

RE: P230875-01 - Roof - HR Lot 169 Site Information: Project Customer: Summit Homes Project Name: Somerview - Craftsman Lot/Block: 169 Subdivision: Hawthorne Ridge Model: Address: 3204 SW Arbor Sound Dr City: Lee's Summit State: MO MiTek, Inc. 16023 Swingley Ridge Rd. Chesterfield, MO 63017 314.434.1200

General Truss Engineering Criteria & Design Loads (Individual Truss Design Drawings Show Special Loading Conditions): Design Code: IRC2018/TPI2014 Design Program: MiTek 20/

Wind Code: ASCE 7-16 Wind Speed: 115 mph Roof Load: 45.0 psf

Mean Roof Height (feet): 35

Design Program: MiTek 20/20 8.6 Design Method: MWFRS (Envelope)/C-C hybrid Wind ASCE 7-16 Floor Load: N/A psf

Exposure Category: C

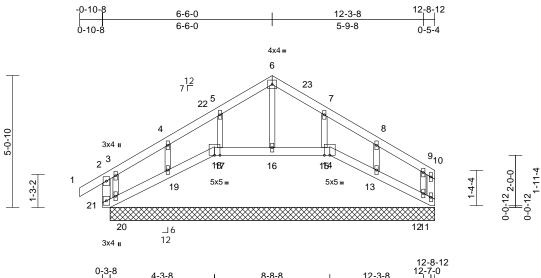
No. 1 2 3 4 5 6 7 8 9 101 12 3 4 5 6 7 8 9 101 12 3 4 5 6 7 8 9 101 12 3 4 5 6 7 8 9 101 12 3 4 5 6 7 8 9 101 12 3 4 5 6 7 8 9 101 12 3 4 5 6 7 8 9 101 12 3 4 5 6 7 8 9 101 12 3 4 5 6 7 8 9 101 12 3 4 5 6 7 8 9 101 12 3 4 5 6 7 8 9 101 12 3 4 5 6 7 8 9 101 12 3 4 5 6 7 8 9 101 12 3 4 5 6 7 8 9 101 12 3 4 5 6 7 8 9 10 11 2 3 4 5 6 7 8 9 10 1 12 3 4 5 6 7 8 9 10 1 12 3 4 5 6 7 8 9 10 1 12 3 4 5 6 7 8 9 10 1 12 3 4 5 6 7 8 9 0 1 12 3 4 5 6 7 8 9 0 11 2 3 4 5 6 7 8 9 0 1 12 3 4 5 6 7 8 9 0 1 12 3 4 5 6 7 8 9 0 1 12 3 4 5 6 7 8 9 0 1 2 2 3 4 5 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	Seal# I62145473 I62145475 I62145476 I62145476 I62145477 I62145478 I62145480 I62145482 I62145482 I62145483 I62145483 I62145484 I62145485 I62145489 I62145490 I62145493 I62145493 I62145493 I62145493 I62145495 I62145495 I62145495 I62145495 I62145495 I62145505 I62145503 I62145503 I62145505 I621	Truss Name A01 A02 A03 A04 C01 C02 CJ01 CJ02 CJ02 CJ03 D01 D02 D03 D04 D05 D06 DG01 E01 E02 E03 E04 E05 G01 G02 G03 G04 H01 H02 H03 H04 H05 H06 J01 J02 J03	Date 11/21/23	No. 35 337 389 412 444 447 449 555 5555 5555 5556 5556 5556 5556	Seal# I62145507 I62145509 I62145510 I62145511 I62145512 I62145513 I62145513 I62145515 I62145517 I62145517 I62145517 I62145521 I62145522 I62145522 I62145522 I62145523 I62145523 I62145523 I62145523 I62145529 I62145539 I621455539 I62145554 I62145554 I62	Truss Name J04 J05 J06 J07 J08 J09 J10 J11 J12 J13 J14 LGD1 LGE1 LGH1 V4 V5 V6 V7 V8 V9 V10 V11 V12 V13 V14 V15	Date 11/21/2
--	--	--	--	--	--	---	---

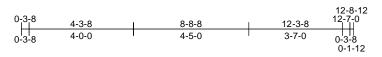
The truss drawing(s) referenced above have been prepared by

MiTek USA, Inc. under my direct supervision based on the parameters provided by Premier Building Supply (Springhill, KS)20300 W 207th Street.

Truss Design Engineer's Name: Sevier, Scott

My license renewal date for the state of Missouri is December 31, 2023.


IMPORTANT NOTE: The seal on these truss component designs is a certification that the engineer named is licensed in the jurisdiction(s) identified and that the designs comply with ANSI/TPI 1. These designs are based upon parameters shown (e.g., loads, supports, dimensions, shapes and design codes), which were given to MiTek or TRENCO. Any project specific information included is for MiTek's or TRENCO's customers file reference purpose only, and was not taken into account in the preparation of these designs. MiTek or TRENCO has not independently verified the applicability of the design parameters or the designs for any particular building. Before use, the building designer should verify applicability of design parameters and properly incorporate these designs into the overall building design per ANSI/TPI 1, Chapter 2.



Sevier, Scott

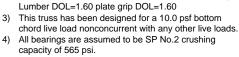
November 21,2023

						RELEASE FOR CONSTRUCTION
Job	Truss	Truss Type	Qty	Ply	Roof - HR Lot 169	AS NOTED FOR PLAN REVIEW
P230875-01	A01	Roof Special	1	1	Job Reference (optional	DEVELOPMENT SERVICES 162145473 LEE'S SUMMIT, MISSOURI
Premier Building Supply (Springh	nill, KS), Spring Hills, KS - 66083,				2023 MiTek Industries, Inc. T B70Hq3NSgPqnL8w3uITXbG	

Scale = 1:44.2

Loading TCLL (roof) TCDL BCLL BCDL	(psf) 25.0 10.0 0.0 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC201	8/TPI2014	CSI TC BC WB Matrix-S	0.11 0.13 0.04	DEFL Vert(LL) Vert(CT) Horz(CT)	in n/a n/a 0.00	(loc) - - 19	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 55 lb	GRIP 197/144 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x4 SP No.2 *Excep 2x3 SPF No.2 Structural wood she 6-0-0 oc purlins, ex Rigid ceiling directly bracing, Except: 6-0-0 oc bracing: 19 (size) 11=12-5 17=12-5 20=12-5 Max Horiz 20=-140 (Max Uplift 11=-36 (L 13=-70 (L 17=-81 (L 19=-130 (Max Grav 11=7 (LC 13=184 (L 17=201 (L	Applied or 10-0-0 oc -20,18-19,13-14. 4, 12=12-5-4, 13=12-4 4, 15=12-5-4, 16=12-4 4, 18=12-5-4, 19=12-4 4 (LC 10) .C 20), 12=-44 (LC 13 .C 12), 18=-34 (LC 8), (LC 12), 20=-96 (LC 8)	2) 2) 1 or 5-4, 3) 5-4, 4) 5-4, 5) 1), 6) 1), 6) 1) 2), 9)	 this design. Wind: ASCE Vasd=91mpf Ke=1.00; Ca exterior zone Exterior(2N) Exterior(2N) Exterior(2N) Exterior(2N) Exterior(2N) Exterior(2N) Exterior zone Exterior(2N) Exterior zone Exterior zone Exterior zone Truss design only. For stu- see Standard or consult question All plates are Truss to be f braced again Gable studs All bearings a capacity of 5 Provide mech 	roof live loads hav 7-16; Vult=115m, h; TCDL=6.0psf; E t. II; Exp C; Enclo and C-C Corner(4-1-8 to 6-6-0, Cc 11-6-0 to 12-7-0 a d; end vertical lef and forces & MW =-1.60 plate grip L ned for wind loads ds exposed to wind d Industry Gable E ualified building de alified building de alified building de alified building de alified building de alified building de building de alified building de building de alified building de building d	ph (3-sec 3CDL=6. scd; NW (3E) -0-1 brner(3R) zone; car t and right /FRS for DOL=1.60 s in the p nd (norm End Deta sess other n one face ent (i.e. co co. for a 10.1 with any e SP No. n (by oth tanding 3	cond gust) Dpsf; h=35ft; FRS (envelo) D-8 to 4-1-8, 6-6-0 to 11-1 titlever left ar the exposed;C reactions sho and of the true al to the face is as applica is as applica is per ANS//TI wise indicate te or securely iagonal web) D psf bottom other live loa 2 crushing ers) of truss i 4 lb uplift at j	be) S-0, id -C bwn; uss), ble, -1. d. d. ds. o oint					
FORCES	,	125, 3-4=-134/137, 07/238, 6-7=-107/238		uplift at joint joint 20, 74 lt 0) N/A 1) Beveled plate	17, 130 lb uplift at b uplift at joint 15 e or shim required truss chord at join	t joint 19 and 70 lb d to provi	96 lb uplift a uplift at joint de full bearin	t 13. g				STATE OF I	TM. YE Y
BOT CHORD WEBS NOTES	20-21=-142/157, 19- 18-19=-18/14, 17-18 15-16=0/0, 14-15=0, 12-13=-15/17, 11-12	3=0/0, 16-17=0/0, /0, 13-14=-18/14, 2=0/15 I1=-23/23, 6-16=-158, 9=-171/166,	14	 This truss is International 	designed in accor Residential Code nd referenced sta	sections	R502.11.1 a	ind		-		NUM PE-2001	018807

November 21,2023

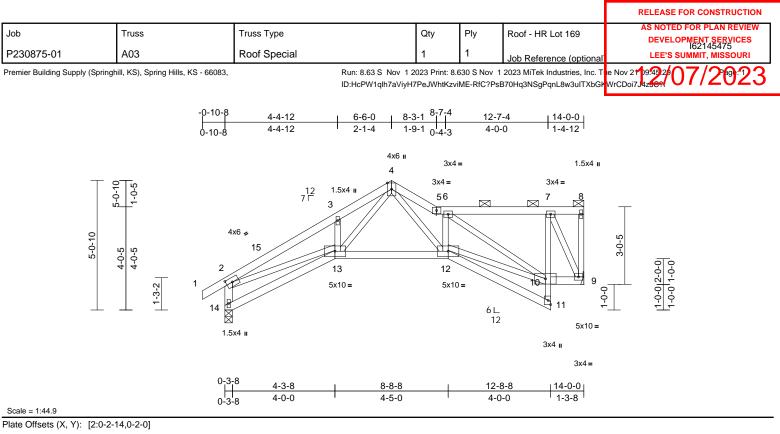

									RELEASE FOR CONSTRUCTION
Job	Truss	Trus	ss Type		Qty	Ply	Roof - HR L	ot 169	AS NOTED FOR PLAN REVIEW DEVELOPMENT SERVICES 162145474
P230875-01	A02	Roc	of Special		4	1	Job Referer	nce (optional)	I62145474 LEE'S SUMMIT, MISSOURI
Premier Building Supply ((Springhill, KS), Spring Hills,	KS - 66083,					/ 1 2023 MiTek Ind PsB70Hq3NSgPqnI		
		-0-10-8 0-10-8	4-4-12 4-4-12	<u> </u>			<u>12-10-4</u> 4-3-0		
					4х6 н 4				
		4x6 ≠ 1 10 1.5x4 µ	7 ¹²	1.5x4 II 3 9 5x10 =		1.5x4 II 5 8 5x10 =	12 6L 12	3x6≈ 6 7 1.5x4 ⊪	2-0-0

0-3-8	4-3-8	8-8-8	12-8-8	12-10-4
0-3-8	4-0-0	4-5-0	4-0-0	0-1-12

Scale = 1:42.5

Plate Offsets (X, Y): [2:0-2-14,0-2-0]

												-	
Loading	(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15		TC	0.29	Vert(LL)	-0.06	8-9	>999	240	MT20	197/144
TCDL	10.0	Lumber DOL	1.15		BC	0.27	Vert(CT)	-0.11	8-9	>999	180		
BCLL	0.0	Rep Stress Incr	YES		WB	0.34	Horz(CT)	0.10	7	n/a	n/a		
BCDL	10.0	Code	IRC201	8/TPI2014	Matrix-S							Weight: 62 lb	FT = 20%
WEBS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x4 SP No.2 2x3 SPF No.2 *Exce Structural wood she 4-10-5 oc purlins, e Rigid ceiling directly bracing. (size) 7=0-1-12, Max Horiz 10=159 (L	athing directly applie xcept end verticals. applied or 10-0-0 or 10=0-3-8	ed or 7) c 8)	using ANS// designer sho Provide meo bearing plat provide meo bearing plat joint 10 and This truss is Internationa	bint(s) 10, 7 consist TPI 1 angle to gra buld verify capacit shanical connection e at joint(s) 7. shanical connection e capable of withs 79 lb uplift at join designed in accoo Residential Code and referenced sta	ain formula ty of bear on (by oth standing 1 t 7. rdance w e sections	a. Building ng surface. ers) of truss ers) of truss 05 lb uplift a th the 2018 R502.11.1 a	to to t					
	Max Uplift 7=-79 (LC Max Grav 7=562 (LC (lb) - Maximum Com	C 1), 10=640 (LC 1)	2)		Otanuaru								
TOP CHORD	Tension 1-2=0/36, 2-3=-1333 4-5=-1299/425, 5-6= 2-10=-649/229, 6-7=	5/340, 3-4=-1299/44 1318/316,	8,										
BOT CHORD WEBS	9-10=-179/257, 8-9= 3-9=-221/173, 4-9=- 5-8=-246/184, 2-9=-	-107/636, 7-8=-57/1 270/792, 4-8=-235/7	721,										
this design. 2) Wind: ASC Vasd=91m Ke=1.00; C exterior zor Interior (1) Interior (1)	d roof live loads have F 7-16; Vult=115mph ph; TCDL=6.0psf; BC at. II; Exp C; Enclose ne and C-C Exterior(2 4-4-12 to 6-6.0, Exter 11-6-0 to 12-8-8 zone and vertical left and rig	(3-second gust) DL=6.0psf; h=35ft; d; MWFRS (envelog E) -0-10-8 to 4-4-12 ior(2R) 6-6-0 to 11-f s; cantilever left and	be) 2, 6-0, right									STATE OF J	MISSOLIP T M. HER



members and forces & MWFRS for reactions shown;

OFFESSIONAL EN November 21,2023

PE-2001018807

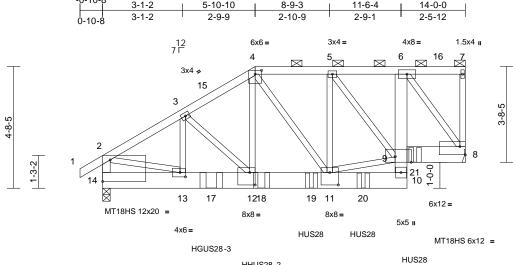
					1								
Loading	(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d		GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15		TC	0.31	Vert(LL)	-0.07		>999	240	MT20	197/144
TCDL	10.0	Lumber DOL	1.15		BC	0.30	Vert(CT)	-0.15	12-13	>999	180		
BCLL	0.0	Rep Stress Incr	YES		WB	0.69	Horz(CT)	0.10	9	n/a	n/a		
BCDL	10.0	Code	IRC201	8/TPI2014	Matrix-S	-						Weight: 74 lb	FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD	2x4 SP No.2 2x4 SP No.2 *Excep 2x3 SPF No.2 *Exce Structural wood she 4-6-8 oc purlins, ex 2-0-0 oc purlins (4-1 Rigid ceiling directly	ept* 14-2:2x4 SP No. athing directly applie cept end verticals, a 1-7 max.): 5-8.	2 ed or nd	Vasd=91mpl Ke=1.00; Ca exterior zone Interior (1) 4 Interior (1) 8 right expose for members	7-16; Vult=115r n; TCDL=6.0psf; t. II; Exp C; Encl e and C-C Exteri -4-12 to 6-6-0, E -3-1 to 13-10-12 d; end vertical le and forces & M .=1.60 plate grip	BCDL=6. losed; MW or(2E) -0-7 xterior(2E) zone; can eft and righ WFRS for	Dpsf; h=35ft; FRS (envelop 10-8 to 4-4-12 0 6-6-0 to 8-3- tilever left an tt exposed;C- reactions sho	2, -1, d -C					
BOTCHORD	bracing.	applied of 10-0-0 of	໌ 3)	Provide adeo	quate drainage to	o prevent	water ponding	g.					
	Max Horiz 14=180 (L Max Uplift 9=-122 (L Max Grav 9=616 (LC	C 13), 14=-107 (LC C 1), 14=693 (LC 1)	6)	chord live loa Bearings are capacity of 5 Refer to gird	er(s) for truss to	nt with any : Joint 14 \$ truss conr	other live loa SP No.2 crust nections.	hing					
FORCES	(lb) - Maximum Com Tension	ipression/maximum	7)		int(s) 14 conside			ie					
TOP CHORD	1-2=0/36, 2-3=-1501 4-5=-1407/412, 5-6= 6-7=-269/118, 7-8=- 2-14=-705/272	-1243/346,	4, 8)	designer sho Provide mec bearing plate	buld verify capac hanical connecti capable of with 07 lb uplift at joir	ity of bear ion (by oth standing 1	ing surface. ers) of truss t						
BOT CHORD	13-14=-325/337, 12- 11-12=-25/119, 10-1 9-10=-113/269	,	9) 25,	This truss is International	designed in acc Residential Coc nd referenced st	ordance w le sections	R502.11.1 a	and					
WEBS	3-13=-202/167, 4-13 4-12=-161/754, 7-9= 2-13=-284/1123, 6-1 6-10=-1178/377, 10-	613/167, 2=-187/145,) Graphical pu	Irlin representation ation of the purlin d.	on does no	ot depict the s	size			Å	STATE OF I	N N

NOTES

 Unbalanced roof live loads have been considered for this design.

November 21,2023

Chesterfield, MO 63017 314.434.1200 / MiTek-US.com


SEVIER

PE-2001018807

						RELEASE FOR CONSTRUCTION
Job	Truss	Truss Type	Qty	Plv	Roof - HR Lot 169	AS NOTED FOR PLAN REVIEW
305	11035	Truss Type	Quy	i iy	ROOI - HIR LOL 109	DEVELOPMENT SERVICES 162145476
P230875-01	A04	Half Hip Girder	1	3	Job Reference (optional)	
		-				

0-10-8

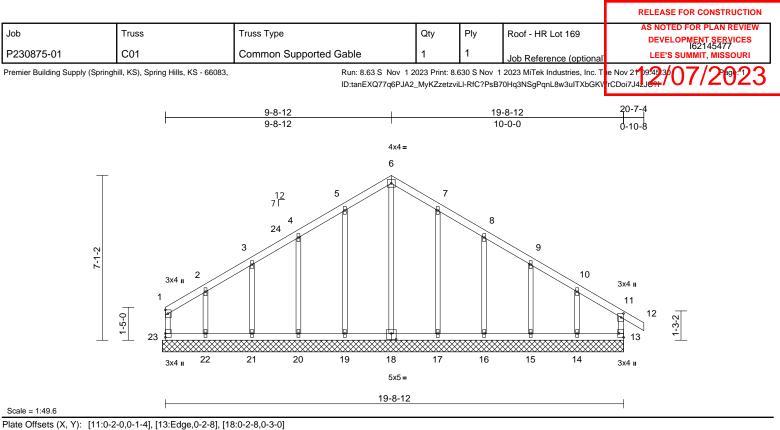
Run: 8.63 S Nov 1 2023 Print: 8.630 S Nov 1 2023 MiTek Industries, Inc. Te Nov 21932207/2023 ID:GeJ1GNeQrZvgqwzCSFOSnKzvU1h-RfC?PsB70Hq3NSgPqnL8w3uITXb KWrCD0r7

		пг	10328-2		
	3-1-2	5-9-6	8-9-3	11-9-0	14-0-0
	3-1-2	2-8-5	2-11-13	2-11-13	2-3-0
Scale = 1:44.5					
Plate Offsets (X, Y): [4:0-3-0.0-1-12].	[8·Edge 0-3-12] [9:0-7-8 Edge] [11:0-4	4-0 0-5-12] [12.0-3	2-8 0-5-12] [13:0-2-	8 0-2-0] [14·Edae	0-10-01

Loading	(psf)	Spacing	2-0-0	csi		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15	тс	0.32	Vert(LL)	-0.04	12-13	>999	240	MT20	197/144
TCDL	10.0	Lumber DOL	1.15	BC	0.65	Vert(CT)	-0.08	12-13	>999	180	MT18HS	197/144
BCLL	0.0	Rep Stress Incr	NO	WB	0.63	Horz(CT)	0.01	8	n/a	n/a		
BCDL	10.0	Code	IRC2018/TPI2014	Matrix-S							Weight: 275 lb	FT = 20%

TOP CHORD BOT CHORD 2x8 SPF No.2 *Except* 10-6:2x6 SPF No.2 2x3 SPF No.2 *Except* 14-2:2x4 SP No.2 WEBS BRACING 3) TOP CHORD Structural wood sheathing directly applied or 6-0-0 oc purlins. except end verticals, and 2-0-0 oc purlins (6-0-0 max.): 4-7. BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing. **REACTIONS** (size) 8= Mechanical, 14=0-3-8 Max Horiz 14=173 (LC 9) Max Uplift 8=-1507 (LC 9), 14=-1446 (LC 12) Max Grav 8=6600 (LC 1), 14=5504 (LC 1) FORCES (lb) - Maximum Compression/Maximum 4١ Tension 5) 1-2=0/36 2-3=-6903/1891 3-4=-6995/1852 TOP CHORD 6) 4-5=-5694/1440, 5-6=-3982/987, 6-7=-76/78, 7-8=-128/49 2-14=-5266/1481 7) BOT CHORD 13-14=-434/622, 12-13=-1776/5870 11-12=-1631/5930, 10-11=-460/1886, 8) 9-10=-195/1015, 6-9=-1166/5197, 9) 8-9=-982/4015 WEBS 4-12=-1098/3598, 6-8=-6635/1543, 2-13=-1463/5474, 3-12=-307/206, 3-13=-296/342, 5-11=-533/1981, 5-9=-2721/730, 9-11=-1018/3981, 4-11=-682/351 NOTES 3-ply truss to be connected together with 10d 1)

3-pi) truss to be connected together with 10d (0.131"x3") nails as follows: Top chords connected as follows: 2x4 - 1 row at 0-9-0 oc, 2x3 - 1 row at 0-9-0 oc. Bottom chords connected as follows: 2x8 - 4 rows staggered at 0-4-0 oc, 2x6 - 2 rows staggered at 0-9-0 oc.


