

RE: P240157-01 Roof - Osage Lot 84

Site Information:

Customer: Clover & Hive Project Name: P240157-01 Lot/Block: 84 Model: Tw Address: 3729 / 3731 SW Knoxville Ct City: Lee's Summit State: MO

P240157-01 Model: Twin Honeydew - Farmhouse Subdivision: Osage State: MO

161755147

161755148

161755149

161755150

General Truss Engineering Criteria & Design Loads (Individual Truss Design Drawings Show Special Loading Conditions):

21

22

23

24

Design Code: IRC2018/TPI2014 Wind Code: ASCE 7-16 Roof Load: 45.0 psf Design Program: MiTek 20/20 8.6 Wind Speed: 115 mph Floor Load: N/A psf

This package includes 24 individual, dated Truss Design Drawings and 0 Additional Drawings.

No. 1	Seal# I61755127	Truss Name A1	Date 11/1/2023
2	161755128	A1 A2	11/1/2023
3	161755129	A3	11/1/2023
4	161755130	A4	11/1/2023
5	161755131	A5	11/1/2023
6	161755132	A6	11/1/2023
7	161755133	B1	11/1/2023
8	161755134	B2	11/1/2023
9	161755135	C1	11/1/2023
10	161755136	C2	11/1/2023
11	161755137	C3	11/1/2023
12	161755138	C4	11/1/2023
13	161755139	D1	11/1/2023
14	161755140	D2	11/1/2023
15	l61755141	PB1	11/1/2023
16	l61755142	PB2	11/1/2023
17	l61755143	V1	11/1/2023
18	l61755144	V2	11/1/2023
19	l61755145	V3	11/1/2023
20	l61755146	V4	11/1/2023

awings and 0 Additional Drawings. No. Seal# Truss Name

V5

V6

V7

V8

Date
11/1/2023
11/1/2023
11/1/2023
11/1/2023

MiTek, Inc.

314.434.1200

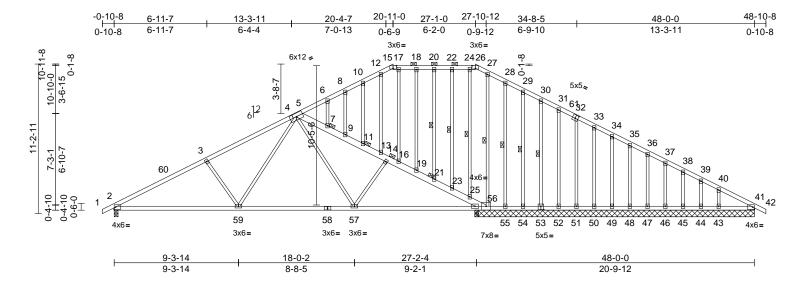
16023 Swingley Ridge Rd. Chesterfield, MO 63017

The truss drawing(s) referenced above have been prepared by MiTek USA, Inc under my direct supervision based on the parameters provided by .

Truss Design Engineer's Name: Sevier, Scott My license renewal date for the state of Missouri is December 31, 2025.

Missouri COA: 001193

IMPORTANT NOTE: The seal on these truss component designs is a certification that the engineer named is licensed in the jurisdiction(s) identified and that the designs comply with ANSI/TPI 1. These designs are based upon parameters shown (e.g., loads, supports, dimensions, shapes and design codes), which were given to MiTek. Any project specific information included is for MiTek customers file reference purpose only, and was not taken into account in the preparation of these designs. MiTek has not independently verified the applicability of the design parameters or the designs for any particular building. Before use, the building designer should verify applicability of design parameters and properly incorporate these designs into the overall building design per ANSI/TPI 1, Chapter 2.



Sevier, Scott

November 01, 2023

Job	Truss	Truss Type	Qty	Ply	Roof - Osage Lot 84	
P240157-01	A1	Piggyback Base Structural Gable	2	1	Job Reference (optional)	161755127

Run: 8.63 S Aug 30 2023 Print: 8.630 S Aug 30 2023 MiTek Industries, Inc. Tue Oct 31 15:34:36 ID:EmCXOiXYCML5IKd?OVTvI7yGxE5-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

Scale = 1:86.4

Plate Offsets (2	Plate Offsets (X, Y): [15:0-3-0,Edge], [26:0-3-0,Edge], [32:0-2-8,0-3-0], [53:0-2-8,0-3-0]											
Loading TCLL (roof) TCDL BCLL BCDL	(psf 25.0 10.0 0.0 10.0	Plate Grip DOL 1 Lumber DOL 1 Rep Stress Incr Y	-0-0 .15 .15 ÆS RC2018/TPI2014	CSI TC BC WB Matri	0.75 0.95 0.35	Vert(CT)	in -0.20 -0.43 0.07	2-59	>999 >771	L/d 240 180 n/a	PLATES MT20 Weight: 312 lb	GRIP 244/190
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD	2x4 SP No.2 *Ex 2x4 SP No.2 2x3 SPF No.2 2x3 SPF No.2 Structural wood s 2-2-0 oc purlins, 2-0-0 oc purlins (heathing directly applied o except 10-0-0 max.): 15-26, 5-56. xtly applied or 6-0-0 oc ng: 2-59		(lb) - M Tensio 1-2=0/ 5-6=-4: 10-12=	 × 2=1249 (LC 1) 43=232 (LC 1) 45=128 (LC 26) 47=120 (LC 1) 49=120 (LC 26) 53=96 (LC 26) 55=33 (LC 9), aximum Compres 7, 2-3=-1983/353 3/246, 6-8=-12/26: 0/296, 12-15=-17/ 	44=81 (LC 1), 46=119 (LC 48=120 (LC), 50=123 (LC 54=234 (LC 56=1945 (LC sion/Maximun 3-5=-1735/3 , 8-10=0/277 249, 15-17=-1), 2 1), 1), 2 1), 2 1), 2 1), 1), 1) n 59, ,	, thi	S Ibalanceo s design.	14-57 22-23 28-55 31-52 34-49 37-46 40-43 16-17 10-11	-411/269, 5-59= -551/143, 20-21 =-67/38, 24-25= -12/84, 29-54= -92/56, 32-51= -93/57, 35-48= -93/57, 38-45= -93/57, 38-45= -174/115, 18-19 =-169/20, 12-13= =-67/47, 8-9=-73 ve loads have be	138/643, 5-57=-9/737, =-74/35, 49/21, 27-56=-367/24, 87/60, 30-53=-98/56, 93/56, 33-50=-95/58, 93/57, 36-47=-93/57, 97/59, 39-44=-69/41, =-73/40, 190/48, /46, 6-7=-60/41 een considered for
WEBS	2-2-0 oc bracing 1 Row at midpt			17-18=-13/242, 18-20=-13/242, 2) 20-22=-13/242, 22-24=-13/242, 24-26=-10/244, 26-27=-47/223, 27-28=0/312, 28-29=-6/254, 29-30=-9/233, 30-31=-7/227,					 Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=35ft; Ke=1.00; Cat. II; Exp C; Enclosed; MWFRS (envelo exterior zone and C-C Exterior(2E) -0-10-8 to 4-1-8. 			
JOINTS	1 Brace at Jt(s): 21, 11, 7			31-33=-27/219, 33-34=-46/203, 34-35=-64/198, 35-36=-83/198, 27-1-0, Exterior(2R) 27-1-0 to 34-1-14, Interior (1)								
	(size) 2=0-3- 44=20 46=20 48=20 52=20 54=20 56=20 Max Horiz 2=204 Max Uplift 2=-224 43=-9 45=-42 47=-4 49=-4 51=-41 53=-40		BOT CHORD	36-37= 38-39= 40-41= 7-9=-11 11-13= 14-16= 19-21= 23-25= 2-59=-4 56-57= 54-55= 51-52= 49-50= 47-48= 45-46=	101/198, 37-38= -144/200, 39-40= -240/230, 41-42=(329/416, 9-11=-18 -1892/457, 13-14 -2050/498, 16-19 -2155/510, 21-23 -2216/523, 25-56= -15/1683, 57-59= -274/1789, 55-54= -193/244, 52-54= -193/244, 52-54= -194/244, 48-49= -194/244, 48-49= -194/244, 44-45= -194/244, 41-43=	120/198, 170/189, 170/189, -7927/479, -2125/504, -2125/504, -2127/516, -2226/522 190/1108, -193/244, 193/244, 194/244, 194/244, 194/244,	99/395,	34 ex me	-1-14 to posed ; e embers a	48-1Ò-E end veri nd forc DL=1.60	3 zone; cantilever	I eft and right exposed;C-C for reactions shown; 1.60 MISSOCH T.M. ER BER 018807

Continued on page 2 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. WARNING - Verify design parameters and KEAD KO LES ON THIS AND INCLUDED MILEK REFERENCE PAGE MIL-7473 rev. 17/2/2023 BEFORE USE. Design valid for use only with MITeK® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria**, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcscomponents.com)

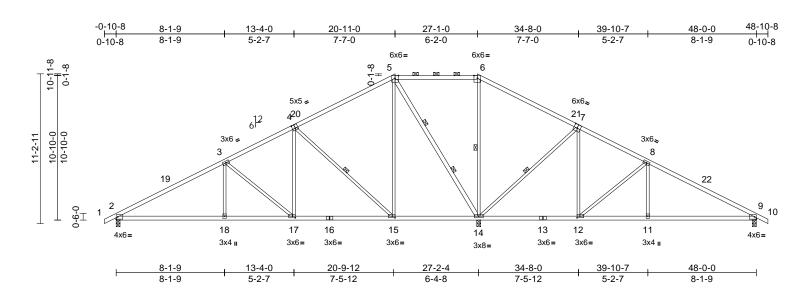
November 1,2023

Job	Truss	Truss Type	Qty	Ply	Roof - Osage Lot 84	
P240157-01	A1	Piggyback Base Structural Gable	2	1	Job Reference (optional)	l61755127

- Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) Provide adequate drainage to prevent water ponding.

5) All plates are 3x4 MT20 unless otherwise indicated.

- 6) Gable studs spaced at 1-4-0 oc.
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- All bearings are assumed to be SP No.2 crushing capacity of 565 psi.
- 9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 225 lb uplift at joint 2, 162 lb uplift at joint 56, 29 lb uplift at joint 41, 509 lb uplift at joint 55, 23 lb uplift at joint 54, 46 lb uplift at joint 53, 39 lb uplift at joint 52, 41 lb uplift at joint 51, 42 lb uplift at joint 50, 41 lb uplift at joint 49, 41 lb uplift at joint 48, 41 lb uplift at joint 47, 41 lb uplift at joint 46, 42 lb uplift at joint 45, 28 lb uplift at joint 44 and 91 lb uplift at joint 43.
- 10) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.


LOAD CASE(S) Standard

Run: 8.63 S Aug 30 2023 Print: 8.630 S Aug 30 2023 MiTek Industries, Inc. Tue Oct 31 15:34:36 ID:EmCXOiXYCML5lKd?OVTvI7yGxE5-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC?f Page: 2

Job	Truss	Truss Type	Qty Ply Roof - Osage Lot 84		Roof - Osage Lot 84	
P240157-01	A2	Piggyback Base	6	1	Job Reference (optional)	l61755128

Run: 8.63 S Aug 30 2023 Print: 8.630 S Aug 30 2023 MiTek Industries, Inc. Tue Oct 31 15:34:38 ID:Eh5q6SjuDTnlbtQwPDFzXnyGxF9-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Scale =	1:86.4
---------	--------

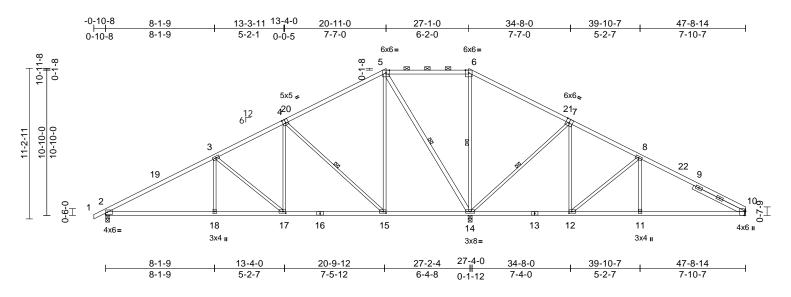
	()								4 >			DI 4750	0.010
ding .L (roof)	(psf) 25.0	Spacing Plate Grip DOL	2-0-0 1.15		CSI TC	0.94	DEFL Vert(LL)	in -0.13	(loc) 2-18	l/defl >999	L/d 240	PLATES MT20	GRIP 197/144
)L	10.0	Lumber DOL	1.15		BC	0.34	Vert(CT)	-0.30	2-18	>999	180	101120	13//144
L	0.0	Rep Stress Incr	YES		WB	0.91	Horz(CT)	0.04	2-10 14	_333 n/a	n/a		
L DL	10.0	Code		8/TPI2014	Matrix-S	0.31	1012(01)	0.04	14	n/a	n/a	Weight: 232 lb	FT = 20%
	10.0	Code	11(0201	0/11/2014	Wath -0							Weight. 252 lb	11 = 2078
	2 Rows at 1/3 pts	pt* 14-5:2x4 SP No.: athing directly applie ept 0-0 max.): 5-6. applied or 6-0-0 oc 4-15, 6-14, 7-14 5-14 5-14 9=0-3-8, 14=0-3-8 2 12) C 12), 9=-184 (LC 13	2 d or 3) 4) 5)	Vasd=91mp Ke=1.00; Ca exterior zonn Interior (1) 4 27-1-0, Exte 34-1-14 to 4 exposed ; er members ar Lumber DOI Provide ade This truss ha chord live lo All bearings capacity of § Provide meet bearing plate	7-16; Vult=115 h; TCDL=6.0psf t. II; Exp C; Enc and C-C Exter a d C-C Exter 1-8 to 20-11-0, rior(2R) 27-1-0 8-10-8 zone; ca d vertical left au d forces & MWI _=1.60 plate grip quate drainage as been designe and nonconcurre are assumed to i65 psi. thanical connect e capable of with b uplift at joint 1	; BCDL=6.(closed; MW ior(2E) -0-1 Exterior(2E to 34-1-14, ntilever left ad right exp FRS for rea to DOL=1.60 to prevent v dd for a 10.0 nt with any be SP No. tion (by oth- nstanding 1	Dipsf; h=35ft; FRS (envelop 0-8 to 4-1-8, E) 20-11-0 to Interior (1) and right osed;C-C for ctions shown 0) vater pondin(0) psf bottom other live loa 2 crushing ers) of truss t 98 lb uplift at	; j. ds.					
RCES	Max Grav 2=1034 (L 14=2925 ((lb) - Maximum Com	(LC 1)	5), 7)	This truss is International	designed in acc Residential Co nd referenced s	cordance wi	th the 2018 R502.11.1 a						
	Tension		8)		Ind representat			ize					
P CHORD	1-2=0/17, 2-3=-1514 5-6=0/834, 6-8=-184 9-10=0/17	, ,		or the orient bottom chor	ation of the purli d.							Contra	- AP
CHORD	2-18=-312/1230, 17- 15-17=-143/748, 14- 12-14=-340/183, 11- 9-11=-102/585	15=-152/328,	LC	DAD CASE(S)	Standard						Å	STATE OF M	AISSOLA
BS	9-11=-102/383 3-18=0/297, 3-17=-6 4-15=-911/325, 5-15 5-14=-1467/285, 6-1 7-14=-927/326, 7-12	=-137/756, 4=-882/186,)4,									SEVI	

1) Unbalanced roof live loads have been considered for this design.

