

RE: B240005 Lot 176 HT

Site Information:

Customer: Summit Homes Project Name: B240005 Lot/Block: 176 Model: Sy Address: 3232 SW Arbor Sound Dr City: Lee's Summit State: MC

Model: Sydney - Modern Prairie Subdivision: Hawthorn Ridge State: MO

General Truss Engineering Criteria & Design Loads (Individual Truss Design Drawings Show Special Loading Conditions):

Design Code: IRC2018/TPI2014 Wind Code: ASCE 7 - 16[Low Rise] Roof Load: 45.0 psf Design Program: MiTek 20/20 8.7 Wind Speed: 115 mph Floor Load: N/A psf

This package includes 107 individual, dated Truss Design Drawings and 0 Additional Drawings.

No.	Seal#	Truss Name	Date	No.	Seal#	Truss Name	Date
1	159955056	A1	8/7/2023	21	159955076	D1	8/7/2023
•						= -	
2	159955057	A2	8/7/2023	22	159955077	D2	8/7/2023
3	159955058	A3	8/7/2023	23	159955078	D3	8/7/2023
4	159955059	A4	8/7/2023	24	159955079	D4	8/7/2023
5	159955060	A5	8/7/2023	25	159955080	E1	8/7/2023
6	159955061	A6	8/7/2023	26	159955081	E2	8/7/2023
7	159955062	B1	8/7/2023	27	159955082	E3	8/7/2023
8	159955063	B2	8/7/2023	28	159955083	E4	8/7/2023
9	159955064	B3	8/7/2023	29	159955084	E5	8/7/2023
10	159955065	B4	8/7/2023	30	159955085	G1	8/7/2023
11	159955066	C1	8/7/2023	31	159955086	G2	8/7/2023
12	159955067	C2	8/7/2023	32	159955087	G3	8/7/2023
13	159955068	C3	8/7/2023	33	159955088	G4	8/7/2023
14	159955069	C4	8/7/2023	34	159955089	G5	8/7/2023
15	159955070	C5	8/7/2023	35	159955090	G6	8/7/2023
16	159955071	C6	8/7/2023	36	159955091	G7	8/7/2023
17	159955072	C7	8/7/2023	37	159955092	G8	8/7/2023
18	159955073	C8	8/7/2023	38	159955093	G9	8/7/2023
19	159955074	C9	8/7/2023	39	159955094	G10	8/7/2023
20	159955075	C10	8/7/2023	40	159955095	H1	8/7/2023

The truss drawing(s) referenced above have been prepared by MiTek USA, Inc under my direct supervision

based on the parameters provided by Wheeler - Waverly.

Truss Design Engineer's Name: Sevier, Scott

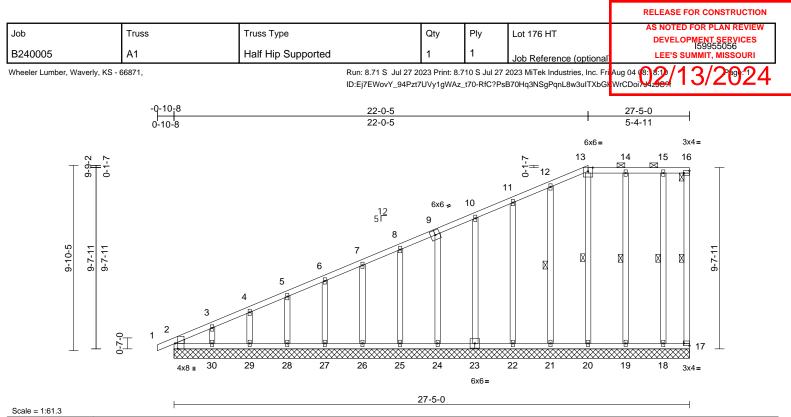
My license renewal date for the state of Missouri is December 31, 2025. Missouri COA: 001193

IMPORTANT NOTE: The seal on these truss component designs is a certification that the engineer named is licensed in the jurisdiction(s) identified and that the designs comply with ANSI/TPI 1. These designs are based upon parameters shown (e.g., loads, supports, dimensions, shapes and design codes), which were given to MiTek. Any project specific information included is for MiTek customers file reference purpose only, and was not taken into account in the preparation of these designs. MiTek has not independently verified the applicability of the design parameters or the designs for any particular building. Before use, the building designer should verify applicability of design parameters and properly incorporate these designs into the overall building design per ANSI/TPI 1, Chapter 2.

Sevier, Scott

MiTek, Inc. 16023 Swingley Ridge Rd. Chesterfield, MO 63017 314.434.1200

MiTek, Inc. 16023 Swingley Ridge Rd. Chesterfield, MO 63017 314.434.1200


Site Information:

Project Customer: Summit Homes Project Name: B240005 Lot/Block: 176 Address: 3232 SW Arbor Sound Dr City, County: Lee's Summit

Subdivision: Hawthorn Ridge Stata: MO

State:	MO

No	Sool#		Data	No	Sool#	Truce Nome	Data
No. 41	Seal# I59955096	Truss Name H2	Date 8/7/2023	No. 85	Seal# I59955140	Truss Name J42	Date 8/7/2023
41		H2 H3	8/7/2023			J42 J43	8/7/2023
	159955097			86	159955141		
43	159955098	H4	8/7/2023	87	159955142	J44	8/7/2023
44	159955099	J1	8/7/2023	88	159955143	J45	8/7/2023
45	159955100	J2	8/7/2023	89	159955144	J46	8/7/2023
46	159955101	J3	8/7/2023	90	159955145	J47	8/7/2023
47	159955102	J4	8/7/2023	91	159955146	J48	8/7/2023
48	159955103	J5	8/7/2023	92	159955147	LAY1	8/7/2023
49	159955104	J6	8/7/2023	93	159955148	LAY2	8/7/2023
50	159955105	J7	8/7/2023	94	159955149	LAY3	8/7/2023
51	159955106	J8	8/7/2023	95	159955150	LAY4	8/7/2023
52	159955107	J9	8/7/2023	96	159955151	LAY5	8/7/2023
53	159955108	J10	8/7/2023	97	159955152	LAY6	8/7/2023
54	159955109	J11	8/7/2023	98	159955153	R1	8/7/2023
55	159955110	J12	8/7/2023	99	159955154	V1	8/7/2023
56	159955111	J13	8/7/2023	100	159955155	V2	8/7/2023
57	159955112	J14	8/7/2023	101	159955156	V3	8/7/2023
58	159955113	J15	8/7/2023	102	159955157	V4	8/7/2023
59	159955114	J16	8/7/2023	103	159955158	V5	8/7/2023
60	159955115	J17	8/7/2023	104	159955159	V6	8/7/2023
61	159955116	J18	8/7/2023	105	159955160	V7	8/7/2023
62	159955117	J19	8/7/2023	106	159955161	V8	8/7/2023
63	159955118	J20	8/7/2023	107	159955162	V9	8/7/2023
64	159955119	J21	8/7/2023				
65	159955120	J22	8/7/2023				
66	159955121	J23	8/7/2023				
67	159955122	J24	8/7/2023				
68	159955123	J25	8/7/2023				
69	159955124	J26	8/7/2023				
70	159955125	J27	8/7/2023				
71	159955126	J28	8/7/2023				
72	159955127	J29	8/7/2023				
73	159955128	J30	8/7/2023				
74	159955129	J31	8/7/2023				
75	159955130	J32	8/7/2023				
76	159955131	J33	8/7/2023				
77	159955132	J34	8/7/2023				
78	159955133	J35	8/7/2023				
79	159955134	J36	8/7/2023				
80	159955135	J37	8/7/2023				
81	159955136	J38	8/7/2023				
82	159955137	J39	8/7/2023				
83	159955138	J40	8/7/2023				
84	159955139	J41	8/7/2023				

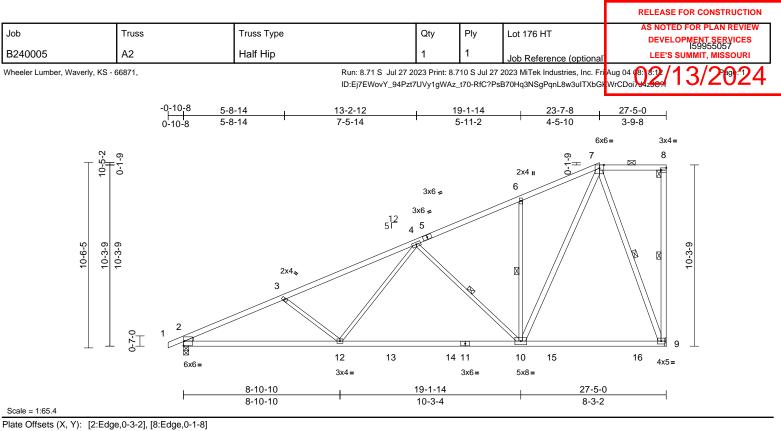


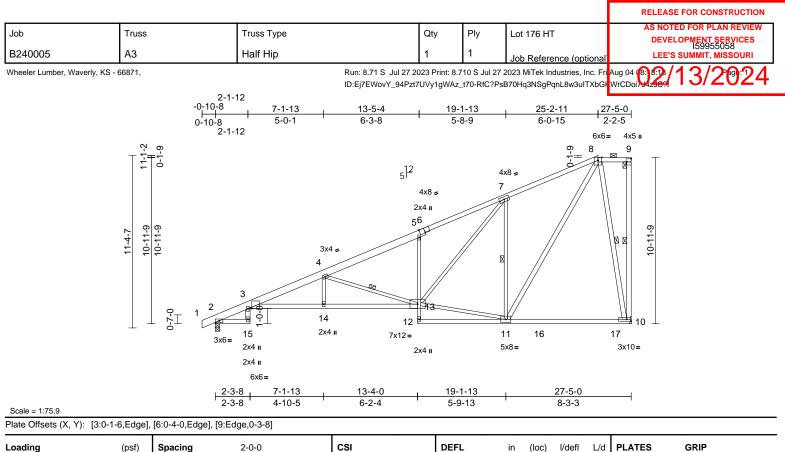
Plate Offsets (X, Y): [2:0-3-8,Edge], [16:Edge,0-1-8], [17:Edge,0-1-8]

Loading TCLL (roof) TCDL BCLL		(psf) 25.0 10.0 0.0*	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr	2-0-0 1.15 1.15 YES		CSI TC BC WB	0.40 0.17 0.15	DEFL Vert(LL) Vert(CT) Horz(CT)	in n/a n/a -0.01	(loc) - - 17	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20	GRIP 197/144	
BCDL		10.0	Code		8/TPI2014	Matrix-S	0.15	11012(01)	-0.01	17	n/a	n/a	Weight: 160 lb	FT = 10%	
LUMBER TOP CHORD BOT CHORD WEBS OTHERS WEDGE BRACING TOP CHORD BOT CHORD	Structura 6-0-0 oc 2-0-0 oc Rigid ceil bracing,	No.2 No.2 SPF No.2 al wood she purlins, ex purlins (6-0 ling directly Except:	athing directly applie cept end verticals, ar -0 max.): 13-16. applied or 10-0-0 oc	B d or nd		1-2=0/6, 2-3=-364/3 4-5=-291/28, 5-6=-2 7-8=-224/22, 8-10= 11-12=-169/78, 12- 13-14=-132/102, 14 15-16=-132/101, 16 2-30=-133/100, 29- 28-29=-133/100, 27 26-27=-133/100, 22 24-25=-133/100, 22 21-22=-133/101, 20 19-20=-133/101, 18 17-18=-133/101	266/25, -211/30 13=-15 -15=-1 30=-13 7-28=-13 7-28=-1 2-26=-1 2-24=-1 2-24=-1	 9) * This truss has been designed for a live load of 20.0ps on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members. 10) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 20 lb uplift at join 17, 45 lb uplift at joint 20, 47 lb uplift at joint 21, 47 lb uplift at joint 22, 52 lb uplift at joint 23, 49 lb uplift at join 24, 41 lb uplift at joint 25, 49 lb uplift at joint 26, 47 lb uplift at joint 27, 48 lb uplift at joint 28, 47 lb uplift at joint 19 and 49 uplift at joint 18. 11) This truss is designed in accordance with the 2018 							
WEBS	6-0-0 oc 1 Row at		-24. 16-17, 13-20, 12-21 14-19, 15-18	, W	NEBS 13-20=-127/72, 12-21=-148/72, International F							al Resid	esidential Code sections R502.11.1 and referenced standard ANSI/TPI 1.		
REACTIONS	(size)	2=27-5-0, 19=27-5-0 22=27-5-0 25=27-5-0	17=27-5-0, 18=27-5 0, 20=27-5-0, 21=27- 0, 23=27-5-0, 24=27- 0, 26=27-5-0, 27=27- 0, 29=27-5-0, 30=27-	5-0, 5-0, 5-0, 5-0, N	9-24=-139/73, 8-25=-130/65, 7-26=-142/73, 6-27=-140/71, 5-28=-140/72, 4-29=-140/71, 3-30=-140/111, 14-19=-155/66, 15-18=-119/124 OTES 12 Graphical purlin representation does not depi or the orientation of the purlin along the top a bottom chord. LOAD CASE(S) Standard										
		19=-49 (L 21=-47 (L 23=-52 (L 25=-41 (L 27=-47 (L	C 5) C 5), 18=-49 (LC 4), C 5), 20=-45 (LC 5), C 8), 22=-47 (LC 8), C 8), 24=-49 (LC 8), C 8), 26=-49 (LC 8), C 8), 28=-48 (LC 8), C 8), 30=-87 (LC 8),	2)	this design. Wind: ASCI Vasd=91mp II; Exp C; E cantilever le right expose Truss desig	I roof live loads have E 7-16; Vult=115mpl h; TCDL=6.0psf; BC nclosed; MWFRS (e ift and right exposed d; Lumber DOL=1.6 gned for wind loads i	n (3-sec CDL=6.0 nvelope I ; end v 60 plate in the p	cond gust) Opsf; h=25ft; e) exterior zoi vertical left ar grip DOL=1. lane of the tru	Cat. ne; id 60 uss			A	STATE OF M	AISSOUR	
	Max Grav	2=212 (LC 18=155 (L 20=167 (L 22=177 (L 24=179 (L 26=182 (L	C 16), 17=41 (LC 1), LC 22), 19=196 (LC 2 LC 1), 21=188 (LC 1) LC 1), 23=190 (LC 1) LC 1), 25=170 (LC 1) LC 1), 27=179 (LC 1) LC 1), 29=179 (LC 1)	, 4) , 5) , 6) , 7)	 only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1. Provide adequate drainage to prevent water ponding. All plates are 2x4 MT20 unless otherwise indicated. Gable requires continuous bottom chord bearing. Gable studs spaced at 2-0-0 oc. 						ER SER D18807				
FORCES	(lb) - Max Tension	•	pression/Maximum		chord live lo	ad nonconcurrent w	vith any	other live loa	ds.				SIONA	L ENSAGE st 7,2023	

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent colleges with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

16023 Swingley Ridge Rd. Chesterfield, MO 63017 314.434.1200 / MiTek-US.com

Plate Offsets ((X, Y): [2:Edge,0-3-2],	[8:Edge,0-1-8]										
Loading TCLL (roof) TCDL BCLL BCDL	(psf) 25.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018/TPI2	CSI TC BC WB 014 Matrix-S	0.74 0.60 0.64	DEFL Vert(LL) Vert(CT) Horz(CT) Wind(LL)	in -0.25 -0.44 0.05 0.08	(loc) 10-12 10-12 9 2-12	l/defl >999 >738 n/a >999	L/d 360 240 n/a 240	PLATES MT20 Weight: 123 lb	GRIP 197/144 FT = 10%
LUMBER TOP CHORD BOT CHORD WEBS WEDGE BRACING TOP CHORD BOT CHORD WEBS	2x4 SPF 2100F 1.8E 2x3 SPF No.2 *Exce No.2 Left: 2x3 SPF No.2 Structural wood she 3-0-1 oc purlins, ex 2-0-0 oc purlins (6-0 Rigid ceiling directly bracing.	ept* 8-9,10-7,9-7:2x4 athing directly applie cept end verticals, a -0 max.): 7-8.	on ti 3-06 () SPF chor () Refe (7) Provide (7) Provide	s truss has been design e bottom chord in all are -00 tall by 2-00-00 wide d and any other member r to girder(s) for truss to ide mechanical connecti ing plate capable of with d 208 lb uplift at joint 2. truss is designed in acc national Residential Coc 2.10.2 and referenced st shical purlin representati e orientation of the purlir	eas where will fit betw rs, with BC truss conr ton (by oth standing 2 ordance w de sections andard AN on does no	a rectangle veen the botto DL = 10.0psf lections. ers) of truss t 06 lb uplift at ith the 2018 R502.11.1 a ISI/TPI 1. ot depict the s	o joint nd					
REACTIONS		9= Mechanical C 5) C 8), 9=-206 (LC 8)	LOAD C	om chord. ASE(S) Standard	-	-						
FORCES	(lb) - Maximum Com Tension 1-2=0/6, 2-3=-2488/ 4-6=-1138/207, 6-7= 8-9=-123/79	397, 3-4=-2229/319,										
BOT CHORD											OF	
WEDS	4-10=-817/277, 6-10 7-10=-296/1386, 7-9)=-342/185,								Å	TATE OF M	ASSO 200
 this design Wind: AS0 Vasd=91n II; Exp C; cantilever right expo Provide ad This truss 	ed roof live loads have n. CE 7-16; Vult=115mph mph; TCDL=6.0psf; BC Enclosed; MWFRS (er left and right exposed sed; Lumber DOL=1.6 dequate drainage to pr has been designed for load nonconcurrent wi	(3-second gust) DL=6.0psf; h=25ft; (ivelope) exterior zor ; end vertical left an 0 plate grip DOL=1.0 event water ponding r a 10.0 psf bottom	Cat. ie; d 60 j.							*	SCOT SEVI DE TOM PE-2001	


- Provide adequate drainage to prevent water ponding. 3)
- 4)
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent colleges with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

16023 Swingley Ridge Rd. Chesterfield, MO 63017

314.434.1200 / MiTek-US.com

August 7,2023

·`				-	-		-					-	-
Loading	(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15		TC	0.96	Vert(LL)	-0.36	3-14	>909	360	MT20	197/144
TCDL	10.0	Lumber DOL	1.15		BC	0.69	Vert(CT)	-0.63	3-14	>518	240		
BCLL	0.0*	Rep Stress Incr	YES		WB	0.95	Horz(CT)	0.36	10	n/a	n/a		
BCDL	10.0	Code	IRC20	18/TPI2014	Matrix-S		Wind(LL)	0.30	3-14	>999	240	Weight: 153 lb	FT = 10%
LUMBER			3	B) Provide ade	quate drainage to	prevent	water pondin	g.					
TOP CHORD	2x4 SPF No.2 *Exce	ept* 1-6:2x6 SP 2400)F 4		as been designed								
BOT CHORD	2.0E 2x4 SPF No.2 *Exce	ont* 3-13·2v4 SPF 2	100F 5		ad nonconcurrent has been designe								
DOT CHOILD	1.8E, 5-12:2x3 SPF				m chord in all area			0001					
WEBS	2x3 SPF No.2 *Exce				by 2-00-00 wide w ny other members								
	9-10,15-3,8-11,10-8	2x4 SPF No.2	6		ler(s) for truss to t			1.					
BRACING	o , , , , , , ,				chanical connection			to					
TOP CHORD	Structural wood she		eu,		e capable of withs								
	except end verticals (6-0-0 max.): 8-9.	, and 2-0-0 oc puriin	IS		b uplift at joint 2.	anding 2		c joint					
BOT CHORD	Rigid ceiling directly	applied or 9-4-4 oc	8		designed in acco	rdance w	ith the 2018						
BOTCHORD	bracing.	applied of 9-4-4 oc			Residential Code			and					
WEBS		9-10, 4-13, 7-11, 8-	10	R802.10.2 a	nd referenced sta	andard AN	ISI/TPI 1.						
		10= Mechanical	9		urlin representatio			size					
	Max Horiz 2=470 (L0				ation of the purlin	along the	e top and/or						
	Max Uplift 2=-207 (L	,	;)	bottom chore									
	Max Grav 2=1324 (L	<i>,,</i>	· .	OAD CASE(S)	Standard								
FORCES	(lb) - Maximum Com Tension	pression/Maximum											
TOP CHORD	1-2=0/12, 2-3=-871/	0, 3-4=-3439/567,											
	4-5=-2051/337, 5-7=	-1994/441,											
	7-8=-1089/318, 8-9=	-160/117, 9-10=-88	/79									~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~
BOT CHORD	2-15=0/0, 3-14=-695											STATE OF M	and
	12-13=0/77, 5-13=-3	335/193, 11-12=-24/	52,									B.F. OF I	NISS OF
	10-11=-127/228										4	9.21	N'SON
WEBS	3-15=-4/91, 4-14=0/	,	4,								B	SCOT	TM XXX
	11-13=-149/920, 7-1	,									R	SEVI	
	7-11=-1145/407, 8-1	1=-350/1444,									8	SEVI	
	8-10=-1145/247										h		
NOTES											X	1 the	X
 Unbalance this design 	ed roof live loads have	been considered to	r							-		NUM	
0	CE 7-16; Vult=115mph	(3-second gust)									N'	PE-2001	018807
	nph; TCDL=6.0psf; BC		Cat.								V	15	18A
	Enclosed: MWERS (er										1	1 50	IC'A

Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat II; Exp C; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSITPTI Quality Criteria, and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcscomponents.com)

August 7,2023

JONAL

								Г	RELEASE FOR CONSTRUCTION
Job	Truss		Truss Type		Qty	Ply	Lot 176 HT		AS NOTED FOR PLAN REVIEW DEVELOPMENT SERVICES 159955059
B240005	A4		Half Hip		1	1	Job Reference (or	otional	LEE'S SUMMIT, MISSOURI
Wheeler Lumber, Waverly	v, KS - 66871,						2023 MiTek Industries, B70Hq3NSgPqnL8w3u		
		-0-10- 		13-5-4 6-3-8	<u>19-1</u> 5-8-		<u>26-9-14</u> 7-8-1	27-5-0 	2
	0 -1-9 -1-9 -1-9				12 4x8 = ^{2x4} II	5x8 7		3x4= 8 9	
	12-0-7 11-7-9 11-7-9			3x4 =	56		*	×	9-7-11

14

2x4 II

			2x4 II				2x4 II		3x6=						
			2x4 II												
			6x6	i=											
			2-3-8	7-1-13		13-4-0		19-1-14		27-	5-0		1		
Scale = 1:83.1			2-3-8	4-10-5	I	6-2-4	1	5-9-14	1	8-	3-2		1		
		[0:0.4.0.E.l] [0:0	0.0.5.1	[0] E data 0.4	01 [44	0 0 0 4 0									
Plate Offsets (X,	Y): [3:0-1-6,Edge],	[6:0-4-0,⊨dge], [8:0	J-2-0,⊨dge],	, [9:⊨age,0-1	-8j, [11:	J-2-8,0-1-8]									
Loading	(psf)	Spacing	2-0-0		CSI			DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP	
TCLL (roof)	25.0	Plate Grip DOL	1.15		тс		0.96	Vert(LL)	-0.35	3-14	>919	360	MT20	197/144	
TCDL	10.0	Lumber DOL	1.15		BC		0.73	Vert(CT)	-0.62	3-14	>525	240			
BCLL	0.0*	Rep Stress Incr	YES		WB		0.83	Horz(CT)	0.36	10	n/a	n/a			
BCDL	10.0	Code	IRC2018	3/TPI2014	Matr	ix-S		Wind(LL)	0.33	3-14	>986	240	Weight: 141 lb	FT = 10%	
	x4 SPF No.2 *Exce	pt* 1-6:2x6 SP 240	4) 0F 5)	This truss h chord live lo * This truss	oad non	concurrent	with any		ads.						

12

7x12=

11

3x6=

16

LOWIDER		-,	This it as has been designed for a 10.0 psi bottom	
TOP CHORD	2x4 SPF No.2 *Except* 1-6:2x6 SP 2400F		chord live load nonconcurrent with any other live loads.	
	2.0E	5)	* This truss has been designed for a live load of 20.0psf	
BOT CHORD	2x4 SPF No.2 *Except* 3-13:2x4 SPF 2100F		on the bottom chord in all areas where a rectangle	
	1.8E, 5-12:2x3 SPF No.2		3-06-00 tall by 2-00-00 wide will fit between the bottom	
WEBS	2x3 SPF No.2 *Except* 9-10,15-3,10-7:2x4		chord and any other members, with BCDL = 10.0psf.	
	SPF No.2	6)	Refer to girder(s) for truss to truss connections.	
BRACING		7)	Provide mechanical connection (by others) of truss to	
TOP CHORD	Structural wood sheathing directly applied,		bearing plate capable of withstanding 317 lb uplift at joint	
	except end verticals, and 2-0-0 oc purlins		10 and 155 lb uplift at joint 2.	
	(6-0-0 max.): 8-9.	8)	This truss is designed in accordance with the 2018	
BOT CHORD	Rigid ceiling directly applied or 6-0-0 oc		International Residential Code sections R502.11.1 and	
	bracing.		R802.10.2 and referenced standard ANSI/TPI 1.	
WEBS	1 Row at midpt 9-10, 4-13, 7-10	9)	Graphical purlin representation does not depict the size	
REACTIONS	(size) 2=0-3-8, 10= Mechanical		or the orientation of the purlin along the top and/or	
	Max Horiz 2=470 (LC 8)		bottom chord.	
	Max Uplift 2=-155 (LC 8), 10=-317 (LC 8)	LC	AD CASE(S) Standard	
	Max Grav 2=1329 (LC 2), 10=1305 (LC 2)			
FORCES	(lb) - Maximum Compression/Maximum			
	Tension			
TOP CHORD	1-2=0/12, 2-3=-708/0, 3-4=-3463/508,			
	4-5=-2058/232, 5-7=-1982/322, 7-8=-140/46,			
	8-9=-44/19, 9-10=-244/113			
BOT CHORD	2-15=0/0, 3-14=-893/3326, 13-14=-893/3326,			
	12-13=0/77, 5-13=-277/161, 11-12=-27/48,			
	10-11=-243/965			
WEBS	3-15=-8/91, 4-14=0/268, 4-13=-1608/446,			
	11-13=-220/951, 7-13=-366/1340,			E Contraction de la contractica de la contractic
	7-11=0/303, 7-10=-1354/341			. 6
NOTES				8
	ed roof live loads have been considered for			192
, this design).			
2) Wind: ASC	CE 7-16; Vult=115mph (3-second gust)			V)

0-7-0

Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat.

II; Exp C; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed ; end vertical left exposed; Lumber DOL=1.60 plate grip DOL=1.60 3) Provide adequate drainage to prevent water ponding.

3x6=

15

2x4 u

10

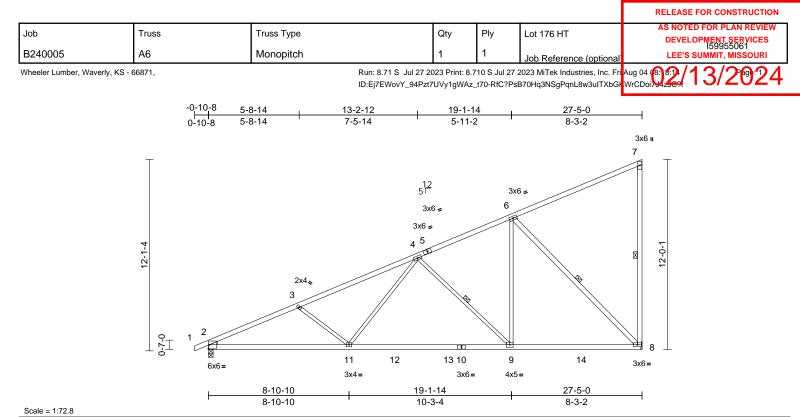
3x6=

16023 Swingley Ridge Rd. Chesterfield, MO 63017 314.434.1200 / MiTek-US.com

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent colleges with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

						RELEASE FOR CONSTRUCTION
Job	Truss	Truss Type	Qty	Ply	Lot 176 HT	AS NOTED FOR PLAN REVIEW DEVELOPMENT SERVICES 159955060
B240005	A5	Monopitch	4	1	Job Reference (optional)	
Wheeler Lumber, Waverly, K		ID:Ej7EWovY_94Pzt			2023 MiTek Industries, Inc. Fri B70Hq3NSgPqnL8w3uITXbGł	
	2-1-1 -0-10-8 0-10-8 2-1-1	7-1-13 13-5-4 5-0-1 6-3-8	<u>19-1-13</u> 5-8-9	3	27-5-0 8-3-3 3x	ô II
		3x4 = 4 $3x4 = 4$ $3x4 = 4$ 4 $3x4 = 4$ 4 $3x4 = 4$ 4 $3x4 = 7x12 = 2x4$ $2x4 = 7x12 = 2x4$	8 =	5x8 = 7 10 3x6=	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	9 -1 -0-1
		2x4 II				
	2-3-		<u>19-1-13</u> 5-9-13		27-5-0	

	2-3-8	7-1-13	13-4-0	19-1-13	27-5-0
	2-3-8	4-10-5	6-2-4	5-9-13	8-3-3
Scale = 1:80.4					


Plate Offsets (X, Y): [3:0-1-6,Edge], [6:0-4-0,Edge], [10:0-2-8,0-1-8]

	(, .). [[e.e. e,_e.ge], [.e.											
Loading	(psf)	Spacing	2-0-0		csi		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15		тс	0.96	Vert(LL)	-0.35	3-13	>919	360	MT20	197/144
TCDL	10.0	Lumber DOL	1.15		BC	0.73	Vert(CT)	-0.62	3-13	>525	240	-	
BCLL	0.0*	Rep Stress Incr	YES		WB	0.84	Horz(CT)	0.36	9	n/a	n/a		
BCDL	10.0	Code	IRC2018/	FPI2014	Matrix-S		Wind(LL)	0.33	3-13	>985	240	Weight: 142 lb	FT = 10%
						-	()					Ű	
LUMBER					nas been designe			.0psf					
TOP CHORD		ept* 1-6:2x6 SP 2400			n chord in all are		•						
	2.0E	****			by 2-00-00 wide v by other member								
BOT CHORD					er(s) for truss to			ы.					
WEBS	1.8E, 5-11:2x3 SPF 2x3 SPF No.2 *Exce		,		hanical connecti			to					
WEDS	No.2	ept 6-9,14-3,9-7.284			capable of with								
BRACING	110.2				uplift at joint 2.	otariang c		it joint					
TOP CHORD	Structural wood she	athing directly applie			designed in acco	ordance w	ith the 2018						
	except end verticals	0 7 11	5 u , /	International	Residential Cod	le sections	R502.11.1	and					
BOT CHORD			I	R802.10.2 a	nd referenced sta	andard AN	ISI/TPI 1.						
	bracing.		LOA	D CASE(S)	Standard								
WEBS	1 Row at midpt	8-9, 4-12, 7-9											
REACTIONS	(size) 2=0-3-8, 9	9= Mechanical											
	Max Horiz 2=481 (L0	C 8)											
	Max Uplift 2=-150 (L	.C 8), 9=-329 (LC 8)											
	Max Grav 2=1329 (I	LC 2), 9=1305 (LC 2	:)										
FORCES	(lb) - Maximum Corr	pression/Maximum											
	Tension												
TOP CHORD													
	4-5=-2057/220, 5-7=	-1981/309, 7-8=-14	7/81,										
	8-9=-241/124												
BOT CHORD	,	,	,										The
	11-12=0/77, 5-12=-2 9-10=-245/967	2/3/159, 10-11=-2//	47,									OFA	ALC D
WEBS	3-14=-8/91, 4-13=0/	268 4-12-1610/44	7									THE OF M	W Scin
WEBO	10-12=-221/953, 7-1		,,								6	AN	N.S.
	7-10=0/304, 7-9=-13										B	SCOT	M. YZY
NOTES	,										R	SEVI	ER \ Y
	CE 7-16; Vult=115mph	(3-second aust)								- Š	12 *		
	nph; TCDL=6.0psf; BC		Cat.								The second	1	····Xa la X
II; Exp C;	Enclosed; MWFRS (er	nvelope) exterior zor	ne;							_		toThe	Server 1
	left and right exposed									-	K		
	Lumber DOL=1.60 pla										N.	PE-2001	01880/ 08810
	has been designed fo										Y	1 Pa	1SA
chord live	load nonconcurrent wi	ith any other live loa	ds.								0	SION	TENS
												C'SSIONA	L
												and a	
												A	at 7 2022

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling or individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

August 7,2023

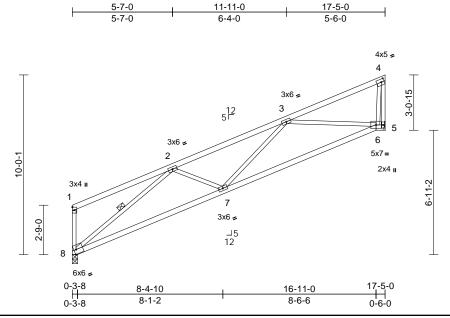
Plate Offsets (X, Y): [2:Edge,0-3-2]

Loading	(psf)	Spacing	2-0-0		CSI	0.00	DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof) TCDL	25.0 10.0	Plate Grip DOL Lumber DOL	1.15 1.15		TC BC	0.82 0.59	Vert(LL) Vert(CT)	-0.26 -0.45	9-11 9-11	>999 >721	360 240	MT20	197/144
BCLL	0.0*	Rep Stress Incr	YES		WB	0.59	Horz(CT)	-0.45	9-11	>/21 n/a	240 n/a		
BCDL	10.0	Code	IRC2018/	TDI2014	Matrix-S	0.07	Wind(LL)	0.08	9-11	>999	240	Weight: 115 lb	ET - 10%
BCDL	10.0	Code	1KC2010/	1712014	Wattrx-5		WING(LL)	0.08	9-11	>999	240	weight. 115 lb	FT = 1076
LUMBER TOP CHORD	2x4 SPF No.2				hanical connection capable of withst								
		:		01	uplift at joint 2.	j ·		,					
			No.2 6)	This truss is	designed in accord	dance w	ith the 2018						
		,		International	Residential Code	sections	s R502.11.1 a	ind					
WEDGE	Left: 2x3 SPF No.2			R802.10.2 a	nd referenced stan	ndard Al	NSI/TPI 1.						
BRACING			LOA	AD CASE(S)	Standard								
TOP CHORD	Structural wood shea	athing directly applie	ed or										
	2-8-1 oc purlins, exe												
BOT CHORD	0 0 7	applied or 9-7-10 or											
		, ,											
	()												
			`										
	`	,, (,)										
FORCES		pression/Maximum											
		266 2 1- 2220/101											
TOF CHORD													
BOT CHORD	,	,	.0										
201 0110112	8-9=-239/1001												
WEBS	3-11=-407/259, 4-11	=-51/728, 4-9=-766/	/256,										~
	6-9=-56/969, 6-8=-1	412/336										and	all
NOTES												E.F. OF M	AISS D
1) Wind: ASC	CE 7-16; Vult=115mph	(3-second gust)									4	2 M	NS
	nph; TCDL=6.0psf; BC										H	SCOTT	M NR
	0 1	,									8 +		··· \ ↓ X
BRACING TOP CHORD BOT CHORD WEBS REACTIONS FORCES TOP CHORD BOT CHORD WEBS NOTES 1) Wind: ASC Vasd=91m II; Exp C; E cantilever	Structural wood shea 2-8-1 oc purlins, exc Rigid ceiling directly bracing. 1 Row at midpt (size) 2=0-3-8, 8 Max Horiz 2=478 (LC Max Uplift 2=-150 (L Max Grav 2=1355 (L (lb) - Maximum Com Tension 1-2=0/6, 2-3=-2503/2 4-6=-1143/65, 6-7=- 2-11=-656/2227, 9-1 8-9=-239/1001 3-11=-407/259, 4-11 6-9=-56/969, 6-8=-1- CE 7-16; Vult=115mph ph; TCDL=6.0psf; BC	athing directly applie cept end verticals. applied or 9-7-10 oc 7-8, 4-9, 6-8 3= Mechanical C 8), 8=-329 (LC 8), C 2), 8=1330 (LC 2), pression/Maximum 266, 3-4=-2238/181, 144/83, 7-8=-245/12 1=-422/1549, =-51/728, 4-9=-766/ 412/336 (3-second gust) DL=6.0psf; h=25ff; C welope) exterior zon ; end vertical left	No.2 6) LOA ed or c /256, Cat.	This truss is International R802.10.2 a	designed in accord Residential Code nd referenced stan	sections	s R502.11.1 a	Ind				S SCOT	

exposed; Lumber DOL=1.60 plate grip DOL=1.60 2) This truss has been designed for a 10.0 psf bottom

chord live load nonconcurrent with any other live loads.
* This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom

chord and any other members, with BCDL = 10.0psf.4) Refer to girder(s) for truss to truss connections.


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSITPTI Quality Criteria, and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcscomponents.com)

						RELEASE FOR CONSTRUCTION
Job	Truss	Truss Type	Qty	Plv	Lot 176 HT	AS NOTED FOR PLAN REVIEW
005	11000		Gity	,	Lot I/ O III	DEVELOPMENT SERVICES 159955062
B240005	B1	Monopitch	7	1	Job Reference (optional	
Wheeler Lumber, Waverly, k	S - 66871,	Ru	ın: 8.71 S Jul 27 2023 Print: 8.	710 S Jul 27	2023 MiTek Industries, Inc. Fri	Aug 04 (8) \$9 / 1 3 / 2 @ 9 / 1

ID:Ej7EWovY_94Pzt7UVy1gWAz_t70-RfC?PsB70Hq3NSgPqnL8w3uITXbGrWrCDoi794z694 1 3/269124

Scale = 1:64.2

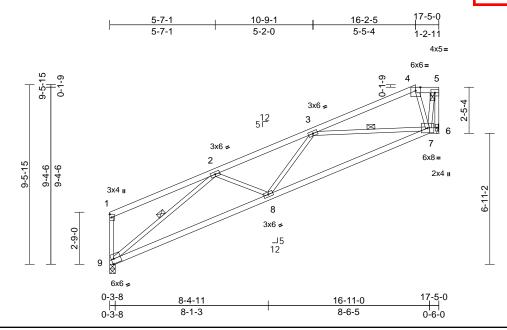
Plate Offsets (X, Y): [4:0-1-14,0-2-0], [8:0-1-8,Edge]

1 10		(,, , ,). [4.0-1-14,0-2-0], [0.0-1-0,∟uge]										
Lo	ading	(psf)	Spacing	2-0-0	csi		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
тс	LL (roof)	25.0	Plate Grip DOL	1.15	TC	0.41	Vert(LL)	-0.13	6-7	>999	360	MT20	197/144
TC	DL	10.0	Lumber DOL	1.15	BC	0.70	Vert(CT)	-0.29	6-7	>713	240		
BC	LL	0.0*	Rep Stress Incr	YES	WB	0.78	Horz(CT)	0.05	5	n/a	n/a		
BC	DL	10.0	Code	IRC2018/TPI2014	Matrix-S		Wind(LL)	0.05	6-7	>999	240	Weight: 65 lb	FT = 20%
TO BO	MBER P CHORD T CHORD BS			using A designe 7) Provide	at joint(s) 8 considers NSI/TPI 1 angle to grai r should verify capacity mechanical connectio	in formula y of beari n (by oth	a. Building ing surface. ers) of truss t	0					
	ACING P CHORD	Structural wood sheat 4-4-9 oc purlins, exe		ed or 5.	plate capable of withs ss is designed in accor	0		oint					
	T CHORD	Rigid ceiling directly bracing.	applied or 10-0-0 or	R802.10	ional Residential Code).2 and referenced star			ind					
	BS		2-8	LOAD CAS	E(S) Standard								
KE	ACTIONS	(size) 5= Mecha Max Horiz 8=231 (LC Max Uplift 5=-89 (LC Max Grav 5=774 (LC	8)										
FO	RCES	(lb) - Maximum Com Tension	pression/Maximum										
то	P CHORD			15,									
	T CHORD BS	,	=-227/1302, 5-6=-28, =0/254, 3-7=0/378,	/28									
NC	TES												
1)	Vasd=91n II; Exp C; and right e	CE 7-16; Vult=115mph mph; TCDL=6.0psf; BC Enclosed; MWFRS (en exposed ; end vertical I	DL=6.0psf; h=25ft; (nvelope); cantilever l left and right expose	left							A	STATE OF I	MISSOL
		OL=1.60 plate grip DO									A	SCOT	TM. CN
2)		s is not designed to sup									4	SEV	IER \ Y
3)		for use where aesthetic has been designed for		n.							8		· \★₩
3)		load nonconcurrent wi		ds							NR	4	
4)		ss has been designed for								_	X	Cott	Hermon
.,		ttom chord in all areas									- Kry	BI NUM	
		all by 2-00-00 wide will i		om							N.	OX PE-2001	01880/ 201

3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.

5) Refer to girder(s) for truss to truss connections.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)



August 7,2023

SSIONAL EN

						RELEASE FOR CONSTRUCTION
Job	Truss	Truss Type	Qty	Ply	Lot 176 HT	AS NOTED FOR PLAN REVIEW
B240005	B2	Half Hip	1	1	Job Reference (optional	DEVELOPMENT SERVICES 159955063 LEE'S SUMMIT, MISSOURI
						00/40/0004

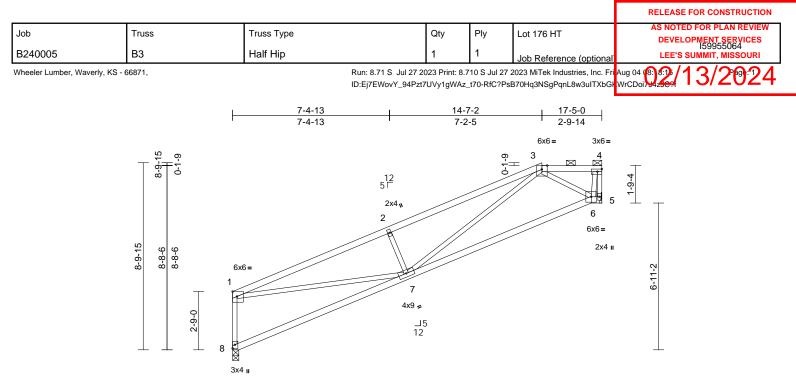
Run: 8.71 S Jul 27 2023 Print: 8.710 S Jul 27 2023 MiTek Industries, Inc. Fri Aug 04 8 57/1 3/29:24 ID:Ej7EWovY_94Pzt7UVy1gWAz_t70-RfC?PsB70Hq3NSgPqnL8w3uITXbGt WrCDoi 942694

Scale = 1:61

Plate Offsets	(X,	Y):	[9:0-1-8,Edge]
---------------	-----	-----	----------------

-													
Loading TCLL (roof) TCDL BCLL BCDL	(psf) 25.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC20	18/TPI2014	CSI TC BC WB Matrix-S	0.34 0.69 0.77	DEFL Vert(LL) Vert(CT) Horz(CT) Wind(LL)	in -0.13 -0.28 0.05 0.05	(loc) 7-8 7-8 6 7-8	l/defl >999 >727 n/a >999	L/d 360 240 n/a 240	PLATES MT20 Weight: 66 lb	GRIP 197/144 FT = 20%
FORCES (Ib) - Max FORCES (Ib) - 100 FORCES (Ib) - 100 FORCES (Ib) - 100 FORCES (Ib) - Ma Tension TOP CHORD 1-9=-190 3-4=-322 BOT CHORD 8-9=-275 WEBS 2-9=-157	No.2 No.2 al wood she purlins, ex purlins (6-C ling directly a midpt 6= Mecha 9=211 (L0 6=-774 (LC 6=774 (LC kimum Com 0/45, 1-2=-1 7/23, 4-5=-1 7/1311, 7-8= 4/129, 2-8=	,	7 ed or 8 nd 9 c 9 1 1 5, 1 1 5, 1 2 1 1 1 1 2 1 2 1	 on the bottor 3-06-00 tall II chord and an Refer to gird Bearing at jc using ANSI/ designer sho Provide mec bearing plate 6. This truss is International R802.10.2 a Graphical put 		eas where will fit betw s. truss conr s parallel t ain formula ity of beari on (by oth standing 7 ordance w le sections andard AN on does no	a rectangle veen the bot o grain value a. Building ng surface. ers) of truss 4 lb uplift at ith the 2018 R502.11.1 i SI/TPI 1. ot depict the	tom e to joint and					
 NOTES Unbalanced roof live this design. Wind: ASCE 7-16; V Vasd=91mph; TCDL II; Exp C; Enclosed; I and right exposed; e Lumber DOL=1.60 p This trunc is not dop 	ult=115mph =6.0psf; BC WWFRS (er nd vertical ate grip DC	(3-second gust) IDL=6.0psf; h=25ft; (nvelope); cantilever l left and right expose IL=1.60	Cat. eft d;							1		STATE OF SCOT	MISSOLA T M. HER

- This truss is not designed to support a ceiling and is not intended for use where aesthetics are a consideration.
- 4) Provide adequate drainage to prevent water ponding.
- 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and properly damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANS/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com) MiTek

August 7,2023

PE-200101880

SSIONAL EN

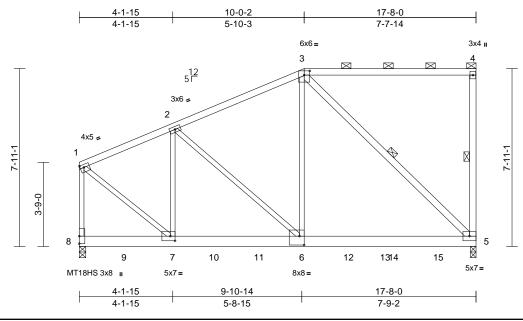
0-3-8	8-2-5	16-11-0	17-5-0
0-3-8	7-10-13	8-8-11	0-6-0

Scale = 1:54.3 Plate Offsets (X, Y): [1:Edge.0-2-12]

Plate Offsets ((X, Y): [1:Edge,0-2-12	2]			-							-	
Loading TCLL (roof) TCDL BCLL BCDL	(psf) 25.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC20	18/TPI2014	CSI TC BC WB Matrix-S	0.77 0.59 0.54	DEFL Vert(LL) Vert(CT) Horz(CT) Wind(LL)	in -0.14 -0.32 0.02 0.09	(loc) 6-7 6-7 5 6-7	l/defl >999 >653 n/a >999	L/d 360 240 n/a 240	PLATES MT20 Weight: 64 lb	GRIP 197/144 FT = 20%
FORCES TOP CHORD BOT CHORD WEBS	2x4 SPF No.2 2x4 SPF No.2 2x3 SPF No.2 Structural wood she 2-2-0 oc purlins, ex 2-0-0 oc purlins, (6-0 Rigid ceiling directly bracing. (size) 5= Mecha Max Horiz 8=239 (LC Max Uplift 5=-162 (L Max Grav 5=774 (LC (lb) - Maximum Com Tension 1-8=-726/202, 1-2=- 2-3=-1629/437, 3-4= 7-8=-246/118, 6-7=- 1-7=-313/1560, 2-7= 3-6=-591/238, 4-6=-	cept end verticals, al -0 max.): 3-4. applied or 10-0-0 oc anical, 8=0-3-8 C 5) C 8), 8=-79 (LC 8) C 1), 8=774 (LC 1) apression/Maximum 1825/405, =-238/37, 4-5=-857/7 246/821, 5-6=-18/23 =-524/276, 3-7=-266/	sed or nd 1 c 1 y g g	 Bearing at jc using ANSI/ designer sho Provide mec bearing platt 8 and 162 lb This truss is Internationa R802.10.2 a Graphical pu 		parallel in formul y of bear on (by oth tanding 7 rdance w sections indard AN n does no	to grain value a. Building ing surface. ers) of truss 79 lb uplift at ith the 2018 \$ R502.11.1 a NSI/TPI 1. ot depict the	to joint and					
 this design Wind: ASC Vasd=91m II; Exp C; I cantilever right exposion This truss intended fet Provide action This truss 	ed roof live loads have n. CE 7-16; Vult=115mph nph; TCDL=6.0psf; BC Enclosed; MWFRS (er left and right exposed sed; Lumber DOL=1.6 is not designed to sup or use where aesthetic dequate drainage to pr has been designed for load nonconcurrent wi	(3-second gust) iDL=6.0psf; h=25ft; C ivelope) exterior zom ; end vertical left and 0 plate grip DOL=1.6 iport a ceiling and is is are a consideratio event water ponding r a 10.0 psf bottom	Cat. he; d 50 not n. J.									STATE OF SCOT SEV NUM PE-2001	Berry A

 6) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)



SSIONAL EN

						RELEASE FOR CONSTRUCTION
Job	Truss	Truss Type	Qty	Plv	Lot 176 HT	AS NOTED FOR PLAN REVIEW
						DEVELOPMENT SERVICES 159955065
B240005	B4	Half Hip Girder	1	2	Job Reference (optional	LEE'S SUMMIT, MISSOURI

Run: 8.71 S Jul 27 2023 Print: 8.710 S Jul 27 2023 MiTek Industries, Inc. Fri Aug 04 (6:) 6:36 / 1 3/2:00:24 ID:Ej7EWovY_94Pzt7UVy1gWaz_t70-RfC?PsB70Hq3NSgPqnL8w3uITXbGi WrCDoi7642664

Scale = 1:51.3

Plate Offsets (X, Y): [1:0-2-0,0-1-8], [3:0-3-0,0-2-4], [6:0-2-8,0-4-12], [7:0-2-8,0-2-8]

Loading	(psf)	Spacing	2-0-0	csi	DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15	TC 0.4	()	-0.15	5-6	>999	360	MT20	197/144
TCDL	10.0	Lumber DOL	1.15	BC 0.7		-0.27	5-6	>765	240	MT18HS	197/144
BCLL	0.0*	Rep Stress Incr	NO	WB 0.6	Horz(CT)	0.02	5	n/a	n/a		
BCDL	10.0	Code	IRC2018/TPI2014	Matrix-S	Wind(LL)	0.09	5-6	>999	240	Weight: 190 lb	FT = 20%
LUMBER			3) Wind: ASCE	7-16; Vult=115mph (3-s	econd aust)		C	oncentra	ted Lo	ads (lb)	
TOP CHORD	2x4 SPF No.2			h; TCDL=6.0psf; BCDL=		Cat.	-				=-667 (B), 10=-667
BOT CHORD	2x6 SPF 1650F 1.4E	=		closed; MWFRS (envelo							14=-667 (B), 15=-667
WEBS	2x3 SPF No.2 *Exce		No.2 cantilever le	t and right exposed ; en	vertical left a	nd		(B)	(// (//	
				d; Lumber DOL=1.60 pla	te grip DOL=1	.60		. ,			
BRACING				quate drainage to prever							
TOP CHORD	Structural wood she	athing directly applie		e MT20 plates unless oth							
		cept end verticals, ar	d 6) This truss ha	as been designed for a 1							
	2-0-0 oc purlins (6-0		chord live lo	ad nonconcurrent with a							
BOT CHORD	Rigid ceiling directly	applied or 10-0-0 oc		has been designed for a		.0psf					
	bracing.			n chord in all areas whe		4.0.00					
WEBS	1 Row at midpt	4-5, 3-5		by 2-00-00 wide will fit by other members, with							
REACTIONS				hanical connection (by c							
	Max Horiz 8=311 (LC	,		e at joint(s) 5.		10					
	Max Uplift 5=-416 (L		9) Provide med	hanical connection (by c	thers) of truss	to					
	Max Grav 5=3512 (L	_C 1), 8=3392 (LC 1)		capable of withstandin							
FORCES	(lb) - Maximum Com	pression/Maximum		uplift at joint 8.							
	Tension			designed in accordance	with the 2018						
TOP CHORD	1-2=-2620/256, 2-3=			Residential Code section		and					
	4-5=-259/111, 1-8=-			nd referenced standard							
BOT CHORD WEBS	7-8=-285/75, 6-7=-3	99/2378, 5-6=-338/2. 35/123, 3-6=-214/280	ri) Orapinoar pe	Irlin representation does		size					
WEDS	3-5=-3238/373, 1-7=		bottom chore	ation of the purlin along	ne top and/or						
NOTES	0.0-0200/010, 1-1-	- 201/0011		other connection device	(s) shall be					SIL	and
	to be connected toget	thor with 10d		ficient to support concer		667				F OF	MISCO
) nails as follows:			52 lb up at 9-7-3, 667 l						TATE OF	
	s connected as follows			67 lb down and 58 lb up					A	N	- Nest
	row at 0-9-0 oc.	5. 2A+ 110W at 0 5 t		B lb up at 15-7-3, 667 lb					H		I MI. VY W
	ords connected as follo	ows: 2x6 - 2 rows		67 lb down and 58 lb up					81	/ SEV	IER \ Y
	at 0-9-0 oc.			58 lb up at 21-7-3, and					R A		
Web conne	ected as follows: 2x3 -	1 row at 0-9-0 oc, 2		7-3 on bottom chord. Th					820		· h · h
1 row at 0-				ection device(s) is the r	sponsibility of				VA.	COUR	- Mar
	re considered equally		others.					•	WY	PE-2001	
	oted as front (F) or ba								N	FE-2001	IN ISON SA
	ection. Ply to ply conr			of Live (balanced): Lumb	er Increase=1	.15,			Y	100	IN B
	o distribute only loads	noted as (F) or (B),	Plate Incre							S'SIONA	TENA
uniess othe	erwise indicated.		Uniform Lo							QUIVE	
			vert: 1-3	=-70, 3-4=-70, 5-8=-20						and and	101 7 0000