Web connected as follows: 2x3 - 1 row at 0-9-0 oc.

- All loads are considered equally applied to all plies, except if noted as front (F) or back (B) face in the LOAD CASE(S) section. Ply to ply connections have been provided to distribute only loads noted as (F) or (B), unless otherwise indicated.
- Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=35ft; Ke=1.00; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) -0-10-8 to 4-1-8, Interior (1) 4-1-8 to 5-10-10, Exterior(2R) 5-10-10 to 12-11-8, Interior (1) 12-11-8 to 13-10-12 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 4) Provide adequate drainage to prevent water ponding.
- 5) All plates are MT20 plates unless otherwise indicated.
- 6) This truss has been designed for a 10.0 psf bottom
- chord live load nonconcurrent with any other live loads. 7) Bearings are assumed to be: Joint 14 SPF No.2
- crushing capacity of 425 psi.
- Refer to girder(s) for truss to truss connections.
- Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 1507 lb uplift at joint 8 and 1446 lb uplift at joint 14.
- 10) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.
- 12) Use Simpson Strong-Tie HGUS28-3 (36-10d Girder, 6-10d Truss) or equivalent at 4-2-6 from the left end to connect truss(es) to front face of bottom chord.
- Use Simpson Strong-Tie HHUS28-2 (22-10d Girder, 4-10d Truss) or equivalent at 6-1-9 from the left end to connect truss(es) to front face of bottom chord.

- 14) Use Simpson Strong-Tie HUS28 (22-10d Girder, 4-10d Truss) or equivalent spaced at 2-0-0 oc max. starting at 8-0-12 from the left end to 12-0-12 to connect truss(es) to front face of bottom chord.
- 15) Fill all nail holes where hanger is in contact with lumber. LOAD CASE(S) Standard
- 1) Dead + Roof Live (balanced): Lumber Increase=1.15, Plate Increase=1.15
 - Uniform Loads (lb/ft) Vert: 1-2=-70, 2-4=-70, 4-7=-70, 10-14=-20, 8-9=-20 Concentrated Loads (lb)
 - Vert: 17=-2899 (F), 18=-1975 (F), 19=-1974 (F), 20=-1974 (F), 21=-1973 (F)

(tpinst.org) Mittek-Us.com Mitpinst.org) Mittek-Us.com Mittek-Us.com Mittek-Us.com Mittek-Us.com

		-4], [13:Edge,0-2-8], [18:		Ŋ			255		(1)		. , .		
Loading TCLL (roof)	(psf) 25.0		2-0-0 1.15		CSI TC	0.16	DEFL Vert(LL)	in n/a	(loc)	l/defl n/a	L/d 999	PLATES MT20	GRIP 197/144
TCDL	10.0		1.15		BC	0.10	Vert(CT)	n/a	-	n/a	999	101120	137/144
BCLL	0.0		YES		WB	0.24	Horz(CT)	0.00	13	n/a	n/a	1	
BCDL	10.0		IRC2018/T	PI2014	Matrix-R		(0.)					Weight: 95 lb	FT = 20%
BCDL LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x4 SP No.2 2x3 SPF No.2 2x3 SPF No.2 Structural wood s 6-0-0 oc purlins, Rigid ceiling direc bracing. (size) 13=19- 17=19- 21=19- 23=19- Max Horiz 23=-21 Max Uplift 13=-94 15=-55 17=-64 20=-75 22=-11 Max Grav 13=203 15=183 17=196 19=194 21=182	neathing directly applied of except end verticals. tly applied or 10-0-0 oc 10-4, 14=19-10-4, 10-4, 16=19-10-4, 10-4, 18=19-10-4, 10-4, 20=19-10-4, 10-4, 22=19-10-4, 10-4	BOT WEB or 1) L 1) L 2) V k e E 1 k e e 1 k e 0, x 5) C	CHORD S ES Jnbalanced his design. Vind: ASCE /asd=91mpl Ke=1.00; Ca exterior zone Exterior zone Exterior zone S-0-0, Exte eft and right exposed;C-C eactions sh coL=1.60 Truss desig only. For stu see Standar or consult qu All plates are Gable requir	22-23=-120/126, 22-23=-120/126, 17-19=-120/126, 15-16=-120/126, 13-14=-120/126, 13-14=-120/126, 6-18=-215/56, 5- 3-21=-143/121, 2 7-17=-155/90, 8- 9-15=-143/110, 7 roof live loads h: 7-16; Vult=115r h; TCDL=6.0psf; tt. II; Exp C; Encl e and C-C Corne 5-4-8 to 10-0-0, rior(2N) 15-0-0 tt exposed ; end v C for members an own; Lumber DC ned for wind load uds exposed to w d Industry Gable Jailfied building c e 1.5x4 MT20 un res continuous bo	19-20=-1: 16-17=-1: 14-15=-1: 19=-155/S 2-22=-174, 16=-146/1 10-14=-16 ave been of mph (3-sec BCDL=6, osed; MW rr(3E) 0-4 Corner(3E) o 20-10-8 retrical left nd forces a DL=1.60 pl ds in the p wind (norm End Deta less other based the set of the set of the the set other of the set other of the the set oth	20/126, 20/126	r ver), ble, Pl 1. J.	bea 23, upli join lb u 11) This Inte	ring pla 94 lb up ft at join t 22, 64 plift at ju s truss is ernationa 02.10.2	te capa llift at j t 20, 6 llb uplii int 15 s desig al Resi and ref and ref) Sta	al connection (by able of withstandi oint 13, 64 lb upli 0 lb uplift at joint ft at joint 17, 76 li and 125 lb uplift ned in accordand dential Code sec ferenced standar	r others) of truss to ng 92 lb uplift at joint ft at joint 19, 75 lb 21, 112 lb uplift at 0 uplift at joint 16, 55 at joint 14. with the 2018 tions R502.11.1 and d ANSI/TPI 1.
FORCES	(lb) - Maximum Co Tension	ompression/Maximum	ćb	oraced agair	fully sheathed fro	nent (i.e. d					86	SEV	
TOP CHORD	3-4=-88/173, 4-5= 6-7=-152/295, 7-8	-105/100, 2-3=-78/111, -121/238, 5-6=-152/295, =-121/238, 8-9=-88/173, 11=-131/126, 11-12=0/35	8) T c 5 9) A	This truss ha	spaced at 2-0-0 as been designed ad nonconcurren are assumed to 65 psi.	d for a 10.0 It with any	other live loa	ds.				PE-2001	LENGI

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent colleges with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

16023 Swingley Ridge Rd. Chesterfield, MO 63017 314.434.1200 / MITek-US.com

November 21,2023

							RELEASE FOR CONSTRUCTION
Job	Truss	Truss Type		Qty	Ply	Roof - HR Lot 169	AS NOTED FOR PLAN REVIEW DEVELOPMENT SERVICES 162145478
P230875-01	C02	Common		11	1	Job Reference (optional	
Premier Building Supply	(Springhill, KS), Spring Hills, I	KS - 66083,				1 2023 MiTek Industries, Inc. Ti 0Hq3NSgPqnL8w3uITXbGKWr0	
	L	5-1-12	9-10-4	14-	-6-13	19-10-4	
	I	5-1-12	4-8-8	4-	-8-9	5-3-7	I
				4x4 =			
	—			3 ∕∽			
		12 7 F					
		3: 2	4 =			3x4 .	
		2				4	
	7-1-2						
	3x4 II						2.14
	1						^{3x4} "
	-4-2						
		/					

7

5x8=

0.36

0.94

0.88

DEFL

Vert(LL)

Vert(CT)

Horz(CT)

19-10-4

10-0-0

in

-0.19

-0.38

0.03

(loc)

6-7

6-7

6

l/defl

>999

>614

n/a n/a

L/d

240

180

BCDL LUMBER

Loading

TCDL

BCLL

TCLL (roof)

Scale = 1:49.3

Plate Offsets (X, Y): [7:0-4-0,0-3-4]

TOP CHORD	2x4 SP N	0.2
BOT CHORD	2x4 SP N	0.2
WEBS	2x3 SPF I	No.2 *Except* 8-1,6-5:2x4 SP No.2
BRACING		
TOP CHORD	Structura	wood sheathing directly applied or
	5-11-3 oc	purlins, except end verticals.
BOT CHORD	Rigid ceili	ing directly applied or 2-2-0 oc
	bracing.	
REACTIONS	(size)	6= Mechanical, 8=0-1-12
	Max Horiz	8=-204 (LC 8)
	Max Uplift	6=-126 (LC 13), 8=-125 (LC 12)
	Max Grav	6=880 (LC 1), 8=880 (LC 1)
FORCES	(lb) - Max	imum Compression/Maximum
	Tension	
TOP CHORD	1-2=-258/	79, 2-3=-874/194, 3-4=-875/194,
	4-5=-284/	78, 1-8=-249/92, 5-6=-267/97

(psf)

25.0

10.0

10.0

0.0

X

Spacing

Code

Plate Grip DOL

Rep Stress Incr

Lumber DOL

3x6 =

BOT CHORD 6-8=-175/849 3-7=-67/483, 2-8=-881/177, 4-6=-864/175, WEBS 2-7=-246/217, 4-7=-265/223

NOTES

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=35ft; Ke=1.00; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) 0-3-8 to 5-2-1, Interior (1) 5-2-1 to 10-0-0, Exterior(2R) 10-0-0 to 14-10-1, Interior (1) 14-10-1 to 19-10-4 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

This truss has been designed for a 10.0 psf bottom 3) chord live load nonconcurrent with any other live loads. 4) Bearings are assumed to be: Joint 8 SP No.2 crushing

capacity of 565 psi.

5) Refer to girder(s) for truss to truss connections. 6) Provide mechanical connection (by others) of truss to bearing plate at joint(s) 8.

CSI

тс

BC

WB

Matrix-S

7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 125 lb uplift at joint 8 and 126 lb uplift at joint 6.

This truss is designed in accordance with the 2018 8) International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard

9-10-4

9-10-4

2-0-0

1.15

1.15

YES

IRC2018/TPI2014

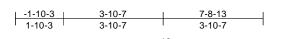
16023 Swingley Ridge Rd. Chesterfield MO 63017 314.434.1200 / MiTek-US.com

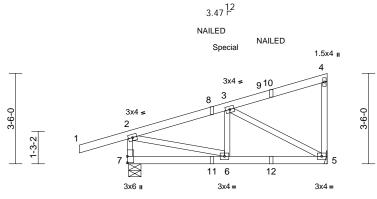
3x6=

PLATES

Weight: 92 lb

MT20


GRIP


244/190

FT = 20%

_						RELEASE FOR CONSTRUCTION
Job	Truss	Truss Type	Qty	Ply	Roof - HR Lot 169	AS NOTED FOR PLAN REVIEW DEVELOPMENT SERVICES 162145479
P230875-01	CJ01	Diagonal Hip Girder	2	1	Job Reference (optional	

Run: 8.63 S Nov 1 2023 Print: 8.630 S Nov 1 2023 MiTek Industries, Inc. Te Nov 2 19.433 ID:aVN0drFPTBfuNblHYQIJ1_zviLb-RfC?PsB70Hq3NSgPqnL8w3uITXbGKV rCDoi7J42J

NAILED

Special

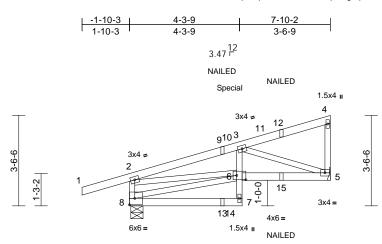
Scale = 1:44.6

Loading (pst) Spacing 2-0-0 CSI DEFL in (loc) I/deft L/deft Marks TCLL 0.0 Lumber DOL 11.5 TC 0.41 Vert(LL) 0.01 5-6 999 240 BCLL 0.0 Rep Stress Incr NO WB 0.15 WB No Vert(LL) 0.00 5-6 999 240 BCDL 10.0 Code Rep Stress Incr NO WB No No No Vert(LL) 0.00 5-6 999 240 Weight: 37 lb FT = 20% LUMBER Code RC2018/TPI2014 Matrix-P NALED' indicates Girder: 3-104 (0.148' x 3') toe-nails Per NDS guidelines. Hange(s) or other connection device(s) shall be BOT CHORD Stad SP No.2 BRACIMO Stad SP No.2	Ocale = 1.44.0						-						
BCDL 10.0 Code IRC2018/TFI2014 Matrix-P Weight: 37 lb FT = 20% LUMBER TOP CHORD 2x4 SP No.2 ************************************	TCLL (roof) TCDL	25.0 10.0	Plate Grip DOL Lumber DOL	1.15 1.15	TC BC	0.20	Vert(LL) Vert(CT)	0.01 -0.02	5-6 5-6	>999 >999	240 180	-	
 TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.2 BRACING BRACING TOP CHORD Structural wood sheathing directly applied or 6-0-0 oc purlins, except end verticals. BOT CHORD Structural wood sheathing directly applied or 9-9-11 oc bracing. BRACINOS (size) 5-Mechanical, 7=0-5-12 Max Horiz 7-155 (LC 9) Takes (Size) 5-326 (LC 1), 7=-486 (LC 8) Max Grav 5-326 (LC 1), 7=-486 (LC 8) Max Grav 5-326 (LC 1), 7=-486 (LC 8) Max Grav 5-326 (LC 1), 7=-486 (LC 1) Max Horiz 7-455 (LC 9) The turns are noted as front (F) or back (B). LOAD CASE(S) Standard Dead + Roof Live (balanced): Lumber Increase=1.15, Pitale Increase=1.15 Uniform Loads (lb/t), Vert: 12=-70, 2-4=-70, 5-7=-20 Concentrated Loads (lb) Vert: 6=-5 (F), 11=1 (B), 12=-3 (B) Vert: 6=-5 (F), 11=1 (B), 12=-3 (B) Ve						0.18	Horz(CT)	0.00	5	n/a	n/a	Weight: 37 lb	FT = 20%
3) Bearings are assumed to be: Joint 7 SP No.2 crushing capacity of 565 psi.	TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD REACTIONS (M FORCES TOP CHORD BOT CHORD BOT CHORD BOT CHORD BOT CHORD WEBS NOTES 1) Wind: ASCI Vasd=91mp Ke=1.00; C. exterior zon Exterior zon Ext	2x4 SP No.2 2x3 SPF No.2 Structural wood she 6-0-0 oc purlins, ex Rigid ceiling directly bracing. (size) 5= Mecha Max Horiz 7=155 (LC Max Uplift 5=-122 (L Max Grav 5=326 (LC (lb) - Maximum Com Tension 2-7=-465/469, 1-2=0 3-4=-118/71, 4-5=-1 6-7=-332/169, 5-6=- 2-6=-120/380, 3-6=0 E 7-16; Vult=115mph ph; TCDL=6.0psf; BC cat. II; Exp C; Enclose the and C-C Corner (3) 0, 5-2-11 to 7-7-9 zone ed; end vertical left ar s and forces & MWF DL=1.60 plate grip DC tas been designed for the assumed to be: Joi	cept end verticals. applied or 9-9-11 or (2) (2) (2) (2) (2) (2) (2) (2) (2) (2)	pe 8) Ha pr dc c 9) In f LOAD 1) [C pe) C pwn; ds.	er NDS guidelines. anger(s) or other connectii rovided sufficient to suppor own and 109 lb up at 3-9- bown and 4 lb up at 3-9-15 asign/selection of such cor isponsibility of others. It he LOAD CASE(S) section the truss are noted as from O CASE(S) Standard Dead + Roof Live (balance Plate Increase=1.15 Jniform Loads (lb/ft) Vert: 1-2=-70, 2-4=-70, 5 Concentrated Loads (lb)	on device (s rt concentrs 15 on top c on bottom nection de on, loads a nt (F) or ba rd): Lumber 5-7=-20) shall be ated load(s) 3 hord, and 11 chord. The vice(s) is the oplied to the ck (B).	39 lb lb face				STATE OF	I III.

- Provide mechanical connection (by others) of truss to 5) bearing plate capable of withstanding 186 lb uplift at
- joint 7 and 122 lb uplift at joint 5. This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. 6)

 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.
 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not besign value for use only with with twit even connectors. This design is based only upon parameters shown, and is for an individual building designer must verify the applicability of design parameters and properly incorporate this design into the overall building designer must verify the applicability of design parameters and properly incorporate this design into the overall building designer. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcscomponents.com)

EZ


PE-2001018807

November 21,2023

SIONAL

						RELEASE FOR CONSTRUCTION
Job	Truss	Truss Type	Qty	Ply	Roof - HR Lot 169	AS NOTED FOR PLAN REVIEW DEVELOPMENT SERVICES 162145480
P230875-01	CJ02	Diagonal Hip Girder	1	1	Job Reference (optional	

Run: 8.63 S Nov 1 2023 Print: 8.630 S Nov 1 2023 MiTek Industries, Inc. The Nov 2119.493 ID:TGdXTDIvXPAKrC33nGpFCqzviLX-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi794259

Scale = 1:45

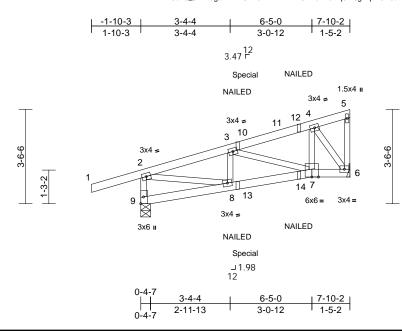
Plate Offsets (X, Y): [6:0-4-4,0-2-0]

	(A, T). [0.0-4-4,0-2-0]												
Loading	(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15		тс	0.44	Vert(LL)	0.03	5-6	>999	240	MT20	197/144
TCDL	10.0	Lumber DOL	1.15		BC	0.31	Vert(CT)	-0.05	7-8	>999	180		
BCLL	0.0	Rep Stress Incr	NO		WB	0.22	Horz(CT)	-0.01	5	n/a	n/a		
BCDL	10.0	Code	IRC201	8/TPI2014	Matrix-P							Weight: 40 lb	FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 *Excep 2x3 SPF No.2 Structural wood she 6-0-0 oc purlins, exi Rigid ceiling directly bracing.	athing directly applie cept end verticals. applied or 7-5-0 oc nical, 8=0-5-12 C 9) C 12), 8=-188 (LC 8	7) d or 8)) 9)	International R802.10.2 a WAILED" in per NDS gui Hanger(s) or provided suf down and 11 down and 4 design/selec responsibility In the LOAD	other connection ficient to support of 1 lb up at 3-11-4 lb up at 3-11-4 or tion of such conner of others. CASE(S) section are noted as front	e sections ndard AN 10d (0.14 device(s concentra on top c n bottom ection de	s R502.11.1 a ISI/TPI 1. 8" x 3") toe- s) shall be ated load(s) 4 hord, and 11 hord, and 11 vice(s) is the pplied to the	nails 40 lb Ib					
FORCES	(lb) - Maximum Com Tension	num Compression/Maximum 1) Dead + Roof Live (balanced): Lumber Increase=1.15,											
TOP CHORD				Plate Increa Uniform Lo	ads (lb/ft)								
BOT CHORD	7-8=-18/18, 6-7=0/8 5-6=-623/583				=-70, 2-4=-70, 7-8 ed Loads (lb)	3=-20, 5-	6=-20						
WEBS	6-8=-312/128, 2-6=-	318/568 3-5=-618/6	26	Vert: 12=	=-2 (B), 13=1 (B),	14=-6 (F), 15=-34 (B)						
NOTES	0 0 0 0 12/120, 2 0 -	010/000, 0 0- 010/0	20										
 1) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=35ft; Ke=1.00; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone and C-C Corner (3) -1.10-3 to 5-2-11, Exterior(2R) 5-2-11 to 7-8-14 zone; cantilever left and right exposed ; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 3) Bearings are assumed to be: Joint 8 SP No.2 crushing capacity of 565 psi. 4) Refer to girder(s) for truss to truss connections. 													

Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 188 lb uplift at 5) joint 8 and 138 lb uplift at joint 5.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent colleges with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

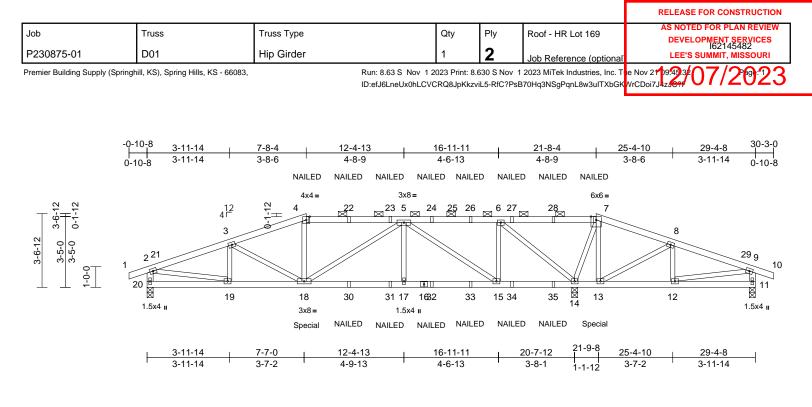
E


SIONAL

November 21,2023

						RELEASE FOR CONSTRUCTION
Job	Truss	Truss Type	Qty	Plv	Roof - HR Lot 169	AS NOTED FOR PLAN REVIEW
300	TTUSS	Truss Type	Quy	гіу	R001 - HR L01 109	DEVELOPMENT SERVICES 162145481
P230875-01	CJ03	Diagonal Hip Girder	1	1	Job Reference (optional	

Run: 8.63 S Nov 1 2023 Print: 8.630 S Nov 1 2023 MiTek Industries, Inc. The Nov 2109.493 07/2021 ID:6aL3_JRRi5gdH2zMUn13hMzviLL-RfC?PsB70Hq3NSgPqnL8w3uITXbGk WrCDoi7J4z669


UNTION

Scale = 1:43.2

Plate Offsets (X, Y): [9:0-3-0,Edge]

Plate Olisets (.	X, Y): [9:0-3-0,Edge]											-	
Loading TCLL (roof) TCDL BCLL BCDL LUMBER TOP CHORD BOT CHORD WEBS	(psf) 25.0 10.0 0.0 10.0 2x4 SP No.2 2x4 SP No.2 2x3 SPF No.2	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	6)	bearing plate joint 9 and 14	CSI TC BC WB Matrix-P hanical connection e capable of withst 46 lb uplift at joint designed in accorr	anding 2 6.	01 Ib uplift a		(loc) 7-8 7-8 6	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 38 lb	GRIP 197/144 FT = 20%
BRACING TOP CHORD BOT CHORD			d or 8)	International R802.10.2 au "NAILED" inc per NDS guid Hanger(s) or	Residential Code nd referenced star dicates Girder: 3-1 delines. other connection	sections ndard AN 0d (0.14 device(s	R502.11.1 a ISI/TPI 1. 8" x 3") toe-	nails					
	(size) 6= Mecha Max Horiz 9=140 (LC Max Uplift 6=-146 (L Max Grav 6=345 (LC	.C 12), 9=-201 (LC 8) C 1), 9=512 (LC 1)		down and 94 down and 32 design/selec responsibility		n top ch n botton ection de	ord, and 27 II i chord. The vice(s) is the	b					
FORCES	(lb) - Maximum Com Tension		10		CASE(S) section, are noted as front (face					
TOP CHORD	2-9=-485/503, 1-2=0 3-4=-273/200, 4-5=-	51/50, 5-6=-40/50	1)	DAD CASE(S) Dead + Roo	Standard of Live (balanced):	Lumbe	Increase=1.	15,					
BOT CHORD WEBS		50/73, 3-7=-232/254		Plate Increa Uniform Loa									
Vasd=91m Ke=1.00; (exterior(2F right exposi for membe Lumber DC 2) This truss chord live I 3) Bearings a capacity of 4) Refer to gi 5) Bearing at using ANS	4-7=-156/191, 4-6=- CE 7-16; Vult=115mph pph; TCDL=6.0psf; BC Cat. II; Exp C; Enclose one and C-C Corner (3 R) 5-2-11 to 7-8-14 zoo sed ; end vertical left a res and forces & MWFI OL=1.60 plate grip DC has been designed foi load nonconcurrent wi are assumed to be: Joi f 565 psi. rder(s) for truss to trus joint(s) 9 considers psi J/TPI 1 angle to grain hould verify capacity of	(3-second gust) DL=6.0psf; h=35ft; d; MWFRS (envelop)) -1-10-3 to 5-2-11, ne; cantilever left and nd right exposed;C-C RS for reactions shor DL=1.60 r a 10.0 psf bottom th any other live load int 9 SP No.2 crushin ss connections. arallel to grain value formula. Building	d C wn; ds.	Concentrate	=-70, 2-5=-70, 7-9 ed Loads (lb) (F), 12=-2 (F), 13	,						STATE OF J SCOT SEV PE-2001 PE-2001 Novembe	DI8807

Scale = 1:55.6

00010 - 110010														
Loading TCLL (roof) TCDL BCLL BCDL	(psf) 25.0 10.0 0.0 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 NO IRC201	8/TPI2014	CSI TC BC WB Matrix-S	0.39 0.26 0.30	DEFL Vert(LL) Vert(CT) Horz(CT)	in 0.04 -0.08 0.02	17-18	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 265 II	GRIP 197/144 b FT = 20%	
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD REACTIONS	No.2 Structural wood she 6-0-0 oc purlins, ex 2-0-0 oc purlins (6-C Rigid ceiling directly bracing. (size) 11=0-3-8, Max Horiz 20=-25 (L Max Uplift 11=-244 (20=-393 (Max Grav 11=92 (LC	applied or 6-0-0 oc , 14=0-3-8, 20=0-3-8 ,C 17) (LC 34), 14=-929 (LC LC 8) C 12), 14=2701 (LC 1	d or 2) d 2) 3) 9), 4)	 2) All loads are considered equally applied to all plies, except if noted as front (F) or back (B) face in the LOAD CASE(S) Standard CASE(S) section. Ply to ply connections have been provided to distribute only loads noted as (F) or (B), unless otherwise indicated. 3) Unbalanced roof live loads have been considered for this design. 4) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=35ft; Ke=1.00; Cat. II; Exp C; Enclosed; MWFRS (envelope) 2) All loads are considered a provided to distribute only loads noted as (F) or (B), unless otherwise indicated. 3) Unbalanced roof live loads have been considered for this design. 4) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; h=35ft; Ke=1.00; Cat. II; Exp C; Enclosed; MWFRS (envelope) 4) Standard Dead + Roof Live (balanced roof live loads have been considered for this design. 4) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; h=35ft; Ke=1.00; Cat. II; Exp C; Enclosed; MWFRS (envelope) 								es. r connection de t to support con b up at 7-8-4, a -8 on bottom ch connection devi thers. ndard e (balanced): Lu .15 b/ft) 2-4=-70, 4-7=- ads (Ib)), 7=-49 (B), 18	evice(s) shall be iccentrated load(s) 307 and 307 lb down and hord. The design/ icc(s) is the umber Increase=1.15, 70, 7-9=-70, 9-10=-70, =-307 (B), 13=-307 (B)	,
FORCES TOP CHORD BOT CHORD	4-5=-1795/746, 5-6= 6-7=-399/1237, 7-8=	5/695, 3-4=-1922/758 404/218, 279/923, 8-9=-210/5 105/479, 9-11=-146/2	exterior zone and C-C Exterior(2E) -0-10-8 to 3-11-14, 272-49 (B), 28-49 (B) Interior (1) 3-11-14 to 7-8-4, Exterior(2R) 7-8-4 to 32=-22 (B), 33=-22 (B) 14-9-2, Interior (1) 128-9-2 to 21-8-4, Exterior(2R) 21-8-4 (758, to 28-9-2, Interior (1) 28-9-2 to 30-3-0 zone; cantilever left and right exposed; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip								3=-49 (B), 30=-2	22 (B), 31=-22 (B),		
WEBS	17-18=-523/1554, 1 14-15=-113/414, 13 12-13=-519/236, 11 3-19=-258/154, 3-18 4-18=-12/261, 5-18= 5-15=-1412/530, 6-1	5-17=-523/1554, -14=-861/386, -12=-47/42 3=-206/312, =-129/302, 5-17=0/27 15=-213/897, 3=-592/228, 8-12=-2/2 12=-517/224,	· 0)	 All plates are 3x4 MT20 unless otherwise indicated. This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. All bearings are assumed to be SP No.2 crushing capacity of 565 psi. Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 393 lb uplift at joint 20, 244 lb uplift at joint 11 and 929 lb uplift at joint 								TT M. VIER	D	
NOTES			1(designed in acco Residential Code			nd			S		MBER 1018807	

R802.10.2 and referenced standard ANSI/TPI 1.

11) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

16023 Swingley Ridge Rd. Chesterfield MO 63017 314.434.1200 / MiTek-US.com

 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.
 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not besign value to dury with with where outputs into design is based only door parameters shown, and is for an individual building design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members and property incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TPH1 Quality Criteria**, and **DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcscomponents.com)

						RELEASE FOR C	ONSTRUCTION
Job	Truss	Truss Type	Qty	Ply	Roof - HR Lot 169	AS NOTED FOR DEVELOPMEN 162	
P230875-01	D02	Hip	1	1	Job Reference (optional		r, MISSOURI
Premier Building Supply ((Springhill, KS), Spring Hills, KS	- 66083,			1 2023 MiTek Industries, Inc. T sB70Hq3NSgPqnL8w3uITXbGk		/2023
	-0-10-8 5-8-14	11-2-4	18-2-4		23-7-10	29-4-8	30-3-0
	0-10-8 5-8-14		7-0-0		5-5-6	5-8-14	0-10-8
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	6x6 = 1 15 3x4 II	4^{12} 3x4 = 3 16 14 4x4 =	6x6=		5x10= 5 11 10 3x4=	3x4₂ 6 17	3x4 II 7 8 9 3x6=
	5-8-14	· 11-1-0	18-3-8		3x4=	29-4-8	
	5-8-14	5-4-2	7-2-8		2-4-4	8-8-12	•

Scale = 1:55.8

Plate Offsets (X, Y): [2:0-2-11,0-3-0]

		-	-		-								
Loading	(psf)	Spacing	2-0-0		csi		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15		тс	0.86	Vert(LL)	-0.13	9-10	>780	240	MT20	197/144
TCDL	10.0	Lumber DOL	1.15		BC	0.60	Vert(CT)	-0.26	9-10	>394	180		
BCLL	0.0	Rep Stress Incr	YES		WB	0.77	Horz(CT)	0.03	10	n/a	n/a		
BCDL	10.0	Code	IRC201	8/TPI2014	Matrix-S							Weight: 130 lb	FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD	2x4 SP No.2 2x4 SP No.2 2x3 SPF No.2 *Exce Structural wood she: 4-6-8 oc purlins, exc	athing directly applie	ed or	Vasd=91mpl Ke=1.00; Ca exterior zone Interior (1) 4 Exterior(2R)	7-16; Vult=115m h; TCDL=6.0psf; H t. II; Exp C; Enclo e and C-C Exterio -1-8 to 11-2-4, Ex 18-2-4 to 25-3-2, cantilever left an	BCDL=6.0 osed; MW or(2E) -0-1 oterior(2E) Interior (0psf; h=35ft; FRS (envelop 0-8 to 4-1-8, 11-2-4 to 18 1) 25-3-2 to	,					
BOT CHORD	2-0-0 oc purlins, ext 2-0-0 oc purlins (6-0 Rigid ceiling directly bracing.	-0 max.): 4-5.	nu	forces & MW DOL=1.60 p	nd right exposed; /FRS for reactions late grip DOL=1.6	s shown; 60	Lumber	_					
WEBS	1 Row at midpt	4-11	3) 4)		quate drainage to a 3x4 MT20 unles].					
	Max Horiz 15=47 (LC Max Uplift 9=-98 (LC 15=-226 (Max Grav 9=322 (LC 15=919 (L	: 9), 10=-287 (LC 9), LC 8) C 26), 10=1579 (LC ⁻ LC 25)	5) 6)	This truss ha chord live los All bearings capacity of 5 Provide med	as been designed ad nonconcurrent are assumed to b	for a 10.0 with any be SP No.) psf bottom other live loa 2 crushing ers) of truss t	0					
FORCES	(lb) - Maximum Com	pression/Maximum		joint 15, 287	Ib uplift at joint 10	0 and 98	b uplift at joir						
TOP CHORD	Tension 1-2=0/23, 2-3=-1466 4-5=-171/159, 5-6=- 7-8=0/23, 2-15=-857	110/536, 6-7=-270/1	01, R802.10.2 and referenced standard ANSI/TPI 1.										
BOT CHORD	14-15=-118/287, 13- 11-13=-193/932, 10-	.14=-356/1330, .11=0/181, 9-10=-22			Irlin representatio ation of the purlin 1.			iize				50000	ADD
WEBS	3-14=-48/111, 3-13= 4-11=-897/275, 5-11 5-10=-1266/409, 6-1 2-14=-256/1053, 6-9	=-99/525, 0=-504/282, I=-76/362	^{193,} L(DAD CASE(S)								STATE OF M	MISSOURIER

1) Unbalanced roof live loads have been considered for this design.

> NOFF SSIONAL E November 21,2023

NUMBER

PE-2001018807

																	RELEA	SE FOR CO	INSTRUCTION	
Job		Truss		г	Truss Typ	ре				Qty	Ply		Roof	- HR I	Lot 169	,			LAN REVIEW	٦
P230875-01	1	D03			Commo	n Girder				1	1		loh	Roforo	nce (op	tional			SERVICES 45484 , MISSOURI	
Premier Building	Supply (Spring	nill, KS), Sp	pring Hills, KS - 660	083,									2023 N	/liTek Ir	ndustries	, Inc. T	e Nov 21 09.453	⁶ 07/	2023	5
							I	D:EuDFQCL	JadmkXz	zttfEDB3	HrzviKL-R	tC?PsE	370Hq3	INSgPq	nL8w3ul	II XbGk	WrCDoi7J4z 5C?	011		
	-0-10-8	5	5-1-1	1	9-10-1	11		14-8-4		1	19-5	5-13		1	24	-3-7	1	29-4-8	1	
	0-10-8	5	5-1-1		4-9-9		1	4-9-9		1	4-9			1		9-9		5-1-1		
										4x4 =										
T									_	6	_									
					12 4 Г		5 _			\square			_	7						
							TR.						\geq	\$						
5-10-12			, 18 ⁴		\langle								//	\mathbb{N}^{-}			8			
5-1	4x6	6 =	3 10		_						//								3x6 <i>≈</i>	
	1 2	\square												//	\				9	
-0	17]			•							\					10)
	17		10	6			15		14	13					₿ 12		11		19	
			4x	×4 =						4x8=					4x4 =				LUS24	
																			20024	
	┣		5-1-1 5-1-1		<u>9-10-1</u> 4-9-9			<u>14-8-4</u> 4-9-9				20-7-12 5-11-8				24-10 4-2-1		29-4-8 4-6-2		
Scale = 1:52.5		0)- -		4-9-8	2		4-9-9				0-11-0)			4-2-1	10	4-0-2		
Loading		(pof)	Specing		2-0-0		cs	21			EFL			(loc)	l/defl	L/d	PLATES	GRIP		—
TCLL (roof)		(psf) 25.0	Spacing Plate Grip DOL	_ 1	.15		тс	2).52 V	ert(LL)		.05 1	5-16	>999	240	MT20	244/19	90	
TCDL BCLL		10.0 0.0	Lumber DOL Rep Stress Incl		1.15 NO		BC				ert(CT) lorz(CT)		.10 1 .02	5-16 10	>999 n/a	180 n/a				
BCDL	<u>.</u>	10.0	Code		RC2018/	/TPI2014		atrix-S			- (-)						Weight: 131 I	b FT = 2	0%	
LUMBER TOP CHORD	2x4 SP No.2	b			2)			6; Vult=11 CDL=6.0ps				·•								
BOT CHORD	2x4 SP No.2	2				Ke=1.00	; Cat. II;	Exp C; Ėn	closed;	MWFR	S (envel	ope)								
WEBS	2x3 SPF No No.2	.2 *Excep	pt* 17-2,10-9:2x4	4 SP		Interior (1) 4-1-8	d C-C Exte to 14-8-4,	Exterio	r(2R) 14	4-8-4 to									
BRACING TOP CHORD	Structural w	ood shea	athing directly ap	oplied o		left and r	ight exp	(1) 19-5-13 osed ; end	vertica	l left an	d right									
BOT CHORD	4-8-13 oc pi	urlins, ex	ccept end vertica applied or 6-0-0	als.		reactions	shown;	members ; Lumber D				or								
REACTIONS	bracing.		12=0-3-8, 17=0-		3)	DOL=1.6 All plates		4 MT20 uni	less oth	nerwise	indicated	d.								
REACTIONS	Max Horiz 1	7=77 (LC	33)		,			een design onconcurre												
		0=-106 (L 7=-212 (L	_C 13), 12=-258 _C 31)	(LC 9)	' 5)		ngs are a	assumed to												
		0=568 (L 7=893 (L	C 26), 12=1685 C 1)	(LC 1),	, 6)	Provide	nechani	ical connec		·	,									
FORCES	(lb) - Maxim Tension	um Com	pression/Maximu	um		joint 17,		pable of with plift at joint												
TOP CHORD	1-2=0/23, 2-		/343, 4-5=-1073/		7)			igned in ac												
	8-9=-237/15	2, 2-17=	533/215, 7-8=-10 -837/316, 9-10=-					sidential Co				and								
BOT CHORD	13-15=-187/	/971, 12-	16=-288/1273, 13=-213/106,		8)			rong-Tie Ll / Girder) or												
WEBS	11-12=-178/ 4-16=-69/95		11=-80/230 347/123, 5-15=-4	4/288.				nnect truss									~	an		
	5-13=-690/2 7-13=-154/8	15, 6-13	=-17/115,			Fill all na		where han									F. OF	MISS	D	
	8-12=-633/2	33, 8-11	=0/232, 2-16=-18	83/105	0,	of the tru	ss are n	SE(S) sect noted as fro				e iace				A	1 M		Nev?	
NOTES	9-11=-279/9				LO/ 1)	AD CASE Dead +	. ,	andard ve (balanc	ed): Lur	mber In	crease='	1.15.				A		TT M. VIER	1-1	
 Unbalance this design 		ds have I	been considered	d for	,	Plate In	crease= Loads	₌1.1 ⁵	, -			- /				8*	11		1*8	
9.						Vert:	1-2=-70), 2-6=-70,	6-9=-70	0, 10-17	7=-20					8-	Acetta	Ber	in all	
							trated L 19=-37	.oads (lb) 0 (F)								Nº	PE-200	1018807	JEB	
																Ý	Str. Co	Th	S A	
																	SION	ALEY	Ş	
																	u	July 1		

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

November 21,2023

										RELEASE	FOR CONSTRUCTION		
Job	Truss		Truss Type		Qty	Ply	Ro	of - HR Lot	169		D FOR PLAN REVIEW OPMENT SERVICES 162145485]	
P230875-01	1 D04		Common Girder		1	2	Job	o Reference	e (optional)		SUMMIT, MISSOURI		
Premier Building	Supply (Springhill, KS),	Spring Hills, KS - 66083,		Run: 8.63 S Nov ID:IndwZKP?5Ndf			ov 1 2023	3 MiTek Indu	stries, Inc. T	ie Nov 21 09:45.38 (WrCDoi794 230 ?f	07/2023	-	
		5-3-	4 4	10-4-12 5-1-8	1	4-8-4 I-3-8		<u>18-10-</u> 4-2-3	7	20-9-8 1-11-1			
	OTHE WIDT ARE	PLEMENTARY BEARING R MEANS TO ALLOW F H (SUCH AS COLUMN (THE RESPONSIBILITY (HE BUILDING DESIGNE	OR THE MINIMUM REC CAPS, BEARING BLOCH OF THE TRUSS MANUF	QUIRED SUPPORT (S, ETC.) ACTURER	5x5 =		5x5=	14	6x6	3x4 II			
	5-10-12	2	4x6 =										
										25	\bot		
		⊠ 16 5x10=	17 12 18	19 11 201	0 21	2	22 9	23	24				
		LUS26	Зх10 ш	8x8=	LUS	28	8x10:			MT18HS 6x12 =	1		
			LUS26 LUS26	LUS26 10x LUS2	10 = 8	LU	S28	LUS28	LUS28	LUS28			
		5-3-		10-4-12 5-1-8		4-8-4 I-3-8			0-9-8				
Scale = 1:50.1		5-3-	4 ,	5-1-8	4	1-3-8			6-1-4				
Plate Offsets (X, Y): [1:0-1-10,0-2-	4], [8:Edge,0-3-12], [9:	0-2-8,0-5-12], [10:0-2	-8,0-6-0]								_	
Loading TCLL (roof) TCDL BCLL BCDL	(psf) 25.0 10.0 0.0 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 NO IRC2018/TPI2014	CSI TC BC WB Matrix-S	0.90 Ve 0.95 Ve	EFL ert(LL) ert(CT) orz(CT)	in -0.12 -0.22 0.04	10-12 >9 10-12 >9	defl L/d 999 240 999 180 n/a n/a	PLATES MT20 MT18HS Weight: 255 lb	GRIP 197/144 197/144 FT = 20%	-	
LUMBER TOP CHORD BOT CHORD WEBS SLIDER BRACING TOP CHORD BOT CHORD	No.2 2x3 SPF No.2 *Exc Left 2x4 SP No.2 Structural wood shu 3-1-0 oc purlins, e: Rigid ceiling direct bracing.	eathing directly applied	except if n CASE(S) s provided th unless oth 3) Unbalance this design 4) Wind: ASC Vasd=91m Ke=1.00; (exterior zc	except if noted as front (F) or back (B) face in the LOAD						 13) Fill all nail holes where hanger is in contact with lumber. LOAD CASE(S) Standard 1) Dead + Roof Live (balanced): Lumber Increase=1.15, Plate Increase=1.15 Uniform Loads (lb/ft) Vert: 1-5=-70, 5-7=-70, 1-8=-20 Concentrated Loads (lb) Vert: 16=-860 (F), 17=-860 (F), 18=-860 (F), 19=-86 (F), 20=-860 (F), 21=-860 (F), 22=-860 (F), 23=-860 (F), 24=-860 (F), 25=-864 (F) 			

Max Horiz 1=133 (LC 9) Max Uplift 1=-823 (LC 8), 8=-875 (LC 8) Max Grav 1=4944 (LC 1), 8=5508 (LC 1) FORCES (lb) - Maximum Compression/Maximum Tension 1-3=-9771/1770, 3-4=-7508/1388, TOP CHORD 4-5=-4775/943. 5-6=-4741/929. 6-7=-179/114.7-8=-216/72 1-12=-1714/8926, 10-12=-1714/8926, BOT CHORD 9-10=-1395/7123, 8-9=-445/1871 WEBS 5-9=-435/2690. 3-12=-256/2097. 3-10=-1985/433, 4-10=-427/2766, 4-9=-3596/699, 6-9=-598/3586,

1=0-3-8, 8=0-3-8, (req. 0-4-5)

NOTES

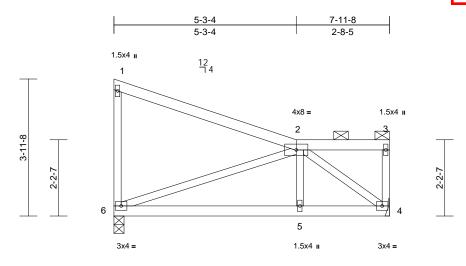
REACTIONS (size)

 2-ply truss to be connected together with 10d (0.131"x3") nails as follows: Top chords connected as follows: 2x6 - 2 rows staggered at 0-9-0 oc, 2x4 - 1 row at 0-9-0 oc. Bottom chords connected as follows: 2x8 - 2 rows staggered at 0-8-0 oc. Web connected as follows: 2x3 - 1 row at 0-9-0 oc.

