

RE: P240050 Roof - Osage Lot 83

Site Information:

Customer: Clayton Properties Project Name: P240050 Lot/Block: 83 Model: Twin Address: 3735/3737 SW Knoxville Ct City: Lee's Summit State: MO

ne: P240050 Model: Twin Honeydew - Farmhouse Subdivision: Osage State: MO

161755147

161755148

161755149

161755150

General Truss Engineering Criteria & Design Loads (Individual Truss Design Drawings Show Special Loading Conditions):

21

22

23

24

Design Code: IRC2018/TPI2014 Wind Code: ASCE 7-16 Roof Load: 45.0 psf Design Program: MiTek 20/20 8.6 Wind Speed: 115 mph Floor Load: N/A psf

This package includes 24 individual, dated Truss Design Drawings and 0 Additional Drawings.

No.	Seal#	Truss Name	Date
1	161755127	A1	11/1/2023
2	161755128	A2	11/1/2023
3	161755129	A3	11/1/2023
4	161755130	A4	11/1/2023
5	161755131	A5	11/1/2023
6	161755132	A6	11/1/2023
7	161755133	B1	11/1/2023
8	161755134	B2	11/1/2023
9	161755135	C1	11/1/2023
10	161755136	C2	11/1/2023
11	161755137	C3	11/1/2023
12	161755138	C4	11/1/2023
13	161755139	D1	11/1/2023
14	161755140	D2	11/1/2023
15	161755141	PB1	11/1/2023
16	161755142	PB2	11/1/2023
17	161755143	V1	11/1/2023
18	161755144	V2	11/1/2023
19	l61755145	V3	11/1/2023
20	161755146	V4	11/1/2023

1100	Doud: 1071 por		
awing	s and 0 Additional D	Irawings.	
No.	Seal#	Truss Name	

V5

V6

V7

V8

Name	Date
	11/1/2023
	11/1/2023
	11/1/2023
	11/1/2023

The truss drawing(s) referenced above have been prepared by MiTek USA, Inc under my direct supervision based on the parameters provided by .

Truss Design Engineer's Name: Sevier, Scott

My license renewal date for the state of Missouri is December 31, 2025. Missouri COA: 001193

IMPORTANT NOTE: The seal on these truss component designs is a certification that the engineer named is licensed in the jurisdiction(s) identified and that the designs comply with ANSI/TPI 1. These designs are based upon parameters shown (e.g., loads, supports, dimensions, shapes and design codes), which were given to MiTek. Any project specific information included is for MiTek customers file reference purpose only, and was not taken into account in the preparation of these designs. MiTek has not independently verified the applicability of the design parameters or the designs for any particular building. Before use, the building designer should verify applicability of design parameters and properly incorporate these designs into the overall building design per ANSI/TPI 1, Chapter 2.

Sevier, Scott

November 01, 2023
RELEASE FOR CONSTRUCTION
AS NOTED ON PLANS REVIEW
DEVELOPMENT SERVICES
LEE'S SUMMIT, MISSOURI
02/16/2024 4:17:49

MiTek, Inc. 16023 Swingley Ridge Rd. Chesterfield, MO 63017 314.434.1200

Job	Truss	Truss Type	Qty	Ply	Roof - Osage Lot 83	
P240050	A1	Piggyback Base Structural Gable	2	1	Job Reference (optional)	161755127

Run: 8.63 S Aug 30 2023 Print: 8.630 S Aug 30 2023 MiTek Industries, Inc. Tue Oct 31 15:34:36 ID:EmCXOiXYCML5IKd?OVTvI7yGxE5-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Scale = 1:86.4

Plate Offsets (X, Y): [15:0-3-0,Edge], [26:0-3-0,Edge], [32:0-2-8,0-3-0], [53:0-2-8,0-3-0]							
Loading (psf) Spacing 2-0-0 CSI DEFL TCLL (roof) 25.0 Plate Grip DOL 1.15 TC 0.75 Vert(LL) -0. TCDL 10.0 Lumber DOL 1.15 BC 0.95 Vert(CT) -0. BCLL 0.0 Rep Stress Incr YES WB 0.35 Horz(CT) 0. BCDL 10.0 Code IRC2018/TPI2014 Matrix-S Vertice Vertice Vertice	43 2-59 >771 180						
BLUL 10.0 Code IRC2018/1P12014 Matrix-s LUMBER TOP CHORD 2x4 SP No.2 *Except* 56-5:2x6 SPF No.2 Max Grav 2=1249 (LC 1), 41=166 (LC 26), 45=232 (LC 1), 44=81 (LC 1), 45=232 (LC 1), 44=81 (LC 1), 45=232 (LC 1), 45=118 (LC 26), 50=123 (LC 1), 45=118 (LC 26), 50=123 (LC 1), 45=128 (LC 26), 50=123 (LC 1), 51=318 (LC 26), 50=123 (LC 1), 51=3114 (LC 1), 20=11, 20=216 (LC 26), 50=123 (LC 1), 51=312 (LC 26), 50=123 (LC 26), 50=123 (LC 1), 51=312 (LC 26), 50=123 (LC 1), 51=312 (LC 1), 41=120 (LT 1), 42=0 (L	 WEBS 3-59=-411/269, 5-59=-138/643, 5-57=-9/737, 14-57=-551/143, 20-21=-74/35, 22-23=-67/38, 24-25=-49/21, 27-56=-367/24, 28-55=-12/84, 29-54=-87/60, 30-53=-98/56, 31-52=-92/56, 32-51=-93/56, 33-50=-95/58, 34-49=-93/57, 35-48=-93/57, 36-47=-93/57, 37-46=-93/57, 38-45=-97/59, 39-44=-69/41, 40-43=-174/115, 18-19=-73/40, 16-17=-169/20, 12-13=-190/48, 10-11=-67/47, 8-9=-73/46, 6-7=-60/41 NOTES 1) Unbalanced roof live loads have been considered for this design. 2) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=35ft; Ke=1.00; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) -0-10-8 to 4-1-8, Interior (1) 4-1-8 to 20-11-0, Exterior(2E) 20-11-0 to 27-1-0, Exterior(2R) 27-1-0 to 34-1-14, Interior (1) 34-1-14 to 48-10-8 zone; cantilever left and right exposed; C-C for 						

November 1,2023

Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TPI1 Quality Criteria, and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcscomponents.com)

Page: 1

Job	Truss	Truss Type	Qty	Ply	Roof - Osage Lot 83	
P240050	A1	Piggyback Base Structural Gable	2	1	Job Reference (optional)	161755127

- Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) Provide adequate drainage to prevent water ponding.
- 5) All plates are 3x4 MT20 unless otherwise indicated.
- 6) Gable studs spaced at 1-4-0 oc.
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- All bearings are assumed to be SP No.2 crushing capacity of 565 psi.
- 9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 225 lb uplift at joint 2, 162 lb uplift at joint 56, 29 lb uplift at joint 41, 509 lb uplift at joint 55, 23 lb uplift at joint 54, 46 lb uplift at joint 53, 39 lb uplift at joint 52, 41 lb uplift at joint 51, 42 lb uplift at joint 50, 41 lb uplift at joint 49, 41 lb uplift at joint 48, 41 lb uplift at joint 47, 41 lb uplift at joint 46, 42 lb uplift at joint 45, 28 lb uplift at joint 44 and 91 lb uplift at joint 43.
- 10) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

LOAD CASE(S) Standard

Run: 8.63 S Aug 30 2023 Print: 8.630 S Aug 30 2023 MiTek Industries, Inc. Tue Oct 31 15:34:36 ID:EmCXOiXYCML5IKd?OVTvI7yGxE5-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 2

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSITPTI Quality Criteria**, and **DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcscomponents.com)

Job	Truss	Truss Type	Qty	Ply	Roof - Osage Lot 83	
P240050	A2	Piggyback Base	6	1	Job Reference (optional)	l61755128

Run: 8.63 S Aug 30 2023 Print: 8.630 S Aug 30 2023 MiTek Industries, Inc. Tue Oct 31 15:34:38 ID:Eh5q6SjuDTnlbtQwPDFzXnyGxF9-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Scale = 1	:86.4
-----------	-------

1)

this design.

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15	TC	0.94	Vert(LL)	-0.13	2-18	>999	240	MT20	197/144
TCDL	10.0	Lumber DOL	1.15	BC	0.76	Vert(CT)	-0.30	2-18	>999	180		
BCLL	0.0	Rep Stress Incr	YES	WB	0.91	Horz(CT)	0.04	14	n/a	n/a		
BCDL	10.0	Code	IRC2018/TPI2014	Matrix-S							Weight: 232 lb	FT = 20%

