

RE: B220009 Lot 96 RR, Somerset - Craftsman

Site Information:

Customer: Summit Homes Project Name: B220009 Lot/Block: 96 Model: So Address: 1712 SW Hightower Dr Subdivisio City: Lee's Summit State: MC

B220009 Model: Somerset - Craftsman Subdivision: Reserve at Stoney Creek State: MO

General Truss Engineering Criteria & Design Loads (Individual Truss Design Drawings Show Special Loading Conditions):

Design Code: IRC2018/TPI2014 Wind Code: ASCE 7 - 16[Low Rise] Roof Load: 45.0 psf Design Program: MiTek 20/20 8.7 Wind Speed: 115 mph Floor Load: N/A psf

This package includes 40 individual, dated Truss Design Drawings and 0 Additional Drawings.

No. Seal# Truss Name Date No. Seal# Truss Name Date 1 I62692717 A1 12/26/2023 21 I62692737 D1 12/26/2023 2 I62692718 A2 12/26/2023 22 I62692738 D2 12/26/2023 3 I62692719 A3 12/26/2023 23 I62692739 D3 12/26/2023 4 I62692720 A4 12/26/2023 24 I62692740 P1 12/26/2023 5 I62692721 A5 12/26/2023 25 I62692741 P2 12/26/2023 6 I62692722 B1 12/26/2023 26 I62692742 V1 12/26/2023 7 I62692743 V2 12/26/2023 8 I62692743 V2 12/26/2023 12/26/2023 8 I62692743 V2 12/26/2023 12/26/2023 12/26/2023 12/26/2023 12/26/2023 12/26/2023 12/26/2023 12/26/2023 12/26/2023 12/26/2023 12/26/2023 12/26/2023 12/26/2023 12/26/2023 12/26/20
3 162692719 A3 12/26/2023 23 162692739 D3 12/26/2023 4 162692720 A4 12/26/2023 24 162692740 P1 12/26/2023 5 162692721 A5 12/26/2023 25 162692741 P2 12/26/2023 6 162692722 B1 12/26/2023 26 162692742 V1 12/26/2023 7 162692723 B2 12/26/2023 27 162692743 V2 12/26/2023 8 162692724 B3 12/26/2023 28 162692744 V3 12/26/2023 9 162692725 B4 12/26/2023 29 162692745 V4 12/26/2023 10 162692726 B5 12/26/2023 30 162692746 V5 12/26/2023 11 162692727 B6 12/26/2023 31 162692747 V6 12/26/2023 12 162692728 C1 12/26/2023 32 162692748 V7
4 162692720 A4 12/26/2023 24 162692740 P1 12/26/2023 5 162692721 A5 12/26/2023 25 162692741 P2 12/26/2023 6 162692722 B1 12/26/2023 26 162692742 V1 12/26/2023 7 162692723 B2 12/26/2023 27 162692743 V2 12/26/2023 8 162692724 B3 12/26/2023 28 162692744 V3 12/26/2023 9 162692725 B4 12/26/2023 29 162692745 V4 12/26/2023 10 162692726 B5 12/26/2023 30 162692746 V5 12/26/2023 11 162692727 B6 12/26/2023 31 162692747 V6 12/26/2023 12 162692728 C1 12/26/2023 32 162692748 V7 12/26/2023 13 162692729 C2 12/26/2023 33 162692749 V8 12/26/2023 14 162692730 C3 12/26/2023 34 </td
5 162692721 A5 12/26/2023 25 162692741 P2 12/26/2023 6 162692722 B1 12/26/2023 26 162692742 V1 12/26/2023 7 162692723 B2 12/26/2023 27 162692743 V2 12/26/2023 8 162692724 B3 12/26/2023 28 162692744 V3 12/26/2023 9 162692725 B4 12/26/2023 29 162692745 V4 12/26/2023 10 162692726 B5 12/26/2023 30 162692746 V5 12/26/2023 11 162692727 B6 12/26/2023 31 162692747 V6 12/26/2023 12 162692728 C1 12/26/2023 32 162692748 V7 12/26/2023 13 162692729 C2 12/26/2023 33 162692749 V8 12/26/2023 14 162692730 C3 12/26/2023 34 162692750 V9 12/26/2023
6 162692722 B1 12/26/2023 26 162692742 V1 12/26/2023 7 162692723 B2 12/26/2023 27 162692743 V2 12/26/2023 8 162692724 B3 12/26/2023 28 162692744 V3 12/26/2023 9 162692725 B4 12/26/2023 29 162692745 V4 12/26/2023 10 162692726 B5 12/26/2023 30 162692746 V5 12/26/2023 11 162692727 B6 12/26/2023 31 162692747 V6 12/26/2023 12 162692728 C1 12/26/2023 32 162692748 V7 12/26/2023 13 162692729 C2 12/26/2023 33 162692749 V8 12/26/2023 14 162692730 C3 12/26/2023 34 162692750 V9 12/26/2023
7 I62692723 B2 12/26/2023 27 I62692743 V2 12/26/2023 8 I62692724 B3 12/26/2023 28 I62692744 V3 12/26/2023 9 I62692725 B4 12/26/2023 29 I62692745 V4 12/26/2023 10 I62692726 B5 12/26/2023 30 I62692746 V5 12/26/2023 11 I62692727 B6 12/26/2023 31 I62692747 V6 12/26/2023 12 I62692728 C1 12/26/2023 32 I62692748 V7 12/26/2023 13 I62692729 C2 12/26/2023 33 I62692749 V8 12/26/2023 14 I62692730 C3 12/26/2023 34 I62692750 V9 12/26/2023
8 162692724 B3 12/26/2023 28 162692744 V3 12/26/2023 9 162692725 B4 12/26/2023 29 162692745 V4 12/26/2023 10 162692726 B5 12/26/2023 30 162692746 V5 12/26/2023 11 162692727 B6 12/26/2023 31 162692747 V6 12/26/2023 12 162692728 C1 12/26/2023 32 162692748 V7 12/26/2023 13 162692729 C2 12/26/2023 33 162692749 V8 12/26/2023 14 162692730 C3 12/26/2023 34 162692750 V9 12/26/2023
9 I62692725 B4 12/26/2023 29 I62692745 V4 12/26/2023 10 I62692726 B5 12/26/2023 30 I62692746 V5 12/26/2023 11 I62692727 B6 12/26/2023 31 I62692747 V6 12/26/2023 12 I62692728 C1 12/26/2023 32 I62692748 V7 12/26/2023 13 I62692729 C2 12/26/2023 33 I62692749 V8 12/26/2023 14 I62692730 C3 12/26/2023 34 I62692750 V9 12/26/2023
10162692726B512/26/202330162692746V512/26/202311162692727B612/26/202331162692747V612/26/202312162692728C112/26/202332162692748V712/26/202313162692729C212/26/202333162692749V812/26/202314162692730C312/26/202334162692750V912/26/2023
11162692727B612/26/202331162692747V612/26/202312162692728C112/26/202332162692748V712/26/202313162692729C212/26/202333162692749V812/26/202314162692730C312/26/202334162692750V912/26/2023
12162692728C112/26/202332162692748V712/26/202313162692729C212/26/202333162692749V812/26/202314162692730C312/26/202334162692750V912/26/2023
13 162692729 C2 12/26/2023 33 162692749 V8 12/26/2023 14 162692730 C3 12/26/2023 34 162692750 V9 12/26/2023
14 I62692730 C3 12/26/2023 34 I62692750 V9 12/26/2023
15 I62692731 C4 12/26/2023 35 I62692751 V10 12/26/2023
16 l62692732 C5 12/26/2023 36 l62692752 V11 12/26/2023
17 l62692733 C6 12/26/2023 37 l62692753 V12 12/26/2023
18 l62692734 C7 12/26/2023 38 l62692754 V13 12/26/2023
19 I62692735 C8 12/26/2023 39 I62692755 V14 12/26/2023
20 l62692736 C9 12/26/2023 40 l62692756 V15 12/26/2023

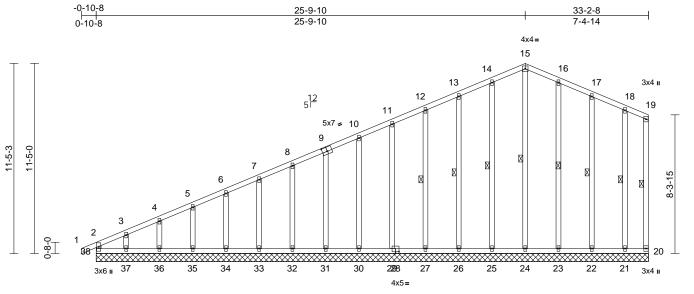
The truss drawing(s) referenced above have been prepared by MiTek USA, Inc under my direct supervision

based on the parameters provided by Wheeler - Waverly.

Truss Design Engineer's Name: Sevier, Scott

My license renewal date for the state of Missouri is December 31, 2025. Missouri COA: 001193

IMPORTANT NOTE: The seal on these truss component designs is a certification that the engineer named is licensed in the jurisdiction(s) identified and that the designs comply with ANSI/TPI 1. These designs are based upon parameters shown (e.g., loads, supports, dimensions, shapes and design codes), which were given to MiTek. Any project specific information included is for MiTek customers file reference purpose only, and was not taken into account in the preparation of these designs. MiTek has not independently verified the applicability of the design parameters or the designs for any particular building. Before use, the building designer should verify applicability of design parameters and properly incorporate these designs into the overall building design per ANSI/TPI 1, Chapter 2.


Sevier, Scott

MiTek, Inc. 16023 Swingley Ridge Rd. Chesterfield, MO 63017 314.434.1200

Job	Truss	Truss Type	Qty	Ply	Lot 96 RR, Somerset - Craftsman	
B220009	A1	Common Supported Gable	2	1	Job Reference (optional)	l62692717

Run: 8,73 S Dec 14 2023 Print: 8,730 S Dec 14 2023 MiTek Industries, Inc. Thu Dec 21 09:06:32 ID:Hr0UloyIgMOrZQ4rpild7XzssyG-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

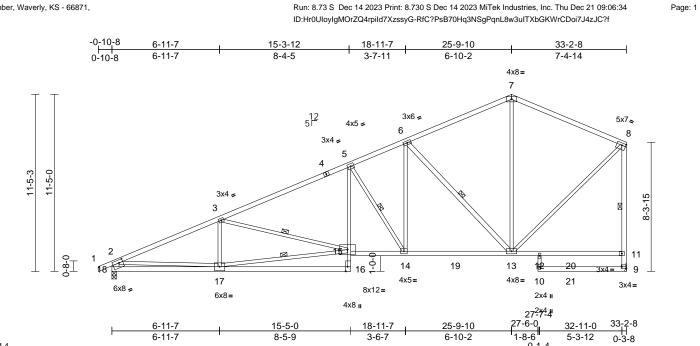
Scale = 1:69.3 Plate Offsets (X, Y): [9:0-3-8,0-3-0], [28:0-2-8,0-1-4]

	(, .). [[20:0 2 0;0 1 1]														
Loading		(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc) l/defl	L/d	PLATES	GRIP			
TCLL (roof)		25.0	Plate Grip DOL	1.15		TC	0.29	Vert(LL)	n/a	,	- n/a		MT20	197/144			
TCDL		10.0	Lumber DOL	1.15		BC	0.12	Vert(CT)	n/a		- n/a	999					
BCLL		0.0*	Rep Stress Incr	YES		WB	0.15	Horz(CT)	-0.01	20							
BCDL		10.0	Code		018/TPI2014	Matrix-R							Weight: 208 lb	FT = 10%			
LUMBER TOP CHORD BOT CHORD WEBS	2x4 SPF 2x4 SPF	2x4 SPF No.2 2x4 SPF No.2 2x4 SPF No.2 2x4 SPF No.2 2x4 SPF No.2				FORCES (lb) - Maximum Compression/Maximum Tension TOP CHORD 2-38=-184/0, 1-2=0/27, 2-3=-318/41, 3-4=-262/37, 4-5=-238/35, 5-6=-212/32,					 Gable requires continuous bottom chord bearing. Truss to be fully sheathed from one face or securely braced against lateral movement (i.e. diagonal web). Gable studs spaced at 2-0-0 oc. 						
OTHERS	2x4 SPF	No.2				6-7=-191/29, 7-8			2,				en designed for a				
BRACING						10-11=-135/68, 1		,						any other live loads.			
TOP CHORD	6-0-0 oc	purlins, ex	athing directly applie cept end verticals. applied or 6-0-0 oc		14-15=-85/173, 15-16=-84/174, on the bottom ch					om cho I by 2-0	been designed for a live load of 20.0psf ord in all areas where a rectangle 00-00 wide will fit between the bottom						
	bracing.	<u> </u>				18-19=-152/125,							ner members.				
WEBS	1 Row at	·	19-20, 15-24, 14-25 13-26, 12-27, 16-23 17-22, 18-21	3,	BOT CHORD	37-38=-116/88, 3 35-36=-116/88, 3 33-34=-116/88, 3 31-32=-116/88, 3	84-35=-11 82-33=-11	6/88, 6/88,		11) P b	rovide me earing pla	echanic ate capa	able of withstand	YF No.2 . / others) of truss to ing 31 lb uplift at joint t at joint 25, 50 lb uplift			
$\begin{array}{llllllllllllllllllllllllllllllllllll$			-2-8, -2-8, -2-8, -2-8, -2-8, -2-8, -2-8, , , ,	29-30=-116/87, 27-29=-116/87, 26-27=-116/87, 25-26=-116/87, 24-25=-116/87, 23-24=-116/87, 20-21=-116/87, 21-22=-116/87, 20-21=-116/87 WEBS 15-24=-128/46, 14-25=-149/69, 13-26=-139/74, 12-27=-140/71, 9-31=-140/71, 8-32=-142/73, 7-33=-139/72, 6-34=-140/71, 5-35=-139/74, 4-36=-145/61, 3-37=-116/126, 16-23=-148/73, 17-22=-144/73, 18-21=-122/101 NOTES 1) Unbalanced roof live loads have been considered for this design. 2) Wind: ASCE 7-16; Vult=115mph (3-second gust)						plift at joint 27, 44 30, 47 lb uplift at ft at joint 33, 47 ll y, 27 lb uplift at joi ft at joint 23, 57 ll 21. gned in accordance dential Code sec ferenced standar	b uplift at joint 31, 49 lb uplift at t 33, 47 lb uplift at joint 34, 53 plift at joint 36, 148 lb uplift at t 23, 57 lb uplift at joint 22 and accordance with the 2018 Code sections R502.11.1 and d standard ANSI/TPI 1.						
Max Grav 20=52 (LC 16), 21=158 (LC 1), 22=185 (LC 22), 23=188 (LC 22), 24=168 (LC 15), 25=189 (LC 21), 26=179 (LC 21), 27=180 (LC 1), 29=180 (LC 21), 30=178 (LC 1), 31=180 (LC 1), 32=182 (LC 21), 33=179 (LC 21), 34=180 (LC 1), 35=178 (LC 21), 36=186 (LC 1), 37=151 (LC 21), 38=223 (LC 16)				22), 21), 1), 1), 1), 1), 1),	 Vindi Association (Osecond guar) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60 Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1. All plates are 2x4 MT20 unless otherwise indicated. 						018807 LL ENGINE 1L ENGINE 126,2023						

Continued on page 2 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. WARNING - Verify design parameters and KEAD KOTES ON THIS AND INCLUDED MITER KEERENCE PAGE MIL/473 rev. 1/2/20/3 BEFORE USE. Design valid for use only with MITeR® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcscomponents.com)

16023 Swingley Ridge Rd. Chesterfield, MO 63017 314.434.1200 / MiTek-US.com

Job Truss		Truss Type	Qty	Ply	Lot 96 RR, Somerset - Craftsman			
B220009	A1	Common Supported Gable	2	1	Job Reference (optional)	162692717		
Wheeler Lumber, Waverly, KS -	66871,	Run: 8.73 S Dec 14 2023 Print: 8.730 S Dec 14 2023 MiTek Industries, Inc. Thu Dec 21 09:06:32						


LOAD CASE(S) Standard

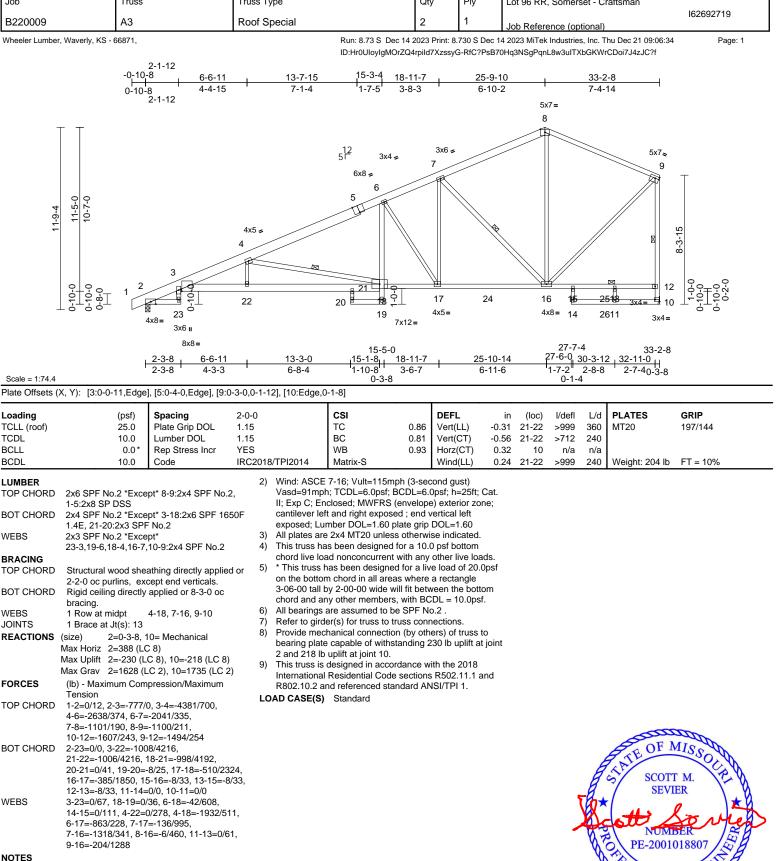
14 2 ID: Hr0U loy lgMOrZQ4 rpild7XzssyG-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

Job	Truss	Truss Type	Qty	Ply	Lot 96 RR, Somerset - Craftsman				
B220009	A2	Roof Special	1	1	Job Reference (optional)	162692718			

Scale = 1:74.4	-	-	-	-
Plate Offsets (X, Y):	[8:0-3-0,0-1-12], [9:Edge,0-1-8], [16:0-3-8,Edge], [18:0-3-0),O·	-2-	4]

Loading	(psf)	Spacing	2-0-0		csi		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15		TC	0.90	Vert(LL)	-0.26	16-17	>999	360	MT20	197/144
TCDL	10.0	Lumber DOL	1.15		BC	0.79	Vert(CT)	-0.50	16-17	>781	240		
BCLL	0.0*	Rep Stress Incr	YES		WB	0.86	Horz(CT)	0.16	9	n/a	n/a		
BCDL	10.0	Code	IRC201	8/TPI2014	Matrix-S		Wind(LL)	0.14	14-15	>999	240	Weight: 161 lb	FT = 10%
TCDL BCLL BCDL LUMBER TOP CHORD BOT CHORD BOT CHORD BOT CHORD BOT CHORD WEBS REACTIONS	10.0 0.0* 10.0 2x4 SPF No.2 *Exce 1.8E 2x4 SPF No.2 *Exce 2x3 SPF No.2 *Exce No.2, 18-2:2x6 SPF Structural wood she except end verticals Rigid ceiling directly bracing. 1 Row at midpt (size) 9= Mecha Max Horiz 18=374 (I Max Uplift 9=-218 (L Max Grav 9=1720 (I (Ib) - Maximum Com Tension 1-2=0/30, 2-3=-2975 5-6=-1993/335, 6-7- 7-8=-1094/214, 2-16 9-11=-1578/252, 8-1 17-18=-484/797, 16 5-15=-85/678, 14-15	Lumber DOL Rep Stress Incr Code ept* 1-4:2x4 SPF 210 ept* 16-5:2x3 SPF No ept* 13-6,9-8:2x4 SPF No.2 athing directly applied applied or 8-1-8 oc 15-17, 3-15, 5-14, 6- 8-9 anical, 18=0-3-8 _C 8), 18=-231 (LC 8) _C 2), 18=1614 (LC 2 ppression/Maximum 5/386, 3-5=-2605/402 =-1092/193, 3=-1504/262, 11=-1476/255 -17=0/201, 15-16=0/1	1.15 YES IRC201: 0F .2 .2 .3) d, 4) 13, 5) 6) 7) 8) , LC	Wind: ASCE Vasd=91mpl II; Exp C; En cantilever lef exposed; Lu This truss ha chord live loa * This truss h on the bottor 3-06-00 tall b chord and ar All bearings a Refer to gird Provide mec bearing plate 18 and 218 I This truss is International	BC WB Matrix-S 7-16; Vult=115mp n; TCDL=6.0psf; B closed; MWFRS (it and right expose mber DOL=1.60 pl is been designed fad nonconcurrent v has been designed in chord in all areas by 2-00-00 wide wi by other members, are assumed to be er(s) for truss to tru- hanical connection capable of withsta- b uplift at joint 9. designed in accord Residential Code and referenced stam	0.79 0.86 0.75 0.86 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75	Vert(CT) Horz(CT) Wind(LL) cond gust) Dpsf; h=25ft; l e) exterior zor vertical left DOL=1.60 D psf bottom other live loa e load of 20.0 a rectangle veen the botto DDL = 10.0psf b.2. mections. ers) of truss t c31 lb uplift at ith the 2018 s R502.11.1 a	-0.50 0.16 0.14 Cat. ne; dds. Dpsf om f.	16-17 9	>781 n/a	240 n/a		FT = 10%
WEBS	10-12=0/120, 3-17= 15-17=-664/2498, 3 5-14=-964/273, 6-14 6-13=-1265/334, 7-1 2-17=-171/1883, 8-1	-15=-392/130, 4=-145/981, 13=-5/448,								_		sy scor sevi	ER Server
NOTES 1) Unbalance this design	ed roof live loads have									A A A	NUM PE-2001	LENGIE	



December 26,2023

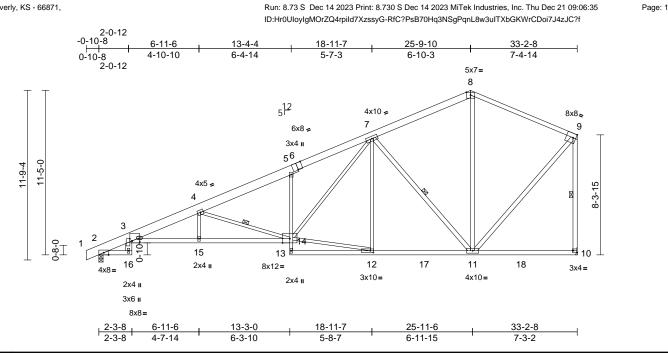
0-1-4

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent touls be personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcscomponents.com)

Job	Truss	Truss Type	Qty	Ply	Lot 96 RR, Somerset - Craftsman	
B220009	A3	Roof Special	2	1	Job Reference (optional)	162692719

Unbalanced roof live loads have been considered for 1) this design.

