2 BOT CHORD 2x4 SPF No.2 *Exce WEBS 2x3 SPF No.2 *Exce BRACING TOP CHORD Structural wood she except end verticals (6-0-0 max.): 8-9. BOT CHORD Rigid ceiling directly bracing. WEBS 1 Row at midpt	ept* 13-6:2x3 SPF No ept* 17-2:2x6 SPF No eathing directly applie s, and 2-0-0 oc purlin r applied or 10-0-0 oc 3-14, 6-14 nanical, 17=0-3-8 LC 5) .C 9), 17=-29 (LC 8)	5) 5,2 5,2 6, 6, 7) s 8) 5 9) 10	* This truss I on the bottor 3-06-00 tall I chord and ar All bearings Refer to gird Provide mec bearing plate 10 and 29 lb This truss is International R802.10.2 a) Graphical pu	has been designee n chord in all area by 2-00-00 wide w by other members are assumed to be er(s) for truss to the hanical connection a capable of withsi uplift at joint 17. designed in accor Residential Code nd referenced sta ritin representation ation of the purlin- d.	is where ill fit betw e SPF No uss conr n (by oth anding 1 dance w sections ndard AN n does no	e load of 20.0 a rectangle veen the botto o.2. ers) of truss t 5 lb uplift at j ith the 2018 i R502.11.1 a ISJ/TPI 1.	Dpsf om co oint und				1 ***************	
FORCES (lb) - Maximum Com Tension	npression/Maximum	LC		Standard								
TOP CHORD 1-2=0/35, 2-3=-2310 5-6=-1548/84, 6-7=- 8-9=-87/0, 9-10=-77	2218/52, 7-8=-2610/	/22,										
BOT CHORD 16-17=-187/715, 14 13-14=0/103, 12-13 11-12=0/2293, 10-1	-16=-61/1954, =0/79, 6-12=0/720,											
WEBS 3-16=0/281, 3-14=-7 12-14=0/1854, 6-14	765/125, 5-14=0/865 =-932/89, 7-12=-483 248/89, 8-10=-2768/ been considered for	/42, 102,									STATE OF M	MISSOURIEL

- Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope); cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
- Provide adequate drainage to prevent water ponding. 3)
- 4) This truss has been designed for a 10.0 psf bottom
- chord live load nonconcurrent with any other live loads.

 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.
 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not besign value to dury with with where outputs into design is based only door parameters shown, and is for an individual building design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members and property incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TPH1 Quality Criteria**, and **DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcscomponents.com)

KAMBER


February 21,2024


PE-20220422

ARSIONAL ET

Job	Truss	Truss Type	Qty	Ply	Lot 175 WO	
B240016	D4	Common	3	1	Job Reference (optional)	163738435

-0-10-8 0-10-8

Scale = 1:59.7

Plate Offsets (X, Y): [10:0-3-0,0-2-4], [11:0-2-8,0-1-8], [15:0-2-8,0-1-8], [16:0-3-0,0-2-4]

Loading	(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15		тс	1.00	Vert(LL)		13-15	>999	360	MT20	197/144
TCDL	10.0	Lumber DOL	1.15		BC	0.66	Vert(CT)	-0.27	13-15	>999	240		
BCLL	0.0*	Rep Stress Incr	YES		WB	0.62	Horz(CT)	0.07	10	n/a	n/a		
BCDL	10.0	Code	IRC2018/T	PI2014	Matrix-S		Wind(LL)	0.08	13-15	>999	240	Weight: 125 lb	FT = 10%
LUMBER TOP CHORD BOT CHORD WEBS	2x4 SPF No.2 2x4 SPF No.2 2x3 SPF No.2 *Exce	pt* 16-2.10-8:2x6 S	0	n the bottom -06-00 tall b	as been designed a chord in all area y 2-00-00 wide wi y other members.	s where ill fit betw	a rectangle						
	No.2	pt 10 2,10 0.2.10 0		II bearings a	re assumed to be	e SPF N	o.2 .						
BRACING					nanical connection								
TOP CHORD	Structural wood she	athing directly applie			capable of withst		207 lb uplift at	t joint					
	except end verticals				uplift at joint 10. designed in accor		ith the 2019						
BOT CHORD	Rigid ceiling directly	applied or 10-0-0 or			Residential Code			and					
WEBS	bracing. 1 Row at midpt	7-13, 3-13			d referenced star								
REACTIONS	(size) 10=0-3-8,	,	LOAD	CASE(S)	Standard								
	Max Horiz 16=135 (L												
	Max Uplift 10=-207 (LC 9), 16=-207 (LC	8)										
	Max Grav 10=1542	(LC 1), 16=1542 (LC	C 1)										
FORCES	(lb) - Maximum Com	pression/Maximum											
	Tension												
TOP CHORD	1-2=0/35, 2-3=-2380												
	5-7=-1701/263, 7-8=		5,										
BOT CHORD	2-16=-1462/251, 8-1												
BOT CHORD	15-16=-328/733, 13- 11-13=-151/2016, 10	,											
WEBS	5-13=-56/873, 7-13=		71.										
	3-13=-759/267, 3-15	,	,									2000	TOP
	8-11=-14/1287											A OF M	AISO
NOTES											1	7,50	N.O.
1) Unbalance	ed roof live loads have	been considered for	r								8	STATE OF M	NIFI X
this design											R		
	CE 7-16; Vult=115mph										the	1 12FO	

 Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60

 This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITeW® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANS/TPH Claulity Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

PE-2022042259

February 21,2024

ESSIONAL E

Job	Truss	Truss Type	Qty	Ply	Lot 175 WO	
B240016	D5	Common	2	1	Job Reference (optional)	163738436

Run: 8.73 S Feb 6 2024 Print: 8.730 S Feb 6 2024 MiTek Industries, Inc. Tue Feb 20 09:51:52 ID:Lek3CAANj_gYbKvtCQHtmQzKvNM-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Scale = 1:59.4

Plate Offsets (X, Y): [8:Edge,0-5-13], [10:0-2-8,0-1-8], [14:0-2-8,0-1-8], [15:0-3-0,0-2-4]

Loading	(psf)	Spacing	2-0-0		csi		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15		тс	0.97	Vert(LL)	-0.12	10-12	>999	360	MT20	197/144
TCDL	10.0	Lumber DOL	1.15		BC	0.67	Vert(CT)	-0.27	10-12	>999	240		
BCLL	0.0*	Rep Stress Incr	YES		WB	0.65	Horz(CT)	0.07	9	n/a	n/a		
BCDL	10.0	Code	IRC201	8/TPI2014	Matrix-S		Wind(LL)	0.08	10-12	>999	240	Weight: 124 lb	FT = 10%
LUMBER			4)		nas been designed			0psf					
TOP CHORD	2x4 SPF 2100F 1.8E SPF No.2	E *Except* 4-5,6-5:2>	(4		n chord in all area by 2-00-00 wide w			tom					
BOT CHORD	2x4 SPF No.2				ny other members.								
WEBS	2x3 SPF No.2 *Exce 9-8:2x4 SPF 2400F		o.2, 5) 6	0	are assumed to be hanical connection			to					
BRACING	0.012/01 01 1 2 1001		- /		capable of withst								
TOP CHORD	Structural wood she	athing directly applie	ed.		b uplift at joint 9.								
	except end verticals		7		designed in accor								
BOT CHORD			;		Residential Code			and					
	bracing.				nd referenced star	ndard AN	ISI/TPI 1.						
WEBS	1 Row at midpt	7-12, 3-12	L	OAD CASE(S)	Standard								
REACTIONS	(size) 9=0-3-8, *	15=0-3-8											
	Max Horiz 15=142 (I	_C 12)											
	Max Uplift 9=-182 (L	.C 9), 15=-207 (LC 8)										
	Max Grav 9=1467 (I	LC 1), 15=1547 (LC	1)										
FORCES	(lb) - Maximum Corr	pression/Maximum											
	Tension												
TOP CHORD			4,										
	5-7=-1714/264, 7-8=	,											
DOTOLODD	2-15=-1467/251, 8-9												
BOT CHORD	,												
WEBS	10-12=-179/2057, 9	-10=-119/584 =-794/279, 7-10=0/27	76										The
WEB5	3-12=-64/895, 7-12=	,	,									OFI	ALC
	8-10=-74/1477	+=0/272, 2-14=-12/13	500,									ACEUT	NSS W
NOTES	0 10-14/14/1										6	THE OF I	N.SY
NOTES	ed roof live loads have	haan appaidered for									R	S NATHA	NIEL VEN
this design		been considered for								5	A.	FO	X
	n. CE 7-16; Vult=115mph	(3-second aust)								(VA	1+it	
	CE T = 10, $Vall = 110 inplies on the second sec$		`ot								KT		

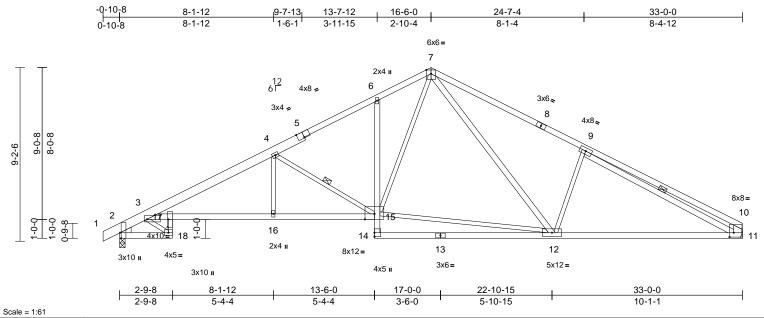
 Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60

 This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

DEVELORMENT: SERVICES LEE'S'SUMMIT'SMISSOURI 03/18/2024 4:46:47

TION

'IEW


Page: 1

Job	Truss		Truss Type			Qty	Ply	Lot	175 WC)			
B240016	D6		Roof Speci	al		2	1				dar - P		163738437
	Waverly, KS - 66871,				Run: 8.73 S Feb		: 8.730 S Feb		<u>Refere</u> MiTek In			e Feb 20 09:51:52	Page: 1
	··· ,, · · · · · ,											KWrCDoi7J4zJC?f	
	-0-10-8	8-4-0	9-7-	13 1	5-10-12	16-6-0 ₂₀)-5-12		25-7-6	1		33-0-0	1
	0-10-8	8-4-0	1-3-		6-2-15		11-12		5-1-10	1		7-4-10	
						6x6=							
						3x4 II							
ТТ													
			1 <u>2</u> 6	4x8 ≠		11	3x1	~					
			3x4 .	. /			- The second sec		3x6 ≈ 9				
φ φ	b		4	5				7	R	3x	6.		
9-2-6 9-0-8 8-0-8				-							10		
Ó					16			-15				\sim	
				_	10		6x18=	×					
	2 2		<u> </u>		₽ 20	0-0 -0-0 19 ෆ්	okro -						11 11 11 11 11 11 11 11 11 11 11 11 11
			21		18 3x4=	17	14			<u>_</u>			
		1x5=	4x8=	•	2x4 II	2x4 II	2x	:4 u		13			8x8=
		3x6 II			2x4 u	10x1	6=			5x	12=		
	2-9-8	8-4-		13-6-0	15-9-0		-4-0		25-7-6			33-0-0	
Scale = 1:64.9	2-9-8	5-6-	8	5-2-0	2-3-0 ₍	-3-8 4-	3-8		5-3-6			7-4-10	
ate Offsets (>	<, Y): [2:0-3-8,Edge], [3:0-	0-7,0-1-13], [5:0)-4-0,Edge], [12	2:Edge,0-5-1	3], [16:0-8-4,Ed	ge], [21:0-2	-8,0-2-0], [2	2:0-3-0	,0-0-8]				
oading		cing	2-0-0		SI		EFL	in	(loc)	l/defl	L/d	PLATES	GRIP
CLL (roof)		e Grip DOL 1ber DOL	1.15 1.15		C C		. ,	-0.31 -0.57		>999 >683	360 240	MT20	197/144
	0.0* Rep	Stress Incr	YES		/B latrix-S	0.94 Ho	orz(CT)	0.43	12	n/a	n/a	Waight 404 lb	FT 400/
	10.0 Coo	le	IRC2018/TPI					0.18	21-22	>999	240	Weight: 161 lb	FT = 10%
UMBER OP CHORD	2x4 SPF No.2 *Except* 1-	5:2x6 SP 2400	F Vas	d=91mph; T	CDL=6.0psf; B	CDL=6.0psf	; h=25ft; Ca	ıt.					
OT CHORD	2.0E 2x4 SPF No.2 *Except* 23	3-22,20-18:2x3			sed; MWFRS (e ed ; end vertical								
VEBS	No.2, 3-19:2x4 SPF 2400 2x3 SPF No.2 *Except* 12				.60 plate grip D een designed for		f bottom						
/EDGE	Left: 2x4 SPF No.2		cho	rd live load r	nonconcurrent v been designed	vith any oth	er live loads						
RACING OP CHORD	Structural wood sheathing	directly applied	d on	the bottom c	hord in all areas	where a re	ectangle						
OT CHORD	except end verticals. Rigid ceiling directly appli	ed or 10-0-0 oc	cho	rd and any o	2-00-00 wide wil other members.			1					
	bracing, Except: 6-0-0 oc bracing: 17-18.		5) All		assumed to be as) for truss to tru								
/EBS	1 Row at midpt 8-16				nical connection			nt					
EACTIONS	(size) 2=0-3-8, 12= N Max Horiz 2=112 (LC 5)	echanical	2 a	nd 17 lb uplif	t at joint 12.	-							
1	$ V a \times U \ge Z (LO J)$	217 (I C 9)	8) Thi	s liuss is des			116 2010						
I	Max Uplift 2=-28 (LC 8), 1	. ,	、 Inte		sidential Code		02.11.1 and	ł					
ļ	Max Uplift 2=-28 (LC 8), 1 Max Grav 2=1544 (LC 1), (Ib) - Maximum Compress	12=1471 (LC 1) Inte	02.10.2 and	sidential Code	sections R5	02.11.1 and	1					
ORCES	Max Uplift 2=-28 (LC 8), 1 Max Grav 2=1544 (LC 1),	12=1471 (LC 1 ion/Maximum) Inte		sidential Code	sections R5	02.11.1 and	ł					
ORCES	Max Uplift 2=-28 (LC 8), 1 Max Grav 2=1544 (LC 1), (lb) - Maximum Compress Tension 1-2=0/3, 2-3=-1580/35, 3- 4-6=-2644/41, 6-7=-2414/	12=1471 (LC 1 ion/Maximum 4=-3046/68, 111, 7-8=-2317) Inte R80 LOAD	02.10.2 and	sidential Code	sections R5	02.11.1 and	I					
ORCES	Max Uplift 2=-28 (LC 8), 1 Max Grav 2=1544 (LC 1), (lb) - Maximum Compress Tension 1-2=0/3, 2-3=-1580/35, 3- 4-6=-2644/41, 6-7=-2414/ 8-10=-3581/0, 10-11=-24 ⁻¹ 11-12=-1392/57	12=1471 (LC 1 ion/Maximum 4=-3046/68, 111, 7-8=-2317, 15/39,) Inte R80 LOAD	02.10.2 and	sidential Code	sections R5	02.11.1 and	1				STOR N	
ORCES	Max Uplift 2=-28 (LC 8), 1 Max Grav 2=1544 (LC 1), (lb) - Maximum Compress Tension 1-2=0/3, 2-3=-1580/35, 3- 4-6=-2644/41, 6-7=-2414/ 8-10=-3581/0, 10-11=-24 11-12=-1392/57 2-23=-96/807, 22-23=-56/ 3-22=-60/2623, 21-22=-60	12=1471 (LC 1 ion/Maximum 4=-3046/68, 111, 7-8=-2317 15/39, 587, 5/2725, 20-21=0) Inte R80 LOAD (02.10.2 and	sidential Code	sections R5	02.11.1 and	1				TE OF M	AISSOF
ORCES OP CHORD	Max Uplift 2=-28 (LC 8), 1 Max Grav 2=1544 (LC 1), (lb) - Maximum Compress Tension 1-2=0/3, 2-3=-1580/35, 3- 4-6=-2644/41, 6-7=-2414/ 8-10=-3581/0, 10-11=-24: 11-12=-1392/57 2-23=-96/807, 22-23=-56/	12=1471 (LC 1 ion/Maximum 4=-3046/68, 111, 7-8=-2317 15/39, 587, 5/2725, 20-21=0 , 17-18=-26/0,) Inte R80 LOAD (//56, D/88,	02.10.2 and	sidential Code	sections R5	02.11.1 and	1			H.	STATE OF M	MIEL 15 V
I	Max Uplift 2=-28 (LC 8), 1 Max Grav 2=1544 (LC 1), (lb) - Maximum Compress Tension 1-2=0/3, 2-3=-1580/35, 3- 4-6=-2644/41, 6-7=-2414/ 8-10=-3581/0, 10-11=-24 ⁻ 11-12=-1392/57 2-23=-96/807, 22-23=-56/ 3-22=-60/2623, 21-22=-60 19-20=0/113, 18-20=0/29 17-19=0/63, 16-19=0/134 15-16=0/3129, 14-15=0/7	12=1471 (LC 1 ion/Maximum 4=-3046/68, 111, 7-8=-2317, 5/39, 587, 5/2725, 20-21=0 , 17-18=-26/0, 6-16=-196/198 9, 8-15=0/1190,) Inte R80 LOAD (//56,)/88, 3,	02.10.2 and	sidential Code	sections R5	02.11.1 and	1				STATE OF M	MIEL 15 V
ORCES OP CHORD	Max Uplift 2=-28 (LC 8), 1 Max Grav 2=1544 (LC 1), (lb) - Maximum Compress Tension 1-2=0/3, 2-3=-1580/35, 3- 4-6=-2644/41, 6-7=-2414/ 8-10=-3581/0, 10-11=-24: 11-12=-1392/57 2-23=-96/807, 22-23=-56/ 3-22=-60/2623, 21-22=-61 19-20=0/113, 18-20=0/29 17-19=0/63, 16-19=0/134 15-16=0/3129, 14-15=0/7 13-14=0/33, 12-13=-43/5 3-23=-871/112, 4-21=-43-	12=1471 (LC 1 ion/Maximum 4=-3046/68, 111, 7-8=-2317, 15/39, 587, 5/2725, 20-21=0, 17-18=-26/0, 6-16=-196/198, 9, 8-15=0/1190, 15, 1/106,) Inte R80 LOAD (//56,)/88, 3,	02.10.2 and	sidential Code	sections R5	02.11.1 and	1				S/ NATHA	MIEL YON
ORCES OP CHORD OT CHORD	$\begin{array}{llllllllllllllllllllllllllllllllllll$	12=1471 (LC 1 ion/Maximum 4=-3046/68, 111, 7-8=-2317, 5/39, 587, 6/2725, 20-21=0, 17-18=-26/0, 6-16=-196/198 9, 8-15=0/1190, 55 1/106, 23/55, /2374,) Inte R80 LOAD (//56,)/88, 3,	02.10.2 and	sidential Code	sections R5	02.11.1 and	1				ATHA FOI	ER TOT
ORCES OP CHORD OT CHORD	$\begin{array}{llllllllllllllllllllllllllllllllllll$	12=1471 (LC 1 ion/Maximum 4=-3046/68, 111, 7-8=-2317, 5/39, 587, 5/2725, 20-21=0 , 17-18=-26/0, 6-16=-196/198 9, 8-15=0/1190, 55 4/106, 23/55, /2374, 28/65,) Inte R80 LOAD (//56,)/88, 3,	02.10.2 and	sidential Code	sections R5	02.11.1 and	1				ATHA FOI	ER TAT
DRCES DP CHORD DT CHORD EBS DTES	Max Uplift 2=-28 (LC 8), 1 Max Grav 2=1544 (LC 1), (lb) - Maximum Compress Tension 1-2=0/3, 2-3=-1580/35, 3-4-6=-2644/41, 6-7=-2414/8-10=-3581/0, 10-11=-24'11-12=-1392/572-23=-96/807, 22-23=-56/3-22=-60/2623, 21-22=-6019-20=0/113, 18-20=0/2917-19=0/63, 16-19=0/13415-16=0/3129, 14-15=0/713-14=0/33, 12-13=-43/5;3-23=-871/112, 4-21=-43/4-16=-637/149, 8-16=-14'7-16=-116/1795, 13-15=010-15=0/1073, 10-13=-1211-13=0/1532, 16-21=-90	12=1471 (LC 1 ion/Maximum 4=-3046/68, 111, 7-8=-2317, 5/39, 587, 5/2725, 20-21=C , 17-18=-26/0, 6-16=-196/198 9, 8-15=0/1190, 35 4/106, 23/55,) Inte R80 LOAD (//56,)/88, 3,	02.10.2 and	sidential Code	sections R5	02.11.1 and	1				ATHA FOI	ER TAT
DRCES DP CHORD DT CHORD EBS DTES	Max Uplift 2=-28 (LC 8), 1 Max Grav 2=1544 (LC 1), (lb) - Maximum Compress Tension 1-2=0/3, 2-3=-1580/35, 3- 4-6=-2644/41, 6-7=-2414/ 8-10=-3581/0, 10-11=-24' 11-12=-1392/57 2-23=-96/807, 22-23=-56/ 3-22=-60/2623, 21-22=-61 19-20=0/113, 18-20=0/29 17-19=0/63, 16-19=0/134 15-16=0/3129, 14-15=0/ 13-14=0/33, 12-13=-43/5 3-23=-871/112, 4-21=-43/ 4-16=-637/149, 8-16=-14/ 7-16=-116/1795, 13-15=0 10-15=0/1073, 10-13=-12 11-13=0/1532, 16-21=-90	12=1471 (LC 1 ion/Maximum 4=-3046/68, 111, 7-8=-2317, 5/39, 587, 5/2725, 20-21=C , 17-18=-26/0, 6-16=-196/198 9, 8-15=0/1190, 35 4/106, 23/55,) Inte R80 LOAD (//56,)/88, 3,	02.10.2 and	sidential Code	sections R5	02.11.1 and	1				FOL	K HAR

