

MiTek, Inc. RE: P230810 - Roof - Osage Lot 76 16023 Swingley Ridge Rd. Site Information: Chesterfield, MO 63017 Project Customer: Clover & Hive Project Name: Twin Honeydew - Farmhouse 314.434.1200 Lot/Block: 76 Subdivision: Osage Model: Twin Honeydew - Farmhouse Address: 2116 / 2118 Holdbrooks Drive City: Lee's Summit State: MO General Truss Engineering Criteria & Design Loads (Individual Truss Design Drawings Show Special Loading Conditions): Design Code: IRC2018/TPI2014 Wind Code: ASCE 7-16 Wind Speed: 115 mph Floor Load: N/A psf Roof Load: 45.0 psf

Mean Roof Height (feet): 35

Design Program: MiTek 20/20 8.6 Design Method: MWFRS (Envelope)/C-C hybrid Wind ASCE 7-16

Exposure Category: C

No.	Seal#	Truss Name	Date
1	l61755127	A1	11/1/23
2	l61755128	A2	11/1/23
234 56 789	l61755129 l61755130	A3 A4	11/1/23 11/1/23
5	l61755131	A5	11/1/23
6	l61755132	A6	
7	l61755133	B1	
/ 8 9	l61755134 l61755135	B2	11/1/23 11/1/23 11/1/23
ĬО 11	l61755136 l61755137	C1 C2 C3 C4	11/1/23 11/1/23
12	l61755138	D1	11/1/23
13	l61755139		11/1/23
14	l61755140	D2	11/1/23
15	l61755141	PB1	11/1/23
16	l61755142	PB2	11/1/23
17	l61755143	V1	11/1/23
18	I61755144	V2	11/1/23
19	I61755145	V3	11/1/23
20	I61755146	V4	11/1/23
20 21 22	l61755147 l61755148	V5 V6	11/1/23 11/1/23 11/1/23
23	l61755149	V7	11/1/23
24	l61755150	V8	11/1/23

The truss drawing(s) referenced above have been prepared by MiTek USA, Inc. under my direct supervision based on the parameters provided by Premier Building Supply (Springhill, KS)20300 W 207th Street.

Truss Design Engineer's Name: Sevier, Scott

My license renewal date for the state of Missouri is December 31, 2023.

IMPORTANT NOTE: The seal on these truss component designs is a certification that the engineer named is licensed in the jurisdiction(s) identified and that the designs comply with ANSI/TPI 1. These designs are based upon parameters shown (e.g., loads, supports, dimensions, shapes and design codes), which were given to MiTek or TRENCO. Any project specific information included is for MiTek's or TRENCO's customers file reference purpose only, and was not taken into account in the preparation of these designs. MiTek or TRENCO has not independently verified the applicability of the design parameters or the designs for any particular building. Before use, the building designer should verify applicability of design parameters and properly incorporate these designs into the overall building design per ANSI/TPI 1, Chapter 2.

Sevier, Scott

November 1,2023

N PLAN IENT SE IMIT, MI Supply (Sprin -0-10-8 -0-10-8		6-4		Run: 8.63 S Au ID:EmCXOiXYC 0-13 0-6-9 3:6= 12 1517 5 8 9 1 1	ML5IKd?OVTv 27-1-0 6-2-0	17yGxE5-RfC?P4 27-10-12 0-9-12 3x6=	Job Reference (optional) 0 2023 MiTek Industries, Inc. Tue B870Hq3NSgPqnL8w3uITXbGKV 34-8-5 -9-10 29 30 5x5 -9-10 29 30 54-8-5 -9-10	Oct 31 15:34:36	61755127 Page: 1 48-10-8 0-10-8
-0-10-8	<u>6-11-7</u> 6-11-7	<u>13-</u> 6-4	$\begin{array}{c} 4.4 \\ 6x12 = \\ 7x12 = \\$	ID:EmCXOIXYC 0-4-7 20-11-0 0-13 0-6-9 3x6= 12 1517 8 0 9 11	ML5IKd?OVTv 27-1-0 6-2-0	17yGxE5-RfC?P4 27-10-12 0-9-12 3x6=	2023 MiTek Industries, Inc. Tue B70Hq3NSgPqnL8w3uITXbGK 34-8-5 -9-10 	VrCDoi7J4zJC?f 48-0-0	48-10-8
	6-11-7	6-	$\begin{array}{c} 4.4 \\ 6x12 = \\ 7x12 = \\$	0-13 0-6-9 3x6= 12 ¹⁵¹⁷	6-2-0	0-9-12 (3x6=	9-9-10		
2	60		6 6 12 4 5 6 6			2426 27 28 2			
I 1 4x6	=	59	58	57		25 56	33 34 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	35 36 37 38 37 38 38 38 38 38 38 38 38 38 38 38 38 38	40 41 42
		3x6:	= 3x6	= 3x6=		7x8=	5x5=		
⊢			<u>18-0-2</u> 8-8-5				48-0-0		
<, Y): [15:0	(psf) Sp 25.0 Pla	acing te Grip DOL	2-0-0 1.15	CSI TC	0.75 Ve	ert(LL) -0.2	20 2-59 >999 240 M		RIP 4/190
	0.0 Re	p Stress Incr	YES	WB		. ,	07 56 n/a n/a		
2x4 SP Nc 2x3 SPF N 2x3 SPF N Structural 2-2-0 oc p 2-0-0 oc p Rigid ceilir bracing, I 8-11-14 oc 10-0-0 oc	b.2 lo.2 wood sheathin urlins, except urlins (10-0-0 r ng directly appl Except: bracing: 2-59 bracing: 57-59	g directly applied nax.): 15-26, 5-5 ied or 6-0-0 oc	d or 6. FORCES	43=232 45=128 47=120 49=120 51=118 53=96 (55=33 ((lb) - Maximum Co Tension 1-2=0/17, 2-3=-19 5-6=-43/246, 6-8= 10-12=0/296, 12-1 17-18=-13/242, 18	(LC 1), 44={ (LC 26), 46= (LC 1), 48=' (LC 26), 50= (LC 26), 52= (LC 26), 54=2 (LC 9), 56=1 pompression/k 83/353, 3-5= -12/263, 8-10 (5=-17/249, ' 3-20=-13/242	B1 (LC 1), =119 (LC 1), =120 (LC 1), =123 (LC 1), =128 (LC 1), =128 (LC 1), 945 (LC 1), Maximum =-1735/359, 0=0/277, 15-17=-15/234	14-57=- 22-23=- 28-55=- 31-52=- 34-49=- 37-46=- 40-43=- 16-17=- 10-11=- NOTES 1) Unbalanced roof live this design. 2) Wind: ASCE 7-16; V	551/143, 20-21=-74 67/38, 24-25=-49/2 12/84, 29-54=-87/6 92/56, 32-51=-93/5 93/57, 35-48=-93/5 93/57, 38-45=-97/5 174/115, 18-19=-73 169/20, 12-13=-190 67/47, 8-9=-73/46, (e loads have been c fult=115mph (3-sec	/35, 1, 27-56=-367/24 0, 30-53=-98/56, 6, 33-50=-95/58, 7, 36-47=-93/57, 9, 39-44=-69/41, /40, /48, 6-7=-60/41 onsidered for pnd gust)
	27-5 30-5	6, 28-55, 29-54,		24-26=-10/244, 26 28-29=-6/254, 29-	6-27=-47/223 30=-9/233, 3	8, 27-28=0/312 80-31=-7/227,	, Ke=1.00; Cat. II; Exp exterior zone and C-	C; Enclosed; MWI C Exterior(2E) -0-1	RS (envelope) 0-8 to 4-1-8,
21, 11, 7 (size) Max Horiz Max Uplift	2=0-3-8, 41=24 44=20-11-8, 44 46=20-11-8, 45 50=20-11-8, 55 52=20-11-8, 55 54=20-11-8, 55 56=20-11-8, 52 2=204 (LC 12) 2=-225 (LC 12) 43=-91 (LC 13) 45=-42 (LC 13) 49=-41 (LC 13) 51=-41 (LC 13) 53=-46 (LC 13)	5=20-11-8, 7=20-11-8, 9=20-11-8, 1=20-11-8, 5=20-11-8, 5=20-11-8, 5=20-11-8, 0, 41=-29 (LC 25, 0, 44=-28 (LC 13, 0, 44=-41 (LC 13, 0, 50=-42 (LC 13, 0, 52=-39 (LC 13, 0, 54=-23 (LC 13,	BOT CHORD),),),),),),),	36-37=-101/198, 5 38-39=-144/200, 3 40-41=-240/230, 4 7-9=-1829/416, 9- 11-13=-1892/457, 14-16=-2050/498, 19-21=-2155/510, 23-25=-2216/523, 2-59=-415/1683, 5 56-57=-274/1789, 54-55=-193/244, 5 51-52=-193/244, 5 51-52=-193/244, 4 49-50=-194/244, 4 45-46=-194/244, 4	37-38=-120/1 39-40=-170/1 11-42=0/17, § 11=-1862/43 13-14=-197; 16-19=-212! 21-23=-218: 25-56=-222! 25-56=-222! 37-59=-190/1 55-56=-193/2 32-54=-193/2 38-49=-194/2 18-49=-194/2 14-45=-194/2	98, 89, 5-7=-1799/395 66, 7/479, 5/504, 7/516, 6/522 108, /244, 244, 244, 244, 244, 244,	27-1-0, Exterior(2R) 34-1-14 to 48-10-8 z exposed ; end vertic members and forces Lumber DOL=1.60 p	27-1-0 to 34-1-14, cone; cantilever left al left and right exps & MWFRS for read- late grip DOL=1.60 SCOTT M SEVIER NUMBER PE-2001018	Interior (1) and right osed;C-C for tions shown;
() ()	2x4 SP Nc 2x4 SP Nc 2x4 SP Nc 2x3 SPF N 2x3 SP	9-3-1 (psf) Sp 25.0 Pla 10.0 Lur 0.0 Re 10.0 Co 2x4 SP No.2 *Except* 56 2x4 SP No.2 *Except* 56 2x4 SP No.2 2x3 SPF No.2 2x3 SPF No.2 2x3 SPF No.2 Structural wood sheathin 2-2-0 oc purlins, except 2-0-0 oc bracing: 2-59 10-0-0 oc bracing: 57-59 2-2-0 oc bracing: 56-57. 1 Row at midpt 20-5 30-5 1 Brace at Jt(s): 14, 21, 11, 7 size) 2=0-3-8, 41=2/ 44=20-11-8, 44 46=20-11-8, 44 46=20-11-8, 55 56=20-11-8 Max Horiz 2=204 (LC 12) Max Uplift 2=-225 (LC 12 43=-91 (LC 13) 45=-42 (LC 13) 49=-41 (LC 13) 51=-41 (LC 13) 51=-41 (LC 13)	4x0= $3x6i$ $9-3-14$ $9-3-14$ $9-3-14$ $9-3-14$ $9-3-14$ $9-3-14$ 25.0 Plate Grip DOL 10.0 10.0 10.0 Lumber DOL Rep Stress Incr Code $2x4$ SP No.2 *Except* 56-5:2x6 SPF No.2 $2x3$ SPF No.2 $2x3$ SPF No.2 $2x3$ SPF No.2 $2x3$ SPF No.2 Structural wood sheathing directly applied $2-0$ -0 cc purlins (10-0-0 max): 15-26, 5-5 Rigid ceiling directly applied or 6-0-0 cc bracing, Except: $8-11-14$ oc bracing: 2-59 $10-0$ oc bracing: 56-57. 1 Row at midpt $20-21, 22-23, 24-25, 27-56, 28-55, 29-54, 30-53 1 Brace at Jt(s): 14, 21, 11, 7 size) 2=0-3-8, 41=20-11-8, 45=20-11-8, 46=20-11-8, 46=20-11-8, 46=20-11-8, 52=20-11-8, 52=20-11-8, 52=20-11-8, 52=20-11-8, 52=20-11-8, 52=20-11-8, 52=20-11-8, 52=20-11-8, 52=20-11-8, 55=20-11-8, 56=20-11-8, 56=20-11-8, 55=20-11-8, 56=20-$	3x6 = 3x6 = 3x6 $9-3-14 + 18-0-2$ $9-3-14 + 8-8-5$ (psf)	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	ANS $3x6=$ $3x6=$ $7x8=$ $5x5=$ $y = 3 \cdot 14$ $18 \cdot 0 \cdot 2$ $27 \cdot 2 \cdot 4$ $48 \cdot 0 \cdot 0$ $5x5=$ $y = 3 \cdot 14$ $18 \cdot 0 \cdot 2$ $27 \cdot 2 \cdot 4$ $48 \cdot 0 \cdot 0$ $20 \cdot 9 \cdot 12$ $y = 3 \cdot 14$ $8 \cdot 8 \cdot 5$ $9 \cdot 2 \cdot 1$ $20 \cdot 9 \cdot 12$ $20 \cdot 9 \cdot 12$ $y = 11 \cdot 12$ $y = 11 \cdot 15$ $y = 11 \cdot 11 \cdot 15$ $y = 11 \cdot 111 \cdot 1111 \cdot 1111 \cdot 111 \cdot 11$	3.68 3.68 3.68 3.68 3.68 3.68 3.68 3.68 5.68 <th< td=""></th<>

RELEASE FOR CONSTRUCTION AS ₩DTED ON PLANS REVIEW DEXEL OPMENT SERVICES LEE'S SUMMIT, MISSOURI Premier Building Supply (Springhill KS), Spring 12/13/2023 8:43:36

Truss Type	Qty	Ply	Roof - Osage Lot 76	
Piggyback Base Structural Gable	2	1	Job Reference (optional)	161755127

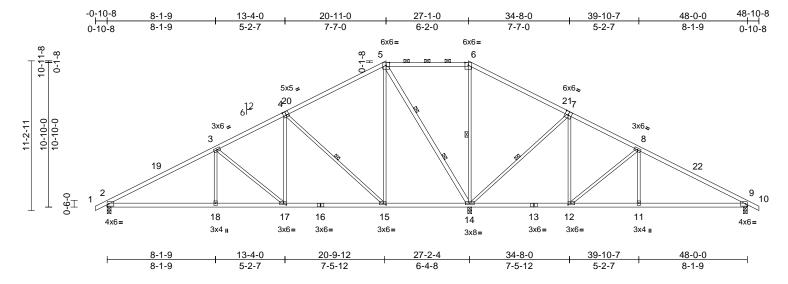
), Spring Hills, KS - 66083,

 Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

4) Provide adequate drainage to prevent water ponding.