August 7,2023

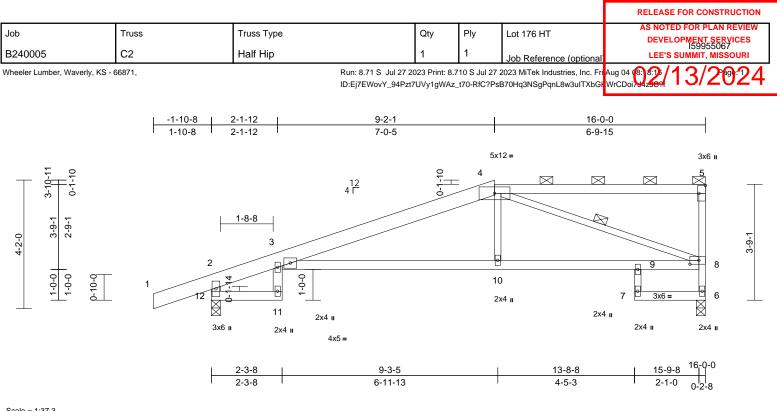
WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

							RELEAS		CTION
Job	Truss	Truss Type		Qty	Ply	Lot 176 HT		ED FOR PLAN RE LOPMENT SERVIC 159955066	
B240005	C1	HALF HIP GIR	RDER	1	2	Job Reference (option		159955066 S SUMMIT, MISSO	URI
Wheeler Lumber, Wave	rly, KS - 66871,					2023 MiTek Industries, Inc. B70Hq3NSgPqnL8w3uITX		13/20	24
	-1-10 1-10-		<u>6-8-1</u> 4-6-5		<u>11-4-</u> 4-8-		<u>16-0-0</u> 4-8-0		
				5x12 =		2x4 II		3x10 =	
3-4-0 		3 2 3 4x5 = 2x4 II	4 ¹² • • • • • • • • • • • • • • • • • • •		14	5 5 15 11 16 4x10 =	10 8 3x4 2x4 II 2x4 II	6 9 9 2x4 II	2-11-5
		2-3-8 2-3-8	<u>6-9-13</u> 4-6-5		<u>11-4</u> 4-6-		3-8-8 15-8 -4-8 2-0		

Scale = 1:37.7

Plate Offsets (X, Y): [2:Edge,0-1-2], [3:0-2-9,0-2-0]

	, , , , , [2.Euge,0 1 2],	, [0.0 2 0,0 2 0]													
Loading	(psf)	Spacing	2-0-0		csi		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP		
TCLL (roof)	25.0	Plate Grip DOL	1.15		тс	0.72	Vert(LL)	-0.16	3-12	>999	360	MT20	197/144		
TCDL	10.0	Lumber DOL	1.15		BC	0.83	Vert(CT)	-0.28	3-12	>677	240				
BCLL	0.0*	Rep Stress Incr	NO		WB	0.41	Horz(CT)	0.19	7	n/a	n/a				
BCDL	10.0	Code	IRC20	18/TPI2014	Matrix-S		Wind(LL)	0.14	3-12	>999	240	Weight: 152 lb	FT = 10%		
LUMBER			2) All loads are	e considered equa	llv applie	d to all plies.		Ur	niform Lo	oads (I	b/ft)			
TOP CHORD	2x6 SPF 1650F 1.4E	E *Except* 4-6:2x4 S	PF		except if noted as front (F) or back (B) face in the LOAD Vert: 1-4=-70, 4-6=-70, 2-13=-20, 3-10=-20, 7-8										
	No.2			CASE(S) se	CASE(S) section. Ply to ply connections have been Concentrated Loads (Ib)										
BOT CHORD	2x6 SPF No.2 *Exce	ept* 10-8:2x4 SPF No	0.2	provided to	distribute only load	ds noted	as (F) or (B),			Vert: 10	=-230	(F), 12=-450 (F),	14=-230 (F), 15=-230		
WEBS	2x4 SPF No.2			unless other	wise indicated.					(F), 16=					
BRACING			3) Unbalanced	roof live loads ha	ve been	considered fo	or							
TOP CHORD	Structural wood she	athing directly applie	ed or	this design.											
		cept end verticals, a			7-16; Vult=115m			_							
	2-0-0 oc purlins (6-0)-0 max.): 4-6.			h; TCDL=6.0psf; I										
BOT CHORD	Rigid ceiling directly	applied or 6-0-0 oc		II; Exp C; Enclosed; MWFRS (envelope) exterior zone;											
	bracing.			cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60											
REACTIONS	(size) 2=0-3-8, 7	7=0-3-8	_												
	Max Horiz 2=120 (LC	C 26)	5												
	Max Uplift 2=-394 (L	.C 4), 7=-390 (LC 4)	6		ad nonconcurrent			de							
	Max Grav 2=1405 (L	LC 1), 7=1518 (LC 1)) 7		has been designe										
FORCES	(lb) - Maximum Com	pression/Maximum	'		m chord in all area			ры							
	Tension				by 2-00-00 wide w			om							
TOP CHORD	1-2=0/18, 2-3=-681/	138, 3-4=-4262/1092	2,		ny other members										
	4-5=-3374/896, 5-6=	-3374/896,	8		chanical connectio		ers) of truss	to							
	7-9=-1475/395, 6-9=	-1264/350			e capable of withs										
BOT CHORD	2-13=0/0, 3-12=-105				uplift at joint 2.	Ũ	•								
	11-12=-1076/4185,	,	9) This truss is	designed in acco	rdance w	ith the 2018								
	9-10=-94/226, 8-10=			Internationa	Residential Code	e sections	s R502.11.1 a	and							
WEBS	3-13=-40/211, 4-12=	,	6/243,	R802.10.2 a	ind referenced sta	Indard AN	ISI/TPI 1.					A T	and the second		
	5-11=-317/164, 6-11	1=-874/3350	1	Graphical pr	urlin representatio	n does n	ot depict the	size				B F OF	VIIS S		
					ation of the purlin	along the	e top and/or				4	Y NI	NS		
NOTES				bottom chor							B	STATE OF J	TM XPN		
/ / /	to be connected toge	ther with 10d	1		r other connection						8	SEV			
(∩ 131"v3") naile as follows:			provided sufficient to support concentrated load(s) 450											


- (0.131"x3") nails as follows: Top chords connected as follows: 2x6 - 2 rows staggered at 0-9-0 oc, 2x4 - 1 row at 0-9-0 oc. Bottom chords connected as follows: 2x6 - 2 rows staggered at 0-9-0 oc, 2x4 - 1 row at 0-9-0 oc. Web connected as follows: 2x4 - 1 row at 0-9-0 oc.
- 11) Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 450 lb down and 145 lb up at 6-8-1, 230 lb down and 73 lb up at 7-11-4, 230 lb down and 73 lb up at 9-11-4, and 230 lb down and 73 lb up at 11-11-4, and 230 lb down and 71 lb up at 13-10-4 on bottom chord. The design/ selection of such connection device(s) is the responsibility of others.
- LOAD CASE(S) Standard
- 1) Dead + Roof Live (balanced): Lumber Increase=1.15, Plate Increase=1.15

Chesterfield, MO 63017 314.434.1200 / MiTek-US.com

PE-200101880'

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permenter is always required for stability and to prevent colleges with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcscomponents.com)

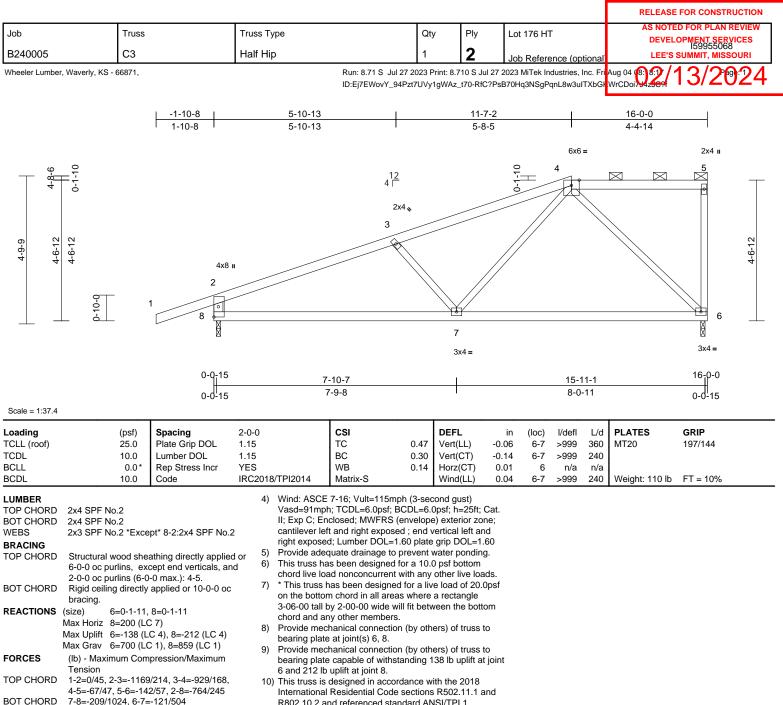

Scale = 1:37.3

Plate Offsets (X, Y): [3:0-0-11,0-0-15], [5:Edge,0-2-8], [8:0-3-8,0-1-8]

Plate Offsets (.	X, Y): [3:0-0-11,0-0-1	5], [5:Edge,0-2-8], [8	8:0-3-8,0-	1-8]									
Loading TCLL (roof) TCDL BCLL BCDL	(psf) 25.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC20 ⁷	18/TPI2014	CSI TC BC WB Matrix-S	0.72 0.71 0.60	DEFL Vert(LL) Vert(CT) Horz(CT) Wind(LL)	in -0.28 -0.55 0.32 0.24	(loc) 3-10 3-10 6 3-10	l/defl >670 >342 n/a >789	L/d 360 240 n/a 240	PLATES MT20 Weight: 61 lb	GRIP 197/144 FT = 10%
	2-0-0 oc purlins (6-0 Rigid ceiling directly bracing, Except: 6-0-0 oc bracing: 6- 1 Row at midpt (size) 6=0-3-8, Max Horiz 12=166 (I Max Uplift 6=-134 (L Max Grav 6=700 (L0	ept* 9-7:2x3 SPF No ept* 11-3,12-2:2x4 S eathing directly applie (cept end verticals, a)-0 max.): 4-5. • applied or 10-0-0 or 7. 4-8 12=0-3-8 LC 5) LC 4), 12=-216 (LC 4 C 1), 12=859 (LC 1)	.2 PF 6 ed or 7 ind c 8 L	 on the bottor 3-06-00 tall the chord and ar Provide mechanism bearing plate 6 and 216 lb This truss is International R802.10.2 a Graphical put 		eas where will fit betw s. on (by oth standing 1 ordance w e sections andard AN on does no	a rectangle veen the botto ers) of truss to 34 lb uplift at th the 2018 R502.11.1 a ISI/TPI 1. ot depict the s	om o joint nd					
FORCES	(lb) - Maximum Com Tension 1-2=0/45, 2-3=-263/ 4-5=-64/35, 6-8=-67 2-12=-857/235	11, 3-4=-1296/218,											
this design 2) Wind: ASC Vasd=91m II; Exp C; I cantilever right expos 3) Provide ad	ed roof live loads have	=0/34, 6-7=-6/10 317, 4-8=-1250/226 been considered fo (3-second gust) CDL=6.0psf; h=25ft; (nvelope) exterior zor ; end vertical left an 0 plate grip DOL=1. revent water ponding	r Cat. ne; d 60								P	SCOT SEVI	ER BER 018807
chord live	load nonconcurrent w	ith any other live loa	ds.										st 7,2023

16023 Swingley Ridge Rd. Chesterfield, MO 63017 314.434.1200 / MiTek-US.com

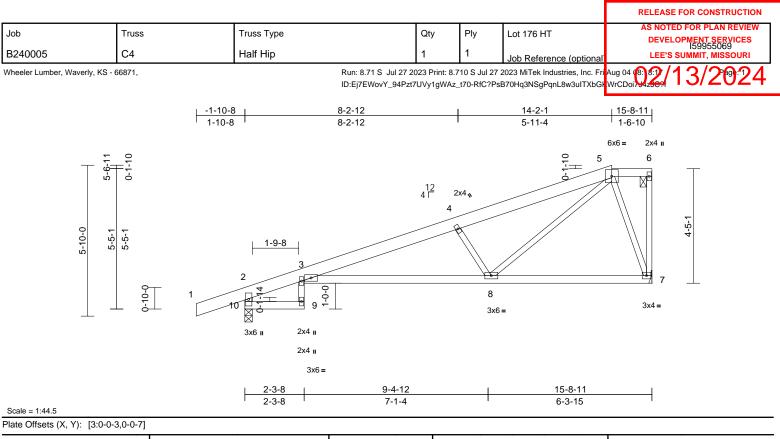
WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent colleges with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

WFBS 3-7=-305/194, 4-7=-45/504, 4-6=-696/169 NOTES

1) 2-ply truss to be connected together with 10d (0.131"x3") nails as follows: Top chords connected as follows: 2x4 - 1 row at 0-9-0 oc, 2x3 - 1 row at 0-9-0 oc

Bottom chords connected as follows: 2x4 - 1 row at 0-9-0 oc.

Web connected as follows: 2x3 - 1 row at 0-9-0 oc. All loads are considered equally applied to all plies, 2)


- except if noted as front (F) or back (B) face in the LOAD CASE(S) section. Ply to ply connections have been provided to distribute only loads noted as (F) or (B), unless otherwise indicated.
- Unbalanced roof live loads have been considered for 3) this design.

- R802.10.2 and referenced standard ANSI/TPI 1.
- 11) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.
- LOAD CASE(S) Standard

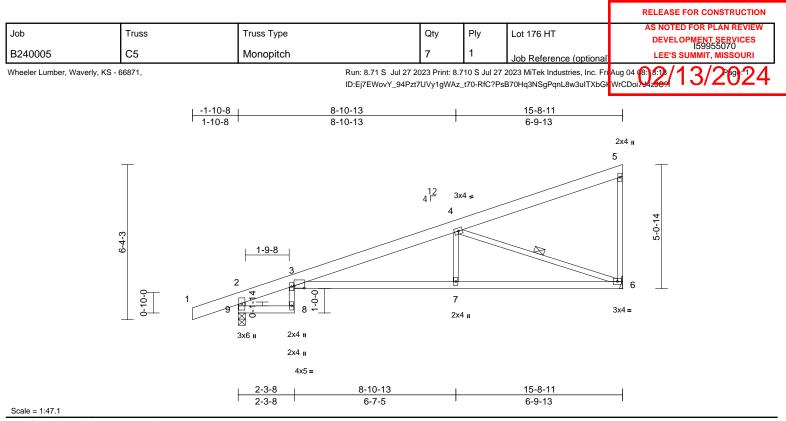
🙏 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponent.com)

		-				-							
Loading	(psf)	Spacing	2-0-0		csi		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)		Plate Grip DOL	1.15		тс	1.00	Vert(LL)	-0.22	3-8	>852	360	MT20	197/144
TCDL	10.0	Lumber DOL	1.15		BC	0.67	Vert(CT)	-0.45	3-8	>409	240		
BCLL	0.0*	Rep Stress Incr	YES		WB	0.39	Horz(CT)	0.22	7	n/a	n/a		
BCDL	10.0	Code	IRC2018/	TPI2014	Matrix-S	-	Wind(LL)	0.14	3-8	>999	240	Weight: 64 lb	FT = 10%
LUMBER					hanical connectio								
TOP CHOR				01	capable of withs	tanding 4	0 lb uplift at	joint					
BOT CHOR					plift at joint 10.	rdon oo w	ith the 2019						
WEBS	2x3 SPF No.2 *Exce	ept* 10-2:2x4 SPF N			designed in accor Residential Code			and					
BRACING					nd referenced sta			anu					
TOP CHOR	D Structural wood she except end verticals	0 7 11	eu, où i		rlin representation			size					
	(6-0-0 max.): 5-6.	s, and 2-0-0 oc punil	15 /	or the orienta	ation of the purlin	along the	top and/or						
BOT CHOR		applied or 10-0-0 o	ic I	bottom chord	1.								
	bracing.		LOA	AD CASE(S)	Standard								
REACTION	S (size) 7= Mecha	anical, 10=0-3-8											
	Max Horiz 10=168 (I	,											
	Max Uplift 7=-40 (LC												
	Max Grav 7=687 (L0												
FORCES	(lb) - Maximum Com	npression/Maximum											
	Tension	0 0 4 4504/05											
TOP CHOR	D 1-2=0/45, 2-3=-284/ 4-5=-1212/78, 5-6=-												
	2-10=-851/106	.55/57, 0-7=-50/15,											
BOT CHOR		60. 3-8=-109/1459.											
	7-8=-39/216	, ,											
WEBS	4-8=-723/151, 5-8=-	52/1136, 5-7=-644/	60										
NOTES													
1) Unbalar	nced roof live loads have	been considered for	or									OF	MISSO
this des												TATE OF J	ISS W
	SCE 7-16; Vult=115mph		0-1								6	122	1 CAN
	1mph; TCDL=6.0psf; BC C; Enclosed; MWFRS (er										B	SCOT	TM. YZY
	nt exposed ; end vertical										R	SEV.	IER \ Y
	DOL=1.60 plate grip DC		,								810	2/	0 121
	adequate drainage to pr		g.								WX	1 the	J. J. J. K.
	ss has been designed fo									-		NUM	- engen
	ve load nonconcurrent w										17		
	uss has been designed f		Opsf								N	PE-2001	A A LOON
on the b	pottom chord in all areas	where a rectandle									V.		

 This truss has been designed for a live load of 20.0ps on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.

6) Refer to girder(s) for truss to truss connections.

Mitek 16023 Swingley Ridge Rd.


SSIONAL

E

August 7,2023

Chesterfield, MO 63017 314.434.1200 / MiTek-US.com

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent colleges with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

	Plate Offsets	(X.	Y):	[3:0-4-15,0-1-2]
--	---------------	-----	-----	------------------

	L											
Loading	(psf)	Spacing	2-0-0	csi		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15	TC	1.00	Vert(LL)	-0.25	3-7	>758	360	MT20	197/144
TCDL	10.0	Lumber DOL	1.15	BC	0.68	Vert(CT)	-0.48	3-7	>389	240		
BCLL	0.0*	Rep Stress Incr	YES	WB	0.69	Horz(CT)	0.25	6	n/a	n/a		
BCDL	10.0	Code	IRC2018/TPI2014	Matrix-S		Wind(LL)	0.16	3-7	>999	240	Weight: 63 lb	FT = 20%

LUMBER

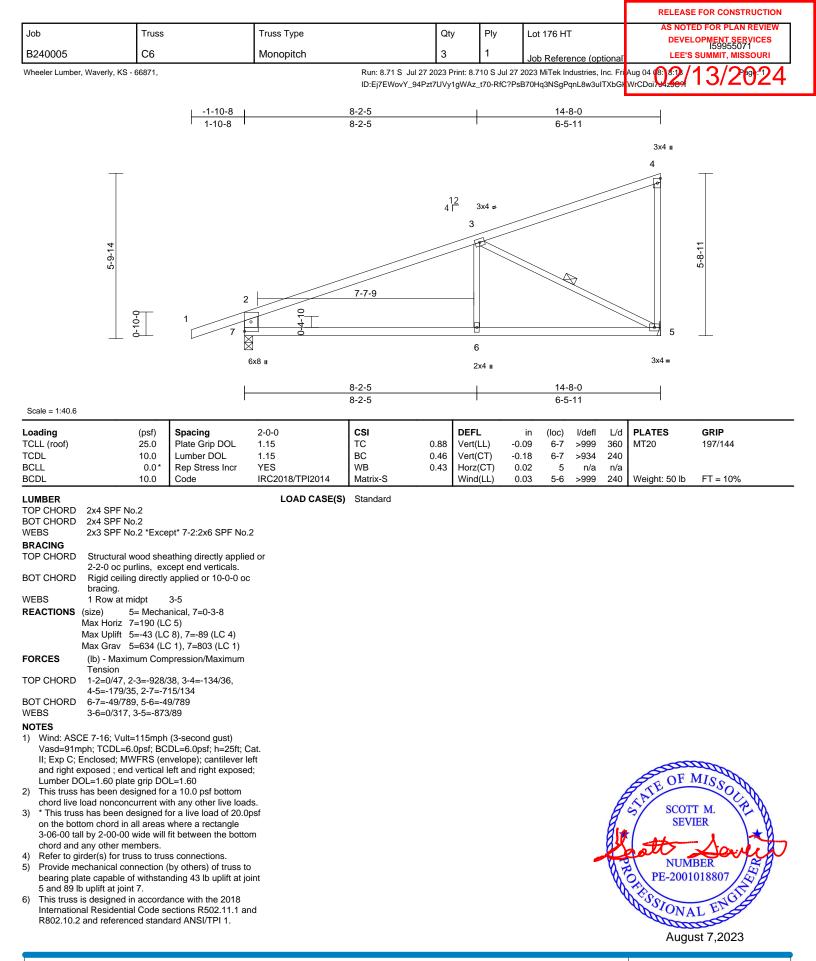
N

TOP CHORD	2x6 SPF No.2
BOT CHORD	2x4 SPF No.2 *Except* 8-3:2x3 SPF No.2
WEBS	2x3 SPF No.2 *Except* 9-2:2x4 SPF No.2
BRACING	
TOP CHORD	Structural wood sheathing directly applied,
	except end verticals.
BOT CHORD	Rigid ceiling directly applied or 10-0-0 oc
	bracing.
WEBS	1 Row at midpt 4-6
REACTIONS	(size) 6= Mechanical, 9=0-3-8
	Max Horiz 9=186 (LC 5)
	Max Horiz 9=186 (LC 5) Max Uplift 6=-46 (LC 8), 9=-87 (LC 4)
	· · · · · · · · · · · · · · · · · · ·
FORCES	Max Uplift 6=-46 (LC 8), 9=-87 (LC 4)
FORCES	Max Uplift 6=-46 (LC 8), 9=-87 (LC 4) Max Grav 6=687 (LC 1), 9=847 (LC 1)
FORCES	Max Uplift 6=-46 (LC 8), 9=-87 (LC 4) Max Grav 6=687 (LC 1), 9=847 (LC 1) (Ib) - Maximum Compression/Maximum
	Max Uplift 6=-46 (LC 8), 9=-87 (LC 4) Max Grav 6=687 (LC 1), 9=847 (LC 1) (Ib) - Maximum Compression/Maximum Tension
	Max Uplift 6=-46 (LC 8), 9=-87 (LC 4) Max Grav 6=687 (LC 1), 9=847 (LC 1) (Ib) - Maximum Compression/Maximum Tension 1-2=0/45, 2-3=-297/0, 3-4=-1416/64,
TOP CHORD	Max Uplift 6=-46 (LC 8), 9=-87 (LC 4) Max Grav 6=687 (LC 1), 9=847 (LC 1) (Ib) - Maximum Compression/Maximum Tension 1-2=0/45, 2-3=-297/0, 3-4=-1416/64, 4-5=-138/28, 5-6=-155/40, 2-9=-851/105

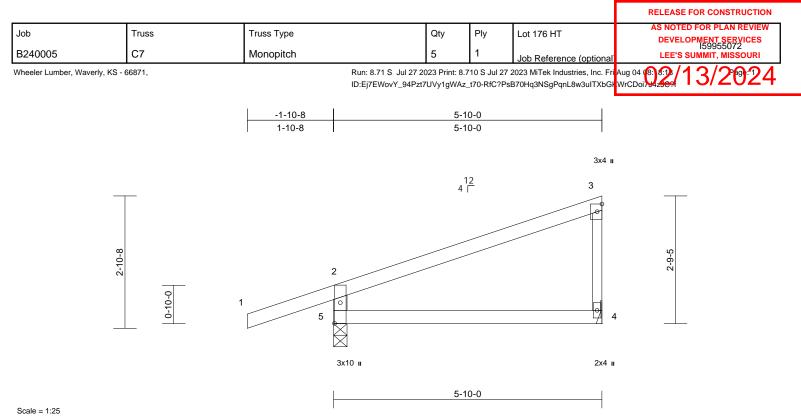
6) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and

R802.10.2 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard


/EBS	1 Row at midpt 4-6	
EACTIONS	(size) 6= Mechanical, 9=0-3-8	
	Max Horiz 9=186 (LC 5)	
	Max Uplift 6=-46 (LC 8), 9=-87 (LC 4)	
	Max Grav 6=687 (LC 1), 9=847 (LC 1)	
ORCES	(lb) - Maximum Compression/Maximum	
	Tension	
OP CHORD	1-2=0/45, 2-3=-297/0, 3-4=-1416/64,	
	4-5=-138/28, 5-6=-155/40, 2-9=-851/105	
OT CHORD	8-9=-6/11, 3-8=-5/60, 3-7=-82/1344,	
	6-7=-81/1344	
/EBS	4-7=0/311, 4-6=-1421/124	
OTES		
) Wind: AS	CE 7-16; Vult=115mph (3-second gust)	
V/	TODI COLLE DODI COLLE DELLO COLLE	

- 1) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope); cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
- This truss has been designed for a 10.0 psf bottom 2) chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf 3) on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- Refer to girder(s) for truss to truss connections. 4)
- Provide mechanical connection (by others) of truss to 5) bearing plate capable of withstanding 46 lb uplift at joint 6 and 87 lb uplift at joint 9.


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not beigh valid for use only with with with sets outputs into design is based only door parameters shown, and is for an individual dualing component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria**, and **DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcscomponents.com)

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbsccomponents.com)

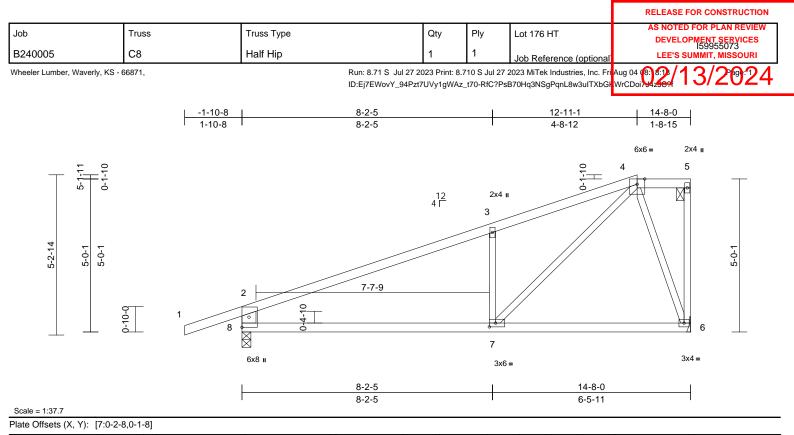
Plate Offsets (X, Y): [5:0-5-6,0-1-8]

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15	TC	0.36	Vert(LL)	-0.04	4-5	>999	360	MT20	197/144
TCDL	10.0	Lumber DOL	1.15	BC	0.25	Vert(CT)	-0.08	4-5	>846	240		
BCLL	0.0*	Rep Stress Incr	YES	WB	0.00	Horz(CT)	0.00	4	n/a	n/a		
BCDL	10.0	Code	IRC2018/TPI2014	Matrix-R		Wind(LL)	0.01	4-5	>999	240	Weight: 18 lb	FT = 10%

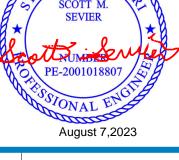
- LUMBER
- TOP CHORD 2x4 SPF No.2 BOT CHORD 2x4 SPF No.2 2x3 SPF No.2 *Except* 5-2:2x4 SPF No.2 WEBS BRACING TOP CHORD Structural wood sheathing directly applied or 5-10-0 oc purlins, except end verticals. BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing. REACTIONS 4= Mechanical, 5=0-3-8 (size) Max Horiz 5=120 (LC 5)
- Max Uplift 4=-49 (LC 8), 5=-138 (LC 4) Max Grav 4=226 (LC 1), 5=418 (LC 1) FORCES (Ib) - Maximum Compression/Maximum Tension 1-2=0/45, 2-3=-121/15, 3-4=-163/75, TOP CHORD
- 2-5=-370/176 BOT CHORD 4-5=-28/38

NOTES

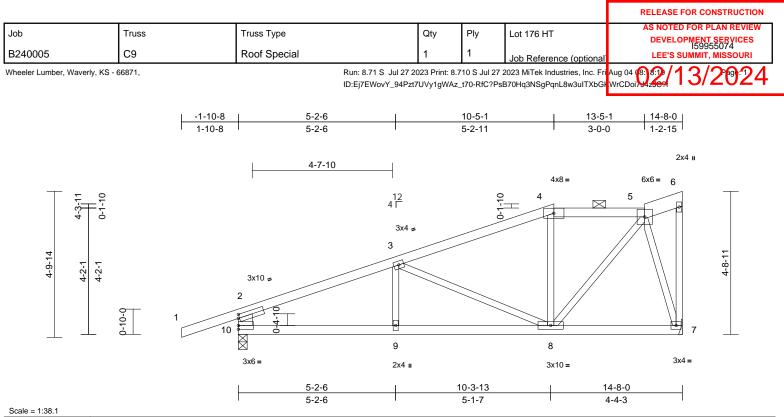
- 1) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
- 2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 3) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- 4) Refer to girder(s) for truss to truss connections.
- Provide mechanical connection (by others) of truss to 5) bearing plate capable of withstanding 49 lb uplift at joint 4 and 138 lb uplift at joint 5.
- This truss is designed in accordance with the 2018 6) International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.


LOAD CASE(S) Standard

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not beigh valid for use only with with with sets outputs into design is based only door parameters shown, and is for an individual dualing component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria**, and **DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcscomponents.com)



314.434.1200 / MiTek-US.com


Loading TCLL (roof)	(psf) 25.0	Spacing Plate Grip DOL	2-0-0 1.15		CSI TC	0.90	DEFL Vert(LL)	in -0.09	(loc) 7-8	l/defl >999	L/d 360	PLATES MT20	GRIP 197/144
TCDL	10.0	Lumber DOL	1.15		BC	0.46	Vert(CT)	-0.18	7-8	>933	240		
BCLL	0.0*	Rep Stress Incr	YES		WB	0.35	Horz(CT)	0.01	6	n/a	n/a		
BCDL	10.0	Code	IRC2018/	TPI2014	Matrix-S		Wind(LL)	0.03	6-7	>999	240	Weight: 52 lb	FT = 10%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD	2x4 SPF No.2 2x3 SPF No.2 *Exce	ept* 8-2:2x6 SPF No.2	2 8) 1 or	bearing plate 6 and 201 lb This truss is International R802.10.2 at	hanical connecti capable of with uplift at joint 8. designed in according Residential Coording nd referenced st	standing 1 ordance w e sections andard AN	29 lb uplift a ith the 2018 R502.11.1 a ISI/TPI 1.	t joint and					
BOT CHORD	2-2-0 oc purlins, ex 2-0-0 oc purlins (6-0	cept end verticals, an	d ⁹⁾					size					
REACTIONS	(size) 6= Mecha Max Horiz 8=220 (L0 Max Uplift 6=-129 (L0 Max Grav 6=634 (L0	.C 4), 8=-201 (LC 4)											
FORCES	(lb) - Maximum Corr Tension	pression/Maximum											
TOP CHORD													
BOT CHORD WEBS	7-8=-141/772, 6-7=-	,	22										
NOTES	5-7=-459/240, 4-7=-	210/020, 4-0=-575/10	55										
	ed roof live loads have	been considered for											
2) Wind: AS Vasd=91r II; Exp C; cantilever right expo	TE 7-16; Vult=115mph nph; TCDL=6.0psf; BC Enclosed; MWFRS (er left and right exposed sed; Lumber DOL=1.6 dequate drainage to pr	DL=6.0psf; h=25ft; C hvelope) exterior zone ; end vertical left and 0 plate grip DOL=1.6	;									STATE OF I	MISSOLAR T M. HER
 This truss 	has been designed fo	r a 10.0 psf bottom	S.							(Jo.		0

- chord live load nonconcurrent with any other live loads.
 * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- 6) Refer to girder(s) for truss to truss connections.

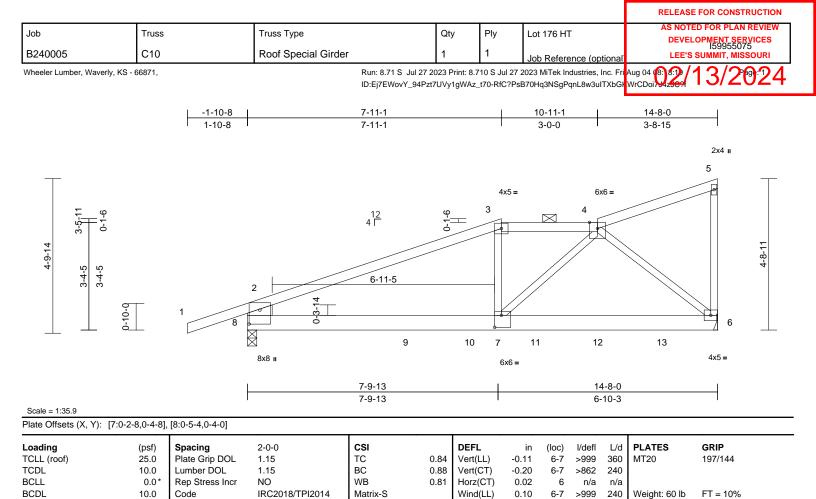
16023 Swingley Ridge Rd. Chesterfield, MO 63017 314.434.1200 / MiTek-US.com

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent colleges with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

Plate Offsets (X, Y): [2:0-0-8,0-1-8]

Loading TCLL (roof) TCDL BCLL BCDL	(psf) 25.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC201	8/TPI2014	CSI TC BC WB Matrix-S	0.82 0.69 0.30	DEFL Vert(LL) Vert(CT) Horz(CT) Wind(LL)	in -0.09 -0.16 0.02 0.07	(loc) 8-9 8-9 7 8-9	l/defl >999 >999 n/a >999	L/d 360 240 n/a 240	PLATES MT20 Weight: 58 lb	GRIP 197/144 FT = 10%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD	2x4 SPF No.2 2x3 SPF No.2 *Exce Structural wood she 4-2-2 oc purlins, ex 2-0-0 oc purlins (6-0	ept* 10-2:2x6 SP DS athing directly appli cept end verticals, a)-0 max.): 4-5.	SS 7) ed or and 8)	bearing plat 7 and 204 ll This truss is Internationa R802.10.2 a Graphical p	chanical connection te capable of withs to uplift at joint 10. to designed in account and referenced staturlin representation tation of the purlin rd	standing 1 ordance w e sections andard AN on does no	30 lb uplift a ith the 2018 R502.11.1 a ISI/TPI 1. ot depict the s	t joint and					
BOT CHORD	Rigid ceiling directly bracing.	applied or 10-0-0 c	C L	OAD CASE(S									
REACTIONS	(size) 7= Mecha Max Horiz 10=203 (I Max Uplift 7=-130 (L Max Grav 7=634 (L0	.C 8), 10=-204 (LC 4	,										
FORCES	(lb) - Maximum Com Tension	pression/Maximum											
TOP CHORD													
BOT CHORD WEBS		5/125, 4-8=-151/89,	170										
NOTES	0.0												
Vasd=91n II; Exp C; cantilever right expo 2) Provide ad 3) This truss chord live	CE 7-16; Vult=115mph nph; TCDL=6.0psf; BC Enclosed; MWFRS (er left and right exposed sed; Lumber DCL=1.6 dequate drainage to pr has been designed fo load nonconcurrent wi s has been designed fo	DL=6.0psf; h=25ft; nvelope) exterior zo ; end vertical left ar 0 plate grip DOL=1. event water pondin r a 10.0 psf bottom ith any other live loa	ne; nd 60 g. ds.									STATE OF I	MISSOUR T.M. HER

- This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- 5) Refer to girder(s) for truss to truss connections.


OFT

PE-200101880

SSIONAL ET

August 7,2023

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent colleges with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

LUMBER	
TOP CHORD	2x4 SPF No.2 *Except* 1-3:2x4 SPF 2100F 1.8E
BOT CHORD	2x6 SPF No.2
WEBS	2x3 SPF No.2 *Except* 8-2:2x10 SP DSS
BRACING	
TOP CHORD	Structural wood sheathing directly applied or
	4-1-3 oc purlins, except end verticals, and
	2-0-0 oc purlins (4-3-12 max.): 3-4.
BOT CHORD	Rigid ceiling directly applied or 10-0-0 oc
	bracing.
REACTIONS	(size) 6= Mechanical, 8=0-3-8
	Max Horiz 8=204 (LC 22)
	Max Uplift 6=-358 (LC 8), 8=-378 (LC 4)
	Max Grav 6=1363 (LC 1), 8=1356 (LC 1)
FORCES	(lb) - Maximum Compression/Maximum
	Tension
TOP CHORD	1-2=0/50, 2-3=-2027/482, 3-4=-1816/488,
	4-5=-104/32, 5-6=-117/50, 2-8=-1097/370
BOT CHORD	7-8=-454/1826, 6-7=-276/1120
WEBS	3-7=-81/371, 4-7=-248/973, 4-6=-1437/411

NOTES

- Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
- 2) Provide adequate drainage to prevent water ponding.
- 3) This truss has been designed for a 10.0 psf bottom
- chord live load nonconcurrent with any other live loads.
 * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- 5) Refer to girder(s) for truss to truss connections.
- Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 358 lb uplift at joint 6 and 378 lb uplift at joint 8.

 This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

- Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.
- 9) Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 388 lb down and 124 lb up at 4-11-4, 211 lb down and 55 lb up at 6-11-4, 211 lb down and 68 lb up at 8-11-13, and 238 lb down and 75 lb up at 10-11-4, and 238 lb down and 75 lb up at 12-11-4 on bottom chord. The design/ selection of such connection device(s) is the responsibility of others.
- In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (F) or back (B).

LOAD CASE(S) Standard

 Dead + Roof Live (balanced): Lumber Increase=1.15, Plate Increase=1.15 Uniform Loads (lb/ft)

Vert: 1-2=-70, 2-3=-70, 3-4=-70, 4-5=-70, 6-8=-20 Concentrated Loads (lb)

Vert: 9=-388 (B), 10=-211 (B), 11=-211 (B), 12=-238 (B), 13=-238 (B)

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI Claulity Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com) Active Ac

												RELEAS	E FOR CONSTRUCTION
Job	Truss		Truss Type			Qty	,	Ply	Lot 176 I	ΗT			ED FOR PLAN REVIEW
B240005	D1		Hip Girder			1		1	Job Refe	rence (or	otional		OPMENT SERVICES 159955076 SUMMIT, MISSOURI
Wheeler Lumbe	r, Waverly, KS - 66871,								21 2023 MiTe	k Industrie	s, Inc. I	lon Aug 0709:38:0 7r27V9TyqRii	13/2024
		-1-10-8 1-10-8	0-10-4	<u>5-5</u> 4-6			- <u>6-15</u> -1-14			<u>14-0-0</u> 5-5-1		15-1	
	2-8-14 2-7-11 0-10-0	. 1 <u>1</u>	0-3-8 3x10 = 2 2 3x6 = 2x4 = 0 0-10-4	4-5 41 		4x5 = 4 10 3x4 =	13	4x10 5 9 2x4 II		4-11+9	0-4-10	6 6 6x8 ш	7
Scale = 1:39.8			0-8-8 0-8-8 0-1-12	5-6 4-8			<u>-5-11</u> -11-6			<u>13-10-0</u> 5-4-5		14-0-0 0-2-0	
	(X, Y): [2:0-4-11,0-1-	8], [5:0-5-0,0-1-13]											
Loading TCLL (roof) TCDL BCLL BCDL	(psf) 25.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 NO IRC2018/TPI20)14	CSI TC BC WB Matrix-S	0.69 0.84 0.09	DEFL Vert(I Vert(Horz(Wind	LL) -0 CT) -0 (CT) 0	in (loc) 0.15 9-10 0.25 9-10 0.02 8 0.13 9-10	>999 >615 n/a	L/d 360 240 n/a 240	PLATES MT20 Weight: 46 lb	GRIP 197/144 FT = 10%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD	2x4 SPF 2100F 1.8 No.2 2x4 SPF 2100F 1.8 2x3 SPF No.2 *Exc Structural wood sh 5-10-10 oc purlins, 2-0-0 oc purlins (5-	E *Except* 4-5:2x4 SI E ept* 12-2,8-6:2x6 SP eathing directly applie except end verticals,	6) Provi per bearin joint & 7) This t DSS Interr R802 d or 8) Grapi and or the bottoo	de mech ng plate 3 and 31 rruss is c national 1 .10.2 an hical pur orienta m chord	anical connection capable of withe 1 lb uplift at join lesigned in accor Residential Cod d referenced stat lin representation tion of the purlin	standing 2 at 11. ordance wi e sections andard AN on does no along the	ers) of 76 lb u R502. SI/TPI t depic top ar	truss to uplift at 2018 11.1 and 1. ct the size nd/or			240	1 ****91*** *** ID	

WEBS NOTES

BOT CHORD

FORCES

TOP CHORD

BOT CHORD

REACTIONS (lb/size)

bracing.

Unbalanced roof live loads have been considered for 1) this design.

5-9=-30/285, 3-11=-423/213

8-9=-210/1025

Max Horiz 11=22 (LC 8)

Rigid ceiling directly applied or 10-0-0 oc

Max Uplift 8=-276 (LC 5), 11=-311 (LC 4)

(lb) or less except when shown.

2-3=-909/221, 3-4=-1026/279,

4-13=-895/272, 5-13=-895/272,

10-14=-211/1036, 9-14=-211/1036,

(lb) - Max. Comp./Max. Ten. - All forces 250

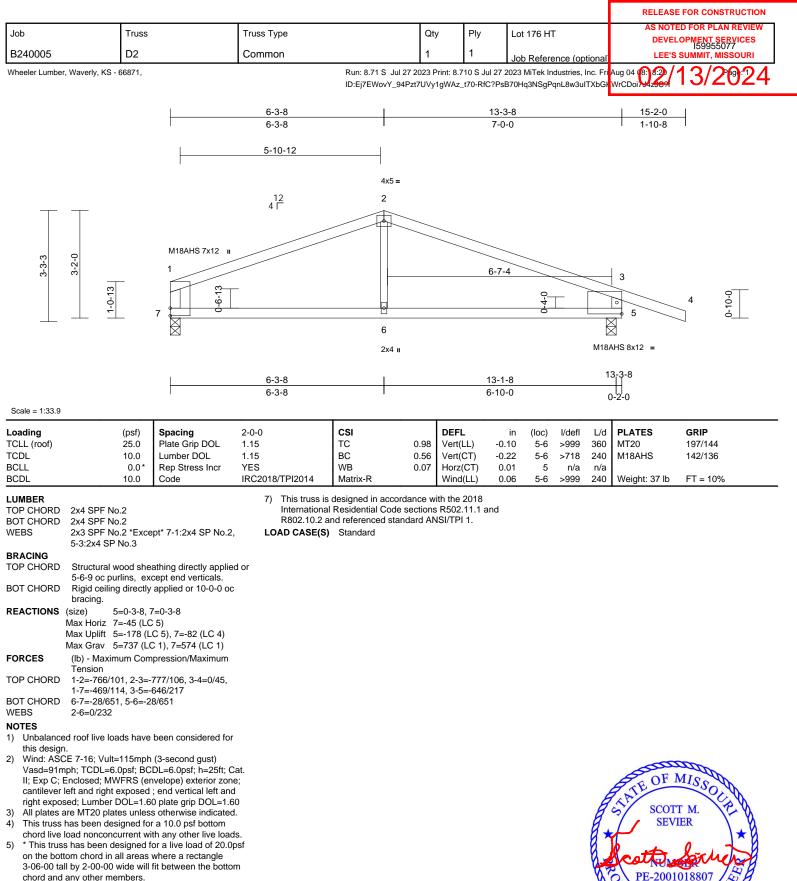
5-6=-1173/307, 2-12=-347/76, 6-8=-779/290 11-12=-194/889, 10-11=-179/889,

8=888/0-3-8, 11=978/0-3-8

2) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60

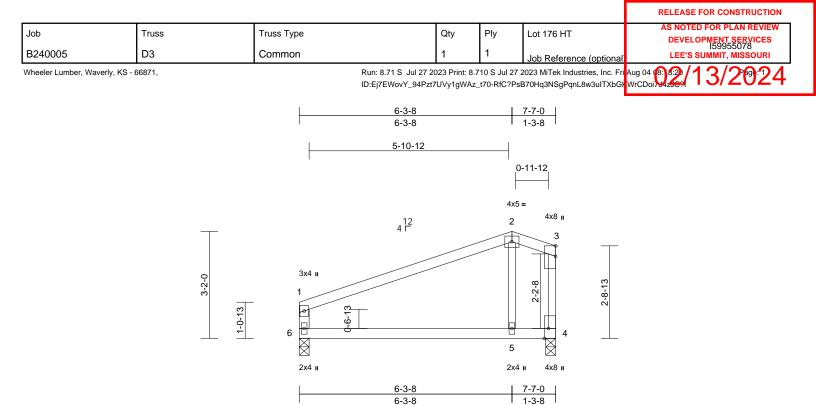
- 3) Provide adequate drainage to prevent water ponding. This truss has been designed for a 10.0 psf bottom
- 4) chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf 5) on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.

- bottom chord. Hanger(s) or other connection device(s) shall be 9) provided sufficient to support concentrated load(s) 60 lb down and 57 lb up at 7-0-0 on top chord, and 205 lb down and 81 lb up at 5-5-1, and 27 lb down at 7-0-0, and 205 lb down and 81 lb up at $\,$ 8-6-15 on bottom chord. The design/selection of such connection device (s) is the responsibility of others.
- 10) In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (F) or back (B).


LOAD CASE(S) Standard

- Dead + Roof Live (balanced): Lumber Increase=1.15, 1) Plate Increase=1.15 Uniform Loads (lb/ft)
 - Vert: 1-2=-70, 2-4=-70, 4-5=-70, 5-6=-70, 6-7=-70, 8-12=-20
 - Concentrated Loads (lb)
 - Vert: 10=-156 (F), 9=-156 (F), 13=-28 (F), 14=-12 (F)

 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.
 Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not beigh valid for use only with with with sets outputs into design is based only door parameters shown, and is for an individual dualing component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria**, and **DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcscomponents.com)



chord and any other members.
Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 82 lb uplift at joint 7 and 178 lb uplift at joint 5.

August 7,2023

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI Claulity Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com) Mitek 16023 Swingley Ridge Rd. Chesterfield, MO 63017 314.434.1200 / Mitek-US.com

<u> </u>		
Scale	= 1:34.1	

Plate Offsets (X, Y): [3:0-3-11,Edge], [4:0-3-8,Edge]

		1	-	1			-					
Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15	TC	0.64	Vert(LL)	-0.07	5-6	>999	360	MT20	197/144
TCDL	10.0	Lumber DOL	1.15	BC	0.34	Vert(CT)	-0.17	5-6	>529	240		
BCLL	0.0*	Rep Stress Incr	YES	WB	0.03	Horz(CT)	0.00	4	n/a	n/a		
BCDL	10.0	Code	IRC2018/TPI2014	Matrix-R		Wind(LL)	0.06	5-6	>999	240	Weight: 23 lb	FT = 10%

- LUMBER
- TOP CHORD
- 2x4 SPF No.2
- BOT CHORD 2x4 SPF No.2 2x3 SPF No.2 *Except* 6-1:2x4 SP No.3 WEBS BRACING TOP CHORD Structural wood sheathing directly applied or 6-0-0 oc purlins, except end verticals. BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing. REACTIONS (size) 4=0-3-8, 6=0-3-8 Max Horiz 6=100 (LC 5) Max Uplift 4=-55 (LC 4), 6=-53 (LC 4) Max Grav 4=330 (LC 1), 6=330 (LC 1) FORCES (Ib) - Maximum Compression/Maximum Tension
- TOP CHORD 1-2=-186/28, 2-3=-149/51, 3-4=-142/5, 1-6=-257/90BOT CHORD 5-6=-36/110, 4-5=-36/110 WFBS 2-5=-114/101

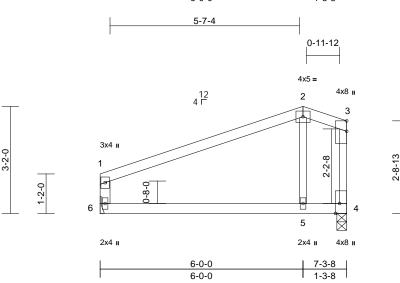
NOTES

- Unbalanced roof live loads have been considered for 1) this design
- 2) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
- This truss has been designed for a 10.0 psf bottom 3) chord live load nonconcurrent with any other live loads.
- 4) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- Provide mechanical connection (by others) of truss to 5) bearing plate capable of withstanding 53 lb uplift at joint 6 and 55 lb uplift at joint 4.

6) This truss is designed in accordance with the 2018

International Residential Code sections R502.11.1 and

R802.10.2 and referenced standard ANSI/TPI 1.


LOAD CASE(S) Standard

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not beigh valid for use only with with with sets outputs into design is based only door parameters shown, and is for an individual dualing component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria**, and **DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcscomponents.com)

							RELEASE FOR CONSTRUCTION
Job	Truss	Truss Type	Q	ty	Ply	Lot 176 HT	AS NOTED FOR PLAN REVIEW DEVELOPMENT SERVICES 159955079
B240005	D4	Common	1		1	Job Reference (optional)	I59955079 LEE'S SUMMIT, MISSOURI
Wheeler Lumber, Wave	erly, KS - 66871,					2023 MiTek Industries, Inc. Fri 370Hq3NSgPqnL8w3uITXbGł	
			6-0-0			-3-8	
		Ι	6-0-0		1	-3-8	
			5-7-4				
					0-1	11-12	
					4x5 =		
	_		12 4 Г		2	4x8 II	
		3х4 и					

Scale = 1:34.1		Scale = 1:34.1	
----------------	--	----------------	--

Plate Offsets (X, Y): [3:0-3-11,Edge], [4:0-3-8,Edge]

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15	TC	0.58	Vert(LL)	-0.06	5-6	>999	360	MT20	197/144
TCDL	10.0	Lumber DOL	1.15	BC	0.31	Vert(CT)	-0.14	5-6	>595	240		
BCLL	0.0*	Rep Stress Incr	YES	WB	0.03	Horz(CT)	0.00	4	n/a	n/a		
BCDL	10.0	Code	IRC2018/TPI2014	Matrix-R		Wind(LL)	0.05	5-6	>999	240	Weight: 22 lb	FT = 10%

- LUMBER
- TOP CHORD

2x4 SPF No.2 BOT CHORD 2x4 SPF No.2 2x3 SPF No.2 *Except* 6-1:2x4 SP No.3 WEBS BRACING TOP CHORD Structural wood sheathing directly applied or 6-0-0 oc purlins, except end verticals. BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing. REACTIONS (size) 4=0-3-8, 6= Mechanical Max Horiz 6=99 (LC 5) Max Uplift 4=-52 (LC 4), 6=-51 (LC 4) Max Grav 4=317 (LC 1), 6=317 (LC 1) FORCES (lb) - Maximum Compression/Maximum Tension 1-2=-172/28, 2-3=-139/50, 3-4=-138/8, TOP CHORD 1-6=-245/86 BOT CHORD 5-6=-37/100, 4-5=-37/100 WFBS 2-5=-111/94

NOTES

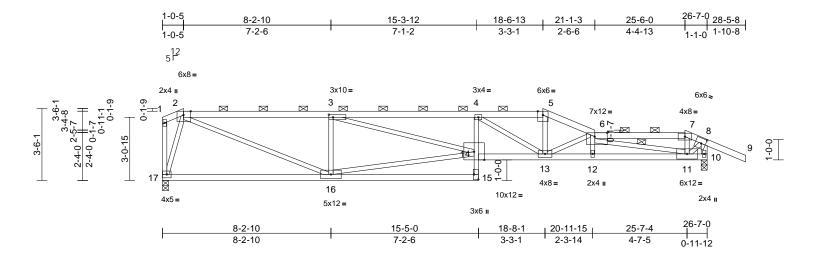
- Unbalanced roof live loads have been considered for 1) this design
- 2) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
- 3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 4) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- Refer to girder(s) for truss to truss connections. 5)
- Provide mechanical connection (by others) of truss to 6) bearing plate capable of withstanding 51 lb uplift at joint 6 and 52 lb uplift at joint 4.