Job	Truss	Truss Type	Qty	Ply	Lot 175 WO	
B240016	D7	Roof Special	3	1	Job Reference (optional)	163738438

Run: 8,73 S Feb 6 2024 Print: 8,730 S Feb 6 2024 MiTek Industries, Inc. Tue Feb 20 09:51:53 ID:Lek3CAANj_gYbKvtCQHtmQzKvNM-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Plate Offsets (X, Y): [2:0-3-8,Edge], [3:0-8-8,0-2-6], [5:0-4-0,Edge], [10:0-2-12,0-2-12], [17:0-5-0,0-0-8]

Loading	(psf)	Spacing	2-0-0		csi		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15		TC	0.94	Vert(LL)	-0.30	16-17	>999	360	MT20	197/144
TCDL	10.0	Lumber DOL	1.15		BC	0.97	Vert(CT)	-0.57	16-17	>693	240		
BCLL	0.0*	Rep Stress Incr	YES		WB	0.68	Horz(CT)	0.29	11	n/a	n/a		
BCDL	10.0	Code	IRC201	8/TPI2014	Matrix-S		Wind(LL)	0.18	16-17	>999	240	Weight: 149 lb	FT = 10%
LUMBER TOP CHORD BOT CHORD	No.2, 1-5:2x6 SPF N	lo.2		Vasd=91mpl II; Exp C; En	7-16; Vult=115m h; TCDL=6.0psf; I closed; MWFRS bosed ; end vertic	BCDL=6.0 (envelope	Dpsf; h=25ft; e); cantilever	left					
	3-15:2x4 SPF 2400		,,	Lumber DOL	=1.60 plate grip [DOL=1.60)						
WEBS	2x3 SPF No.2 *Exce No.2, 11-10:2x6 SP		PF 3)		as been designed ad nonconcurrent			ads.					
WEDGE	Left: 2x4 SPF No.2		4)		nas been designe			0psf					
BRACING					m chord in all area								
TOP CHORD	Structural wood she 1-8-10 oc purlins, e		ed or		by 2-00-00 wide w ny other members		veen the bott	om					
BOT CHORD	Rigid ceiling directly bracing.		5) 6)	0	are assumed to b er(s) for truss to t								
WEBS		4-15, 9-11	7)		hanical connectio								
		11= Mechanical			e capable of withs	standing 2	8 lb uplift at j	joint					
	Max Horiz 2=113 (L0 Max Uplift 2=-28 (L0 Max Grav 2=1541 (I	C 7) C 8), 11=-17 (LC 9)	8) 1)	This truss is International	uplift at joint 11. designed in acco Residential Code nd referenced sta	e sections	R502.11.1 a	and					
FORCES	(lb) - Maximum Com Tension	pression/Maximum	L	DAD CASE(S)									
TOP CHORD	1-2=0/3, 2-3=-1716/ 4-6=-2184/64, 6-7=- 7-9=-2232/124, 9-10	2033/117,	43/88										
BOT CHORD		18=-68/713, 17=-60/2744, -15=0/163, 6-15=-18									Å	TATE OF I	MISSOL
WEBS	3-18=-1070/131, 4-7 4-15=-1084/115, 12 7-15=-67/965, 7-12= 9-11=-1673/0	16=0/394, -15=0/1255,	/200,								Y	S NATHA	
NOTES											Nº 5	WYNAM	AR MAY

Unbalanced roof live loads have been considered for 1) this design.

E

PE-2022042259

February 21,2024

SSIONAL

Page: 1

 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.
 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not besign value to dury with with where outputs into design is based only door parameters shown, and is for an individual building design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members and property incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TPH1 Quality Criteria**, and **DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcscomponents.com)

Job	Truss	Truss Type	Qty	Ply	Lot 175 WO	
B240016	D8	GABLE	1	1	Job Reference (optional)	163738439

Run: 8,73 S Feb 6 2024 Print: 8,730 S Feb 6 2024 MiTek Industries, Inc. Tue Feb 20 09:51:53 ID:Lek3CAANj_gYbKvtCQHtmQzKvNM-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

-0-10-8 0-10-8 33-10-8 16-6-0 33-0-0 0-10-8 16-6-0 16-6-0 4x5= 11 10 12 3x4 👟 3x4 🤜 9 13 14 8 12 61 15 5 6 16 9-0-8 17 5 X 18 л 19 3 2 20 8-6-0 21 (4n 22 ***** \times ***** ∞ \times \times \times \times \propto 39 38 37 36 35 3433 32 31 30 2928 27 26 25 24 23 3x10 II 3x10 II 3x4= 3x4=

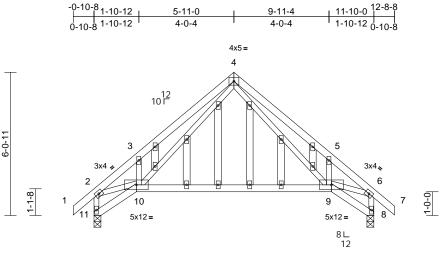
33-	

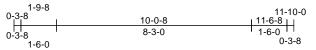
Scale = 1:59.7

Plate Offsets (X, Y): [22:0-3-8,Edge], [40:0-3-8,Edge]

		1	-		_							
Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15	тс	0.07	Vert(LL)	n/a	-	n/a	999	MT20	197/144
TCDL	10.0	Lumber DOL	1.15	BC	0.06	Vert(CT)	n/a	-	n/a	999		
BCLL	0.0*	Rep Stress Incr	YES	WB	0.16	Horz(CT)	0.01	22	n/a	n/a		
BCDL	10.0	Code	IRC2018/TPI2014	Matrix-R							Weight: 164 lb	FT = 10%
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD WEBS REACTIONS	 2x4 SPF No.2 Structural wood she 6-0-0 oc purlins, ex Rigid ceiling directly bracing. 1 Row at midpt (size) 22=33-0-(29=33-0-(32=33-0-(36=33-0-(39=33-0-(40=-134 (Max Horiz 40=-134 (Max Uplift 22=-17 (L 24=-39 (L 	athing directly applied cept end verticals. applied or 10-0-0 oc 11-31 0, 23=33-0-0, 24=33-0 0, 30=33-0-0, 31=33-0 0, 33=33-0-0, 35=33-0 0, 37=33-0-0, 38=33-0 0, 40=33-0-0 LC 13) C 5), 23=-103 (LC 9), C 9), 25=-58 (LC 9), C 9), 27=-53 (LC 9),	TOP CHORD or BOT CHORD -0, -0, -0,	2-40=-163/51, 1- 3-4=-91/95, 4-5= 6-7=-50/173, 7-9 10-11=-45/248, 1 12-13=-42/138, 1 15-16=-42/138, 1 17-18=-46/86, 18 20-21=0/32, 20-2	-73/121, § =-42/198, 11-12=-45 13-15=-42 16-17=-42 3-19=-66/6 22=-163/3 88-39=-33 38-39=-33 31-32=-33 31-32=-33 29-30=-33 26-27=-33 24-25=-33 22-23=-33 0-32=-150/ 36=-140// 39=-151// 39=-151// 31-29=-13	6-6=-61/147, 9-10=-42/225 /240, /163, /112, 60, 19-20=-10 0 /113, /113, /113, /113, /113, /113, /113, /113, /113, /113, /113, /113, /13, /	4/49, 9/81,	 8) Th char char char char char char char cha	is truss h bord live lo his truss the botto 66-00 tall ord and a bearings boide me aring plat , 17 lb up lift at join , 53 lb up lift at join , 53 lb up lift at join t 23.	has bee bad not has be bom cho by 2-0 any oth s are as chanic te capa blift at ju t 33, 5- blift at ju t 33, 4- blift at ju t 25, 3: s design al Resid and ref	ed at 2-0-0 oc. en designed for a nconcurrent with een designed for rd in all areas wi 00-00 wide will fit her members. ssumed to be SF al connection (by able of withstand oint 22, 50 lb upl 4 lb uplift at joint oint 37, 35 lb upl 9 lb uplift at joint oint 27, 53 lb upl 9 lb uplift at joint int accordan dential Code sec ferenced standar	a 10.0 psf bottom any other live loads. a live load of 20.0psf here a rectangle between the bottom PF No.2. y others) of truss to ing 42 lb uplift at joint ift at joint 32, 57 lb 35, 53 lb uplift at joint ift at joint 38, 116 lb 30, 58 lb uplift at joint ift at joint 26, 58 lb 24 and 103 lb uplift at ce with the 2018 tions R502.11.1 and
FORCES	32=-50 (L 35=-54 (L 37=-59 (L 39=-116 (24=175 (L 26=180 (L 29=179 (L 31=209 (L 33=179 (L 36=180 (L)	LC 1), 25=181 (LC 22) LC 1), 27=180 (LC 1), LC 1), 30=190 (LC 22) LC 18), 32=190 (LC 22) LC 18), 35=180 (LC 1), LC 1), 35=180 (LC 21) LC 1), 39=199 (LC 21) LC 1), 39=199 (LC 21)	this desig 2) Wind: AS Vasd=911 II; Exp C; cantilever right expC 3) Truss de only. For see Stand or consult 4) All plates 5) Gable rec 6) Truss to t	19-23=-151/112 ed roof live loads have n. CE 7-16; Vult=115n mph; TCDL=6.0psf; Enclosed; MWFRS left and right expos sed; Lumber DOL= signed for wind load studs exposed to w lard Industry Gable t qualified building d are 2x4 MT20 unle: pures continuous bo pe fully sheathed fro gainst lateral movem	nph (3-sea BCDL=6. (envelop sed; end 1.60 plate ds in the p vind (norm End Deta lesigner a ss otherw ottom choo	cond gust) Opsf; h=25ft; () exterior zor vertical left an grip DOL=1.1 lane of the tru al to the face) ills as applicat s per ANSI/TF se indicated. d bearing. the or securely	Cat. ne; d 60 uss), ole, PI 1.		,		PE-2022	NULL NULL ENCIT

Course February 21,2024




TION IEW DEVELOPMENT SERVICES LEE'S'SUMMIT'SMISSOURI 03/18/2024 4:46:47

Job	Truss	Truss Type	Qty	Ply	Lot 175 WO	
B240016	E1	GABLE	1	1	Job Reference (optional)	163738440

Run: 8,73 S Feb 6 2024 Print: 8,730 S Feb 6 2024 MiTek Industries, Inc. Tue Feb 20 09:51:54 ID:p4_c7DvQapVS5sHzVsjKN5yiJAW-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale =	1:48.7
---------	--------

FORCES

TOP CHORD

BOT CHORD

this design.

WEBS

NOTES

2)

3)

4) 5)

6)

Max Grav 8=592 (LC 1), 11=592 (LC 1)

Tension

(lb) - Maximum Compression/Maximum

1-2=0/44, 2-3=-860/115, 3-4=-943/273, 4-5=-896/208, 5-6=-844/48, 6-7=0/44, 2-11=-602/98. 6-8=-597/58

1) Unbalanced roof live loads have been considered for

Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone;

cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60

Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable,

or consult qualified building designer as per ANSI/TPI 1.

All plates are 2x4 MT20 unless otherwise indicated.

Truss to be fully sheathed from one face or securely

braced against lateral movement (i.e. diagonal web).

Gable studs spaced at 1-4-0 oc.

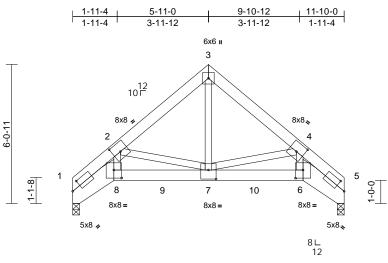
10-11=-199/216, 9-10=-27/344, 8-9=-20/45

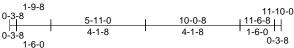
4-9=-155/511, 5-9=-239/202, 4-10=-208/622, 3-10=-233/198, 2-10=-51/633, 6-9=-1/633

Loading	(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15		TC	0.22	Vert(LL)	-0.15	9-10	>913	360	MT20	197/144
TCDL	10.0	Lumber DOL	1.15		BC	0.51	Vert(CT)	-0.32	9-10	>441	240		
BCLL	0.0*	Rep Stress Incr	YES		WB	0.22	Horz(CT)	0.04	8	n/a	n/a		
BCDL	10.0	Code	IRC2018	3/TPI2014	Matrix-S		Wind(LL)	0.02	9-10	>999	240	Weight: 66 lb	FT = 10%
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	5-9-10 oc purlins, e Rigid ceiling directly bracing.	applied or 10-0-0 oc 11=0-3-8 LC 6)	10 11	chord live lo * This truss I on the botton 3-06-00 tall I chord and ai All bearings) Bearing at jc using ANSI/ designer sho) Provide mec bearing plata 11 and 71 lb	as been designe ad nonconcurre has been design m chord in all at by 2-00-00 wide ny other membe are assumed to pint(s) 11, 8 con TPI 1 angle to g ould verify capa chanical connec e capable of wit uplift at joint 8.	nt with any reas where a will fit betw ers. b be SPF No siders para rrain formula city of beari tion (by oth hstanding 7	other live loa e load of 20. a rectangle veen the bott 0.2. llel to grain v a. Building ng surface. ers) of truss 1 lb uplift at	ads. Opsf tom value to					

12) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard


TION


DE ELOPMENT SERV LEE'S'SUMMIT'SMISSOURI 03/18/2024 4:46:47

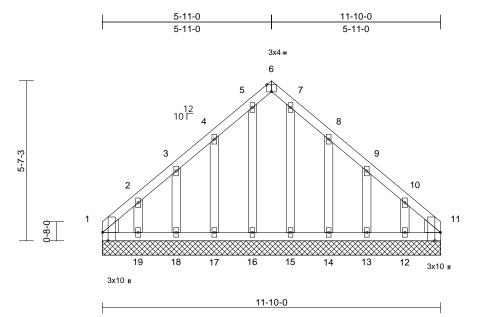
 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.
 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponent.com)

Job	Truss	Truss Type	Qty	Ply	Lot 175 WO	
B240016	E2	Roof Special Girder	1	2	Job Reference (optional)	163738441

Run: 8.73 S Feb 6 2024 Print: 8.730 S Feb 6 2024 MiTek Industries, Inc. Tue Feb 20 09:51:54 ID:Lek3CAANj_gYbKvtCQHtmQzKvNM-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Scale = 1:50.2

