

RE: P240069-01 Roof - Osage Lot 82

Site Information:

Customer: Clayton Properties Project Name: P240069-01 Lot/Block: 82 Model: Address: 3734/3736 SW Knoxville CT City: Lee's Summit

Subdivision: Osage State: MO

General Truss Engineering Criteria & Design Loads (Individual Truss Design Drawings Show Special Loading Conditions):

No.

21 22

23

24

159435165

159435166

Design Code: IRC2018/TPI2014 Wind Code: ASCE 7-16 Roof Load: 45.0 psf

Design Program: MiTek 20/20 8.6 Wind Speed: 115 mph Floor Load: N/A psf

This package includes 24 individual, dated Truss Design Drawings and 0 Additional Drawings.

No.	Seal#	Truss Name	Date
1	159435143	A1	7/11/2023
2	159435144	A2	7/11/2023
3	159435145	A3	7/11/2023
4	159435146	A4	7/11/2023
5	159435147	A5	7/11/2023
6	159435148	A6	7/11/2023
7	159435149	B1	7/11/2023
8	159435150	B2	7/11/2023
9	159435151	C1	7/11/2023
10	159435152	C2	7/11/2023
11	159435153	C3	7/11/2023
12	159435154	C4	7/11/2023
13	159435155	D1	7/11/2023
14	159435156	D2	7/11/2023
15	159435157	PB1	7/11/2023
16	159435158	PB2	7/11/2023
17	159435159	V1	7/11/2023
18	159435160	V2	7/11/2023
19	159435161	V3	7/11/2023
20	159435162	V4	7/11/2023

Seal#	Truss Name	Date
159435163	V5	7/11/2
159435164	V6	7/11/2

V7

V8

7/11/2023
7/11/2023
7/11/2023
7/11/2023

The truss drawing(s) referenced above have been prepared by MiTek USA, Inc under my direct supervision based on the parameters provided by . Truss Design Engineer's Name: Nathan Fox

My license renewal date for the state of Missouri is December 31, 2024. Missouri COA: 001193

IMPORTANT NOTE: The seal on these truss component designs is a certification that the engineer named is licensed in the jurisdiction(s) identified and that the designs comply with ANSI/TPI 1. These designs are based upon parameters shown (e.g., loads, supports, dimensions, shapes and design codes), which were given to MiTek. Any project specific information included is for MiTek customers file reference purpose only, and was not taken into account in the preparation of these designs. MiTek has not independently verified the applicability of the design parameters or the designs for any particular building. Before use, the building designer should verify applicability of design parameters and properly incorporate these designs into the overall building design per ANSI/TPI 1, Chapter 2.

MiTek, Inc. 16023 Swingley Ridge Rd. Chesterfield, MO 63017 314.434.1200

										RELEASE	FOR CONSTRUCTION	
Job		Truss		Truss Type		Qty	Ply	Roof - Osag	ge Lot 82		D FOR PLAN REVIEW	٦
P240069-07	1	A1		Piggyback Base	Structural Gable	2	1	Job Refere	nce (optional		OPMENT SERVICES 159435143 SUMMIT, MISSOURI	
Premier Building	Supply (Spring	ghill, KS), S	pring Hills, KS - 66083,	4	Run: 8.63 S Apr 6			2023 MiTek Ind	lustries, Inc. Mo		13/2024	Ĺ
					ID:EmCXOiXYCML	5lKd?OVTvI7y	/GxE5-RfC?F	PsB70Hq3NSgP	qnL8w3ulTXb0	KWrCD0i7J4zJC?f	10/2024	F
	-0-10-8	6-11				7-1-0 27	-10-12	34-8-5		48-0-0	48-10-8	
	0-10-8	6-11	-7 6-	4-4 7-	000		-9-12	6-9-10	ļ	13-3-11	0-10-8	
10-10-1 3-6-15 0-1-8				6x12 ≠	3x6= 1517 18		3x6= 426 ₋₂₇	5 ₽				
5 <u>+</u> 0					10		21 28	0,00				
1(10-10-0 3-6-15 (3-8-7				> 20	5x5 👟			
				612 4 5	.				6 ¹ 32			
11-2-11 1 -7				in the second se	9 11				34	35		
11-2 -3-1 10-7			3	7	11 134 16 9 19		××			36		
11 7-3-1 6-10-7		6	0		19	ا 21	176-				_ 39	
	2					<u> </u>	1x6= 25				40	
_ + _ _+ 10 10 10												
0 0 0	4x6:	-	59 3x6	= 58 3x6	57 = 3x6=		55 7x8=	54 53 52 5x5=	51 50 49	48 47 46 45	44 43 4x6=	
							/ xo=	5x5=				
	⊢		9-3-14 9-3-14	<u>18-0-2</u> 8-8-5	<u> </u>	1	+		<u>48-0</u> 20-9-			
Scale = 1:86.4	X Y)· [15:0-	3-0 Edge	[26:0-3-0 Edge] [3	2:0-2-8,0-3-0], [53:0-2	-8 0-3-01							_
	,, ,, ,, [10.0											—
Loading TCLL (roof)		(psf) 25.0	Spacing Plate Grip DOL	2-0-0 1.15	CSI TC	0.75 Vert		in (loc) .20 2-59	l/defl L/d >999 240	PLATES MT20	GRIP 244/190	
TCDL BCLL		10.0 0.0	Lumber DOL Rep Stress Incr	1.15 YES		0.95 Vert 0.35 Horz	. ,	.43 2-59 .07 56	>771 180 n/a n/a			
BCDL		10.0	Code	IRC2018/TPI2014	Matrix-S	0.00	.(01) 0			Weight: 312 lb	FT = 20%	
				_	Max Grav 2=1249 (L0			WEBS			138/643, 5-57=-9/737,	
TOP CHORD BOT CHORD	2x4 SP No 2x4 SP No		t* 56-5:2x6 SPF No.:	2	45=128 (L0	C 1), 44=81 C 26), 46=1	19 (LC 1),		22-23		49/21, 27-56=-367/24,	,
WEBS OTHERS	2x3 SPF N 2x3 SPF N				,	C 1), 48=12 C 26), 50=1					87/60, 30-53=-98/56, 93/56, 33-50=-95/58,	
BRACING						C 26), 52=1 26), 54=23					93/57, 36-47=-93/57, 97/59, 39-44=-69/41,	
TOP CHORD	2-2-0 oc pi	urlins, exc			55=33 (LC	9), 56=194	5 (LC 1)		40-43	3=-174/115, 18-19 7=-169/20, 12-13=	=-73/40,	
BOT CHORD		· ·	0-0 max.): 15-26, 5-5 applied or 6-0-0 oc		(lb) - Maximum Comp Tension					1=-67/47, 8-9=-73/		
	bracing, E 8-11-14 oc		2-59	TOP CHORD	1-2=0/17, 2-3=-1983/ 5-6=-43/246, 6-8=-12	,	,	NOTES 1) Unba	alanced roof	live loads have be	en considered for	
	10-0-0 oc b 2-2-0 oc br	pracing: 5	7-59		10-12=0/296, 12-15= 17-18=-13/242, 18-20		-17=-15/23	4, this o	design.	; Vult=115mph (3-		
WEBS	1 Row at m	nidpt	20-21, 22-23, 24-25		20-22=-13/242, 22-24 24-26=-10/244, 26-27	1=-13/242 ,	27-28-0/31	Vaso	d=91mph; TC	DL=6.0psf; BCDL	=6.0psf; h=35ft;	
			27-56, 28-55, 29-54, 30-53		28-29=-6/254, 29-30=	-9/233, 30-		exte	rior zone and	C-C Exterior(2E)		
JOINTS	1 Brace at 21, 11, 7	Jt(s): 14,			31-33=-27/219, 33-34 34-35=-64/198, 35-36	6=-83/198,			· · /	to 20-11-0, Exterio R) 27-1-0 to 34-1-	· · /	
REACTIONS			41=20-11-8, 43=20-1 -8, 45=20-11-8,	1-8,	36-37=-101/198, 37-3 38-39=-144/200, 39-4					8 zone; cantilever rtical left and right	0	
	4	46=20-11	-8, 47=20-11-8,		40-41=-240/230, 41-4 7-9=-1829/416, 9-11=	,		5, mem	bers and for		reactions shown;	
	:	50=20-11	-8, 49=20-11-8, -8, 51=20-11-8,		11-13=-1892/457, 13 14-16=-2050/498, 16	-14=-1977/4	179,	2011				
			-8, 53=20-11-8, -8, 55=20-11-8,		19-21=-2155/510, 21	-23=-2187/5	516,			FE OF M	AISSO	
	Max Horiz	56=20-11· 2=204 (I (BOT CHORD	23-25=-2216/523, 25 2-59=-415/1683, 57-5				B	STATE OF N NATHA	MISSOUR	
	Max Uplift	2=-225 (L	C 12), 41=-29 (LC 2		56-57=-274/1789, 55 54-55=-193/244, 52-5				g.	FO		
	4	45=-42 (L	C 13), 44=-28 (LC 13 C 13), 46=-41 (LC 13	3),	51-52=-193/244, 50-5 49-50=-194/244, 48-4	51=-194/244	1,				1 At	
			C 13), 48=-41 (LC 13 C 13), 50=-42 (LC 13		47-48=-194/244, 46-4	47=-194/244	1,		8-	a hand	KR J D	
	!	51=-41 (L	C 13), 52=-39 (LC 13 C 13), 54=-23 (LC 13	3),	45-46=-194/244, 44-4 43-44=-194/244, 41-4				N.	PE-2022		
			LC 25), 56=-162 (LC						X	J. P.S.C.	ENGT A	
										SIONA	LEY	
										an		

July 11,2023

Continued on page 2 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, rection and bracing of trusces and truss systems, see AMSI/TP11 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

							RELEASE FOR CONSTRUCTION
J	Job	Truss	Truss Type	Qty	Ply	Roof - Osage Lot 82	AS NOTED FOR PLAN REVIEW
F	240069-01	A1	Piggyback Base Structural Gable	2	1	Job Reference (optional	DEVELOPMENT SERVICES 159435143 LEE'S SUMMIT, MISSOURI
	romior Building Supply (Springh			Drint: 0.6	20 6 Apr 6		

- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- Provide adequate drainage to prevent water ponding. 4)
- All plates are 3x4 MT20 unless otherwise indicated. 5)
- 6) Gable studs spaced at 1-4-0 oc.
- 7) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 8) All bearings are assumed to be SP No.2 crushing capacity of 565 psi.
- Provide mechanical connection (by others) of truss to 9) bearing plate capable of withstanding 225 lb uplift at joint 2, 162 lb uplift at joint 56, 29 lb uplift at joint 41, 509 Ib uplift at joint 55, 23 lb uplift at joint 54, 46 lb uplift at joint 53, 39 lb uplift at joint 52, 41 lb uplift at joint 51, 42 Ib uplift at joint 50, 41 lb uplift at joint 49, 41 lb uplift at joint 48, 41 lb uplift at joint 47, 41 lb uplift at joint 46, 42 Ib uplift at joint 45, 28 lb uplift at joint 44 and 91 lb uplift at joint 43.
- 10) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 11) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

LOAD CASE(S) Standard

Run: 8.63 S Apr 6 2023 Print: 8.630 S Apr 6 2023 MiTek Industries, Inc. Man Jul 10 (2) 8:34/1 3/20:24 ID:EmCXOiXYCML5/Kd?OVTv/7yGxE5-RfC?PsB70Hq3NSgPqnL8w3ulTXbu KWrCDor 12:20(1) 3/20:24

 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.
 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not beign value of use only wan win exec connectors, this design is based only upon parameters shown, and is for an individual building domponent, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality** Criteria, and **DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcscomponents.com)

Premier Building Supply (Springhill, KS). Spring Hills, KS - 66083. Premier Building Supply (Springhill, KS). Spring Hills, KS - 66083. Run: 8.63 S Apr 6 2023 Print. 8.630 S Apr 6 2023 MTek Industries, Inc. Mar.Jul 10 (2) (2) (13/2024) ID:Eh5q6SjuDTnIblowPDF2XnyGxP9-RIC?PsB70Hq3NSgPqnL8w3UTXbGrw/CDoirWiceDoirUiceDoirWiceDoirUiceDoirWiceDoirWiceDoirUiceDoirUiceDoirUiceDoirUiceDoirUiceDoirUiceD	Job	Truss	Truss Type	e	Qty	Ply	Roof - Osa	ge Lot 82	AS NOTED FOR	CONSTRUCTION R PLAN REVIEW NT SERVICES 9435144
DEB5q6SjuDTnlbtQwPDFzXnyGxF9-RIC?PsB70Hq3NSgPqnL8w3uITXbGPWrCDarAdded TO/2024	P240069-01	A2	Piggybac	k Base	6	1	Job Referei	nce (optional)		
$\begin{array}{c} & & & & & & & & & & & & & & & & & & &$	Premier Building S	upply (Springhill, KS), Spring Hills, K	KS - 66083,							/2024
$\begin{array}{c} \overset{\circ}{\mathbf{r}} \overset{\circ}$		-0-10-8 8-1-9						39-10-7		
$\begin{bmatrix} 5 \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\$		0-10-8 8-1-9	5-2-7				-7-0	5-2-7	8-1-9	0-10-8
3x4 3x0 = 3x0 = 3x8 = 3x0 = 3x4	11-2-11 10-10-0 10-1 10-10-0 0-1	1	3x6 = 6 ¹² 4 ²⁰ 3x6 = 7 18 17		5		*	217	8	9 10 9 10 4x6=

Scale = 1:86.4			
	Scale	- 1.86	Λ

27-1-0, Exterior(2R) 27-1-0 to 34-1-14, Interior (1) 34-1-14 to 48-10-8 zone; cantilever left and right

exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown;

Provide adequate drainage to prevent water ponding.

chord live load nonconcurrent with any other live loads.

Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 198 lb uplift at joint 2, 303 lb uplift at joint 14 and 184 lb uplift at joint 9. This truss is designed in accordance with the 2018

International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or

This truss has been designed for a 10.0 psf bottom

All bearings are assumed to be SP No.2 crushing

Lumber DOL=1.60 plate grip DOL=1.60

capacity of 565 psi.

bottom chord. LOAD CASE(S) Standard 6-4-8

7-5-12

5-2-7

	1650F 1.5E
BOT CHORD	2x4 SP No.2
WEBS	2x3 SPF No.2 *Except* 14-5:2x4 SP No.2
BRACING	·
TOP CHORD	Structural wood sheathing directly applied or
	2-2-0 oc purlins, except
	2-0-0 oc purlins (10-0-0 max.): 5-6.
BOT CHORD	Rigid ceiling directly applied or 6-0-0 oc
	bracing.
WEBS	1 Row at midpt 4-15, 6-14, 7-14
WEBS	2 Rows at 1/3 pts 5-14
REACTIONS	(size) 2=0-3-8, 9=0-3-8, 14=0-3-8
	Max Horiz 2=204 (LC 12)
	Max Uplift 2=-198 (LC 12), 9=-184 (LC 13),
	14=-303 (LC 12)
	Max Grav 2=1034 (LC 25), 9=689 (LC 26),
	14=2925 (LC 1)
FORCES	(lb) - Maximum Compression/Maximum
	Tension
TOP CHORD	1-2=0/17, 2-3=-1514/257, 3-5=-926/229,
	5-6=0/834, 6-8=-184/1051, 8-9=-783/228,
	9-10=0/17
BOT CHORD	2-18=-312/1230, 17-18=-312/1230,
	15-17=-143/748, 14-15=-152/328,
	12-14=-340/183, 11-12=-102/585,
	9-11=-102/585
WEBS	3-18=0/297, 3-17=-623/218, 4-17=-60/504,
	4-15=-911/325, 5-15=-137/756,
	5-14=-1467/285, 6-14=-882/186,
	7-14=-927/326, 7-12=-60/514,
	8-12=-651/219, 8-11=0/300
NOTES	

8-1-9

5-2-7

3)

4)

5)

6)

7)

8)

7-5-12

 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.
 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not besign value to dury with with where outputs into design is based only door parameters shown, and is for an individual building design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members and property incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TPH1 Quality Criteria**, and **DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcscomponents.com)

OF MISSO E NATHANIEL FOX **UMBER** PE-2022042259 SSIONAL E July 11,2023

8-1-9

16023 Swingley Ridge Rd. Chesterfield MO 63017 314.434.1200 / MiTek-US.com

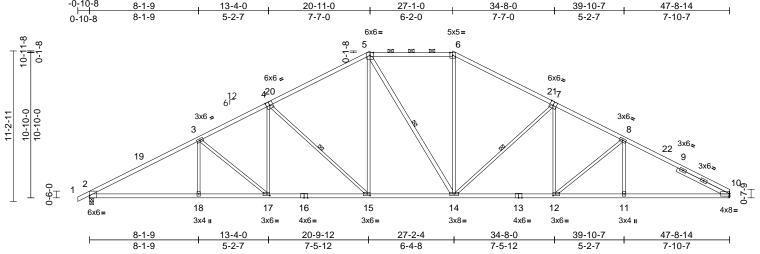
1) Unbalanced roof live loads have been considered for this design.

								RELEASE FOR CO	NSTRUCTION
ob	Truss	Truss Type		Qty	Ply	Roof - Osa	ge Lot 82	AS NOTED FOR P DEVELOPMENT 1594	
240069-01	A3	Piggyback Bas	se	2	1	Job Refere	nce (optional	LEE'S SUMMIT	35145 MISSOURI
remier Building Supply (Spri	nghill, KS), Spring Hills, KS - 660	83,		Apr 6 2023 Print: 8 CQw9?42CIXuEbok	•				2024
-0-10-8	8-1-9	13-3-11 13-4-0	20-11-0	27-1-0		34-8-0	30-10-	7 47-8-14	
0-10-8	8-1-9	<u>13-3-11</u> 13-4-0 5-2-1 0-0-5	20-11-0 7-7-0	6-2-0	-	7-7-0	<u>39-10-</u> 5-2-7	7-10-7	1
-1-8-				(6 =	6x6=				
1-2-11 0-6-0 0-10-10-0 0-10-0 0	19	5x5 = 6 ¹² 4 ²⁰					6x6s 217	8 22 9	
- 0 ⊠ 4x	6= 18 3x4	17 "	16 15		14 3x8=	13	12	11 3x4 II	4x6 II
F	<u>8-1-9</u> 8-1-9	13-4-0 5-2-7	20-9-12 7-5-12		27-4-0 0-1-12	<u>34-8-0</u> 7-4-0	39-10-	7 47-8-14 7-10-7	
	0.0			0.0	J-1-12		521		