7) This truss is designed in accordance with the 2018

International Residential Code sections R502.11.1 and

R802.10.2 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard



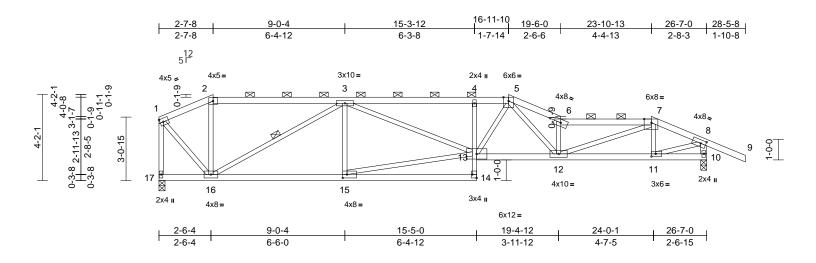
WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not beigh valid for use only with with with sets outputs into design is based only door parameters shown, and is for an individual dualing component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria**, and **DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcscomponents.com)

						RELEASE FOR CONSTRUCTION
Job	Truss	Truss Type	Qty	Plv	Lot 176 HT	AS NOTED FOR PLAN REVIEW
			,		201110111	DEVELOPMENT SERVICES 159955080
B240005	E1	Roof Special Girder	1	1	Job Reference (optional	LEE'S SUMMIT, MISSOURI
	00074	5				

Run: 8.71 S Jul 27 2023 Print: 8.710 S Jul 27 2023 MiTek Industries, Inc. Fri Aug 04 (6) 62/1 3/2 2 10:Ej7EWovY_94Pzt7UVy1gWAz_t70-RfC?PsB70Hq3NSgPqnL8w3ulTXbGf WrCDoi 24

Scale = 1:56.2

Diata Offacta (X, Y): [2:0-4-3,Edge], [3		7 4 0 2 4	1 10.0 2 0 0 2 0	1 [1E-Edge 0.2 G	01							
Plate Olisets (X, Y): [2:0-4-3,Edge], [3	5:0-2-8,0-1-8], [6:0-7	-4,0-2-4], [8:0-2-9,0-3-0	J, [15:Edge,0-2-8	5]							
Loading		Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)		Plate Grip DOL	1.15		TC	0.56	Vert(LL)	-0.36	14	>870	360	MT20	197/144
TCDL		Lumber DOL	1.15		BC	0.83	Vert(CT)	-0.65	13-14	>485	240		
BCLL	0.0* F	Rep Stress Incr	NO		WB	0.93	Horz(CT)	0.13	10	n/a	n/a		
BCDL	10.0 0	Code	IRC201	8/TPI2014	Matrix-S	-	Wind(LL)	0.29	15	>999	240	Weight: 103 lb	FT = 10%
LUMBER			2)	Wind: ASCE	7-16; Vult=115m	ph (3-seo	cond gust)						
TOP CHORD	2x4 SPF No.2 *Except* 1.8E	* 2-5:2x4 SPF 2100)F		n; TCDL=6.0psf; closed; MWFRS								
BOT CHORD		* 15-4:2x3 SPF No.	2,		t and right expos								
	14-10:2x4 SPF 2100F	1.8E			d; Lumber DOL=								
NEBS	2x3 SPF No.2 *Except*	* 10-8:2x4 SPF No.			quate drainage to			g.					
BRACING			4)		is been designed								
TOP CHORD	Structural wood sheath				ad nonconcurrent								
	2-11-13 oc purlins, exe		and ⁵⁾		nas been designe			upst					
	2-0-0 oc purlins (3-6-4				n chord in all are ov 2-00-00 wide v			om					
BOT CHORD	0 0 7 1	pplied or 6-0-0 oc			by 2-00-00 wide v		veen the bott	UIII					
	bracing.		6)		hanical connection		ers) of truss	to					
WEBS	1 Row at midpt 6-		0,		capable of withs								
REACTIONS	· · · ·				b uplift at joint 17			, joint					
	Max Horiz 17=-121 (LC	,	, 7)		designed in acco		ith the 2018						
	Max Uplift 10=-315 (LC			International	Residential Code	e sections	s R502.11.1 a	and					
	Max Grav 10=1217 (LC		1)		nd referenced sta								
FORCES	(lb) - Maximum Compre	ession/Maximum	8)		rlin representatio			size					
	Tension	400 0 4 0057/70			ation of the purlin	along the	e top and/or						
TOP CHORD	1-2=-73/32, 2-3=-2283/	,	'	bottom chore									
	4-5=-3013/531, 5-6=-33 6-7=-968/189, 7-8=-104	,	9)		other connection			-0.11-					
	1-17=-72/113, 8-10=-14	, , ,			ficient to support								
BOT CHORD	16-17=-52/370, 15-16=		118		lb up at 32-10-1 5 lb up at 32-9-1							000	TO
	4-14=0/210, 13-14=-65		110,		tion of such conn							8. OF M	MICON
	12-13=-705/4368, 11-1	,		responsibility		lection de	vice(s) is the					THE OF N	000
	10-11=-111/55	,	1(CASE(S) section	loads a	onlied to the	face			6	N	N SY
VEBS	2-16=-354/2087, 3-16=	=-1008/310,			are noted as front			1000			B	SCOT	ΓM. Y Y
	14-16=-361/2095, 3-14	4=-294/1634,		DAD CASE(S)		(.) 0. 50	0.1 (2).				R	/ SEVI	ER \Y
	4-13=-1120/230, 5-13=	=-186/1181,	1)		of Live (balanced). Lumber	Increase-1	15			10		
	6-13=-1415/249, 6-12=	=-175/84,		Plate Increa						_	V /		San 1 1
	6-11=-3560/591, 7-11=			Uniform Lo						, j	<u>م</u> ب	NUM	Cerren
	2-17=-1241/325, 8-11=	-259/1405			=-70, 2-5=-70, 5-	6=-70, 6-	7=-70, 7-8=-7	70,			27	al INOM	DER /SA
NOTES					15-17=-20, 10-14		,	- ,			N.	O PE-2001	018807
1) Unbalance	ed roof live loads have be	een considered for		,	ed Loads (lb)	-					V	PE-2001	158
this desigr	٦.			Vert: 7=5	51 (F), 11=68 (F)							A SIG	ENUS
												C'SSIONA	L
												Ultra	


 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.
 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not besign value for use only with with twit even connectors. This design is based only upon parameters shown, and is for an individual building designer must verify the applicability of design parameters and properly incorporate this design into the overall building designer must verify the applicability of design parameters and properly incorporate this design into the overall building designer. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcscomponents.com)

August 7,2023

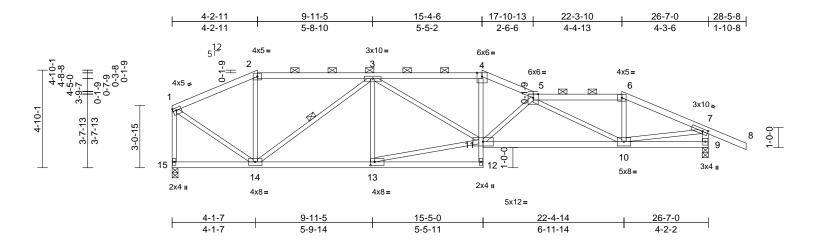
						RELEASE FOR CONSTRUCTION
Job	Truss	Truss Type	Qty	Ply	Lot 176 HT	
B240005	E2	Roof Special	1	1	Job Reference (optional	DEVELOPMENT SERVICES 159955081 LEE'S SUMMIT, MISSOURI
Wheeler Lumber, Waverly, KS -	66871,	Run: 8.71 S Jul 27 2	023 Print: 8.	710 S Jul 27	2023 MiTek Industries, Inc. Fri	

Run: 8.71 S Jul 27 2023 Print: 8.710 S Jul 27 2023 MiTek Industries, Inc. Fri Aug 04 (6) 62/1 3/2 2 2 10:Ej7EWovY_94Pzt7UVy1gWAz_t70-RfC?PsB70Hq3NSgPqnL8w3uITXbGi WrCDoi 24


```
Scale = 1:55.9
```

Plate Offsets (X, Y): [7:0-4-3,Edge],	[8:0-2-15,0-2-0], [11	1:0-2-8,0-1	-8], [14:Edge,0	0-2-8], [15:0-2-8,0	-2-0]							
Loading TCLL (roof) TCDL BCLL BCDL	(psf) 25.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC201	8/TPI2014	CSI TC BC WB Matrix-S	0.67 0.72 0.75	DEFL Vert(LL) Vert(CT) Horz(CT) Wind(LL)	-0.41 0.09	(loc) 12-13 12-13 10 12-13	l/defl >999 >772 n/a >999	L/d 360 240 n/a 240	PLATES MT20 Weight: 108 lb	GRIP 197/144 FT = 10%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD WEBS REACTIONS	2x4 SPF No.2 2x4 SPF No.2 *Exce 2x3 SPF No.2 *Exce Structural wood she 2-11-0 oc purlins, e 2-0-0 oc purlins (2-6 Rigid ceiling directly bracing, Except: 9-11-1 oc bracing: 1 6-0-0 oc bracing: 10	ept* 14-4:2x3 SPF No. athing directly applie xcept end verticals, i-11 max.): 2-5, 6-7. applied or 10-0-0 or 2-13 i-11. 3-16 17=0-3-8 LC 6) LC 5), 17=-176 (LC (LC 1), 17=1180 (LC ippression/Maximum 727/159, 3-4=-2756/	2) 0.2 3 and 4) 0 5) 5) (4) (4) (4) (4) (4) (4) (4) (4	 Wind: ASCE Vasd=91mp L; Exp C; Er cantilever le right expose Provide ade This truss ha chord live lo * This truss on the botto 3-06-00 tall chord and a Provide mee bearing plate 17 and 236 This truss is International R802.10.2 a Graphical put 	F7-16; Vult=115m h; TCDL=6.0psf; I closed; MWFRS ft and right exposide d; Lumber DOL=' quate drainage to as been designed ad nonconcurrent has been designed m chord in all area by 2-00-00 wide w ny other members chanical connectic e capable of withs buplift at joint 10 designed in acco Residential Code nd referenced sta urlin representatio ation of the purlin d.	BCDL=6. (envelopped; end v 1.60 plated prevent v for a 10.0 with any d for a livas as where vill fit betw s. on (by oth tstanding 1 rdance w e sections undard AN n does no	cond gust) Opsf; h=25ft; a) exterior zc ertical left a grip DOL=1 water pondir D psf bottom other live lo. e load of 20 a rectangle veen the bot ers) of truss 76 lb uplift a ith the 2018 ith the 2018 ISJ/TPI 1. bt depict the	Cat. one; nd 1.60 rg. ads. .0psf tom to at joint and			240	Weight: 100 lb	
BOT CHORD	6-7=-3420/537, 7-8= 1-17=-1176/181, 8-1 16-17=-18/83, 15-16 14-15=-6/136, 13-14 12-13=-351/2509, 1 10-11=-13/45 2-16=-50/106, 3-16= 3-15=-158/133, 13-1 3-13=-130/893, 5-13 5-12=-175/1246, 6-1 1-16=-168/1106, 8-1	1656/239, 8-9=0/5 -0=-1312/245 -291/1941, I=0/112, 4-13=-412/ 1-12=-184/1528, 1418/249, 15=-289/1827, 3=-120/600, 12=-1608/312, 11=-384/113,	4,	UAD CASE(S)	Standard						ł	3	ER
NOTES 1) Unbalance	ed roof live loads have	been considered for	r								N.	PE-2001	018807

this design.



August 7,2023

JONAL E

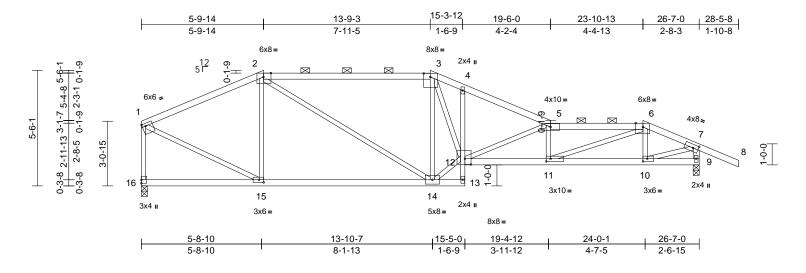
						RELEASE FOR CONSTRUCTION
Job	Truss	Truss Type	Qty	Plv	Lot 176 HT	AS NOTED FOR PLAN REVIEW
000	11033	Truss Type	Giy	l''y		DEVELOPMENT SERVICES 159955082
B240005	E3	Roof Special	1	1	Job Reference (optional	
M/heelen Lumhen M/euerlu //	6 66934	But 0.74 C hd 07	0000 Deinte 0	740 0 10107	2022 MiTal: Industrian Inc. Fri	

Run: 8.71 S Jul 27 2023 Print: 8.710 S Jul 27 2023 MiTek Industries, Inc. Fri Aug 04 (8) 62/1 3/2024 ID:Ej7EWovY_94Pzt7UVy1gWAz_t70-RfC?PsB70Hq3NSgPqnL8w3ulTXbGr WrCDoi 34264

Scale = 1:57.1

Plate Offsets (X, Y): [1:0-2-0,0-1-8], [7:0-3-3,0-1-8], [13:0-2-8,0-2-0]

	(X, T). [1.0-2-0,0-1-0],	[7.0-0-0,0-1-0], [10.	0-2-0,0-2-	0]									
Loading TCLL (roof) TCDL BCLL BCDL	(psf) 25.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC201	8/TPI2014	CSI TC BC WB Matrix-S	0.48 0.84 0.81	DEFL Vert(LL) Vert(CT) Horz(CT) Wind(LL)	-0.31 0.08	(loc) 10-11 10-11 9 10-11	l/defl >999 >999 n/a >999	L/d 360 240 n/a 240	PLATES MT20 Weight: 108 lb	GRIP 197/144 FT = 10%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD WEBS REACTIONS	2x4 SPF No.2 *Exce 2x3 SPF No.2 *Exce Structural wood she 3-8-12 oc purlins, e 2-0-0 oc purlins (3-7 Rigid ceiling directly bracing. 1 Row at midpt	pt* 9-7:2x4 SP No.3 athing directly applie xcept end verticals, -2 max.): 2-4, 5-6. applied or 9-5-7 oc 3-14 I5=0-3-8 LC 6) C 5), 15=-153 (LC 5	p.2 5; ed or 6; and 6; 7; 8;	chord live loa * This truss h on the bottor 3-06-00 tall h chord and ar Provide mec bearing plate 15 and 219 l This truss is International R802.10.2 a Graphical pu or the orienta bottom chord		with any d for a liv s where ill fit betv n (by oth anding 1 dance w sections ndard AN n does n	other live loa e load of 20.0 a rectangle veen the botto IS3 lb uplift at s R502.11.1 a VSI/TP1 1. ot depict the s	Dpsf om ; joint ind					
FORCES	(lb) - Maximum Com		΄ L'	OAD CASE(S)	Standard								
TOP CHORD	3-4=-2175/366, 4-5= 5-6=-1677/242, 6-7= 1-15=-1147/172, 7-9	2384/382, 1891/247, 7-8=0/54 9=-1298/229 ⊧=-223/1702,											
WEBS	10-11=-382/2758, 9- 2-14=0/164, 3-14=-1 11-13=-206/1660, 3- 5-11=-801/185, 5-10 1-14=-147/1120, 7-1	-10=-14/84 002/171, 3-13=-191 -11=-78/567,)=-1227/241, 6-10=0	/114,								A	STATE OF M	AISSOUR
this design 2) Wind: ASC Vasd=91n II; Exp C; cantilever right expos	ed roof live loads have	been considered for (3-second gust) DL=6.0ps; h=25ft; C ivelope) exterior zor ; end vertical left am 0 plate grip DOL=1.6	Cat. ie; d 60									SEVI PE-20010 PE-20010	118807 2 4 ENGT


16023 Swingley Ridge Rd. Chesterfield, MO 63017 314.434.1200 / MiTek-US.com

tom August 7,2023

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

						RELEASE FOR CONSTRUCTION
Job	Truss	Truss Type	Qty	Plv	Lot 176 HT	AS NOTED FOR PLAN REVIEW
505	11035	Truss Type	Qty	i iy		DEVELOPMENT SERVICES 159955083
B240005	E4	Roof Special	1	1	Job Reference (optional	
						00/10/0001

Run: 8.71 S Jul 27 2023 Print: 8.710 S Jul 27 2023 MiTek Industries, Inc. Fri Aug 04 (8) 52/1 3/2 9:24 ID:Ej7EWovY_94Pzt7UVy1gWAz_t70-RfC?PsB70Hq3NSgPqnL8w3uITXbGI WrCDoi 942694

Scale = 1:54.9

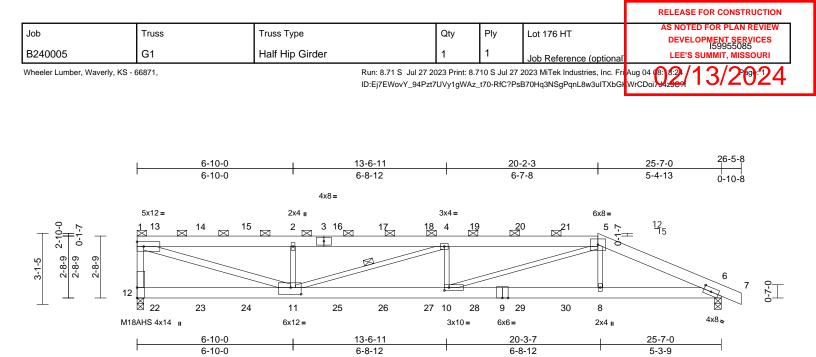
Plate Offsets ()	X Y)· [1·0-2-0 0-1-8]	[2:0-4-3 Edge] [3:0-	-3-12 0-2-	0] [6:0-4-3 Edd	re] [7:0-2-15 0-3	2-01 [10:0-	2-8 0-1-8] [1	1.0-2-8 (0-1-8] [1	2.0-3-8	0-3-41	[15:0-2-8 0-1-8]	
Plate Offsets () Loading TCLL (roof) TCDL BCLL BCDL LUMBER TOP CHORD	X, Y): [1:0-2-0,0-1-8], (psf) 25.0 10.0 0.0* 10.0 2x4 SPF No.2 *Exce	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC201	8/TPI2014) Wind: ASCE Vasd=91mpl	CSI TC BC WB Matrix-S 7-16; Vult=115r h; TCDL=6.0psf;	0.75 0.90 0.77 mph (3-sec	DEFL Vert(LL) Vert(CT) Horz(CT) Wind(LL) ond gust) 0psf; h=25ft;	in -0.20 -0.37 0.09 0.14 Cat.		l/defl >999 >860 n/a	0-3-4], L/d 360 240 n/a 240	PLATES MT20	GRIP 197/144 FT = 10%
BOT CHORD VEBS BRACING TOP CHORD	1.8E 2x4 SPF No.2 *Exce 2x3 SPF No.2 *Exce Structural wood she 3-5-2 oc purlins, exx	ept* 9-7:2x4 SP No.3 athing directly applie cept end verticals, ar	3) d or ⁴⁾	cantilever lef right expose Provide adeo This truss ha chord live loa	closed; MWFRS t and right expo d; Lumber DOL= quate drainage t as been designe ad nonconcurrer nas been design	sed ; end v =1.60 plate o prevent v d for a 10.0 nt with any	ertical left ar grip DOL=1 vater pondin) psf bottom other live loa	nd .60 ig. ads.					
	2-0-0 oc purlins (2-7 Rigid ceiling directly bracing. (size) 9=0-3-8, 1 Max Horiz 16=-116 (Max Uplift 9=-207 (L Max Grav 9=1332 (L	applied or 6-0-0 oc 16=0-3-8 LC 6) C 5), 16=-124 (LC 5)	,	on the bottor 3-06-00 tall t chord and ar Provide mec bearing plate 16 and 207 l	n chord in all ar by 2-00-00 wide by other membe hanical connect capable of with b uplift at joint 9 designed in acc	eas where will fit betw rs. ion (by oth istanding 1	a rectangle veen the bott ers) of truss 24 lb uplift a	to					
ORCES	(lb) - Maximum Com Tension		· /)	International	Residential Coo	de sections	R502.11.1 a	and					
FOP CHORD	1-2=-1223/185, 2-3= 3-4=-2224/318, 4-5= 5-6=-3432/428, 6-7= 1-16=-1135/149, 7-9	2374/315, 1656/196, 7-8=0/54 9=-1314/216	·) Graphical pu		on does no	t depict the	size					
BOT CHORD	15-16=-17/80, 14-15 13-14=-24/74, 12-13 11-12=-366/3392, 10 9-10=-13/47	8=-119/0, 4-12=-4/17 0-11=-142/1526,										GE OF M	MISS
WEBS	2-15=-379/151, 2-14 3-14=-1162/224, 12- 3-12=-221/1608, 5-1 5-11=-680/153, 6-11 6-10=-379/101, 1-15 7-10=-191/1586	-14=-135/1789, 2=-1369/213, =-251/2046,									R	STATE OF M STATE OF M SEVI	

NOTES

1) Unbalanced roof live loads have been considered for this design.

						RE	LEASE FOR CONSTRUCTION
Job	Truss	Truss Type	Qty	Ply	Lot 176 HT		S NOTED FOR PLAN REVIEW DEVELOPMENT SERVICES 159955084
B240005	E5	Roof Special Girder	1	1	Job Reference (optiona		159955084 LEE'S SUMMIT, MISSOURI
Wheeler Lumber, Waverly, KS	- 66871,				2023 MiTek Industries, Inc. Fr sB70Hq3NSgPqnL8w3uITXbG		2/13/2024
	2-7-5 2-7-5	7-5-2 <u>10-2-0 11-10-1313-10</u> -9-13 2-8-14 1-8-13 2-0- 4x5= 6x6=		1	<u>21-1-3</u> 5-9-7	<u>25-6-0</u> 4-4-13	26-7-0 28-5-8 1-1-0 1-10-8
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$5^{12}_{5^{12}}$ 3x4 = 2x4 = 19 3x6 = 7-3-14 7-3-14	m 3 4 4x5= 0 0 5 0 0 0 18 17 3x10= 5x12=	6x6=	7 9 16 2x4 II M18AH	M18AHS 6x1 8 1 14 2x4 II IS 8x12 = 20-11-15 5-6-15		$6x6 \approx$ 4x8 = 9 10 11 6x12 = $2x4 \parallel$ 26-7-0 0-11-12

Scale = 1:56.1


Plate Offsets (X, Y): [8:0-7-0,0-2-4], [10:0-2-9,0-3-0], [17:0-6-0,0-2-4]

oading	(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
CLL (roof)	25.0	Plate Grip DOL	1.15		TC	0.79	Vert(LL)		14-15	>930	360	MT20	197/144
CDL	10.0	Lumber DOL	1.15		BC	0.78	Vert(CT)	-0.63	14-15	>500	240	M18AHS	142/136
CLL	0.0*	Rep Stress Incr	NO		WB	0.96	Horz(CT)	0.12	12	n/a	n/a		
CDL	10.0	Code	IRC20	18/TPI2014	Matrix-S		Wind(LL)	0.26	14-15	>999	240	Weight: 118 lb	FT = 10%
UMBER			2) Wind: ASCE	7-16; Vult=115	mph (3-sec	ond aust)						
OP CHORD	2x4 SPF No.2				n; TCDL=6.0psf;			Cat.					
OT CHORD	2x4 SPF No.2 *Exce	ot* 16-7:2x3 SPF N	0.2		closed; MWFRS								
	15-12:2x4 SPF 2100		,	cantilever lef	t and right expo	sed ; end v	ertical left ar	nd					
/EBS	2x3 SPF No.2 *Exce	ept* 12-10:2x4 SPF	No.2	right expose	d; Lumber DOL=	=1.60 plate	grip DOL=1	.60					
RACING			3		quate drainage t								
OP CHORD	Structural wood she	athing directly appli	ed or 4		e MT20 plates u			ed.					
	2-8-14 oc purlins, e	xcept end verticals,	and 5		is been designe								
	2-0-0 oc purlins (4-8	-15 max.): 3-4, 5-6,	8-9.		ad nonconcurrer								
OT CHORD	Rigid ceiling directly	applied or 6-0-0 oc	6		nas been design			Upst					
	bracing.				n chord in all are			om					
/EBS		8-15, 8-13			y other membe		leen the bott	UIII					
EACTIONS	(size) 12=0-3-8,		7		hanical connect		ers) of truss	to					
	Max Horiz 19=-115 (. ,	-		capable of with								
	Max Uplift 12=-287 (uplift at joint 19								
	Max Grav 12=1217		, 0) This truss is	designed in acc	ordance w	ith the 2018						
ORCES	(lb) - Maximum Com	pression/Maximum		International	Residential Cod	de sections	R502.11.1 a	and					
	Tension				nd referenced st								
OP CHORD	1-2=-60/42, 2-3=-12		176, 9		rlin representati			size					
	4-5=-1635/293, 5-6=	,			ation of the purli	n along the	top and/or						
	6-7=-2352/417, 7-8= 8-9=-944/189, 9-10=)/5/ /	bottom chore									
	1-19=-45/21, 10-12=		<i>)</i> /54, 1		other connection								
OT CHORD	18-19=-58/681, 17-1				Ib up at 32-10-							000	TO
	16-17=-13/30, 15-16	,	87.		i5 lb up at 32-9-							OF N	MISSIN
	14-15=-627/4472, 13		,		tion of such con							A TE	-0.0 M
	12-13=-110/57	,		responsibility							A	TATE OF M	New
/EBS	2-18=-16/534, 3-18=	-18/228, 4-18=-460	/125, 1		CASE(S) section	on, loads a	oplied to the	face			H	S/ BCOI.	
	4-17=-190/834, 5-17	/=-706/160,			are noted as fror						81	SEVI	ER \ Y
	6-17=-577/108, 15-1	,	L	OAD CASE(S)	Standard						0		1 * 1
	6-15=-269/1390, 8-1	,	1) Dead + Ro	of Live (balance	d): Lumber	Increase=1.	.15,			8	0	
	8-14=-23/139, 8-13=			Plate Increa		,					N -	Caterin	Services
	9-13=-130/172, 2-19	9=-1262/163,		Uniform Lo							147	PE-2001	010007 JAB
	10-13=-243/1370				=-70, 3-4=-70, 4	,	,	,			N.	PE-2001	018807
OTES	d as a filling to a dar t	have consider 14			9-10=-70, 10-11	1=-70, 16-1	9=-20, 12-1	5=-20			Y	100	1 ON B
,	ed roof live loads have	been considered to	1		ed Loads (lb)							C'SSIONA	TENA
this design	1.			Vert: 9=5	51 (B), 13=68 (B	5)						CONA	L'A
												un	

MiTek[®] 16023 Swingley Ridge Rd. Chesterfield, MO 63017 314.434.1200 / MiTek-US.com

August 7,2023

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling or individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

Scale = 1:50.5

Plate Offsets (X_Y)	[6:0-4-0,0-2-2], [10:0-2-8,0-1-8], [11:0-5-8,0-3-8]
	[0.0-4-0,0-2-2], [10.0-2-0,0-1-0], [11.0-0-0,0-3-0]

		1											
Loading	(psf)	Spacing	2-0-0		csi		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15		тс	0.86	Vert(LL)		10-11	>955	360	M18AHS	142/136
TCDL	10.0	Lumber DOL	1.15		BC	0.98	Vert(CT)		10-11	>519	240	MT20	197/144
BCLL	0.0*	Rep Stress Incr	NO		WB	0.75	Horz(CT)	0.09	6	n/a	n/a		
BCDL	10.0	Code	IRC201	B/TPI2014	Matrix-S		Wind(LL)	0.28	10-11	>999	240	Weight: 120 lb	FT = 10%
-			-								10.0	-	
		****	,		as been designed ad nonconcurrent			do					354 (F), 13=-115 (F), 103 (F), 17=-103 (F),
TOP CHORD	2x6 SPF No.2 *Exce	ept* 3-5:2x6 SPF 165			has been designed								103 (F), 17=-103 (F), 103 (F), 21=-103 (F),
BOT CHORD	1.4E 2x6 SPF 1650F 1.4E	= *Event* 0 6.2v6 8	,		n chord in all area			psi				=-43 (F), 24=-43	
BOTCHORD	No.2	= Except 9-0.2x0 3	FF		ov 2-00-00 wide w			om				'=-43 (F), 28=-43	
WEBS	2x3 SPF No.2 *Exce	ept* 12-1:2x4 SPF No	.2.	chord and any other members. $30=43$ (F)									(.,,==,,
	11-1:2x4 SPF 2100F		7)	· / · · · · · · · · · · · · · · · · · ·									
BRACING					e capable of withs	tanding 4	128 lb uplift at	joint					
TOP CHORD	Structural wood she	athing directly applie	dor		b uplift at joint 6.								
		xcept end verticals, a	and 8)		designed in accor								
	2-0-0 oc purlins (2-5				Residential Code nd referenced star			na					
BOT CHORD	0 0 ,	applied or 8-0-10 oc	9)		Ind representation			ize					
WEBS	bracing. 1 Row at midpt	4-11	0)		ation of the purlin			120					
				bottom chord		J							
	(size) 6=0-3-8, Max Horiz 12=-103 (10		other connection								
	Max Uplift 6=-397 (L				ficient to support of								
	Max Grav 6=2050 (L				74 lb up at 0-9-8			b up					
FORCES	(lb) - Maximum Corr		.,		6 lb down and 76 6 lb up at 6-9-8, 1			in at					
1 011020	Tension				down and 76 lb u								
TOP CHORD	1-12=-1968/488, 1-2	2=-4781/982,			at 12-9-8, 126 lb								
	2-4=-4781/982, 4-5=				126 lb down and 7								
	5-6=-4514/876, 6-7=				and 76 lb up at 1								The second se
BOT CHORD	11-12=-10/169, 10-1	,			t 0-9-8, 67 lb dov		,					TATE OF M	ALC: NO
WEBS	8-10=-749/4048, 6-8				down at 6-9-8, 67							AFUTT	IIS'S
WEDS	1-11=-992/4906, 2-1 4-11=-1311/280, 4-1				9-8, 67 lb down at down at 16-9-8,						A		N.S
	5-10=-438/2189, 5-8				own and 107 lb up						R	SCOT	ГМ. VEN
NOTES	2.0 .00.2.00,00				design/selection o						7	SEVI	ER \'Y
	ed roof live loads have	been considered for			ponsibility of othe						the		
this design) In the LOAD	CASE(S) section	, loads a	pplied to the f	ace			ØY	IK	la ITA
	CE 7-16; Vult=115mph			of the truss a	are noted as front	(F) or ba	ck (B).			_		COULING	
	nph; TCDL=6.0psf; BC			DAD CASE(S)							K7	PE-2001	010007 AB
	xp C; Enclosed; MWFRS (envelope) exterior zone;				of Live (balanced)	: Lumber	Increase=1.	15,			N	PE-2001	018807
	ntilever left and right exposed ; end vertical left and ht exposed; Lumber DOL=1.60 plate grip DOL=1.60			Plate Increa							Y	198	
	vide adequate drainage to prevent water ponding.			Uniform Lo	. ,	12 20						SSIONA	LENA
	are MT20 plates unles				=-70, 5-7=-70, 6-1 ed Loads (lb)	12=-20						CONT	- A
., , , , , piatos c				Concentiati	eu Luaus (in)							un	

16023 Swingley Ridge Rd. Chesterfield MO 63017 314.434.1200 / MiTek-US.com

August 7,2023

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.
 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not besign value to dury with with where outputs into design is based only door parameters shown, and is for an individual building design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members and property incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TPH1 Quality Criteria**, and **DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcscomponents.com)

Job	Truss	Truss Type	Qty	Ply	Lot 176 HT	RELEASE FOR CONSTRUCTION AS NOTED FOR PLAN REVIEW
B240005	G2	Roof Special	1	1	Job Reference (optional	DEVELOPMENT SERVICES 159955086 LEE'S SUMMIT, MISSOURI
Wheeler Lumber, Waverly, KS -	66871,				2023 MiTek Industries, Inc. Fri B70Hq3NSgPqnL8w3uITXbGł	
	2-3-8	8-6-7 13-2-11 6-2-15 4-8-4	15-2 2-0		19-8-0 4-5-5	24-3-14 26-2-6 4-7-14 1-10-8
		4x8 =				
6-10-2 4-7-15 4-7-15 1-19 1-11-7 1-11-7 1-11-7	3x4 = 2x4 = 2 1 14		4x8=	6x6 = 5	3x6± 6	3x4 II 7 9 8 9
	3x6= 3>	3 15 12 16 x4= 4x8=	11 4x8=	10 3x4 =		⊠ 3x10 =
	4-1-11	<u>13-1-7</u> 8-11-12	15-3		24-3-14 8-11-15	

Scale =	1:51.5
---------	--------

00010 - 1.01.0													
Loading TCLL (roof) TCDL BCLL BCDL	(psf) 25.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018	3/TPI2014	CSI TC BC WB Matrix-S	0.53 0.80 0.99	DEFL Vert(LL) Vert(CT) Horz(CT) Wind(LL)	in -0.25 -0.43 0.05 0.04	(loc) 11-13 11-13 9 11	l/defl >999 >674 n/a >999	L/d 360 240 n/a 240	PLATES MT20 Weight: 102 lb	GRIP 197/144 FT = 10%
BOT CHORD WEBS BRACING TOP CHORD BOT CHORD REACTIONS FORCES	9-7:2x4 SP No.3 Structural wood she 4-1-7 oc purlins, ex 2-0-0 oc purlins (4-7 Rigid ceiling directly bracing. (size) 9=0-3-8, Max Horiz 14=-111 / Max Uplift 9=-50 (LC Max Grav 9=1251 (I (lb) - Maximum Con Tension 1-2=-39/76, 2-3=-10	/ applied or 10-0-0 oc 14= Mechanical (LC 4) C 9) LC 2), 14=1141 (LC 2	6) 7) d or nd 8) 9) 2) LO	on the bottom 3-06-00 tall b chord and an Refer to girdd Provide mecl bearing plate 9. This truss is International R802.10.2 ar Graphical pu		as where vill fit betw s, with BC russ conr on (by oth tanding 5 rdance w e sections indard AN n does no	a rectangle veen the botto DL = 10.0psl rections. ers) of truss t i0 lb uplift at j ith the 2018 R 502.11.1 a ISI/TPI 1. ot depict the s	om f. to joint and					
BOT CHORD WEBS	9-10=-34/1492 2-13=0/533, 3-13=-2 4-11=-832/92, 5-11=	'43, 7-9=-384/51 =0/960, 10-11=0/148 260/56, 3-11=-47/105 =-9/239, 5-10=0/208, =-1489/97, 6-10=-97/	8,										T
this design. 2) Wind: ASCI Vasd=91mp	d roof live loads have E 7-16; Vult=115mph ph; TCDL=6.0psf; BC	been considered for	at.									STATE OF M	MISSOLIRI ER

- and right exposed; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.603) Provide adequate drainage to prevent water ponding.
- 4) This truss has been designed for a 10.0 psf bottom
- chord live load nonconcurrent with any other live loads.

16023 Swingley Ridge Rd. Chesterfield, MO 63017 314.434.1200 / MiTek-US.com

August 7,2023

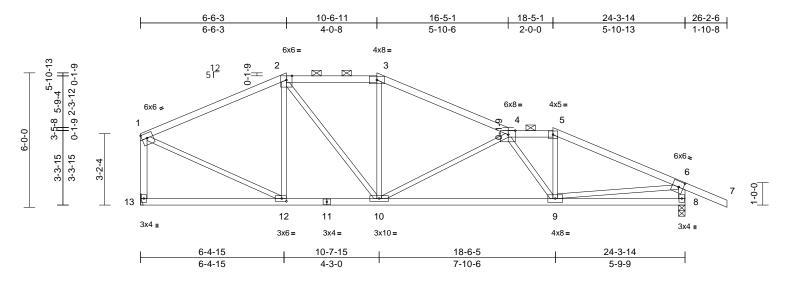
NUMBER

PE-2001018807

GI

HESSIONAL EN

0


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

Jack Trues Trues Trues Trues Trues Dyn Ply Let 179 HT Alt NOTE Or PLA HERK WARK STREET,											RELEASE FOR CONSTRUCTION
E24005 G3 Rod Special 1	Job	Truss		Truss Type		Qty		Ply	Lot 176 HT	г	
Protect Luckus, Wavey, V3 - 6001. Aug. 9 19, 421 203 The ATTR 5 JUST 203 The Instantion of the SUD ALL 2020 AL	B240005	G3		Roof Spec	ial	1		1	Job Roford	anco (ontiona	
Image: state is a state state is a state is	Wheeler Lumber, Waverly, KS - 6	6871,			Run: 8.71 S Jul 2	7 2023 Pri	nt: 8.71	0 S Jul 27 2			
Image: State Image: State<					ID:Ej7EWovY_94	2t7UVy1g	WAz_t	70-RfC?PsI	370Hq3NSgPo	qnL8w3ulTXbG	
40° 40°		<u> </u>			0 110			16-9-14	+		
Image: space of the space		·	4-4-4	3-9-)-6		2-0-0	•	7-6-0	1-10-8
Image: Start 1.3.9 Image:											
Julia IL IL <thi< td=""><td>6-8-0 15 4-1-8 15 0-1-9⁽</td><td></td><td></td><td>3x4 = 0-1-0</td><td></td><td></td><td>6</td><td>5</td><td></td><td></td><td></td></thi<>	6-8-0 15 4-1-8 15 0-1-9 ⁽			3x4 = 0-1-0			6	5			
3/10= 3/10 <tr< td=""><td><u> </u></td><td></td><td>10=</td><td></td><td>12 11</td><td></td><td></td><td></td><td>10</td><td></td><td></td></tr<>	<u> </u>		10=		12 11				10		
Bits Social 2 16-11-2 24-3-14 Jobies 1, S, Y): [5:0-3-13,Edge], [9:Edge,0-7-11] Image: Comparison of the state of th		541	10 -		4x10=				3x10=		10x12=
Solide + 153.9 9-0-12 7-10-6 7-4-12 Plate Offsets (X, Y): [5:0-3-13,Edge], [9:Edge,0-7-11] Edge,0-7-11] Edge,0-7-11] Edge,0-7-11] Loading (ps) Plate Ging DL 1.15 TC 0.9 VertILL 0.16 12.3-3983 240 DCLL 0.00 Lumber DOL 1.15 BC 0.69 VertILL 0.01 9 n/n BCDL 10.0 Lumber A Respires incr YES BC 0.69 VertILL 0.04 9 n/n LUMBER Code IRC2019/TP12014 Matrix-S 0.69 VertILL 0.03 10-12 >999 240 Weight: 101 Ib FT = 10% LUMBER Code 10.0 Case in the totic schare in the bottom chord in all arease dol 20.0pc in othe bottom chord in all arease dol 20.0pc in othe bottom chord in all arease dol 20.0pc in othe bottom chord in all arease dol 20.0pc in othe bottom chord in all arease dol 20.0pc in othe bottom chord in all arease dol 20.0pc in othe bottom chord in all arease dol 20.0pc in othe bottom chord in all arease dol 20.0pc in othe bottom chord in all arease dol 20.0pc in othe bottom chord in all arease dol 20.0pc in othe bottom chord in all arease dol 20.0pc in othe bottom chord in all arease do					3x6 =						
Plate Offsets (X, Y): [5:03-13.Edge], [9:Edge.0-7-11] Loading TCLL (rool) (pst) Ppacing Plate Grip D0.1 2-0-0 TSD CSI TC 0.0 BC DEFL Vert(CT) 0.1 1:5 TSC 0.9 Vert(L1) PLATES GRIP MT20 197/144 BCL 10.0 Tesp Stress Incr YES WB 0.89 Vert(CT) 0.03 1:2-13 2989 240 Weight: 101 Ib FT = 10% LUMBER TOP CHORD 2:4 SPF No.2 **		-									
Loading Cpcin Spacing 2-0-0 CSI DEFL in (loc) Udd Lud PLATES GRIP TCDL 10.0 Lumber DOL 115 TC 0.88 Ver(CT) 0.03 12:13 3-999 360 MT20 197/144 BCL 0.0 ¹ Rep Stress Incr YES WE 0.89 Ver(CT) 0.04 9 n/a Weight: 101 lb FT = 10% UMMER TOP CHORD 2x4 SPF No.2 PC204 PC208/TPI2014 Watix-S Wind(LL) 0.03 10:12 >999 240 Weight: 101 lb FT = 10% UMMER TOP CHORD 2x4 SPF No.2 PC224 SP No.3 Social and any other members. Social and		13 Edge] [9):Edge ()-7-11]								
 3) Provide adequate drainage to prevent water ponding. 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 4) This trust has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 	TCLL (roof) TCDL BCLL BCDL LUMBER TOP CHORD 2x4 SPF No BOT CHORD 2x4 SPF No 09-7:2x4 SPF No WEBS 2x3 SPF No 09-7:2x4 SPF NO 0	25.0 Pi 10.0 Lu 0.0* R 10.0 C 2 2 2 *Except* No.3 pod sheathin urlins, except 2 *Except* 10 *LC 9 1229 (LC 1) 10 *LC 9 1229 (LC 1) 10 *LC 9 1229 (LC 1) 10 *LC 9 1229 (LC 1) 13 *12=*44/3 3 *12=*44/3 13 *17=*00 ds have been 115mph (3-*3 post; BCDL= FRS (envelopment grip DOL=1 grip DOL=1 grip DOL=1	ate Grip DOL umber DOL ep Stress Incr ode 13-1:2x4 SPF No. Ing directly applied pt end verticals, ar nax.): 3-4, 5-6. olied or 10-0-0 oc 3 Mechanical 4) 1), 13=1075 (LC 1) ission/Maximum /57, 3-4=-1008/64 i3/66, 6-7=-1723/4 i, 7-9=-1157/88 1635, 9-10=-65/43(84, 4-12=-16/189, 0/27, 6-10=0/337, 1068 en considered for second gust) =6.0psf; h=25ft; Ca ope); cantilever lef and right exposed; 1.60 int water ponding. 10.0 psf bottom	1.15 1.15 YES IRC2018/TP 5) * T on 3-(2, ch 6) Re 7) Pr or 9) Gr 9) Gr 0 LOAD	TC BC WB Matrix-S This truss has been designed the bottom chord in all areas 06-00 tall by 2-00-00 wide will ord and any other members. efer to girder(s) for truss to tru ovide mechanical connection aring plate capable of withsta is truss is designed in accord ternational Residential Code s 302.10.2 and referenced stand aphical purlin representation the orientation of the purlin al ttom chord.	0.98 0.69 0.89 ior a live where a fit betwee ss conne (by other nding 49 ance with ections F lard ANS does not	Vert(LI Vert(C Horz(C Wind(L load o rectan een the ections. rs) of tr Ib upli n the 2 R502.1 SI/TPI 1 depict	-T; -0. CT) -0. CT) 0. LL) 0. of 20.0psf ngle bottom russ to ift at joint 2018 1.1 and 1. t the size	1612-133312-13049	>999 360 >883 240 n/a n/a	MT20 197/144 Weight: 101 lb FT = 10%

						RELEASE FOR CONSTRUCTION
Job	Truss	Truss Type	Qty	Plv	Lot 176 HT	AS NOTED FOR PLAN REVIEW
						DEVELOPMENT SERVICES 159955088
B240005	G4	Roof Special	1	1	Job Reference (optional	LEE'S SUMMIT, MISSOURI
						00/10/0001

Run: 8.71 S Jul 27 2023 Print: 8.710 S Jul 27 2023 MiTek Industries, Inc. Fri Aug 04 (8) 52/1 3/2 9:24 ID:Ej7EWovY_94Pzt7UVy1gWAz_t70-RfC?PsB70Hq3NSgPqnL8w3uITXbGI WrCDoi 942694

Scale = 1:51.5

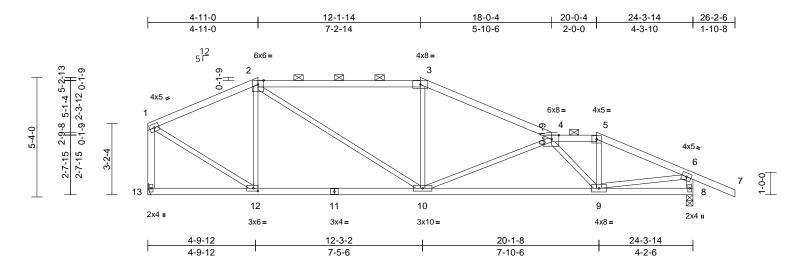
Plate Offsets (X, Y	(): [1:Edge,0-2-8],	[4:0-3-13,Edge], [6:0-2-9,0-3-0], [12	:0-2-8,0-1-8]				
Loading	(psf)	Spacing	2-0-0	CSI	DEFL	in	(loc)	I

TCLL (roof)	25.0	Plate Grip DOL	1.15		тс	0.65	Vert(LL)	-0.11	9-10	>999	360	MT20	197/144	
TCDL	10.0	Lumber DOL	1.15		BC	0.60	Vert(CT)	-0.25	9-10	>999	240	11120	13//144	
BCLL	0.0*	Rep Stress Incr	YES		WB	0.00	Horz(CT)	0.03	8	>999 n/a	n/a			
BCDL	10.0	Code		8/TPI2014	Matrix-S	0.78	Wind(LL)	0.03	9-10	>999	240	Weight: 98 lb	FT = 10%	
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SPF No.2 2x4 SPF No.2 2x3 SPF No.2 *Exce 8-6:2x4 SP No.3 Structural wood shee 3-9-14 oc purlins, e: 2-0-0 oc purlins (4-7 Rigid ceiling directly bracing.	pt* 13-1:2x4 SPF Not athing directly applie xcept end verticals, i -4 max.): 2-3, 4-5. applied or 10-0-0 oc I3= Mechanical LC 4)	5) 5.2, 6) 7) ed or and 8)	* This truss I on the bottor 3-06-00 tall b chord and ar Refer to gird Provide mec bearing plate 8. This truss is International R802.10.2 a Graphical pu	has been design n chord in all a yy 2-00-00 widd yy other member (s) for truss t hanical connec e capable of with designed in ac Residential Cc nd referenced s riln representa ation of the pur	reas where e will fit betw ers. o truss conr ction (by oth thstanding 4 cordance w ode sections standard AN tion does no	e load of 20. a rectangle veen the bott nections. ers) of truss 4 lb uplift at ith the 2018 r.R502.11.1 a ISI/TPI 1. ot depict the	Opsf tom to joint and	9-10		240	weignit. 90 ib	<u><u><u></u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u></u>	
	Max Grav 8=1229 (L	,	1) LO	OAD CASE(S)	Standard									
FORCES	(lb) - Maximum Com Tension	pression/Maximum												
TOP CHORD	1-2=-1089/37, 2-3=- 4-5=-1518/44, 5-6=- 1-13=-1012/21, 6-8=	1743/26, 6-7=0/54,	/35,											
BOT CHORD	12-13=-12/101, 10-1 8-9=-35/237	2=0/936, 9-10=0/18	18,											
WEBS	2-12=-314/58, 2-10= 4-10=-723/94, 4-9=- 1-12=0/963, 6-9=0/1	534/46, 5-9=0/406,	ō,									OF J	MISSO	
this design 2) Wind: ASC Vasd=91m II; Exp C; E and right e	d roof live loads have	been considered for (3-second gust) DL=6.0psf; h=25ft; C ivelope); cantilever I eft and right expose	Cat. eft							,	R	SCOT SEV	I M. HER Serves	2

- Lumber DOL=1.60 plate grip DOL=1.60
- Provide adequate drainage to prevent water ponding. 3) 4)
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

L/d PLATES

GRIP


l/defl

 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.
 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not besign value to dury with with where outputs into design is based only door parameters shown, and is for an individual building design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members and property incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TPH1 Quality Criteria**, and **DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcscomponents.com)

						RELEASE FOR CONSTRUCTION
Job	Truss	Truss Type	Qty	Ply	Lot 176 HT	AS NOTED FOR PLAN REVIEW DEVELOPMENT SERVICES
B240005	G5	Roof Special	1	1	Job Reference (optional	DEVELOPMENT SERVICES 159955089 LEE'S SUMMIT, MISSOURI
Miles also a la sub a a Miles a de Ko	00071					

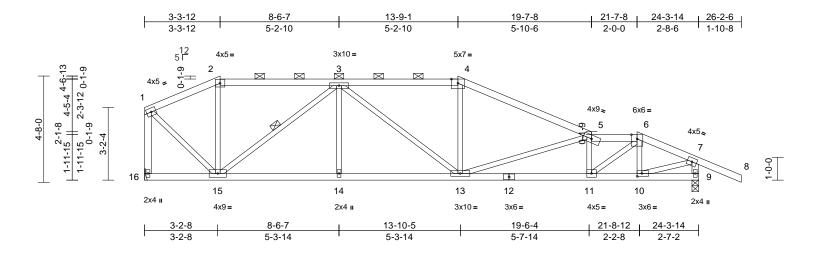
Run: 8.71 S Jul 27 2023 Print: 8.710 S Jul 27 2023 MiTek Industries, Inc. Fri Aug 04 (6) 62 / 1 3/2 0:24 ID:Ej7EWovY_94Pzt7UVy1gWAz_t70-RfC?PsB70Hq3NSgPqnL8w3ulTXbGf WrCDoi 24

Scale = 1:51.4

Plate Offsets (X, Y): [4:0-3-13,Edge], [12:0-2-8,0-1-8]

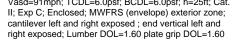
	(, .), [1, [,]											
Loading	(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15		тс	0.59	Vert(LL)	-0.10	9-1Ó	>999	360	MT20	197/144
TCDL	10.0	Lumber DOL	1.15		BC	0.66	Vert(CT)	-0.23	9-10	>999	240		
BCLL	0.0*	Rep Stress Incr	YES		WB	0.67	Horz(CT)	0.04	8	n/a	n/a		
BCDL	10.0	Code	IRC201	8/TPI2014	Matrix-S		Wind(LL)	0.04	9-10	>999	240	Weight: 94 lb	FT = 10%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD REACTIONS	1.8E 2x4 SPF No.2 *Exce 8-6:2x4 SP No.3 Structural wood she 3-8-11 oc purlins, e 2-0-0 oc purlins (4-8 Rigid ceiling directly bracing.	ept* 13-1:2x4 SPF N athing directly applie xcept end verticals, -11 max.): 2-3, 4-5. applied or 10-0-0 or 13= Mechanical (LC 4)	o.2, 6 7 ed or and 8 c 9	on the bottor 3-06-00 tall h chord and ar) Refer to gird) Provide mec bearing plate 13 and 39 lb) This truss is International R802.10.2 a		eas where will fit betw rs. truss conr ion (by oth astanding 3 ordance w de sections tandard AN on does no	a rectangle veen the both nections. ers) of truss i Ib uplift at ju ith the 2018 i R502.11.1 i ISI/TPI 1. ot depict the	tom to bint and					
	Max Grav 8=1229 (I		1)										
FORCES	(lb) - Maximum Com Tension	pression/Maximum											
TOP CHORD	1-2=-1001/45, 2-3=- 4-5=-1479/22, 5-6=- 1-13=-1039/21, 6-8= 12-13=-20/90, 10-12 8-9=-10/96	1684/8, 6-7=0/54, =-1191/52 2=0/886, 9-10=0/200	03,										
WEBS	2-12=-414/83, 2-10= 4-10=-671/98, 4-9=- 1-12=-7/1009, 6-9=0	800/53, 5-9=0/458,	6,									TEOF	MISSO
NOTES											B	SCOT	NOV MT
 this desig Wind: ASI Vasd=91r II; Exp C; and right of Lumber D Provide ar This truss 	ed roof live loads have n. CE 7-16; Vult=115mph mph; TCDL=6.0psf; BC Enclosed; MWFRS (er exposed ; end vertical I/OL=1.60 plate grip DC dequate drainage to pr has been designed fo load nonconcurrent wi	i (3-second gust) DL=6.0psf; h=25ft; (nvelope); cantilever l left and right expose)L=1.60 event water ponding r a 10.0 psf bottom	Cat. left d; g.							~		PE-2001	BER 018807

August 7,2023


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

						RELEASE FOR CONSTRUCTION
Job	Truss	Truss Type	Qty	Ply	Lot 176 HT	AS NOTED FOR PLAN REVIEW
50.0005						DEVELOPMENT SERVICES 159955090
B240005	G6	Roof Special	1	1	Job Reference (optional	LEE'S SUMMIT, MISSOURI
	0 0007/					

Wheeler Lumber, Waverly, KS - 66871,


Run: 8.71 S Jul 27 2023 Print: 8.710 S Jul 27 2023 MiTek Industries, Inc. Fri Aug 04 (6) 62 / 1 3/2 0 24 ID:Ej7EWovY_94Pzt7UVy1gWAz_t70-RfC?PsB70Hq3NSgPqnL8w3ulTXbGr WrCDoi 34264

Scale =	1:50.6
---------	--------

Plate Offsets (X, Y): [10:0-2-8,0-1-8]