CICLL (root) 25.0 Plate Grip DOL 1.15 TC 0.01 Vert(LL) 0.07 6-7 >999 240 MT20 197/144 ACDL 0.01 Rep Stress Incr NO WB 0.61 Wind(LL) 0.04 Rep Stress Incr NO Was 0.61 Horz(CT) 0.12 6-7 >999 240 Weight: 167 lb FT = 10% JUMBER Code RR2 Dispersion NO Vas GS PF No.2 Wind(LL) 0.04 7-8 >999 240 Weight: 167 lb FT = 10% JUMBER TCC 0.51 NO Vas GS PF No.2 Wind(LL) 0.04 7-8 >999 240 Weight: 167 lb FT = 10% JUMEA 40 Wind: ASCE 7-16; Vult=115mph (3-second gust) Vas deal mph; TCDL=6.0pt; Hex26t; CDL=6.0pt; Hex26t; CDL=6.0p	Plate Offsets ((X, Y): [1:0-4-13,0-3-0)], [2:0-4-0,0-4-8], [4:0	4-0,0-4-	3], [5:0-4-13,0-	3-0], [6:0-4-0,0-4	-4], [7:0-4	-0,0-4-12], [8	8:0-4-0,0-	4-4]				
CDL 10.0 Lumber DOL 1.15 BC 0.43 Vert(CT) -0.12 6.7 -999 240 3CDL 10.0 Code NO	Loading		1 · ·							. ,				
SCLL 0.01 Rep Stress Ind NO WB 0.61 Mirrig(L) 0.12 5 n/a n/a SCDL 10.01 Code IRC2018/TP12014 Matrix-S Wind(LL) 0.04 7.8 >999 240 Weight: 167 lb FT = 10% UMBER 2x6 SPF No.2 STCLOPD 2x6 SPF No.2 Structural wood sheathing directly applied or 10-0-0 comparing. Nord: ASCE 7-16; Vult=115mph (3-second gust) Vasd-91mph; TCDL=6.0p5; BCDL=6.0p5; HCDL=6.0p5; HCDL	. ,		1 1					. ,					MT20	197/144
SCDL 10.0 Code IRC2018/TP12014 Matrix:S Wind(LL) 0.04 7-8 >999 240 Weight: 167 lb FT = 10% JUMBER TOP CHORD 2x6 SPF No.2 ************************************						-		· · ·						
 UMBER TOP CHORD 2x6 SPF No.2 Wind: ASCE 7-16; Vull=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; BCDL			1 .				0.61	. ,						
 Vasd 991 mb; TcDL =6.0pst; bc2L: chopst; bc2Et; Cat. Vasd 921 087 2.02 E: Except 8-6:2x6 SP 2x0 SP 2x0 SP 2x0 F2.02 E: Except 8-6:2x6 SP 2x0 SP 2	BCDL	10.0	Code	IRC201	8/TPI2014	Matrix-S	-	Wind(LL)	0.04	7-8	>999	240	Weight: 167 lb	FT = 10%
 REACTIONS (size) 1=0-3-8, 5=0-3-8 Max Horiz 1=-141 (LC 6) Max Uplit 1=-118 (LC 8), 5=-118 (LC 9) Max Grav 1=4029 (LC 1), 5=4029 (LC 1) Bearing at joint(s) 5,1 considers parallel to grain value using ANS/ITP1 1 angle to grain formula. Building designer should verify capacity of bearing surface. Provide mechanical connection (by others) of truss to the acting plate capable of withstanding 118 lb uplift at joint 1. 3-4=-4195/164.45, 4-5=-9213/24.45 OT CHORD 1=2-8-2213/24.23 OT CHORD 1=2-8-213/24.24, 5=6-9-151/664.9 WEBS 3-7=-111/4769, 4-7=-2098/191, 4-6=-64/4960. Utes a stollows: 2x4 - 2 rows staggered at 0-2-0 oc, Web connected as follows: 2x4 - 2 rows staggered at 0-2-0 oc, Web connected as follows: 2x4 - 1 row at 0-9-0 oc. All loads are considered equally applied to all plies, except if noted as front (D or back (B) face in the LODD CASES(S) section. Ply to ply connections have been provided to distribute only labels noted as (F) or (B), unless otherwise indicated. What are considered or onlive loads have been considered for this design. 	LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD	2x10 SP 2400F 2.0F 2400F 2.0E 2x4 SPF No.2 Structural wood she 4-9-13 oc purlins. Rigid ceiling directly	eathing directly applied	5) or	Vasd=91mp II; Exp C; Er cantilever le right expose This truss ha chord live lo * This truss on the botto	h; TCDL=6.0psf; inclosed; MWFRS ft and right expos d; Lumber DOL= as been designed ad nonconcurrent has been designe m chord in all are	BCDL=6. (enveloped; end; 1.60 plate for a 10. t with any ed for a liv as where	Dpsf; h=25ft; e) exterior zo vertical left ar grip DOL=1. D psf bottom other live loa e load of 20. a rectangle	ne; nd .60 ads. 0psf					
 Max Horiz 1=-141 (LC 6) Max Upift 1=-118 (LC 8), 5=-118 (LC 9) Max Grav 1=4029 (LC 1), 5=4029 (LC 1) Max Grav 1=4029 (LC 1), 5=4029 (LC 1) Max Grav 1=2-9213/243, 2-3=-4195/157, 3-4=-4195/182, 4-5=-9213/243 GOT CHORD 1=3-322/6649, 7-38=-267/5249, 6-7=-125/5249, 5-6=-151/6649 YEBS 3-7=-111/4769, 4-7=-2099/191, 4-5=-64/4960 VEBS 3-7=-111/4769, 4-7=-2099/191, 4-5=-64/4960 VETS 2-ply truss to be connected together with 10d (0.131*33') nails as follows: 2x6 - 2 rows staggered at 0-9-0 c. Bottom chords connected as follows: 2x10 - 2 rows staggered at 0-9-0 c. All loads are considered equally applied to all plies, except if noted as form (F) or back (B) face in the LOAD CASE(S) Standard All loads are considered as (F) or (B), unless otherwise indicated. With connection of vice (as follows: 2x4 - 1 row at 0-9-0 c. All loads are considered as (F) or (B), unless otherwise indicated. Mat Horiz 1=-404 (B), 7=-1404 (B), 7=-1404 (B), 7=-1404 (B), 9=-1404 (B), 7=-1404 (B), 7=-140	REACTIONS	U	5=0-3-8		chord and a	ny other members	s.							
Tension Tension Tension Torvice Transform (U) of vitable of withstanding 118 is uplift at joint 3-4=-4195/152, 43, 2-3=-4195/157, 3-4=-4195/1		Max Horiz 1=-141 (L Max Uplift 1=-118 (L Max Grav 1=4029 (l	LC 6) LC 8), 5=-118 (LC 9) LC 1), 5=4029 (LC 1)		Bearing at jo using ANSI/	oint(s) 5, 1 consid TPI 1 angle to gra	ers parall ain formul	el to grain va a. Building	lue					
 TOP CHORD 1-2=-9213/343, 2-3=-4195/157, 3-4=-4195/152, 4-5=-9213/243 SOT CHORD 1-8=-322/5249, 5-6=-151/6649 NEBS 3-7=-111/4769, 4-7=-2098/191, 4-6=-64/4960, 2-7=-2098/232, 2-8=-140/4960 NOTES 2-7=-2098/232, 2-8=-140/4960 2-7=-2098/232, 2-8=-140/4 (B), 6=-1404 (B), 7=-1404 (B), 9=-1404 (B), 9=-1404	FORCES	()	npression/Maximum	9)										
3-4=-4195/182, 4-5=-9213/243 30T CHORD 1-8=-322/6649, 7-8=-267/5249, 6-6-151/6649 WEBS 3-7=-111/4769, 4-7=-2098/191, 4-6=-64/4960 VOTES 1) 2-ply truss to be connected together with 10d (0.131*x3*) nails as follows: 2x6 - 2 rows staggered at 0-9-0 oc. Bottom chords connected as follows: 2x6 - 2 rows staggered at 0-2-0 oc, 2x6 - 2 rows staggered at 0-4-0 oc. 2) All loads are considered equally applied to all plies, except if noted as follows: 2x4 - 1 row at 0-9-0 oc. 2) All loads are considered equally applied to all plies, except if noted as follows: 2x4 - 1 row at 0-9-0 oc. 2) All loads are considered equally applied to all plies, except if noted as follows: 2x4 - 1 row at 0-9-0 oc. 3) Unbalartus is design. 3) Unbalartus is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. 11) Hanger(s) or other connection device(s) is hall up at 1-0-8 on bottom chord. The design/ selection of such connection device(s) is the responsibility of others. LOAD CASE(S) Standard 1) Dead + Roof Live (balanced): Lumber Increase=1.15, Plate Increase=1.15 Uniform Loads (lb/ft) Vert: 8=-1404 (B), 6=-1404 (B), 7=-1404 (B), 9=-1404 (B), 10=-1404 (B), 9=-1404 (B), 10=-1404 (B), 1) Dead the connection factor device (s) is the responsibility of others. LOAD CASE(S) Section. Ply to ply connections have been provided to distribute only loads noted as (F) or (B), unless otherwise indicated. 3) Unbalanced roof live loads have been considered for this design.	TOP CHORD		=-4195/157				standing 1	18 lb uplift a	t joint					
 BOT CHORD 1-8=-322/6649, 7-8=-267/5249, 6-7=-151/6649 WEBS 3-7=-111/4769, 4-7=-2098/191, 4-6=-64/4960, 2-7=-2098/232, 2-8=-140/4960 WOTES 2-7=-2098/232, 2-8=-140/4960 WOTES 2-7=-2098/232, 2-8=-140/4960 WOTES 2-7=-2098/232, 2-8=-140/4960 WOTES Deart Rod 10 bows: 2x6 - 2 rows staggered at 0-9-0 oc. Bottom chords connected as follows: 2x10 - 2 rows staggered at 0-9-0 oc. Bottom chords connected as follows: 2x10 - 2 rows staggered at 0-2-0 oc, 2x6 - 2 rows staggered at 0-4-0 oc. Web connected as follows: 2x4 - 1 row at 0-9-0 oc. All loads are considered equally applied to all plies, except in forded as front (F) or back (B) face in the LOAD CASE(S) section. Ply to ply connections have been provided to distribute only loads noted as (F) or (B), unless otherwise indicated. Unbalanced roof live loads have been considered for this design. 		,	,	10			rdance w	ith the 2018						
 NEBS 3-7=-111/4769, 4-7=-2098/191, 4-6=-64/4960, 2-7=-2098/232, 2-8=-140/4960 NOTES Note that the provided sufficient to support concentrated load(s) 1404 lb down and 27 lb up at 1-9-8, 1404 lb down and 27 lb up at 5-11-0, and 1404 lb down and 27 lb up at 3-11-0, 1404 lb down and 27 lb up at 7-11-0, and 1404 lb down and 27 lb up at 7-11-0, and 1404 lb down and 27 lb up at 2-0 co. Bottom chords connected as follows: 2x6 - 2 rows staggered at 0-9-0 oc. Bottom chords connected as follows: 2x10 - 2 rows staggered at 0-2-0 oc, 2x6 - 2 rows staggered at 0-2-0 oc, 2x6 - 2 rows staggered at 0-4-0 oc. All loads are considered equally applied to all plies, except if noted as front (F) or back (B) face in the LOAD CASE(S) Section. Ply to ply connections have been provided to distribute only loads noted as (F) or (B), unless otherwise indicated. Unbalanced roof live loads have been considered for this design. 	BOT CHORD	1-8=-322/6649, 7-8=	=-267/5249,		International	Residential Code	e sections	R502.11.1 a	and					
 NOTES 2-ply truss to be connected together with 10d (0.131"x3") nails as follows: 2x6 - 2 rows staggered at 0-9-0 oc. Bottom chords connected as follows: 2x10 - 2 rows staggered at 0-2-0 oc, 2x6 - 2 rows staggered at 0-2-0 oc, 2x6 - 2 rows staggered at 0-2-0 oc. All loads are considered equally applied to all plies, except if noted as front (F) or back (B) face in the LOAD CASE(S) section. Ply to ply connections have been provided to distribute only loads noted as (F) or (B), unless otherwise indicated. Unbalanced roof live loads have been considered for this design. 	WEBS	3-7=-111/4769, 4-7=	=-2098/191, 4-6=-64/4	960, 1 1) Hanger(s) o	r other connection	n device(s) shall be	404					
 1) 2-ply truss to be connected together with 10d (0.131"x3") nails as follows: Top chords connected as follows: 2x6 - 2 rows staggered at 0-9-0 oc. Bottom chords connected as follows: 2x10 - 2 rows staggered at 0-2-0 oc, 2x6 - 2 rows staggered at 0-4-0 oc. Web connected as follows: 2x4 - 1 row at 0-9-0 oc. 2) All loads are considered equally applied to all plies, except if noted as front (F) or back (B) face in the LOAD CASE(S) section. Ply to ply connections have been provided to distribute only loads noted as (F) or (B), unless otherwise indicated. 3) Unbalanced roof live loads have been considered for this design. b) Unbalanced roof live loads have been considered for b) Unbalanced roof live loads have been considered for c) C) Concentrated Loads (lb) Vert: 8=-1404 (B), 6=-1404 (B), 7=-1404 (B), 9=-1404 (B), 10=-1404 (B) c) C) C)	NOTES	,												~
Bottom chords connected as follows: 2x10 - 2 rows staggered at 0-2-0 oc, 2x6 - 2 rows staggered at 0-4-0 oc. Web connected as follows: 2x4 - 1 row at 0-9-0 oc. 2) All loads are considered equally applied to all plies, except if noted as front (F) or back (B) face in the LOAD CASE(S) section. Ply to ply connections have been provided to distribute only loads noted as (F) or (B), unless otherwise indicated. 3) Unbalanced roof live loads have been considered for this design. Bottom chords connected as follows: 2x10 - 2 rows staggered at 0-2-0 oc. 2) All loads are considered equally applied to all plies, except if noted as front (F) or back (B) face in the LOAD CASE(S) section. Ply to ply connections have been provided to distribute only loads noted as (F) or (B), unless otherwise indicated. B) Unbalanced roof live loads have been considered for this design.		s to be connected toge	ther with 10d		up at 3-11-0), 1404 İb down a	nd 27 lb เ	ıp at 5-11-0,	and				A	and
Bottom chords connected as follows: 2x10 - 2 rows staggered at 0-2-0 oc, 2x6 - 2 rows staggered at 0-4-0 oc. Web connected as follows: 2x4 - 1 row at 0-9-0 oc. 2) All loads are considered equally applied to all plies, except if noted as front (F) or back (B) face in the LOAD CASE(S) section. Ply to ply connections have been provided to distribute only loads noted as (F) or (B), unless otherwise indicated. 3) Unbalanced roof live loads have been considered for this design. Bottom chords connected as follows: 2x10 - 2 rows staggered at 0-2-0 oc. 2) All loads are considered equally applied to all plies, except if noted as front (F) or back (B) face in the LOAD CASE(S) section. Ply to ply connections have been provided to distribute only loads noted as (F) or (B), unless otherwise indicated. B) Unbalanced roof live loads have been considered for this design.												c	FE OF I	IISS D
Bottom chords connected as follows: 2x10 - 2 rows staggered at 0-2-0 oc, 2x6 - 2 rows staggered at 0-4-0 oc. Web connected as follows: 2x4 - 1 row at 0-9-0 oc. 2) All loads are considered equally applied to all plies, except if noted as front (F) or back (B) face in the LOAD CASE(S) section. Ply to ply connections have been provided to distribute only loads noted as (F) or (B), unless otherwise indicated. 3) Unbalanced roof live loads have been considered for this design. Bottom chords connected as follows: 2x10 - 2 rows staggered at 0-2-0 oc. 2) All loads are considered equally applied to all plies, except if noted as front (F) or back (B) face in the LOAD CASE(S) section. Ply to ply connections have been provided to distribute only loads noted as (F) or (B), unless otherwise indicated. B) Unbalanced roof live loads have been considered for this design.			s: 2x6 - 2 rows						n/			B	A. T.	N.S.
 staggered at 0-2-0 oc, 2x6 - 2 rows staggered at 0-4-0 oc. Web connected as follows: 2x4 - 1 row at 0-9-0 oc. All loads are considered equally applied to all plies, except if noted as front (F) or back (B) face in the LOAD CASE(S) standard Dead + Roof Live (balanced): Lumber Increase=1.15, Plate Increase=1.15 Uniform Loads (lb/ft) Vert: 1-3=-70, 3-5=-70, 1-8=-20, 6-8=-20, 5-6=-20 Concentrated Loads (lb) Vert: 8=-1404 (B), 6=-1404 (B), 7=-1404 (B), 9=-1404 (B), 9=-1404 (B), 9=-1404 (B), 10=-1404 (B) 			lowe: 2x10 2 rowe				uevice(s)	is the				R	S NATHA	NIEL VEY
 oc. Web connected as follows: 2x4 - 1 row at 0-9-0 oc. All loads are considered equally applied to all plies, except if noted as front (F) or back (B) face in the LOAD CASE(S) section. Ply to ply connections have been provided to distribute only loads noted as (F) or (B), unless otherwise indicated. Unbalanced roof live loads have been considered for this design. 				10								-A	FO	X V
 Web connected as follows: 2x4 - 1 row at 0-9-0 oc. All loads are considered equally applied to all plies, except if noted as front (F) or back (B) face in the LOAD CASE(S) section. Ply to ply connections have been provided to distribute only loads noted as (F) or (B), unless otherwise indicated. B) Unbalanced roof live loads have been considered for this design.). Lumber	Increase=1	15			a/+		1 stt
 except if noted as front (F) or back (B) face in the LOAD CASE(S) section. Ply to ply connections have been provided to distribute only loads noted as (F) or (B), unless otherwise indicated. What anced roof live loads have been considered for this design. 	Web conn	ected as follows: 2x4	- 1 row at 0-9-0 oc.	.,			,		,				Ht.	1 - Hall
	except if n CASE(S) s provided to unless oth 3) Unbalance	noted as front (F) or basection. Ply to ply com o distribute only loads nerwise indicated. ed roof live loads have	nck (B) face in the LOA nections have been noted as (F) or (B),	D	Vert: 1-3 Concentrat Vert: 8=-	=-70, 3-5=-70, 1- ed Loads (lb) ·1404 (B), 6=-140	94 (B), 7=-		20			ANA ANA	PE-2022	042259 2 4 I ENGINE
	uns desigi												an	

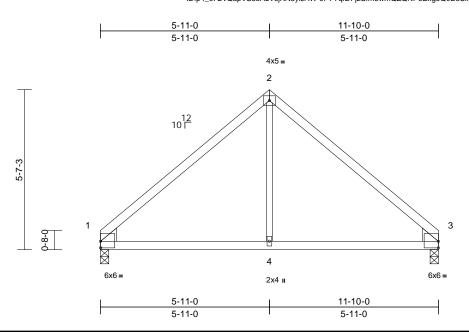

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent touls be personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANS/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

RELEASE ICROMETRUCTION AS NOTED ON PLANS REVIEW DEVELORMENTS SERVICES LEE'S SUMMIT'S MISSOURI 03/18/2024 4:46:47

Job	Truss	Truss Type	Qty	Ply	Lot 175 WO	
B240016	F1	GABLE	1	1	Job Reference (optional)	163738442

Run: 8.73 S Feb 6 2024 Print: 8.730 S Feb 6 2024 MiTek Industries, Inc. Tue Feb 20 09:51:54 ID:p4_c7DvQapVS5sHzVsjKN5yiJAW-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1



Scale = 1:40.3				
Plate Offsets (X_Y	۱٠	[1:0-3-8 Edge]	[6:0-2-0 Edge]	[1]