6-8=-4345/933

4) Wind: AŠCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=35ft; Ke=1.00; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) 0-1-12 to 5-3-4, Interior (1) 5-3-4 to 14-8-4, Exterior(2R) 14-8-4 to 19-8-4, Interior (1) 19-8-4 to 20-7-12 zone; cantilever left and right exposed; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

5) All plates are MT20 plates unless otherwise indicated.


- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- WARNING: Required bearing size at joint(s) 8 greater than input bearing size.
- Bearings are assumed to be: Joint 1 SP 2400F 2.0E crushing capacity of 805 psi, Joint 8 SPF No.2 crushing capacity of 425 psi.
- Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 823 lb uplift at joint 1 and 875 lb uplift at joint 8.
- 10) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 11) Use Simpson Strong-Tie LUS26 (4-10d Girder, 3-10d Truss) or equivalent spaced at 2-0-0 oc max. starting at 2-0-12 from the left end to 8-0-12 to connect truss(es) to front face of bottom chord.
- 12) Use Simpson Strong-Tie LUS28 (6-10d Girder, 3-10d Truss) or equivalent spaced at 2-0-0 oc max. starting at 10-0-12 from the left end to 20-0-12 to connect truss(es) to front face of bottom chord.

16023 Swingley Ridge Rd. Chesterfield, MC 63017 314.434.1200 / MITrek-US.com

						RELEASE FOR CONSTRUCTION
Job	Truss	Truss Type	Qty	Ply	Roof - HR Lot 169	AS NOTED FOR PLAN REVIEW
D000075 04	Dor		1	1		DEVELOPMENT SERVICES 162145486
P230875-01	D05	Roof Special	1	1	Job Reference (optional	LEE'S SUMMIT, MISSOURI

Run: 8.63 S Nov 1 2023 Print: 8.630 S Nov 1 2023 MiTek Industries, Inc. Te Nov 2109493407/210:230 ID:IW5V?WBK58UqjajH6p8bCQzviKN-RfC?PsB70Hq3NSgPqnL8w3ulTXbG WrCDoi7945697

						. <u> </u>						
Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15	TC	0.61	Vert(LL)	-0.03	5-6	>999	240	MT20	197/144
TCDL	10.0	Lumber DOL	1.15	BC	0.29	Vert(CT)	-0.06	5-6	>999	180		
BCLL	0.0	Rep Stress Incr	YES	WB	0.28	Horz(CT)	0.00	4	n/a	n/a		
BCDL	10.0	Code	IRC2018/TPI2014	Matrix-P							Weight: 36 lb	FT = 20%
LUMBER	· · ·		7) This truck i	s designed in ac	cordonco w	ith the 2019					. · ·	
	2v4 SP No 2			al Residential Co								

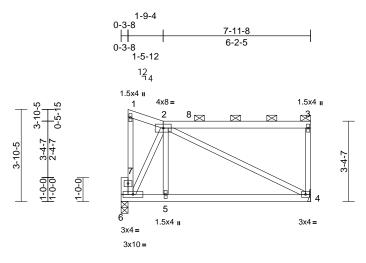
TOP CHORD	2x4 SP N	0.2
BOT CHORD	2x4 SP N	0.2
WEBS	2x3 SPF I	No.2
BRACING		
TOP CHORD	Structura	wood sheathing directly applied or
	7-11-8 oc	purlins, except end verticals, and
	2-0-0 oc p	ourlins: 2-3.
BOT CHORD	Rigid ceil	ing directly applied or 10-0-0 oc
	bracing.	
	bracing.	
REACTIONS	0	4= Mechanical, 6=0-3-8
REACTIONS	(size)	4= Mechanical, 6=0-3-8 6=-160 (LC 8)
REACTIONS	(size) Max Horiz	,
REACTIONS	(size) Max Horiz Max Uplift	6=-160 (LC 8)
REACTIONS	(size) Max Horiz Max Uplift Max Grav	6=-160 (LC 8) 4=-73 (LC 9), 6=-81 (LC 13)
	(size) Max Horiz Max Uplift Max Grav	6=-160 (LC 8) 4=-73 (LC 9), 6=-81 (LC 13) 4=349 (LC 1), 6=349 (LC 1)
	(size) Max Horiz Max Uplift Max Grav (lb) - Max Tension	6=-160 (LC 8) 4=-73 (LC 9), 6=-81 (LC 13) 4=349 (LC 1), 6=349 (LC 1)
FORCES	(size) Max Horiz Max Uplift Max Grav (lb) - Max Tension	6=-160 (LC 8) 4=-73 (LC 9), 6=-81 (LC 13) 4=349 (LC 1), 6=349 (LC 1) imum Compression/Maximum /235, 1-2=-141/98, 2-3=-39/43,

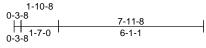
Scale = 1:33.3

WEBS 2-6=-355/325, 2-5=0/211, 2-4=-421/198 NOTES

- Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=35ft; Ke=1.00; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) 0-1-4 to 5-3-4, Interior (1) 5-3-4 to 7-10-4 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) Provide adequate drainage to prevent water ponding.
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
 Bearings are assumed to be: Joint 6 SP No.2 crushing
- Bearings are assumed to be: Joint 6 SP No.2 crushing capacity of 565 psi.
- 5) Refer to girder(s) for truss to truss connections.
- Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 81 lb uplift at joint 6 and 73 lb uplift at joint 4.

 This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
 Graphical purlin representation does not depict the size


- B) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or
- bottom chord.
- LOAD CASE(S) Standard



						RELEASE FOR CONSTRUCTION
Job	Truss	Truss Type	Qty	Ply	Roof - HR Lot 169	AS NOTED FOR PLAN REVIEW DEVELOPMENT SERVICES 162145487
P230875-01	D06	Roof Special	1	1	Job Reference (optional	

Run: 8.63 S Nov 1 2023 Print: 8.630 S Nov 1 2023 MiTek Industries, Inc. The Nov 2109393407/2992 ID:miftDsCysSchLkITgWfqkezviKM-RfC?PsB70Hq3NSgPqnL8w3uITXbGKW CDoi7J4zJoff

Scale = 1:48.4

2) 3)

4)

5)

6)

Interior (1) 1-9-4 to 7-10-4 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for

members and forces & MWFRS for reactions shown;

Provide adequate drainage to prevent water ponding.

Bearings are assumed to be: Joint 6 SP No.2 crushing

Provide mechanical connection (by others) of truss to

bearing plate capable of withstanding 55 lb uplift at joint

This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

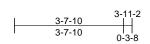
Refer to girder(s) for truss to truss connections.

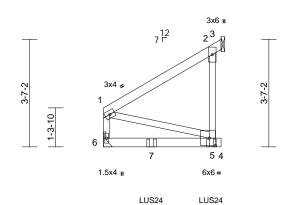
Lumber DOL=1.60 plate grip DOL=1.60

capacity of 565 psi.

6 and 96 lb uplift at joint 4.

	()							(1)				
Loading TCLL (roof)	(psf) 25.0	Spacing Plate Grip DOL	2-0-0 1.15	CSI TC	0.01	DEFL	in -0.04	(loc) 4-5	l/defl >999	L/d 240	PLATES MT20	GRIP 197/144
TCLL (1001)	25.0 10.0	Lumber DOL	1.15	BC	0.91 0.33	Vert(LL) Vert(CT)	-0.04	4-5 4-5	>999 >999	240 180	WI120	197/144
BCLL	0.0	Rep Stress Incr	YES	WB	0.33	Horz(CT)	-0.09	4-5 4	>999 n/a	n/a		
BCDL	10.0	Code	IRC2018/TF		0.27	11012(01)	0.00	4	n/a	n/a	Weight: 39 lb	FT = 20%
LUMBER				nis truss is designed in acco								
TOP CHORD	2x4 SP No.2			ternational Residential Cod			and					
BOT CHORD	2x4 SP No.2			802.10.2 and referenced sta raphical purlin representation			0.70					
WEBS OTHERS	2x3 SPF No.2 2x4 SP No.2			the orientation of the purlir			SIZE					
	2X4 SP N0.2			ottom chord.	along the							
	0	- this and in a star and it		CASE(S) Standard								
TOP CHORD	Structural wood she 6-0-0 oc purlins, ex		cu oi									
	2-0-0 oc purlins, ex		ina									
BOT CHORD	Rigid ceiling directly		с									
	bracing.											
REACTIONS	(size) 4= Mecha	anical, 6=0-3-8										
	Max Horiz 6=-147 (L	.C 8)										
	Max Uplift 4=-96 (LC	9), 6=-55 (LC 13)										
	Max Grav 4=340 (L0	C 1), 6=333 (LC 1)										
FORCES	(lb) - Maximum Corr	pression/Maximum										
	Tension											
TOP CHORD	1-6=-55/77, 1-2=-74	/69, 2-3=-63/69,										
	3-4=-213/225											
BOT CHORD	5-6=-191/262, 4-5=-											
WEBS	2-6=-345/179, 2-5=0)/260, 2-4=-243/162										
NOTES												
	CE 7-16; Vult=115mph											
	nph; TCDL=6.0psf; BC		,									an
	Cat. II; Exp C; Enclose		pe)								OFI	AL DA
exterior zo	one and C-C Exterior(2	(E) U-4-1∠ to 1-9-4,									HE UT	MISS



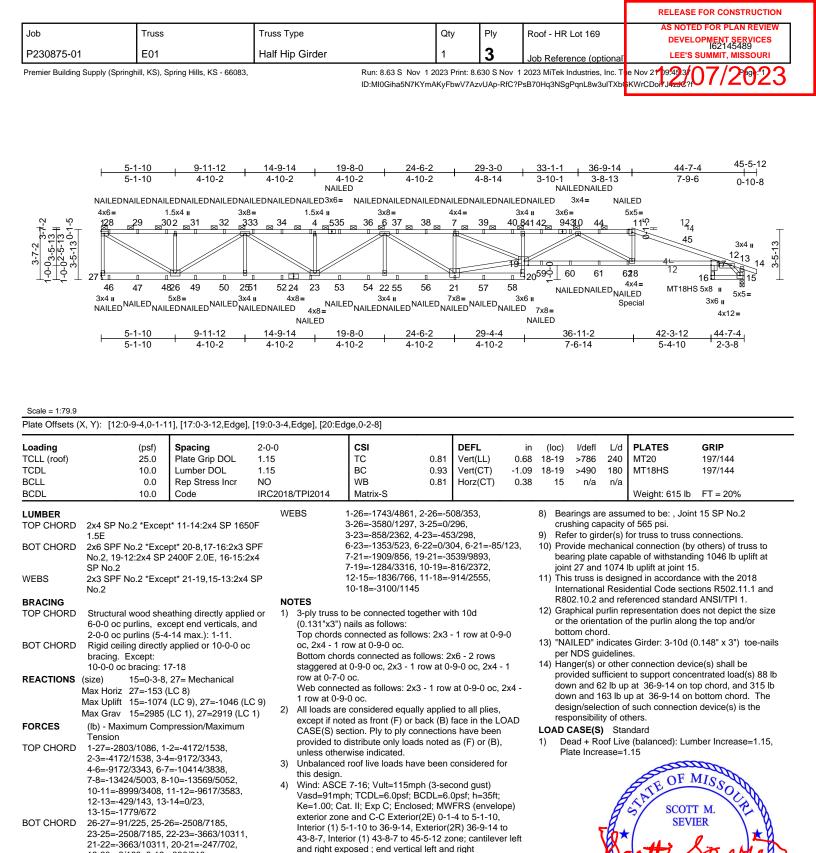

 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.
 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not besign value to dury with with where outputs into design is based only door parameters shown, and is for an individual building design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members and property incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TPH1 Quality Criteria**, and **DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcscomponents.com)

16023 Swingley Ridge Rd. Chesterfield MO 63017 314.434.1200 / MiTek-US.com

						RELEASE FOR CONSTRUCTION
Job	Truss	Truss Type	Qty	Ply	Roof - HR Lot 169	AS NOTED FOR PLAN REVIEW DEVELOPMENT SERVICES 162145488
P230875-01	DG01	Jack-Open Girder	1	1	Job Reference (optional	

Run: 8.63 S Nov 1 2023 Print: 8.630 S Nov 1 2023 MiTek Industries, Inc. Te Nov 210933 07/292 ID:miftDsCysSchLkITgWfqkezviKM-RfC?PsB70Hq3NSgPqnL8w3uITXbGKW CDoi7J4z0

Scale = 1:38.5


Plate Offsets (X, Y): [5:0-2-8,0-3-0]

Loading (psf) TCLL (roof) 25.0 TCDL 10.0 BCLL 0.0 BCDL 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 NO IRC2018/TPI2014	CSI TC BC WB Matrix-P	0.54 0.88 0.17	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.05 -0.09 -0.01	(loc) 5-6 5-6 3	l/defl >978 >519 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 19 lb	GRIP 197/144 FT = 20%
LUMBER TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.2 WEBS 2x3 SPF No.2 BRACING TOP CHORD Structural wood she 4-0-0 oc purlins, ex BOT CHORD Rigid ceiling directly bracing.	eathing directly applied cept end verticals. r applied or 10-0-0 oc anical, 6= Mechanical 12) C 12), 6=-42 (LC 12) C 1), 6=387 (LC 1) apression/Maximum 19/45, 2-3=-135/306 0 92/152 a (3-second gust) DL=6.0psf; h=35ft; ad; MWFRS (envelope 2E) zone; cantilever lef left and right orces & MWFRS for 1.60 plate grip r a 10.0 psf bottom ith any other live loads ss connections. (by others) of truss to nding 42 lb uplift at joi ance with the 2018	 7) Use Simpso Truss, Singl oc max. star connect trus 8) Fill all nail h 9) In the LOAD of the truss. LOAD CASE(5) 1) Dead + Ro Plate Incre Uniform Lo Vert: 1-3 Concentral Vert: 5= 1) Vert: 5= 	n Strong-Tie LUS24 e Ply Girder) or equiviting at 1-8-2 from the s(es) to front face of bles where hanger is CASE(S) section, lc are noted as front (F) Standard of Live (balanced): L ase=1.15	valent : e left en botton in con bads ap) or bad	spaced at 2-0- nd to 3-8-2 to n chord. tact with lumb oplied to the fa ck (B).	0 er. ce				PE-2001	MISSOLP T M. ER Jeruson 018807

International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

November 21,2023

exposed;C-C for members and forces & MWFRS for

Provide adequate drainage to prevent water ponding.

All plates are MT20 plates unless otherwise indicated.

This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

reactions shown; Lumber DOL=1.60 plate grip

DOL=1.60

5) 6)

7)

Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a trust system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria**, and **DSB-22** available from Truss Plate Institute (www.tpinst.org) 16023 Swingley Ridge Rd. Chesterfield MO 63017 and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com) 314.434.1200 / MiTek-US.com

NUMBER

PE-2001018807

November 21,2023

E

THE SSIONAL

C

ontinued on page 2 WAR

19-20=-2/183, 8-19=-330/213,

15-16=-376/973

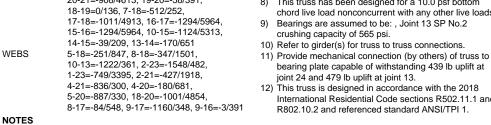
18-19=-4254/11573, 17-18=-3323/9116,

12-17=-2947/8143, 16-17=-99/301,

						RELEASE FOR CONSTRUCTION
Job	Truss	Truss Type	Qty	Ply	Roof - HR Lot 169	AS NOTED FOR PLAN REVIEW
P230875-01	E01	Half Hip Girder	1	3	Job Reference (optional	DEVELOPMENT SERVICES 162145489 LEE'S SUMMIT, MISSOURI
Premier Building Supply (Springh	ill, KS), Spring Hills, KS - 66083,	Run: 8.63 S Nov 1 2 ID:MI0Giha5N7KYmA	023 Print: 8.0 KyFbwV7Az	530 S Nov 1 vUAp-RfC?P	2023 MiTek Industries, Inc. T sB70Hq3NSgPqnL8w3uITXb0	e Nov 2109:49.3707/219:23

Uniform Loads (lb/ft)

Vert: 1-11=-70, 11-13=-70, 13-14=-70, 20-27=-20, 17-19=-20, 15-16=-20


Concentrated Loads (lb)

Vert: 23=-23 (F), 4=-51 (F), 21=-23 (F), 7=-51 (F), 11=-7 (F), 28=-71 (F), 29=-51 (F), 30=-51 (F), 31=-51 (F), 32=-51 (F), 33=-51 (F), 34=-51 (F), 35=-51 (F), 36=-51 (F), 37=-51 (F), 38=-51 (F), 39=-51 (F), 40=-51 (F), 42=-7 (F), 43=-7 (F), 44=-7 (F), 46=-28 (F), 47=-23 (F), 48=-23 (F), 49=-23 (F), 50=-23 (F), 51=-23 (F), 52=-23 (F), 53=-23 (F), 54=-23 (F), 59=-23 (F), 56=-23 (F), 57=-23 (F), 58=-23 (F), 59=-92 (F), 60=-92 (F), 61=-92 (F), 62=-407 (F)

							RELEASE FOR CONSTRUCTION
Job	Truss	Truss Type		Qty	Ply	Roof - HR Lot 169	AS NOTED FOR PLAN REVIEW DEVELOPMENT SERVICES 162145490
P230875-01	E02	Half Hip		1	2	Job Reference (optional	I62145490 LEE'S SUMMIT, MISSOURI
Premier Building Supply (Sp	ringhill, KS), Spring Hills, KS	5 - 66083,				1 2023 MiTek Industries, Inc. Ti PSB70Hq3NSgPqnL8w3uITXb	
I	7-6-11 7-6-11	14-9-14 7-3-3	<u>22-1-1</u> 7-3-3	<u>29-</u> 7-1	-15	<u>33-3-14</u> <u>37-9-1</u> 4-0-14 <u>4-5-1</u>	
4x6=	4x4	4= 3x6= 3x4:	=	3x4=	3x6=	3x4 II 6x6=	1 <u>2</u>
9-2 7-6 7-6 1-12 7-6 1-12					26 6		14 3x4≈ ⊤
4 0							9
4-9-2 4-7-(3-7-(4-7-6							27 3x4 μ μ
V 7					19		
					10	= 19 ^Q 17	
	23			20		3x4=	1.5x4 MT18HS 5x8
	4x6			5x10=		5x10= 12	3x6 II
		4x4=					4x12=
—	7-6-11	14-9-14	22-1-1	29-		33-2-10 37-9-1	
1	7-6-11	7-3-3	7-3-3	7-3	3-3	3-10-6 4-7-3	4-5-15 2-3-8

Plate Offsets (X, Y): [8:0-1-12,0-3-4]	, [10:0-9-4,0-1-11],	[15:0-3-12	,Edge], [18:0-3	3-12,0-3-4], [19:I	Edge,0-2-8], [23:0-2-8,0-	-2-0]					
Loading TCLL (roof) TCDL BCLL BCDL	(psf) 25.0 10.0 0.0 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC201	8/TPI2014	CSI TC BC WB Matrix-S	0.83 0.84 0.83	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.41 -0.75 0.34	(loc) 7-18 19-20 13	l/defl >999 >712 n/a	L/d 240 180 n/a	PLATES MT20 MT18HS Weight: 398 lb	GRIP 197/144 197/144 FT = 20%
UMBER OP CHORD SOT CHORD VEBS BRACING OP CHORD SOT CHORD IOINTS	2x4 SP No.2 2x4 SP No.2 *Except No.2, 18-10:2x4 SP 2 2x3 SPF No.2 *Except Structural wood shea 2-2-0 oc purlins, exc 2-0-0 oc purlins, exc 2-0-0 oc purlins (4-6- Rigid ceiling directly bracing. Except: 10-0-0 oc bracing: 16 1 Brace at Jt(s): 1, 16	t* 19-7,15-14:2x3 SF 2400F 2.0E pt* 13-11:2x4 SP No athing directly applie sept end verticals, ar -1 max.): 1-8. applied or 10-0-0 oc	1) PF 0.2 ed or nd 2)	2-ply truss t (0.131"x3") Top chords oc, 2x4 - 1 r Bottom choi 0-9-0 oc, 2x Web connec All loads are except if noi CASE(S) se provided to unless othe Unbalanced this design. Wind: ASCE	b be connected i nails as follows: connected as fo ow at 0-9-0 oc. ds connected as 3 - 1 row at 0-9- ted as follows: 2 e considered equ ed as front (F) o ction. Ply to ply distribute only lo wise indicated. roof live loads h 5 -7-16; Vult=115	lows: 2x3 - a follows: 2: 0 oc. 2x3 - 1 row ally applied r back (B) f connection ads noted a ave been of mph (3-sec	• 1 row at 0-9 at 0-9-0 oc. d to all plies, face in the LC s have been as (F) or (B), considered fo	DAD	or t	he orien om choi	tation o rd.	presentation doe of the purlin along	s not depict the size
	(alze) 13-0-3-0, Max Horiz 24=-208 (I Max Uplift 13=-479 (I Max Grav 13=2068 ((lb) - Maximum Comp Tension 1-24=-1926/508, 1-2; 2-4=-4613/1070, 4-5; 5-7=-5967/1450, 7-8; 8-9=-5201/1228, 9-11 10-11=-296/69, 11-1; 23-24=-138/269, 21-; 20-21=-908/4613, 19 18-19=0/136, 7-18=-1 17-18=-1011/4913, 1	LC 8) LC 9), 24=-439 (LC 1 LC 1), 24=1995 (LC pression/Maximum =-2965/708, =-5199/1222, =-5994/1453, 0=-6306/1445, 2=0/23, 11-13=-126 23=-541/2965, +-20=-58/391, 512/252,	5)	Ke=1.00; Ca exterior zon Interior (1) 5 40-4-12, Inth left and righ exposed;C-1 reactions sh DOL=1.60 Provide ade All plates ar This truss h chord live lo	h; TCDL=6.0psf at. II; Exp C; Enc e and C-C Exter -1-4 to 33-3-14, erior (1) 40-4-12 t exposed ; end C for members a own; Lumber DC quate drainage f e MT20 plates u e 3x4 MT20 unle as been designe ad nonconcurre	losed; MW ior(2E) 0-1 Exterior(2F to 45-5-12 vertical left nd forces & DL=1.60 pla o prevent v nless other ss otherwi d for a 10.0 nt with any	FRS (envelop 4 to 5-1-4, R) 33-3-14 to zone; cantile and right & MWFRS foi ate grip water ponding wise indicate be indicated. 0 psf bottom other live loa	g. d.				STATE OF M	

Scale = 1:80

 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.
 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not besign value to dury with with where outputs into design is based only door parameters shown, and is for an individual building design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members and property incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TPH1 Quality Criteria**, and **DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcscomponents.com)

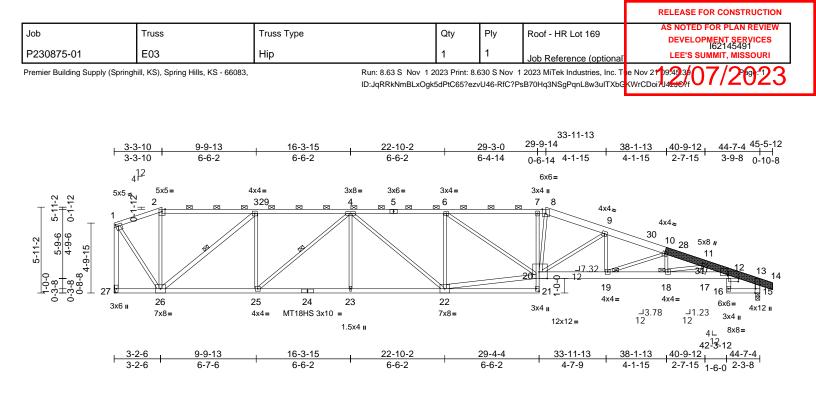
crushing capacity of 565 psi.

joint 24 and 479 lb uplift at joint 13.

bearing plate capable of withstanding 439 lb uplift at

International Residential Code sections R502.11.1 and

R802.10.2 and referenced standard ANSI/TPI 1.