November 1,2023

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent colleges with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

E


SSIONAL

Page: 1

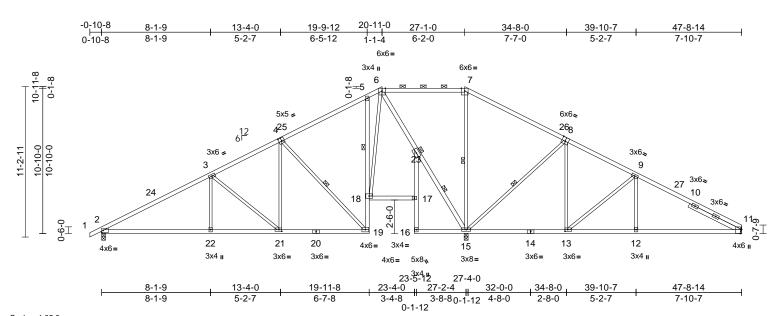
Job	Truss	Truss Type	Qty	Ply	Roof - Osage Lot 84	
P240157-01	A3	Piggyback Base	2	1	Job Reference (optional)	l61755129

Run: 8.63 S Aug 30 2023 Print: 8.630 S Aug 30 2023 MiTek Industries, Inc. Tue Oct 31 15:34:39 ID:_BaRCVCQw9?42CIXuEbokKyGxNZ-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1	:85.9
-----------	-------

				9-1, [,	, i oj, [10:0 2 0,0								
Loading TCLL (roof) TCDL BCLL BCDL	(psf) 25.0 10.0 0.0 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC201	8/TPI2014	CSI TC BC WB Matrix-S	0.89 0.77 0.96	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.13 -0.31 0.05	(loc) 2-18 2-18 10	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 236 lb	GRIP 197/144 FT = 20%
FORCES TOP CHORD BOT CHORD WEBS NOTES	(size) 2=0-3-8, 1 Max Horiz 2=209 (LC Max Uplift 2=-212 (L 14=-270 (L 14=270 (L 14=277 (L 14=277 (L) (lb) - Maximum Com Tension 5-6=0/665, 1-2=0/17 3-5=-973/270, 6-8=- 2-18=-344/1270, 17- 15-17=-176/790, 14- 12-14=-285/252, 11- 10-11=-167/718 3-18=0/297, 5-15=-1 8-11=0/287, 5-15=-1 8-11=0/287, 5-15=-1 3-17=-619/217, 7-12 7-14=-925/324, 8-12 4-15=-908/324 ed roof live loads have	pt* 14-5:2x4 SP No. 4-4-0 athing directly applie rept 0-0 max.): 5-6. applied or 6-0-0 oc 6-14, 5-14, 7-14, 4-7 0= Mechanical, 14= C 12), 10=-202 (LC LC 12) LC 25), 10=696 (LC 2 (LC 1) pression/Maximum 7, 2-3=-1560/287, 364/860, 8-10=-913/ 18=-344/1270, 15=-70/250, 12=-167/718, 36/754, 6-14=-796/1 391/268, 4-17=-59/5 =-51/500, =-615/201,	ed or 3) 4) 15 5) 0-3-8 6) 13), 26), 7) 318 9) 318 1(153, L1	Vasd=91mp Ke=1.00; Ca exterior zonm Interior (1) 4 27-1-0, Exte 34-1-14 to 4 exposed; er members an Lumber DOI Provide ade All plates and This truss ha chord live lo Bearings are capacity of 5 of 565 psi. Refer to gird Provide med bearing platt joint 10, 212 14. This truss is International R802.10.2 a O) Graphical put		BCDL=6.0 osed; MW or(2E) -0-1 Exterior(2E) 0 34-1-14, titlever left d right exp RS for rea DOL=1.60 0 DOL=1.60 0 DOL=1.60	Dpsf; $h=35$ ft; FRS (envelo 0-8 to 4-1-8, E) 20-11-0 to Interior (1) and right osed;C-C fo ctions showr) water pondin se indicated.) psf bottom other live loa P No.2 crushi rushing capa hections. ers) of truss i 02 lb uplift at join the the 2018 R502.11.1 at SIJ/TP1 1.	n; g. ng city to t			R.	STATE OF M SCOTT SEVI SEVI PE-20010 PE-20010	ER D18807


November 1,2023

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

Plate Offsets (X, Y): [4:0-2-8,0-3-4], [7:0-3-0,Edge], [10:0-3-10,Edge], [12:0-2-8,0-1-8], [15:0-2-8,0-1-8], [17:0-2-8,0-1-8]

Job	Truss	Truss Type	Type Qty Ply Roof - Osage Lot 84		Roof - Osage Lot 84	
P240157-01	A4	Piggyback Base	2	1	Job Reference (optional)	161755130

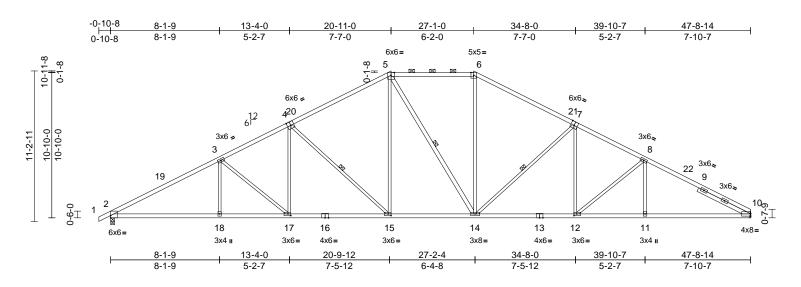
Run: 8.63 S Aug 30 2023 Print: 8.630 S Aug 30 2023 MiTek Industries, Inc. Tue Oct 31 15:34:39 ID:SN8pPrD2hT7xgLsjSx71GYyGxNY-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Scale = 1:85.9

Loading TCLL (roof) TCDL BCLL BCDL	(psf) 25.0 10.0 0.0 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC201	8/TPI2014	CSI TC BC WB Matrix-S	0.91 0.72 0.91	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.13 -0.30 0.08	(loc) 2-22 2-22 15	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 257 lb	GRIP 197/144 FT = 20%
	Right 2x4 SP No.2 Structural wood she 2-2-0 oc purlins, exc 2-0-0 oc purlins, exc 1 Brace at Jt(s): 23 (size) 2=0-3-8, - Max Horiz 2=208 (LC Max Horiz 2=208 (LC Max Uplift 2=-233 (L 15=-221 (Max Grav 2=967 (LC 15=2891 (lb) - Maximum Com 1-2=0/17, 2-3=-1376 5-6=-217/494, 6-7=-0 9-11=-884/640 2-22=-385/1109, 21- 19-21=-205/604, 18: 5-18=-288/208, 17-1 17-23=0/55, 15-16=- 12-13=-450/694, 11- 3-22=0/301, 7-15=-5 6-23=-1393/238, 15-	22+***********************************	650F 2) 2 d or 19 4) 5) 0-3-8 6) 13), 7) 3), 8) , 9) , 10 //11, 25, L0	 this design. Wind: ASCE Vasd=91mpl Ke=1.00; Cat exterior zone Interior (1) 4-27-1-0, Exter 34-1-14 to 47 exposed; en members and Lumber DOL Provide aded All plates are This truss ha chord live loa Bearings are capacity of 50 of 565 psi. Refer to girde Provide med bearing plate joint 11, 221 2. This truss is a International R802.10.2 ar R602.10.2 ar 		h (3-sec CDL=6. ed; MW 2E) -0 terior(2) 4-1-14, aver left ight exg for rea DL=1.6(revent otherwi or a 10. <i>i</i> th any otherwi or a 10. <i>i</i> th any otherwi (by oth and 23. and 23.	cond gust) Opsf; h=35ft; FRS (envelop IO-8 to 4-1-8, E) 20-11-0 to Interior (1) and right oosed;C-C for cctions shown water ponding se indicated. D psf bottom other live loa P No.2 crushi rushing capad hections. ers) of truss t 3 lb uplift at 3 lb uplift at 3 lb uplift at jo Light P 1. store 1. stor	be) ; g. ds. ng city o int nd			đđ	SCOTT SEVI NUMP PE-20010	ER D18807
NOTES												SIONA	501

November 1,2023

* AG023 Swingley Ridge Rd. Chesterfield, MO 63017 314.434.1200 / MITEk-US.com


Page: 1

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent toulsable personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

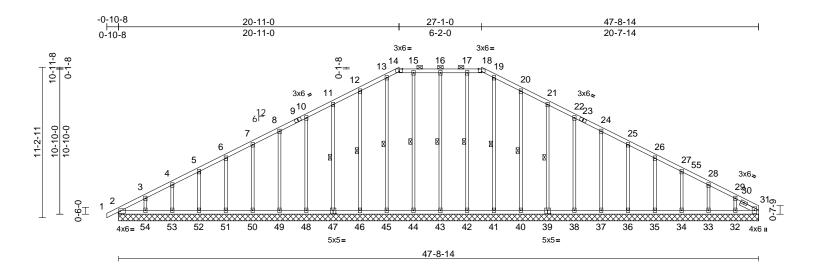
Job	Truss	Truss Type	Qty	Ply	Roof - Osage Lot 84	
P240157-01	A5	Piggyback Base	10	1	Job Reference (optional)	l61755131

Run: 8.63 S Aug 30 2023 Print: 8.630 S Aug 30 2023 MiTek Industries, Inc. Tue Oct 31 15:34:40 ID:waiCdBDgSnFoHVRv0eeGplyGxNX-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:85.9

ate encote (/t, 1): [2:2496;6 2 1];	[4:0-3-0,0-3-4], [7:0-3-0	0,Edgej, [10:):Edge,0-2-2], [12:0-2-8,0-1-8]	, [15:0-:	2-8,0-1-8], [17	(:0-2-8,0)-1-8]			-	
Loading (psf) TCLL (roof) 25.0 TCDL 10.0 BCLL 0.0 BCDL 10.0	Plate Grip DOL 1 Lumber DOL 1 Rep Stress Incr	2-0-0 1.15 1.15 YES IRC2018/TPI	CS TC BC WE P12014 Ma	; ;	0.97 0.82 0.81	DEFL Vert(LL) Vert(CT) Horz(CT)		(loc) 15-17 15-17 10	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 236 lb	GRIP 197/144 FT = 20%
UMBER OP CHORD 2x4 SP 1650F 1.5E No.2, 4-1:2x4 SP 24 BOT CHORD 2x4 SP 1650F 1.5E VEBS 2x3 SPF No.2 *Exce BLIDER Right 2x4 SP No.2 - RRACING Structural wood sheat COP CHORD Structural wood sheat SCOT CHORD Rigid ceiling directly bracing. 1 Row at midpt REACTIONS (size) 2=0-3-8, 1 Max Horiz 2=209 (LC Max Uplift 2=-329 (LI Max Grav 2=2214 (L CORCES (lb) - Maximum Com Tension 1-2=0/17, 2-3=-4010 5-6=-2389/554, 6-8= 8-10=-3898/580 SOT CHORD 2-18=-561/3433, 17- 15-17=-401/3019, 14 12-14=-330/3010, 11 10-11=-404/3340 YEBS 3-18=0/291, 5-15=-1 3-18=0/291, 5-15=-1	*Except* 5-6:2x4 SP 00F 2.0E *Pt* 14-5:2x4 SP No.2 - 4-4-0 athing directly applied, -0 max.): 5-6. applied or 9-5-7 oc 5-14, 7-14, 4-15 10= Mechanical C 16) C 12), 10=-301 (LC 13) .C 1), 10=2141 (LC 1) pression/Maximum %580, 3-5=-3462/598, 3430/590, *18=-561/3433, 4-15=-175/2388, 1-12=-404/3340, 34/725, 6-14=-80/718, 82/275, 4-17=-53/466, 2=-44/425, 2=-44/425, 2=-452/190,	2) Wir Vas Ke: ext Inte 27- 34- exp me Lur 3) Prc 4) Thi chc 5) Bei cru 6) Rei joir 8) Thi Inte R8i 9) Gra bot bot	ind: ASCE 7-16 asd=91mph; TC ∋=1.00; Cat. II; terior zone and terior (1) 4-1-81 7-1-0, Exterior(2) t-1-14 to 47-8-1 tposed; end ve embers and for umber DOL=1.6 rovide adequate is truss has be hord live load no earings are assi- ushing capacity efer to girder(s) rovide mechanic earing plate cap int 10 and 3291 his truss is desig- ternational Res 802.10.2 and re raphical purlin r the orientation totom chord.	5; Vult=115mph CDL=6.0psf; BC Exp C; Enclose C-C Exterior(2 to 20-11-0, Ext R) 27-1-0 to 3 14 zone; cantile rtical left and ri ces & MWFRS 50 plate grip DC e drainage to p en designed fo onconcurrent w umed to be: Jo y of 565 psi. for truss to tru cal connection able of withsta b uplift at joint gned in accord idential Code s eferenced stanc of the purlin al	CDL=6.0 ed; MW 2E) -0-1 erior(2E 4-1-14, ver left ght exp for rea DL=1.60 vr a 10.0 ith any int 2 SF ss conn (by othen nding 3 2. ance wise ections dard AN does no	ppsf; h=35ft; FRS (envelop 0-8 to 4-1-8, c) 20-11-0 to Interior (1) and right osed;C-C for ctions shown; ovater ponding ppsf bottom other live loace of 1650F 1.5E ections. ers) of truss to 01 lb uplift at th the 2018 R502.11.1 ar SI/TPI 1.	ds. o			8	STATE OF M STATE OF M SCATT SEVI SEVI PE-20010 PE-20010	MISSOLIE T.M. ER D18807


November 1,2023

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent toulsable personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

Job	Truss	Truss Type	Qty	Ply	Roof - Osage Lot 84	
P240157-01	A6	Piggyback Base Supported Gable	2	1	Job Reference (optional)	l61755132