5) All plates are 3x4 MT20 unless otherwise indicated.

6) Gable studs spaced at 1-4-0 oc.


- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
 All bearings are assumed to be SP No.2 crushing
- All bearings are assumed to be SP No.2 crushing capacity of 565 psi.
 Description provide pro
- 9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 225 lb uplift at joint 2, 162 lb uplift at joint 56, 29 lb uplift at joint 41, 509 lb uplift at joint 52, 33 lb uplift at joint 54, 46 lb uplift at joint 53, 39 lb uplift at joint 52, 41 lb uplift at joint 51, 42 lb uplift at joint 50, 41 lb uplift at joint 49, 41 lb uplift at joint 48, 41 lb uplift at joint 47, 41 lb uplift at joint 46, 42 lb uplift at joint 45, 28 lb uplift at joint 44 and 91 lb uplift at joint 43.
- 10) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

LOAD CASE(S) Standard

Run: 8.63 S Aug 30 2023 Print: 8.630 S Aug 30 2023 MiTek Industries, Inc. Tue Oct 31 15:34:36 ID:EmCXOiXYCML5IKd?OVTvI7yGxE5-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 2

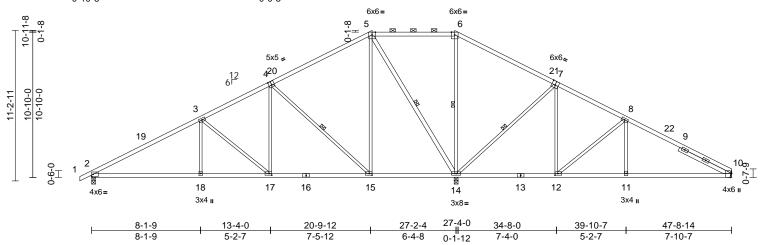
RF	EASE FOR CONSTI							
	NOTED ON PLANS		Truss Type		Qty	Ply	Roof - Osage Lot 76	
	EXELOPMENT SER		Piggyback Base		6	1	Job Reference (optional)	161755128
1	Premier Building Supply (Springh 2/13/2023 8:4	lills, KS - 66083,		0		0	0 2023 MiTek Industries, Inc. Tue Oct 31 15:34:38 370Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f	Page: 1

Scale = 1	:86.4
-----------	-------

ading	(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
CLL (roof)	25.0	Plate Grip DOL	1.15		тс	0.94	Vert(LL)	-0.13	2-18	>999	240	MT20	197/144
DL	10.0	Lumber DOL	1.15		BC	0.76	Vert(CT)	-0.30	2-18	>999	180		
CLL	0.0	Rep Stress Incr	YES		WB	0.91	Horz(CT)	0.04	14	n/a	n/a		
CDL	10.0	Code	IRC201	8/TPI2014	Matrix-S							Weight: 232 lb	FT = 20%
JMBER			2)	Wind: ASCE	7-16; Vult=115	mph (3-sec	ond gust)						
OP CHORD	2x4 SP No.2 *Excep	t* 1-4,7-10:2x4 SP			h; TCDL=6.0psf	,	· · · ·						
	1650F 1.5E				t. II; Exp C; Enc			be)					
	2x4 SP No.2				and C-C Exter								
EBS	2x3 SPF No.2 *Exce	pt* 14-5:2x4 SP No.	2		-1-8 to 20-11-0,								
RACING					rior(2R) 27-1-0 1 8-10-8 zone; ca								
OP CHORD	Structural wood she		ed or		nd vertical left ar								
	2-2-0 oc purlins, exc				d forces & MWF								
	2-0-0 oc purlins (10-				=1.60 plate grip			,					
OT CHORD	Rigid ceiling directly	applied or 6-0-0 oc	3)		quate drainage 1			1.					
EBS	bracing. 1 Row at midpt	4-15, 6-14, 7-14	4)		as been designe								
EBS	2 Rows at 1/3 pts		,		ad nonconcurre			ds.					
		9=0-3-8, 14=0-3-8	5)	All bearings	are assumed to	be SP No.	2 crushing						
	(Size) 2=0-3-8, 8 Max Horiz 2=204 (L0			capacity of 5	i65 psi.								
	Max Uplift 2=-198 (L	,	₂₎ 6)		hanical connect								
1	14=-303 (L		3),		e capable of with								
,	Max Grav 2=1034 (L		6)		b uplift at joint 1			nt 9.					
	14=2925		5), 7)		designed in acc								
RCES	(lb) - Maximum Com	· /			Residential Co			na					
NOLO	Tension		0)		nd referenced s Irlin representati			izo					
P CHORD	1-2=0/17, 2-3=-1514	/257. 3-5=-926/229.	0)		ation of the purli			ize					
	5-6=0/834, 6-8=-184	, ,	3.	bottom chor		n along the	top anu/or						
	9-10=0/17		,	DAD CASE(S)								San	TIP
T CHORD	2-18=-312/1230, 17-	-18=-312/1230,		JAD CASE(S)	Stanuaru							OF M	ALSO D
	15-17=-143/748, 14	-15=-152/328,										4 SE	1.0°
	12-14=-340/183, 11-	-12=-102/585,									A	TATE OF M	Nes/
	9-11=-102/585										H		
BS	3-18=0/297, 3-17=-6	,	04,								BJ	SEVI	ER
	4-15=-911/325, 5-15										01		• \★
	5-14=-1467/285, 6-1	,									8		X 1~
	7-14=-927/326, 7-12	2=-60/514.									NA.		VADA LA
	8-12=-651/219, 8-11												

1) Unbalanced roof live loads have been considered for this design.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent oulgase with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TPI1 Quality Criteria, and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcscomponents.com)



November 1,2023

E

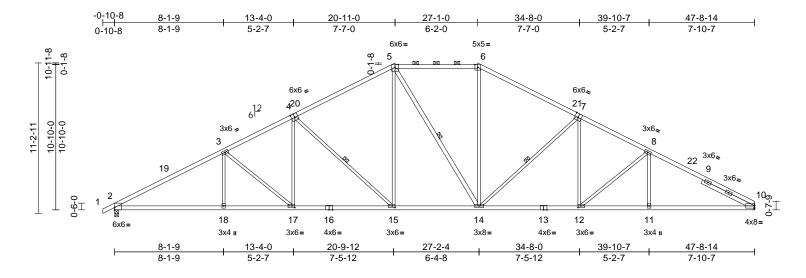
SSIONAL

RFI	LEASE FOR CONST									
	NOTED ON PLANS				Qty	Ply	Roof - Osage L	ot 76		
0	EXELOPMENT SE	RVICES	Piggyback Bas	se	2	1	Job Reference	(optional)	l6175	5129
1	Premier Building Supply (Sprin 2/13/2023 8:	ghill KS) Spring	Hills, KS - 66083,		-	-		stries, Inc. Tue Oct 3 .8w3uITXbGKWrCD		Page: 1
	-0 , 10,-8	8-1-9	13-3-11 13-4-0	20-11-0	27-1-0	- 3	34-8-0	39-10-7	47-8-14	
	0-10-8	8-1-9	5-2-1 0-0-5	7-7-0	6-2-0	1	7-7-0	5-2-7	7-10-7	

Scale = 1.05.9	Scale	e =	1:85.9
----------------	-------	-----	--------

_oading (psf)		2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
CLL (roof) 25.0		1.15		TC	0.89	Vert(LL)	-0.13	2-18	>999	240	MT20	197/144
CDL 10.0		1.15		BC	0.77	Vert(CT)	-0.31	2-18	>999	180		
OCLL 0.0		YES		WB	0.96	Horz(CT)	0.05	10	n/a	n/a		FT 00%
BCDL 10.0	Code	IRC2018	B/TPI2014	Matrix-S							Weight: 236 lb	FT = 20%
UMBER 'OP CHORD 2x4 SP No.2 *Except 1650F 1.5E 3OT CHORD 2x4 SP No.2 VEBS 2x3 SPF No.2 *Except 1650F 1.5E SOT CHORD 2x4 SP No.2 *Except 1650F 1.5E SOT CHORD 2x4 SP No.2 *Except 1650F 1.5E SUDER Right 2x4 SP No.2 *Except 1650F 1.5E STOP CHORD Structural wood sheat 2-2-0 oc purlins, except 2-0-0 oc purlins, except 2-0-0 oc purlins (10-4000) SOT CHORD Rigid ceiling directly bracing. VEBS 1 Row at midpt REACTIONS (size) 2=0-3-8, 1 Max Horiz 2=209 (LC Max Uplift 2=-212 (LI Max Grav 2=1056 (LI 14=-270 (IN Max Grav 2=1056 (LI 14=2770 (IN Max Grav 2=1056 (LI 14=270 (IN Max Gra	* 4-1,7-10:2x4 SP pt* 14-5:2x4 SP No.2 4-4-0 athing directly applied (ept -0 max.): 5-6. applied or 6-0-0 oc 6-14, 5-14, 7-14, 4-15 0= Mechanical, 14=0- : 12) C 12), 10=-202 (LC 13 _C 12) C 25), 10=696 (LC 26) LC 1) pression/Maximum , 2-3=-1560/287, 364/860, 8-10=-913/31 18=-344/1270, 15=-70/250, 12=-167/718, 36/754, 6-14=-796/15(391/268, 4-17=-59/50) =-51/500, =-615/201,	2) or 3) 3-8 6)), 7) 8 9) 8 9) 10 3, 10	Wind: ASCE Vasd=91mpl Ke=1.00; Ca exterior zone Interior (1) 4 27-1-0, Exte 34-1-14 to 4 exposed ; er members an Lumber DOL Provide adea All plates are This truss ha chord live loo Bearings are capacity of 5 of 565 psi. Refer to gird Provide meo bearing plate joint 10, 212 14. This truss is International R802.10.2 a	7-16; Vult=115r 7; TCDL=6.0psf; t. II; Exp C; Encle and C-C Exteri 1-8 to 20-11-0, rior(2R) 27-1-0 t 7-8-14 zone; car d vertical left an d forces & MWF =1.60 plate grip quate drainage t 3 x6 MT20 unle is been designer ad nonconcurrer assumed to be 65 psi, Joint 14 er(s) for truss to hanical connecti e capable of with Ib uplift at joint 2 designed in acc Residential Coc nd referenced st rlin representati ation of the purlin d.	BCDL=6.(osed; MW or(2E) -0-1 Exterior(2E) o 34-1-14, titlever left d right exp RS for rea DOL=1.6(o prevent v ss otherwid d for a 10.0 tt with any Joint 2 SF SP No.2 ci truss conr on (by oth standing 2 and 270 l ordance wi le sections andard AN on does no	Dpsf; $h=35$ ft; FRS (envelop 0-8 to 4-1-8, E) 20-11-0 to Interior (1) and right oosed;C-C for ctions shown) water ponding se indicated.) psf bottom other live loa P No.2 crushi rushing capar elections. ers) of truss t 0 2 lb uplift at joir ith the 2018 R502.11.1 a ISI/TPI 1.	ds. ng city o nt			Ê		MISSOLP TM. ER JEMAC D18807