SEVIER

PE-2001018807

November 21,2023

LXUM2

OFFSSIONAL ET

Scale = 1:79.6

Plate Offsets (2	X, Y): [1:0-2-0,0-1-12	e], [8:0-3-0,Edge], [11:0)-2-8,0-1	-8], [12:0-0-8,0	0-2-9], [12:0-9-4,	0-2-5], [15	:0-3-8,Edge],	[20:0-6	-12,Edge	e], [21:E	dge,0-2	2-8]	
Loading TCLL (roof) TCDL BCLL BCDL	(psf) 25.0 10.0 0.0 10.0	Plate Grip DOL Lumber DOL Rep Stress Incr	2-0-0 1.15 1.15 YES IRC201	8/TPI2014	CSI TC BC WB Matrix-S	0.95 0.99 0.96	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.48 -0.88 0.41	(loc) 7-20 21-22 15	l/defl >999 >606 n/a	L/d 240 180 n/a	PLATES MT20 MT18HS Weight: 273 lb	GRIP 197/144 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS LBR SCAB BRACING		ept* 22:2x4 SP No.2			1-26=-481/1877, 3-26=-2296/543, 3-25=-103/960, 4 4-22=-122/400, (20-22=-792/3900 9-20=-1024/291, 10-19=-1184/293 11-17=-142/73, 1	6-20=-13 4-25=-127 6-22=-778 4, 8-20=-3 9-19=-62 3, 10-18=-	0/522, 8/288, 4-23=0/ /299, 64/1284, /611, 3/240,	/253,	or t	he orien tom cho	tation o rd.	of the purlin along	s not depict the size the top and/or
TOP CHORD	2-8-10 oc purlins, e 2-0-0 oc purlins (2-1			No.2 with 2 I	10-9 scab 10 to 1 row(s) of 10d (0.	131"x3") n	ails spaced 9"						
BOT CHORD WEBS JOINTS	Rigid ceiling directly bracing. 1 Row at midpt 1 Brace at Jt(s): 19, 18	applied or 2-2-0 oc 3-26, 4-25	2)	row(s) at 7" joint 14, nail	starting at 4-0-0 o.c. for 3-9-11; s 3 row(s) at 7" o. roof live loads h	tarting at (c. for 3-4-()-3-5 from end).	lat					
	(size) 15=0-3-8, Max Horiz 27=-208 (Max Uplift 15=-466 (, 27= Mechanical (LC 8) (LC 9), 27=-411 (LC 8) (LC 1), 27=1994 (LC 1		Wind: ASCE Vasd=91mp Ke=1.00; Ca exterior zone	7-16; Vult=115r h; TCDL=6.0psf; at. II; Exp C; Encl e and C-C Exteri 14-9-6 to 21-10-	BCDL=6. osed; MW or(2E) 11-	0psf; h=35ft; /FRS (envelop 7-8 to 14-9-6,	,					
FORCES	(lb) - Maximum Com Tension 1-2=-1125/349, 2-3= 3-4=-2808/726, 4-6= 6-7=-4506/1135, 7-6 8-9=-4590/1119, 9-1 10-11=-6553/1477, 12-13=-618/188, 13	- 1052/353, 4078/1038, 3=-4503/1135, 10=-5514/1269, 11-12=-6676/1493, -14=0/23,	4) 5) 6)	41-3-10, Ext 48-4-8 to 56 exposed ; er members an Lumber DOL Provide ade All plates are	rerior(2R) 41-3-10 -11-8 zone; cant nd vertical left an nd forces & MWF _=1.60 plate grip quate drainage to e MT20 plates ur as been designed	D to 48-4-8 ilever left a d right exp RS for rea DOL=1.60 p prevent iless other	B, Interior (1) and right bosed;C-C for actions shown; D water ponding rwise indicated	;				STATE OF M	
BOT CHORD	1-27=-1973/517, 13 26-27=-157/275, 25 23-25=-718/3779, 2: 21-22=-30/229, 20-2 19-20=-1054/5198, 17-18=-1383/6431, 12-16=0/55, 15-16=-	-26=-499/2808, 2-23=-718/3779, 21=0/118, 7-20=-337/2 18-19=-1326/6296, 12-17=-1383/6431,	9)	chord live los Bearings are crushing cap Refer to gird Provide mec bearing plate 27 and 466 l 0) This truss is	ad nonconcurrer e assumed to be pacity of 565 psi. ler(s) for truss to chanical connecti e capable of with b uplift at joint 11 designed in acco I Residential Coco	t with any , Joint 15 truss conr on (by oth standing 4 5. ordance w	other live load SP No.2 nections. ers) of truss to 111 lb uplift at j ith the 2018	o joint				PE-20010	Server 018807 2

International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

November 21,2023

											RELEAS	E FOR CONST	RUCTION
Job	Truss		Truss Type		Qty	Ply	F	Roof - HR	Lot 169			ED FOR PLAN	
P230875-01	E04		Hip		1	1		Job Refere	ence (onti	onali	LEE'S	LOPMENT SEF 16214549 S SUMMIT, MIS	SOURI
Premier Building Supply	(Springhill, KS), Sp	oring Hills, KS - 66083		Run: 8.63 S Nov ID:vbPRxPmd18j			Nov 1 20	023 MiTek lı	ndustries, I	nc. Tue No		07/2	023
7-1-2 6-11-6 5-11-6 4-9-15	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1 1 10		9-8-1 -6-1 3x6= 6347 ₪ ₩ ₩	<u>26-3-</u> 6-7-1 ∞	6x1		9		×4≈	1-3)-8	44-7-4 5-6-1	45-6-4
		27						₽ <u>1</u> 	1	19	18	17	
	6x6= 7x8:	26	25 24	23		22		10x10	= 4	4x4=		6x6=	810
		= 7x8= 5x8=	1.5x4 u 4x6=	-		5x	:8=					8x8=	4x12 I
	2-0-12 5-3- 2-0-12 3-3	<u>12 6-8-6 1</u> -0 1-4-10	<u>3-1-15 15-4-4</u> 6-5-9 2-2-5	19-8-1 4-3-13	<u>26-5</u> 6-9-	<u>2</u> 1	<u>29-4-4</u> 2-11-2	<u>4 34</u> - 2 4-	- <u>2-12</u> 10-8	<u>- 39-</u> - 4-1	1 <u>-3 4</u> 0-8	<u>2-3-12 44-7</u> 3-2-9 2-3	<u>7-4</u> -8
Scale = 1:79.8													
Plate Offsets (X, Y):	[1:0-2-8,0-1-8], [28:0-2-12,0-2-8	[8:0- <mark>6-0,0-1-11], [1</mark> 3], [29:0-4-8,0-3-8],):0-4-0,Edge], [13:0-0-8,0 [30:Edge,0-2-8])-2-9], [13:0-9-4,0-2	2-1], [16:	0-3-8,Edge]], [20:0-3	3-0,0-4-8],	, [21:Edge	e,0-2-8], [2	22:0-1-12,0	-2-8],	
L oading TCLL (roof) TCDL	(psf) 25.0 10.0	Spacing Plate Grip DOL Lumber DOL	2-0-0 1.15 1.15	CSI TC BC	0.84 0.89	DEFL Vert(LL) Vert(CT)	ir -0.45 -0.80	5 20	>999	L/d PL 240 MT 180	ATES 20	GRIP 244/190	

TCLL (roof) TCDL BCLL BCDL	25.0 10.0 0.0 10.0	Plate Grip DOL Lumber DOL Rep Stress Incr Code	1.15 1.15 YES	8/TPI2014	TC BC WB Matrix-S	0.84 0.89 0.99	Vert(LL) Vert(CT) Horz(CT)	-0.45 -0.80 0.43	20 20 16	>999 >663 n/a	240 180 n/a	MT20 Weight: 305 lb	244/190 ET - 20%
LUMBER TOP CHORD BOT CHORD WEBS LBR SCAB BRACING TOP CHORD BOT CHORD WEBS REACTIONS	2x4 SP No.2 *Except 1.5E, 10-15:2x6 SPI 2x4 SP No.2 *Except SPF No.2, 20-13:2x 2x3 SPF No.2 *Excet 26-5,22-20,31-1,16- 15-10 SPF No.2 both Structural wood shet 2-2-0 oc purlins, ext 2-0-0 oc purlins, ext 2-2-0 oc purlins, ext 2-7 Rigid ceiling directly bracing. 1 Row at midpt (size) 16=0-3-10 Max Horiz 31=-192 (Max Grav 16=2083 (lb) - Maximum Cont Tension 1-2=-944/314, 2-3=- 3-4=-1776/558, 4-5= 5-7=-3321/920, 7-8= 5-7=-3321/920, 7-8= 5-7=-3321/920, 7-8= 5-7=-3321/920, 7-8= 2-29=-1504/545, 28 2-29=-1504/545, 28 27-28=-64/0, 3-28=- 25-26=-512/2801, 2 20-21=0/19, 9-20=- 19-20=-1070/5237,	bt* 6-8:2x4 SP 1650F F No.2 bt* 30-2,3-27,21-9:2x3 6 SP 2400F 2.0E apt* 14:2x4 SP No.2 th sides eathing directly applied ccept end verticals, an 7-12 max.): 4-8. applied or 6-0-0 oc 5-26, 7-22, 8-22 0, 31= Mechanical (LC 8) (LC 9), 31=-391 (LC 8 (LC 1), 31=1994 (LC 1), 31=1994 (LC 1), 31=1994 (LC 1), 31=1994 (LC 1), 31=1994 (LC 1), 31=-391 (LC 8 (LC 1), 31=1994 (LC 1), 31=-391 (LC 8 (LC 1), 31=194 (LC 1), 31=194 (LC 1), 31=-391 (LC 8 (LC 1), 31=-391 (LC 8 (L	d or N(d 1) 2) 3) 1) 1) 5, 7) 8) 9)	EBS Attached 1: No.2 with 2 o.c.except row(s) at 7' Unbalancer this design. Wind: ASC Vasd=91m Ke=1.00; C exterior zor Interior (1) 25-4-4, Inte 37-9-10 to cantilever la for reaction DOL=1.60 Provide add All plates a Chord live la Bearings al crushing ca Refer to gir Provide me bearing pla	29-31=-183/315 2-28=-382/1330 4-28=-36/180, 4 5-26=-1615/392 8-22=-935/258, 8-20=-509/2157 11-19=-31/515, 7-23=-425/218, 12-18=0/154 3-0-4 scab 10 to row(s) of 10d (0 starting at 0-3-1 o.c. for 3-4-0. d roof live loads h	, 26-28=-3 -26=-99/12 , 7-22=-42 20-22=-59 , 11-20=-1 5-25=0/26 12-19=-11 15, both factorial 131"x3") n 0 from end have been of mph (3-sectorial 132"x3") n 0 from end have been of to restartion (by oth have been of to russ contribution (by oth to rus	14/2087, 14,2087, 14, 8/105, 7/3245, 226/313, 0,5-23=-189, 46/283, 2e(s) 2x6 SP ails spaced 9 at joint 15, n considered fc cond gust) 0psf; h=35ft; FRS (envelo (2R) 18-3-6 t xterior(2R) to 57-0-0 zo vertical left ar cres & MWFF 0 plate grip water pondin- se indicated. 0 psf bottom other live loa SP No.2 ections. ers) of truss	F p" hail 3 or pe) 12, to ne; nd RS g. ads. to	Inte R8 11) Gra or t bot	ernation 02.10.2 aphical p	al Resi and relevant and relevant rd. c) Sta	ined in accordance dential Code sect ferenced standarce epresentation doe of the purlin along	ANSITPI 1. as not depict the size the top and/or MISSOLUTION ISSOLUTION IL ENGINEER

November 21,2023

Antitlek-US-com 16023 Swingley Ridge Rd. Chesterfield, MO 63017 314.434.1200 / MITek-US.com

							RELEASE FOR	CONSTRUCTION
Job	Truss	Truss Type		Qty	Ply	Roof - HR Lot 169		R PLAN REVIEW NT SERVICES 2145493
P230875-01	E05	Hip		1	1	Job Reference (optional		2145493 IIT, MISSOURI
Premier Building Sup	ply (Springhill, KS), Spring Hills, I	KS - 66083,				2023 MiTek Industries, Inc. T Hq3NSgPqnL8w3uITXbGKWr		/2023
		10-3-10 16-6-12 4-7-2 6-3-2	<u>22-9-14</u> 6-3-2) <u>-11-13</u> '-1-15	37-1-13 7-1-15	44-7-4 7-5-7	45-5-12
	412 3x4 u	5x10=	3x8= 6	5				
	6x6 = 22	5				3x4 ≈ 6		
-3-2 8-1-6 7-1-6	1					3x6= 7	3x4≈	
8-3-2 8-1- 7-1-		// //					8	

16 15

3x8=

4x6=

22-11-2

6-4-6

14 13

3x4=

37-1-13

7-1-15

MT18HS 3x10 =

29-11-13

7-0-11

Course November 21,2023

26

<u>44-7-4</u> 7-5-7

12

6x6=

9

Ì 11

MT18HS 12x20 =

-

16023 Swingley Ridge Rd. Chesterfield, MO 63017 314.434.1200 / MiTek-US.com

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

Scale = 1:80.7

5x8=

3x4 II

10-2-6

4-7-2

18

4x12=

16-6-12

6-4-6

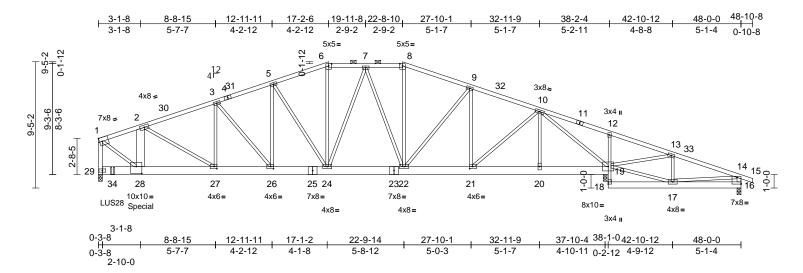
17

1.5x4 **I**

Plate Offsets (X, Y): [11:Edge,0-9-8], [12:0-2-8,0-3-0], [20:0-3-4,0-2-4]

<u>5-7-4</u> 5-7-4

3-9-15


21

4x6 **I**

Loading TCLL (roof) TCDL BCLL BCDL	(psf) 25.0 10.0 0.0 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC201	8/TPI2014	CSI TC BC WB Matrix-S	0.79 0.95 0.82	Vert(CT)	in -0.30 -0.56 0.14	(loc) 12-13 13-15 11	l/defl >999 >944 n/a	L/d 240 180 n/a	PLATES MT20 MT18HS Weight: 234 lb	GRIP 197/144 244/190 FT = 20%
	 2-9-9 oc purlins, ex 2-0-0 oc purlins (2-7 Rigid ceiling directly bracing. 1 Row at midpt 	t* 2-19:2x3 SPF No.2 1650F 1.5E pt* 2x4 SP No.2 athing directly applie cept end verticals, an -15 max.): 3-5. applied or 2-2-0 oc 4-18, 4-15, 6-15 21= Mechanical LC 8) LC 9), 21=-363 (LC 8 (LC 1), 21=1993 (LC	d or d 3) 4) 5) 6) 3) 7)	Vasd=91mpl Ke=1.00; Ca exterior zone Interior (1) 11 28-10-4, Inte 34-3-10 to 4 cantilever lef right expose for reactions DOL=1.60 Provide adee All plates are This truss ha chord live los Bearings are crushing cap Refer to gird Provide mec	7-16; Vult=115mp n; TCDL=6.0psf; B t. II; Exp C; Enclos e and C-C Exterior 6-7-8 to 21-9-6, Ex rior (1) 28-10-4 to 1-5-9, Interior (1) 4 t and right expose d;C-C for member shown; Lumber D quate drainage to be MT20 plates unle is been designed to ad nonconcurrent assumed to be: , acity of 565 psi. er(s) for truss to tr hanical connectior e capable of withst	CDL=6. sed; MW (2E) 11- kterior(2 34-3-10 11-5-9 to 34-3-10 it -5-9 to 3 s and fo 00L=1.60 prevent ess othe for a 10. with any Joint 11 uss comin n (by oth	Opsf; h=35ft; FRS (envelo 7-8 to 16-7-8 R) 21-9-6 to , Exterior(2R 56-11-8 zon- vertical left ar cres & MWFF D plate grip water pondin, wise indicate D psf bottom other live loa SP 1650F 1. ections. ers) of truss 1	,) e; id 3S g. id 3S id 5E io					
TOP CHORD	Tension 1-2=-1971/572, 2-3= 3-4=-1986/660, 4-5= 5-6=-3061/856, 6-8= 8-9=-4197/965, 9-10 1-21=-1928/566	-2826/855,	,	joint 21 and This truss is International R802.10.2 an) Graphical pu	458 lb uplift at join designed in accor Residential Code nd referenced star rlin representation ation of the purlin a	t 11. dance w sections ndard AN n does no	ith the 2018 R502.11.1 a ISI/TPI 1. ot depict the s	ind				A OF M	AISS
BOT CHORD	4-15=-139/312, 5-15	B=-506/2675, 3-15=-721/3557, 1-12=-204/594 -20=-482/115, B=-1172/293, 4-17=0/ B=-59/526, B=0/393, 8-13=-395/1	L(254,	bottom chore DAD CASE(S)	i					4	Ø	STATE OF M SCOTT SEVI	ER AL
NOTES 1) Unbalance this design	1-20=-556/2119 ed roof live loads have 1.	been considered for									Ø	FESSIONA	L ENGLAS

						RELEASE FOR CONSTRUCTION
Job	Truss	Truss Type	Qty	Plv	Roof - HR Lot 169	AS NOTED FOR PLAN REVIEW
505	11035	Truss Type	Qty	i iy	KUUI - HIK LUL 109	DEVELOPMENT SERVICES I62145494
P230875-01	G01	Hip Girder	1	3	Job Reference (optional)	

Run: 8.63 S Nov 1 2023 Print: 8.630 S Nov 1 2023 MiTek Industries, Inc. The Nov 2109:494/07/210:23 ID:?GB42wqKStb8Qako?3df4HzvU_t-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4z69/07/210:23