Run: 8.63 S Aug 30 2023 Print: 8.630 S Aug 30 2023 MiTek Industries, Inc. Tue Oct 31 15:34:40 ID:JbPUB4NmDf0vUSJtFFIELayGxJT-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:85.9

Plate Offsets (X, Y): [14:0-	I 0,2096, [10.0-3	, o,_uye], [o1.0-3	2,01112], [08.012	_ 0,0-0-0], [[.]	+1.0-2-0,0-0-0]							
Loading	(psf) Spacin			CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)		Grip DOL 1.1		TC	0.13	Vert(LL)	n/a	-	n/a	999	MT20	244/190
TCDL	10.0 Lumber			BC	0.05	Vert(CT)	n/a	-	n/a	999		
BCLL		ress Incr YE		WB	0.18	Horz(CT)	0.02	31	n/a	n/a		
BCDL	10.0 Code	IRC	C2018/TPI2014	Matrix-S	8						Weight: 267 lb	FT = 20%
BRACING TOP CHORD Structural 6-0-0 oc pu 2-0-0 oc pu	2 D.2 P No.2 1-5-12 wood sheathing dir rlins, except rlins (6-0-0 max.): g directly applied c idpt 16-43, 1 20-40, 2	: 14-18.	FORCES		2=178 (LC 21), 32=779 (LC 26) 34=180 (LC 26) 36=180 (LC 26) 38=180 (LC 26) 40=180 (LC 1), 42=177 (LC 26) 44=177 (LC 25) 46=180 (LC 1), 48=180 (LC 25) 50=180 (LC 1), 52=180 (LC 1), 54=181 (LC 25) mum Compressi	33=182 (LC 35=180 (LC 39=180 (LC 39=180 (LC 41=174 (LC 2 43=183 (LC 45=176 (LC 45=176 (LC 49=180 (LC 49=180 (LC 2 53=179 (LC 2	1), 1), 1), 26), 26), 26), 22), 5), 1), 5),			19-41: 21-39: 24-37: 26-35: 28-33: 15-44: 12-46: 10-48: 6-51= 3-54= d roof li	-140/97, 5-52=-1 -138/171	140/112, -140/96, -140/97, -139/106, =-137/191, -136/8,
Max Horiz Max Uplift	2=47-8-14, 31=47- 3=47-8-14, 31=47- 3=47-8-14, 35=47- 3=47-8-14, 35=47- 3=47-8-14, 35=47- 3=47-8-14, 43=47- 4=47-8-14, 43=47- 4=47-8-14, 45=47- 3=47-8-14, 49=47- 3=47-8-14, 51=47- 3=4-47-8-14, 51=47- 3=59 (LC 13), 34- 5=-61 (LC 13), 36- 3=-59 (LC 9), 43=- 4=9-(LC 9), 43=- 4=-12 (LC 9), 48- 3=-61 (LC 12), 50- 53=-61 (LC 12), 50- 53=-61 (LC 12), 50- 53=-61 (LC 12), 50- 54-51 (LC 12), 50- 55-51 (LC 12), 5	$\begin{array}{l} $	TOP CHORD	4-5=-181/ 7-8=-84/1 11-12=-10 13-14=-12 15-16=-11 17-18=-11 19-20=-12 21-22=-86 27-28=-10 29-31=-22 2-54=-59/ 52-53=-59/ 52-53=-59/ 45-46=-59/ 45-46=-59/ 45-46=-59/ 41-42=-59/ 38-40=-59/ 38-40=-59/ 36-37=-59/	2-3=-295/92, 3-4 97, 5-6=-136/110 66/287, 12-13=-1 16/287, 12-13=-1 16/341, 14-15=-1 8/342, 16-17=-1 9/341, 18-19=-1 17/347, 20-21=-1 1/234, 22-24=-69 1/262, 25-26=-56 10/27, 28-29=-14 1/225, 53-54=-59/2 1/225, 49-50=-59 1/225, 40-48=-59 1/225, 40-48=-59 1/225, 40-48=-59 1/225, 40-41=-59 1/225, 37-38=-59 1/225, 36-36=-59 1/225, 33-34=-59 1/225, 35-35 1/225, 35-35 1/225, 35-35 1/225,), 6-7=-110/1;), 10-11=-88/2 27/347, 19/341, 18/342, 26/341, 18/342, 26/341, 18/342, 26/341, 10/287, (180, 72, 26-27=-7 6/43, (225, (235, (234,				STATE OF M SCOT SEVI DE 2001 PE-2001	ER BER 018807

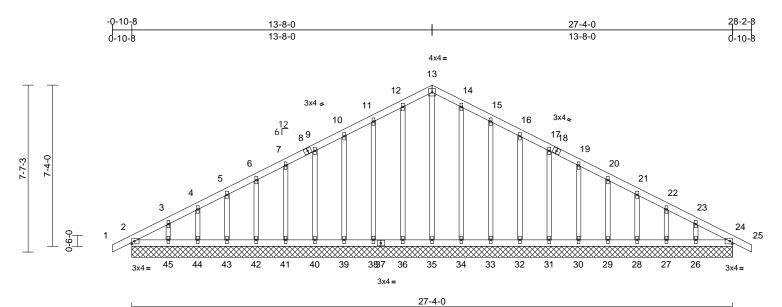
Continued on page 2 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

Job	Truss	Truss Type	Qty	Ply	Roof - Osage Lot 84	
P240157-01	A6	Piggyback Base Supported Gable	2	1	Job Reference (optional)	161755132

- 2) Wind: ASCE 7-16: Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=35ft; Ke=1.00; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone and C-C Corner(3E) -0-10-8 to 4-0-0, Exterior(2N) 4-0-0 to 20-11-0, Corner(3R) 20-11-0 to 26-0-0, Exterior(2N) 26-0-0 to 27-1-0, Corner(3R) 27-1-0 to 32-0-0, Exterior(2N) 32-0-0 to 47-8-14 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- Truss designed for wind loads in the plane of the truss 3) only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- Provide adequate drainage to prevent water ponding. 4)
- All plates are 3x4 MT20 unless otherwise indicated. 5) Gable requires continuous bottom chord bearing. 6)
- 7) Gable studs spaced at 2-0-0 oc.
- 8)
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. All bearings are assumed to be SP No.2 crushing 9)
- capacity of 565 psi. 10) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 26 lb uplift at joint 2, 58 lb uplift at joint 43, 9 lb uplift at joint 42, 74 lb uplift at joint 40, 60 lb uplift at joint 39, 61 lb uplift at joint 38, 61 lb uplift at joint 37, 61 lb uplift at joint 36, 61 lb uplift at joint 35, 62 lb uplift at joint 34, 59 lb uplift at joint 33, 103 lb uplift at joint 32, 12 lb uplift at joint 44, 71 lb uplift at joint 46, 61 lb uplift at joint 47, 61 lb uplift at joint 48, 61 lb uplift at joint 49, 61 lb uplift at joint 50, 61 lb uplift at joint 51, 61 lb uplift at joint 52, 61 lb uplift at joint 53 and 87 lb uplift at joint 54.
- 11) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 12) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord

LOAD CASE(S) Standard

Run: 8.63 S Aug 30 2023 Print: 8.630 S Aug 30 2023 MiTek Industries, Inc. Tue Oct 31 15:34:40 ID:JbPUB4NmDf0vUSJtFFIELayGxJT-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f


Page: 2

 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.
 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not beigh valid for use only with with with sets outputs into design is based only door parameters shown, and is for an individual dualing component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria**, and **DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcscomponents.com)

Job	Truss	Truss Type	Qty	Ply	Roof - Osage Lot 84	
P240157-01	B1	Common Supported Gable	2	1	Job Reference (optional)	161755133

Run: 8.63 S Aug 30 2023 Print: 8.630 S Aug 30 2023 MiTek Industries, Inc. Tue Oct 31 15:34:41 ID:UdTxDbh?e9q_8iTwPnntXZyGxKM-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Scale = 1:52.4

Scale = 1:52.4															
Loading TCLL (roof)		(psf) 25.0	Spacing Plate Grip DOL	2-0-0 1.15		CSI TC	0.07	DEFL Vert(LL)	in n/a	(loc)	l/defl n/a	L/d 999	PLATES MT20	GRIP 197/144	
TCDL		10.0	Lumber DOL	1.15		BC	0.03	Vert(CT)	n/a	-	n/a	999		101/111	
BCLL		0.0	Rep Stress Incr	YES		WB	0.18	. ,	0.01	24	n/a	n/a			
BCDL		10.0	Code		018/TPI2014	Matrix-S							Weight: 145 lb	FT = 20%	
LUMBER TOP CHORD BOT CHORD OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	6-0-0 oc pu Rigid ceiling bracing. (size) 2 3 3 3 4 Max Horiz 2 Max Uplift 2 (I (I (I (I (I (I (I (I (I (I	2 2 2 2 2 2 2 2 2 2 2 2 2 2	athing directly applied applied or 10-0-0 oc 24=27-4-0, 26=27-4), 28=27-4-0, 29=27-), 31=27-4-0, 32=27-), 34=27-4-0, 35=27-), 38=27-4-0, 39=27-), 41=27-4-0, 45=27- C, 41=27	d or -0, 4-0, 4-0, 4-0, 4-0, 4-0, 4-0, 14-0, 14-0, 14-0, 14-0, 14-0, 14-0, 14-1, 14-	TOP CHORD BOT CHORD WEBS NOTES 1) Unbalanced this design. 2) Wind: ASCE Vasd=91mp Ke=1.00; C. exterior(2N) 18-8-0, Exte left and righ exposed;C-	Matrix-S 13-14=-89/255, 1 15-16=-66/191, 1 17-19=-41/119, 1 21-22=-51/20, 22 24-25=0/17, 1-2= 3-4=-131/67, 4-5= 6-7=-59/107, 7-9= 10-11=-66/191, 1 12-13=-89/255 2-45=-40/160, 44 43-44=-40/160, 44 43-44=-40/160, 44 43-44=-40/160, 3 36-38=-40/160, 3 30-31=-40/160, 2 26-27=-40/160, 2 26-27=-40/160, 2 26-27=-40/160, 2 26-27=-40/160, 2 26-27=-40/160, 2 26-27=-40/160, 2 26-27=-40/160, 2 26-27=-40/160, 2 27-35=-148/26, 1 10-39=-93/64, 9 6-42=-93/64, 5-43 3-45=-99/122, 14 16-32=-93/64, 21 23-26=-99/119 1 roof live loads hat E 7-16; Vult=115m sh; TCDL=6.0psf; 1 at. II; Exp C; Encle te and C-C Corner) 4-4-0 to 13-8-0, (0 erior(2N) 18-8-0 to t exposed; end vc C for members an pown; Lumber DO	6-17=-53, 9-20=-34, -23=-74/2 0/17, 2-3 =-99/76, 5 =-50/126, 1-12=-80, -45=-40/1 2-43=-40, 0-41=-40, 8-39=-40, 3-34=-40, 1-32=-40, 9-30=-40, 3-34=-96, 4-26=-40, 2-36=-96, 40=-93/64 3=-94/82, -28=-94/8 -28=-	(155, (83, 20-21=-3 12, 23-24=-12 181/64, 5-6=-76/89, 9-10=-53/155 (230, 60, (160,	5/48, 3/45, 5, 5, 5, 4, /74, /64, /99, r c er	only see or of 4) All 5) Gal 7) Thi cho 8) All cap 9) Pro bea 2, 2 upli 41, upli 34, upli 34, upli 10) Thi inte	y. For s Standa consult of plates an oble requi- oble study s truss h rrd live lo bearings acity of vide me uring pla 77 lb upli ft at join 41 lb up ft at join 48 lb up ft at join 41 lb up ft at join 41 lb up ft at join s truss is ernationa	uds event of the second	or wind loads in t kposed to wind (n ustry Gable End d building design 4 MT20 unless c ntinuous bottom ed at 1-4-0 oc. an designed for a nconcurrent with ssumed to be SF i. al connection (b) able of withstand int 36, 46 lb uplif 1 lb uplift at joint oint 42, 41 lb uplift 1 lb uplift at joint oint 38, 40 lb uplift 1 lb uplift at joint oint 28, 50 lb uplift 1 lb uplift at joint 0 lb u	the plane of the truss normal to the face), Details as applicable, her as per ANSI/TPI 1. otherwise indicated. chord bearing. a 10.0 psf bottom any other live loads. P No.2 crushing y others) of truss to ling 26 lb uplift at joint t at joint 38, 41 lb 40, 41 lb uplift at joint iff at joint 32, 41 lb 30, 41 lb uplift at joint lift at joint 32, 41 lb 30, 41 lb uplift at joint lift at joint 32, 41 lb 30, 41 lb uplift at joint dt at joint 32, 41 lb 30, 41 lb uplift at joint lift at joint 32, 41 lb and 4NSI/TPI 1.	
FORCES		5=130 (L 1um Com	.C 25) pression/Maximum		DOL=1.60		L-1.00 pi	are grip					C'SSIONA	IL ENCOMP	

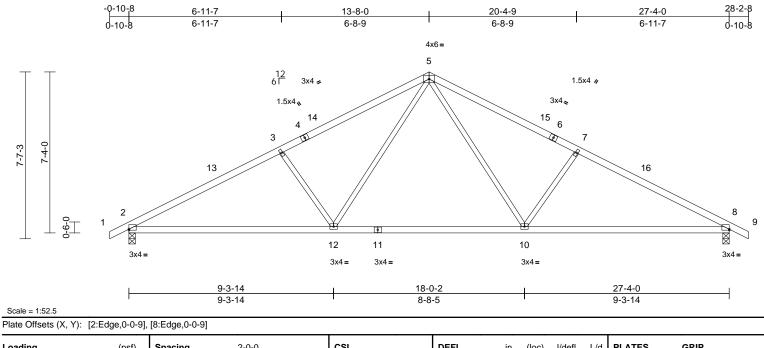
November 1,2023

Page: 1

Continued on page 2 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, rection and bracing of trusses and truss systems, see AMS/IPTI Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

Job	Truss	Truss Type	Qty	Ply	Roof - Osage Lot 84	
P240157-01	B1	Common Supported Gable	2	1	Job Reference (optional)	161755133
Premier Building Supply (Springh	nill, KS), Spring Hills, KS - 66083,	Run: 8.63 S Aug 30 2	2023 Print: 8.	.630 S Aug 3	0 2023 MiTek Industries, Inc. Tue Oct 31 15:34:41	Page: 2

Run: 8.63 S Aug 30 2023 Print: 8.630 S Aug 30 2023 MiTek Industries, Inc. Tue Oct 31 15:34:41 ID:UdTxDbh?e9q_8iTwPnntXZyGxKM-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f


LOAD CASE(S) Standard

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

Job	Truss	Truss Type	Qty	y Ply Roof - Osage Lot 84		
P240157-01	B2	Common	4	1	Job Reference (optional)	161755134