$\begin{array}{llllllllllllllllllllllllllllllllllll$	LUMBER						
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	TOP CHORD						
$\begin{array}{llllllllllllllllllllllllllllllllllll$	BOT CHORD	2x4 SP No.2					
$\begin{array}{rllllllllllllllllllllllllllllllllllll$	WEBS	2x3 SPF No.2 *Except* 14-5:2x4 SP No.2					
$\begin{array}{c} 2-2-0 \mbox{ oc purlins, except} \\ 2-0 \mbox{ oc purlins (10-0-0 max.): 5-6.} \\ \mbox{BOT CHORD} \ \ \mbox{Rigid ceiling directly applied or 6-0-0 oc bracing.} \\ \mbox{WEBS} \ \ 1 \ \mbox{Row at midpt} \ \ \ 4-15, 6-14, 7-14 \\ \mbox{WEBS} \ \ \ 2 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $	BRACING	·					
$\begin{array}{c} \mbox{2-0-0 oc purlins (10-0-0 max.): 5-6.} \\ \mbox{Rigid ceiling directly applied or 6-0-0 oc bracing.} \\ \mbox{WEBS} 1 Row at midpt 4-15, 6-14, 7-14 \\ \mbox{WEBS} 2 Rows at 1/3 pts 5-14 \\ \mbox{REACTIONS} (size) 2=0-3-8, 9=0-3-8, 14=0-3-8 \\ \mbox{Max Horiz 2=204 (LC 12)} \\ \mbox{Max Uplift 2=-198 (LC 12), 9=-184 (LC 13), 14=-303 (LC 12) \\ \mbox{Max Grav 2=1034 (LC 25), 9=689 (LC 26), 14=2925 (LC 1) \\ \mbox{FORCES} (lb) - Maximum Compression/Maximum Tension \\ \mbox{TOP CHORD} 1-2=0/17, 2-3=-1514/1257, 3-5=-926/229, 5-6=0/834, 6-8=-184/1051, 8-9=-783/228, 9-10=0/17 \\ \mbox{BOT CHORD} 2-18=-312/1230, 17-18=-312/1230, 15-17=-143/748, 14-15=-152/328, 12-14=-340/183, 11-12=-102/585 \\ \mbox{WEBS} 3-18=0/297, 3-17=-623/218, 4-17=-60/504, 4-15=-911/325, 5-1377756, 5-14=-1467/285, 6-14=-882/186, 7-14=-927/326, 7-12=-60/514, \\ \mbox{WEBS} \end{array}$	TOP CHORD	Structural wood sheathing directly applied or					
$\begin{array}{llllllllllllllllllllllllllllllllllll$		2-2-0 oc purlins, except					
$\begin{array}{c cccc} bracing. \\ bracing. \\ WEBS & 1 Row at midpt & 4-15, 6-14, 7-14 \\ WEBS & 2 Rows at 1/3 pts & 5-14 \\ \textbf{REACTIONS} & (size) & 2=0-3-8, 9=0-3-8, 14=0-3-8 \\ Max Horiz & 2=204 (LC 12) \\ Max Uplift & 2=-198 (LC 12), 9=-184 (LC 13), \\ 14=-303 (LC 12) \\ Max Grav & 2=1034 (LC 25), 9=689 (LC 26), \\ 14=2925 (LC 1) \\ \textbf{FORCES} & (lb) - Maximum Compression/Maximum Tension \\ TOP CHORD & 1-2=0/17, 2-3=-1514/257, 3-5=-926/229, \\ 5-6=0/834, 6-8=-184/1051, 8-9=-783/228, \\ 9-10=0/17 \\ \textbf{BOT CHORD} & 2-18=-312/1230, 17-18=-312/1230, \\ 15-17=-143/748, 14-15=-152/328, \\ 12-14=-340/183, 11-12=-102/585, \\ 9-11=-102/585 \\ WEBS & 3-18=0/297, 3-17=-623/218, 4-17=-60/504, \\ 4-15=-911/325, 5-15=-137/756, \\ 5-14=-1467/285, 6-14=-882/186, \\ 7-14=-927/326, 7-12=-60/514, \\ \end{array}$		2-0-0 oc purlins (10-0-0 max.): 5-6.					
$\begin{array}{llllllllllllllllllllllllllllllllllll$	BOT CHORD	Rigid ceiling directly applied or 6-0-0 oc					
$\begin{array}{llllllllllllllllllllllllllllllllllll$		bracing.					
$\begin{array}{llllllllllllllllllllllllllllllllllll$	WEBS						
$\begin{array}{llllllllllllllllllllllllllllllllllll$	WEBS	2 Rows at 1/3 pts 5-14					
$\begin{array}{rl} \mbox{Max Uplift} & 2=-198 \ (LC \ 12), \ 9=-184 \ (LC \ 13), \ 14=-303 \ (LC \ 12) \ Max \ Grav \ 2=1034 \ (LC \ 25), \ 9=689 \ (LC \ 26), \ 14=2925 \ (LC \ 1) \ \ 12=0/17, \ 2-3=-1514/257, \ 3-5=-926/229, \ 5-6=0/834, \ 6-8=-184/1051, \ 8-9=-783/228, \ 9-10=0/17 \ \ \ \ 9-10=0/17 \ \ \ \ 9-10=0/17 \ \ \ \ 12=30/1728, \ 12-14=-340/183, \ 11-12=-102/585, \ 9-11=-102/585, \ 9-11=-102/585, \ 9-11=-102/585 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $	REACTIONS	(size) 2=0-3-8, 9=0-3-8, 14=0-3-8					
$\begin{array}{rl} 14=-303 \ (LC\ 12) \\ Max\ Grav & 2=1034 \ (LC\ 25), 9=689 \ (LC\ 26), \\ 14=2925 \ (LC\ 1) \\ \hline \\ \textbf{FORCES} & (lb) - Maximum\ Compression/Maximum\ Tension \\ TOP\ CHORD & 1-2=0/17, 2-3=-1514/257, 3-5=-926/229, \\ 5-6=0/834, 6-8=-184/1051, 8-9=-783/228, \\ 9-10=0/17 \\ \hline \\ \textbf{BOT\ CHORD} & 2-18=-312/1230, 17-18=-312/1230, \\ 15-17=-143/748, 14-15=-152/328, \\ 12-14=-340/183, 11-12=-102/585, \\ 9-11=-102/585 \\ \hline \\ \textbf{WEBS} & 3-18=0/297, 3-17=-623/218, 4-17=-60/504, \\ 4-15=-911/325, 5-15=-137/756, \\ 5-14=-1467/285, 6-14=-882/186, \\ 7-14=-927/326, 7-12=-60/514, \\ \hline \end{array}$		Max Horiz 2=204 (LC 12)					
$\begin{array}{rllllllllllllllllllllllllllllllllllll$		Max Uplift 2=-198 (LC 12), 9=-184 (LC 13),					
$\begin{array}{rl} & & 14=2925 \ (LC \ 1) \\ \mbox{FORCES} & (lb) - Maximum \ Compression/Maximum \ Tension \\ \mbox{Tension} \\ \mbox{TOP CHORD} & 1-2=0/17, 2-3=-1514/257, 3-5=-926/229, \\ & 5-6=0/834, 6-8=-184/1051, 8-9=-783/228, \\ & 9-10=0/17 \\ \mbox{BOT CHORD} & 2-18=-312/1230, 17-18=-312/1230, \\ & 15-17=-143/748, 14-15=-152/328, \\ & 12-14=-340/183, 11-12=-102/585, \\ & 9-11=-102/585 \\ \mbox{WEBS} & 3-18=0/297, 3-17=-623/218, 4-17=-60/504, \\ & 4-15=-911/325, 5-15=-137/756, \\ & 5-14=-1467/285, 6-14=-882/186, \\ & 7-14=-927/326, 7-12=-60/514, \\ \mbox{Tension} \\ \end{array}$							
$\begin{array}{llllllllllllllllllllllllllllllllllll$		Max Grav 2=1034 (LC 25), 9=689 (LC 26),					
Tension TOP CHORD 1-2=0/17, 2-3=-1514/257, 3-5=-926/229, 5-6=0/834, 6-8=-184/1051, 8-9=-783/228, 9-10=0/17 BOT CHORD 2-18=-312/1230, 17-18=-312/1230, 15-17=-143/748, 14-15=-152/328, 12-14=-340/183, 11-12=-102/585, 9-11=-102/585 WEBS 3-18=0/297, 3-17=-623/218, 4-17=-60/504, 4-15=-911/325, 5-15=-137/756, 5-14=-1467/285, 6-14=-882/186, 7-14=-927/326, 7-12=-60/514,		14=2925 (LC 1)					
$\begin{array}{rll} \text{TOP CHORD} & 1-2=0/17, 2-3=-1514/257, 3-5=-926/229, \\ & 5-6=0/834, 6-8=-184/1051, 8-9=-783/228, \\ & 9-10=0/17 \\ \text{BOT CHORD} & 2-18=-312/1230, 17-18=-312/1230, \\ & 15-17=-143/748, 14-15=-152/328, \\ & 12-14=-340/183, 11-12=-102/585, \\ & 9-11=-102/585 \\ \text{WEBS} & 3-18=0/297, 3-17=-623/218, 4-17=-60/504, \\ & 4-15=-911/325, 5-15=-137/756, \\ & 5-14=-1467/285, 6-14=-882/186, \\ & 7-14=-927/326, 7-12=-60/514, \\ \end{array}$	FORCES						
5-6=0/834, 6-8=-184/1051, 8-9=-783/228, 9-10=0/17 BOT CHORD 2-18=-312/1230, 17-18=-312/1230, 15-17=-143/748, 14-15=-152/328, 12-14=-340/183, 11-12=-102/585, 9-11=-102/585 WEBS 3-18=0/297, 3-17=-623/218, 4-17=-60/504, 4-15=-911/325, 5-15=-137/756, 5-14=-1467/285, 6-14=-882/186, 7-14=-927/326, 7-12=-60/514,							
9-10=0/17 BOT CHORD 2-18=-312/1230, 17-18=-312/1230, 15-17=-143/748, 14-15=-152/328, 12-14=-340/183, 11-12=-102/585, 9-11=-102/585 WEBS 3-18=0/297, 3-17=-623/218, 4-17=-60/504, 4-15=-911/325, 5-15=-137/756, 5-14=-1467/285, 6-14=-882/186, 7-14=-927/326, 7-12=-60/514,	TOP CHORD	,					
BOT CHORD 2-18=-312/1230, 17-18=-312/1230, 15-17=-143/748, 14-15=-152/328, 12-14=-340/183, 11-12=-102/585, 9-11=-102/585 WEBS 3-18=0/297, 3-17=-623/218, 4-17=-60/504, 4-15=-911/325, 5-15=-137/756, 5-14=-1467/285, 6-14=-882/186, 7-14=-927/326, 7-12=-60/514,							
15-17=-143/748, 14-15=-152/328, 12-14=-340/183, 11-12=-102/585, 9-11=-102/585 WEBS 3-18=0/297, 3-17=-623/218, 4-17=-60/504, 4-15=-911/325, 5-15=-137/756, 5-14=-1467/285, 6-14=-882/186, 7-14=-927/326, 7-12=-60/514,							
12-14=-340/183, 11-12=-102/585, 9-11=-102/585 WEBS 3-18=0/297, 3-17=-623/218, 4-17=-60/504, 4-15=-911/325, 5-15=-137/756, 5-14=-1467/285, 6-14=-882/186, 7-14=-927/326, 7-12=-60/514,	BOT CHORD						
9-11=-102/585 WEBS 3-18=0/297, 3-17=-623/218, 4-17=-60/504, 4-15=-911/325, 5-15=-137/756, 5-14=-1467/285, 6-14=-882/186, 7-14=-927/326, 7-12=-60/514,							
WEBS 3-18=0/297, 3-17=-623/218, 4-17=-60/504, 4-15=-911/325, 5-15=-137/756, 5-14=-1467/285, 6-14=-882/186, 7-14=-927/326, 7-12=-60/514,							
4-15=-911/325, 5-15=-137/756, 5-14=-1467/285, 6-14=-882/186, 7-14=-927/326, 7-12=-60/514,	WERS						
5-14=-1467/285, 6-14=-882/186, 7-14=-927/326, 7-12=-60/514,	WEBS						
7-14=-927/326, 7-12=-60/514,							
8-12=-051/219.8-11=0/300		8-12=-651/219, 8-11=0/300					
NOTES		8-12=-651/219, 8-11=0/300					

Unbalanced roof live loads have been considered for

Ke=1.00; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) -0-10-8 to 4-1-8, Interior (1) 4-1-8 to 20-11-0, Exterior(2E) 20-11-0 to 27-1-0, Exterior(2R) 27-1-0 to 34-1-14, Interior (1) 34-1-14 to 48-10-8 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 Provide adequate drainage to prevent water ponding. 3) 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 5) All bearings are assumed to be SP No.2 crushing capacity of 565 psi. 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 198 lb uplift at joint 2, 303 lb uplift at joint 14 and 184 lb uplift at joint 9. This truss is designed in accordance with the 2018 7) International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. 8) Graphical purlin representation does not depict the size

or the orientation of the purlin along the top and/or bottom chord.

LOAD CASE(S) Standard

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.
 Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not
 a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall
 building designer. Brust verify the applicability of design parameters and properly incorporate this design into the overall
 building designe. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing
 is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the
 fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSITPH Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org)
 and BCSI Building Component Safety Information
 available from the Structural Building Component Association (www.sbcscomponents.com)

RELEASE FOR CONSTRUCTION AS NOTED ON PLANS REVIEW DEVELORMENT SERVICES LEE'S'SUMMIT'SMISSOURI 02/16/2024 4:17:49

Page: 1

Job	Truss	Truss Type	Qty	Ply	Roof - Osage Lot 83	
P240050	A3	Piggyback Base	2	1	Job Reference (optional)	l61755129

Run: 8.63 S Aug 30 2023 Print: 8.630 S Aug 30 2023 MiTek Industries, Inc. Tue Oct 31 15:34:39 ID:_BaRCVCQw9?42CIXuEbokKyGxNZ-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

November 1,2023

DEVELORMENT SERVICES LEE'S'SUMMIT'SMISSOURI 02/16/2024 4:17:49

TION EW

Scale = 1	:85.9
-----------	-------

		[7:0-3-0,Edge], [10:0			1							1	
bading	(psf)	Spacing	2-0-0		CSI	0.00	DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
CLL (roof) CDL	25.0 10.0	Plate Grip DOL Lumber DOL	1.15 1.15		TC BC	0.89 0.77	Vert(LL) Vert(CT)	-0.13 -0.31	2-18 2-18	>999 >999	240 180	MT20	197/144
CLL	0.0	Rep Stress Incr	YES		WB	0.96	Horz(CT)	0.05	10	>999 n/a	n/a		
CDL	10.0	Code		8/TPI2014	Matrix-S	0.00	11012(01)	0.00	10	n/a	n/a	Weight: 236 lb	FT = 20%
MBER			2)	Wind: ASCE	7-16; Vult=115	mph (3-sec	ond gust)						
OP CHORD	2x4 SP No.2 *Excep	ot* 4-1,7-10:2x4 SP			h; TCDL=6.0ps)					
OT CHORD	1650F 1.5E 2x4 SP No.2				at. II; Exp C; End e and C-C Exter			be)					
EBS	2x4 SP No.2 *Exce	ent* 14-5·2x4 SP No :	2		-1-8 to 20-11-0,								
IDER	Right 2x4 SP No.2		-		rior(2R) 27-1-0								
RACING	•				7-8-14 zone; ca								
OP CHORD	Structural wood she		d or		nd vertical left a id forces & MW								
	2-2-0 oc purlins, exc				_=1.60 plate gri			,					
OT CHORD	2-0-0 oc purlins (10- Rigid ceiling directly		3)		quate drainage			j .					
	bracing.	applied of 0-0-0 oc	4)		e 3x6 MT20 unl								
EBS		6-14, 5-14, 7-14, 4-1	5 5)		as been designe								
EACTIONS		10= Mechanical, 14=	⁰⁻³⁻⁸ 6)		ad nonconcurre assumed to be								
	Max Horiz 2=209 (LC	,	- /		65 psi, Joint 14								
	Max Uplift 2=-212 (L 14=-270 (13),	of 565 psi.	•		• •	,					
	Max Grav 2=1056 (L		7)		er(s) for truss to								
	14=2770		8)		hanical connec e capable of wit								
ORCES	(lb) - Maximum Com	pression/Maximum			Ib uplift at joint								
	Tension			14.	io apint at joint	2 4114 21 0	o apint at joi						
OP CHORD	5-6=0/665, 1-2=0/17		9)		designed in acc								
OT CHORD	2-18=-344/1270, 17-	364/860, 8-10=-913/ -18=-344/1270	318		Residential Co			nd				000	ADD
	15-17=-176/790, 14		10		nd referenced s Irlin representat			ize				OF M	Alson
	12-14=-285/252, 11-				ation of the purl			126			1	THE OF M	-050
	10-11=-167/718			bottom chor		<u>.</u>					B	SCOTT	Men M
EBS	3-18=0/297, 5-15=-1	36/754, 6-14=-796/1 391/268, 4-17=-59/5		DAD CASE(S)	Standard						R	SEVI	
	3-17=-619/217, 7-12	,	01,								11-		
	7-14=-925/324, 8-12										Kô.		0
	4-15=-908/324										WX ~	an Traiz	San Mal
OTES										-	47	DE 2001	
	d roof live loads have	been considered for									N.	PE-2001	1880/ 24
this design											Y	2334	JON B
												C'SSIONA	LEN

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent colleges with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

Job	Truss	Truss Type	Qty	Ply	Roof - Osage Lot 83	
P240050	A4	Piggyback Base	2	1	Job Reference (optional)	161755130

Run: 8.63 S Aug 30 2023 Print: 8.630 S Aug 30 2023 MiTek Industries, Inc. Tue Oct 31 15:34:39 ID:SN8pPrD2hT7xgLsjSx71GYyGxNY-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Scale = 1:85.9

Plate Offsets (X, Y):	[4:0-2-8,0-3-0], [8:0-3-0,Edge]	, [11:0-3-10,Edge], [13:0-2-8,0-1-8], [21:0-2-8,0-1-8]
-----------------------	---------------------------------	--