December 26,2023


SIONAL

E

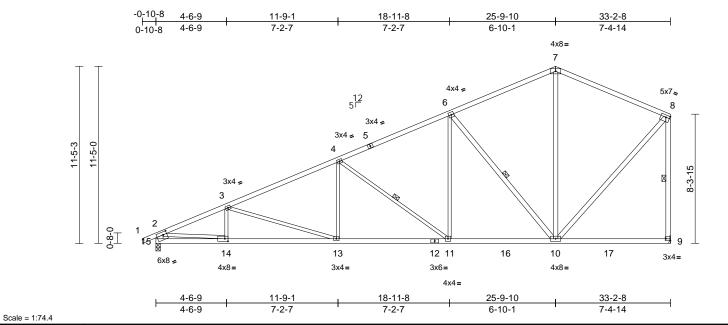
WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponent.com)

Job	Truss	Truss Type	Qty	Ply	Lot 96 RR, Somerset - Craftsman	
B220009	A4	Roof Special	2	1	Job Reference (optional)	162692720

Scale = 1:80

·`	, , , , , , , , , , , , , , , , , , , ,		, ,									-	
Loading	(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15		тс	0.86	Vert(LL)	-0.30	14-15	>999	360	MT20	197/144
TCDL	10.0	Lumber DOL	1.15		BC	0.73	Vert(CT)	-0.53	14-15	>744	240		
BCLL	0.0*	Rep Stress Incr	YES		WB	0.65	Horz(CT)	0.27	10	n/a	n/a		
BCDL	10.0	Code	IRC201	8/TPI2014	Matrix-S		Wind(LL)	0.17	14-15	>999	240	Weight: 195 lb	FT = 10%
LUMBER TOP CHORD	2x6 SPF No.2 *Exce	ont* 8-0.2v4 SPE No	3)		as been designed ad nonconcurren			ads					
	1-6:2x8 SP DSS	-pt 0-9.2x+ 011 N0	4)		has been design								
BOT CHORD	2x4 SPF No.2 *Exce 1.8E, 5-13:2x3 SPF		100F [′]	on the botto	m chord in all are	eas where	a rectangle	•					
WEBS	2x3 SPF No.2 *Exce 11-7,11-8,10-9,11-9		lo.2, 5)	All bearings	ny other member are assumed to	be SPF No	o.2 .	f.					
BRACING			6)		er(s) for truss to								
TOP CHORD	Structural wood she 2-2-0 oc purlins, ex		ed or 7)	bearing plat	chanical connecti e capable of with								
BOT CHORD	Rigid ceiling directly bracing.	applied or 10-0-0 o	c 8)	This truss is	uplift at joint 10. designed in acco								
WEBS	1 Row at midpt	4-14, 7-11, 9-10			Residential Cod			and					
REACTIONS	· · · ·			nd referenced st	andard AN	151/TPL1.							
	Max Horiz 2=265 (L	,	L	DAD CASE(S)	Standard								
	Max Uplift 2=-38 (LC												
	Max Grav 2=1606 (2)										
FORCES	(lb) - Maximum Con	npression/Maximum											
	Tension	0 0 4 4000/447											
TOP CHORD	1-2=0/12, 2-3=-758/ 4-5=-2796/94, 5-7=- 8-9=-975/78, 9-10=-	2735/165, 7-8=-978	8/67,										
BOT CHORD	2-16=0/0, 3-15=-35		3891										
	13-14=0/96, 5-14=-3	,	,									and	alle
	11-12=-116/1597, 1	0-11=-3/19										A OF M	MIS C
WEBS	3-16=0/65, 4-15=-3/	,	6,								1	TATE OF M	N.O.
	12-14=-103/1522, 7	,									8	SCOT	M NO
	7-12=-82/162, 7-11= 9-11=-47/1231	=-1201/131, 8-11=0/	375,								B	SEVI	
NOTES	5-11=-47/1231										8-		
NOTES	ed roof live loads have	been considered fo	r								20		0
this design		been considered to	1								MA.	ant	Sonne
	CE 7-16; Vult=115mph								1	Y			
	nph; TCDL=6.0psf; BC	Cat.								N	OX PE-2001	018807	
II; Exp C; I	Enclosed; MWFRS (er	left								V	The last	158	
	exposed ; end vertical	er									S'SIG	ENUS	
DOL=1.60	plate grip DOL=1.60										SSIONA	L	
												an	50-5

December 26,2023


16023 Swingley Ridge Rd. Chesterfield, MO 63017 314.434.1200 / MiTek-US.com

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent toulsable personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

Job	Truss	Truss Type	Qty	Ply	Lot 96 RR, Somerset - Craftsman	
B220009	A5	Common	1	1	Job Reference (optional)	162692721

Run: 8.73 S Dec 14 2023 Print: 8.730 S Dec 14 2023 MiTek Industries, Inc. Thu Dec 21 09:06:35 ID:Hr0UloyIgMOrZQ4rpild7XzssyG-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

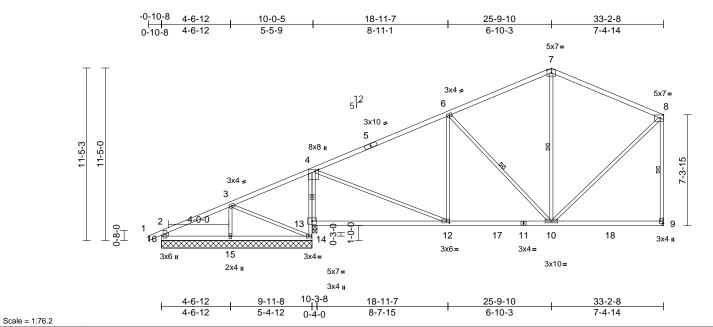
Page: 1

Plate Offsets (X, Y): [8:0-3-0,0-1-12], [9:Edge,0-1-8], [14:0-2-8,0-2-0], [15:0-3-0,0-2-4]

Loading TCLL (roof) TCDL BCLL	(psf) 25.0 10.0 0.0*	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr	2-0-0 1.15 1.15 YES		CSI TC BC WB	0.91 0.90 0.74	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.19 -0.35 0.08	(loc) 13-14 13-14 9	l/defl >999 >999 n/a	L/d 360 240 n/a	PLATES MT20	GRIP 197/144
BCDL	10.0	Code	IRC2018/	/1PI2014	Matrix-S		Wind(LL)	0.09	13-14	>999	240	Weight: 154 lb	FI = 10%
LUMBER TOP CHORD BOT CHORD WEBS			2x6 5)	on the bottom 3-06-00 tall b chord and an All bearings a	has been designer in chord in all area by 2-00-00 wide w by other members are assumed to b er(s) for truss to to	as where vill fit betw , with BC e SPF No	a rectangle veen the bott DL = 10.0ps o.2.	om					
BRACING TOP CHORD	Structural wood she except end verticals		,	bearing plate	hanical connectio capable of withs uplift at joint 9.								
BOT CHORD			8)	International	designed in accor Residential Code	sections	R502.11.1 a	and					
WEBS	0	4-11, 6-10, 8-9			nd referenced sta	ndard AN	ISI/TPI 1.						
REACTIONS	(size) 9= Mecha Max Horiz 15=255 (I Max Uplift 9=-42 (LC Max Grav 9=1605 (I	8), 15=-38 (LC 8)		AD CASE(S)	Standard								
FORCES	(lb) - Maximum Com Tension	pression/Maximum											
TOP CHORD	1-2=0/30, 2-3=-2911 4-6=-1789/67, 6-7=- 2-15=-1524/56, 8-9=	985/69, 7-8=-982/80	Ι,										
BOT CHORD	,	-14=-271/2640,											- AD
WEBS	3-14=-131/81, 3-13= 4-11=-880/98, 6-11= 7-10=0/381, 2-14=-3	=0/792, 6-10=-1178/	132,								Å	TATE OF M	AISSOL
this design 2) Wind: ASC Vasd=91n II; Exp C;	ed roof live loads have n. CE 7-16; Vult=115mph nph; TCDL=6.0psf; BC Enclosed; MWFRS (er exposed ; end vertical	(3-second gust) DL=6.0psf; h=25ft; C tvelope); cantilever l	Cat. eft									SCOTT SEVI	er *

and right exposed ; end vertical left exposed; Lumber DOL=1.60 plate grip DOL=1.60 3) This truss has been designed for a 10.0 psf bottom

chord live load nonconcurrent with any other live loads.


December 26,2023

16023 Swingley Ridge Rd. Chesterfield, MO 63017 314.434.1200 / MiTek-US.com

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent colleges with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

Job	Truss	Truss Type	Qty	Ply	Lot 96 RR, Somerset - Craftsman	
B220009	B1	Roof Special	1	1	Job Reference (optional)	162692722

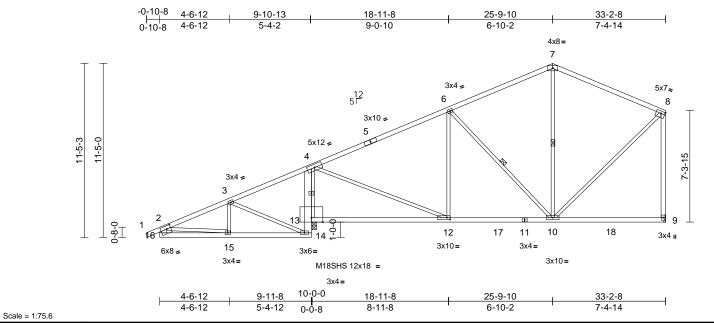
Run: 8.73 S Dec 14 2023 Print: 8.730 S Dec 14 2023 MiTek Industries, Inc. Thu Dec 21 09:06:35 ID:Hr0UloyIgMOrZQ4rpild7XzssyG-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

Plate Offsets (X, Y): [4:0-1-8,0-2-12], [9:Edge,0-2-8], [12:0-2-8,0-1-8]

Loading TCLL (roof) TCDL BCLL BCDL LUMBER TOP CHORD BOT CHORD WEBS			3) o.2 4)	chord live loa * This truss I on the bottor	CSI TC BC WB Matrix-S as been designed ad nonconcurrent has been designed in chord in all area w 2 000 wido w	with any d for a liv s where	other live loa ve load of 20. a rectangle	-0.36 -0.02 -0.04 ads. 0psf	(loc) 12-13 12-13 9 9-10	l/defl >999 >779 n/a >999	L/d 360 240 n/a 240	PLATES MT20 Weight: 136 lb	GRIP 197/144 FT = 10%
BRACING TOP CHORD BOT CHORD WEBS REACTIONS	Structural wood she except end verticals Rigid ceiling directly bracing. 1 Row at midpt (size) 9= Mecha 14=9-11-{ Max Horiz 16=336 (L Max Uplift 9=-109 (L 14=-52 (L Max Grav 9=1134 (L 16=294 (L (lb) - Maximum Com Tension	athing directly applie applied or 10-0-0 or 6-10, 7-10, 8-9 inical, 13=9-11-8, 3, 15=9-11-8, 16=9-1 C 5), 13=-274 (LC 8 C 8), 13=-274 (LC 4) C 2), 13=1294 (LC 1) C 2), 15=422 (LC 1) C 1) pression/Maximum	ed, 5) 5 6) 7 7) 11-8 8)), 2), 9) 6), 9)	chord and au Bearings are 13 SPF No.2 Refer to gird Bearing at jc using ANSI/ designer sho Provide mec bearing plate 16, 274 lb up lb uplift at joi This truss is International	designed in accor Residential Code nd referenced star	with BC loint 15 2 2 . uss com s paralle n formul v of bear n (by oth anding s b uplift a dance w sections	CDL = 10.0ps SPF No.2 , Jo I to grain valu a. Building ing surface. iers) of truss i 52 Ib uplift at j at joint 14 and ith the 2018 s R502.11.1 a	f. pint ue to joint d 109					
TOP CHORD	1-2=0/30, 2-3=-209/2 4-6=-1090/154, 6-7= 2-16=-264/76, 8-9=-	-714/169, 7-8=-688/ 986/154										~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~ ~
BOT CHORD	15-16=-227/99, 14-1 4-13=-1182/325, 12- 10-12=-120/912, 9-1	-13=-63/115, 0=-98/75	0/0,									TATE OF M	AISSO
WEBS	3-14=-105/198, 4-12 6-12=-119/163, 6-10 7-10=-59/194, 8-10=)=-517/183,	/56								A	SCOT SEVI	
this desigr 2) Wind: ASC Vasd=91m	ed roof live loads have n. CE 7-16; Vult=115mph nph; TCDL=6.0psf; BC Enclosed: MW/EPS (or	Cat.									PE-2001	18807 E	

 Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and property incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)


F

SSIONAL

December 26,2023

Job	Truss	Truss Type	Qty	Ply	Lot 96 RR, Somerset - Craftsman	
B220009	B2	Roof Special	3	1	lob Reference (optional)	162692723

Run: 8.73 S Dec 14 2023 Print: 8.730 S Dec 14 2023 MiTek Industries, Inc. Thu Dec 21 09:06:36 ID:Hr0UloyIgMOrZQ4rpild7XzssyG-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

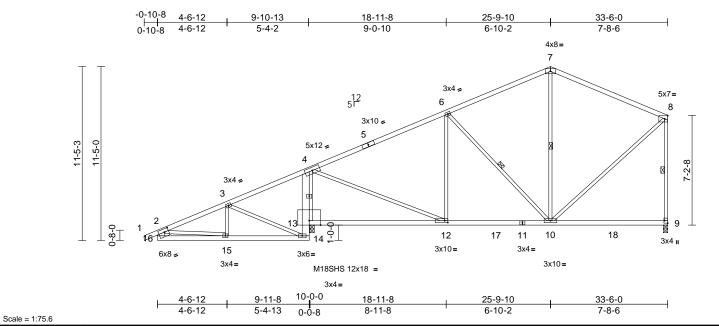
Plate Offsets (X, Y): [8:0-3-0,0-1-12], [12:0-2-8,0-1-8], [16:0-3-4,0-2-8]

Loading	(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15		TC	0.91	Vert(LL)	-0.18	12-13	>999	360	MT20	197/144
TCDL	10.0	Lumber DOL	1.15		BC	0.53	Vert(CT)	-0.35	12-13	>806	240	M18SHS	197/144
BCLL	0.0*	Rep Stress Incr	YES		WB	0.61	Horz(CT)	-0.01	9	n/a	n/a		FT 400/
BCDL	10.0	Code	IRC20	18/TPI2014	Matrix-S		Wind(LL)	0.18	12-13	>999	240	Weight: 147 lb	FT = 10%
LUMBER TOP CHORD BOT CHORD WEBS	2x4 SPF No.2 2x4 SPF No.2 *Exce 2x3 SPF No.2 *Exce 9-8:2x4 SPF No.2		S 5	chord live loa) * This truss l on the bottor 3-06-00 tall l	as been designed ad nonconcurrent has been designer n chord in all area by 2-00-00 wide w hy other members	with any d for a liv as where rill fit betw	other live loa e load of 20.0 a rectangle veen the bott	0psf om					
TOP CHORD	Structural wood she 2-2-0 oc purlins, ex		ed or 6) WARNING: than input be	Required bearing earing size.	size at jo	int(s) 13 grea	ater					
BOT CHORD	Rigid ceiling directly bracing.		7 8		are assumed to b er(s) for truss to ti								
WEBS		6-10, 7-10	9		hanical connectio capable of withs								
	Max Horiz 13=255 (L Max Uplift 9=-217 (L Max Grav 9=943 (LG	C 5), 13=-388 (LC 4 C 2), 13=2258 (LC 2)	 This truss is International 	b uplift at joint 9. designed in accou Residential Code nd referenced sta	sections	R502.11.1 a	and					
FORCES	(lb) - Maximum Com Tension	pression/Maximum	L	OAD CASE(S)	Standard								
TOP CHORD	1-2=0/30, 2-3=-114/ 4-6=-690/215, 6-7=- 2-16=-10/64, 8-9=-7	562/173, 7-8=-555/1											
BOT CHORD	15-16=-11/42, 14-15 13-14=-72/338, 4-13 12-13=-1130/130, 10 9-10=-5/25	5=-453/124, 3=-1794/279,											III.
WEBS	3-15=-59/264, 3-14= 4-12=-268/1788, 6-1 6-10=-180/153, 7-10 2-15=-487/114, 8-10	2=-460/88,)=-140/126,									ł	STATE OF M	MISSOUR
NOTES	,										B.	/ SEVI	ER \ Y
 Unbalance this design Wind: ASC Vasd=91m II; Exp C; I exposed ; 	ed roof live loads have n. CE 7-16; Vult=115mph nph; TCDL=6.0psf; BC Enclosed; MWFRS (er end vertical left expos Lumber DOL=1.60 pla	(3-second gust) DL=6.0psf; h=25ft; (nvelope); cantilever I ed; porch left and rig	Cat. eft									PE-2001	018807

All plates are MT20 plates unless otherwise indicated.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent colleges with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

Restored as the second second


ONAL ET

December 26,2023

Job	Truss	Truss Type	Qty	Ply	Lot 96 RR, Somerset - Craftsman	
B220009	B3	Roof Special	4	1	Job Reference (optional)	162692724

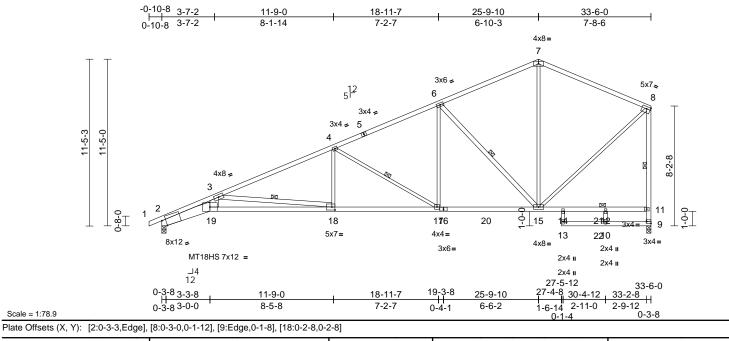
Run: 8.73 S Dec 14 2023 Print: 8.730 S Dec 14 2023 MiTek Industries, Inc. Thu Dec 21 09:06:36 ID:Hr0UloyIgMOrZQ4rpild7XzssyG-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Plate Offsets (X, Y): [9:Edge,0-2-8], [12:0-2-8,0-1-8], [16:0-3-4,0-2-8]

Loading	(psf)	Spacing	2-0-0	csi		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15	TC	0.99	Vert(LL)	-0.16	9-10	>999	360	MT20	197/144
TCDL	10.0	Lumber DOL	1.15	BC	0.50	Vert(CT)	-0.28	12-13	>999	240	M18SHS	197/144
BCLL	0.0*	Rep Stress Incr	YES	WB	0.91	Horz(CT)	-0.01	9	n/a	n/a		
BCDL	10.0	Code	IRC2018/TPI2014	Matrix-S		Wind(LL)	0.14	12-13	>999	240	Weight: 146 lb	FT = 10%
	2x4 SPF No.2 *Exce 13-11:2x4 SPF 2100 2x3 SPF No.2 *Exce Structural wood she except end verticals Rigid ceiling directly bracing.	F 1.8E pt* 16-2:2x6 SPF No athing directly applie applied or 6-0-0 oc 7-10, 8-9, 6-10 I3=0-3-8 C 8) C 5), 13=-591 (LC 4	chord live l S, 5) * This truss on the bott bot ad, 6) Bearings a Joint 9 SPI 7) Provide me bearing pla 13 and 29 8) This truss Internation R802.10.2) LOAD CASE(6)	echanical connection te capable of withs 5 lb uplift at joint 9. 5 designed in acco al Residential Code and referenced sta	with any ed for a liv as where vill fit betw s, with BC Joint 13 \$ on (by oth standing 5 wrdance w e sections	other live load e load of 20.1 a rectangle veen the bott DL = 10.0psi SPF 2100F 1. ers) of truss I iso1 lb uplift al ith the 2018 s R502.11.1 a	0psf om f. .8E , to t joint					
FORCES	(lb) - Maximum Com)									
	Tension											
TOP CHORD	1-2=0/30, 2-3=-164/ 4-6=-706/266, 6-7=- 8-9=-809/270, 2-16=	587/235, 7-8=-565/2	24,									
BOT CHORD	15-16=-17/41, 14-15 13-14=-99/338, 4-13 12-13=-1127/189, 10 9-10=-5/17	8=-1805/452,									0000	ALL .
WEBS	7-10=-145/134, 3-15 6-12=-468/153, 6-10 2-15=-487/174, 8-10 4-12=-401/1799, 3-1)=-169/166,)=-190/606,								B	STATE OF M	ΓM. Y Y
NOTES										E.	SEVI	ER \ X
this desigr 2) Wind: ASC Vasd=91rr II; Exp C; I cantilever left and rig DOL=1.60	CE 7-16; Vult=115mph nph; TCDL=6.0psf; BC Enclosed; MWFRS (er left exposed ; end vert ght exposed; Lumber D	(3-second gust) DL=6.0psf; h=25ft; C ivelope) exterior zon ical left exposed; po IOL=1.60 plate grip	Cat. le; rch							and the second	PE-20010 PE-20010	LENGINE

December 26,2023


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent toulsable personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

Job	Truss	Truss Type	Qty	Ply	Lot 96 RR, Somerset - Craftsman	
B220009	B4	Roof Special	2	1	Job Reference (optional)	162692725

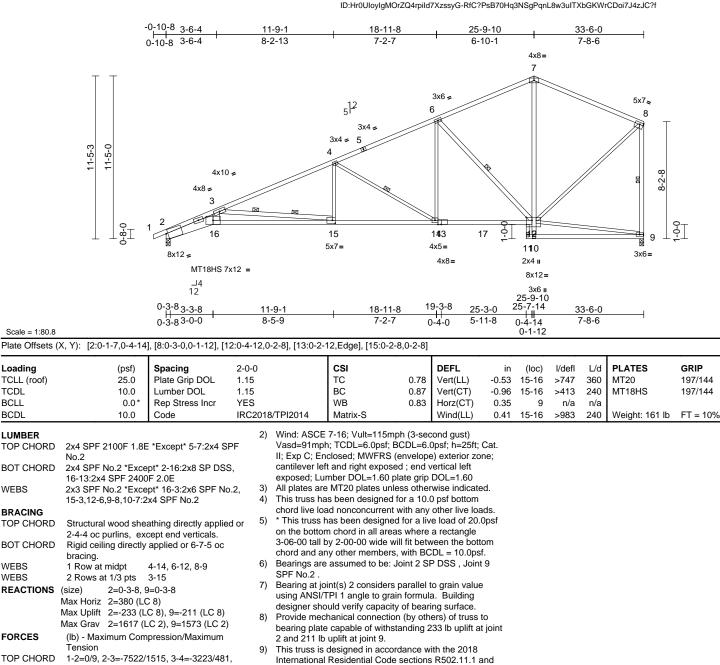
Run: 8.73 S Dec 14 2023 Print: 8.730 S Dec 14 2023 MiTek Industries, Inc. Thu Dec 21 09:06:36 ID:Hr0UloyIgMOrZQ4rpild7XzssyG-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

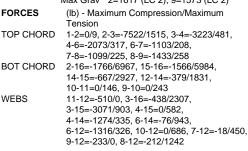
·					-								
Loading	(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15		TC	0.78	Vert(LL)	-0.55	18-19	>725	360	MT20	197/144
TCDL	10.0	Lumber DOL	1.15		BC	1.00	Vert(CT)	-0.99	18-19	>402	240	MT18HS	197/144
BCLL	0.0*	Rep Stress Incr	YES		WB	0.94	Horz(CT)	0.41	9	n/a	n/a		
BCDL	10.0	Code	IRC20	18/TPI2014	Matrix-S		Wind(LL)	0.39	18-19	>999	240	Weight: 159 lb	FT = 10%
						-	()					0	
LUMBER					7-16; Vult=115m								
TOP CHORD	2x4 SPF 2100F 1.8E No.2	E *Except* 5-7:2x4 SI	PF		h; TCDL=6.0psf; iclosed; MWFRS								
BOT CHORD	2x4 SPF No.2 *Exce 19-16:2x4 SPF 2100		8,		ft and right expos d; Lumber DOL=								
WEBS	2x3 SPF No.2 *Exce 9-8,12-10,6-15,18-3	ept* 19-3:2x8 SP DSS :2x4 SPF No.2	,		e MT20 plates un as been designed								
BRACING	,,,				ad nonconcurrent								
TOP CHORD	Structural wood she	athing directly applie	dor ⁵		nas been designe								
	2-4-0 oc purlins, ex				m chord in all are								
BOT CHORD		applied or 10-0-0 oc			oy 2-00-00 wide v								
	bracing, Except:		-		ny other members assumed to be:								
	8-1-3 oc bracing: 2-		c	SPF No.2 .	assumed to be.	JUIII 2 SI	- 033 , 3011	19					
WEBS	1-4-12 oc bracing: 1	8-19. 8-9, 6-15, 3-18, 4-17	, 7		int(s) 2 considers	s parallel t	to grain value	e					
JOINTS	1 Row at midpt 1 Brace at Jt(s): 12	0-9, 0-15, 5-10, 4-17	-		TPI 1 angle to gra			-					
	(size) 2=0-3-8, 9	0-0-2 0		designer sho	ould verify capacit	ty of bear	ing surface.						
REACTIONS	Max Horiz 2=341 (L0		8		hanical connection								
	Max Uplift 2=-253 (L				e capable of withs	standing 2	253 lb uplift a	at joint					
	Max Grav 2=1627 (L				uplift at joint 9.								
FORCES	(lb) - Maximum Corr	,. , ,	ę		designed in acco Residential Code								
TOROLO	Tension	pression/maximum			nd referenced sta			anu					
TOP CHORD	1-2=0/9, 2-3=-7667/	1393. 3-4=-3256/500		.0AD CASE(S)		anualu Ar	NSI/TETT.						
	4-6=-2094/353, 6-7=		, L	CAD CASE(S)	Stanuaru							TATE OF M	TOP
	7-8=-1143/257, 9-11	=-1608/223,										OF N	AIS C
	8-11=-1489/244										1	750	- ON
BOT CHORD	2-19=-1489/7107, 1										B	S SCOT	M NA
	17-18=-526/2958, 1	,									R	SCOT	
	14-15=-130/100, 12	,									a .	SEVI	
WEBS	11-12=-130/100, 10	,	100								X		
WEB5	8-15=-164/1283, 10	-367/2419, 7-15=-46/ -12=0/65	483,									the the	Andres
	6-15=-1279/330, 3-1									-		NUM	A A A A A A A A A A A A A A A A A A A
	,	286/316, 6-17=-77/8	99								N	PE-2001	018807 59
NOTES		, , , , , , , , , , , , , , , , ,									N	The second	124
	ed roof live loads have	been considered for									X	1080	G A
this design												CSSIONA	LEF
- 5												Un	~

Scale = 1:78.9

December 26,2023


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent colleges with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

16023 Swingley Ridge Rd. Chesterfield, MO 63017 314.434.1200 / MiTek-US.com


Job	Truss	Truss Type	Qty	Ply	Lot 96 RR, Somerset - Craftsman	
B220009	B5	Roof Special	2	1	Job Reference (optional)	162692726

Run: 8.73 S Dec 14 2023 Print: 8.730 S Dec 14 2023 MiTek Industries. Inc. Thu Dec 21 09:06:37 ID:Hr0UloyIgMOrZQ4rpild7XzssyG-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

R802.10.2 and referenced standard ANSI/TPI 1.