Run: 8.63 S Aug 30 2023 Print: 8.630 S Aug 30 2023 MiTek Industries, Inc. Tue Oct 31 15:34:42 ID:77cC2GCYqAwXzi_Rd5akSLyGxKz-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

						-						
Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15	TC	0.77	Vert(LL)	-0.20	2-12	>999	240	MT20	244/190
TCDL	10.0	Lumber DOL	1.15	BC	0.91	Vert(CT)	-0.44	2-12	>737	180		
BCLL	0.0	Rep Stress Incr	YES	WB	0.26	Horz(CT)	0.07	8	n/a	n/a		
BCDL	10.0	Code	IRC2018/TPI2014	Matrix-S							Weight: 109 lb	FT = 20%
	CHORD 2x4 SP No.2 bearing plate capable of withstanding 211 lb uplift at joint											

This truss is designed in accordance with the 2018

BOT CHORD	2x4 SP No.2
WEBS	2x3 SPF No.2
BRACING	
TOP CHORD	Structural wood sheathing directly applied or
	2-6-11 oc purlins.
BOT CHORD	Rigid ceiling directly applied or 10-0-0 oc
	bracing.
REACTIONS	(size) 2=0-3-8, 8=0-3-8
	Max Horiz 2=-137 (LC 13)
	Max Uplift 2=-211 (LC 12), 8=-211 (LC 13)
	Max Grav 2=1288 (LC 1), 8=1288 (LC 1)
FORCES	(lb) - Maximum Compression/Maximum
	Tension
TOP CHORD	1-2=0/17, 2-3=-2072/392, 3-5=-1821/403,
	5-7=-1821/403, 7-8=-2072/392, 8-9=0/17
BOT CHORD	2-12=-328/1763, 10-12=-86/1180,
	8-10=-263/1763

BOT CHORD 2-12=-328/1763, 10-12=-86/1180, 8-10=-263/1763 WEBS 5-10=-154/672, 7-10=-451/287, 5-12=-153/672, 3-12=-451/287

NOTES

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=35ft; Ke=1.00; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) -0-10-8 to 4-1-8, Interior (1) 4-1-8 to 13-8-0, Exterior(2R) 13-8-0 to 18-8-0, Interior (1) 18-8-0 to 28-2-8 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- All bearings are assumed to be SP No.2 crushing capacity of 565 psi.

International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. LOAD CASE(S) Standard

6)

Page: 1

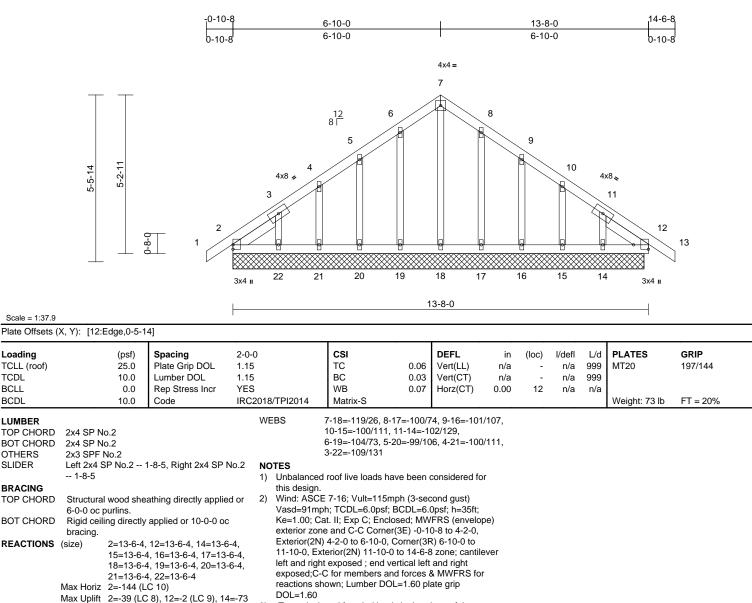
WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPH Claulity Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

Job	Truss	Truss Type	Qty	Ply	Roof - Osage Lot 84	
P240157-01	C1	Common Supported Gable	1	1	Job Reference (optional)	161755135

Loading

TCDL

BCLL


BCDL

LUMBER

OTHERS SLIDER

Run: 8.63 S Aug 30 2023 Print: 8.630 S Aug 30 2023 MiTek Industries, Inc. Tue Oct 31 15:34:42 ID:pEeiREjqUZILYPLYj_L6IhyGxLc-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

- 3) (LC 13), 15=-52 (LC 13), 16=-57 (LC 13), 17=-42 (LC 13), 19=-45 (LC 12), 20=-56 (LC 12), 21=-52 (LC 12), 22=-80 (LC 12) Max Grav 2=159 (LC 20), 12=154 (LC 1), 5) 14=132 (LC 20), 15=125 (LC 20), 6) 16=128 (LC 20), 17=127 (LC 20), 18=119 (LC 22), 19=131 (LC 19), 7) 20=126 (LC 19), 21=126 (LC 19), 22=139 (LC 19)
- FORCES (lb) - Maximum Compression/Maximum Tension TOP CHORD 7-8=-91/176, 8-9=-66/126, 9-10=-49/59 10-11=-58/29, 11-12=-112/57, 12-13=0/16, 1-2=0/16, 2-3=-140/112, 3-4=-96/80, 4-5=-87/72, 5-6=-77/126, 6-7=-91/176 BOT CHORD 2-22=-52/150, 21-22=-52/150, 20-21=-52/150, 19-20=-52/150, 18-19=-52/150, 17-18=-52/150, 16-17=-52/150, 15-16=-52/150, 14-15=-52/150, 12-14=-52/150
- Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1. All plates are 1.5x4 MT20 unless otherwise indicated.
- Gable studs spaced at 1-4-0 oc.
- This truss has been designed for a 10.0 psf bottom
- chord live load nonconcurrent with any other live loads. All bearings are assumed to be SP No.2 crushing
- capacity of 565 psi. Provide mechanical connection (by others) of truss to 8) bearing plate capable of withstanding 2 lb uplift at joint 12, 39 lb uplift at joint 2, 42 lb uplift at joint 17, 57 lb uplift at joint 16, 52 lb uplift at joint 15, 73 lb uplift at joint 14, 45 lb uplift at joint 19, 56 lb uplift at joint 20, 52 lb uplift at joint 21 and 80 lb uplift at joint 22.
- N/A 9)
- 10) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a trust system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria**, and **DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

Job	Truss	Truss Type	Qty	Ply	Roof - Osage Lot 84	
P240157-01	C2	Monopitch	1	1	Job Reference (optional)	161755136

Run: 8.63 S Aug 30 2023 Print: 8.630 S Aug 30 2023 MiTek Industries, Inc. Tue Oct 31 15:34:42 ID:Ho1WEiUTGX1gwu78IG1QiOyGxNB-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

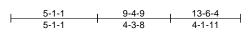
13-6-4 13-2-12 13-2-12 0-3-8 1.5x4 🛚 1.5x4 **I** 3x4 II 14 1.5x4 u 12 1.5x4 **I** 10 MT18HS 5x18 8 812 81 6 0-2-8 9-11-6 II 9-8-3 3x4 🖌 5 3x4 🦽 5-0-6 4-1-4 3 2 9 11 13 15 Ø 16 MT18HS 5x8 💊 3x4 II 1.5x4 **I** 6-8-4 13-6-4 ł 4 6-8-4 6-10-0

Scale = 1:63.8

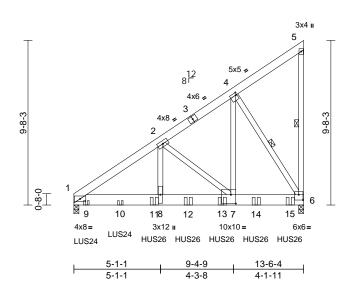
Plate Offsets (X, Y): [2:0-1-13,0-0-4], [4:0-9-0,0-3-0], [15:0-6-6,0-3-11]

Plate Offsets	(X, Y): [2:0-1-13,0-0-4	ij, [4:0-9-0,0-3-0], [1:	5:0-6-6,0-3	9-11 <u>]</u>									
Loading TCLL (roof) TCDL BCLL BCDL	(psf) 25.0 10.0 0.0 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC201	8/TPI2014	CSI TC BC WB Matrix-S	0.65 0.44 0.26	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.04 -0.09 0.01	(loc) 15-16 2-16 15	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 MT18HS Weight: 97 lb	GRIP 244/190 197/144 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS OTHERS SLIDER BRACING TOP CHORD BOT CHORD WEBS JOINTS	2x4 SP No.2 *Excep 2x4 SP No.2 *Excep 2x3 SPF No.2 *Excep 2x3 SPF No.2 Left 2x4 SP No.2 : Structural wood she 6-0-0 oc purlins, ex Rigid ceiling directly bracing. 1 Row at midpt 1 Brace at Jt(s): 11,	ot* 4-16:2x3 SPF No. 3-11-10 athing directly applie cept end verticals. applied or 9-10-14 of 14-15	.2 3) 4) 5) ed or 6) 7)	only. For stu see Standard or consult qu Provide aded All plates are Gable studs This truss ha chord live loa All bearings capacity of 5 Provide mec	hanical connectio	nd (norm End Deta esigner a prevent ess other s otherwi oc. for a 10. with any e SP No.	al to the face ils as applica s per ANSI/T water pondin wise indicate se indicated. 0 psf bottom other live loa 2 crushing ers) of truss	e), Ible, PI 1. g. ed. ads. to					
REACTIONS	7 (size) 2=0-3-8, Max Horiz 2=399 (LC Max Uplift 2=-83 (LC Max Grav 2=665 (LC	C 9) C 12), 15=-202 (LC 1	2)	joint 15 and 3) This truss is International R802.10.2 a	e capable of withs 83 lb uplift at joint designed in acco Residential Code nd referenced sta urlin representatio	2. rdance w sections ndard AN	ith the 2018 8 R502.11.1 a NSI/TPI 1.	and					
FORCES	(lb) - Maximum Com Tension	pression/Maximum			ation of the purlin			5120					
TOP CHORD		12=-204/204, 5=-600/366, 538/231, 5-7=-560/2		DAD CASE(S)							,	ATE OF	MISSO
BOT CHORD WEBS	2-16=-333/580, 15-1 4-16=0/305, 11-12= 7-8=-84/61, 5-6=-12	-214/183, 9-10=-77/6	64,								A	SCOT SEV	ТМ. \\СУ \}
Vasd=91r Ke=1.00; exterior zo Interior (1 exposed ; members	CE 7-16; Vult=115mph nph; TCDL=6.0psf; BC Cat. II; Exp C; Enclose one and C-C Exterior(2) 4-1-8 to 13-4-8 zone; end vertical left and ri and forces & MWFRS IOL=1.60 plate grip DC	(3-second gust) :DL=6.0psf; h=35ft; :d; MWFRS (envelop :E) -0-10-8 to 4-1-8, cantilever left and ri ght exposed;C-C for for reactions shown	ght							ہ بر		NUM PE-2001	018807

November 1,2023


Page: 1

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

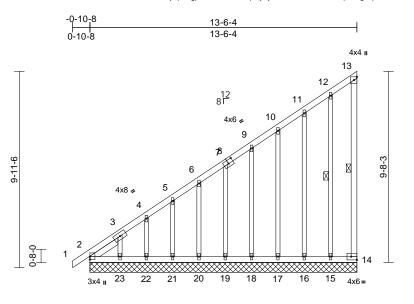

Job	Truss	Truss Type	Qty	Ply	Roof - Osage Lot 84	
P240157-01	C3	Monopitch Girder	2	2	Job Reference (optional)	161755137

Run: 8.63 S Aug 30 2023 Print: 8.630 S Aug 30 2023 MiTek Industries, Inc. Tue Oct 31 15:34:43 ID:HXV5guHpHJt4OGKtoCERWpyGxNS-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

C?f

Scale = 1:67.8

Plate Offsets (X, Y): [4:0-0-12,0-1-12], [6:0-3-0,0-3-12], [7:0-3-8,0-6-4]


Loading	(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15		TC	0.29	Vert(LL)	-0.07	7-8	>999	240	MT20	197/144
TCDL	10.0	Lumber DOL	1.15		BC	0.36	Vert(CT)	-0.12	7-8	>999	180		
BCLL	0.0	Rep Stress Incr	NO		WB	0.88	Horz(CT)	0.02	6	n/a	n/a		
BCDL	10.0	Code	IRC2018	3/TPI2014	Matrix-S							Weight: 230 lb	FT = 20%
 (0.131"x3 Top chord staggered Bottom ch staggered Web conn All loads a except if r CASE(S) provided t 	2x8 SP 2400F 2.0E 2x4 SP No.2 Structural wood she 5-5-9 oc purlins, ex Rigid ceiling directly bracing. 1 Row at midpt (size) 1=0-3-8, Max Horiz 1=384 (L Max Uplift 1=-1112 Max Grav 1=5503 ((lb) - Maximum Con Tension 1-2=-7647/1389, 2 4-5=-202/180, 5-6=	x applied or 10-0-0 oc 5-6, 4-6 6=0-3-8 C 11) (LC 12), 6=-1295 (LC LC 1), 6=-7639 (LC 1) npression/Maximum 4=-4084/764, 144/122 8=-1372/6184, =-3634/843, 6=-6287/1143 ether with 10d s: 2x6 - 2 rows w at 0-9-0 oc. lows: 2x8 - 4 rows - 1 row at 0-9-0 oc. applied to all plies, tok (B) face in the LC nections have been	ed or (12) (12) (12) (1) (1) (1) (1) (1) (1) (1) (1	Vasd=91mpi Ke=1.00; Ca exterior zone Interior (1) 5- exposed; er members an Lumber DOL This truss ha chord live loa All bearings capacity of 8 Provide mec bearing plate joint 6 and 1 This truss is International R802.10.2 at Use Simpson Truss, Single oc max. starf connect truss Use Simpson Truss) or eq 4-8-12 from 1 to back face Fill all nail ho Dead + Roc Plate Increa Uniform Lo- Vert: 1-5 Concentrati	hanical connection capable of withsta 112 lb uplift at joint designed in accord Residential Code of referenced stan of Strong-Tie LUS2: PIV Girder) or equing at 0-8-12 from s(es) to back face of of Strong-Tie HUS2 uivalent spaced at he left end to 12-8 of bottom chord. les where hanger Standard of Live (balanced): se=1.15 ads (lb/ft) =-70, 1-6=-20 ad Loads (lb) 580 (B), 10=-662 (l	CDL=6. ed; MW 2E) 0-1; ; cantilé right exp S for rea OL=1.60 or a 10. vith any SP 240 (by oth anding 1 1. dance w sections dard AN 4 (4-100 ivalent the left of bottol 6 (14-11 2-0-0 oc -12 to c is in cor Lumber B), 11=-	Opsf; h=35ft; FRS (envelo -12 to 5-1-1, voer left and oosed;C-C fo cctions shown 0 psf bottom other live loa 00F 2.0E crus ers) of truss 295 lb uplift ith the 2018 & R502.11.1 a 35/TPI 1. d Girder, 2-10 spaced at 2- end to 2-8-1: n chord. 04 Girder, 6- c max. startin onnect trussi ttact with lum Increase=1.	right r n; shing to at and 0-0 2 to 10d tg at (es) aber.				STATE OF M STATE OF M SCOTT SEVI PE-20010 PE-20010 PE-20010 November	ER Sevult D18807

te USE. not arall bracing ss Plate Institute (www.tpinst.org) MITEK 16023 Swingley Ridge Rd. Chesterfield, NO 63017 314.434.1200 / MiTek-US.com