Plate Offsets (X, Y): [16:Edge,0-6-0)], [21:0-2-8,0-2-0], [2	26:0-2-8,0)-2-0], [27:0-2-8,	,0-2-0], [28:0-5-0,0-	6-4]							
Loading TCLL (roof) TCDL BCLL BCDL	(psf) 25.0 10.0 0.0 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 NO IRC20	18/TPI2014	CSI TC BC WB Matrix-S	0.27 0.52 0.96		in -0.08 -0.14 0.03	(loc) 26 26-27 19	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 863 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD	2x8 SPF No.2 *Exce 18-16:2x6 SPF No.2 *Exce 2x3 SPF No.2 *Exce 29-1:2x4 SP 1650F Structural wood she 6-0-0 oc purlins, ex 2-0-0 oc purlins (6-0 Rigid ceiling directly bracing, Except:	2 ppt* 2-28:2x8 SPF N 1.5E, 16-14:2x4 SP reathing directly applie cept end verticals, a)-0 max.): 6-8. r applied or 10-0-0 or	No.2, o.2, No.2 ed or nd		2-28=-786/1648, 2- 3-27=-367/1382, 3- 5-26=-301/1319, 5- 6-24=-206/878, 7-2 7-22=-1035/277, 8- 9-22=-84/492, 9-21 10-2=-269/1147, 1 10-19=-3441/798, 1 13-19=-785/255, 13 1-28=-1989/8384, 1	26=-17 24=-15 4=-209 22=-15 =-621/2 0-20=0 7-19=- 5-17=0/2	46/479, 18/434, /715, 2/691, 228, //159, 111/119, 229,		 7) All 8) Th 9) Be cru cru cru 10) Be usi de 11) Pro 	plates an is truss h ord live lo arings an ushing ca ushing ca aring at j ing ANSI signer sh ovide me	re 3x6 has bee bad noi re assu- pacity pacity pacity pacity oint(s) /TPI 1 hould vichanic	MT20 unless othom an designed for a nconcurrent with imed to be: Joint of 565 psi, Joint of 425 psi, Joint of 425 psi. 29 considers par angle to grain for erify capacity of be al connection (by	10.0 psf bottom any other live loads. 29 SP 1650F 1.5E 19 SPF No.2 16 SPF No.2 allel to grain value mula. Building earing surface. others) of truss to
	6-0-0 oc bracing: 17 (size) 16=0-3-8, Max Horiz 29=-177 (Max Uplift 16=-136 (29=-1840 Max Grav 16=270 (l 29=8291	, 19=0-3-8, 29=0-3-8 (LC 34) (LC 32), 19=-604 (LC) (LC 8) LC 26), 19=3010 (LC	C 9),	(0.131"x3") r Top chords c oc. Bottom chord staggered at	b be connected toge hails as follows: connected as follow ds connected as follow t 0-4-0 oc, 2x3 - 1 ro	s: 2x4 - lows: 2	- 1 row at 0-9-0 x8 - 4 rows		joii 29 12) Th Int R8 13) Gr	nt 16, 60 is truss is ernationa 02.10.2 a aphical p	4 lb up s desig al Resid and ref	lift at joint 19 and ned in accordanc dential Code sect ferenced standard	ions R502.11.1 and d ANSI/TPI 1. s not depict the size
FORCES	(lb) - Maximum Com Tension	npression/Maximum		Web connec	red at 0-9-0 oc. ted as follows: 2x8		s staggered at			ttom cho			
TOP CHORD	1-2=-7195/1713, 2-3 3-5=-4386/1170, 5-6 6-7=-3324/982, 7-8= 8-9=-3039/902, 9-10 10-12=-129/882, 12 13-14=-111/249, 14 1-29=-7488/1796, 1 28-29=-51/239, 27-2 26-27=-1097/5176, 2 20-21=-280/1806, 1 18-19=0/72, 12-19=	5=-3544/1014, 2830/886, D=-2861/813, -13=-207/914, -15=0/23, 4-16=-226/210 28=-1487/6790, 24-26=-836/4110, 1-22=-481/2663, 9-20=-280/1806,	4	 All loads are except if note CASE(S) set provided to o unless other Unbalanced this design. Wind: ASCE Vasd=91mpl Ke=1.00; Ca exterior zone 	3 - 1 row at 0-9-0 oc considered equally ed as front (F) or ba ction. Ply to ply cond distribute only loads wise indicated. roof live loads have 7-16; Vult=115mph h; TCDL=6.0psf; BC tt. II; Exp C; Enclose e and C-C Exterior(4 12 ba 4 2 0 5 c	applie ack (B) nection noted been (3-sec CDL=6. cd; MW 2E) 0-1	face in the LOA is have been as (F) or (B), considered for cond gust) 0psf; h=35ft; /FRS (envelope -12 to 5-1-12,			4	R	STATE OF M SCOT: SEVI	ER
	16-17=-79/147			22-8-10, Éxte 29-9-8 to 48- exposed ; en members an	-1-12 to 17-2-6, Ext erior(2R) 22-8-10 to -10-8 zone; cantilev nd vertical left and ri d forces & MWFRS	29-9-8 er left a ight exp for rea	3, Interior (1) and right bosed;C-C for actions shown;				A.	PE-2001	128

Continued on page 2

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality** Criteria, and DSE-22 available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcscomponents.com)

Lumber DOL=1.60 plate grip DOL=1.60

MiTek[®]

16023 Swingley Ridge Rd. Chesterfield, MO 63017 314.434.1200 / MiTek-US.com

November 21,2023

						RELEASE FOR CONSTRUCTION
Job	Truss	Truss Type	Qty	Plv	Roof - HR Lot 169	AS NOTED FOR PLAN REVIEW
500	11035	Truss Type	Qty	L' 'Y	ROOI - TIR EOU 109	DEVELOPMENT SERVICES 162145494
P230875-01	G01	Hip Girder	1	3	Job Reference (optional	
Premier Building Supply (S	Springhill, KS), Spring Hills, K	S - 66083,	Run: 8.63 S Nov 1 2023 Print: 8	.630 S Nov	1 2023 MiTek Industries, Inc. T	e Nov 2119:49:4 07/2 9:23

14) Use Simpson Strong-Tie LUS28 (6-10d Girder, 3-10d

- n: 8.63 S Nov 1 2023 Print: 8.630 S Nov 1 2023 MiTek Ind ID:?GB42wqKStb8Qako?3df4HzvU_t-RfC?PsB70Hq3NSgPqnL8w3uITXbGK/wrCDoi7J4z60?
- Truss, Single Ply Girder) or equivalent at 1-0-12 from the left end to connect truss(es) to front face of bottom chord.
- 15) Fill all nail holes where hanger is in contact with lumber.
- 16) Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 6580 Ib down and 1519 Ib up at 3-2-6 on bottom chord. The design/selection of such connection device(s) is the responsibility of others.

- LOAD CASE(S) Standard 1) Dead + Roof Live (balanced): Lumber Increase=1.15, Plate Increase=1.15 Uniform Loads (lb/ft)
 - Vert: 1-6=-70, 6-8=-70, 8-14=-70, 14-15=-70, 19-29=-20, 16-18=-20
 - Concentrated Loads (lb)

Vert: 28=-6580 (F), 34=-597 (F)

						RELEASE FOR CONSTRUCTION
Job	Truss	Truss Type	Qty	Ply	Roof - HR Lot 169	AS NOTED FOR PLAN REVIEW DEVELOPMENT SERVICES 162145495
P230875-01	G02	Roof Special	1	1	Job Reference (optional	162145495 LEE'S SUMMIT, MISSOURI
Premier Building Supply	r (Springhill, KS), Spring Hills, KS - 66083,				2023 MiTek Industries, Inc. T PsB70Hq3NSgPqnL8w3uITXb	
F	<u>6-10-1 13-10-1</u> 6-10-1 7-0-14	14 19-11-8 26-1-6 6-0-10 6-1-15		<u>33-0-12</u> 6-11-6	<u> </u>	<u>42-7-6</u> <u>48-0-0</u> <u>48-10-8</u> 4-5-2 <u>5-4-10</u> 0-10-8
	0-10-1	5x5=		0-11-0	0-1-0	4-0-2 0-4-10 0-10-8
	5x5=	5 4 24 20 19 18 17 3x8= 19-11-8 27-10-1		16	7 8 9 9 9 0 14 5x10= 6x6 37-10-4 38_1-0	3x10 = 10 26 3x4 = 11 12 0 13 0 3x8 =
E E	2-7-1 11-11-15 2-7-1 9-4-14	7-11-9 7-11-7		ł	9-11-5 0-2-12	
Scale = 1:85.3						

Loading	(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15		TC	0.70	Vert(LL)	-0.29	15-16	>999	240	MT20	244/190
TCDL	10.0	Lumber DOL	1.15		BC	0.95	Vert(CT)	-0.60	15-16	>762	180		
BCLL	0.0	Rep Stress Incr	YES		WB	0.62	Horz(CT)	0.10	15	n/a	n/a		
BCDL	10.0	Code	IRC2018	3/TPI2014	Matrix-S							Weight: 229 lb	FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD WEBS REACTIONS	 2x4 SP No.2 2x4 SP No.2 *Excep 2x3 SPF No.2 *Excep SP No.2 Structural wood she 3-2-5 oc purlins, ex Rigid ceiling directly bracing. 1 Row at midpt 	ot* 9-14:2x3 SPF No apt* 15-7,13-11,22-1 athing directly applic cept end verticals. applied or 2-2-0 oc 3-21, 4-18, 6-18, 7- 15=0-3-8, 22=0-3-8 (LC 13) C 9), 15=-441 (LC 9) LC 8) -C 26), 15=2458 (LC	2) .2 :2x4 ed or 15 3) 3 4) (), 5) (), 6)	Wind: ASCE Vasd=91mpl Ke=1.00; Ca exterior zone Interior (1) 1 33-0-8, Inter and right exp exposed;C-C reactions sh DOL=1.60 All plates are This truss ha chord live loo All bearings capacity of 5 Provide mec bearing plate	7-16; Vult=115m h; TCDL=6.0psf; t. II; Exp C; Enclc e and C-C Exteric 3-2-12 to 28-0-8, ior (1) 33-0-8 to 5 boosed ; end vertic C for members an own; Lumber DO e 3x6 MT20 unles as been designed ad nonconcurrent are assumed to b	BCDL=6. Ssed; MW (2E) 8-2 Exterior(2 66-11-8 zc al left and d forces 8 L=1.60 pl s otherwi for a 10.0 with any se SP No. on (by oth standing 2	Opsf; h=35ft; FRS (envelo, 12 to 13-2-1 2R) 28-0-8 to ne; cantileve d right & MWFRS for ate grip se indicated. D psf bottom other live loa 2 crushing ers) of truss i 294 lb uplift at	2, er left r nds. to				Weight. 225 ib	
FORCES	(lb) - Maximum Com Tension 1-3=-1257/292, 3-4= 4-5=-1843/560, 5-6= 6-7=-1914/494, 7-9= 9-10=-169/834, 10-' 11-13=-321/198, 1-2	=-2268/580, =-1845/555, =-115/834, 1=-309/61, 11-12=0	7) _{)/23,} LC	International	designed in acco Residential Code nd referenced sta Standard	e sections	s R502.11.1 a	and					
BOT CHORD	,	21=-339/1973, 6-18=-212/1825, 4-15=0/110,									Å	TATE OF I	MISSOL
WEBS	3-21=-1252/388, 3-2 4-18=-652/242, 5-18 6-18=-376/195, 6-16 7-15=-2606/585, 10 10-14=-13/190, 10-7 1-21=-245/1529, 7-7	3=-158/747, 5=-315/156, -15=-763/266, 13=0/448,	4,									S SCOT SEVI	
NOTES 1) Unbalanc this desig	ed roof live loads have		r								N.	OF PE-2001	12 A

liTek®

Date

November 21,2023

16023 Swingley Ridge Rd. Chesterfield, MO 63017 314.434.1200 / MiTek-US.com

											RELEASE	FOR CO	STRUCTION
Job	Truss		Truss Type		Qty	Ply	F	Roof - HR	Lot 169				AN REVIEW SERVICES 5496
P230875-01	G03		Roof Special		1	1	J	lob Refere	ence (opt	tional			5496 MISSOURI
Premier Building Sup	oply (Springhill, KS), S	pring Hills, KS - 66083,		Run: 8.63 S No ID:yUx?APYjf7b							e Nov 21 09:49 42 rCDoi7J4zJ0	07/2	2023
	<u> </u>	<u> </u>	<u>19-11-8</u> 6-6-12	<u> </u>		<u>32-0-8</u> 6-0-8			- <u>2-4</u> I-12		42-7-6 4-5-2	<u>48-0-0</u> 5-4-10	48-10-8 0-10-8
10-4-3 	5x5 = 23 1 = 27.1 2.7.1		4 24 4 24 10 19 19-11-8 8-5-15		25 6 29-2-8 9-3-0	16		7 37-10-4 8-7-12		•	3x10z	6	3x4 II 11 12 0 13 0 3x8=
Scale = 1:85.3		1		I							I		
Loading TCLL (roof) TCDL BCLL BCDL	(psf) 25.0 10.0 0.0 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018/TPI2014	CSI TC BC WB Matrix-S	0.64 0.89 0.81	DEFL Vert(LL) Vert(CT) Horz(CT)	ir -0.28 -0.57 0.11	3 13-14 7 13-14	l/defl >408 >203 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 230 lb	GRIP 244/190 FT = 20	

LUMBER		2
TOP CHORD	2x4 SP No.2	
BOT CHORD	2x4 SP No.2 *Except* 9-14:2x3 SPF No.2	
WEBS	2x3 SPF No.2 *Except* 15-7,13-11,22-1:2x4	
	SP No.2	
BRACING		
TOP CHORD	Structural wood sheathing directly applied or	
	3-3-1 oc purlins, except end verticals.	
BOT CHORD	Rigid ceiling directly applied or 10-0-0 oc	
	bracing, Except:	
	6-0-0 oc bracing: 13-14.	З
WEBS	1 Row at midpt 3-21, 4-18, 6-18, 7-15	4
REACTIONS	(size) 13=0-3-8, 15=0-3-8, 22=0-3-8	_
	Max Horiz 22=-192 (LC 13)	5
	Max Uplift 13=-94 (LC 9), 15=-442 (LC 9),	
	22=-294 (LC 8)	6
	Max Grav 13=332 (LC 26), 15=2423 (LC 1),	
	22=1655 (LC 1)	
FORCES	(lb) - Maximum Compression/Maximum	7
FURGES		
FURGES	Tension	
TOP CHORD		'
	Tension	
	Tension 1-3=-1257/295, 3-4=-2286/582, 4-5=-1872/555, 5-6=-1865/552, 6-7=-1857/488, 7-9=-85/725, 9-10=-157/731,	L
	Tension 1-3=-1257/295, 3-4=-2286/582, 4-5=-1872/555, 5-6=-1865/552,	
TOP CHORD	Tension 1-3=-1257/295, 3-4=-2286/582, 4-5=-1872/555, 5-6=-1865/552, 6-7=-1857/488, 7-9=-85/725, 9-10=-157/731, 10-11=-318/65, 11-12=0/23, 11-13=-329/201, 1-22=-1662/383	
	Tension 1-3=-1257/295, 3-4=-2286/582, 4-5=-1872/555, 5-6=-1865/552, 6-7=-1857/488, 7-9=-85/725, 9-10=-157/731, 10-11=-318/65, 11-12=0/23, 11-13=-329/201, 1-22=-1662/383 21-22=-81/204, 20-21=-334/1979,	
TOP CHORD	Tension 1-3=-1257/295, 3-4=-2286/582, 4-5=-1872/555, 5-6=-1865/552, 6-7=-1857/488, 7-9=-85/725, 9-10=-157/731, 10-11=-318/65, 11-12=0/23, 11-13=-329/201, 1-22=-1662/383 21-22=-81/204, 20-21=-334/1979, 18-20=-293/2083, 16-18=-216/1832,	
TOP CHORD	Tension 1-3=-1257/295, 3-4=-2286/582, 4-5=-1872/555, 5-6=-1865/552, 6-7=-1857/488, 7-9=-85/725, 9-10=-157/731, 10-11=-318/65, 11-12=0/23, 11-13=-329/201, 1-22=-1662/383 21-22=-81/204, 20-21=-334/1979, 18-20=-293/2083, 16-18=-216/1832, 15-16=-161/1428, 14-15=0/111,	
TOP CHORD	Tension 1-3=-1257/295, 3-4=-2286/582, 4-5=-1872/555, 5-6=-1865/552, 6-7=-1857/488, 7-9=-85/725, 9-10=-157/731, 10-11=-318/65, 11-12=0/23, 11-13=-329/201, 1-22=-1662/383 21-22=-81/204, 20-21=-334/1979, 18-20=-293/2083, 16-18=-216/1832, 15-16=-161/1428, 14-15=0/111, 9-15=-399/200, 13-14=-131/50	
TOP CHORD	Tension 1-3=-1257/295, 3-4=-2286/582, 4-5=-1872/555, 5-6=-1865/552, 6-7=-1857/488, 7-9=-85/725, 9-10=-157/731, 10-11=-318/65, 11-12=0/23, 11-13=-329/201, 1-22=-1662/383 21-22=-81/204, 20-21=-334/1979, 18-20=-293/2083, 16-18=-216/1832, 15-16=-161/1428, 14-15=0/111, 9-15=-399/200, 13-14=-131/50 3-21=-1263/379, 3-20=0/228, 4-20=0/202,	
TOP CHORD	Tension 1-3=-1257/295, 3-4=-2286/582, 4-5=-1872/555, 5-6=-1865/552, 6-7=-1857/488, 7-9=-85/725, 9-10=-157/731, 10-11=-318/65, 11-12=0/23, 11-13=-329/201, 1-22=-1662/383 21-22=-81/204, 20-21=-334/1979, 18-20=-293/2083, 16-18=-216/1832, 15-16=-161/1428, 14-15=0/111, 9-15=-399/200, 13-14=-131/50 3-21=-1263/379, 3-20=0/228, 4-20=0/202, 4-18=-636/246, 5-18=-141/728,	
TOP CHORD	Tension 1-3=-1257/295, 3-4=-2286/582, 4-5=-1872/555, 5-6=-1865/552, 6-7=-1857/488, 7-9=-85/725, 9-10=-157/731, 10-11=-318/65, 11-12=0/23, 11-13=-329/201, 1-22=-1662/383 21-22=-81/204, 20-21=-334/1979, 18-20=-293/2083, 16-18=-216/1832, 15-16=-161/1428, 14-15=0/111, 9-15=-399/200, 13-14=-131/50 3-21=-1263/379, 3-20=0/228, 4-20=0/202, 4-18=-636/246, 5-18=-141/728, 6-18=-352/203, 6-16=-319/134, 7-16=-2/553,	
TOP CHORD	Tension 1-3=-1257/295, 3-4=-2286/582, 4-5=-1872/555, 5-6=-1865/552, 6-7=-1857/488, 7-9=-85/725, 9-10=-157/731, 10-11=-318/65, 11-12=0/23, 11-13=-329/201, 1-22=-1662/383 21-22=-81/204, 20-21=-334/1979, 18-20=-293/2083, 16-18=-216/1832, 15-16=-161/1428, 14-15=0/111, 9-15=-399/200, 13-14=-131/50 3-21=-1263/379, 3-20=0/228, 4-20=0/202, 4-18=-636/246, 5-18=-141/728, 6-18=-352/203, 6-16=-319/134, 7-16=-2/553, 7-15=-2649/556, 10-15=-688/240,	
TOP CHORD	Tension 1-3=-1257/295, 3-4=-2286/582, 4-5=-1872/555, 5-6=-1865/552, 6-7=-1857/488, 7-9=-85/725, 9-10=-157/731, 10-11=-318/65, 11-12=0/23, 11-13=-329/201, 1-22=-1662/383 21-22=-81/204, 20-21=-334/1979, 18-20=-293/2083, 16-18=-216/1832, 15-16=-161/1428, 14-15=0/111, 9-15=-399/200, 13-14=-131/50 3-21=-1263/379, 3-20=0/228, 4-20=0/202, 4-18=-352/203, 6-16=-319/134, 7-16=-2/553, 7-15=-2649/556, 10-15=-688/240, 10-14=-26/174, 10-13=0/401,	
TOP CHORD	Tension 1-3=-1257/295, 3-4=-2286/582, 4-5=-1872/555, 5-6=-1865/552, 6-7=-1857/488, 7-9=-85/725, 9-10=-157/731, 10-11=-318/65, 11-12=0/23, 11-13=-329/201, 1-22=-1662/383 21-22=-81/204, 20-21=-334/1979, 18-20=-293/2083, 16-18=-216/1832, 15-16=-161/1428, 14-15=0/111, 9-15=-399/200, 13-14=-131/50 3-21=-1263/379, 3-20=0/228, 4-20=0/202, 4-18=-636/246, 5-18=-141/728, 6-18=-352/203, 6-16=-319/134, 7-16=-2/553, 7-15=-2649/556, 10-15=-688/240,	

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=35ft; Ke=1.00; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) 8-2-12 to 13-2-12, Interior (1) 13-2-12 to 28-0-8, Exterior(2R) 28-0-8 to 33-0-8, Interior (1) 33-0-8 to 56-11-8 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

- All plates are 3x6 MT20 unless otherwise indicated. 3)
- This truss has been designed for a 10.0 psf bottom 4) chord live load nonconcurrent with any other live loads.
- 5) All bearings are assumed to be SP No.2 crushing capacity of 565 psi. Provide mechanical connection (by others) of truss to 6)
- bearing plate capable of withstanding 294 lb uplift at joint 22, 442 lb uplift at joint 15 and 94 lb uplift at joint 13.
- 7) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard

 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.
 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not besign value to dury with with where outputs into design is based only door parameters shown, and is for an individual building design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members and property incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TPH1 Quality Criteria**, and **DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcscomponents.com)

						RELEASE FOR CONSTRUCTION
Job	Truss	Truss Type	Qty	Ply	Roof - HR Lot 169	AS NOTED FOR PLAN REVIEW
P230875-01	G04	Roof Special	4	1	Job Reference (optiona	DEVELOPMENT SERVICES 162145497 LEE'S SUMMIT, MISSOURI
Premier Building Supply (Spring	nill, KS), Spring Hills, KS - 66083,				2023 MiTek Industries, Inc. ⊺ ′0Hq3NSgPqnL8w3uITXbGK′	
	4.40		Pul/Uxgy2v0			
	11-12 7-6-8 11-12 6-6-12	<u>13-7-0</u> <u>19-7-8</u> 6-0-8 6-0-8		25-9-4 6-1-12	<u> </u>	<u>35-7-0</u> 5-5-2 0-10-8
		5x5=				
10-4-3 - 10-0 - 10-0 - 10-0 - 10-0 - 10-0 - 10-0 - 11 - 18	- x4 =	3 3x4 ₂ 21 4 17 16 15 4x8= 3x6= 3x4=	3x8₂ 5 8 14 1.5x4 ⊪	3x6≥ 6 11	3x4 II 7 7 12 5x10= 5x5=	3x10x 8 22 $3x4 mtext{ II}$ 9 10 111 3x8 =
F	7-6-8	<u>+ 13-7-0 19-7-8</u> 6-0-8 6-0-8		25-5-4 5-9-12		35-7-0 9-11-0
Scale = 1:70.2 Plate Offsets (X, Y): [12:Ed				0012	0-2-12	
					··· //> //	
Loading TCLL (roof)	(psf) Spacing 25.0 Plate Grip DOL		0.59 Vert	LL) -0	in (loc) l/defl L/c .28 11-12 >413 240	MT20 244/190
TCDL BCLL	10.0Lumber DOL0.0Rep Stress Incr		0.82 Vert(0.89 Horz		.56 11-12 >206 180 .03 11 n/a n/a	
BCDL	10.0 Code	IRC2018/TPI2014 Matrix-S				Weight: 185 lb FT = 20%
WEBS 2x3 SPF No. No.2 BRACING Structural w 5-0-10 oc p BOT CHORD BOT CHORD Rigid ceiling bracing. WEBS 1 Row at mi REACTIONS (size) 1 Max Horiz 13 Max Uplift 1 1 11 FORCES (lb) - Maxim Tension TOP CHORD 1-2=-176/17 4-5=-1152/3 8-9=-339/72 1-18=-267/2 BOT CHORD BOT CHORD 17-18=-130/19(WEBS 2-17=-199/7 5-13=-152/6 8-12=-217/1	2 *Except* 7-12:2x3 SPF No.2 .2 *Except* 11-9,18-1:2x4 SF ood sheathing directly applied urlins, except end verticals. 1 directly applied or 10-0-0 oc dpt 4-17, 5-13, 2-18 1=0-3-8, 13=0-3-8, 18=0-3-8 8=-312 (LC 8) 1=-108 (LC 9), 13=-352 (LC 9) 8=-184 (LC 8) 1=435 (LC 26), 13=1693 (LC 8=1123 (LC 1) um Compression/Maximum 10, 2-3=-785/320, 3-4=-779/3 (51, 5-7=0/249, 7-8=-73/256, ., 9-10=0/23, 9-11=-340/205, 43 336, 15-17=-38/1030, 010, 13-14=-52/1010, 5, 7-13=-397/199, 11-12=-58/ 293, 8-13=-270/150, 19, 8-11=0/185, 2-18=-1274/ 5-15=-43/63, 5-14=0/264	 exterior zone and C-C Exterior(2E Interior (1) 25-7-12 to 28-0-8, Ext 33-0-8, Interior (1) 33-0-8 to 56-1 d or and right exposed; end vertical le exposed;C-C for members and for reactions shown; Lumber DOL=1 DOL=1.60 3) This truss has been designed for chord live load nonconcurrent witi 4) All bearings are assumed to be S capacity of 565 psi. 5) Provide mechanical connection (th bearing plate capable of withstan- joint 18, 352 lb uplift at joint 13 ar 11. 6) This truss is designed in accordant International Residential Code se R802.10.2 and referenced standat LOAD CASE(S) Standard 	bL=6.0psf; h ; MWFRS (; 20-7-12 tr 20-7-12	=35ft; envelope) o 25-7-12, -0-8 to -0-8 to intilever left FRS for p ottom live loads. hing truss to uplift at ift at joint 2018 .11.1 and		SCOTT M. SEVIER PE-2001018807 PE-2001018807