NOTES

Scale = 1:80.8

Loading

TCDL

BCLL

BCDL

WEBS

WEBS

WEBS

BRACING

TOP CHORD

BOT CHORD

LUMBER

BOT CHORD

TCLL (roof)

1) Unbalanced roof live loads have been considered for this design.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponent.com)

LOAD CASE(S) Standard

Job	Truss	Truss Type	Qty	Ply	Lot 96 RR, Somerset - Craftsman	
B220009	B6	Roof Special	1	1	Job Reference (optional)	162692727

Run: 8.73 S Dec 14 2023 Print: 8.730 S Dec 14 2023 MiTek Industries, Inc. Thu Dec 21 09:06:37 ID:Hr0UloyIgMOrZQ4rpild7XzssyG-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

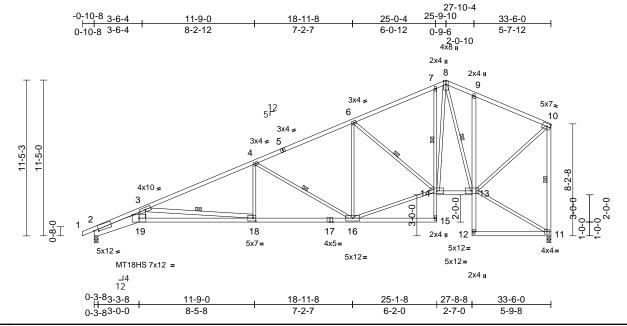


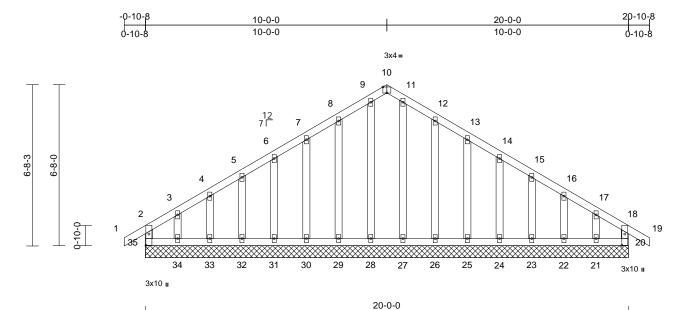
Plate Offsets (X, Y): [2:0-3-15,0-1-6], [18:0-2-8,0-2-8]

Scale = 1:84.5

Loading (pst) Spacing 2-0-7 CSI DEFL in (pot) (pdt) (
TCDL 10.0 BCLL Lumber DOL 1.15 Rep Stress Incr BC 0.91 WB Vert(CT) -0.91 18-19 >438 240 Weight: MT18HS 197/144 BCDL 10.0 Code IRC2018/TPI2014 Matrix-S Wind: ASCE 7-16; Vult=115mph (3-second gust) Vert(CT) 0.42 18-19 >438 240 Weight: 17.7 lb FT = 10% LUMBER Zx4 SPF No.2 *Except* 1-5:2x4 SPF 2100F I.8E 20 Wind: ASCE 7-16; Vult=115mph (3-second gust) Vade=91mph; TCDL=6.0psf; BCDL=6.0psf; h=26f; Cat. II; Exp C; Enclosed; MWFRS (envelope) extritor zone; cantilever left and right exposed ; end vertical left exposed; Lumber DOL=1.60 plate grip DOL=1.60 Vertical left
BCLL 0.0* Rep Stress Incr YES WB 0.98 Horz(CT) 0.40 11 n/a n/a BCDL 10.0 Code IRC2018/TPI2014 Matrix-S Wind(LL) 0.40 11 n/a n/a BCDL 10.0 Code IRC2018/TPI2014 Matrix-S Wind(LL) 0.40 11 n/a n/a LUMBER 2x4 SPF No.2 *Except* 1-5:2x4 SPF 2100F 1.8E 5 Nin (LL) 0.40 11 n/a n/a BOT CHORD 2x4 SPF No.2 *Except* 2-19:2x8 SP 50.2 Case 11 Exp C: Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed; end vertical left exposed; Lumber DDL=1.60 3 All plates are MT20 plate grip DDL=1.60 3 All plates are MT20 plate grip DDL=1.60 3 3 All plates are MT20 plate grip DDL=1.60 5 * This truss has been designed for a 10.0 psf bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members. 5 * This truss has been designed for a 10.0 psf bottom chord in all areas as where a rectangle 3-06-00 tall by 2-00-00 wide will fit betwee
BCDL 10.0 Code IRC2018/TPI2014 Matrix-S Wind(LL) 0.42 18-19 >938 240 Weight: 177 lb FT = 10% LUMBER TOP CHORD 2x4 SPF No.2 *Except* 1-5:2x4 SPF 2100F 1.8E
LUMBER 2x4 SPF No.2 *Except* 1-5:2x4 SPF 2100F 1.8E 3.8E BOT CHORD 2x4 SPF No.2 *Except* 2-19:2x8 SP DSS, 19-17:2x4 SPF 2100F 1.8E, 15-7:2x3 SPF No.2 WEBS 2x3 SPF No.2 *Except* 19-3:2x6 SPF No.2, 18-3,11-10:2x4 SPF No.2 18-3,11-10:2x4 SPF No.2 BOT CHORD Structural wood sheathing directly applied or 2-2-0 oc purlins, except end verticals. BOT CHORD Structural wood sheathing directly applied or 2-2-0 oc purlins, except end verticals. BOT CHORD Structural wood sheathing directly applied or 2-2-0 oc purlins, except end verticals. BOT CHORD Structural wood sheathing directly applied or 2-2-0 oc purlins, except end verticals. BOT CHORD Structural wood sheathing directly applied or 2-2-3 oc purlins, except end verticals. BOT CHORD Structural wood sheathing directly applied or 2-2-3 oc purlins, except end verticals. BOT CHORD Sigid celling directly applied or 2-2-13 oc bracing. 1 Row at midpt 3-18, 4-16, 6-14, 8-13, 10-11 REACTIONS (size) 2-a-38, 11=-0-3-8, Max Horiz Max Upit 2-a-234 (LC 8), 11=-214 (LC 8) Max Grav. 2-1567 (LC 1), 11=1493 (LC 1) Max Grav. 2-1567 (LC 1), 11=1493 (LC 1) This truss is designed in accordance with the 2018 Max Gra
TOP CHORD 1.8E2x4 SPF No.2 *Except* 1-5:2x4 SPF 2100F 1.8EVasd=91mph; TCDL=6.0psf; bcDL=6.0psf; bcDL=6.0ps
TOP CHORD2x4 SPF No.2 *Except* 1-5:2x4 SPF 2100F 1.8EVasd=91mph; TCDL=6.0psf; BCDL=6.0psf; b=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed; end vertical left exposed; Lumber DOL=1.60BOT CHORD2x4 SPF No.2 *Except* 19-3:2x6 SPF No.2, 18-3,11-10:2x4 SPF No.2Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed; end vertical left exposed; Lumber DOL=1.60WEBS2x3 SPF No.2 *Except* 19-3:2x6 SPF No.2, 18-3,11-10:2x4 SPF No.2All plates are MT20 plates unless otherwise indicated. This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.BOT CHORDStructural wood sheathing directly applied or 2-2-0 oc purlins, except end verticals. TOP CHORD5* This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.BOT CHORDRigid ceiling directly applied or 6-2-13 oc bracing. Except: 1 Row at midpt 10-113.18, 4-16, 6-14, 8-13,
1.8E 1.8E II; Exp C; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed; end vertical left BOT CHORD 2x4 SPF No.2 *Except* 19:3:2x8 SP DSS, No.2 II; Exp C; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed; end vertical left WEBS 2x3 SPF No.2 *Except* 19:3:2x6 SPF No.2, 18:3,11-10:2x4 SPF No.2 All plates are MT20 plates unless otherwise indicated. BRACING This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. BOT CHORD Structural wood sheathing directly applied or 2-20 oc purlins, except end verticals. 5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members. BOT CHORD Rigid ceiling directly applied or 6-2-130 co bracing. Except: 1 Row at midpt 7-14 3-18, 4-16, 6-14, 8-13, 10-11 SPF No.2. WEBS 1 Row at midpt 7-14 3-18, 4-16, 6-14, 8-13, 10-11 SPF No.2. WEBS (size) 2=0-3-8, 11=0-3-8 Max Horiz 10-11 Max Grav 2=1567 (LC 1), 11=1493 (LC 1) Max Grav 2=-367 (LC 1), 11=1493 (LC 1) Max Grav 9 FORCES (b) - Maximum Compression/Maximum Tension 9 Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 234 lb uplift at joint1 2 and z14 lb uplift at joint 1 2 and z14
BOT CHORD 2x4 SPF No.2 *Except* 2-19:2x8 SP DSS, 19-17:2x4 SPF 2100F 1.8E, 15-7:2x3 SPF No.2 cantilever left and right exposed ; end vertical left exposed ; umber DOL=1.60 plate grip DOL=1.60 WEBS 2x3 SPF No.2 *Except* 19-3:2x6 SPF No.2, 18-3,11-10:2x4 SPF No.2 3/ All plates are MT20 plates unless otherwise indicated. TOP CHORD Structural wood sheathing directly applied or 2-2-0 oc purlins, except end verticals. 5/ * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 ull by 2-00-00 wide will fit between the bottom chord and any other members. 8OT CHORD Structural wood sheathing directly applied or 2-2-0 oc purlins, except end verticals. 5/ * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 ull by 2-00-00 wide will fit between the bottom chord and any other members. 8OT CHORD True 3-18, 4-16, 6-14, 8-13, 10-11 7/ Bearing are assumed to be: Joint 2 SP DSS , Joint 11 SPF No.2. 1 Row at midpt 3-18, 4-16, 6-14, 8-13, 10-11 7/ Bearing at joint(s) 2 considers parallel to grain formula. Building designer should verify capacity of bearing surface. Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 234 lb uplift at joint 2 and 214 lb uplift at joint
19-17:2x4 SPF 2100 ^F 1.8E, 15-7:2x3 SPF No.2 exposed; Lumber DOL=1.60 plate grip DOL=1.60 WEBS 2x3 SPF No.2 *Except* 19-3:2x6 SPF No.2, 18-3,11-10:2x4 SPF No.2 3 BRACING ToP CHORD Structural wood sheathing directly applied or 2-20 oc purins, except end verticals. 5) BOT CHORD Rigid ceiling directly applied or 2-20 oc purins, except end verticals.
 WEBS 2x3 SPF No.2 *Except* 19-3:2x6 SPF No.2, 18-3,11-10:2x4 SPF No.2 BRACING BRACING TOP CHORD Structural wood sheathing directly applied or 2-2-0 oc purlins, except end verticals. BOT CHORD Rigid ceiling directly applied or 6-2-13 oc bracing. Except: 1 Row at midpt 7-14 WEBS 1 Row at midpt 3-18, 4-16, 6-14, 8-13, 10-11 REACTIONS (size) 2=0-3-8, 11=0-3-8 Max Horiz 2=380 (LC 8) Max Uplift 2=-234 (LC 8), 11=-214 (LC 8) Max Uplift 2=-234 (LC 8), 11=-214 (LC 8) Max Grav 2=1567 (LC 1), 11=1493 (LC 1) FORCES (lb) - Maximum Compression/Maximum Tension
183,11-10:2x4 SPF No.2 chord live load nonconcurrent with any other live loads. BRACING TOP CHORD TOP CHORD Structural wood sheathing directly applied or 2-2:0 oc purlins, except end verticals. 5) BOT CHORD Rigid ceiling directly applied or 6-2:13 oc bracing. Except: 5) 1 Row at midpt 3-18, 4-16, 6-14, 8-13, 10-11 6) WEBS 1 Row at midpt 3-18, 4-16, 6-14, 8-13, 10-11 7) Bearings are assumed to be: Joint (s) 2 considers parallel to grain formula. Building designer should verify capacity of bearing surface. 7) Bearing at joint(s) 2 =-324 (LC 8), 11=-214 (LC 8) Max Uplift 2=-234 (LC 8), 11=-214 (LC 8) Max Grav 8) FORCES (lb) - Maximum Compression/Maximum Tension 7)
BRACING * This truss has been designed for a live load of 20.0psf TOP CHORD Structural wood sheathing directly applied or 2-2-0 oc purlins, except end verticals. BOT CHORD Rigid ceiling directly applied or 6-2-13 oc bracing. Except: 1 Row at midpt 7-14 WEBS 1 Row at midpt 3-18, 4-16, 6-14, 8-13, 10-11 REACTIONS (size) 2=0-3-8, 11=0-3-8 Max Horiz Max Horiz 2=330 (LC 8) Max Uplift 2=-334 (LC 8), 11=-214 (LC 8) Max Uplift Max Uplift 2=-324 (LC 8), 11=-214 (LC 8) Max Uplift 2=-367 (LC 1), 11=1493 (LC 1) FORCES (lb) - Maximum Tension (lb) - Maximum Compression/Maximum Tension
TOP CHORD Structural wood sheathing directly applied or 2-2-0 oc purlins, except end verticals. on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members. BOT CHORD Rigid ceiling directly applied or 6-2-13 oc bracing. Except: on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members. 1 Row at midpt 7-14 7 WEBS 1 Row at midpt 3-18, 4-16, 6-14, 8-13, 10-11 7 REACTIONS (size) 2=0-3-8, 11=0-3-8 Max Horiz 2=380 (LC 8) Max Uplift 7 Max Uplift 2=-334 (LC 8), 11=-214 (LC 8) Max Grav 8 Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 234 lb uplift at joint 2 and 214 lb uplift at joint 11. 9 FORCES (lb) - Maximum Compression/Maximum Tension 9 This truss is designed in accordance with the 2018 R802-10.2 and referenced standard ANSI/TPI 1.
 3-06-00 tall by 2-00-00 wide will fit between the bottom 3-06-00 tall by 2-00-00 wide will fit between the bottom 3-06-00 tall by 2-00-00 wide will fit between the bottom 3-06-00 tall by 2-00-00 wide will fit between the bottom 3-06-00 tall by 2-00-00 wide will fit between the bottom 3-06-00 tall by 2-00-00 wide will fit between the bottom 3-06-00 tall by 2-00-00 wide will fit between the bottom 3-06-00 tall by 2-00-00 wide will fit between the bottom 3-06-00 tall by 2-00-00 wide will fit between the bottom 3-06-00 tall by 2-00-00 wide will fit between the bottom 3-06-00 tall by 2-00-00 wide will fit between the bottom 3-06-00 tall by 2-00-00 wide will fit between the bottom 3-06-00 tall by 2-00-00 wide will fit between the bottom 3-06-00 tall by 2-00-00 wide will fit between the bottom 3-06-00 tall by 2-00-00 wide will fit between the bottom 3-06-00 tall by 2-00-00 wide will fit between the bottom 3-06-00 tall by 2-00-00 wide will fit between the bottom 3-06-00 tall by 2-00-00 wide will fit between the bottom 3-06-00 tall by 2-00-00 wide will fit between the bottom 3-06-00 tall by 2-00-00 wide will fit between the bottom 3-06-00 tall by 2-00-00 wide will fit between the bottom 3-06-00 tall by 2-00-00 wide will fit between the bottom 3-06-00 tall by 2-00-00 wide will fit between the bottom 3-06-00 tall by 2-00-00 wide will fit between the bottom 3-06-00 tall by 2-00-00 wide will fit between the bottom 3-06-00 tall by 2-00-00 wide will fit between the bottom 3-06-00 tall by 2-00-00 wide will fit between the bottom 3-06-00 tall by 2-00-00 wide will fit between the bottom 3-06-00 tall by 2-00-00 wide will fit between the bottom 3-06-00 tall by 2-00-00 wide will fit between the bottom 3-06-00 tall by 2-00-00 wide will fit between the bottom<
BOT CHORD Rigid ceiling idrectly applied or 6-2-13 oc bracing. Except: chord and any other members. 1 Row at midpt 7-14 SPF No.2. WEBS 1 Row at midpt 3-18, 4-16, 6-14, 8-13, 10-11 SPF No.2. REACTIONS (size) 2=0-3-8, 11=0-3-8 Max Horiz Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 234 lb uplift at joint 2 and 214 lb uplift at joint 1. Provide mechanical conduction (by others) of truss to bearing plate capable of withstanding 234 lb uplift at joint 1. FORCES (lb) - Maximum Compression/Maximum Tension (lb) - Maximum Compression/Maximum Tension 9
 Bearings are assumed to be: Joint 2 SP DSS, Joint 11 SPF No.2. Bearings are assumed to be: Joint 2 SP DSS, Joint 11 SPF No.2. Bearings are assumed to be: Joint 2 SP DSS, Joint 11 SPF No.2. Bearings are assumed to be: Joint 2 SP DSS, Joint 11 SPF No.2. Bearings are assumed to be: Joint 2 SP DSS, Joint 11 SPF No.2. Bearings are assumed to be: Joint 2 SP DSS, Joint 11 SPF No.2. Bearings are assumed to be: Joint 2 SP DSS, Joint 11 SPF No.2. Bearings are assumed to be: Joint 2 SP DSS, Joint 11 SPF No.2. Bearings are assumed to be: Joint 2 SP DSS, Joint 11 SPF No.2. Bearings are assumed to be: Joint 2 SP DSS, Joint 11 SPF No.2. Bearings are assumed to be: Joint 2 SP DSS, Joint 11 SPF No.2. Bearings are assumed to be: Joint 2 SP DSS, Joint 11 SPF No.2. Bearings are assumed to be: Joint 2 SP DSS, Joint 11 SPF No.2. Bearings are assumed to be: Joint 2 SP DSS, Joint 11 SPF No.2. Bearings are assumed to be: Joint 2 SP DSS, Joint 11 SPF No.2. Bearings are assumed to be: Joint 2 SP DSS, Joint 11 SPF No.2. Bearings are assumed to be: Joint 2 SP DSS, Joint 11 SPF No.2. Bearing at joint(s) 2 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface. Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 234 lb uplift at joint 2 and 214 lb uplift at joint 11. This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
1 Row at midpt 7-14 SPF No.2. WEBS 1 Row at midpt 3-18, 4-16, 6-14, 8-13, 10-11 7) Bearing at joint(s) 2 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface. 7) REACTIONS (size) 2=0-3-8, 11=0-3-8 Max Horiz 2=380 (LC 8) Max Uplift 2=-234 (LC 8), 11=-214 (LC 8) Max Grav 8) FORCES (lb) - Maximum Compression/Maximum Tension 11=-2167 (LC 1), 11=1493 (LC 1) Priore 9) This truss is designed in accordance with the 2018 R802-10.2 and referenced standard ANSI/TPI 1. 9)
WEBS 1 Row at midpt 3-18, 4-16, 6-14, 8-13, 10-11 7) Bearing at joint(s) 2 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface. REACTIONS (size) 2=0-3-8, 11=0-3-8 Max Horiz 2=380 (LC 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 234 lb uplift at joint 2 and 214 lb uplift at joint 11. FORCES (lb) - Maximum Tension This truss is designed in accordance with the 2018 R802-10.2 and referenced standard ANSI/TPI 1.
Image: Next CTIONS 10-11 using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface. REACTIONS (size) 2=0-3-8, 11=0-3-8 Max Horiz 2=380 (LC 8) Max Horiz 2=380 (LC 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 234 lb uplift at joint 2 and 214 lb uplift at joint 11. FORCES (lb) - Maximum Compression/Maximum Tension This truss is designed in accordance with the 2018 R802-10.2 and referenced standard ANSI/TPI 1.
REACTIONS (size) 2=0-3-8, 11=0-3-8 Nax Horiz 2=380 (LC 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 234 lb uplift at joint 2 and 214 lb uplift at joint 11. Max Grav 2=1567 (LC 1), 11=1493 (LC 1) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 234 lb uplift at joint 2 and 214 lb uplift at joint 11. FORCES (lb) - Maximum Compression/Maximum Tension Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 234 lb uplift at joint 11. R802.10.2 and referenced standard ANSI/TPI 1. R802.10.2 and referenced standard ANSI/TPI 1.
FORCES (b) - Maximum Compression/Maximum Tension (b) - Maximum Compression/Maximum
Max Uplift 2=-234 (LC 8), 11=-214 (LC 8) 2 and 214 lb uplift at joint 11. Max Grav 2=1567 (LC 1), 11=1493 (LC 1) 9) FORCES (lb) - Maximum Compression/Maximum Tension 2 and 214 lb uplift at joint 11. Base State 11=-214 (LC 8) Additional Content 9) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
Max Grav 2=1567 (LC 1), 11=1493 (LC 1) 9) This truss is designed in accordance with the 2018 FORCES (lb) - Maximum Compression/Maximum International Residential Code sections R502.11.1 and Tension R802.10.2 and referenced standard ANSI/TPI 1.
FORCES (lb) - Maximum Compression/Maximum International Residential Code sections R502.11.1 and Tension R802.10.2 and referenced standard ANSI/TPI 1.
TOP CHORD 1.2=0/9, 2-3=-7214/1520, 3-4=-3094/483, LOAD CASE(S) Standard
4-6=-1969/320, 6-7=-1396/273,
4-6=-1969/320, 6-7=-1396/273, 7-8=-1326/337, 8-9=-1093/249, 9-10=-1115/214, 10-11=-1440/249
BOT CHORD 2-19=-1770/6670, 18-19=-1568/5762,
16-18-671/2794, 15-16-1/35, 14-15=0/107.
7-14=-249/161, 13-14=-191/1077, SEVIER
12-13=0/113, 9-13=-352/185, 11-12=0/16
WEBS 3-19=-443/2120, 3-18=-2982/901, 0 0
4-18=0/526, 4-16=-1252/338, 6-16=0/320,
14-16=-399/1771, 6-14=-710/202,
8-14=-368/1317, 8-13=-560/123, 11-13=-11/5, 10-13=-218/1293
NOTES 35 ONAL ET 1) Unbalanced roof live loads have been considered for 50 ONAL ET
1) Unbalanced roof live loads have been considered for this design.

Unbalanced roof live loads have been cons this design.