	(X, 1): [10:0 2 0;0 1 0]											
Loading TCLL (roof) TCDL BCLL BCDL	(psf) 25.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC20 ⁷	18/TPI2014	CSI TC BC WB Matrix-S	0.65 0.63 0.64	DEFL Vert(LL) Vert(CT) Horz(CT) Wind(LL)	-0.19 0.05	(loc) 11-13 11-13 9 11-13	l/defl >999 >999 n/a >999	L/d 360 240 n/a 240	PLATES MT20 Weight: 98 lb	GRIP 197/144 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD	2x4 SPF No.2 2x3 SPF No.2 *Exce 16-1:2x4 SP No.3 Structural wood she 3-1-13 oc purlins, e 2-0-0 oc purlins (3-9 Rigid ceiling directly	athing directly applie xcept end verticals, a -1 max.): 2-4, 5-6.	ed or and 6 7	 This truss ha chord live lo * This truss l on the bottoo 3-06-00 tall l chord and aa Refer to gird Provide mee bearing plate 	quate drainage to as been designed ad nonconcurren as been designe m chord in all are by 2-00-00 wide v ny other member er(s) for truss to hanical connectii e capable of with: b uplift at joint 9.	d for a 10.0 t with any ed for a liv eas where will fit betw s. truss conr on (by oth standing 1	D psf bottom other live loa e load of 20. a rectangle veen the bott nections. ers) of truss	ads. Opsf om to					
WEBS REACTIONS		C 5), 16=-143 (LC 4		 This truss is International R802.10.2 a Graphical pu or the orienta 	designed in acco Residential Cod nd referenced sta Irlin representation ation of the purlin	ordance w e sections andard AN on does no	R502.11.1 a SI/TPI 1. ot depict the s						
FORCES	(lb) - Maximum Com		,	bottom chore OAD CASE(S).									
TOP CHORD	Tension 1-2=-802/148, 2-3=- 4-5=-1754/249, 5-6= 6-7=-1446/163, 7-8= 1-16=-1053/151	-2290/279,	,										
BOT CHORD	15-16=-21/112, 14-1 13-14=-147/1463, 1 10-11=-107/1319, 9-	1-13=-217/2246,										OF J	MISS
WEBS	2-15=-24/115, 3-15= 3-13=-96/115, 4-13= 5-11=-747/160, 6-11 6-10=-367/61, 7-10= 1-15=-135/972	-972/154, 3-14=0/21 0/336, 5-13=-730/18 =-155/1266,	,									STATE OF I	ТМ. \? \
this design 2) Wind: ASC Vasd=91n II; Exp C; cantilever	ed roof live loads have	(3-second gust) DL=6.0psf; h=25ft; C velope) exterior zon ; end vertical left and	Cat. le; d									PE-2001	018807 / 二日

August 7,2023

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent colleges with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

								RELE	ASE FOR CONSTRUCTION
Job	Trus	S	Truss Typ	e	Qty	Ply	Lot 176 HT		OTED FOR PLAN REVIEW VELOPMENT SERVICES 159955091
B240005	G7		Roof Spe	ecial Girder	1	1	Job Reference (opti		159955091 E'S SUMMIT, MISSOURI
Wheeler Lumber,							2023 MiTek Industries, In		
				ID:Ej7EWovY_9	4Pzt7UVy1gWAz	_t70-RfC?Ps	B70Hq3NSgPqnL8w3uIT	XbGI WrCDoi794290	
	. 1-	8-0. 8-	0-10	12-0-2	15-4-4		21-2-11	23-2-11 24	-3-14 26-2-6
	1-		-4-1	3-11-8	3-4-2		5-10-6	2-0-0 1	-3-14 26-2-6 -1-3 1-10-8
	-	1 <u>2</u>							
	5	8x8=							
	5x8			3x4 = 2	x4 u	6x8=			
		2			··· ·	5			
2 0-1; 2 0-1; 2 0-1;									4x5 ≈
-0 -0 3-9-43-10-13 2-3-12 ∩-1-0				16	15			10x12 = 6x8	=
	-1-9 3-2-4				210				7 8
4-0. 1-5-8 1-3-15 1-3-15	• "			2-0-0					9 00
⊥ <u>-</u> ⊺	19 🗧	18			<u> </u>	13		12 11	
	2x4 II			M18AHS 10x16 = 2x4 II 8x12 = 2	x4 u	6x8=			×6=
									2x4 II
	<u>1-</u> -1-	7-5 8-	1-14	11-10-14	15-5-8		21-1-7	23-3-15 24	-3-14
	' 1-'	7-5 6	-6-9	3-9-0	3-6-10	I	5-7-14	2-2-8 ₀₋	11-15
Scale = 1:50.5 Plate Offsets (X	(, Y): [2:0-4-3,Edge	e], [5:0-4-3,Edge], [6:0-	-3-13,Edge],	[7:0-4-3,Edge], [11:0-2-8,0-1-4	8], [12:0-2-8,0-	1-8]			
Loading	(psf)	Spacing	2-0-0	CSI	DEF	L	in (loc) l/defl	L/d PLATES	GRIP
TCLL (roof) TCDL	25.0 10.0	Plate Grip DOL Lumber DOL	1.15 1.15	TC BC	0.87 Vert(0.80 Vert(. ,		360 MT20 240 M18AHS	197/144 142/136
BCLL	0.0*	Rep Stress Incr	NO	WB	0.96 Horz	(CT) 0	.34 10 n/a	n/a	
BCDL	10.0	Code	IRC2018/T		Wind	()		240 Weight: 105	ib FT = 10%
LUMBER TOP CHORD		cept* 2-5:2x4 SPF 210	0F t	Jnbalanced roof live loads hav his design.			Vert: 11=	ed Loads (lb) 66 (B)	
BOT CHORD	1.8E 2x4 SPF No.2 *Ex	cept* 17-3,4-14:2x3 SF	۶F	/vind: ASCE 7-16; Vult=115mp /asd=91mph; TCDL=6.0psf; E	CDL=6.0psf; h	=25ft; Cat.			
WEBS	No.2, 16-15:2x4 S 2x3 SPF No.2 *Ex	PF 2100F 1.8E cept* 16-2,10-8:2x4 SF		I; Exp C; Enclosed; MWFRS (cantilever left and right expose					
BRACING	No.2	• •	r	ight exposed; Lumber DOL=1 Provide adequate drainage to					
TOP CHORD		neathing directly applie	dor 4) /	All plates are MT20 plates unle This truss has been designed	ess otherwise i	ndicated.			
		except end verticals, a -9-9 max.): 2-5, 6-7.	(chord live load nonconcurrent	with any other	live loads.			
BOT CHORD	Rigid ceiling direct bracing, Except:	ly applied or 10-0-0 oc	, , ,	^r This truss has been designed on the bottom chord in all area	s where a recta	angle			
REACTIONS (6-0-0 oc bracing: '	11-12,10-11. 8, 19= Mechanical		3-06-00 tall by 2-00-00 wide w chord and any other members		ne bottom			
1	Max Horiz 19=-139) (LC 4)	8) 6	Refer to girder(s) for truss to tr Provide mechanical connection					
		↓ (LC 5), 19=-171 (LC √ 7 (LC 1), 19=1075 (LC	1)	bearing plate capable of withst 19 and 264 lb uplift at joint 10.	anding 171 lb	uplift at join	t		
FORCES	(lb) - Maximum Co Tension	mpression/Maximum	9) 1	This truss is designed in accor					
TOP CHORD	1-2=-512/105, 2-3 3-4=-4308/644, 4-4		F	nternational Residential Code R802.10.2 and referenced star	ndard ANSI/TP	l 1.			
	5-6=-1957/295, 6-	7=-2505/344,	ć	Graphical purlin representation or the orientation of the purlin				~	1111
	8-10=-1179/277	=0/54, 1-19=-1102/148	11) H	oottom chord. Hanger(s) or other connection	device(s) shall	be		5 01	F MISSO
BOT CHORD	18-19=-20/114, 17 3-16=-351/156, 15	′-18=-2/73, 16-17=0/11 i-16=-595/4430,	1	provided sufficient to support of down and 8 lb up at 29-5-11 of				ANT/	N SA
		-272/93, 13-14=-8/51,	C	down and 834 lb up at 29-4-1	1 on bottom ch	ord. The			OTT M.
WEBS	10-11=-64/49		r	design/selection of such conne esponsibility of others.				g *//	1*8
VVEDO	2-18=-980/219, 16 2-16=-605/3931, 3	-15=-313/73,		n the LOAD CASE(S) section, of the truss are noted as front	1 - A rate	Brier A			
	13-15=-216/1975, 5-13=-742/152, 6-			D CASE(S) Standard Dead + Roof Live (balanced)				PE-20	01018807
	6-12=-914/192, 7- 7-11=-867/69, 1-1		')	Plate Increase=1.15		uuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuu		8 The	IST B
NOTES	8-11=-164/962	,		Uniform Loads (lb/ft) Vert: 1-2=-70, 2-5=-70, 5-6				NOIS'SION	VAL EN
NOTES				8-9=-70, 17-19=-20, 15-16	=-20, 10-14=-2	0		112	gust 7,2023
								, (u	5

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

						RE	LEASE FOR CONSTR	UCTION	
Job	Truss	Truss Type	Qty	Ply	Lot 176 HT		S NOTED FOR PLAN R DEVELOPMENT SERV		
B240005	G8	Half Hip	1	1	Job Reference (optior		DEVELOPMENT SERVICES 159955092 LEE'S SUMMIT, MISSOURI		
Wheeler Lumber, Waverly, I	KS - 66871,				2023 MiTek Industries, Inc. 370Hq3NSgPqnL8w3uITXI)24	
	5-7-14	<u> </u>		<u>16-11-8</u> 5-5-6		2-3-14 5-4-6	24-2-6		
	2x4 II	3x4 =	3x4 =		4x5 =				
	1 🛛 🖂	$\bowtie 2 $	3 ⊠ ⊠		4 6 +	12 15			
3-4-0 3-1-4 3-1-4 3-1-4 0-1							4x8≈ ∽ 5		
	11						6	1-0-0	
	3x6 =	10			9 8		2x4 II		
	0.0 -	3x4 =			3x4 =		2,44		
					4x8 =				
		8-7-0	17-0-12			22-3-14			
	I	8-7-0	8-5-12		I	5-3-2	I		

Scale = 1:47

Plate Offsets (X, Y): [5:0-2-15,0-2-0]

Plate Offsets ((X, Y): [5:0-2-15,0-2-0										-	
Loading TCLL (roof) TCDL BCLL BCDL	(psf) 25.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018/TPI201	CSI TC BC WB 4 Matrix-S	0.42 0.75 0.71	DEFL Vert(LL) Vert(CT) Horz(CT) Wind(LL)	in -0.14 -0.31 0.05 0.05	(loc) 10-11 10-11 7 8-10	l/defl >999 >859 n/a >999	L/d 360 240 n/a 240	PLATES MT20 Weight: 79 lb	GRIP 197/144 FT = 10%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD WEBS REACTIONS	2x4 SPF No.2 2x3 SPF No.2 *Exce Structural wood she 4-3-11 oc purlins, e 2-0-0 oc purlins (4-0 Rigid ceiling directly bracing. 1 Row at midpt	Athing directly applie xcept end verticals, a -11 max.): 1-4. applied or 10-0-0 oc 2-11 11= Mechanical (LC 6) 0 5), 11=-50 (LC 4)	on the 3-06-00 2 chord a 7) Refer t 8) Provide bearing 11 and 9) This tru Interna R802.1 10) Graphi or the o bottom	russ has been design bottom chord in all are o tall by 2-00-00 wide and any other member o girder(s) for truss to e mechanical connecti plate capable of with 60 lb uplift at joint 7. uss is designed in accu- tional Residential Coc 0.2 and referenced st cal purlin representation rrientation of the purlir chord. E(S) Standard	eas where will fit betw rs. truss conr on (by oth standing 5 ordance w le sections andard AN on does no	a rectangle veen the botton nections. ers) of truss to 50 lb uplift at jo ith the 2018 \$ R502.11.1 an ISI/TPI 1. ot depict the siz	m int id					
FORCES TOP CHORD BOT CHORD WEBS	(lb) - Maximum Com Tension 1-11=-167/38, 1-2=- 3-4=-1381/48, 4-5=- 5-7=-1096/81 10-11=-52/1505, 8-1	npression/Maximum 53/22, 2-3=-1834/57 1577/39, 5-6=0/54,	, 1/158									
NOTES 1) Unbalance this design 2) Wind: ASG Vasd=91n II; Exp C; and right e Lumber D 3) This truss intended f 4) Provide ac 5) This truss	3-8=-729/85, 4-8=0/ ed roof live loads have	316, 5-8=-9/1244 been considered for (3-second gust) DL=6.0psf; h=25ft; C tvelope); cantilever l left and right exposed b=1.60 port a ceiling and is to a ceiling and is to a consideration event water ponding r a 10.0 psf bottom	Cat. eft d; not n.							*	STATE OF J SCOT SEV OF DE LOW PE-2001	

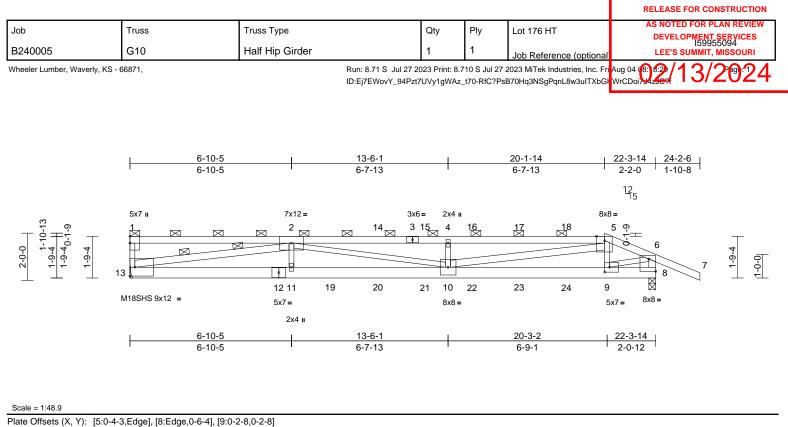
August 7,2023 MiTek[®] 16023 Swingley Ridge Rd. Chesterfield, MO 63017

314.434.1200 / MiTek-US.com

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling or individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

								RELEASE F	OR CONSTRUCTION
Job	Truss		Truss Type		Qty	Ply	Lot 176 HT		FOR PLAN REVIEW PMENT SERVICES 159955093
B240005	G9		Half Hip		1	1	Job Reference (optiona	1 5510.0	I59955093 UMMIT, MISSOURI
Wheeler Lumber, Waverly,	heeler Lumber, Waverly, KS - 66871,						2023 MiTek Industries, Inc. F B70Hq3NSgPqnL8w3uITXbG		3/2024
				10.0.1					-
		<u>6-1-4</u> 6-1-4		<u>12-0-4</u> 5-11-0		<u>18-6-11</u> 6-6-7		- <u>3-14</u> 24-2- -9-3 1-10-	
	4x9=		2x4 II		3x10=		5x7=	2 15	
2-8-0 2-5-4 2-6-13 2-5-4 0-1-9 2-5-4	12							4x5 ±	0 2-5-4 1-0-0
	3x4 II		11		10	9	8	2x4 II	7 — —
	374 1		5x12 =		2x4 II	5x7 =	6x8=		
		<u>6-1-4</u> 6-1-4		<u>12-0-4</u> 5-11-0		<u>18-7-15</u> 6-7-11		- <u>3-14</u> 7-15	

Scale = 1:48.6


Loading TCLL (roof) TCDL BCLL BCDL	(psf) 25.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018	8/TPI2014	CSI TC BC WB Matrix-S	0.65 0.74 0.74	DEFL Vert(LL) Vert(CT) Horz(CT) Wind(LL)	in -0.18 -0.33 0.05 0.10	(loc) 10-11 10-11 7 10-11	l/defl >999 >812 n/a >999	L/d 360 240 n/a 240	PLATES MT20 Weight: 79 lb	GRIP 197/144 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD WEBS REACTIONS	2x4 SPF No.2 2x3 SPF No.2 *Exce No.2 Structural wood she 4-7-1 oc purlins, ex 2-0-0 oc purlins (3-4 Rigid ceiling directly bracing. 1 Row at midpt	applied or 10-0-0 oc 3-8 12= Mechanical C 4) C 5), 12=-50 (LC 4)	6) 7) d or nd 8) 9)	on the bottom 3-06-00 tall b chord and an Refer to girdd Provide mecl bearing plate 12 and 70 lb This truss is International R802.10.2 ar Graphical pu		eas where will fit betw 's. truss conr on (by oth standing 5 ordance w le sections andard AN on does no	a rectangle veen the bott nections. ers) of truss 50 lb uplift at ith the 2018 5 R502.11.1 a NSI/TPI 1. ot depict the	to joint					
FORCES	(lb) - Maximum Com												
TOP CHORD	Tension 1-12=-922/80, 1-2=- 3-4=-1357/60, 4-5=- 5-7=-1113/81	2094/110, 2-3=-2094 1520/52, 5-6=0/54,	/110,										
BOT CHORD	11-12=0/96, 10-11= 7-8=0/42	-81/2617, 8-10=-81/2	617,										
WEBS		11=-423/101, 3-10=0/ 1390, 3-11=-556/35,	252,									Contraction of the	and the second
 this design Wind: ASC Vasd=91n II; Exp C; and right e Lumber D Provide ac This truss 	ed roof live loads have	(3-second gust) DL=6.0psf; h=25ft; C tvelope); cantilever k left and right exposed VL=1.60 event water ponding r a 10.0 psf bottom	at. eft d;							ļ		STATE OF I SCOT SEVI PE-2001 PE-2001	ER Server 018807

- Provide adequate drainage to prevent water ponding. This truss has been designed for a 10.0 psf bottom 4)
- chord live load nonconcurrent with any other live loads.

CONA-August 7,2023 **iTek**° 16023 Swingley Ridge Rd. Chesterfield, MO 63017

314.434.1200 / MiTek-US.com

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

Plate Offsets ((X, Y): [5:0-4-3,Edge],	[8:Edge,0-6-4], [9:0)-2-8,0-2-8	3]			-					-	
Loading TCLL (roof) TCDL BCLL BCDL	(psf) 25.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 NO IRC20 ⁷	18/TPI2014	CSI TC BC WB Matrix-S	0.96 0.86 0.82	DEFL Vert(LL) Vert(CT) Horz(CT) Wind(LL)	-0.69 0.07	(loc) 10-11 10-11 8 10-11	l/defl >697 >383 n/a >841	L/d 360 240 n/a 240	PLATES M18SHS MT20 Weight: 94 lb	GRIP 197/144 197/144 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD		pt* 12-8:2x6 SPF 1 pt* 13-2,10-5:2x4 S 400F 2.0E athing directly applic cept end verticals, a	650F 6 PF 7 ed or 8	on the botto 3-06-00 tall chord and a) Refer to girc) Provide mec bearing plat 13 and 280) This truss is Internationa	has been designe m chord in all area by 2-00-00 wide w ny other members ler(s) for truss to t chanical connectio e capable of withs lb uplift at joint 8. designed in acco I Residential Code and referenced sta	as where vill fit betv russ conr on (by oth tanding 2 rdance w e sections	a rectangle veen the bott nections. ers) of truss 219 lb uplift a ith the 2018 5 R502.11.1 a	tom to t joint					
BOT CHORD WEBS REACTIONS	 4-4-5 oc purlins, except end verticals, and 2-0-0 oc purlins (2-8-3 max.): 1-5. Rigid ceiling directly applied or 6-0-0 oc bracing. 2 Rows at 1/3 pts 2-13 			 Graphical provided provided provided sub- bottom chor Hanger(s) on provided sub- down and 20 12-6-7, 65 lb 	urlin representatio ation of the purlin	n does no along the device(s concentra 65 lb dov up at 14-	ot depict the set top and/or s) shall be ated load(s) 6 vn and 26 lb 6-7, and 65 l	65 lb up at b					
FORCES	(lb) - Maximum Com Tension 1-13=-224/87, 1-2=- 4-5=-4359/845, 5-6= 6-8=-1267/274	163/53, 2-4=-4359/8		up at 8-6-2, 12-6-7, 19 lt 19 lb down a	7 on top chord, an 19 lb down at 10 5 down at 14-6-7, at 18-6-7, and 92 50ttom chord. The)-6-7, 19 l 19 lb dov lb down a	b down at wn at 16-6-7 and 37 lb up	', and at					
BOT CHORD WEBS	11-13=-761/4201, 1(9-10=-273/1546, 8-9 2-13=-4123/787, 2-1 4-10=-482/208, 5-9= 6-9=-316/1616, 5-10	=-6/107 1=0/387, 2-10=-48/ 366/132,	383, L	connection of 1) In the LOAD of the truss OAD CASE(S)	device(s) is the res CASE(S) section are noted as front Standard	sponsibili ı, loads a (F) or ba	ty of others. pplied to the ck (B).	face			A	STATE OF	MISSOLATIN.
Vasd=91m II; Exp C; I cantilever right expose 2) Provide ac	CE 7-16; Vult=115mph (3-second gust) mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat.				of Live (balanced) ase=1.15 bads (lb/ft) 5=70, 5-6=-70, 6- ⁻ ted Loads (lb) 6 (B), 14=-2 (B), 1 -2 (B), 19=-250 (B), 23=0 (B), 24=0	7=-70, 8- 5=-2 (B), 3), 20=0 (l	13=-20 16=-2 (B), 1	7=-2		9		SEV PE-2001	Server

- hage to prevent water ponding 3)
- All plates are MT20 plates unless otherwise indicated.
- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.
 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not besign value to dury with with where outputs into design is based only door parameters shown, and is for an individual building design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members and property incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TPH1 Quality Criteria**, and **DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcscomponents.com)

August 7,2023

E

SSIONAL

										RELEASE	FOR CONSTRUCTION	
Job	Truss		Truss Type		Qty	Ply	Lot 176 F	IT			D FOR PLAN REVIEW	
B240005	H1		Common		1	1	Job Refe	rence (optio	onali	LEE'S	OPMENT SERVICES 159955095 SUMMIT, MISSOURI	
Wheeler Lumber,	Waverly, KS - 66871,			Run: 8.71 S Jul 2 ID:Ej7EWovY_94	27 2023 Print: Pzt7UVy1gW/	8.710 S Jul : Az_t70-RfC?	27 2023 MiTek I	ndustries, In	c. Fri	Aug 04 (8:) 8:29 WrCDoi) 942999	13/2024	F
				4-1-2 4-1-2		<u>8-5-6</u> 4-4-4		\neg				
						3-11-8		-				
				3-8-6	x5 =							
		—		12	2 ↑							
			4x5 II					3х6 п				
		2-9-12					ŵ⊥	3	-			
		1-1-5	6		5		-9-0	4	0-0-1	-		
			3x4 и	2	2x4 II			3x4 II				
Scale = 1:32.7				4-1-2 4-1-2		<u>8-5-6</u> 4-4-4		\neg				
Loading TCLL (roof) TCDL BCLL	(psf) 25.0 10.0 0.0*	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr	2-0-0 1.15 1.15 YES	CSI TC BC WB	0.24 Ve 0.31 Ve	EFL ert(LL) ert(CT) orz(CT)	in (loc) -0.03 5 -0.06 4-5 0.00 4	>999 >999	L/d 360 240 n/a	PLATES MT20	GRIP 197/144	_
BCDL	10.0	Code	IRC2018/TPI2014	Matrix-R		nd(LL)	0.00 4		240	Weight: 23 lb	FT = 10%	
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD	2x4 SPF No.2 2x4 SPF No.2 2x4 SPF No.2 *Exce Structural wood she 6-0-0 oc purlins, ex	athing directly applie	Internationa R802.10.2 2 LOAD CASE(S	s designed in accord al Residential Code s and referenced stan b) Standard	sections R5	02.11.1 an	d					
BOT CHORD	Rigid ceiling directly bracing.											
REACTIONS ((size) 4= Mecha	inical, 6= Mechanica	I									

 Max Horiz
 6=-27 (LC 4)

 Max Uplift
 4=-5 (LC 9), 6=-4 (LC 8)

 Max Grav
 4=367 (LC 1), 6=367 (LC 1)

 FORCES
 (lb) - Maximum Compression/Maximum Tension

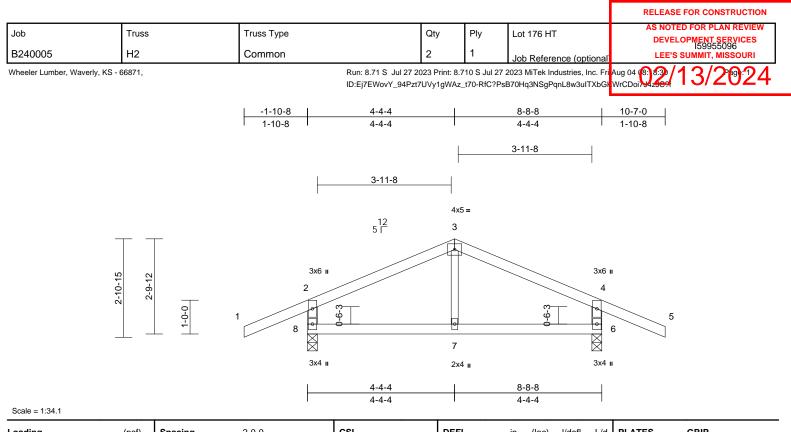
 TOP CHORD
 1-2=-371/21, 2-3=-373/19, 1-6=-285/29, 3-4=-289/32

 BOT CHORD
 5-6=0/284, 4-5=0/284

BOT CHORD 5-6=0/284 WEBS 2-5=0/122

NOTES

- Unbalanced roof live loads have been considered for this design.
- Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope); cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- 5) Refer to girder(s) for truss to truss connections.
- Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 4 lb uplift at joint 6 and 5 lb uplift at joint 4.


at. ft l;

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and property incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses part druss ystems, see ANSI/TPI Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

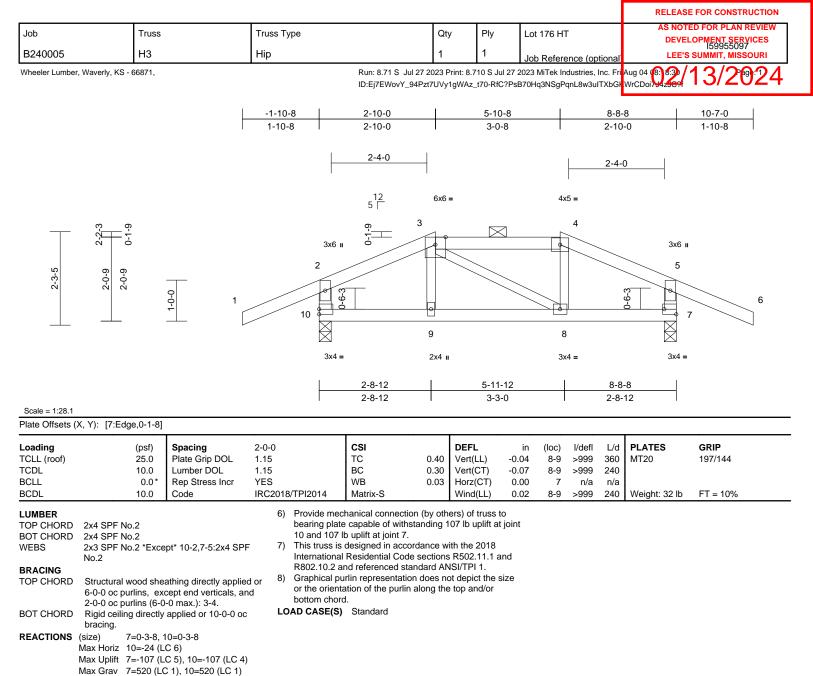
August 7,2025

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15	TC	0.42	Vert(LL)	-0.03	7	>999	360	MT20	197/144
TCDL	10.0	Lumber DOL	1.15	BC	0.22	Vert(CT)	-0.05	7	>999	240		
BCLL	0.0*	Rep Stress Incr	YES	WB	0.04	Horz(CT)	0.00	6	n/a	n/a		
BCDL	10.0	Code	IRC2018/TPI2014	Matrix-R		Wind(LL)	0.01	7-8	>999	240	Weight: 29 lb	FT = 10%
LUMBER			LOAD CASE(S)	Standard					_			

TOP CHORD	2x4 SPF I	No.2
BOT CHORD	2x4 SPF I	No.2
WEBS	2x4 SPF I	No.2 *Except* 7-3:2x3 SPF No.2
BRACING		
TOP CHORD		I wood sheathing directly applied or purlins, except end verticals.
BOT CHORD		ing directly applied or 10-0-0 oc
REACTIONS	(size)	6=0-3-8, 8=0-3-8
	Max Horiz	8=-23 (LC 6)
	Max Uplift	6=-97 (LC 9), 8=-97 (LC 8)
	Max Grav	6=520 (LC 1), 8=520 (LC 1)
FORCES	(lb) - Max Tension	imum Compression/Maximum
TOP CHORD	1-2=0/54,	2-3=-343/51, 3-4=-343/51,
	4-5=0/54,	2-8=-447/123, 4-6=-447/123
BOT CHORD	7-8=0/245	5, 6-7=0/245
WEBS	3-7=0/14	1

WEBS

NOTES


Unbalanced roof live loads have been considered for 1) this design

- 2) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
- This truss has been designed for a 10.0 psf bottom 3) chord live load nonconcurrent with any other live loads.
- 4) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- Provide mechanical connection (by others) of truss to 5) bearing plate capable of withstanding 97 lb uplift at joint 8 and 97 lb uplift at joint 6.
- 6) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.
 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not beigh valid for use only with with with sets outputs into design is based only door parameters shown, and is for an individual dualing component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria**, and **DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcscomponents.com)

16023 Swingley Ridge Rd. Chesterfield MO 63017 314.434.1200 / MiTek-US.com

 FORCES
 (lb) - Maximum Compression/Maximum Tension

 TOP CHORD
 1-2e0/54, 2-3=-360/48, 3-4=-272/54, 4-5=-360/48, 5-6=0/54, 2-10=-434/113, 5-7=-434/113

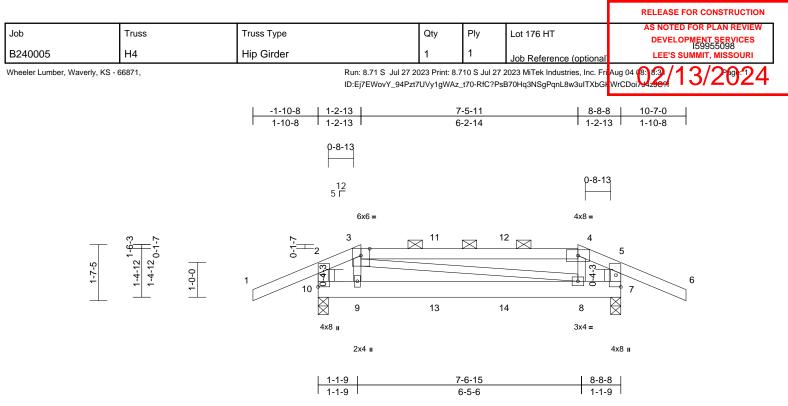
 BOT CHORD
 9-10=0/272, 8-9=0/272, 7-8=0/272

 WEBS
 3-9=-6/82, 3-8=-15/17, 4-8=-9/83

NOTES

 Unbalanced roof live loads have been considered for this design.

 Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
 Provide adequate drainage to prevent water ponding.


 a) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

chord live load nonconcurrent with any other live loads.
5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI Claulity Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbsccomponents.com)

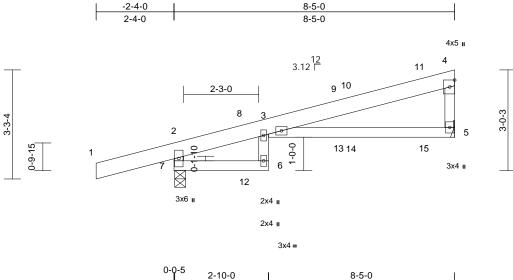
Scale = 1:33.1

		i											
Loading	(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15		TC	0.61	Vert(LL)	-0.02	8-9	>999	360	MT20	197/144
TCDL	10.0	Lumber DOL	1.15		BC	0.19	Vert(CT)	-0.04	8-9	>999	240		
BCLL	0.0*	Rep Stress Incr	NO		WB	0.09	Horz(CT)	0.00	7	n/a	n/a		
BCDL	10.0	Code	IRC20	18/TPI2014	Matrix-S		Wind(LL)	-0.02	8-9	>999	240	Weight: 38 lb	FT = 10%
LUMBER			6		hanical connect							-	
TOP CHORD					e capable of with		49 lb uplift a	t joint					
BOT CHORD			- 7	10 and 349 lb uplift at joint 7. 7) This truss is designed in accordance with the 2018									
WEBS	2x3 SPF No.2 *Exce	ept^ 10-2,7-5:2x4 SP	F /		Residential Co			and					
	No.2	nd referenced st			anu								
BRACING	o , , , , , , ,		. 8		Irlin representati			size					
TOP CHORD	Structural wood she				ation of the purli								
	6-0-0 oc purlins, ex 2-0-0 oc purlins (6-0		nu	bottom chore		J							
BOT CHORD			g) Hanger(s) or	other connection	on device(s) shall be						
BOT ONORD	bracing.			provided sufficient to support concentrated load(s) 45 lb									
REACTIONS	0	10-0-3-8		down and 12 lb up at 1-2-13, 50 lb down and 11 lb up at									
REAGINGING	Max Horiz 10=24 (L0				0 lb down and 1								
	Max Uplift 7=-349 (L	,	29)		2 lb up at 7-5-11								
	Max Grav 7=481 (LC	<i>,,</i>	,	down and 689 lb up at 1-2-13, 14 lb down and 16 lb up									
FORCES	(lb) - Maximum Com	<i>,,</i>	-,	at 3-4-4, and 14 lb down and 16 lb up at 5-4-4, and 112									
TOROLO	Tension	ipression/maximum		lb down and 689 lb up at 7-4-4 on bottom chord. The design/selection of such connection device(s) is the									
TOP CHORD	1-2=0/54, 2-3=-396/	370. 3-4=-345/253.		responsibility			100(3) 13 110	•					
	4-5=-390/369, 5-6=0		. 1		CASE(S) section	on loads a	oplied to the	face					
	5-7=-311/208	,			are noted as from			1000					
BOT CHORD	9-10=-308/370, 8-9=	-260/376, 7-8=-298	/357	OAD CASE(S)									
WEBS	3-9=-476/113, 3-8=-	60/56, 4-8=-492/124	- ۱	• • • • •	of Live (balance	d). I umber	Increase=1	15					
NOTES				Plate Increa		-,0							
	ed roof live loads have	been considered for	r	Uniform Lo									
,	this design.				Vert 1-270 2-370 3-470 4-570 5-670								Jan
	CE 7-16; Vult=115mph		7-10=-20							MISCO			
Vasd=91n	nph; TCDL=6.0psf; BC	Cat.	7-10=-20 Concentrated Loads (lb)							1,00			
											4	1 X Y	

- II; Exp C; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Provide adequate drainage to prevent water ponding.
- This truss has been designed for a 10.0 psf bottom 4)
- chord live load nonconcurrent with any other live loads. * This truss has been designed for a live load of 20.0psf 5) on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.

Vert: 9=50 (B), 8=50 (B)

August 7,2023


16023 Swingley Ridge Rd. Chesterfield MO 63017 314.434.1200 / MiTek-US.com

						RELEASE FOR CONSTRUCTION
Job	Truss	Truss Type	Qty	Plv	Lot 176 HT	AS NOTED FOR PLAN REVIEW
005	11055	Truss Type	Gety	l''y		DEVELOPMENT SERVICES 159955099
B240005	J1	Diagonal Hip Girder	1	1	Job Reference (optional	

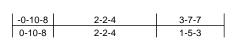
Wheeler Lumber, Waverly, KS - 66871,

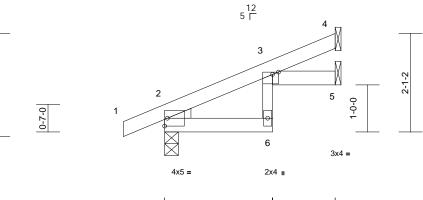
Run: 8.71 S Jul 27 2023 Print: 8.710 S Jul 27 2023 MiTek Industries, Inc. Fri Aug 04 (6) 32 / 13/2024 ID:Ej7EWovY_94Pzt7UVy1gWAz_t70-RfC?PsB70Hq3NSgPqnL8w3uITXbGk WrCDoity42564

Scale = 1:34.5

Plate Offsets (X, Y): [3:0-2-10,0-0-5]

	(X, T). [3.0-2-10,0-0-3	'I										-	
Loading TCLL (roof) TCDL BCLL BCDL	(psf) 25.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 NO IRC2018/	TPI2014	CSI TC BC WB Matrix-R	0.63 0.35 0.00	DEFL Vert(LL) Vert(CT) Horz(CT) Wind(LL)	in -0.11 -0.21 0.09 0.10	(loc) 3-5 3-5 5 3-5	l/defl >878 >468 n/a >956	L/d 360 240 n/a 240	PLATES MT20 Weight: 32 lb	GRIP 197/144 FT = 10%
 Vasd=91n II; Exp C; cantilever right expo. 2) This truss chord live 3) * This trus on the bot 3-06-00 ta chord and 4) Refer to gi 5) Provide m bearing pli 5 and 172 6) This truss Internation 	2x4 SPF No.2 2x4 SPF No.2 Structural wood she 6-0-0 oc purlins, ex Rigid ceiling directly bracing. (size) 5= Mecha Max Horiz 7=106 (LC Max Uplift 5=-126 (L Max Grav 5=482 (LC (lb) - Maximum Com Tension 1-2=0/44, 2-3=-159/ 4-5=-339/125, 2-7=-	cept end verticals. applied or 6-0-0 oc anical, 7=0-3-14 C 5) C 8), 7=-172 (LC 4) C 1), 7=575 (LC 1) apression/Maximum 11, 3-4=-206/30, 555/188 , 3-5=-47/164 (3-second gust) DL=6.0psf; h=25ft; C anoung statistical left and 0 plate grip DDL=1.6 r a 10.0 psf bottom it hany other live load fit between the botto ss connections. (by others) of truss to nding 126 lb uplift at ance with the 2018 ections R502.11.1 at	ed or 8) LO/ 1) Cat. Ie; d 50 ds. Ipsf om o joint	provided suff down and 13 3-3-12, 108 I down and 48 up at 8-5-4 (at 3-0-9, 3 It down and 23 up at 8-5-4 (such connect In the LOAD in the LOAD in the LOAD Dead + Roo Plate Incree Uniform Loo Vert: 1-2 Concentrat Vert: 8=3	of Live (balanced) ase=1.15	concentra 63 lb dow up at 5- and 97 lb 18 lb dow , at 5-10 and 63 lb The desi he respon , loads ag (F) or ba): Lumber 4=-70, 6-	Atted load(s) 7 rn and 36 lb 10-8, and 92 down and 5 vn and 21 lb -8, and 22 lb down and 1 gn/selection hsibility of oth pplied to the lock (B). Increase=1. 7=-20, 3-5=-2	up at Ib 9 Ib up 6 8 Ib of ners. face 15,				STATE OF I STATE OF I SEVI SEVI PE-2001	ER DI8807
												Augu	st 7 2023


August 7,2023



WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

						RELEASE FOR CONSTRUCTION
Job	Truss	Truss Type	Qty	Ply	Lot 176 HT	
B240005	J2	Jack-Open	1	1	Job Reference (optional	DEVELOPMENT SERVICES 159955100 LEE'S SUMMIT, MISSOURI
Wheeler Lumber, Waverl	Aug 04 (8) 63 / 1 3 / 2 (9) D 1					

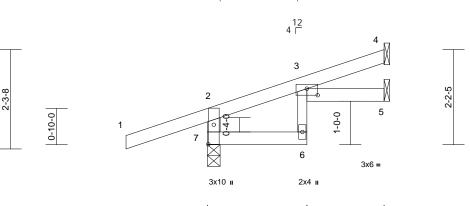
ID:Ej7EWovY_94Pzt7UVy1gWAz_t70-RfC?PsB70Hq3NSgPqnL8w3uITXbGHWrCDoi7s4z60

Scale = 1:24.5

Plate Offsets (X, Y): [3:0-1-8,0-0-9]

2-2-4

	()) []											
Loading TCLL (roof) TCDL BCLL BCDL	(psf) 25.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018/TPI2014	CSI TC BC WB Matrix-P	0.21 0.06 0.01	DEFL Vert(LL) Vert(CT) Horz(CT) Wind(LL)	in -0.02 -0.03 0.02 0.02	(loc) 6 5 6	l/defl >999 >999 n/a >999	L/d 360 240 n/a 240	PLATES MT20 Weight: 11 lb	GRIP 197/144 FT = 10%
LUMBER TOP CHORD BOT CHORD WEBS WEDGE BRACING TOP CHORD BOT CHORD	2x4 SPF No.2 2x3 SPF No.2 Left: 2x3 SPF No.2 Structural wood she 3-7-7 oc purlins.		Internationa R802.10.2 a LOAD CASE(S)	: designed in accc I Residential Cod and referenced sta) Standard	e sections	R502.11.1	and					
REACTIONS	REACTIONS (size) 2=0-3-8, 4= Mechanical, 5= Mechanical Max Horiz 2=75 (LC 8) Max Uplift 2=-37 (LC 8), 4=-52 (LC 8) Max Grav 2=236 (LC 1), 4=129 (LC 1), 5=27 (LC 3)											
FORCES TOP CHORD BOT CHORD WEBS	FORCES (lb) - Maximum Compression/Maximum Tension TOP CHORD 1-2=0/6, 2-3=-78/0, 3-4=-26/46 BOT CHORD 2-6=0/0, 3-5=-3/3											
Vasd=91n II; Exp C; cantilever right expo 2) This truss chord live 3) * This trus on the bot 3-06-00 ta chord and 4) Refer to g 5) Provide m bearing pl	CE 7-16; Vult=115mph nph; TCDL=6.0psf; BC Enclosed; MWFRS (er left and right exposed sed; Lumber DOL=1.6 has been designed fo load nonconcurrent wi ss has been designed f tom chord in all areas all by 2-00-00 wide will any other members. irder(s) for truss to tru techanical connection ate capable of withstar b uplift at joint 2.	DL=6.0psf; h=25ff; C ivelope) exterior zon ; end vertical left and 0 plate grip DOL=1.6 r a 10.0 psf bottom ith any other live load or a live load of 20.0 where a rectangle fit between the bottod ss connections. (by others) of truss to	e; d 30 ds. psf m								NUM PE-2001	I M. HER 018807


August 7,2023

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent college with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

						RELEASE FOR CONSTRUCTION
Job	Truss	Truss Type	Qty	Ply	Lot 176 HT	
B240005	J3	Jack-Open 1 1 Job Reference (optional				DEVELOPMENT SERVICES 159955101 LEE'S SUMMIT, MISSOURI
Wheeler Lumber, Waverly, KS -	66871,				2023 MiTek Industries, Inc. Fri B70Hq3NSgPqnL8w3uITXbGł	

1-9-8

2-3-8	4-0-14
2-3-8	1-9-6

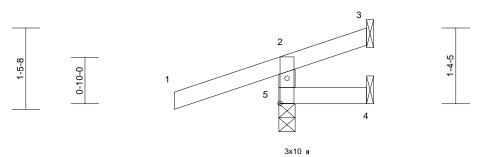
Scale = 1:26.6

Plate Offsets (X, Y): [3:0-3-0,0-1-13], [7:0-5-6,0-1-8]

Plate Offsets ((X, Y): [3:0-3-0,0-1-13]], [7:0-5-6,0-1-8]										
Loading TCLL (roof) TCDL BCLL BCDL	(psf) 25.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018/TPI2014	CSI TC BC WB Matrix-P	0.28 0.12 0.01	DEFL Vert(LL) Vert(CT) Horz(CT) Wind(LL)	in -0.01 -0.02 0.02 0.02	(loc) 3 6 5 6	l/defl >999 >999 n/a >999	L/d 360 240 n/a 240	PLATES MT20 Weight: 13 lb	GRIP 197/144 FT = 10%
LUMBER 2x4 SPF No.2 6) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. WEB 2x4 SPF No.2 *Except* 6-3:2x3 SPF No.2 LOAD CASE(S) Standard BRACING TOP CHORD Structural wood sheathing directly applied or 4-0.14 ∪ purlins, except end verticals. DOD CASE(S) Standard BOT CHORD Rigid celling directly applied or 6-0-0 oc bracing.												
FORCES	(LC 1)	pression/Maximum										
BOT CHORD WEBS	3-4=-17/23 6-7=0/0, 3-5=-8/4 3-6=0/40											
 NOTES 1) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60 2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 3) * This truss has been designed for a 10.0 psf bottom chord live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members. 4) Refer to girder(s) for truss to truss connections. 5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 122 lb uplift at joint 7, 34 lb uplift at joint 4 and 4 lb uplift at joint 5. 										I M. IER DI EN CITA		

August 7,2023

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)


						RELEASE FOR CONSTRUCTION
Job	Truss	Truss Type	Qty	Ply	Lot 176 HT	AS NOTED FOR PLAN REVIEW
B240005	J4	Jack-Open	1	1	Job Reference (optional	DEVELOPMENT SERVICES 159955102 LEE'S SUMMIT, MISSOURI
Wheeler Lumber, Waverly, KS	- 66871,	Run: 8.71 S Jul 27 2	2023 Print: 8	.710 S Jul 27	2023 MiTek Industries, Inc. Fri	

Run: 8.71 S Jul 27 2023 Print: 8.710 S Jul 27 2023 MiTek Industries, Inc. Fri Aug 04 (8) 8:32/1 3/2 Page 24 ID:Ej7EWovY_94Pzt7UVy1gWAz_t70-RfC?PsB70Hq3NSgPqnL8w3uITXbGF WrCDoi794z56?

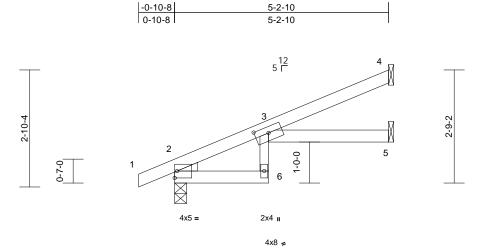
1-6-14

Scale = 1:20.6

Plate Offsets (X, Y): [5:0-5-6,0-1-8]

				r								
Loading	(psf)	Spacing	2-0-0	csi		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15	TC	0.28	Vert(LL)	0.00	4-5	>999	360	MT20	197/144
TCDL	10.0	Lumber DOL	1.15	BC	0.08	Vert(CT)	0.00	4-5	>999	240		
BCLL	0.0*	Rep Stress Incr	YES	WB	0.00	Horz(CT)	0.00	3	n/a	n/a		
BCDL	10.0	Code	IRC2018/TPI2014	Matrix-R		Wind(LL)	0.00	4-5	>999	240	Weight: 6 lb	FT = 10%
LUMBER 6) This truss is designed in accordance with the 2018 TOP CHORD 2x4 SPF No.2 BS 2x4 SPF No.2 WEBS 2x4 SPF No.2 BRACING R802.10.2 and referenced standard ANSI/TP11. BRACING LOAD CASE(S) Standard BTOP CHORD Structural wood sheathing directly applied or 1-6-14 oc purlins, except end verticals. BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing. REACTIONS (size) 3 = Mechanical, 4= Mechanical, 5=0-3-8 Max Horiz 5=-46 (LC 4). Max Uplitt 3=-22 (LC 1), 4=-16 (LC 1), 5=-143 (LC 4) Max Grav 3=16 (LC 4), 4=18 (LC 4), 5=306 (LC 1) FORCES (lb) - Maximum Compression/Maximum												
FORCES (It	· · · ·	pression/Maximum										
Ťe	ension											
	-5=-262/142, 1-2=0	/45, 2-3=-38/4										
	-5=0/0											
NOTES												
 II; Exp C; Encl cantilever left right exposed; This truss has chord live load * This truss ha on the bottom 3-06-00 tall by chord and any Refer to girder Provide mecha bearing plate of 	TCDL=6.0psf; BC losed; MWFRS (er and right exposed ; Lumber DOL=1.6; been designed fo d nonconcurrent wi as been designed fo chord in all areas / 2-00-00 wide will / other members. r(s) for truss to tru- anical connection (DL=6.0psf; h=25ff; C velope) exterior zon ; end vertical left and 0 plate grip DOL=1.6 • a 10.0 psf bottom th any other live load or a live load of 20.0 where a rectangle fit between the botto ss connections. by others) of truss to ding 143 lb uplift at	e; d 30 ds. psf m								STATE OF SCOT SEV SEV PE-2001	T M. IER 018807

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)



August 7,2023

						RELEASE FOR CONSTRUCTION
Job	Truss	Truss Type	Qty	Ply	Lot 176 HT	AS NOTED FOR PLAN REVIEW DEVELOPMENT SERVICES 159955103
B240005	J5	Jack-Open	1	1	Job Reference (optional	I59955103 LEE'S SUMMIT, MISSOURI
Wheeler Lumber Wave	arly KS - 66871	Ru	un: 8 71 S Jul 27 2023 Print: 8			

Wheeler Lumber, Waverly, KS - 66871,

ID:Ej7EWovY_94Pzt7UVy1gWAz_t70-RtC?PsB70Hq3NSgPqnL8w3ulTXbGi WrCDoi7942904 13/269124 3 Print: 8.710 S Jul 27 2023 MiTek In

Scale = 1:28.1	

Plate Offsets (X, Y	Y):	[3:0-4-0,0-1-13]
---------------------	-----	------------------

Loading	(psf)	Spacing	2-0-0	csi		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15	TC	0.48	Vert(LL)	-0.06	3-5	>999	360	MT20	197/144
TCDL	10.0	Lumber DOL	1.15	BC	0.33	Vert(CT)	-0.10	3-5	>583	240		
BCLL	0.0*	Rep Stress Incr	YES	WB	0.00	Horz(CT)	0.07	5	n/a	n/a		
BCDL	10.0	Code	IRC2018/TPI2014	Matrix-R		Wind(LL)	0.06	3-5	>966	240	Weight: 15 lb	FT = 10%
LUMBER			6) This trus	s is designed in acc	ordance w	ith the 2018						
TOP CHORE	D 2x4 SPF No.2			nal Residential Coo			and					
BOT CHORE		ept* 6-3:2x3 SPF No	b.2 R802.10.	2 and referenced st	tandard AN	ISI/TPI 1.						
WEDGE	Left: 2x3 SPF No.2		LOAD CASE	(S) Standard								
BRACING				. ,								
TOP CHORE	D Structural wood she	athing directly appli	ed or									
	5-2-10 oc purlins.											
BOT CHORE		applied or 6-0-0 oc	:									
	bracing.											
REACTIONS		4= Mechanical, 5=										
	Mechanic											
	Max Horiz 2=102 (Lo											
	Max Uplift 2=-44 (LC (LC 8)	5 8), 4=-58 (LC 8), 5)=-0									
	Max Grav 2=304 (L0	C 1) 4=135 (I C 1)	5=87									
	(LC 3)	0 1), 1-100 (20 1),	0-07									
FORCES	(lb) - Maximum Com	npression/Maximum										
	Tension											
TOP CHORE	D 1-2=0/6, 2-3=-138/0	, 3-4=-35/44										
BOT CHORE	D 2-6=-3/13, 3-6=-5/68	8, 3-5=-5/3										
NOTES												
1) Wind: AS	SCE 7-16; Vult=115mph	(3-second gust)										
	1mph; TCDL=6.0psf; BC											an
	; Enclosed; MWFRS (er										OF	MIG
	er left and right exposed										TATE OF	USS W
	oosed; Lumber DOL=1.6 ss has been designed fo		.60							6	AN'	N.S.
	e load nonconcurrent w		ade							B	SCOT	ТМ. \72 \
	uss has been designed f									R	SEV	IER \ Y
	ottom chord in all areas		-F							Ant		
	tall by 2-00-00 wide will		om							YX.	HK.	La Man
chord an	nd any other members.								2	× C	our	
	girder(s) for truss to tru									\$7		
5) Provide I	mechanical connection	(by others) of truss	to							N	O PE-2001	01000/201

4) 5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 58 lb uplift at joint 4, 44 lb uplift at joint 2 and 6 lb uplift at joint 5.