Tool 25.0 Pilete Gip DOL 1.15 TC 0.04 Vert(LL) n/a - n/a 998 MT20 197/144 0.0 10.0 1.00 1.15 BC 0.03 Vert(LL) n/a 10.0 Vert(LL) n/a 998 MT20 197/144 More 0.0* 1.00 1.00 1.15 BC 0.03 Vert(LL) n/a 10.0 Vert(LL) n/a 998 MT20 197/144 More 0.0* 1.00 1.00 Notes 2.192-119/116, 3-182-1007/4, 4-172-104/89, 5-16-809/10, 7-152-78/0, 8-144-107/92, 9-132-1007/4, 4-172-104/89, 5-16-809/10, 7-152-78/0, 8-144-107/92, 9-132-1007/4, 4-172-104/89, 5-16-809/10, 7-152-78/0, 8-144-107/92, 9-132-1007/4, 4-172-104/89, 5-16-809/10, 7-152-78/0, 8-144-107/92, 9-132-100/14, 10-122-115/112 NOTES NOTES NOTES 10 Unbalanced roof live loads have been considered for tile idead roof live loads have been considered for tile idead right exposed i to wind loads in the plane of the truss on the face), 11-121/10-0, 11-11-10-0, 11-10-0, 11-11-10-0, 11-10-0, 11-1	a a din a	(m - f)	Cassing	2.0.0		0.01		DEEL	i.e.	(10.0)	l/daf!	1.74		
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Loading TCLL (roof)						0.04			• •			-	
0.01 Rep Stress Inor YES WB 0.03 Horz(TL) 0.00 11 n/a Neight: 59 lb FT = 10% ER MORD 2x4 SPF No.2 WBS 2-19=-119/116, 3-18=-10074, 4-179=-104/89, 5-16=-89/19, 7-155=-780, 8-14=-107/92, 9-13=-107/4, 10-12=-115/112 WEBS 2-19=-119/116, 3-18=-107/92, 9-13=-107/92, 9-13=-107/92, 9-13=-107/94, 10-12=-115/112 WEBS 2-19=-119/116, 3-18=-107/92, 9-13=-107/92, 9-13=-107/94, 10-12=-115/112 WEBS 2-19=-119/116, 3-18=-107/92, 9-13=-107/92, 9-13=-107/92, 9-13=-107/94, 10-12=-115/112 WEBS 2-19=-119/116, 3-18=-107/92, 9-13=-107/92, 9-13=-107/92, 9-13=-107/94, 10-12=-115/112 NG Structural wood sheathing directly applied or 10-0-0 oc bracing. Iurbalanced rod like loads have been considered for this design. 10.00 12=11-10, 0, 11=11-10, 12=-115/112 NOTES 10.00 12=11-10, 0, 11=11-10, 12=-115/112 10.00 12=11-10, 13=-11-10, 12=-115/112 NOTES 10.00 12=10/10, 15=11-10, 12=-10, 12=10,	CDL (1001)		· ·					. ,					101120	197/144
10.0 Code IRC2018/TPI2014 Matrix-S Weight: 59 lb FT = 10% ER August SPF No.2 State SPF No.2 <th< td=""><td></td><td></td><td></td><td></td><td></td><td>-</td><td></td><td>· · ·</td><td></td><td></td><td></td><td></td><td></td><td></td></th<>						-		· · ·						
ER WEBS 2-19=-119/116, 3-18=-10074, 4-17=-104/89, 5-16=-83/19, 7-15=-78/0, 8-14=-10792, 9-13=-10074, 10-12=-115/112 HORD 2x4 SPF No.2 5-16=-83/19, 7-15=-78/0, 8-14=-10792, 9-13=-10074, 10-12=-115/112 S3 2x4 SPF No.2 NOTES NG Structural wood sheathing directly applied or 10-0-0 oc bracing. NOTES NOR Rigd ceiling directly applied or 10-0-0 oc bracing. 1=11-10-0, 11=11-10-0, 12=11-10-0, 14=11-10-0, 15=11-10-0, 14=11-10-0, 15=11-10-0, 14=11-10-0, 15=11-10-0, 14=11-10-0, 15=11-10-0, 14=11-10-0, 15=11-10-0, 14=11-10-0, 15=11-10-0, 14=11-10-0, 15=11-10-0, 14=11-10-0, 15=11-10-0, 14=11-10-0, 15=11-10-0, 14=11-10-0, 15=11-10-0, 14=11-10-0, 15=11-10-0, 14=11-10-0, 15=11-10-0, 14=11-10-0, 15=11-10-0, 14=11-10-0, 12=111-10-0, 14=11-10-0, 15=11-10-0, 14=11-10-0, 15=11-10-0, 14=11-10-0, 15=11-10-0, 14=11-10-0, 15=11-10-0, 14=11-10-0, 15=11-10-0, 14=11-10-0, 15=11-10-0, 14=11-10-0, 15=11-10-0, 14=11-10-0, 15=11-10-0, 14=11-10-0, 15=11-10-0, 14=11-10-0, 15=11-10-0, 14=11-10-0, 15=10-10-1, 14=134 (LC 19), 15=3-67 (LC 9), 14=3-87 (LC 19), 15=3-67 (LC 9), 14=3-87 (LC 19), 15=3-67 (LC 9), 14=3-125 (LC 19), 14=3-125 (LC 19), 14=13-125 (LC 10), 15=1-25 (LC 10), 14=1-25 (LC 10), 15=1-25 (LC 10), 14=1-25 (LC 10), 15=1-25	BCLL		1 '				0.03	Horiz(IL)	0.00	11	n/a	n/a		FT 100/
 HORD 2x4 SPF No.2 BCB 2x4 SPF 2x	BCDL	10.0	Code	IRC20	18/TPI2014	Matrix-S							Weight: 59 lb	FI = 10%
 HORD 2x4 SPF No.2 Be Left: 2x6 SPF No.2 Right: 2x6 SPF No.2 Right: 2x6 SPF No.2 Right: 2x6 SPF No.2 Broud sheathing directly applied or 10-0-0 c bracing. HORD 3tructural wood sheathing directly applied or 10-0-0 c bracing. HORD 12=111-10-0, 11=11-10-0, 12=11-10-0, 13=11-10-0, 14=11-10-0, 15=11-10-0, 16=11-10-0, 15=10-1(10-0, 16=11-10-0, 15=10-1(10-0, 16=10-10-10-0, 15=10-10-0, 16=10-10-10-0, 16=10-10-0, 16=10-10-10-0, 16=10-10-0, 16=10-10-0, 16=10-10-0, 16=10-10-0, 16=10-10-0, 16=10-10-0, 16=10-10-0, 16=10-10-0, 16=10-10-0, 16=10-10-0, 16=10-10-0, 16=10-10-0, 16=10-0, 16=0,	UMBER			V										
 Xel SPF No.2 Left: 246 SPF No.2 Left: 246 SPF No.2 NOFES Unbalanced roof live loads have been considered for this design. Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TOL=6.0pt; h=25ft; Cat. I; Exp C; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60 Horizong. Truss (size) 1=11-10-0, 11=11-10-0, 14=11-10-0, 13=11-10-0, 14=11-10-0, 17=11-10-0, 14=11-10-0, 17=11-10-0, 14=11-10-0, 17=11-10-0, 14=11-10-0, 17=11-10-0, 14=11-10-0, 17=11-10-0, 14=11-10-0, 17=11-10-0, 14=11-10-0, 17=11-10-0, 14=11-10-0, 17=11-10-0, 18=11-10-0, 17=11-10-0, 19=10-10, 18=10-10, 18=10-0, 18=10-0, 18=10-0, 18=10-0, 18=10-0, 18=10-0, 18=10-0, 18=	OP CHORD	2x4 SPF No.2			:	5-16=-89/19, 7-15=	-78/0 , 8	-14=-107/92,						
 E Left: 2x6 SPF No.2 Right: 2x6 SPF No.2 NG Structural wood sheathing directly applied or 10-0-0 oc bracing. HORD Rigid ceiling directly applied or 10-0-0 oc bracing. TIONS (size) 1=11-10-0, 11=11-10-0, 14=11-10-0, 13=11-10-0, 14=11-10-0, 17=11-10-0, 14=11-10-0, 17=11-10-0, 14=11-10-0, 17=11-10-0, 14=11-10-0, 17=11-10-0, 18=11-10-0, 17=11-10-0, 19=-57/134, 18=15-57/134, 11-12=57/134, 18=15=57/134, 11-12=57/134, 18=15=57/134, 11-12=57/134, 11-12=57/134, Shead explore the truss is designed for a 10.0 psh botom chord and any other members. Shead explore the truss is designed for a 10.0 psh botom chord and any other members. Shead explore the truss is designed for a 10.0 psh botom chord and any other members. Shead explore the truss is designed in accordance with the 2018 international Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSi/TP1 1. LOAD CASE(S) Standard 	OT CHORD	2x4 SPF No.2			9	9-13=-100/74, 10-1	2=-115	112						
 Right: 2x6 SPF No.2 Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=9 Imph: TCDL=6.0pst; BCDL=6.0pst; h=25ft; Cat. II: Exp C; Enclosed; LWFRS (envelope) exterior zone; cantilever left and right exposed; end vertical left and right exposed; Lumber DOL=1.60 Truss designed for wind loads in the place of the truss only. For stude exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designed for a lob place as per ANSUTP1 1. Ta=-76 (LC 9), 16=-37 (LC 8), 19=-105 (LC 6), 11=-113 (LC 9), 12=144 (LC 16), 15=-104 (LC 1), 14=-130 (LC 6), 11=-113 (LC 9), 12=144 (LC 16), 15=-104 (LC 1), 14=-130 (LC 6), 11=-113 (LC 9), 12=144 (LC 16), 15=-104 (LC 1), 14=-125 (LC 15), 17=-131 (LC 15), 15=125 (LC 16), 13=-153 (LC 16), 14=-126 (LC 3), 15=-153 (LC 15), 15=125 (LC 15), 15=-153 (LC 15), 15=125 (LC 15), 15=-153 (LC 15), 15=125 (LC 15), 15=-153 (LC 15), 15=15 (LC 15), 15=-153 (L	THERS			N	NOTES									
 ING 5 ING D Structural wood sheathing directly applied or 6-0-0 oc purlins. HORD Rigid celling directly applied or 10-0-0 oc bracing. ITONS (size) 1=11-10-0, 11=11-10-0, 12=11-10-0, 16=10-0, 16=10-0, 10=10-0	/EDGE			1) Unbalanced	roof live loads have	e been (considered fo	r					
 HORD Structural wood sheathing directly applied or 6-0-0 ac purins. HORD Rigid ceiling directly applied or 10-0-0 oc bracing. HORD Rigid ceiling directly applied or 10-0-0 oc bracing. I = 11-10-0, 11=11-10-0, 15=11-10-0, 12=11-10-0, 16=10-10-0, 16=11-10-0, 16=10-10-0, 1		Right: 2x6 SPF No.2	2		this design.									
 Burger Strategy applied or 10-0-0 oc bracing. HORD Rigid celling directly applied or 10-0-0 oc bracing. HORD S(size) 1=11-10-0, 1=11-10-0, 1=11-10-0, 14=11-10-0, 15=11-10-0, 14=11-10-0, 15=11-10-0, 16=10-0, 16=	RACING			2										
 HORD Rigid ceiling directly appled or 10-0-0 cc bracing. ITONS (size) 1=11-10-0, 11=11-10-0, 12=11-10-0, 12=11-10-0, 13=11-10-0, 16=11-10-0, 15=11-10-0, 16=11-10-0, 15=11-10-0, 16=10-10-0, 16=10-10-0, 16=10-0, 11=27 (LC 9), 16=-3 (LC 5), 17=-74 (LC 8), 18=-57 (LC 9), 16=-3 (LC 5), 12=-77 (LC 10, 13=-57 (LC 9), 16=-37 (LC 9), 16=	OP CHORD	Structural wood she	eathing directly applied	d or										
 bracing. bracing. bracing. bracing. bracing. bracing. bracing. construction of the trust /li>														
 TIONS (size) 1=11-10-0, 11=11-10-0, 12=11-10-0, 12=11-10-0, 13=11-10-0, 13=11-10-0, 14=11-10-0, 15=11-10-0, 16=11-10-0, 17=11-10-0, 16=11-10-0, 17=11-10-0, 16=11-10-0, 17=11-10-0, 16=11-10-0, 17=11-10-0, 16=11-10-0, 17=11-10-0, 16=11-10-0, 17=11-10-0, 16=11-10-0, 17=11-10-0, 16=11-10-0, 17=11-10-0, 16=11-10-0, 17=11-10-0, 16=11-10-0, 17=11-10-0, 16=11-10-0, 17=11-10-0, 16=11-10-0, 17=11-10-0, 16=11-10-0, 17=11-10-0, 16=11-10-0, 16=11-10-0, 17=11-10-0, 16=11-10-0, 17=11-10-0, 16=11-10-0, 17=11-10-0, 16=11-10-0, 16=11-10-0, 17=11-10-0, 16=11-10-0, 17=11-10-0, 16=11-10-0, 17=11-10-0, 16=11-10-0, 17=11-10-0, 16=11-10-0, 16=11-10-0, 17=11-10-0, 16=11-10-0, 17=11-10-0, 16=11-10-0, 17=11-10-0, 16=11-10-0, 17=11-10-0, 16=11-10-0, 17=11-10-0, 16=11-10-0, 17=11-10-0, 16=11-10-0, 17=11-10-0, 16=11-10-0, 17=10-10-10, 17=10-10-10, 17=10-10-10, 17=10-10-10, 17=10-10-10, 17=10-10-10, 17=10-10-10, 17=10-10-10, 17=10, 17=10,	SOT CHORD	0 0 2	/ applied or 10-0-0 oc											
 International (alloc) Int		•												
 Harlin 10-0, 15=11-10-0, 16=11-10-0, 17=11-10-0, 18=11-10-0, 17=11-10-0, 18=125 (LC 8), 11=27 (LC 7), 18=125 (LC 8), 18=153 (LC 8), 18=125 (LC 15), 18=153 (LC 15), 18=125 (LC 15), 18=153 (LC 15), 18=125 (LC 15), 19=153 (LC 15), 19=77/18a, 4-77/13a, 18=178-57/13a, 10-11=-165/82 HORD 1-19=-57/134, 18=19=-57/134, 17=18=-57/134, 18=19=-57/134, 11-12=-57/134, 18=19=-57/134, 11-12=-57/134, 18=19=-57/134, 11-12=-57/134, 18=19=-57/134, 11-12=-57/134, 18=17=-57/134, 11-12=-57/134, 18=17=-57/134, 11-12=-57/134 	REACTIONS			3	, 0									
 if all intervention in the interventi			, ,											
 Halt 10-0, 19=11-10-0, 19=11-10-0 Hax Horiz 1=-137 (LC 4) Max Uplift 1=-52 (LC 6), 11=-27 (LC 7), 12=-101 (LC 9), 13=-56 (LC 9), 16=-3 (LC 5), 17=-74 (LC 8), 18=-57 (LC 8), 19=-105 (LC 8) Max Grav 1=130 (LC 8), 11=113 (LC 9), 12=-104 (LC 16), 13=125 (LC 16), 14=134 (LC 16), 15=104 (LC 1), 16=116 (LC 15), 17=131 (LC 15), 18=125 (LC 15), 19=153 (LC 15), 18=125 (LC 16), 15=104 (LC 1), 16=116 (LC 15), 17=131 (LC 15), 18=125 (LC 15), 19=153 (LC 15), 18=125 (LC 15), 19=153 (LC 15), 18=125 (LC 15), 19=153 (LC 15), 18=125 (LC 16), 15=150 (LC 15), 19=153 (LC 15), 18=125 (LC 15), 19=153 (LC 16), 19=153 (L														
 Max Horiz 1=-137 (LC 4) Max Upilit 1=-52 (LC 6), 11=-27 (LC 7), 12=-101 (LC 9), 13=-56 (LC 9), 14=-76 (LC 9), 16=-3 (LC 5), 17=-74 (LC 8), 18=-57 (LC 8), 19=-105 (LC 8) Max Grav 1=130 (LC 8), 11=113 (LC 9), 12=148 (LC 16), 13=-125 (LC 16), 14=134 (LC 16), 15=-104 (LC 1), 16=116 (LC 15), 19=153 (LC 15), 18=125 (LC 15), 19=153 (LC 15), 18=125 (LC 15), 19=153 (LC 15), 18=125 (LC 15), 19=153 (LC 15), 18=-57/134, 16-17=-57/134, 17-18=-57/134, 14-15=-57/134, 11-12=-57/134, 12-13=-57/134, 11-12=-57/134 Gable requires continuous bottom chord bearing. Gable studs spaced at 1-4-0 cc. This truss has been designed for a 10.0 psf bottom chord and any other remembers. * This truss has been designed for use softward and y other members. HorRD 1-2=-188/116, 2-3=-97/76, 3-4=-81/56, 10-11=-165/22 HORD 1-19=-57/134, 14-15=-57/134, 17-18=-57/134, 14-15=-57/134, 11-12=-57/134, 14-15=-57/134, 11-12=-57/134 HorRD 1-12=-57/134, 14-15=-57/134, 11-12=-57/134, 14-15=-57/134, 11-12=-57/134 				1					-11.					
 Max Holit 1=-52 (LC 6), 11=-27 (LC 7), 12=-101 (LC 9), 13=-56 (LC 9), 14=-76 (LC 9), 13=-56 (LC 9), 17=-74 (LC 8), 18=-57 (LC 8), 19=-105 (LC 8) Max Grav 1=130 (LC 8), 11=113 (LC 9), 12=-148 (LC 16), 15=1104 (LC 1), 18=-116 (LC 16), 15=1104 (LC 1), 18=116 (LC 16), 15=1104 (LC 1), 18=116 (LC 16), 15=1104 (LC 1), 18=116 (LC 16), 17=131 (LC 15), 18=125 (LC 15), 19=153 (LC 15) S (lb) - Maximum Compression/Maximum Tension HORD 1-2=-188/116, 2-3=-97/76, 3-4=-81/56, 4-5=-71/83, 5-6=-46/64, 6-7=-42/60, 7-8=-52/62, 8-9=-59/26, 9-10=-82/46, 10-11=-165/82 HORD 1-19=-57/134, 18-19=-57/134, 15-16=57/134, 14-15=-57/134, 15-16=57/134, 14-15=-57/134, 15-16=57/134, 14-15=-57/134, 11-12=-57/134 HORD 1-2=-57/134 HORD 1-2=-57/134, 14-15=-57/134, 15-16=57/134, 14-15=-57/134, 15-16=57/134, 14-15=-57/134, 11-12=-57/134 HORD 1-2=-57/134, 14-15=-57/134, 15-16=57/134, 14-15=-57/134, 15-16=57/134, 14-15=-57/134, 11-12=-57/134 HORD 1-2=-57/134, 14-15=-57/134, 15-16=-57/134, 14-15=-57/134, 11-12=-57/134 HORD 1-2=-57/134, 14-15=-57/134, 15-16=-57/134, 14-15=-57/134, 15-16=-57/134, 14-15=-57/134, 15-16=-57/134, 14-15=-57/134, 15-16=-57/134, 14-15=-57/134, 15-16=-57/134 HORD 1-2=-57/134 HORD 1-2=-57/134 HORD 1-2=-57/134, 14-15=-57/134, 15-16=-57/134, 14-15=-57/134, 15-16=-57/134 			,											
 The optimized of the second sectors and the sectors a					,			u bearing.						
 14=-76 (LC 9), 16=-3 (LC 5), 17=-74 (LC 8), 18=-57 (LC 8), 19=-105 (LC 8) Max Grav 1=130 (LC 8), 11=113 (LC 9), 12=148 (LC 16), 13=125 (LC 16), 14=134 (LC 16), 15=104 (LC 1), 16=116 (LC 15), 17=-131 (LC 15), 18=125 (LC 15), 19=153 (LC 15), 18=57 (138, 156=-46/64, 6-7=-42/60, 7-8=-52/62, 8-9=-59/26, 9-10=-82/46, 10-11=-165/82 HORD 1-12=-71/83, 16-17=-57/134, 16-17=-57/134, 15-16=-57/134, 12-13=-57/134, 12-13=-57/134, 12-13=-57/134, 12-13=-57/134, 11-12=-57/134, 1			,, ,, ,,	-) nef bottom						
 * This truss has been designed for a five load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members. * This truss has been designed for a five load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members. * All bearings are assumed to be SPF No.2. * In Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 105 lb uplift at joint 17, 3 lb uplift at joint 18, 52 lb uplift at joint 11, 76 lb uplift at joint 11, 76 lb uplift at joint 12. * This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. * UOAD CASE(S) Standard 			· // · · /	, 1					de					
 Instruction, the order of the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members. Instruction, the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members. Instruction, the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members. Instruction, the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members. Instruction, the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members. Instruction, the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members. Instruction, the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members. Instruction, the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members. Instruction, the second tall by 2-00-00 wide will fit at joint 17, 3 lb uplift at joint 11, 76 lb uplift at joint 14, 56 lb uplift at joint 13 and 101 lb uplift at joint 12. International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. IOAD CASE(S) Standard 				8										
 Max Grav 1=130 (LC 8), 11=113 (LC 9), 12=148 (LC 16), 13=125 (LC 16), 14=134 (LC 16), 15=104 (LC 1), 16=116 (LC 15), 17=131 (LC 15), 18=125 (LC 15), 19=153 (LC 15) ES (lb) - Maximum Compression/Maximum Tension HORD 1-2=-188/116, 2-3=-97/76, 3-4=-81/56, 4-5=-71/83, 5-6=-46/64, 6-7=-42/60, 7-8=-52/62, 8-9=-59/26, 9-10=-82/46, 10-11=-165/82 HORD 1-19=-57/134, 18-19=-57/134, 17-18=-57/134, 18-19=-57/134, 15-16=-57/134, 12-13=-57/134, 11-12=-57/134 HORD 1-19=-57/134, 12-13=-57/134, 11-12=-57/134 HORD 1-19=-57/134, 12-13=-57/134, 11-12=-57/134 HORD 1-2=-188/116, 2-3=-97/76, 3-4=-81/56, 4-5=-71/83, 5-6=-46/64, 6-7=-42/60, 7-8=-52/62, 8-9=-59/26, 9-10=-82/46, 10-11=-165/82 HORD 1-19=-57/134, 16-17=-57/134, 15-16=-57/134, 12-13=-57/134, 11-12=-57/134 HORD 1-2=-57/134, 12-13=-57/134, 11-12=-57/134 				Ŭ					poi					
 Hard of the Vertice of the									om					
 All bearings are assumed to be SPF No.2. 9) All bearings are assumed to be SPF No.2. 9) All bearings are assumed to be SPF No.2. 10) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 105 lb uplift at joint 17, 3 lb uplift at joint 19, 57 lb uplift at joint 18, 74 lb uplift at joint 17, 73 lb uplift at joint 11, 76 lb uplift at joint 16, 52 lb uplift at joint 12, 71 lb uplift at joint 11, 76 lb uplift at joint 14, 56 lb uplift at joint 1, 27 lb uplift at joint 11, 76 lb uplift at joint 14, 56 lb uplift at joint 13 and 101 lb uplift at joint 12. 11) This russ is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TP1 1. LOAD CASE(S) Standard 				6)		•								and a
 ID - Maximum Compression/Maximum Tension HORD 1-2=-188/116, 2-3=-97/76, 3-4=-81/56, 4-5=-71/83, 5-6=-46/64, 6-7=-42/60, 7-8=-52/62, 8-9=-59/26, 9-10=-82/46, 10-11=-165/82 HORD 1-19=-57/134, 18-19=-57/134, 15-16=-57/134, 15-16=-57/134, 12-13=-57/134, 12-13=-57/134, 12-13=-57/134, 11-12=-57/134, 12-13=-57/134, 11-12=-57/134, 12-13=-57/134 		,	<i>,,</i>	<i></i>			SPF No	o.2 .					OF I	MICH
 ID - Maximum Compression/Maximum Tension HORD 1-2=-188/116, 2-3=-97/76, 3-4=-81/56, 4-5=-71/83, 5-6=-46/64, 6-7=-42/60, 7-8=-52/62, 8-9=-59/26, 9-10=-82/46, 10-11=-165/82 HORD 1-19=-57/134, 18-19=-57/134, 15-16=-57/134, 15-16=-57/134, 12-13=-57/134, 12-13=-57/134, 12-13=-57/134, 11-12=-57/134, 12-13=-57/134, 11-12=-57/134, 12-13=-57/134 					0) Provide mec	hanical connection	(by oth	ers) of truss t	0				ALE OF I	WIISS OF
 ID - Maximum Compression/Maximum Tension HORD 1-2=-188/116, 2-3=-97/76, 3-4=-81/56, 4-5=-71/83, 5-6=-46/64, 6-7=-42/60, 7-8=-52/62, 8-9=-59/26, 9-10=-82/46, 10-11=-165/82 HORD 1-19=-57/134, 18-19=-57/134, 15-16=-57/134, 15-16=-57/134, 12-13=-57/134, 12-13=-57/134, 12-13=-57/134, 11-12=-57/134, 12-13=-57/134, 11-12=-57/134, 12-13=-57/134 					bearing plate	e capable of withsta	anding 1	05 lb uplift at	joint			4	7 M	N.S.
Tension at joint 16, 52 lb uplift at joint 1, 27 lb uplift at joint 11, 76 lb uplift at joint 11, 76 lb uplift at joint 14, 56 lb uplift at joint 13 and 101 lb uplift at joint 13 and 101 lb uplift at joint 12. HORD 1-2=-188/116, 2-3=-97/76, 3-4=-81/56, 4-5=-71/83, 5-6=-46/64, 6-7=-42/60, 7-8=-52/62, 8-9=-59/26, 9-10=-82/46, 10-11=-165/82 HORD 1-19=-57/134, 18-19=-57/134, 10-17=-57/134, 15-16=-57/134, 12-13=-57/134, 12-13=-57/134, 12-13=-57/134, 12-13=-57/134, 11-12=-57/134	ORCES		<i>/</i> ·· · · · · · · · · · · · · · · · · · ·	-)								d	NATHA	NIEL YEN
 HORD 1-2=-188/116, 2-3=-97/76, 3-4=-81/56, 4-5=-71/83, 5-6=-46/64, 6-7=-42/60, 7-8=-52/62, 8-9=-59/26, 9-10=-82/46, 10-11=-165/82 HORD 1-19=-57/134, 18-19=-57/134, 15-16=-57/134, 14-15=-57/134, 15-16=-57/134, 12-13=-57/134, 11-12=-57/134 HORD 1-2=-57/134, 12-13=-57/134, 11-12=-57/134 	011020	· · /	nprocolori/maximam									H	41	
4-5=-71/83, 5-6=-46/64, 6-7=-42/60, 7-8=-52/62, 8-9=-59/26, 9-10=-82/46, 10-11=-165/82 HORD 1-19=-57/134, 18-19=-57/134, 17-18=-57/134, 16-17=-57/134, 15-16=-57/134, 12-13=-57/134, 11-12=-57/134, 12-13=-57/134, 11-12=-57/134, 12-13=-57/134, 11-12=-57/134, 12-13=-57/134, 11-12=-57/134, 12-13=-57/134, 12-12=-57/134, 12-13=-57/134, 13-14=-57/134, 12-13=-57/134, 14-15=-57/134, 12-13=-57/134, 15-16=-57/134, br>15-16=-57/134, 15-1	OP CHORD		-97/76 3-4=-81/56			nt 14, 56 lb uplift at	t joint 13	3 and 101 lb ι	uplift		•	RA	111.	
7-8=-52/62, 8-9=-59/26, 9-10=-82/46, 10-11=-165/82 11) This fuss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TP1 1. HORD 1-19=-57/134, 18-19=-57/134, 15-16=-57/134, 14-15=-57/134, 13-14=-57/134, 12-13=-57/134, 11-12=-57/134 LOAD CASE(S) Standard		,	, , ,									M/	- the	
HORD 1-19=-57/134, 18-19=-57/134, R802.10.2 and referenced standard ANSI/TPI 1. HORD 1-19=-57/134, 16-17=-57/134, LOAD CASE(S) Standard 15-16=-57/134, 14-15=-57/134, 13-14=-57/134, 12-13=-57/134, 11-12=-57/134 11-12=-57/134,				1	,	0						MI.		Val Tio
HORD 1-19=57/134, 16-19=57/134, 17-18=-57/134, 16-17=57/134, 15-16=-57/134, 14-15=-57/134, 13-14=-57/134, 12-13=-57/134, 11-12=-57/134		,	, - ,											
17-18=-57/134, 16-17=-57/134, LOAD CASE(S) Standard 15-16=-57/134, 14-15=-57/134, 13-14=-57/134, 12-13=-57/134, 11-12=-57/134, 11-12=-57/134 11-12=-57/134, 11-12=-57/134,	OT CHORD		9=-57/134,				dard AN	ISI/TPI 1.				N	O PE-2022	042259
		17-18=-57/134, 16-	17=-57/134,	L	OAD CASE(S)	Standard						N	The second second	120
		15-16=-57/134, 14-	15=-57/134,									Y	Nº'Sa	JO'B
		13-14=-57/134, 12-	13=-57/134,										UN ONIA	LENA
		11-12=-57/134											China and a start of the start	
February 21,2024														
													Februar	y ∠1,2024

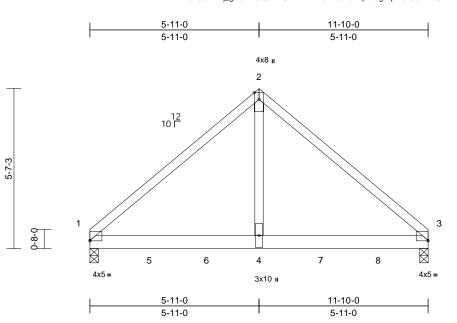
Job	Truss	Truss Type	Qty	Ply	Lot 175 WO	
B240016	F2	COMMON	5	1	Job Reference (optional)	163738443

Run: 8.73 E Jan 4 2024 Print: 8.730 E Jan 4 2024 MiTek Industries, Inc. Tue Feb 20 10:01:00 ID:p4_c7DvQapVS5sHzVsjKN5yiJAW-9P7YqfDFjzSfm8wmQZQNPeBxgeQ0E8Sirxj0wBzjHD2 Page: 1

Plate Offsets (X, Y): [1:Edge.0-2-12] [3:Edge.0-2-12]

Plate Offsets (X, Y): [1:Edge,0-2-12], [3:Edge,0-2-12]			_						-	
Loading TCLL (roof) TCDL BCLL BCDL	(psf) 25.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018/TPI2014	CSI TC BC WB Matrix-S	0.52 0.32 0.09	DEFL Vert(LL) Vert(CT) Horz(CT) Wind(LL)	in -0.03 -0.06 0.01 0.03	3-4 3-4 3	l/defl >999 >999 n/a >999	L/d 360 240 n/a 240	PLATES MT20 Weight: 38 lb	GRIP 197/144 FT = 10%
LUMBER TOP CHORD BOT CHORD WEBS WEDGE	2x4 SPF No.2 2x4 SPF No.2 2x3 SPF No.2 Left: 2x6 SPF No.2 Right: 2x6 SPF No.2		7) This truss is Internationa	s designed in acco al Residential Cod and referenced st	le sections	ith the 2018 R502.11.1 a				210	Wolgnt. Co lb	
BRACING TOP CHORD BOT CHORD REACTIONS	Structural wood she 6-0-0 oc purlins. Rigid ceiling directly bracing. (lb/size) 1=519/0-3	o ,										
FORCES	Max Horiz 1=-137 (L Max Uplift 1=-50 (LC (lb) - Maximum Com Tension 1-2=-578/101, 2-3=-	C 4) ; 8), 3=-50 (LC 9) pression/Maximum 578/101										
this design		been considered fo	r									
Vasd=91m II; Exp C; E cantilever I right expos 3) This truss chord live 4) * This truss on the bott 3-06-00 tal chord and	CE 7-16; Vult=115mph nph; TCDL=6.0psf; BC Enclosed; MWFRS (er left and right exposed sed; Lumber DOL=1.6 has been designed for load nonconcurrent wi s has been designed f tom chord in all areas Il by 2-00-00 wide will any other members.	DL=6.0psf; h=25ft; (ivelope) exterior zor ; end vertical left an 0 plate grip DOL=1. ; a 10.0 psf bottom th any other live loa or a live load of 20.0 where a rectangle fit between the botto	ne; d 60 ds. /psf							17	STATE OF J	The lines
capacity of 6) Provide me	gs are assumed to be \$ f 425 psi. echanical connection (ate capable of withstar	by others) of truss t								Q	PE-2022	L ENGINE

6) tion (by oth bearing plate capable of withstanding 50 lb uplift at joint 1 and 50 lb uplift at joint 3.