Scale = 1:85.9

		1		, ,	1		0-2-8,0-1-8]						
oading	(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
CLL (roof)	25.0	Plate Grip DOL	1.15		TC	0.89	Vert(LL)	-0.13	2-18	>999	240	MT20	197/144
CDL	10.0	Lumber DOL	1.15		BC	0.77	Vert(CT)	-0.31	2-18	>999	180		
CLL	0.0	Rep Stress Incr	YES		WB	0.96	Horz(CT)	0.05	10	n/a	n/a		
CDL	10.0	Code	IRC201	8/TPI2014	Matrix-S							Weight: 236 lb	FT = 20%
UMBER OP CHORD OT CHORD /EBS LIDER RACING OP CHORD OT CHORD	1650F 1.5E 2x4 SP No.2 2x3 SPF No.2 *Exce Right 2x4 SP No.2 - Structural wood she 2-2-0 oc purlins, ex 2-0-0 oc purlins (10	ept* 14-5:2x4 SP No. - 4-4-0 athing directly applie cept -0-0 max.): 5-6.		Vasd=91mp Ke=1.00; Ca exterior zon Interior (1) 4 27-1-0, Exte 34-1-14 to 4 exposed ; e members ar Lumber DO Provide ade	F-16; Vult=115 h; TCDL=6.0psf at. II; Exp C; Enc e and C-C Exter -1-8 to 20-11-0, rior(2R) 27-1-0 i 7-8-14 zone; ca nd vertical left ar d forces & MWH _=1.60 plate grig quate drainage i e 3x6 MT20 unle	BCDL=6.(losed; MW ior(2E) -0-1 Exterior(2E o 34-1-14, ntilever left ad right exp RS for rea DOL=1.6(o prevent v	Desf; h=35ft; FRS (envelop 0-8 to 4-1-8, 20-11-0 to Interior (1) and right osed;C-C for ctions shown water ponding	, ,					
EBS	1 Row at midpt	6-14, 5-14, 7-14, 4-	15 ⁵)	This truss h	as been designe	d for a 10.0) psf bottom						
ORCES OP CHORD OT CHORD	Max Horiz 2=209 (Lu Max Uplift 2=-212 (L 14=-270) Max Grav 2=1056 (U 14=2770) (Ib) - Maximum Com Tension 5-6=0/665, 1-2=0/17 3-5=-973/270, 6-8=- 2-18=-344/1270, 17 15-17=-176/790, 14 12-14=-285/252, 11 10-11=-167/718	C 12), 10=-202 (LC (LC 12) LC 25), 10=696 (LC 2 (LC 1) pression/Maximum 7, 2-3=-1560/287, 364/860, 8-10=-913/ -18=-344/1270, -15=-70/250,	6) 13), 26), 7) 8) 318 9) 10	Bearings an capacity of 1 of 565 psi. Refer to girr Provide mer bearing plat joint 10, 212 14. This truss is Internationa R802.10.2 <i>a</i> 0) Graphical pi or the orient bottom chor		: Joint 2 SF SP No.2 c truss conr ion (by oth istanding 2 2 and 270 ordance w de sections tandard AN on does no	No.2 crushi ushing capa ections. ers) of truss t 02 lb uplift at b uplift at joir th the 2018 R502.11.1 a SI/TPI 1. t depict the s	ng city o nt				STATE OF M	MISSOLD NIEL
IOTES	8-11=0/287, 5-14=- 3-17=-619/217, 7-12 7-14=-925/324, 8-12 4-15=-908/324 ed roof live loads have	1391/268, 4-17=-59/5 2=-51/500, 2=-615/201,	501, L	DAD CASE(S)	Standard						The second second	FO.	A DA2259

Job										RELEASE	FOR CONSTRUCTION
000	Truss		Truss T	уре		Qty	Ply	Roof - Os	age Lot 82		ED FOR PLAN REVIEW OPMENT SERVICES 159435146
P240069-01	A4		Piggyb	ack Base		2	1	Job Refer	ence (optiona	1 5 5 10	I59435146 SUMMIT, MISSOURI
Premier Building Supp	ly (Springhill, KS), S	Spring Hills, KS - 66083,			Run: 8.63 S Apr 6	6 2023 Pr	int: 8.630 S Apr			Ion Jul 10 258:38	13/2024
					ID:SN8pPrD2hT7x	gLsjSx71	GYyGxNY-RfC?	PsB70Hq3NSgl	PqnL8w3ulTXb0	G (WrCDoi7-34230) f	13/2024
			3-4-0	19-9-1		27-1-0		<u>34-8-0</u> 7-7-0	<u>39-1</u> 5-2		7-8-14 7-10-7
(0-10-8 8	-1-9	5-2-7	6-5-1	2 1-1-4 6x6=	6-2-0		7-7-0	5-2	-7	7-10-7
					3x4 II		6x6=				
0-1-8					6 5 5 8		7 ⊠				
-0-1-0-											
				5x5 ≠					6x6≈		
			1 <u>2</u>	425 H		$\langle \rangle$			268		
11-2-11 10-10-0 10-10-0		3x6 ≠			⊠ //	MA .				3x6	
<u>11-2-11</u> 10-10-0 10-10-0		3				11//				9	2
	2	4		1		\	A)			27 ^{3x6} ≈ √ 10
						17					3x6.
• ·	1 2										
\perp \rightarrow $\overset{\circ}{}$	4x6=	22		21 20	19 ⊥16 4x6= 3x4=		15	14	13	12	4x6 u
	4x0=	3x4 I	:	3x6= 3x6=	4x6=	5x8 、	3x8=	3x6=	3x6=	3x4 II	
					23	3x4 -5-12	27-4-0				
	g										
			<u>3-4-0</u> 5-2-7	<u>19-11</u> 6-7-6			2-4 <u>1</u> 32	<u>2-0-0 34-8</u> -8-0 2-8			7-8-14 7-10-7
Scale = 1:85.9					3-4-8		2-4 32				
	8		5-2-7	6-7-	3-4-8 0-	" 3- -1-12	2-4 <u>1</u> 32				
	8	-1-9 [8:0-3-0,Edge], [11:0	5-2-7 -3-10,Edg	6-7-	3 3-4-8 0 -1-8], [21:0-2-8,0-1-	" 3- -1-12	2-4 <u>∥</u> 32 3-80-1-12 4·	-8-0 2-8	-0 5-2	-7 ' 7	7-10-7
Plate Offsets (X, Y): .oading .CLL (roof)	8 : [4:0-2-8,0-3-0], (psf) 25.0	-1-9 [8:0-3-0,Edge], [11:0 Spacing Plate Grip DOL	5-2-7 -3-10,Edg 2-0-0 1.15	6-7-	3 3-4-8 0 -1-8], [21:0-2-8,0-1 CSI TC	.1-12 .8] 0.91	2-4 32 3-80-1-12 4- DEFL Vert(LL)	-8-0 2-8 in (loc) -0.13 2-22	l/defl L/c >999 24(-7 PLATES MT20	
Plate Offsets (X, Y): .oading 	8 : [4:0-2-8,0-3-0], (psf) 25.0 10.0	-1-9 [8:0-3-0,Edge], [11:0 Spacing Plate Grip DOL Lumber DOL	5-2-7 -3-10,Edg 2-0-0 1.15 1.15	6-7-	3 3-4-8 0 -1-8], [21:0-2-8,0-1- CSI TC BC	.1-12 .8] 0.91 0.72	2-4 32 3-80-1-12 4- DEFL Vert(LL) Vert(CT)	-8-0 2-8 in (loc) -0.13 2-22 -0.30 2-22	I/defl L/a >999 240 >999 180	-7 PLATES MT20	GRIP
Plate Offsets (X, Y): .oading .CLL (roof) .CDL .GCLL	8 : [4:0-2-8,0-3-0], (psf) 25.0	-1-9 [8:0-3-0,Edge], [11:0 Spacing Plate Grip DOL	5-2-7 -3-10,Edg 2-0-0 1.15 1.15 YES	6-7-	3 3-4-8 0 -1-8], [21:0-2-8,0-1 CSI TC	.1-12 .8] 0.91 0.72	2-4 32 3-80-1-12 4- DEFL Vert(LL)	-8-0 2-8 in (loc) -0.13 2-22	l/defl L/c >999 24(-7 PLATES MT20	GRIP
Plate Offsets (X, Y): .oading .CLL (roof) .CDL .BCLL .BCDL	8 (psf) 25.0 10.0 0.0	-1-9 [8:0-3-0,Edge], [11:0 Spacing Plate Grip DOL Lumber DOL Rep Stress Incr	5-2-7 -3-10,Edg 2-0-0 1.15 1.15 YES IRC2018	6-7-i ge], [13:0-2-8,0 B/TPI2014 Unbalanced	3 3-4-8 0 -1-8], [21:0-2-8,0-1- CSI TC BC WB	.1-12 .8] 0.91 0.72 0.91	2-4 32 3-80-1-12 4- DEFL Vert(LL) Vert(CT) Horz(CT)	-8-0 2-8 in (loc) -0.13 2-22 -0.30 2-22	I/defl L/a >999 240 >999 180	-7 PLATES MT20	GRIP 197/144
Plate Offsets (X, Y): coading CLL (roof) CDL GCLL GCLL GCLL COP CHORD 2x4	8 (psf) 25.0 10.0 0.0 10.0 0.0	-1-9 [8:0-3-0,Edge], [11:0 Spacing Plate Grip DOL Lumber DOL Rep Stress Incr	5-2-7 -3-10,Edg 2-0-0 1.15 1.15 YES IRC2018 1) 550F	6-7-i ge], [13:0-2-8,0 8/TPI2014 Unbalanced this design.	3 3-4-8 0 -1-8], [21:0-2-8,0-1- CSI TC BC WB Matrix-S roof live loads have	.1-12 .8] 0.91 0.72 0.91 been co	2-4 ∦ 32 3-80-1-12 4- DEFL Vert(LL) Vert(CT) Horz(CT) monsidered for	-8-0 2-8 in (loc) -0.13 2-22 -0.30 2-22	l/defl L/a >999 240 >999 180	-7 PLATES MT20	GRIP 197/144
late Offsets (X, Y): oading CLL (roof) CDL CLL CDL UMBER OP CHORD 2x4 1.51 OT CHORD 2x4	8 (psf) 25.0 10.0 0.0 10.0 * SP No.2 *Excep E SP No.2	-1-9 [8:0-3-0,Edge], [11:0 Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code t* 4-1,8-11:2x4 SP 16	5-2-7 -3-10,Edg 2-0-0 1.15 1.15 YES IRC2018 1) 550F 2)	6-7-i ge], [13:0-2-8,0 8/TPI2014 Unbalanced this design. Wind: ASCE Vasd=91mpF	3 -4-8 0 -1-8], [21:0-2-8,0-1- CSI TC BC WB Matrix-S roof live loads have 7-16; Vult=115mph ; TCDL=6.0psf; BC	8] 0.91 0.72 0.91 been co (3-secc DL=6.0	2-4 ∦ 32 3-80-1-12 4- DEFL Vert(LL) Vert(CT) Horz(CT) monsidered for ond gust) psf; h=35ft;	in (loc) -0.13 2-22 -0.30 2-22 0.08 15	l/defl L/a >999 240 >999 180	-7 PLATES MT20	GRIP 197/144
late Offsets (X, Y): oading CLL (roof) CDL CLL CDL UMBER OP CHORD 2x4 1.51 OT CHORD 2x4 /EBS 2x3	8 (psf) 25.0 10.0 0.0 10.0 SP No.2 *Excep E SP No.2 SPF No.2 *Excep	-1-9 [8:0-3-0,Edge], [11:0 Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code ot* 4-1,8-11:2x4 SP 16 pt* 15-6:2x4 SP No.2	5-2-7 -3-10,Edg 2-0-0 1.15 1.15 YES IRC2018 1) 550F 2)	6-7-i ge], [13:0-2-8,0 B/TPI2014 Unbalanced this design. Wind: ASCE Vasd=91mph Ke=1.00; Cat	3 -4-8 0 -1-8], [21:0-2-8,0-1- CSI TC BC WB Matrix-S roof live loads have 7-16; Vult=115mph ; TCDL=6.0psf; BC . II; Exp C; Enclose	8] 0.91 0.72 0.91 been co (3-secc DL=6.0] d; MWF	2-4 ∦ 32 3-80-1-12 4- DEFL Vert(LL) Vert(CT) Horz(CT) mosidered for and gust) ssf; h=35ft; RS (envelope	in (loc) -0.13 2-22 -0.30 2-22 0.08 15	l/defl L/a >999 240 >999 180	-7 PLATES MT20	GRIP 197/144
late Offsets (X, Y): oading CLL (roof) CDL CCL CCL CCL OP CHORD 2x4 1.51 OP CHORD 2x4 VEBS 2x3 SLIDER Rig	8 (psf) 25.0 10.0 0.0 10.0 * SP No.2 *Excep E SP No.2	-1-9 [8:0-3-0,Edge], [11:0 Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code ot* 4-1,8-11:2x4 SP 16 pt* 15-6:2x4 SP No.2	5-2-7 -3-10,Edg 2-0-0 1.15 1.15 YES IRC2018 1) 550F 2)	6-7-i ge], [13:0-2-8,0 3/TPI2014 Unbalanced i this design. Wind: ASCE Vasd=91mpt Ke=1.00; Cat exterior zone Interior (1) 4-	3 3-4-8 0 -1-8], [21:0-2-8,0-1- CSI TC BC WB Matrix-S roof live loads have 7-16; Vult=115mph ; TCDL=6.0psf; BC II; Exp C; Enclose and C-C Exterior(2 1-8 to 20-11-0, Ext	.1-12 .8] 0.91 0.72 0.91 been co (3-secc DL=6.0 id; MWF E) -0-1(erior(2E)	2-4 ∦ 32 3-80-1-12 4- DEFL Vert(LL) Vert(CT) Horz(CT) mod gust) particular (envelope RS (envelope RS (envelope RS (1-1-8, 20-11-0 to	in (loc) -0.13 2-22 -0.30 2-22 0.08 15	l/defl L/a >999 240 >999 180	-7 PLATES MT20	GRIP 197/144
late Offsets (X, Y): oading CLL (roof) CDL CDL CDL UMBER OP CHORD 2x4 VEBS 2x3 LIDER Rig RACING OP CHORD Stri	8 (psf) 25.0 10.0 0.0 10.0 SP No.2 *Excep E SP No.2 SP No.2 SP No.2	-1-9 [8:0-3-0,Edge], [11:0 Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code ht* 4-1,8-11:2x4 SP 16 ept* 15-6:2x4 SP No.2 - 4-4-0 athing directly applied	5-2-7 -3-10,Edg 2-0-0 1.15 1.15 YES IRC2018 1) 550F 2)	6-7-i ge], [13:0-2-8,0 B/TPI2014 Unbalanced i this design. Wind: ASCE Vasd=91mpf Ke=1.00; Cat exterior zone Interior (1) 4- 27-1-0, Exter	3 3-4-8 0 -1-8], [21:0-2-8,0-1- CSI TC BC WB Matrix-S roof live loads have 7-16; Vult=115mph ; TCDL=6.0psf; BC II; Exp C; Enclosf; BC II; Exp C; Enclosf; BC and C-C Exterior(2	3-1-12 	2-4 32 3-80-1-12 4- DEFL Vert(LL) Vert(CT) Horz(CT) mod gust) posf; h=35ft; RS (envelope 0-8 to 4-1-8, 0 20-11-0 to nterior (1)	in (loc) -0.13 2-22 -0.30 2-22 0.08 15	l/defl L/a >999 240 >999 180	-7 PLATES MT20	GRIP 197/144
late Offsets (X, Y): oading CLL (roof) CDL CDL CDL CDL CDL CDL CDL CDL	8 (psf) 25.0 10.0 0.0 10.0 10.0 SP No.2 *Excep E SP No.2 *Excep to SP No.2 *Excep No.2 *Excep No.2 *Excep No.2 *Excep No.2 *Excep No.2 *Excep Comparison (10-10) 1000 10	-1-9 [8:0-3-0,Edge], [11:0 Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code ot* 4-1,8-11:2x4 SP 16 opt* 15-6:2x4 SP No.2 - 4-4-0 athing directly applied vept 0-0 max.): 6-7.	5-2-7 -3-10,Edg 2-0-0 1.15 1.15 YES IRC2018 1) 550F 2)	6-7-i ge], [13:0-2-8,0 B/TPI2014 Unbalanced this design. Wind: ASCE Vasd=91mpl Ke=1.00; Cat exterior zone Interior (1) 4- 27-1-0, Exter 34-1-14 to 47 exposed ; en	3 3-4-8 0 -1-8], [21:0-2-8,0-1- CSI TC BC WB Matrix-S roof live loads have 7-16; Vult=115mph ; TCDL=6.0psf; BC II; Exp C; Enclose and C-C Exterior(2 1-8 to 20-11-0, Ext ior(2R) 27-1-0 to 34 -8-14 zone; cantile d vertical left and ri	8] 0.91 0.72 0.91 been cc (3-secc DL=6.0) d; MWF E:) -0-10 erior(2E i-1-14, I ver left a ght expo	2-4 32 3-80-1-12 4- DEFL Vert(LL) Vert(CT) Horz(CT) monsidered for and gust) sof; h=35ft; RS (envelope b-8 to 4-1-8, 20-11-0 to neterior (1) and right used;C-C for	in (loc) -0.13 2-22 -0.30 2-22 0.08 15	l/defl L/a >999 240 >999 180	-7 PLATES MT20	GRIP 197/144
late Offsets (X, Y): oading CLL (roof) CDL CCL CCL CCL OP CHORD 2x4 1.51 OP CHORD 2x4 VEBS 2x3 COT CHORD 2x4 VEBS 2x3 LIDER Rig RACING OP CHORD Strr 2-2 2-0 COT CHORD Rig	8 (psf) 25.0 10.0 0.0 10.0 SP No.2 *Excep SP No.2 *Excep SP No.2 SPF No.2 *Excep ht 2x4 SP No.2	-1-9 [8:0-3-0,Edge], [11:0 Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code att 4-1,8-11:2x4 SP 16 Pott 15-6:2x4 SP No.2 - 4-4-0 athing directly applied rept	5-2-7 -3-10,Edg 2-0-0 1.15 1.15 YES IRC2018 1) 550F 2)	6-7-i ge], [13:0-2-8,0 B/TPI2014 Unbalanced this design. Wind: ASCE Vasd=91mpr Ke=1.00; Cat exterior zone Interior (1) 4- 27-1-0, Exter 34-11-14 to 47 exposed ; en members and	3 -4-8 0 -1-8], [21:0-2-8,0-1- CSI TC BC WB Matrix-S roof live loads have 7-16; Vult=115mph ; TCDL=6.0psf; BC II; Exp C; Enclose and C-C Exterior(2 1-8 to 20-11-0 to 3 '-8-14 zone; cantile	3	2-4 32 3-80-1-12 4- DEFL Vert(LL) Vert(CT) Horz(CT) monsidered for and gust) sof; h=35ft; RS (envelope b-8 to 4-1-8, 20-11-0 to neterior (1) and right used;C-C for	in (loc) -0.13 2-22 -0.30 2-22 0.08 15	l/defl L/a >999 240 >999 180	-7 PLATES MT20	GRIP 197/144
late Offsets (X, Y): oading CLL (roof) CDL CDL CDL CDL UMBER OP CHORD 2x4 1.5 OT CHORD 2x4 VEBS 2x3 LIDER Rig RACING OP CHORD Stri 2-2 2-0 OT CHORD Rig bra Row at midpt 5-1	8 (psf) 25.0 10.0 0.0 10.0 SP No.2 *Excep E SP No.2 *Excep ht 2x4 SP No.2	-1-9 [8:0-3-0,Edge], [11:0 Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code t* 4-1,8-11:2x4 SP 16 ept* 15-6:2x4 SP No.2 - 4-4-0 athing directly applied sept 0-0 max.): 6-7. applied or 6-0-0 oc	5-2-7 -3-10,Edg 2-0-0 1.15 1.15 YES IRC2018 1) 550F 2)	6-7-i ge], [13:0-2-8,0 B/TPI2014 Unbalanced this design. Wind: ASCE Vasd=91mpf Ke=1.00; Cat exterior zone Interior (1) 4- 27-1-0, Exter 34-1-14 to 47 exposed ; en members and Lumber DOL Provide adec	3 3-4-8 0 -1-8], [21:0-2-8,0-1- CSI TC BC WB Matrix-S roof live loads have 7-16; Vult=115mph ; TCDL=6.0psf; BC . II; Exp C; Enclose and C-C Exterior(2 1-8 to 20-11-0, Ext ior(2R) 27-1-0 to 3 '-8-14 zone; cantile d vertical left and ri d forces & MWFRS =1.60 plate grip DC uate drainage to pr	8] 0.91 0.72 0.91 been co (3-secc iDL=6.0] d; MWF E) -0-10 erior(2E) i-1-14, 1 ver left a ght expo for reac DL=1.60 vevent w	2-4 32 3-80-1-12 4- DEFL Vert(LL) Vert(CT) Horz(CT) Horz(CT) mod gust) posf; h=35ft; RS (envelope 0-8 to 4-1-8, RS (envelope 0-8 to 4-1-8, and right issed; C-C for tions shown; ater ponding.	in (loc) -0.13 2-22 -0.30 2-22 0.08 15	l/defl L/a >999 240 >999 180	-7 PLATES MT20	GRIP 197/144
Plate Offsets (X, Y): .oading CLL (roof) CDL 3CLL 3CLL 3CDL UMBER TOP CHORD 2x4 1.51 3CT CHORD 2x4 VEBS 2x3 SLIDER Rig SRACING TOP CHORD Str 2-2 2-0 3CT CHORD Rig bra Row at midpt 5-1 VEBS 1 R	8 (psf) 25.0 10.0 0.0 10.0 SP No.2 *Excep E SP No.2 *Excep ht 2x4 SP No.2	-1-9 [8:0-3-0,Edge], [11:0 Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code ot* 4-1,8-11:2x4 SP 16 opt* 15-6:2x4 SP No.2 - 4-4-0 athing directly applied vept 0-0 max.): 6-7.	5-2-7 -3-10,Edg 2-0-0 1.15 1.15 YES IRC2018 1) 550F 2)	6-7-i ge], [13:0-2-8,0 B/TPI2014 Unbalanced this design. Wind: ASCE Vasd=91mpf Ke=1.00; Cat exterior zone Interior (1) 4- 27-1-0, Exter 34-1-14 to 47 exposed ; en members and Lumber DOL Provide adec All plates are This truss ha	3 3-4-8 0 -1-8], [21:0-2-8,0-1- CSI TC BC WB Matrix-S roof live loads have 7-16; Vult=115mph ; TCDL=6.0psf; BC .1; Exp C; Enclose and C-C Exterior(2 1-8 to 20-11-0, Ext ior(2R) 27-1-0 to 3 ² -8-14 zone; cantile d vertical left and rid d forces & MWFRS =1.60 plate grip DC	8] 0.91 0.72 0.91 been cd (3-secc (3-secc (50-6.0) d; MWF 2E) -0-1(erior(2E) 1-1-14, I ver left a ght expo for reac 0L=1.60 event w therwis r a 10.0	2-4 32 3-80-1-12 4- DEFL Vert(LL) Vert(CT) Horz(CT) mosidered for and gust) posit, h=35ft; RS (envelope -8 to 4-1-8, 0 20-11-0 to nterior (1) and right used;C-C for tions shown; atter ponding. e indicated. psf bottom	-8-0 2-8 in (loc) -0.13 2-22 -0.30 2-22 0.08 15	l/defl L/a >999 240 >999 180	-7 PLATES MT20	GRIP 197/144