Loading TCLL (roof) TCDL BCLL BCDL	(psf) 25.0 10.0 0.0 10.0	Plate Grip DOL Lumber DOL Rep Stress Incr	2-0-0 1.15 1.15 YES IRC2018	8/TPI2014	CSI TC BC WB Matrix-S	0.91 0.72 0.91	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.13 -0.30 0.08	(loc) 2-22 2-22 15	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 257 lb	GRIP 197/144 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS SLIDER BRACING TOP CHORD BOT CHORD 1 Row at midp WEBS JOINTS REACTIONS	2x4 SP No.2 *Excep 1.5E 2x4 SP No.2 2x3 SPF No.2 *Exce Right 2x4 SP No.2 - Structural wood she 2-2-0 oc purlins, exc 2-0-0 oc purlins (10- Rigid ceiling directly bracing. Except: t 5-18 1 Row at midpt 1 Brace at Jt(s): 23 (size) 2=0-3-8, Max Horiz 2=208 (Lt Max Uplift 2=-233 (L 15=-221 (bt* 4-1,8-11:2x4 SP 165 ept* 15-6:2x4 SP No.2 - 4-4-0 athing directly applied of ept -0-0 max.): 6-7. - applied or 6-0-0 oc 7-15, 15-23, 8-15, 4-19 11= Mechanical, 15=0-3 C 12) C 12), 11=-358 (LC 13 (LC 12) C 25), 11=682 (LC 26), (LC 1)	1) 50F 2) 50r 3) 3-8 6)	Unbalanced this design. Wind: ASCE Vasd=91mpf Ke=1.00; Ca exterior zone Interior (1) 4- 27-1-0, Exter 34-1-14 to 47 exposed; en members an Lumber DOL Provide adec All plates are chord live loz Bearings are capacity of 5 of 565 psi. Refer to gird Provide mec bearing plate	roof live loads have 7-16; Vult=115mp 1; TCDL=6.0psf; Bt 1. II; Exp C; Enclos 2 and C-C Exterior(1-8 to 20-11-0, Ex ior(2R) 27-1-0 to 3 7-8-14 zone; cantil d vertical left and r d forces & MWFRS =1.60 plate grip Di quate drainage to p 3x6 MT20 unless s been designed for an assumed to be: Jo 65 psi, Joint 15 SF er(s) for truss to tru hanical connection 0 capable of withsta Ib uplift at joint 15	h (3-sec CDL=6. ced; MW (2E) -0 tterior(21 34-1-14, ever left right exp S for reas OL=1.60 prevent 1 otherwi or a 10. with any point 2 SI No.2 c	cond gust) Dpsf; h=35ft; FRS (envelog IO-8 to 4-1-8, E) 20-11-0 to Interior (1) and right posed;C-C for ctions shown water ponding se indicated. D psf bottom other live loa P No.2 crushi rushing capar nections. ers) of truss t 58 lb uplift at	ope) ; g. ds. ng city o				Weight: 207 10	
TOP CHORD	Tension 1-2=0/17, 2-3=-1376		9)	2. This truss is International	designed in accord Residential Code	dance w sections	ith the 2018 R502.11.1 a					TATE OF M	AISSOL
BOT CHORD	17-23=0/55, 15-16= 12-13=-450/694, 11 3-22=0/301, 7-15=-{ 6-23=-1393/238, 15	-19=-168/668, 18=-98/31, 16-17=-15/1 -69/26, 13-15=-509/225 -12=-450/694 378/77, 9-12=0/290, -23=-1432/230, 650/232, 8-13=-42/49 3=-625/182,	1, ^{5,} LC) Graphical pu	rlin representation ation of the purlin a I.	does no	ot depict the s	size		2	Re la compañía de la comp	SCOTT SEVI NUMH PE-20010	T M. ER D18807
NOTES												SSIONA	LENCE

November 1,2023

Page: 1

Job	Truss	Truss Type	Qty	Ply	Roof - Osage Lot 83	
P240050	A5	Piggyback Base	10	1	Job Reference (optional)	l61755131

Run: 8.63 S Aug 30 2023 Print: 8.630 S Aug 30 2023 MiTek Industries, Inc. Tue Oct 31 15:34:40 ID:waiCdBDgSnFoHVRv0eeGplyGxNX-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:85.9

e e dhe e	(0	0.0.0		001		DEEL	1	(1)	1/-161	1.74		
oading CLL (roof)	(psf) 25.0	Spacing Plate Grip DOL	2-0-0 1.15		CSI TC	0.97	DEFL Vert(LL)	in 0.26	(loc) 15-17	l/defl >999	L/d 240	PLATES MT20	GRIP 197/144
CDL (1001)	10.0	Lumber DOL	1.15		BC	0.87	Vert(CT)		15-17	>999	180	101120	197/144
CLL	0.0	Rep Stress Incr	YES		WB	0.82	Horz(CT)	0.23	10-17	>999 n/a	n/a		
CDL	10.0	Code		3/TPI2014	Matrix-S	0.01	11012(01)	0.23	10	n/a	n/a	Weight: 236 lb	ET - 20%
	10.0	Code	11(02010	0/11/2014	Matrix-0							Weight. 230 lb	11 = 2078
JMBER			2)	Wind: ASCE	7-16; Vult=115m	ph (3-seo	ond gust)						
OP CHORD	2x4 SP 1650F 1.5E	*Except* 5-6:2x4 SP		Vasd=91mpł	i; TCDL=6.0psf; E	BCDL=6.	Opsf; h=35ft;						
	No.2, 4-1:2x4 SP 24	00F 2.0E			t. II; Exp C; Enclo			pe)					
OT CHORD	2x4 SP 1650F 1.5E				and C-C Exterio	· · ·	,						
EBS	2x3 SPF No.2 *Exce	ept* 14-5:2x4 SP No.	2		1-8 to 20-11-0, E								
IDER	Right 2x4 SP No.2	- 4-4-0			ior(2R) 27-1-0 to								
RACING					7-8-14 zone; cant								
OP CHORD	Structural wood she	athing directly applie	ed,		d vertical left and d forces & MWFR								
	except				=1.60 plate grip [,					
	2-0-0 oc purlins (2-2		3)		uate drainage to			~					
OT CHORD	Rigid ceiling directly	applied or 9-5-7 oc	3) 4)		s been designed			J.					
	bracing.		4)		d nonconcurrent			eh					
EBS		5-14, 7-14, 4-15	5)		assumed to be:								
ACTIONS		10= Mechanical	0)		acity of 565 psi.								
	Max Horiz 2=209 (LC	,	6)		er(s) for truss to t	russ coni	ections.						
	Max Uplift 2=-329 (L		13) ₇)		nanical connectio			0					
	Max Grav 2=2214 (L		1) ´	bearing plate	capable of withs	tanding 3	01 Ib uplift at						
DRCES	(lb) - Maximum Com	pression/Maximum		joint 10 and 3	329 lb uplift at joir	nt 2.							
	Tension		8)		designed in acco								
OP CHORD	1-2=0/17, 2-3=-4010		3,		Residential Code			ind					
	5-6=-2386/554, 6-8=	=-3430/590,			nd referenced sta								
	8-10=-3898/580	10 501/0400	9)		rlin representatio			size					
OT CHORD	2-18=-561/3433, 17-				tion of the purlin	along the	e top and/or					000	TIC
	15-17=-401/3019, 14 12-14=-330/3010, 1	,		bottom chord								OFA	ALC D
	12-14=-330/3010, 1	I=IZ==404/3340,	LC	AD CASE(S)	Standard							BAR	W Sei
EBS	3-18=0/291, 5-15=-1	34/725 6-1480/71	18								6	TATE OF M	N.S.Y
	8-11=0/270, 5-14=-2										R	SCOTT	M. YEY
	3-17=-547/206, 7-12		,								A	SEVI	ER \V
	7-14=-851/319, 8-12	,									11 *		1+1
	4-15=-860/321	,									40	1	· 9. 12
DTES											Ya.	detto s	series
	d roof live loads have	been considered for								/	YI -	0	SER AL
this design											XX	ON PE-20010	018807 / ASH

this design.

November 1,2023

E

DEVELORMENT: SERVICES LEE'S'SUMMIT'SMISSOURI 02/16/2024 4:17:49

ION EW

SSIONAL

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent colleges with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

Job	Truss	Truss Type	Qty	Ply	Roof - Osage Lot 83	
P240050	A6	Piggyback Base Supported Gable	2	1	Job Reference (optional)	161755132

20-11-0

20-11-0

Run: 8.63 S Aug 30 2023 Print: 8.630 S Aug 30 2023 MiTek Industries, Inc. Tue Oct 31 15:34:40 ID:JbPUB4NmDf0vUSJtFFIELayGxJT-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

27-1-0 47-8-14 6-2-0 20-7-14 3x6= 3x6= ¹⁸19 13¹⁴ 0-1-8 15 16 17 đ 12 20

Scale = 1:85.9

	7, 1). [14.0], [10.0-5-0,∟uge], [5 I	1:0-3-2,0-1-12], [39:0-	2-0,0-3-0 <u>]</u> ,	[47:0-2-0,0-3-0]			-				
Loading		(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)		25.0	Plate Grip DOL	1.15	TC	0.13	Vert(LL)	n/a	-	n/a	999	MT20	244/190
TCDL		10.0	Lumber DOL	1.15	BC	0.05	Vert(CT)	n/a	-	n/a	999		
BCLL		0.0	Rep Stress Incr	YES	WB	0.18	Horz(CT)	0.02	31	n/a	n/a		
BCDL		10.0	Code	IRC2018/TPI2014	Matrix-	5						Weight: 267 lb	FI = 20%
LUMBER TOP CHORD BOT CHORD OTHERS SLIDER BRACING TOP CHORD BOT CHORD WEBS	2x4 SP N 2x3 SPF I Right 2x4 Structural 6-0-0 oc p 2-0-0 oc p	athing directly applie cept -0 max.): 14-18. · applied or 10-0-0 oc 16-43, 17-42, 19-41, 20-40, 21-39, 15-44,			2=178 (LC 21), ; 32=179 (LC 26), 34=180 (LC 26), 36=180 (LC 26), 38=180 (LC 26), 40=180 (LC 1), 4 42=177 (LC 26), 46=180 (LC 1), 4 48=180 (LC 25), 50=180 (LC 1), 5 52=180 (LC 1), 5 54=181 (LC 25), 54=181 (LC 25), 54=181 (LC 26), 54=181 (LC 26), 55	33=182 (LC 35=180 (LC 37=180 (LC 39=180 (LC 1=174 (LC 2 43=183 (LC 45=176 (LC 7=180 (LC 2 49=180 (LC 1=180 (LC 2 3=179 (LC 2	1), 1), 1), 26), 26), 26), 22), 25), 1), 25), 25),	,	alance	16-43=-143/107, 17-42=-137/33, 19-41=-134/0, 20-40=-140/112, 21-39=-140/96, 22-38=-140/96, 24-37=-140/96, 25-36=-140/97, 26-35=-140/96, 27-34=-139/106, 28-33=-142/147, 29-32=-137/191, 15-44=-137/36, 13-45=-136/8, 12-46=-140/112, 11-47=-140/96, 10-48=-140/96, 8-49=-140/96, 7-50=-140/12, 6-51=-140/97, 5-52=-140/97, 4-53=-140/12, 3-54=-138/171 nccd roof live loads have been considered for ign.			
	<i>(</i> ·)	o 17 o 1	, ,	FORCES	(ID) - Max Tension	imum Compressi	n/iviaximum		this	design.			
	$\begin{array}{c} 20-40, 21-39, 15-44\\ 13-45, 12-46, 11-47\\ 3-45, 12-46, 11-47\\ 32=47-8-14, 31=47-8-14, \\ 32=47-8-14, 35=47-8-14, \\ 36=47-8-14, 35=47-8-14, \\ 36=47-8-14, 35=47-8-14, \\ 40=47-8-14, 41=47-8-14, \\ 40=47-8-14, 41=47-8-14, \\ 42=47-8-14, 45=47-8-14, \\ 44=47-8-14, 45=47-8-14, \\ 45=47-8-14, 45=47-8-14, \\ 50=47-8-14, 51=47-8-14, \\ 50=47-8-14, 51=47-8-14, \\ 52=47-8-14, 51=47-8, 51=47-14, \\ 53=-61 (LC 12), 52=-61 (LC 12), \\ 51=-61 (LC 12), 54=-87 (LC 12), \\ 51=-61 (LC 12)$, 3), 3), 3), 3), 2), 2), 2),	$\begin{array}{r} 4\text{-}5\text{=-181}\\ 7\text{-}8\text{84}\prime\\ 11\text{-}12\text{=-1}\\ 13\text{-}14\text{=-1}\\ 13\text{-}14\text{=-1}\\ 13\text{-}14\text{=-1}\\ 13\text{-}20\text{=-1}\\ 21\text{-}22\text{82}\\ 24\text{-}25\text{52}\\ 22\text{-}28\text{52}\\ 22\text{-}54\text{52}\\ 52\text{-}53\text{52}\\ 52\text{-}53\text{52}\\ 48\text{-}49\text{54}\\ 48\text{-}49\text{54}\\ 48\text{-}49\text{54}\\ 48\text{-}49\text{54}\\ 48\text{-}49\text{54}\\ 48\text{-}49\text{54}\\ 48\text{-}49\text{55}\\ 38\text{-}40\text{55}\\ 38\text{-}50\text{55}\\ 38\text{-}50\text{56}\\ 38\text{-}$, 2-3=-295/92, 3-4 /97, 5-6=-136/110 06/287, 12-13=-11 26/341, 14-15=-1 18/342, 16-17=-1 18/342, 16-17=-1 19/341, 18-19=-11 27/347, 20-21=-11 8/234, 22-24=-69, 6/126, 25-26=-56, 00/27, 28-29=-144 32/67 /225, 53-54=-59/2 9/225, 40-50=-59, 9/225, 42-43=-59, 9/225, 42-43=-59, 9/225, 37-38=-59, 9/225, 37-38=-59, 9/225, 31-32=-59,	, 6-7=-110/1: , 10-11=-88/3 27/347, 9/341, 8/342, 26/341, 16/287, 180, 72, 26-27=-7 3/43, 225, 225, 225, 225, 225, 225, 225, 22	234,			R	STATE OF I SCOT SEVI NUM PE-2001 Novemb	BER 018807	