Connes December 26,2023



WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent toulsable personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

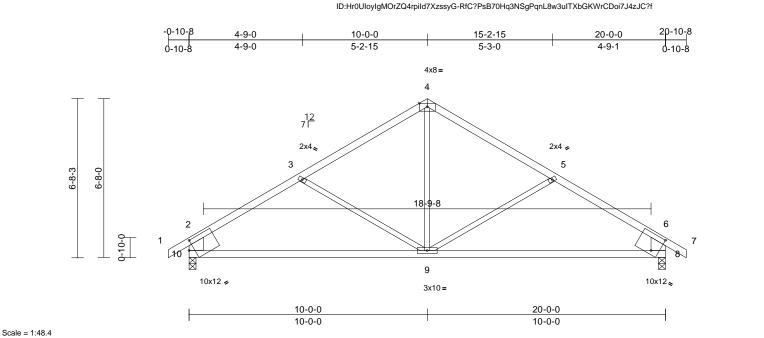
Job	Truss	Truss Type	Qty	Ply	Lot 96 RR, Somerset - Craftsman	
B220009	C1	GABLE	1	1	Job Reference (optional)	162692728

Run: 8.73 S Dec 14 2023 Print: 8.730 S Dec 14 2023 MiTek Industries, Inc. Thu Dec 21 09:06:38 ID:Hr0UloyIgMOrZQ4rpild7XzssyG-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:47.7		
Plate Offsets (X, Y):	[10:0-2-0,Edge], [20:0-5-1	0,0-1-8], [35:0-5-10,0-1-8]

	· · · · ·	1	-	-	1			-					-
Loading	(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15		TC	0.07	Vert(LL)	n/a	-	n/a	999	MT20	197/144
TCDL	10.0	Lumber DOL	1.15		BC	0.05	Vert(CT)	n/a	-	n/a	999		
BCLL	0.0*	Rep Stress Incr	YES		WB	0.07	Horz(CT)	0.00	20	n/a	n/a		
BCDL	10.0	Code	IRC201	8/TPI2014	Matrix-R				-			Weight: 107 lb	FT = 10%
LUMBER TOP CHORD BOT CHORD WEBS			т	OP CHORD	2-35=-149/64, 1-2= 3-4=-95/94, 4-5=-8 6-7=-67/114, 7-8=- 9-10=-36/131, 10-7	9/89, 5- 57/135,	6=-78/94, 8-9=-47/164,	0/148.	on 3-0	the botto 6-00 tall	om cho by 2-0	rd in all areas wh	a live load of 20.0psf ere a rectangle between the bottom
OTHERS	2x4 SPF No.2				12-13=-24/116, 13		,	'				ssumed to be SP	F No.2 .
BRACING	2.4.1 0.1.1 11012				15-16=-48/53, 16-2	17=-56/6	60, 17-18=-98/	76,					others) of truss to
TOP CHORD	Structural wood she	athing directly applie	dor		18-19=0/36, 18-20								ng 81 lb uplift at joint
	6-0-0 oc purlins, ex		u 01						35,	42 lb up	olift at jo	oint 20, 110 lb up	lift at joint 34, 26 lb
BOT CHORD			B	OT CHORD	34-35=-81/97, 33-3 31-32=-81/97, 30-3	81=-81/9	7, 29-30=-81/	97,	31,	41 lb up	olift at jo	oint 30, 56 lb uplit	32, 40 lb uplift at joint it at joint 29, 58 lb
REACTIONS	(size) 20=20-0-0 23=20-0-0 26=20-0-0 29=20-0-0	0, 21=20-0-0, 22=20- 0, 24=20-0-0, 25=20- 0, 27=20-0-0, 28=20- 0, 30=20-0-0, 31=20- 0, 33=20-0-0, 34=20-	0-0, 0-0, W 0-0, W	/EBS	28-29=-81/97, 27-2 25-26=-81/97, 24-2 22-23=-81/97, 21-2 3-34=-100/89, 4-33 6-31=-96/57, 7-30= 9-28=-110/5, 11-27	25=-81/9 22=-81/9 3=-99/51 =-96/57, 7=-101/0	97, 23-24=-81/ 97, 20-21=-81/ 9, 5-32=-96/58 8-29=-96/72, 9, 12-26=-99/7	(97, (97 5, 74,	24, upli 12) Thi Inte	44 lb up ift at join s truss is ernationa	olift at jo t 21. s desig al Resio	oint 23, 29 lb uplit	ions R502.11.1 and
	Max Horiz 35=-189 (13-25=-96/57, 14-2			58,	LOAD	CASE(S) Sta	ndard	
	Max Uplift 20=-42 (L	,			16-22=-99/52, 17-2	21=-89/8	32						
	22=-29 (L 24=-40 (L 26=-58 (L 30=-41 (L 34=-110 (Max Grav 20=152 (I	C 9), 23=-44 (LC 9), C 9), 25=-41 (LC 9), C 9), 29=-56 (LC 8), C 8), 31=-40 (LC 8), C 8), 33=-26 (LC 8), C 8), 35=-81 (LC 4) LC 8), 35=-81 (LC 4)	1) 2) 6),	this design. Wind: ASC Vasd=91m II; Exp C; E cantilever le	E 7-16; Vult=115mp ph; TCDL=6.0psf; B inclosed; MWFRS (eft and right expose	oh (3-seo CDL=6. envelope d ; end v	cond gust) Opsf; h=25ft; C e) exterior zon vertical left and	Cat. le; d				So OF M	MISSOL
22=127 (LC 22), 23=124 (LC 16), 24=123 (LC 16), 25=123 (LC 16), 26=126 (LC 16), 27=127 (LC 17), 28=136 (LC 18), 29=123 (LC 15), 30=123 (LC 15), 31=123 (LC 15), 32=125 (LC 15), 33=127 (LC 21), 34=150 (LC 15), 35=184 (LC 16) FORCES (lb) - Maximum Compression/Maximum Tension				Truss desi only. For s see Standa or consult o All plates a Gable requ Truss to be braced aga Gable stud	ntilever left and right exposed ; end vertical left and ht exposed; Lumber DOL=1.60 plate grip DOL=1.60 uss designed for wind loads in the plane of the truss ly. For studs exposed to wind (normal to the face), e Standard Industry Gable End Details as applicable, consult qualified building designer as per ANSI/TPI 1. plates are 2x4 MT20 unless otherwise indicated. uble requires continuous bottom chord bearing. uss to be fully sheathed from one face or securely aced against lateral movement (i.e. diagonal web). uble studs spaced at 1-4-0 oc. is truss has been designed for a 10.0 psf bottom ord live load nonconcurrent with any other live loads.							Control Scott	ER Service D18807


December 26,2023

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent toulsable personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

Job	Truss	Truss Type Qty Ply Lot 96 RR, S		Lot 96 RR, Somerset - Craftsman		
B220009	C2	Common	1	1	Job Reference (optional)	162692729

Run: 8.73 S Dec 14 2023 Print: 8.730 S Dec 14 2023 MiTek Industries, Inc. Thu Dec 21 09:06:38

Wheeler Lumber, Waverly, KS - 66871,

Plate Offsets (X	٧ŀ	[8.0-3-11 0-8-1]	[10.0.2.9 0.4.7]

	(A, 1). [0.0-3-11,0-0-1]], [10.0-2-3,0-4-7]										
Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15	тс	0.85	Vert(LL)	-0.17	8-9	>999	360	MT20	197/144
TCDL	10.0	Lumber DOL	1.15	BC	0.74	Vert(CT)	-0.35	8-9	>667	240		
BCLL	0.0*	Rep Stress Incr	YES	WB	0.24	Horz(CT)	0.03	8	n/a	n/a		
BCDL	10.0	Code	IRC2018/TPI2014	Matrix-S		Wind(LL)	0.06	9	>999	240	Weight: 70 lb	FT = 10%
TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD REACTIONS	2x3 SPF No.2 *Exce Structural wood shea 3-1-0 oc purlins, exc Rigid ceiling directly bracing.	athing directly appli cept end verticals. applied or 10-0-0 o 0=0-3-8 LC 6) C 9), 10=-130 (LC 8	R802.10.2 (P DSS LOAD CASE(S ed or c	Il Residential Cc and referenced s) Standard			and					

 FORCES
 (lb) - Maximum Compression/Maximum Tension

 TOP CHORD
 1-2=0/42, 2-3=-1148/182, 3-4=-875/141, 4-5=-875/141, 5-6=-1148/183, 6-7=0/42, 2-10=-852/178, 6-8=-852/178

 BOT CHORD
 9-10=-167/901, 8-9=-79/881

 WEBS
 4-9=-6/460, 5-9=-255/206, 3-9=-254/206

NOTES

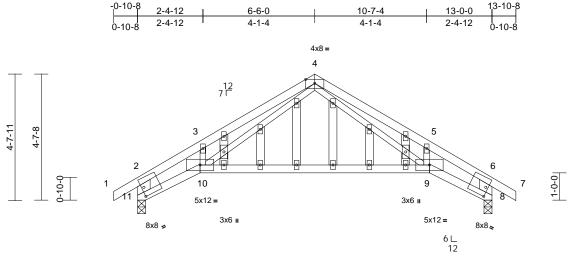
- Unbalanced roof live loads have been considered for this design.
- Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
- 3) This truss has been designed for a 10.0 psf bottom
- chord live load nonconcurrent with any other live loads.
 * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.

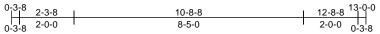
5) All bearings are assumed to be SPF No.2 .

 Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 130 lb uplift at joint 10 and 130 lb uplift at joint 8.

Page: 1

December 26,2023




WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPH Claulity Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

Job	Truss	Truss Type	Qty	Ply	Lot 96 RR, Somerset - Craftsman	
B220009	C3	GABLE	1	1	Job Reference (optional)	162692730

Run: 8.73 S Dec 14 2023 Print: 8.730 S Dec 14 2023 MiTek Industries, Inc. Thu Dec 21 09:06:38 ID:Hr0UloyIgMOrZQ4rpild7XzssyG-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

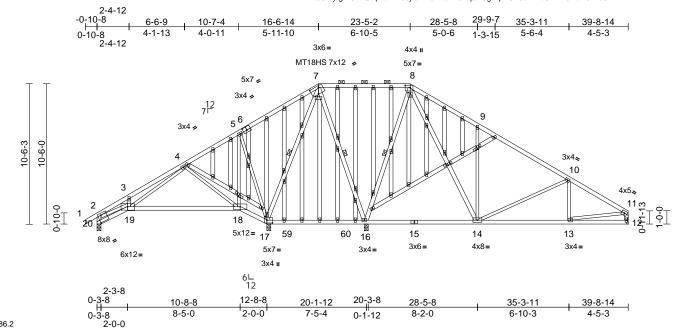
Scale = 1:42.3

Plate Offsets (X, Y): [8:0-1-0,0-4-0], [11:0-1-0,0-4-0]

Loading TCLL (roof) TCDL BCLL BCDL	(psf) 25.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC201	8/TPI2014	CSI TC BC WB Matrix-S	0.85 0.68 0.18	DEFL Vert(LL) Vert(CT) Horz(CT) Wind(LL)	in -0.21 -0.48 0.19 0.10	(loc) 9-10 9-10 8 9-10	l/defl >716 >312 n/a >999	L/d 360 240 n/a 240	PLATES MT20 Weight: 59 lb	GRIP 197/144 FT = 10%
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SPF No.2 2x4 SPF No.2 *Exce 1.8E 2x3 SPF No.2 *Exce 2x4 SPF No.2 Structural wood she 3-3-12 oc purlins, e Rigid ceiling directly bracing. (size) 8=0-3-8, 1 Max Horiz 11=-138 (Max Uplift 8=-91 (LC Max Grav 8=642 (LC	ept* 10-9:2x4 SPF 2 ept* 11-2,8-6:2x6 SF athing directly appli xcept end verticals. applied or 10-0-0 c 11=0-3-8 LC 6) S 9), 11=-91 (LC 8)	6) 7) 2100F 8) 2 DSS ied or 9) 50 50 11	Gable studs This truss ha chord live lo * This truss on the botto 3-06-00 tall chord and a All bearings U) Bearing at jc using ANSI/ designer sh U) Provide mec bearing plate 11 and 91 lb 2) This truss is	spaced at 1-4-0 as been designed an onconcurren has been designed m chord in all are by 2-00-00 wide v ny other member are assumed to 1 bint(s) 11, 8 consist und verify capaci chanical connectii e capable of with: uplift at joint 8. designed in accor.	d for a 10. t with any ed for a live eas where will fit betw s. be SPF No iders para ain formula ity of beari on (by oth standing S ordance w	D psf bottom other live loa e load of 20. a rectangle veen the bott 0.2. Illel to grain v a. Building ng surface. ers) of truss 11 lb uplift at ith the 2018	ads. Opsf aom ralue to joint	5-10		240	wegnit. 39 ib	TT = 10 /8
FORCES	(lb) - Maximum Com Tension	pression/Maximum		R802.10.2 a	nd referenced sta								
TOP CHORD	1-2=0/39, 2-3=-1244 4-5=-1075/203, 5-6= 2-11=-962/130, 6-8=	-1244/83, 6-7=0/39	52,	DAD CASE(S)	Stanuaru								
BOT CHORD WEBS	10-11=-135/1066, 9- 4-9=-124/539, 5-9=0 3-10=0/226	-10=-21/507, 8-9=-2											
this design 2) Wind: ASC Vasd=91m II; Exp C; I cantilever	ed roof live loads have	(3-second gust) DL=6.0psf; h=25ft; nvelope) exterior zo ; end vertical left ar	Cat. ne; nd								a construction of the second sec	STATE OF SCOT	MISSOURIER

- right exposed; Lumber DOL=1.60 plate grip DOL=1.60 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4)
- All plates are 2x4 MT20 unless otherwise indicated. Truss to be fully sheathed from one face or securely 5) braced against lateral movement (i.e. diagonal web).

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com) 16023 Swingley Ridge Rd. Chesterfield, MO 63017 314.434.1200 / MiTek-US.com


NUMBER

PE-200101880

Job	Truss	Truss Type	Qty	Ply	Lot 96 RR, Somerset - Craftsman	
B220009	C4	Piggyback Base Structural Gable	1	1	Job Reference (optional)	162692731

Run: 8.73 S Dec 14 2023 Print: 8.730 S Dec 14 2023 MiTek Industries, Inc. Thu Dec 21 09:06:39 ID:Hr0UloyIgMOrZQ4rpild7XzssyG-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

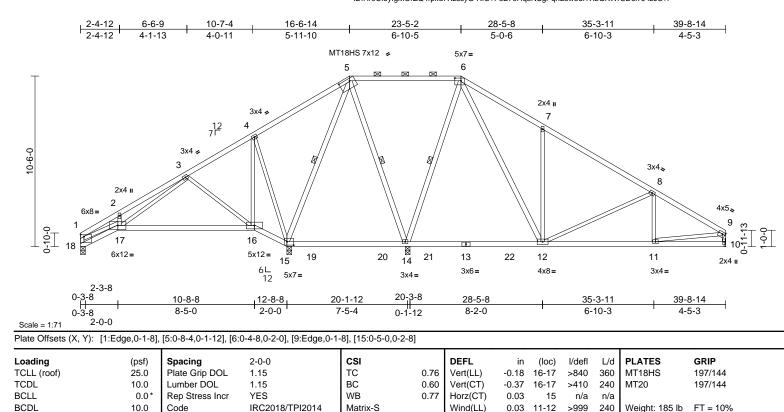
Page: 1

Scale = 1:86.2 2-0-0 [6:0-3-8,0-3-0], [7:0-8-4,0-1-12], [7:0-3-0,0-2-7], [8:0-4-8,0-2-0], [8:0-1-1,0-2-0], [17:0-5-0,0-2-8], [17:0-1-6,0-1-8], [20:0-3-0,0-6-4], [21:0-1-12,0-0-4], [23:0-12,0-2], [23:0-1-12,0-0-4], [23:0-12,0-2], [23:0-12,0-2], [23:0-12,0-2], [23:0-12,0-2], [23:0-12,0-2], [23:0-12,0-2], [23:0-12,0-2], [23:0-12,0-2], [23:0-12,0-2], [23:0-12,0-2], [23:0-12,0-2], [23:0-12,0-2], [23:0-12,0-2], [23:0-12,0-2], [23:0-12,0-2], [23:0-12,0-2], [23:0-12,0-2], [23:0-12,0-2], [23:

- 1410 0110010 (, , , , , , [<u>−</u> e , e , e , e	.1											
Loading	(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15		тс	0.76	Vert(LL)	-0.18	. ,	>835	360	MT18HS	197/144
TCDL	10.0	Lumber DOL	1.15		BC	0.54	Vert(CT)	-0.37	18-19	>409	240	MT20	197/144
BCLL	0.0*	Rep Stress Incr	YES		WB	0.77	Horz(CT)	0.03	17	n/a	n/a		
BCDL	10.0	Code	IRC20	18/TPI2014	Matrix-S		Wind(LL)	0.03	13-14	>999	240	Weight: 321 lb	FT = 10%
LUMBER TOP CHORD BOT CHORD WEBS	2x4 SPF No.2 2x4 SPF No.2 2x4 SPF No.2 *Exce 19-3,18-5,17-5,18-4	,19-4,19-2,14-9,13- [,]		VEBS	3-19=-211/152, 5 5-17=-593/194, 4 4-19=-242/1015, 7-16=-382/70, 2 9-14=-466/279, 3 10-13=-10/167, 1	4-18=-431, , 8-16=-10 -19=-20/52 8-14=-294,	/188, 96/193, 23, 7-17=-550 /1080,	0/168,	bea 20, 144 15) Thi	aring plat 327 lb u lb uplift s truss is	te capa plift at at join desig	able of withstandi joint 17, 138 lb u It 16. Ined in accordanc	others) of truss to ng 49 lb uplift at joint plift at joint 12 and which the 2018 ions R502.11.1 and
OTHERS	10,13-11:2x3 SPF N 2x4 SPF No.2	10.2			11-13=-114/676		5/102,					erenced standar	
BRACING	2X4 OFF NU.2			IOTES									es not depict the size
TOP CHORD	Structural wood she	athing directly appli			l roof live loads h	ave heen	considered fo	nr				of the purlin along	
I OF CHORD	5-7-6 oc purlins, ex			this design.						tom cho			
	2-0-0 oc purlins (10-		2		E 7-16; Vult=115r	nph (3-seo	cond aust)		LOAD	CASE(S) Sta	ndard	
BOT CHORD	Rigid ceiling directly				oh; TCDL=6.0psf;			Cat.		•			
	bracing.			II; Exp C; E	nclosed; MWFRS	6 (envelope	e) exterior zo	ne;					
WEBS	1 Row at midpt	8-16, 7-16, 7-17		cantilever le	oft and right expo	sed ; end v	ertical left ar	nd					
REACTIONS	(size) 12= Mech	nanical, 16=0-3-8,			ed; Lumber DOL=								
	17=0-3-8	, 20=0-3-8	3		gned for wind loa								
	Max Horiz 20=287 (I	LC 5)			uds exposed to v								
	Max Uplift 12=-138 ((LC 9), 16=-144 (LC	9),		rd Industry Gable								
		(LC 8), 20=-49 (LC 9			ualified building o								
	Max Grav 12=733 (I				equate drainage t e MT20 plates ur								
		(LC 15), 20=352 (LC	5 Z I)		e 2x4 MT20 unle			u.					
FORCES	(lb) - Maximum Com	npression/Maximum	7		fully sheathed from			,				~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~
TODOLODD	Tension		,	,	inst lateral mover							and the	alle
TOP CHORD	1-2=0/36, 2-3=-661/		8		spaced at 1-4-0							B & OF I	MISSO
	4-5=-131/690, 5-7=- 8-9=-501/358, 9-10=		g		as been designe		0 psf bottom				6	9 510	N.O.
	10-11=-938/202, 2-2	,		chord live lo	ad nonconcurrer	nt with any	other live loa	ids.			B	STATE OF I	M NA
	11-12=-671/155	20=-374/73,	1	0) * This truss	has been design	ed for a liv	e load of 20.0	0psf			R	SEVI	
BOT CHORD	19-20=-302/321, 18	-19=-239/132			m chord in all are						0	SEVI	
201 0110112	17-18=-504/196, 16				by 2-00-00 wide						80M	- ale	
	14-16=-227/159, 13	,			iny other member			f.			. Charles		DANA
	12-13=-23/81			, 0	are assumed to					-		NUM	BRR ING
					der(s) for truss to						177	PE-2001	
			1		oint(s) 20 conside			ie			N	11-2001	128

using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.
 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not
 a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall
 building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing
 is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the
 fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANS/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org)
 and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)


December 26,2023

E

SSIONAL

Job	Truss	Truss Type	Qty	Ply	Lot 96 RR, Somerset - Craftsman	
B220009	C5	Piggyback Base	3	1	Job Reference (optional)	162692732

Run: 8.73 S Dec 14 2023 Print: 8.730 S Dec 14 2023 MiTek Industries, Inc. Thu Dec 21 09:06:39 ID:Hr0UloyIgMOrZQ4rpild7XzssyG-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

LUMBER				
TOP CHORD	2x4 SPF N	10.2		
BOT CHORD	2x4 SPF N	10.2		
WEBS	2x3 SPF N	lo.2 *Exce	pt*	
			2x4 SPF No.2	
BRACING				
TOP CHORD	Structural	wood she	athing directly appl	ied or
			cept end verticals,	
			0-0 max.): 5-6.	
BOT CHORD	Rigid ceili	ng directly	applied or 6-0-0 oc	
	bracing.	0 ,		
WEBS	1 Row at r	midpt	5-14, 6-14, 5-15	
REACTIONS	(size)	10= Mech	anical, 14=0-3-8,	
		15=0-3-8,		
	Max Horiz			
	Max Uplift		LC 9), 14=-146 (LC	
			LC 8), 18=-45 (LC	
	Max Grav		.C 16), 14=1750 (L	
			(LC 15), 18=285 (L	,
FORCES		mum Com	pression/Maximum	1
	Tension			
TOP CHORD			22/185, 3-4=-135/7	
			580, 6-7=-514/358,	
	7-8=-509/ 9-10=-673		946/204, 1-18=-299	9/47,
BOT CHORD			17=-254/132,	
BOTCHORD			15=-479/198,	
			12=-136/754,	
	10-11=-22		12= 100/104,	
WEBS			=-250/1055,	
		6/189, 4-16		
	4-15=-591			
	6-14=-110	9/194, 1-1	7=-26/522,	
	5-15=-565	5/171, 6-12	=-294/1125,	
	7-12=-465	6/279, 8-12	=-544/184, 8-11=-	5/167,
	9-11=-116	685		
NOTES				

1) Unbalanced roof live loads have been considered for this design.