November 1,2023


	CONST										
S NOTED OI		REVIEW	Tru	ss Type		Qty	Ply	Roof - Os	age Lot 76		64755400
FEIS SHM	IENT SER	VICES	· _ ·	gyback Base		2	1	Job Refe	ence (optiona	I)	l61755130
Premier Building 12/13/20		ill, KS) Spring 3:36	Hills, KS - 66083,		Run: 8.63 S Aug 3(ID:SN8pPrD2hT7xg						
	-0-10-8 - 0-10-8	<u>8-1-9</u> 8-1-9	<u>13-4-(</u> 5-2-7			7-1-0 6-2-0	6x6=	34-8-0 7-7-0	<u>39-1</u> 5-2		47-8-14 7-10-7
11-2-11 10-10-0 0.6.0 0.1-0 0-1-8	⊥ 1 2 4x6=	24 <u>8-1-9</u> 8-1-9	6^{12} 3x6 = 3x6 = 22 3x4 = 13-4-1 5-2.7			^{3x4} 5-12 12 27-2-4	7 8 15 3x8= 27-4-0 4 u 32	* 14 3x6=			27 ^{3x6} 10 3x6 4x6 4x6 7-10-7
Scale = 1:85.9	()) [()]		5-2-7		0-	-12	0-1-12 4	-8-0 2-8	3-0 5-2	-7	7-10-7
· · · · · ·			-3-0,Edge], [11:0-3-10								
Loading TCLL (roof) TCDL BCLL BCDL		25.0 Pla 10.0 Lu	acing 2-0- ate Grip DOL 1.15 mber DOL 1.15 p Stress Incr YES de IRC	5	BC	0.91 Ve 0.72 Ve	. ,	in (loc) -0.13 2-22 -0.30 2-22 0.08 15	l/defl L/c >999 240 >999 180 n/a n/a	MT20	GRIP 197/144 lb FT = 20%
BOT CHORD WEBS SLIDER BRACING TOP CHORD BOT CHORD 1 Row at midpt WEBS JOINTS REACTIONS (1.5E 2x4 SP No.2 2x3 SPF No. Right 2x4 SP Structural wc 2-2-0 oc purl 2-0-0 oc purl bracing. Exc 5-18 1 Row at mic 1 Brace at Jt (size) 2= Max Horiz 2= Max Horiz 2= Max Grav 2=	2 *Except* 1 No.2 4-4 bod sheathir ins, except ins (10-0-0 directly app cept: dpt 7-15 (s): 23 e0-3-8, 11= I -208 (LC 12) -233 (LC 12) =-221 (LC 1	g directly applied or max.): 6-7. lied or 6-0-0 oc 5, 15-23, 8-15, 4-19 Mechanical, 15=0-3-8 l), 11=-358 (LC 13), 2) , 11=682 (LC 26),	 this design. Wind: ASCE Vasd=91mph Ke=1.00; Cat exterior zone Interior (1) 4- 27-1-0, Exteri 34-1-14 to 47 exposed; enu- members and Lumber DOL- Provide adeq All plates are chord live loa Bearings are capacity of 56 of 565 psi. Refer to girde Provide mech 	oof live loads have l 7-16; Vult=115mph ; TCDL=6.0psf; BCI . II; Exp C; Enclosed and C-C Exterior(2I 1-8 to 20-11-0, Exter tor(2R) 27-1-0 to 34- 8-14 zone; cantilev d vertical left and rig 1 forces & MWFRS f =1.60 plate grip DOI uate drainage to pre 3x6 MT20 unless of s been designed for d nonconcurrent wit assumed to be: Join 55 psi, Joint 15 SP N er(s) for truss to trus- nanical connection (I capable of withstan	3-second DL=6.0psf; ; MWFRS ;) -0-10-8 ior(2E) 20 1-14, Inte er left and nt expose or reactior =1.60 vent wate herwise in a 10.0 psf n any othe t 2 SP No io.2 crushi s connection by others)	gust) h=35ft; (envelope to 4-1-8,)-11-0 to rior (1) right d;C-C for is shown; r ponding. idicated. bottom r live loads .2 crushing ing capacit	s.			
FORCES		•	, sion/Maximum	01	b uplift at joint 15 ar	0		t			
TOP CHORD	5-6=-217/494	4, 6-7=0/903	, 3-5=-774/467, , 7-9=-333/1060,	 This truss is a International 	lesigned in accorda Residential Code se	ctions R50)2.11.1 and	Ł		E OF	MISSOL
BOT CHORD	17-23=0/55, 12-13=-450/6 3-22=0/301, 6-23=-1393/2	109, 21-22= 604, 18-19= 08, 17-18=-9 15-16=-69/2 694, 11-12= 7-15=-878/7 238, 15-23= 7, 3-21=-650	-168/668, 18/31, 16-17=-15/11, 16, 13-15=-509/225, -450/694 7, 9-12=0/290, -1432/230, 1/232, 8-13=-42/497,	10) Graphical pur		oes not de	pict the siz	e		ST SCC SE	DTT M. EVIER MBER 01018807
NOTES	4-19=-822/27									NOISSION	VAL ENGLIS

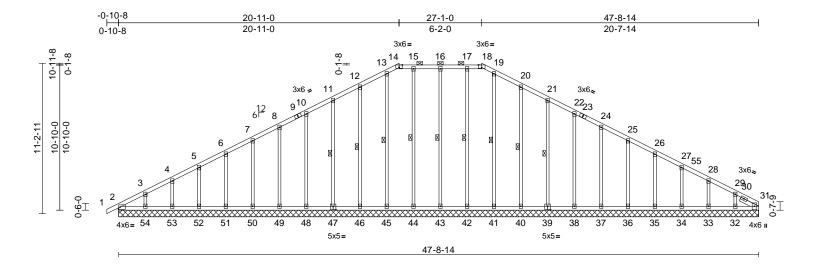
WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

16023 Swingley Ridge Rd. Chesterfield, MO 63017

314.434.1200 / MiTek-US.com

RE	LEASE FOR CONSTR								
AS	NOTED ON PLANS	REVIEW		Truss Type		Qty	Ply	Roof - Osage Lot 76	
	EXELOPMENT SER			Piggyback Base		10	1	Job Reference (optional)	l61755131
	Premier Building Supply (Springh 2/13/2023 8:4		ills, KS - 66083,		0		0	0 2023 MiTek Industries, Inc. Tue Oct 31 15:34:40 sB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f	Page: 1

Scale = 1:85.9


			2-2], [12:0-2-8,0-1			,	1			1	
oading (psf) CLL (roof) 25.0 CDL 10.0 CLL 0.0 CCLL 10.0 CCLL 10.0	Plate Grip DOL1Lumber DOL1Rep Stress IncrY	-0-0 .15 .15 /ES RC2018/TPI2014	CSI TC BC WB Matrix-S	0.97 0.82 0.81	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.26 -0.53 0.23	(loc) 15-17 15-17 10	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 236 lb	GRIP 197/144 FT = 20%
UMBER OP CHORD 2x4 SP 1650F 1.5E * No.2, 4-1:2x4 SP 240 OT CHORD 2x4 SP 1650F 1.5E VEBS 2x3 SPF No.2 *Exceptilite LIDER Right 2x4 SP No.2 IRACING OP CHORD OP CHORD Structural wood sheat except 2-0-0 oc purlins (2-2- COT CHORD Rigid ceiling directly at bracing. VEBS 1 Row at midpt SEACTIONS (size) 2=0-3-8, 10 Max Horiz 2=209 (LC Max Uplift 2=-329 (LC Max Grav 2=2214 (L0 ORCES (lb) - Maximum Compt Tension 12=0/17, 2-3=-4010/ 5-6=-2386/554, 6-8=-8-10=-3898/580 90T CHORD 60T CHORD 2-18=-561/3433, 17-1 15-17=-401/3019, 14 12-14=-330/3010, 11 10-11=-404/3340 YEBS 3-18=0/291, 5-15=-13 3-18=0/291, 5-15=-13	Except* 5-6:2x4 SP 20F 2.0E pt* 14-5:2x4 SP No.2 4-4-0 athing directly applied, -0 max.): 5-6. applied or 9-5-7 oc 5-14, 7-14, 4-15 0= Mechanical C 12), 10=-301 (LC 13) C 1), 10=2141 (LC 1) pression/Maximum /580, 3-5=-3462/598, -3430/590, 18=-561/3433, I-15=-175/2388, I-12=-404/3340, 34/725, 6-14=-80/718, 82/275, 4-17=-53/466, =-44/425, =-452/190,	 Wind: ASCE Vasd=91mp Ke=1.00; C2 exterior zon Interior (1) 4 27-1-0, Exte 34-1-14 to 4 exposed; et members ar Lumber DO Provide ade This truss his chord live lo Bearings ard crushing cap Refer to girc Provide med bearing plat joint 10 and This truss is Internationa R802.10.2 a Graphical put 	F7-16; Vult=115r h; TCDL=6.0psf; at. II; Exp C; Encl e and C-C Exteri I-1-8 to 20-11-0, riror(2R) 27-1-0 t riror(2R) 27-1-0 t roreal control and the control riror(2R) 27-1-0 t roreal control and the control roreal control and the control roreal control and the control and forces & MWF L=1.60 plate grip quate drainage t as been designed and nonconcurrer e assumed to be bacity of 565 psi. ler(s) for truss to chanical connect and rof truss to chanical connect a control and the control of the ferenced st urlin representati ation of the purlin d.	BCDL=6.1 osed; MW or(2E) -0-7 Exterior(2I) o 34-1-14, ttilever left d right exp RS for rea DOL=1.60 o prevent 0 o prevent 0 o prevent 0 o prevent 0 or for a 10.0 tt with any Joint 2 SI truss conr on (by oth standing 3 int 2. ordance w le sections andard AM on does no	Dpsf; h=35ft; FRS (envelop 0-8 to 4-1-8, E) 20-11-0 to Interior (1) and right lossed;C-C for ctions shown over ponding p sf bottom other live loa P 1650F 1.5E ections. ers) of truss to 01 lb uplift at ith the 2018 R502.11.1 a ISJ/TPI 1.	; j. ds. o					MISSOLA FM. ER DI8807

November 1,2023

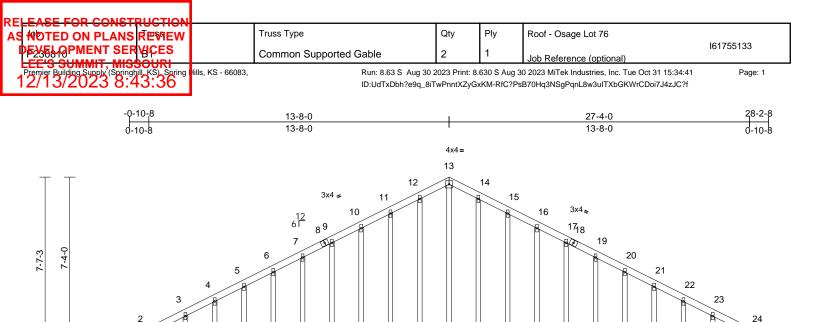
RELEASE FOR CONSTRUCTION				-	
AS NOTED ON PLANS REVIEW	Truss Type	Qty	Ply	Roof - Osage Lot 76	
DEVELOPMENT SERVICES	Piggyback Base Supported Gable	2	1	Job Reference (optional)	l61755132
Premier Building Supply (Springhill, KS), Spring Hills, KS - 66 12/13/2023 8:43:36	-		-	0 2023 MiTek Industries, Inc. Tue Oct 31 15:34:40 B70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f	Page: 1

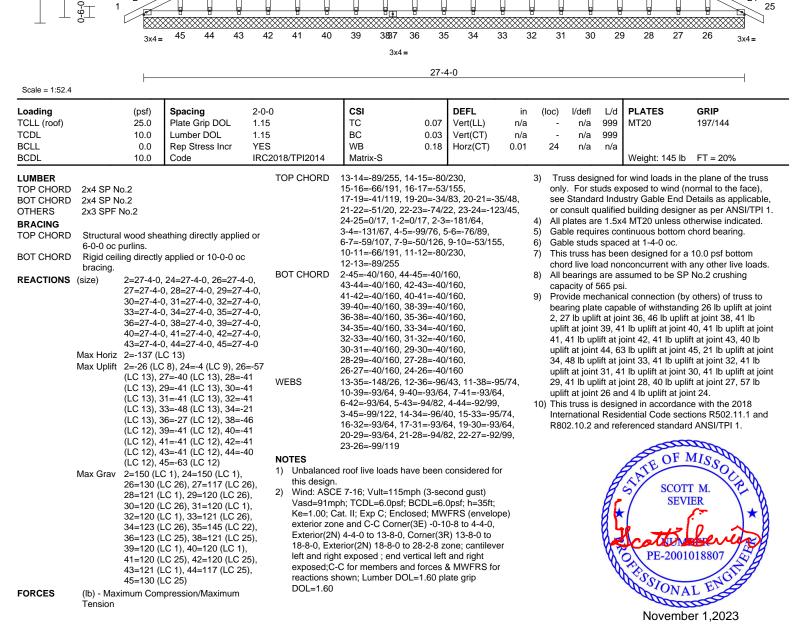
Scale = 1:85.9

Plate Offsets (X,	Y): [14:0-3	3-0,Edge]	, [18:0-3-0,Edge], [3	31:0-3-2,0	J-1-12], [39:0-2	2-8,0-3-0], [4	47:0-2-8,0-3	3-0] 								
Loading		(psf)	Spacing	2-0-0		CSI			DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP	
TCLL (roof)		25.0	Plate Grip DOL	1.15		TC			Vert(LL)	n/a	-	n/a	999	MT20	244/190	
TCDL		10.0	Lumber DOL	1.15		BC			Vert(CT)	n/a	-	n/a	999			
BCLL		0.0	Rep Stress Incr	YES		WB		0.18	Horz(CT)	0.02	31	n/a	n/a			
BCDL		10.0	Code	IRC20	18/TPI2014	Matrix-S	3							Weight: 267 lb	FT = 20%	
BOT CHORD 2 OTHERS 2 SLIDER F BRACING TOP CHORD 5 BOT CHORD 1	6-0-0 oc pu 2-0-0 oc pu	2 5.2 P No.2 vood shea rrlins, exc rrlins (6-0- g directly idpt	athing directly applie	, ,	ORCES	(lb) - Maxi	32=179 (LC 34=180 (LC 36=180 (LC 38=180 (LC 40=180 (LC 44=177 (LC 44=177 (LC 46=180 (LC 50=180 (LC 50=180 (LC 54=181 (LC	C 26), C 26), C 26), C 26), C 26), C 26), C 26), C 25), C 1), 4 C 25), C 1), 5 C 1), 5 C 25)	11=119 (LC 2 33=182 (LC 35=180 (LC 37=180 (LC 39=180 (LC 11=174 (LC 2 43=183 (LC 45=176 (LC 45=176 (LC 45=180 (LC 2 49=180 (LC 2 33=179 (LC 2 00/Maximum	1), 1), 26), 26), 26), 22), 5), 1), 5),			19-41: 21-39: 24-37: 26-35: 28-33: 15-44: 12-46: 10-48: 6-51= 3-54= d roof li	-140/97, 5-52=-1 -138/171	140/112, 140/96, 140/97, 139/106, 2=-137/191, 136/8,)/12
	, 3 3 3 4 4 4 4 4 4 5 5 5 1 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	32=47-8-1 44=47-8-1 46=47-8-1 46=47-8-1 40=47-8-1 42=47-8-1 42=47-8-1 46=47-8-1		e), 3), 3), 3), 3), 2), 2), 2),	SOT CHORD	4-5=-181/7 7-8=-84/11 11-12=-10 13-14=-12 15-16=-11 17-18=-11 19-20=-12 21-22=-88 24-25=-56 27-28=-10 29-31=-23 2-54=-59/7 52-53=-59 50-51=-59 48-49=-59 48-49=-59 48-49=-59 48-49=-59 48-49=-59 38-40=-59 38-30=-59 34-35=-59	62, 8-10=-7 6/287, 12-1 6/341, 14-1 8/342, 16-1 9/341, 18-1 7/347, 20-2 9/234, 22-24 6/126, 25-26 10/27, 28-29	6/110 1/190 5=-11 7=-11 9=-12 11=-10 =-59/2	, 6-7=-110/13, , 10-11=-88/2 27/347, 19/341, 8/342, 26/341, 16/287, 180, 72, 26-27=-7 3/43, 25, 225, 225, 225, 225, 225, 225, 225	234,				STATE OF M SCOT SEVI SEVI PE-2001 PE-2001 Novembe	L ENGINE	