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent oulgase with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TPI1 Quality Criteria, and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcscomponents.com)

Job	Truss	Truss Type	Qty	Ply	Roof - Osage Lot 84	
P240157-01	C4	Monopitch Supported Gable	1	1	Job Reference (optional)	161755138

Run: 8.63 S Aug 30 2023 Print: 8.630 S Aug 30 2023 MiTek Industries, Inc. Tue Oct 31 15:34:43 ID:GjwpzSgpHeSKmRw4J_pUy2yGxOF-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

	13-6-4	
Scale = 1:58.3		
Plate Offsets (X, Y): [8:0-3-0,0-2-4], [14:Edge,0-2-0]		

Loading (ps) Spacing 2-0-0 CSI (ps) Mark S CFIL in (noc) (vide) L/M MT2 Set (T) Park G(P) Set (T) Set (T) Cont Cont <thc< th=""><th>TCLL (mod) 25.0 Pite Grip DOL 1.15 TC 0.77 Vert(L) n/a invalues MT20 244/190 BCL 0.00 Rep Stress Incr YES WB 0.14 Hor(CT) 0.00 14 n/a n/a N/a 999 BCL 0.00 Rep Stress Incr YES WB 0.14 Hor(CT) 0.00 14 n/a n/a M/a 999 BCL 0.00 Rep Stress Incr YES WB 0.14 Hor(CT) 0.00 14 n/a n/a M/a 999 MT20 244/190 UMBER LUMBER No.2 Structural wood sheating directly applied or 10-00 or bracing. Structural wood sheating directly applied or 10-00 or bracing. 17-18-178/230, 16-178-724 (14-13-64, 17-13-64, 18-13-64, 19-178-724) 10-178-178/230, 16-178-724 (14-13-64, 17-13-64, 18-13-64, 19-178-24, 11-14-16-178/230, 16-178-724 (14-13-64, 17-13-64, 18-13-64, 19-178-178/230, 16-178-724 (14-13-64, 17-13-64, 18-13-64, 19-178-178/230, 16-178-724 (14-13-64, 17-13-64, 18-13-64, 19-178-178/230, 16-178-178/230, 16-178-178/230, 16-178-178/230, 16-178-178/230, 16-178-178/230, 16-178-178/230, 16-178-178/230, 16-178-178/230, 16-178-178/230, 16-178-178/230, 16-178-178/230, 16-178-178/230, 16-178-178/230,</th><th></th><th></th><th> ·</th><th>-</th><th></th><th>1</th><th></th><th></th><th></th><th></th><th></th><th></th><th>1</th><th></th></thc<>	TCLL (mod) 25.0 Pite Grip DOL 1.15 TC 0.77 Vert(L) n/a invalues MT20 244/190 BCL 0.00 Rep Stress Incr YES WB 0.14 Hor(CT) 0.00 14 n/a n/a N/a 999 BCL 0.00 Rep Stress Incr YES WB 0.14 Hor(CT) 0.00 14 n/a n/a M/a 999 BCL 0.00 Rep Stress Incr YES WB 0.14 Hor(CT) 0.00 14 n/a n/a M/a 999 MT20 244/190 UMBER LUMBER No.2 Structural wood sheating directly applied or 10-00 or bracing. Structural wood sheating directly applied or 10-00 or bracing. 17-18-178/230, 16-178-724 (14-13-64, 17-13-64, 18-13-64, 19-178-724) 10-178-178/230, 16-178-724 (14-13-64, 17-13-64, 18-13-64, 19-178-24, 11-14-16-178/230, 16-178-724 (14-13-64, 17-13-64, 18-13-64, 19-178-178/230, 16-178-724 (14-13-64, 17-13-64, 18-13-64, 19-178-178/230, 16-178-724 (14-13-64, 17-13-64, 18-13-64, 19-178-178/230, 16-178-178/230, 16-178-178/230, 16-178-178/230, 16-178-178/230, 16-178-178/230, 16-178-178/230, 16-178-178/230, 16-178-178/230, 16-178-178/230, 16-178-178/230, 16-178-178/230, 16-178-178/230, 16-178-178/230,			·	-		1							1	
TCLL TCDL TCDL BCDL 1:0.0 25.0 Plate Gro DOL Lumber DOL 1:15 Lumber DOL TC 0.77 WEB Vert(L) Vert(C) n/a - n/a 99B PCL MT20 24/4/190 BCDL 0.00 Rep Stress incr YES WB 0.14 N/a N/a 99B MT20 24/4/190 LUMMER TOP CHORD 2x4 SP No.2 Code RC2018/TPl2014 Matrix-S 223-178/230, 22-23-178/230, 22-23-178/230, 22-23-178/230, 22-23-178/230, 22-23-178/230, 22-23-178/230, 22-23-178/230, 22-23-178/230, 22-23-178/230, 22-23-178/230, 22-23-178/230, 22-23-178/230, 22-23-178/230, 22-23-178/230, 22-23-178/230, 22-23-178/230, 22-23-178/230, 16-176-178/230, 6-176-178/230, 6-176-178/230, 6-176-178/230, 6-176-178/230, 6-176-178/230, 6-176-178/230, 6-230-9999, 5-231-9999, 5-231-99999, 5-221-99999, 5-221-99999, 5-21-99999, 5-21-99999, 5-21-99999, 5-21-99999, 5-21-99999, 5-21-99999, 5-21-99999, 5-21-99999, 5-21-99999, 5-21-99999, 5-21-99999, 5-21-99999, 5-21-99999, 5-21-99999, 5-21-99999, 5-21-99999, 5-21-99999, 5-21-99999, 5-221-99999, 5-221-99999, 5-221-99999, 5-221-99999, 5-221-99999, 5-221-99999, 5-221-99999, 5-221-99999, 5-221-99999, 5-221-99999, 5-221-99999, 5-221-99999, 5-221-99999, 5-221-99999, 5-221-99999, 5-221-99999, 5-221-999	TCLL (mod) 25.0 Pite Grip DOL 1.15 TC 0.77 Vert(L) n/a in ka 989 MT20 244/190 BCLL 0.0 Rep Stress Incr YES WB 0.14 Horz(CT) 0.00 14 n/a	Loading	(psf)	Spacing	2-0-0		csi		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
BCLL 0.0 Rep Stress Incr YES WB 0.14 Horz(CT) 0.00 14 n/a Weight: 96 ib FT = 20% LUMBER TOP CHORD 2x4 SP No.2 BOT CHORD 2:23-178/230, 22:23-178/230, 22:23-178/230, 22:23-178/230, 22:23-178/230, 22:23-178/230, 22:23-178/230, 22:23-178/230, 22:23-178/230, 22:23-178/230, 22:23-178/230, 22:23-178/230, 22:23-178/230, 22:23-178/230, 22:23-178/230, 22:23-178/230, 22:23-178/230, 22:23-178/230, 22:23-178/230, 23:1-1177/38-178/230, 117-18-178/120, 117-18-178/230, 117-18-178/230, 117-18-178/230, 117-18-178/230, 117-18-178/230, 117-18-178/230, 117-18-178/230, 117-18-178/230, 117-18-178/230, 117-18-178/230, 117-18-178/230, 117-18-178/230, 117-18-178/230, 117-18-178/230, 117-18-178/120, 118, 118, 118, 118, 118, 118, 118, 11	BCLL 0.0 Rep Stress ind Code YES WB 0.14 Horz(CT) 0.00 14 n/a Metrix DCDL 10.0 Code IRC2018/TPI2014 Matrix-S Horz(CT) 0.00 14 n/a n/a DC CHORD 244 SP No.2 IRC2018/TPI2014 Matrix-S 2-23-178/230, 22-23-178/230, 20-21-178/230, 20-21-178/230, 20-21-178/230, 20-21-278/230, 2	TCLL (roof)		Plate Grip DOL	1.15		тс	0.77	Vert(LL)	n/a	-	n/a	999	MT20	244/190
BCDL 10.0 Code IRC2018/TP12014 Matrix-S Weight: 96 ib FT = 20% LUMBER TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.2 10.1 This truss is designed in accordance with the 2018 International Reactions R502.11.1 and R602.10.2 and referenced standard ANSI/TP1 1. WEBS 2x4 SP No.2 - 1-8-10 BOT CHORD 2x4 SP No.2 - 1-8-10 BOT CHORD 2x4 SP No.2 - 1-8-10 19.70e-178/230, 16-17e-178/230, 16-17e-178/14, 16-176, 16-178/14, 16-176, 16-178/14, 16-176, 16-178/14, 16-176, 16-198/	BCDL 10.0 Code IRC2018/TPI2014 Matrix-S Weight: 96 Ib FT = 20% LUMBER TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.2 10) This truss is designed in accordance with the 2018 International Residence in a coordance in the 2018 International Code Residence in a coordance with the 2018 International Code Residence in a coordance with a coordance with a coordance with a coordance withe a coord		10.0	Lumber DOL	1.15		BC	0.37	Vert(CT)	n/a	-	n/a	999		
LUMBER TOP CHORD 2x4 SP No.2 BOT CHORD 2-23=178/230, 22-23=178/23	LUMBER TOP CHORD DCT CHORD 2X4 SP No.2BOT CHORD 2X4 SP No.22-23=-178/230, 22-33=-178/230, 22	BCLL	0.0	Rep Stress Incr	YES		WB	0.14	Horz(CT)	0.00	14	n/a	n/a		
TOP CHORD 2x4 SP No.2 21-22-178/230, 02-14-18/230, 02-14-18/230, 02-14-18/230, 02-14-18/230, 02-14-18/230, 02-14-18/230, 02-14-18/230, 02-14-18/230, 02-14-18/230, 02-14-18/230, 02-14-18/230, 02-14-18/230, 02-14-18/230, 02-14-18/230, 02-14-18/24, 02-14-18/24, 02-14-16-18/24, 02-14-16-18/24, 02-14-16-18/24, 02-14-16-18/24, 02-14-18/24, 02-14-16-18/24, 02-14-18/24, 02-14-16-18/24, 02-14-18/24, 02-14-18/24, 02-14-18/24, 02-14	TOP CHORD D2 244 SP No.2 21-22-178/230, 20-21-178/230, 17-18-178/230, 18-19178/230, 17-18-178/230, 18-19178/230, 12-18-18/16, 17-18-18/16, 18-13-64, 18-18-18, 12-19, 18-19, 11-18, 18-18, 18-19, 14-18, 12-15 (18-19, 14-16, 12), 18-19, 12-16, 12, 18-4, 18-13-64, 19-13-64, 12-13-64, 18-13-64, 19-13-64, 12-13-64, 18-13-64, 19-13-64, 12-13-64, 18-13-64, 19-13-64, 12-13-64, 18-13-64, 19-13-64, 12-13, 16-4, 18-13-64, 19-14-16, 10-12, 18-198 (19-11, 19-118, 10-1	BCDL	10.0	Code	IRC2018	8/TPI2014	Matrix-S							Weight: 96 lb	FT = 20%
surface with truck short at isist(a) 2	surface with truss chord at joint(s) 2.	LUMBER TOP CHORD BOT CHORD WEBS SLIDER BRACING TOP CHORD BOT CHORD WEBS REACTIONS	2x4 SP No.2 2x4 SP No.2 2x4 SP No.2 2x3 SPF No.2 Left 2x4 SP No.2 Structural wood she 6-0-0 oc purlins, ex Rigid ceiling directly bracing. 1 Row at midpt (size) 2=13-6- 19=13-6- 22=13-6- Max Horiz 2=399 (LI Max Uplift 2=-101 (L 17=-63 (L 21=-51 (L 23=-118 d) Max Grav 2=258 (LI 15=124 (l 17=122 (l 23=160 (l 23=160 (l) 23=160 (l) (lb) - Maximum Con Tension 1-2=0/16, 2-3=-841/ 4-5=-624/422, 5-6= 7-9=-449/337, 9-10- 10-11=-316/282, 11	1-8-10 Pathing directly applied (cept end verticals. Papplied or 10-0-0 oc 13-14, 12-15 , 14=13-6-4, 15=13-6 4, 17=13-6-4, 18=13- 4, 20=13-6-4, 18=13- 4, 20=13-6-4, 18=13- 4, 20=13-6-4, 18=13- 4, 20=13-6-4, 12=13- 4, 23=13-6-4 C 9) C 8), 14=-108 (LC 11 C 12), 18=-50 (LC 12 C 12), 18=-50 (LC 12 C 12), 22=-54 (LC 12 (LC 12) C 20), 14=105 (LC 8) LC 20), 14=105 (LC 12 LC 19), 20=126 (LC 12 LC 19), 20=126 (LC 12 LC 19), 20=126 (LC 12 LC 19), 22=126 (LC 12 LC 19), 22=126 (LC 12 LC 19), 22=126 (LC 12 LC 19), 22=126 (LC 12 LC 19) pression/Maximum 2547, 3-4=-686/452, 566/394, 6-7=-508/36 -12=-244/253,	BC WI d or N(1) -4, 6-4, 6-4, 6-4, 6-4, (), 2), 2), 2), 3) (, 9), (, 2), 3) (, 9), (, 5) 9), (, 7) 8) 8) 555,	DT CHORD DT CHORD EBS Wind: ASCI Vasd=91mp Ke=1.00; C. exterior zon Exterior zon For st see Standa or consult q All plates ar Gable studs This truss h coral live lc All bearings capacity of Provide me bearing plat joint 18, 53 Ib uplift at jc joint 23. Beveled pla	2-23=-178/230, 22 21-22=-178/230, 2 21-22=-178/230, 2 19-20=-178/230, 1 17-18=-178/230, 1 15-16=-178/230, 1 12-15=-221/207, 1 10-17=-98/107, 9- 6-20=-99/90, 5-21 3-23=-179/231 E 7-16; Vult=115m, bh; TCDL=6.0psf; E and C-C Corner() 4-2-4 to 13-4-8 zc ed ; end vertical lef s and forces & MW L=1.60 plate grip D gned for wind loads tuds exposed to wind rd Industry Gable E jualified building de re 1.5x4 MT20 unle res continuous bot s spaced at 1-4-0 o tas been designed bad nonconcurrent c are assumed to b 565 psi. chanical connectio te capable of withs 1 lb uplift at joint 19, bint 21, 54 lb uplift at atte or shim required	20-21=-1 18-19=-1 16-17=-1 14-15=-1 14-15=-1 11-16=-1 18=-99/ =-99/99, ph (3-see 3CDL=6. seet; MW (3E) -0-1 one; can t and rigi /FRS for DOL=1.6 s in the p nd (norm End Deta sess other tom cho for a 10. with any e SP No n (by oth tanding 83 lb up at joint 1 52 lb up at joint 2	8/230, 78/230, 78/230, 78/230, 78/230, 78/230, 78/230, 03/114, 101, 7-19=-99/ 4-22=-101/11: cond gust) 0psf; h=35ft; 17RS (envelop 0-8 to 4-2-4, ilever left and nt exposed;C-C reactions shor 0 lane of the trus al to the face) ils as applicab is per ANSI/TP wise indicated d bearing. 0 psf bottom other live load 2 crushing ers) of truss to 108 lb uplift at lift at joint 20, 4 2 and 118 lb up	4, e) C wwn; ss , le, 1.	Ínte R80	ernationa 02.10.2	al Resi and ref) Sta	ined in accordance dential Code sec ierenced standare ndard	the with the 2018 tions R502.11.1 and d ANSI/TPI 1.