- Wind: ASCE 7-16; Vult=115mph (3-second gust) 2) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Provide adequate drainage to prevent water ponding. All plates are MT20 plates unless otherwise indicated. 4)
- 5)
- This truss has been designed for a 10.0 psf bottom
- chord live load nonconcurrent with any other live loads. * This truss has been designed for a live load of 20.0psf 6) on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf. All bearings are assumed to be SPF No.2 7)
- Refer to girder(s) for truss to truss connections. 8)
- Bearing at joint(s) 18 considers parallel to grain value
- using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.
- 10) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 45 lb uplift at joint 18, 330 lb uplift at joint 15, 146 lb uplift at joint 14 and 138 lb uplift at joint 10.
- 11) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 12) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord

LOAD CASE(S) Standard

Page: 1

December 26,2023

16023 Swingley Ridge Rd. Chesterfield MO 63017 314.434.1200 / MiTek-US.com

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponent.com)

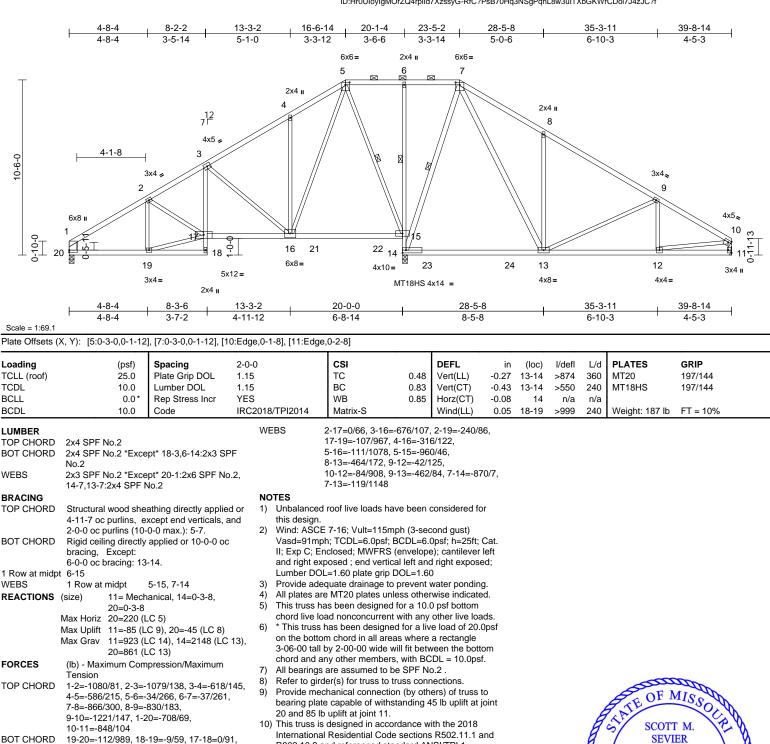
Job	Truss	Truss Type	Qty	Ply	Lot 96 RR, Somerset - Craftsman	
B220009	C6	Piggyback Base	2	1	Job Reference (optional)	162692733

Run: 8 73 S. Dec 14 2023 Print: 8 730 S.Dec 14 2023 MiTek Industries, Inc. Thu Dec 21 09:06:40 Page: 1 ID:Hr0UloyIgMOrZQ4rpild7XzssyG-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f 2-4-12 8-1-6 16-6-14 20-1-4 23-5-2 28-5-8 35-3-11 39-8-14 2-4-12 5-8-10 3-6-6 3-3-14 5-0-6 6-10-3 4-5-3 8-5-8 2x4 u MT18HS 8x12 # 6x6= 4 6 2x4 II -12 7 7 3x4 -10-6-0 0-9-6 3 10-6-0 3x4. 8 3x4 2 4x5 6x8 ı 9 17 16 15 13 5x7= 3x4= 2x4 🛛 3x4= 22 23 12 11 4x8 =3x4 II **_**6 2x4 II 4x8= 4x4= MT18HS 4x14 = 12 2-3-8 0-3-8 ↓ 2x4 II 12-10-8 12-8-8 8-1-6 10-8-8 16-8-2 28-5-8 39-8-14 20-0-0 35-3-11 0-3-8 2-0-0 5-9-14 3-9-10 3-3-14 8-5-8 6-10-3 4-5-3 2-7-2 2-0-0 0-2-0 Scale = 1:75.4 Plate Offsets (X, Y): [1:Edge,0-2-8], [4:0-1-12,0-5-0], [6:0-3-0,0-1-12], [9:Edge,0-1-8], [10:Edge,0-2-8], [19:0-2-0,0-3-15] Loading 2-0-0 CSI DEFL l/defl L/d PLATES GRIP (psf) Spacing in (loc) TCLL (roof) 25.0 Plate Grip DOL 1.15 TC 0.85 Vert(LL) -0.27 12-13 >879 360 MT18HS 197/144 TCDL 10.0 Lumber DOL 1.15 BC 0.78 Vert(CT) -0.42 12-13 >556 240 MT20 197/144 BCLL Rep Stress Incr WB Horz(CT) 0.0 YES 0.92 0.03 10 n/a n/a BCDL 10.0 Code IRC2018/TPI2014 Matrix-S Wind(LL) 0.06 >999 240 Weight: 184 lb FT = 10% 16-17 LUMBER 1) Unbalanced roof live loads have been considered for TOP CHORD 2x4 SPF No.2 this design Wind: ASCE 7-16; Vult=115mph (3-second gust) 2) BOT CHORD 2x4 SPF No.2 *Except* 5-13:2x3 SPF No.2 Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. 2x3 SPF No.2 *Except* 13-6,12-6:2x4 SPF WEBS II; Exp C; Enclosed; MWFRS (envelope); cantilever left No 2 and right exposed ; end vertical left and right exposed; BRACING Lumber DOL=1.60 plate grip DOL=1.60 TOP CHORD Structural wood sheathing directly applied or Provide adequate drainage to prevent water ponding. 3) 3-8-12 oc purlins, except end verticals, and All plates are MT20 plates unless otherwise indicated. 4) 2-0-0 oc purlins (10-0-0 max.): 4-6. This truss has been designed for a 10.0 psf bottom 5) BOT CHORD Rigid ceiling directly applied or 10-0-0 oc chord live load nonconcurrent with any other live loads. * This truss has been designed for a live load of 20.0psf bracing, Except: 6) 6-0-0 oc bracing: 12-13. on the bottom chord in all areas where a rectangle 5-14

1 Row at midpt WEBS 1 Row at midpt 4-14. 6-13. 3-15 **REACTIONS** (size) 10= Mechanical, 13=0-3-8, 18=0-3-8 18=222 (LC 5) Max Horiz Max Uplift 10=-76 (LC 9), 18=-28 (LC 8) Max Grav 10=961 (LC 14), 13=2061 (LC 13), 18=880 (LC 13) FORCES (Ib) - Maximum Compression/Maximum Tension TOP CHORD 1-2=-2450/192, 2-3=-1279/95, 3-4=-432/164, 4-5=-79/211. 5-6=-81/209. 6-7=-933/284. 7-8=-898/167, 8-9=-1280/134, 1-18=-944/82, 9-10=-886/95 BOT CHORD 17-18=-236/315, 16-17=-232/2156 15-16=-84/1207, 14-15=-2/230, 13-14=-1165/86, 5-14=-264/71 12-13=-14/181, 11-12=-82/1045, 10-11=-10/100 WEBS 2-17=-57/577, 3-16=0/454, 4-15=0/689, 4-14=-1049/42, 1-17=-141/1974, 7-12=-463/171, 8-11=-43/119, 9-11=-73/958, 8-12=-454/86, 6-13=-837/18, 6-12=-119/1140, 2-16=-961/150, 3-15=-1100/154

3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf. All bearings are assumed to be SPF No.2 7) Refer to girder(s) for truss to truss connections. Bearing at joint(s) 18 considers parallel to grain value 9) using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface. 10) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 28 lb uplift at joint 18 and 76 lb uplift at joint 10. This truss is designed in accordance with the 2018 11) International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. 12) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord. LOAD CASE(S) Standard

OF MISS SCOTT M. SEVIER PE-2001018807 ONAL E December 26,2023


> 16023 Swingley Ridge Rd. Chesterfield MO 63017

NOTES

🙏 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponent.com) 314.434.1200 / MiTek-US.com

Job	Truss	Truss Type	Qty	Ply	Lot 96 RR, Somerset - Craftsman	
B220009	C7	Piggyback Base	1	1	Job Reference (optional)	162692734

Run: 8.73 S Dec 14 2023 Print: 8.730 S Dec 14 2023 MiTek Industries, Inc. Thu Dec 21 09:06:40 ID:Hr0UloyIgMOrZQ4rpild7XzssyG-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC?f

- 9-10=1221/147, 1-20=-708/69, 10-11=-848/104 BOT CHORD 19-20=-112/989, 18-19=-9/59, 17-18=0/91, 3-17=-3/384, 16-17=-99/1039, 15-16=-43/158, 14-15=-1241/68, 6-15=-293/65, 13-14=-34/133, 12-13=-93/994, 11-12=-10/98
- R802.10.2 and referenced standard ANSI/TP1 1.
 11) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or

bottom chord.

LOAD CASE(S) Standard

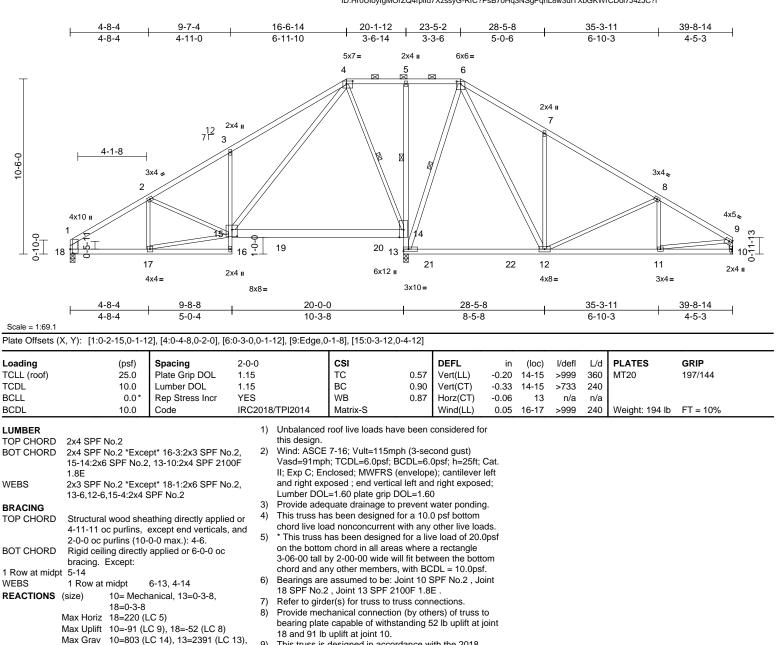
E

NUMBER

PE-2001018807

December 26,2023

SIONAL


ro.

Page: 1

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and property incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

Job	Truss	Truss Type	Qty	Ply	Lot 96 RR, Somerset - Craftsman	
B220009	C8	Piggyback Base	3	1	Job Reference (optional)	162692735

Run: 8.73 S Dec 14 2023 Print: 8.730 S Dec 14 2023 MiTek Industries, Inc. Thu Dec 21 09:06:41 ID:Hr0UloyIgMOrZQ4rpild7XzssyG-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

9) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

10) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

LOAD CASE(S) Standard

Page: 1

December 26,2023

NOTES 🙏 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a trust system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria**, and **DSB-22** available from Truss Plate Institute (www.tpinst.org)

and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

18=763 (LC 13)

4-5=0/468, 5-6=0/462, 6-7=-651/311,

3-15=-501/176, 14-15=-150/67, 13-14=-1367/45. 5-14=-273/68 12-13=-171/44, 11-12=-101/836,

6-13=-993/2, 6-12=-120/1156,

9-11=-90/756, 4-15=-147/1320,

Tension

9-10=-729/109

10-11=-12/92

4-14=-1022/69

(lb) - Maximum Compression/Maximum

1-2=-949/89, 2-3=-788/144, 3-4=-911/275,

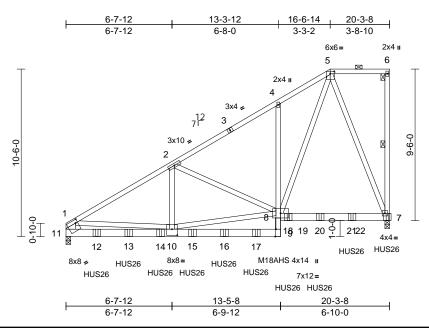
7-8=-639/194, 8-9=-1038/156, 1-18=-630/72,

17-18=-119/883, 16-17=-97/37, 15-16=0/97,

2-15=-142/30, 2-17=-135/85, 15-17=-88/934,

7-12=-463/172, 8-12=-493/82, 8-11=-29/145,

FORCES


TOP CHORD

BOT CHORD

WEBS

Job	Truss	Truss Type	Qty	Ply	Lot 96 RR, Somerset - Craftsman	
B220009	C9	Piggyback Base Girder	1	4	Job Reference (optional)	162692736

Run: 8.73 S Dec 14 2023 Print: 8.730 S Dec 14 2023 MiTek Industries, Inc. Thu Dec 21 09:06:41 ID:Hr0UloyIgMOrZQ4rpild7XzssyG-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Plate Offsets (X, Y): [5:0-3-0,0-1-12], [9:0-5-8,Edge], [10:0-4-0,0-4-8], [11:0-1-8,0-2-8]

		-										-	
Loading	(psf)	Spacing	2-0-0		csi		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15		TC	0.64	Vert(LL)	-0.12	9-10	>999	360	MT20	197/144
TCDL	10.0	Lumber DOL	1.15		BC	0.76	Vert(CT)	-0.21	9-10	>999	240	M18AHS	142/136
BCLL	0.0*	Rep Stress Incr	NO		WB	0.60	Horz(CT)	0.03	7	n/a	n/a		
BCDL	10.0	Code	IRC201	8/TPI2014	Matrix-S		Wind(LL)	0.07	7-8	>999	240	Weight: 567 lb	FT = 10%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD	2x4 SPF No.2 2x6 SP 2400F 2.0E No.2 2x4 SPF No.2 *Exce Structural wood she 6-0-0 oc purlins, exc 2-0-0 oc purlins, fe0	ept* 11-1:2x8 SP DS athing directly applie cept end verticals, a	S 3) ed or	except if note CASE(S) see provided to c unless other Wind: ASCE Vasd=91mpl II; Exp C; En	considered equal ed as front (F) or b ction. Ply to ply co listribute only load wise indicated. 7-16; Vult=115mp n; TCDL=6.0psf; B closed; MWFRS (posed; end vertica	back (B) nnection ls noted bh (3-sec BCDL=6. envelope	face in the LC s have been as (F) or (B), cond gust) Opsf; h=25ft; e); cantilever	Cat. left	Tru 13- to b 15) Fill LOAD (1) De Pla	ss) or eo 11-4 froi lack face all nail h CASE(S	quivale m the le of bot noles w) Star pof Live ease=1	nt spaced at 2-2- eft end to 20-1-12 ttom chord. here hanger is in ndard e (balanced): Lum .15	4-10d Girder, 4-10d 8 oc max. starting at t to connect truss(es) contact with lumber. bber Increase=1.15,
2-0-0 oc purlins (6-0-0 max.): 5-6. BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing. WEBS 1 Row at midpt 6-7 REACTIONS (size) 7=0-3-8, 11=0-3-8 Max Horiz 11=314 (LC 20) Max Uplift 7=-967 (LC 5), 11=-765 (LC 8) Max Grav 7=7842 (LC 13), 11=8648 (LC 13)			4) 5) 6)) 7)	Provide adeo All plates are This truss ha chord live loa * This truss h on the bottor	Lumber DOL=1.60 plate grip DOL=1.60 Provide adequate drainage to prevent water ponding. All plates are MT20 plates unless otherwise indicated. This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom					13=-1460 (B), =-1460 (B), 17=-1456			
FORCES TOP CHORD BOT CHORD	(lb) - Maximum Com Tension 1-2=-11359/883, 2-4 4-5=-6070/637, 5-6= 1-11=-6465/505 10-11=-691/3856, 9-	l=-6042/541, 122/85, 6-7=-129/5	,	All bearings Provide mec bearing plate 7 and 765 lb	ny other members, are assumed to be hanical connection capable of withst uplift at joint 11. designed in accor	e SPF No n (by oth anding S	o.2 ers) of truss t 167 lb uplift at	0					

NOTES

WEBS

Scale = 1:72.2

 4-ply truss to be connected together with 10d (0.131"x3") nails as follows: Top chords connected as follows: 2x4 - 1 row at 0-9-0 oc, 2x8 - 2 rows staggered at 0-9-0 oc. Bottom chords connected as follows: 2x6 - 3 rows staggered at 0-4-0 oc, 2x4 - 1 row at 0-9-0 oc. Web connected as follows: 2x4 - 1 row at 0-9-0 oc. Attach BC w/ 1/2" diam. botts (ASTM A-307) in the center of the member w/washers at 4-0-0 oc.

8-9=-12/2264, 4-8=-401/147, 7-8=-267/2226

2-10=-329/4603, 8-10=-948/8827,

2-8=-5191/458, 5-8=-865/8938,

5-7=-5947/557, 1-10=-254/6049

- 10) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.
- 12) Use Simpson Strong-Tie HUS26 (14-10d Girder, 6-10d Truss) or equivalent spaced at 2-0-0 oc max. starting at 1-11-4 from the left end to 5-11-4 to connect truss(es) to back face of bottom chord.
- 13) Use Simpson Strong-Tie HUS26 (14-10d Girder, 6-10d Truss, Single Ply Girder) or equivalent spaced at 2-0-0 oc max. starting at 7-11-4 from the left end to 11-11-4 to connect truss(es) to back face of bottom chord.

Page: 1

December 26,2023

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPH Claulity Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

Job	Truss	Truss Type	Qty	Ply	Lot 96 RR, Somerset - Craftsman	
B220009	D1	Common Supported Gable	1	1	Job Reference (optional)	162692737

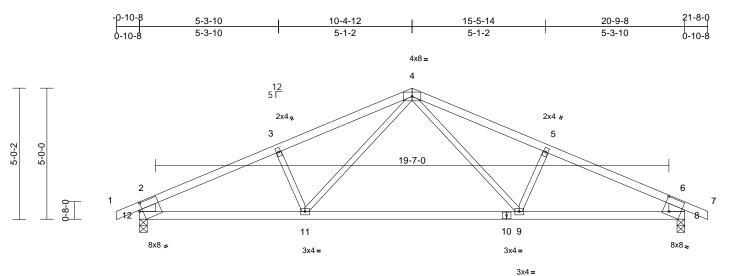
Run: 8.73 S Dec 14 2023 Print: 8.730 S Dec 14 2023 MiTek Industries, Inc. Thu Dec 21 09:06:42 ID:Hr0UloyIgMOrZQ4rpild7XzssyG-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

-0-10-8 21-8-0 10-4-12 20-9-8 0-10-8 10-4-12 10-4-12 0-10-8 4x4 = 7 6 8 12 5 ┌ 6 5 9 10 4 5-0-2 5-0-0 3 11 2 12 13 0-8-0 ₫ 25 \$ 14.] \otimes 24 23 22 21 20 19 1817 16 15 3x6 II 3x6 II 3x4 =

20-9-8

Scale = 1:41.9

Loading	(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15		тс	0.07	Vert(LL)	n/a	-	n/a	999	MT20	197/144
TCDL	10.0	Lumber DOL	1.15		BC	0.03	Vert(CT)	n/a	-	n/a	999		
BCLL	0.0*	Rep Stress Incr	YES		WB	0.05	Horz(CT)	0.00	14	n/a	n/a		
BCDL	10.0	Code	IRC20	18/TPI2014	Matrix-R		- (- /					Weight: 79 lb	FT = 10%
LUMBER				IOTES					-			•	
TOP CHORD	2x4 SPF No.2				roof live loads h	ave been	considered fo	nr					
BOT CHORD	2x4 SPF No.2			this design.									
WEBS	2x4 SPF No.2		:		7-16; Vult=115	mph (3-seo	cond aust)						
OTHERS	2x4 SPF No.2				h; TCDL=6.0psf;			Cat.					
BRACING					closed; MWFRS								
TOP CHORD	Structural wood she	athing directly applie	dor		ft and right expo								
TOF CHORD	6-0-0 oc purlins, ex		u ui	right expose	d; Lumber DOL=	=1.60 plate	grip DOL=1.	.60					
BOT CHORD			. :) Truss desig	ned for wind loa	ds in the p	lane of the tru	uss					
DOT CHORD	bracing.		,	only. For stu	uds exposed to v	, wind (norm	al to the face	e),					
REACTIONS	•	3, 15=20-9-8, 16=20	0.0	see Standar	d Industry Gable	e End Deta	ils as applica	ble,					
REACTIONS		3, 19=20-9-8, 10=20 3, 19=20-9-8, 20=20	,	or consult qu	alified building o	designer a	s per ANSI/TI	PI 1.					
		3, 22=20-9-8, 20=20 3, 22=20-9-8, 23=20	<u> </u>		e 2x4 MT20 unle								
		3, 22=20-9-0, 23=20 3, 25=20-9-8			es continuous b								
	Max Horiz 25=-68 (L	,	(ully sheathed from								
Max Uplift 14=-33 (LC 5), 15=-66 (LC 9),					nst lateral mover		liagonal web)						
	•	C 9), 17=-49 (LC 9),			spaced at 2-0-0								
		C 9), 21=-50 (LC 8),			as been designe								
	(C 8), 23=-41 (LC 8),			ad nonconcurrer								
		C 8), 25=-33 (LC 4)	ę		has been design			0psf					
	Max Grav 14=177 (L		2),		m chord in all are								
		_C 22), 17=179 (LC			by 2-00-00 wide		veen the bott	om					
	19=191 (L	_C 22), 20=162 (LC	1),		ny other membe		- 0						
	21=191 (L	_C 21), 22=179 (LC			are assumed to								
	23=177 (L	C 21), 24=192 (LC	21),	,	hanical connect		,						Th
	25=177 (L	_C 1)			e capable of with							OF I	ALC D
FORCES	(lb) - Maximum Com	pression/Maximum			ift at joint 14, 50 22, 41 lb uplift a							TATE OF I	ISS W
	Tension				ift at joint 19, 49						4		N.S.
TOP CHORD	2-25=-157/47, 1-2=0)/27, 2-3=-72/50,			16 and 66 lb up			0			A	SCOT	TM YPN
	3-4=-45/68, 4-5=-33/	/89, 5-6=-33/110,			designed in acc						B	SEV	
	6-7=-36/130, 7-8=-3	6/123, 8-9=-33/90,			Residential Co			and			Rou		
	9-10=-33/69, 10-11=	-34/48, 11-12=-57/3	5,		nd referenced st						2X		
	12-13=0/27, 12-14=-	-157/47		OAD CASE(S)		andara / a					X)/	An II)	SMU
BOT CHORD	24-25=-8/57, 23-24=	=-8/57, 22-23=-8/57,			Standard						14-5	NUM	BER A
	21-22=-8/57, 20-21=										N2	PE-2001	018807
	17-19=-8/57, 16-17=	-8/57, 15-16=-8/57,									N	PE-2001	A STORE
	14-15=-8/57		-								Y		S.B
WEBS	7-20=-122/0, 6-21=-											SSIONA	TENA
	4-23=-139/67, 3-24=											QUA	
	9-17=-139/73, 10-16	5=-139/68, 11-15=-14	46/87									and a	202
												Decembe	1 20,2023


Page: 1

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

Job	Truss	Truss Type	Qty	Ply	Lot 96 RR, Somerset - Craftsman	
B220009	D2	Common	4	1	Job Reference (optional)	162692738

Run; 8,73 S Dec 14 2023 Print; 8,730 S Dec 14 2023 MiTek Industries, Inc. Thu Dec 21 09:06:42 ID:Hr0UloyIgMOrZQ4rpild7XzssyG-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

	6-3-12	14-5-12	20-9-8	
	6-3-12	8-2-1	6-3-12	
Scale = 1:43.9				

Plate Offsets (X, Y): [8:0-2-13,0-6-6], [12:0-1-8,0-3-9]

Plate Offsets (2	X, Y): [8:0-2-13,0-6-6], [12:0-1-8,0-3-9]										
Loading TCLL (roof) TCDL	(psf) 25.0 10.0	Spacing Plate Grip DOL Lumber DOL	2-0-0 1.15 1.15	CSI TC BC	0.91 0.64	DEFL Vert(LL) Vert(CT)	in -0.17 -0.39	(loc) 9-11 9-11	l/defl >999 >621	L/d 360 240	PLATES MT20	GRIP 197/144
BCLL BCDL	0.0* 10.0	Rep Stress Incr Code	YES IRC2018/TP	WB PI2014 Matrix-S	0.16	Horz(CT) Wind(LL)	0.04 0.10	8 9-11	n/a >999	n/a 240	Weight: 68 lb	FT = 10%
UMBER TOP CHORD SOT CHORD WEBS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SPF No.2 2x4 SPF No.2 2x3 SPF No.2 *Exce Structural wood she 2-2-0 oc purlins, ex Rigid ceiling directly bracing. (size) 8=0-3-8, 7 Max Horiz 12=-66 (L Max Uplift 8=-143 (L Max Grav 8=991 (LC (lb) - Maximum Com Tension 1-2=0/32, 2-3=-1541 4-5=-1394/220, 5-6= 2-12=-907/170. 6-8=	ept* 12-2,8-6:2x8 SF athing directly applic cept end verticals. applied or 10-0-0 o 12=0-3-8 C 9), 12=-143 (LC & C 9), 12=-143 (LC & C 1), 12=991 (LC 1) ipression/Maximum 1/197, 3-4=-1394/22 1541/197, 6-7=0/3	6) Pr be 2 DSS 7) Th Int ed or R8 LOAD c 3)	ovide mechanical conn paring plate capable of v 2 and 143 lb uplift at join is truss is designed in a ternational Residential (802.10.2 and reference o CASE(S) Standard	withstanding 1 nt 8. accordance w Code sections	ers) of truss 43 lb uplift at ith the 2018 R502.11.1 a	to t joint					
BOT CHORD	11-12=-185/1326, 9- 8-9=-119/1326	,										
WEBS	4-9=-89/469, 5-9=-2 3-11=-251/176	51/1/6, 4-11=-88/40	ō9,									
this design 2) Wind: ASC Vasd=91m II; Exp C; I	ed roof live loads have CE 7-16; Vult=115mph 	(3-second gust) DL=6.0psf; h=25ft; nvelope) exterior zor	Cat. ne;								STATE OF J	MISSOUR