CONAL ST February 21,2024

> DEVELOPMENT SERVICES LEE'S'SUMMIT'SMISSOURI 03/18/2024 4:46:48

CTION **IEW**

Job	Truss	Truss Type	Qty	Ply	Lot 175 WO	
B240016	F3	COMMON GIRDER	1	2	Job Reference (optional)	163738444

Run: 8.73 S Feb 6 2024 Print: 8.730 S Feb 6 2024 MiTek Industries, Inc. Tue Feb 20 09:51:55 ID:Lek3CAANj_gYbKvtCQHtmQzKvNM-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

Scale = 1:40.3

Plate Offsets (X, Y): [1:Edge,0-0-4], [3:Edge,0-0-4]

	, 1). [1.∟uge,0-0-4],	, [J.Luge,0-0-4]											
Loading TCLL (roof) TCDL BCLL BCDL	(psf) 25.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	-	3/TPI2014	CSI TC BC WB Matrix-S	0.69 0.64 0.64	DEFL Vert(LL) Vert(CT) Horz(CT) Wind(LL)	in -0.08 -0.14 0.01 0.05	(loc) 1-4 1-4 3 1-4	l/defl >999 >999 n/a >999	L/d 360 240 n/a 240		GRIP 197/144 FT = 10%
FORCES TOP CHORD BOT CHORD WEBS NOTES 1) 2-ply truss (0.131"x3") Top chords oc. Bottom chords staggered i Web conne 2) All loads ar except if no CASE(S) s provided to unless othe 3) Unbalance this design 4) Wind: ASC Vasd=91m II; Exp C; E cantilever I	4-11-7 oc purlins. Rigid ceiling directly bracing. (size) 1=0-3-8, 3 Max Horiz 1=135 (LC Max Uplift 1=-260 (L Max Grav 1=4057 (L (Ib) - Maximum Com Tension 1-2=-4333/236, 2-3= 1-4=-103/3160, 3-4= 2-4=-130/5206 to be connected togen nails as follows: s connected as follows: ords connected as follows: ords connected as follows: ords connected as follows: ords connected as follows: 2x4 - re considered equally bed as front (F) or ba- section. Ply to ply comr o distribute only loads erwise indicated.	3=0-3-8 C 7) C 8), 3=-153 (LC 9) C 1), 3=4224 (LC 1) pression/Maximum =-4333/237 =-103/3160 ther with 10d s: 2x4 - 1 row at 0-9-1 ows: 2x6 - 2 rows - 1 row at 0-9-0 oc. applied to all plies, ck (B) face in the LO nections have been noted as (F) or (B), been considered for (3-second gust) DL=6.0psf; h=25ft; C Duelope) exterior zon ; end vertical left and	6) d or 7) 8) 9) 10) 0 1) AD	chord live loa * This truss h on the bottor 3-06-00 tall b chord and ar All bearings Provide mec bearing plate 1 and 153 lb This truss is International R802.10.2 at Hanger(s) or provided suff lb down and up at 4-1-0, 1447 lb down and 29 lb up selection of s responsibility AD CASE(S) Dead + Roor Plate Incree Uniform Loa Vert: 1-2 Concentrat	Standard of Live (balanced) ase=1.15	with any d for a liv as where vill fit betv s. be SPF No n (by oth standing 2 rdance w e sections indard AN n device(s concentre -0, 1451 II d 29 lb up 8-1-0, ar tom chord device(s)): Lumber 3=-20	other live load e load of 20.0 a rectangle veen the botti 0.2. ers) of truss i 60 lb uplift al rs502.11.1 a (SI/TPI 1.) shall be tied load(s) 1 o down and 2 o at 6-1-0, ar d 1447 lb do d. The desig is the Increase=1.	Opsf om to t joint and 447 29 lb nd wwn n/				PE-2022	X 042259 S

Job	Truss	Truss Type	Qty	Ply	Lot 175 WO	
B240016	J1	Diagonal Hip Girder	2	1	Job Reference (optional)	163738445

Run: 8.73 S Feb 6 2024 Print: 8.730 S Feb 6 2024 MiTek Industries, Inc. Tue Feb 20 09:51:55 ID:t5IN2KQdAXrK8QE5zqsszuzjI_A-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

2-4-12

Page: 1

-1-3-15 5-3-8 1-3-15 5-3-8 2-2-12 2-2-4 2x4 🛛 12 2.63 Г 4 8 3 1-9-7 1-9-7 **≏**∬5 -8-0 Ь 6 2x4 II 9 3x6 II 2x4 II 4x8 = 2-10-12 5-3-8

2-10-12

Scale = 1:32.8

Plate Offsets (X, Y): [3:0-3-12,0-1-13], [7:0-3-0,0-0-8]

Plate Offsets ((X, Y): [3:0-3-12,0-1-1	3], [7:0-3-0,0-0-8]			-							-	
Loading	(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15		TC	0.60	Vert(LL)	-0.06	6	>927	360	MT20	197/144
TCDL	10.0	Lumber DOL	1.15		BC	0.26	Vert(CT)	-0.11	6	>544	240		
BCLL	0.0*	Rep Stress Incr	NO		WB	0.00	Horz(CT)	0.06	5	n/a	n/a		
BCDL	10.0	Code	IRC201	8/TPI2014	Matrix-R		Wind(LL)	0.06	6	>926	240	Weight: 15 lb	FT = 10%
LUMBER			8	Hanger(s) o	r other connectio	n device(s) shall be						
TOP CHORD	2x4 SPF No.2			provided suf	ficient to support	concentra	ated load(s)	71 lb					
BOT CHORD	2x4 SPF No.2 *Exce	pt* 6-3:2x3 SPF No	.2		3 lb up at 2-4-3 o								
WEBS	2x6 SPF No.2 *Exce	pt* 4-5:2x3 SPF No	.2		wn and 32 lb up								
BRACING					selection of such	connectio	n device(s) i	s the					
TOP CHORD			ed or	responsibilit				6000					
	5-3-8 oc purlins, ex				CASE(S) sectio are noted as fron			lace					
BOT CHORD	0 0 ,	applied or 10-0-0 o	c I	OAD CASE(S)		it (i) 0i ba	ск (В).						
	bracing.		1	• • • •	of Live (balanced	1). Lumber	Increase-1	15					
REACTIONS	. ,	nical, 7=0-4-7		Plate Incre			mercase=1	.10,					
	Max Horiz 7=56 (LC	,		Uniform Lo									
	Max Uplift 5=-58 (LC Max Grav 5=219 (LC			Vert: 1-2	=-70, 2-3=-70, 3	-4=-70, 6-	7=-20, 3-5=-	20					
FORCES	(lb) - Maximum Com	,. ,		Concentrat	ed Loads (lb)								
FURCES	Tension	pression/maximum		Vert: 6=	-25 (B)								
TOP CHORD)/23. 2-3=-86/0.											
	3-4=-85/20, 4-5=-14	, ,											
BOT CHORD	6-7=-4/18, 3-6=-27/7	70, 3-5=-20/79											
NOTES													
1) Wind: ASC	CE 7-16; Vult=115mph	(3-second gust)											
	mph; TCDL=6.0psf; BC												
	Enclosed; MWFRS (er												
	left and right exposed	,										- march	alle
	osed; Lumber DOL=1.6 s has been designed for		60									6 OF	MISCH
	load nonconcurrent wi		de									4 TE	
	ss has been designed f										A	N	New
	ttom chord in all areas										A	STATE OF D	THEF / X
	all by 2-00-00 wide will		om								-11	FO	x
	any other members.										<u>И</u> ^		
	gs are assumed to be \$											T	
E) Defer to a	virdar(a) for truca to tru	an connections											AV Minsk

- 5) Refer to girder(s) for truss to truss connections.
- Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 128 lb uplift at joint 7 and 58 lb uplift at joint 5.
- 7) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSITPTI Quality Criteria, and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcscomponents.com)

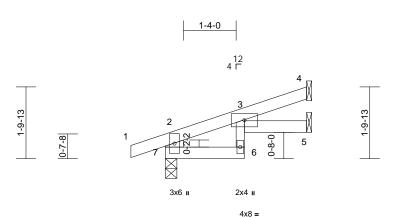
AMPER

February 21,2024

PE-202204225

SSIONAL ET

Job	Truss	Truss Type	Qty	Ply	Lot 175 WO	
B240016	J2	Jack-Open	3	1	Job Reference (optional)	163738446


-0-10-8

0-10-8

Wheeler Lumber, Waverly, KS - 66871,

Run: 8,73 S Feb 6 2024 Print: 8,730 S Feb 6 2024 MiTek Industries, Inc. Tue Feb 20 09:51:55 ID:hR3McxtOmiAjFWISqtZleOzjI_t-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

3-6-15

3-6-15

Scale = 1:29.2

Ocale = 1.23.2												
Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15	тс	0.18	Vert(LL)	-0.01	6	>999	360	MT20	197/144
TCDL	10.0	Lumber DOL	1.15	BC	0.11	Vert(CT)	-0.02	6	>999	240		
BCLL	0.0*	Rep Stress Incr	YES	WB	0.00	Horz(CT)	0.01	5	n/a	n/a		
BCDL	10.0	Code	IRC2018/TPI2014	Matrix-R		Wind(LL)	0.01	6	>999	240	Weight: 10 lb	FT = 10%
LUMBER			7) This truss is	designed in acco	ordance wi	ith the 2018						
TOP CHORD	2x4 SPF No.2			I Residential Cod			and					
BOT CHORD	2x4 SPF No.2 *Exce	ept* 6-3:2x3 SPF No.	-	and referenced sta	andard AN	ISI/TPI 1.						
WEBS	2x6 SPF No.2		LOAD CASE(S)	Standard								
BRACING												
TOP CHORD	Structural wood she		ed or									
BOT CHORD	3-6-15 oc purlins, e Rigid ceiling directly											
BOT ONORD	bracing.											
REACTIONS	(size) 4= Mecha	nical, 5= Mechanica	al,									
	7=0-3-8											
	Max Horiz 7=58 (LC	,										
	Max Uplift 4=-32 (LC	C 8), 5=-5 (LC 8), 7=-	-68									
	(LC 4) Max Grav 4=82 (LC	1) $5=54 (I \oplus 3) 7=2$	238									
	(LC 1)	1), 0–01 (20 0), 1–2	-00									
FORCES	(lb) - Maximum Com	pression/Maximum										
	Tension											
TOP CHORD	2-7=-233/87, 1-2=0/		16/22									
BOT CHORD	6-7=-4/10, 3-6=-4/44	4, 3-5=-9/4										
NOTES												
	E 7-16; Vult=115mph		. .									
	nph; TCDL=6.0psf; BC Enclosed; MWFRS (er											
	left and right exposed										on the	and
	sed; Lumber DOL=1.6										S. OF I	MISS
											P.R.VII	N Som

- This truss has been designed for a 10.0 psf bottom 2) chord live load nonconcurrent with any other live loads.
- 3) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- All bearings are assumed to be SPF No.2 . 4)
- 5) Refer to girder(s) for truss to truss connections.
- 6) Provide mechanical connection (by others) of truss to
- bearing plate capable of withstanding 68 lb uplift at joint 7, 32 lb uplift at joint 4 and 5 lb uplift at joint 5.

February 21,2024

DEVELORMENT SERVICES LEE'S'SUMMIT'SMISSOURI 03/18/2024 4:46:48

CTION

ΊFW

Job	Truss	Truss Type	Qty	Ply	Lot 175 WO	
B240016	J3	Jack-Open	2	1	Job Reference (optional)	163738447

1-3-4

0-7-8

Run: 8.73 S Feb 6 2024 Print: 8.730 S Feb 6 2024 MiTek Industries, Inc. Tue Feb 20 09:51:55 ID:oaj8VJ?Eja6xcSocclGQjDzjI0?-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

1-11-5

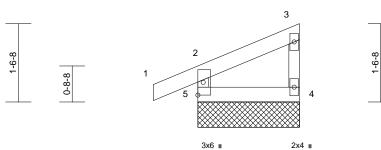
3x6 II

1

Scal	lo –	1.21	0

Scale = 1.21.0												
Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15	тс	0.08	Vert(LL)	-0.01	4	>999	360	MT20	197/144
TCDL	10.0	Lumber DOL	1.15	BC	0.10	Vert(CT)	-0.02	4	>819	240	_	
BCLL	0.0*	Rep Stress Incr	YES	WB	0.00	Horz(CT)	0.00	3	n/a	n/a		
BCDL	10.0	Code	IRC2018/TPI2014	Matrix-R		Wind(LL)	0.00	4	>999	240	Weight: 6 lb	FT = 10%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SPF No.2 2x4 SPF No.2 2x6 SPF No.2 Structural wood she 1-11-5 oc purlins, e Rigid ceiling directly bracing. (size) 3= Mecha Max Horiz 5=36 (LC Max Uplift 3=-16 (LC Max Grav 3=52 (LC (lb) - Maximum Com	athing directly appli xcept end verticals. applied or 10-0-0 o inical, 5=0-3-8 4) : 8), 5=-65 (LC 4) 1), 5=179 (LC 1)	ed or c	Matrix-R		Wind(LL)	0.00	4	>999	240	Weight: 6 lb	FI = 10%
OP CHORD	Tension 2-5=-145/86, 1-2=0/	2/ 2-321/13										
BOT CHORD	4-5=0/0	24, 2-3=-21/13										
NOTES												
 Wind: ASC Vasd=91m II; Exp C; I cantilever right expos This truss chord live I * This truss on the bott 3-06-00 tal chord and All bearing 5) Refer to gi Provide me bearing pla 5 and 16 ll This truss Internation R802.10.2 	CE 7-16; Vult=115mph mph; TCDL=6.0psf; BC Enclosed; MWFRS (er left and right exposed sed; Lumber DOL=1.6 has been designed fo load nonconcurrent wi s has been designed f tom chord in all areas all by 2-00-00 wide will any other members. gs are assumed to be s irder(s) for truss to tru echanical connection (ate capable of withstar b uplift at joint 3. is designed in accorda al Residential Code se 2 and referenced stand S	DL=6.0psf; h=25ft; ivelope) exterior zor; ; end vertical left an 0 plate grip DOL=1. r a 10.0 psf bottom th any other live loa or a live load of 20.0 where a rectangle fit between the botto SPF No.2 . ss connections. (by others) of truss t ading 65 lb uplift at j ance with the 2018 ections R502.11.1 a	ne; id 60 ids. Dpsf om oon								NATH Har	MISSOLANIEL ANIEL DX 2042259
LOAD CASE(S) Standard										100	100
											Echruc	ny 21 2021

February 21,2024



Job	Truss	Truss Type	Qty	Ply	Lot 175 WO	
B240016	J4	Jack-Closed Supported Gable	1	1	Job Reference (optional)	163738448

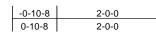
Run: 8,73 S Feb 6 2024 Print: 8,730 S Feb 6 2024 MiTek Industries, Inc. Tue Feb 20 09:51:56 ID:Lek3CAANj_gYbKvtCQHtmQzKvNM-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

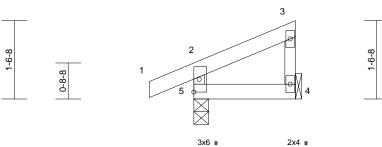
-0-10-8 2-0-0 0-10-8 2-0-0

2-0-0

Scale = 1:22.7

Scale = 1:22.7											
Loading (psf) TCLL (roof) 25.0 TCDL 10.0 BCLL 0.0* BCDL 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018/TPI2014	CSI TC BC WB Matrix-R	0.06 0.02 0.00	DEFL Vert(LL) Vert(CT) Horz(CT)	in n/a n/a 0.00	(loc) - - 4	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 7 lb	GRIP 197/144 FT = 10%
LUMBER TOP CHORD 2x4 SPF No.2 BOT CHORD 2x4 SPF No.2 WEBS 2x3 SPF No.2 BRACING TOP CHORD Structural wood she 2-0-0 oc purlins, ex BOT CHORD Rigid ceiling directly bracing. REACTIONS (size) 4=2-0-0, 5 Max Horiz 5=58 (LC Max Uplift 4=-19 (LC Max Grav 4=62 (LC FORCES (lb) - Maximum Com	eathing directly applie ccept end verticals. / applied or 10-0-0 or 5=2-0-0 5) C 5), 5=-40 (LC 4) 1), 5=168 (LC 1)	9) Provide m bearing pl 5 and 19 I 10) This truss Internation R802.10.2 ed or R802.10.2	echanical connecti ate capable of with b uplift at joint 4. is designed in acco al Residential Cod	standing 4 ordance w le sections	0 lb uplift at j ith the 2018 s R502.11.1 a	oint					
Tension TOP CHORD 2-5=-149/52, 1-2=0/ BOT CHORD 4-5=-19/12	/26, 2-3=-43/9, 3-4=-	45/24									
 NOTES Wind: ASCE 7-16; Vult=115mph Vasd=91mph; TCDL=6.0psf; BC II; Exp C; Enclosed; MWFRS (er cantilever left and right exposed right exposed; Lumber DOL=1.6 Truss designed for wind loads in only. For studs exposed to wind see Standard Industry Gable En or consult qualified building desi Gable requires continuous botto to braced against lateral movemen Gable studs spaced at 2-0-0 oc. This truss has been designed fo chord live load nonconcurrent wi * This truss has been designed fo on the bottom chord in all areas 3-06-00 tall by 2-00-00 wide will chord and any other members. All bearings are assumed to be s 	EDL=6.0psf; h=25ft; (nvelope) exterior zor ; end vertical left an 60 plate grip DOL=1.0 in the plane of the trud d (normal to the face) d Details as applicat igner as per ANSI/TF m chord bearing. one face or securely it (i.e. diagonal web). r a 10.0 psf bottom ith any other live load for a live load of 20.0 where a rectangle fit between the bottom	ne; d 60 iss), ble, PI 1. ds. Jpsf							h	PE-202	DX ATTACK


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent toulsible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)


February 21,2024

Job	Truss	Truss Type	Qty	Ply	Lot 175 WO	
B240016	J5	Jack-Closed	5	1	Job Reference (optional)	163738449

Run: 8.73 S Feb 6 2024 Print: 8.730 S Feb 6 2024 MiTek Industries, Inc. Tue Feb 20 09:51:56 ID:Lek3CAANj_gYbKvtCQHtmQzKvNM-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

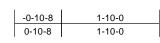
2x4 🛛

2-0-0

Scale - 1.22 7

Scale = 1:22.7												
Loading TCLL (roof) TCDL BCLL BCDL	(psf) 25.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018/TPI2014	CSI TC BC WB Matrix-R	0.06 0.02 0.00	DEFL Vert(LL) Vert(CT) Horz(CT) Wind(LL)	in 0.00 0.00 0.00 0.00	(loc) 4-5 4-5 4 4-5	l/defl >999 >999 n/a >999	L/d 360 240 n/a 240	PLATES MT20 Weight: 7 lb	GRIP 197/144 FT = 10%
LUMBER TOP CHORD BOT CHORD BOT CHORD BOT CHORD BOT CHORD BOT CHORD REACTIONS (FORCES TOP CHORD BOT CHORD BOT CHORD BOT CHORD BOT CHORD BOT CHORD NOTES 1) Wind: ASCC Vasd=91mg II; Exp C; E cantilever la right expose 2) This truss h chord live la 3) * This truss on the botto 3:06-00 tall chord and a 4) All bearings 5) Refer to gin 6) Provide me bearing pla 5 and 19 lb 7) This truss is International	2x4 SPF No.2 2x3 SPF No.2 2x3 SPF No.2 2x3 SPF No.2 Structural wood she 2-0-0 cc purlins, ex Rigid ceiling directly bracing. (size) 4= Mecha Max Horiz 5=58 (LC Max Uplift 4=-19 (LC Max Uplift 4=-19 (LC Max Grav 4=62 (LC (Ib) - Maximum Com Tension 2-5=-149/52, 1-2=0// 4-5=-19/12 E 7-16; Vult=115mph ph; TCDL=6.0psf; BC inclosed; MWFRS (er eft and right exposed ed; Lumber DOL=1.6/ nas been designed for orad nonconcurrent wi bhas been designed for orad nonconcurrent wi shas been designed for orad nonconcurrent wi chan been designed for orad nonconcurrent wi shas been designed for orad nonconcurrent wi chanical connection (te capable of withstar uplift at joint 4. s designed in accorda al Residential Code sa and referenced stand	athing directly applie cept end verticals. applied or 10-0-0 or inical, 5=0-3-8 5) 5), 5=-40 (LC 4) 1), 5=168 (LC 1) ipression/Maximum 26, 2-3=-43/9, 3-4=- (3-second gust) DL=6.0psf; h=25f; 0 velope) exterior zor ; end vertical left an 0 plate grip DOL=1.4 r a 10.0 psf bottom th any other live load or a live load of 20.0 where a rectangle fit between the botto SPF No.2. ss connections. by others) of truss to ance with the 2018 ections R502.11.1 a	ed or c 45/24 Cat. he; d 60 ds.)psf om								PE-2022	MISSOLUTION ANIEL DX BER 042259
											alle	4.04.0004