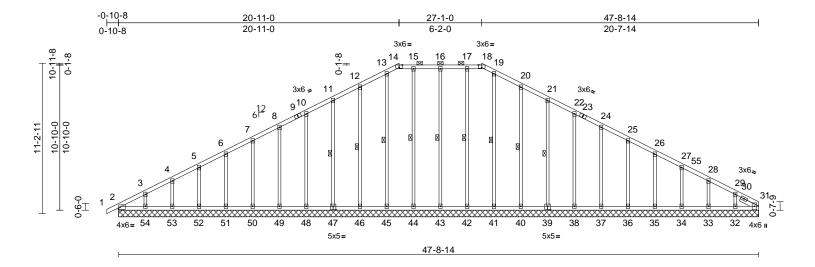

- Max Horiz 2=208 (LC 12) Max Uplift 2=-233 (LC 12), 11=-358 (LC 13), 15=-221 (LC 12) Max Grav 2=967 (LC 25), 11=682 (LC 26), 15=2891 (LC 1) FORCES (lb) - Maximum Compression/Maximum Tension TOP CHORD 1-2=0/17, 2-3=-1376/391, 3-5=-774/467, 5-6=-217/494, 6-7=0/903, 7-9=-333/1060, 9-11=-884/640 BOT CHORD 2-22=-385/1109, 21-22=-385/1109, 19-21=-205/604, 18-19=-168/668, 5-18=-288/208, 17-18=-98/31, 16-17=-15/11,
- WEBS 17-23=0/55, 15-16=-69/26, 13-15=-509/225, 12-13=-450/694, 11-12=-450/694 WEBS 3-22=0/301, 7-15=-878/77, 9-12=0/290, 6-23=-1393/238, 15-23=-1432/230, 4-21=-68/507, 3-21=-650/232, 8-13=-42/497, 8-15=-922/318, 9-13=-625/182, 4-19=-822/275, 6-18=-336/995
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
 Bearings are assumed to be: Joint 2 SP No.2 crushing capacity of 565 psi, Joint 15 SP No.2 crushing capacity of 565 psi.
 Refer to girder(s) for truss to truss connections.
 Provide mechanical connection (by others) of truss to trust to provide mechanical connection (by others) of trust to trus
- bearing plate capable of withstanding 358 lb uplift at joint 11, 221 lb uplift at joint 15 and 233 lb uplift at joint 2.
- 9) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.
- LOAD CASE(S) Standard

NOTES

									RELEASE FOR CONSTRUCTION
Job	-	Truss	Truss Type		Qty	Ply	Roof - Osage L	_ot 82	AS NOTED FOR PLAN REVIEW
P240069-01	,	A5	Piggyback	Base	10	1	Job Reference	(optional	DEVELOPMENT SERVICES 159435147 LEE'S SUMMIT, MISSOURI
Premier Building Supply (Springhill	, KS), Spring Hills, KS	5 - 66083,	Run: 8.63	S Apr 6 2023 Print: 8. 3DgSnFoHVRv0eeGply	.630 S Apr	6 2023 MiTek Industr	ies, Inc. Mon Jul 1	02/13/2024
				ID:waicde	зоделгонукуревсру	GXINA-RIC:	PSB70Hq3NSgPqnL	8W3UITADCKWIC	
-0-1	0-8	0 1 0	12 4 0	20.44.0	07.4.0		24.0.0	20 40 7	47 0 44

Scale = 1:85.9

		-					-						-
oading CLL (roof)	(psf) 25.0	Spacing Plate Grip DOL	2-0-0 1.15		CSI TC	0.97	DEFL Vert(LL)	in -0.26	(loc) 15-17	l/defl >999	L/d 240	PLATES MT20	GRIP 197/144
CDL (1001)	10.0	Lumber DOL	1.15		BC	0.97	Vert(LL)		15-17	>999	240 180	101120	197/144
CLL	0.0	Rep Stress Incr	YES		WB	0.81	Horz(CT)	0.00	10 17	 n/a	n/a		
CDL	10.0	Code		8/TPI2014	Matrix-S							Weight: 236 lb	FT = 20%
UMBER			2)	Wind: ASCE	7-16; Vult=115	imph (3-sec	ond gust)						
OP CHORD	2x4 SP 1650F 1.5E				n; TCDL=6.0ps								
	No.2, 4-1:2x4 SP 24	100F 2.0E			t. II; Exp C; En								
OT CHORD	2x4 SP 1650F 1.5E				and C-C Extent 1-8 to 20-11-0								
/EBS LIDER		ept* 14-5:2x4 SP No.	2		rior(2R) 27-1-0								
	Right 2x4 SP No.2 -	- 4-4-0		,	7-8-14 zone; ca	,	· · /						
RACING OP CHORD	Structurel wood abo	athing directly applie	d		d vertical left a		•	r					
OF CHORD	except	auning unecuy applie	u,	members an	d forces & MW	FRS for rea	ctions shown	ı;					
	2-0-0 oc purlins (2-2	2-0 max.): 5-6.			=1.60 plate gri								
OT CHORD	Rigid ceiling directly		3)		uate drainage			g.					
	bracing.		4)		s been designe			da					
/EBS	1 Row at midpt	5-14, 7-14, 4-15	5)		ad nonconcurre assumed to be								
		10= Mechanical	5)		acity of 565 ps		10501 1.52	•					
	Max Horiz 2=209 (LC		6)	0 1	er(s) for truss to		ections.						
	Max Uplift 2=-329 (L				hanical connec								
	Max Grav 2=2214 (I		1)		capable of wit		01 lb uplift at	t					
ORCES	(lb) - Maximum Com	npression/Maximum	0)		329 lb uplift at j								
OP CHORD	Tension	0/580, 3-5=-3462/598	8)	11110 11 000 10	designed in ac Residential Co			nd					
	5-6=-2386/554, 6-8=	,	,		nd referenced s			inu					
	8-10=-3898/580	0.000000	9)		rlin representat			size					
OT CHORD	2-18=-561/3433, 17	-18=-561/3433,	0)		ation of the purl								~
	15-17=-401/3019, 1	,		bottom chore		J						A	an
	12-14=-330/3010, 1	1-12=-404/3340,	LC	DAD CASE(S)	Standard							F. OF I	NISS D
	10-11=-404/3340		•								4	ATEOFN	NUS
/EBS		134/725, 6-14=-80/71 282/275, 4-17=-53/46									H	S NATHA	NIEL
	3-17=-547/206, 7-12		<i>b</i> 0,								H	FO	
	7-14=-851/319, 8-12									1	0	1-1	
	4-15=-860/321	,									W1	11/1.	L
OTES											RA	Mann	R The
) Unbalance	d roof live loads have	been considered for									YX -	DE 2022	175
this design	l.										N	PE-2022	042239 A
											Y	1 Per	157
											12	C'SSIONA	TENA
												UNA	L'A
												an	11 2022


July 11,2023

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent toulsible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

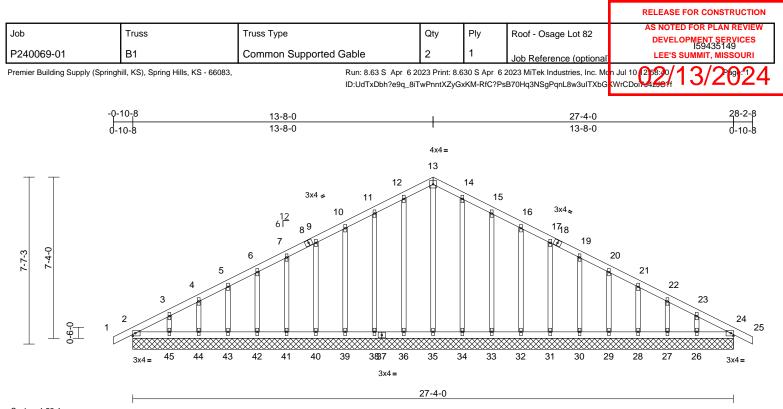
						RELEASE FOR CONSTRUCTION
Job	Truss	Truss Type	Qty	Ply	Roof - Osage Lot 82	AS NOTED FOR PLAN REVIEW
000	11033		QUY	l' 'y	11001 - Osage Lot 02	DEVELOPMENT SERVICES 159435148
P240069-01	A6	Piggyback Base Supported Gable	2	1	Job Reference (optional)	LEE'S SUMMIT, MISSOURI

Run: 8.63 S Apr 6 2023 Print: 8.630 S Apr 6 2023 MiTek Industries, Inc. Man Jul 10 (2) 8.39/1 3/20:24 ID:JbPUB4NmDf0vUSJtFFIELayGxJT-RfC?PsB70Hq3NSgPqnL8w3uITXbGtWrCDoi 94.597

Scale = 1	1:85.9
-----------	--------

	-												
Loading		(psf)	Spacing	2-0-0	CSI	0.42	DEFL	in r/r	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)		25.0	Plate Grip DOL	1.15	TC	0.13	Vert(LL)	n/a	-	n/a	999 999	MT20	244/190
TCDL		10.0	Lumber DOL	1.15	BC	0.05	Vert(CT)	n/a	-	n/a			
BCLL		0.0	Rep Stress Incr	YES	WB	0.18	Horz(CT)	0.02	31	n/a	n/a		FT 000/
BCDL		10.0	Code	IRC2018/TPI2014	Matrix-	5						Weight: 267 lb	FI = 20%
BOT CHORD 2 DTHERS 2 SLIDER 1 BRACING TOP CHORD BOT CHORD	Structural 6-0-0 oc p 2-0-0 oc p	o.2 No.2 SP No.2 wood she ourlins, exc ourlins (6-0	athing directly applie		Max Grav	2=178 (LC 21), 5 32=179 (LC 26), 34=180 (LC 26), 36=180 (LC 26), 38=180 (LC 26), 40=180 (LC 26), 40=180 (LC 2), 42=177 (LC 26), 44=177 (LC 25), 46=180 (LC 1), 4 48=180 (LC 2), 50=180 (LC 1), 5	33=182 (LC 35=180 (LC 37=180 (LC 39=180 (LC 41=174 (LC 2 43=183 (LC 45=176 (LC 47=180 (LC 2 49=180 (LC	1), 1), 1), 26), 26), 26), 22), 25), 1),	WEBS		19-41 21-39 24-37 26-35 28-33 15-44 12-46 10-48 6-51=	,	140/112, =-140/96, =-140/97, =-139/106, 2=-137/191, =-136/8,
	1 Row at	·	16-43, 17-42, 19-41, 20-40, 21-39, 15-44, 13-45, 12-46, 11-47	FORCES		52=180 (LC 1), 5 54=181 (LC 25) kimum Compressio		25),	,			ive loads have be	een considered for
	/ Max Horiz	$\begin{array}{l} 32{=}47{\text{-}8{\text{-}}}\\ 34{=}47{\text{-}8{\text{-}}}\\ 36{=}47{\text{-}8{\text{-}}}\\ 38{=}47{\text{-}8{\text{-}}}\\ 40{=}47{\text{-}8{\text{-}}}\\ 42{=}47{\text{-}8{\text{-}}}\\ 44{=}47{\text{-}8{\text{-}}}\\ 44{=}47{\text{-}8{\text{-}}}\\ 50{=}47{\text{-}8{\text{-}}}\\ 50{=}47{\text{-}8{\text{-}}}\\ 52{=}47{\text{-}8{\text{-}}}\\ 52{=}290 (\text{LC}\\ 2{=}260 (\text{LC}\\ 2{=}260 (\text{LC}\\ 2{=}260 (\text{LC}\\ 33{=}59 (\text{L}\\ 33{=}59 (\text{L}\\ 33{=}59 (\text{L}\\ 33{=}59 (\text{L}\\ 33{=}59 (\text{L}\\ 43{=}2(\text{L}\\ 42{=}9 (\text{LC}\\ 44{=}12 (\text{L}\\ 49{=}61 (\text{L}\\ 51{=}61 ($), 3), 3), 3), , , , , , , , , , , , , ,	$\begin{array}{r} 4\text{-}5\text{=-181}\\ 7\text{-}8\text{84}\prime\\ 11\text{-}12\text{=-1}\\ 13\text{-}14\text{=-1}\\ 13\text{-}14\text{=-1}\\ 15\text{-}16\text{=-1}\\ 17\text{-}18\text{=-1}\\ 19\text{-}20\text{=-1}\\ 21\text{-}22\text{82}\\ 22\text{-}58\text{-}50\\ 22\text{-}58\text{-}52\\ 22\text{-}58\text{-}52\\ 22\text{-}58\text{-}52\\ 22\text{-}58\text{-}52\\ 48\text{-}49\text{-}52\\ 48\text{-}49\text{-}52\\ 48\text{-}49\text{-}52\\ 48\text{-}49\text{-}52\\ 48\text{-}49\text{-}52\\ 48\text{-}49\text{-}52\\ 48\text{-}49\text{-}52\\ 48\text{-}49\text{-}52\\ 38\text{-}40\text{-}52\\ 38\text{-}52\\ 38\text{-}52\{-}52\\ 38\text{-}52\{-}52\\ 38\text{-}52\{$, 2-3=-295/92, 3-4 /97, 5-6=-136/110 162, 8-10=-71/190 06/287, 12-13=-1: 26/341, 14-15=-1 18/342, 16-17=-1 19/341, 18-19=-1: 27/347, 20-21=-11 8/234, 22-24=-69/ 6/126, 25-26=-56. 00/27, 28-29=-144 32/67 /225, 53-54=-59/2 9/225, 51-52=-59/ 9/225, 40-48=-59/ 9/225, 40-48=-59/ 9/225, 40-48=-59/ 9/225, 40-41=-59) 9/225, 37-38=-59/ 9/225, 33-34=-59/ 9/225, 31-32=-59/	, 6-7=-110/1: , 10-11=-88/: 27/347, 19/341, 18/342, 26/341, 16/287, 180, 72, 26-27=-7 3/43, 25, 225, 225, 225, 225, 225, 225, 225	234,		۲ ۱	Kla	PE-2022	BER 042259

Continued on page 2 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not besign value to dury with with where outputs into design is based only door parameters shown, and is for an individual building design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members and property incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TPH1 Quality Criteria**, and **DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcscomponents.com)


						RELEASE FOR CONSTRUCTION
Job	Truss	Truss Type	Qty	Ply	Roof - Osage Lot 82	
P240069-01	A6	Piggyback Base Supported Gable	2	1	Job Reference (optional	
Premier Building Supply (Springh	nill, KS), Spring Hills, KS - 66083,	Run: 8.63 S Apr 6 2 ID:JbPUB4NmDf0vU	023 Print: 8.6 SJtFFIELayG	30 S Apr 6	2023 MiTek Industries, Inc. Mc B70Hq3NSgPqnL8w3uITXbGI	n Jul 10 (268.39/13/2024) WrCDoi v4260/f

- 2) Wind: ASCE 7-16: Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=35ft; Ke=1.00; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone and C-C Corner(3E) -0-10-8 to 4-0-0, Exterior(2N) 4-0-0 to 20-11-0, Corner(3R) 20-11-0 to 26-0-0, Exterior(2N) 26-0-0 to 27-1-0, Corner(3R) 27-1-0 to 32-0-0, Exterior(2N) 32-0-0 to 47-8-14 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- Truss designed for wind loads in the plane of the truss 3) only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- Provide adequate drainage to prevent water ponding. 4)
- All plates are 3x4 MT20 unless otherwise indicated. 5) 6) Gable requires continuous bottom chord bearing.
- 7) Gable studs spaced at 2-0-0 oc.
- 8)
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. All bearings are assumed to be SP No.2 crushing 9)
- capacity of 565 psi. 10) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 26 lb uplift at joint 2, 58 lb uplift at joint 43, 9 lb uplift at joint 42, 74 lb uplift at joint 40, 60 lb uplift at joint 39, 61 lb uplift at joint 38, 61 lb uplift at joint 37, 61 lb uplift at joint 36, 61 lb uplift at joint 35, 62 lb uplift at joint 34, 59 lb uplift at joint 33, 103 lb uplift at joint 32, 12 lb uplift at joint 44, 71 lb uplift at joint 46, 61 lb uplift at joint 47, 61 lb uplift at joint 48, 61 lb uplift at joint 49, 61 lb uplift at joint 50, 61 lb uplift at joint 51, 61 lb uplift at joint 52, 61 lb uplift at joint 53 and 87 lb uplift at joint 54.
- 11) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 12) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord

LOAD CASE(S) Standard

 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.
 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not beigh valid for use only with with with sets outputs into design is based only door parameters shown, and is for an individual dualing component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria**, and **DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcscomponents.com)