RF ASE FOR CONST RICTIO NOTED ON PLANS REVIEW EXELOPMENT SERVICES Summit, Missouri Building Supply (Springhill, KS), Spri 3/2023 8:43:36 Spring

ì		Truss Type	Qty	Ply	Roof - Osage Lot 76	
		Piggyback Base Supported Gable	2	1	Job Reference (optional)	161755132
g	lills, KS - 66083,	Run: 8.63 S Aug 30 2	2023 Print: 8.	630 S Aug 3	0 2023 MiTek Industries, Inc. Tue Oct 31 15:34:40	Page: 2


Run: 8.63 S Aug 30 2023 Print: 8.630 S Aug 30 2023 MiTek Industries, Inc. Tue Oct 31 15:34:40 ID:JbPUB4NmDf0vUSJtFFIELayGxJT-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f


- Wind: ASCE 7-16; Vult=115mph (3-second gust) 2) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=35ft; Ke=1.00; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone and C-C Corner(3E) -0-10-8 to 4-0-0, Exterior(2N) 4-0-0 to 20-11-0, Corner(3R) 20-11-0 to 26-0-0, Exterior(2N) 26-0-0 to 27-1-0, Corner(3R) 27-1-0 to 32-0-0, Exterior(2N) 32-0-0 to 47-8-14 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- Truss designed for wind loads in the plane of the truss 3) only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) Provide adequate drainage to prevent water ponding.
- All plates are 3x4 MT20 unless otherwise indicated. 5) Gable requires continuous bottom chord bearing. 6)
- 7) Gable studs spaced at 2-0-0 oc.
- 8)
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 9) All bearings are assumed to be SP No.2 crushing
- capacity of 565 psi. 10) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 26 lb uplift at joint 2, 58 lb uplift at joint 43, 9 lb uplift at joint 42, 74 lb uplift at joint 40, 60 lb uplift at joint 39, 61 lb uplift at joint 38, 61 lb uplift at joint 37, 61 lb uplift at joint 36, 61 lb uplift at joint 35, 62 lb uplift at joint 34, 59 lb uplift at joint 33, 103 lb uplift at joint 32, 12 lb uplift at joint 44, 71 lb uplift at joint 46, 61 lb uplift at joint 47, 61 lb uplift at joint 48, 61 lb uplift at joint 49, 61 lb uplift at joint 50, 61 lb uplift at joint 51, 61 lb uplift at joint 52, 61 lb uplift at joint 53 and 87 lb uplift at joint 54.
- 11) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 12) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord

LOAD CASE(S) Standard

 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.
 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponent.com)

Continued on page 2 Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE WAR Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not

25

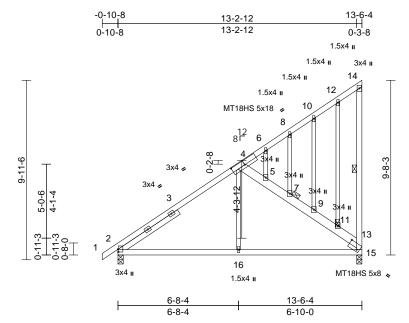
a trust system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria**, and **DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

REI	EASE FOR C	ONST							
AS	NOTED ON P	LANS	REVIEW		Truss Type	Qty	Ply	Roof - Osage Lot 76	
9	EXELOPMEN		VICES		Common Supported Gable	2	1	Job Reference (optional)	l61755133
	Premier Building Suppl 2/13/202			lills, KS - 66083,	-		-	0 2023 MiTek Industries, Inc. Tue Oct 31 15:34:41 B70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f	Page: 2
	LOAD CASE(S) S	tandard		I					

EASE FOR CONSTRUCTION				0.5%	DIV	Deef. Or	an 1 at 70		
NOTED ON PLANS REVIEW		Truss Type Common		Qty 4	Ply 1	Roof - Osa	•	- 1)	161755134
EE'S SUMMIT, MISSOURI Premier Building Supply (Springhill, KS), Spring 2/13/2023 8:43:36	lills, KS - 66083,		Run: 8.63 S Au		nt: 8.630 S Aug		ence (option Industries, Ind	al) c. Tue Oct 31 15:34:42	Page: 1
2/13/2023 8:43:36			ID:77cC2GCYq4	AwXzi_Rd5ak	SLyGxKz-RfC	PsB70Hq3NSgl	PqnL8w3uITX	bGKWrCDoi7J4zJC?f	
-0-10-8	6-11-7		13-8-0			0-4-9		27-4-0	28-2-8
0-10-8	6-11-7		6-8-9			6-8-9		6-11-7	0-10-8
				4x6= 5					
ТТ		12 6 □ 3x4 ≠	•				1.5x4 4	<i>y</i>	
		1.5x4 💊					3x4 👟		
		14 4			\mathbb{N}	15	; 6		
7-4-0		3	/	/			7		
7-7-3	13							16	
2									8
						¥			
3x4 =			12 11 3x4= 3x4=			10 3x4=			3x4 =
			5,4= 5,4=			3,4=			
	<u>9-3-</u> 9-3-			<u>18-0-2</u> 8-8-5				<u>27-4-0</u> 9-3-14	
Scale = 1:52.5 'late Offsets (X, Y): [2:Edge,0-0-9], [8:Ec	ae.0-0-91								
	cing	2-0-0	CSI		EFL	in (loc)	l/defl L	d PLATES	GRIP
CLL (roof) 25.0 Plat	e Grip DOL ber DOL	1.15 1.15	TC BC	0.77 V	ert(LL)	0.20 2-12 0.44 2-12	>999 24 >737 18	0 MT20	244/190
	Stress Incr	YES IRC2018/TPI2014	WB Matrix-S		. ,	0.07 8	n/a n/		FT 000/
BRACING TOP CHORD Structural wood sheathing 2-6-11 oc purlins. 3OT CHORD Rigid ceiling directly appli bracing. REACTIONS (size) 2=0-3-8, 8=0-3 Max Horiz Max Horiz 2=-137 (LC 13) Max Uplift 2=-2-137 (LC 12) Max Grav Max Uplift 2=-2128 (LC 1), ClD - Maximum Compress Tension FORCES (lb) - Maximum Compress Tension FOP CHORD 1-2=0/17, 2-3=-2072/392, 5-7=-1821/403, 7-8=-2073 SOT CHORD 2-12=-328/1763 NEBS 5-10=-154/672, 7-10=-45° 5-12=-153/672, 3-12=-45° NOTES 1) 1) Unbalanced roof live loads have been this design. 2) Wind: ASCE 7-16; Vult=115mph (3-se Vasd=91mph; TCDL=6.0psf; BCDL=6 Ke=1.00; Cat. II; Exp C; Enclosed; MV exterior zone and C-C Exterior(2E) -0- Interior (1) 4-1-8 to 13-8-0, Exterior(2E) -0- Interior (1) 4-1-8 to 13-8-0, texterior(2E) -0- Interior (1) 4-1-8 to 13-8-0, to 28-2-8 zo and right exposed ; end vertical left ar exposed;C-C for members and forces reactions shown; Lumber DOL=1.60 p DOL=1.60 <th>ed or 10-0-0 oc 8 , 8=-211 (LC 13) 8=1288 (LC 1) ion/Maximum 3-5=-1821/403, 2/392, 8-9=0/17 3/180, 1/287, 1/287, considered for cond gust) .0psf; h=35ft; VFRS (envelope 10-8 to 4-1-8, 2) 13-8-0 to ne; cantilever let d right & MWFRS for late grip</th> <th>or R802.10.2 LOAD CASE(S</th> <th>al Residential Code and referenced star 5) Standard</th> <th></th> <th></th> <th></th> <th></th> <th>STATE OF M SCOTT SEVI DE PE-20010</th> <th>ER *</th>	ed or 10-0-0 oc 8 , 8=-211 (LC 13) 8=1288 (LC 1) ion/Maximum 3-5=-1821/403, 2/392, 8-9=0/17 3/180, 1/287, 1/287, considered for cond gust) .0psf; h=35ft; VFRS (envelope 10-8 to 4-1-8, 2) 13-8-0 to ne; cantilever let d right & MWFRS for late grip	or R802.10.2 LOAD CASE(S	al Residential Code and referenced star 5) Standard					STATE OF M SCOTT SEVI DE PE-20010	ER *
 chord live load nonconcurrent with any All bearings are assumed to be SP No capacity of 565 psi. 								Novembe	L ENGER er 1,2023
WARNING - Verify design parameters an Design valid for use only with MiTek® conne a truss system. Before use, the building desi	ctors. This design is	based only upon parameter	s shown, and is for an in	dividual buildin	g component, ne	ot		NЛi	Tek °

RELEASE FOR CONSTRUCTION					
AS NOTED ON PLANS REVIEW	Truss Type	Qty	Ply	Roof - Osage Lot 76	
DEXELOPMENT SERVICES	Common Supported	d Gable 1	1	Job Reference (optional)	l61755135
LEC'S SUMMIT, MISSOURI Premier Building Supply (Springhill, KS), Spring 12/13/2023 8:43:36	ills, KS - 66083,	•	-	30 2023 MiTek Industries, Inc. Tue Oct 370Hq3NSgPqnL8w3uITXbGKWrCDoi7J	-
	-0-10-8 6	-10-0		13-8-0	14-6-8
	0-10-8 6	-10-0		6-10-0	0-10-8
ΤT		4x4 7 8 6	=		
5-5-14 5-2-11 0-8-0	4x8 \$ 4 3 1 2			9 10 4x8 11	12 13
	3x4 u 22 21	20 19 18	17	16 15 14	Зх4 и
	L	13-8-	0		

Scale = 1:37.9


Plate Offsets (X, Y): [12:Edge,0-5-14]

	x, y): [12:Edge,0-	, , ,											
Loading TCLL (roof) TCDL	(psf) 25.0 10.0	Spacing Plate Grip DOL Lumber DOL	2-0-0 1.15 1.15		CSI TC BC	0.06 0.03	DEFL Vert(LL) Vert(CT)	in n/a n/a	(loc) - -	l/defl n/a n/a	L/d 999 999	PLATES MT20	GRIP 197/144
BCLL	0.0	Rep Stress Incr	YES		WB	0.07	Horz(CT)	0.00	12	n/a	n/a	M	FT 000/
BCDL	10.0	Code	IRC2018	/1PI2014	Matrix-S							Weight: 73 lb	FT = 20%
LUMBER TOP CHORD BOT CHORD OTHERS SLIDER BRACING TOP CHORD BOT CHORD	1-8-5 Structural wood s 6-0-0 oc purlins.	1-8-5, Right 2x4 SP heathing directly applic tly applied or 10-0-0 or	No.2 NO 1) ed or 2)	TES Unbalanced this design. Wind: ASCE Vasd=91mpl Ke=1.00; Ca	7-18=-119/26, 8-1 10-15=-100/111, ; 5-19=-104/73, 5-2 3-22=-109/131 roof live loads ha 7-16; Vult=115m ı; TCDL=6.0psf; f t. II; Exp C; Enclo	11-14=-1 0=-99/10 ve been ph (3-seo 3CDL=6. sed; MW	02/129, 6, 4-21=-100 considered fo cond gust) 0psf; h=35ft; FRS (envelop	/111, r					
	bracing.	., ., .,			and C-C Corner			,					
	15=13- 18=13- 21=13- Max Horiz 2=-144 Max Uplift 2=-39 (LC 13 (LC 13 (LC 13 (LC 12 Max Grav 2=159 14=13: 16=120 18=119 20=120 22=139	LC 8), 12=-2 (LC 9), 14 , 15=-52 (LC 13), 16=- , 17=-42 (LC 13), 19=- , 20=-56 (LC 12), 21=- , 22=-80 (LC 12) (LC 20), 12=154 (LC 12) (LC 20), 15=125 (LC 12) (LC 20), 17=127 (LC 12) (LC 22), 19=131 (LC 12) (LC 22), 19=131 (LC 12) (LC 19), 21=126 (LC 12)	-6-4, -6-4, 57 3) 45 52), 4) 20), 5) 20), 6) 19), 19), 7)	11-10-0, Exti left and right exposed;C-C reactions she DOL=1.60 Truss design only. For stu see Standarro or consult qu All plates are Gable studs This truss ha chord live loa All bearings capacity of 5	4-2-0 to 6-10-0, (erior(2N) 11-10-0 exposed ; end vec for members an own; Lumber DOI and for wind load: ds exposed to wi d Industry Gable I alified building de e 1.5x4 MT20 unle spaced at 1-4-0 c is been designed ad nonconcurrent are assumed to b 65 psi.	to 14-6- trical left d forces a =1.60 pl s in the p nd (norm End Deta assigner a ass other ic. for a 10.1 with any e SP No.	2 zone; cantile and right & MWFRS for ate grip ane of the tru- al to the face is as applical s per ANSI/TF wise indicated 0 psf bottom other live loa 2 crushing	uss), ble, Pl 1. J. ds.			Å	STATE OF J	MISSOLU
FORCES	(lb) - Maximum C Tension	ompression/Maximum	0)		capable of withs						B	S SCOT	
TOP CHORD	7-8=-91/176, 8-9= 10-11=-58/29, 11 1-2=0/16, 2-3=-14	9-20=-52/150, 7-18=-52/150, 5-16=-52/150,	9) 10)	12, 39 b upli uplift at joint 14, 45 b upli uplift at joint N/A This truss is International	Ift at joint 2, 42 lb 16, 52 lb uplift at ff at joint 19, 56 lb 21 and 80 lb uplif designed in accoo Residential Code nd referenced sta	uplift at j joint 15, o uplift at t at joint : rdance w sections	bint 17, 57 lb 73 lb uplift at j joint 20, 52 lb 22. ith the 2018 R502.11.1 a	joint D				NUM PE-2001	JENGT SHA