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent toulsible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)


UCTION /IEW

DEVELOPMENT SERVICES LEE'S' SUMMIT'S MISSOURI 03/18/2024 4:46:48

February 21,2024

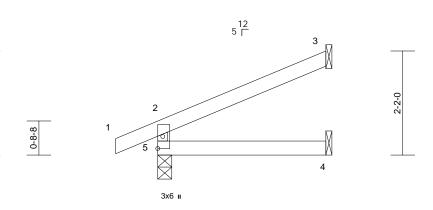
Job	Truss	Truss Type	Qty	Ply	Lot 175 WO	
B240016	J6	Jack-Open	2	1	Job Reference (optional)	163738450

Run: 8.73 S Feb 6 2024 Print: 8.730 S Feb 6 2024 MiTek Industries, Inc. Tue Feb 20 09:51:56 ID:gpvoC3ePoMKB0rVrrSkOWuzjI0T-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

1-10-0

Scale = 1:21.6												
Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15	тс	0.05	Vert(LL)	0.00	2-4	>999	360	MT20	197/144
TCDL	10.0	Lumber DOL	1.15	BC	0.03	Vert(CT)	0.00	2-4	>999	240		
BCLL	0.0*	Rep Stress Incr	YES	WB	0.00	Horz(CT)	0.00	3	n/a	n/a		
BCDL	10.0	Code	IRC2018/TPI2014	Matrix-P							Weight: 6 lb	FT = 10%

	LOAD CASE(S) Standard	
TOP CHORD 2x4 SPF No.2 BOT CHORD 2x4 SPF No.2		
WEDGE Left: 2x3 SPF No.2		
BRACING		
TOP CHORD Structural wood sheathing directly applied or		
1-10-0 oc purlins.		
BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing.		
REACTIONS (size) 2=0-3-8, 3= Mechanical, 4=		
Mechanical Max Horiz 2=32 (LC 8)		
Max Uplift 2=-55 (LC 4), 3=-28 (LC 8)		
Max Grav $2=160$ (LC 1), $3=47$ (LC 1), $4=36$		
(LC 3)		
FORCES (Ib) - Maximum Compression/Maximum		
Tension TOP CHORD 1-2=-2/0, 2-3=-34/14		
BOT CHORD 2-4=0/0		
NOTES		
1) Wind: ASCE 7-16; Vult=115mph (3-second gust)		
Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat.		
II; Exp C; Enclosed; MWFRS (envelope) exterior zone;		
cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60		ADDAG
2) This truss has been designed for a 10.0 psf bottom		ATE OF MISSOL
chord live load nonconcurrent with any other live loads.		R.TE SO.W
3) * This truss has been designed for a live load of 20.0psf	A	NATHANIEL
on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom	A	S NATHANIEL
chord and any other members.	A.	A A A A A A A A A A A A A A A A A A A
4) All bearings are assumed to be SPF No.2.		1 the loss
5) Refer to girder(s) for truss to truss connections.	Ø.	A Kome /
6) Provide mechanical connection (by others) of truss to	N.	NUMBER CHER
bearing plate capable of withstanding 55 lb uplift at joint 2 and 28 lb uplift at joint 3.	\mathcal{N}	OF PE-2022042259
7) This truss is designed in accordance with the 2018	N N	A CONE
International Residential Code sections R502.11.1 and		CSSIONAL ENGLE
R802.10.2 and referenced standard ANSI/TPI 1.		Charles
		February 21,2024



Job	Truss	Truss Type	Qty	Ply	Lot 175 WO	
B240016	J7	Jack-Open	8	1	Job Reference (optional)	163738451

2-2-0

Run: 8.73 S Feb 6 2024 Print: 8.730 S Feb 6 2024 MiTek Industries, Inc. Tue Feb 20 09:51:56 ID:Lek3CAANj_gYbKvtCQHtmQzKvNM-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Scale = 1:24				1									
Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP	
TCLL (roof)	25.0	Plate Grip DOL	1.15	тс	0.16	Vert(LL)	-0.01	4-5	>999	360	MT20	197/144	
TCDL	10.0	Lumber DOL	1.15	BC	0.10	Vert(CT)	-0.01	4-5	>999	240			
BCLL	0.0*	Rep Stress Incr	YES	WB	0.00	Horz(CT)	0.01	3	n/a	n/a			
BCDL	10.0	Code	IRC2018/TPI2014	Matrix-R		Wind(LL)	0.01	4-5	>999	240	Weight: 10 lb	FT = 10%	

3-6-0

LUMBER			LOAD CASE(S)	Standard
TOP CHORD				
BOT CHORD				
WEBS	2x3 SPF	No.2		
BRACING				
TOP CHORD		I wood sheathing directly applied or		
DOTOUDDD		purlins, except end verticals.		
BOT CHORD	Rigid ceil bracing.	ing directly applied or 10-0-0 oc		
DEACTIONS	0	2 Machanical 4 Machanical		
REACTIONS	(size)	3= Mechanical, 4= Mechanical, 5=0-3-8		
	Max Horiz	5=65 (LC 8)		
		3=-55 (LC 8), 5=-34 (LC 8)		
		3=103 (LC 1), 4=63 (LC 3), 5=229		
		(LC 1)		
FORCES	(lb) - Max	kimum Compression/Maximum		
	Tension			
TOP CHORD		/64, 1-2=0/26, 2-3=-56/31		
BOT CHORD	4-5=0/0			
NOTES				
		IIt=115mph (3-second gust)		
		=6.0psf; BCDL=6.0psf; h=25ft; Cat.		
		/WFRS (envelope) exterior zone; nt exposed ; end vertical left and		
		er DOL=1.60 plate grip DOL=1.60		
		lesigned for a 10.0 psf bottom		
		ncurrent with any other live loads.		
3) * This trus	ss has been	designed for a live load of 20.0psf		
		n all areas where a rectangle		
		0 wide will fit between the bottom		
	any other r			
		med to be SPF No.2 . truss to truss connections.		
		connection (by others) of truss to		
		of withstanding 34 lb uplift at joint		
	lb uplift at jo			
		in accordance with the 2018		
		tial Code sections R502.11.1 and		
R802.10.2	2 and refere	nced standard ANSI/TPI 1.		

Page: 1

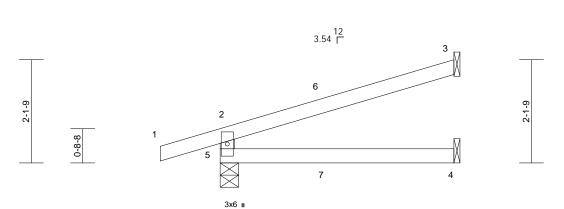
Job	Truss	Truss Type	Qty	Ply	Lot 175 WO	
B240016	J8	Diagonal Hip Girder	1	1	Job Reference (optional)	163738452

-1-2-14

1-2-14

Wheeler Lumber, Waverly, KS - 66871,

Run: 8.73 S Feb 6 2024 Print: 8.730 S Feb 6 2024 MiTek Industries, Inc. Tue Feb 20 09:51:56 ID:Lek3CAANj_gYbKvtCQHtmQzKvNM-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f


4-9-14

4-9-14

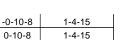
4-9-14

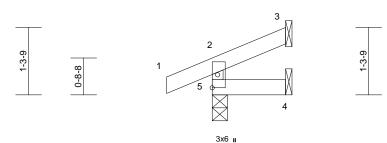
. ...

Scolo	_	1:23.8
Scale	=	1:23.8

Loading TCLL (roof) TCDL BCLL BCDL	(psf) 25.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 NO IRC2018/TPI2014	CSI TC BC WB Matrix-R	0.35 0.21 0.00	DEFL Vert(LL) Vert(CT) Horz(CT) Wind(LL)	in -0.02 -0.05 0.01 0.02	(loc) 4-5 4-5 3 4-5	l/defl >999 >999 n/a >999	L/d 360 240 n/a 240	PLATES MT20 Weight: 13 lb	GRIP 197/144 FT = 10%
BOT CHORD 2x4 S WEBS 2x4 S BRACING TOP CHORD Struc 4-9-1 BOT CHORD Rigid braci REACTIONS (size) Max H Max U Max G FORCES (lb) - Tens	4 oc purlins, e ceiling directly ng. 3= Mecha 5=0-4-9 oriz 5=70 (LC plift 3=-64 (LC rav 3=140 (LC (LC 1) Maximum Com ion 280/130, 1-2=(eathing directly applied except end verticals. applied or 10-0-0 oc anical, 4= Mechanical, 4) 2 8), 5=-92 (LC 4) C 1), 4=86 (LC 3), 5=3 appression/Maximum D/27, 2-3=-70/30	or chord. (s) is the chord CAS (s) is the (s)	s) or other connection d sufficient to support of d 22 lb up at 2-1-0, a d 22 lb up at 2-1-0, a d 2 lb down and 2 lb The design/selection of e responsibility of othe DAD CASE(S) section uss are noted as front E(S) Standard H Roof Live (balanced) norease=1.15 In Loads (lb/ft) : 1-2=-70, 2-3=-70, 4-5 Intrated Loads (lb) : 7=5 (F=2, B=2)	concentra nd 66 lb 2 lb dow up at 2- ¹ f such cc rs. , loads a (F) or ba : Lumber	ated load(s) 6 down and 22 n and 2 lb up l-0 on bottom nonection dev oplied to the t ck (B).	lb at rice face					

NOTES

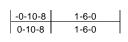

- Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
 * This truss has been designed for a live load of 20.0psf
- This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- 4) All bearings are assumed to be SPF No.2 .
- 5) Refer to girder(s) for truss to truss connections.
- Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 92 lb uplift at joint 5 and 64 lb uplift at joint 3.
- 7) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.


Job	Truss	Truss Type	Qty	Ply	Lot 175 WO	
B240016	Jə	Jack-Open	2	1	Job Reference (optional)	163738453

Run: 8.73 S Feb 6 2024 Print: 8.730 S Feb 6 2024 MiTek Industries, Inc. Tue Feb 20 09:51:57 ID:Lek3CAANj_gYbKvtCQHtmQzKvNM-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

1-4-15

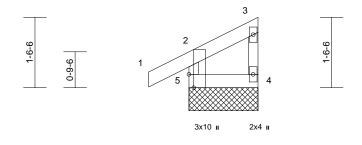
Scale =	1:22.2
---------	--------


Loading (psf) TCLL (roof) 25.0 TCDL 10.0 BCLL 0.0* BCDL 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018/TPI2014	BC	0.06 0.01 0.00	DEFL Vert(LL) Vert(CT) Horz(CT) Wind(LL)	in 0.00 0.00 0.00 0.00	(loc) 4-5 4-5 3 4-5	l/defl >999 >999 n/a >999	L/d 360 240 n/a 240	PLATES MT20 Weight: 5 lb	GRIP 197/144 FT = 10%
REACTIONS (size) 1-4-15 oc purlins, e Rigid ceiling directly bracing. REACTIONS (size) 3= Mecha 5=0-3-8 Max Horiz 5=33 (LC Max Uplift 3=-19 (LC Max Grav 3=23 (LC	applied or 10-0-0 oc anical, 4= Mechanical, 5) 2 8), 5=-34 (LC 4)		Standard								
 (LC 1) FORCES (Ib) - Maximum Corr Tension TOP CHORD 2-5=-136/45, 1-2=0/ BOT CHORD 4-5=0/0 NOTES 1) Wind: ASCE 7-16; Vult=115mph Vasd=91mph; TCDL=6.0psf; BC II; Exp C; Enclosed; MWFRS (er cantilever left and right exposed right exposed; Lumber DOL=1.6 2) This truss has been designed for chord live load nonconcurrent wi 3) * This truss has been designed for or the bottom chord in all areas 3-06-00 tall by 2-00-00 wide will chord and any other members. 4) All bearings are assumed to be 5 5) Refer to girder(s) for truss to tru (6) Provide mechanical connection of bearing plate capable of withstat 5 and 19 lb uplift at joint 3. 7) This truss is designed in accorda International Residential Code s R802.10.2 and referenced stand 	26, 2-3=-26/6 (3-second gust) (DL=6.0psf; h=25ft; Ca velope) exterior zone ; end vertical left and 0 plate grip DOL=1.6C r a 10.0 psf bottom ith any other live loads for a live load of 20.0p where a rectangle fit between the bottom SPF No.2. ss connections. (by others) of truss to nding 34 lb uplift at join ance with the 2018 ections R502.11.1 and	; s. sf n								PE-2022	DX BER 2042259

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent toulsable personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcscomponents.com)

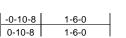
RELEASE ORCONSTRUCTION AS NOTED ON PLANS REVIEW DEVERSORMENTS SERVICES LEETS SUMMIT'S MISSOURI 03/18/2024 4:46:48

Job	Truss	Truss Type	Qty	Ply	Lot 175 WO	
B240016	J10	Jack-Closed Supported Gable	2	1	Job Reference (optional)	163738454


Run: 8.73 S Feb 6 2024 Print: 8.730 S Feb 6 2024 MiTek Industries, Inc. Tue Feb 20 09:51:57 ID:RpLzIAK6vN2turWrK?GHSPzjI0t-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

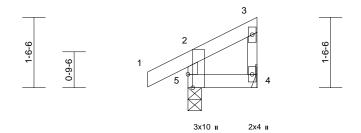
1-6-0

Scale = 1:25


Plate Offsets (X, Y): [5:0-3-8,Edge]

	5.0 0 0,⊑ugej											
Loading TCLL (roof) TCDL BCLL BCDL	(psf) 25.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018/TPI2014	CSI TC BC WB Matrix-R	0.07 0.01 0.00	DEFL Vert(LL) Vert(CT) Horz(CT)	in n/a n/a 0.00	(loc) - - 4	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 6 lb	GRIP 197/144 FT = 10%
BOT CHORD 2x4 SF WEBS 2x3 SF BRACING TOP CHORD Struct 1-6-0 0 BOT CHORD Rigid bracin REACTIONS (size) Max Ho Max UD Max	oc purlins, ex ceiling directly g. 4=1-6-0, { firiz 5=56 (LC lift 4=-22 (LC av 4=36 (LC Aaximum Com on 37/45, 1-2=0/ 3/20 20/14 Vult=115mph DL=6.0psf; BC d; MWFRS (er right exposed nber DOL=1.6 r wind loads ir posed to wind by stry Gable En H building design trinuous botto neathed from c eral movemen d at 2-0-0 oc. n designed for concurrent wi ven designed for iconcurrent wi ven designed for icon current wi	5) 5), 5=-33 (LC 8) 15), 5=153 (LC 1) pression/Maximum 31, 2-3=-38/13, (3-second gust) DL=6.0psf; h=25ft; C invelope) exterior zon ; end vertical left and 0 plate grip DQ=1.6 n the plane of the truu (normal to the face) d Details as applicab gner as per ANSI/TP m chord bearing. one face or secures. Invelope of the true o	9) Provide bearing 5 and 22 10) This true ad or LOAD CASE Cat. le; d 50 ss s, ble, 11.	Ings are assumed to b mechanical connection lolate capable of withs built at joint 4. s is designed in acco onal Residential Code. 2 and referenced sta (S) Standard	on (by oth standing 3 ordance w e sections	ers) of truss t 33 lb uplift at j ith the 2018 5 R502.11.1 a	oint				NATHL FC A had PE-2022	DX D042259

Job	Truss	Truss Type	Qty	Ply	Lot 175 WO	
B240016	J11	Jack-Closed	2	1	Job Reference (optional)	163738455


Run: 8.73 S Feb 6 2024 Print: 8.730 S Feb 6 2024 MITek Industries, Inc. Tue Feb 20 09:51:57 ID:vTrVpuwPhEuZQmVWuZAYdRzjI1O-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

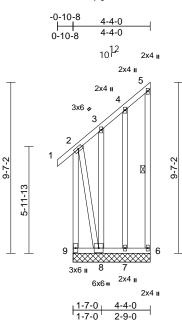
1-6-0

2x4 II

Scale =	1:25	

Plate Offsets (X, Y): [5:0-3-8,Edge]

Loading TCLL (roof) TCDL BCLL BCDL	(psf) 25.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018/TPI2014	CSI TC BC WB Matrix-R	0.07 0.01 0.00	DEFL Vert(LL) Vert(CT) Horz(CT) Wind(LL)	in 0.00 0.00 0.00 0.00	(loc) 4-5 4-5 4 4-5	l/defl >999 >999 n/a >999	L/d 360 240 n/a 240	PLATES MT20 Weight: 6 lb	GRIP 197/144 FT = 10%
LUMBER TOP CHORD 2x4 SPF No BOT CHORD 2x4 SPF No WEBS 2x3 SPF No BRACING TOP CHORD Structural w 1-6-0 oc pur BOT CHORD Rigid ceiling bracing. REACTIONS (size) 4: Max Horiz 5: Max Uplift 4: Max Grav 4: FORCES (lb) - Maximu Tension	2 2 2 2 3 3 4 4 5 5 6 1 2 2 2 2 2 3 6 1 2 2 2 1 2 2 2 2 2 2 3 6 1 2 2 2 1 2 2 2 1 2 3 6 1 2 2 2 1 2 2 1 2 3 6 1 2 2 2 1 2 2 1 2 3 6 1 2 2 2 1 2 2 1 2 3 6 1 2 2 2 1 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 1 2 2 1 2 1 2 2 1 2 2 1 2 1 2 2 1 2 1 2 2 1 2 1 2 2 1 2 2 1 1 1 2 1 1 1 1 2 1 1 2 1	athing directly applie cept end verticals. ^a applied or 6-0-0 oc anical, 5=0-3-8 5) C 5), 5=-33 (LC 8) 15), 5=153 (LC 1) apression/Maximum (31, 2-3=-38/13, (31, 2-3=-38/13, (LOAD CASE(S) ed or Cat. le; d 30 ds. lpsf om			Wind(LL)	0.00	4-5	>999	240	STATE OF STATE OF NATH FC	MISSOLUE ANIEL X OER 2042259
											Februar	y 21,2024


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent toulsable personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

RELEASE OR CONSTRUCTION AS NOTED ON PLANS REVIEW DEVERSION SERVICES LEE'S'SUMWIT'S MISSOURI 03/18/2024 4:46:48

Page: 1

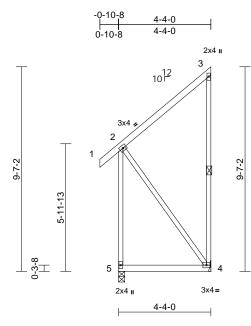
Job	Truss	Truss Type	Qty	Ply	Lot 175 WO	
B240016	К1	Monopitch Supported Gable	2	1	Job Reference (optional)	163738456

Run: 8,73 S Feb 6 2024 Print: 8,730 S Feb 6 2024 MiTek Industries, Inc. Tue Feb 20 09:51:57 ID:Lek3CAANj_gYbKvtCQHtmQzKvNM-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

Scale = 1:64.7

		1			· · · · · ·		1					i	
Loading	(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15		TC	0.32	Vert(LL)	n/a	-	n/a	999	MT20	197/144
TCDL	10.0	Lumber DOL	1.15		BC	0.03	Vert(CT)	n/a	-	n/a	999		
BCLL	0.0*	Rep Stress Incr	YES		WB	0.36	Horz(CT)	0.00	6	n/a	n/a		
BCDL	10.0	Code	IRC2018	8/TPI2014	Matrix-P							Weight: 53 lb	FT = 10%
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD WEBS REACTIONS	2x4 SPF No.2 2x4 SPF No.2 Structural wood she 4-4-0 oc purlins, ex Rigid ceiling directly bracing. 1 Row at midpt (size) 6=4-4-0, 7 Max Horiz 9=-221 (L Max Uplift 6=-23 (LC (LC 5), 9= Max Grav 6=50 (LC	cept end verticals. • applied or 10-0-0 o 5-6 7=4-4-0, 8=4-4-0, 9= .C 6) 2 8), 7=-77 (LC 8), 8 -508 (LC 6) 15), 7=145 (LC 15),	^c 10 -4-4-0 LC =-614	on the bottor 3-06-00 tall b chord and ar All bearings Provide mec bearing plate 9, 23 lb uplift uplift at joint I) This truss is International	designed in accor Residential Code nd referenced star	is where ill fit betv e SPF N n (by oth anding t uplift at j dance w sections	a rectangle veen the both o.2. ers) of truss t io8 lb uplift at oint 8 and 77 ith the 2018 \$ R502.11.1 a	om to t joint Ib					
FORCES	(lb) - Maximum Com	C 6), 9=655 (LC 5) pression/Maximum											
TOP CHORD	Tension 2-9=-648/519, 1-2=0 3-4=-98/53, 4-5=-40	, , ,											
BOT CHORD													
WEBS	3-8=-76/45, 4-7=-11	7/94, 2-8=-575/641											
NOTES													
1) Wind: AS Vasd=91n	CE 7-16; Vult=115mph nph; TCDL=6.0psf; BC	DL=6.0psf; h=25ft; (Cat.									F OF I	MISS

- II; Exp C; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed ; end vertical left exposed; Lumber DOL=1.60 plate grip DOL=1.60 2) Truss designed for wind loads in the plane of the truss
- only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- Gable requires continuous bottom chord bearing. 3)
- Truss to be fully sheathed from one face or securely 4)
- braced against lateral movement (i.e. diagonal web). Gable studs spaced at 1-4-0 oc. 5)
- 6)
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.