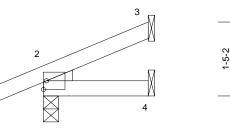
WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent college with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

August 7,2023

SIONAL ET

						RELEASE FOR CONSTRUCTION
Job	Truss	Truss Type	Qty	Plv	Lot 176 HT	AS NOTED FOR PLAN REVIEW
				Ľ		DEVELOPMENT SERVICES 159955104
B240005	J6	Jack-Open	1	1	Job Reference (optional	LEE'S SUMMIT, MISSOURI
						0011010001

Wheeler Lumber, Waverly, KS - 66871,



1

1-6-4

4x5 =

0		1 00 0
Scale	=	1:22.2

					2	2-0-4	_					
Scale = 1:22.2					I							
_oading	(psf)	Spacing	2-0-0	csi		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
FCLL (roof)	25.0	Plate Grip DOL	1.15	TC	0.06	Vert(LL)	0.00	2-4	>999	360	MT20	197/144
FCDL	10.0	Lumber DOL	1.15	BC	0.03	Vert(CT)	0.00	2-4	>999	240		
BCLL	0.0*	Rep Stress Incr	YES	WB	0.00	Horz(CT)	0.00	3	n/a	n/a		
BCDL	10.0	Code	IRC2018/TPI2014	Matrix-P							Weight: 6 lb	FT = 10%

vv	F	L	9G	iE		
•	.		~		10	

BRACING		
TOP CHORD	Structural	wood sheathing directly applied or
	2-0-4 oc p	ourlins.
BOT CHORD	Rigid ceili	ing directly applied or 10-0-0 oc
	bracing.	
REACTIONS	(size)	2=0-3-8, 3= Mechanical, 4=
		Mechanical
	Max Horiz	2=48 (LC 8)

Max Uplift 2=-36 (LC 4), 3=-33 (LC 8)

Max Grav 2=173 (LC 1), 3=43 (LC 1), 4=36 (LC 3) FORCES (lb) - Maximum Compression/Maximum

Tension TOP CHORD 1-2=0/6, 2-3=-46/16

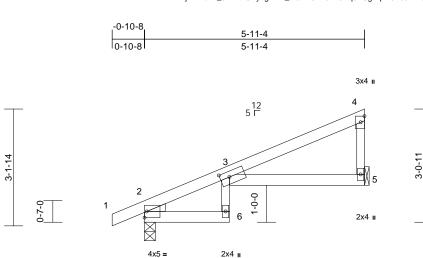
2-4=0/0

BOT CHORD

NOTES

- Wind: ASCE 7-16; Vult=115mph (3-second gust) 1) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
- This truss has been designed for a 10.0 psf bottom 2) chord live load nonconcurrent with any other live loads. * This truss has been designed for a live load of 20.0psf
- 3) on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- Refer to girder(s) for truss to truss connections. 4)
- 5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 33 lb uplift at joint 3 and 36 lb uplift at joint 2.
- This truss is designed in accordance with the 2018 6) International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard



 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.
 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not beigh valid for use only with with with sets outputs into design is based only door parameters shown, and is for an individual dualing component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria**, and **DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcscomponents.com)

						RELEASE FOR CONSTRUCTION		
Job	Truss	Truss Type	Qty	Plv	Lot 176 HT	AS NOTED FOR PLAN REVIEW		
000	11035		Qty	1 19		DEVELOPMENT SERVICES 159955105		
B240005	J7	Jack-Closed	3	1	Job Reference (optional			
Wheeler Lumber, Waverl	Wheeler Lumber, Waverly, KS - 66871, Run: 8.71 S Jul 27 2023 Print: 8.710 S Jul 27 2023 MiTek Industries, Inc. Fri Aug							

кип: 6.7 г. 5. Jul 27 2023 Print: 8.710 S Jul 27 2023 MiTek Industries, Inc. Fri Aug 04 (8:) 6:3 / 1 3/2 9 2 4 ID:Ej7EWovY_94Pzt7UVy1gWAz_t70-RfC?PsB70Hq3NSgPqnL8w3uITXbGi WrCDoi7642569f

2x4 🛛

1	2-3-8	5-11-4
	2-3-8	3-7-12

4x8 🚅

Scale = 1:31.1	
----------------	--

Plate Offsets (X, Y):	Plate Offsets (X, Y): [3:0-3-0,0-1-13]												
Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP	
TCLL (roof)	25.0	Plate Grip DOL	1.15	TC	0.60	Vert(LL)	-0.10	6	>711	360	MT20	197/144	
TCDL	10.0	Lumber DOL	1.15	BC	0.33	Vert(CT)	-0.17	6	>397	240			
BCLL	0.0*	Rep Stress Incr	YES	WB	0.00	Horz(CT)	0.11	5	n/a	n/a			
BCDL	10.0	Code	IRC2018/TPI2014	Matrix-R		Wind(LL)	0.10	6	>705	240	Weight: 18 lb	FT = 10%	

LUMBER

TOP CHORD	2x4 SPF I	No.2						
BOT CHORD	2x4 SPF No.2 *Except* 6-3:2x3 SPF No.2							
WEBS	2x3 SPF No.2							
WEDGE	Left: 2x3	Left: 2x3 SPF No.2						
BRACING								
TOP CHORD	Structura	I wood sheathing directly applied or						
	5-11-4 oc	purlins, except end verticals.						
BOT CHORD	Rigid ceil	ing directly applied or 10-0-0 oc						
	bracing.							
REACTIONS	(size)	2=0-3-8, 5= Mechanical						
	Max Horiz	2=104 (LC 5)						
	Max Uplift	2=-58 (LC 8), 5=-61 (LC 8)						
	Max Grav	2=334 (LC 1), 5=250 (LC 1)						
FORCES	(lb) - Max	imum Compression/Maximum						
	Tension							
TOP CHORD	1-2=0/6, 2	2-3=-169/0, 3-4=-85/14, 4-5=-166/65						
BOT CHORD	2-6=-1/7,	3-6=0/63, 3-5=-22/54						
NOTES								

- NOTES
- 1) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
- This truss has been designed for a 10.0 psf bottom 2) chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf 3) on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- 4) Refer to girder(s) for truss to truss connections.
- Provide mechanical connection (by others) of truss to 5) bearing plate capable of withstanding 61 lb uplift at joint 5 and 58 lb uplift at joint 2.
- This truss is designed in accordance with the 2018 6) International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not beigh valid for use only with with with sets outputs into design is based only door parameters shown, and is for an individual dualing component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria**, and **DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcscomponents.com)

						RELEASE FOR CONSTRUCTION
Job	Truss	Truss Type	Qty	Ply	Lot 176 HT	AS NOTED FOR PLAN REVIEW DEVELOPMENT SERVICES 159955106
B240005	J8	Jack-Closed	1	1	Job Reference (optional	
Wheeler Lumber, Wav	verly, KS - 66871,				27 2023 MiTek Industries, Inc. Fri ?PsB70Hq3NSgPqnL8w3uITXbGI	
		-0-10-8 0-10-8	<u>5-11-4</u> 5-11-4			
					2x4 II	
	\top		12 5 M		3	\top

Scolo	_	1.27	0

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15	TC	0.60	Vert(LL)	-0.06	2-4	>999	360	MT20	197/144
TCDL	10.0	Lumber DOL	1.15	BC	0.35	Vert(CT)	-0.13	2-4	>544	240		
BCLL	0.0*	Rep Stress Incr	YES	WB	0.00	Horz(CT)	0.00	4	n/a	n/a		
BCDL	10.0	Code	IRC2018/TPI2014	Matrix-P							Weight: 18 lb	FT = 10%

5-11-4

2

X 4x5 =

TOP CHORD	2x4 SPF No.2
BOT CHORD	2x4 SPF No.2
WEBS	2x3 SPF No.2
WEDGE	Left: 2x3 SPF No.2
BRACING	
TOP CHORD	Structural wood sheathing directly applied o 5-11-4 oc purlins, except end verticals.
BOT CHORD	Rigid ceiling directly applied or 10-0-0 oc bracing.
REACTIONS	(size) 2=0-3-8, 4= Mechanical
	Max Horiz 2=120 (LC 5)
	Max Uplift 2=-60 (LC 8), 4=-59 (LC 8)
	Max Grav 2=334 (LC 1), 4=250 (LC 1)
FORCES	(lb) - Maximum Compression/Maximum Tension
TOP CHORD BOT CHORD	1-2=0/6, 2-3=-107/66, 3-4=-193/93 2-4=-38/29

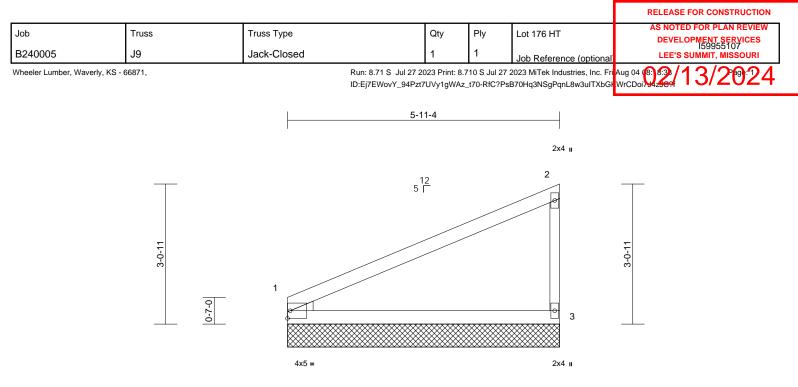
3-1-14

0-2-0

NOTES

- 1) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
- This truss has been designed for a 10.0 psf bottom 2) chord live load nonconcurrent with any other live loads. 3) * This truss has been designed for a live load of 20.0psf
- on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- 4) Refer to girder(s) for truss to truss connections.
- 5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 59 lb uplift at joint 4 and 60 lb uplift at joint 2.
- This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and 6) R802.10.2 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard


3-0-11

4

2x4 II

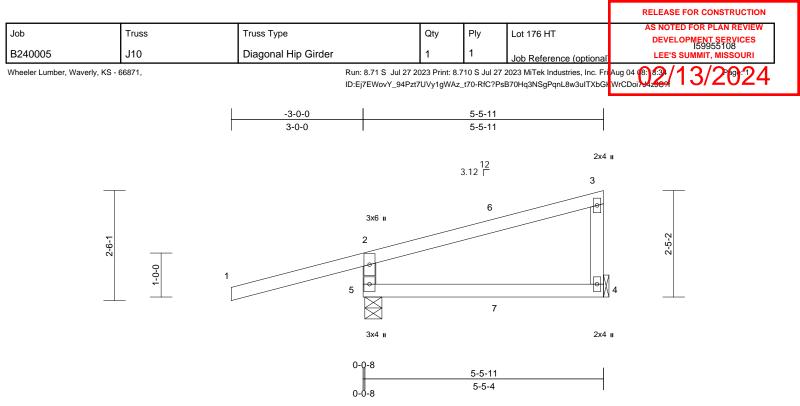
WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permenter is always required for stability and to prevent colleges with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcscomponents.com)

5-11-4

Scale = 1:25.1									I			
Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15	TC	0.67	Vert(LL)	n/a	-	n/a	999	MT20	197/144
TCDL	10.0	Lumber DOL	1.15	BC	0.36	Vert(TL)	n/a	-	n/a	999		
BCLL	0.0*	Rep Stress Incr	YES	WB	0.00	Horiz(TL)	0.00	3	n/a	n/a		
BCDL	10.0	Code	IRC2018/TPI2014	Matrix-P							Weight: 17 lb	FT = 10%

LUMBER

LUMBER	
TOP CHORD	2x4 SPF No.2
BOT CHORD	2x4 SPF No.2
WEBS	2x3 SPF No.2
WEDGE	Left: 2x3 SPF No.2
BRACING	
TOP CHORD	Structural wood sheathing directly applied or
	5-11-4 oc purlins, except end verticals.
BOT CHORD	Rigid ceiling directly applied or 10-0-0 oc
	bracing.
REACTIONS	(size) 1=5-11-4, 3=5-11-4
REACTIONS	(size) 1=5-11-4, 3=5-11-4 Max Horiz 1=118 (LC 5)
REACTIONS	()
REACTIONS	Max Horiz 1=118 (LC 5)
REACTIONS	Max Horiz 1=118 (LC 5) Max Uplift 1=-36 (LC 8), 3=-62 (LC 8)
	Max Horiz 1=118 (LC 5) Max Uplift 1=-36 (LC 8), 3=-62 (LC 8) Max Grav 1=263 (LC 1), 3=263 (LC 1)
	Max Horiz 1=118 (LC 5) Max Uplift 1=-36 (LC 8), 3=-62 (LC 8) Max Grav 1=263 (LC 1), 3=263 (LC 1) (lb) - Maximum Compression/Maximum Tension
FORCES	Max Horiz 1=118 (LC 5) Max Uplift 1=-36 (LC 8), 3=-62 (LC 8) Max Grav 1=263 (LC 1), 3=263 (LC 1) (lb) - Maximum Compression/Maximum Tension 1-2=-105/69, 2-3=-204/97
FORCES TOP CHORD	Max Horiz 1=118 (LC 5) Max Uplift 1=-36 (LC 8), 3=-62 (LC 8) Max Grav 1=263 (LC 1), 3=263 (LC 1) (lb) - Maximum Compression/Maximum Tension 1-2=-105/69, 2-3=-204/97


- Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
- Gable requires continuous bottom chord bearing.
- 3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 4) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- 5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 62 lb uplift at joint 3 and 36 lb uplift at joint 1.
- This truss is designed in accordance with the 2018 6) International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard

 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.
 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not beigh valid for use only with with with sets outputs into design is based only door parameters shown, and is for an individual dualing component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria**, and **DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcscomponents.com)

16023 Swingley Ridge Rd. Chesterfield MO 63017 314.434.1200 / MiTek-US.com

Scale = 1:26.2

TCLL (roof) 25.0 TCDL 10.0	Plate Grip DOL1Lumber DOL1Rep Stress IncrN	2-0-0 1.15 1.15 NO RC2018/TPI2014	BC	0.82 0.20 0.00	DEFL Vert(LL) Vert(CT) Horz(CT) Wind(LL)	in -0.03 -0.05 0.00 -0.02	(loc) 4-5 4-5 4 4-5	l/defl >999 >999 n/a >999	L/d 360 240 n/a 240	PLATES MT20 Weight: 19 lb	GRIP 197/144 FT = 10%
5-5-11 oc purlins, ex BOT CHORD Rigid ceiling directly a bracing.	applied or 6-0-0 oc nical, 5=0-4-11 5) 8), 5=-216 (LC 4) 1), 5=506 (LC 1)	provided suffi down and 94 up at 3-0-90 at 2-11-15, a bottom chord device(s) is th 8) In the LOAD of the truss a LOAD CASE(S) 1) Dead + Roo Plate Increa Uniform Loa Vert: 1-2=	f Live (balanced): Lu se=1.15	centra nd 78 l Ib dov Ib up a ion of thers. ads ap or bac	ted load(s) 5 b down and 3 vn and 16 lb at 3-0-9 on such connect oplied to the f ck (B).	36 lb up tion face					

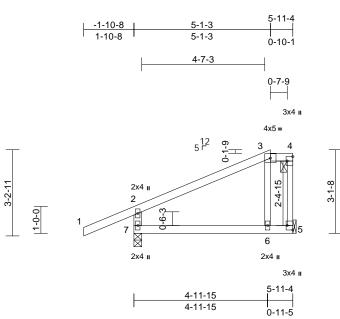
TOP CHORD 2-5=-445/242, 1-2=0/55, 2-3=-103/19, 3-4=-112/68 4-5=-28/68

BOT CHORD

NOTES

- 1) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
- This truss has been designed for a 10.0 psf bottom 2) chord live load nonconcurrent with any other live loads.
- 3) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- 4) Refer to girder(s) for truss to truss connections.
- Provide mechanical connection (by others) of truss to 5) bearing plate capable of withstanding 216 lb uplift at joint 5 and 38 lb uplift at joint 4.
- 6) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

OF MISS SCOTT M. SEVIER OFFSSIONAL PE-200101880



16023 Swingley Ridge Rd. Chesterfield MO 63017 314.434.1200 / MiTek-US.com

E

 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.
 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not beigh valid for use only with with with sets outputs into design is based only door parameters shown, and is for an individual dualing component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria**, and **DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcscomponents.com)

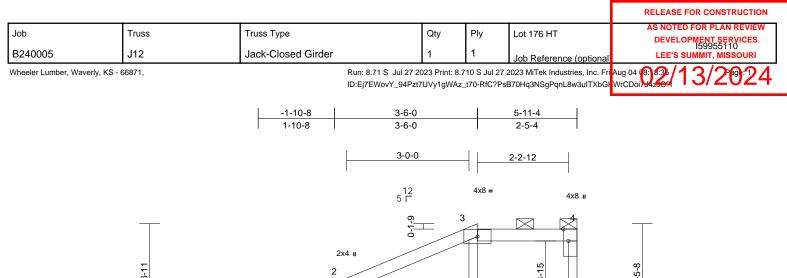
						RELEASE FOR CONSTRUCTION
Job	Truss	Truss Type	Qty	Ply	Lot 176 HT	AS NOTED FOR PLAN REVIEW DEVELOPMENT SERVICES 159955109
B240005	J11	Jack-Closed	1	1	Job Reference (optional	
Wheeler Lumber, Waverly, KS -	Aug 04 (6) 3 / 13/2924					

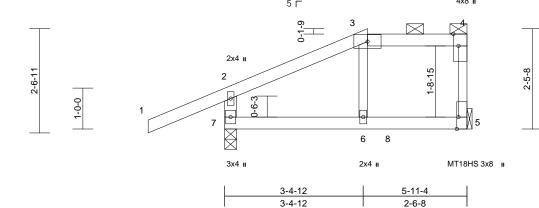
Scale = 1:43

- 1410 01100		[0.2490,0 2 0]											
Loading	(psf)	Spacing	2-0-0		csi		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)		Plate Grip DOL	1.15		тс	0.30	Vert(LL)	-0.03	6-7	>999	360	MT20	197/144
TCDL	10.0	Lumber DOL	1.15		BC	0.20	Vert(CT)	-0.06	6-7	>999	240		
BCLL	0.0*	Rep Stress Incr	YES		WB	0.02	Horz(CT)	0.00	5	n/a	n/a		
BCDL	10.0	Code	IRC201	8/TPI2014	Matrix-R		Wind(LL)	0.03	6-7	>999	240	Weight: 21 lb	FT = 10%
LUMBER TOP CHOR BOT CHOR WEBS BRACING TOP CHOR BOT CHOR	 D 2x4 SPF No.2 2x3 SPF No.2 *Exce 2.0E D Structural wood she 5-11-4 oc purlins, e 2-0-0 oc purlins: 3-4 D Rigid ceiling directly 	athing directly applie xcept end verticals, a	00F 8) ed or 9) and	bearing plate 7 and 43 lb u This truss is International R802.10.2 a Graphical pu		tanding 8 rdance w sections ndard AN n does no	9 lb uplift at j ith the 2018 s R502.11.1 a ISI/TPI 1. ot depict the s	oint					
REACTION	bracing. S (size) 5= Mecha Max Horiz 7=131 (LC Max Uplift 5=-43 (LC Max Grav 5=231 (LC	5), 7=-89 (LC 8)											
FORCES	(lb) - Maximum Com Tension	,, ()											
TOP CHOR													
BOT CHOR													
WEBS	3-6=-82/84												
NOTES													
	nced roof live loads have	been considered for											The
, this des	ign.											OF N	ALC: NO
	SCE 7-16; Vult=115mph											THE OF I	IIS'S
	1mph; TCDL=6.0psf; BC										6	A.M.	N.S
	C; Enclosed; MWFRS (er										R	SCOT	ГМ. \С. \
	er left and right exposed posed; Lumber DOL=1.6										4	/ SEVI	ER \Y
	adequate drainage to pr										bat		0
	ss has been designed for		•							- 4	X	475	Serles
	ve load nonconcurrent wi		ds.							ø		NUM	DED CON
	uss has been designed f										27		
	pottom chord in all areas										N.	PE-2001	018807

on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.

6) Refer to girder(s) for truss to truss connections.




GI

SSIONAL EN

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

Scale =	1:28.2
---------	--------

Plate Offsets (X, Y): [4:0-3-8,Edge], [5:0-3-8,Edge]

						_							
Loading TCLL (roof) TCDL BCLL BCDL	(psf) 25.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 NO IRC201	8/TPI2014	CSI TC BC WB Matrix-R	0.64 0.54 0.04	DEFL Vert(LL) Vert(CT) Horz(CT) Wind(LL)	in -0.07 -0.13 0.00 0.07	(loc) 6-7 6-7 5 6-7	l/defl >922 >518 n/a >944	L/d 360 240 n/a 240	PLATES MT20 MT18HS Weight: 20 lb	GRIP 197/144 197/144 FT = 10%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD REACTIONS	2x3 SPF No.2 *Exce Structural wood she 5-11-4 oc purlins, e 2-0-0 oc purlins: 3-4 Rigid ceiling directly bracing.	, athing directly applie xcept end verticals, a , applied or 10-0-0 oc anical, 7=0-3-8 C 5) C 5), 7=-131 (LC 4)	d or and 10 ; 1 ⁴	bearing plate 7 and 112 lb 1 This truss is International R802.10.2 a 0) Graphical pu or the orients bottom chore 1) Hanger(s) ou provided suf lb down and lb up at 4-0- such connect	hanical connection e capable of withs uplift at joint 5. designed in accoon Residential Code not referenced sta trilin representation ation of the purlin d. other connection ficient to support of 53 lb up at 3-6-0 0 on bottom chorr tion device(s) is tt CASE(S) section	tanding 1 rdance w sections ndard AN n does no along the device(s concentra , and 157 d. The do he respor	31 lb uplift a R502.11.1 a ISI/TPI 1. ot depict the a top and/or) shall be the load(s) 1 'lb down and asign/selection sibility of oth	t joint and size 135 d 50 on of ners.					
FORCES TOP CHORD BOT CHORD	(lb) - Maximum Com Tension 2-7=-403/130, 1-2=0 3-4=-143/57, 4-5=-1 6-7=-60/141, 5-6=-6)/54, 2-3=-228/52, 96/64		of the truss a	are noted as front Standard of Live (balanced) ase=1.15	(F) or ba	ск (В).						

Vert: 1-2=-70, 2-3=-70, 3-4=-70, 5-7=-20

Concentrated Loads (lb)

Vert: 6=-123 (F), 8=-157 (F)

WEBS

NOTES

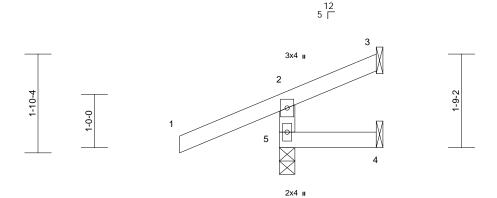
1) Unbalanced roof live loads have been considered for this design.

3-6=-34/145

- Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Provide adequate drainage to prevent water ponding.
- 4) All plates are MT20 plates unless otherwise indicated.
- 5) This truss has been designed for a 10.0 psf bottom
- chord live load nonconcurrent with any other live loads.
 * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom
- chord and any other members.
- 7) Refer to girder(s) for truss to truss connections.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTPIT Quality Criteria, and DSE-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcscomponents.com)

NUMBER PE-2001018807



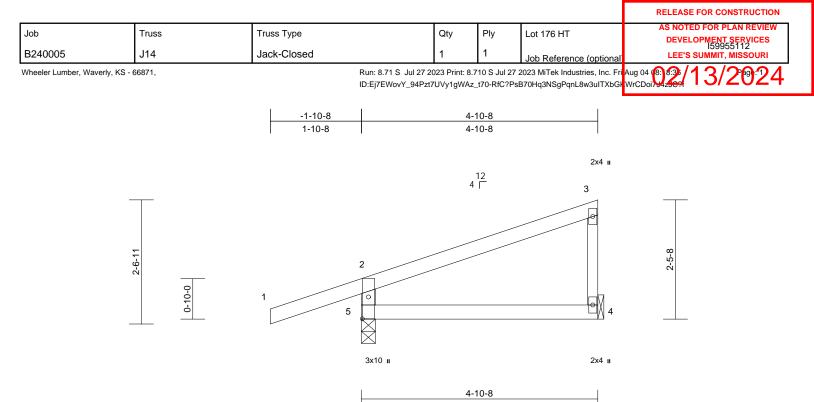
						RELEASE FOR CONSTRUCTION
Job	Truss	Truss Type	Qty	Ply	Lot 176 HT	
B240005	J13	Jack-Open	1	1	Job Reference (optional	DEVELOPMENT SERVICES 159955111 LEE'S SUMMIT, MISSOURI
Wheeler Lumber, Waverly, KS -	66871,	Run: 8.71 S Jul 27 2	023 Print: 8.	710 S Jul 27	2023 MiTek Industries, Inc. Fri	

Run: 8.71 S Jul 27 2023 Print: 8.710 S Jul 27 2023 MiTek Industries, Inc. FrilAug 04 (8) 6:38/1 3/2 fog 24 ID:Ej7EWovY_94Pzt7UVy1gWAz_t70-RfC?PsB70Hq3NSgPqnL8w3uITXbGH WrCDoi794z569

-1-10-8	1-9-13
1-10-8	1-9-13

1-9-13

Coolo		1.01	e
Scale	=	1:21	.o


Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15		.28	Vert(LL)	0.00	4-5	>999	360	MT20	197/144
TCDL	10.0	Lumber DOL	1.15	-	.08	Vert(CT)	0.00	4-5	>999	240		
BCLL	0.0*	Rep Stress Incr	YES	WB 0.	.00	Horz(CT)	-0.01	3	n/a	n/a		
BCDL	10.0	Code	IRC2018/TPI2014	Matrix-R		Wind(LL)	0.00	4-5	>999	240	Weight: 7 lb	FT = 10%
LUMBER			LOAD CASE(S)	Standard								
TOP CHORD	2x4 SPF No.2		.,									
BOT CHORD	2x4 SPF No.2											
WEBS	2x4 SPF No.2											
BRACING												
TOP CHORD		athing directly applie	ed or									
	1-9-13 oc purlins, e											
BOT CHORD	0 0 ,	applied or 10-0-0 or										
	bracing.											
REACTIONS	(size) 3= Mecha 5=0-3-8	anical, 4= Mechanica	ll,									
	5=0-3-8 Max Horiz 5=53 (LC	5)										
	Max Uplift 3=-14 (LC	,	.87									
	(LC 4)	5 0), 4=-7 (LO 1), 5=-	-07									
	Max Grav 3=4 (LC 4	4), 4=24 (LC 3), 5=30)2									
	(LC 1)	,, (,,										
FORCES	(lb) - Maximum Corr	npression/Maximum										
	Tension											
TOP CHORD	2-5=-262/96, 1-2=0/	54, 2-3=-46/1										
BOT CHORD	4-5=0/0											
NOTES												
1) Wind: ASC	CE 7-16; Vult=115mph	(3-second gust)										
	nph; TCDL=6.0psf; BC											
	Enclosed; MWFRS (er											~
	left and right exposed										A	and
	sed; Lumber DOL=1.6		50								E.F. OF M	NISS W
	has been designed fo load nonconcurrent w		do							4	TATE OF M	NS
	ioau nonconcurrent w	iur any other live load	15.							B	N/ SCOT	TM XXX

- 3) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- 4) Refer to girder(s) for truss to truss connections.
- Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 87 lb uplift at joint 5, 7 lb uplift at joint 4 and 14 lb uplift at joint 3.
- 6) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent oulgase with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

Scale = 1:23.7	

Plate Offsets (X, Y): [5:0-5-6,0-1-8]

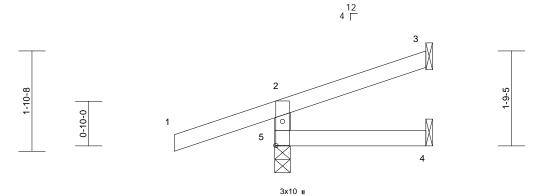
Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl		-	GRIP
TCLL (roof)		Plate Grip DOL	1.15	TC		Vert(LL)	-0.02	4-5	>999	360	MT20	197/144
TCDL	10.0	Lumber DOL	1.15	BC	0.16	Vert(CT)	-0.04	4-5	>999	240		
BCLL	0.0*	Rep Stress Incr	YES	WB	0.00	Horz(CT)	0.00	4	n/a	n/a		
BCDL	10.0	Code	IRC2018/TPI2014	Matrix-R		Wind(LL)	0.00	4-5	>999	240	Weight: 16 lb	FT = 10%

- LUMBER
- TOP CHORD 2x4 SPF No.2 BOT CHORD 2x4 SPF No.2 2x4 SPF No.2 *Except* 3-4:2x3 SPF No.2 WEBS BRACING TOP CHORD Structural wood sheathing directly applied or 4-10-8 oc purlins, except end verticals. BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing. REACTIONS (size) 4= Mechanical, 5=0-3-8 Max Horiz 5=106 (LC 5) Max Uplift 4=-38 (LC 8), 5=-134 (LC 4) Max Grav 4=177 (LC 1), 5=380 (LC 1)
- FORCES (lb) - Maximum Compression/Maximum Tension TOP CHORD 2-5=-336/164, 1-2=0/45, 2-3=-98/17, 3-4=-129/60 4-5=-25/25

BOT CHORD

NOTES

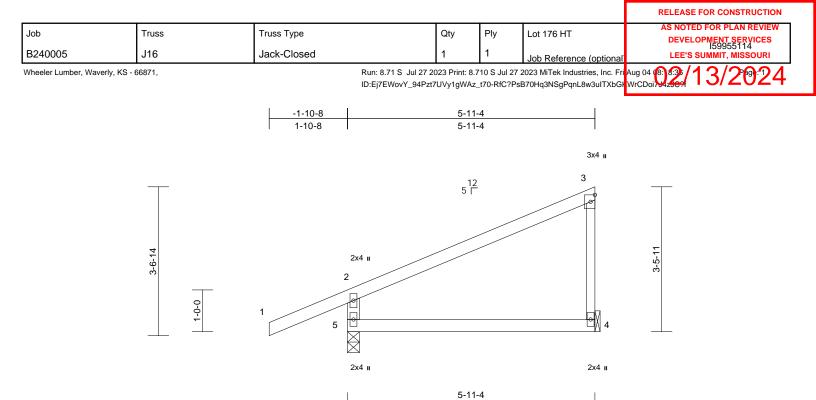
- 1) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
- 2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 3) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- 4) Refer to girder(s) for truss to truss connections.
- Provide mechanical connection (by others) of truss to 5) bearing plate capable of withstanding 134 lb uplift at joint 5 and 38 lb uplift at joint 4.
- This truss is designed in accordance with the 2018 6) International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.


LOAD CASE(S) Standard

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not beigh valid for use only with with with sets outputs into design is based only door parameters shown, and is for an individual dualing component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria**, and **DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcscomponents.com)

							RELEASE FOR CONSTRUCTION
Job	Truss	Truss Type		Qty	Ply	Lot 176 HT	
B240005	J15	Jack-Open		1	1	Job Reference (optional	DEVELOPMENT SERVICES 159955113 LEE'S SUMMIT, MISSOURI
Wheeler Lumber, Waverly,	KS - 66871,					27 2023 MiTek Industries, Inc. Fri PsB70Hq3NSgPqnL8w3ulTXbGł	
		1	-1-10-8		2-9-14		
			1-10-8		2-9-14		

	2-9-14	
Scale = 1:21.5		
Plate Offsets (X, Y): [5:0-5-6.0-1-8]		


Plate Offsets (X, Y): [5:	0-5-6,0-1-8]											
Loading TCLL (roof) TCDL BCLL BCDL	(psf) 25.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018/TPI2014	CSI TC BC WB Matrix-R	0.28 0.07 0.00	DEFL Vert(LL) Vert(CT) Horz(CT) Wind(LL)	in 0.00 0.00 0.00 0.00	(loc) 4-5 4-5 3 4-5	l/defl >999 >999 n/a >999	L/d 360 240 n/a 240	PLATES MT20 Weight: 9 lb	GRIP 197/144 FT = 10%
BOT CHORD 2-9-14 c Rigid ce bracing. REACTIONS (size) Max Hori: Max Uplif	No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2	athing directly applie ccept end verticals. applied or 10-0-0 oc nical, 4= Mechanica 4) 8), 5=-124 (LC 4) 1), 4=44 (LC 3), 5=3	; I,	Standard								
Tension	Aximum Com (ult=115mph =6.0psf; BCI MWFRS (en ght exposed ; designed for oncurrent wit n designed for oncurrent wit a concertion (l d in accorda ntial Code se	DL=6.0psf; h=25ft; C velope) exterior zon ; end vertical left and 0 plate grip DOL=1.6 a 10.0 psf bottom th any other live load or a live load of 20.0 where a rectangle fit between the botto ss connections. by others) of truss to ding 124 lb uplift at nce with the 2018 ections R502.11.1 ar	e; d 50 ds. psf m o joint								STATE OF SCOT SEV	T.M. IER 018807

International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

August 7,2023

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

Scale = 1:27.6													
Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP	
TCLL (roof)	25.0	Plate Grip DOL	1.15	TC	0.38	Vert(LL)	-0.04	4-5	>999	360	MT20	197/144	
TCDL	10.0	Lumber DOL	1.15	BC	0.26	Vert(CT)	-0.09	4-5	>773	240			
BCLL	0.0*	Rep Stress Incr	YES	WB	0.00	Horz(CT)	0.00	4	n/a	n/a			

Wind(LL)

0.02

4-5 >999 240 Weight: 19 lb

FT = 10%

Matrix-R

LUMBER			LOAD CASE(S)	Standard
TOP CHORD	2x4 SPF I	No.2		
BOT CHORD	2x4 SPF I	No.2		
WEBS	2x4 SPF I	No.2 *Except* 3-4:2x3 SPF No.2		
BRACING				
TOP CHORD	Structura	wood sheathing directly applied or		
	5-11-4 oc	purlins, except end verticals.		
BOT CHORD	Rigid ceil	ing directly applied or 10-0-0 oc		
	bracing.			
REACTIONS	(size)	4= Mechanical, 5=0-3-8		
	Max Horiz	5=150 (LC 5)		
	Max Uplift	4=-56 (LC 8), 5=-85 (LC 8)		
	Max Grav	4=231 (LC 1), 5=423 (LC 1)		
FORCES	(lb) - Max	imum Compression/Maximum		

Code

IRC2018/TPI2014

10.0

Tension TOP CHORD 2-5=-373/129, 1-2=0/54, 2-3=-138/37, 3-4=-167/81 BOT CHORD 4-5=-41/31

NOTES

TCDI BCLL BCDL

- 1) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
- 2) This truss is not designed to support a ceiling and is not intended for use where aesthetics are a consideration.
- 3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 4) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- Refer to girder(s) for truss to truss connections. 5)
- Provide mechanical connection (by others) of truss to 6) bearing plate capable of withstanding 85 lb uplift at joint 5 and 56 lb uplift at joint 4.
- 7) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

August 7,2023

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not beigh valid for use only with with with sets outputs into design is based only door parameters shown, and is for an individual dualing component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria**, and **DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcscomponents.com)

						RELEASE FOR CONSTRUCTION
Job	Truss	Truss Type	Qty	Ply	Lot 176 HT	AS NOTED FOR PLAN REVIEW DEVELOPMENT SERVICES 159955115
B240005	J17	Jack-Closed	2	1	Job Reference (optional	
Wheeler Lumber, Waverly	ν, KS - 66871,				2023 MiTek Industries, Inc. Fri B70Hq3NSgPqnL8w3uITXbGł	
			5-11-4		———————————————————————————————————————	
					3х6 и	
	T		12 5 Г		2 -	\top
	3-5-11	2x4 II			с 	- 5 5

2x4 II

5-11-4

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15	TC	0.50	Vert(LL)	-0.05	3-4	>999	360	MT20	197/144
TCDL	10.0	Lumber DOL	1.15	BC	0.28	Vert(CT)	-0.10	3-4	>707	240		
BCLL	0.0*	Rep Stress Incr	YES	WB	0.00	Horz(CT)	0.00	3	n/a	n/a		
BCDL	10.0	Code	IRC2018/TPI2014	Matrix-R		Wind(LL)	0.02	3-4	>999	240	Weight: 17 lb	FT = 10%

3x4 II

LUMBER

Scale - 1.26.8

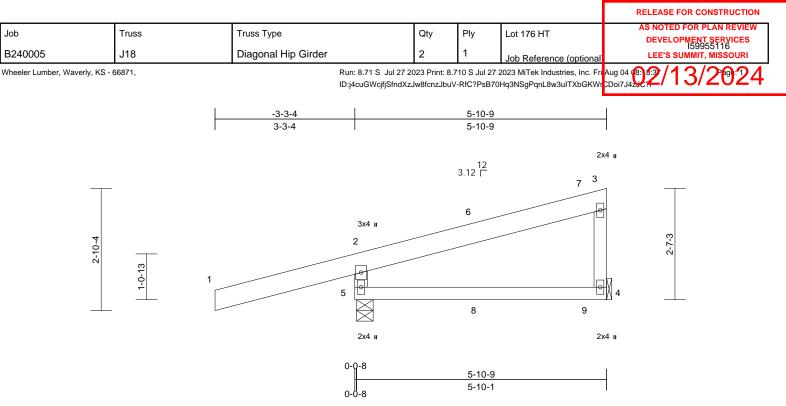
TOP CHORD	2x4 SPF No.2
BOT CHORD	2x4 SPF No.2
WEBS	2x3 SPF No.2

BRACING	
TOP CHORD	Structural wood sheathing directly applied or
	5-11-4 oc purlins, except end verticals.
BOT CHORD	Rigid ceiling directly applied or 10-0-0 oc
	bracing.

REACTIONS (size) 3= Mechanical, 4=0-3-8 Max Horiz 4=133 (LC 5) Max Uplift 3=-63 (LC 8), 4=-33 (LC 8) Max Grav 3=258 (LC 1), 4=258 (LC 1) FORCES (lb) - Maximum Compression/Maximum

Tension TOP CHORD 1-4=-212/76, 1-2=-139/38, 2-3=-189/89 BOT CHORD 3-4=-41/38

NOTES


- Wind: ASCE 7-16; Vult=115mph (3-second gust) 1) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
- 2) This truss is not designed to support a ceiling and is not intended for use where aesthetics are a consideration.
- This truss has been designed for a 10.0 psf bottom 3)
- chord live load nonconcurrent with any other live loads.
 This truss has been designed for a live load of 20.0psf 4) on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- Refer to girder(s) for truss to truss connections. 5)
- Provide mechanical connection (by others) of truss to 6) bearing plate capable of withstanding 33 lb uplift at joint 4 and 63 lb uplift at joint 3.
- 7) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard

 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.
 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not beigh valid for use only with with with sets outputs into design is based only door parameters shown, and is for an individual dualing component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria**, and **DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcscomponents.com)

Scale = 1:26.9

Scale = 1.20.9												
Loading	(psf)	Spacing	2-0-0	csi		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15	тс	0.43	Vert(LL)	0.05	4-5	>999	360	MT20	197/144
TCDL	10.0	Lumber DOL	1.15	BC	0.22	Vert(CT)	-0.05	4-5	>999	240		
BCLL	0.0*	Rep Stress Incr	NO	WB	0.00	Horz(CT)	0.00	4	n/a	n/a		
BCDL	10.0	Code	IRC2018/TPI2014	Matrix-R		Wind(LL)	-0.04	4-5	>999	240	Weight: 26 lb	FT = 20%
LUMBER TOP CHORD	2x6 SPF No.2		provided su	or other connecti fficient to suppo	rt concentra	ted load(s)						

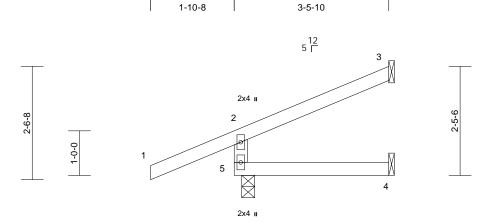
BOT CHORD	284 366 1	NU.2				
WEBS	2x4 SPF I	No.2				
BRACING						
TOP CHORD	Structura	wood sheathing directly applied or				
	5-10-9 oc	purlins, except end verticals.				
BOT CHORD	Rigid ceiling directly applied or 6-0-0 oc					
	bracing.					
REACTIONS	(size)	4= Mechanical, 5=0-4-11				
	Max Horiz	5=109 (LC 5)				
	Max Uplift	4=-61 (LC 8), 5=-244 (LC 4)				
	Max Grav	4=222 (LC 15), 5=545 (LC 1)				

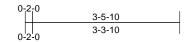
- FORCES
 (lb) Maximum Compression/Maximum Tension

 TOP CHORD
 2-5=-505/262, 1-2=0/60, 2-3=-121/37,
- 3-4=-149/87 BOT CHORD 4-5=-26/69

NOTES

- Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- 4) Refer to girder(s) for truss to truss connections.
- Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 244 lb uplift at joint 5 and 61 lb uplift at joint 4.
- 6) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.


- Pranger(s) of other connection device(s) shall be provided sufficient to support concentrated load(s) 77 lb down and 25 lb up at 2-9-5, and 68 lb down and 65 lb up at 2-9-11, and 66 lb down and 49 lb up at 5-4-7 on top chord, and 36 lb down and 110 lb up at 2-9-5, and 10 lb down and 16 lb up at 2-9-11, and 25 lb down at 5-4-7 on bottom chord. The design/selection of such connection device(s) is the responsibility of others. In the LOAD CASE(S) section, loads applied to the face
- of the truss are noted as front (F) or back (B).
- LOAD CASE(S) Standard
 - 1) Dead + Roof Live (balanced): Lumber Increase=1.15,
 - Plate Increase=1.15
 - Uniform Loads (lb/ft) Vert: 1-2=-70, 2-3=-70, 4-5=-20
 - Concentrated Loads (lb)
 - Vert: 7=-22 (F), 8=38 (B), 9=-7 (F)



WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTPIT Quality Criteria, and DSE-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcscomponents.com)

						RELEASE FOR CONSTRUCTION
Job	Truss	Truss Type	Qty	Ply	Lot 176 HT	AS NOTED FOR PLAN REVIEW DEVELOPMENT SERVICES 159955117
B240005	J19	Jack-Open	2	1	Job Reference (optional	
Wheeler Lumber, Waverly	Aug 04 (8) 53/13/2024 WrCDoi 1942551					
		-1-10-8	3 3-5	i-10		

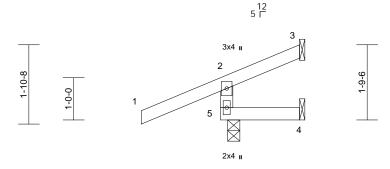
Scale = 1:25.9

00010 - 1.20.0	5											
Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15	TC	0.28	Vert(LL)	-0.01	4-5	>999	360	MT20	197/144
TCDL	10.0	Lumber DOL	1.15	BC	0.08	Vert(CT)	-0.01	4-5	>999	240		
BCLL	0.0*	Rep Stress Incr	YES	WB	0.00	Horz(CT)	0.00	3	n/a	n/a		
BCDL	10.0	Code	IRC2018/TPI2014	Matrix-R		Wind(LL)	0.00	4-5	>999	240	Weight: 11 lb	FT = 10%
LUMBER												
TOP CHORD												
BOT CHORD												
WEBS	2x4 SPF No.2											
BRACING												
TOP CHORD												
	3-5-10 oc purlins, e											
BOT CHORD	D Rigid ceiling directly bracing.	applied of 10-0-0 0	C									
REACTIONS	0	nical, 4= Mechanic	al									
REAGINGING	5=0-3-8		ai,									
	Max Horiz 5=74 (LC	8)										
	Max Uplift 3=-49 (LC	3), 5=-71 (LC 4)										
	Max Grav 3=79 (LC (LC 1)	1), 4=58 (LC 3), 5=	332									
FORCES	(lb) - Maximum Com	pression/Maximum										
TOP CHORD	Tension 2-5=-290/95, 1-2=0/9	54 2 2 - 50/22										
BOT CHORE	,	54, 2-5=-59/22										
NOTES	9 4-3-0/0											
	SCE 7-16; Vult=115mph	(3-second quist)										
	mph; TCDL=6.0psf; BC		Cat.									
	; Enclosed; MWFRS (er											
	r left and right exposed										~	~
	osed; Lumber DOL=1.6		60								A	and the
	s has been designed for		4-								TATEOF	MISS D
	e load nonconcurrent wi iss has been designed f									A		1.5
	ottom chord in all areas		JP31							A	SCOT	TM.
	tall by 2-00-00 wide will		om							4	/ SEV	IER \ Y
chord an	d any other members.									Max.		1 * 1
	girder(s) for truss to tru								4	5 81	TH	Adamak
	mechanical connection (oll -	BER
booring r	nate canable of withstar	naina 71 lh unlift at i	oint									

- Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 71 lb uplift at joint 5 and 49 lb uplift at joint 3.
- 6) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)



						RELEASE FOR CONSTRUCTION
Job	Truss	Truss Type	Qty	Ply	Lot 176 HT	AS NOTED FOR PLAN REVIEW DEVELOPMENT SERVICES
B240005	J20	Jack-Open	2	1	Job Reference (optional	DEVELOPMENT SERVICES 159955118 LEE'S SUMMIT, MISSOURI
		-				

Wheeler Lumber, Waverly, KS - 66871,

Run: 8.71 S Jul 27 2023 Print: 8.710 S Jul 27 2023 MiTek Industries, Inc. Fri Aug 04 8 3.3 / 1 3/2 9:24 ID:Ej7EWovY_94Pzt7UVy1gWAz_t70-RfC?PsB70Hq3NSgPqnL8w3uITXbGt WrCDoi 94.2 5 4

-1-10-8	1-10-7
1-10-8	1-10-7

Scale = 1:27.3

Loading	(psf)	Spacing	2-0-0	csi		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15	TC	0.28	Vert(LL)	0.00	4-5	>999	360	MT20	197/144
TCDL	10.0	Lumber DOL	1.15	BC	0.08	Vert(CT)	0.00	4-5	>999	240		
BCLL	0.0*	Rep Stress Incr	YES	WB	0.00	Horz(CT)	-0.01	3	n/a	n/a		
BCDL	10.0	Code	IRC2018/TPI2014	Matrix-R		Wind(LL)	0.00	4-5	>999	240	Weight: 7 lb	FT = 10%
LUMBER			LOAD CASE(S)	Standard								
TOP CHORE	D 2x4 SPF No.2											
BOT CHORE	D 2x4 SPF No.2											
WEBS	2x4 SPF No.2											
BRACING												
TOP CHORE	O Structural wood she	athing directly appli	ed or									
	1-10-7 oc purlins, e	xcept end verticals.										
BOT CHORE		applied or 10-0-0 o	С									
	bracing.											
REACTIONS		anical, 4= Mechanica	al,									
	5=0-3-8	-										
	Max Horiz 5=53 (LC	,	~~									
	Max Uplift 3=-16 (LC (LC 4)	58), 4=-6 (LC 1), 5=	-86									
	(LC 4) Max Grav 3=5 (LC 1	9) 4-25 (IC 3) 5-	302									
	(LC 1)	3), 4=23 (LO 3), 3=	502									
FORCES	(Ib) - Maximum Com	nression/Maximum										
1011020	Tension	proceinin										
TOP CHORE	0 2-5=-262/95, 1-2=0/	54, 2-3=-46/1										
BOT CHORE	D 4-5=0/0											
NOTES												
1) Wind: AS	SCE 7-16; Vult=115mph	(3-second gust)										
Vasd=91	1mph; TCDL=6.0psf; BC	DL=6.0psf; h=25ft;	Cat.									
	; Enclosed; MWFRS (er											
	er left and right exposed										Son	Jan
	osed; Lumber DOL=1.6		60								E. OF	MISS
	s has been designed for		da							4	2 Mil	N'SON
	e load nonconcurrent wi uss has been designed f									B	STATE OF SCOT	TM XPN
	ottom chord in all areas		opoi							B	SEV	
	tall by 2-00-00 wide will		om							81		···· \+ \
	any other members.		-							20	1	0 24
	girder(s) for truss to tru	ss connections.								JA A	hatts	Server 1
5) Provide I	mechanical connection ((by others) of truss t	0							5	NUM	DER

nection (by ou bearing plate capable of withstanding 6 lb uplift at joint 4, 16 lb uplift at joint 3 and 86 lb uplift at joint 5.

This truss is designed in accordance with the 2018 6) International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent colleges with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

16023 Swingley Ridge Rd. Chesterfield MO 63017 314.434.1200 / MiTek-US.com

						RELEASE FOR CONSTRUCTION
Job	Truss	Truss Type	Qty	Ply	Lot 176 HT	AS NOTED FOR PLAN REVIEW DEVELOPMENT SERVICES 159955119
B240005	J21	Jack-Open	1	1	Job Reference (optional	
Wheeler Lumber, Waverl	Aug 04 (8) 63 / 13/20 24 WrCDoily42					

2

3x10 ш

0-8-8

0-8-8

0.30

0.36

0.00

6

2-9-14

2-9-14

12 4 Г

 \bigotimes 5

2-9-14

2-1-6

DEFL

Vert(LL)

Vert(CT)

Horz(CT)

Wind(LL)

3

4

in (loc)

0.01

0.01

-0.03

-0.01

-9-5

PLATES

Weight: 9 lb

MT20

GRIP

197/144

FT = 10%

l/defl

>999

>999

>999

n/a n/a

4-5

4-5

4-5

3

L/d

360

240

240

-1-10-8

1-10-8

Structural wood sheathing directly applied or 2-9-14 oc purlins, except end verticals. Rigid ceiling directly applied or 10-0-0 oc 3= Mechanical, 4= Mechanical, 5=0-3-8 Max Horiz 5=62 (LC 4) 3=-25 (LC 8), 4=-78 (LC 1), 5=-187 (LC 4) 3=25 (LC 1), 4=55 (LC 4), 5=430 (LC 1)

2-0-0

1.15

1.15

YES

IRC2018/TPI2014

1-10-8

0-10-0

FORCES (lb) - Maximum Compression/Maximum Tension

TOP CHORD 2-6=-300/150, 1-2=0/45, 2-3=-50/2 BOT CHORD 5-6=-12/62, 4-5=0/0

NOTES

Scale = 1:25.3

Loading

TCDL

BCLL

BCDL

WEBS BRACING TOP CHORD

LUMBER

TOP CHORD

BOT CHORD

BOT CHORD

REACTIONS (size)

TCLL (roof)

Plate Offsets (X, Y): [6:0-5-6,0-1-8]

2x4 SPF No.2

2x4 SPF No.2

2x4 SPF No.2

bracing.

Max Uplift

Max Grav

(psf)

25.0

10.0

10.0

0.0*

Spacing

Code

Plate Grip DOL

Rep Stress Incr

Lumber DOL

- 1) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
- 2) This truss has been designed for a 10.0 psf bottom
- chord live load nonconcurrent with any other live loads. 3) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- Refer to girder(s) for truss to truss connections. Provide mechanical connection (by others) of truss to 5)
- bearing plate capable of withstanding 25 lb uplift at joint 3, 78 lb uplift at joint 4 and 187 lb uplift at joint 5.

6) This truss is designed in accordance with the 2018

International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

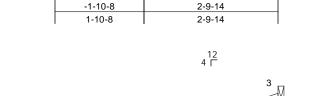
LOAD CASE(S) Standard

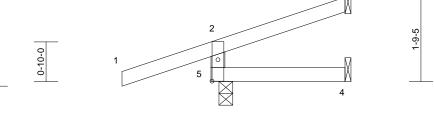
CSI

TC

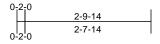
BC

WB


Matrix-R



WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not beigh valid for use only with with with sets outputs into design is based only door parameters shown, and is for an individual dualing component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria**, and **DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcscomponents.com)



						RELEASE FOR CONSTRUCTION
Job	Truss	Truss Type	Qty	Ply	Lot 176 HT	AS NOTED FOR PLAN REVIEW
			~.,	,		DEVELOPMENT SERVICES 159955120
B240005	J22	Jack-Open	1	1	Job Reference (optional	LEE'S SUMMIT, MISSOURI
Wheeler Lumber, Waverly, H	KS - 66871,	Run	: 8.71 S Jul 27 2023 Print: 8.7	'10 S Jul 27	2023 MiTek Industries, Inc. Fri	Aug 04 🚯 🕄 🕽 🖊 🕇 🏹 🏸 🖓 🗍
		ID:E	j7EWovY_94Pzt7UVy1gWAz_	t70-RfC?Ps	sB70Hq3NSgPqnL8w3uITXbGł	
					· · · · · · · · · · · · · · · · · · ·	

3x10 🛛

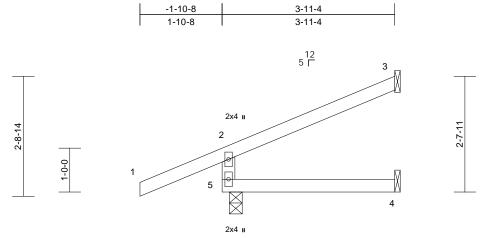
Scale = 1:24.3

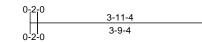
Plate Offsets (X, Y): [5:0-5-6,0-1-8]

1-10-8

		1										
Loading	(psf)	Spacing	2-0-0	csi		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15	тс	0.28	Vert(LL)	0.00	4-5	>999	360	MT20	197/144
TCDL	10.0	Lumber DOL	1.15	BC	0.07	Vert(CT)	0.00	4-5	>999	240		
BCLL	0.0*	Rep Stress Incr	YES	WB	0.00	Horz(CT)	0.00	3	n/a	n/a		
BCDL	10.0	Code	IRC2018/TPI2014	Matrix-R		Wind(LL)	0.00	4-5	>999	240	Weight: 9 lb	FT = 10%
LUMBER TOP CHORD	2x4 SPF No.2		LOAD CASE(S)	Standard								
BOT CHORD	2x4 SPF No.2											
WEBS	2x4 SPF No.2											
	2											
FOP CHORD	Structural wood she	athing directly appli	ed or									
	2-9-14 oc purlins, e											
BOT CHORD	Rigid ceiling directly bracing.	applied or 10-0-0 o	0C									
REACTIONS	(size) 3= Mecha	anical, 4= Mechanica	al,									
	5=0-3-8											
	Max Horiz 5=62 (LC											
	Max Uplift 3=-31 (LC											
	Max Grav 3=52 (LC (LC 1)	1), 4=44 (LC 3), 5=	-314									
FORCES	(lb) - Maximum Com Tension	npression/Maximum										
TOP CHORD BOT CHORD	2-5=-273/139, 1-2=0 4-5=0/0	0/45, 2-3=-42/11										
NOTES	10-0/0											
	CE 7-16; Vult=115mph	(3-second qust)										
	nph; TCDL=6.0psf; BC		Cat.									
	Enclosed; MWFRS (er											COL.
cantilever	left and right exposed	; end vertical left an	nd								6 OF	MICH
	sed; Lumber DOL=1.6		.60								ALE OF	MISS
	has been designed fo									A	TATE OF	1.5
	load nonconcurrent wi									A	S/ SCOT	M. NEW
	ss has been designed f ttom chord in all areas		Upst							4	/ SEV	TER Y
	all by 2-00-00 wide will		om							100		0
	any other members.									YX .	15	Serlos
	irder(s) for truss to tru	iss connections.							ø		NUM	
	echanical connection		to							27		
bearing pl	ate capable of withstar	nding 124 lb uplift at	t joint							N.	PE-2001	101880/

up ıg ս յս 5 and 31 lb uplift at joint 3. This truss is designed in accordance with the 2018 6)


International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.