Scale = 1:52.4												
Loading TCLL (roof) TCDL BCLL BCDL	(psf) 25.0 10.0 0.0 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018/TPI201	CSI TC BC WB 4 Matrix-S	0.07 0.03 0.18	- (-)	in n/a n/a 0.01	(loc) - - 24	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 145 lb	GRIP 197/144 FT = 20%
LUMBER TOP CHORD BOT CHORD OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	2x3 SPF No.2 Structural wood she 6-0-0 oc purlins. Rigid ceiling directly bracing. (size) 2=27-4-0, 27=27-4-(33=27-4-(36=27-4-(40=27-4-(40=27-4-(40=27-4-(40=27-4-(40=27-4-(40=27-4-(40=27-4-(40=27-4-(40=27-4-(40=27-4-(40=27-4-(40=27-4-(40=27-4-(40=27-4-(10=27-4-(40=27-4-(10=27-4-(40=27-4-(10=2	24=27-4-0, 26=27-4), 28=27-4-0, 29=27-), 31=27-4-0, 35=27-), 34=27-4-0, 35=27-), 34=27-4-0, 35=27-), 44=27-4-0, 42=27-), 44=27-4-0, 45=27- C 13) 28), 24-4 (LC 13), 28=-4 29=-41 (LC 13), 30=-4 11=-41 (LC 13), 32=-4 33=-48 (LC 13), 34=-2 33=-48 (LC 13), 34=-2 33=-41 (LC 12), 43=-4 11=-41 (LC 12), 43=-4 11=-41 (LC 12), 42=-4 13=-41 (LC 12), 44=-4 15=-63 (LC 12) C 1), 29=120 (LC 26 C 26), 33=121 (LC 26 C 26), 35=145 (LC 2 C 25), 38=121 (LC 26 C 25), 38=121 (LC 26 C 25), 42=120 (LC 26),	d or -0, BOT CHOI 4-0,	43-44=-40/160, 4 41-42=-40/160, 4 39-40=-40/160, 3 36-38=-40/160, 3 32-33=-40/160, 3 30-31=-40/160, 2 28-29=-40/160, 2 28-29=-40/160, 2 28-29=-40/160, 2 28-29=-40/160, 2 28-29=-40/160, 2 13-35=-148/26, 1 10-39=-93/64, 9 6-42=-93/64, 5-4 3-45=-99/122, 14 16-32=-93/64, 17 20-29=-93/64, 21 23-26=-99/119 anced roof live loads has sign. ASCE 7-16; Vult=115m 91mph; TCDL=6.0psf; 00; Cat. II; Exp C; Encld or zone and C-C Corner or zone zo	6-17=-53 9-20=-34 -23=-74/2 0017, 2-3 =-99/76, § =-50/126, 1-12=-80 -45=-40/' -2-43=-40 -42=-40 -3-34=-40 -3-34=-40 -3-34=-96 -42=-36 -96 -93-93 -94-96 -28=-94/8 -28=-94/8 -28=-94/8 -28=-94/8 -28=-94/8 -28=-94/8 -28=-94/8 -28=-94/8 -28=-82 -29=-82 -28=-28=-28=-28 -28=-28=-28=-28=-28=-28=-28=-28=-28=-28=	 /155, /83, 20-21=-3; /22, 23-24=-12; /23, 23-24=-12; /230, /160, <l< td=""><td>5/74, 5, 774, 64, 99, r</td><td>only see or c 4) All 5) Gal 6) Gal 6) Gal 7) Thi: cho 8) All cap 9) Pro bea 2, 2 upli 41, upli 34, upli 34, upli 10) Thi: sup</td><td>y. For si Standa consult q plates ar plates ar plates ar oble requi- coller studs s truss h rd live lo bearings acity of vide me tring plat 7 lb upli ft at join 41 lb up ft at join 48 lb up ft at join 41 lb up ft at join s truss is ernationa</td><td>uds ey rd Indu jualifieire 1.5x ires co s s space oad noo s are aa 565 ps chanicic to 39, 4 bilift at joi t 30, 4 bilift at joi t 30</td><td>coosed to wind (r istry Gable End I d building design 4 MT20 unless c ntinuous bottom ed at 1-4-0 oc. an designed for a nconcurrent with ssumed to be SF si. al connection (b) able of withstand int 36, 46 lb uplift 1 lb uplift at joint oint 42, 41 lb uplift 1 lb uplift at joint oint 33, 41 lb uplift 1 lb uplift at joint oint 28, 40 lb uplift d 1 lb uplift at joint oint 28, 40 lb uplift d 1 lb uplift at joint oint 28, 40 lb uplift dential Code sec ferenced standar</td><td>a 10.0 psf bottom any other live loads. P No.2 crushing y others) of truss to ing 26 lb uplift at joint t at joint 38, 41 lb 40, 41 lb uplift at joint ift at joint 43, 40 lb 45, 21 lb uplift at joint ift at joint 27, 57 lb int 24. ce with the 2018 tions R502.11.1 and d ANSI/TPI 1.</td></l<>	5/74, 5, 774, 64, 99, r	only see or c 4) All 5) Gal 6) Gal 6) Gal 7) Thi: cho 8) All cap 9) Pro bea 2, 2 upli 41, upli 34, upli 34, upli 10) Thi: sup	y. For si Standa consult q plates ar plates ar plates ar oble requi- coller studs s truss h rd live lo bearings acity of vide me tring plat 7 lb upli ft at join 41 lb up ft at join 48 lb up ft at join 41 lb up ft at join s truss is ernationa	uds ey rd Indu jualifieire 1.5x ires co s s space oad noo s are aa 565 ps chanicic to 39, 4 bilift at joi t 30, 4 bilift at joi t 30	coosed to wind (r istry Gable End I d building design 4 MT20 unless c ntinuous bottom ed at 1-4-0 oc. an designed for a nconcurrent with ssumed to be SF si. al connection (b) able of withstand int 36, 46 lb uplift 1 lb uplift at joint oint 42, 41 lb uplift 1 lb uplift at joint oint 33, 41 lb uplift 1 lb uplift at joint oint 28, 40 lb uplift d 1 lb uplift at joint oint 28, 40 lb uplift d 1 lb uplift at joint oint 28, 40 lb uplift dential Code sec ferenced standar	a 10.0 psf bottom any other live loads. P No.2 crushing y others) of truss to ing 26 lb uplift at joint t at joint 38, 41 lb 40, 41 lb uplift at joint ift at joint 43, 40 lb 45, 21 lb uplift at joint ift at joint 27, 57 lb int 24. ce with the 2018 tions R502.11.1 and d ANSI/TPI 1.
FURGES	Tension	Ihression/inigximuti									A NA	TTTTT

July 11,2023

Tension

Continued on page 2 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

						RELEASE FOR CONSTRUCTION
Job	Truss	Truss Type	Qty	Ply	Roof - Osage Lot 82	AS NOTED FOR PLAN REVIEW DEVELOPMENT SERVICES
P240069-01	B1	Common Supported Gable	2	1	Job Reference (optional	DEVELOPMENT SERVICES 159435149 LEE'S SUMMIT, MISSOURI
Premier Building Supply (Springh	nill, KS), Spring Hills, KS - 66083,				2023 MiTek Industries, Inc. Mo B70Hq3NSgPqnL8w3uITXbG	