 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.
 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not besign value to dury with with where outputs into design is based only door parameters shown, and is for an individual building design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members and property incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TPH1 Quality Criteria**, and **DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcscomponents.com)

Job	Truss	Truss Type	Qty	Ply	Lot 175 WO	
B240016	К2	Monopitch	6	1	Job Reference (optional)	163738457

Run: 8.73 S Feb 6 2024 Print: 8.730 S Feb 6 2024 MiTek Industries, Inc. Tue Feb 20 09:51:57 ID:Lek3CAANj_gYbKvtCQHtmQzKvNM-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

Scale =	1:54
---------	------

Loading	(psf)	Spacing	2-0-0	csi		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15	тс	0.47	Vert(LL)	-0.02	4-5	>999	360	MT20	197/144
TCDL	10.0	Lumber DOL	1.15	BC	0.17	Vert(CT)	-0.03	4-5	>999	240	_	
BCLL	0.0*	Rep Stress Incr	YES	WB	0.29	Horz(CT)	0.00	4	n/a	n/a		
BCDL	10.0	Code	IRC2018/TPI2014	Matrix-P							Weight: 30 lb	FT = 10%
LUMBER			7) This truck is	s designed in acco	rdanco w	ith the 2019						
TOP CHORD	2x4 SPF No.2			al Residential Code			and					
BOT CHORD	2x4 SPF No.2			and referenced sta								
WEBS	2x3 SPF No.2		LOAD CASE(S									
BRACING			(,								
TOP CHORD	Structural wood she	athing directly appli	ed or									
	4-4-0 oc purlins, ex											
BOT CHORD	Rigid ceiling directly	applied or 10-0-0 o	с									
	bracing.											
WEBS		3-4										
		inical, 5=0-3-8										
	Max Horiz 5=-221 (L	,										
	Max Uplift 4=-266 (L	,, , , ,										
	Max Grav 4=335 (L0	<i>,.</i>	5)									
FORCES	(lb) - Maximum Com	pression/Maximum										
TOP CHORD	Tension 1-2=0/44, 2-3=-110/	90 2 4- 140/112										
TOP CHORD	2-5=-246/111	00, 3-4=-149/112,										
BOT CHORD	4-5=-156/139											
WEBS	2-4=-238/266											
NOTES												
	CE 7-16; Vult=115mph	(3-second gust)										
	nph; TCDL=6.0psf; BC		Cat.									
	Enclosed; MWFRS (er											~
	left and right exposed										Same	and
exposed; L	Lumber DOL=1.60 pla	te grip DOL=1.60									OF I	MISC W

 This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads

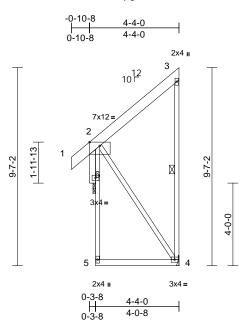
chord live load nonconcurrent with any other live loads.
This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.

4) All bearings are assumed to be SPF No.2.

5) Refer to girder(s) for truss to truss connections.

 Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 266 lb uplift at joint 4 and 69 lb uplift at joint 5. PE-2022042259

February 21,2024



RELEASE ICROMETRUCTION AS NOTED ON PLANS REVIEW DEVELOPMENT: SERVICES LEE'S'SUMMIT: MISSOURI 03/18/2024 4:46:49

Job	Truss	Truss Type	Qty	Ply	Lot 175 WO	
B240016	КЗ	Monopitch	4	1	Job Reference (optional)	163738458

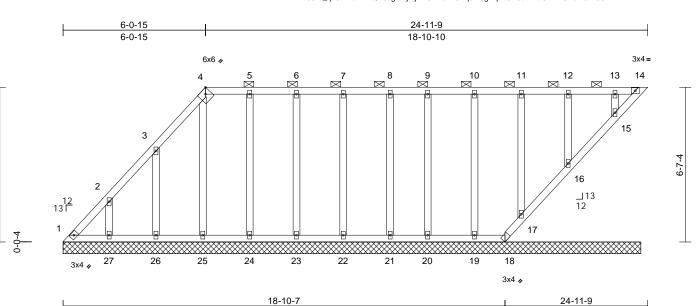
Run: 8,73 S Feb 6 2024 Print: 8,730 S Feb 6 2024 MiTek Industries, Inc. Tue Feb 20 09:51:58 ID:Lek3CAANj_gYbKvtCQHtmQzKvNM-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

Scale = 1:55.8

Loading TCLL (roof) TCDL BCLL BCDL	(psf) 25.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC201	8/TPI2014	CSI TC BC WB Matrix-S	0.30 0.13 0.03	DEFL Vert(LL) Vert(CT) Horz(CT) Wind(LL)	in -0.01 -0.02 -0.07 -0.01	(loc) 4-5 4-5 4 4-5	l/defl >999 >999 n/a >999	L/d 360 240 n/a 240	PLATES MT20 Weight: 36 lb	GRIP 197/144 FT = 10%
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD WEBS REACTIONS	2x6 SPF No.2 2x4 SPF No.2 2x3 SPF No.2 2x4 SPF No.2 Structural wood she 4-4-0 oc purlins, ex Rigid ceiling directly bracing. 1 Row at midpt	athing directly appli cept end verticals. applied or 10-0-0 c 3-4 nical, 6=0-1-8 C 6) C 8)	7) 8) 9) ed or c L(Provide mec bearing plate Provide mec bearing plate 4. This truss is International	chanical connection e at joint(s) 6. chanical connection e capable of withs designed in accord I Residential Codu nd referenced sta	on (by oth standing 1 ordance w e sections	ers) of truss ers) of truss 81 lb uplift a ith the 2018 \$ R502.11.1 a	to to t joint			2.10	Troight. 30 ib	
FORCES	(lb) - Maximum Com Tension	pression/Maximum											
TOP CHORD	1-2=0/57, 2-3=-131/ 5-6=0/78, 2-6=-237/	, ,											
BOT CHORD	4-5=-55/13												
WEBS	2-4=-24/100												

NOTES

- Wind: ASCE 7-16; Vult=115mph (3-second gust) 1) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed ; end vertical left exposed; Lumber DOL=1.60 plate grip DOL=1.60
- This truss has been designed for a 10.0 psf bottom 2) chord live load nonconcurrent with any other live loads.
- 3) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- All bearings are assumed to be SPF No.2 . 4)
- 5) Refer to girder(s) for truss to truss connections.
- Bearing at joint(s) 6 considers parallel to grain value 6) using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.


DEVELORMENT SERVICES LEE'S'SUMMIT'SMISSOURI 03/18/2024 4:46:49

TION

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not besign value to dury with with where outputs into design is based only door parameters shown, and is for an individual building design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members and property incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TPH1 Quality Criteria**, and **DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcscomponents.com)

Job	Truss	Truss Type	Qty	Ply	Lot 175 WO	
B240016	LAY1	Lay-In Gable	1	1	Job Reference (optional)	163738459

Run: 8.73 S Feb 6 2024 Print: 8.730 S Feb 6 2024 MiTek Industries, Inc. Tue Feb 20 09:51:58 ID:u6CM_qu5i7BdkiVAQD8cgWzjl2j-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

18-10-7

Scale = 1:49.2

6-7-4

Plate Offsets	(X,	Y):	[4:0-2-9,Edge]
---------------	-----	-----	----------------

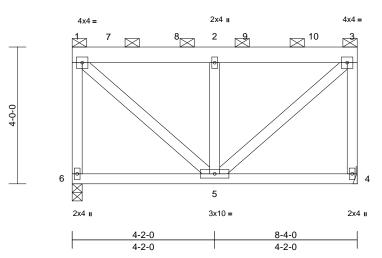
			1			1							-	
Loading		(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)		25.0	Plate Grip DOL	1.15		тс	0.05	Vert(LL)	n/a	-	n/a	999	MT20	197/144
TCDL		10.0	Lumber DOL	1.15		BC	0.03	Vert(TL)	n/a	-	n/a	999		
BCLL		0.0*	Rep Stress Incr	YES		WB	0.10	Horiz(TL)	0.00	14	n/a	n/a		
BCDL		10.0	Code	IRC20	018/TPI2014	Matrix-S		- ()					Weight: 127 lb	FT = 10%
LUMBER					TOP CHORD	1-2=-285/117, 2-3	=-164/78	8, 3-4=-74/35,						others) of truss to
TOP CHORD	2x4 SPF	No.2				4-5=-20/37, 5-6=-								ing 42 lb uplift at joint
BOT CHORD	2x4 SPF	No.2				7-8=-18/37, 8-9=-	,	,						t at joint 18, 127 lb
OTHERS	2x4 SPF	No.2				10-11=-18/37, 11-	12=-18/3	37, 12-13=-18/	/37,					it 26, 26 lb uplift at
BRACING						13-14=-18/37								b uplift at joint 23, 34
TOP CHORD	Structura	I wood she	athing directly applie	d or	BOT CHORD	1-27=-37/17, 26-2		,	'					nt 21, 29 lb uplift at
		purlins, exc				24-25=-37/18, 23-								b uplift at joint 17, 34
			-0 max.): 4-14.			21-22=-37/18, 20-							and 30 lb uplift a	
BOT CHORD	Rigid ceil	ing directly	applied or 10-0-0 oc			18-19=-37/18, 17-			/43,				aring condition. F	
	bracing,	Except:				15-16=-65/41, 14-							ned in accordan	
	6-0-0 oc	bracing: 14	-15.		WEBS	2-27=-158/145, 3-								tions R502.11.1 and
REACTIONS	(size)	1=24-8-0,	14=24-8-0, 15=24-8	-0,		4-25=-117/49, 5-2							erenced standar	
	()	16=24-8-0), 17=24-8-0, 18=24-	8-0,		7-22=-143/59, 8-2			/51,					es not depict the size
		19=24-8-0), 20=24-8-0, 21=24-	8-0,		10-19=-143/59, 11							of the purlin alon	g the top and/or
		22=24-8-0), 23=24-8-0, 24=24-	8-0,		12-16=-144/59, 13	5-15=-12	1/50			om chor			
		25=24-8-0), 26=24-8-0, 27=24-	0-0	NOTES					LOAD	ASE(S) Sta	ndard	
	Max Horiz	1=257 (LC	C 8)		,	d roof live loads hav	ve been	considered for	r					
	Max Uplift	1=-42 (LC	6), 14=-40 (LC 8),		this design									
			C 4), 16=-34 (LC 5),			E 7-16; Vult=115m			~ .					
			C 5), 18=-12 (LC 15)			ph; TCDL=6.0psf; E								
			C 4), 20=-29 (LC 5),			nclosed; MWFRS (
			C 5), 22=-34 (LC 4),			eft and right expose ed; Lumber DOL=1								
			C 5), 24=-38 (LC 4),			gned for wind loads								
			C 8), 26=-147 (LC 8)	,		tuds exposed to will							CODI	all
		27=-127 (rd Industry Gable E							A OF	MISSO
	Max Grav		C 8), 14=39 (LC 1),			qualified building de							950	
			-C 22), 16=187 (LC 1	I),		equate drainage to						A	THE OF I	New York
			-C 1), 18=48 (LC 8),			re 2x4 MT20 unless			<i>.</i>			U		
			_C 22), 20=160 (LC 1	',		s spaced at 0-0-0 o		se maioatea.				H.	FO	X
			-C 1), 22=184 (LC 22	-),	,	as been designed) nsf hottom						
			_C 1), 24=185 (LC 22 _C 1), 26=223 (LC 15	<u>-</u>),	,	bad nonconcurrent			ds			8		
		27=204 (L		<i>)</i> ,		has been designed						V -	A hame	BER
FORCES	(16) 14	•	,			om chord in all area						N Y		
FORCES		dmum Com	pression/Maximum			by 2-00-00 wide w			m			N.	O PE-2022	042259
	Tension					any other members						V V	1 Bal	154
					9) All bearing	s are assumed to be	e SPF N	o.2 .				6	W SIG	ENUE
					Ū.								C'SSIONA	
													and and	
													Labras	. 04 0004

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent toulsable personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

RELEASE OF CONCLASS REVIEW AS NOTED ON PLANS REVIEW DEVELOCITIES LEETS SUMWITTS SOURI 03/18/2024 4:46:49

February 21,2024

Page: 1


6-1-3

Job	Truss	Truss Type	Qty	Ply	Lot 175 WO	
B240016	R1	Flat Girder	1	1	Job Reference (optional)	163738460

Run: 8.73 S Feb 6 2024 Print: 8.730 S Feb 6 2024 MiTek Industries, Inc. Tue Feb 20 09:51:58 ID:Lek3CAANj_gYbKvtCQHtmQzKvNM-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Scale = 1:33.7

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15	TC	0.31	Vert(LL)	-0.01	5	>999	360	MT20	197/144
TCDL	10.0	Lumber DOL	1.15	BC	0.13	Vert(CT)	-0.02	5-6	>999	240		
BCLL	0.0*	Rep Stress Incr	NO	WB	0.21	Horz(CT)	0.00	4	n/a	n/a		
BCDL	10.0	Code	IRC2018/TPI2014	Matrix-P		Wind(LL)	0.00	5	>999	240	Weight: 47 lb	FT = 10%

LUMBER

TOP CHORD	2x6 SPF I	No.2
BOT CHORD	2x4 SPF I	No.2
WEBS	2x4 SPF I	No.2
BRACING		
TOP CHORD	2-0-0 oc p	ourlins (6-0-0 max.): 1-3, except
	end vertic	cals.
BOT CHORD	Rigid ceil	ing directly applied or 10-0-0 oc
	bracing.	
REACTIONS	(size)	4= Mechanical, 6=0-3-8
	Max Horiz	6=-138 (LC 4)
	Max Grav	4=764 (LC 1), 6=788 (LC 1)
FORCES	(lb) - Max	imum Compression/Maximum
	Tension	
TOP CHORD	1-6=-754/	/10, 1-2=-527/0, 2-3=-527/0,

TOP CHORD 1-6=-754/10, 1-2=-527/0, 2-3=-527/0, 3-4=-730/16 BOT CHORD 5-6=-121/108, 4-5=-51/39 WEBS 1-5=-11/710, 2-5=-857/12, 3-5=-11/710

NOTES

- Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
- 2) Provide adequate drainage to prevent water ponding.
- 3) This truss has been designed for a 10.0 psf bottom
- chord live load nonconcurrent with any other live loads.
 * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle.
- on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
 5) All bearings are assumed to be SPF No.2.
- 6) Refer to girder(s) for truss to truss connections.
- This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

LOAD CASE(S) Standard

1) Dead + Roof Live (balanced): Lumber Increase=1.15,

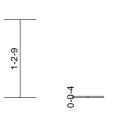
- Plate Increase=1.15
- Uniform Loads (lb/ft)
- Vert: 1-3=-70, 4-6=-20
- Concentrated Loads (lb)
- Vert: 7=-209, 8=-206, 9=-206, 10=-206

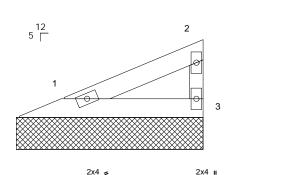
DEVELORMENT: SERVICES LEE'S SUMMIT: MISSOURI 03/18/2024 4:46:49

ΤΙΟΝ

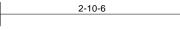
WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPH Claulity Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

Job	Truss	Truss Type	Qty	Ply	Lot 175 WO	
B240016	V1	Valley	1	1	Job Reference (optional)	163738461


Run: 8,73 S Feb 6 2024 Print: 8,730 S Feb 6 2024 MiTek Industries, Inc. Tue Feb 20 09:51:58 ID:Lek3CAANj_gYbKvtCQHtmQzKvNM-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f


2x4 II

1-2-9


Page: 1

2-10-6

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15	TC	0.07	Vert(LL)	n/a	-	n/a	999	MT20	197/144
TCDL	10.0	Lumber DOL	1.15	BC	0.04	Vert(TL)	n/a	-	n/a	999		
BCLL	0.0*	Rep Stress Incr	YES	WB	0.00	Horiz(TL)	0.00	3	n/a	n/a		
BCDL	10.0	Code	IRC2018/TPI2014	Matrix-P							Weight: 6 lb	FT = 10%

International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

9) This truss is designed in accordance with the 2018

LOAD CASE(S) Standard

LUMBER	
	2v4 SDE No 2

Scale - 1.18

TOP CHORD	284 325 1	N0.Z
BOT CHORD	2x4 SPF I	No.2
WEBS	2x3 SPF I	No.2
BRACING		
TOP CHORD	Structura	wood sheathing directly applied or
	2-11-0 oc	purlins, except end verticals.
BOT CHORD	Rigid ceil	ing directly applied or 10-0-0 oc
	bracing.	
REACTIONS	(size)	1=2-11-0, 3=2-11-0
	Max Horiz	1=38 (LC 5)
	Max Uplift	1=-13 (LC 8), 3=-21 (LC 8)
	Max Grav	1=93 (LC 1), 3=93 (LC 1)
FORCES	(lb) - Max	imum Compression/Maximum
	Tonsion	•

Tension TOP CHORD 1-2=-34/22, 2-3=-72/33 BOT CHORD 1-3=-12/9

NOTES

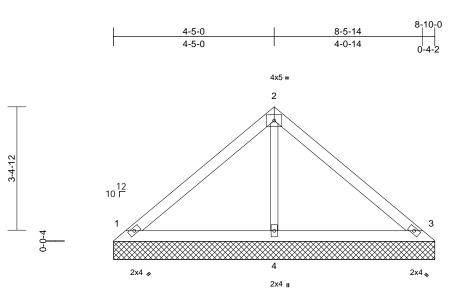
- Wind: ASCE 7-16; Vult=115mph (3-second gust) 1) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
- 2) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable or consult qualified building designer as per ANSI/TPI 1.
- Gable requires continuous bottom chord bearing. 3)
- Gable studs spaced at 2-0-0 oc. 4)
- 5) This truss has been designed for a 10.0 psf bottom
- chord live load nonconcurrent with any other live loads. * This truss has been designed for a live load of 20.0psf 6) on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom
- chord and any other members.

All bearings are assumed to be SPF No.2 . 7) 8)

Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 13 lb uplift at joint 1 and 21 lb uplift at joint 3.

OF MISSO E NATHANIEL FOX NUMBER PE-2022042259 SSIONAL E February 21,2024

 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.
 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not beigh valid for use only with with with sets outputs into design is based only door parameters shown, and is for an individual dualing component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria**, and **DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcscomponents.com)



Job	Truss	Truss Type	Qty	Ply	Lot 175 WO	
B240016	V2	Valley	1	1	Job Reference (optional)	163738462

3-8-7

Run: 8.73 S Feb 6 2024 Print: 8.730 S Feb 6 2024 MiTek Industries, Inc. Tue Feb 20 09:51:59 ID:Lek3CAANj_gYbKvtCQHtmQzKvNM-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

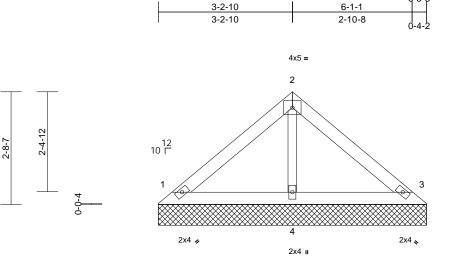
<u>8-10</u>-0

Scale = 1:31.7

Scale = 1.51.	1												
Loading	(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15		TC	0.31	Vert(LL)	n/a	-	n/a	999	MT20	197/144
TCDL	10.0	Lumber DOL	1.15		BC	0.14	Vert(TL)	n/a	-	n/a	999		
BCLL	0.0*	Rep Stress Incr	YES		WB	0.06	Horiz(TL)	0.00	3	n/a	n/a		FT 400/
BCDL	10.0	Code	IRC2018/1	I PI2014	Matrix-P							Weight: 25 lb	FT = 10%
LUMBER			8)	All bearings	are assumed to	be SPF No	2						
TOP CHORE	D 2x4 SPF No.2				hanical connect			to					
BOT CHORE					capable of with								
OTHERS	2x3 SPF No.2			1 and 56 lb u	plift at joint 3.	•							
BRACING					designed in acc								
TOP CHORE	O Structural wood she	athing directly appli			Residential Co			and					
	6-0-0 oc purlins.		F	R802.10.2 a	nd referenced s	tandard AN	ISI/TPI 1.						
BOT CHORE		applied or 10-0-0 c	LOA	AD CASE(S)	Standard								
	bracing.												
REACTIONS	s (size) 1=8-10-0,	, 3=8-10-0, 4=8-10-	0										
	Max Horiz 1=-88 (LC	C 4)											
	Max Uplift 1=-45 (LC	C 8), 3=-56 (LC 9)											
	Max Grav 1=219 (L0	C 1), 3=219 (LC 1),	4=289										
	(LC 1)												
FORCES	(lb) - Maximum Corr	npression/Maximum	I.										
	Tension												
TOP CHORE	D 1-2=-153/75, 2-3=-1	47/59											
BOT CHORE	0 1-4=-20/72, 3-4=-20	/72											
WEBS	2-4=-188/45												
NOTES													
1) Unbalan	ced roof live loads have	been considered for	or										
this desig	gn.												
	SCE 7-16; Vult=115mph												
	Imph; TCDL=6.0psf; BC												m
	; Enclosed; MWFRS (er											GOE	ALL ALL
	er left and right exposed											R.F. OF	WIISS W
	osed; Lumber DOL=1.6										4		NO
	esigned for wind loads in										H	STATE OF	NIEL YEN
	or studs exposed to wind adard Industry Gable En										B	FO	x YY
	It qualified building desi										TA1		
	auires continuous botto										an		

- 4) Gable requires continuous bottom chord bearing.
- 5) Gable studs spaced at 4-0-0 oc.
- 6) This truss has been designed for a 10.0 psf bottom
- chord live load nonconcurrent with any other live loads.
 * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle
- 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.