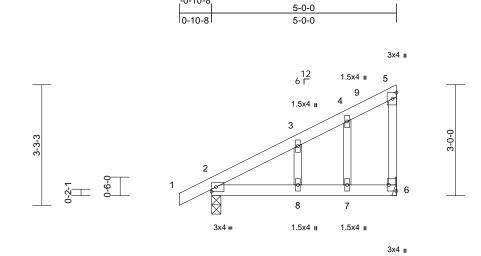
WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

16023 Swingley Ridge Rd. Chesterfield, MO 63017 314.434.1200 / MiTek-US.com

November 1,2023

Job	Truss	Truss Type	Qty	Ply	Roof - Osage Lot 84	
P240157-01	D1	Monopitch	4	1	Job Reference (optional)	161755139

-0-10-8


Premier Building Supply (Springhill, KS), Spring Hills, KS - 66083,

Run: 8.63 S Aug 30 2023 Print: 8.630 S Aug 30 2023 MiTek Industries, Inc. Tue Oct 31 15:34:43 ID:J9uoFkXWrWxKhW?zklsl4bzDH1v-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

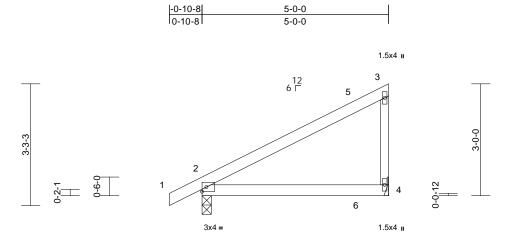
+

Page: 1

10

	5-0-0
Scale = 1:31.2	
Plate Offsets (X, Y): [6:Edge,0-2-8]	

Loading (psf)	Spacing	2-0-0	csi		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof) 25.0	Plate Grip DOL	1.15	TC	0.20	Vert(LL)	0.04	7-8	>999	240	MT20	197/144
TCDL 10.0	Lumber DOL	1.15	BC	0.28	Vert(CT)	-0.05	7-8	>999	180	11120	101/111
BCLL 0.0	Rep Stress Incr	YES	WB	0.03	Horz(CT)	0.00	6	n/a	n/a		
BCDL 10.0	Code	IRC2018/TPI2014	Matrix-S	0.00	11012(01)	0.00	0	n/a	11/4	Weight: 22 lb	FT = 20%
B6BE 10.0	Out		Matrix 0							Weight. 22 lb	11 = 2070
LUMBER6)Refer to girder(s) for truss to truss connections.TOP CHORD2x4 SP No.27)Provide mechanical connection (by others) of truss to bering plate capable of withstanding 60 lb uplift at joint 6 and 59 lb uplift at joint 2.STHERS2x3 SPF No.28)This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.SOT CHORDRigid ceiling directly applied or 10-0-0 ocStandard											
• • • •	applied or 10-0-0 oc										
bracing. REACTIONS (size) 2=0-3-0, 6: Max Horiz 2=123 (LC Max Uplift 2=-59 (LC Max Grav 2=292 (LC	12), 6=-60 (LC 12)										
FORCES (Ib) - Maximum Comp	,, ()										
Tension	pression/waximum										
TOP CHORD 1-2=0/17, 2-3=-169/7 4-5=-65/57, 5-6=-106											
BOT CHORD 2-8=-67/74, 7-8=-67/7	74, 6-7=-67/74										
WEBS 4-7=-36/69, 3-8=-48/	105										
NOTES											
 1) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=35ft; Ke=1.00; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) -0-10-8 to 41-8, Interior (1) 4-1-8 to 4-10-12 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 2) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1. 3) Gable studs spaced at 1-4-0 oc. 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 5) Bearings are assumed to be: Joint 2 SP No.2 crushing capacity of 565 psi. 											



🔺 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.
Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not
a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall
building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing
is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the
fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org)
and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

Job	Truss	Truss Type	Qty	Ply	Roof - Osage Lot 84	
P240157-01	D2	Monopitch	10	1	Job Reference (optional)	161755140

Run: 8.63 S Aug 30 2023 Print: 8.630 S Aug 30 2023 MiTek Industries, Inc. Tue Oct 31 15:34:44 ID:yf123P231X1sVXWTy3fc?NzDH2W-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

5-0-0

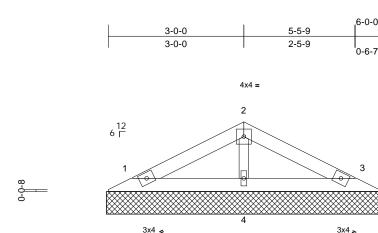
Loading TCLL (roof) TCDL	(psf) 25.0 10.0	Spacing Plate Grip DOL Lumber DOL	2-0-0 1.15 1.15	CSI TC BC	0.48 0.42	DEFL Vert(LL) Vert(CT)	in 0.09 0.08	(loc) 2-4 2-4	l/defl >603 >751	L/d 240 180	PLATES MT20	GRIP 197/144
BCLL	0.0	Rep Stress Incr	YES	WB	0.00	Horz(CT)	0.00	4	n/a	n/a		
BCDL	10.0	Code	IRC2018/TPI2014	Matrix-P		, , ,					Weight: 19 lb	FT = 20%
LUMBER												
TOP CHORD												
BOT CHORD WEBS	2x4 SP No.2 2x3 SPF No.2											
BRACING	2/3 011 10.2											
TOP CHORD	Structural wood she 5-0-0 oc purlins, ex		ed or									
BOT CHORD			с									
REACTIONS	0	C 12), 4=-87 (LC 9)										
FORCES	(lb) - Maximum Con	,, , ,										
TOP CHORD	Tension 1-2=0/17, 2-3=-167/	114 3-4167/225										
BOT CHORD	,	114, 3-4=-107/223										
NOTES												
Vasd=91r Ke=1.00; exterior zo	CE 7-16; Vult=115mph mph; TCDL=6.0psf; BC Cat. II; Exp C; Enclose one and C-C Exterior(2) 4-1-8 to 4-10-12 zone	DL=6.0psf; h=35ft; ed; MWFRS (envelo 2E) -0-10-8 to 4-1-8,	,									
	osed ; end vertical left a											The
	ght exposed;C-C for m for reactions shown; Lu										OF I	MISSO
grip DOL=											JE OF I	1050
	has been designed fo									B	SCOT	M CON
	e load nonconcurrent w are assumed to be: Jo									B	SEV.	
capacity c			iig						1			
	pirder(s) for truss to true									V.	tto:	No ANA
	nechanical connection late capable of withsta								-		NUM	BER A
	lb uplift at joint 2.	nuing of ib upint at j	onn							N	PE-2001	018807
	is designed in accord									Ŷ	The	15A
	nal Residential Code s 2 and referenced stand		ina								C'SSIONA	LEN
	(S) Standard										Car	The second secon
												4 0000

November 1,2023

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

Job	Truss	Truss Type	Qty	Ply	Roof - Osage Lot 84	
P240157-01	PB1	Piggyback	2	1	Job Reference (optional)	161755141

1-2-12


1-6-8

Run: 8.63 S Aug 30 2023 Print: 8.630 S Aug 30 2023 MiTek Industries, Inc. Tue Oct 31 15:34:44 ID:9wUnxfypw9GahpSGfCwjgdzczGe-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

1.5x4 🛚

6-0-0

Scale - 1.25 5

Scale = 1:25.5	5											1	
Loading	(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15		TC	0.13	Vert(LL)	n/a	-	n/a	999	MT20	244/190
TCDL	10.0	Lumber DOL	1.15		BC	0.06	Vert(TL)	n/a	-	n/a	999		
BCLL	0.0	Rep Stress Incr	YES		WB	0.03	Horiz(TL)	0.00	3	n/a	n/a		
BCDL	10.0	Code	IRC201	8/TPI2014	Matrix-P							Weight: 18 lb	FT = 20%
LUMBER TOP CHORD BOT CHORD OTHERS BRACING TOP CHORD BOT CHORD	 2x4 SP No.2 2x3 SPF No.2 Structural wood sheader of the second structural wood st	U U U	8) ed or ⁹⁾	capacity of 5 Provide mec bearing plate 1, 34 lb uplif This truss is International R802.10.2 a	hanical connectio e capable of withs t at joint 3 and 7 lk designed in accor Residential Code nd referenced sta	n (by oth tanding 3 o uplift at rdance w sections ndard AN	ers) of truss t 30 lb uplift at j joint 4. ith the 2018 \$R502.11.1 a ISI/TPI 1.	oint					
201 0110112	bracing.		° 10		d Industry Piggyb nnection to base								
REACTIONS	(size) 1=6-1-0, 3 Max Horiz 1=23 (LC Max Uplift 1=-30 (LC (LC 12) Max Grav 1=115 (LC (LC 1)	2 12), 3=-34 (LC 13)	, 4=-7	consult qual OAD CASE(S)	fied building desig Standard	gner.							
FORCES	(lb) - Maximum Com Tension	pression/Maximum											
TOP CHORD		/52											
BOT CHORD													
WEBS	2-4=-150/135												
NOTES													
this desig 2) Wind: AS Vasd=911 Ke=1.00; exterior z and right exposed;	CE 7-16; Vult=115mph mph; TCDL=6.0psf; BC Cat. II; Exp C; Enclose one and C-C Exterior(2 exposed ; end vertical I c-C for members and f shown; Lumber DOL= ²	(3-second gust) DL=6.0psf; h=35ft; d; MWFRS (envelop E) zone; cantilever eft and right orces & MWFRS for	oe) left									STATE OF SCOT	
 Truss de only. For see Stand 	esigned for wind loads in studs exposed to wind dard Industry Gable En- t qualified building desig	(normal to the face d Details as applicat), ble,									NUM PE-2001	

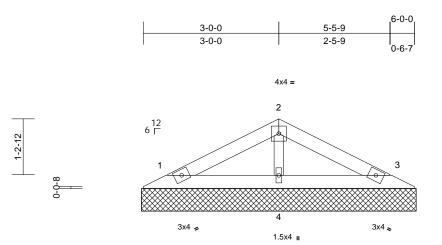
Gable requires continuous bottom chord bearing. 4)

Gable studs spaced at 1-4-0 oc. 5)

This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 6)

November 1,2023

BSSIONAL ET


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

Job	Truss	Truss Type	Qty	Ply	Roof - Osage Lot 84	
P240157-01	PB2	Piggyback	22	1	Job Reference (optional)	161755142

1-6-8

Run: 8.63 S Aug 30 2023 Print: 8.630 S Aug 30 2023 MiTek Industries, Inc. Tue Oct 31 15:34:44 ID:9wUnxfypw9GahpSGfCwjgdzczGe-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

6-0-0

Scale = 1:25.5

Scale = 1:25.5												
Loading TCLL (roof)	(psf) 25.0	Spacing Plate Grip DOL	2-0-0 1.15	CSI TC	0.13	DEFL Vert(LL)	in n/a	(loc)	l/defl n/a	L/d 999	PLATES MT20	GRIP 244/190
TCDL	10.0	Lumber DOL	1.15	BC	0.13	Vert(TL)	n/a	-	n/a	999	101120	244/130
BCLL	0.0	Rep Stress Incr	YES	WB	0.00	Horiz(TL)	0.00	3	n/a	n/a		
BCDL	10.0	Code	IRC2018/TPI2014	Matrix-P	0.00		0.00	0			Weight: 18 lb	FT = 20%
LUMBER TOP CHORD BOT CHORD OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x3 SPF No.2 Structural wood she 6-0-0 oc purlins. Rigid ceiling directly bracing. (size) 1=6-1-0, 1 Max Horiz 1=23 (LC Max Uplift 1=-30 (LC (LC 12) Max Grav 1=115 (LC (LC 1)	3=6-1-0, 4=6-1-0 12) C 12), 3=-34 (LC 13), C 1), 3=115 (LC 1), 4	capacity 8) Provide bearing 1, 34 lb 9) This true Internati R802.10 10) See Stal Detail fo Consult of 4=-7	ngs are assumed to of 565 psi. mechanical connect blate capable of with uplift at joint 3 and 7 s is designed in acc onal Residential Co .2 and referenced s ndard Industry Pigg r Connection to bas jualified building des (S) Standard	tion (by oth hstanding 3 7 Ib uplift at cordance w de sections tandard At yback Trus e truss as	ers) of truss t 30 lb uplift at j joint 4. with the 2018 s R502.11.1 a NSI/TPI 1. s Connection	joint and					
FORCES	(lb) - Maximum Com Tension	pression/Maximum										
TOP CHORD	1-2=-55/46, 2-3=-55	52										
BOT CHORD	,	5										
WEBS	2-4=-150/135											
NOTES												
this desig 2) Wind: AS Vasd=91r Ke=1.00; exterior zo and right of exposed;(ed roof live loads have n. CE 7-16; Vult=115mph mph; TCDL=6.0psf; BC Cat. II; Exp C; Enclose one and C-C Exterior(2 exposed ; end vertical C-C for members and f shown; Lumber DOL=	n (3-second gust) IDL=6.0psf; h=35ft; ed; MWFRS (envelop E) zone; cantilever I left and right forces & MWFRS for	oe) eft								STATE OF I	MISSOLATIN.