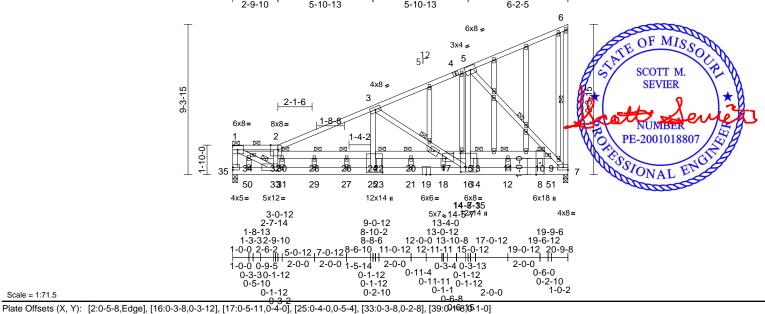
- 2 II; Exp C; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60 3) This truss has been designed for a 10.0 psf bottom
- chord live load nonconcurrent with any other live loads. * This truss has been designed for a live load of 20.0psf 4) on the bottom chord in all areas where a rectangle
- 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- All bearings are assumed to be SPF No.2 . 5)

F

NUMBER

PE-2001018807

December 26,2023


SSIONAL

 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.
 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not besign value to dury with with where outputs into design is based only door parameters shown, and is for an individual building design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members and property incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TPH1 Quality Criteria**, and **DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcscomponents.com)

Job	Truss	Truss Type	Qty	Ply	Lot 96 RR, Somerset - Craftsman	
B220009	D3	Roof Special Girder	1	2	Job Reference (optional)	162692739

Scale = 1:71.5

	,, ,, ,, [<u>Lie e e,Luge</u>],	[o,o _ o], [0]					
Loading	(psf)	Spacing	2-0-0	csi		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15	тс	0.60	Vert(LL)	-0.14	27-29	>999	360	MT20	197/144
TCDL	10.0	Lumber DOL	1.15	BC	0.46	Vert(CT)	-0.24	26-28	>999	240		
BCLL	0.0*	Rep Stress Incr	NO	WB	0.83	Horz(CT)	0.04	7	n/a	n/a		
BCDL	10.0	Code	IRC2018/TPI2014	Matrix-S		Wind(LL)	0.10	27-29	>999	240	Weight: 365 lb	FT = 10%
LUMBER TOP CHORD BOT CHORD WEBS	2x4 SPF No.2 *Exce 1.8E 2x6 SP 2400F 2.0E 2x4 SPF No.2 *Exce			33-35=-325/206, 29-31=-1341/892 25-27=-1341/892 21-23=-1184/845 16-18=-1158/827 12-14=-539/4363	1, 27-29= 1, 23-25= 6, 18-21= 7, 14-16=	-1341/8921, -1184/8456, -1184/8456, -539/4363,		Vas II; E car exp	sd=91mp Exp C; E itilever le oosed; Li	oh; TCI nclose eft and umber	d; MWFRS (enver right exposed ; e DOL=1.60 plate	=6.0psf; h=25ft; Cat. elope) exterior zone; end vertical left
OTHERS BRACING TOP CHORD		cept end verticals, ar		7-8=-539/4363, 3 30-32=-1431/302 26-28=-1431/302 22-24=-987/154, 17-20=-987/154,	2-34=-15 , 28-30=- , 24-26=- 20-22=-9	46/197, 1431/302, 1431/302, 87/154,		only see or o 5) Pro	y. For si Standa consult q vide ade	tuds ex rd Indu jualified equate	posed to wind (n ustry Gable End I d building design drainage to prev	iormal to the face), iormal to the face), Details as applicable, er as per ANSI/TPI 1. ent water ponding. erwise indicated.
BOT CHORD WEBS JOINTS	 2-0-0 oc purlins (4-8 Rigid ceiling directly bracing. 1 Row at midpt 1 Brace at Jt(s): 1, 		WEBS	13-15=-513/57, 1 10-11=-513/57, 9 1-34=-962/8312, 32-33=-3676/403	1-13=-513 -10=-513 33-34=-1 , 2-32=-3	3/57, /57 124/9589, 240/390,		7) Tru bra 8) Gal 9) Thi	ss to be ced aga ble studs s truss h	fully sl inst late s space as bee	heathed from one eral movement (i ed at 2-0-0 oc. en designed for a	e face or securely .e. diagonal web). 10.0 psf bottom
	30, 28, 26, 22, 20, 13, 11, 10, 34	_C 8) C 8), 35=-730 (LC 8) _C 18), 35=5607 (LC	18)	24-25=-310/2180 3-17=-4277/643, 15-16=-337/3306 5-9=-5540/703, 7 30-31=-32/68, 28 26-27=-109/482, 20-21=-43/329, 1 11-12=-36/116, 8 17-18=-146/989	16-17=-4 5-15=-4 -9=-6610 -29=-118 22-23=-3 3-14=-14	804/733, 79/5288, /807, /694, 4/188, 6/1106,		10) * TI on 3-0 chc 11) WA gre	his truss the botto 6-00 tall ord and a RNING: ater thar	has be om cho by 2-0 any oth Requi n input	een designed for ord in all areas wh	between the bottom at joint(s) 35, 7
TOP CHORD	1-35=-4813/587, 1-2 2-3=-8207/858, 3-5= 6-7=-179/91		^{756,} (0.131"x3" Top chords oc.	to be connected to) nails as follows: s connected as follo ords connected as f	ows: 2x4 ·	- 1 row at 0-6	-0	OR OTH SUPPOF BLOCKS	ER MEAN RT WIDTH 5, ETC.) A	NS TO / H (SUCI RE TH		Y OF THE

staggered at 0-9-0 oc.

Web connected as follows: 2x4 - 1 row at 0-4-0 oc. All loads are considered equally applied to all plies,

2) except if noted as front (F) or back (B) face in the LOAD CASE(S) section. Ply to ply connections have been provided to distribute only loads noted as (F) or (B), unless otherwise indicated.

December 26,2023

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not besign value to dury with with where outputs into design is based only door parameters shown, and is for an individual building design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members and property incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TPH1 Quality Criteria**, and **DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcscomponents.com)

Continued on page 2

Job	Truss	Truss Type	Qty	Ply	Lot 96 RR, Somerset - Craftsman	
B220009	D3	Roof Special Girder	1	2	Job Reference (optional)	162692739
Wheeler Lumber Waverly KS	- 66871	Run: 8 73 S. Dec 14	- 2023 Print: 8	730 S Dec 1	4 2023 MiTek Industries Inc. Thu Dec 21 09:06:42	Page: 2

ID:Hr0UloyIgMOrZQ4rpild7XzssyG-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Wheeler Lumber, Waverly, KS - 66871,

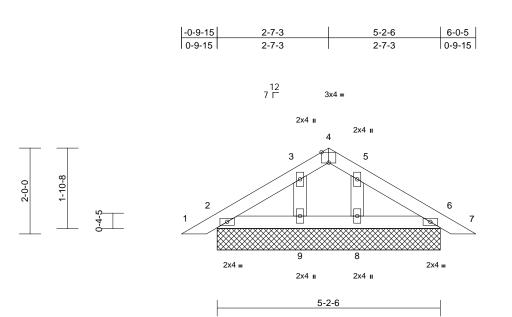
- 13) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 730 lb uplift at joint 35 and 682 lb uplift at joint 7.
- 14) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 15) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.
- 16) Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 763 Ib down and 149 lb up at 0-11-3, 769 lb down and 150 Ib up at 3-0-12, 769 lb down and 150 lb up at 5-0-12, 769 lb down and 150 lb up at 7-0-12, 976 lb down and 88 lb up at 9-0-12, 976 lb down and 88 lb up at 11-0-12, 937 lb down and 97 lb up at 13-2-15, 837 lb down and 103 lb up at 15-0-12, 837 lb down and 103 lb up at 17-0-12, 837 lb down and 103 lb up at 19-0-12, and 291 lb down and 57 lb up at 5-0-12, and 291 lb down and 57 lb up at 7-0-12 on bottom chord. The design/selection of such connection device(s) is the responsibility of others.

17) Studding applied to ply: 1(Front)

- LOAD CASE(S) Standard
- Dead + Roof Live (balanced): Lumber Increase=1.15, 1) Plate Increase=1.15 Uniform Loads (lb/ft)

Vert: 1-2=-70, 2-6=-70, 7-35=-20, 9-34=-20

Concentrated Loads (lb) Vert: 31=-671 (B), 29=-920 (F=-249, B=-671), 27=-920 (F=-249, B=-671), 23=-806 (B), 21=-806 (B), 14=-741 (B), 12=-741 (B), 8=-741 (B), 18=-797 (B), 50=-674 (B)


 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.
 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not beign value of use only wan win exec connectors, this design is based only upon parameters shown, and is for an individual building domponent, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality** Criteria, and **DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcscomponents.com)

Page: 2

Job	Truss	Truss Type	Qty	Ply	Lot 96 RR, Somerset - Craftsman	
B220009	P1	Piggyback	1	1	Job Reference (optional)	162692740

Run: 8.73 S Dec 14 2023 Print: 8.730 S Dec 14 2023 MiTek Industries, Inc. Thu Dec 21 09:06:43 ID:Hr0UloyIgMOrZQ4rpild7XzssyG-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Scale = 1:26.8

Plate Offsets (X, Y): [4:0-2-0,Edge], [5:0-0-0,Edge]

Plate Offsets	(X, Y): [4:0-2-0,Edge],	[5:0-0-0,Edge]										
Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15	TC	0.05	Vert(LL)	n/a	-	n/a	999	MT20	197/144
TCDL	10.0	Lumber DOL	1.15	BC	0.02	Vert(CT)	n/a	-	n/a	999		
BCLL	0.0*	Rep Stress Incr	YES	WB	0.02	Horz(CT)	0.00	6	n/a	n/a		
BCDL	10.0	Code	IRC2018/TPI201	4 Matrix-P	-						Weight: 17 lb	FT = 10%
LUMBER TOP CHORD BOT CHORD OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SPF No.2 2x4 SPF No.2 Structural wood she 6-0-0 oc purlins. Rigid ceiling directly bracing.	applied or 6-0-0 oc 6=5-2-6, 8=5-2-6, 9= 6 6) 8), 6=-8 (LC 9), 8=-4 (LC 8)	ed or =5-2-6 49 (LC 49 (LC 40 (LC) 40 (L	uss has been design pottom chord in all arr tall by 2-00-00 wide nd any other membe ings are assumed to mechanical connect plate capable of with ft at joint 6, 52 lb upli ss is designed in acc ional Residential Coc 0.2 and referenced si undard Industry Piggy or Connection to base	eas where will fit betw rs. be SPF No ion (by oth standing 5 ift at joint 9 ordance w de sections tandard AN vback Trus e truss as a	a rectangle veen the botton o.2. ers) of truss to b uplift at joir and 49 lb upli ith the 2018 s R502.11.1 an ISI/TPI 1. s Connection	m o nt 2, ift at					
FORCES	8=164 (L0 (lb) - Maximum Com	C 16), 9=166 (LC 15		qualified building des E(S) Standard	signer.							
. 0020	Tension											
TOP CHORD	1-2=0/17, 2-3=-51/5 5-6=-47/50, 6-7=0/1		20/7,									
BOT CHORD WEBS	,	/68, 6-8=-26/68										
NOTES	000,00,000	20/11										
	ed roof live loads have	been considered for	r									
this desig			•								COL	Jan
	CE 7-16; Vult=115mph	(3-second aust)									F. OF	MISC
II; Exp C; cantilever	mph; TCDL=6.0psf; BC Enclosed; MWFRS (er left and right exposed osed; Lumber DOL=1.6	velope) exterior zor ; end vertical left an	ne; Id							ł.	STATE OF SCOT	TM. $\sum V_{\lambda}$
3) Truss de only. For see Stand	signed for wind loads in studs exposed to wind dard Industry Gable En- t qualified building design	n the plane of the tru (normal to the face) d Details as applicat	uss), ble,							ß	att	Service
	uires continuous botto		-11.							N	PE-2001	018807
	ids spaced at 1-4-0 oc.	n onora bearing.								N	15	18A
,	has been designed for	r a 10.0 psf bottom								1	A Ser	NO'A

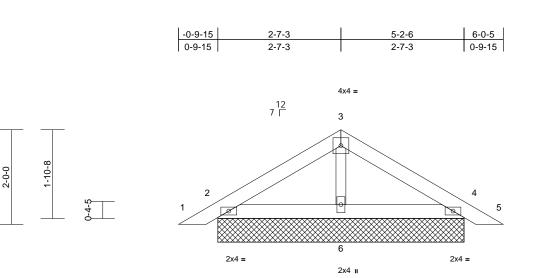
 This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

December 26,2023

STONAL E

Page: 1

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)


Job	Truss	Truss Type	Qty	Ply	Lot 96 RR, Somerset - Craftsman	
B220009	P2	Piggyback	9	1	Job Reference (optional)	162692741

Run: 8.73 S Dec 14 2023 Print: 8.730 S Dec 14 2023 MiTek Industries, Inc. Thu Dec 21 09:06:43

5-2-6

ID:Hr0UloyIgMOrZQ4rpild7XzssyG-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Scale =	1:24.3
---------	--------

		-			-								
Loading	(psf)	Spacing	2-0-0		CSI TC	0.44	DEFL	in n/a	(loc)	l/defl	L/d	PLATES MT20	GRIP 197/144
TCLL (roof)	25.0	Plate Grip DOL Lumber DOL	1.15		BC	0.11	Vert(LL)	n/a	-	n/a	999	W120	197/144
TCDL	10.0		1.15		WB	0.06	Vert(CT)	n/a	-	n/a	999		
BCLL BCDL	0.0* 10.0	Rep Stress Incr Code	YES	8/TPI2014	Matrix-P	0.03	Horz(CT)	0.00	4	n/a	n/a	Weight: 16 lb	FT = 10%
BCDL	10.0	Code	IKC201	0/1112014	Maurix-P							weight. To b	FT = 10%
LUMBER			8)	All bearings	are assumed to	be SPF No	o.2 .						
TOP CHORD	2x4 SPF No.2		9)	Provide mec	hanical connect	tion (by oth	ers) of truss	to					
BOT CHORD	2x4 SPF No.2			bearing plate	e capable of with	nstanding 4	3 lb uplift at	joint					
OTHERS	2x3 SPF No.2				ıplift at joint 4.								
BRACING			1(designed in acc								
TOP CHORD	Structural wood she	athing directly applie	ed or		Residential Co			and					
	6-0-0 oc purlins.				nd referenced s								
BOT CHORD	Rigid ceiling directly bracing.	applied or 10-0-0 of	c ¹⁷	Detail for Co	d Industry Pigg nnection to bas	, e truss as a							
REACTIONS	(size) 2=5-2-6, 4 Max Horiz 2=-48 (LC Max Uplift 2=-43 (LC Max Grav 2=168 (LC (LC 1)	2 8), 4=-49 (LC 9)		consuit quaii DAD CASE(S)	fied building de: Standard	signer.							
FORCES	(lb) - Maximum Com Tension	pression/Maximum											
TOP CHORD	1-2=0/17, 2-3=-74/4	1, 3-4=-71/29, 4-5=0)/17										
BOT CHORD	2-6=-8/36, 4-6=-8/36	5											
WEBS	3-6=-142/35												
NOTES													
	ed roof live loads have	been considered for	r										
this design													
2) Wind: ASC	CE 7-16; Vult=115mph	(3-second gust)											
Vasd=91n	nph; TCDL=6.0psf; BC	DL=6.0psf; h=25ft; 0	Cat.										The
	Enclosed; MWFRS (er											A	De
	left and right exposed											ATE OF I	NISS D
right expo	sed; Lumber DOL=1.6	0 plate grip DOL=1.0	60								4	9.20	NO

see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

- 4) Gable requires continuous bottom chord bearing.
- 5) Gable studs spaced at 2-0-0 oc.

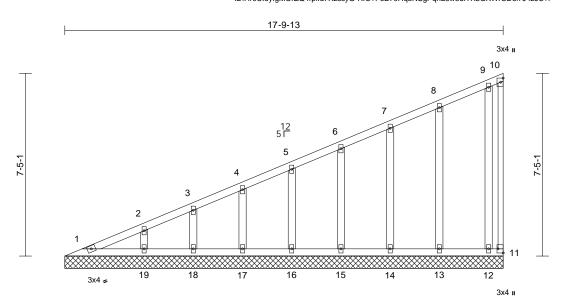
3)

- This truss has been designed for a 10.0 psf bottom 6)
- chord live load nonconcurrent with any other live loads.

Truss designed for wind loads in the plane of the truss

only. For studs exposed to wind (normal to the face),

7) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent oulgase with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

Job	Truss	Truss Type	Qty	Ply	Lot 96 RR, Somerset - Craftsman	
B220009	V1	Valley	1	1	Job Reference (optional)	162692742

Run: 8.73 S Dec 14 2023 Print: 8.730 S Dec 14 2023 MiTek Industries, Inc. Thu Dec 21 09:06:44 ID:Hr0UloyIgMOrZQ4rpild7XzssyG-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

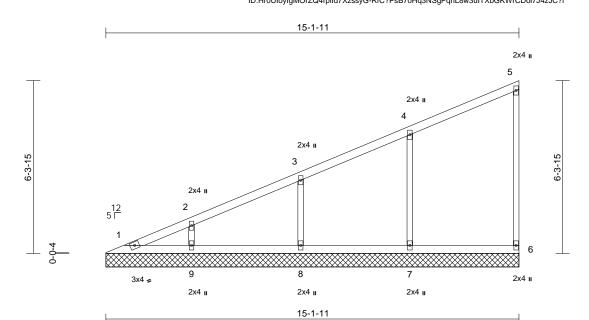
Page: 1

17	-9-	13	3

Scale = 1:46.8

Plate Offsets (X, Y): [11:Edge,0-2-8]

Londing	(205)	Creating	2-0-0		CSI		DEFL		(10.0)	1/104	L /al	PLATES	GRIP
Loading TCLL (roof)	(psf) 25.0	Spacing Plate Grip DOL	2-0-0 1.15			0.44		in n/a	(loc) -	l/defl n/a	L/d 999	MT20	197/144
TCDL	25.0 10.0	Lumber DOL	1.15		BC	0.44	Vert(LL)	n/a	-	n/a	999 999	WI120	197/144
BCLL	0.0*	Rep Stress Incr	YES		WB	0.10	Horiz(TL)	0.00	- 11	n/a	999 n/a		
BCDL	10.0	Code		18/TPI2014	Matrix-S	0.10		0.00		n/a	n/a	Weight: 81 lb	FT = 10%
BCDL	10.0	Code	IRC201	18/19/2014	Matrix-5							weight: 81 lb	F1 = 10%
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD	2x4 SPF No.2 2x3 SPF No.2 2x4 SPF No.2 Structural wood sh 6-0-0 oc purlins, e	eathing directly applie xcept end verticals. y applied or 10-0-0 or	N 1) ed or	IOTES) Wind: ASCE Vasd=91mpl II; Exp C; En cantilever lef right expose	2-19=-179/90, 3- 5-16=-139/72, 6- 8-13=-150/65, 9- 7-16; Vult=115m n; TCD=6.0psf; closed; MWFRS t and right expos d; Lumber DOL=	15=-141/7 12=-95/97 nph (3-sec BCDL=6. (envelope sed ; end v 1.60 plate	21, 7-14=-138 cond gust) Opsf; h=25ft; e) exterior zo vertical left ar grip DOL=1.	Cat. ne; id 60					
	bracing.		2)		ned for wind load								
REACTIONS	12=17-9 14=17-9 16=17-9 18=17-9 Max Horiz 1=309 (L Max Uplift 11=-113 13=-35 (15=-47 (19=-63 (19=-63 (12=157 (14=178) 16=179 (18=162 ((LC 7), 12=-84 (LC 8) LC 8), 14=-52 (LC 8), LC 8), 16=-48 (LC 8), LC 8), 18=-43 (LC 8), LC 8), 18=-43 (LC 8), LC 16), 11=76 (LC 4), (LC 16), 13=191 (LC 1), LC 1), 15=181 (LC 1), LC 1), 17=185 (LC 1), LC 1), 19=238 (LC 1)	7) 1), 8)), 9)	or consult qu All plates are Gable requir Gable studs This truss ha chord live loa * This truss h on the bottor 3-06-00 tall h chord and ar All bearings Provide mecc bearing plate 11, 63 lb upl	d Industry Gable alified building d a 2x4 MT20 unles es continuous bo spaced at 2-0-0 is been designed n chord in all are by 2-00-00 wide y other member are assumed to b hanical connection capable of withs iff at joint 19, 43 1 7, 48 hu unlift at	lesigner a: ss otherwi ottom chor oc. d for a 10. t with any ed for a liv eas where will fit betw s. be SPF No on (by oth standing 1 lb uplift at	s per ANSI/TI se indicated. d bearing. D psf bottom other live loa e load of 20.0 a rectangle veen the botti b.2. ers) of truss f joint 18, 49 ll	ol 1. ds. Dpsf om ∶joint				TE OF	MISSOL
FORCES	(lb) - Maximum Cor Tension	mpression/Maximum		15, 52 lb upl	17, 48 lb uplift at ift at joint 14, 35						B	S SCOT	N CAN
TOP CHORD	4-5=-184/27, 5-6=-	232/23, 3-4=-208/28, 168/27, 6-7=-154/27, 121/64, 9-10=-68/49,		International R802.10.2 a	designed in acco Residential Cod nd referenced sta	e sections	s R502.11.1 a	Ind			K	att.	South
BOT CHORD	1-19=-101/76, 18-1 17-18=-101/76, 16- 15-16=-101/76, 14- 13-14=-101/76, 12- 11-12=-101/76	17=-101/76, 15=-101/76,	L	OAD CASE(S)	Standard						AND	NUM PE-2001	018807 50 F


December 26,2023

A WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.
Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not
a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall
building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing
is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the
fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org)
and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

Job	Truss	Truss Type	Qty	Ply	Lot 96 RR, Somerset - Craftsman	
B220009	V2	Valley	1	1	Job Reference (optional)	162692743

Run: 8.73 S Dec 14 2023 Print: 8.730 S Dec 14 2023 MiTek Industries, Inc. Thu Dec 21 09:06:44 ID:Hr0UloyIgMOrZQ4rpild7XzssyG-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

Scale = 1:42.2

Loading TCLL (roof)	(psf) 25.0	Spacing Plate Grip DOL	2-0-0 1.15		CSI TC	0.31	DEFL Vert(LL)	in n/a	(loc) -	l/defl n/a	L/d 999	PLATES MT20	GRIP 197/144
TCDL	10.0	Lumber DOL	1.15		BC	0.14	Vert(TL)	n/a	-	n/a	999		
BCLL	0.0*	Rep Stress Incr	YES		WB	0.15	Horiz(TL)	0.00	6	n/a	n/a		FT 400/
BCDL	10.0	Code	IRC2018/	TPI2014	Matrix-S							Weight: 46 lb	FT = 10%
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SPF No.2 2x3 SPF No.2 2x3 SPF No.2 Structural wood she 6-0-0 oc purlins, ex Rigid ceiling directh bracing. (size) 1=15-1-1 8=15-1-1 Max Horiz 1=261 (L Max Uplitf 6=-33 (LC (LC 8), 9 Max Grav 1=117 (L	y applied or 10-0-0 o 1, 6=15-1-11, 7=15- 1, 9=15-1-11 C 5) C 5), 7=-104 (LC 8), =-87 (LC 8)	7) ed or 8) ic 1-11, 10) 8=-96 ,	chord live loa * This truss h on the bottor 3-06-00 tall b chord and ar All bearings a Provide mec bearing plate 6, 104 lb upli uplift at joint This truss is International	designed in acco Residential Code nd referenced sta	with any d for a liv as where vill fit betw s, with BC be SPF No on (by oth standing 3 uplift at ju rdance w e sections	other live loa e load of 20.0 a rectangle ween the bottu DL = 10.0psl o.2. ers) of truss t 33 lb uplift at j oint 8 and 87 ith the 2018 s R502.11.1 a	Opsf om f. to joint Ib					
FORCES	(lb) - Maximum Cor Tension	npression/Maximum											
TOP CHORD	1-2=-223/42, 2-3=-7 4-5=-126/52, 5-6=-7	184/53, 3-4=-150/53, 110/43	,										
BOT CHORD	1-9=-85/64, 8-9=-85 6-7=-85/64	5/64, 7-8=-85/64,											
WEBS	4-7=-306/143, 3-8=	-280/147, 2-9=-251/	128									000	TO
NOTES												OFI	MISS
Vasd=91r II; Exp C; cantilever	CE 7-16; Vult=115mpl mph; TCDL=6.0psf; BC Enclosed; MWFRS (e left and right exposed	CDL=6.0psf; h=25ft; nvelope) exterior zon l ; end vertical left ar	ne; nd									STATE OF I	T M.