THESSIONA. The solona mber November 21,2023

													RELEAS	E FOR CONSTRUCTIO	ON
Job		Truss		Truss T	/pe		Qty	,	Ply	Roof -	HR Lot 169	Э			
P230875-01		H01		Half Hi	o Girder		1		3	loh De	foronoo (o	ntional		LOPMENT SERVICES 162145498 SUMMIT, MISSOURI	
Premier Building	Supply (Spring	hill, KS), S	Spring Hills, KS - 66083,		Run: 8.63 S Nov 1 2023 Print: 8.63 S Nov 1 2023 MiTek Industries, Inc. T									07/202	ว่
-						ID:MtBPWsCbxj0	DYVxNdEI	MyN7Yz	zvUHI-RfC?F	PsB70Hq3	NSgPqnL8w	3ulTXb	KWrCDoi7J4zJC?	01/202	J
$\begin{array}{c c} 3.7-2 \\ \hline 3.7-2 \\ \hline -0.0 \\ -0.0 \\ -0.0 \\ -0.1-5 \\ -0.1-5 \\ -0.1-5 \\ \end{array}$	0-3-8 0-3-8 4x6 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	4-4-0 4-0-8 = 	3-11-4	3 3 3 3 3 3 3 3 3 3 3 3 3 3	-9-10 13-2- -6-6 1-5- ED NAILED 1 3x6= 7 4 4 7 4 7 28	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1.5x4 39.6	4- NAILEC 40 0 0	2-11-6 -10-5 D NAILED 141 42 1 32	NAILED 3x8= 7 43 1633	27-9-10 4-10-5 NAILED 44 □ □ 1 34	5x5		3x4z 9 $3x6z$ $3x4u$ 10 26_{11} 14	12
⊥ ⊹⊥⊹⊹	. 8		22	<u> </u>	~ ⊥	3x4 II 5x8				3х4 п		4x8	=	8x8=	
	23 6x6=		4x8=	3x4 II	NAILED 1	NAILED NAILED I	NAILED	NAILED) NAILED	NAILED	NAILED	NAILED Specia		4∟ 4x4 ≈ 12	
	3x6=			NAIL											
	0-3-8 0-3-8	<u>4-4-0</u> 4-0-8			<u>13-2-12</u> 4-10-4	18-1-1			<u>2-11-6</u> -10-5		<u>27-10-14</u> 4-11-8		<u>32-3-8</u> 4-4-10	35-3-8 $35-7-03-0-0$ $0-3-8$	
	0-3-8													0-3-8	
Scale = 1:63.8 Plate Offsets (2 Loading TCLL (roof) TCDL BCLL BCDL	X, Y): [2:0-2-	8,0-1-8], (psf) 25.0 10.0 0.0 10.0	[11:0-2-0,0-1-4], [20: Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 NO	3-8], [21:Edge, 3/TPI2014	0-2-8] CSI TC BC WB Matrix-S	0.40 0.71 0.63	DEFL Vert(L Vert(C Horz(LL) 0 CT) -0	.49 .72	oc) l/defl 17 >870 17 >583 13 n/a	240 180	PLATES MT20 Weight: 488 lb	GRIP 197/144 FT = 20%	
LUMBER				1)		be connected tog	ether wit	h 10d		,				es not depict the size	Э
TOP CHORD BOT CHORD	2x4 SP No.2 2x4 SP No.2		ot* 21-3:2x3 SPF No.2	2,	()	ails as follows: connected as follow	vs: 2x3 -	1 row	at 0-9-0		or the orie bottom cho		of the purlin alon	g the top and/or	
WEBS	20-18,18-14 2x3 SPF No	1:2x6 SP		,	,	ow at 0-7-0 oc. ds connected as fo	llows: 2)	(4 - 1 r	ow at	,	"NAILED" per NDS q			(0.148" x 3") toe-nail	IS
OTHERS	2x4 SP No.2					3 - 1 row at 0-9-0 c				13)	Hanger(s)	or othe	r connection dev		
BRACING TOP CHORD	Structural w	/ood she	athing directly applied	dor	Web connec	ted as follows: 2x3					Ib down ar	nd 207 l	b up at 8-0-4, ar	entrated load(s) 539 nd 106 lb down and 7	72
BOT CHORD	2-0-0 oc pu	rlins (6-0	cept end verticals, an I-0 max.): 1-8. applied or 10-0-0 oc		except if note CASE(S) see	considered equall ed as front (F) or b ction. Ply to ply con distribute only load	ack (B) f	ace in s have	the LOAD been		lb up at 27 of such co	7-9-10 c	on bottom chord.	I 305 lb down and 17 The design/selectio responsibility of	
REACTIONS	bracing. (size) 1	3=0-3-8.	23=0-3-8	0)	unless other	wise indicated.		()	(),	LOA	others. DCASE(S				
	Max Horiz 2	3=-155 (3)) 4)	this design.	roof live loads hav 7-16; Vult=115mp				1)	Plate Incr	ease=1	.15	mber Increase=1.15,	
			(LC 1), 23=2423 (LC	1)	Vasd=91mph	n; TCDL=6.0psf; B	CDL=6.0)psf; h=	=35ft;		Uniform L Vert: 8	,	,	23=-20, 14-20=-20,	
	Tension exterior					t. II; Exp C; Enclos and C-C Exterior	(2E) 0-4-	12 to 5	5-4-12,		13-14= Concentr	⊧-20, 1-8 ated Lo			
TOP CHORD	9-10=-8815/3584, 10-11=-416/198, 34 11-12=0/22, 11-13=-479/263, le 1-2=-2876/1122, 2-3=-7709/3009, ex 3-5=-7786/3041, 5-6=-10291/4290, re 6-7=-10291/4290, 7-8=-7020/2991 D					Interior (1) 5-4-12 to 27-9-10, Exterior(2R) 27-9-10 to 34-10-8, Interior (1) 34-10-8 to 36-5-8 zone; cantilever left and right exposed; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 Provide adequate drainage to prevent water ponding.						CITA	MISSO		
	3-20=-837/340, 19-20=-3904/9889, 6) Thi: 17-19=-3904/9889, 16-17=-3935/9536, cho 15-16=-3935/9536, 14-15=-3351/8332, 7) All I				This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. All bearings are assumed to be SP No.2 crushing capacity of 565 psi.					A	STATE OF SCOT	тм.	r		
WEBS						y of 565 psi. g at joint(s) 13 considers parallel to grain value						84			i i

- Bearing at joint(s) 13 considers parallel to grain values and a solution of the second designer should verify capacity of bearing surface. 9) Provide mechanical connection (by others) of truss to
 - bearing plate capable of withstanding 938 lb uplift at joint 13 and 879 lb uplift at joint 23.
 - 10) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

NOTES

20-22=-930/2674, 2-20=-2143/5483, 5-20=-2285/1073, 5-19=-84/315,

7-15=-2839/1167, 8-15=-797/1970,

10-14=-1601/4023, 10-13=-5259/2137

9-15=-1235/482, 9-14=-115/458,

5-17=-285/439, 6-17=-359/197,

7-17=-301/915, 7-16=-86/284,

Continued on page 2 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design in the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent parameters and properly incorporate this design in the overall is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSVITPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

November 21,2023

PE-2001018807

OFFESSIONAL ET

							RELEASE FOR CONSTRUCTION	
Job	Truss	Truss Type		Qty	Plv	Roof - HR Lot 169	AS NOTED FOR PLAN REVIEW	
				α.,			DEVELOPMENT SERVICES I62145498	
P230875-01	H01	Half Hip Girder		1	3	Job Reference (optional	LEE'S SUMMIT, MISSOURI	
Premier Building Supply (Springh	Premier Building Supply (Springhill, KS), Spring Hills, KS - 66083, Run: 8.63 S Nov 1 2023 Print: 8.630 S Nov 1 2023 MiTek Industries, Inc. T e N							
	KWrCDoi7J4290?							

Vert: 3=-539 (B), 5=-19 (B), 19=-54 (B), 4=-19 (B), 8=-19 (B), 27=-61 (B), 28=-54 (B), 29=-54 (B), 30=-54 (B), 31=-54 (B), 32=-54 (B), 33=-54 (B), 34=-54 (B), 35=-359 (B), 37=-22 (B), 38=-19 (B), 39=-19 (B), 40=-19 (B), 42=-19 (B), 43=-19 (B),

						RELEASE FOR CONSTRUCTION
Job	Truss	Truss Type	Qty	Ply	Roof - HR Lot 169	AS NOTED FOR PLAN REVIEW DEVELOPMENT SERVICES 162145499
P230875-01	H02	Half Hip	1	1	Job Reference (optional	I62145499 LEE'S SUMMIT, MISSOURI
Premier Building Sup	ply (Springhill, KS), Spring Hills, KS - 6608				1 2023 MiTek Industries, Inc. T 370Hq3NSgPqnL8w3uITXbGK	
4-9-2 1-0-0 1-0-0 1-0-0 1-0-0 1-0-0 1-0-0	$\begin{array}{c} 0-3-8 \\ 0-3-8 \\ 0-3-8 \\ 0-3-8 \\ 4-0-8 \\ 3-11-4 \\ 6x6 = \\ 6x6 = \\ 22 \\ 23 \\ 19 \\ 20 \\ 6x6 = \\ 3x6 = \\ 3x6 = \\ 0-3-8 \\ 4-0-8 \\ 4-0-8 \\ 4-0-8 \\ 4-0-8 \end{array}$	3x4 = 6x12 = 3x4 = 6x12 = 3x4 = 3x			3-10-12 5x5= 6℃	

Scale = 1:64.2

Plate Offsets (X, Y): [2:0-2-8,0-3-0],	, [10:0-3-0,0-1-4], [12	2:0-1-15,Edge], [18:Edg	je,0-2-8]									
Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP	
TCLL (roof)	25.0	Plate Grip DOL	1.15	TC	0.94	Vert(LL)	-0.45	14-16	>932	240	MT20	197/144	
TCDL	10.0	Lumber DOL	1.15	BC	0.88	Vert(CT)	-0.84	14-16	>502	180	MT18HS	197/144	
BCLL	0.0	Rep Stress Incr	YES	WB	0.90	Horz(CT)	0.41	12	n/a	n/a			
BCDL	10.0	Code	IRC2018/TPI2014	Matrix-S							Weight: 160 lb	FT = 20%	
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING		x4 SP No.2 *Except* 18-3:2x3 SPF No.2, 2) Wind: ASCE 7-16; Vult=115mph (3-second gust) 7-15,15-13:2x4 SP 1650F 1.5E Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=35ft; x3 SPF No.2 Ke=1.00; Cat. II; Exp C; Enclosed; MWFRS (envelope)											
	Structural wood sha	uctural wood cheathing directly applied or 31-4-8, Interior (1) 31-4-8 to 36-5-8 zone; cantilever left											

TOP CHORD	Structural wood sheathing directly applied or 1-5-1 oc purlins, except end verticals, and 2-0-0 oc purlins (2-3-8 max.): 1-6.
BOT CHORD	Rigid ceiling directly applied or 6-0-0 oc bracing.
WEBS	1 Row at midpt 1-20, 4-17
REACTIONS	(size) 12=0-3-8, 20=0-3-8 Max Horiz 20=-209 (LC 8)
	Max Uplift 12=-386 (LC 9), 20=-349 (LC 9) Max Grav 12=1653 (LC 1), 20=1575 (LC 1)
FORCES	(lb) - Maximum Compression/Maximum Tension
TOP CHORD	1-20=-1551/414, 6-7=-3847/931, 7-8=-5703/1393, 8-9=-5708/1345, 9-10=-245/91, 10-11=0/22, 10-12=-334/175, 1-2=-1335/382, 2-3=-2958/720, 3-4=-2984/722, 4-5=-4153/994, 5-6=-3598/901
BOT CHORD	19-20=-129/266, 18-19=-34/52, 17-18=0/66, 3-17=-325/149, 16-17=-815/3962, 14-16=-913/4206, 13-14=-962/4258, 12-13=-738/3117
WEBS	2-17=-442/2124, 6-14=-138/893, 8-13=-108/106, 2-19=-1651/416, 1-19=-464/1925, 17-19=-183/1324, 7-14=-718/313, 7-13=-301/1304, 9-13=-533/2479, 9-12=-3565/847, 4-16=-13/352, 4-17=-1151/312, 5-16=-86/145, 5-14=-878/225
NOTES	

and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 Provide adequate drainage to prevent water ponding.

- 3) 4) All plates are MT20 plates unless otherwise indicated.
- This truss has been designed for a 10.0 psf bottom 5) chord live load nonconcurrent with any other live loads. All bearings are assumed to be SP No.2 crushing 6)
- capacity of 565 psi. 7) Bearing at joint(s) 12 considers parallel to grain value
- using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.
- 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 386 lb uplift at joint 12 and 349 lb uplift at joint 20.
- 9) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 10) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

LOAD CASE(S) Standard

November 21,2023

P 16023 Swingley Ridge Rd. Chesterfield MO 63017 314.434.1200 / MiTek-US.com

 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.
 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not besign value for use only with with twit even connectors. This design is based only upon parameters shown, and is for an individual building designer must verify the applicability of design parameters and properly incorporate this design into the overall building designer must verify the applicability of design parameters and properly incorporate this design into the overall building designer. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcscomponents.com)

Job P230875-01	Truss H03	Truss Type Half Hip	Qty 1	Ply 1	Roof - HR L Job Referen	ot 169 nce (optional	AS NO DEVE	SE FOR CONSTRUCTION TED FOR PLAN REVIEW ELOPMENT SERVICES 162145500 S SUMMIT, MISSOURI
Premier Building Supp	ıly (Springhill, KS), Spring Hills, KS - 66	083,	S Nov 1 2023 Print: UXMwXKGxqla0WY					07/2023
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	⊠ 19 3x4 3x6= 5x8=		20-9-10 4-10-10 x4= 4	5x5= 57- 0 14 3x8=	<u>26-6-9</u> 5-8-15	28-4-11 1-10-2 12 4 3x4z 6 217 13 3x6=		35-7-0 36-5-8 3-4-12 0-10-8 MT18HS 5x8 = 9 10 12 9 10 14 AHS 6x12 = 9 10 12 4L 4x4 II 12 12
	0-3-8 6-3-0 	<u>13-5-11</u> 7-2-11	 <u>20-10-14</u> 7-5-3		<u>26-6-9</u> 5-7-11		<u>32-3-8</u> 5-8-15	35-3-8 35-7-0 3-0-0 0-3-8

Scale =	1:64.5
---------	--------

Plate Offsets (2	X, Y): [9:0-3-0,0-2-0],	, [13:0-2-8,0-1-8], [17 T	1:0-4-0,0-2	2-4], [18:Edge,0	0-2-8], [19:0-2-8,0-	3-0]						-	
.oading	(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
CLL (roof)	25.0	Plate Grip DOL	1.15		TC	0.79	Vert(LL)		13-14	>999	240	MT20	197/144
CDL	10.0	Lumber DOL	1.15		BC	0.90	Vert(CT)	-0.64	12-13	>659	180	MT18HS	244/190
BCLL	0.0	Rep Stress Incr	YES		WB	0.82	Horz(CT)	0.34	11	n/a	n/a	M18AHS	142/136
BCDL	10.0	Code	IRC201	8/TPI2014	Matrix-S							Weight: 171 lb	FT = 20%
UMBER			1)	Unbalanced	roof live loads hav	/e been (considered fo	r					
OP CHORD	2x4 SP No.2 *Excep	ot* 7-10:2x4 SP 1650	F	this design.									
	1.5E		2)		7-16; Vult=115mp								
BOT CHORD	2x4 SP No.2 *Excep		2,		n; TCDL=6.0psf; E								
	15-12:2x4 SP 2400F	= 2.0E			t. II; Exp C; Enclos			pe)					
/EBS		ept* 19-1,9-11:2x4 SF	5		and C-C Exterior								
	No.2, 12-9:2x4 SP 1	650F 1.5E			-5-4 to 20-9-10, Ex								
THERS	2x4 SP No.2				rior (1) 27-10-8 to			er					
RACING					exposed ; end ve			_					
OP CHORD	Structural wood she				own; Lumbers and			ſ					
		except end verticals, a	and	DOL=1.60	own; Lumber DOL	= 1.60 pi	ate grip						
	2-0-0 oc purlins (3-0		2)		nucto droinogo to	n rovont v	votor pondin	~					
OT CHORD	Rigid ceiling directly	applied or 7-5-7 oc	3) 4)		quate drainage to MT20 plates unle								
	bracing.				is been designed			u.					
EBS	1 Row at midpt	1-19, 6-14, 8-13, 3-1	17 5)		ad nonconcurrent			de					
EACTIONS	(size) 11=0-3-8,	, 19=0-3-8	6)		are assumed to be			us.					
	Max Horiz 19=-264 ((LC 8)	0,	capacity of 5			2 crushing						
	Max Uplift 11=-384 (int(s) 11 considers	sparalle	to grain valu	e					
	Max Grav 11=1654	(LC 1), 19=1570 (LC	:1) '		[PI 1 angle to grai								
ORCES	(lb) - Maximum Corr	pression/Maximum			ould verify capacity								
	Tension		8)		hanical connection			0					
OP CHORD	1-19=-1522/400, 5-6	6=-3223/805,	-,		capable of withst								
	6-8=-4222/986, 8-9=	-5709/1332, 9-10=0	/23,		384 lb uplift at join								~
	9-11=-1654/485, 1-2	2=-1759/491,	9)		designed in accor		ith the 2018					Con	m
	2-3=-1764/490, 3-4=	-2901/749,	,		Residential Code			ind				A OF I	AIS C
	4-5=-2989/787				nd referenced star						1	950	NO.
OT CHORD	18-19=-17/32, 17-18		218, 10)) Graphical pu	rlin representatior	n does no	ot depict the s	size			A	TATE OF M	New M
	16-17=-494/2638, 1			or the orient	ation of the purlin a	along the	top and/or				4	- DCOI	
	13-14=-823/3977, 12	2-13=-1212/5295,		bottom chore	i	2	-				H	SEVI	ER \ Y
	11-12=-70/315		L	DAD CASE(S)	Standard						100	it -	0 🔭
EBS	17-19=-161/317, 8-1			(-)							1 MX	the	· And a la
	9-12=-1154/5061, 5											Gell	Eleve
	6-14=-1082/335, 6-1										VA -		BER AL

NOTES

8-13=-1332/394, 3-16=-91/549, 3-17=-1188/304, 4-16=-366/202, 4-14=-347/86, 1-17=-470/2165

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

PE-2001010

November 21,2023

Date

												RELEASE	FOR CONSTRUCTION	
Job	Trus	S	Truss Type			Qty	Ply	F	Roof - HR	Lot 169				1
P230875-01	H04		Half Hip			1	1	<u> </u> .	ob Refere		tional		OPMENT SERVICES 162145501 SUMMIT, MISSOURI	
Premier Building	Supply (Springhill, KS)	, Spring Hills, KS - 66083	3,					Nov 1 20	23 MiTek I	ndustries,	Inc. T	e Nov 21 9.49.45 /rCDoi7J4zJ CT	07/2023	
	0-3-8 H−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−	6-1-12 5-10-4 3x4 II	<u>11-9-5</u> 5-7-9		<u>17-3-10</u> 5-6-5	6x6=	24-9 7-5-1		24-10- 0-1-2			32-2-4 3 3-9-2 1	3-8-15 36-5-8 35-7-0 -6-11 1-10-1 0-10-8	
7-1-2 1-0-0 6-11-6 7-1-2 1-0-0 5-11-6 0-1-12	P P P P P P P P P P P P P P	24 3 19 19 3x4 II	25 25 0 0 0 5x10=	4		5 ^{C1} / ₅	15 MT18HS 30	<pre>c10 =</pre>	6x6. 226 14 3x4	¹ 14	3)	x6≈ 7 1.5 23 g 13 13 MT18ł	3 9 3x6 II 10 11	
	0-3-8 	6-3-0 5-11-8	11-9-5 5-6-5		<u>17-4-14</u> 5-7-9		24-9 7-4-				32-3 7-5-		35-3-8 35-7-0	
	000												000	
Scale = 1:64.8 Plate Offsets ()	(, Y): [2:0-2-4,Edge	e], [6:0-3-0,0-3-4], [10):0-3-0,0-1-4], [1]	2:0-1-15,Ed	lge], [18:0-3-12	2,0-2-4], [19	:Edge,0-2-	8], [20:0	-2-4,0-3-0)]				-
Loading TCLL (roof) TCDL BCLL BCDL	(psf) 25.0 10.0 0.0 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018/TP		CSI TC BC WB Matrix-S	0.96 0.97 0.86	DEFL Vert(LL) Vert(CT) Horz(CT)	in	(loc) 13-14 13-14	l/defl >999 >595 n/a	L/d 240 180 n/a	PLATES MT20 MT18HS Weight: 176 lb	GRIP 197/144 197/144 FT = 20%	-
LUMBER	2x4 SP No.2 *Exc 1.5E 2x4 SP No.2 *Exc 15-13:2x4 SP 165 2x3 SPF No.2 *Ex 2x4 SP No.2 Structural wood sh	ept* 5-6:2x4 SP 1650 ept* 19-3:2x3 SPF No	2) Wi F Va 5.2, ext 5.2 24 an ext ied, rea	nd: ASCE 7 sd=91mph; =1.00; Cat. terior zone a erior (1) 5-0 -4-8, Interio d right expo posed;C-C	-16; Vult=115; TCDL=6.0ps; II; Exp C; Enc and C-C Exteri -0 to 17-3-10, r (1) 24-4-8 to sed ; end verti for members a wn; Lumber DC	BCDL=6.0 losed; MWI or(2E) 0-0- Exterior(2F 36-5-8 zon cal left and nd forces 8	psf; h=35ft FRS (envel 0 to 5-0-0, 1) 17-3-10 t e; cantileve right MWFRS f	ope) o er left						_

Provide adequate drainage to prevent water ponding.
 All plates are MT20 plates unless otherwise indicated.