Continued on page 2 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. WARNING - Verify design parameters and KEAD KO LES ON THIS AND INCLUDED MILEK REFERENCE PAGE MIL-7473 rev. 17/2/2023 BEFORE USE. Design valid for use only with MITeK® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria**, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcscomponents.com)

Job	Truss	Truss Type	Qty	Ply	Roof - Osage Lot 83	
P240050	A6	Piggyback Base Supported Gable	2	1	Job Reference (optional)	161755132

- 2) Wind: ASCE 7-16: Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=35ft; Ke=1.00; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone and C-C Corner(3E) -0-10-8 to 4-0-0, Exterior(2N) 4-0-0 to 20-11-0, Corner(3R) 20-11-0 to 26-0-0, Exterior(2N) 26-0-0 to 27-1-0, Corner(3R) 27-1-0 to 32-0-0, Exterior(2N) 32-0-0 to 47-8-14 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- Truss designed for wind loads in the plane of the truss 3) only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- Provide adequate drainage to prevent water ponding. 4)
- All plates are 3x4 MT20 unless otherwise indicated. 5) Gable requires continuous bottom chord bearing. 6)
- 7) Gable studs spaced at 2-0-0 oc.
- 8)
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 9) All bearings are assumed to be SP No.2 crushing
- capacity of 565 psi. 10) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 26 lb uplift at joint 2, 58 lb uplift at joint 43, 9 lb uplift at joint 42, 74 lb uplift at joint 40, 60 lb uplift at joint 39, 61 lb uplift at joint 38, 61 lb uplift at joint 37, 61 lb uplift at joint 36, 61 lb uplift at joint 35, 62 lb uplift at joint 34, 59 lb uplift at joint 33, 103 lb uplift at joint 32, 12 lb uplift at joint 44, 71 lb uplift at joint 46, 61 lb uplift at joint 47, 61 lb uplift at joint 48, 61 lb uplift at joint 49, 61 lb uplift at joint 50, 61 lb uplift at joint 51, 61 lb uplift at joint 52, 61 lb uplift at joint 53 and 87 lb uplift at joint 54.
- 11) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 12) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord

LOAD CASE(S) Standard

Run: 8.63 S Aug 30 2023 Print: 8.630 S Aug 30 2023 MiTek Industries, Inc. Tue Oct 31 15:34:40 ID:JbPUB4NmDf0vUSJtFFIELayGxJT-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 2

 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.
 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponent.com)

Job	Truss	Truss Type	Qty	Ply	Roof - Osage Lot 83	
P240050	B1	Common Supported Gable	2	1	Job Reference (optional)	161755133

Run: 8.63 S Aug 30 2023 Print: 8.630 S Aug 30 2023 MiTek Industries, Inc. Tue Oct 31 15:34:41 ID:UdTxDbh?e9q_8iTwPnntXZyGxKM-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Scale - 1:52.4

Scale = 1:52.4														
Loading TCLL (roof) TCDL BCLL		(psf) 25.0 10.0 0.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr	2-0-0 1.15 1.15 YES		CSI TC BC WB	0.07 0.03 0.18		in n/a n/a 0.01	(loc) - - 24	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20	GRIP 197/144
BCDL		10.0	Code	IRC2	018/TPI2014	Matrix-S	-						Weight: 145 lb	FT = 20%
	2x4 SP No. 2x3 SPF No Structural v 6-0-0 oc pu Rigid cellini bracing. (size) 2 Max Horiz 2 Max Uplift 2 (((((((((((((((((((2 o.2 wood she irlins. g directly 2=27-4-0, 27=27-4-0 30=27-4-0 33=27-4-0 33=27-4-0 43=27-4-0 43=27-4-0 2=-137 (L 2=-26 (LC 13), 2 (LC 13), 3 (LC 12), 3 (LC 12), 4 (LC 12), 4 (Code athing directly applie applied or 10-0-0 oc 24=27-4-0, 26=27-4 0, 28=27-4-0, 29=27- 0, 31=27-4-0, 35=27- 0, 34=27-4-0, 35=27- 0, 34=27-4-0, 35=27- 0, 34=27-4-0, 42=27- 0, 44=27-4-0, 42=27- 0, 38=27-40, 12, 28=- 27=-40 (LC 13), 28=- 28=-41 (LC 13), 30=- 31=-41 (LC 12), 31=- 32=-41 (LC 12), 42=- 13=-41 (LC 12), 44=- 15=-63 (LC 12) C 1), 24=150 (LC 1), LC 26), 27=117 (LC 2) C 26), 31=120 (LC 24- C 26), 31=120 (LC 24- C 1), 33=121 (LC 34- C 1), 33=121 (LC 34- C 1), 34=120 (LC 34- C 1), 33=121 (LC 34- C 1), 34=120 (LC 34- C 1), 34=120 (LC 34- C 1), 33=121 (LC 34- C 34- C 1), 33=121 (LC 34- C 34-	ed or -4-0, -4-0, -4-0, -4-0, -4-0, -4-0, -4-0, -4-0, -4-10 5=-57 41 41 41 41 41 40 26), 6), 1),	BOT CHORD WEBS 1) Unbalancer this design. 2) Wind: ASC Vasd=91m	Matrix-S 13-14=-89/255, 14 15-16=-66/191, 10 17-19=-41/119, 19 21-22=-51/20, 22- 24-25=0/17, 1-2=0 3-4=-131/67, 4-5= 6-7=-59/107, 7-9= 10-11=-66/191, 17 12-13=-89/255 2-45=-40/160, 44 43-44=-40/160, 44 43-44=-40/160, 44 43-44=-40/160, 33 36-38=-40/160, 33 32-33=-40/160, 33 32-33=-40/160, 23 30-31=-40/160, 22 28-29=-40/160, 22 28-29=-40/160, 22 28-29=-40/160, 22 13-35=-148/26, 12 10-39=-93/64, 5-43 3-45=-99/122, 14 16-32=-93/64, 7-4 20-29=-93/64, 21- 23-26=-99/119 d roof live loads ha E 7-16; Vult=115m ph; TCDL=6.0psf; E at. II; Exp C; Enclo	6-17=-53 9-20=-34 -23=-74/2 0/17, 2-3 -50/126, 1-12=-80 -45=-40/ 2-43=-40 0-41=-40 8-39=-40 5-36=-40 3-34=-40 1-32=-40 9-30=-40 1-32=-40 9-30=-40 2-36=-96 4-26=-40 2-36=-96/4 3-4=-96/4 3-4=-96/4 -28=-94/82, -28=-94/82 -29=-94/82 -28=-94/82 -29=-94/82 -28=-94/82 -29=-94/82 -2	 (155, (83, 20-21=-3) (22, 23-24=-12) 181/64, 5-6=-76/89, 9-10=-53/155 (/230, (60, (/160, (/160,<td>3/45, 5, 5, 1, 1, 774, 764, 799, r</td><td>onl see or 4) All 5) Ga 6) Ga 6) Ga 6) Ga 7) Thi cha 8) All cap 9) Pro bea 2, 2 upl 34, upl 34, upl 34, 10) Thi</td><td>y. For s e Standa consult c plates al ble requi- ble study is truss h ord live le bearings oacity of ovide me aring pla 27 lb upli lift at join 48 lb up lift at join 48 lb up lift at join is truss is ernationa</td><td>uds ex rd Indu lualifier re 1.5x irres cos s space aad no s a re a: 565 ps chanic te capa ff at jo 565 ps chanic te capa ff at jo liff at j t 44, 6 bliff at j t 44, 6 bliff at j t 44, 6 s desig al Resi and rel</td><td>xposed to wind (n ustry Gable End I d building designe (4 MT20 unless of ntinuous bottom of ed at 1-4-0 oc. an designed for a nconcurrent with ssumed to be SP i. tal connection (by able of withstandi int 36, 46 lb uplift 1 lb uplift at joint 4 oint 33, 41 lb uplif 3 lb uplift at joint 4 oint 33, 41 lb uplif 1 lb uplift at joint 4 oint 28, 40 lb uplift d 4 lb uplift at joint d 4 lb uplift at joint 1</td><td>the plane of the truss ormal to the face), betails as applicable, er as per ANSI/TPI 1. therwise indicated. chord bearing. 10.0 psf bottom any other live loads. No.2 crushing others) of truss to ng 26 lb uplift at joint at joint 38, 41 lb 40, 41 lb uplift at joint ft at joint 43, 40 lb 45, 21 lb uplift at joint ft at joint 32, 41 lb 30, 41 lb uplift at joint ft at joint 27, 57 lb nt 24. we with the 2018 ions R502.11.1 and d ANSI/TPI 1.</td>	3/45, 5, 5, 1, 1, 774, 764, 799, r	onl see or 4) All 5) Ga 6) Ga 6) Ga 6) Ga 7) Thi cha 8) All cap 9) Pro bea 2, 2 upl 34, upl 34, upl 34, 10) Thi	y. For s e Standa consult c plates al ble requi- ble study is truss h ord live le bearings oacity of ovide me aring pla 27 lb upli lift at join 48 lb up lift at join 48 lb up lift at join is truss is ernationa	uds ex rd Indu lualifier re 1.5x irres cos s space aad no s a re a: 565 ps chanic te capa ff at jo 565 ps chanic te capa ff at jo liff at j t 44, 6 bliff at j t 44, 6 bliff at j t 44, 6 s desig al Resi and rel	xposed to wind (n ustry Gable End I d building designe (4 MT20 unless of ntinuous bottom of ed at 1-4-0 oc. an designed for a nconcurrent with ssumed to be SP i. tal connection (by able of withstandi int 36, 46 lb uplift 1 lb uplift at joint 4 oint 33, 41 lb uplif 3 lb uplift at joint 4 oint 33, 41 lb uplif 1 lb uplift at joint 4 oint 28, 40 lb uplift d 4 lb uplift at joint d 4 lb uplift at joint 1	the plane of the truss ormal to the face), betails as applicable, er as per ANSI/TPI 1. therwise indicated. chord bearing. 10.0 psf bottom any other live loads. No.2 crushing others) of truss to ng 26 lb uplift at joint at joint 38, 41 lb 40, 41 lb uplift at joint ft at joint 43, 40 lb 45, 21 lb uplift at joint ft at joint 32, 41 lb 30, 41 lb uplift at joint ft at joint 27, 57 lb nt 24. we with the 2018 ions R502.11.1 and d ANSI/TPI 1.
32=120 (LC 2), 33=121 (LC 20), 34=123 (LC 2), 35=124 (LC 22), 36=123 (LC 25), 38=121 (LC 25), 39=120 (LC 1), 40=120 (LC 1), 41=120 (LC 25), 42=120 (LC 25), 43=121 (LC 1), 44=117 (LC 25), 45=130 (LC 25) FORCES (Ib) - Maximum Compression/Maximum Tension				Exterior(2N 18-8-0, Ext left and righ exposed;C·	te and C-C Corner) 4-4-0 to 13-8-0, C erior(2N) 18-8-0 to it exposed ; end ve C for members an- hown; Lumber DOL	Corner(3F 28-2-8 z ertical left d forces	R) 13-8-0 to one; cantileve and right & MWFRS for					PE-2001	ENGINE	

November 1,2023

Page: 1

Continued on page 2 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, rection and bracing of trusses and truss systems, see AMSI/TP1 (Juditty Criteria, and DSB-22 available form Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

Job	Truss	Truss Type	Qty	Ply	Roof - Osage Lot 83	101755100	
P240050	B1	Common Supported Gable	2	1	Job Reference (optional)	161755133	
Premier Building Supply (Springh	nill, KS), Spring Hills, KS - 66083,	Run: 8.63 S Aug 30 2	0 2023 MiTek Industries, Inc. Tue Oct 31 15:34:41	Page: 2			

Run: 8.63 S Aug 30 2023 Print: 8.630 S Aug 30 2023 MiTek Industries, Inc. Tue Oct 31 15:34:41 ID:UdTxDbh?e9q_8iTwPnntXZyGxKM-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

LOAD CASE(S) Standard

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent toulsible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

Job	Truss	Truss Type Qty Ply Roof - Osage Lot 83		Roof - Osage Lot 83		
P240050	B2	Common	4	1	Job Reference (optional)	l61755134

Run: 8.63 S Aug 30 2023 Print: 8.630 S Aug 30 2023 MiTek Industries, Inc. Tue Oct 31 15:34:42 ID:77cC2GCYqAwXzi_Rd5akSLyGxKz-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

REACTIONS Max Horiz 2=-137 (LC 13) Max Uplift 2=-211 (LC 12), 8=-211 (LC 13) Max Grav 2=1288 (LC 1), 8=1288 (LC 1) FORCES (Ib) - Maximum Compression/Maximum Tension TOP CHORD 1-2=0/17, 2-3=-2072/392, 3-5=-1821/403, 5-7=-1821/403, 7-8=-2072/392, 8-9=0/17 BOT CHORD 2-12=-328/1763, 10-12=-86/1180, 8-10=-263/1763 WEBS 5-10=-154/672, 7-10=-451/287, 5-12=-153/672, 3-12=-451/287

NOTES

- Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=35ft; Ke=1.00; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) -0-10-8 to 4-1-8, Interior (1) 4-1-8 to 13-8-0, Exterior(2R) 13-8-0 to 18-8-0, Interior (1) 18-8-0 to 28-2-8 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 4) All bearings are assumed to be SP No.2 crushing
- All bearings are assumed to be SP No.2 c capacity of 565 psi.