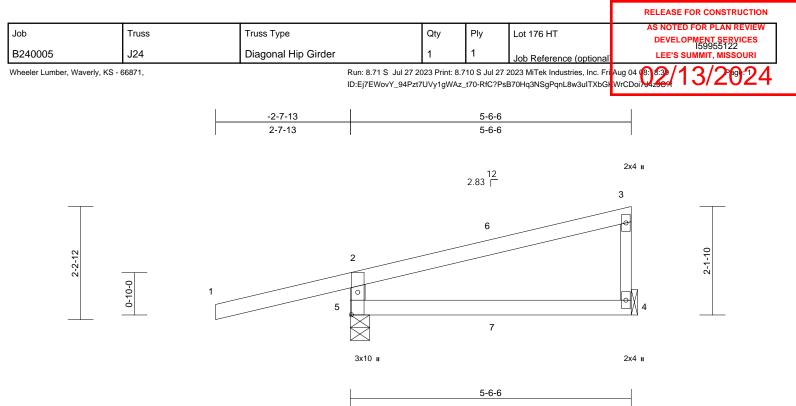
WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

							RELEASE FOR CONSTRUCTION
Job	Truss	Truss Type	Qty	/	Ply	Lot 176 HT	
B240005	J23	Jack-Open	1		1	Job Reference (optional	DEVELOPMENT SERVICES 159955121 LEE'S SUMMIT, MISSOURI
Wheeler Lumber, Wave	Aug 04 (6) 53 / 13 / 2024 WrCDoi / 42007						
						•	

Scale = 1:26.3

3											
(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
25.0	Plate Grip DOL	1.15	тс	0.28	Vert(LL)	-0.01	4-5	>999	360	MT20	197/144
10.0	Lumber DOL	1.15	BC	0.11	Vert(CT)	-0.02	4-5	>999	240		
0.0*	Rep Stress Incr	YES	WB	0.00	Horz(CT)	-0.01	3	n/a	n/a		
10.0	Code	IRC2018/TPI2014	Matrix-R		Wind(LL)	0.01	4-5	>999	240	Weight: 12 lb	FT = 10%
2x4 SPF No.2											
2x4 SPF No.2											
2x4 SPF No.2											
		ed or									
0 0 7	applied or 10-0-0 o	C									
0											
	inical, 4= Mechanica	al,									
	8)										
		348									
(LC 1)	// - (// -										
(lb) - Maximum Com	pression/Maximum										
Tension											
	54, 2-3=-66/28										
0 4-5=0/0											
											an
		00								8 OF	MIC
		ds.								FIE	000
									6	N	NSY
ottom chord in all areas	where a rectangle								B	-	
	fit between the botto	om							B	/ SEV	TER \ Y
d any other members.									Rot		0
									X.	J.HS	Non Link
mechanical connection (by others) of truss t	0								NUM	XUNTUN
	10.0 0.0* 10.0 2x4 SPF No.2 2x4 SPF No.2 2x4 SPF No.2 2x4 SPF No.2 2x4 SPF No.2 3.11-4 oc purlins, e Rigid ceiling directly bracing. (size) 3= Mecha 5=0-3.8 Max Horiz 5=82 (LC Max Uplift 3=-57 (LC Max Grav 3=98 (LC (LC 1) (lb) - Maximum Com Tension 2-5=-305/97, 1-2=0/ 3.2 5 (LC 7-16; Vult=115mph mph; TCDL=6.0psf; BC Enclosed; MWFRS (er r left and right exposed osed; Lumber DCL=1.6 s has been designed fo totom chord in all areas all by 2-00-00 wide will by 2-00-00 wide will by 2-00-00 wide will	25.0 10.0 10.0 10.0 10.0 10.0 10.0 Rep Stress Incr Code 2x4 SPF No.2 2x4 SPF No.2 2x4 SPF No.2 2x4 SPF No.2 Structural wood sheathing directly applied 3-11-4 oc purlins, except end verticals. Structural wood sheathing directly applied 3-11-4 oc purlins, except end verticals. Rigid ceiling directly applied or 10-0-0 o bracing. (size) 3= Mechanical, 4= Mechanicat 5=0-3-8 Max Horiz 5=82 (LC 8) Max Uplift 3=-57 (LC 8), 5=-69 (LC 4) Max Grav 3=98 (LC 1), 4=67 (LC 3), 5=: (LC 1) (lb) - Maximum Compression/Maximum Tension 2-5=-305/97, 1-2=0/54, 2-3=-66/28 4-5=0/0 3CE 7-16; Vult=115mph (3-second gust) mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; 4 Enclosed; MWFRS (envelope) exterior zor r left and right exposed ; end vertical left an speci; Lumber DOL=1.60 plate grip DOL=1. s has been designed for a live load of 20.0 totom chord in all areas where a rectangle all by 2-00-00 wide will fit between the bottod d any other members. girder(s) for truss to truss connections.	 25.0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES Code IRC2018/TPI2014 2x4 SPF No.2 2x4 SPF No.2 2x4 SPF No.2 2x4 SPF No.2 Structural wood sheathing directly applied or 3-11-4 oc purlins, except end verticals. Rigid ceiling directly applied or 10-0-0 oc bracing. (size) 3= Mechanical, 4= Mechanical, 5=0-3-8 Max Horiz 5=82 (LC 8) Max Uplift 3=-57 (LC 8), 5=-69 (LC 4) Max Grav 3=98 (LC 1), 4=67 (LC 3), 5=348 (LC 1) (b) - Maximum Compression/Maximum Tension 2-5=-305/97, 1-2=0/54, 2-3=-66/28 4-5=0/0 3CE 7-16; Vult=115mph (3-second gust) mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. Enclosed; MWFRS (envelope) exterior zone; r left and right exposed ; end vertical left and osed; Lumber DOL=1.60 plate grip DOL=1.60 s has been designed for a 10.0 psf bottom a load nonconcurrent with any other live loads. ss has been designed for a live load of 20.0psf ottom chord in all areas where a rectangle all by 2-00-00 wide will fit between the bottom d any other members. 	25.0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES WB Matrix-R 10.0 2x4 SPF No.2 2x4 SPF No.2 2x4 SPF No.2 2x4 SPF No.2 2x4 SPF No.2 2x4 SPF No.2 2x4 SPF No.2 Structural wood sheathing directly applied or 3-11-4 oc purlins, except end verticals. Rigid ceiling directly applied or 10-0 oc bracing. (size) 3= Mechanical, 4= Mechanical, 5=0-3-8 Max Horiz 5=82 (LC 8) Max Grav 3=98 (LC 1), 4=67 (LC 3), 5=348 (LC 1) (lb) - Maximum Compression/Maximum Tension 2-5=-305/97, 1-2=0/54, 2-3=-66/28 4-5=0/0 SCE 7-16; Vult=115mph (3-second gust) mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. Enclosed; MWFRS (envelope) exterior zone; r left and right exposed ; end vertical left and 2sed; Lumber DOL=1.60 plate grip DOL=1.60 s has been designed for a 10.0 psf bottom a load nonconcurrent with any other live loads. ss has been designed for a live load of 20.0psf any other members. girder(s) for truss to truss connections.	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	25.0 Plate Grip DOL 1.15 TC 0.28 Vert(LL) -0.01 0.0* Rep Stress Incr YES WB 0.00 Horz(CT) -0.02 0.0 Code IRC2018/TPI2014 Matrix-R Wind(LL) 0.01 0 2x4 SPF No.2 Structural wood sheathing directly applied or 3-11-4 oc purlins, except end verticals. Wind(LL) 0.01 9 Structural wood sheathing directly applied or 3-14-4 oc purlins, except end verticals. Nigid ceiling directly applied or 10-0-0 oc bracing. 5=0-3-8 Max Horiz 5=82 (LC 8) Max Horiz 5=82 (LC 8) Max Horiz 5=82 (LC 1), 4=67 (LC 3), 5=-348 (LC 1) (LC 1) (lb) - Maximum Compression/Maximum Tension 2-25=-305/97, 1-2=0/54, 2-3=-66/28 4-5=0/0 5 GE 7-16; Vult=115mph (3-second gust) mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. Enclosed; MWFRS (envelope) exterior zone; r left and right exposed ; end vertical left and seed; jumber DOL=1.60 plate grip DOL=1.60 sst ss has been designed for a live load of 20.0psf titom chord in all areas where a rectangle all by 2-00-00 wide will fit between the bottom dany other members. grider(s) for truss to truss connections. 5	25.0 Piate Grip DOL 1.15 TC 0.28 Vert(LL) -0.01 4-5 0.0* Rep Stress Incr YES BC 0.01 Horz(CT) -0.02 4-5 0.0* Rep Stress Incr YES WB 0.00 Horz(CT) -0.01 4-5 0.0* Rep Stress Incr YES Matrix-R Wind(LL) 0.01 4-5 2x4 SPF No.2 Structural wood sheathing directly applied or	25.0 Plate Grp DOL 1.15 TC 0.28 Vert(LL) -0.01 4-5 >999 0.0* Rep Stress Incr YES WB 0.00 Horz(CT) -0.02 4-5 >999 0.0* Code IRC2018/TPI2014 Matrix-R Wind(LL) 0.01 4-5 >999 2x4 SPF No.2 2x4 SPF No.2 2x4 SPF No.2 Structural wood sheathing directly applied or	25.0 Plate Grip DOL 1.15 TC 0.28 Vert(LL) -0.01 4-5 >999 360 0.0* Rep Stress Incr YES BC 0.10 Hort(CT) -0.02 4-5 >999 240 0.0* Rep Stress Incr YES WB 0.00 Matrix-R Wind(LL) 0.01 4-5 >999 240 2x4 SPF No.2 2x4 SPF No.2 2x4 SPF No.2 2x4 SPF No.2 Structural wood sheathing directly applied or	25.0 Plate Grip DOL 1.15 TC 0.28 Vert(LL) -0.01 4-5 >999 360 MT20 0.0 Rep Stress Incr YES WB 0.00 Hert(CT) -0.01 4-5 >999 240 0.0 Rep Stress Incr YES WB 0.00 Horz(CT) -0.01 4-5 >999 240 10.0 Code IRC2018/TPI2014 Matrix-R Wind(LL) 0.01 4-5 >999 240 Weight: 12 lb 2x4 SPF No.2 zx4 SPF No.2 9 Structural wood sheathing directly applied or 10-0-0 oc bracing. Straing. Structural wood sheathing directly applied or 3.5=-038 Max Voirt 3=-57 (LC 8), 5=-69 (LC 4) Max Horit 5==622 (LC 8) Max Max Maximum Compression/Maximum Tension 2-5=-305/97, 1-2=0/54, 2-3=-66/28 -2-5=-305/97, 1-2=0/54, 2-3=-66/28 -2-5=-305/97, 1-2=0/54, 2-3=-66/28 -2-5=-305/97, 1-2=0/54, 2-3=-66/28 -2-5=-305/97, 1-2=0/54, 2-3=-66/28 -2-5=-305/97, 1-2=0/54, 2-3=-66/28 -2-5=-305/97, 1-2=0/54, 2-3=-66/28 -2-5=-305/97, 1-2=0/54, 2-3=-66/28 -2-5=-305/97, 1-2=0/54, 2-3=-66/28 <

 5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 69 lb uplift at joint 5 and 57 lb uplift at joint 3.
 6) This truss is designed in accordance with the 2018


International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

16023 Swingley Ridge Rd. Chesterfield, MO 63017 314.434.1200 / MiTek-US.com

Scale = 1:22.7

Plate Offsets (X, Y): [5:0-5-5,0-1-8]

											-	
Loading TCLL (roof) TCDL BCLL BCDL	(psf) 25.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 NO IRC2018/TPI2014	CSI TC BC WB Matrix-R	0.63 0.23 0.00	DEFL Vert(LL) Vert(CT) Horz(CT) Wind(LL)	in -0.03 -0.06 0.00 -0.02	(loc) 4-5 4-5 4 4-5	l/defl >999 >999 n/a >999	L/d 360 240 n/a 240	PLATES MT20 Weight: 18 lb	GRIP 197/144 FT = 10%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD REACTIONS FORCES TOP CHORD	2x4 SPF No.2 2x4 SPF No.2 *Exce Structural wood she 5-6-6 oc purlins, exi Rigid ceiling directly bracing. (size) 4= Mecha Max Horiz 5=88 (LC Max Uplift 4=-31 (LC Max Grav 4=186 (LC (lb) - Maximum Com Tension	athing directly applie cept end verticals. applied or 10-0-0 oc anical, 5=0-4-9 5) 2 8), 5=-186 (LC 4) C 1), 5=485 (LC 1) ppression/Maximum	d or at 2-9-8, and c -9-8, an	or other connection ufficient to support 11 lb up at 2-9-8, in top chord, and 1 14 lb down and 1 e design/selection esponsibility of ott AD CASE(S) section s are noted as from S) Standard Roof Live (balance rease=1.15 Loads (lb/ft) -2=-70, 2-3=-70, 4	rt concentra , and 70 lb 14 lb down 6 lb up at o of such co ners. on, loads a nt (F) or ba	ated load(s) 7 down and 11 and 16 lb up 2-9-8 on bott onnection dev pplied to the ick (B).	l lb up at tom vice face					

NOTES

 Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60

4-5=-19/61

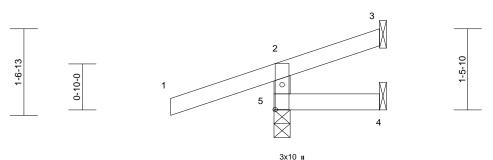
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- 4) Refer to girder(s) for truss to truss connections.
- Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 186 lb uplift at joint 5 and 31 lb uplift at joint 4.
- 6) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

SCOTT M. SEVIER PE-2001018807

August 7,2023

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTPIT Quality Criteria, and DSE-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcscomponents.com)

Job	Truss	Truss Type	Qty	Ply	Lot 176 HT	DEVELOPMENT SERVICES 159955123
B240005	J25	Jack-Open	2	1	Job Reference (optional	LEE'S SUMMIT, MISSOURI

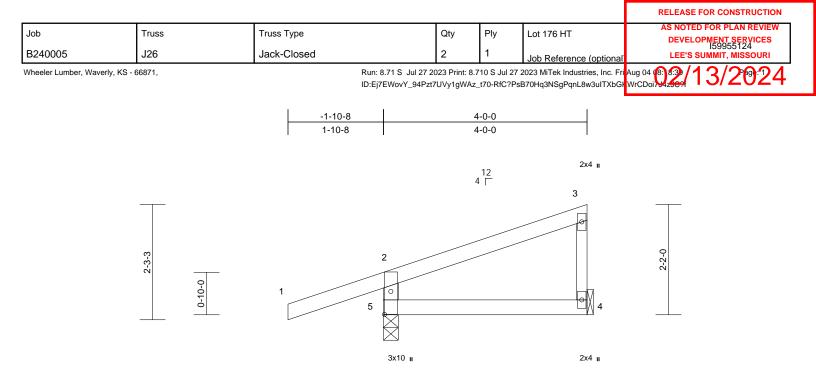

Wheeler Lumber, Waverly, KS - 66871,

Run: 8.71 S Jul 27 2023 Print: 8.710 S Jul 27 2023 MiTek Industries, Inc. Fri Aug 04 (6) 32 / 13/2024 ID:Ej7EWovY_94Pzt7UVy1gWAz_t70-RfC?PsB70Hq3NSgPqnL8w3uITXbGI WrCDoity-25001

-1-10-8	1-10-15
1-10-8	1-10-15

1-10-15

Scale = 1:20.9	
----------------	--


Plate Offsets (X, Y): [5:0-5-6,0-1-8]

		1										
Loading	(psf)	Spacing	2-0-0	csi		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15).28	Vert(LL)	0.00	4-5	>999	360	MT20	197/144
TCDL	10.0	Lumber DOL	1.15		0.08	Vert(CT)	0.00	4-5	>999	240		
BCLL	0.0*	Rep Stress Incr	YES		0.00	Horz(CT)	0.00	. 3	n/a	n/a		
BCDL	10.0	Code	IRC2018/TPI2014	Matrix-R		Wind(LL)	0.00	4-5	>999	240	Weight: 7 lb	FT = 10%
		0000		induit it		11.110(22)	0.00		1000	2.0	rroigini r io	
LUMBER			This truss is	designed in accordance	ce wi	th the 2018						
TOP CHORD	2x4 SPF No.2			Residential Code sec			nd					
BOT CHORD	2x4 SPF No.2		R802.10.2 a	nd referenced standar	rd AN	ISI/TPI 1.						
WEBS	2x4 SPF No.2		LOAD CASE(S)	Standard								
BRACING												
TOP CHORD	Structural wood she	athing directly applie	ed or									
	1-10-15 oc purlins,	except end verticals										
BOT CHORD	Rigid ceiling directly bracing.	applied or 10-0-0 or	C									
REACTIONS	(size) 3= Mecha	anical, 4= Mechanica	al,									
	5=0-3-8											
	Max Horiz 5=51 (LC	4)										
	Max Uplift 3=-13 (LC	2 8), 4=-7 (LC 1), 5=-	-134									
	(LC 4)											
	Max Grav 3=5 (LC 1	18), 4=26 (LC 3), 5=3	302									
	(LC 1)											
FORCES	(lb) - Maximum Com	pression/Maximum										
TODOUODD	Tension											
TOP CHORD	,,)/45, 2-3=-37/1										
BOT CHORD	4-5=0/0											
NOTES												
	CE 7-16; Vult=115mph											
	nph; TCDL=6.0psf; BC											100
	Enclosed; MWFRS (er left and right exposed										THE OF I	MISSIN
	sed; Lumber DOL=1.6									- 1	A TE	
	has been designed fo		00							6	AN I	N SS
	load nonconcurrent wi		ds							B	SCOT	$T M. \qquad (c Y)$
	s has been designed f									R	/ SEV	TER \ Y
	tom chord in all areas		-F							7 *		A XX
3-06-00 ta	all by 2-00-00 wide will	fit between the botto	om							W X		ATTALANT
chord and	any other members.									XX	NUM	REP
	irder(s) for truss to tru									27	DE 2001	
	echanical connection									N.	PE-2001	N10001 10001
	ate capable of withstar		joint							Y		1.SA
5, 7 lb upli	ift at joint 4 and 13 lb u	iplift at joint 3.									C'SSIONA	TENS
											AUNA CONA	
											un	20

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling or individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

August 7,2023

	4-0-0	
Scale = 1:22.6		
Plate Offsets (X, Y): [5:0-5-6,0-1-8]		

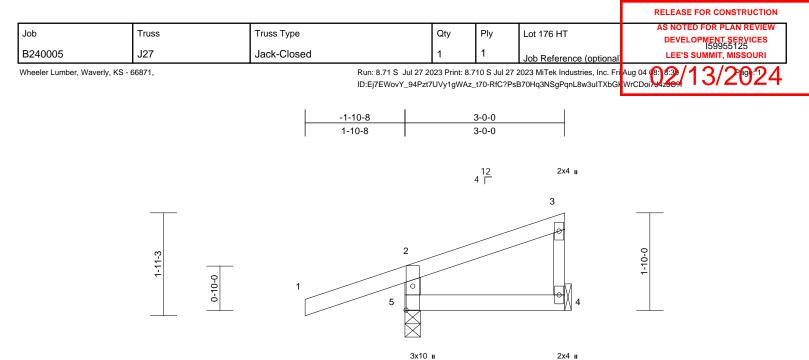
Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15	тс	0.28	Vert(LL)	-0.01	4-5	>999	360	MT20	197/144
TCDL	10.0	Lumber DOL	1.15	BC	0.10	Vert(CT)	-0.02	4-5	>999	240		
BCLL	0.0*	Rep Stress Incr	YES	WB	0.00	Horz(CT)	0.00	4	n/a	n/a		
BCDL	10.0	Code	IRC2018/TPI2014	Matrix-R		Wind(LL)	0.00	4-5	>999	240	Weight: 13 lb	FT = 10%

- LUMBER
- TOP CHORD 2x4 SPF No.2 BOT CHORD 2x4 SPF No.2 2x4 SPF No.2 *Except* 3-4:2x3 SPF No.2 WEBS BRACING TOP CHORD Structural wood sheathing directly applied or 4-0-0 oc purlins, except end verticals. BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing. REACTIONS (size) 4= Mechanical, 5=0-3-8 Max Horiz 5=93 (LC 5) Max Uplift 4=-27 (LC 8), 5=-132 (LC 4) Max Grav 4=131 (LC 1), 5=348 (LC 1)
- FORCES
 (lb) Maximum Compression/Maximum Tension

 TOP CHORD
 2-5=-308/154, 1-2=0/45, 2-3=-77/10, 3-4=-96/46

 BOT CHORD
 4-5=-23/19

NOTES


- Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- 4) Refer to girder(s) for truss to truss connections.
- Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 132 lb uplift at joint 5 and 27 lb uplift at joint 4.
- 6) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTPIT Quality Criteria, and DSE-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcscomponents.com)

3x10 ш

3-0-0

Scale = 1:21.6	
Plate Offsets (X, Y):	[5:0-5-6,0-1-8]

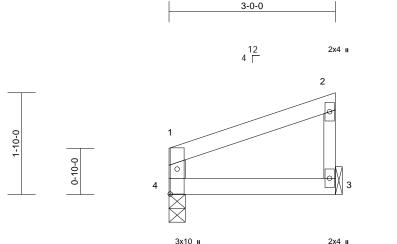
Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15	тс	0.28	Vert(LL)	0.00	4-5	>999	360	MT20	197/144
TCDL	10.0	Lumber DOL	1.15	BC	0.05	Vert(CT)	0.00	4-5	>999	240		
BCLL	0.0*	Rep Stress Incr	YES	WB	0.00	Horz(CT)	0.00	4	n/a	n/a		
BCDL	10.0	Code	IRC2018/TPI2014	Matrix-R		Wind(LL)	0.00	4-5	>999	240	Weight: 11 lb	FT = 10%

- LUMBER
- TOP CHORD 2x4 SPF No.2 BOT CHORD 2x4 SPF No.2 2x4 SPF No.2 *Except* 3-4:2x3 SPF No.2 WEBS BRACING TOP CHORD Structural wood sheathing directly applied or 3-0-0 oc purlins, except end verticals. BOT CHORD Rigid ceiling directly applied or 6-0-0 oc bracing. REACTIONS 4= Mechanical, 5=0-3-8 (size) Max Horiz 5=78 (LC 5) Max Uplift 4=-17 (LC 5), 5=-133 (LC 4) Max Grav 4=72 (LC 1), 5=317 (LC 1) FORCES (lb) - Maximum Compression/Maximum
- Tension TOP CHORD 2-5=-279/145, 1-2=0/45, 2-3=-53/14, 3-4=-55/29 BOT CHORD 4-5=-21/21

NOTES

- 1) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
- 2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 3) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- 4) Refer to girder(s) for truss to truss connections.
- Provide mechanical connection (by others) of truss to 5) bearing plate capable of withstanding 133 lb uplift at joint 5 and 17 lb uplift at joint 4.
- This truss is designed in accordance with the 2018 6) International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard



August 7,2023

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a trust system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

						RELEASE FOR CONSTRUCTION
Job	Truss	Truss Type	Qty	Ply	Lot 176 HT	AS NOTED FOR PLAN REVIEW
000	11035		Giy	l' 'y		DEVELOPMENT SERVICES 159955126
B240005	J28	Jack-Closed	1	1	Job Reference (optional	
Wheeler Lumber, Waverly, KS	- 66871,	Run: 8.71 S Jul 27 2 ID:Ej7EWovY_94Pzt	023 Print: 8. 7UVy1gWAz	710 S Jul 27 _t70-RfC?Ps	2023 MiTek Industries, Inc. Fri B70Hq3NSgPqnL8w3uITXbGI	Aug 04 (8) 63 / 13/2924 WrCDoily42501

2x4 II

1-10-0

Scale = 1:20.8	
Plate Offsets (X, Y):	[4:0-5-6,0-1-8]

. . . .

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15	тс	0.10	Vert(LL)	0.00	3-4	>999	360	MT20	197/144
TCDL	10.0	Lumber DOL	1.15	BC	0.06	Vert(CT)	0.00	3-4	>999	240		
BCLL	0.0*	Rep Stress Incr	YES	WB	0.00	Horz(CT)	0.00	3	n/a	n/a		
BCDL	10.0	Code	IRC2018/TPI2014	Matrix-R		Wind(LL)	0.00	3-4	>999	240	Weight: 9 lb	FT = 10%

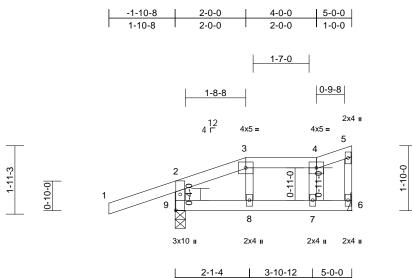
3-0-0

LUMBER		
TOP CHORD	2x4 SPF I	No.2
BOT CHORD	2x4 SPF I	No.2
WEBS	2x4 SPF I	No.2 *Except* 2-3:2x3 SPF No.2
BRACING		
TOP CHORD	Structura	wood sheathing directly applied or
	3-0-0 oc ı	ourlins, except end verticals.
BOT CHORD		ing directly applied or 10-0-0 oc
	bracing.	
REACTIONS	(size)	3= Mechanical, 4=0-3-8
	Max Horiz	4=63 (LC 5)
	Max Uplift	3=-28 (LC 8), 4=-19 (LC 4)
	Max Grav	3=124 (LC 1), 4=124 (LC 1)

FORCES	(lb) - Maximum Compression/Maximum Tension
TOP CHORD	1-4=-102/39, 1-2=-58/11, 2-3=-91/40
BOT CHORD	3-4=-21/18

NOTES

- 1) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
- 2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf 3) on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- Refer to girder(s) for truss to truss connections. 4)
- Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 19 lb uplift at joint 5) 4 and 28 lb uplift at joint 3.
- This truss is designed in accordance with the 2018 6) International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

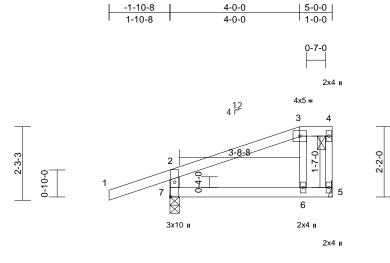

LOAD CASE(S) Standard

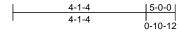
 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.
 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not besign value to dury with with where outputs into design is based only door parameters shown, and is for an individual building design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members and property incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TPH1 Quality Criteria**, and **DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcscomponents.com)

						RELEASE FOR CONSTRUCTION
Job	Truss	Truss Type	Qty	Plv	Lot 176 HT	AS NOTED FOR PLAN REVIEW
000	11035		Giy	i iy		DEVELOPMENT SERVICES 159955127
B240005	J29	Jack-Closed Girder	1	1	Job Reference (optional	LEFTS SUMMIT MISSOURI
						0011010001

Scale = 1:32.6

Plate Offsets (X, Y): [9:0-5-6,0-1-8]

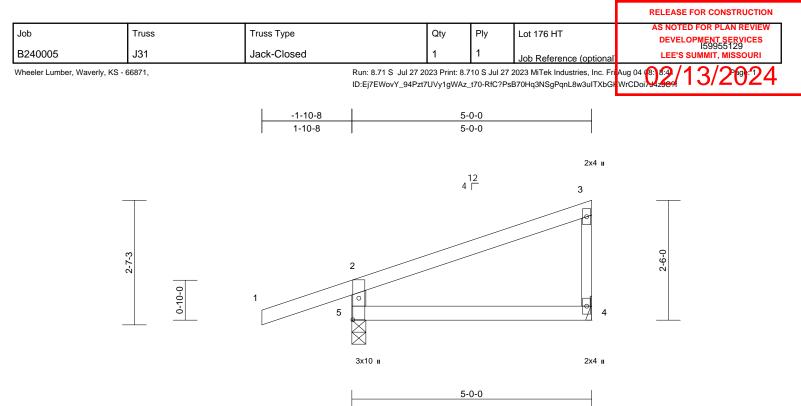

	(X, T). [3.0-3-0,0-T-0]												
Loading TCLL (roof) TCDL BCLL BCDL	(psf) 25.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 NO IRC2018	8/TPI2014	CSI TC BC WB Matrix-R	0.32 0.13 0.01	DEFL Vert(LL) Vert(CT) Horz(CT) Wind(LL)	in -0.01 -0.02 0.00 0.01	(loc) 7-8 7-8 6 7-8	l/defl >999 >999 n/a >999	L/d 360 240 n/a 240	PLATES MT20 Weight: 17 lb	GRIP 197/144 FT = 10%
FORCES TOP CHORD BOT CHORD WEBS NOTES 1) Wind: ASC Vasd=91m II; Exp C; I cantilever right expos 2) Provide ac 3) This truss chord live 4) * This trus on the bot 3-06-00 ta chord and 5) Refer to gi 6) Provide m bearing pla	2x4 SPF No.2 2x3 SPF No.2 *Exce Structural wood she 5-0-0 oc purlins, ex 2-0-0 oc purlins: 3-4 Rigid ceiling directly bracing. (size) 6= Mecha Max Horiz 9=78 (LC Max Uplift 6=-52 (LC Max Grav 6=170 (LC (lb) - Maximum Com Tension 2-9=-301/156, 1-2=(3-4=-67/27, 4-5=-57)	athing directly applie cept end verticals, ar applied or 6-0-0 oc unical, 9=0-3-8 5) c 8), 9=-166 (LC 4) C 1), 9=364 (LC 1) pression/Maximum)/45, 2-3=-112/30, /28, 5-6=-83/34 /55, 6-7=-33/55 /55 (3-second gust) DL=6.0psf; h=25ft; C twelope) exterior zonr ; end vertical left anc 0 plate grip DOL=1.6 event water ponding. r a 10.0 psf bottom th any other live load or a live load of 20.0] where a rectangle fit between the bottom ss connections. (by others) of truss to	d or 9) 10 10 LC 1) Sat. e; i 00 Is. psf m	International R802.10.2 as Graphical pu or the orienta bottom chorc Hanger(s) or provided suff down and 12 down and 60 design/selec responsibility In the LOAD of the truss a DAD CASE(S) Dead + Roc Plate Increa Uniform Lo: Vert: 1-2	other connection ficient to support of 6 lb up at 2-0-0 of 0 lb up at 2-0-0 of 10 bup at 2-0-0 or 10 of others. CASE(S) section are noted as front Standard of Live (balanced) ase=1.15 ads (lb/ft) =-70, 2-3=-70, 3-4 ed Loads (lb)	e sections ndard AN n does n along the device(s concentra on top ch n bottom ection de , loads a (F) or ba	R502.11.1 a ISI/TPI 1. of depict the set top and/or s) shall be ated load(s) 5 ord, and 29 ll chord. The polied to the ck (B).	size 59 lb b face 15,			R	STATE OF J STATE OF J SCOT SEV NUM PE-2001	L ENGINE
												^	170000



						RELEASE FOR CONSTRUCTION
Job	Truss	Truss Type	Qty	Ply	Lot 176 HT	AS NOTED FOR PLAN REVIEW DEVELOPMENT SERVICES 159955128
B240005	J30	Jack-Closed	1	1	Job Reference (optional	
Wheeler Lumber Weyerly k	(8 66971	Bun	8 71 6 Jul 27 2022 Drint: 8	710 8 101 2	7 2022 MiTek Industrias Inc. Fri	

ID:Ej7EWovY_94Pzt7UVy1gWAz_t70-RfC?PsB70Hq3NSgPqnL8w3uITXbGrWrCDoi7942599133/2024

Scale = 1:35.5


Plate Offsets (X, Y): [7:0-5-6,0-1-8]

	x, i). [i.o o o,o i o]											
Loading TCLL (roof) TCDL BCLL BCDL	(psf) 25.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018/TPI2014	CSI TC BC WB Matrix-R	0.28 0.14 0.02	DEFL Vert(LL) Vert(CT) Horz(CT) Wind(LL)	in -0.01 -0.03 0.00 0.01	(loc) 6-7 6-7 5 6-7	l/defl >999 >999 n/a >999	L/d 360 240 n/a 240	PLATES MT20 Weight: 17 lb	GRIP 197/144 FT = 10%
	Max Horiz 7=95 (LC Max Uplift 5=-32 (LC Max Grav 5=184 (LC (lb) - Maximum Com	athing directly applie cept end verticals, a applied or 10-0-0 or anical, 7=0-3-8 7) 5 5), 7=-137 (LC 4) C 1), 7=385 (LC 1)	Internati R802.10 2 8) Graphic or the or bottom of nd LOAD CASI	s is designed in acc onal Residential Coo 2 and referenced st al purlin representati ientation of the purli hord. E(S) Standard	de sections tandard AN ion does no	R502.11.1 a ISI/TPI 1. ot depict the						
TOP CHORD BOT CHORD WEBS NOTES	Tension 2-7=-326/156, 1-2=(3-4=-46/25, 4-5=-71 6-7=-26/42, 5-6=-23 3-6=-76/62	/7 /38										
Vasd=91m II; Exp C; I cantilever right expos 2) Provide ac 3) This truss chord live 4) * This truss on the bott 3-06-00 ta chord and 5) Refer to gi 6) Provide m bearing pla	CE 7-16; Vult=115mph nph; TCDL=6.0psf; BC Enclosed; MWFRS (er left and right exposed sed; Lumber DOL=1.6 dequate drainage to pr has been designed fo load nonconcurrent wi s has been designed f tom chord in all areas II by 2-00-00 wide will any other members. irder(s) for truss to trus echanical connection 4 echapical of withstar b uplift at joint 5.	DL=6.0psf; h=25ft; (nvelope) exterior zor ; end vertical left an 0 plate grip DOL=1. event water ponding ra 10.0 psf bottom ith any other live load or a live load of 20.0 where a rectangle fit between the botto ss connections. (by others) of truss to	ne; d 60 9. ds. opsf om								PE-2001	ULENGI

August 7,2023

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling or individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

Scale = 1:24

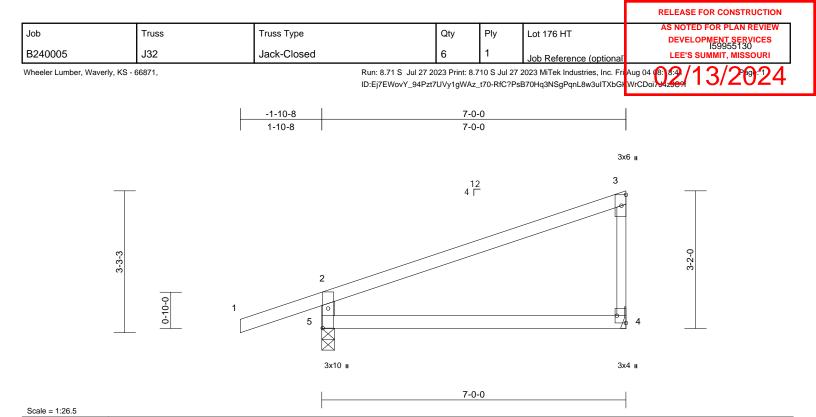
Plate Offsets (X, Y): [5:0-5-6,0-1-8]

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15	TC	0.28	Vert(LL)	-0.02	4-5	>999	360	MT20	197/144
TCDL	10.0	Lumber DOL	1.15	BC	0.17	Vert(CT)	-0.04	4-5	>999	240		
BCLL	0.0*	Rep Stress Incr	YES	WB	0.00	Horz(CT)	0.00	4	n/a	n/a		
BCDL	10.0	Code	IRC2018/TPI2014	Matrix-R		Wind(LL)	0.01	4-5	>999	240	Weight: 16 lb	FT = 10%

- LUMBER
- TOP CHORD 2x4 SPF No.2 BOT CHORD 2x4 SPF No.2 2x4 SPF No.2 *Except* 3-4:2x3 SPF No.2 WEBS BRACING TOP CHORD Structural wood sheathing directly applied or 5-0-0 oc purlins, except end verticals. BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing. REACTIONS (size) 4= Mechanical, 5=0-3-8 Max Horiz 5=107 (LC 5) Max Uplift 4=-40 (LC 8), 5=-134 (LC 4) Max Grav 4=184 (LC 1), 5=385 (LC 1)
- FORCES (lb) Maximum Compression/Maximum Tension TOP CHORD 2-5=-340/166, 1-2=0/45, 2-3=-101/17, 3-4=-134/62

BOT CHORD 4-5=-25/27

NOTES


- Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- 4) Refer to girder(s) for truss to truss connections.
- Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 134 lb uplift at joint 5 and 40 lb uplift at joint 4.
- 6) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTPIT Quality Criteria, and DSE-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcscomponents.com)

Plate Offsets (X, Y):	[4:Edge.0-2-8].	[5:0-5-6.0-1-8]

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15	TC	0.58	Vert(LL)	-0.08	4-5	>985	360	MT20	197/144
TCDL	10.0	Lumber DOL	1.15	BC	0.38	Vert(CT)	-0.17	4-5	>472	240		
BCLL	0.0*	Rep Stress Incr	YES	WB	0.00	Horz(CT)	0.00	4	n/a	n/a		
BCDL	10.0	Code	IRC2018/TPI2014	Matrix-R		Wind(LL)	0.03	4-5	>999	240	Weight: 21 lb	FT = 10%

- LUMBER
- TOP CHORD 2x4 SPF No.2 BOT CHORD 2x4 SPF No.2 2x4 SPF No.2 *Except* 3-4:2x3 SPF No.2 WEBS BRACING TOP CHORD Structural wood sheathing directly applied or 6-0-0 oc purlins, except end verticals. BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing. REACTIONS (size) 4= Mechanical, 5=0-3-8
- Max Horiz
 5=137 (LC 5)

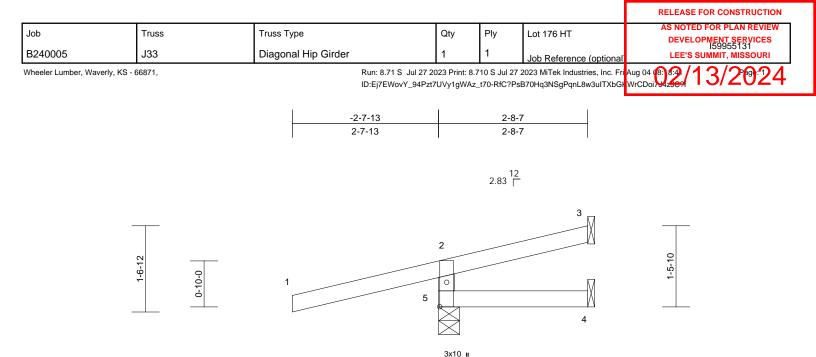
 Max Uplift
 4=-62 (LC 8), 5=-144 (LC 4)

 Max Grav
 4=283 (LC 1), 5=466 (LC 1)

 FORCES
 (lb) Maximum Compression/Maximum Tension

 TOP CHORD
 2-5=-412/192, 1-2=0/45, 2-3=-149/14,
- 3-4=-202/92 BOT CHORD 4-5=-33/54

NOTES


- Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- 4) Refer to girder(s) for truss to truss connections.
- Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 144 lb uplift at joint 5 and 62 lb uplift at joint 4.
- 6) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTPIT Quality Criteria, and DSE-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcscomponents.com)

2-8-7

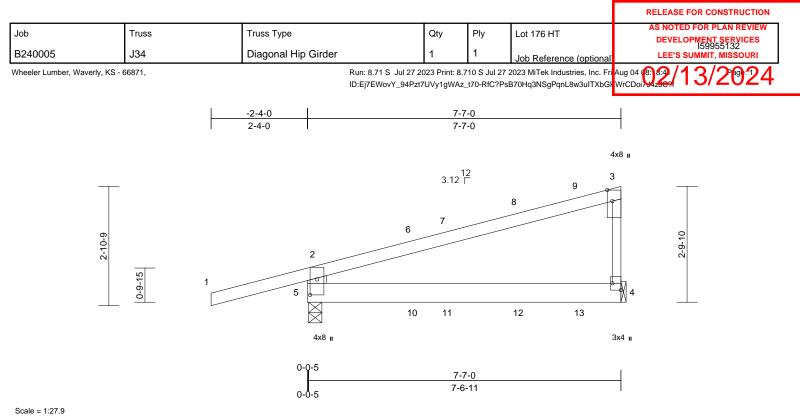

Scale =	1.20.0

Plate Offsets (X, Y): [5:0-5-5,0-1-8]

Plate Offsets	(X, Y): [5:0-5-5,0-1-8]											
Loading TCLL (roof) TCDL BCLL BCDL	(psf) 25.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 NO IRC2018/TPI	CSI TC BC WB 2014 Mat	0.61 0.21	DEFL Vert(LL) Vert(CT) Horz(CT) Wind(LL)	in 0.01 0.01 -0.01 -0.01	(loc) 4-5 4-5 3 4-5	l/defl >999 >999 n/a >999	L/d 360 240 n/a 240	PLATES MT20 Weight: 10 lb	GRIP 197/144 FT = 10%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD BOT CHORD REACTIONS FORCES TOP CHORD BOT CHORD BOT CHORD BOT CHORD NOTES 1) Wind: AS Vasd=91T II; Exp C; cantilever right expC 2) This truss chord live 3) * This truss on the boi 3-06-00 ta chord and 2) Provide m bearing pl	2x4 SPF No.2 2x4 SPF No.2 2x4 SPF No.2 2x4 SPF No.2 Structural wood she 2-8-7 oc purlins, exx Rigid ceiling directly bracing. (size) $3=$ Mecha 5=0-4-9 Max Horiz $5=51$ (LC Max Uplift $3=-42$ (LC 5=-158 (L Max Grav $3=23$ (LC (LC 1) (lb) - Maximum Com Tension 2-5=-232/141, $1-2=-1$	athing directly applie cept end verticals. applied or 10-0-0 oc unical, 4= Mechanica 7) (17), 4=-26 (LC 1), C 4) 4), 4=28 (LC 4), 5=2 (pression/Maximum 7/34, 2-3=-22/5 (3-second gust) DL=6.0psf; h=25ft; C ivelope) exterior zon ; end vertical left and 0 plate grip DOL=1.6 r a 10.0 psf bottom th any other live load or a live load of 20.0 where a rectangle fit between the botto ss connections. (by others) of truss to doing 158 lb uplift at	6) Thi Inte R8(7) Hai pro dor dov 8) In t of t 1, LOAD (1) Dr PI Cd 276 Tr Cat. e; d 50 ds. psf	s truss is desig prnational Resi Jo2.10.2 and ref gger(s) or other vided sufficient vn and 16 lb up at -2-7-13 on t he connection d he LOAD CAS he truss are no CASE(S) Sta bad + Roof Live ate Increase=1 boncentrated Lo Vert: 1=-71 (Fr apezoidal Load Vert: 1=0 (F=3)	gned in accordance wi dential Code sections ferenced standard AN er connection device(s it to support concentra p at -2-7-13, and 46 II top chord. The design device(s) is the respor E(S) section, loads ap oted as front (F) or bar andard e (balanced): Lumber 1.15 pads (Ib) f=-36, B=-36) ds (Ib/ft) 35, B=35)-to-2=-49 (F -to-3=-49 (F=10, B=10)	ith the 2018 R502.11.1 a ISI/TPI 1.) shall be ted load(s) 4 b down and 2 h/selection of nsibility of oth oplied to the 1 ck (B). Increase=1.	and 16 lb 16 lb face 15, 2=-5				STATE OF J STATE OF J SCOT SEV PE-2001	MISSOLUTION T M. IER 018807
											The	-+ 7 0000

Plate Offsets (X, Y); [3:0-3-4.Edge], [4:Edge.0-2-8], [5:0-4-8.0-2-0]

Loading TCLL (roof) TCDL	(psf) 25.0 10.0	Spacing Plate Grip DOL Lumber DOL	2-0-0 1.15 1.15		CSI TC BC	0.81 0.29	DEFL Vert(LL) Vert(CT)	in -0.04 -0.08	(loc) 4-5 4-5	l/defl >999 >999	L/d 360 240	PLATES MT20	GRIP 197/144
BCLL BCDL	0.0* 10.0	Rep Stress Incr Code	NO IRC201	8/TPI2014	WB Matrix-R	0.00	Horz(CT) Wind(LL)	0.00 0.02	4 4-5	n/a >999	n/a 240	Weight: 27 lb	FT = 10%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD FORCES TOP CHORD BOT CHORD	2x6 SPF No.2 2x6 SPF No.2 *Exce Structural wood she 6-0-0 oc purlins, exx Rigid ceiling directly bracing. (size) 4= Mecha Max Horiz 5=115 (LC Max Uplift 4=-91 (LC Max Grav 4=380 (LC (Ib) - Maximum Com Tension 2-5=-501/250, 1-2=0 3-4=-261/131	athing directly applie cept end verticals. applied or 10-0-0 or unical, 5=0-3-14 C 5) S 8), 5=-191 (LC 4) C 1), 5=553 (LC 1) ppression/Maximum	ed or c 8)	provided suf down and 3& 3-4-9, and 8 down and 71 down at 2-6 lb down at 2-6 lb down at 5 chord. The c (s) is the ress In the LOAD of the truss a DAD CASE(S) Dead + Roo Plate Increa Uniform Lo Vert: 1-2 Concentrat	of Live (balanced): ase=1.15 ads (lb/ft) =-70, 2-3=-70, 4-5 ed Loads (lb) 23 (F), 9=-52 (B), 7	boncentra Ib dow b up at top ch 8 Ib up vn at 6 such co 5. Ioads a F) or ba Lumber =-20	s) shall be ated load(s) 6 n and 29 lb uj 5-1-4, and 10 ord, and 4 lb at 3-4-9, and -6-15 on botto onnection dev pplied to the f ck (B).	p at 11 lb d 20 om vice face 15,					
NOTES		(2 second suct)											
Vasd=91r II; Exp C; cantilever right expo 2) This truss chord live 3) * This trus on the bot	CE 7-16; Vult=115mph mph; TCDL=6.0psf; BC Enclosed; MWFRS (er left and right exposed used; Lumber DOL=1.6 has been designed for load nonconcurrent wi ss has been designed f thom chord in all areas all by 2-00-00 wide will	DL=6.0psf; h=25ff; (velope) exterior zor ; end vertical left and 0 plate grip DOL=1.6 r a 10.0 psf bottom th any other live load or a live load of 20.0 where a rectangle	ie; d 60 ds. psf									STATE OF J	MISSOLIA T M. HER

- chord and any other members.
- 4) Refer to girder(s) for truss to truss connections.
- Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 191 lb uplift at joint 5 and 91 lb uplift at joint 4.
- 6) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent oulgase with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

August 7,2023

E

NUMBER

PE-200101880

SSIONAL

						RELEASE FOR CONSTRUCTION
Job	Truss	Truss Type	Qty	Ply	Lot 176 HT	AS NOTED FOR PLAN REVIEW DEVELOPMENT SERVICES 159955133
B240005	J35	Jack-Open	10	1	Job Reference (optional	
Wheeler Lumber, Waverly	/, KS - 66871,				27 2023 MiTek Industries, Inc. Fri PsB70Hq3NSgPqnL8w3uITXbG	
		-1-10-8 1-10-8		<u>6-0-0</u> 6-0-0		1
_				12 4 ┌	3	
6.15 6.15		2				2-10-0
_	0-10-0	1 0			4	
		Зх10 и				
Scale = 1:23.7				6-0-0		{

Plate Offsets (X, Y): [5:0-5-6,0-1-8]

Plate Offsets (X, Y): [5:0-5-6,0-1-8]									
Loading (psf) TCLL (roof) 25.0 TCDL 10.0 BCLL 0.0* BCDL 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018/TPI2014	CSI TC 0.4 BC 0.3 WB 0.0 Matrix-R 0.0	1 Vert(CT)	-0.05 -0.11 0.03	oc) l/defl 4-5 >999 4-5 >632 3 n/a 4-5 >999	360 240 n/a	PLATES MT20 Weight: 17 lb	GRIP 197/144 FT = 10%
LUMBER TOP CHORD 2x4 SPF No.2 BOT CHORD 2x4 SPF No.2 WEBS 2x4 SPF No.2 WEBS 2x4 SPF No.2 BRACING TOP CHORD Structural wood shea 6-0-0 oc purlins, exx BOT CHORD Structural wood shea 6-0-0 oc purlins, exx BOT CHORD Size 3= Mecha 5=0-3-8 Max Horiz 5=106 (LC Max Grav 3=173 (LC (LC 1)	cept end verticals. applied or 10-0-0 oc nical, 4= Mechanica 2 4) 5 8), 5=-127 (LC 4)	2 I,	Standard						
 FORCES (Ib) - Maximum Com Tension TOP CHORD 2-5=-374/174, 1-2=0 BOT CHORD 4-5=0/0 NOTES 1) Wind: ASCE 7-16; Vult=115mph Vasd=91mph; TCDL=6.0psf; BCI II; Exp C; Enclosed; MWFRS (en cantilever left and right exposed right exposed; Lumber DOL=1.60 2) This truss has been designed for chord live load nonconcurrent wit 3) * This truss has been designed for on the bottom chord in all areas v 3-06-00 tall by 2-00-00 wide will f chord and any other members. 4) Refer to girder(s) for truss to trus 5) Provide mechanical connection (i bearing plate capable of withstan 5 and 82 lb uplift at joint 3. 6) This truss is designed in accorda International Residential Code se R802.10.2 and referenced standa 	(3-second gust) DL=6.0psf; h=25ft; C velope) exterior zon ; end vertical left and D plate grip DDL=1.6 a 10.0 psf bottom th any other live load or a live load of 20.0 where a rectangle fit between the botto ss connections. by others) of truss to ding 127 lb uplift at ance with the 2018 ections R502.11.1 ar	ie; d 30 ds. psf m 0 joint						STATE OF I SCOT SEV PE-2001	ER t
								Augu	st 7,2023

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

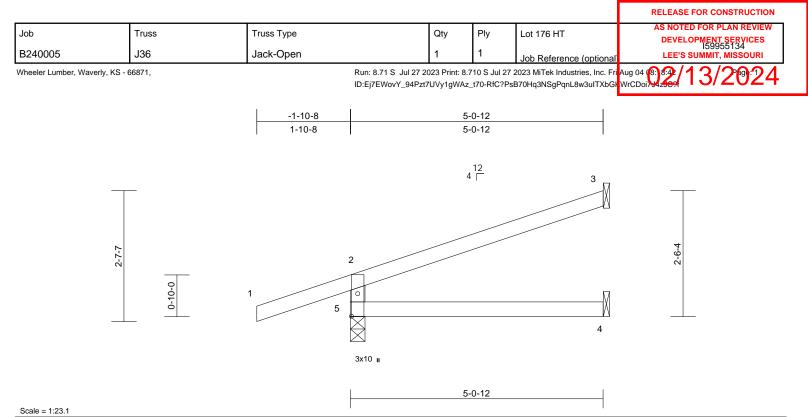
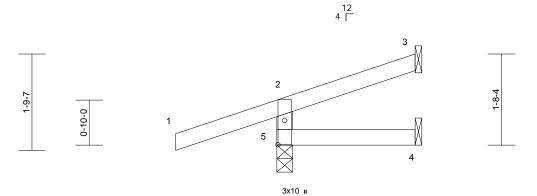