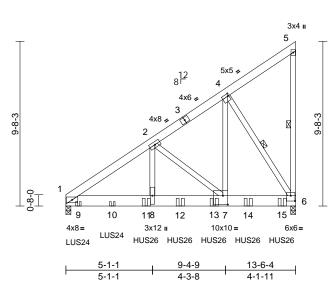
November 1,2023

RELEASE FOR CONSTRUCTION					
AS NOTED ON PLANS REVIEW	Truss Type	Qty	Ply	Roof - Osage Lot 76	
	Monopitch	1	1	Job Reference (optional)	161755136
Premier Building Supply (Springhill, KS), Spring Hills, K 12/13/2023 8:43:37		-	-	0 2023 MiTek Industries, Inc. Tue Oct 31 15:34:42 PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f	Page: 1

Scale = 1:63.8

Plate Offsets (X, Y): [2:0-1-13,0-0-4], [4:0-9-0,0-3-0], [15:0-6-6,0-3-11]

Plate Olisets ((X, Y): [2:0-1-13,0-0-4	i, [4:0-9-0,0-3-0], [15	:0-0-0,0-3	-11]									
Loading TCLL (roof) TCDL BCLL BCDL	(psf) 25.0 10.0 0.0 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC201	8/TPI2014	CSI TC BC WB Matrix-S	0.65 0.44 0.26	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.04 -0.09 0.01	(loc) 15-16 2-16 15	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 MT18HS Weight: 97 lb	GRIP 244/190 197/144 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS OTHERS SLIDER BRACING TOP CHORD BOT CHORD WEBS JOINTS REACTIONS	6-0-0 oc purlins, ex Rigid ceiling directly bracing. 1 Row at midpt 1 Brace at Jt(s): 11, 7	ot* 4-16:2x3 SPF No.: 3-11-10 athing directly applie cept end verticals. applied or 9-10-14 o 14-15 15=0-3-8 C 9) C 12), 15=-202 (LC 12 C 1), 15=-658 (LC 19)	2 3) 4) 5) d or 6) 7) % 8) 9) 10 2)	only. For stu see Standard or consult qu Provide aded All plates are Gable studs This truss ha chord live loa All bearings capacity of 5 Provide mec bearing plate joint 15 and 1 N This truss is International R802.10.2 ar	hanical connection e capable of withsta 83 lb uplift at joint 2 designed in accord Residential Code nd referenced stan rlin representation	d (norm nd Deta signer a prevent ss othe otherwi c or a 10. vith any SP No (by oth anding 2 2. dance w sections dard AN does n	al to the face ils as applica s per ANSI/T water pondim wise indicate se indicated. 0 psf bottom other live loa 2 crushing ers) of truss 202 lb uplift ar ith the 2018 s R502.11.1 a VSI/TP1 1. ot depict the s	e), hble, PI 1. g. ed. ads. to t					
TOP CHORD	Tension 1-2=0/16, 2-6=-708/, 8-10=-236/218, 10-1 12-14=-95/98, 13-15 13-14=-89/85, 4-5=- 7-9=-606/280, 9-11= 11-13=-725/370	227, 6-8=-276/239, 12=-204/204, 5=-600/366, 538/231, 5-7=-560/2 648/313,		bottom choro DAD CASE(S)		iong the						THTE OF I	MISSOL
Vasd=91n Ke=1.00; exterior zc Interior (1) exposed ; members	2-16=-333/580, 15-1 4-16=0/305, 11-12=- 7-8=-84/61, 5-6=-12 CE 7-16; Vult=115mph nph; TCDL=6.0psf; BC Cat. II; Exp C; Enclose one and C-C Exterior(2) 4-1-8 to 13-4-8 zone; end vertical left and rig and forces & MWFRS OL=1.60 plate grip DC	-214/183, 9-10=-77/6 /6 (3-second gust) DL=6.0psf; h=35ft; d; MWFRS (envelop: E) -0-10-8 to 4-1-8, cantilever left and rig ght exposed;C-C for for reactions shown;	e) ght							•	8	NUM PE-2001	LENGING


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent colleges with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

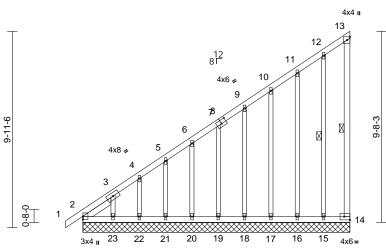
November 1,2023

RELEASE FOR CONSTRUCTION					
AS NOTED ON PLANS REVIEW	Truss Type	Qty	Ply	Roof - Osage Lot 76	
	Monopitch Girder	2	2	Job Reference (optional)	161755137
Permier Building Supply (Springhill, KS), Spring 12/13/2023 8:43:37	6		Ũ	0 2023 MiTek Industries, Inc. Tue Oct 31 15:34:43 PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f	Page: 1

ı.	5-1-1	9-4-9	13-6-4	Т
Г	5-1-1	4-3-8	4-1-11	

Scale = 1:67.8

Plate Offsets (X, Y): [4:0-0-12,0-1-12], [6:0-3-0,0-3-12], [7:0-3-8,0-6-4]


Loading TCLL (roof) TCDL	(psf) 25.0 10.0	Spacing Plate Grip DOL Lumber DOL	2-0-0 1.15 1.15		CSI TC BC	0.29 0.36	DEFL Vert(LL) Vert(CT)	in -0.07 -0.12	(loc) 7-8 7-8	l/defl >999 >999	L/d 240 180	PLATES MT20	GRIP 197/144
BCLL BCDL	0.0 10.0	Rep Stress Incr Code	NO IRC201	8/TPI2014	WB Matrix-S	0.88	Horz(CT)	0.02	6	n/a	n/a	Weight: 230 lb	FT = 20%
 (0.131"x3' Top chord staggered Bottom ch staggered Web conn All loads a except if n CASE(S) provided t 	2x8 SP 2400F 2.0E 2x4 SP No.2 Structural wood she 5-5-9 oc purlins, ex Rigid ceiling directly bracing. 1 Row at midpt (size) 1=0-3-8, 6 Max Horiz 1=384 (LC Max Uplift 1=-1112 (Max Grav 1=5503 (L (lb) - Maximum Com Tension 1-2=-7647/1389, 2-4 4-5=-202/180, 5-6=-	cept end verticals. applied or 10-0-0 oc 5-6, 4-6 5-0-3-8 C 11) LC 12), 6=-1295 (LC -C 1), 6=7639 (LC 1) pression/Maximum 4=-4084/764, 144/122 B=-1372/6184, 3634/843, 5=-6287/1143 ther with 10d s: 2x6 - 2 rows w at 0-9-0 oc. ows: 2x8 - 4 rows -1 row at 0-9-0 oc. applied to all plies, ck (B) face in the LC nections have been	2 4) 5) (12) 6)) 7) 8) 9) 10 LQ 1)	Vasd=91mpf Ke=1.00; Cai exterior zone Interior (1) 5- exposed; en members an Lumber DOL This truss ha chord live loa All bearings a capacity of 8 Provide mecl bearing plate joint 6 and 11 This truss is International R802.10.2 ar Use Simpsor Truss, Single oc max. start connect truss Use Simpsor Truss) or equ 4-8-12 from t to back face DF all all nail ho DAD CASE(S) Dead + Roc Plate Increas Uniform Loa Vert: 1-5: Concentrate	hanical connection capable of withst 112 lb uplift at join designed in accor Residential Code nd referenced star Strong-Tie LUS2 PIy Girder) or eq ing at 0-8-12 from s(es) to back face a Strong-Tie HUS2 vivalent spaced at he left end to 12- for bottom chord. les where hanger Standard of Live (balanced): se=1.15 ads (lb/ft) =-70, 1-6=-20 ed Loads (lb) 580 (B), 10=-662 (l	CDL=6.1 sed; MW (2E) 0-1 s; cantile right exg S for rea OL=1.6(for a 10.1 with any s SP 240 h (by oth anding 1 t 1. dance w sections ndard AN 4 (4-100 uivalent the left of bottor 26 (14-11 2-0-0 oc 3-12 to c is in cor	Dpsf; h=35ft; FRS (envelo, -12 to 5-1-1, vover left and r posed;C-C foi ctions showr)) psf bottom other live loa 0F 2.0E crus ers) of truss t 295 lb uplift a : R502.11.1 a SI/TPI 1. I Girder, 2-10 spaced at 2-(end to 2-8-12 n chord.) Girder, 6-1 c max. startin onnect truss(latext with lum I Increase=1.	ight i; dds. hing to at d 0-0 2 to 10d g at es) ber.				STATE OF M SCOT SEVI PE-2001 November November	ER Sevente 018807

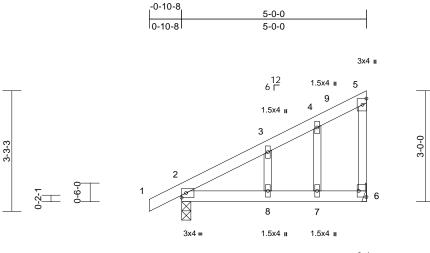
RELEASE FOR CONSTRUCTION						
AS NOTED ON PLANS REVIEW	· ·	Truss Type		Qty	Ply	Roof - Osage Lot 76
DEXELOPMENT SERVICES		Monopitch Supported	Gable	1	1	Job Reference (optional)
Premier Building Supply (Springhill, KS), Sprin 12/13/2023 8:43:37	g Hills, KS - 66083,		•		-	0 2023 MiTek Industries, Inc. Tue Oct 31 15:34:43 PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f
	_	-0-10-8 0-10-8	<u>13-6</u> 13-6	-		
						4x4 II
	-					13

Page: 1

	13-6-4	_
Scale = 1:58.3		I
Plate Offsets (X, Y): [8:0-3-0,0-2-4], [14:Edge,0-2-0]		

-		1			1								
Loading	(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15		тс	0.77	Vert(LL)	n/a	-	n/a	999	MT20	244/190
TCDL	10.0	Lumber DOL	1.15		BC	0.37	Vert(CT)	n/a	-	n/a	999		
BCLL	0.0	Rep Stress Incr	YES		WB	0.14	Horz(CT)	0.00	14	n/a	n/a]	
BCDL	10.0	Code	IRC2018	3/TPI2014	Matrix-S							Weight: 96 lb	FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS SLIDER BRACING TOP CHORD BOT CHORD WEBS REACTIONS	2x4 SP No.2 2x4 SP No.2 2x3 SPF No.2 Left 2x4 SP No.2 Structural wood she 6-0-0 oc purlins, ex Rigid ceiling directly bracing. 1 Row at midpt (size) 2=13-6-4, 16=13-6-4 22=13-6-4 22=13-6-4 22=13-6-4 19=13-6-3 22=13-6-4 19=13-6-3 22=13-6-4 19=13-6-3 22=13-6-4 19=13-6-3 22=13-6-4 19=13-6-3 22=13-6-4 19=13-6-3 22=13-6-4 19=126 (L 15=124 (L 19=126 (L	athing directly applie cept end verticals. applied or 10-0-0 oc 13-14, 12-15 14=13-6-4, 15=13-6 4, 17=13-6-4, 15=13-6 4, 20=13-6-4, 21=13- 4, 20=13-6-4, 21=13- 4, 23=13-6-4 C 12), 16=-41 (LC 9) C 12), 18=-50 (LC 12 C 12), 20=-52 (LC 12 C 12), 22=-54 (LC 12 C 12), 22=-54 (LC 12 LC 12) C 20), 14=105 (LC 8) LC 20), 16=140 (LC 1 C 19), 18=127 (LC 1 LC 19), 22=126 (LC 1 LC 19), 22=126 (LC 1 LC 19)	We d or 1) -4, 6-4, 6-4, 6-4, (), 2), 2), 2), 2), 3), 9), 6) 9), 6) 9), 9), 6)	EBS Wind: ASCE Vasd=91mp Ke=1.00; C: exterior zom Exterior(2N) right expose for member Lumber DO Truss desig only. For st see Standar or consult q All plates ar Gable requi Gable studs This truss h chord live Ic All bearings capacity of	2-23=-178/230, 22 21-22=-178/230, 2 19-20=-178/230, 2 17-18=-178/230, 1 5-16=-178/230, 2 12-15=-221/207, 1 0-17=-98/107, 9- 6-20=-99/90, 5-21 3-23=-179/231 E 7-16; Vult=115m, bh; TCDL=6.0psf; E at. II; Exp C; Enclo e and C-C Cornert) 4-2-4 to 13-4-8 zc dc; end vertical lef s and forces & MW L=1.60 plate grip E gned for wind loads uds exposed to wird Industry Gable E ualified building de re 1.5x4 MT20 unle res continuous bot s spaced at 1-4-0 c as been designed vad nonconcurrent are assumed to b 565 psi. chanical connectio	20-21=-1 18-19=-1 16-17=-1 14-15=-1 11-16=-1 11-16=-1 11-16=-1 11-16=-1 18=-99/1 =-99/99, ph (3-sec 3CDL=6. sect; MW (3E) -0-1 one; cant t and rigt /FRS for DOL=1.6i s in the p nd (norm End Deta sis other too hor for a 10. with any e SP No.	78/230, 78/	90, 4, e) Cwn; sss fle, 1.	Ínte	rnationa)2.10.2	al Resi	ferenced standar	MISSOLATION
TOP CHORD	Tension 1-2=0/16, 2-3=-841/	547, 3-4=-686/452, 566/394, 6-7=-508/3(384/308,	65,	joint 14, 101 Ib uplift at jo joint 18, 53 Ib uplift at jo	e capable of withs 1 lb uplift at joint 2, 1 lb uplift at joint 2, 1 lb uplift at joint 19, 1 uplift at joint 19, 1 sint 21, 54 lb uplift at	83 lb up at joint 1 52 lb up	ift at joint 15, 4 7, 50 lb uplift a ift at joint 20, 9	t 51		-		PE-2001	
	12-13=-127/149, 13	,	9)		te or shim required a truss chord at joir		de full bearing				y	CSSIONA	IL ENGLIS