SCOTT M. SEVIER PE-2001018807

Page: 1

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcsccomponents.com)

Job	Truss	Truss Type	Qty	Ply	Roof - Osage Lot 83	
P240050	C1	Common Supported Gable	1	1	Job Reference (optional)	161755135

Scale = 1:37.9

Looding

Run: 8.63 S Aug 30 2023 Print: 8.630 S Aug 30 2023 MiTek Industries, Inc. Tue Oct 31 15:34:42 ID:pEeiREjqUZILYPLYj_L6lhyGxLc-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Loading	(psf	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15		TC	0.06	Vert(LL)	n/a	-	n/a	999	MT20	197/144
TCDL	10.0	Lumber DOL	1.15		BC	0.03	Vert(CT)	n/a	-	n/a	999		
BCLL	0.0	Rep Stress Incr	YES		WB	0.07	Horz(CT)	0.00	12	n/a	n/a		
BCDL	10.0	Code	IRC2	018/TPI2014	Matrix-S							Weight: 73 lb	FT = 20%
LUMBER				WEBS	7-18=-119/26, 8-	17=-100/7	74. 9-16=-101	1/107.					
TOP CHORD	2x4 SP No.2				10-15=-100/111,			,,					
BOT CHORD	2x4 SP No.2				6-19=-104/73, 5-	20=-99/10	06, 4-21=-100)/111,					
OTHERS	2x3 SPF No.2				3-22=-109/131								
SLIDER	Left 2x4 SP No.2	1-8-5, Right 2x4 SP	No.2	NOTES									
	1-8-5			1) Unbalanced	roof live loads ha	ave been	considered fo	or					
BRACING				this design.									
TOP CHORD	Structural wood	heathing directly appli	ied or		7-16; Vult=115n								
	6-0-0 oc purlins.				h; TCDL=6.0psf;								
BOT CHORD		ctly applied or 10-0-0 o	C		at. II; Exp C; Encl			pe)					
	bracing.				e and C-C Corne 4-2-0 to 6-10-0,								
REACTIONS		6-4, 12=13-6-4, 14=13-			erior(2N) 11-10-0			ever					
		·6-4, 16=13-6-4, 17=13 ·6-4, 19=13-6-4, 20=13			exposed ; end v			0101					
		·6-4, 22=13-6-4	5-0-4,		C for members ar			r					
	Max Horiz 2=-14				own; Lumber DO	L=1.60 pl	ate grip						
		(LC 8), 12=-2 (LC 9), 1	4=-73	DOL=1.60									
), 15=-52 (LC 13), 16=			ned for wind load								
	(LC 13), 17=-42 (LC 13), 19=	-45		uds exposed to w								
), 20=-56 (LC 12), 21=	-52		d Industry Gable								
), 22=-80 (LC 12)			ualified building d e 1.5x4 MT20 un								
		(LC 20), 12=154 (LC 1	· <i>)</i> ,		spaced at 1-4-0		wise indicate	u.					
		2 (LC 20), 15=125 (LC	20),		as been designed		0 nsf bottom						
		3 (LC 20), 17=127 (LC 9 (LC 22), 19=131 (LC	20),		ad nonconcurren			ads.				O DE I	ALL
		6 (LC 19), 21=126 (LC			are assumed to I							FE OF I	VIISS D
		9 (LC 19)	,	capacity of 5			-				4	TATE OF I	1.3
FORCES		ompression/Maximum			hanical connecti						A	SCOT	TM. EN
	Tension				e capable of with						4	SEV	
TOP CHORD	7-8=-91/176, 8-9	=-66/126, 9-10=-49/59	,		ift at joint 2, 42 lb						80		
	10-11=-58/29, 11	-12=-112/57, 12-13=0/	/16,		16, 52 lb uplift at ift at joint 19, 56							1 TK	·
	. '	40/112, 3-4=-96/80,			21 and 80 lb upli			D		-		jour	ama
DOTOUDEE		77/126, 6-7=-91/176		9) N/A		in at joint	<u></u> .				23	NUM	
BOT CHORD	2-22=-52/150, 21				designed in acco	ordance w	ith the 2018				N.	PE-2001	018807
	20-21=-52/150, 1 18-19=-52/150, 1				Residential Cod			and			Y	1 Part	154
	16-17=-52/150, 1			R802.10.2 a	nd referenced sta	andard Al	NSI/TPI 1.					SID.	TEN
	14-15=-52/150, 1			LOAD CASE(S)	Standard							C'SSIONA	L
												and and	

November 1,2023

DEVELORMENT SERVICES LEE'S'SUMMIT,SMISSOURI 02/16/2024 4:17:50

TION IEW

Job	Truss	russ Truss Type Qty Ply Roof - Osage Lot 83				
P240050	C2	Monopitch	1	1	Job Reference (optional)	161755136

Run: 8.63 S Aug 30 2023 Print: 8.630 S Aug 30 2023 MiTek Industries, Inc. Tue Oct 31 15:34:42 ID:Ho1WEiUTGX1gwu78IG1QiOyGxNB-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

Scale = 1:63.8

Plate Offsets (X, Y): [2:0-1-13,0-0-4], [4:0-9-0,0-3-0], [15:0-6-6,0-3-11]

9-11-6

Plate Offsets (A, T). [2.0-1-13,0-0-4], [4.0-9-0,0-3-0], [15	.0-0-0,0-3	-11]								-	
Loading TCLL (roof) TCDL BCLL BCDL	(psf) 25.0 10.0 0.0 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC201	8/TPI2014	CSI TC BC WB Matrix-S	0.65 0.44 0.26	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.04 -0.09 0.01	(loc) 15-16 2-16 15	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 MT18HS Weight: 97 lb	GRIP 244/190 197/144 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS OTHERS SLIDER BRACING TOP CHORD BOT CHORD WEBS JOINTS REACTIONS	2x4 SP No.2 2x4 SP No.2 *Excep 2x3 SPF No.2 Left 2x4 SP No.2 : Structural wood she 6-0-0 oc purlins, ex Rigid ceiling directly bracing. 1 Row at midpt 1 Brace at Jt(s): 11, 7	athing directly applie cept end verticals. applied or 9-10-14 o 14-15 15=0-3-8 C 9) 2 12), 15=-202 (LC 12	2 3) 4) 5) d or 6) 7) % 8) 9) 1(2)	only. For stu see Standard or consult qu Provide aded All plates are Gable studs This truss ha chord live loa All bearings capacity of 5 Provide mec bearing plate joint 15 and 0) This truss is International R802.10.2 a	hanical connection capable of withst 33 lb uplift at joint designed in accord Residential Code nd referenced star	nd (norm ind Deta signer a prevent ess othe a otherwic. c. or a 10. with any e SP No n (by oth anding 2 2. dance w sections indard AN	al to the face ils as applica s per ANSI/T water pondin wise indicate se indicated. 0 psf bottom other live loa 2 crushing ers) of truss 202 lb uplift a ith the 2018 s R502.11.1 a JSI/TPI 1.	e), able, PI 1. g. ed. ads. to t					
FORCES	(lb) - Maximum Com Tension	pression/Maximum			rlin representation ation of the purlin a			5120					
TOP CHORD	1-2=0/16, 2-6=-708/ 8-10=-236/218, 10-1 12-14=-95/98, 13-15	2=-204/204, 5=-600/366, 538/231, 5-7=-560/24		DAD CASE(S)								TATE OF J	MISSOL
BOT CHORD WEBS	2-16=-333/580, 15-1 4-16=0/305, 11-12= 7-8=-84/61, 5-6=-12	-214/183, 9-10=-77/6	64,								A	SCOT SEV	IM. YE Y
Vasd=91n Ke=1.00; (exterior zc Interior (1) exposed ; members ;	CE 7-16; Vult=115mph nph; TCDL=6.0psf; BC Cat. II; Exp C; Enclose one and C-C Exterior(2 4-1-8 to 13-4-8 zone; end vertical left and ri and forces & MWFRS OL=1.60 plate grip DC								•		NUM PE-2001	LENGT	

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent colleges with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

RELEASE OR CONTRUCTION AS NOTED ON PLANS REVIEW DEVERSION SERVICES LEE'S SUMMIT'S MISSOURI

02/16/2024 4:17:50

November 1,2023

Job	Truss Truss Type		Qty	Ply	Roof - Osage Lot 83		
P240050	C3	Monopitch Girder	2	2	Job Reference (optional)	161755137	

Run: 8.63 S Aug 30 2023 Print: 8.630 S Aug 30 2023 MiTek Industries, Inc. Tue Oct 31 15:34:43 ID:HXV5guHpHJt4OGKtoCERWpyGxNS-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

ION

DEVELORMENT SERVICES LEE'S'SUMMIT'S MISSOURI 02/16/2024 4:17:50

Page: 1

Scale = 1:67.8

Plate Offsets (X, Y): [4:0-0-12,0-1-12], [6:0-3-0,0-3-12], [7:0-3-8,0-6-4]

Loading TCLL (roof) TCDL BCLL BCDL	(psf) 25.0 10.0 0.0 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 NO IRC201	8/TPI2014	CSI TC BC WB Matrix-S	0.29 0.36 0.88	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.07 -0.12 0.02	(loc) 7-8 7-8 6	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 230 lb	GRIP 197/144 FT = 20%
5-5-9 oc pr Rigid ceilin bracing. 1 Row at n REACTIONS (size) Max Horiz Max Uplift Max Grav FORCES (lb) - Maxir Tension TOP CHORD 1-2=-76477 4-5=-202/1 BOT CHORD 1-8=-1372/ 6-7=-721/3 WEBS 2-8=-765/4	0F 2.0E 2 vood she rlins, ex g directly =0-3-8, (=384 (L0 =5-112 (=5503 (L num Com 1389, 2-4 30, 5-6=- 5184, 7-5 362 127, 2-7= 7202, 4-6 cted toge ows: as follows 2x4 - 1 ro ed as foll ws: 2x4 - 1 d equally (F) or ba y eply com	C 11) LC 12), 6=-1295 (LC LC 1), 6=7639 (LC 1) pression/Maximum 4=-4084/764, 144/122 3=-1372/6184, =-3634/843, =-6287/1143 ther with 10d s: 2x6 - 2 rows w at 0-9-0 oc. ows: 2x8 - 4 rows -1 row at 0-9-0 oc. applied to all plies, ck (B) face in the LO nections have been	ed or (12) 6) (12) 7) (12) 7) 8) 9) 10 10 11 11	Vasd=91mpf Ke=1.00; Car exterior zone Interior (1) 5- exposed ; en members and Lumber DOL This truss ha chord live loa All bearings a capacity of 8 Provide mecl bearing plate joint 6 and 11 This truss is International R802.10.2 ar Use Simpsor Truss, Single oc max. start connect truss Use Simpsor Truss) or equ 4-8-12 from t to back face Di Fill all nail ho DAD CASE(S) Dead + Roc Plate Increa Uniform Loa Vert: 1-5: Concentrate	nanical connection capable of withsta 112 lb uplift at joint designed in accord Residential Code s and referenced stan a Strong-Tie LUS2- Ply Girder) or equing at 0-8-12 from s(es) to back face of a Strong-Tie HUS2 uivalent spaced at 3 he left end to 12-8 of bottom chord. les where hanger is Standard of Live (balanced): use=1.15 ads (lb/ft) =-70, 1-6=-20 ad Loads (lb) 380 (B), 10=-662 (l ((B), 13=-2121 (B)	CDL=6.1 ed; MW 2E) 0-1; ; cantile ght exg; for rea DL=1.60 or a 10.0 ift any SP 240 (by oth nnding 1 1. ance w sections dard AN 4 (4-100 ivalent the left of bottor 6 (14-11 2-0-0 oc -12 to c s in cor Lumber	Dpsf; h=35ft; FRS (envelo -12 to 5-1-1, voer left and I oosed;C-C fo ctions showr)) psf bottom other live loa 0F 2.0E crus ers) of truss i 295 lb uplift : 295 lb uplift : 295 lb uplift : 181/TPI 1. I Girder, 2-10 spaced at 2-1 end to 2-8-12 n chord. Jd Girder, 6- max. startin ponnect truss(latet with lum Increase=1.	ight i; dds. hing do at od 2 to 10d g at es) ber.				STATE OF M STATE OF M SEVI PE-20010 PE-20010 November	ER DI8807

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent oulgase with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