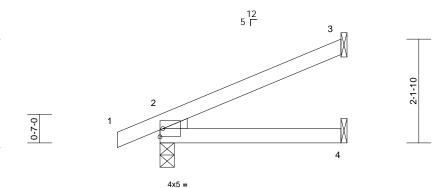
Plate Offsets (X, Y): [5:0-5-6,0-1-8]


Plate Offsets (X, Y): [5:0-5-6,0-1-8]											
Loading TCLL (roof) TCDL BCLL BCDL	(psf) 25.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018/TPI2014	BC (0.30 0.20 0.00	DEFL Vert(LL) Vert(CT) Horz(CT) Wind(LL)	in -0.03 -0.05 0.02 0.02	(loc) 4-5 4-5 3 4-5	l/defl >999 >999 n/a >999	L/d 360 240 n/a 240	PLATES MT20 Weight: 15 lb	GRIP 197/144 FT = 10%
	2x4 SPF No.2 2x4 SPF No.2 Structural wood she 5-0-12 oc purlins, e Rigid ceiling directly bracing.	y applied or 10-0-0 of anical, 4= Mechanica 4) C 8), 5=-124 (LC 4)	2 I,	Standard								
FORCES TOP CHORD BOT CHORD	(lb) - Maximum Com (lb) - Maximum Com Tension 2-5=-341/162, 1-2=0 4-5=0/0	npression/Maximum	-563									
NOTES 1) Wind: ASC Vasd=91m II; Exp C; I cantilever right expor 2) This truss chord live 3) * This trus on the bot 3-06-00 ta chord and 4) Refer to gi 5) Provide m bearing pl 5 and 68 ll 6) This truss Internation	CE 7-16; Vult=115mph hph; TCDL=6.0psf; BC Enclosed; MWFRS (er left and right exposed sed; Lumber DOL=1.6 has been designed fo load nonconcurrent wi s has been designed fo tom chord in all areas I by 2-00-00 wide will any other members. irder(s) for truss to tru echanical connection i ate capable of withstat b uplift at joint 3. is designed in accorda hal Residential Code s	EDL=6.0psf; h=25ft; C nvelope) exterior zor ; end vertical left ani i0 plate grip DOL=1.6 r a 10.0 psf bottom ith any other live load for a live load of 20.0 where a rectangle fit between the botto iss connections. (by others) of truss to nding 124 lb uplift at ance with the 2018 ections R502.11.1 ai	ie; d 50 ds. ipsf om o joint								SCOT SEVI NUM PE-2001	LENGIES

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

						RELEASE FOR CONSTRUCTION
Job	Truss	Truss Type	Qty	Plv	Lot 176 HT	AS NOTED FOR PLAN REVIEW
305	11035	Truss Type		i iy		DEVELOPMENT SERVICES 159955135
B240005	J37	Jack-Open	2	1	Job Reference (optional	
Wheeler Lumber, Waverly, KS	Aug 04 18 59/13/2024					

Plate Offsets (X, Y): [5:0-5-6,0-1-8]	
Scale = 1:21.3	
2-6-12	


Loading (psf) TCLL (roof) 25.0 TCDL 10.0 BCLL 0.0* BCDL 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018/TPI2014	CSI TC BC WB Matrix-R	0.28 0.07 0.00	DEFL Vert(LL) Vert(CT) Horz(CT) Wind(LL)	in 0.00 0.00 0.00 0.00	(loc) 4-5 4-5 3 4-5	l/defl >999 >999 n/a >999	L/d 360 240 n/a 240	PLATES MT20 Weight: 9 lb	GRIP 197/144 FT = 10%
LUMBER TOP CHORD 2x4 SPF No.2 BOT CHORD 2x4 SPF No.2 WEBS 2x4 SPF No.2 BRACING TOP CHORD Structural wood sher 2-6-12 oc purlins, ex BOT CHORD Rigid ceiling directly bracing. REACTIONS (size) 3= Mecha 5=0-3-8 Max Horiz 5=59 (LC Max Uplift 3=-26 (LC	athing directly applie xcept end verticals. applied or 10-0-0 oc nical, 4= Mechanica 4) - 8), 5=-126 (LC 4)	LOAD CASE(S)			WIND(LL)	0.00	+3	2000	240	Weight. 3 ib	11 - 1078
Max Grav 3=39 (LC (LC 1) FORCES (lb) - Maximum Com Tension TOP CHORD 2-5=-267/137, 1-2=0 BOT CHORD 4-5=0/0 NOTES 1) Wind: ASCE 7-16; Vult=115mph Vasd=91mph; TCDL=6.0psf; BCI II; Exp C; Enclosed; MWFRS (en cantilever left and right exposed right exposed; Lumber DOL=1.6(2) This truss has been designed for chord live load nonconcurrent wii 3) * This truss has been designed for on the bottom chord in all areas s 3-06-00 tall by 2-00-00 wide will chord and any other members. 4) Refer to girder(s) for truss to trus 5) Provide mechanical connection (bearing plate capable of withstar 5 and 26 lb uplift at joint 3. 6) This truss is designed in accorda International Residential Code se R802.10.2 and referenced stands	pression/Maximum /45, 2-3=-40/7 (3-second gust) DL=6.0psf; h=25ft; C ivelope) exterior zon ; end vertical left and 0 plate grip DOL=1.6 a 10.0 psf bottom th any other live load or a live load of 20.0 where a rectangle fit between the botto ss connections. by others) of truss to iding 126 lb uplift at ance with the 2018 actions R502.11.1 ar	Cat. le; d 30 ds. psf m 0 joint						ę	l	STATE OF I SCOT SEV DE SOUT PE-2001 HSSTONA Augu	I M. IER 018807 E MOT

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

						RELEASE FOR CONSTRUCTION
Job	Truss	Truss Type	Qty	Ply	Lot 176 HT	
B240005	J38	Jack-Open	1	1	Job Reference (optional	DEVELOPMENT SERVICES 159955136 LEE'S SUMMIT, MISSOURI
Wheeler Lumber, Waverly, KS -	Aug 04 (8) 59 / 13/2924					

3-8-10

Scale - 1.23.7

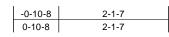
2-2-12

Scale = 1:23.	7							•				
Loading	(psf)	Spacing	2-0-0	csi		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15	TC	0.19	Vert(LL)	-0.01	2-4	>999	360	MT20	197/144
TCDL	10.0	Lumber DOL	1.15	BC	0.12	Vert(CT)	-0.02	2-4	>999	240		
BCLL	0.0*	Rep Stress Incr	YES	WB	0.00	Horz(CT)	0.00	3	n/a	n/a		
BCDL	10.0	Code	IRC2018/TPI2014	Matrix-P							Weight: 10 lb	FT = 10%
LUMBER												
TOP CHORE	2x4 SPF No.2											
BOT CHORE	2x4 SPF No.2											
WEDGE	Left: 2x3 SPF No.2											
BRACING												
TOP CHORE	O Structural wood she	athing directly appli	ied or									
	3-8-10 oc purlins.											
BOT CHORE		applied or 10-0-0 c	C									
	bracing.											
REACTIONS		3= Mechanical, 4=										
	Mechanic											
	Max Horiz 2=77 (LC											
	Max Uplift 2=-37 (LC		4 70									
	Max Grav 2=240 (L0 (LC 3)	C 1), 3=113 (LC 1),	4=70									
FORCES	(Ib) - Maximum Corr	nroncion/Movimum										
FURCES	(ib) - Maximum Con Tension	ipression/maximum										
TOP CHORE		1										
BOT CHORE	,											
NOTES	2 1-0/0											
	SCE 7-16; Vult=115mph	(3-second quet)										
	mph; TCDL=6.0psf; BC		Cat									
	; Enclosed; MWFRS (er											
	r left and right exposed											
	osed; Lumber DOL=1.6										San	and
2) This trus	s has been designed fo	r a 10.0 psf bottom									OF.	MISC
	e load nonconcurrent w										450	-00, W
	iss has been designed f		0psf							A	STATE OF	Ne V
	ottom chord in all areas									A	S/ SCOI	
	tall by 2-00-00 wide will	fit between the bott	om							И.	SEV	
	d any other members.	ing connections								ИY		
	girder(s) for truss to tru		to							8	O del	
Provide r	mechanical connection	(by others) or truss	10							- K -		

- 5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 66 lb uplift at joint 3 and 37 lb uplift at joint 2.
- This truss is designed in accordance with the 2018 6) International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)


						RELEASE FOR CONSTRUCTION
Job	Truss	Truss Type	Qty	Plv	Lot 176 HT	AS NOTED FOR PLAN REVIEW
				l.		DEVELOPMENT SERVICES 159955137
B240005	J39	Jack-Open	1	1	Job Reference (optional)	
						00/10/0001

2

4x5 =

Wheeler Lumber, Waverly, KS - 66871,

Run: 8.71 S Jul 27 2023 Print: 8.710 S Jul 27 2023 MiTek Industries, Inc. Fri Aug 04 (8) 63/1 3/2 2 2 2 1 D:Ej7EWovY_94Pzt7UVy1gWAz_t70-RfC?PsB70Hq3NSgPqnL8w3ulTXbGr WrCDoi 34264

3

4

1

1-6-12

0-2-0

										_	
(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
25.0	Plate Grip DOL	1.15	тс	0.06	Vert(LL)	0.00	2-4	>999	360	MT20	197/144
10.0	Lumber DOL	1.15	BC	0.03	Vert(CT)	0.00	2-4	>999	240		
0.0*	Rep Stress Incr	YES	WB	0.00	Horz(CT)	0.00	3	n/a	n/a		
10.0	Code	IRC2018/TPI2014	Matrix-P							Weight: 7 lb	FT = 10%

2-1-7

Scale = 1:22.3 Loading TCLL (roof) TCDI BCLL BCDL

LUMBER								
TOP CHORD	2x4 SPF I	No.2						
BOT CHORD	2x4 SPF I	No.2						
WEDGE	Left: 2x3	SPF No.2						
BRACING								
TOP CHORD		Structural wood sheathing directly applied or 2-1-7 oc purlins.						
BOT CHORD		ing directly applied or 10-0-0 oc						
REACTIONS	(size)	2=0-3-8, 3= Mechanical, 4= Mechanical						
	Max Horiz	2=49 (LC 8)						
	Max Uplift	2=-35 (LC 4), 3=-35 (LC 8)						

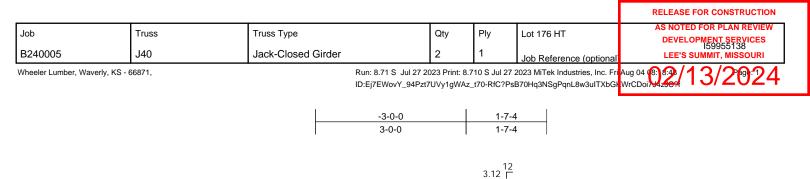
Max Grav 2=177 (LC 1), 3=48 (LC 1), 4=38 (LC 3) FORCES (Ib) - Maximum Compression/Maximum

Tension TOP CHORD 1-2=0/6, 2-3=-47/18 2-4=0/0

BOT CHORD

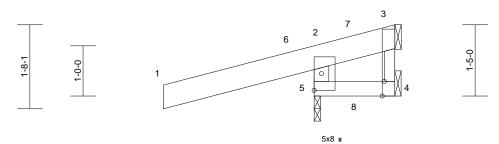
NOTES

- Wind: ASCE 7-16; Vult=115mph (3-second gust) 1) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
- 2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. * This truss has been designed for a live load of 20.0psf
- 3) on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- Refer to girder(s) for truss to truss connections. 4)
- 5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 35 lb uplift at joint 3 and 35 lb uplift at joint 2.
- This truss is designed in accordance with the 2018 6) International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.


LOAD CASE(S) Standard

August 7,2023

 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.
 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not beigh valid for use only with with with sets outputs into design is based only door parameters shown, and is for an individual dualing component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria**, and **DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcscomponents.com)



1-7-4

Scale = 1:22.9

Plate Offsets (X, Y): [3:0-3-8,Edge]

TC		in	(loc)	l/defl	L/d	PLATES	GRIP
	0.74 Vert(LL	0.00	4-5	>999	360	MT20	197/144
BC	0.07 Vert(C) 0.00	4-5	>999	240	MT18HS	197/144
WB	0.00 Horz(C	Г) 0.00	4	n/a	n/a		
I2014 Matrix-R	Wind(L	.) 0.00	5	>999	240	Weight: 11 lb	FT = 10%
is truss is designed in accorda ernational Residential Code se 802.10.2 and referenced standa ad case(s) 21 has/have been r signer must review loads to ve the intended use of this truss. the LOAD CASE(S) section, lo the truss are noted as front (F) CASE(S) Standard Except: lser defined (1): Lumber Increa ncrease=1.15 Iniform Loads (Ib)/ft) Vert: 1-6=-70 (F), 2-6=-20 (F) (F) concentrated Loads (Ib) Vert: 1=-250	ections R502.1 and ANSI/TPI 1 modified. Build rify that they a ads applied to or back (B). ase=1.15, Plate	.1 and ng e correct the face					
Ver	t: 1=-250	t: 1=-250	t: 1=-250	t: 1=-250	t: 1=-250	t: 1=-250	t: 1=-250

- II; Exp C; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
- 2) All plates are MT20 plates unless otherwise indicated. 3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 4) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- Refer to girder(s) for truss to truss connections. 5)
- Provide mechanical connection (by others) of truss to 6) bearing plate at joint(s) 5.
- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 294 lb uplift at joint 5 and 816 lb uplift at joint 4.

OF MISS SCOTT M. SEVIER NUMBER PE-200101880' SSIONAL E August 7,2023

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not beigh valid for use only with with with sets outputs into design is based only door parameters shown, and is for an individual dualing component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria**, and **DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcscomponents.com)

						RELEASE FOR CONSTRUCTION
Job	Truss	Truss Type	Qty	Plv	Lot 176 HT	AS NOTED FOR PLAN REVIEW
500	11035	Truss Type	Qiy	i iy		DEVELOPMENT SERVICES 159955139
B240005	J41	Jack-Open	2	1	Job Reference (optional	
						00/10/00/1

Run: 8.71 S Jul 27 2023 Print: 8.710 S Jul 27 2023 MiTek Industries, Inc. Fridaug 04 (6) 63/11 3/20 24 ID:Ej7EWovY_94Pzt7UVy1gWAz_t70-RfC?PsB70Hq3NSgPqnL8w3uITXb6I WrCDoi742001

1-10-4

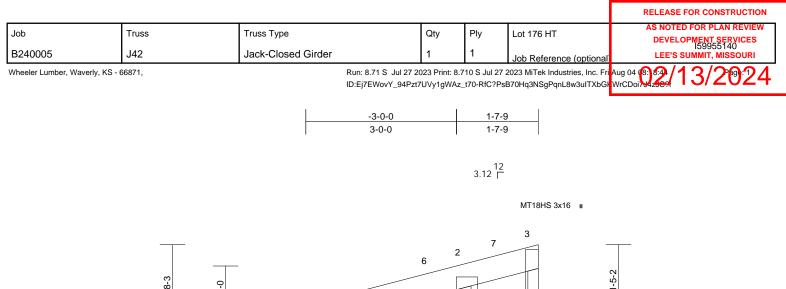


Plate Offsets (X, Y): [5:0-5-6,0-1-8]

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15	тс	0.28	Vert(LL)	0.00	4-5	>999	360	MT20	197/144
TCDL	10.0	Lumber DOL	1.15	BC	0.08	Vert(CT)	0.00	4-5	>999	240		
BCLL	0.0*	Rep Stress Incr	YES	WB	0.00	Horz(CT)	0.00	3	n/a	n/a		
BCDL	10.0	Code	IRC2018/TPI2014	Matrix-R		Wind(LL)	0.00	4-5	>999	240	Weight: 7 lb	FT = 10%
LUMBER			6) This truss is	designed in accorda	ance w	ith the 2018						
TOP CHORD	2x4 SPF No.2		International	Residential Code s	ections	R502.11.1 a	nd					
BOT CHORD	2x4 SPF No.2		R802.10.2 a	nd referenced stand	lard AN	ISI/TPI 1.						
WEBS	2x4 SPF No.2		LOAD CASE(S)	Standard								
BRACING												
TOP CHORD			d or									
	1-10-4 oc purlins, e											
BOT CHORD	Rigid ceiling directly bracing.	applied or 10-0-0 oc	3									
REACTIONS	(size) 3= Mecha	nical, 4= Mechanica	l,									
	5=0-3-8											
	Max Horiz 5=50 (LC	,										
	Max Uplift 3=-11 (LC	\$ 8), 4=-8 (LC 1), 5=-	135									
	(LC 4)		20									
	Max Grav 3=4 (LC 4 (LC 1)	e), 4=24 (LC 3), 5=30	12									
FORCES	(lb) - Maximum Com	pression/Maximum										
	Tension											
TOP CHORD	,)/45, 2-3=-37/1										
BOT CHORD	4-5=0/0											
NOTES												
	CE 7-16; Vult=115mph											
	nph; TCDL=6.0psf; BC										- COLO	ann
	Enclosed; MWFRS (er left and right exposed										ATE OF J	MISCO
	sed; Lumber DOL=1.6									1	4 SE	
	has been designed for									A	NY agor	New
	load nonconcurrent wi		ds.							4	SCOT	
	s has been designed f									H.	SEV	
	tom chord in all areas									1 🛪	9	1*1
	Il by 2-00-00 wide will	fit between the botto	m							B 0	1 He	· P .
	any other members.									*	COMM	Mar .
	irder(s) for truss to tru echanical connection (127	O PE-2001	018807
	ate capable of withstar									N	The second	12H
	ift at joint 4 and 11 lb u		Jourt							X	1080	C'H
0, 0 10 upi											SSIONA	LEFA
											CONA	THE

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

5 8

Scale = 1:23

F

1-8-3

Structural wood sheathing directly applied or

4= Mechanical, 5=0-3-8

2-3-10 oc purlins, except end verticals.

Rigid ceiling directly applied or 6-0-0 oc

Max Uplift 4=-795 (LC 21), 5=-291 (LC 4)

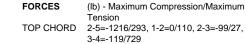
Max Grav 4=135 (LC 4), 5=1296 (LC 21)

Loading	(psf)	Spacing	2-0-0	csi		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15	TC	0.73	Vert(LL)	0.00	4-5	>999	360	MT20	197/144
TCDL	10.0	Lumber DOL	1.15	BC	0.12	Vert(CT)	0.00	4-5	>999	240	MT18HS	197/144
BCLL	0.0*	Rep Stress Incr	NO	WB	0.00	Horz(CT)	0.00	4	n/a	n/a		
BCDL	10.0	Code	IRC2018/TPI2014	Matrix-R		Wind(LL)	0.00	5	>999	240	Weight: 12 lb	FT = 10%

5x8 II

1-7-9

of the truss are noted as front (F) or back (B).


LOAD CASE(S) Standard Except:

- 21) User defined (1): Lumber Increase=1.15, Plate
 - Increase=1.15

Uniform Loads (lb/ft)

Vert: 1-6=-70 (F), 2-6=-20 (F), 2-7=-70 (F), 5-8=-20

- (F)
- Concentrated Loads (lb) Vert: 1=-250

bracing.

Max Horiz 5=70 (LC 7)

(size)

BOT CHORD 4-5=-101/25

NOTES

BRACING

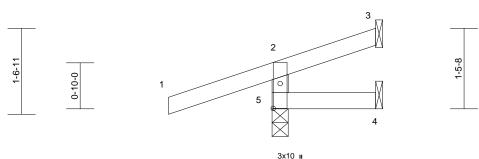
TOP CHORD

BOT CHORD

REACTIONS

- 1) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
- All plates are MT20 plates unless otherwise indicated. 2)
- This truss has been designed for a 10.0 psf bottom 3) chord live load nonconcurrent with any other live loads.
- 4) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- Refer to girder(s) for truss to truss connections. 5)
- Provide mechanical connection (by others) of truss to 6) bearing plate capable of withstanding 291 lb uplift at joint 5 and 795 lb uplift at joint 4.
- This truss is designed in accordance with the 2018 7) International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not beigh valid for use only with with with sets outputs into design is based only door parameters shown, and is for an individual dualing component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria**, and **DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcscomponents.com)


	00/10/0001					
B240005	J43	Jack-Open	1	1	Job Reference (optional	
Job	Truss	Truss Type	Qty	Ply	Lot 176 HT	DEVELOPMENT SERVICES 159955141
leb	Truco	Truce Tures	0.5	Plv		AS NOTED FOR PLAN REVIEW
						RELEASE FOR CONSTRUCTION

Run: 8.71 S Jul 27 2023 Print: 8.710 S Jul 27 2023 MiTek Industries, Inc. Fri Aug 04 (8) 52/1 3/2 9:24 ID:Ej7EWovY_94Pzt7UVy1gWAz_t70-RfC?PsB70Hq3NSgPqnL8w3uITXbGi WrCDoi 142594

-1-10-8	1-10-8
1-10-8	1-10-8

1-10-8

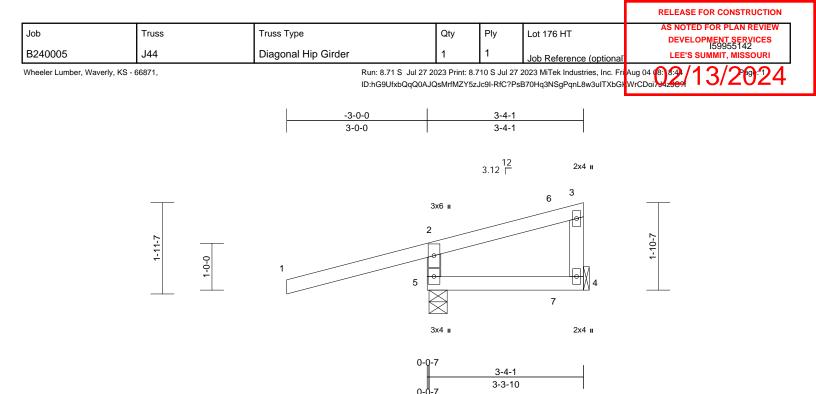

Scale = 1:2	0.9
-------------	-----

Plate Offsets (X, Y): [5:0-5-6,0-1-8]

				-								
Loading	(psf)	Spacing	2-0-0	csi		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15	TC	0.28	Vert(LL)	0.00	4-5	>999	360	MT20	197/144
TCDL	10.0	Lumber DOL	1.15	BC	0.08	Vert(CT)	0.00	4-5	>999	240		
BCLL	0.0*	Rep Stress Incr	YES	WB	0.00	Horz(CT)	0.00	3	n/a	n/a		
BCDL	10.0	Code	IRC2018/TPI2014	Matrix-R		Wind(LL)	0.00	4-5	>999	240	Weight: 7 lb	FT = 10%
-											ů.	
LUMBER				designed in accorda								
TOP CHORD	2x4 SPF No.2			Residential Code s			nd					
BOT CHORD	2x4 SPF No.2			nd referenced stand	lard AN	ISI/TPL1.						
WEBS	2x4 SPF No.2		LOAD CASE(S)	Standard								
BRACING												
TOP CHORD	Structural wood she		d or									
	1-10-8 oc purlins, e											
BOT CHORD	Rigid ceiling directly	applied or 10-0-0 oc										
	bracing.											
REACTIONS	()	nical, 4= Mechanica	l,									
	5=0-3-8											
	Max Horiz 5=50 (LC	,										
	Max Uplift 3=-12 (LC	5 8), 4=-8 (LC 1), 5=-	135									
	(LC 4)	a) 4 ac (1 a a) c a	~~									
	Max Grav 3=4 (LC 1	9), 4=25 (LC 3), 5=3	02									
	(LC 1)											
FORCES	(lb) - Maximum Com	pression/iviaximum										
TOP CHORD	Tension 2-5=-260/138, 1-2=0	VAE 0.0 07/4										
BOT CHORD	4-5=0/0	//45, 2-5=-57/1										
	4-5=0/0											
NOTES		(a. 1)										
	CE 7-16; Vult=115mph											
	nph; TCDL=6.0psf; BC										2000	an
	Enclosed; MWFRS (er left and right exposed										TE OF M	Ican
	sed; Lumber DOL=1.6										BIE	0.0
	has been designed for		10							6	144	1 CAN
	load nonconcurrent wi		le							B	SCOTT	
	s has been designed f									R	/ SEVIE	RVY
	tom chord in all areas									2 *		
	II by 2-00-00 wide will		m							<u>N</u> .	TT5	
chord and	any other members.								1	<u>K</u>		Seven
4) Refer to gi	rder(s) for truss to tru	ss connections.								R7	PE-200101	
	echanical connection (N.	O PE-200101	1880/ 1814
	ate capable of withstar		oint							V	1 Bal	154
5, 8 lb upli	ft at joint 4 and 12 lb u	plift at joint 3.									CSSIONAL	ENA
											WAL	A
											CONAL	5

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15	TC	0.82	Vert(LL)	0.00	4-5	>999	360	MT20	197/144
TCDL	10.0	Lumber DOL	1.15	BC	0.12	Vert(CT)	-0.01	4-5	>999	240		
BCLL	0.0*	Rep Stress Incr	NO	WB	0.00	Horz(CT)	0.00	4	n/a	n/a		
BCDL	10.0	Code	IRC2018/TPI2014	Matrix-R		Wind(LL)	0.00	4-5	>999	240	Weight: 13 lb	FT = 20%

BOT CHORD	2x4 SPF N	No.2
WEBS	2x4 SPF N	No.2
BRACING		
TOP CHORD		wood sheathing directly applied or
	3-4-1 oc p	ourlins, except end verticals.
BOT CHORD	Rigid ceili	ng directly applied or 6-0-0 oc
	bracing.	
REACTIONS	(size)	4= Mechanical, 5=0-4-11
	Max Horiz	5=93 (LC 7)

Max Uplift 4=-13 (LC 9), 5=-221 (LC 4) Max Grav 4=94 (LC 21), 5=470 (LC 1) FORCES (lb) - Maximum Compression/Maximum Tension TOP CHORD 2-5=-411/225, 1-2=0/55, 2-3=-41/45,

3-4=-48/27 BOT CHORD 4-5=-44/55

NOTES

- 1) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
- This truss has been designed for a 10.0 psf bottom 2) chord live load nonconcurrent with any other live loads.
- 3) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- Refer to girder(s) for truss to truss connections.
- Provide mechanical connection (by others) of truss to 5) bearing plate capable of withstanding 221 lb uplift at joint 5 and 13 lb uplift at joint 4.
- 6) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

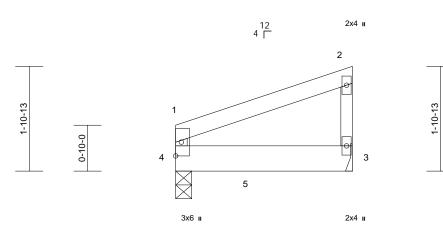
- down and 28 lb up at 2-8-7 on top chord, and 14 lb down and 8 lb up at 2-8-7 on bottom chord. The design/selection of such connection device(s) is the responsibility of others.
- In the LOAD CASE(S) section, loads applied to the face 8) of the truss are noted as front (F) or back (B).

LOAD CASE(S) Standard

- 1) Dead + Roof Live (balanced): Lumber Increase=1.15, Plate Increase=1.15 Uniform Loads (lb/ft)
 - Vert: 1-2=-70, 2-3=-70, 4-5=-20 Concentrated Loads (lb)

Vert: 7=8 (F)

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not beigh valid for use only with with with sets outputs into design is based only door parameters shown, and is for an individual dualing component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria**, and **DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcscomponents.com)



						RELEASE FOR CONSTRUCTION
Job	Truss	Truss Type	Qty	Plv	Lot 176 HT	AS NOTED FOR PLAN REVIEW
305	11035	Truss Type	Qty	I IY		DEVELOPMENT SERVICES 159955143
B240005	J45	Jack-Closed Girder	1	1	Job Reference (optional	
Wheeler Lumber, Waverly	, KS - 66871,	Run: 8.71	S Jul 27 2023 Print: 8.	710 S Jul 27	2023 MiTek Industries, Inc. Fri	

3-2-8

3-2-8

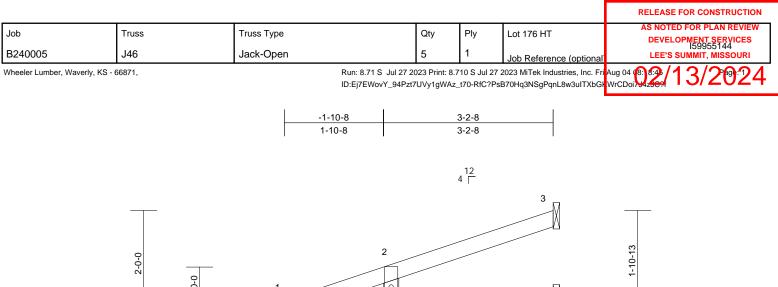
Run: 8.71 S Jul 27 2023 Print: 8.710 S Jul 27 2023 MiTek Industries, Inc. Fri Aug 04 (8: 6:34/1 3/2*69:10:Ej7EWovY_94Pzt7UVy1gWAz_t70-RfC?PsB70Hq3NSgPqnL8w3uITXbGi WrCDoi794z569:1

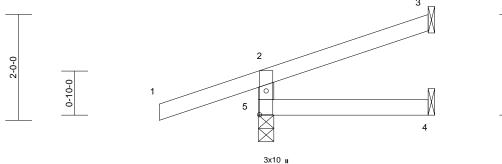
Scale = 1:20.9

3cale = 1.20.9												
Loading	(psf)	Spacing	2-0-0	csi		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15	тс	0.14	Vert(LL)	-0.01	3-4	>999	360	MT20	197/144
TCDL	10.0	Lumber DOL	1.15	BC	0.26	Vert(CT)	-0.01	3-4	>999	240		
BCLL	0.0*	Rep Stress Incr	NO	WB	0.00	Horz(CT)	0.00	3	n/a	n/a		
BCDL	10.0	Code	IRC2018/TPI2014	Matrix-R		Wind(LL)	0.00	3-4	>999	240	Weight: 11 lb	FT = 10%
l	2x4 SPF No.2 2x6 SPF No.2 2x3 SPF No.2 Structural wood she 3-2-8 oc purlins, ex Rigid ceiling directly bracing. (size) 3= Mecha Max Horiz 4=63 (LC Max Uplift 3=-37 (LC Max Grav 3=270 (LC	cept end verticals. applied or 10-0-0 oc anical, 4=0-3-8 5) 5 8), 4=-31 (LC 4)	d or b COAD b COAD c CASE(S) b COAD CASE(S) c COAD	CASE(S) section are noted as front Standard of Live (balanced ase=1.15 ads (lb/ft) =-70, 3-4=-20 ed Loads (lb)	concentra 4 on botto nection de n, loads a t (F) or ba	ated load(s) 3 m chord. Th vice(s) is the oplied to the ck (B).	e face					
FORCES	(lb) - Maximum Com Tension	pression/Maximum	vent. 5=									
TOP CHORD BOT CHORD	1-4=-112/43, 1-2=-7 3-4=-21/37	1/10, 2-3=-98/44										
Vasd=91m II; Exp C; E cantilever I right expos 2) This truss f chord live I 3) * This truss on the bott 3-06-00 tal chord and a	E 7-16; Vult=115mph ph; TCDL=6.0psf; BC Enclosed; MWFRS (er eft and right exposed sed; Lumber DOL=1.6 has been designed for oad nonconcurrent wi s has been designed f om chord in all areas I by 2-00-00 wide will any other members.	DL=6.0psf; h=25ft; C tvelope) exterior zon ; end vertical left and 0 plate grip DOL=1.6 r a 10.0 psf bottom th any other live load or a live load of 20.0 where a rectangle fit between the botto	e; 1 90 Is. psf								STATE OF I	MISSOLR

4) Refer to girder(s) for truss to truss connections.

5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 31 lb uplift at joint 4 and 37 lb uplift at joint 3.

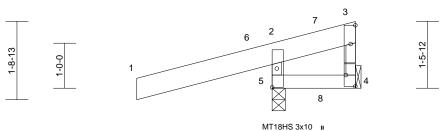

 This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.


en the bottom ctions. (s) of truss to Ib uplift at joint

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent colleges with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

	3-2-8	
Scale = 1:21.8		
Plate Offsets (X, Y): [5:0-5-6,0-1-8]		

Loading (psf) TCLL (roof) 25.0 TCDL 10.0 BCLL 0.0* BCDL 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018/TPI2014	CSI TC 0.2 BC 0.0 WB 0.0 Matrix-R 0.0	6 Vert(CT)	in 0.00 -0.01 0.00 0.00	(loc) 4-5 4-5 3 4-5	l/defl >999 >999 n/a >999	L/d 360 240 n/a 240	PLATES MT20 Weight: 10 lb	GRIP 197/144 FT = 10%
LUMBER TOP CHORD 2x4 SPF No.2 BOT CHORD 2x4 SPF No.2 BRACING TOP CHORD Structural wood she 3-2-8 oc purlins, ex BOT CHORD Rigid ceiling directly bracing. REACTIONS (size) 3= Mecha 5=0-3-8 Max Horiz 5=49 (LC Max Uplift 3=-23 (LC Max Grav 3=69 (LC (LC 1)	athing directly applie cept end verticals. applied or 10-0-0 oc nnical, 4= Mechanica 4) 3 8), 5=-76 (LC 4) 1), 4=52 (LC 3), 5=3	LOAD CASE(S)							rrogin. To is	
 FORCES (Ib) - Maximum Com Tension TOP CHORD 2-5=-283/94, 1-2=0/ BOT CHORD 4-5=0/0 NOTES 1) Wind: ASCE 7-16; Vult=115mph Vasd=91mph; TCDL=6.0psf; BC II; Exp C; Enclosed; MWFRS (er and right exposed; end vertical Lumber DOL=1.60 plate grip DC 2) This truss has been designed fo chord live load nonconcurrent wi 3) * This truss has been designed fo on the bottom chord in all areas 3-06-00 tall by 2-00-00 wide will chord and any other members. 4) Refer to girder(s) for truss to tru 5) Provide mechanical connection of bearing plate capable of withstan 5 and 23 Ib uplift at joint 3. 6) This truss is designed in accorda International Residential Code s R802.10.2 and referenced stand 	45, 2-3=-45/15 (3-second gust) DL=6.0psf; h=25ft; C invelope); cantilever le left and right exposed DL=1.60 r a 10.0 psf bottom it any other live load or a live load of 20.0 where a rectangle fit between the botto ss connections. (by others) of truss to ading 76 lb uplift at jo ance with the 2018 ections R502.11.1 ar	eft d; ds. psf m o pint					,	R	STATE OF I SCOT SEVI NUM PE-2001 PE-2001 Augu	T M. ER DIS807


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

16023 Swingley Ridge Rd. Chesterfield, MO 63017 314.434.1200 / MiTek-US.com

						RELEASE FOR CONSTRUCTION
Job	Truss	Truss Type	Qty	Ply	Lot 176 HT	AS NOTED FOR PLAN REVIEW DEVELOPMENT SERVICES 159955145
B240005	J47	Jack-Closed Girder	2	1	Job Reference (optional	
Wheeler Lumber, Wave	erly, KS - 66871,	Run: 8.71 S ID:Ej7EWo	5 Jul 27 2023 Print: 8 /Y_94Pzt7UVy1gWA	.710 S Jul 2 z_t70-RfC?F	7 2023 MiTek Industries, Inc. Fri PsB70Hq3NSgPqnL8w3uITXbGi	Aug 04 (8) 53 / 13/2024 WrCDoi N4 2001
		-3-0-	n l	1-10-2	>	

3x6 II

1-10-2

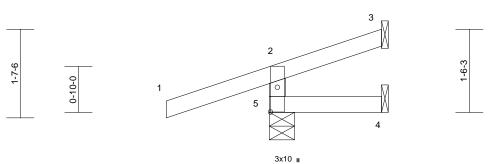
Scale = 1:25.6

Plate Offsets (X, Y): [4:Edge,0-2-8]

Loading	(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15		TC	0.72	Vert(LL)	0.00	4-5	>999	360	MT20	197/144
TCDL	10.0	Lumber DOL	1.15		BC	0.06	Vert(CT)	0.00	4-5	>999	240	MT18HS	197/144
BCLL	0.0*	Rep Stress Incr	NO		WB	0.00	Horz(CT)	0.00	4	n/a	n/a		
BCDL	10.0	Code	IRC2018	/TPI2014	Matrix-R		Wind(LL)	0.00	4-5	>999	240	Weight: 12 lb	FT = 10%
UMBER			8)	Load case(s) 21 has/have bee	n modifie	ed. Buildina						
TOP CHORD	2x6 SPF 1650F 1.4E	=	0)		st review loads to			orrect					
BOT CHORD	2x4 SPF No.2			for the intend	ded use of this true	ss.							
WEBS	2x3 SPF No.2		9)		CASE(S) section			face					
BRACING				of the truss a	are noted as front	(F) or ba	ck (B).						
TOP CHORD	Structural wood she	athing directly appli	54 01	• • • •	Standard Exce								
	2-6-3 oc purlins, ex		21)		ed (1): Lumber Inc	rease=1.	15, Plate						
BOT CHORD	Rigid ceiling directly	applied or 6-0-0 oc		Increase=1									
	bracing.			Uniform Lo	()	(E) 0 7	70 (E) E 0	20					
REACTIONS	. ,	anical, 5=0-3-8		(F)	=-70 (F), 2-6=-20	(F), 2-7=	-70 (F), 5-8≡	-20					
	Max Horiz 5=72 (LC	,		. ,	ed Loads (lb)								
	Max Uplift 4=-650 (L	<i>,,</i>	,	Vert: 1=-									
	Max Grav 4=106 (L0	,, ()	ronu r	200								
FORCES	(lb) - Maximum Com	pression/Maximum											
TOP CHORD	Tension 2-5=-1131/275, 1-2=	0/111 2 2 01/20											
	3-4=-97/623	-0/111, 2-3=-94/20,											
BOT CHORD	4-5=-83/19												
NOTES													
	CE 7-16; Vult=115mph	(3-second dust)											
	nph; TCDL=6.0psf; BC		Cat.										
II; Exp C; I	Enclosed; MWFRS (er	velope) exterior zoi	ne;										
cantilever	left and right exposed	; end vertical left an	d										Th
	sed; Lumber DOL=1.6											OFI	Might
	are MT20 plates unles		d.									Fredri	USS SCH
,	has been designed fo										6	THE OF I	NSY

- chord live load nonconcurrent with any other live loads.
 This truss has been designed for a live load of 20.0psf 4) on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- Refer to girder(s) for truss to truss connections. 5)
- Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 265 lb uplift at joint 6) 5 and 650 lb uplift at joint 4.
- This truss is designed in accordance with the 2018 7) International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent oulgase with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)


16023 Swingley Ridge Rd. Chesterfield MO 63017 314.434.1200 / MiTek-US.com

						RELEASE FOR CONSTRUCTION
Job	Truss	Truss Type	Qty	Ply	Lot 176 HT	AS NOTED FOR PLAN REVIEW DEVELOPMENT SERVICES 159955146
B240005	J48	Jack-Open	4	1	Job Reference (optional	
Wheeler Lumber, Waverly, KS -	Aug 04 (8) 59 / 13/2924					

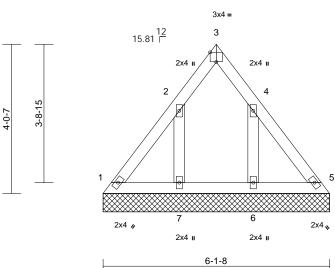
-1-10-8	2-0-8
1-10-8	2-0-8

2-0-8

Scale = 1	1:21
-----------	------

Plate Offsets (X, Y): [5:0-5-6,0-1-8]

· · · · · · · · · · · · · · · · · · ·				-								
Loading	(psf)	Spacing	2-0-0	csi		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	(53)	Plate Grip DOL	1.15	TC	0.28	Vert(LL)	0.00	4-5	>999	360	MT20	197/144
TCDL	10.0	Lumber DOL	1.15	BC	0.08	Vert(CT)	0.00	4-5	>999	240		
BCLL	0.0*	Rep Stress Incr	YES	WB	0.00	Horz(CT)	0.00	3	n/a	n/a		
BCDL	10.0	Code	IRC2018/TPI2014	Matrix-R	0.00	Wind(LL)	0.00	4-5	>999	240	Weight: 8 lb	FT = 10%
	10.0	0000		Mathx IX		Wind(EE)	0.00	10	2000	210	Wolght. O lb	11 - 10%
				designed in accore Residential Code			and					
TOP CHORD				nd referenced star			anu					
BOT CHORD WEBS	2x4 SPF No.2 2x4 SPF No.2					0/1111.						
	2X4 SPF N0.2		LOAD CASE(S)	Standard								
BRACING	Structural wood at a	othing directly coolid	dor									
TOP CHORD	Structural wood she											
BOT CHORD	2-0-8 oc purlins, ex Rigid ceiling directly		、									
DOT CHORD	bracing.		,									
REACTIONS	0	anical, 4= Mechanica	I									
NEACTIONS	(SIZE) 5= IVIECTIZ 5=0-5-8		',									
	Max Horiz 5=52 (LC	4)										
	Max Uplift 3=-15 (LC	,	133									
	(LC 4)											
	Max Grav 3=10 (LC	1), 4=27 (LC 3), 5=3	802									
	(LC 1)											
FORCES	(lb) - Maximum Com	pression/Maximum										
	Tension											
TOP CHORD	2-5=-260/137, 1-2=0	0/45, 2-3=-38/1										
BOT CHORD	4-5=0/0											
NOTES												
	CE 7-16; Vult=115mph											
	nph; TCDL=6.0psf; BC											an
	Enclosed; MWFRS (er										OFI	MIG
	left and right exposed										FEUL	AN Ser
	sed; Lumber DOL=1.6		50							6	TATE OF	N.S.
	has been designed fo load nonconcurrent wi		łc							R	SCOT	TM. YEY
	s has been designed f									8	SEV	
	tom chord in all areas		P31							tak	1	0 +4
	Il by 2-00-00 wide will		m								that the	Sanda
	any other members.								6		NUR	
	irder(s) for truss to tru	ss connections.								27	NUM	
	echanical connection)							N.	PE-2001	018807
	ate capable of withstar		joint							V	The last	158
5, 15 lb up	olift at joint 3 and 5 lb u	iplift at joint 4.									ESSIONA	ENUS
											A TONA	L
											uno alla	202

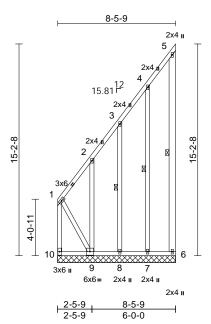

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling or individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

						RELEASE FOR CONSTRUCTION
Job	Truss	Truss Type	Qty	Plv	Lot 176 HT	AS NOTED FOR PLAN REVIEW
305	11035	Truss Type	Giy	l''y		DEVELOPMENT SERVICES 159955147
B240005	LAY1	GABLE	1	1	Job Reference (optional	

Run: 8.71 S Jul 27 2023 Print: 8.710 S Jul 27 2023 MiTek Industries, Inc. Fri Aug 04 (8) 52 / 13/2024 ID:Ej7EWovY_94Pzt7UVy1gWAz_t70-RfC?PsB70Hq3NSgPqnL8w3uITXbGr WrCDoi / 42664

Scale = 1:31.2

Plate Offsets (X, Y): [3:Edge,0-3-2]

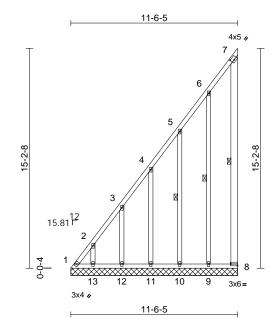

Loading TCLL (roof) TCDL BCLL BCDL	(psf) 25.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018/TPI20 ⁻	CSI TC BC WB 4 Matrix-P	0.05 0.03 0.03	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 5	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 23 lb	GRIP 197/144 FT = 10%
BOT CHORD OTHERS BRACING TOP CHORD BOT CHORD REACTIONS (Max Horiz 1=-103 (L Max Uplift 1=-13 (LC (LC 9), 7= Max Grav 1=118 (LC	applied or 10-0-0 oc 5=6-1-8, 6=6-1-8, 7=1 C 4) 6), 5=-12 (LC 7), 6= -149 (LC 8)	on the 3-06-0 chord 8) Provid bearin 1, 12 I uplift a 9) This tr 6-1-8 R802. LOAD CA	truss has been design bottom chord in all are 0 tall by 2-00-00 wide and any other membe e mechanical connect g plate capable of with o uplift at joint 5, 149 II t joint 6. uss is designed in acc titional Residential Coo 10.2 and referenced st SE(S) Standard	eas where will fit betw rs. ion (by oth standing 1 b uplift at jo ordance wi de sections	a rectangle veen the botto ers) of truss to 3 lb uplift at jo bint 7 and 148 th the 2018 R502.11.1 a	om o oint 3 lb					
 BOT CHORD WEBS NOTES 1) Unbalanced this design. 2) Wind: ASCI Vasd=91mp II; Exp C; E cantilever le right expose 3) Truss desig only. For si see Standa or consult q 4) Gable requi 5) Gable stude 6) This truss here 	(lb) - Maximum Com Tension 1-2=-158/86, 2-3=-6: 4-5=-157/85 1-7=-57/132, 6-7=-5 2-7=-167/174, 4-6=- d roof live loads have E 7-16; Vult=115mph oh; TCDL=6.0psf; BC nclosed; MWFRS (en eft and right exposed ed; Lumber DOL=1.6! gned for wind loads in tuds exposed to wind rud Industry Gable End uualified building desig ires continuous bottor s spaced at 2-0-0 oc. nas been designed for pad nonconcurrent wi	3/14, 3-4=-63/13, 7/132, 5-6=-57/132 166/173 been considered for (3-second gust) DL=6.0psf; h=25ft; C velope) exterior zon ; end vertical left and D plate grip DOL=1.6 the plane of the trus (normal to the face) d Details as applicab gner as per ANSI/TP n chord bearing.	Cat. e; d 50 ss , le, l 1.								STATE OF J STATE OF J SEV SEV PE-2001	

\lambda WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.
Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not
a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall
building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing
is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the
fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org)
and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

						RELEASE FOR CONSTRUCTION
Job	Truss	Truss Type	Qty	Ply	Lot 176 HT	AS NOTED FOR PLAN REVIEW
5040005						DEVELOPMENT SERVICES 159955148
B240005	LAY2	Lay-In Gable	1	1	Job Reference (optional	

Run: 8.71 S Jul 27 2023 Print: 8.710 S Jul 27 2023 MiTek Industries, Inc. Fri Aug 04 8 8.3 / 1 3/2 9:24 ID:LfsW?wweLsvcCuot68sTl1zJb1t-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKW CDoi7J22077 1 3/2

Scale = 1:82.7


Scale = 1:82.7													
Loading TCLL (roof) TCDL BCLL BCDL	(psf) 25.0 10.0 0.0 * 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018	3/TPI2014	CSI TC BC WB Matrix-P	0.50 0.07 0.21	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 6	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 101 lb	GRIP 197/144 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD WEBS REACTIONS	2x4 SPF No.2 2x4 SPF No.2 *Exce 2x4 SPF No.2 *Exce 2x4 SPF No.2 Structural wood she 6-0-0 oc purlins, exx Rigid ceiling directly bracing, Except: 8-0-2 oc bracing: 9-1 1 Row at midpt (size) 6=8-5-9, 7 10=8-5-9 Max Horiz 10=569 (L 8=-172 (L 0=763 (L 8=214 (LC 8=214 (LC	athing directly applie cept end verticals. applied or 10-0-0 or 10. 5-6, 4-7, 3-8 7=8-5-9, 8=8-5-9, 9= 	4) 5) 6) 2 3 4 or 7) 5 8) 8-5-9, 9) LO	Truss to be f braced again Gable studs This truss ha chord live loa * This truss f on the bottom 3-06-00 tall b chord and ar Provide mec bearing plate 10, 264 lb up uplift at joint This truss is International	es continuous bott ully sheathed from ast lateral moveme spaced at 2-0-0 or is been designed ad nonconcurrent as been designed n chord in all area by 2-00-00 wide wi y other members. hanical connection e capable of withst blift at joint 6, 177 I 8 and 767 lb uplift designed in accor Residential Code nd referenced star Standard	one fac nt (i.e. c c. or a 10. with any l for a liv s where ll fit betw n (by oth anding 7 b uplift a t joint dance w sections	e or securely liagonal web). O psf bottom other live load e load of 20.0 a rectangle veen the botto ers) of truss t '63 lb uplift at it joint 7, 172 9. ith the 2018 s R502.11.1 a	ds.)psf om joint lb					
FORCES	10=1119 (Ib) - Maximum Com Tension	· ,											
TOP CHORD			.71,										alle
BOT CHORD WEBS		,	,								B	STATE OF I	MISSOLA
	1-9=-598/790										a	SEVI	
Vasd=91n II; Exp C; cantilever right expo 2) Truss des only. For see Stand	CE 7-16; Vult=115mph mph; TCDL=6.0psf; BC Enclosed; MWFRS (er left and right exposed sed; Lumber DOL=1.6 signed for wind loads ir studs exposed to wind fard Industry Gable En- t qualified building desig	DL=6.0psf; h=25ft; C velope) exterior zon ; end vertical left and 0 plate grip DOL=1.6 n the plane of the tru (normal to the face) d Details as applicat	ne; d 60 ss , ole,							2		PE-2001	LENGI

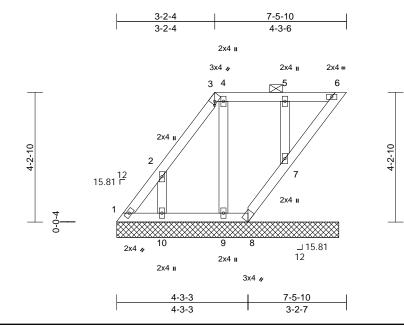
August 7,2023

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

						RELEASE FOR CONSTRUCTION
Job	Truss	Truss Type	Qty	Ply	Lot 176 HT	AS NOTED FOR PLAN REVIEW DEVELOPMENT SERVICES
B240005	LAY3	Lay-In Gable	1	1	Job Reference (optional)	DEVELOPMENT SERVICES 159955149 LEE'S SUMMIT, MISSOURI
			-			00/10001

Scale = 1:79.7

Plate Offsets (X, Y): [7:0-2-8,0-2-7], [8:Edge,0-1-8]


Loading TCLL (roof) TCDL BCLL	(psf) 25.0 10.0 0.0*	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr	2-0-0 1.15 1.15 YES		CSI TC BC WB	0.56 0.35 0.15	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 8	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20	GRIP 197/144
BCDL	10.0	Code	IRC2018	B/TPI2014	Matrix-S							Weight: 99 lb	FT = 20%
	6-0-0 oc purlins, ex Rigid ceiling directly bracing. 1 Row at midpt (size) 1=11-6-5 10=11-6- 13=11-6- Max Horiz 1=574 (L Max Uplift 1=-382 (9=-209 (11=-180 3=-159 Max Grav 1=578 (L (LC 15),	y applied or 10-0-0 oc 7-8, 6-9, 5-10 5, 8=11-6-5, 9=11-6-5, 5, 11=11-6-5, 12=11-1-5 C 5) C 6), 8=-305 (LC 7), C 8), 10=-163 (LC 8) (LC 8), 12=-177 (LC 8)	2) d or 3) 4) 5) 6-5, 6) 7) , , 8) , 8) =207	Vasd=91mph II; Exp C; En cantilever lef right exposed Truss design only. For stu see Standard or consult qu All plates are Gable requiri Gable studs This truss ha chord live loa * This truss ha chord live loa * This truss ha chord and ar Provide mect bearing plate 1, 305 lb upli uplift at joint joint 12 and	7-16; Vult=115n r; TCDL=6.0psf; closed; MWFRS t and right exposed t; Lumber DOL= ed for wind load ds exposed to wind load building d 2x4 MT20 unlexiss se continuous bo spaced at 2-0-0 s been designed n chord in all are y 2-00-00 wide in y 2-00-00 wide in y 2-00-00 wide in y 2-00-00 wide in to at a a long to a signed the at a signed to a signed the at a si	BCDL=6.((envelope sed; end v. 1.60 plate is in the pl vind (norm End Deta lesigner as so otherwi vittom chor oc. d for a 10.t t with any ed for a liv as where will fit betw s. on (by oth standing 3 lb uplift at at joint 11, int 13.	psf; h=25ft; C exterior zon ertical left and grip DOL=1.6 ane of the tru al to the face) ls as applicate s per ANSI/TP se indicated. d bearing. 0 psf bottom other live loace e load of 20.0 a rectangle even the botto ers) of truss to 82 lb uplift at joint 9, 163 lb 177 lb uplift at	e; d 30 ss ss , lee, l 1. ds. psf m o joint					
FORCES	Tension	npression/Maximum	- /	International	Residential Cod	e sections	R502.11.1 a	nd				TATE OF I	MISS
TOP CHORD	,	-644/459, 3-4=-543/38 -437/310, 6-7=-259/18	· • • • •	DAD CASE(S)	Standard						A	STA SCOT	T M.
BOT CHORD	1-13=-210/160, 12- 11-12=-210/160, 10 9-10=-210/160, 8-9	0-11=-210/160,										SEV	
WEBS	6-9=-225/195, 5-10 4-11=-185/194, 3-1 2-13=-163/172	=-180/223,									A.	PE-2001	
NOTES											Q	FESSIONA	L ENGINE