DOL=1.60 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

Gable requires continuous bottom chord bearing. 4)

5) Gable studs spaced at 2-0-0 oc.

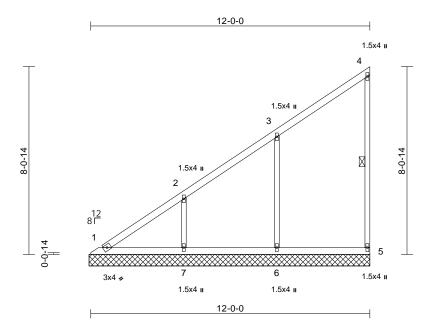
6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

E

NUMBER

PE-2001018807

November 1,2023


SSIONAL

 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.
 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not besign value to dury with with where outputs into design is based only door parameters shown, and is for an individual building design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members and property incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TPH1 Quality Criteria**, and **DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcscomponents.com)

Job	Truss	Truss Type	Qty	Ply	Roof - Osage Lot 84	
P240157-01	V1	Valley	2	1	Job Reference (optional)	161755143

Run: 8.63 S Aug 30 2023 Print: 8.630 S Aug 30 2023 MiTek Industries, Inc. Tue Oct 31 15:34:44 ID:3dyyPIGdvpWQ0?o0jPG2wlyGxRL-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:49.5

00010 = 1.40.0													
Loading	(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15		тс	0.25	Vert(LL)	n/a	-	n/a	999	MT20	244/190
TCDL	10.0	Lumber DOL	1.15		BC	0.13	Vert(TL)	n/a	-	n/a	999		
BCLL	0.0	Rep Stress Incr	YES		WB	0.20	Horiz(TL)	0.00	5	n/a	n/a		
BCDL	10.0	Code	IRC201	8/TPI2014	Matrix-S							Weight: 50 lb	FT = 20%
		cept end verticals. applied or 10-0-0 o 4-5 5, 5=12-0-15, 6=12-1 5 2 12) 2 12), 6=-169 (LC 12	8 C L D-15,	 chord live lo All bearings capacity of § Provide mee bearing plat 5, 169 lb up This truss is Internationa 	chanical connecti e capable of with lift at joint 6 and designed in acc I Residential Coc and referenced st	nt with any be SP No. ion (by oth nstanding 6 171 lb uplit ordance w de sections	other live loa 2 crushing ers) of truss t 2 lb uplift at j t at joint 7. ith the 2018 5 R502.11.1 a	o oint					
FORCES	Max Grav 1=183 (LC 6=412 (LC (lb) - Maximum Com	C 19), 7=388 (LC 19											
	Tension	-											
TOP CHORD	1-2=-377/251, 2-3=- 4-5=-116/84	228/156, 3-4=-104/5	51,										
BOT CHORD WEBS	1-7=-1/2, 6-7=-1/2, 5 3-6=-327/235, 2-7=-												
NOTES												STA	and
Vasd=91m Ke=1.00; (exterior zo Interior (1)	CE 7-16; Vult=115mph nph; TCDL=6.0psf; BC Cat. II; Exp C; Enclose one and C-C Exterior(2) 5-7-13 to 12-0-1 zone sed; end vertical left e	DL=6.0psf; h=35ft; d; MWFRS (envelop E) 0-7-13 to 5-7-13; e; cantilever left and										STATE OF SCOT	MISSOUR TM. IER

Lumber DOL=1.60 plate grip DOL=1.60 2) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

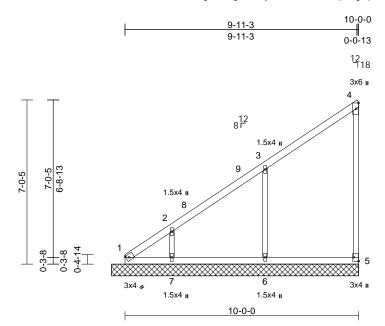
members and forces & MWFRS for reactions shown;

- Gable requires continuous bottom chord bearing. 3)
- 4)́ Gable studs spaced at 4-0-0 oc.

November 1,2023

E

NUMP


SIONAL

PE-200101880

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent oulgase with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

Job	Truss	Truss Type	Qty	Ply	Roof - Osage Lot 84	
P240157-01	V2	Valley	2	1	Job Reference (optional)	161755144

Run: 8.63 S Aug 30 2023 Print: 8.630 S Aug 30 2023 MiTek Industries, Inc. Tue Oct 31 15:34:45 ID: XHTUUT twhg M5Z xmg HzAJ4LyG xRs-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?ff

Scale = 1:49.3

Plate Offsets (X, Y): [5:Edge,0-2-8]

	(, .). [==g_;,= =]												
Loading	(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15		тс	0.60	Vert(LL)	n/a	-	n/a	999	MT20	244/190
TCDL	10.0	Lumber DOL	1.15		BC	0.20	Vert(TL)	n/a	-	n/a	999		
BCLL	0.0	Rep Stress Incr	YES		WB	0.14	Horiz(TL)	0.00	5	n/a	n/a		
BCDL	10.0	Code	IRC2018/1	TPI2014	Matrix-S							Weight: 42 lb	FT = 20%
					s been designed for d nonconcurrent v			de					
TOP CHORD BOT CHORD					are assumed to be			us.					
WEBS	2x4 SP No.2 2x3 SPF No.2			capacity of 56			2 ordoning						
OTHERS	2x3 SPF No.2				nanical connection) (by oth	ers) of truss t	0					
BRACING	2/0 011 110.2				capable of withsta								
TOP CHORD	Structural wood she	athing directly appli			at joint 5, 176 lb u	iplift at j	pint 6 and 148	B lb					
	6-0-0 oc purlins, ex		ı	uplift at joint									
BOT CHORD					designed in accord								
	bracing.				Residential Code			ina					
REACTIONS		5, 5=10-6-15, 6=10-	6-15	D CASE(S)		luaru Ar	NGI/TETT.						
	7=10-6-15		LUA	D CASE(3)	Stanuaru								
	Max Horiz 1=285 (LC	,											
	Max Uplift 1=-77 (LC	; 10), 5=-59 (LC 9), .C 12), 7=-148 (LC 1	12)										
	Max Grav 1=164 (LC												
		C 19), 7=317 (LC 19											
FORCES	(lb) - Maximum Com	,, (,										
	Tension												
TOP CHORD	1-2=-503/322, 2-3=-	372/260, 3-4=-177/	152,										
	4-5=-129/138												
BOT CHORD			145										
WEBS	3-6=-344/303, 2-7=-	249/215											and the
NOTES												OF	MIG
	CE 7-16; Vult=115mph										6	STATE OF	ISS W
	mph; TCDL=6.0psf; BC		~ ~)								6	A.M.	N.S.
	Cat. II; Exp C; Enclose one and C-C Exterior(2		be)								B	SCOT	TM. Y
) 5-9-1 to 10-6-1 zone;		iaht								R	SEV	IER \ Y
	; end vertical left and rid										Pro		1
	and forces & MWFRS											TT	Some
Lumber D	OOL=1.60 plate grip DO	L=1.60								_	X	NUM	BER
Truss des	signed for wind loads ir	n the plane of the tru	ISS							_	27	DE 2001	

2) only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

3) Gable requires continuous bottom chord bearing.

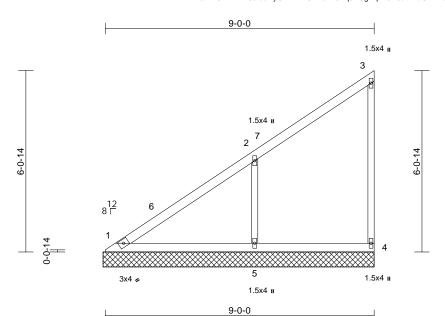
4) Gable studs spaced at 4-0-0 oc.

E

PE-2001018807

ONAL

November 1,2023


Page: 1

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

Job	Truss	Truss Type	Qty	Ply	Roof - Osage Lot 84	
P240157-01	V3	Valley	2	1	Job Reference (optional)	l61755145

Run: 8.63 S Aug 30 2023 Print: 8.630 S Aug 30 2023 MiTek Industries, Inc. Tue Oct 31 15:34:45 ID:7inLsRr1OlzWhT15crccTiyGxRv-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:38.6

Loading TCLL (roof) TCDL BCLL BCDL	(psf) 25.0 10.0 0.0 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018/TPI2014	CSI TC BC WB Matrix-S	0.70 0.18 0.10	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 4	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 36 lb	GRIP 244/190 FT = 20%
BOT CHORD 2x WEBS 2x OTHERS 2x BRACING TOP CHORD St BOT CHORD Ri br REACTIONS (siz	0-0 oc purlins, exi igid ceiling directly racing.	athing directly applie cept end verticals. applied or 10-0-0 oc 4=9-0-15, 5=9-0-15	capacity of 4 7) Provide med bearing plat 1, 50 lb uplit 8) This truss is Internationa R802.10.2 a LOAD CASE(S)	chanical connect e capable of with t at joint 4 and 2 designed in acc I Residential Coo nd referenced s	ion (by oth Istanding 4 09 lb uplift ordance w de sections	ers) of truss t l lb uplift at jo at joint 5. ith the 2018 s R502.11.1 a	pint					

	Max Uplift	1=-4 (LC 8), 4=-50 (LC 9), 5=-20 (LC 12)
	Max Grav	1=194 (LC 20), 4=143 (LC 19), 5=506 (LC 19)
FORCES	· · /	imum Compression/Maximum
	Tension	

TOP CHORD 1-2=-388/267, 2-3=-172/145, 3-4=-134/142 BOT CHORD 1-5=-116/126, 4-5=-116/126 WEBS 2-5=-399/340

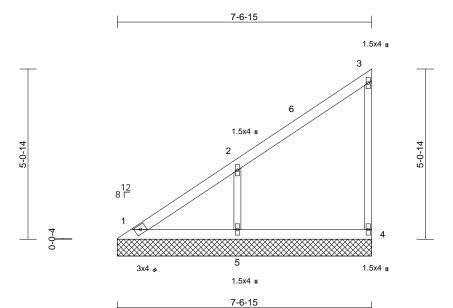
NOTES

- Wind: ASCE 7-16; Vult=115mph (3-second gust) 1) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=35ft; Ke=1.00; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) 0-5-12 to 5-5-12, Interior (1) 5-5-12 to 9-0-1 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1. 3) Gable requires continuous bottom chord bearing.

Gable studs spaced at 4-0-0 oc. 4)

- 5)
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.
 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not besign value to dury with with where outputs into design is based only door parameters shown, and is for an individual building design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members and property incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TPH1 Quality Criteria**, and **DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcscomponents.com)



Job	Truss	Truss Type	Qty	Ply	Roof - Osage Lot 84	
P240157-01	V4	Valley	2	1	Job Reference (optional)	l61755146

Run: 8.63 S Aug 30 2023 Print: 8.630 S Aug 30 2023 MiTek Industries, Inc. Tue Oct 31 15:34:45 ID:i76DDQo95qbyq0JWxj3vr4yGxRy-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

- C C

Scale = 1:34.3

Loading	(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15		TC	0.45	Vert(LL)	n/a	-	n/a	999	MT20	244/190
TCDL	10.0	Lumber DOL	1.15		BC	0.13	Vert(TL)	n/a	-	n/a	999		
BCLL	0.0	Rep Stress Incr	YES		WB	0.08	Horiz(TL)	0.00	4	n/a	n/a		
BCDL	10.0	Code	IRC201	8/TPI2014	Matrix-P							Weight: 29 lb	FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x3 SPF No.2 2x3 SPF No.2 Structural wood she 6-0-0 oc purlins, ex Rigid ceiling directly bracing. (size) 1=7-6-15, Max Horiz 1=199 (LC Max Uplift 1=-16 (LC (LC 12)	cept end verticals. applied or 10-0-0 od 4=7-6-15, 5=7-6-15 C 9) S 8), 4=-46 (LC 9), 5: C 20), 4=158 (LC 19 C 19)	c Lo 5 =-172	capacity of 5 Provide med bearing plate 1, 46 lb uplif This truss is International	hanical connecti capable of with t at joint 4 and 1 designed in according Residential Coording nd referenced st	ion (by oth Istanding 1 72 lb uplift ordance w de sections	ers) of truss t 6 lb uplift at j at joint 5. ith the 2018 5 R502.11.1 a	oint					

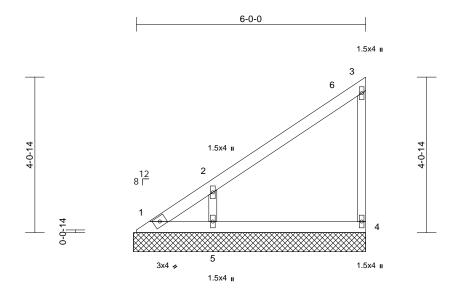
BOT CHORD1-5=-96/105, 4-5=-96/105WEBS2-5=-330/305

NOTES

- Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=35ft; Ke=1.00; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) 0-5-12 to 5-5-12, Interior (1) 5-5-12 to 7-6-1 zone; cantilever left and right exposed; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
 Gable requires continuous bottom chord bearing.

4) Gable studs spaced at 4-0-0 oc.

5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPH Claulity Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

Job	Truss	Truss Type	Qty	Ply	Roof - Osage Lot 84	
P240157-01	V5	Valley	2	1	Job Reference (optional)	161755147

Run: 8.63 S Aug 30 2023 Print: 8.630 S Aug 30 2023 MiTek Industries, Inc. Tue Oct 31 15:34:45 ID:mk_SpknvZDLEbi98pI1RmfyGxS_-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f _____

Page: 1

Scale = 1:30.2

00010 = 110012												
Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15	TC	0.28	Vert(LL)	n/a	-	n/a	999	MT20	244/190
TCDL	10.0	Lumber DOL	1.15	BC	0.12	Vert(TL)	n/a	-	n/a	999		
BCLL	0.0	Rep Stress Incr	YES	WB	0.07	Horiz(TL)	0.00	4	n/a	n/a		
BCDL	10.0	Code	IRC2018/TPI2014	Matrix-P	_						Weight: 22 lb	FT = 20%
LUMBER TOP CHORD	2x4 SP No.2		 All bearings capacity of 5 	are assumed to	be SP No.	2 crushing						
BOT CHORD	2x4 SP No.2			chanical connecti	ion (bv oth	ers) of truss	to					
WEBS	2x3 SPF No.2		e capable of with									
OTHERS	2x3 SPF No.2		t at joint 4 and 1									
BRACING				designed in acc								
TOP CHORD	Structural wood sheat 6-0-0 oc purlins, exce		JOL	Residential Coo nd referenced st			and					
BOT CHORD	Rigid ceiling directly a bracing.		LOAD CASE(S)	Standard								
REACTIONS	(size) 1=6-0-15, 4	=6-0-15, 5=6-0-15										
	Max Horiz 1=157 (LC 9	9)										
	Max Uplift 1=-56 (LC 1											
	5=-156 (LC	,										
	Max Grav 1=83 (LC 9) (LC 19)), 4=159 (LC 19), 5=	=378									

6-0-0

 FORCES
 (lb) - Maximum Compression/Maximum Tension

 TOP CHORD
 1-2=-331/216, 2-3=-155/120, 3-4=-135/154

 BOT CHORD
 1-5=-76/82, 4-5=-76/82

 WEBS
 2-5=-298/299

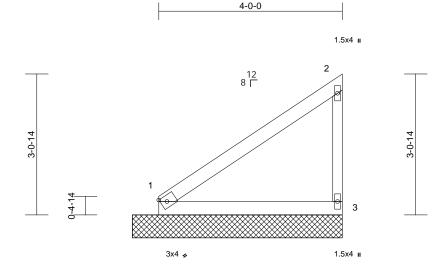
NOTES

- Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=35ft; Ke=1.00; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) 0-5-12 to 5-5-12, Interior (1) 5-5-12 to 6-0-1 zone; cantilever left and right exposed; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
 Gable requires continuous bottom chord bearing.