Job	Truss	Truss Type	Qty	Ply	Roof - Osage Lot 83	
P240050	C4	Monopitch Supported Gable	1	1	Job Reference (optional)	161755138

Scale = 1:58.3

Run: 8.63 S Aug 30 2023 Print: 8.630 S Aug 30 2023 MiTek Industries, Inc. Tue Oct 31 15:34:43 ID:GjwpzSgpHeSKmRw4J_pUy2yGxOF-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

13-6-4	1

⊢___

Plate Offsets (X, Y): [8:0-3-0,0-2-	4], [14:Edge,0-2-0]											
Loading TCLL (roof) TCDL BCLL BCDL	(psf) 25.0 10.0 0.0 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC201	8/TPI2014	CSI TC BC WB Matrix-S	0.77 0.37 0.14	DEFL Vert(LL) Vert(CT) Horz(CT)	in n/a n/a 0.00	(loc) - - 14	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 96 lb	GRIP 244/190 FT = 20%
	2x4 SP No.2 2x3 SPF No.2 2x3 SPF No.2 Left 2x4 SP No.2 Structural wood sl 6-0-0 oc purlins, or Rigid ceiling direc bracing. 1 Row at midpt (size) 2=13-6 16=13- 19=13- 22=13-1 Max Horiz 2=399 Max Uplift 2=-101 15=-83 17=-63 19=-53 21=-51 23=-111 Max Grav 2=258 (teathing directly applie except end verticals. ly applied or 10-0-0 oc 13-14, 12-15 4, 14=13-6-4, 15=13-6 5-4, 17=13-6-4, 18=13- 5-4, 20=13-6-4, 21=13- 5-4, 23=13-6-4 LC 9) (LC 8), 14=-108 (LC 1 (LC 12), 16=-41 (LC 9) (LC 12), 18=-50 (LC 12) (LC 12), 22=-54 (LC 12) (LC 12), 22=-54 (LC 12) 6 (LC 2), 14=105 (LC 8)	W d or -4, 6-4, 6-4, 6-4, 1), 2) 2), 2), 2), 3) , 4) , 4)	TEBS Wind: ASCE Vasd=91mpl Ke=1.00; Ca exterior Zone Exterior(2N) right expose for members Lumber DOL Truss desig only. For st see Standar or consult qu All plates are Gable requir Gable studs	spaced at 1-4-0 oc	D-21=-1 3-19=-1 5-17=-1 4-15=-1 1-16=-1 8=-99/ -99/99, h (3-sec CDL=6. ed; MW BE) -0-1 ne; canh and rigi FRS for DL=1.6 in the p d (norm nd Deta igner the point choir	78/230, 78/230, 78/230, 78/230 03/114, 101, 7-19=-99, 4-22=-101/11 cond gust) 0psf; h=35ft; FRS (envelop 0-8 to 4-2-4, liever left and the exposed;C- reactions sho 0 lane of the tru ial to the face) ils as applicat s per ANSI/TF wise indicated d bearing.	4, De) C wn; ss , ple, Pl 1.	Inte	rnationa)2.10.2 a	Il Resi	ferenced standar	tions R502.11.1 and d ANSI/TPI 1.
$\begin{array}{c} 15{=}124\ (LC\ 20),\ 16{=}140\ (LC\ 19),\\ 17{=}122\ (LC\ 19),\ 18{=}127\ (LC\ 19),\\ 19{=}126\ (LC\ 19),\ 20{=}126\ (LC\ 19),\\ 21{=}126\ (LC\ 19),\ 22{=}126\ (LC\ 19),\\ 23{=}160\ (LC\ 19),\ 22{=}126\ (LC\ 19),\\ 23{=}160\ (LC\ 19)\end{array}$ FORCES (lb) - Maximum Compression/Maximum Tension TOP CHORD 1-2{=}0/16,\ 2{-}3{=}{-}841/547,\ 3{-}4{=}{-}686/452,\\ 4{-}5{=}{-}624/422,\ 5{-}6{=}{-}566/394,\ 6{-}7{=}{-}508/365,\\ 7{-}9{=}{-}449/337,\ 9{-}10{=}{-}384/308,\\ 10{-}11{=}{-}316/282,\ 11{-}12{=}{-}244/253,\\ 12{-}13{=}{-}127/149,\ 13{-}14{=}{-}60/74\end{array}				This truss ha chord live los All bearings capacity of 5 Provide mec bearing plate joint 14, 101 Ib uplift at joi joint 18, 53 I Ib uplift at joi at joint 23. Beveled plat	Beveled plate or shim required to provide full bearing					HR BER 018807			

surface with truss chord at joint(s) 2.

November 1,2023

DEVELORMENT SERVICES LEE'S'SUMMIT'SMISSOURI 02/16/2024 4:17:50

TION IEW

Job	Truss	Truss Type	Qty	Ply	Roof - Osage Lot 83	
P240050	D1	Monopitch	4	1	Job Reference (optional)	161755139

-0-10-8

Premier Building Supply (Springhill, KS), Spring Hills, KS - 66083,

Run: 8.63 S Aug 30 2023 Print: 8.630 S Aug 30 2023 MiTek Industries, Inc. Tue Oct 31 15:34:43 ID:J9uoFkXWrWxKhW?zklsl4bzDH1v-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

5-0-0

Scale = 1:31.2
Ocale = 1.51.2

Plate Offsets (X, Y): [6:Edge,0-2-8]

			-								
Loading (psf)	Spacing	2-0-0	csi		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof) 25.0	Plate Grip DOL	1.15	TC	0.20	Vert(LL)	0.04	7-8	>999	240	MT20	197/144
TCDL 10.0	Lumber DOL	1.15	BC	0.28	Vert(CT)	-0.05	7-8	>999	180		
BCLL 0.0	Rep Stress Incr	YES	WB	0.03	Horz(CT)	0.00	6	n/a	n/a		
BCDL 10.0	Code	IRC2018/TPI2014	Matrix-S		- (-)					Weight: 22 lb	FT = 20%
BCDL 10.0 LUMBER TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.2 WEBS 2x3 SPF No.2 OTHERS 2x3 SPF No.2 OTHERS 2x3 SPF No.2 BRACING TOP CHORD Structural wood she 5-0-0 oc purlins, ex BOT CHORD Rigid ceiling directly bracing. REACTIONS (size) 2=0-3-0, 6 Max Horiz 2=123 (LC Max Uplift 2=-59 (LC Max Grav 2=292 (LC TOP CHORD 1-2=0/17, 2-3=-169/	Code athing directly applie cept end verticals. applied or 10-0-0 oc 5= Mechanical 29) 12), 6=-60 (LC 12) 21), 6=207 (LC 1) pression/Maximum 71, 3-4=-102/61,	d or IRC2018/TPI2014 6) Refer to gire 7) Provide me bearing plat 6 and 59 lb 8) This truss is Internationa R802.10.2 a LOAD CASE(S	Matrix-S der(s) for truss to t chanical connection te capable of withs uplift at joint 2. s designed in acco al Residential Code and referenced sta	russ conr on (by oth standing 6 ordance w e sections	nections. ers) of truss 50 lb uplift at ith the 2018 5 R502.11.1 a	to joint	6	n/a	n/a	Weight: 22 lb	FT = 20%
4-5=-65/57, 5-6=-10 BOT CHORD 2-8=-67/74, 7-8=-67/											
WEBS 4-7=-36/69, 3-8=-48	/105										
NOTES											
 Wind: ASCE 7-16; Vult=115mph Vasd=91mph; TCDL=6.0psf; BC Ke=1.00; Cat. II; Exp C; Enclose exterior zone and C-C Exterior(2 Interior (1) 4-1-8 to 4-10-12 zone right exposed; end vertical left a for members and forces & MWFI Lumber DOL=1.60 plate grip DO Truss designed for wind loads ir only. For studs exposed to wind see Standard Industry Gable En- or consult qualified building desig Gable studs spaced at 1-4-0 oc. This truss has been designed for chord live load nonconcurrent wi Bearings are assumed to be: Joi capacity of 565 psi. 	DL=6.0psf; h=35ft; d; MWFRS (envelop E) -0-10-8 to 4-1-8, ; cantilever left and nd right exposed;C-C RS for reactions show L=1.60 the plane of the trus (normal to the face), d Details as applicab gner as per ANSI/TP a 10.0 psf bottom th any other live load	C wn; SS le, I 1.								PE-2001	T M. IER

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent touls be personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANS/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

RELEASE AS NOTE STRUCTION **IEW** DEVELOPMEN SERVICES LEE'S' SUMMIT'S MISSOURI 02/16/2024 4:17:50

Job	Truss	Truss Type	Qty	Ply	Roof - Osage Lot 83	
P240050	D2	Monopitch	10	1	Job Reference (optional)	161755140

Run: 8.63 S Aug 30 2023 Print: 8.630 S Aug 30 2023 MiTek Industries, Inc. Tue Oct 31 15:34:44 ID:yf123P231X1sVXWTy3fc?NzDH2W-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

5-0-0

Scale = 1:30.9

Loading TCLL (roof) TCDL BCLL BCDL	(psf) 25.0 10.0 0.0 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018/TPI2014	CSI TC BC WB Matrix-P	0.48 0.42 0.00	DEFL Vert(LL) Vert(CT) Horz(CT)	in 0.09 0.08 0.00	(loc) 2-4 2-4 4	l/defl >603 >751 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 19 lb	GRIP 197/144 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x4 SP No.2 2x3 SPF No.2 Structural wood she 5-0-0 oc purlins, ex Rigid ceiling directly bracing.	cept end verticals. applied or 10-0-0 o 4= Mechanical C 9) C 12), 4=-87 (LC 9) C 1), 4=207 (LC 1) ipression/Maximum	ed or									
Vasd=91m Ke=1.00; C exterior zon Interior (1) right expos	2-4=-54/59 E 7-16; Vult=115mph ph; TCDL=6.0psf; BC at. II; Exp C; Enclose ne and C-C Exterior(2 4-1-8 to 4-10-12 zone d; end vertical left a nt exposed;C-C for m	DL=6.0psf; h=35ft; d; MWFRS (envelop E) -0-10-8 to 4-1-8, c; cantilever left and and right exposed; p	orch								- CERT	agr
MWFRS for grip DOL=' 2) This truss I 3) Bearings a capacity of 4) Refer to gin 5) Provide me bearing pla 4 and 59 lb 6) This truss i Internation	r reactions shown; Lu 1.60 nas been designed foi oad nonconcurrent wi re assumed to be: Joi 565 psi. der(s) for truss to trus echanical connection (te capable of withstar o uplift at joint 2. s designed in accorda al Residential Code si and referenced stand	mber DOL=1.60 pla r a 10.0 psf bottom th any other live loa int 2 SP No.2 crushi ss connections. (by others) of truss t hding 87 lb uplift at j ance with the 2018 ections R502.11.1 a	ds. ng o oint						1		STATE OF SEV SEV OF PE-2001	HER BHER 018807

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent toulsible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

November 1,2023

Job	Truss	Truss Type	Qty	Ply	Roof - Osage Lot 83	
P240050	PB1	Piggyback	2	1	l6 Job Reference (optional)	61755141

1-6-8

Run: 8.63 S Aug 30 2023 Print: 8.630 S Aug 30 2023 MiTek Industries, Inc. Tue Oct 31 15:34:44 ID:9wUnxfypw9GahpSGfCwjgdzczGe-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

6-0-0

Scale = 1:25.5

Scale = 1:25.	5											
Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15	TC	0.13	Vert(LL)	n/a	-	n/a	999	MT20	244/190
TCDL	10.0	Lumber DOL	1.15	BC	0.06	Vert(TL)	n/a	-	n/a	999		
BCLL	0.0	Rep Stress Incr	YES	WB	0.03	Horiz(TL)	0.00	3	n/a	n/a		
BCDL	10.0	Code	IRC2018/TPI2	014 Matrix-P							Weight: 18 lb	FT = 20%
LUMBER				earings are assumed to	be SP No	2 crushing						
TOP CHORE				city of 565 psi.								
BOT CHORE				ide mechanical connect								
OTHERS	2x3 SPF No.2			ing plate capable of with			oint					
BRACING			0) Thia	Ib uplift at joint 3 and 7 truss is designed in acc								
TOP CHORE		athing directly applie		national Residential Co			nd					
	6-0-0 oc purlins.		Door	2.10.2 and referenced s								
BOT CHORE	 Rigid ceiling directly bracing. 	applied or 10-0-0 oc		Standard Industry Piggy								
REACTIONS	0	3=6-1-0, 4=6-1-0		il for Connection to base								
REACTIONS	Max Horiz 1=23 (LC	,	cons	ult qualified building des	signer.							
	Max Uplift 1=-30 (LC	,	4=-7 LOAD C	ASE(S) Standard								
	(LC 12)	, iz), i = i i (20 i i),	, /									
	Max Grav 1=115 (L0 (LC 1)	C 1), 3=115 (LC 1), 4	4=211									
FORCES	(lb) - Maximum Com	pression/Maximum										
	Tension											
TOP CHORE	D 1-2=-55/46, 2-3=-55	52										
BOT CHORE	D 1-4=-1/25, 3-4=-1/25	5										
WEBS	2-4=-150/135											
NOTES												
	ced roof live loads have	been considered for	r									
this desig												
	SCE 7-16; Vult=115mph											(The
	1mph; TCDL=6.0psf; BC										OF	MIG
	; Cat. II; Exp C; Enclose zone and C-C Exterior(2										TATE OF	SS SS
	t exposed ; end vertical		en							B	A.M.	N.S.
	I;C-C for members and f									R	SCOT	TM. Y
	s shown; Lumber DOL=									R	SEV	IER \Y
DOL=1.6	60									100		.0.
	esigned for wind loads in									HX.	475	Serlos
only. Fo	or studs exposed to wind	(normal to the face)	l,						ø		NUM	DED CON