November 1,2023



RFI	EA			<u> </u>	NS	TF	2116	TI	ОМ	
	190		-						-	
1	E 23	<mark></mark>	PM	ENT	SE	ER	γ <mark>ι</mark> ς	E	5	
1	Premie	S S r Build	ding S	upply	(Spri	S nghi		JR S S S	oring	łil

V		Truss Type	Qty	Ply	Roof - Osage Lot 76	
		Monopitch	4	1	Job Reference (optional)	161755139
ng	lills, KS - 66083,	Run: 8.63 S Aug 30 2	2023 Print: 8.	630 S Aug 3	0 2023 MiTek Industries, Inc. Tue Oct 31 15:34:43	Page: 1

5-0-0

ID:J9uoFkXWrWxKhW?zklsl4bzDH1v-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

3x4 🛚

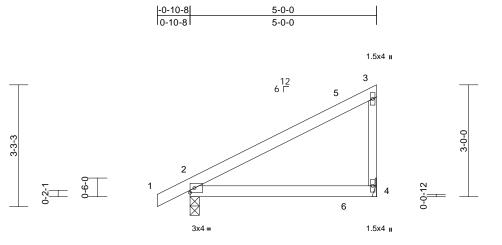

Scale = 1:31.2 Plate Offsets (X, Y): [6:Edge,0-2-8]

Plate Offsets ((X, Y): [6:Edge,0-2-8]												
Loading TCLL (roof) TCDL BCLL BCDL	(psf) 25.0 10.0 0.0 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018/T	FPI2014	CSI TC BC WB Matrix-S	0.20 0.28 0.03	DEFL Vert(LL) Vert(CT) Horz(CT)	in 0.04 -0.05 0.00	(loc) 7-8 7-8 6	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 22 lb	GRIP 197/144 FT = 20%
LUMBER TOP CHORD BOT CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD BOT CHORD BOT CHORD BOT CHORD BOT CHORD WEBS NOTES 1) Wind: AS(Vasd=91n Ke=1.00; exterior zc Interior (1) right expo for membu Lumber D 2) Truss des only. For see Stand or consult 3) Gable stu 4) This truss chord live	2x4 SP No.2 2x3 SPF No.2 2x3 SPF No.2 2x3 SPF No.2 2x3 SPF No.2 Structural wood she 5-0-0 oc purlins, ex Rigid ceiling directly bracing. (size) 2=0-3-0.6 Max Horiz 2=123 (LC Max Uplift 2=-59 (LC Max Uplift 2=-59 (LC Max Grav 2=292 (LC (lb) - Maximum Com Tension 1-2=0/17, 2-3=-169/ 4-5=-65/57, 5-6=-10 2-8=-67/74, 7-8=-67 4-7=-36/69, 3-8=-48 CE 7-16; Vult=115mph mph; TCDL=6.0psf; BC Cat. II; Exp C; Enclose one and C-C Exterior(2) 4-1-8 to 4-10-12 zone sed ; end vertical left a ers and forces & MWFI OL=1.60 plate grip DC signed for wind loads ir studs exposed to wind lard Industry Gable En qualified building desig ds spaced at 1-4-0 oc. has been designed for load nonconcurrent wi are assumed to be: Joi	athing directly applie cept end verticals. applied or 10-0-0 or 6= Mechanical C 9) C 12, 6=-60 (LC 12) C 1), 6=207 (LC 1) npression/Maximum 71, 3-4=-102/61, 6/113 /74, 6-7=-67/74 /105 I (3-second gust) DL=6.0psf; h=35ft; d; MWFRS (envelop 2E) -0-10-8 to 4-1-8, s; cantilever left and and right exposed;C- RS for reactions sho DL=1.60 in the plane of the true I (normal to the face) d Details as applicat gner as per ANSI/TF r a 10.0 psf bottom ith any other live load	6) F 7) F 8 8) T 9 ed or F C C c C C wwn; iss), ole, 21 1. ds.	Refer to girde Provide mech bearing plate 6 and 59 lb u This truss is nternational	er(s) for truss to th hanical connectio capable of withs pplift at joint 2. designed in accoo Residential Code nd referenced sta	n (by othe tanding 6 rdance wi sections	ers) of truss f 0 lb uplift at j ith the 2018 5 R502.11.1 a	joint				STATE OF M STATE OF M SCOT SEVI NUM PE-2001	MISSOLUL F M. ER 018807
												novemb	er 1,2023

RF	LEASE FOR CONST	PLICTION	
	NOTED ON PLANS		
	EVELOPMENT SER		
	LEE'S SUMMIT, MIS	SOURI	-
1	Premier Building Supply (Springh 2/13/2023 8:4	3:37	11

	Truss Type	Qty	Ply	Roof - Osage Lot 76	104755440	
	Monopitch	10	1	Job Reference (optional)	l61755140	
Hills, KS - 66083,	, ,		Ũ	0 2023 MiTek Industries, Inc. Tue Oct 31 15:34:44 B70Hq3NSqPqnL8w3uITXbGKWrCDoi7J4zJC?f	Page: 1	

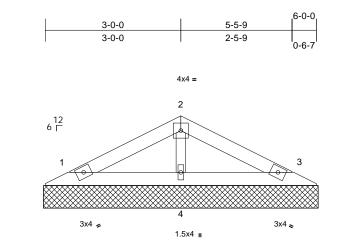
5-0-0

Scale =	1:30.9
---------	--------

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15	TC	0.48	Vert(LL)	0.09	2-4	>603	240	MT20	197/144
TCDL	10.0	Lumber DOL	1.15	BC	0.42	Vert(CT)	0.08	2-4	>751	180		
BCLL	0.0	Rep Stress Incr	YES	WB	0.00	Horz(CT)	0.00	4	n/a	n/a		
BCDL	10.0	Code	IRC2018/TPI2014	Matrix-P		. ,					Weight: 19 lb	FT = 20%
LUMBER				·								
TOP CHORD	2x4 SP No.2											
BOT CHORD												
WEBS	2x3 SPF No.2											
BRACING												
TOP CHORD	Structural wood she	athing directly appli	ed or									
	5-0-0 oc purlins, ex											
BOT CHORD			C									
201 0110112	bracing.											
REACTIONS	(size) 2=0-3-0,	4= Mechanical										
	Max Horiz 2=123 (L	C 9)										
	Max Uplift 2=-59 (LC	C 12), 4=-87 (LC 9)										
	Max Grav 2=292 (L	C 1), 4=207 (LC 1)										
FORCES	(lb) - Maximum Con	npression/Maximum										
	Tension											
TOP CHORD	,	/114, 3-4=-167/225										
BOT CHORD	2-4=-54/59											
NOTES												
	CE 7-16; Vult=115mph											
	mph; TCDL=6.0psf; BC											
	Cat. II; Exp C; Enclose											
	one and C-C Exterior(2											
	I) 4-1-8 to 4-10-12 zon											
	osed ; end vertical left a ight exposed;C-C for m										000	100
	for reactions shown; Lu										A OF	MIG
grip DOL											ATE OF	0.00
	s has been designed fo	or a 10.0 psf bottom								6	N	Nov N
	e load nonconcurrent w		ids.							B	SCOT	
3) Bearings	are assumed to be: Jo	int 2 SP No.2 crush	ing							R	/ SEV	IER \ Y
	of 565 psi.								1			
	girder(s) for truss to true									V	1 Atro	No a sal st
	nechanical connection								_	Le la	NUM	
	late capable of withsta	nding 87 lb uplift at	joint							87	NOM PE-2001	010007 189
	lb uplift at joint 2.									N.	ON PE-2001	01880/ 294
	s is designed in accord									Y	N Pol	1SA
	onal Residential Code s 2 and referenced stand		unu							0	V SION	TENE
		uaiu ANOI/TETT.									UNA NA	
LUAD CASE	(S) Standard										ALL CONTRACT	

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

16023 Swingley Ridge Rd. Chesterfield, MO 63017 314.434.1200 / MiTek-US.com


November 1,2023

RELEASE FOR CONSTRUCTION					
AS NOTED ON PLANS REVIEW		Qty	Ply	Roof - Osage Lot 76	
DEXELOPMENT SERVICES	Piggyback	2	1	Job Reference (optional)	l61755141
Premier Building Supply (Springhill, KS), Spring		•	•	0 2023 MiTek Industries, Inc. Tue Oct 31 15:34:44	Page: 1
	ID:9wUnxtypw9	GanpSGtCwjgdzcz	Ge-RIC?Pst	370Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f	

1-2-12

0-0-8

1-6-8

6-0-0

Scale = 1:25.5

00010 = 1.20.0													
Loading TCLL (roof) TCDL BCLL BCDL	(psf) 25.0 10.0 0.0 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC20	18/TPI2014	CSI TC BC WB Matrix-P	0.13 0.06 0.03	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 3	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 18 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x4 SP No.2 2x3 SPF No.2 Structural wood shee 6-0-0 oc purlins. Rigid ceiling directly bracing. (size) 1=6-1-0, 3 Max Horiz 1=23 (LC Max Uplift 1=-30 (LC (LC 12) Max Grav 1=115 (LC (LC 1)	applied or 10-0-0 or 3=6-1-0, 4=6-1-0 12) 5 12), 3=-34 (LC 13),	ed or 5	 capacity of 5 Provide mec bearing plate 1, 34 lb uplif This truss is International R802.10.2 a See Standar Detail for Co 	hanical connect capable of with at joint 3 and designed in ac Residential Co nd referenced d Industry Pigg nnection to bas fied building de	ction (by oth thstanding 3 7 lb uplift at cordance w ode sections standard AN gyback Trus se truss as a	ers) of truss 30 lb uplift at j joint 4. ith the 2018 \$ R502.11.1 a ISI/TPI 1. s Connection	joint and					
this design	(lb) - Maximum Com Tension 1-2=-55/46, 2-3=-55/ 1-4=-1/25, 3-4=-1/25 2-4=-150/135 ed roof live loads have n.	, /52 been considered fo	r										

- 2) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=35ft; Ke=1.00; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1. Gable requires continuous bottom chord bearing.
- 4)
- 5) Gable studs spaced at 1-4-0 oc.
- 6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.
 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not besign value to dury with with where outputs into design is based only door parameters shown, and is for an individual building design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members and property incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TPH1 Quality Criteria**, and **DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcscomponents.com)

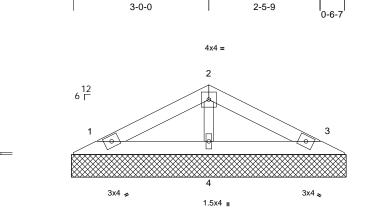
RELEASE FOR CONSTRUCTION						
AS NOTED ON PLANS REVIEW	Truss Type		Qty	Ply	Roof - Osage Lot 76	
	Piggyback		22	1	Job Reference (optional)	l61755142
Premier Building Supply (Springhill, KS), Spring Hills, KS - 66	083,	Run: 8.63 S Aug 30 2	2023 Print: 8.	.630 S Aug 3	0 2023 MiTek Industries, Inc. Tue Oct 31 15:34:44	Page: 1

3-0-0

12/13/2023 8:43:37

1-2-12

0-0-8


1-6-8

ID:9wUnxfypw9GahpSGfCwjgdzczGe-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

5-5-9

6-0-0

6-0-0

Scale = 1:25.5

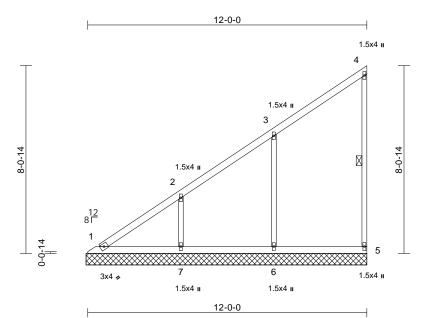
3cale = 1.23.3		i											
Loading	(psf)	Spacing	2-0-0		CSI	0.40	DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15		TC	0.13		n/a	-	n/a	999	MT20	244/190
TCDL	10.0	Lumber DOL	1.15		BC	0.06	Vert(TL)	n/a	-	n/a	999		
BCLL BCDL	0.0 10.0	Rep Stress Incr Code	YES IRC20	18/TPI2014	WB Matrix-P	0.03	Horiz(TL)	0.00	3	n/a	n/a	Weight: 18 lb	FT = 20%
LUMBER TOP CHORD BOT CHORD OTHERS	2x4 SP No.2 2x4 SP No.2 2x3 SPF No.2		7	 capacity of 5 Provide mec bearing plate 	hanical connect capable of wit	tion (by oth	ers) of truss 30 lb uplift at					-	
BRACING TOP CHORD	Structural wood she 6-0-0 oc purlins.	athing directly appli	ed or ⁹) This truss is International	at joint 3 and designed in ac Residential Cc	cordance w	ith the 2018 R502.11.1	and					
BOT CHORD	Rigid ceiling directly bracing.	applied or 10-0-0 o	^с 1	0) See Standar	,	yback Trus	s Connection						
REACTIONS	(size) 1=6-1-0, 1 Max Horiz 1=23 (LC Max Uplift 1=-30 (LC (LC 12) Max Grav 1=115 (LC (LC 1)	C 12), 3=-34 (LC 13)	, 4=-7		nnection to bas fied building de Standard		аррисаре, о	r					
FORCES	(lb) - Maximum Com Tension	npression/Maximum											
TOP CHORD	1-2=-55/46, 2-3=-55	/52											
BOT CHORD	1-4=-1/25, 3-4=-1/25												
WEBS	2-4=-150/135												
NOTES													
this desig			r										
,	CE 7-16; Vult=115mph												100

Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=35ft; Ke=1.00; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1. Gable requires continuous bottom chord bearing.

4)

5) Gable studs spaced at 2-0-0 oc.