LOAD CASE(S) Standard

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

· · · · · · · · · · · · · · · · · · ·										RELEASE	FOR CONSTRU	CTION
Job	Truss		Truss Type		Qty	Ply	Roof - 0	Osage Lot 8	2	AS NOTE DEVEL	ED FOR PLAN RE	VIEW
P240069-01	B2		Common		4	1	Job Ref	erence (opt	tional		SUMMIT, MISSO	
Premier Building Supply (Sprir	nghill, KS), Sp	ring Hills, KS - 66083,		Run: 8.63 S Apr ID:77cC2GCYqA			6 2023 MiTe	k Industries, li	nc. Mor		13/20	24
-	0-10-8	6-11-7	1	13-8-0	1	:	20-4-9	1		27-4-0	28-	2-8
(0-10-8	6-11-7	Γ	6-8-9	Ι		6-8-9	1		6-11-7	0-1	0-8
					4x6=							
			12		5							
			1 <u>2</u> 6Г :	3x4 ≤		\sim		1.5	x4 🏿			
			1.5x4 、			\mathbb{N}	\sim	3x4 ≈				
			4	14				15 6	_			
7-7-3 7-4-0			3					E S	7			
7-7-3		13					`		\sim	16		
						````						
	2										8	
							-					9
				12 11			10				X	$\triangleleft$
	3x4 =			3x4 = 3x4 =			3x4=				3x4=	-
		9-3	8-14	1	18-0-2					27-4-0	1	
Scale = 1:52.5			3-14	l	8-8-5		1			9-3-14		
Plate Offsets (X, Y): [2:Ec	dge,0-0-9], [8	8:Edge,0-0-9]										
Loading	(psf)	Spacing	2-0-0	CSI	D	EFL	in (lo	c) l/defl	L/d	PLATES	GRIP	
TCLL (roof) TCDL	25.0	Plate Grip DOL	1.15 1.15	TC BC	0.77 V	ert(LL)	-0.20 2-1	2 >999	240	MT20	244/190	
BCLL		Lumber DOL Rep Stress Incr	YES	WB		lorz(CT)	-0.44 2-1 0.07	2 >737 8 n/a	180 n/a			
	100											
	10.0	Code	IRC2018/TPI201	4 Matrix-S						Weight: 109 lb	FT = 20%	
UMBER		Code	5) Provid	e mechanical connection			oint	<u> </u>		Weight: 109 lb	FT = 20%	
LUMBER TOP CHORD 2x4 SP No BOT CHORD 2x4 SP No	0.2 0.2	Code	5) Provid bearin 2 and	e mechanical connection g plate capable of withsta 211 lb uplift at joint 8.	anding 211	Ib uplift at jo	pint			Weight: 109 lb	FT = 20%	
LUMBER TOP CHORD 2x4 SP No 3OT CHORD 2x4 SP No WEBS 2x3 SPF N BRACING	0.2 0.2 No.2		5) Provid bearin 2 and 2 6) This tr Interna R802	e mechanical connection g plate capable of withsta 211 lb uplift at joint 8. uss is designed in accord ational Residential Code	anding 211 lance with t sections R5	Íb uplift at jó the 2018 502.11.1 an				Weight: 109 lb	FT = 20%	
LUMBER TOP CHORD 2x4 SP No SOT CHORD 2x4 SP No WEBS 2x3 SPF N BRACING TOP CHORD Structural	o.2 o.2 No.2 wood sheat	Code thing directly applied	5) Provid bearin 2 and 6) This tr Interna d or R802. ⁻	e mechanical connection g plate capable of withsta 211 lb uplift at joint 8. uss is designed in accord	anding 211 lance with t sections R5	Íb uplift at jó the 2018 502.11.1 an				Weight: 109 lb	FT = 20%	
LUMBER TOP CHORD 2x4 SP No 3OT CHORD 2x4 SP No WEBS 2x3 SPF N BRACING TOP CHORD Structural 2-6-11 oc 3OT CHORD Rigid ceilin	o.2 o.2 No.2 wood sheat purlins.		5) Provid bearin 2 and 2 6) This tr Interna d or R802. LOAD CAS	e mechanical connection g plate capable of withsta 211 lb uplift at joint 8. uss is designed in accorr ational Residential Code 10.2 and referenced stan	anding 211 lance with t sections R5	Íb uplift at jó the 2018 502.11.1 an				Weight: 109 lb	FT = 20%	
LUMBER FOP CHORD 2x4 SP No 30T CHORD 2x4 SP No WEBS 2x3 SPF N BRACING FOP CHORD Structural 2-6-11 oc 30T CHORD Rigid ceilin bracing. REACTIONS (size)	0.2 0.2 No.2 wood sheat purlins. ng directly a 2=0-3-8, 8=	thing directly applied applied or 10-0-0 oc =0-3-8	5) Provid bearin 2 and 2 6) This tr Interna d or R802. LOAD CAS	e mechanical connection g plate capable of withsta 211 lb uplift at joint 8. uss is designed in accorr ational Residential Code 10.2 and referenced stan	anding 211 lance with t sections R5	Íb uplift at jó the 2018 502.11.1 an				Weight: 109 lb	FT = 20%	
LUMBER FOP CHORD 2x4 SP No 3OT CHORD 2x4 SP No WEBS 2x3 SPF N BRACING FOP CHORD Structural 2-6-11 oc 3OT CHORD Rigid ceilin bracing. REACTIONS (size) Max Horiz Max Uplift	0.2 0.2 No.2 wood sheat purlins. ng directly a 2=0-3-8, 8= 2=-137 (LC 2=-211 (LC	thing directly applied applied or 10-0-0 oc =0-3-8 : 13) : 12), 8=-211 (LC 13	5) Provid bearin 2 and 6) This tr Interna d or R802. LOAD CA	e mechanical connection g plate capable of withsta 211 lb uplift at joint 8. uss is designed in accorr ational Residential Code 10.2 and referenced stan	anding 211 lance with t sections R5	Íb uplift at jó the 2018 502.11.1 an				Weight: 109 lb	FT = 20%	
LUMBER FOP CHORD 2x4 SP No SOT CHORD 2x4 SP No WEBS 2x3 SPF N BRACING FOP CHORD Structural 2-6-11 oc 3OT CHORD Rigid ceilin bracing. REACTIONS (size) Max Horiz Max Uplift Max Grav	0.2 0.2 No.2 wood sheat purlins. ng directly a 2=0-3-8, 8= 2=-137 (LC 2=-211 (LC 2=1288 (LC	thing directly applied applied or 10-0-0 oc =0-3-8 : 13) : 12), 8=-211 (LC 13 C 1), 8=-28 (LC 1)	5) Provid bearin 2 and 6) This tr Interna d or R802. LOAD CA	e mechanical connection g plate capable of withsta 211 lb uplift at joint 8. uss is designed in accorr ational Residential Code 10.2 and referenced stan	anding 211 lance with t sections R5	Íb uplift at jó the 2018 502.11.1 an				Weight: 109 lb	FT = 20%	
LUMBER TOP CHORD 2x4 SP No SOT CHORD 2x4 SP No WEBS 2x3 SPF N BRACING TOP CHORD Structural 2-6-11 oc 3OT CHORD Rigid ceilin bracing. REACTIONS (size) Max Horiz Max Uplift Max Grav FORCES (lb) - Maxi Tension	0.2 o.2 No.2 wood sheat purlins. ng directly a 2=0-3-8, 8= 2=-137 (LC 2=-211 (LC 2=1288 (LC imum Comp	thing directly applied applied or 10-0-0 oc =0-3-8 : 13) : 12), 8=-211 (LC 13 C 1), 8=1288 (LC 1) ression/Maximum	5) Provid bearin 2 and 1 6) This tr Interna d or R802. LOAD CA:	e mechanical connection g plate capable of withsta 211 lb uplift at joint 8. uss is designed in accorr ational Residential Code 10.2 and referenced stan	anding 211 lance with t sections R5	Íb uplift at jó the 2018 502.11.1 an				Weight: 109 lb	FT = 20%	
LUMBER FOP CHORD 2x4 SP No SOT CHORD 2x4 SP No WEBS 2x3 SPF N BRACING FOP CHORD Structural 2-6-11 oc 30T CHORD Rigid ceilin bracing. REACTIONS (size) Max Horiz Max Uplift Max Grav FORCES (lb) - Maxi Tension FOP CHORD 1-2=0/17, 5-7=-1821	0.2 0.2 No.2 wood sheat purlins. ng directly a 2=0-3-8, 8= 2=-137 (LC 2=-211 (LC 2=1288 (LC imum Comp 2-3=-2072/3 1/403, 7-8=-2	thing directly applied applied or 10-0-0 oc =0-3-8 : 13) : 12), 8=-211 (LC 13 C 1), 8=1288 (LC 1) ression/Maximum 392, 3-5=-1821/403 2072/392, 8-9=0/17	5) Provid bearin 2 and 6) This tr Interna d or R802. LOAD CA 3)	e mechanical connection g plate capable of withsta 211 lb uplift at joint 8. uss is designed in accorr ational Residential Code 10.2 and referenced stan	anding 211 lance with t sections R5	Íb uplift at jó the 2018 502.11.1 an				Weight: 109 lb	FT = 20%	
LUMBER TOP CHORD 2x4 SP No SOT CHORD 2x4 SP No WEBS 2x3 SPF N BRACING TOP CHORD Structural 2-6-11 oc 3OT CHORD Rigid ceilin bracing. REACTIONS (size) Max Horiz Max Uplift Max Grav FORCES (lb) - Maxi Tension TOP CHORD 1-2=0/17, 5-7=-1821 3OT CHORD 2-12=-328 8-10=-263	0.2 o.2 No.2 wood sheat purlins. ng directly a 2=0-3-8, 8= 2=-137 (LC 2=-211 (LC 2=1288 (LC imum Comp 2-3=-2072/3 1/403, 7-8=-2 3/1763, 10-1	thing directly applied applied or 10-0-0 oc =0-3-8 ; 13) ; 12), 8=-211 (LC 13 C 1), 8=1288 (LC 1) oression/Maximum 392, 3-5=-1821/403 2072/392, 8-9=0/17 2=-86/1180,	5) Provid bearin 2 and 6) This tr Interna d or R802. LOAD CA 3)	e mechanical connection g plate capable of withsta 211 lb uplift at joint 8. uss is designed in accorr ational Residential Code 10.2 and referenced stan	anding 211 lance with t sections R5	Íb uplift at jó the 2018 502.11.1 an				Weight: 109 lb	FT = 20%	
BOT CHORD 2x4 SP No WEBS 2x3 SPF N BRACING TOP CHORD Structural 2-6-11 oc BOT CHORD Rigid ceilin bracing. REACTIONS (size) Max Horiz Max Uplift Max Grav FORCES (lb) - Maxi Tension TOP CHORD 1-2=0/17, 5-7=-1821 BOT CHORD 2-12=-328 8-10=-263 WEBS 5-10=-154	0.2 0.2 No.2 wood sheat purlins. ng directly a 2=0-3-8, 8= 2=-137 (LC 2=-211 (LC 2=1288 (LC imum Comp 2-3=-2072/3 1/403, 7-8=-3 3/1763, 10-1	thing directly applied applied or 10-0-0 oc =0-3-8 : 13) : 12), 8=-211 (LC 13 C 1), 8=1288 (LC 1) oression/Maximum 392, 3-5=-1821/403 2072/392, 8-9=0/17 2=-86/1180, =-451/287,	5) Provid bearin 2 and 6) This tr Interna d or R802. LOAD CA 3)	e mechanical connection g plate capable of withsta 211 lb uplift at joint 8. uss is designed in accorr ational Residential Code 10.2 and referenced stan	anding 211 lance with t sections R5	Íb uplift at jó the 2018 502.11.1 an				Weight: 109 lb	FT = 20%	
LUMBER TOP CHORD 2x4 SP No 3OT CHORD 2x4 SP No WEBS 2x3 SPF N BRACING TOP CHORD Structural 2-6-11 oc 3OT CHORD Rigid ceilin bracing. REACTIONS (size) Max Horiz Max Uplift Max Grav FORCES (lb) - Maxi Tension TOP CHORD 1-2=0/17, 5-7=-1821 3OT CHORD 2-12=-328 8-10=-263 WEBS 5-10=-154 5-12=-153 NOTES	0.2 0.2 No.2 wood sheat purlins. ng directly a 2=0-3-8, 8= 2=-137 (LC 2=-211 (LC 2=1288 (LC imum Comp 2-3=-2072/3 1/403, 7-8=-2 3/1763, 10-1 3/1763 4/672, 7-10= 3/672, 3-12=	thing directly applied applied or 10-0-0 oc =0-3-8 : 13) : 12), 8=-211 (LC 13 C 1), 8=1288 (LC 1) oression/Maximum 392, 3-5=-1821/403 2072/392, 8-9=0/17 2=-86/1180, =-451/287	5) Provid bearin 2 and 6) This tr Interna d or R802. LOAD CA 3)	e mechanical connection g plate capable of withsta 211 lb uplift at joint 8. uss is designed in accorr ational Residential Code 10.2 and referenced stan	anding 211 lance with t sections R5	Íb uplift at jó the 2018 502.11.1 an				Weight: 109 lb	FT = 20%	
LUMBER TOP CHORD 2x4 SP No 3OT CHORD 2x4 SP No WEBS 2x3 SPF N BRACING TOP CHORD Structural 2-6-11 oc 3OT CHORD Rigid ceilin bracing. REACTIONS (size) Max Horiz Max Uplift Max Grav FORCES (lb) - Maxi Tension TOP CHORD 1-2=0/17, 5-7=-1821 3OT CHORD 2-12=-328 8-10=-263 NOTES 1) Unbalanced roof live for this design.	0.2 0.2 No.2 wood sheat purlins. ng directly a 2=0-3-8, 8= 2=-137 (LC 2=-211 (LC 2=-211 (LC 2=-2128 (LC imum Comp 2-3=-2072/3 1/403, 7-8=-3 3/1763, 10-1 3/1763 4/672, 7-10= 3/672, 3-12= oads have b	thing directly applied applied or 10-0-0 oc =0-3-8 : 13) : 12), 8=-211 (LC 13 C 1), 8=1288 (LC 1) ression/Maximum 392, 3-5=-1821/403 2072/392, 8-9=0/17 2=-86/1180, =-451/287, =-451/287 peen considered for	5) Provid bearin 2 and 6) This tr Interna d or R802. LOAD CA 3)	e mechanical connection g plate capable of withsta 211 lb uplift at joint 8. uss is designed in accorr ational Residential Code 10.2 and referenced stan	anding 211 lance with t sections R5	Íb uplift at jó the 2018 502.11.1 an						
LUMBER TOP CHORD 2x4 SP Not SOT CHORD 2x4 SP Not WEBS 2x3 SPF N BRACING TOP CHORD Structural 2-6-11 oc 3OT CHORD Rigid ceilli bracing. REACTIONS (size) Max Horiz Max Uplift Max Grav FORCES (lb) - Maxi Tension TOP CHORD 1-2=0/17, 5-7=-1821 3OT CHORD 2-12=-328 8-10=-263 WEBS 5-10=-154 5-12=-153 NOTES 1) Unbalanced roof live lo this design. 2) Wind: ASCE 7-16; Vul Vasd=91mph; TCDL=6	0.2 0.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 2=0-3-8, 8= 2=-137 (LC 2=-211 (LC 2=-211 (LC 2=-211 (LC 2=-2128 (LC imum Comp 2-3=-2072/3 1/403, 7-8=-3 3/1763, 10-1 3/1763, 10-1 3/1672, 7-10= 3/1672, 3-12= 0ads have b It=115mph ( 6.0psf; BCD	thing directly applied applied or 10-0-0 oc =0-3-8 : 13) : 12), 8=-211 (LC 13 C 1), 8=1288 (LC 1) oression/Maximum 392, 3-5=-1821/403 2072/392, 8-9=0/17 2=-86/1180, =-451/287 opeen considered for 3-second gust) DL=6.0psf; h=35ft;	5) Provid bearin 2 and 6) This tr Interna d or R802. LOAD CA: 3)	e mechanical connection g plate capable of withsta 211 lb uplift at joint 8. uss is designed in accorr ational Residential Code 10.2 and referenced stan	anding 211 lance with t sections R5	Íb uplift at jó the 2018 502.11.1 an			H		FT = 20%	
LUMBER TOP CHORD 2x4 SP No SOT CHORD 2x4 SP No WEBS 2x3 SPF N BRACING TOP CHORD Structural 2-6-11 oc GOT CHORD Rigid ceilin bracing. REACTIONS (size) Max Horiz Max Uplift Max Grav FORCES (lb) - Maxi Tension TOP CHORD 1-2=0/17, 5-7=-1821 3OT CHORD 2-12=-328 8-10=-263 NOTES 1) Unbalanced roof live lo this design. 2) Wind: ASCE 7-16; Vul Vasd=91mph; TCDL=6 Ke=1.00; Cat. II; Exp ( exterior zone and C-C	0.2 0.2 No.2 No.2 wood sheat purlins. ng directly a 2=0-3-8, 8= 2=-137 (LC 2=-211 (LC 2=1288 (LC imum Comp 2-3=-2072/3 1/403, 7-8=-2 3/1763, 10-1 3/1763 4/672, 7-10= 3/672, 3-12= oads have b It=115mph (: 6.0psf; BCD C; Enclosed Exterior(2E	thing directly applied applied or 10-0-0 oc =0-3-8 2 13) 2 12), 8=-211 (LC 13 2 1), 8=1288 (LC 1) ression/Maximum 392, 3-5=-1821/403 2072/392, 8-9=0/17 2=-86/1180, =-451/287, =-451/287, =-451/287 been considered for 3-second gust) DL=6.0psf; h=35ft; ; MWFRS (envelop: =) -0-10-8 to 4-1-8,	5) Provid bearin 2 and 6) This tr Interna d or R802. LOAD CA: 3)	e mechanical connection g plate capable of withsta 211 lb uplift at joint 8. uss is designed in accorr ational Residential Code 10.2 and referenced stan	anding 211 lance with t sections R5	Íb uplift at jó the 2018 502.11.1 an				STATE OF I	MISSOUR	8
LUMBER TOP CHORD 2x4 SP No 3OT CHORD 2x4 SP No WEBS 2x3 SPF N BRACING TOP CHORD Structural 2-6-11 oc 3OT CHORD Rigid ceilin bracing. REACTIONS (size) Max Horiz Max Uplift Max Grav FORCES (lb) - Maxi Tension TOP CHORD 1-2=0/17, 5-7=-1821 3OT CHORD 2-12=-328 8-10=-263 WEBS 5-10=-154 5-12=-153 NOTES 1) Unbalanced roof live lot this design. 2) Wind: ASCE 7-16; Vul Vasd=91mph; TCDL={ Ke=1.00; Cat. II; Exp C	0.2 0.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No	thing directly applied applied or 10-0-0 oc =0-3-8 : 13) : 12), 8=-211 (LC 13 C 1), 8=1288 (LC 1) pression/Maximum 392, 3-5=-1821/403 2072/392, 8-9=0/17 2=-86/1180, =-451/287, =-451/287 been considered for 3-second gust) bL=6.0psf; h=35ft; ; MWFRS (envelope; )-0-10-8 to 4-1-8, pr(2R) 13-8-0 to	5) Provid bearin 2 and 6) This tr Interna d or LOAD CA 3)	e mechanical connection g plate capable of withsta 211 lb uplift at joint 8. uss is designed in accorr ational Residential Code 10.2 and referenced stan	anding 211 lance with t sections R5	Íb uplift at jó the 2018 502.11.1 an				ATE OF I	MISSOUR	
LUMBER TOP CHORD 2x4 SP Not SOT CHORD 2x4 SP Not WEBS 2x3 SPF N BRACING TOP CHORD Structural 2-6-11 oc 3OT CHORD Rigid ceilin bracing. REACTIONS (size) Max Horiz Max Uplift Max Grav FORCES (lb) - Maxi Tension TOP CHORD 1-2=0/17, 5-7=-1821 SOT CHORD 2-12=-328 8-10=-263 WEBS 5-10=-154 5-12=-153 NOTES 1) Unbalanced roof live lo this design. 2) Wind: ASCE 7-16; Vul Vasd=91mph; TCDL= Ke=1.00; Cat. II; Exp C exterior zone and C-C Interior (1) 4-1-8 to 13 18-8-0, Interior (1) 18- and right exposed ; en	0.2 0.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 2=0-3-8, 8= 2=-137 (LC 2=-211 (LC 2=-211 (LC 2=-2128 (LC 2=-2128 (LC 2=-217 (LC	thing directly applied applied or 10-0-0 oc =0-3-8 : 13) : 12), 8=-211 (LC 13 C 1), 8=1288 (LC 1) oression/Maximum 392, 3-5=-1821/403 2072/392, 8-9=0/17 2=-86/1180, =-451/287 opeen considered for 3-second gust) bL=6.0psf; h=35ft; ; MWFRS (envelope ) -0-10-8 to 4-1-8, or(2R) 13-8-0 to 8 zone; cantilever left and right	5) Provid bearin 2 and 6) This tr Interna d or LOAD CA 3)	e mechanical connection g plate capable of withsta 211 lb uplift at joint 8. uss is designed in accorr ational Residential Code 10.2 and referenced stan	anding 211 lance with t sections R5	Íb uplift at jó the 2018 502.11.1 an				STATE OF I	MISSOURI INIEL	
LUMBER TOP CHORD 2x4 SP No 3OT CHORD 2x4 SP No WEBS 2x3 SPF N BRACING TOP CHORD Structural 2-6-11 oc 3OT CHORD Rigid ceilin bracing. REACTIONS (size) Max Horiz Max Uplift Max Grav FORCES (lib) - Maxi Tension TOP CHORD 1-2=0/17, 5-7=-1821 3OT CHORD 2-12=-328 8-10=-263 WEBS 5-10=-154 5-12=-153 NOTES 1) Unbalanced roof live lot this design. 2) Wind: ASCE 7-16; Vul Vasd=91mph; TCDL=4 Ke=1.00; Cat. II; Exp C exterior zone and C-C Interior (1) 4-1-8 to 13- 18-8-0, Interior (1) 18- and right exposed ; en exposed; C-C for mem reactions shown; Luml	0.2 0.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 2=0-3-8, 8= 2=-137 (LC 2=-211 (LC 2=1288 (LC imum Comp 2-3=-2072/3 1/403, 7-8=-2 3/1763, 10-1 3/1763 1/672, 7-10= 3/672, 3-12= 0ads have b It=115mph (: 6.0psf; BCD C; Enclosed Exterior(2E -8-0, Exterior 8-0 to 28-2 d vertical lei bers and for	thing directly applied applied or 10-0-0 oc =0-3-8 : 13) : 12), 8=-211 (LC 13 C 1), 8=1288 (LC 1) ression/Maximum 392, 3-5=-1821/403 2072/392, 8-9=0/17 2=-86/1180, :-451/287 :-451/287 been considered for 3-second gust) VL=6.0psf; h=35ft; ; MWFRS (envelop :) -0-10-8 to 4-1-8, or(2R) 13-8-0 to 8 zone; cantilever left fand right rcces & MWFRS for	5) Provid bearin 2 and 6) This tr Interna d or LOAD CA 3)	e mechanical connection g plate capable of withsta 211 lb uplift at joint 8. uss is designed in accorr ational Residential Code 10.2 and referenced stan	anding 211 lance with t sections R5	Íb uplift at jó the 2018 502.11.1 an				STATE OF I	MISSOURI INIEL K BER	
LUMBER TOP CHORD 2x4 SP Not BOT CHORD 2x4 SP Not WEBS 2x3 SPF N BRACING TOP CHORD Structural 2-6-11 oc BOT CHORD Rigid ceilli bracing. REACTIONS (size) Max Horiz Max Uplift Max Grav FORCES (lb) - Maxi Tension TOP CHORD 1-2=0/17, 5-7=-1821 BOT CHORD 2-12=-328 8-10=-263 WEBS 5-10=-154 5-12=-153 NOTES 1) Unbalanced roof live lo this design. 2) Wind: ASCE 7-16; Vul Vasd=91mph; TCDL=6 Ke=1.00; Cat. II; Exp ( exterior zone and C-C Interior (1) 4-1-8 to 13 18-8-0, Interior (1) 18- and right exposed ; en exposed; C-C for mem reactions shown; Luml DOL=1.60 3) This truss has been de	0.2 0.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No	thing directly applied applied or 10-0-0 oc =0-3-8 : 13) : 12), 8=-211 (LC 13 C 1), 8=1288 (LC 1) oression/Maximum 392, 3-5=-1821/403 2072/392, 8-9=0/17 2=-86/1180, =-451/287 opeen considered for 3-second gust) DL=6.0psf; h=35ft; ; MWFRS (envelope) :) -0-10-8 to 4-1-8, or(2R) 13-8-0 to 8 zone; cantilever left and right roes & MWFRS for 60 plate grip a 10.0 psf bottom	5) Provid bearin 2 and 6) This tr Interna d or LOAD CA: 3) 8, 6, e)	e mechanical connection g plate capable of withsta 211 lb uplift at joint 8. uss is designed in accorr ational Residential Code 10.2 and referenced stan	anding 211 lance with t sections R5	Íb uplift at jó the 2018 502.11.1 an				NATHA PE-2022	MISSOLINIEL NIEL K BER 042259	
LUMBER TOP CHORD 2x4 SP No SOT CHORD 2x4 SP No WEBS 2x3 SPF N BRACING TOP CHORD Structural 2-6-11 oc 3OT CHORD Rigid ceilin bracing. REACTIONS (size) Max Horiz Max Uplift Max Grav FORCES (b) - Maxi Tension TOP CHORD 1-2=0/17, 5-7=-1821 3OT CHORD 2-12=-328 8-10=-263 WEBS 5-10=-154 5-12=-153 NOTES 1) Unbalanced roof live lot this design. 2) Wind: ASCE 7-16; Vul Vasd=91mph; TCDL=6 Ke=1.00; Cat. II; Exp ( exterior zone and C-C Interior (1) 4-1-8 to 13- 18-8-0, Interior (1) 18- and right exposed; en exposed; C-C for memi reactions shown; Lumi DOL=1.60 3) This truss has been de chord live load noncor 4) All bearings are assun	0.2 0.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No	thing directly applied applied or 10-0-0 oc =0-3-8 : 13) : 12), 8=-211 (LC 13 C 1), 8=1288 (LC 1) oression/Maximum 392, 3-5=-1821/403 2072/392, 8-9=0/17 2=-86/1180, =-451/287, =-451/287 ween considered for 3-second gust) U=6.0psf; h=35ft; ; MWFRS (envelope :) -0-10-8 to 4-1-8, or(2R) 13-8-0 to 8 zone; cantilever left fand right rcces & MWFRS for 60 plate grip a 10.0 psf bottom n any other live load	5) Provid bearin 2 and 6) This tr Interna d or LOAD CA: 3) 8, 6, e)	e mechanical connection g plate capable of withsta 211 lb uplift at joint 8. uss is designed in accorr ational Residential Code 10.2 and referenced stan	anding 211 lance with t sections R5	Íb uplift at jó the 2018 502.11.1 an				State of I State of I NATHA FO PE-2022	MISSOLUP INIEL BER 042259	
UMBER TOP CHORD 2x4 SP No. SOT CHORD 2x4 SP No. VEBS 2x3 SPF N SRACING TOP CHORD Structural 2-6-11 oc 3OT CHORD Rigid ceilin bracing. REACTIONS (size) Max Horiz Max Uplift Max Grav FORCES (lb) - Maxi Tension TOP CHORD 1-2=0/17, 5-7=-1821 3OT CHORD 2-12=-328 8-10=-263 WEBS 5-10=-154 5-12=-153 NOTES ) Unbalanced roof live lo this design. 2) Wind: ASCE 7-16; Vul Vasd=91mph; TCDL=6 Ke=1.00; Cat. II; Exp C exterior zone and C-C Interior (1) 4-1-8 to 13 18-8-0, Interior (1) 18- and right exposed ; en exposed; C-C for mem reactions shown; Luml DOL=1.60 8) This truss has been de chord live load noncor	0.2 0.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No	thing directly applied applied or 10-0-0 oc =0-3-8 : 13) : 12), 8=-211 (LC 13 C 1), 8=1288 (LC 1) oression/Maximum 392, 3-5=-1821/403 2072/392, 8-9=0/17 2=-86/1180, =-451/287, =-451/287 ween considered for 3-second gust) U=6.0psf; h=35ft; ; MWFRS (envelope :) -0-10-8 to 4-1-8, or(2R) 13-8-0 to 8 zone; cantilever left fand right rcces & MWFRS for 60 plate grip a 10.0 psf bottom n any other live load	5) Provid bearin 2 and 6) This tr Interna d or LOAD CA: 3) 8, 6, e)	e mechanical connection g plate capable of withsta 211 lb uplift at joint 8. uss is designed in accorr ational Residential Code 10.2 and referenced stan	anding 211 lance with t sections R5	Íb uplift at jó the 2018 502.11.1 an				STATE OF I STATE OF I NATHA FO PE-2022	MISSOLUP INIEL BER 042259	

Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing building design. Strategic delivery, erection and bracing of trusses sate must systems, see **ANSI/TPI Quality** Criteria, and **DSE-2** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcscomponents.com)

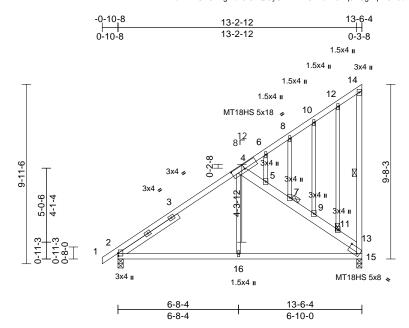


$ \begin{array}{c c c c c c c c c c c c c c c c c c c $								RELEASE FOR CONSTRUCTION
Premier Building Supply (Springhill, KS). Spring Hills, KS - 66083. Run: 8.63 S Apr 6 2023 Print: 8.630 S Apr 6 2023 MiTek Industries, Inc. Mc Jul 10 PSP / 13/2024 ID-pEeiREjqUZIL YPL/J_LBihyGxLe-RiCOPBB70Hq3NSgPqnLaw3uTXbGWL Chor7/Jeacher 13/2000 0-10-8 6-10-0 13-8-0 14-6-8 0-10-8 6-10-0 6-10-0 0-10-8 4x4= 7 4x8 4 4x8 4	Job	Truss		Truss Type	Qty	Ply	Roof - Osage Lot 82	
$\frac{1}{1000} = \frac{1}{1000} + 1$	P240069-01	C1		Common Supported Gable	1	1	Job Reference (optional	
$\frac{1360}{0.10.8}$	Premier Building Sup	oply (Springhill, KS), Spring Hills,	, KS - 66083,					
$\begin{array}{c} 4x4 = \\ 7 \\ 1 \\ 1 \\ 2 \\ 3x4 \\ 1 \\ 22 \\ 21 \\ 20 \\ 19 \\ 18 \\ 17 \\ 16 \\ 18 \\ 17 \\ 16 \\ 15 \\ 16 \\ 16 \\ 16 \\ 16 \\ 16 \\ 16$			-0-10-8	6-10-0	1		13-8-0	14-6-8
$ \begin{array}{c} 7 \\ 7 \\ 7 \\ 7 \\ 7 \\ 7 \\ 7 \\ 7 \\ 7 \\ 7 $			0-10-8	6-10-0	l		6-10-0	0-10-8
$ \begin{array}{c} 1 \\ 1 \\ 1 \\ 2 \\ 3 \\ 3 \\ 3 \\ 3 \\ 4 \\ 1 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2$					4x4	-		
13-8-0		CJ	1	8 F 5 4x8 ± 4 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		17	9	

Scale = 1:37.9

Plate Offsets (X, Y): [12:Edge,0-5-14]