February 21,2024



Job	Truss	Truss Type	Qty	Ply	Lot 175 WO	
B240016	V3	Valley	1	1	Job Reference (optional)	163738463

Run: 8.73 S Feb 6 2024 Print: 8.730 S Feb 6 2024 MiTek Industries, Inc. Tue Feb 20 09:51:59 ID:Lek3CAANj_gYbKvtCQHtmQzKvNM-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

гay

6-5-3

Scale	- 1	1.27 6

		1		1		-					1	
Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15	TC	0.15	Vert(LL)	n/a	-	n/a	999	MT20	197/144
TCDL	10.0	Lumber DOL	1.15	BC	0.07	Vert(TL)	n/a	-	n/a	999		
BCLL	0.0*	Rep Stress Incr	YES	WB	0.03	Horiz(TL)	0.00	3	n/a	n/a		
BCDL	10.0	Code	IRC2018/TPI2014	Matrix-P							Weight: 18 lb	FT = 10%
LUMBER			8) All bearings	are assumed to I	be SPF No	o.2 .						
TOP CHORD	2x4 SPF No.2		, 0	chanical connecti			to					
BOT CHORD	2x4 SPF No.2		bearing plat	te capable of with	standing 3	2 lb uplift at j	oint					
OTHERS	2x3 SPF No.2		1 and 39 lb	uplift at joint 3.								
BRACING				s designed in acco								
TOP CHORD		athing directly applie		al Residential Cod and referenced sta			and					
BOT CHORD	6-0-0 oc purlins. Rigid ceiling directly bracing.	applied or 10-0-0 oc										
	(size) 1=6-5-3, 3 Max Horiz 1=62 (LC Max Uplift 1=-32 (LC Max Grav 1=154 (LC (LC 1)	2 8), 3=-39 (LC 9)	l=203									
FORCES	(lb) - Maximum Com Tension	pression/Maximum										
TOP CHORD	1-2=-107/53, 2-3=-1	03/42										
BOT CHORD	1-4=-14/51, 3-4=-14											
WEBS	2-4=-132/32											
NOTES												
	ed roof live loads have	been considered for										
this design												
	CE 7-16; Vult=115mph	(3-second gust)										
Vasd=91m	nph; TCDL=6.0psf; BC	DL=6.0psf; h=25ft; C	Cat.									
II: Exp C: E	Enclosed: MWFRS (er	nvelope) exterior zon	e:								San	m

- II; Exp C; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
 Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable.
- see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.4) Gable requires continuous bottom chord bearing.
- 5) Gable studs spaced at 2-0-0 oc.
- 6) This truss has been designed for a 10.0 psf bottom
- chord live load nonconcurrent with any other live loads.
 7) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle
- on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.

NATHANIEL FOX PE-2022042259 FSSIONAL ENGINE

February 21,2024

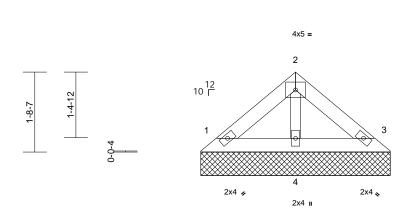
WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPH Claulity Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

Job	Truss	Truss Type	Qty	Ply	Lot 175 WO	
B240016	V4	Valley	1	1	Job Reference (optional)	163738464

2-0-3

2-0-3

Wheeler Lumber, Waverly, KS - 66871,


Run: 8,73 S Feb 6 2024 Print: 8,730 S Feb 6 2024 MiTek Industries, Inc. Tue Feb 20 09:51:59 ID:Lek3CAANj_gYbKvtCQHtmQzKvNM-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

3-8-4

1-8-1

4-0-6

Page: 1

Scale = 1:24.5

-

Loading	(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15		TC	0.04	Vert(LL)	n/a	-	n/a	999	MT20	197/144
TCDL	10.0	Lumber DOL	1.15		BC	0.02	Vert(TL)	n/a	-	n/a	999		
BCLL	0.0*	Rep Stress Incr	YES		WB	0.01	Horiz(TL)	0.00	3	n/a	n/a		
BCDL	10.0	Code	IRC2018/T	PI2014	Matrix-P							Weight: 10 lb	FT = 10%
LUMBER			8) A	ll bearings a	are assumed	to be SPF No	2						
TOP CHORD	2x4 SPF No.2					ection (by oth		to					
BOT CHORD						ithstanding 1							
OTHERS	2x3 SPF No.2		1	and 23 lb up	plift at joint 3.								
BRACING			10) T	his truss is c	designed in a	ccordance w	th the 2018						
TOP CHORD	Structural wood she	athing directly applie	ed or			ode sections		and					
	4-1-0 oc purlins.	5 ,	R	802.10.2 an	d referenced	standard AN	ISI/TPI 1.						
BOT CHORD	Rigid ceiling directly	applied or 10-0-0 o	c LOAI	D CASE(S)	Standard								
	bracing.												
REACTIONS	(size) 1=4-0-6, 3	3=4-0-6, 4=4-0-6											
	Max Horiz 1=36 (LC	5)											
	Max Uplift 1=-18 (LC	C 8), 3=-23 (LC 9)											
	Max Grav 1=89 (LC	1), 3=89 (LC 1), 4=	117										
	(LC 1)												
FORCES	(lb) - Maximum Com	npression/Maximum											
	Tension	104											
TOP CHORD	,												
BOT CHORD	,	9											
WEBS	2-4=-76/18												
NOTES													

NOTES

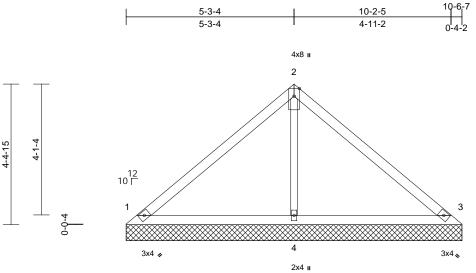
Unbalanced roof live loads have been considered for 1) this design

- 2) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) Gable requires continuous bottom chord bearing. Gable studs spaced at 2-0-0 oc. 5)
- This truss has been designed for a 10.0 psf bottom 6)

chord and any other members.

- chord live load nonconcurrent with any other live loads.
- 7) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom

OF MISSO E NATHANIEL FOX PE-2022042259 SSIONAL E February 21,2024



 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.
 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not beigh valid for use only with with with sets outputs into design is based only door parameters shown, and is for an individual dualing component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria**, and **DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcscomponents.com)

Job	Truss	Truss Type	Qty	Ply	Lot 175 WO	
B240016	V5	Valley	1	1	Job Reference (optional)	163738465

Run: 8,73 S Feb 6 2024 Print: 8,730 S Feb 6 2024 MiTek Industries, Inc. Tue Feb 20 09:51:59 ID:Lek3CAANj_gYbKvtCQHtmQzKvNM-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

10-6-7

Scale = 1:36.1

		-											
Loading TCLL (roof) TCDL BCLL BCDL	(psf) 25.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC201	8/TPI2014	CSI TC BC WB Matrix-S	0.34 0.20 0.10	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 3	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 30 lb	GRIP 197/144 FT = 10%
	2x4 SPF No.2 2x4 SPF No.2 2x3 SPF No.2 Structural wood she 6-0-0 oc purlins. Rigid ceiling directly bracing. (size) 1=10-6-7, Max Horiz 1=-106 (L Max Uplift 1=-41 (LC (LC 8) Max Grav 1=245 (LC (LC 1)	applied or 10-0-0 o 3=10-6-7, 4=10-6-7 C 6) : 8), 3=-53 (LC 9), 4	c 10 7 _=-9 L u	on the bottor 3-06-00 tall b chord and ar All bearings a Provide mec bearing plate 1, 53 lb uplift D) This truss is International	n chord in al by 2-00-00 w y other men are assumed hanical conrr capable of at joint 3 an designed in Residential nd reference	to be SPF No ection (by oth withstanding 4 d 9 lb uplift at	a rectangle veen the bott c.2 . ers) of truss 1 lb uplift at joint 4. ith the 2018 \$ R502.11.1 at	om to joint					
FORCES TOP CHORD BOT CHORD WEBS NOTES	(lb) - Maximum Com Tension 1-2=-203/94, 2-3=-2 1-4=-24/94, 3-4=-24, 2-4=-239/59 ed roof live loads have	02/75 /94											

this design.

- 2) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1. 4)

Gable requires continuous bottom chord bearing. 5) Gable studs spaced at 4-0-0 oc.

6)

This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

February 21,2024

DEVELORMENTOSERVICES LEE'S'SUMMIT'SMISSOURI 03/18/2024 4:46:49

ΤΙΟΝ

Job	Truss	Truss Type	Qty	Ply	Lot 175 WO	
B240016	V6	Valley	1	1	Job Reference (optional)	163738466

4-0-13

Wheeler Lumber, Waverly, KS - 66871,

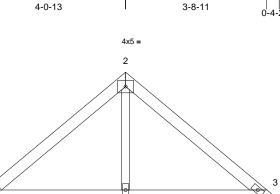
4

÷

0-0-4

3-4-15

Run: 8,73 S Feb 6 2024 Print: 8,730 S Feb 6 2024 MiTek Industries, Inc. Tue Feb 20 09:52:00 ID:Lek3CAANj_gYbKvtCQHtmQzKvNM-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f


7-9-8

8-1-10

2x4 💊

4x5 = 2 12 10 Г

4

2x4 🛚 8-1-10

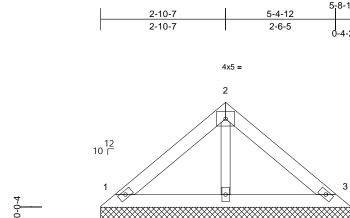
Scale = 1:30.5

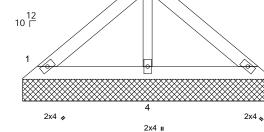
Scale = 1.50.5												
Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15	TC	0.26	Vert(LL)	n/a	-	n/a	999	MT20	197/144
TCDL	10.0	Lumber DOL	1.15	BC	0.12	Vert(TL)	n/a	-	n/a	999		
BCLL	0.0*	Rep Stress Incr	YES	WB	0.05	Horiz(TL)	0.00	3	n/a	n/a		
BCDL	10.0	Code	IRC2018/TPI2014	Matrix-P							Weight: 23 lb	FT = 10%
LUMBER			8) All bear	ings are assumed to	be SPF No	o.2 .						
TOP CHORD	2x4 SPF No.2			mechanical connect								
BOT CHORD				plate capable of with	nstanding 4	1 lb uplift at j	oint					
OTHERS	2x3 SPF No.2			1 lb uplift at joint 3.		all all a 0040						
BRACING			Internet	ss is designed in acc ional Residential Coo			nd					
TOP CHORD		athing directly appli		0.2 and referenced st			nu					
BOT CHORD	6-0-0 oc purlins. Rigid ceiling directly	applied or 10.0.0 a		E(S) Standard								
BOT CHORD	bracing.	applied of 10-0-0 0										
REACTIONS	•	3=8-1-10, 4=8-1-10	1									
	Max Horiz 1=-80 (LC	,	, ,									
	Max Uplift 1=-41 (LC											
	Max Grav 1=200 (LC		4=264									
	(LC 1)											
FORCES	(lb) - Maximum Com	pression/Maximum										
	Tension											
TOP CHORD	,											
BOT CHORD		/66										
WEBS	2-4=-172/41											
NOTES	ed roof live loads have	heen considered fo	-									
this desig		been considered to	1									
	CE 7-16; Vult=115mph	(3-second gust)										
	mph; TCDL=6.0psf; BC		Cat.									
	Enclosed; MWFRS (er										Son	alle
	left and right exposed										B.F. OF	MISS
	sed; Lumber DOL=1.6									4	ATE OF	N'S
	signed for wind loads ir studs exposed to wind									H	S NATHA	NIEL CR
	dard Industry Gable End								-	-U	FO	
	t qualified building desig									n	LA	1 SEL
	uires continuous botto									ИŤ	TTH_	1 to
5) Gable stu	ids spaced at 4-0-0 oc.									W _	XKasal	to 11 out
6) This truss	has been designed for	r a 10.0 psf bottom								W	S ~ ~ MUC	DEK C

- 5) 6) This truss has been designed for a 10.0 psf bottom
- chord live load nonconcurrent with any other live loads.
- 7) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.

PE-2022042259 SSIONAL EN an February 21,2024

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent colleges with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)




Job	Truss	Truss Type	Qty	Ply	Lot 175 WO	
B240016	V7	Valley	1	1	Job Reference (optional)	163738467

2-1-4

2-4-15

Run: 8,73 S Feb 6 2024 Print: 8,730 S Feb 6 2024 MiTek Industries, Inc. Tue Feb 20 09:52:00 ID:Lek3CAANj_gYbKvtCQHtmQzKvNM-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

5-8-14

Scale = 1:26.5

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15	TC	0.11	Vert(LL)	n/a	-	n/a	999	MT20	197/144
TCDL	10.0	Lumber DOL	1.15	BC	0.05	Vert(TL)	n/a	-	n/a	999		
BCLL	0.0*	Rep Stress Incr	YES	WB	0.02	Horiz(TL)	0.00	3	n/a	n/a		
BCDL	10.0	Code	IRC2018/TPI20	14 Matrix-P							Weight: 15 lb	FT = 10%
UMBER			8) All be	arings are assumed to	be SPF N	o.2 .						
TOP CHORD	2x4 SPF No.2		9) Provi	de mechanical connect	tion (by oth	ers) of truss t	to					
BOT CHORD	2x4 SPF No.2			ng plate capable of with	nstanding 2	8 lb uplift at j	oint					
OTHERS	2x3 SPF No.2			34 lb uplift at joint 3.								
BRACING				russ is designed in acc								
TOP CHORD	Structural wood she	athing directly applie	ed or	ational Residential Co .10.2 and referenced s			ina					
	5-9-7 oc purlins.				lanuaru Ar	131/1711.						
BOT CHORD	Rigid ceiling directly bracing.	applied or 10-0-0 o		ASE(S) Standard								
REACTIONS	0	. 3=5-8-14. 4=5-8-14	1									
	Max Horiz 1=-54 (LC	, ,	t									
	Max Uplift 1=-28 (LC	,										
	Max Grav 1=135 (L0	,, , , ,	4=178									
	(LC 1)	- ,, (,,										
FORCES	(lb) - Maximum Corr	pression/Maximum										
	Tension											
TOP CHORD	1-2=-94/47, 2-3=-90											
BOT CHORD	1-4=-12/45, 3-4=-12	/45										
WEBS	2-4=-116/28											
NOTES												
,	ed roof live loads have	been considered fo	r									
this design		(C)										
	CE 7-16; Vult=115mph		Cot									
	nph; TCDL=6.0psf; BC Enclosed; MWFRS (er										000	ADD
	left and right exposed										F OF I	MICON
	ad: Lumbor DOI =1.6										RAU	- SOW

- right exposed; Lumber DOL=1.60 plate grip DOL=1.60 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- Gable requires continuous bottom chord bearing. 4)
- 5) Gable studs spaced at 2-0-0 oc.
- This truss has been designed for a 10.0 psf bottom 6)
- chord live load nonconcurrent with any other live loads. 7) * This truss has been designed for a live load of 20.0psf
- on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.

NATHANIEL FOX **HABBER** PE-2022042259 SSIONAL ET

Page: 1

 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.
 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not besign value to dury with with where outputs into design is based only door parameters shown, and is for an individual building design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members and property incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TPH1 Quality Criteria**, and **DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcscomponents.com)

Job	Truss	Truss Type	Qty	Ply	Lot 175 WO	
B240016	V8	Valley	1	1	Job Reference (optional)	163738468

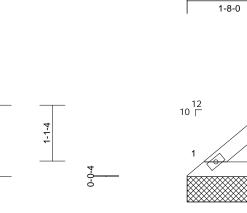
Run: 8.73 S Feb 6 2024 Print: 8.730 S Feb 6 2024 MiTek Industries, Inc. Tue Feb 20 09:52:00 ID:Lek3CAANj_gYbKvtCQHtmQzKvNM-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

3x4 =

2

2-11-15

1-3-14


3

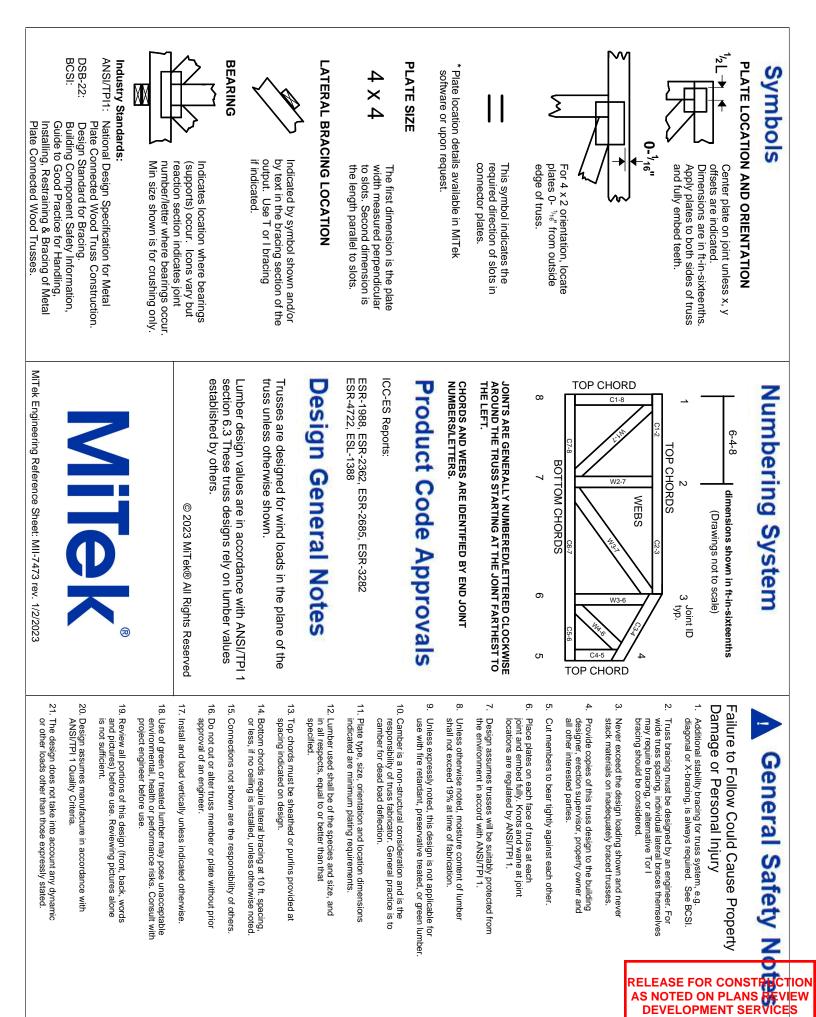
1-8-0

2x4 🍫

Page: 1

DEVELOPMENT: SERVICES LEE'S SUMMIT: MISSOURI 03/18/2024 4:46:49

1-4-15


3-4-1

Scale = 1:22.8

Plate Offsets (X, Y): [2:0-2-0,Edge]

	, , ,											
Loading TCLL (roof) TCDL BCLL BCDL	(psf) 25.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018/TPI2014	CSI TC BC WB Matrix-P	0.03 0.07 0.00	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 3	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 8 lb	GRIP 197/144 FT = 10%
FORCES TOP CHORD BOT CHORD NOTES 1) Unbalance this design 2) Wind: ASC Vasd=91m II; Exp C; I cantilever right expos 3) Truss des only. For s see Standa or consult 4) Gable requ 5) Gable stuc 6) This truss chord live 7) * This truss on the bott 3-06-00 tal chord and	2x4 SPF No.2 Structural wood she 3-4-10 oc purlins. Rigid ceiling directly bracing. (size) 1=3-4-1, 3 Max Horiz 1=-28 (LC Max Uplift 1=-12 (LC Max Grav 1=116 (LC (lb) - Maximum Com Tension 1-2=-94/30, 2-3=-94 1-3=-8/55 ed roof live loads have	 applied or 10-0-0 or 3=3-4-1 (a) (b) (c) <	r Cat. Pic. Pic. Cat. Pic. Cat. Pic. Cat. Pic. Cat. Cat. Pic. Cat. Cat. Pic. Cat. Pic. Cat. Pic. Cat. Pic. Cat. Pic. Cat. Pic. Cat. Pic. Cat. Pic. Cat. Pic. Cat. Pic. Cat. Pic. Cat. Pic. Cat. Pic. Cat. Pic. Cat. Pic. Cat. Pic. Cat. Pic. Pic. Pic. Pic. Pic. Pic. Pic. Pic	echanical connection ate capable of withs o uplift at joint 3. is designed in acco- al Residential Code and referenced sta 5) Standard	standing 1 ordance w e sections	2 lb uplift at ith the 2018 8 R502.11.1 a	joint				PE-2022	BER 042259
	IING - Verify design parame				MIL-7473 -00	1/2/2023 PEE						

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent oulgase with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TPI1 Quality Criteria, and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcscomponents.com)

ASE FOR CONST **OTED ON PLANS** VELOPMENT SER LEE'S SUMMIT, MISSOURI 03/18/2024 4:46:50