4) Gable studs spaced at 4-0-0 oc.

- 5) This truss has been designed for a 10.0 psf bottom
- chord live load nonconcurrent with any other live loads.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSITPH1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)



Job	Truss	Truss Type	Qty	Ply	Roof - Osage Lot 84	
P240157-01	V6	Valley	2	1	Job Reference (optional)	l61755148

Run: 8.63 S Aug 30 2023 Print: 8.630 S Aug 30 2023 MiTek Industries, Inc. Tue Oct 31 15:34:46 ID:MAIKAik0HIzfkFQZ89Tk80yGxS1-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

4-0-0	

Loading	(psf)	Spacing	2-0-0	csi		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15	тс	0.31	Vert(LL)	n/a	-	n/a	999	MT20	244/190
TCDL	10.0	Lumber DOL	1.15	BC	0.17	Vert(TL)	n/a	-	n/a	999		
BCLL	0.0	Rep Stress Incr	YES	WB	0.00	Horiz(TL)	0.00	3	n/a	n/a		
BCDL	10.0	Code	IRC2018/TPI2014	Matrix-P							Weight: 15 lb	FT = 20%

International Residential Code sections R502.11.1 and

8) This truss is designed in accordance with the 2018

R802.10.2 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard

LUMBER

Scale - 1.25 1

TOP CHORD	2x4 SP No.2
BOT CHORD	2x4 SP No.2
WEBS	2x3 SPF No.2

WEBS	2x3 SPF I	No.2
BRACING		
TOP CHORD		wood sheathing directly applied or
	4-7-5 oc p	ourlins, except end verticals.
BOT CHORD	Rigid ceili	ng directly applied or 10-0-0 oc
	bracing.	
REACTIONS	(size)	1=4-6-15, 3=4-6-15
	Max Horiz	1=114 (LC 9)
	Max Uplift	1=-15 (LC 12), 3=-58 (LC 12)
	Max Grav	1=169 (LC 1), 3=186 (LC 19)
FORCES	(lb) - Max Tension	imum Compression/Maximum

TOP CHORD 1-2=-163/120, 2-3=-154/185 BOT CHORD 1-3=-55/60

NOTES

- Wind: ASCE 7-16; Vult=115mph (3-second gust) 1) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=35ft; Ke=1.00; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- Truss designed for wind loads in the plane of the truss 2) only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- Gable requires continuous bottom chord bearing. 3)
- Gable studs spaced at 4-0-0 oc. 4)
- This truss has been designed for a 10.0 psf bottom 5) chord live load nonconcurrent with any other live loads. 6)

All bearings are assumed to be SP No.2 crushing capacity of 565 psi.

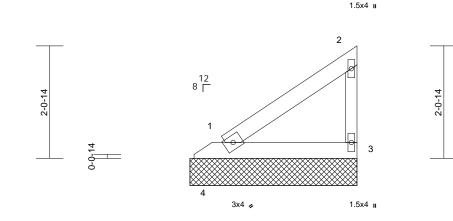
7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 15 lb uplift at joint 1 and 58 lb uplift at joint 3.

OF MISS TF. SCOTT M. SEVIER TUMP PE-2001018807 SIONAL F

November 1,2023

 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.
 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not beigh valid for use only with with with sets outputs into design is based only door parameters shown, and is for an individual dualing component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria**, and **DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcscomponents.com)

Job	Truss	Truss Type	Qty	Ply	Roof - Osage Lot 84	
P240157-01	V7	Valley	2	1	Job Reference (optional)	l61755149


3-0-0

3-0-0

Premier Building Supply (Springhill, KS), Spring Hills, KS - 66083,

Run: 8.63 S Aug 30 2023 Print: 8.630 S Aug 30 2023 MiTek Industries, Inc. Tue Oct 31 15:34:46 ID:xbdBYgi8_Nb4tni_T1w1WOyGxS4-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

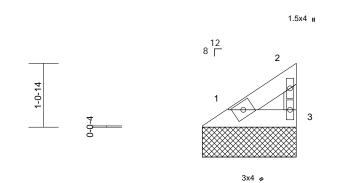
Page: 1

Scale = 1:21.2

Scale = 1:21.2		1			i								
Loading	(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15		TC	0.11	Vert(LL)	n/a	-	n/a	999	MT20	244/190
TCDL	10.0	Lumber DOL	1.15		BC	0.05	Vert(TL)	n/a	-	n/a	999		
BCLL BCDL	0.0 10.0	Rep Stress Incr Code	YES IRC2018/	TDI2014	WB Matrix-P	0.00	Horiz(TL)	0.00	3	n/a	n/a	Weight: 10 lb	FT = 20%
BCDL	10.0	Code	IRC2016/	1712014	Wattix-P							weight. To b	FT = 20%
LUMBER			7)	Provide med	hanical connect	ion (by oth	ers) of truss t	to					
TOP CHORD	2x4 SP No.2				e capable of with	nstanding 3	9 lb uplift at j	oint					
BOT CHORD	2x4 SP No.2				uplift at joint 4.								
WEBS	2x3 SPF No.2				designed in acc Residential Coo			nd					
BRACING					nd referenced st			inu					
TOP CHORD	Structural wood she 3-1-5 oc purlins, ex			D CASE(S)			0,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,						
BOT CHORD	Rigid ceiling directly			(2 0/(02(0)	Otaridara								
BOT ONORD	bracing.		0										
REACTIONS	0	, 3=3-0-15, 4=3-0-15	5										
	Max Horiz 4=72 (LC	9)											
	Max Uplift 3=-39 (LC	C 12), 4=-47 (LC 3)											
	Max Grav 1=143 (L0		,										
	4=-14 (LC	,											
FORCES	(lb) - Maximum Com	npression/Maximum											
TOP CHORD	Tension 1-2=-105/77, 2-3=-9	0/121											
BOT CHORD	1-4=-160/107, 1-3=-												
NOTES	1 1- 100/101, 1 0-	00/00											
	CE 7-16; Vult=115mph	(3-second qust)											
	nph; TCDL=6.0psf; BC												
Ke=1.00; 0	Cat. II; Exp C; Enclose	ed; MWFRS (envelop	be)										
	one and C-C Exterior(2		left										
	exposed ; end vertical												The second
	C-C for members and f shown; Lumber DOL=		-									OF	ALA
DOL=1.60		1.00 plate glip										TE OF I	JOS SCIL
DOL-1.00											4		N N

- 2) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- Gable requires continuous bottom chord bearing. 3)
- 4) Gable studs spaced at 4-0-0 oc.
- This truss has been designed for a 10.0 psf bottom 5) chord live load nonconcurrent with any other live loads.
- 6) All bearings are assumed to be SP No.2 crushing capacity of 565 psi.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent colleges with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)


16023 Swingley Ridge Rd. Chesterfield MO 63017 314.434.1200 / MiTek-US.com

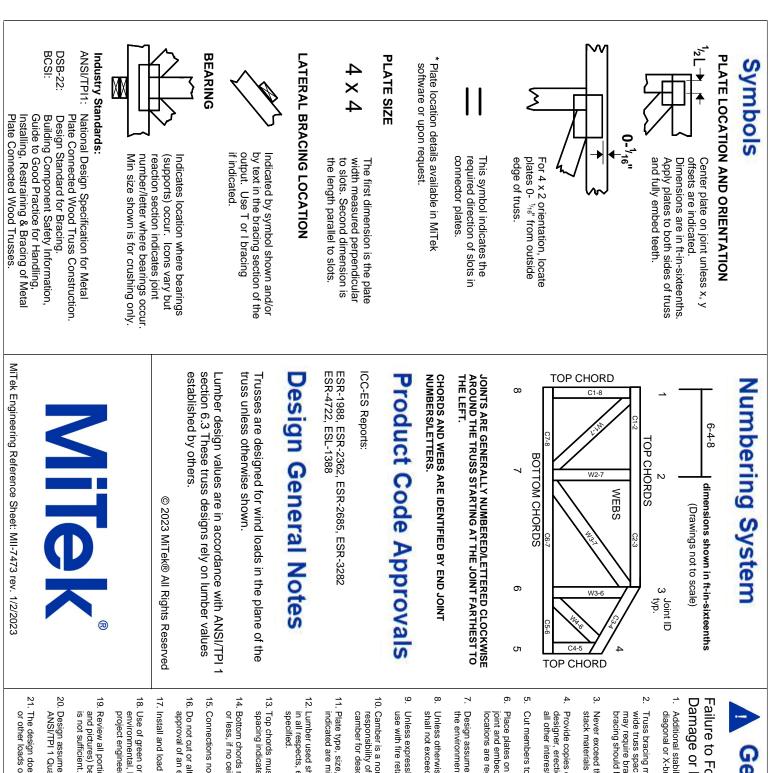
Job	Truss	Truss Type	Qty	Ply	Roof - Osage Lot 84	
P240157-01	V8	Valley	2	1	Job Reference (optional)	161755150

Run: 8.63 S Aug 30 2023 Print: 8.630 S Aug 30 2023 MiTek Industries, Inc. Tue Oct 31 15:34:46 ID:3pNgiJfdw84fOAODEBr5MYyGxS8-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

1-0-14

Page: 1

1.5x4 🛚


1-6-15

Scale - 1.19.3

Scale = 1:19.3												
Loading TCLL (roof) TCDL BCLL BCDL	(psf) 25.0 10.0 0.0 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018/TPI2014	CSI TC BC WB Matrix-P	0.02 0.01 0.00	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 3	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 5 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD BOT CHORD BOT CHORD BOT CHORD BOT CHORD REACTIONS FORCES TOP CHORD BOT CHORD NOTES 1) Wind: ASC Vasd=91m Ke=1.00; 0 exterior zo and right exposed; 0 reactions s DOL=1.60 2) Truss des 00/y. For see Stand or consult 3) Gable requ 4) Gable stud 5) This truss chord live 6) All bearing capacity of 7) Provide m bearing pla	2x4 SP No.2 2x4 SP No.2 2x3 SPF No.2 Structural wood she 1-7-5 oc purlins, exi Rigid ceiling directly bracing. (size) 1=1-6-15, Max Horiz 1=29 (LC Max Uplift 1=-5 (LC Max Uplift 1=-5 (LC (Ib) - Maximum Com Tension 1-2=-42/32, 2-3=-44, 1-3=-14/15 CE 7-16; Vult=115mph mph; TCDL=6.0psf; BC Cat. II; Exp C; Enclose one and C-C Exterior(2 exposed; end vertical I C-C for members and fi Shown; Lumber DOL=- isined for wind loads ir studs exposed to wind ard Industry Gable En- qualified building desig- uires continuous bottor is spaced at 4-0-0 oc. has been designed for load nonconcurrent wi is are assumed to bas	athing directly applie cept end verticals. applied or 10-0-0 oc 3=1-6-15 9) 12), 3=-15 (LC 12) 1), 3=50 (LC 19) pression/Maximum /50 (3-second gust) DL=6.0psf; h=35ft; d; MWFRS (envelop E) zone; cantilever li eft and right orces & MWFRS for 1.60 plate grip n the plane of the tru (normal to the face) d Details as applicat gner as per ANSI/TP m chord bearing. r a 10.0 psf bottom th any other live load SP No.2 crushing (by others) of truss to	8) This truss is Internationa R802.10.2 a LOAD CASE(S) ed or c	designed in accorda I Residential Code se and referenced stand	ections	R502.11.1 a	Ind				PE-200	MISSOUR T.M. TER 1018807
												· · ,

16023 Swingley Ridge Rd. Chesterfield, MO 63017 314.434.1200 / MiTek-US.com

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

General Safety Notes

Failure to Follow Could Cause Property Damage or Personal Injury

- 1. Additional stability bracing for truss system, e.g. diagonal or X-bracing, is always required. See BCSI.
- Truss bracing must be designed by an engineer. For wide truss spacing, individual lateral braces themselves may require bracing, or alternative Tor1 bracing should be considered.
- Never exceed the design loading shown and never stack materials on inadequately braced trusses.
- Provide copies of this truss design to the building designer, erection supervisor, property owner and all other interested parties.
- 5. Cut members to bear tightly against each other
- Place plates on each face of truss at each joint and embed fully. Knots and wane at joint locations are regulated by ANSI/TPI 1.
- Design assumes trusses will be suitably protected from the environment in accord with ANSI/TPI 1.
- Unless otherwise noted, moisture content of lumber shall not exceed 19% at time of fabrication.
- Unless expressly noted, this design is not applicable for use with fire retardant, preservative treated, or green lumber.
- Camber is a non-structural consideration and is the responsibility of truss fabricator. General practice is to camber for dead load deflection.
- 11. Plate type, size, orientation and location dimensions indicated are minimum plating requirements.
- 12. Lumber used shall be of the species and size, and in all respects, equal to or better than that specified.
- Top chords must be sheathed or purlins provided at spacing indicated on design.
- 14. Bottom chords require lateral bracing at 10 ft. spacing, or less, if no ceiling is installed, unless otherwise noted.
- 15. Connections not shown are the responsibility of others.
- Do not cut or alter truss member or plate without prior approval of an engineer.
- 17. Install and load vertically unless indicated otherwise.
- Use of green or treated lumber may pose unacceptable environmental, health or performance risks. Consult with project engineer before use.
- Review all portions of this design (front, back, words and pictures) before use. Reviewing pictures alone is not sufficient.
- 20. Design assumes manufacture in accordance with ANSI/TPI 1 Quality Criteria.
- 21. The design does not take into account any dynamic or other loads other than those expressly stated.