- see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- Gable requires continuous bottom chord bearing. 4)
- 5) Gable studs spaced at 1-4-0 oc.
- 6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

November 1,2023

NUMBER

PE-2001018807

SSIONAL EN

 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.
 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not besign value to dury with with where outputs into design is based only door parameters shown, and is for an individual building design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members and property incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TPH1 Quality Criteria**, and **DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcscomponents.com)

Job	Truss	Truss Type	Qty	Ply	Roof - Osage Lot 83	
P240050	PB2	Piggyback	22	1	Job Reference (optional)	161755142

1-2-12

0-0-8

1-6-8

Run: 8.63 S Aug 30 2023 Print: 8.630 S Aug 30 2023 MiTek Industries, Inc. Tue Oct 31 15:34:44 ID:9wUnxfypw9GahpSGfCwjgdzczGe-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

5-5-9

2-5-9

6-0-0

0-6-7

3-0-0

3-0-0

6-0-0

Scale = 1:25.5

Loading TCLL (roof) TCDL BCLL BCDL	(psf) 25.0 10.0 0.0 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018/TPI2014	CSI TC 0.13 BC 0.06 WB 0.03 Matrix-P 0.03	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 3	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 18 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	6-0-0 oc purlins. Rigid ceiling directly bracing.	2 12), 3=-34 (LC 13),	 capacity of 1 8) Provide methods bearing plat 1, 34 Ib uplit ad or 9) This truss is International R802.10.2 at 10) See Standa Detail for Cr. consult quat 4=-7 	chanical connection (by ot e capable of withstanding ft at joint 3 and 7 lb uplift a designed in accordance v Il Residential Code sectior and referenced standard A rd Industry Piggyback Tru ponnection to base truss as lified building designer.	hers) of truss to 30 lb uplift at jo t joint 4. vith the 2018 s R502.11.1 an NSI/TPI 1. ss Connection	oint					
FORCES TOP CHORD BOT CHORD WEBS	(lb) - Maximum Com Tension 1-2=-55/46, 2-3=-55 1-4=-1/25, 3-4=-1/25 2-4=-150/135	/52									
this design 2) Wind: ASC Vasd=91n Ke=1.00; 0 exterior zc and right e	ed roof live loads have n. CE 7-16; Vult=115mph nph; TCDL=6.0psf; BC Cat. II; Exp C; Enclose one and C-C Exterior(2 exposed ; end vertical 2-C for members and f	(3-second gust) DL=6.0psf; h=35ft; d; MWFRS (envelop E) zone; cantilever le left and right	be) eft						H	STATE OF SCOT	MISSOLAT

- reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TP11.
- 4) Gable requires continuous bottom chord bearing.
- 5) Gable studs spaced at 2-0-0 oc.
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSITPTI Quality Criteria**, and **DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcscomponents.com)

E

SEVIER

NUMBER

PE-2001018807

SSIONAL

Job	Truss	Truss Type	Qty	Ply	Roof - Osage Lot 83	
P240050	V1	Valley	2	1	Job Reference (optional)	161755143

Run: 8.63 S Aug 30 2023 Print: 8.630 S Aug 30 2023 MiTek Industries, Inc. Tue Oct 31 15:34:44 ID:3dyyPIGdvpWQ0?o0jPG2wlyGxRL-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

Scale = 1:49.5

Loading	(psf)	Spacing	2-0-0		csi		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15		TC	0.25	Vert(LL)	n/a	-	n/a	999	MT20	244/190
TCDL	10.0	Lumber DOL	1.15		BC	0.13	Vert(TL)	n/a	-	n/a	999		
BCLL	0.0	Rep Stress Incr	YES		WB	0.20	Horiz(TL)	0.00	5	n/a	n/a		
BCDL	10.0	Code	IRC201	8/TPI2014	Matrix-S							Weight: 50 lb	FT = 20%
LUMBER			5)) This truss ha	as been designed	d for a 10.0) psf bottom						
TOP CHORD	2x4 SP No.2				ad nonconcurren			ds.					
BOT CHORD	2x4 SP No.2		6)		are assumed to b	be SP No.	2 crushing						
WEBS	2x3 SPF No.2		_	capacity of 5									
OTHERS	2x3 SPF No.2		7)		hanical connection								
BRACING					e capable of with			oint					
TOP CHORD	Structural wood she		ed or 8	· ·	ift at joint 6 and 1 designed in acco		,						
	6-0-0 oc purlins, ex		-,		Residential Cod			nd					
BOT CHORD	Rigid ceiling directly bracing.	applied or 10-0-0 o	С		nd referenced sta			ina					
WEBS	0	4-5	L	OAD CASE(S)	Standard								
REACTIONS	(size) 1=12-0-15	5, 5=12-0-15, 6=12-	0-15.										
	7=12-0-1		,										
	Max Horiz 1=335 (LO	C 12)											
	Max Uplift 5=-62 (LC	C 12), 6=-169 (LC 12	<u>2),</u>										
	7=-171 (L												
	Max Grav 1=183 (L0												
	6=412 (L0	C 19), 7=388 (LC 19))										
FORCES	(lb) - Maximum Corr Tension	pression/Maximum											
TOP CHORD	1-2=-377/251, 2-3=- 4-5=-116/84	228/156, 3-4=-104/	51,										
BOT CHORD	1-7=-1/2, 6-7=-1/2, 5	5-6=-1/2											
WEBS	3-6=-327/235, 2-7=-	299/221											
NOTES												San	TOP
	CE 7-16; Vult=115mph	(3-second gust)										STATE OF J	ALSO A
	nph; TCDL=6.0psf; BC											A SE	-0.0 M
Ke=1.00; (Cat. II; Exp C; Enclose	d; MWFRS (envelo	oe)								6	N	NSY
exterior zo	one and C-C Exterior(2	E) 0-7-13 to 5-7-13									B	SCOT	TM. YE Y
Interior (1)	5-7-13 to 12-0-1 zone	e; cantilever left and									R	/ SEV	ER \ Y

 Lumber DOL=1.60 plate grip DOL=1.60
 Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

right exposed ; end vertical left exposed;C-C for members and forces & MWFRS for reactions shown;

- 3) Gable requires continuous bottom chord bearing.
- 4) Gable studs spaced at 4-0-0 oc.

E

NUL

SIONAL

PE-200101880

November 1,2023

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent colleges with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

Job	Truss	Truss Type	Qty	Ply	Roof - Osage Lot 83	
P240050	V2	Valley	2	1	Job Reference (optional)	161755144

Run: 8.63 S Aug 30 2023 Print: 8.630 S Aug 30 2023 MiTek Industries, Inc. Tue Oct 31 15:34:45 ID:XHTUUTtwhgM5ZxmgHzAJ4LyGxRs-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Scale = 1:49.3

Plate Offsets (X, Y): [5:Edge,0-2-8]

	(X, T). [0.Edge,0 2 0]												-
Loading	(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15		TC	0.60	Vert(LL)	n/a	-	n/a	999	MT20	244/190
TCDL	10.0	Lumber DOL	1.15		BC	0.20	Vert(TL)	n/a	-	n/a	999		
BCLL	0.0	Rep Stress Incr	YES		WB	0.14	Horiz(TL)	0.00	5	n/a	n/a		
BCDL	10.0	Code	IRC2018/T	TPI2014	Matrix-S	-			_			Weight: 42 lb	FT = 20%
LUMBER			5)	This truss ha	s been designed	for a 10.0) psf bottom						
TOP CHORD	2x4 SP No.2				ad nonconcurrent			ds.					
BOT CHORD					are assumed to b	e SP No.	2 crushing						
WEBS	2x3 SPF No.2			capacity of 5									
OTHERS	2x3 SPF No.2				hanical connectio								
BRACING					capable of withs								
TOP CHORD	Structural wood she 6-0-0 oc purlins, ex			1, 59 lb uplift uplift at joint	at joint 5, 176 lb 7.	uplift at jo	pint 6 and 148	3 lb					
BOT CHORD	Rigid ceiling directly				designed in accor Residential Code			nd					
	bracing.		r		nd referenced sta								
REACTIONS	· · /	5, 5=10-6-15, 6=10-	^{6-15,} LOA	D CASE(S)	Standard								
	7=10-6-1 Max Horiz 1=285 (L			(-)									
	Max Uplift 1=-77 (LC												
		.C 12), 7=-148 (LC ⁻	12)										
	Max Grav 1=164 (L		,										
FORCES	(lb) - Maximum Con		,										
	Tension												
TOP CHORD	1-2=-503/322, 2-3=- 4-5=-129/138	372/260, 3-4=-177/	152,										
BOT CHORD	1-7=-133/145, 6-7=-	133/145, 5-6=-133/	145										
WEBS	3-6=-344/303, 2-7=-	249/215											
NOTES												an	Aller
1) Wind: AS	CE 7-16; Vult=115mph	(3-second gust)										TATE OF	MISSO
Vasd=91n	nph; TCDL=6.0psf; BC	DL=6.0psf; h=35ft;									4	9.20	N'SO
	Cat. II; Exp C; Enclose		pe)								B	SCOT	TM XP.V
	one and C-C Exterior(2										R	SEV	
) 5-9-1 to 10-6-1 zone;										Bat		
	end vertical left and ri										AV.	-	
	and forces & MWFRS		1;									hall.	Servin /
	OL=1.60 plate grip DC signed for wind loads i		100							-	N	NUM	BER A
	studs exposed to wind										N ³	PE-2001	018807
	lard Industry Gable En										N	12	
	qualified building desi										X	1.380	JO'A
	uires continuous botto											CSSIONA	LEFZ
, i	ds spaced at 4-0-0 oc.	0										UNA	TATA

- or consult qualified building designer as per ANSI/TPI 1.
- Gable requires continuous bottom chord bearing. 3)
- 4) Gable studs spaced at 4-0-0 oc.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent colleges with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

TION DEVELORMENT SERVICES LEE'S'SUMMIT'SMISSOURI 02/16/2024 4:17:51

November 1,2023

Page: 1

Job	Truss	Truss Type	Qty	Ply	Roof - Osage Lot 83	
P240050	V3	Valley	2	1	Job Reference (optional)	161755145

Run: 8.63 S Aug 30 2023 Print: 8.630 S Aug 30 2023 MiTek Industries, Inc. Tue Oct 31 15:34:45 ID:7inLsRr1OlzWhT15crccTiyGxRv-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:38.6

Loading TCLL (roof) TCDL BCLL BCDL	(psf) 25.0 10.0 0.0 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018/TPI2014	CSI TC BC WB Matrix-S	0.70 0.18 0.10	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 4	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 36 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x4 SP No.2 2x3 SPF No.2 2x3 SPF No.2 Structural wood shea 6-0-0 oc purlins, exc Rigid ceiling directly bracing. (size) 1=9-0-15, Max Horiz 1=242 (LC	cept end verticals. applied or 10-0-0 oc 4=9-0-15, 5=9-0-15	capacity of 5 7) Provide mec bearing platt 1, 50 lb uplif 8) This truss is International R802.10.2 a	hanical connect capable of with t at joint 4 and 2 designed in acc Residential Coo nd referenced s	tion (by oth Instanding 4 109 lb uplift cordance w de sections	ers) of truss l lb uplift at jo at joint 5. ith the 2018 s R502.11.1 a	pint					

1=194 (LC 20), 4=143 (LC 19), Max Grav 5=506 (LC 19) FORCES (lb) - Maximum Compression/Maximum Tension TOP CHORD 1-2=-388/267, 2-3=-172/145, 3-4=-134/142 BOT CHORD 1-5=-116/126, 4-5=-116/126 2-5=-399/340

(LC 12)

WEBS NOTES

- 1) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=35ft; Ke=1.00; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) 0-5-12 to 5-5-12, Interior (1) 5-5-12 to 9-0-1 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1. Gable requires continuous bottom chord bearing. 3)

4) Gable studs spaced at 4-0-0 oc.