	A, T). [12.Euge,0-5-1	4]										-	
Loading TCLL (roof) TCDL BCLL BCDL	(psf) 25.0 10.0 0.0 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC201	8/TPI2014	CSI TC BC WB Matrix-S	0.06 0.03 0.07	<b>DEFL</b> Vert(LL) Vert(CT) Horz(CT)	in n/a n/a 0.00	(loc) - - 12	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 73 lb	<b>GRIP</b> 197/144 FT = 20%
<u></u>	10.0	0000	Intozon	0/11/12/011	Matrix 0							Wolght. Yo lo	11-2070
LUMBER TOP CHORD BOT CHORD OTHERS SLIDER	2x4 SP No.2 2x4 SP No.2 2x3 SPF No.2 Left 2x4 SP No.2 1	I-8-5, Right 2x4 SP N			7-18=-119/26, 8-1 10-15=-100/111, 1 6-19=-104/73, 5-2 3-22=-109/131	1-14=-1	02/129,	,					
	1-8-5		1)	Unbalanced	roof live loads hav	/e been	considered fo	or					
BRACING TOP CHORD	Structural wood shea 6-0-0 oc purlins.	athing directly applied	d or 2)		7-16; Vult=115mp n; TCDL=6.0psf; B								
BOT CHORD	Rigid ceiling directly bracing.	applied or 10-0-0 oc		,	t. II; Exp C; Enclose and C-C Corner(	,	· · ·	pe)					
	(size) 2=13-6-4, 15=13-6-4 18=13-6-4 21=13-6-4 Max Horiz 2=-144 (L Max Uplift 2=-39 (LC (LC 13), 1 (LC 13), 1 (LC 12), 2 (LC 12), 2 Max Grav 2=159 (LC 14=132 (L 16=128 (L 18=119 (L	: 8), 12=-2 (LC 9), 14 5=-52 (LC 13), 16=-5 7=-42 (LC 13), 19=-4 0:-56 (LC 12), 21=-5 22=-80 (LC 12) 2 20), 12=154 (LC 1), C 20), 15=125 (LC 2), C 20), 15=127 (LC 2), C 22), 19=131 (LC 1), C 22), 19=131 (LC 1), C 19), 21=126 (LC 1)	$\begin{array}{c}73 \\73 \\ -57 \\7 \\7 \\7 \\7 \\7 \\7 \\7 \\7 \\7 \\7 \\7 \\7 \\7 \\7 \\7 \\7 \\7 \\7 \\7 \\7 \\7 \\7 \\7 \\7 \\7 \\7 \\7 \\7 \\7 \\7 \\7 \\7 \\7 \\7 \\7 \\7 \\7 \\7 \\7 \\7 \\7 \\7 \\7 \\7 \\7 \\7 \\7 \\7 \\7 \\7 \\7 \\7 \\7 \\7 \\7 \\7 \\7 \\7 \\7 \\7 \\7 \\7 \\7 \\7 \\7 \\7 \\7 \\7 \\7 \\7 \\7 \\7 \\7 \\7 \\7 \\7 \\7 \\7 \\7 \\7 \\7 \\7 \\7 \\7 \\7 \\7 \\7 \\7 \\7 \\7 \\7 \\7 \\7 \\7 \\7 \\7 \\7 \\7 \\7 \\7 \\7 \\7 \\7 \\7 \\7 \\7 \\7 \\7 \\7 \\7 \\7 \\7 \\7 \\7 \\7 \\7 \\7 \\7 \\7 \\7 \\7 \\7 \\7 \\7 \\7 \\7 \\7 \\7 \\7 \\7 \\7 \\7 \\7 \\7 \\7 \\7 \\7 \\7 \\7 \\7 \\7 \\7 \\7 \\7 \\7 \\7 \\7 \\7 \\7 \\7 \\7 \\7 \\7 \\7 \\7 \\7 \\7 \\7 \\7 \\7 \\7 \\7 \\7 \\7 \\7 \\7 \\7 \\7 \\7 \\7 \\7 \\7 \\7 \\7 \\7 \\7 \\7 \\7 \\7 \\7 \\7 \\7 \\7 \\7 \\7 \\7 \\7 \\7 \\7 \\7 \\7 \\7 \\7 \\7 \\7 \\7 \\7 \\7 \\7 \\7 \\7 \\7 \\7 \\7 \\7 \\7 \\7 \\7 \\7 \\7 \\7 \\7 \\7 \\7 \\7 \\7 \\7 \\7 \\7 \\7 \\7 \\7 \\7 \\7 \\7 \\7 \\7 \\7 \\7 \\7 \\7 \\7 \\7 \\7 \\7 \\7 \\7 \\7 \\7 \\7 \\7 \\7 \\7 \\7 \\7 \\7 \\7 \\7 \\7 \\7 \\7 \\7 \\7 \\7 \\7 \\7 \\7 \\7 \\7 \\7 \\7 \\7 \\7 \\7 \\7 \\7 \\7 \\7 \\7 \\7 \\7 \\7 \\7 \\7 \\7 \\7 \\7 \\7 \\7 \\7 \\7 \\7 \\7 \\7 \\7 \\7 \\7 \\7 \\7 \\7 \\7 \\7 \\7 \\7 \\7 \\7 \\7 \\7 \\7 \\7 \\7 \\7 \\7 \\7 \\7 \\7 \\7 \\7 \\7 \\7 \\7 \\7 \\7 \\7 \\7 \\7 \\7 \\7 \\7 \\7 \\7 \\7 \\7 \\7 \\7 \\7 \\7 \\7 \\7 \\7 \\7 \\7 \\7 \\7 \\7 \\7 \\7$	Exterior(2N) 11-10-0, Exti left and right exposed;C-C reactions shi DOL=1.60 Truss design only. For stu see Standard or consult qu All plates are Gable studs This truss ha chord live loa All bearings capacity of 5	4-2-0 to 6-10-0, C erior(2N) 11-10-0 exposed ; end ve C for members and own; Lumber DOL ned for wind loads ids exposed to wind Industry Gable E ialified building de to 1.5x4 MT20 unle spaced at 1-4-0 o is been designed ad nonconcurrent are assumed to be 65 psi.	corner(3F to 14-6-8 trical left d forces = =1.60 pl s in the p nd (norm End Deta signer a signer a si signer a signer a signer a	<ul> <li>8) 6-10-0 to a construction of the second and right a MWFRS for and right &amp; MWFRS for and of the true and of the true al to the face ils as applical ils as applical b per ANSI/TF wise indicated D psf bottom other live loa 2 crushing     </li> </ul>	r ), ble, Pl 1. d. ds.			E		MISSOLL
FORCES	(lb) - Maximum Com Tension	pression/Maximum	8)	bearing plate	hanical connection capable of withst	anding 2	lb uplift at jo				a	S NATHA	
TOP CHORD	7-8=-91/176, 8-9=-6	e=-112/57, 12-13=0/1 112, 3-4=-96/80,	,	uplift at joint 14, 45 lb upli uplift at joint	ift at joint 2, 42 lb u 16, 52 lb uplift at j ift at joint 19, 56 lb 21 and 80 lb uplift	oint 15, uplift at at joint	73 lb uplift at joint 20, 52 lk 22.					Kathan	Jos I
BOT CHORD	2-22=-52/150, 21-22 20-21=-52/150, 19-2 18-19=-52/150, 17-1 16-17=-52/150, 15-1 14-15=-52/150, 12-1	2=-52/150, 20=-52/150, 8=-52/150, 6=-52/150,	10	) This truss is International	d bearing conditio designed in accor Residential Code nd referenced star Standard	dance w sections	ith the 2018 R502.11.1 a	Ind			AA.	PE-2022	ENGINE


July 11,2023

**MiTek**[®]

16023 Swingley Ridge Rd. Chesterfield, MO 63017 314.434.1200 / MiTek-US.com



						RELEASE FOR CONSTRUCTION
Job	Truss	Truss Type	Qty	Plv	Roof - Osage Lot 82	AS NOTED FOR PLAN REVIEW
005	11000		Guy	,	Roof Osage Lot 02	DEVELOPMENT SERVICES 159435152
P240069-01	C2	Monopitch	1	1	Job Reference (optional	
Premier Building Supply (Spring	ghill, KS), Spring Hills, KS - 66083,				2023 MiTek Industries, Inc. Mc 2sB70Ha3NSaPanL8w3uITXb	

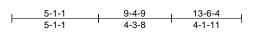


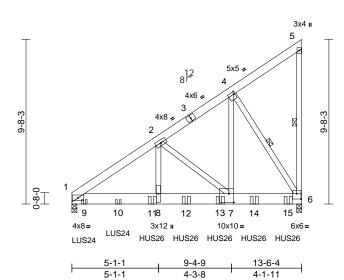
Scale = 1:63.8

ets (X, Y)	[2:0-1-13	,0-0-4],	[4:0-9-0,0-3-0],	[15:0-6-6,0-3-11]

00010 = 1.00.0													
Plate Offsets (	X, Y): [2:0-1-13,0-0-4	], [4:0-9-0,0-3-0], [15:	0-6-6,0-3-1	1]									
L <b>oading</b> TCLL (roof) TCDL 3CLL 3CDL	(psf) 25.0 10.0 0.0 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018/7	TPI2014	CSI TC BC WB Matrix-S	0.65 0.44 0.26	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.04 -0.09 0.01	(loc) 15-16 2-16 15	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 MT18HS Weight: 97 lb	<b>GRIP</b> 244/190 197/144 FT = 20%
OP CHORD	2x4 SP No.2 2x4 SP No.2 *Excep 2x3 SPF No.2 Left 2x4 SP No.2	athing directly applied cept end verticals. applied or 9-10-14 of 14-15 15=0-3-8 C 9) C 12), 15=-202 (LC 12 C 1), 15=658 (LC 19) pression/Maximum 227, 6-8=-276/239, 12=-204/204, 5=-600/366, 538/231, 5-7=-560/24 =-648/313, 16=-338/572 -214/183, 9-10=-77/64	3) 4) 5) 4) 5) 7) 8) 9) 10) 11) 11) 11) 10) 10) 11) 10) 10	only. For stu see Standard or consult qu Provide adec All plates are Gable studs This truss ha chord live loa All bearings a capacity of 5 Provide mecl bearing plate joint 15 and 8 This truss is International R802.10.2 ar Graphical pu	hanical connection of capable of withs 33 lb uplift at join designed in acco Residential Codu nd referenced sta filn representation ation of the purlin t.	ind (norm End Deta esigner as prevent views others so otherwi- bo. for a 10.0 with any pe SP No. on (by oth tranding 2 t 2. rdance w e sections undard AN n does no	al to the face ils as applica s per ANSI/T water pondin wise indicate se indicated. ) psf bottom other live loa 2 crushing ers) of truss 02 lb uplift a ith the 2018 rs502.11.1 a ISI/TPI 1. ot depict the	e), able, PI 1. g. ed. ads. to t				STATE OF J	THEF IN A
Vasd=91m Ke=1.00; ( exterior zo Interior (1) exposed ; members a	CE 7-16; Vult=115mph pph; TCDL=6.0psf; BC Cat. II; Exp C; Enclose one and C-C Exterior(2 4-1-8 to 13-4-8 zone; end vertical left and ri, and forces & MWFRS OL = 1.60 plate grip DC	DL=6.0psf; h=35ft; d; MWFRS (envelope P: -0-10-8 to 4-1-8, cantilever left and rig ght exposed;C-C for for reactions shown;									THE	PE-2022	042259 E

exposed; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60


July 11,2023


16023 Swingley Ridge Rd. Chesterfield, MO 63017 314.434.1200 / MiTek-US.com

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent colleges with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

						RELEASE FOR CONSTRUCTION
Job	Truss	Truss Type	Qty	Plv	Roof - Osage Lot 82	AS NOTED FOR PLAN REVIEW
000	Thuss Type		Gety T Ty		1001 - 03age L01 02	DEVELOPMENT SERVICES 159435153
P240069-01	C3	Monopitch Girder	opitch Girder 2		Job Reference (optional	

Run: 8.63 S Apr 6 2023 Print: 8.630 S Apr 6 2023 MiTek Industries, Inc. Man Jul 10 (2083)/1 3/26):24 ID:HXV5guHpHJt4OGKtoCERWpyGxNS-RfC?PsB70Hq3NSgPqnL8w3uITXtGKWrCDor764ztC?f

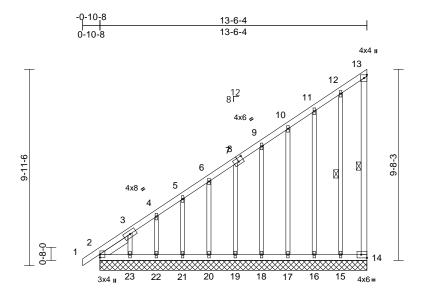




Scale = 1:67.8

Plate Offsets (X, Y): [4:0-0-12,0-1-12], [6:0-3-0,0-3-12], [7:0-3-8,0-6-4]

<ul> <li>LUMBER TOP CHORD 2x8 SP FNo.2 BOT CHORD 2x8 SP 2400F 2.0E 2x4 SP No.2</li> <li>Structural wood sheathing directly applied of TOP CHORD 3tructural wood sheathing directly applied of 10-0 oc bracing.</li> <li>Wind: ASCE 7-16; Vull=115mph (3-exended qual) Vas4=91mph, TCDL=6.0pt (Structural wood sheathing directly applied of top-CHORD 10-0-36, 6-0-38 Max Horz 1=384 (LC 9) Max Worz 1=5384 (LC 9) Max Worz 1=3384 (LC 9) Max Worz 1=3484 (LC 9) Max Worz 1=3484 (LC 9) Max Worz 1=3484 (LC 9) Max Worz 1=3484 (LC 9) Max Worz 1=348 (Max Horz 1) Max Worz 1=348</li></ul>
July 11,2023


Antite Research and the second second

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

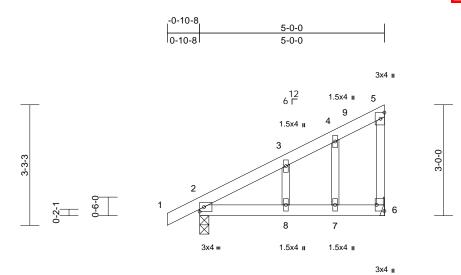
						RELEASE FOR CONSTRUCTION	
Job	Truss	Truss Type	Qty	Plv	Roof - Osage Lot 82	AS NOTED FOR PLAN REVIEW	
505	11035	Truss Type	Quy	I I I I	Rool - Osage Loi 62	DEVELOPMENT SERVICES 159435154	
P240069-01	O-01 C4 Monopitch Supported Gable		1	1	Job Reference (optional		
		-					

Scale = 1:58.3

Run: 8.63 S Apr 6 2023 Print: 8.630 S Apr 6 2023 MiTek Industries, Inc. Man Jul 10 (2) 8.2/1 3/2 2 2 1 10:GjwpzSgpHeSKmRw4J_pUy2yGxOF-RfC?PsB70Hq3NSgPqnL8w3uITXb KWrCDw1, 2.2/7 1 3/2



13-6-4	
1	


Scale = 1:58.3													
Plate Offsets (2	X, Y): [8:0-3-0,0-2-4]	, [14:Edge,0-2-0]										-	
Loading	(psf)	Spacing	2-0-0		csi		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15		TC	0.77	Vert(LL)	n/a	-	n/a	999	MT20	244/190
TCDL	10.0	Lumber DOL	1.15		BC	0.37	Vert(CT)	n/a	-	n/a	999		
BCLL	0.0	Rep Stress Incr	YES		WB	0.14	Horz(CT)	0.00	14	n/a	n/a		
BCDL	10.0	Code	IRC201	8/TPI2014	Matrix-S							Weight: 96 lb	FT = 20%
LUMBER					2-23=-178/230, 22	0 00- 17	8/220		10) Thi	e truce in		nod in accordan	ce with the 2018
TOP CHORD	2x4 SP No.2		D	OTCHORD	21-22=-178/230, 22		,						tions R502.11.1 and
BOT CHORD	2x4 SP No.2 2x4 SP No.2				19-20=-178/230, 2		,					erenced standa	
WEBS	2x4 SP No.2				17-18=-178/230, 1		,		LOAD				
OTHERS	2x3 SPF No.2				15-16=-178/230,				LOAD		<b>)</b> 01a	nuaru	
SLIDER	Left 2x4 SP No.2	1-8-10	V	/EBS	12-15=-221/207,								
BRACING			10-17=-98/107, 9-	18=-99/	101, 7-19=-99	/90,							
TOP CHORD	Structural wood she	athing directly applie	ed or		6-20=-99/90, 5-21	=-99/99,	4-22=-101/11	14,					
	6-0-0 oc purlins, ex				3-23=-179/231								
BOT CHORD													
	bracing. 1) Wind: ASC				E 7-16; Vult=115m	ph (3-se	cond gust)						
WEBS	1 Row at midpt	13-14, 12-15			oh; TCDL=6.0psf; E								
REACTIONS	(size) 2=13-6-4	, 14=13-6-4, 15=13-0	6-4,		at. II; Exp C; Enclo			ce)					
	16=13-6-	4, 17=13-6-4, 18=13	-6-4,		e and C-C Corner								
	19=13-6-	4, 20=13-6-4, 21=13	-6-4,		) 4-2-4 to 13-4-8 zo								
	22=13-6-	4, 23=13-6-4			ed ; end vertical lef								
	Max Horiz 2=399 (L				s and forces & MW			own;					
	Max Uplift 2=-101 (L				L=1.60 plate grip E gned for wind loads			100					
		_C 12), 16=-41 (LC 9	<i>ı</i> ),		tuds exposed to wi								
		_C 12), 18=-50 (LC 1			rd Industry Gable B								
		_C 12), 20=-52 (LC 1			ualified building de								
21=-51 (LC 12), 22=-54 (LC 12), 23=-118 (LC 12)			^{2),} 3		re 1.5x4 MT20 unle								
	Max Grav 2=258 (L		4		res continuous bot								m
		LC 20), 14=105 (LC 8 LC 20), 16=140 (LC	, _		s spaced at 1-4-0 o		5					GOF	AL WILL
		LC 20), 18=140 (LC LC 19), 18=127 (LC		) This truss h	as been designed	for a 10.	0 psf bottom					TATE OF	WISS W
		LC 19), 20=126 (LC		chord live lo	ad nonconcurrent	with any	other live load	ds.			4	A. A.	N.S.
		LC 19), 22=126 (LC		) All bearings	are assumed to b	e SP No	.2 crushing				H	S NATH	ANIEL YPAN
	23=160 (		- / ,	capacity of							H	FC	
FORCES	(lb) - Maximum Compression/Maximum 8) Provide me			chanical connectio						BIA	111	" and it	
	Tension				te capable of withs						0/1	41.	
TOP CHORD	1-2=0/16, 2-3=-841/	/547, 3-4=-686/452,			1 lb uplift at joint 2,						N/	MAAN	1 Mark
		-566/394, 6-7=-508/3	865,		pint 16, 63 lb uplift						N	K & WINN	BER /
	7-9=-449/337, 9-10	=-384/308,			Ib uplift at joint 19,						N	O PE-2022	042259
	10-11=-316/282, 11	-12=-244/253,		at joint 23.	pint 21, 54 lb uplift	ai joint 2	2 and 118 lb u	πiiqu			N	PE-2022	124
	12-13=-127/149, 13	-14=-60/74	0		te or shim required	to provi	do full booring	~			Y	1050	G
			9		n truss chord at joir			9				SIONA	IL EN
				Surface with	i truss choru at joir	n(s) 2.						ALL IL	

anne July 11,2023

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com) 16023 Swingley Ridge Rd. Chesterfield, MO 63017 314.434.1200 / MiTek-US.com

						RELEASE FOR CONSTRUCTION
Job	Truss	Truss Type	Qty	Ply	Roof - Osage Lot 82	AS NOTED FOR PLAN REVIEW DEVELOPMENT SERVICES 159435155
P240069-01	D1	Monopitch	4	1	Job Reference (optional	

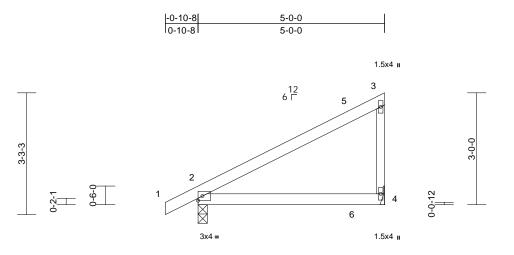
Run: 8.63 S Apr 6 2023 Print: 8.630 S Apr 6 2023 MiTek Industries, Inc. Mon Jul 10 (268)2/1 3/2 Page 24 ID:J9uoFkXWrWxKhW?zklsl4bzDH1v-RfC?PsB70Hq3NSgPqnL8w3ulTXbGr WrCDoi794z5691



	5-0-0

Plate Offsets (X, Y): [6:Edge,0-2-8]

Scale = 1:31.2


				-							
Loading (psf)	Spacing	2-0-0	csi		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof) 25.0	Plate Grip DOL	1.15	тс	0.20	Vert(LL)	0.04	7-8	>999	240	MT20	197/144
TCDL 10.0	Lumber DOL	1.15	BC	0.28	Vert(CT)	-0.05	7-8	>999	180		
BCLL 0.0	Rep Stress Incr	YES	WB	0.03	Horz(CT)	0.00	6	n/a	n/a		
BCDL 10.0	Code	IRC2018/TPI2014	Matrix-S		, , ,					Weight: 22 lb	FT = 20%
BCDL     10.0       LUMBER     TOP CHORD     2x4 SP No.2       BOT CHORD     2x4 SP No.2       WEBS     2x3 SPF No.2       OTHERS     2x3 SPF No.2       BRACING     TOP CHORD       TOP CHORD     Structural wood she       5-0-0 oc purlins, ex       BOT CHORD     Rigid ceiling directly bracing.	athing directly applie cept end verticals. applied or 10-0-0 or 5= Mechanical C 9) C 1), 6=-60 (LC 12) C 1), 6=207 (LC 1) pression/Maximum 71, 3-4=-102/61, 6/113 /74, 6-7=-67/74 /105 (3-second gust) DL=6.0psf; h=35ft; d; MWFRS (envelop (E) -0-10-8 to 4-1-8, c; cantilever left and ind right exposed;C-	IRC2018/TPI2014 6) Refer to gi 7) Provide me 6 and 59 lb 8) This truss Internation R802.10.2 LOAD CASE(S c	Matrix-S rder(s) for truss to t echanical connection the capable of withs o uplift at joint 2. Is designed in accord and referenced sta	truss conr on (by oth standing 6 ordance w e sections	nections. ers) of truss t 50 lb uplift at j ith the 2018 \$ R502.11.1 a	to joint		11/2	IVA		MISSOUR
<ol> <li>Lumber DOL=1.60 plate grip DO</li> <li>Truss designed for wind loads ir only. For studs exposed to wind see Standard Industry Gable En or consult qualified building desig</li> <li>Gable studs spaced at 1-4-0 oc.</li> <li>This truss has been designed for chord live load nonconcurrent within the standard standar</li></ol>	n the plane of the tru l (normal to the face) d Details as applical gner as per ANSI/TF r a 10.0 psf bottom	), ble, Pl 1.							A TRACK	athan	042259