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

						RELEASE FOR CONSTRUCTION
lab	Truce	Truss Type	Qty	Plv	Lot 176 HT	AS NOTED FOR PLAN REVIEW
Job	Truss	Truss Type	Quy	гіу		DEVELOPMENT SERVICES 159955150
B240005	LAY4	Lay-In Gable	2	1	Job Reference (optional	
-						

Run: 8.71 S Jul 27 2023 Print: 8.710 S Jul 27 2023 MiTek Industries, Inc. Fri Aug 04 (8) 62/1 3/20:24 ID:Ej7EWovY_94Pzt7UVy1gWAz_t70-RfC?PsB70Hq3NSgPqnL8w3uITXbGi WrCDoi7942694

Scale = 1:37.5

Plate Offsets (X, Y): [3:0-1-3,Edge]

cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60

Loading	(psf)	Spacing	2-0-0		csi		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15		TC	0.10	Vert(LL)	n/a	-	n/a	999	MT20	244/190
FCDL	10.0	Lumber DOL	1.15		BC	0.05	Vert(TL)	n/a	-	n/a	999		
BCLL	0.0*	Rep Stress Incr	YES		WB	0.06	Horiz(TL)	0.00	6	n/a	n/a		
BCDL	10.0	Code	IRC201	8/TPI2014	Matrix-P							Weight: 38 lb	FT = 10%
UMBER TOP CHORD BOT CHORD DTHERS BRACING TOP CHORD	2x4 SP No.3 2x4 SP No.3 2x4 SP No.3 Structural wood she 6-0-0 oc purlins, exc		3) 4) d or 5) 6)	only. For stu see Standard or consult qu Provide adeo All plates are	ned for wind loads ids exposed to wind d Industry Gable E alified building de quate drainage to e 2x4 MT20 unless spaced at 2-0-0 o	nd (norm End Deta signer as prevent s otherwi	al to the face ils as applica per ANSI/TI water ponding), ble, PI 1.					
OT CHORD	2-0-0 oc purlins, 6-0 Rigid ceiling directly bracing, Except: 6-0-0 oc bracing: 6-7	-0 max.): 3-6. applied or 10-0-0 oc	7) 8)	chord live loa * This truss h on the bottor	is been designed ad nonconcurrent has been designed n chord in all area	with any d for a liv is where	other live loa e load of 20.0 a rectangle	Opsf					
	8=7-2-11, Max Horiz 1=160 (LC Max Uplift 1=-28 (LC (LC 4), 8= 5), 10=-16 Max Grav 1=128 (LC	5 6), 6=-51 (LC 8), 7= -24 (LC 15), 9=-24 (55 (LC 8) C 8), 6=72 (LC 1), 7= B=60 (LC 8), 9=152 (I	1 9) =-44 LC	 chord and ar Provide mec bearing plate 1, 51 lb uplifi joint 7, 24 lb N/A 1) This truss is 	by 2-00-00 wide w by other members hanical connection capable of withst at joint 6, 24 lb u uplift at joint 9 and designed in accor Residential Code	n (by oth tanding 2 plift at joi d 165 lb rdance w	ers) of truss t 8 lb uplift at j nt 8, 44 lb up uplift at joint 1 ith the 2018	io oint lift at 10.					
FORCES	(lb) - Maximum Com Tension 1-2=-170/74, 2-3=-7	5/12, 3-4=-23/39,	1:	R802.10.2 a 2) Graphical pu	nd referenced star rlin representation ation of the purlin	ndard AN n does no	ISI/TPI 1. ot depict the s						
BOT CHORD	4-5=-23/39, 5-6=-23, 1-10=-39/23, 9-10=- 7-8=-70/53, 6-7=-75,	39/23, 8-9=-39/23,	L	bottom chore OAD CASE(S)	i. '	a.eg ure						TATE OF J	MISSO
NEBS	5-7=-156/67, 4-9=-1	17/45, 2-10=-173/18	7								a	N	New
this design 2) Wind: ASC Vasd=91m II; Exp C; E	ed roof live loads have n. DE 7-16; Vult=115mph nph; TCDL=6.0psf; BC Enclosed; MWFRS (er	(3-second gust) DL=6.0psf; h=25ft; C avelope) exterior zon	Cat. e;									SCOT SEV	ier ter ter



WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

						RELEASE FOR CONSTRUCTION
Job	Truss	Truss Type	Qty	Ply	Lot 176 HT	AS NOTED FOR PLAN REVIEW
			ς.,	,		DEVELOPMENT SERVICES 159955151
B240005	LAY5	Lay-In Gable	1	1	Job Reference (optional	
						00/10/0001

Run: 8.71 S Jul 27 2023 Print: 8.710 S Jul 27 2023 MiTek Industries, Inc. Fri Aug 04 8 32/1 3/2 224 ID:Ej7EWovY_94Pzt7UVy1gWAz_t70-RfC?PsB70Hq3NSgPqnL8w3uITXbGr WrCDoi 22594

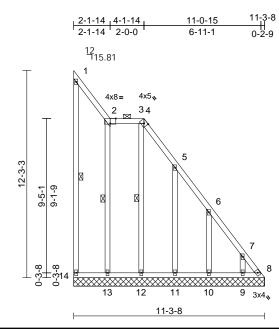
Scale = 1:59.7

Plate Offsets (X, Y): [6:0-4-0,0-0-6]

			_										
Loading TCLL (roof) TCDL BCLL BCDL LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD	(psf) 25.0 10.0 0.0* 10.0 2x4 SPF No.2 2x4 SPF No.2 2x4 SPF No.2 2x4 SPF No.2 2x4 SPF No.2 Structural wood she 6-0-0 oc purlins, exx Rigid ceiling directly	cept end verticals.	3) 4) 5) 6) 7) ed or	Gable requir Gable studs This truss ha chord live loa * This truss h on the bottor 3-06-00 tall b	CSI TC BC WB Matrix-P 2 2x4 MT20 unless es continuous bot spaced at 2-0-0 o is been designed ad nonconcurrent nas been designed n chord in all area by 2-00-00 wide w by other members	tom choi c. for a 10. with any d for a liv is where ill fit betv	d bearing. 0 psf bottom other live loa e load of 20.0 a rectangle)psf	(loc) - - 6	l/defl n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 64 lb	GRIP 197/144 FT = 10%
WEBS REACTIONS	bracing. 1 Row at midpt (size) 6=8-11-2, 9=8-11-2, Max Horiz 11=-477 (Max Uplift 6=-268 (L 8=-181 (L 10=-186 (Max Grav 6=663 (LC 8=233 (LC	1-11, 2-10 7=8-11-2, 8=8-11-2 10=8-11-2, 11=8-11 LC 9) C 7), 7=-205 (LC 9), C 9), 9=-173 (LC 9), LC 9), 11=-65 (LC 9)	8) -2 9)) LC	bearing plate 11, 268 lb up uplift at joint joint 7. This truss is International	hanical connectio e capable of withs olift at joint 6, 186 9, 181 lb uplift at j designed in accor Residential Code nd referenced star Standard	tanding 6 lb uplift a joint 8 ar dance w sections	55 lb uplift at ju it joint 10, 173 id 205 lb uplif ith the 2018 5 R502.11.1 a	oint 3 lb t at					
FORCES	(lb) - Maximum Com Tension	pression/Maximum	,										
TOP CHORD	1-11=-68/74, 1-2=-8 3-4=-440/196, 4-5=-		52									(DOL)	alle
BOT CHORD	10-11=-199/477, 9-1 8-9=-199/477, 7-8=-		77									STATE OF	MISSO
WEBS	2-10=-197/212, 3-9= 5-7=-174/225	-183/197, 4-8=-191/	206,								Ø	S SCOT	тм.
Vasd=91m II; Exp C; E cantilever I	CE 7-16; Vult=115mph pph; TCDL=6.0psf; BC Enclosed; MWFRS (er left and right exposed _umber DOL=1.60 plat	DL=6.0psf; h=25ft; C velope) exterior zon ; end vertical right								ł	R	SEV NUM PE-2001	BEREIL

 exposed; Lumber DOL=1.60 plate grip DOL=1.60
 2) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and property incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)



August 7,2023

ESSIONAL ET

						RELEASE FOR CONSTRUCTION
Job	Truss	Truss Type	Qty	Plv	Lot 176 HT	AS NOTED FOR PLAN REVIEW
000	11033		Galy	1 19		DEVELOPMENT SERVICES I59955152
B240005	LAY6	Lay-In Gable	1	1	Job Reference (optional	

Run: 8.71 S Jul 27 2023 Print: 8.710 S Jul 27 2023 MiTek Industries, Inc. Fri Aug 04 (8) 62/1 3/20:24 ID:Ej7EWovY_94Pzt7UVy1gWAz_t70-RfC?PsB70Hq3NSgPqnL8w3uITXbGi WrCDoi7942694

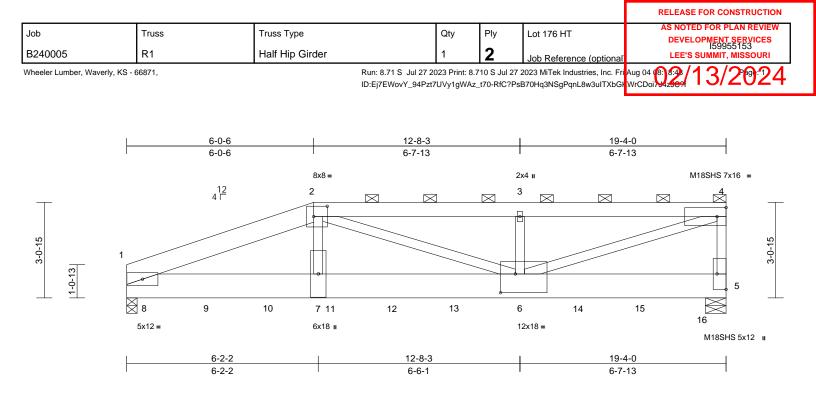

Scale = 1:68.2

Plate Offsets (X, Y): [2:0-4-0,Edge], [4:0-2-3,Edge]

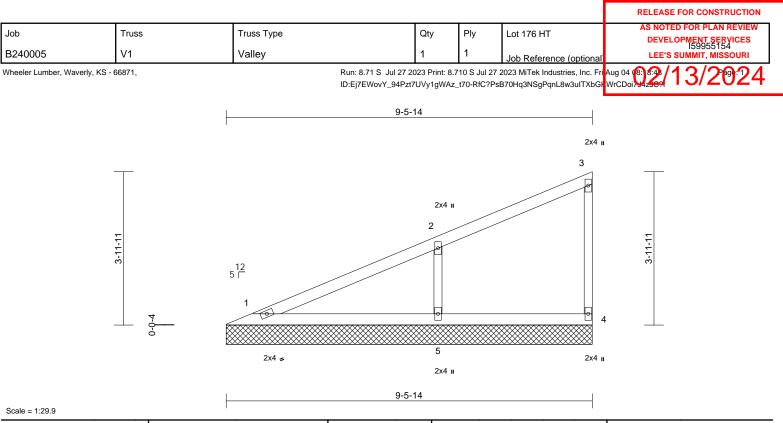
			:									
Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15	TC	0.08	Vert(LL)	n/a	-	n/a	999	MT20	197/144
TCDL	10.0	Lumber DOL	1.15	BC	0.08	Vert(TL)	n/a	-	n/a	999		
BCLL	0.0*	Rep Stress Incr	YES	WB	0.14	Horiz(TL)	0.01	8	n/a	n/a		
BCDL	10.0	Code	IRC2018/TPI2014	Matrix-S							Weight: 79 lb	FT = 10%
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD WEBS REACTIONS	2x4 SPF No.2 2x4 SPF No.2 2x4 SPF No.2 2x4 SPF No.2 2x4 SPF No.2 Structural wood she 6-0-0 oc purlins, ex 2-0-0 oc purlins (6-C Rigid ceiling directly bracing. 1 Row at midpt (size) 8=11-3-8 11=11-3-1 14=11-3-1 (size) 8=11-3-8 11=11-3-1 14=11-3-1 (size) 8=11-3-8 11=1-3-1 14=1-3-1 (size) 8=11-3-8 11=2-227 (Max Horiz 14=-477) Max Grav 8=606 (L0 10=229 (I 12=196 (I 14=101 (I (lb) - Maximum Com Tension 1-14=-85/89, 1-2=-9 3-4=-104/45, 4-5=-2 6-7=-621/276, 7-8=- 13-14=-201/476, 12 11-12=-201/476, 8-9 2-13=-140/18, 3-12=	athing directly applied cept end verticals, and -0 max.): 2-4. applied or 10-0-0 oc 1-14, 2-13, 3-12 9=11-3-8, 10=11-3-8, 3, 12=11-3-8, 13=11-3-8, 3, 12=11-3-8, 13=11-3-8, 3, 12=11-3-8, 13=11-3-8, 3, 12=11-3-8, 13=11-3-8, 12=10-2, 10=10-0, 10=10-0, C 7), 9=-152 (LC 9), LC 9), 11=-192 (LC 9), LC 9), 11=-192 (LC 9), LC 9), 14=-82 (LC 9), C 16), 11=233 (LC 16), -C 16), 13=182 (LC 1), -C 16), 14=182 (LC 1), -C 16)	 Wind: AS Vasd=91 II; Exp C cantileve exposed Truss de only. Fo Truss de only. Fo Truss de only. Fo See Star or consu Provide a All plates Gable st Gable st This trus chord liv * This trus chord liv * This trus on the be 3-06-00 chord an Provide a -8, " * This trus chord an 9) Provide bearing p 14, 243 I uplift at j at joint 9 10) This trus Internation R802.10 11) Graphica or the or bottom c 	SCE 7-16; Vult=115n mph; TCDL=6.0psf; Enclosed; MWFRS r left and right expose ; Lumber DOL=1.60 signed for wind load r studs exposed to w dard Industry Gable It qualified building d adequate drainage to a are 2x4 MT20 unlet quires continuous bo Juds spaced at 2-0-0 s has been designed but nonconcurren ss has been designed but nonconcurren shas been designed but nonconcurren is has been designed but nonconcurren schas been designed and schaster but schaster	BCDL=6. (envelopsed; end v plate grip Is in the p plate grip Is in the p plate grip Is in the p plate grip Is in the p plate grip Is on the plate so therwit there is a source on cost of for a 10. t with any ed for a live as where will fit betw s. on (by oth standing § 7 lb uplift a at joint 10 ordance w le sections andard AM on does no	Dipsf; h=25ft; (a) exterior zor vertical right DOL=1.60 lane of the tru al to the face ills as applical s per ANSI/TF water ponding se indicated. d bearing. D psf bottom other live loa e load of 20.0 a rectangle veen the bottos ti2 lb uplift at j2 and 152 lb up ith the 2018 s R502.11.1 a sl5/TP1 1. ot depict the s	ne; iss), ble, 21 1. 2. ds. 2. bpsf om o bint 2 lb blift nd				STATE OF SCOT	MISSOLUE T M. IER 018807

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

Scale = 1:37.2

Plate Offsets (X, Y): [2:0-5-4,0-4-0], [5:Edge,0-3-8], [6:0-5-12,0-7-4]

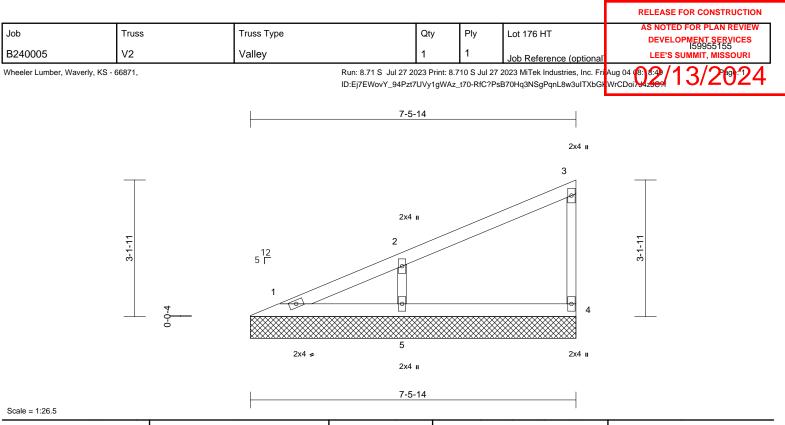
	(7, 1): [2:0 0 1,0 1 0],	- [0:⊏dg0,0 0 0], [0:0	0 0 12,0 1	,]	-								
Loading	(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15		TC	0.75	Vert(LL)	-0.24	6-7	>936	360	MT20	244/190
TCDL	10.0	Lumber DOL	1.15		BC	0.59	Vert(CT)	-0.43	6-7	>530	240	M18SHS	197/144
BCLL	0.0*	Rep Stress Incr	NO		WB	0.89	Horz(CT)	0.04	5	n/a	n/a		
BCDL	10.0	Code	IRC20	8/TPI2014	Matrix-S	-	Wind(LL)	0.15	6-7	>999	240	Weight: 282 lb	FT = 20%
LUMBER			3) Wind: ASCE	7-16; Vult=115n	nph (3-seo	cond gust)		LOAD	CASE(S) Sta	ndard	
TOP CHORD	2x8 SP DSS *Excep	t* 2-4:2x6 SPF 165	0F		h; TCDL=6.0psf;				1) De	ead + Ro	oof Live	e (balanced): Lun	nber Increase=1.15,
	1.4E				nclosed; MWFRS					ate Incre			
BOT CHORD	2x10 SP 2400F 2.0E				posed ; end vertie			ed;		hiform Lo		,	
NEBS	2x4 SPF No.2 *Exce	pt* 6-2,6-4:2x4 SPF			_=1.60 plate grip						,	2-4=-70, 1-5=-20	
	2100F 1.8E		4		quate drainage to				Co	oncentra	ted Lo	ads (lb)	
RACING			5		e MT20 plates ur			d.				(F=-754, B=-105	
OP CHORD	Structural wood she	athing directly appli	ed or 6		as been designed							54, B=-1124), 10	
	4-10-9 oc purlins, e	xcept end verticals,			ad nonconcurren							1721 (F=-754, B=	
	2-0-0 oc purlins (4-0	-2 max.): 2-4.	7		has been designe			Jpst					F=-754, B=-1055),
BOT CHORD	Rigid ceiling directly	applied or 10-0-0 o	C		m chord in all are								5=-1810 (F=-754,
	bracing.				by 2-00-00 wide		veen the botto	om		B=-105	5), 16=	-1817 (F=-758, E	8=-1059)
REACTIONS	(size) 1=0-4-0, 5	5=0-8-0	•		ny other member			_					
	Max Horiz 1=83 (LC	20)	8		chanical connecti								
	Max Uplift 1=-869 (L	C 4), 5=-68 (LC 4)			e capable of with	stanuing c	og in uplitt at	joint					
	Max Grav 1=8508 (L	_C 1), 5=9742 (LC 1	l) 9		uplift at joint 5. designed in acco	ordonco w	ith the 2019						
ORCES	(lb) - Maximum Com	pression/Maximum			Residential Cod			nd					
0	Tension				ind referenced sta			inu					
TOP CHORD	1-2=-17577/1630, 2-	-3=-16202/937,	1		urlin representation			size					
	3-4=-16200/937, 4-5		'		ation of the purlir			5120					
BOT CHORD	1-7=-1510/16220, 6-	-7=-1555/16590,		bottom chor		i along in							
	5-6=-21/349		1		r other connectio	n device(s) shall be						
VEBS	2-7=-742/6151, 2-6=	-415/713, 3-6=-190			ficient to support			53					
	4-6=-974/16951				12 lb up at 1-3-							Con	Jan
NOTES					754 lb down and							A OF I	AIS C
) 2-plv truss	s to be connected toget	ther with 10d		down and 6	2 lb up at 5-3-4,	754 lb dov	vn and 86 lb	up at			1	750	N.OS
	") nails as follows:			Ib down and 12 lb up at 1-3-4, 1124 lb down and 231 lb up at 3-3-4, 754 lb down and 174 lb up at 3-3-4, 965 lb down and 62 lb up at 5-3-4, 754 lb down and 86 lb up at 5-3-4, 967 lb down and 62 lb up at 7-3-4, 754 lb down									New M
Top chord	s connected as follows	s: 2x8 - 2 rows		and 101 lb up at 7-3-4, 1055 lb down and 183 lb up at									
staggered	at 0-9-0 oc, 2x6 - 2 ro	ws staggered at 0-9	9-0	9-3-4, 754 lb down and 101 lb up at 9-3-4, 1055 lb down									
oc, 2x4 - 1	1 row at 0-9-0 oc.				ip at 11-3-4, 754								
Bottom ch	nords connected as follo	ows: 2x10 - 2 rows		11-3-4, 1055 lb down and 15 lb up at 13-3-4, 754 lb down and 101 lb up at 13-3-4, 1055 lb down at 15-3-4,									
00	d at 0-6-0 oc.									-		NUM	RER A
	nected as follows: 2x4 -				and 101 lb up at						47		
	are considered equally				lb down and 101			58 lb			N	PE-2001	018807
	noted as front (F) or ba		DAD		9 lb up at 19-3-4						Y	NO.	154
CASE(S)	section. Ply to ply conr	nections have been		19-3-4 on bo	ottom chord. The	e design/se	election of su	ch				Ser	NUH


CASE(S) section. Ply to ply connections have been provided to distribute only loads noted as (F) or (B), unless otherwise indicated.

sign/ of such connection device(s) is the responsibility of others.

 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.
 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not besign value to dury with with where outputs into design is based only door parameters shown, and is for an individual building design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members and property incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TPH1 Quality Criteria**, and **DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcscomponents.com)

Loading TCLL (roof) TCDL BCLL	(psf) 25.0 10.0 0.0*	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr	2-0-0 1.15 1.15 YES		CSI TC BC WB	0.29 0.16 0.07	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 4	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20	GRIP 197/144
BCDL	10.0	Code	IRC2018/	TPI2014	Matrix-S							Weight: 26 lb	FT = 10%
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD	2x4 SPF No.2 2x4 SPF No.2 2x3 SPF No.2 2x3 SPF No.2 Structural wood she 6-0-0 oc purlins, ex Rigid ceiling directly bracing.	cept end verticals.	8) d or LOA	bearing plate 4 and 129 lb This truss is International	hanical connection e capable of withs uplift at joint 5. designed in accc Residential Code nd referenced star Standard	standing 2 ordance w e sections	3 lb uplift at j ith the 2018 5 R502.11.1 a	oint					
REACTIONS	(size) 1=9-5-14, Max Horiz 1=158 (LC Max Uplift 4=-23 (LC Max Grav 1=172 (LC (LC 1)	C 5), 5=-129 (LC 8)	=487										
FORCES	(lb) - Maximum Com Tension	pression/Maximum											
TOP CHORD	1-2=-123/71, 2-3=-1												
BOT CHORD	1-5=-51/39, 4-5=-51 2-5=-370/182	/39											
NOTES	2-3=-370/182												
 Wind: ASC Vasd=91rr II; Exp C; I cantilever right exposized 2) Truss des only. For see Stand 	CE 7-16; Vult=115mph nph; TCDL=6.0psf; BC Enclosed; MWFRS (er left and right exposed sed; Lumber DOL=1.6 signed for wind loads in studs exposed to wind ard Industry Gable En	DL=6.0psf; h=25ft; C nvelope) exterior zon ; end vertical left and 0 plate grip DOL=1.6 n the plane of the tru I (normal to the face) d Details as applicat	e; 1 60 55 , le,								ł.	STATE OF I	
 Gable required Gable studies This truss chord live 	qualified building desi uires continuous botto ds spaced at 4-0-0 oc. has been designed fo load nonconcurrent wi s has been designed f	m chord bearing. r a 10.0 psf bottom ith any other live load	ls.							ر -	L.	SEV.	Service


* This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcscomponents.com)

August 7,2023

SSIONAL E

Loading TCLL (roof) TCDL BCLL BCDL	(psf) 25.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018/TPI2014	CSI TC BC WB Matrix-P	0.19 0.10 0.05	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 4	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 20 lb	GRIP 197/144 FT = 10%
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	2x3 SPF No.2 2x3 SPF No.2 Structural wood she 6-0-0 oc purlins, ex Rigid ceiling directly bracing. (size) 1=7-5-14, Max Horiz 1=122 (LC Max Uplift 4=-26 (LC Max Grav 1=81 (LC	cept end verticals. applied or 10-0-0 oc 4=7-5-14, 5=7-5-14 C 5) S 8), 5=-102 (LC 8)	bearing pl 4 and 102 8) This truss Internation R802.10.2 ed or LOAD CASE(echanical connection ate capable of withst Ib uplift at joint 5. is designed in accornal Residential Code and referenced star S) Standard	tanding 2 dance w sections	26 lb uplift at j ith the 2018 s R502.11.1 a	oint					
FORCES TOP CHORD BOT CHORD WEBS	(LC 1) (lb) - Maximum Com Tension 1-2=-99/52, 2-3=-92 1-5=-40/30, 4-5=-40 2-5=-299/153	/32, 3-4=-109/44										
NOTES 1) Wind: AS(Vasd=91n II; Exp C; cantilever right expo 2) Truss des only. For see Stand or consult 3) Gable req 4) Gable struss chord live 6) * This truss	CE 7-16; Vult=115mph nph; TCDL=6.0psf; BC Enclosed; MWFRS (er left and right exposed sed; Lumber DOL=1.6 signed for wind loads ir studs exposed to wind lard Industry Gable En qualified building desi uires continuous bottoo ds spaced at 4-0-0 oc. has been designed fo load nonconcurrent wi is has been designed fo	DL=6.0psf; h=25ft; C ivelope) exterior zon ; end vertical left and 0 plate grip DOL=1.6 in the plane of the true (normal to the face) d Details as applicab gner as per ANSI/TP m chord bearing. r a 10.0 psf bottom th any other live load or a live load of 20.0	ie; d 50 ss ole, ole, ds.						ę		STATE OF I	ER the the the

6) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com) August 7,2023

SSIONAL EN

												RELEAS	E FOR CONSTRUCTION	
Job		Truss		Truss Typ	be		Qty	Ply	Lot	176 HT			ED FOR PLAN REVIEW	
B240005		V3		Valley			1	1	Job	Refere	nce (optiona		LOPMENT SERVICES 159955156 SUMMIT, MISSOURI	
Wheeler Lumber,	Waverly, KS - 6	6871,				Run: 8.71 S Jul 27 2			27 2023 N	MiTek Inc	lustries, Inc. F	ri Aug 04 (8: 8:4)	13/2024	Ē.
						ID:Ej7EWovY_94Pzt7	7UVy1gWA:	z_t70-RfC?	'PsB70Ho	q3NSgPq	nL8w3ulTXb0	GHWrCDoi794z9C?f	10/2021	
				ļ		5-{	5-14							
				l										
											2x4 II			
										2				
			-						_					
		2-3-11			12 5							2-3-11		
		5-0										5		
					1					ſ				
			- 0	ſ		~	~~~~~]	Ŭ 3 ∞			
			0								×			
						2x4 ዾ					2x4 u			
						5-5	5-14				_			
Scale = 1:22.2		()								<i>(</i>)				
Loading TCLL (roof)		(psf) 25.0	Spacing Plate Grip DOL	2-0-0 1.15				t(LL)	in n/a	(loc) -	l/defl L/ n/a 99	9 MT20	GRIP 197/144	
TCDL BCLL		10.0 0.0*	Lumber DOL Rep Stress Incr	1.15 YES				t(TL) iz(TL)	n/a 0.00	- 3	n/a 99 n/a n/			
BCDL		10.0	Code	IRC2018/		Matrix-P						Weight: 14 lb	FT = 10%	
LUMBER TOP CHORD	2x4 SPF No.				International	designed in accordant Residential Code sec	tions R50	2.11.1 and	d					
BOT CHORD WEBS	2x4 SPF No. 2x3 SPF No.				R802.10.2 ar AD CASE(S)	nd referenced standar Standard	d ANSI/11	-11.						
BRACING TOP CHORD	Structural wo	od shea	athing directly applied	d or										
BOT CHORD	Rigid ceiling		cept end verticals. applied or 10-0-0 oc											
REACTIONS	bracing. (size) 1=	5-5-14,	3=5-5-14											
	Max Horiz 1= Max Uplift 1=		5) 8), 3=-48 (LC 8)											
	Max Grav 1=	211 (LC	C 1), 3=211 (LC 1) pression/Maximum											
TOP CHORD	Tension 1-2=-76/51, 2													
BOT CHORD	1-3=-28/21	2 0= 10	4/10											
			(3-second gust)											
II; Exp C; E	nclosed; MWI	FRS (en	DL=6.0psf; h=25ft; C velope) exterior zone	;										
right expos	ed; Lumber D	OL=1.60	; end vertical left and 0 plate grip DOL=1.6	C										
only. For s	tuds exposed	to wind	the plane of the trus (normal to the face),									CONT.	A DE	
or consult of	qualified buildin	ng desig	d Details as applicabl gner as per ANSI/TPI									ATE	MISSOL	
4) Gable stud	s spaced at 4-	0-0 oc.	n chord bearing.								Å	SCOT		
chord live le	oad nonconcu	rrent wit	th any other live load								<u> </u>	*		
on the botto	om chord in al	lareas	or a live load of 20.0p where a rectangle								8	Acott	· server	7
chord and a	any other men	nbers.	fit between the bottor	11							Ý	PE-2001		
bearing pla	te capable of	withstan	by others) of truss to nding 31 lb uplift at joi	nt								ESSIONA	L ENGL	
i ang 48 lb	uplift at joint 3	э.										ALCO A		
												Augu	ust 7,2023	

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

									RELEASE	FOR CONSTRUCTION	
Job	Truss		Truss Type		Qty	Ply	Lot 176 HT	r		ED FOR PLAN REVIEW	1
B240005	V4		Valley		1	1	Job Refer	ence (optional)		OPMENT SERVICES 159955157 SUMMIT, MISSOURI	
Wheeler Lumber	er, Waverly, KS - 66871,			Run: 8.71 S Jul 27 20 ID:Ej7EWovY_94Pzt7	023 Print: 8 7UVy1gW/	8.710 S Jul 27 Az_t70-RfC?P	7 2023 MiTek In	ndustries, Inc. Fri	Aug 04 (8: 8:4)	13/2024	
			F	3	3-5-14						
							2x4 II				
	-	<u> </u>		12 5			2				
		1-5-11	5	5 T					1-5-11		
	-		=		<u> </u>		3				
			~~~	2x4 =	<u>XXXXXXX</u>		2x4 II				
Scale = 1:19			+	3	3-5-14						
Loading TCLL (roof) TCDL BCLL	(psf) 25.0 10.0 0.0*	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr	2-0-0 1.15 1.15 YES	BC 0 WB 0	0.13 Ver 0.07 Ver	. ,	in (loc) n/a - n/a - 0.00 3	l/defl L/d n/a 999 n/a 999 n/a n/a	MT20	<b>GRIP</b> 197/144	_
BCDL	10.0	Code	IRC2018/TPI2014	Matrix-P					Weight: 8 lb	FT = 10%	_
LUMBER TOP CHORD BOT CHORD WEBS BRACING	2x4 SPF No.2 2x4 SPF No.2 2x3 SPF No.2		International	designed in accordance Residential Code sect nd referenced standard Standard	ctions R50	02.11.1 and					
TOP CHORD BOT CHORD	3-6-8 oc purlins, ex Rigid ceiling directly	eathing directly applied xcept end verticals. y applied or 10-0-0 oc									
REACTIONS	bracing. (size) 1=3-5-14, Max Horiz 1=49 (LC	4, 3=3-5-14 2 5)									

 Max Horiz
 1=49 (LC 5)

 Max Uplift
 1=-18 (LC 8), 3=-27 (LC 8)

 Max Grav
 1=121 (LC 1), 3=121 (LC 1)

 FORCES
 (lb) - Maximum Compression/Maximum Tension

 TOP CHORD
 1-2=-44/29, 2-3=-94/44

### TOP CHORD 1-2=-44/29, 2-3=-5 BOT CHORD 1-3=-16/12

### NOTES

- Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
- Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- Gable requires continuous bottom chord bearing.
   Gable studs spaced at 2-0-0 oc.
- 5) This truss has been designed for a 10.0 psf bottom
- chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 18 lb uplift at joint 1 and 27 lb uplift at joint 3.



WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPH Claulity Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)



										RELEASE	FOR CONSTRUCTION	
Job	Truss		Truss Type		Qty	Ply	Lot 176 H	л			D FOR PLAN REVIEW	٦
B240005	V5		Valley		1	1	Job Refere	rence (opt	tional	LEE'S /	OPMENT SERVICES 159955158 SUMMIT, MISSOURI	
	r, Waverly, KS - 66871,			Run: 8.71 S Jul 27 2 ID:Ej7EWovY_94Pzť	1.023 Print: t7UVy1gW	: 8.710 S Jul 2 VAz_t70-RfC?!	27 2023 MiTek In	Industries, In	Inc. Fri A	Aug 04 (8:) 8:50 /	13/2024	}
			$\vdash$		3-7-6							
							2x4 II					
	_			12 5			2					
	,	-0- -0-	c	Г	/					1-6-5		
	•	- -		1			3	3		<del>`</del>		
	_	o <u></u> o										
				2x4 ≠			2x4 II					
Scale = 1:19.2			-		3-7-6							
Loading TCLL (roof) TCDL	(psf) 25.0 10.0	Spacing Plate Grip DOL Lumber DOL	2-0-0 1.15 1.15		0.14 Ve	DEFL /ert(LL) /ert(TL)	in (loc) n/a - n/a -	n/a	L/d 999 999	PLATES MT20	<b>GRIP</b> 197/144	-
BCLL BCDL	0.0* 10.0	Rep Stress Incr Code	YES IRC2018/TPI2014	WB 0 Matrix-P	0.00 Ho	loriz(TL)	0.00 3	n/a	n/a	Weight: 8 lb	FT = 10%	_
			International	designed in accordan I Residential Code sec and referenced standar Standard	ctions R5	502.11.1 and	ł					
BRACING TOP CHORD BOT CHORD	3-8-0 oc purlins, exo Rigid ceiling directly	eathing directly applied cept end verticals. y applied or 10-0-0 oc										
REACTIONS (	bracing. (size) 1=3-7-6, 3	3=3-7-6										

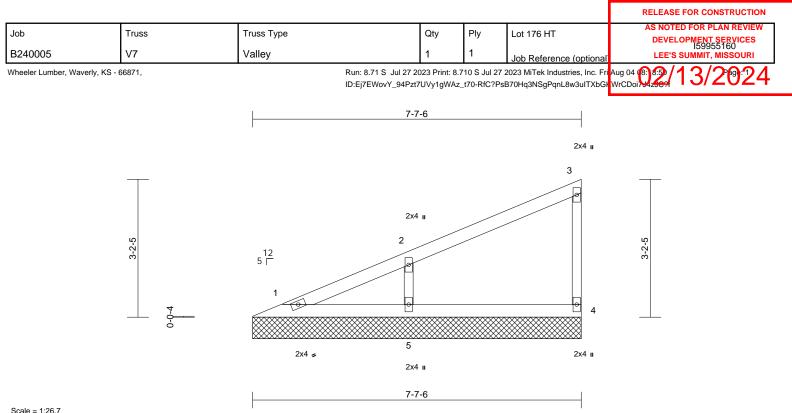
# Max Horiz 1=52 (LC 5) Max Uplift 1=-18 (LC 8), 3=-29 (LC 8) Max Grav 1=126 (LC 1), 3=126 (LC 1) FORCES (lb) - Maximum Compression/Maximum Tension TOP CHORD 1-2=-46/30, 2-3=-98/46

### TOP CHORD 1-2=-46/30, 2-3=-98/4 BOT CHORD 1-3=-17/13

### NOTES

- Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
- Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
   Gable requires continuous bottom chord bearing.
- Gable requires continuous botton
   Gable studs spaced at 2-0-0 oc.
- 5) This truss has been designed for a 10.0 psf bottom
- chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 18 lb uplift at joint 1 and 29 lb uplift at joint 3.

## SCOTT M. SEVIER NUMBER PE-2001018807 SIONAL ENGINE August 7,2023


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPH Claulity Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)



												RELEASE	FOR CONSTRUCTION	
Job		Truss		Truss T	уре		Qty	Ply	Lot	t 176 HT			D FOR PLAN REVIEW	7
B240005		V6		Valley			1	1	Job	h Refere	nce (optional	1 5 5 10	OPMENT SERVICES 159955159 SUMMIT, MISSOURI	
Wheeler Lumber,	Waverly, KS - 66	6871,				Run: 8.71 S Jul 27 2			1 27 2023	MiTek Inc	lustries, Inc. Fr	iAug 04 (8: 8:5) / •	13/2024	
						ID:Ej7EWovY_94Pzt	7UVy1gW	/Az_t70-RfC	?PsB70H	lq3NSgPq	nL8w3ulTXbG	WrCDoi794z <del>90</del> ?f	10/2021	
						5-	7-6							
											I			
											2x4 II			
										2				
											ø			
		2-4-5			12 5 _							2-4-5		
		5										5		
					1						-			
			4-0-1			~			*****	*****	3 ⊠			
			0								$\otimes$			
					2	2x4 =					2x4 II			
					1	-	7.0							
Scale = 1:22.4						5.	7-6				_			
Loading	(	(psf)	Spacing	2-0-0		CSI	D	EFL	in	(loc)	l/defl L/d	PLATES	GRIP	_
TCLL (roof) TCDL		25.0 10.0	Plate Grip DOL Lumber DOL	1.15 1.15				ert(LL) ert(TL)	n/a n/a	-	n/a 999 n/a 999		197/144	
BCLL BCDL		0.0* 10.0	Rep Stress Incr Code	YES IRC2018	3/TPI2014			oriz(TĹ)	0.00	3	n/a n/a	Weight: 14 lb	FT = 10%	
						designed in accordan	ce with t	he 2018				Troigita Trib		_
	2x4 SPF No.2 2x4 SPF No.2					Residential Code sec nd referenced standar			nd					
	2x3 SPF No.2			LC	DAD CASE(S)	Standard								
			athing directly applied cept end verticals.	lor										
BOT CHORD			applied or 10-0-0 oc											
REACTIONS (	size) 1=	5-7-6, 3												
Ν		-32 (LC	8), 3=-49 (LC 8)											
FORCES	(lb) - Maximu		C 1), 3=216 (LC 1) pression/Maximum											
TOP CHORD	Tension 1-2=-78/52, 2	-3=-168	3/78											
BOT CHORD NOTES	1-3=-29/22													
<ol> <li>Wind: ASCE Vasd=91mp</li> </ol>			(3-second gust) DL=6.0psf; h=25ft; C	at.										
II; Exp C; E	nclosed; MWF	RS (en	velope) exterior zone ; end vertical left and	;										
			) plate grip DOL=1.6 the plane of the trus											
			(normal to the face), Details as applicabl	e,								OF	AISSO	
			ner as per ANSI/TPI n chord bearing.	1.							4	925/	No.V	
4) Gable studs	spaced at 4-0	0-0 oc.	a 10.0 psf bottom								A	SCOTT		
chord live lo	ad nonconcur	rent wit	th any other live load or a live load of 20.0p								5	4	2 X	
on the botto	m chord in all	areas	where a rectangle fit between the bottor									NUM		/
chord and a	ny other mem	bers.	by others) of truss to								Ø	PE-2001	018807	
bearing plat		vithstar	iding 32 lb uplift at joi	nt								C'SSIONA	LENGI	
												and and	st 7,2023	

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)





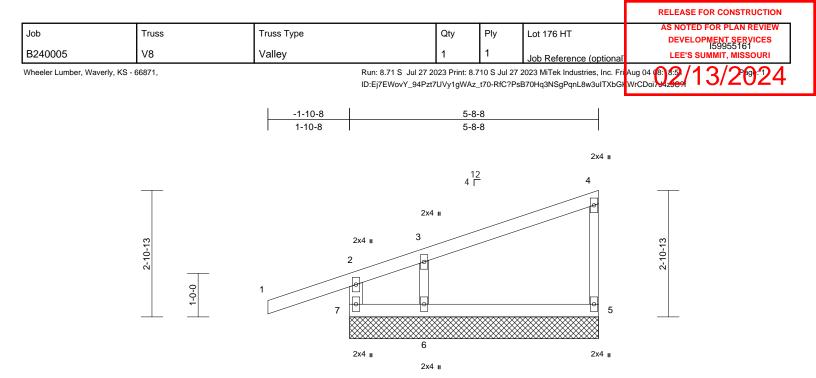
Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15	тс	0.20	Vert(LL)	n/a	-	n/a	999	MT20	197/144
TCDL	10.0	Lumber DOL	1.15	BC	0.10	Vert(TL)	n/a	-	n/a	999		
BCLL	0.0*	Rep Stress Incr	YES	WB	0.05	Horiz(TL)	0.00	4	n/a	n/a		
BCDL	10.0	Code	IRC2018/TPI2014	Matrix-P							Weight: 20 lb	FT = 10%

	24 011 110.2
BOT CHORD	2x4 SPF No.2
WEBS	2x3 SPF No.2
OTHERS	2x3 SPF No.2
BRACING	
TOP CHORD	Structural wood sheathing directly applied or
	6-0-0 oc purlins, except end verticals.
BOT CHORD	Rigid ceiling directly applied or 10-0-0 oc
	bracing.
REACTIONS	(size) 1=7-7-6, 4=7-7-6, 5=7-7-6
	Max Horiz 1=124 (LC 5)
	Max Uplift 4=-25 (LC 8), 5=-103 (LC 8)
	Max Grav 1=86 (LC 16), 4=140 (LC 1), 5=389
	(LC 1)
FORCES	(lb) - Maximum Compression/Maximum
	Tension
TOP CHORD	1-2=-101/54, 2-3=-93/31, 3-4=-109/44
BOT CHORD	1-5=-40/31, 4-5=-40/31

- WEBS 2-5=-303/155 NOTES
  - 1) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
  - Truss designed for wind loads in the plane of the truss 2) only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
  - Gable requires continuous bottom chord bearing. 3)
  - Gable studs spaced at 4-0-0 oc. 4)
  - This truss has been designed for a 10.0 psf bottom 5) chord live load nonconcurrent with any other live loads.
  - * This truss has been designed for a live load of 20.0psf 6) on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.

bearing plate capable of withstanding 25 lb uplift at joint 4 and 103 lb uplift at joint 5.

This truss is designed in accordance with the 2018 8) International Residential Code sections R502.11.1 and


R802.10.2 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard



 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.
 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not beigh valid for use only with with with sets outputs into design is based only door parameters shown, and is for an individual dualing component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria**, and **DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcscomponents.com)





5-8-8

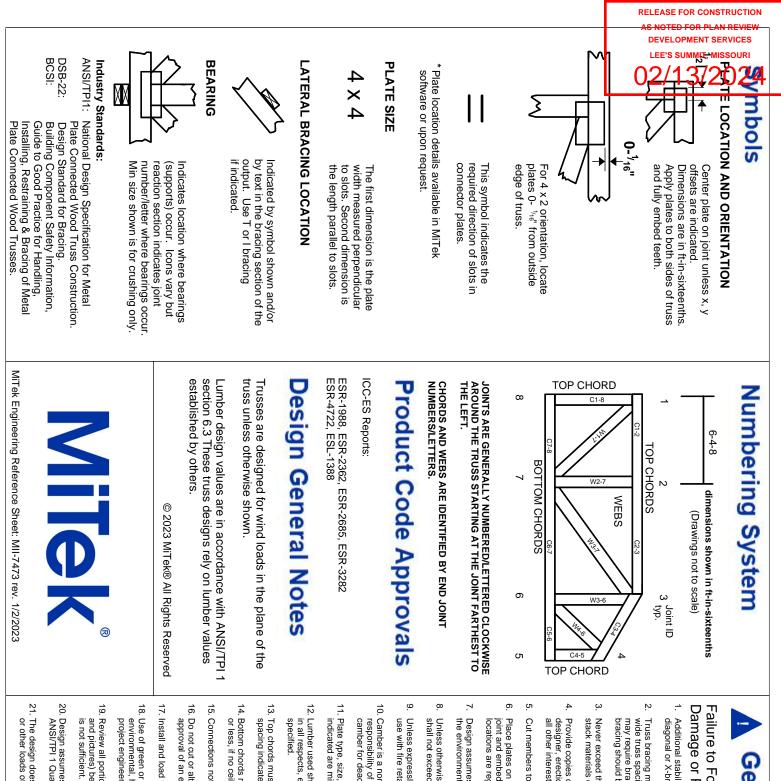
Scale = 1:26.4												
Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15	TC	0.28	Vert(LL)	n/a	-	n/a	999	MT20	197/144
FCDL	10.0	Lumber DOL	1.15	BC	0.09	Vert(CT)	n/a	-	n/a	999		
BCLL	0.0*	Rep Stress Incr	YES	WB	0.03	Horz(CT)	0.00	5	n/a	n/a		
BCDL	10.0	Code	IRC2018/TPI2014	Matrix-R							Weight: 19 lb	FT = 10%
	2x4 SPF No.2 2x4 SPF No.2 2x4 SPF No.2 *Exce 2x3 SPF No.2 Structural wood she 5-8-8 oc purlins, ex Rigid ceiling directly bracing. (size) 5=5-8-8, ( Max Horiz 7=124 (LC Max Uplift 5=-28 (LC (LC 4) Max Grav 5=153 (LC (LC 1)	athing directly applie cept end verticals. applied or 10-0-0 or 5=5-8-8, 7=5-8-8 C 5) ; 4), 6=-76 (LC 8), 7:	ed or c c chord and bearing pl 7, 28 lb up 9) This truss c R802.10.2 LOAD CASE( =-102	s has been desig tom chord in all a ill by 2-00-00 wid any other memb echanical conner ate capable of wi blift at joint 5 and is designed in ac nal Residential Cr and referenced <b>S)</b> Standard	areas where e will fit betw ers. ction (by oth thstanding 1 76 lb uplift a ccordance w ode sections	a rectangle veen the bott ers) of truss t 02 lb uplift at t joint 6. ith the 2018 R502.11.1 a	om to t joint					
FORCES	(lb) - Maximum Com Tension	pression/Maximum										
FOP CHORD	2-7=-223/102, 1-2=0 3-4=-81/19, 4-5=-11											
BOT CHORD	6-7=-35/25, 5-6=-35											
VEBS	3-6=-183/115											
NOTES												
Vasd=91m II; Exp C; I cantilever	CE 7-16; Vult=115mph hph; TCDL=6.0psf; BC Enclosed; MWFRS (er left and right exposed sed; Lumber DOL=1.6	DL=6.0psf; h=25ft; ( velope) exterior zor ; end vertical left an	ne; d							Å	TATE OF	MISSOL

- Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 3) Gable requires continuous bottom chord bearing.4) Trace to be fully about the difference of the second secon
- Truss to be fully sheathed from one face or securely braced against lateral movement (i.e. diagonal web).

5) Gable studs spaced at 2-0-0 oc.

 This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. SCOTT M. SEVIER NUMBER PE-2001018807 FF: STONAL ENGINE

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSITPTI Quality Criteria, and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcscomponents.com)




									RELEASE	FOR CONSTRUCTION										
Job	Truss		Truss Type		Qty	Qty Ply Lot 176		т		AS NOTED FOR PLAN REVIEW DEVELOPMENT SERVICES 159955162										
B240005	V9		Valley		1	1	Job Refer	ence (optiona	1 5510	159955162 SUMMIT, MISSOURI										
Wheeler Lumber, Waverly, KS - 66871,			Run: 8.71 S Jul 27 2023 Print: 8.710 S Jul 27 2023 MiTek Industries, Inc. Fr																	
ID:Ej7EWovY_94Pzt7UVy1gWAz_t70-RfC?PsB70Hq3NSgPqnL8w3uITXbGIWrCDoi794 <del>z601</del> 13/2024																				
				6-	1-12															
			2x4 II																	
-																				
			P																	
			4 T																	
									2-0-13											
	•																			
		4	6	1					3											
-		¢ o																		
			2:	x4 =				2x4 u												
				6-	1-12															
Scale = 1:21.3		1	,	· · · ·					-		_									
Loading TCLL (roof)	(psf) 25.0	Spacing Plate Grip DOL	2-0-0 1.15	CSI TC 0	.51 Vert		in (loc) n/a -	l/defl L/e n/a 99		<b>GRIP</b> 197/144										
TCDL	10.0	Lumber DOL	1.15	BC 0	.28 Vert	(TL)	n/a -	n/a 99	9											
BCLL BCDL	0.0* 10.0	Rep Stress Incr Code	YES IRC2018/TPI2014	Matrix-P	.00 Horiz	2(TL) (	0.00 3	n/a n/a	Weight: 15 lb	FT = 10%										
LUMBER				designed in accordance																
TOP CHORD 2x4 SPF BOT CHORD 2x4 SPF	No.2		R802.10.2 ar	Residential Code sec nd referenced standar																
WEBS 2x3 SPF No.2 LOAD CASE(S) Standard BRACING																				
TOP CHORD Structural wood sheathing directly applied or																				
6-2-8 oc purlins, except end verticals. BOT CHORD Rigid ceiling directly applied or 10-0-0 oc																				
bracing. REACTIONS (size)		, 3=6-1-12																		
	1=-38 (LC	C 4), 3=-49 (LC 8)																		
		C 1), 3=232 (LC 1) npression/Maximum																		
Tension																				
TOP CHORD 1-2=-68/46, 2-3=-181/80 BOT CHORD 1-3=-25/19																				
NOTES 1) Wind: ASCE 7-16; Vult=115mph (3-second gust)																				
Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone;																				
cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60																				
2) Truss designed for wind loads in the plane of the truss																				
only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult gualified building designer as per ANSI/TPI 1.																				
3) Gable requires continuous bottom chord bearing.																				
<ul> <li>4) Gable studs spaced at 4-0-0 oc.</li> <li>5) This truss has been designed for a 10.0 psf bottom</li> <li>5) SEVIER</li> </ul>																				
chord live load nonconcurrent with any other live loads. 6) * This truss has been designed for a live load of 20.0psf										0										
on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom									a color	aner										
chord and any other members. 7) Provide mechanical connection (by others) of truss to										018807										
hearing plate complete senseling 29 lb uplift at joint																				
i and 49 lb uplin at jo	init 3.								<b>WANA</b>	1 and 49 lb uplift at joint 3.										

August 7,2023



WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)



# General Safety Notes

Failure to Follow Could Cause Property Damage or Personal Injury

- 1. Additional stability bracing for truss system, e.g. diagonal or X-bracing, is always required. See BCSI.
- Truss bracing must be designed by an engineer. For wide truss spacing, individual lateral braces themselves may require bracing, or alternative Tor1 bracing should be considered.
- Never exceed the design loading shown and never stack materials on inadequately braced trusses.
- Provide copies of this truss design to the building designer, erection supervisor, property owner and all other interested parties.
- 5. Cut members to bear tightly against each other.
- Place plates on each face of truss at each joint and embed fully. Knots and wane at joint locations are regulated by ANSI/TPI 1.
- Design assumes trusses will be suitably protected from the environment in accord with ANSI/TPI 1.
- Unless otherwise noted, moisture content of lumber shall not exceed 19% at time of fabrication.
- Unless expressly noted, this design is not applicable for use with fire retardant, preservative treated, or green lumber.
- Camber is a non-structural consideration and is the responsibility of truss fabricator. General practice is to camber for dead load deflection.
- 11. Plate type, size, orientation and location dimensions indicated are minimum plating requirements.
- 12. Lumber used shall be of the species and size, and in all respects, equal to or better than that specified
- Top chords must be sheathed or purlins provided at spacing indicated on design.
- Bottom chords require lateral bracing at 10 ft. spacing, or less, if no ceiling is installed, unless otherwise noted.
- 15. Connections not shown are the responsibility of others.
- Do not cut or alter truss member or plate without prior approval of an engineer.
- 17. Install and load vertically unless indicated otherwise.
- Use of green or treated lumber may pose unacceptable environmental, health or performance risks. Consult with project engineer before use.
- Review all portions of this design (front, back, words and pictures) before use. Reviewing pictures alone is not sufficient.
- 20. Design assumes manufacture in accordance with ANSI/TPI 1 Quality Criteria.
- The design does not take into account any dynamic or other loads other than those expressly stated.