- 5)
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

OF MISS SCOTT M. SEVIER PE-200101880 SIONAL E

November 1,2023

 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.
 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not beigh valid for use only with with with sets outputs into design is based only door parameters shown, and is for an individual dualing component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria**, and **DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcscomponents.com)

Job	Truss	Truss Type	Qty	Ply	Roof - Osage Lot 83	
P240050	V4	Valley	2	1	Job Reference (optional)	l61755146

Run: 8.63 S Aug 30 2023 Print: 8.630 S Aug 30 2023 MiTek Industries, Inc. Tue Oct 31 15:34:45 ID:i76DDQo95qbyq0JWxj3vr4yGxRy-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:34.3

				-								
Loading TCLL (roof) TCDL BCLL BCDL	25.0 Pla 10.0 Lu 0.0 Re	pacing late Grip DOL umber DOL ep Stress Incr ode	2-0-0 1.15 1.15 YES IRC2018/TPI2014	CSI TC BC WB Matrix-P	0.45 0.13 0.08	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 4	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 29 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD	2x4 SP No.2 2x4 SP No.2 2x3 SPF No.2 2x3 SPF No.2 Structural wood sheathir 6-0-0 oc purlins, except Rigid ceiling directly app bracing.	t end verticals. plied or 10-0-0 oc	capacity of 5 7) Provide mec bearing plate 1, 46 lb uplif 8) This truss is International	hanical connecti capable of with at joint 4 and 1 designed in acc Residential Coo nd referenced st	ion (by oth Istanding 1 72 lb uplift ordance w de sections	ers) of truss t 6 lb uplift at j at joint 5. ith the 2018 5 R502.11.1 a	joint					
REACTIONS	(size) 1=7-6-15, 4=7 Max Horiz 1=199 (LC 9) Max Uplift 1=-16 (LC 8),		172									

1=132 (LC 20), 4=158 (LC 19), Max Grav 5=418 (LC 19) FORCES (lb) - Maximum Compression/Maximum Tension TOP CHORD 1-2=-353/236, 2-3=-165/135, 3-4=-138/151 1-5=-96/105, 4-5=-96/105 BOT CHORD

WEBS 2-5=-330/305

- NOTES
- Wind: ASCE 7-16; Vult=115mph (3-second gust) 1) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=35ft; Ke=1.00; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) 0-5-12 to 5-5-12, Interior (1) 5-5-12 to 7-6-1 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

(LC 12)

2) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1. Gable requires continuous bottom chord bearing. 3)

4) Gable studs spaced at 4-0-0 oc.

- 5) This truss has been designed for a 10.0 psf bottom
- chord live load nonconcurrent with any other live loads.

OF MISS SCOTT M. SEVIER PE-2001018807 SIONAL E November 1,2023

 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.
 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not beigh valid for use only with with with sets outputs into design is based only door parameters shown, and is for an individual dualing component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria**, and **DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcscomponents.com)

Job	Truss	Truss Type	Qty	Ply	Roof - Osage Lot 83	
P240050	V5	Valley	2	1	Job Reference (optional)	161755147

Run: 8.63 S Aug 30 2023 Print: 8.630 S Aug 30 2023 MiTek Industries, Inc. Tue Oct 31 15:34:45 ID:mk_SpknvZDLEbi98pI1RmfyGxS_-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f _____

Page: 1

Scale = 1:30.2

Loading TCLL (roof) TCDL BCLL BCDL	25.0 Pla 10.0 Lur	ate Grip DOL mber DOL p Stress Incr de	2-0-0 1.15 1.15 YES IRC2018/TPI2014	CSI TC BC WB Matrix-P	0.28 0.12 0.07	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 4	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 22 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x4 SP No.2 2x3 SPF No.2 2x3 SPF No.2 Structural wood sheathin 6-0-0 oc purlins, except Rigid ceiling directly appl bracing. (size) 1=6-0-15, 4=6: Max Horiz 1=157 (LC 9) Max Uplift 1=56 (LC 10) 5=-156 (LC 12 Max Grav 1=83 (LC 9), 4	end verticals. lied or 10-0-0 oc -0-15, 5=6-0-15 , 4=-41 (LC 9),	capacity of 7) Provide m bearing pla 1, 41 lb up 8) This truss Internation R802.10.2 LOAD CASE(5	echanical connect te capable of with iff at joint 4 and 1 is designed in acc al Residential Co and referenced s	tion (by oth hstanding 5 56 lb uplift cordance w de sections	ers) of truss 66 lb uplift at j at joint 5. ith the 2018 5 R502.11.1 a	joint					

	(LC 19)
FORCES	(lb) - Maximum Compression/Maximum
	Tension
TOP CHORD	1-2=-331/216, 2-3=-155/120, 3-4=-135/154
BOT CHORD	1-5=-76/82, 4-5=-76/82
WEBS	2-5=-298/299

NOTES

- Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=35ft; Ke=1.00; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) 0-5-12 to 5-5-12, Interior (1) 5-5-12 to 6-0-1 zone; cantilever left and right exposed; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
 Gable requires continuous bottom chord bearing.

4) Gable studs spaced at 4-0-0 oc.

- 5) This truss has been designed for a 10.0 psf bottom
- chord live load nonconcurrent with any other live loads.

November 1,2023

Job	Truss	Truss Type Qty Ply Roof - Osage Lot 83			Roof - Osage Lot 83	
P240050	V6	Valley	2	1	Job Reference (optional)	l61755148

4-0-0

4-0-0

Premier Building Supply (Springhill, KS), Spring Hills, KS - 66083,

Run: 8.63 S Aug 30 2023 Print: 8.630 S Aug 30 2023 MiTek Industries, Inc. Tue Oct 31 15:34:46 ID:MAIKAik0HIzfkFQZ89Tk80yGxS1-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scolo	= 1.25 1	

		i									•	
Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15	тс	0.31	Vert(LL)	n/a	-	n/a	999	MT20	244/190
TCDL	10.0	Lumber DOL	1.15	BC	0.17	Vert(TL)	n/a	-	n/a	999		
					0.00	Horiz(TL)	0.00	3	n/a	n/a		
BCDL	10.0	Code	IRC2018/TPI2014	Matrix-P							Weight: 15 lb	FT = 20%
BCLL BCDL LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD BOT CHORD REACTIONS FORCES TOP CHORD BOT CHORD BOT CHORD NOTES 1) Wind: ASC Vasd=91m Ke=1.00; 0 exterior zc and right e exposed; 0 reactions s DOL=1.60 2) Truss des DOL=1.60 2) ABDE Status 5 Chord live 6) All bearing	0.0 10.0 2x4 SP No.2 2x3 SPF No.2 2x3 SPF No.2 Structural wood she 4-7-5 oc purlins, ex Rigid ceiling directly bracing. (size) 1=4-6-15, Max Horiz 1=114 (LC Max Uplift 1=-15 (LC Max Uplift 1=-15 (LC Max Uplift 1=-16 (LC (lb) - Maximum Com Tension 1-2=-163/120, 2-3=- 1-3=-55/60 CE 7-16; Vult=115mph nph; TCDL=6.0psf; BC Cat. II; Exp C; Enclose one and C-C Exterior(2 exposed ; end vertical I shown; Lumber DOL=') signed for wind loads ir studs exposed to wind lard Industry Gable En qualified building desii uires continuous bottod ds spaced at 4-0-0 oc. has been designed for load nonconcurrent wi gare assumed to be S	Rep Stress Incr Code athing directly applie cept end verticals. applied or 10-0-0 or 3=4-6-15 C 9) C 12), 3=-58 (LC 12) C 1), 3=186 (LC 19) pression/Maximum 154/185 (3-second gust) DL=6.0psf; h=35ft; d; MWFRS (envelop E) zone; cantilever I left and right orcces & MWFRS for 1.60 plate grip in the plane of the tru (normal to the face) d Details as applicat gner as per ANSI/TF m chord bearing. r a 10.0 psf bottom th any other live load	YES IRC2018/TPI2014 8) This truss is Internationa R802.10.2 a LOAD CASE(S) ed or c	WB Matrix-P designed in accord Residential Code s nd referenced stand	0.00 ance w	Horiz(TL) ith the 2018 5 R502.11.1 a	0.00			n/a	STAR SCOT	ER Server
	of 565 psi. Nechanical connection (ate capable of withstar									Ŷ	ESSIONA	LENGI
	b uplift at joint 3.	ising to is upint at je									Que	
											Novomb	or 1 2022
											novemb	er 1,2023

UCTION VIEW DEVELOPMEN SERVICES LEE'S' SUMMIT'S MISSOURI 02/16/2024 4:17:51

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent toulsable personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

Job	Truss	Truss Type	Qty	Ply	Roof - Osage Lot 83	
P240050	V7	Valley	2	1	Job Reference (optional)	161755149

3-0-0

3-0-0

Premier Building Supply (Springhill, KS), Spring Hills, KS - 66083,

Run: 8.63 S Aug 30 2023 Print: 8.630 S Aug 30 2023 MiTek Industries, Inc. Tue Oct 31 15:34:46 ID:xbdBYgi8_Nb4tni_T1w1WOyGxS4-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:21.2

Ocale = 1.21.2												
Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15	TC	0.11	Vert(LL)	n/a	-	n/a	999	MT20	244/190
TCDL	10.0	Lumber DOL	1.15	BC	0.05	Vert(TL)	n/a	-	n/a	999		
BCLL	0.0	Rep Stress Incr	YES	WB	0.00	Horiz(TL)	0.00	3	n/a	n/a		
BCDL	10.0	Code	IRC2018/TPI2	2014 Matrix-P							Weight: 10 lb	FT = 20%
LUMBER			7) Pro	vide mechanical connect	ction (by oth	ers) of truss	to					
TOP CHORD	2x4 SP No.2			ring plate capable of wi								
BOT CHORD	2x4 SP No.2		3 ar	nd 47 lb uplift at joint 4.	Ū.		•					
WEBS	2x3 SPF No.2 8) This truss is designed in accordance with the 2018											
BRACING				rnational Residential Co			and					
TOP CHORD	Structural wood she	athing directly applie	ed or	2.10.2 and referenced	standard AN	ISI/TPI 1.						
	3-1-5 oc purlins, ex	cept end verticals.	LOAD	Standard Standard								
BOT CHORD	Rigid ceiling directly bracing.	applied or 10-0-0 or	С									
REACTIONS	(size) 1=3-0-15	, 3=3-0-15, 4=3-0-15	5									
	Max Horiz 4=72 (LC	9)										
	Max Uplift 3=-39 (LC	C 12), 4=-47 (LC 3)										
	Max Grav 1=143 (L 4=-14 (L0		,									
FORCES	(lb) - Maximum Con Tension	npression/Maximum										
TOP CHORD	1-2=-105/77, 2-3=-9	9/121										
BOT CHORD	1-4=-160/107, 1-3=	-35/38										
NOTES												
1) Wind: ASC	CE 7-16; Vult=115mph	n (3-second gust)										
Vasd=91m	nph; TCDL=6.0psf; BC	DL=6.0psf; h=35ft;										
,	Cat. II; Exp C; Enclose	· · · ·	,									
exterior zo	ne and C-C Exterior(2	2E) zone; cantilever l	left									

reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 2) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable,

and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for

- or consult qualified building designer as per ANSI/TPI 1. Gable requires continuous bottom chord bearing. 3)
- 4) Gable studs spaced at 4-0-0 oc.
- 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 6) All bearings are assumed to be SP No.2 crushing capacity of 565 psi.

OF MISSO SCOTT M. SEVIER UMBER PE-200101880 SIONAL E

November 1,2023

 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.
 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not besign value to dury with with where outputs into design is based only door parameters shown, and is for an individual building design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members and property incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TPH1 Quality Criteria**, and **DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcscomponents.com)

Job	Truss	Truss Type	Qty	Ply	Roof - Osage Lot 83	
P240050	V8	Valley	2	1	Job Reference (optional)	161755150

Run: 8.63 S Aug 30 2023 Print: 8.630 S Aug 30 2023 MiTek Industries, Inc. Tue Oct 31 15:34:46 ID:3pNgiJfdw84fOAODEBr5MYyGxS8-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

Fa

1.5x4 🛚

1-6-15

1-6-15

Scale =	1:19.3
---------	--------

Scale = 1:19.3							
Loading TCLL (roof) TCDL BCLL BCDL	(psf)Spacing25.0Plate Grip DOL10.0Lumber DOL0.0Rep Stress Incr10.0Code	2-0-0 1.15 1.15 YES IRC2018/TPI2014	CSI TC 0.02 BC 0.01 WB 0.00 Matrix-P	Vert(TL) n/a	(loc) / - - 3	/defl L/d n/a 999 n/a 999 n/a n/a	PLATES GRIP MT20 244/190 Weight: 5 lb FT = 20%
LUMBER TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.2 BRACING TOP CHORD Structural we 1-7-5 oc pur BOT CHORD Rigid ceiling bracing. REACTIONS (size) 1= Max Horiz 1= Max Uplift 1= Max Grav 1= FORCES (lb) - Maximu Tension TOP CHORD 1-2=-42/32, BOT CHORD 1-3=-14/15 NOTES 1) Wind: ASCE 7-16; Vult=' Vasd=91mph; TCDL=6.0 Ke=1.00; Cat. II; Exp C; exterior zone and C-CE: and right exposed ; end 2 exposed; C-C for member reactions shown; Lumbe DOL=1.60 2) Truss designed for wind only. For studs exposed see Standard Industry G or consult qualified buildi 3) Gable requires continuou 4) Gable studs spaced at 4 5) This truss has been desi chord live load nonconct. 6) All bearings are assumed capacity of 565 psi. 7) Provide mechanical control	2 bod sheathing directly applil directly applied or 10-0-0 of a firectly applied or 10-0 of a firectly applied of a firectly applied of a firectly applied of a firectly applied	8) This truss is Internationa R802.10.2 a LOAD CASE(S) ied or bc pe) left r uss e), bble, Pl 1.	designed in accordance v I Residential Code section and referenced standard A	is R502.11.1 and			Difference of MISSOLUTION SCOTT M. SEVIER PE-2001018807 PE-2001018807 SIONAL ENGINE November 1,2023

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent toulsable personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

RELEASE FOR CONSTRUCTION AS NOTED ON LANS REVIEW DEVELORIMENT SERVICES LEE'S SUMMIT MISSOURI 02/16/2024 4:17:51

ASE FOR CONST **OTED ON PLANS** VELOPMENT SER LEE'S SUMMIT, MISSOURI 02/16/2024 4:17:51