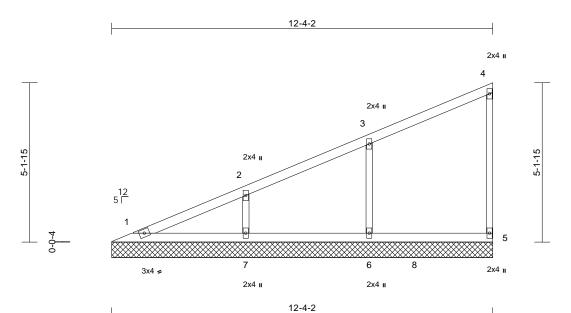
- right exposed; Lumber DOL=1.60 plate grip DOL=1.60 2) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 3) All plates are 2x4 MT20 unless otherwise indicated.
- 4) Gable requires continuous bottom chord bearing.
- 5) Gable studs spaced at 4-0-0 oc.

F

NUMBER

December 26,2023

PE-200101880


SIONAL

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent colleges with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

Job	Truss Truss Type Qty Ply Lot 96 RR, Somerset - C			Lot 96 RR, Somerset - Craftsman		
B220009	V3	Valley	1	1	Job Reference (optional)	162692744

Run: 8.73 S Dec 14 2023 Print: 8.730 S Dec 14 2023 MiTek Industries, Inc. Thu Dec 21 09:06:44 ID:Hr0UloyIgMOrZQ4rpild7XzssyG-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

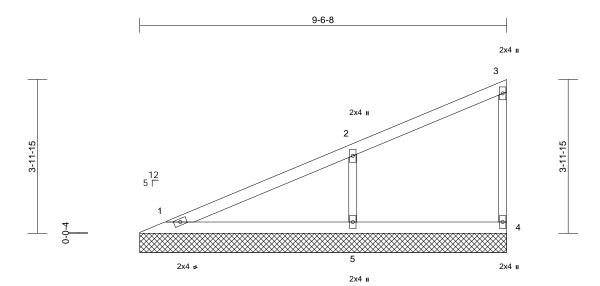
Page: 1

Scale = 1:37.3

Scale = 1:37.3												.	
Loading	(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
FCLL (roof) FCDL	25.0 10.0	Plate Grip DOL Lumber DOL	1.15 1.15		TC BC	0.20 0.13	Vert(LL) Vert(TL)	n/a n/a	-	n/a	999 999	MT20	197/144
BCLL	0.0*	Rep Stress Incr	YES		WB	0.13	Horiz(TL)	0.00	- 5	n/a n/a	999 n/a		
BCDL	10.0	Code	IRC2018/	TPI2014	Matrix-S	0.00	110112(112)	0.00	0	n/a	n/a	Weight: 36 lb	FT = 10%
UMBER OP CHORD SOT CHORD VEBS DTHERS BRACING OP CHORD SOT CHORD REACTIONS	2x4 SPF No.2 2x3 SPF No.2 2x3 SPF No.2 2x3 SPF No.2 Structural wood she 6-0-0 oc purlins, ex Rigid ceiling directly bracing. (size) 1=12-4-2, 7=12-4-2 Max Horiz 1=210 (LC Max Uplift 5=-29 (LC 7=-101 (L Max Grav 1=159 (LC	athing directly applic cept end verticals. applied or 10-0-0 or 5=12-4-2, 6=12-4-2 2 5) 5 5), 6=-103 (LC 8), C 8)	6) 7) 8) ed or c 9) 2, LOA	* This truss h on the bottor 3-06-00 tall b chord and ar All bearings a Provide mec bearing plate 5, 103 lb upli This truss is International	has been designed in chord in all area: by 2-00-00 wide wi by other members, are assumed to be hanical connection e capable of withst fit at joint 6 and 10 designed in accord Residential Code and referenced star	s where II fit betw with BC SPF No (by oth anding 2 1 Ib uplit dance w sections	a rectangle veen the botto DL = 10.0psf. o.2. ers) of truss to 9 lb uplift at jo t at joint 7. ith the 2018 R502.11.1 a	om o oint					
ORCES	(lb) - Maximum Com Tension												
TOP CHORD	1-2=-172/54, 2-3=-1 4-5=-110/43	35/51, 3-4=-116/40,											
BOT CHORD	1-7=-68/51, 6-7=-68/ 3-6=-304/148, 2-7=-2	,											
Vasd=91n II; Exp C; cantilever right expos	CE 7-16; Vult=115mph nph; TCDL=6.0psf; BC Enclosed; MWFRS (er left and right exposed sed; Lumber DOL=1.6 signed for wind loads ir	(3-second gust) DL=6.0psf; h=25ft; (ivelope) exterior zor ; end vertical left an 0 plate grip DOL=1.	ne; d 60									STATE OF L	MISSOLAR T M. HER

- 2) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 3) Gable requires continuous bottom chord bearing.
- 4) Gable studs spaced at 4-0-0 oc.
- 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.
 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not Design value for use only with with every connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcscomponents.com)


E

PE-200101880'

SSIONAL

Job	Truss	Truss Type	Qty	Ply	Lot 96 RR, Somerset - Craftsman	
B220009	V4	Valley	1	1	Job Reference (optional)	162692745

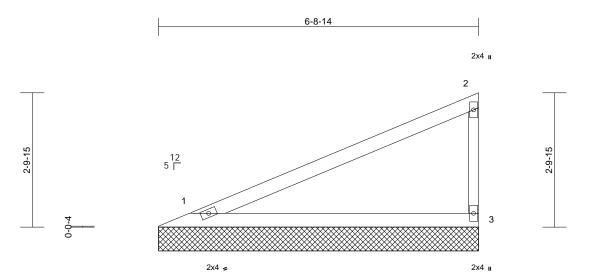
Run: 8.73 S Dec 14 2023 Print: 8.730 S Dec 14 2023 MiTek Industries, Inc. Thu Dec 21 09:06:44 ID:Hr0UloyIgMOrZQ4rpild7XzssyG-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

9-6-8

Scale = 1:30

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in (loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15	TC	0.30	Vert(LL)	n/a -	n/a	999	MT20	197/144
TCDL	10.0	Lumber DOL	1.15	BC	0.16	Vert(TL)	n/a -	n/a	999		
BCLL	0.0*	Rep Stress Incr	YES	WB	0.07	Horiz(TL) (.00 4	n/a	n/a		
BCDL	10.0	Code	IRC2018/TPI2014	Matrix-S						Weight: 26 lb	FT = 10%
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD	2x4 SPF No.2 2x4 SPF No.2 2x3 SPF No.2 2x3 SPF No.2 Structural wood she 6-0-0 oc purlins, ex Rigid ceiling directly bracing.	cept end verticals. applied or 10-0-0 o	bearing pla 4 and 130 9) This truss i Internation R802.10.2 ed or LOAD CASE(S	echanical connective te capable of withe b uplift at joint 5. s designed in accc al Residential Cod and referenced state) Standard	standing 2 ordance w e sections	23 lb uplift at joint ith the 2018 s R502.11.1 and					
	(size) 1=9-6-8, 4 Max Horiz 1=159 (LC Max Uplift 4=-23 (LC Max Grav 1=174 (LC (LC 1)	5), 5=-130 (LC 8)	5=491								
FORCES	(lb) - Maximum Com Tension	pression/Maximum									
TOP CHORD	1-2=-123/72, 2-3=-1	06/29 3-496/39									
BOT CHORD	1-5=-51/39, 4-5=-51										
WEBS	2-5=-372/183										
NOTES	20 012/100										
 Wind: ASC Vasd=91m II; Exp C; I cantilever right expose 	CE 7-16; Vult=115mph nph; TCDL=6.0psf; BC Enclosed; MWFRS (er left and right exposed sed; Lumber DOL=1.6	DL=6.0psf; h=25ft; (ivelope) exterior zor ; end vertical left an 0 plate grip DOL=1.	ne; d 60							FE OF	MISS
only. For see Stands or consult 3) Gable requ	only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.) Gable requires continuous bottom chord bearing.										
 5) This truss chord live 6) * This truss on the bott 	Gable studs spaced at 4-0-0 oc. This truss has been designed for a 10.0 psf bottom chord live load onoconcurrent with any other live loads. * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle PE-2001018807										
chord and	Il by 2-00-00 wide will any other members. gs are assumed to be \$		m							C'SSIONA	IL ENGIS

December 26,2023



WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

Job	Truss	Truss Type	Qty	Ply	Lot 96 RR, Somerset - Craftsman	
B220009	V5	Valley	1	1	Job Reference (optional)	162692746

Run: 8.73 S Dec 14 2023 Print: 8.730 S Dec 14 2023 MiTek Industries, Inc. Thu Dec 21 09:06:45 ID:Hr0UloyIgMOrZQ4rpild7XzssyG-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

6-8-14

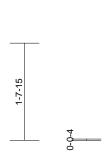
Scale = 1:24.3		I									
Loading (psf) TCLL (roof) 25.0 TCDL 10.0 BCLL 0.0* BCDL 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018/TPI2014	CSI TC BC WB Matrix-P	0.70 0.38 0.00	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 3	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 17 lb	GRIP 197/144 FT = 10%
LUMBER TOP CHORD 2x4 SPF No.2 BOT CHORD 2x4 SPF No.2 WEBS 2x3 SPF No.2 BRACING TOP CHORD Structural wood shere 6-9-8 oc purlins, exc BOT CHORD Rigid ceiling directly bracing. REACTIONS (size) 1=6-8-14, Max Horiz 1=108 (LC Max Uplift 1=-39 (LC	athing directly applie sept end verticals. applied or 10-0-0 oc 3=6-8-14 2 5)	9) This truss is Internationa R802.10.2 a LOAD CASE(S) d or	designed in accorda I Residential Code s and referenced stand	ections	R502.11.1 a	nd				Trogn. The	
Max Grav 1=267 (LC FORCES (Ib) - Maximum Com Tension TOP CHORD 1-2=-97/64, 2-3=-200 BOT CHORD 1-3=-35/27 NOTES 1) Wind: ASCE 7-16; Vult=115mph Vasd=91mph; TCDL=6.0psf; BCI II; Exp C; Enclosed; MWFRS (en cantilever left and right exposed right exposed; Lumber DOL=1.60 2) Truss designed for wind loads in only. For studs exposed to wind see Standard Industry Gable Enn or consult qualified building desig 3) Gable requires continuous bottor 4) Gable studs spaced at 4-0-0 cc. 5) This truss has been designed for chord live load nonconcurrent wi 6) * This truss has been designed for on the bottom chord in all areas s 3-06-00 tall by 2-00-00 wide will chord and any other members. 7) All bearings are assumed to be S 8) Provide mechanical connection (bearing plate capable of withstar	C 1), 3=267 (LC 1) pression/Maximum B/96 (3-second gust) DL=6.0psf; h=25ft; C velope) exterior zon ; end vertical left and 0 plate grip DOL=1.6 the plane of the trus (normal to the face) d Details as applicab gner as per ANSI/TP n chord bearing. T a 10.0 psf bottom th any other live load of a live load of 20.0) where a rectangle fit between the botto SPF No.2. by others) of truss to	e; I 0 ss I I I I I I S. osf m								STATE OF J SCOT SEV PE-2001	

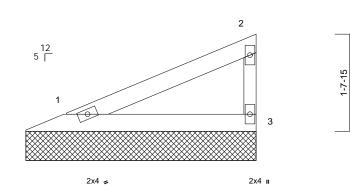
WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

December 26,2023

Job	Truss	Truss Type Qty Ply Lot 96 RR, Somerset - Craftsman		Lot 96 RR, Somerset - Craftsman		
B220009	V6	Valley	1	1	Job Reference (optional)	162692747

3-11-5


3-11-5

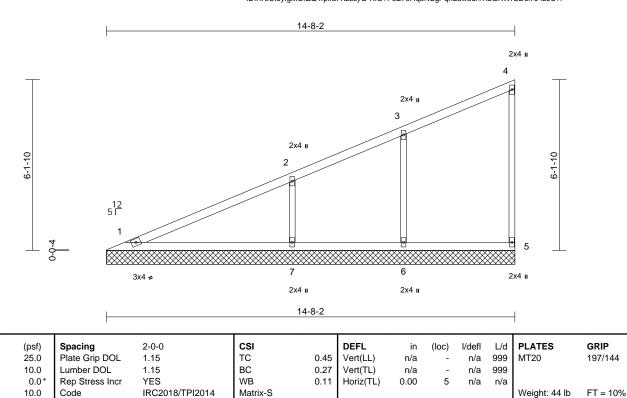

Wheeler Lumber, Waverly, KS - 66871,

Run: 8.73 S Dec 14 2023 Print: 8.730 S Dec 14 2023 MiTek Industries, Inc. Thu Dec 21 09:06:45 ID:Hr0UloyIgMOrZQ4rpild7XzssyG-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

2x4 🛛

Page: 1

Scale = 1:19.7												
Loading TCLL (roof)	(psf) 25.0	Spacing Plate Grip DOL	2-0-0 1.15	CSI TC	0.17	DEFL Vert(LL)	in n/a	(loc)	l/defl n/a	L/d 999	PLATES MT20	GRIP 197/144
TCDL	10.0	Lumber DOL	1.15	BC	0.17	Vert(LL)	n/a		n/a	999	101120	197/144
BCLL	0.0*	Rep Stress Incr	YES	WB	0.00	Horiz(TL)	0.00	3	n/a	n/a	1	
BCDL	10.0	Code	IRC2018/TPI2014	Matrix-P							Weight: 9 lb	FT = 10%
LUMBER TOP CHORD BOT CHORD WEBS	2x4 SPF No.2 2x4 SPF No.2 2x3 SPF No.2		Internation	is designed in acc al Residential Coo and referenced st 5) Standard	de sections	R502.11.1 a	ind					
BRACING		athing diseatly applie										
TOP CHORD	Structural wood she 3-11-14 oc purlins,											
BOT CHORD	Rigid ceiling directly bracing.											
REACTIONS	· · · · · · · · · · · · · · · · · · ·											
	Max Horiz 1=57 (LC Max Uplift 1=-21 (LC											
	Max Grav 1=141 (LC	,, , ,										
FORCES	(lb) - Maximum Com											
TOP CHORD	Tension 1-2=-51/34, 2-3=-11	0/51										
BOT CHORD	1-3=-19/14											
NOTES												
Vasd=91m	CE 7-16; Vult=115mph hph; TCDL=6.0psf; BC	DL=6.0psf; h=25ft; 0										
· · · ·	Enclosed; MWFRS (er left and right exposed	1 /	,									
	sed; Lumber DOL=1.6											
	igned for wind loads ir											m
	studs exposed to wind ard Industry Gable End										TATE OF	MIC
	qualified building desig									1	TE	10.00
	uires continuous bottor	m chord bearing.								B	S SCOT	N Con
	Is spaced at 4-0-0 oc.	100 (1 //								R	S SEV	
	has been designed for load nonconcurrent wi		de							8.		
	s has been designed f									88	1 Jan	0
	tom chord in all areas									27	cell.	Server 1
	Il by 2-00-00 wide will	fit between the botto	om							67	PE-2001	018807 88
	any other members. Is are assumed to be \$								N	The second secon	120	
										Y	ESSIONA	NO. A
	ate capable of withstar	nding 21 lb uplift at je	oint								ONA	IL EL
1 and 32 lb	o uplift at joint 3.										ALL ALL	and a


Course December 26,2023

16023 Swingley Ridge Rd. Chesterfield, MO 63017 314.434.1200 / MiTek-US.com

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent buckling of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

Job	Truss	Truss Type	Qty	Ply	Lot 96 RR, Somerset - Craftsman	
B220009	V7	Valley	1	1	Job Reference (optional)	162692748

Run: 8.73 S Dec 14 2023 Print: 8.730 S Dec 14 2023 MiTek Industries, Inc. Thu Dec 21 09:06:45 ID:Hr0UloyIgMOrZQ4rpild7XzssyG-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

LUMBER		
TOP CHORD	2x4 SPF I	No.2
BOT CHORD	2x4 SPF I	No.2
WEBS	2x3 SPF I	No.2
OTHERS	2x3 SPF I	No.2
BRACING		
TOP CHORD		wood sheathing directly applied or burlins, except end verticals.
BOT CHORD	Rigid ceili bracing.	ing directly applied or 10-0-0 oc
REACTIONS	(size)	1=14-8-2, 5=14-8-2, 6=14-8-2, 7=14-8-2
	Max Horiz	1=253 (LC 5)
	Max Uplift	5=-34 (LC 5), 6=-86 (LC 8), 7=-145
		(LC 8)
	Max Grav	1=248 (LC 16), 5=185 (LC 2),

Scale = 1:41.4

TCLL (roof)

TCDI

BCLL

BCDL

6=371 (LC 2), 7=557 (LC 2) FORCES (Ib) - Maximum Compression/Maximum Tension TOP CHORD 1-2=-200/88, 2-3=-155/37, 3-4=-123/49, 4-5=-118/46 BOT CHORD 1-7=-82/62, 5-6=-82/62

BOT CHORD 1-7=-82/62, 6-7=-82/62, 5-6=-82/62 WEBS 3-6=-260/123, 2-7=-410/207 NOTES

- Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
- Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

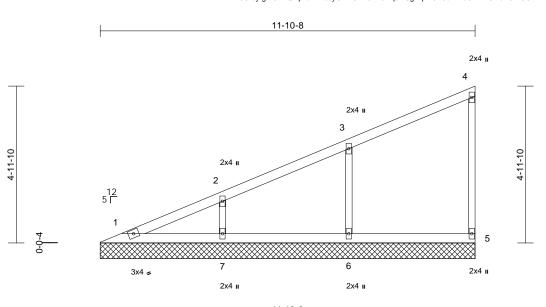
3) Gable requires continuous bottom chord bearing.

4) Gable studs spaced at 4-0-0 oc.

5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

- 6) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
 7) All bearings are assumed to be SPF No.2.
- Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 34 lb uplift at joint 5, 86 lb uplift at joint 6 and 145 lb uplift at joint 7.
- This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard



WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTPIT Quality Criteria, and DSE-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcscomponents.com)

Job	Truss	Truss Type	Qty	Ply	Lot 96 RR, Somerset - Craftsman	
B220009	V8	Valley	1	1	Job Reference (optional)	162692749

Run: 8.73 S Dec 14 2023 Print: 8.730 S Dec 14 2023 MiTek Industries, Inc. Thu Dec 21 09:06:45 ID:Hr0UloyIgMOrZQ4rpild7XzssyG-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

11-10-8

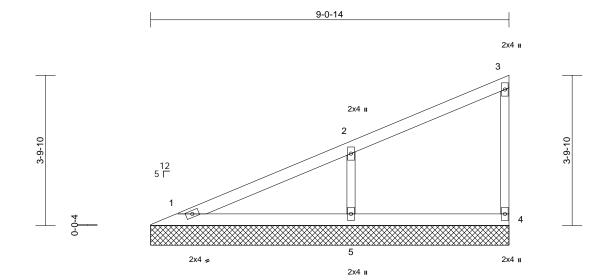
						11-10-0							
Scale = 1:36.5	5										I		
Loading	(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15		TC	0.19	Vert(LL)	n/a	-	n/a	999	MT20	197/144
TCDL	10.0	Lumber DOL	1.15		BC	0.11	Vert(TL)	n/a	-	n/a	999		
BCLL	0.0*	Rep Stress Incr	YES		WB	0.08	Horiz(TL)	0.00	5	n/a	n/a		
BCDL	10.0	Code	IRC2018	3/TPI2014	Matrix-S							Weight: 34 lb	FT = 10%
LUMBER TOP CHORD BOT CHORD	2x4 SPF No.2		6)	on the botto 3-06-00 tall	has been desigr m chord in all ar by 2-00-00 wide	eas where will fit betv	a rectangle						
WEBS	2x3 SPF No.2				ny other membe								
OTHERS	2x3 SPF No.2		7) 8)		are assumed to chanical connect			to					
BRACING			- /		e capable of with								
TOP CHORD			ed or		lift at joint 6 and			John					
BOT CHORD	6-0-0 oc purlins, exRigid ceiling directly bracing.		c 9)	This truss is International	designed in acc Residential Co	ordance w	ith the 2018 R502.11.1 a	and					
REACTIONS		8, 5=11-10-8, 6=11-	10-8, LC	R802.10.2 a	nd referenced s	tandard AN	ISI/TPI 1.						
	7=11-10-		LC	AD CASE(S)	Stanuaru								
	Max Horiz 1=202 (LC		7 00										
	Max Uplift 5=-29 (LC (LC 8)	5), 6=-104 (LC 8),	7=-93										
	Max Grav 1=121 (L0	C 16) 5=142 (I C 1)											
		C 1), 7=350 (LC 1)	,										
FORCES	(lb) - Maximum Com Tension	npression/Maximum											
TOP CHORD	4-5=-109/43		,										
BOT CHORE WEBS) 1-7=-65/49, 6-7=-65 3-6=-309/151, 2-7=-	,											
NOTES													
Vasd=91 II; Exp C; cantileve	SCE 7-16; Vult=115mph mph; TCDL=6.0psf; BC ; Enclosed; MWFRS (er r left and right exposed osed; Lumber DOL=1.6	DL=6.0psf; h=25ft; nvelope) exterior zoi ; end vertical left an	ne; Id								Å	STATE OF J	MISSOLA T.M.
only. Foi see Stan	esigned for wind loads in r studs exposed to wind dard Industry Gable En It qualified building desi	l (normal to the face d Details as applica), ble,									SEV	
	n qualmed building desi										N 💌	A DER	and all the

Gable requires continuous bottom chord bearing.

4) Gable studs spaced at 4-0-0 oc.

5) This truss has been designed for a 10.0 psf bottom

chord live load nonconcurrent with any other live loads.


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent oulgase with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

Job	Truss	Truss Type	Qty	Ply	Lot 96 RR, Somerset - Craftsman	
B220009	V9	Valley	1	1	Job Reference (optional)	162692750

Run; 8,73 S Dec 14 2023 Print; 8,730 S Dec 14 2023 MiTek Industries, Inc. Thu Dec 21 09:06:45 ID:Hr0UloyIgMOrZQ4rpild7XzssyG-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

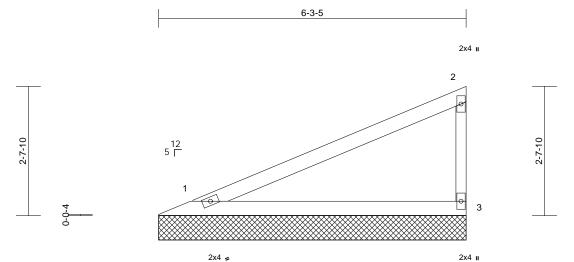
Page: 1

9-0-14

Scale = 1:29.2

Loading	(psf)	Spacing	2-0-0	csi		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15	TC	0.26	Vert(LL)	n/a	-	n/a	999	MT20	197/144
TCDL	10.0	Lumber DOL	1.15	BC	0.14	Vert(TL)	n/a	-	n/a	999		
BCLL	0.0*	Rep Stress Incr	YES	WB	0.07	Horiz(TL)	0.00	4	n/a	n/a		
BCDL	10.0	Code	IRC2018/TPI2014	Matrix-S							Weight: 25 lb	FT = 10%
LUMBER			8) Provide r	nechanical connect	ion (by oth	ers) of truss t	0					
TOP CHORD	2x4 SPF No.2			late capable of with								
BOT CHORD	2x4 SPF No.2			2 lb uplift at joint 5.	J							
WEBS	2x3 SPF No.2			s is designed in acc								
OTHERS	2x3 SPF No.2			nal Residential Coo			ind					
BRACING				2 and referenced st	andard AN	ISI/TPI 1.						
TOP CHORD	Structural wood she	athing directly applie	ed or LOAD CASE	(S) Standard								
	6-0-0 oc purlins, ex	cept end verticals.										
BOT CHORD	Rigid ceiling directly	applied or 10-0-0 oc	;									
	bracing.											
	· /	4=9-0-14, 5=9-0-14										
	Max Horiz 1=151 (LO											
	Max Uplift 4=-23 (LC											
	Max Grav 1=155 (L0	C 1), 4=129 (LC 1), 5	5=460									
	(LC 1)											
FORCES	(lb) - Maximum Com	pression/Maximum										
	Tension	00/07 0 4 404/40										
TOP CHORD BOT CHORD	1-2=-117/64, 2-3=-1	,										
WEBS	1-5=-48/37, 4-5=-48 2-5=-350/173	/3/										
	2-3=-330/173											
NOTES		(0										
,	E 7-16; Vult=115mph	· · · · ·	Det									
	iph; TCDL=6.0psf; BC Enclosed; MWFRS (ei											
	left and right exposed										000	ann
Gantilever	ion and right exposed		u								F	MIL

- right exposed; Lumber DOL=1.60 plate grip DOL=1.60 Truss designed for wind loads in the plane of the truss 2) only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- Gable requires continuous bottom chord bearing. 3) Gable studs spaced at 4-0-0 oc. 4)
- 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. * This truss has been designed for a live load of 20.0psf 6)
- on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- 7) All bearings are assumed to be SPF No.2 .