16023 Swingley Ridge Rd. Chesterfield, MO 63017 314,434,1200 / MITek-US.com

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

						RELEASE FOR CONSTRUCTION
Job	Truss	Truss Type	Qty	Ply	Roof - Osage Lot 82	
P240069-01	D2	Monopitch	10	1	Job Reference (optional	DEVELOPMENT SERVICES 159435156 LEE'S SUMMIT, MISSOURI

Run: 8.63 S Apr 6 2023 Print: 8.630 S Apr 6 2023 MiTek Industries, Inc. Man Jul 10 (2) 8.92/1 3/2 9.24 ID:yf123P231X1sVXWTy3fc?NzDH2W-RfC?PsB70Hq3NSgPqnL8w3uITXbC WrCDore44:5971

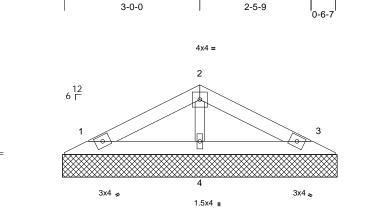


5-0-0

Scale =	1:30.9
---------	--------

Scale = 1.30.9												
Loading TCLL (roof) TCDL BCLL BCDL	(psf) 25.0 10.0 0.0 10.0	<b>Spacing</b> Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018/TPI2014	CSI TC BC WB Matrix-P	0.48 0.42 0.00	DEFL Vert(LL) Vert(CT) Horz(CT)	in 0.09 0.08 0.00	(loc) 2-4 2-4 4	l/defl >603 >751 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 19 lb	<b>GRIP</b> 197/144 FT = 20%
LUMBER												
TOP CHORD												
BOT CHORD WEBS	2x4 SP No.2 2x3 SPF No.2											
BRACING												
TOP CHORD			ed or									
BOT CHORD	5-0-0 oc purlins, ex Rigid ceiling directly		)C									
201 0110112	bracing.											
REACTIONS		4= Mechanical										
	Max Horiz 2=123 (LC Max Uplift 2=-59 (LC											
	Max Grav 2=292 (L0											
FORCES	(lb) - Maximum Com	npression/Maximum										
TOP CHORD	Tension 1-2=0/17, 2-3=-167/	/114. 3-4=-167/225										
BOT CHORD	,	,										
NOTES												
	CE 7-16; Vult=115mph nph; TCDL=6.0psf; BC											
Ke=1.00;	Cat. II; Exp C; Enclose	ed; MWFRS (envelo										
	one and C-C Exterior(2 ) 4-1-8 to 4-10-12 zone											
	) 4-1-8 to 4-10-12 2016 sed ; end vertical left a											
	ght exposed;C-C for m										A STATE	ADD -
grip DOL=	for reactions shown; Lu =1 60	umber DOL=1.60 pla	ate							G	TE OF	WISS S
	has been designed fo	r a 10.0 psf bottom								A		
	load nonconcurrent w are assumed to be: Jo									A	S NATHA	
capacity c		Int 2 SP NO.2 Clushi	ing							D	ALA TO	A TAN
	irder(s) for truss to trus										The start	The second
	nechanical connection late capable of withsta									Rb	Work	BER
4 and 59 l	lb uplift at joint 2.									N	O PE-2022	042259
	is designed in accordanal Residential Code s		and							Ŷ	A Free	154
	2 and referenced stand										S'SIONA	LENS
LOAD CASE	(S) Standard										alle	
											Lub.	41 2022




WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)



July 11,2023

							RELEASE FOR CONSTRUCTION
Job	Truss	Truss Type	Qt	y	Ply	Roof - Osage Lot 82	AS NOTED FOR PLAN REVIEW DEVELOPMENT SERVICES 159435157
P240069-01	PB1	Piggyback	2		1	Job Reference (optional	
Premier Building Supply (Sp	ringhill, KS), Spring Hills,	KS - 66083,	Run: 8.63 S Apr 6 2023 F ID:9wUnxfypw9GahpSGfC	Print: 8. Cwjgdzo	630 S Apr 6 zGe-RfC?Ps	2023 MiTek Industries, Inc. Mo B70Hq3NSgPqnL8w3uITXbGF	n Jul 10 (2007/13/2024) WrCDoi7542507

3-0-0



6-0-0

6-0-0

5-5-9

Scale - 1.25 5

Scale = 1:25.5												
Loading TCLL (roof)	(psf) 25.0	Spacing Plate Grip DOL	2-0-0 1.15	CSI TC	0.13	DEFL Vert(LL)	in n/a	(loc) -	l/defl n/a	L/d 999	PLATES MT20	<b>GRIP</b> 244/190
TCDL	10.0	Lumber DOL	1.15	BC	0.06	Vert(TL)	n/a	-	n/a	999		
BCLL	0.0	Rep Stress Incr	YES	WB Matrix D	0.03	Horiz(TL)	0.00	3	n/a	n/a	Mainht 10 lb	FT 200/
BCDL	10.0	Code	IRC2018/TPI2014	Matrix-P							Weight: 18 lb	FT = 20%
	6-0-0 oc purlins. Rigid ceiling directly bracing.	C 12), 3=-34 (LC 13),	d or 4=-7 4) capacity of 5 8) Provide mec bearing platt 1, 34 lb uplif 9) This truss is International R802.10.2 a 10) See Standal Detail for Cc consult qual 4=-7	chanical connectic e capable of withs t at joint 3 and 7 ll designed in acco I Residential Code nd referenced sta d Industry Piggyb onnection to base ified building desi	on (by oth standing 3 b uplift at rdance w e sections indard AN back Trus truss as a	ers) of truss t i0 lb uplift at ji joint 4. ith the 2018 i R502.11.1 a ISI/TPI 1. s Connection	oint					
FORCES	(lb) - Maximum Com Tension	npression/Maximum										
TOP CHORD	1-2=-55/46, 2-3=-55	5/52										
BOT CHORD	1-4=-1/25, 3-4=-1/25											
WEBS	2-4=-150/135											
NOTES												
,	ed roof live loads have	e been considered for										
this design 2) Wind ASC	i. CE 7-16; Vult=115mph	(3-second gust)										
,	Jimph: TCDL=6.0osf: h=35ft											

Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=35ft; Ke=1.00; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

1-2-12

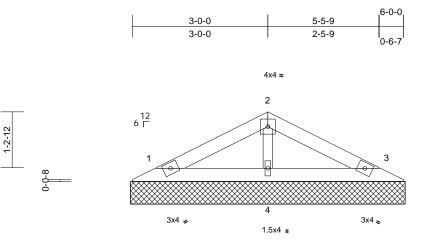
0-0-8

1-6-8

3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1. Gable requires continuous bottom chord bearing.

4)

5) Gable studs spaced at 1-4-0 oc.


6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.





WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent college with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

							RELEASE FOR CONSTRUCTION
Job Truss		Truco Turco		0.54	Plv	Deaf Ocean Lat 92	AS NOTED FOR PLAN REVIEW
300	Truss	Truss Type		Qty	Fiy	Roof - Osage Lot 82	DEVELOPMENT SERVICES 159435158
P240069-01	PB2	Piggyback		22	1	Job Reference (optional	
Premier Building Supply (Spring	hill, KS), Spring Hills, KS - 66083,		Run: 8.63 S Apr 6 2 ID:9wUnxfypw9Gahp	023 Print: 8. SGfCwjgdzo	630 S Apr 6 zGe-RfC?Ps		



6-0-0

1.25 5

Scale = 1:25.5													
Loading	(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15		TC	0.13	Vert(LL)	n/a	-	n/a	999	MT20	244/190
TCDL	10.0	Lumber DOL	1.15		BC	0.06	Vert(TL)	n/a	-	n/a	999		
BCLL	0.0	Rep Stress Incr	YES		WB	0.03	Horiz(TL)	0.00	3	n/a	n/a		
BCDL	10.0	Code	IRC20	18/TPI2014	Matrix-P							Weight: 18 lb	FT = 20%
LUMBER TOP CHORD BOT CHORD OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x4 SP No.2 2x3 SPF No.2 Structural wood she 6-0-0 oc purlins. Rigid ceiling directly bracing. (size) 1=6-1-0, 3 Max Horiz 1=23 (LC Max Uplift 1=-30 (LC (LC 12) Max Grav 1=115 (LC 1)	applied or 10-0-0 or 3=6-1-0, 4=6-1-0 12) C 12), 3=-34 (LC 13)	ed or 5 5 1 4=-7 <b>L</b>	<ul> <li>capacity of 5</li> <li>Provide mec bearing plate 1, 34 lb uplif</li> <li>This truss is International R802.10.2 a</li> <li>See Standar Detail for Co</li> </ul>	chanical connect e capable of witt t at joint 3 and designed in act Residential Co nd referenced s d Industry Pigg ponection to bass fied building des	tion (by oth hstanding 3 7 lb uplift at cordance w ode sections standard AN yback Trus se truss as a	ers) of truss to lb uplift at j joint 4. th the 2018 SR502.11.1 at ISI/TPI 1. s Connection	joint and 1					
FORCES	(lb) - Maximum Com Tension	npression/Maximum											
TOP CHORD	1-2=-55/46, 2-3=-55	5/52											
BOT CHORD	1-4=-1/25, 3-4=-1/2												
WEBS	2-4=-150/135												
NOTES													
1) Unbalance this design	ed roof live loads have n.	been considered fo	r										

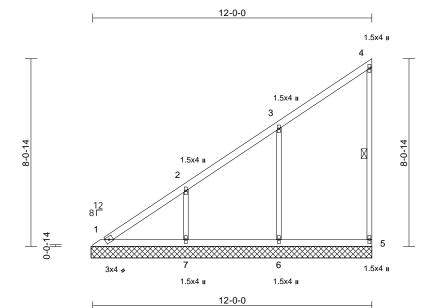
2) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=35ft; Ke=1.00; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

1-6-8

- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- Gable requires continuous bottom chord bearing. 4)
- 5) Gable studs spaced at 2-0-0 oc.
- 6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

# OF MISSO TE NATHANIEL FOX **WHEER** PE-2022042259 ASSIONAL ET

July 11,2023


DELEASE FOR CONSTRUCTION



 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.
 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not besign value to dury with with where outputs into design is based only door parameters shown, and is for an individual building design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members and property incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TPH1 Quality Criteria**, and **DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcscomponents.com)

							RELEASE FOR CONSTRUCTION
Job	Truss	Truss Type		Qty	Ply	Roof - Osage Lot 82	AS NOTED FOR PLAN REVIEW
P240069-01	V1	Valley		2	1	Job Reference (optional	DEVELOPMENT SERVICES 159435159 LEE'S SUMMIT, MISSOURI
Promior Building Supply (9	Pringhill KS) Spring Hills KS	66083	Pup: 9.63 S Apr. 6.20	Drint: 9	620 S Apr 6		

Run: 8.63 S Apr 6 2023 Print: 8.630 S Apr 6 2023 MiTek Industries, Inc. Man Jul 10 (2) 8.33/1 3/2 9.24 ID:3dyyPIGdvpWQ0?00jPG2wlyGxRL-RfC?PsB70Hq3NSgPqnL8w3uITXbGfWrCDoi794259?f



Scale = 1:49.5

Scale = 1.49.5		i			i	:						i	
Loading	(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15		TC	0.25	Vert(LL)	n/a	-	n/a	999	MT20	244/190
TCDL	10.0	Lumber DOL	1.15		BC	0.13	Vert(TL)	n/a	-	n/a	999		
BCLL	0.0	Rep Stress Incr	YES		WB	0.20	Horiz(TL)	0.00	5	n/a	n/a		
BCDL	10.0	Code	IRC201	8/TPI2014	Matrix-S							Weight: 50 lb	FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD	2x4 SP No.2 2x4 SP No.2 2x3 SPF No.2 2x3 SPF No.2 Structural wood she 6-0-0 oc purlins, ex Rigid ceiling directly	cept end verticals.	8)	chord live loa All bearings capacity of 5 Provide mec bearing plate 5, 169 lb upl This truss is	as been designed ad nonconcurrent are assumed to b 65 psi. hanical connectio e capable of withs ift at joint 6 and 1 designed in acco Residential Code	with any be SP No. on (by oth standing 6 71 lb upli rdance w	other live loa 2 crushing ers) of truss t i2 lb uplift at j it at joint 7. ith the 2018	o oint					
JOT CHORD	bracing.	applied of 10-0-0 0			nd referenced sta	Indard AN	ISI/TPI 1.						
WEBS	1 Row at midpt	4-5	LC	DAD CASE(S)	Standard								
	7=12-0-15 Max Horiz 1=335 (LC Max Uplift 5=-62 (LC 7=-171 (L Max Grav 1=183 (LC	C 12) 5 12), 6=-169 (LC 12 C 12)	2),										
FORCES	(lb) - Maximum Com Tension	pression/Maximum	,										
TOP CHORD	1-2=-377/251, 2-3=- 4-5=-116/84	,	51,										
BOT CHORD WEBS	1-7=-1/2, 6-7=-1/2, 5 3-6=-327/235, 2-7=-												
Vasd=91m Ke=1.00; C exterior zo	CE 7-16; Vult=115mph hph; TCDL=6.0psf; BC Cat. II; Exp C; Enclose ne and C-C Exterior(2 5-7-13 to 12-0-1 zone	DL=6.0psf; h=35ft; d; MWFRS (envelop E) 0-7-13 to 5-7-13;	,									STATE OF I	MISSOUR NIEL

 Lumber DOL=1.60 plate grip DOL=1.60
 Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

right exposed ; end vertical left exposed;C-C for members and forces & MWFRS for reactions shown;

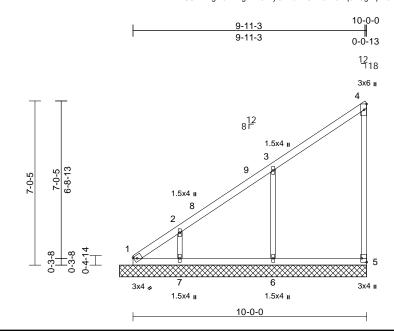
- 3) Gable requires continuous bottom chord bearing.
- 4) Gable studs spaced at 4-0-0 oc.



UMBER

July 11,2023

16023 Swingley Ridge Rd. Chesterfield, MO 63017 314.434.1200 / MiTek-US.com


PE-2022042259

SSIONAL ET

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent colleges with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

						RELEASE FOR CONSTRUCTION
Job	Truss	Truss Type	Qty	Plv	Roof - Osage Lot 82	AS NOTED FOR PLAN REVIEW
005	11000		Guy	,	1001 Obage Lot 02	DEVELOPMENT SERVICES 159435160
P240069-01	V2	Valley	2	1	Job Reference (optional	

Run: 8.63 S Apr 6 2023 Print: 8.630 S Apr 6 2023 MiTek Industries, Inc. Man Jul 10 (2) 83/3/1 3/2 2 10:XHTUUTtwhgM5ZxmgHzAJ4LyGxRs-RfC?PsB70Hq3NSgPqnL8w3uITXb KWrCDwJyzyC?f



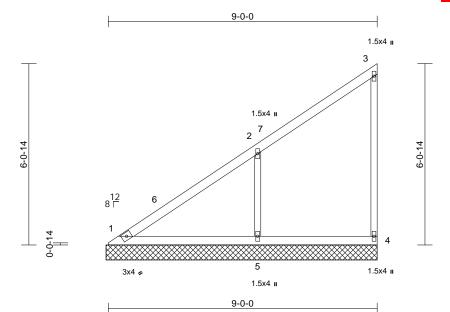
Scale = 1:49.3

Plate Offsets (X, Y): [5:Edge,0-2-8]

	X, 1). [0.Edgc,0 2 0]												-
Loading	(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15		TC	0.60	Vert(LL)	n/a	-	n/a	999	MT20	244/190
TCDL	10.0	Lumber DOL	1.15		BC	0.20	Vert(TL)	n/a	-	n/a	999		
BCLL	0.0	Rep Stress Incr	YES		WB	0.14	Horiz(TL)	0.00	5	n/a	n/a		
BCDL	10.0	Code	IRC2018/	/TPI2014	Matrix-S							Weight: 42 lb	FT = 20%
LUMBER TOP CHORD BOT CHORD	2x4 SP No.2 2x4 SP No.2		,	chord live lo	as been designed f ad nonconcurrent are assumed to be	with any	other live loa	ds.					
WEBS	2x3 SPF No.2			capacity of 5			-						
OTHERS													
BRACING													
TOP CHORD	Structural wood she 6-0-0 oc purlins, ex			uplift at joint		. ,		3 10					
BOT CHORD	Rigid ceiling directly bracing.		c 8)		designed in accor Residential Code			nd					
	7=10-6-1 Max Horiz 1=285 (LC Max Uplift 1=-77 (LC 6=-176 (L Max Grav 1=164 (LC 6=426 (LC	C 9) C 10), 5=-59 (LC 9), C 12), 7=-148 (LC 1 C 9), 5=164 (LC 19) C 19), 7=317 (LC 19	LO 12) ))	AD CASE(S)	nd referenced star Standard								
FORCES	(lb) - Maximum Corr Tension	pression/Maximum											
TOP CHORD	1-2=-503/322, 2-3=- 4-5=-129/138	372/260, 3-4=-177/	152,										
BOT CHORD	1-7=-133/145, 6-7=-		145										
NEBS	3-6=-344/303, 2-7=-	249/215											(The
NOTES												6 OF	APAN
Vasd=91m Ke=1.00; C exterior zo Interior (1)	CE 7-16; Vult=115mph nph; TCDL=6.0psf; BC Cat. II; Exp C; Enclose one and C-C Exterior(2 5-9-1 to 10-6-1 zone; end vertical left and rig	DL=6.0psf; h=35ft; d; MWFRS (envelop E) 0-9-1 to 5-9-1, cantilever left and r	ight							-		STATE OF	
	and forces & MWFRS		ı;								X/		The hast
	OL=1.60 plate grip DC		100								M	V namoki	BER

- Truss designed for wind loads in the plane of the truss 2) only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- Gable requires continuous bottom chord bearing. 3)
- 4) Gable studs spaced at 4-0-0 oc.

July 11,2023


PE-2022042259

SIONAL ET

 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.
 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not besign value for use only with with twit even connectors. This design is based only upon parameters shown, and is for an individual building designer must verify the applicability of design parameters and properly incorporate this design into the overall building designer must verify the applicability of design parameters and properly incorporate this design into the overall building designer. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcscomponents.com)

16023 Swingley Ridge Rd. Chesterfield MO 63017 314.434.1200 / MiTek-US.com

						RELEASE FOR CONSTRUCTION
Job	Truss	Truss Type	Qty	Ply	Roof - Osage Lot 82	AS NOTED FOR PLAN REVIEW DEVELOPMENT SERVICES 159435161
P240069-01	V3	Valley	2	1	Job Reference (optional	
Premier Building Supply (Spri	nghill, KS), Spring Hills, KS - 66083,				2023 MiTek Industries, Inc. Mc 0Hq3NSqPqnL8w3uITXbGKW	



Scale = 1:38.6

Loading	,	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15	TC	0.70	Vert(LL)	n/a	-	n/a	999	MT20	244/190
TCDL	10.0	Lumber DOL	1.15	BC	0.18	Vert(TL)	n/a	-	n/a	999		
BCLL	0.0	Rep Stress Incr	YES	WB	0.10	Horiz(TL)	0.00	4	n/a	n/a		
BCDL	10.0	Code	IRC2018/TPI2014	Matrix-S							Weight: 36 lb	FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	Max Horiz 1=242 (LC Max Uplift 1=-4 (LC 8) (LC 12)	ept end verticals. applied or 10-0-0 oc 4=9-0-15, 5=9-0-15 9) ), 4=-50 (LC 9), 5=- 20), 4=143 (LC 19)	capacity of 7) Provide me bearing pla 1, 50 lb upli 8) This truss is Internationa R802.10.2 : LOAD CASE(S	chanical connection e capable of withs ft at joint 4 and 20 designed in acco I Residential Code and referenced sta	on (by oth standing 4 99 lb uplift ordance w e sections	ers) of truss t l b uplift at joi at joint 5. ith the 2018 s R502.11.1 a	int					

FORCES	(lb) - Maximum Compression/Maximum
	Tension
TOP CHORD	1-2=-388/267, 2-3=-172/145, 3-4=-134/142
BOT CHORD	1-5=-116/126, 4-5=-116/126
WEBS	2-5=-399/340

### NOTES

- 1) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=35ft; Ke=1.00; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) 0-5-12 to 5-5-12, Interior (1) 5-5-12 to 9-0-1 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1. 3) Gable requires continuous bottom chord bearing.