6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

16023 Swingley Ridge Rd. Chesterfield MO 63017 314.434.1200 / MiTek-US.com

 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.
 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not besign value to dury with with where outputs into design is based only door parameters shown, and is for an individual building design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members and property incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TPH1 Quality Criteria**, and **DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcscomponents.com)

RELEASE FOR CONSTRUCTION					
AS NOTED ON PLANS REVIEW	Truss Type	Qty	Ply	Roof - Osage Lot 76	
	Valley	2	1	Job Reference (optional)	l61755143
LEE'S SUMMIT, MISSOURI Premier Building Supply (Springhill, KS), Spring 12/13/2023 8:43:37		0	Ũ	0 2023 MiTek Industries, Inc. Tue Oct 31 15:34:44 B70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f	Page: 1

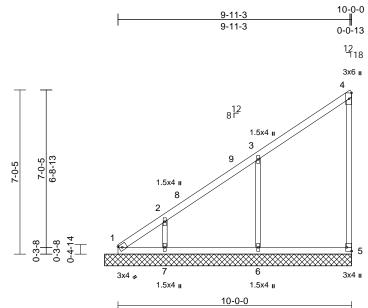
Scale = 1:49.5

					i								
Loading	(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15		TC	0.25	Vert(LL)	n/a	-	n/a	999	MT20	244/190
TCDL	10.0	Lumber DOL	1.15		BC	0.13	Vert(TL)	n/a	-	n/a	999		
BCLL	0.0	Rep Stress Incr	YES		WB	0.20	Horiz(TL)	0.00	5	n/a	n/a		FT 000/
BCDL	10.0	Code	IRC20	18/TPI2014	Matrix-S							Weight: 50 lb	FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD	2x4 SP No.2 2x4 SP No.2 2x3 SPF No.2 2x3 SPF No.2 Structural wood she 6-0-0 oc purlins, ex Rigid ceiling directly bracing.	cept end verticals.	ed or s	 chord live loa All bearings capacity of 5 Provide mec bearing plate 5, 169 lb upl This truss is International 	as been designed ad nonconcurren are assumed to 65 psi. hanical connecti e capable of with ift at joint 6 and ' designed in acco Residential Coo nd referenced st	it with any be SP No. ion (by oth istanding 6 171 lb uplif ordance w le sections	other live loa 2 crushing ers) of truss t 2 lb uplift at j t at joint 7. ith the 2018 R502.11.1 a	o oint					
WEBS	0	4-5	L	OAD CASE(S)	Standard								
	7=12-0-1 Max Horiz 1=335 (LC Max Uplift 5=-62 (LC 7=-171 (L Max Grav 1=183 (LC 6=412 (LC	C 12) C 12), 6=-169 (LC 12 C 12) C 21), 5=149 (LC 19) C 19), 7=388 (LC 19)),),										
FORCES	(lb) - Maximum Com Tension	pression/Maximum											
TOP CHORD	1-2=-377/251, 2-3=- 4-5=-116/84	228/156, 3-4=-104/5	51,										
BOT CHORD	1-7=-1/2, 6-7=-1/2, 5	5-6=-1/2											
WEBS	3-6=-327/235, 2-7=-	299/221											
Vasd=91m Ke=1.00; 0	CE 7-16; Vult=115mph nph; TCDL=6.0psf; BC Cat. II; Exp C; Enclose one and C-C Exterior(2	DL=6.0psf; h=35ft; d; MWFRS (envelop	be)									STATE OF SCOT	MISSOLIN T. M.

- Wind: AOE 17-10, Viale 17-10, IO-Section gdst, Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=35ft; Ke=1.00; Cat. II; Exp C; Enclosed; MWFRS (envelope exterior zone and C-C Exterior(2E) 0-7-13 to 5-7-13, Interior (1) 5-7-13 to 12-0-1 zone; cantilever left and right exposed; end vertical left exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 3) Gable requires continuous bottom chord bearing.
- 4) Gable studs spaced at 4-0-0 oc.

November 1,2023

E


SEVIER

NUMPE

SSIONAL

PE-2001018807

RELEASE FOR CONSTRUCTION					
AS NOTED ON PLANS REVIEW	Truss Type	Qty	Ply	Roof - Osage Lot 76	
DEVELOPMENT SERVICES	Valley	2	1	Job Reference (optional)	161755144
Premier Building Supply (Springhill, KS), Spring Hil 12/13/2023 8:43:37		•	•	0 2023 MiTek Industries, Inc. Tue Oct 31 15:34:45 PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f	Page: 1

Scale = 1:49.3

Plate Offsets (X, Y): [5:Edge,0-2-8]

	(X, T). [5.Luge,0-2-0]												
Loading TCLL (roof) TCDL	(psf) 25.0 10.0	Spacing Plate Grip DOL Lumber DOL	2-0-0 1.15 1.15		CSI TC BC	0.60 0.20	DEFL Vert(LL) Vert(TL)	in n/a n/a	(loc) - -	l/defl n/a n/a	L/d 999 999	PLATES MT20	GRIP 244/190
BCLL	0.0	Rep Stress Incr	YES		WB	0.14	Horiz(TL)	0.00	5	n/a	n/a		
BCDL	10.0	Code	IRC2018/	/TPI2014	Matrix-S							Weight: 42 lb	FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x3 SPF No.2 2x3 SPF No.2 Structural wood she 6-0-0 oc purlins, exi Rigid ceiling directly bracing. (size) 1=10-6-15 7=10-6-15 Max Horiz 1=285 (LC Max Uplift 1=-77 (LC 6=-176 (L Max Grav 1=164 (LC	cept end verticals. applied or 10-0-0 or 5, 5=10-6-15, 6=10-6 5 2 9) 5 10), 5=-59 (LC 9), C 12), 7=-148 (LC 1	6) 7) ed or c 8) 6-15, LO	chord live loa All bearings capacity of 5 Provide mec bearing plate 1, 59 lb uplift uplift at joint This truss is International	hanical connectio e capable of withsit t at joint 5, 176 lb 7. designed in accor Residential Code nd referenced star	with any e SP No. n (by oth tanding 7 uplift at ju rdance w s sections	other live loa 2 crushing ers) of truss t 7 lb uplift at j bint 6 and 148 ith the 2018 5 R502.11.1 a	o oint 3 lb					
FORCES	(lb) - Maximum Com Tension	pression/Maximum											
TOP CHORD		372/260, 3-4=-177/1	152,										
BOT CHORD	1-7=-133/145, 6-7=-	,	145										
WEBS	3-6=-344/303, 2-7=-	249/215										000	alle
Vasd=91n Ke=1.00; (exterior zc Interior (1) exposed ; members Lumber D	CE 7-16; Vult=115mph nph; TCDL=6.0psf; BC Cat. II; Exp C; Enclose one and C-C Exterior(2)) 5-9-1 to 10-6-1 zone; end vertical left and rig and forces & MWFRS OL=1.60 plate grip DO Signed for wind loads in	DL=6.0psf; h=35ft; d; MWFRS (envelop E) 0-9-1 to 5-9-1, cantilever left and ri ght exposed;C-C for for reactions shown DL=1.60	ight ;							_	Res and a second s	STATE OF J	Service

- Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 3) Gable requires continuous bottom chord bearing.
- 4) Gable studs spaced at 4-0-0 oc.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent colleges with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com) 16023 Swingley Ridge Rd. Chesterfield, MO 63017 314.434.1200/MTEk-US.com

November 1,2023

E

PE-200101880'

SIONAL

RELEASE FOR CONSTRUCTION						
AS NOTED ON PLANS REVIEW		Truss Type	Qty	Ply	Roof - Osage Lot 76	
DEVELOPMENT SERVICES		Valley	2	1	Job Reference (optional)	l61755145
LEE'S SUMMIT, MISSOURI Premier Building Suppy (Springhill KS) Spring 12/13/2023 8:43:37	lills, KS - 66083,	Run: 8.63 S Aug 30 ID:7inLsRr1OlzWhT		-	30 2023 MiTek Industries, Inc. Tue Oct 31 15:34:45 70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f	Page: 1
		9-0-	0			
					1.5x4 u	
			1.5x4 u 2 7			
	6-0-14	8 ¹² 6	đ		6-0-	
					4	

9-0-0

Scale = 1:38.6

Scale = 1.30.0													
Loading	(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15		тс	0.70	Vert(LL)	n/a	-	n/a	999	MT20	244/190
TCDL	10.0	Lumber DOL	1.15		BC	0.18	Vert(TL)	n/a	-	n/a	999		
BCLL	0.0	Rep Stress Incr	YES		WB	0.10	Horiz(TL)	0.00	4	n/a	n/a		
BCDL	10.0	Code	IRC201	8/TPI2014	Matrix-S							Weight: 36 lb	FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD	2x4 SP No.2 2x4 SP No.2 2x3 SPF No.2 2x3 SPF No.2 Structural wood she 6-0-0 oc purlins, ex Rigid ceiling directly bracina.	cept end verticals.		capacity of Provide me bearing pla 1, 50 lb upli This truss is Internationa	chanical connect te capable of with ft at joint 4 and 2 s designed in ac and referenced s	ction (by oth thstanding 4 209 lb uplift cordance w ode sections	ers) of truss t b uplift at jo at joint 5. ith the 2018 R502.11.1 a	int					

	bracing.	
REACTIONS	(size)	1=9-0-15, 4=9-0-15, 5=9-0-15
	Max Horiz	1=242 (LC 9)
	Max Uplift	1=-4 (LC 8), 4=-50 (LC 9), 5=-209
		(LC 12)
	Max Grav	1=194 (LC 20), 4=143 (LC 19),
		5=506 (LC 19)
FORCES	(lb) - Max	imum Compression/Maximum
	Tension	

	T CHOIDH
TOP CHORD	1-2=-388/267, 2-3=-172/145, 3-4=-134/142
BOT CHORD	1-5=-116/126, 4-5=-116/126
WEBS	2-5=-399/340

NOTES

- 1) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=35ft; Ke=1.00; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) 0-5-12 to 5-5-12, Interior (1) 5-5-12 to 9-0-1 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1. 3) Gable requires continuous bottom chord bearing.

Gable studs spaced at 4-0-0 oc. 4)

- 5)
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

OF MISSOL TE SCOTT M. SEVIER SE! PE-2001018807 C PESSIONAL E

November 1,2023

 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.
 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not besign value to dury with with where outputs into design is based only door parameters shown, and is for an individual building design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members and property incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TPH1 Quality Criteria**, and **DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcscomponents.com)

RELEASE FOR CONST	RE₩ IEW		Truss Type	Qty	Ply	Roof - Osage Lot 76	161755146
DEVELOPMENT SER			Valley	2	1	Job Reference (optional)	101100110
LEE'S SUMMIT, MIS Premier Building Supply (Springh 12/13/2023 8:4	ill KS) Spring I	lills, KS - 66083,				30 2023 MiTek Industries, Inc. Tue Oct 31 15:34:45 B70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC?f	Page: 1
			7-6-	15		———————————————————————————————————————	
						1.5x4 u	
		-0-0-4	$1.5x^{2}$ 8^{12} 1 $3x^{4} = 5$ $1.5x^{4}$ $1.5x^{4}$			3 7 7 7 -0 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5	
Scale = 1:34.3			1			1	

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15	TC	0.45	Vert(LL)	n/a	-	n/a	999	MT20	244/190
TCDL	10.0	Lumber DOL	1.15	BC	0.13	Vert(TL)	n/a	-	n/a	999		
BCLL	0.0	Rep Stress Incr	YES	WB	0.08	Horiz(TL)	0.00	4	n/a	n/a		
BCDL	10.0	Code	IRC2018/TPI2014	Matrix-P							Weight: 29 lb	FT = 20%

TOP CHORD	2x4 SP N	0.2
BOT CHORD	2x4 SP N	0.2
WEBS	2x3 SPF I	No.2
OTHERS	2x3 SPF I	No.2
BRACING		
TOP CHORD		l wood sheathing directly applied or purlins, except end verticals.
BOT CHORD		ing directly applied or 10-0-0 oc
REACTIONS	(size)	1=7-6-15, 4=7-6-15, 5=7-6-15
	Max Horiz	1=199 (LC 9)
	Max Uplift	1=-16 (LC 8), 4=-46 (LC 9), 5=-172 (LC 12)
	Max Grav	1=132 (LC 20), 4=158 (LC 19), 5=418 (LC 19)
FORCES	(lb) - Max	imum Compression/Maximum

Tension TOP CHORD 1-2=-353/236, 2-3=-165/135, 3-4=-138/151 1-5=-96/105, 4-5=-96/105 BOT CHORD WEBS 2-5=-330/305

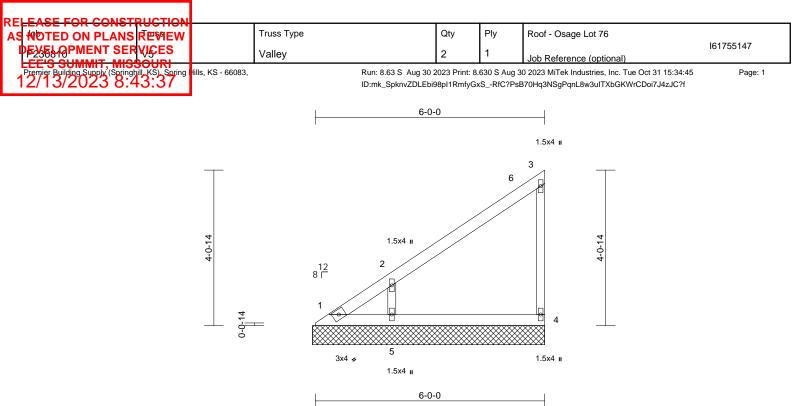
NOTES

- Wind: ASCE 7-16; Vult=115mph (3-second gust) 1) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=35ft; Ke=1.00; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) 0-5-12 to 5-5-12, Interior (1) 5-5-12 to 7-6-1 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1. 3) Gable requires continuous bottom chord bearing.

4) Gable studs spaced at 4-0-0 oc.