16023 Swingley Ridge Rd. Chesterfield MO 63017 314.434.1200 / MiTek-US.com

 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.
 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not besign value to dury with with where outputs into design is based only door parameters shown, and is for an individual building design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members and property incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TPH1 Quality Criteria**, and **DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcscomponents.com)

Job	Truss	Truss Type	Qty	Ply	Lot 96 RR, Somerset - Craftsman	
B220009	V10	Valley	1	1	Job Reference (optional)	162692751

Run: 8.73 S Dec 14 2023 Print: 8.730 S Dec 14 2023 MiTek Industries, Inc. Thu Dec 21 09:06:46 ID:Hr0UloyIgMOrZQ4rpild7XzssyG-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

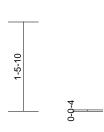
Page: 1

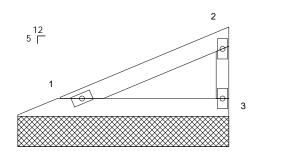
6-3-5

Scale = 1:23.5

ocale = 1.20.0												
Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15	тс	0.58	Vert(LL)	n/a	-	n/a	999	MT20	197/144
TCDL	10.0	Lumber DOL	1.15	BC	0.32	Vert(TL)	n/a	-	n/a	999		
BCLL	0.0*	Rep Stress Incr	YES	WB	0.00	Horiz(TL)	0.00	3	n/a	n/a		
BCDL	10.0	Code	IRC2018/TPI2014	Matrix-P				-			Weight: 16 lb	FT = 10%
LUMBER				s designed in acco								
TOP CHORD				al Residential Code			and					
BOT CHORD				and referenced sta	andard Ar	NSI/TPTT.						
WEBS	2x3 SPF No.2		LOAD CASE(S) Standard								
BRACING	Other strengthere and all a	- de la se allas e de sia a el l										
TOP CHORD	Structural wood she 6-3-14 oc purlins, e											
BOT CHORD												
Del enerte	bracing.											
REACTIONS	0	3=6-3-5										
	Max Horiz 1=100 (LC											
	Max Uplift 1=-36 (LC	8), 3=-56 (LC 8)										
	Max Grav 1=246 (L0	C 1), 3=246 (LC 1)										
FORCES	(lb) - Maximum Corr	pression/Maximum										
	Tension											
TOP CHORD		1/89										
BOT CHORD	1-3=-32/25											
NOTES		(a. 1)										
	CE 7-16; Vult=115mph		• •									
	nph; TCDL=6.0psf; BC Enclosed; MWFRS (er											
	left and right exposed											
	sed; Lumber DOL=1.6											
	signed for wind loads in											~
	studs exposed to wind										000	m
	lard Industry Gable En										TEOF	MISSO
	qualified building desi		PI 1.							4	9.20	N'SO
	uires continuous botto	m chord bearing.								B	SCOT	TM XPN
	ds spaced at 4-0-0 oc.	r a 10 0 naf hattam								B	SEV	
	has been designed fo load nonconcurrent wi		de							RA		
	ss has been designed f									No.	Notto	XXXIII
	ttom chord in all areas								-		your,	server
3-06-00 ta	all by 2-00-00 wide will		om							13	NUM PE-200	
	any other members.									N.	O PE-2001	1018807
	gs are assumed to be									V	AT A	158
	nechanical connection										W SION	ENOS
	late capable of withstar	naing 36 ib uplift at j	oint								SSIONA	AL L'A
	lb uplift at joint 3.										all	
											Decembe	er 26,2023

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent buckling of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)


Job	Truss	Truss Type	Qty	Ply	Lot 96 RR, Somerset - Craftsman	
B220009	V11	Valley	1	1	Job Reference (optional)	162692752


Run: 8.73 S Dec 14 2023 Print: 8.730 S Dec 14 2023 MiTek Industries, Inc. Thu Dec 21 09:06:46 ID:Hr0UloyIgMOrZQ4rpild7XzssyG-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

2x4 u

2x4 II

Page: 1

3-5-11

1-5-10

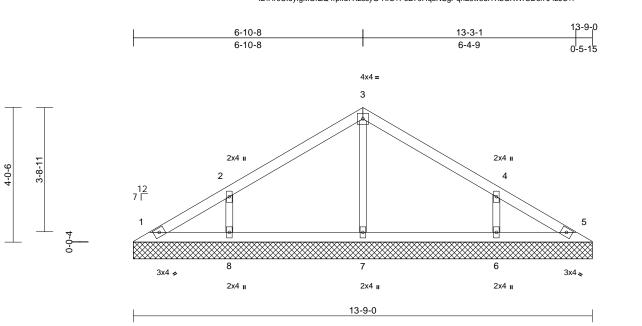
3-5-11	

2x4 🚽

Scale	= 1	1.1	9

Scale = 1:19												
Loading TCLL (roof) TCDL BCLL BCDL	(psf) 25.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018/TPI2014	CSI TC BC WB Matrix-P	0.12 0.07 0.00	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 3	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 8 lb	GRIP 197/144 FT = 10%
BOT CHORD 2x2 WEBS 2x3 BRACING 5tr 3-6 BOT CHORD 8tr 3-6 BOT CHORD 8tr br br br kr kr kr kr kr kr kr kr kr kr kr kr kr	3-5 oc purlins, exi gid ceiling directly acing. 3) 1=3-5-11, Horiz 1=49 (LC		Internationa R802.10.2 a LOAD CASE(S)	designed in accor I Residential Code Ind referenced star Standard	sections	R502.11.1 a	Ind					
FORCES (lb) Ter TOP CHORD 1-2 BOT CHORD 1-3 NOTES 1 1) Wind: ASCE 7- Vasd=91mph; II; Exp C; Enclo	- Maximum Com nsion 2=-44/29, 2-3=-93, =-16/12 16; Vult=115mph TCDL=6.0psf; BC psed; MWFRS (er		ie;									
 Truss designer only. For studs see Standard In or consult quali Gable requires Gable studs sp 	d for wind loads in exposed to wind ndustry Gable End fied building desig continuous botton aced at 4-0-0 oc.	0 plate grip DOL=1.6 n the plane of the tru (normal to the face) d Details as applicat gner as per ANSI/TF m chord bearing. r a 10.0 psf bottom	ss , ole,								STATE OF I	TM. YOY
 chord live load * This truss has on the bottom of 3-06-00 tall by chord and any 7) All bearings are 8) Provide mecha 	nonconcurrent wi been designed f chord in all areas 2-00-00 wide will other members. a assumed to be S nical connection (apable of withstar	th any other live load or a live load of 20.0 where a rectangle fit between the botto	psf m o								PE-2001	018807

December 26,2023


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

Job	Truss	Truss Type	Qty	Ply	Lot 96 RR, Somerset - Craftsman	
B220009	V12	Valley	1	1	Job Reference (optional)	162692753

Run: 8.73 S Dec 14 2023 Print: 8.730 S Dec 14 2023 MiTek Industries, Inc. Thu Dec 21 09:06:46 ID:Hr0UloyIgMOrZQ4rpild7XzssyG-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Loading	(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15		TC	0.17	Vert(LL)	n/a	-	n/a	999	MT20	197/144
TCDL	10.0	Lumber DOL	1.15		BC	0.10	Vert(TL)	n/a	-	n/a	999		
BCLL	0.0*	Rep Stress Incr	YES		WB	0.08	Horiz(TL)	0.00	5	n/a	n/a		
BCDL	10.0	Code	IRC2018	3/TPI2014	Matrix-S							Weight: 37 lb	FT = 10%
LUMBER TOP CHORD BOT CHORD OTHERS BRACING	CHORD 2x4 SPF No.2 chord live load nonconcurrent with any other live loads. CHORD 2x4 SPF No.2 7) 2x3 SPF No.2 on the bottom chord in all areas where a rectangle CING 3-06-00 tall by 2-00-00 wide will fit between the bottom												
TOP CHORD BOT CHORD	Structural wood sheathing directly applied or 6-0-0 oc purlins. Rigid ceiling directly applied or 10-0-0 oc			All bearings Provide me	are assumed to	o be SPF Noticition (by oth	ers) of truss						

	0-0-0 OC p	Junins.
T CHORD	Rigid ceili	ng directly applied or 10-0-0 oc
	bracing.	
ACTIONS	(size)	1=13-9-0, 5=13-9-0, 6=13-9-0,
		7=13-9-0, 8=13-9-0
	Max Horiz	1=97 (LC 5)
	Max Uplift	1=-11 (LC 9), 6=-125 (LC 9),

- 8=-126 (LC 8) 1=94 (LC 16), 5=85 (LC 1), 6=353 Max Grav (LC 16), 7=298 (LC 1), 8=353 (LC 15)
- FORCES (Ib) - Maximum Compression/Maximum Tension TOP CHORD 1-2=-104/74, 2-3=-128/93, 3-4=-124/73, 4-5=-77/37 BOT CHORD 1-8=-22/63, 7-8=-22/63, 6-7=-22/63, 5-6=-22/63
- WEBS 3-7=-214/28, 2-8=-282/167, 4-6=-282/167

NOTES

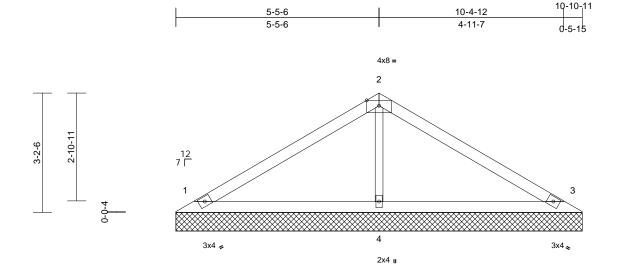
RE

Scale = 1:34.5

- 1) Unbalanced roof live loads have been considered for this design.
- Wind: ASCE 7-16; Vult=115mph (3-second gust) 2) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- Gable requires continuous bottom chord bearing. 4) 5) Gable studs spaced at 4-0-0 oc.

- 9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 11 lb uplift at joint 1, 126 lb uplift at joint 8 and 125 lb uplift at joint 6.
- 10) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard



 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.
 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not beigh valid for use only with with with sets outputs into design is based only door parameters shown, and is for an individual dualing component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria**, and **DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcscomponents.com)

Job	Truss	Truss Type	Qty	Ply	Lot 96 RR, Somerset - Craftsman				
B220009	V13	Valley	1	1	Job Reference (optional)	162692754			

Run: 8,73 S Dec 14 2023 Print: 8,730 S Dec 14 2023 MiTek Industries, Inc. Thu Dec 21 09:06:46 ID:Hr0UloyIgMOrZQ4rpild7XzssyG-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

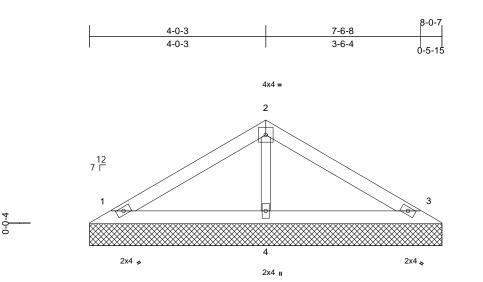
10-10-11

Scale = 1:30.9

Loading TCLL (roof) TCDL		(psf) 25.0 10.0	Spacing Plate Grip DOL Lumber DOL	2-0-0 1.15 1.15		CSI TC BC	0.34 0.21	DEFL Vert(LL) Vert(TL)	in n/a n/a	(loc) - -	l/defl n/a n/a	L/d 999 999	PLATES MT20	GRIP 197/144
BCLL BCDL		0.0* 10.0	Rep Stress Incr Code	YES	18/TPI2014	WB Matrix-S	0.08	Horiz(TL)	0.00	3	n/a	n/a	Weight: 28 lb	FT = 10%
LUMBER TOP CHORD BOT CHORD OTHERS BRACING	2x4 SPF No. 2x4 SPF No. 2x3 SPF No.	2 2 2		-	 * This truss h on the bottor 3-06-00 tall h chord and ar All bearings 	nas been desig n chord in all a by 2-00-00 wid ny other memb are assumed to hanical connect	reas where e will fit betw ers. o be SPF N	a rectangle veen the bott p.2.	om				Weight. 20 ib	<u><u> </u></u>
TOP CHORD BOT CHORD	6-0-0 oc purl Rigid ceiling bracing.	ins. directly a	athing directly applied or 10-0-0 o		bearing plate 1, 53 lb uplift 10) This truss is	e capable of wi at joint 3 and	thstanding 2 21 lb uplift a cordance w	l3 lb uplift at j it joint 4. ith the 2018	oint					
REACTIONS	4= Max Horiz 1= Max Uplift 1= (Lu Max Grav 1=	=10-10-1 =75 (LC 5 =-43 (LC C 8)		=-21		nd referenced								
FORCES TOP CHORD BOT CHORD WEBS	(lb) - Maximu Tension 1-2=-151/73, 1-4=-14/68, 3 2-4=-302/78	2-3=-15												
NOTES	ed roof live load	ds have l	been considered fo	r										

- ced roof live loads have been considered for 1) this design. Wind: ASCE 7-16; Vult=115mph (3-second gust) 2)
- Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- Gable requires continuous bottom chord bearing. 4)
- Gable studs spaced at 4-0-0 oc. 5)
- 6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

December 26,2023


 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.
 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not besign value to dury with with where outputs into design is based only door parameters shown, and is for an individual building design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members and property incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TPH1 Quality Criteria**, and **DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcscomponents.com)

Job	Truss	Truss Type	Qty	Ply	Lot 96 RR, Somerset - Craftsman	
B220009	V14	Valley	1	1 Job Reference (optional)	Job Reference (optional)	162692755

2-0-11

2-4-6

8-0-7

Run: 8.73 S Dec 14 2023 Print: 8.730 S Dec 14 2023 MiTek Industries, Inc. Thu Dec 21 09:06:47

ID:Hr0UloyIgMOrZQ4rpild7XzssyG-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Scale =	1:26.3
---------	--------

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15	TC	0.23	Vert(LL)	n/a	-	n/a	999	MT20	197/144
TCDL	10.0	Lumber DOL	1.15	BC	0.11	Vert(TL)	n/a	-	n/a	999		
BCLL	0.0*	Rep Stress Incr	YES	WB	0.04	Horiz(TL)	0.00	3	n/a	n/a		
BCDL	10.0	Code	IRC2018/TPI2014	Matrix-P							Weight: 20 lb	FT = 10%
LUMBER			8) All bearings	are assumed to be	SPF N	n 2						
TOP CHORD	2x4 SPF No.2			hanical connection			C					
BOT CHORD				e capable of withsta								
OTHERS	2x3 SPF No.2			uplift at joint 3.	-							
BRACING				designed in accord								
TOP CHORD	Structural wood she	athing directly applie	aor	Residential Code s			nd					
	6-0-0 oc purlins.			nd referenced stan	dard AN	NSI/TPI 1.						
BOT CHORD	0 0 ,	applied or 10-0-0 or	LOAD CASE(S)	Standard								
	bracing.											
REACTIONS	· · · · · · · · · · · · · · · · · · ·	3=8-0-7, 4=8-0-7										
	Max Horiz 1=-54 (LC	,										
	Max Uplift 1=-39 (LC											
	Max Grav 1=171 (L0	C 1), 3=171 (LC 1), 4	=290									
500050	(LC 1)											
FORCES	(lb) - Maximum Com Tension	npression/iviaximum										
TOP CHORD		/37										
BOT CHORD	,											
WEBS	2-4=-202/52	" "										
NOTES	2 . 202,02											
	ed roof live loads have	been considered for										
this design												
	CE 7-16; Vult=115mph	(3-second gust)										
Vasd=91n	nph; TCDL=6.0psf; BC	DL=6.0psf; h=25ft; C	Cat.								~	con l
	Enclosed; MWFRS (er										A	and
	left and right exposed										TATE OF I	MISS D
	sed; Lumber DOL=1.6									6	2 Mil	NO
Truss des	signed for wind loads in	n the plane of the tru	SS							R	N/ acom	Nex N

- igned for wind only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1. 4) Gable requires continuous bottom chord bearing.
- 5) Gable studs spaced at 4-0-0 oc.
- 6)
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 7) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle
- 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.

Page: 1

December 26,2023

Job	Truss	Truss Type	Qty	Ply	Lot 96 RR, Somerset - Craftsman			
B220009	V15	Valley	1	1	Job Reference (optional)	162692756		

1-6-0

1-6-0

12 7 Г

3x4 =

2

Wheeler Lumber, Waverly, KS - 66871,

Run: 8 73 S. Dec 14 2023 Print: 8 730 S. Dec 14 2023 MiTek Industries. Inc. Thu Dec 21 09:06:47 ID:Hr0UloyIgMOrZQ4rpild7XzssyG-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

4-8-3

1-0-1

3x4 =

3

3-8-2

2-2-2

 $\overline{}$

0-7-1 0-10-12 3x4 🦼 3x4 。 5-2-2 Plate Offsets (X, Y): [2:0-2-0,0-2-5], [3:0-2-0,0-2-5] 2-0-0 CSI DEFL l/defl L/d PLATES (psf) Spacing in (loc) 25.0 Plate Grip DOL 1.15 TC 0.06 Vert(LL) n/a 999 MT20 n/a 10.0 Lumber DOL 1.15 BC 0.14 Vert(TL) n/a n/a 999 0.0* Rep Stress Incr YES WB 0.00 Horiz(TL) 4 0.00 n/a n/a 10.0 Code IRC2018/TPI2014 Matrix-R Weight: 11 lb All bearings are assumed to be SPF No.2 . TOP CHORD 2x4 SPF No.2 10) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 13 lb uplift at joint 2x4 SPF No.2 1 and 13 lb uplift at joint 4. 11) This truss is designed in accordance with the 2018 Structural wood sheathing directly applied or International Residential Code sections R502.11.1 and 5-3-0 oc purlins, except R802.10.2 and referenced standard ANSI/TPI 1. 2-0-0 oc purlins: 2-3. 12) Graphical purlin representation does not depict the size Rigid ceiling directly applied or 10-0-0 oc or the orientation of the purlin along the top and/or bracing. bottom chord. 1=5-2-2, 4=5-2-2 LOAD CASE(S) Standard Max Horiz 1=-16 (LC 4) Max Uplift 1=-13 (LC 5), 4=-13 (LC 4) Max Grav 1=188 (LC 1), 4=188 (LC 1) (Ib) - Maximum Compression/Maximum Tension 1-2=-261/54, 2-3=-221/43, 3-4=-261/54 1-4=-44/221

TOP CHORD BOT CHORD NOTES

Scale = 1:22.7

Loading

TCDL

BCLL

BCDL

LUMBER

BRACING

BOT CHORD

TOP CHORD

BOT CHORD

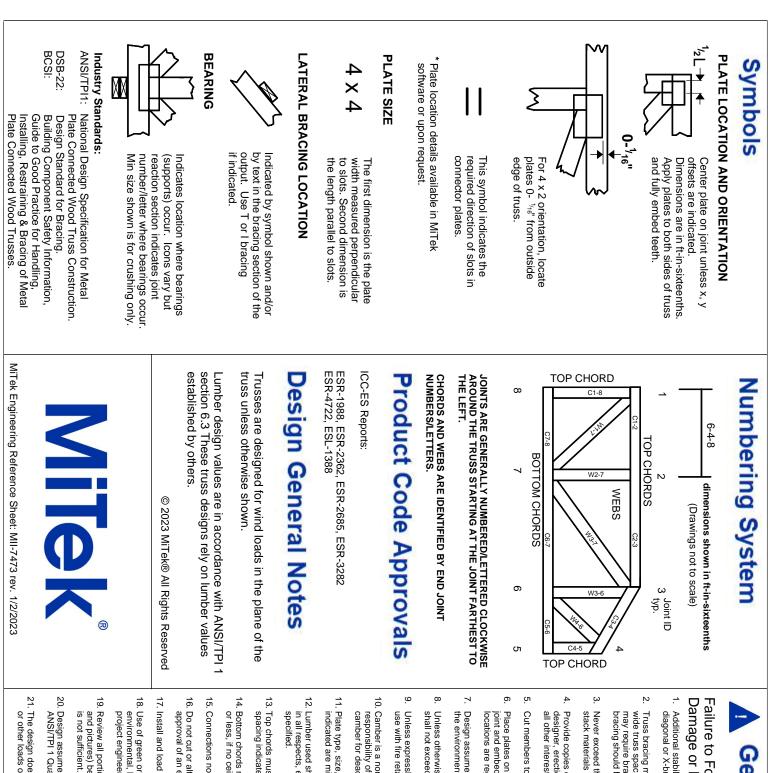
REACTIONS

FORCES

(size)

TCLL (roof)

- 1) Unbalanced roof live loads have been considered for this design
- 2) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
- Truss designed for wind loads in the plane of the truss 3) only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) Provide adequate drainage to prevent water ponding.
- 5) Gable requires continuous bottom chord bearing.
- Gable studs spaced at 4-0-0 oc. 6)
- This truss has been designed for a 10.0 psf bottom 7)
- chord live load nonconcurrent with any other live loads. * This truss has been designed for a live load of 20.0psf 8) on the bottom chord in all areas where a rectangle
- 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.


GRIP

197/144

FT = 10%

 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.
 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not beigh valid for use only with with with sets outputs into design is based only door parameters shown, and is for an individual dualing component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria**, and **DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcscomponents.com)

General Safety Notes

Failure to Follow Could Cause Property Damage or Personal Injury

- 1. Additional stability bracing for truss system, e.g. diagonal or X-bracing, is always required. See BCSI.
- Truss bracing must be designed by an engineer. For wide truss spacing, individual lateral braces themselves may require bracing, or alternative Tor1 bracing should be considered.
- Never exceed the design loading shown and never stack materials on inadequately braced trusses.
- Provide copies of this truss design to the building designer, erection supervisor, property owner and all other interested parties.
- 5. Cut members to bear tightly against each other
- Place plates on each face of truss at each joint and embed fully. Knots and wane at joint locations are regulated by ANSI/TPI 1.
- Design assumes trusses will be suitably protected from the environment in accord with ANSI/TPI 1.
- Unless otherwise noted, moisture content of lumber shall not exceed 19% at time of fabrication.
- Unless expressly noted, this design is not applicable for use with fire retardant, preservative treated, or green lumber.
- Camber is a non-structural consideration and is the responsibility of truss fabricator. General practice is to camber for dead load deflection.
- 11. Plate type, size, orientation and location dimensions indicated are minimum plating requirements.
- Lumber used shall be of the species and size, and in all respects, equal to or better than that specified.
- 13. Top chords must be sheathed or purlins provided at spacing indicated on design.
- Bottom chords require lateral bracing at 10 ft. spacing, or less, if no ceiling is installed, unless otherwise noted.
- 15. Connections not shown are the responsibility of others.
- Do not cut or alter truss member or plate without prior approval of an engineer.
- 17. Install and load vertically unless indicated otherwise.
- Use of green or treated lumber may pose unacceptable environmental, health or performance risks. Consult with project engineer before use.
- Review all portions of this design (front, back, words and pictures) before use. Reviewing pictures alone is not sufficient.
- 20. Design assumes manufacture in accordance with ANSI/TPI 1 Quality Criteria.
- 21. The design does not take into account any dynamic or other loads other than those expressly stated.