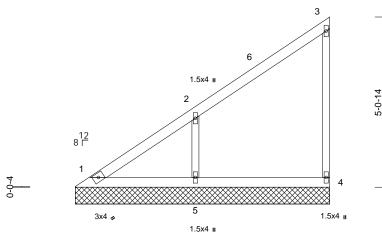
Gable studs spaced at 4-0-0 oc. 4)

- 5)
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

E July 11,2023 16023 Swingley Ridge Rd.

 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.
 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not besign value to dury with with where outputs into design is based only door parameters shown, and is for an individual building design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members and property incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TPH1 Quality Criteria**, and **DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcscomponents.com)




Chesterfield MO 63017 314.434.1200 / MiTek-US.com

OF MISSO

NATHANIEL

A

						RELEASE FOR CONSTRUCTION
Job	Truss	Truss Type	Qty	Ply	Roof - Osage Lot 82	AS NOTED FOR PLAN REVIEW DEVELOPMENT SERVICES 159435162
P240069-01	V4	Valley	2	1	Job Reference (optional	LEE'S SUMMIT, MISSOURI
Premier Building Supply	(Springhill, KS), Spring Hills, K				<ul> <li>6 2023 MiTek Industries, Inc. Mc</li> <li>PsB70Hq3NSgPqnL8w3uITXbGK</li> </ul>	n Jul 10 <b>(258)3/13/2024</b> VrCD0i7 Julien
			7-6-15			
					1.5x4 <b>n</b>	
	_				3	



7-6-15

Scale = 1:34.3

Loading TCLL (roof) TCDL BCLL BCDL	25.0 F 10.0 L 0.0 F	<b>Spacing</b> Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018/TPI2014	CSI TC BC WB Matrix-P	0.45 0.13 0.08	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 4	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 29 lb	<b>GRIP</b> 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	Max Horiz 1=199 (LC 9	pt end verticals. pplied or 10-0-0 oc =7-6-15, 5=7-6-15	d or LOAD CASE(S	chanical connecti te capable of with ft at joint 4 and 1 s designed in acco al Residential Coc and referenced st	on (by oth standing 1 72 lb uplift ordance w le sections	ers) of truss t 6 lb uplift at j at joint 5. ith the 2018 \$ R502.11.1 a	joint					

5=418 (LC 19) FORCES (lb) - Maximum Compression/Maximum Tension TOP CHORD 1-2=-353/236, 2-3=-165/135, 3-4=-138/151 BOT CHORD 1-5=-96/105, 4-5=-96/105 WEBS 2-5=-330/305

Max Grav

1=132 (LC 20), 4=158 (LC 19),

5-0-14

### NOTES

- Wind: ASCE 7-16; Vult=115mph (3-second gust) 1) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=35ft; Ke=1.00; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) 0-5-12 to 5-5-12, Interior (1) 5-5-12 to 7-6-1 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1. 3) Gable requires continuous bottom chord bearing.

4)

- Gable studs spaced at 4-0-0 oc.
- 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.





 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.
 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not beigh valid for use only with with with sets outputs into design is based only door parameters shown, and is for an individual dualing component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria**, and **DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcscomponents.com)



						RELEASE FOR CONSTRUCTION
Job	Truss	Truss Type	Qty	Ply	Roof - Osage Lot 82	AS NOTED FOR PLAN REVIEW DEVELOPMENT SERVICES 159435163
P240069-01	V5	Valley	2	1	Job Reference (optional	I59435163 LEE'S SUMMIT, MISSOURI
Premier Building Supply (	Springhill, KS), Spring Hills, KS	5 - 66083,			6 2023 MiTek Industries, Inc. Mo PsB70Hq3NSgPqnL8w3uITXbGk	
			6-0-0			
					1.5x4 u	
	_	_		6	3	

1.5x4 u

2



12 8 Г

Scale = 1:30.2

	( )											DI 4750	
Loading	(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15		TC	0.28	Vert(LL)	n/a	-	n/a	999	MT20	244/190
TCDL	10.0	Lumber DOL	1.15		BC	0.12	Vert(TL)	n/a	-	n/a	999		
BCLL	0.0	Rep Stress Incr	YES		WB	0.07	Horiz(TL)	0.00	4	n/a	n/a		
BCDL	10.0	Code	IRC2018/	TPI2014	Matrix-P							Weight: 22 lb	FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	6-0-0 oc purlins, exc Rigid ceiling directly bracing. (size) 1=6-0-15, Max Horiz 1=157 (LC Max Uplift 1=-56 (LC 5=-156 (LI Max Grav 1=83 (LC	applied or 10-0-0 oc 4=6-0-15, 5=6-0-15 2 9) 5 10), 4=-41 (LC 9),	7) 8) For LOA	capacity of 5 Provide med bearing plate 1, 41 lb uplif This truss is International	hanical connect capable of with at joint 4 and 1 designed in acc Residential Coo nd referenced s	tion (by oth Instanding 5 56 lb uplift cordance w de sections	ers) of truss t 66 lb uplift at j at joint 5. ith the 2018 5 R502.11.1 a	oint					
FORCES	(LC 19) (Ib) - Maximum Com Tension	pression/Maximum											

6-0-0

WEBS NOTES

TOP CHORD

BOT CHORD

 Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=35ft; Ke=1.00; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) 0-5-12 to 5-5-12, Interior (1) 5-5-12 to 6-0-1 zone; cantilever left and right exposed; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

1-5=-76/82, 4-5=-76/82

2-5=-298/299

1-2=-331/216, 2-3=-155/120, 3-4=-135/154

4-0-14

0-0-14

 Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
 Gable requires continuous bottom chord bearing.

4) Gable studs spaced at 4-0-0 oc.

 This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.



4-0-14

비 4

1.5x4 🛚

July 11,2023

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSITPTI Quality Criteria**, and **DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcscomponents.com)



Job	Truss		Truss Type		Qty	Ply	<u> </u>	Roof - Osag	une Lot 8'	2	AS NOTE	E FOR CONSTRUCTION ED FOR PLAN REVIEW
P240069-01	V6					1			•			LOPMENT SERVICES 159435164
			Valley	0 (2) S. Apr. (	2			Job Refere				
Premier Building Supply (	ວpringriiii, ເເວ <i>ງ</i> , ວ _າ	ring Hills, no - 00000,		Run: 8.63 S Apr 6 ID:MAIKAik0HIzfkF(	2023 Fii QZ89Tk/	nt: 8.030 S AF 80yGxS1-RfC	pr o 202 ;?PsB70	23 Millek ind /Hq3NSgPqr	Iustries, in 1L8w3uITX	KbGKW	/rCDoi7J42J <del>01</del>	13/2024
				4	4-0-0							
				I			I					
							1.5>	ix4 u				
					12 8 Г		2			_		
				8	· [	/	Ø					
						//						
		3-0-14		/	/				-14			
		о М							3-0-14			
				1								
								3				
					***			0		_		
			KXX (	2.4		******						
				3x4 🍫			1.5)	ix4 u				
				4	4-0-0							
Scale = 1:25.1		<del>.                                    </del>			<del></del>			<u> </u>			r	
Loading TCLL (roof)	(psf) 25.0	Spacing Plate Grip DOL	2-0-0 1.15	CSI TC		DEFL Vert(LL)	in n/a	. ,			PLATES MT20	<b>GRIP</b> 244/190
TCDL	10.0	Lumber DOL	1.15	BC	0.17	Vert(TL)	n/a	a -	n/a	999		
BCLL BCDL	0.0 10.0	Rep Stress Incr Code	YES IRC2018/TPI2014		0.00	Horiz(TL)	0.00	0 3	n/a	n/a	Weight: 15 lb	FT = 20%
LUMBER TOP CHORD 2x4 SF BOT CHORD 2x4 SF			Internatio	ss is designed in accordational Residential Code se 0.2 and referenced standa	ections F	R502.11.1 a	and					

2x3 SPF No.2 LOAD CASE(S) Standard TOP CHORD Structural wood sheathing directly applied or 4-7-5 oc purlins, except end verticals. BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS (size) 1=4-6-15, 3=4-6-15 Max Horiz 1=114 (LC 9) Max Uplift 1=-15 (LC 12), 3=-58 (LC 12) Max Grav 1=169 (LC 1), 3=186 (LC 19) FORCES (lb) - Maximum Compression/Maximum Tension TOP CHORD 1-2=-163/120, 2-3=-154/185

BOT CHORD 1-3=-55/60 NOTES

WEBS BRACING

- Wind: ASCE 7-16; Vult=115mph (3-second gust) 1) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=35ft; Ke=1.00; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- Gable requires continuous bottom chord bearing. 3)

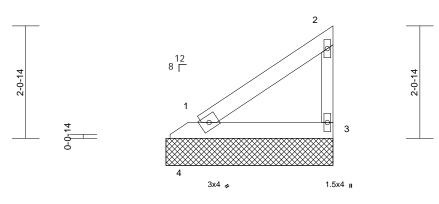
Gable studs spaced at 4-0-0 oc. 4)

This truss has been designed for a 10.0 psf bottom 5) chord live load nonconcurrent with any other live loads. All bearings are assumed to be SP No.2 crushing 6)

capacity of 565 psi. 7)

Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 15 lb uplift at joint 1 and 58 lb uplift at joint 3.

OF MISSO TE NATHANIEL FOX DAMARK PE-2022042259 SSIONAL ET July 11,2023


> 16023 Swingley Ridge Rd. Chesterfield MO 63017 314.434.1200 / MiTek-US.com

 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.
 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not beign value of use only wan win exec connectors, this design is based only upon parameters shown, and is for an individual building domponent, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality** Criteria, and **DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcscomponents.com)

						RELEASE FOR CONSTRUCTION
Job	Truss	Truss Type	Qty	Ply	Roof - Osage Lot 82	AS NOTED FOR PLAN REVIEW
P240069-01	V7	Valley	2	1	Job Reference (optional	DEVELOPMENT SERVICES 159435165 LEE'S SUMMIT, MISSOURI
Premier Building Supply (Spring	hill, KS), Spring Hills, KS - 66083,				2023 MiTek Industries, Inc. Mc B70Hq3NSqPqnL8w3uITXbGł	n Jul 10 25834/1 2/299:01

ID:xbdBYgi8_Nb4tni_T1w1WOyGxS4-RfC?PsB70Hq3NSgPqnL8w3uITXbGf WrCDoi7y4z569





3-0-0

Scale - 1.21.2

Scale = 1:21.2		i											
Loading	(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15		TC	0.11	Vert(LL)	n/a	-	n/a	999	MT20	244/190
TCDL	10.0	Lumber DOL	1.15		BC	0.05	Vert(TL)	n/a	-	n/a	999		
BCLL	0.0	Rep Stress Incr	YES		WB	0.00	Horiz(TL)	0.00	3	n/a	n/a		
BCDL	10.0	Code	IRC2018/	TPI2014	Matrix-P							Weight: 10 lb	FT = 20%
	Max Horiz 4=72 (LC	cept end verticals. applied or 10-0-0 or , 3=3-0-15, 4=3-0-15 9)	8) ed or LOA	bearing plate 3 and 47 lb u This truss is International	hanical conne e capable of w uplift at joint 4. designed in a Residential C nd referenced Standard	ithstanding 3 ccordance w ode sections	89 lb uplift at ith the 2018 \$ R502.11.1 a	joint					
	Max Uplift 3=-39 (LC Max Grav 1=143 (LC	C 3), 3=110 (LC 19),											
FORCES	4=-14 (LC (Ib) - Maximum Corr	,											
IONOLO	Tension	pression/maximum											
TOP CHORD	1-2=-105/77, 2-3=-9	9/121											
BOT CHORD	1-4=-160/107, 1-3=-	35/38											
NOTES													
Vasd=91m	CE 7-16; Vult=115mph nph; TCDL=6.0psf; BC Cat. II; Exp C; Enclose	DL=6.0psf; h=35ft;	e)										



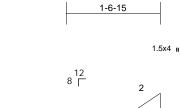
exterior zone and C-C Exterior(2E) zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

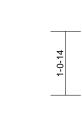
- 2) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1. Gable requires continuous bottom chord bearing. 3)
- 4) Gable studs spaced at 4-0-0 oc.
- 5)
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 6) All bearings are assumed to be SP No.2 crushing capacity of 565 psi.

OF MISSO TE NATHANIEL FOX **WIMBER** PE-2022042259 SSIONAL EN

July 11,2023




 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.
 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not besign value for use only with with twit even connectors. This design is based only upon parameters shown, and is for an individual building designer must verify the applicability of design parameters and properly incorporate this design into the overall building designer must verify the applicability of design parameters and properly incorporate this design into the overall building designer. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcscomponents.com)


						RELEASE FOR CONSTRUCTION
Job	Truss	Truss Type	Qty	Ply	Roof - Osage Lot 82	AS NOTED FOR PLAN REVIEW DEVELOPMENT SERVICES 159435166
P240069-01	V8	Valley	2	1	Job Reference (optional	

1-0-14

0-0-4

Run: 8.63 S Apr 6 2023 Print: 8.630 S Apr 6 2023 MiTek Industries, Inc. Man Jul 10 26834/1 3/26924 ID:3pNgiJfdw84f0A0DEBr5MYyGxS8-RfC?PsB70Hq3NSgPqnL8w3uITXbG WrCDoiN42597f

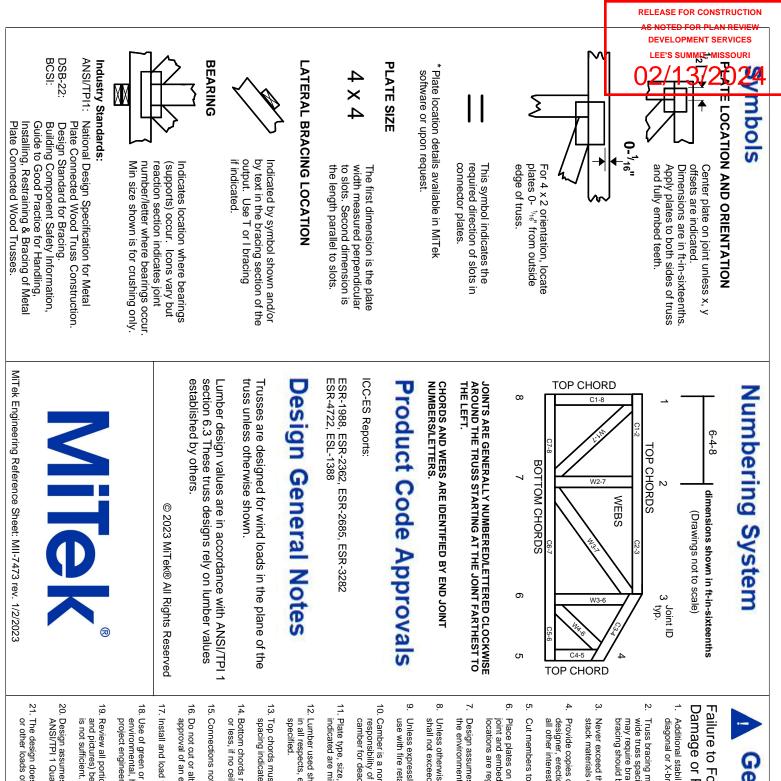




3x4 🍫

1.5x4 🛚

3




Scale = 1:19.3

Scale = 1:19.3												
Loading TCLL (roof) TCDL BCLL BCDL	(psf) 25.0 10.0 0.0 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018/TPI2014	CSI TC BC WB Matrix-P	0.02 0.01 0.00	<b>DEFL</b> Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 3	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 5 lb	<b>GRIP</b> 244/190 FT = 20%
FORCES TOP CHORD BOT CHORD NOTES 1) Wind: ASG Vasd=91n Ke=1.00; ( exterior zc and right e exposed; reactions : DOL=1.60 2) Truss des only. For see Stand or consult 3) Gable req 4) Gable stud 5) This truss chord live 6) All bearing capacity o 7) Provide m bearing pl	2x4 SP No.2 2x3 SPF No.2 Structural wood she 1-7-5 oc purlins, ex Rigid ceiling directly bracing. (size) 1=1-6-15, Max Horiz 1=29 (LC Max Uplift 1=-5 (LC (Max Grav 1=46 (LC (lb) - Maximum Com 1-2=-42/32, 2-3=-44 1-3=-14/15 CE 7-16; Vult=115mph nph; TCDL=6.0psf; BC Cat. II; Exp C; Enclose one and C-C Exterior(2 exposed; end vertical I shown; Lumber DOL=' ) signed for wind loads ir studs exposed to wind and loadstry Gable En qualified building desi uires continuous botto ds spaced at 4-0-0 oc. has been designed for load nonconcurrent wi gs are assumed to be S	cept end verticals. applied or 10-0-0 or 3=1-6-15 9) 12), 3=-15 (LC 12) 1), 3=50 (LC 19) pression/Maximum /50 (3-second gust) DL=6.0psf; h=35ft; d; MWFRS (envelop E) zone; cantilever I left and right orces & MWFRS for 1.60 plate grip n the plane of the tru (normal to the face) d Details as applicat gner as per ANSI/TF m chord bearing. r a 10.0 psf bottom th any other live loar SP No.2 crushing (by others) of truss to	be) eft ss be, ple, ple, ple, ple, ple, ple, ple, pl	designed in accorda Residential Code se nd referenced stand Standard	ections	R502.11.1 a	nd			R	PE-2022	BER DOU

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

16023 Swingley Ridge Rd. Chesterfield, MO 63017 314.434.1200 / MiTek-US.com



# General Safety Notes

Failure to Follow Could Cause Property Damage or Personal Injury

- 1. Additional stability bracing for truss system, e.g. diagonal or X-bracing, is always required. See BCSI.
- Truss bracing must be designed by an engineer. For wide truss spacing, individual lateral braces themselves may require bracing, or alternative Tor1 bracing should be considered.
- Never exceed the design loading shown and never stack materials on inadequately braced trusses.
- Provide copies of this truss design to the building designer, erection supervisor, property owner and all other interested parties.
- 5. Cut members to bear tightly against each other.
- Place plates on each face of truss at each joint and embed fully. Knots and wane at joint locations are regulated by ANSI/TPI 1.
- Design assumes trusses will be suitably protected from the environment in accord with ANSI/TPI 1.
- Unless otherwise noted, moisture content of lumber shall not exceed 19% at time of fabrication.
- Unless expressly noted, this design is not applicable for use with fire retardant, preservative treated, or green lumber.
- Camber is a non-structural consideration and is the responsibility of truss fabricator. General practice is to camber for dead load deflection.
- 11. Plate type, size, orientation and location dimensions indicated are minimum plating requirements.
- 12. Lumber used shall be of the species and size, and in all respects, equal to or better than that specified
- Top chords must be sheathed or purlins provided at spacing indicated on design.
- Bottom chords require lateral bracing at 10 ft. spacing, or less, if no ceiling is installed, unless otherwise noted.
- 15. Connections not shown are the responsibility of others.
- Do not cut or alter truss member or plate without prior approval of an engineer.
- 17. Install and load vertically unless indicated otherwise.
- Use of green or treated lumber may pose unacceptable environmental, health or performance risks. Consult with project engineer before use.
- Review all portions of this design (front, back, words and pictures) before use. Reviewing pictures alone is not sufficient.
- 20. Design assumes manufacture in accordance with ANSI/TPI 1 Quality Criteria.
- The design does not take into account any dynamic or other loads other than those expressly stated.