- 5) This truss has been designed for a 10.0 psf bottom
- chord live load nonconcurrent with any other live loads.

capacity of 565 psi


Provide mechanical connection (by others) of truss to 7)

- bearing plate capable of withstanding 16 lb uplift at joint
- 1, 46 lb uplift at joint 4 and 172 lb uplift at joint 5. This truss is designed in accordance with the 2018
- 8) International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard

16023 Swingley Ridge Rd. Chesterfield MO 63017 314.434.1200 / MiTek-US.com

Scale = 1:30.2

Loading	(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15		TC	0.28	Vert(LL)	n/a	-	n/a	999	MT20	244/190
TCDL	10.0	Lumber DOL	1.15		BC	0.12	Vert(TL)	n/a	-	n/a	999		
BCLL	0.0	Rep Stress Incr	YES		WB	0.07	Horiz(TL)	0.00	4	n/a	n/a		
BCDL	10.0	Code	IRC201	8/TPI2014	Matrix-P							Weight: 22 lb	FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x3 SPF No.2 2x3 SPF No.2 Structural wood she 6-0-0 oc purlins, exx Rigid ceiling directly bracing. (size) 1=6-0-15, Max Horiz 1=157 (LC Max Uplift 1=-56 (LC 5=-156 (L Max Grav 1=83 (LC (LC 19)	cept end verticals. applied or 10-0-0 oc 4=6-0-15, 5=6-0-15 C 9) C 10), 4=-41 (LC 9), C 12) 9), 4=159 (LC 19), 5	; L	capacity of 8 Provide med bearing plat 1, 41 lb uplii This truss is Internationa	chanical connect e capable of wir t at joint 4 and designed in ac I Residential Co and referenced	ction (by oth thstanding 5 156 lb uplift ccordance w ode sections	ers) of truss t 66 lb uplift at j at joint 5. ith the 2018 5 R502.11.1 a	joint				-	
FORCES	(lb) - Maximum Com Tension	pression/Maximum											

TOP CHORD 1-2=-331/216, 2-3=-155/120, 3-4=-135/154 BOT CHORD 1-5=-76/82, 4-5=-76/82 WEBS 2-5=-298/299

NOTES

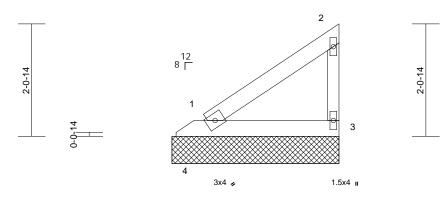
- Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=35ft; Ke=1.00; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) 0-5-12 to 5-5-12, Interior (1) 5-5-12 to 6-0-1 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
 Gable requires continuous bottom chord bearing.

4) Gable studs spaced at 4-0-0 oc.

- 5) This truss has been designed for a 10.0 psf bottom
- chord live load nonconcurrent with any other live loads.

sign parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. with MITEk® connectors. This design is based only upon parameters shown, and is for an individual building component, not




			Truss Type		Qty	Ply	Roof	- Osage Lot 7	76		161755148
	NT SERVICE		Valley		2	1	Job R	eference (op	tional)		
Premier Building Su	pply (Springhill, KS)	Spring Hills, KS - 66083	3	Run: 8.63 S Aug ID:MAIKAik0HIz			-			ue Oct 31 15:34:46 /rCDoi7J4zJC?f	Page: 1
								-			
					4-0-0						
				1			I				
							1.5x4 🛚				
					12	2	2				
					12 8 [/	A				
						//					
		4						+			
		3-0-14		/				3-0-14			
		ę						τ ^γ			
			1								
			-4-1- 4-1-				3				
			3 <u> </u>				× ľ				

				3x4 🍫			1.5x4 u				
				1	4-0-0		1				
Scale = 1:25.1					4-0-0						
Loading	(psf)	Spacing	2-0-0	CSI		EFL	in (loc) l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15	тс	0.31 Ve	ert(LL)	n/a	- n/a	999	MT20	244/190
TCDL BCLL	10.0 0.0	Lumber DOL Rep Stress Incr	1.15 YES	BC WB		ert(TL) priz(TL)	n/a 0.00	- n/a 3 n/a	999 n/a		
BCDL	10.0	Code	IRC2018/TPI2014	Matrix-P						Weight: 15 lb	FT = 20%
BRACING TOP CHORD S 4 BOT CHORD F B REACTIONS (si. Ma Ma FORCES (l) T TOP CHORD 1 BOT CHORD 1 NOTES	-7-5 oc purlins, e tigid ceiling directl racing. ze) 1=4-6-1! ax Horiz 1=114 (L ax Uplift 1=-15 (L ax Grav 1=169 (L b) - Maximum Cor ension -2=-163/120, 2-3= -3=-55/60	C 12), 3=-58 (LC 12) LC 1), 3=186 (LC 19) mpression/Maximum	c								
Vasd=91mph Ke=1.00; Cat exterior zone and right expu- exposed;C-C reactions sho DOL=1.60 2) Truss design only. For stuu see Standard or consult quu Gable require 4) Gable studs s 5) This truss has	; TCDL=6.0psf; Bi II; Exp C; Enclos and C-C Exterior(osed; end vertical for members and wn; Lumber DOL= ed for wind loads ds exposed to win Industry Gable E alified building des sc continuous bott spaced at 4-0-0 oc s been designed f	CDL=6.0psf; h=35ft; sed; MWFRS (envelog (2E) zone; cantilever I left and right forces & MWFRS foi =1.60 plate grip in the plane of the tru id (normal to the face nd Details as applica signer as per ANSI/Ti om chord bearing.	left ss), ble, PI 1.							STATE OF M SCOTT SEVI	ER Zervie

RELEASE FOR CONSTRUCTION					
AS NOTED ON PLANS REVIEW	Truss Type	Qty	Ply	Roof - Osage Lot 76	
	Valley	2	1	Job Reference (optional)	161755149
Premier Building Supply (Springhill KS) Spring Hi 12/13/2023 8:43:37		-	-	0 2023 MiTek Industries, Inc. Tue Oct 31 15:34:46 870Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f	Page: 1

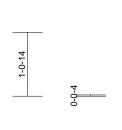
3-0-0

Scale	o — '	1.21	12

00010 = 1.21.2													
Loading TCLL (roof) TCDL BCLL BCDL	(psf) 25.0 10.0 0.0 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC201	8/TPI2014	CSI TC BC WB Matrix-P	0.11 0.05 0.00	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 3	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 10 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x4 SP No.2 2x3 SPF No.2 Structural wood she 3-1-5 oc purlins, ex Rigid ceiling directly bracing.	cept end verticals. applied or 10-0-0 oc 3=3-0-15, 4=3-0-15 9) 2 12), 4=-47 (LC 3)	7) 8) d or c	Provide med bearing plate 3 and 47 lb t This truss is International	hanical connec e capable of wit uplift at joint 4. designed in ac Residential Co nd referenced s Standard	hstanding 3 cordance w	9 lb uplift at ith the 2018 s R502.11.1 a	joint					
FORCES	4=-14 (LC (Ib) - Maximum Com Tension 1-2=-105/77, 2-3=-9	pression/Maximum											

BOT CHORD 1-4=-160/107, 1-3=-35/38

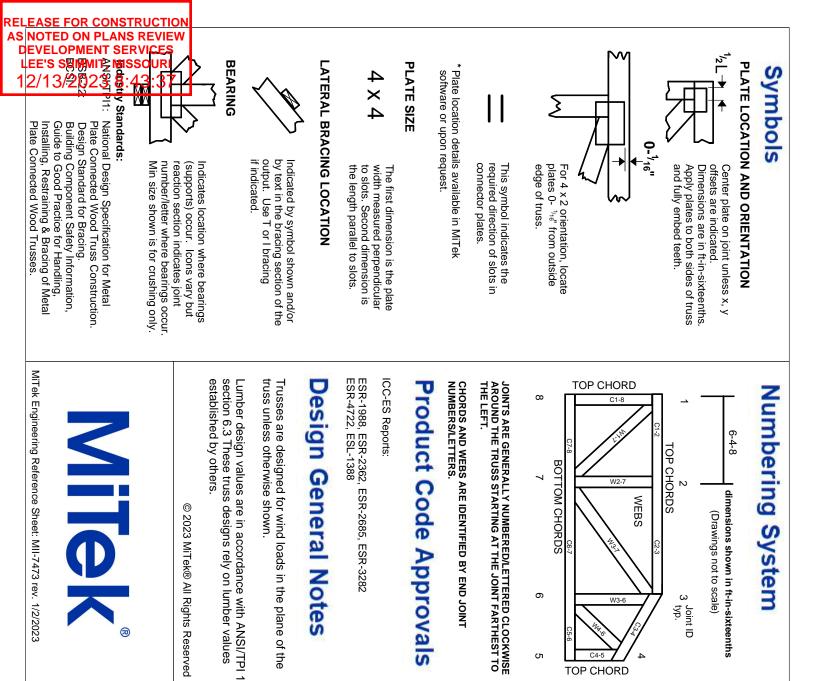
NOTES


- Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=35ft; Ke=1.00; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) zone; cantilever left and right exposed; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 3) Gable requires continuous bottom chord bearing.
- 4) Gable studs spaced at 4-0-0 oc.
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 6) All bearings are assumed to be SP No.2 crushing capacity of 565 psi.

16023 Swingley Ridge Rd. Chesterfield, MO 63017 314.434.1200 / MiTek-US.com

RELE	ASE FOR CONSTR							
	OTED ON PLANS		Truss Type		Qty	Ply	Roof - Osage Lot 76	
	KELOPMENT SER		Valley		2	1	Job Reference (optional)	161755150
	nier Building Supply (Springhi 13/2023 8:4	lills, KS - 66083,		0		0) 2023 MiTek Industries, Inc. Tue Oct 31 15:34:46 370Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f	Page: 1

1-6-15


1.5x4 🛚

1-6-15	

Scale = 1:19.3

Scale = 1:19.3												
Loading TCLL (roof) TCDL BCLL BCDL	(psf) 25.0 10.0 0.0 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018/TPI2014	CSI TC BC WB Matrix-P	0.02 0.01 0.00	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 3	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 5 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD BOT CHORD REACTIONS FORCES TOP CHORD BOT CHORD NOTES 1) Wind: ASC Vasd=91m Ke=1.00; C exterior zo and right e exposed;C reactions s DOL=1.60 2) Truss des only. For s see Standa or consult 3) Gable requ 4) Gable stud 5) This truss i chord live I 6) All bearing pla	2x4 SP No.2 2x4 SP No.2 2x3 SPF No.2 Structural wood she 1-7-5 oc purlins, exi Rigid ceiling directly bracing. (size) 1=1-6-15, Max Horiz 1=29 (LC Max Uplift 1=-5 (LC (lb) - Maximum Com Tension 1-2=-42/32, 2-3=-44, 1-3=-14/15 EF 7-16; Vult=115mph ph; TCDL=6.0psf; BC 2at. II; Exp C; Enclose ne and C-C Exterior(2 xposed ; end vertical I -C for members and fi shown; Lumber DOL=' igned for wind loads ir studs exposed to wind qualified building desig- ires continuous bottor is spaced at 4-0-0 oc. has been designed for load nonconcurrent wi s are assumed to be S	athing directly applie cept end verticals. applied or 10-0-0 oc 3=1-6-15 9) 12), 3=-15 (LC 12) 1), 3=50 (LC 19) pression/Maximum /50 (3-second gust) DL=6.0psf; h=35ft; d; MWFRS (envelop E) zone; cantilever le left and right orces & MWFRS for 1.60 plate grip the plane of the true (normal to the face) d Details as applicab gner as per ANSI/TP m chord bearing. r a 10.0 psf bottom th any other live loac SP No.2 crushing (by others) of truss to	 8) This truss is Internationa R802.10.2 a LOAD CASE(S) d or e) eft ss , le, l 1. is. 	designed in accor I Residential Code and referenced star	sections	R502.11.1 a	Ind				STATE OF STATE OF SEV PE-2001	MISSOUT T M. IER 018807

General Safety Notes

Failure to Follow Could Cause Property Damage or Personal Injury

- 1. Additional stability bracing for truss system, e.g. diagonal or X-bracing, is always required. See BCSI.
- Truss bracing must be designed by an engineer. For wide truss spacing, individual lateral braces themselves may require bracing, or alternative Tor I bracing should be considered.
- Never exceed the design loading shown and never stack materials on inadequately braced trusses.
- Provide copies of this truss design to the building designer, erection supervisor, property owner and all other interested parties.
- 5. Cut members to bear tightly against each other.
- Place plates on each face of truss at each joint and embed fully. Knots and wane at joint locations are regulated by ANSI/TPI 1.
- Design assumes trusses will be suitably protected from the environment in accord with ANSI/TPI 1.

7

- Unless otherwise noted, moisture content of lumber shall not exceed 19% at time of fabrication.
- Unless expressly noted, this design is not applicable for use with fire retardant, preservative treated, or green lumber.
- Camber is a non-structural consideration and is the responsibility of truss fabricator. General practice is to camber for dead load deflection.
- Plate type, size, orientation and location dimensions indicated are minimum plating requirements.
- Lumber used shall be of the species and size, and in all respects, equal to or better than that specified.
- Top chords must be sheathed or purlins provided at spacing indicated on design.
- Bottom chords require lateral bracing at 10 ft. spacing, or less, if no ceiling is installed, unless otherwise noted.
- 15. Connections not shown are the responsibility of others.
- 16. Do not cut or alter truss member or plate without prior approval of an engineer.
- 17. Install and load vertically unless indicated otherwise.
- Use of green or treated lumber may pose unacceptable environmental, health or performance risks. Consult with project engineer before use.
- Review all portions of this design (front, back, words and pictures) before use. Reviewing pictures alone is not sufficient.
- 20. Design assumes manufacture in accordance with ANSI/TPI 1 Quality Criteria.
- 21. The design does not take into account any dynamic or other loads other than those expressly stated.