This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

All bearings are assumed to be SP No.2 crushing

Bearing at joint(s) 12 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface. Provide mechanical connection (by others) of truss to

bearing plate capable of withstanding 379 lb uplift at

International Residential Code sections R502.11.1 and

This truss is designed in accordance with the 2018

R802.10.2 and referenced standard ANSI/TPI 1.

10) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or

joint 12 and 365 lb uplift at joint 20.

BRACING	
TOP CHORD	Structural wood sheathing directly applied,
	except end verticals, and 2-0-0 oc purlins
	(3-4-0 max.): 1-5.
BOT CHORD	Rigid ceiling directly applied or 2-2-0 oc
	bracing.
WEBS	1 Row at midpt 2-20, 4-18, 6-16
REACTIONS	(size) 12=0-3-8, 20=0-3-8
	Max Horiz 20=-320 (LC 8)
	Max Uplift 12=-379 (LC 9), 20=-365 (LC 9)
	Max Grav 12=1653 (LC 1), 20=1588 (LC 1)
FORCES	(lb) - Maximum Compression/Maximum
	Tension
TOP CHORD	2-20=-1534/411, 5-7=-3905/906,
	7-8=-5723/1346, 8-9=-5720/1295,
	9-10=-247/85, 10-11=0/22, 10-12=-336/174,
	1-3=-1400/442, 3-4=-1404/442,
	4-5=-2473/690
BOT CHORD	
	17-18=-375/2201, 16-17=-375/2201,
	14-16=-719/3691, 13-14=-907/4273,
	12-13=-707/3112
WEBS	18-20=-230/376, 4-18=-1130/297,
	8-13=-132/116, 5-16=-9/429, 4-16=-183/382,
	6-16=-1326/374, 6-14=-4/516,
	7-14=-668/213, 7-13=-314/1310,
	9-13=-517/2499, 9-12=-3558/812,
	4-17=0/232, 2-18=-435/1927

NOTES

 Unbalanced roof live loads have been considered for this design. November 21,2023

Mittek® 16023 Swingley Ridge Rd. Chesterfield, MO 63017 314.434.1200 / MITek-US.com

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSITPTI Quality Criteria, and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcscomponents.com)

4) 5)

6)

7)

8)

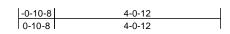
9)

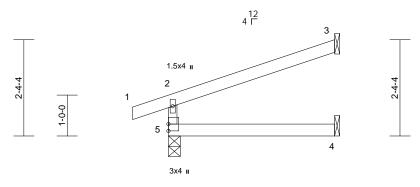
capacity of 565 psi.

bottom chord.

LOAD CASE(S) Standard

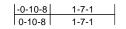
										Γ	RELEA	SE FOR CONSTRUCTION	
Job	Trus	SS	Truss Type		Qty	Ply	Ro	oof - HR	Lot 169			TED FOR PLAN REVIEW	٦
P230875-01	HO	5	Hip		1	1	Jo	b Refere	nce (optio	nal		ELOPMENT SERVICES 162145502 'S SUMMIT, MISSOURI	
Premier Building Su	pply (Springhill, KS	i), Spring Hills, KS - 66083,		Run: 8.63 S Nov 1 ID:7CLjzYR7WFUtL			ov 1 202	3 MiTek Ir	ndustries, In	c. Tiel			5
		_		ID:/CLJ2TR/WFUIC	Jourse 51		JPSB/U	пцзільдн	qnrøman i	XDGAV		35-7-0	
	1-3- 	0112	<u>13-9-1</u> 7-7-14				<u>26-1-9</u> 6-1-15			<u>2-2-4</u> 0-11	33-8-	15 36-5-8 11-10-1	
	13 41										10	0-10-8	
	41	6x12=											
	4x6			6x6=									
8 	0-1-12 0-1-12 □_1-12		1 22 × × ×	4									
	0 0 4					^{4x4} ≈ 5 23							
						23 A	_	4)	4 =				
8-3-2 8-1-6	0-0-0								~	8x6 ≈	MT	18HS 5x8 🕿	
8-3	8-1-6 7-10-0		Ň							7 21	1.5x4 II		
						//	\backslash	//				9 ^{3x6} "	
		171	م م	<u> </u>			14				13		
	_ ⊥ 20	19		4x8= 4x6=			4x4=				MT18HS 6:	x12 = 12	
	4x6 ı	3x4	7x8=									MT18HS 5x8 ≈	
		5x8=										12 35-7-0	
	1-4- 	0-5-0	<u>13-10-</u> 7-7-14		<u>23-0-9</u> 9-1-11		-1		<u>32-3-8</u> 9-2-15			<u>5-3-8 </u> 3-0-0 ₀₋₃₋₈	
Scale = 1:70.8 Plate Offsets (X		1-4], [12:0-1-15,Edge], [-		_
		1						(1)	1/-111				—
Loading TCLL (roof)	(psf) 25.0		2-0-0 1.15			EFL ert(LL)	in -0.39	(loc) 13-14			PLATES MT20	GRIP 197/144	
TCDL BCLL	10.0 0.0		1.15 YES			ert(CT) lorz(CT)	-0.86 0.35	13-14 12		80 I n/a	MT18HS	197/144	
BCDL	10.0		IRC2018/TPI20				0.00				Weight: 186	b FT = 20%	_
LUMBER TOP CHORD 2		5E *Except* 1-2:2x4 SP		: ASCE 7-16; Vult=115mph (=91mph; TCDL=6.0psf; BCI									
N	lo.2		Ke=1	.00; Cat. II; Exp C; Enclosed	i; MWFR	S (envelop							
1	5-13:2x4 SP 165		Exter	ior zone and C-C Exterior(2E ior(2R) 21-9-6 to 28-10-4, In	terior (1)	28-10-4 to							
WEBS 2 BRACING	x3 SPF No.2 *Ex	xcept* 20-1:2x4 SP No.2	41-4-	10, Exterior(2R) 34-3-10 to 4 8 to 56-11-8 zone; cantileve	r left and	l right							
		heathing directly applie except end verticals, a	nd mem	sed ; end vertical left and rig bers and forces & MWFRS f	or reaction								
2	2-0-0 oc purlins (3-10-9 max.): 2-4. ctly applied or 6-0-0 oc	Lumb	per DOL=1.60 plate grip DOL de adequate drainage to pre		ter pondina							
b	oracing. Except:		4) All pl	ates are MT20 plates unless truss has been designed for			d.						
1 Row at midpt 3 WEBS 1	Row at midpt	2-19, 5-16, 1-20	chore	I live load nonconcurrent with earings are assumed to be S	h any oth	ner live load	ds.						
REACTIONS (size Ma	ze) 12=0-3 ax Horiz 20=-36	3-8, 20=0-3-8 31 (LC 8)	ćcapa	city of 565 psi.		0							
		'5 (LC 9), 20=-348 (LC 9 59 (LC 1), 20=1589 (LC	using	ng at joint(s) 12 considers part ANSI/TPI 1 angle to grain for	ormula.	Building	•						
FORCES (I	lb) - Maximum C	ompression/Maximum	, nesič	ner should verify capacity of de mechanical connection (b			þ						
TOP CHORD 1	ension -2=-343/255, 2-3			ng plate capable of withstan 12 and 348 lb uplift at joint 2		lb uplift at							
	-4=-1983/592, 4 -6=-3567/815, 6		,	truss is designed in accordat national Residential Code se			nd						
	-9=-5804/1287, 0-12=-351/180,	9-10=-255/89, 10-11=0/ 1-20=-1530/446	22, R802	.10.2 and referenced standa hical purlin representation do	ard ANSI	/TPI 1.					OF	MISC	
BOT CHORD 1	9-20=-251/447,	18-19=-21/14, 17-18=0/ 16-17=-133/1249,	92, or the	e orientation of the purlin alo			20			A	ATE	MISSOL	
1	4-16=-513/2853	, 13-14=-799/3912,		m chord. ASE(S) Standard						A à	sy sco	M. YZY	
WEBS 1		2-19=-1408/478,							E	1+1		VIER	
		2-17=-398/1743, -16=0/313, 5-16=-1119/	359,							12	stt	in and	5
5	-14=-108/868, 6 -13=-420/1763,	-14=-794/315,								SE		1018807	1
9	-13=-545/2599,									W.	- Al	1 SB	
	oof live loads ha	we been considered for								V	SION	AL EN	
this design.											all a	er 21,2023	
											NUVEIID	0121,2020	

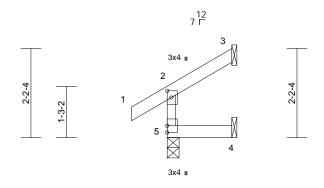

										RELEA	SE FOR CONSTRUCTION	N
Job	Truss Truss		Truss Type	Truss Type		Qty Ply		Roof - HR Lot 169		AS NOTED FOR PLAN REVIEW DEVELOPMENT SERVICES 162145503		
P230875-01	H06		Hip		1	1	Job Reference (optio		nce (optional	I62145503 LEE'S SUMMIT, MISSOURI		
Premier Building Supply	Premier Building Supply (Springhill, KS), Spring Hills, KS - 66083, Run: 8.63 S Nov 1 2023 Print: 8.630 S Nov 1 2023 MiTck Industries, Inc. T e Nov 21 9:4946 07/21 21 21 21 21 21 21 21 21 21 21 21 21 2								3			
				ID:Eidei_bHSF71	YJdO?5zVK	zvuC4-RfC?	PSB70H	q3NSgPqr	1L8W3UITXbGK	WrCDoi7J4z5C?1		
	4-9- 4-9-			<u>17-9-7</u> 7-5-13	1	25-9-4 7-11-1	4 3		<u> </u>		5-7-0 36-5-8 11-12 0-10-8	
	12 4 Г		5x5=				-				0-10-0	
-15			3									
0-1-12 0-1-12	4x6 =				3x8≈							
				\sim			3x6.					
9-5-2 9-3-6 8-3-6						$\langle \rangle$	5	3x4				
9-5-2 9-3 8-3 6-10-0				, ♥		X				3x4 ≈		
							\nearrow			7 20	4x6≈	
	18				9			\searrow	12		8 9	
	3x6 ∎	17	16 15		14		-0-0		13		10	Ι
	0,0 1	4x4=	3x8=		1.5x4 ॥			5x8=		11	⊠ 3x4 ∎	
			3x6=	1				3x4	4 u	3x8=		
	4-8-	-2 10-4	-14	17-9-7		25-5-4		25-8-0	0 30-7-4	. 3	5-7-0	
Scale = 1:66.5	4-8-			7-4-9	1	7-7-13		0-2-12			11-12	
Plate Offsets (X, Y):	[13:0-3-12,0-2	-12]										—
Loading	(psf)	Spacing	2-0-0	CSI	D	EFL	in	(loc)	l/defl L/d	PLATES	GRIP	
TCLL (roof) TCDL	25.0 10.0	Plate Grip DOL Lumber DOL	1.15 1.15	TC BC		ert(LL) ert(CT)	-0.10 -0.21		>999 240 >999 180	MT20	197/144	
BCLL BCDL	0.0	Rep Stress Incr Code	YES IRC2018/TPI2014	WB Matrix-S		lorz(CT)	0.03	10	n/a n/a	Woight: 190	IL ET 20%	
	10.0	Code		CE 7-16; Vult=115mpt	(2 00000	d quat)		-		Weight: 189	lb FT = 20%	—
	SP No.2		Vasd=91	mph; TCDL=6.0psf; BC	DL=6.0ps	sf; h=35ft;	-)					
WEBS 2x3 S	SPF No.2 *Exce	pt* 6-12:2x3 SPF No.2 ept* 13-4,10-8,18-1:2	4 exterior z	Cat. II; Exp C; Enclose one and C-C Exterior(2	2E) 20-7-1	2 to 30-9-1	Ó,					
SP N BRACING	0.2		56-11-8 z	R) 30-9-10 to 37-10-8 one; cantilever left and	d right exp	osed ; end	0					
TOP CHORD Struc		eathing directly applied cept end verticals, ar	forces & I	ft and right exposed;C MWFRS for reactions s								
2-0-0) oc purlins (5-4	4-6 max.): 2-3.	2) DOL=1.6	0 plate grip DOL=1.60 dequate drainage to p		er ponding						
braci	ng, Except:	y applied or 10-0-0 oc	 This truss 	has been designed for load nonconcurrent w	or a 10.0 p	sf bottom						
) oc bracing: 11 w at midpt	2-17, 4-16, 4-13	All bearin	gs are assumed to be								
REACTIONS (size) Max H	10=0-3-8 loriz 18=-326	, 13=0-3-8, 18=0-3-8 (LC 8)	6) Provide n	of 565 psi. nechanical connection)					
		(LC 9), 13=-363 (LC 9	^{y),} joint 18, 1	late capable of withsta 10 lb uplift at joint 10 a			nt					
Max G	irav 10=418 (LC 26), 13=1715 (LC		is designed in accord								
		npression/Maximum		International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.								
Tensi TOP CHORD 1-2=-		-864/377, 3-4=-997/36		purlin representation			ze					
4-6=0/284, 6-7=-68/286, 7-8=-380/82, bottom chord.												
	8=-238/416, 16 6=-88/1103, 13		LOAD CASE	(3) Stanuaru						FEOF	MISSOL	
12-13		481/244, 11-12=-47/0	,						Ē		M. TT M.	
WEBS 2-17=	=-655/372, 2-10		05						H.	*/	VIER VIER	
4-13=	-1572/302, 8-	6=-318/176, 4-14=0/3 11=0/149, 1-17=-354/	921,							1.++		
7-11= NOTES	=0/146, 11-13=	=0/327, 7-13=-532/187	,								MBERCURE	/
 Unbalanced roof this design. 	live loads have	e been considered for							Ø	PE-200	01018807	
ແມ່ວ ປະຈາຊາາ.									Y	ESSION	AL ENGL'S	
										ALC: N	AL	
										Novemb	er 21.2023	


November 21,2023

						RELEASE FOR CONSTRUCTION
Job	Truss	Truss Type	Qty	Ply	Roof - HR Lot 169	AS NOTED FOR PLAN REVIEW DEVELOPMENT SERVICES 162145504
P230875-01	J01	Jack-Open	2	1	Job Reference (optional	

Run: 8.63 S Nov 1 2023 Print: 8.630 S Nov 1 2023 MiTek Industries, Inc. Te Nov 219434807/2823 ID:DBx_k49yfXKfalt_GW7CO?zviN?-RfC?PsB70Hq3NSgPqnL8w3uITXbGKVrCDoi7J4zJ&


					4-0-	12						
Scale = 1:28.2		i										
Loading	(psf)	Spacing	2-0-0	csi		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15	TC	0.31	Vert(LL)	0.02	4-5	>999	240	MT20	197/144
TCDL	10.0	Lumber DOL	1.15	BC	0.20	Vert(CT)	-0.02	4-5	>999	180		
BCLL	0.0	Rep Stress Incr	YES	WB	0.00	Horz(CT)	-0.02	3	n/a	n/a		
BCDL	10.0	Code	IRC2018/TPI2014	Matrix-R							Weight: 14 lb	FT = 20%


BODL	10.0	Code	IKC2018/1F12014	Maultx-R		Weight. 14 lb $FT = 20\%$
LUMBER			LOAD CASE(S)	Standard		
TOP CHORD	2x4 SP No.2					
BOT CHORD	2x4 SP No.2					
WEBS	2x3 SPF No.2					
BRACING						
TOP CHORD	Structural wood she	eathing directly applied	or			
	4-0-12 oc purlins, e	except end verticals.				
BOT CHORD	Rigid ceiling directly bracing.	y applied or 10-0-0 oc				
REACTIONS	(size) 3= Mecha 5=0-3-8	anical, 4= Mechanical,				
	Max Horiz 5=63 (LC	; 9)				
	Max Uplift 3=-68 (LC	C 12), 5=-67 (LC 8)				
	Max Grav 3=123 (L (LC 1)	C 1), 4=75 (LC 3), 5=2	52			
FORCES	(lb) - Maximum Con Tension	npression/Maximum				
TOP CHORD	2-5=-218/249, 1-2=	0/22, 2-3=-70/31				
BOT CHORD	4-5=0/0					
NOTES						
1) Wind: AS	CE 7-16; Vult=115mph	n (3-second aust)				
	nph; TCDL=6.0psf; BC					
Ke=1.00;	Cat. II; Exp C; Enclose	ed; MWFRS (envelope))			
		2E) zone; cantilever lef	t			
	exposed ; end vertical					Jones
	C-C for members and					OF MISC
	shown; Lumber DOL=	1.60 plate grip				OF MISSOL
DOL=1.60	-				B	SCOTT M.
	has been designed fo	rith any other live loads			.8	SEVIER SEVIER
		loint 5 SP No.2 crushin				
capacity c		IOINED OF NO.2 CLUSHIN	g		8.2	
	irder(s) for truss to tru	iss connections				AT Xaul
	nechanical connection					COUNTRY
		nding 67 lb uplift at joir	nt		X	O PE-2001018807
	lb uplift at joint 3.		-		V.	
	is designed in accord	ance with the 2018				0.000
Internatio	nal Residential Code s	sections R502.11.1 and				SSIONAL ENGY
R802.10.2	2 and referenced stand	dard ANSI/TPI 1.				Amos
						November 21,2023
						November 21,2023

						RELEASE FOR CONSTRUCTION
lob	Truss	Truss Type	Qty	Plv	Roof - HR Lot 169	AS NOTED FOR PLAN REVIEW
Job	Truss	Thuss Type	Quy	гіу	R001 - HR L01 109	DEVELOPMENT SERVICES 162145505
P230875-01	J02	Jack-Open	2	1	Job Reference (optional	

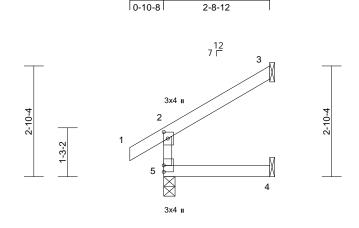
Run: 8.63 S Nov 1 2023 Print: 8.630 S Nov 1 2023 MiTek Industries, Inc. The Nov 2109.494607/269:23 ID:HoqEKO8i7w3xKSjc965kJazviN1-RfC?PsB70Hq3NSgPqnL8w3uITXbGKvrCDoi7J4zJ6++

1	1-7-1

Scale = 1:28.3

Plate Offsets (X, Y):	[2:0-2-0,0-1-4]

				i							i	
Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15	TC	0.16	Vert(LL)	0.00	4-5	>999	240	MT20	197/144
TCDL	10.0	Lumber DOL	1.15	BC	0.09	Vert(CT)	0.00	4-5	>999	180		
BCLL	0.0	Rep Stress Incr	YES	WB	0.00	Horz(CT)	-0.01	3	n/a	n/a		
BCDL	10.0	Code	IRC2018/TPI2014	Matrix-R		. ,					Weight: 7 lb	FT = 20%
BOT CHORD REACTIONS (size) Max Horiz Max Uplift	0.2 No.2 I wood she purlins, ex ing directly 3= Mecha 5=0-3-8 5=55 (LC 3=-40 (LC (LC 12)	athing directly applie cept end verticals. applied or 10-0-0 oc nical, 4= Mechanica 9) : 12), 4=-8 (LC 12), 5 19), 4=28 (LC 3), 5=	International R802.10.2 a LOAD CASE(S) d or	designed in accorr Residential Code nd referenced stan Standard	sections	s R502.11.1 a	ind					
	. ,	pression/Maximum										
Tension TOP CHORD 2-5=-141/	07 1 2 0/	25 2 2 41/20										
BOT CHORD 2-5=-141/ BOT CHORD 4-5=0/0	97, 1-2=0/	35, 2-3=-41/30										
NOTES												
 Wind: ASCE 7-16; Vu Vasd=91mph; TCDL= Ke=1.00; Cat. II; Exp exterior zone and C-C and right exposed; cr c exposed; C-C for menr reactions shown; Lum DOL=1.60 This truss has been d chord live load noncoi Bearings are assumer capacity of 565 psi. Refer to girder(s) for Provide mechanical c bearing plate capable 5, 8 lb uplift at joint 4 a 	6.0psf; BC C; Enclose Exterior(2 bertrical f ber DOL= esigned fo ncurrent wi d to be: , Ju truss to tru on withstar	DL=6.0psf; h=35ft; d; MWFRS (envelop E) zone; cantilever le eft and right prces & MWFRS for I.60 plate grip a 10.0 psf bottom th any other live loac pint 5 SP No.2 crushi ss connections. by others) of truss to nding 6 lb uplift at join	eft Is. ing						-	Ś	SCOT SEV SEV NUM PE-2001	IER Levie 018807



						RELEASE FOR CONSTRUCTION
Job	Truss	Truss Type	Qty	Plv	Roof - HR Lot 169	AS NOTED FOR PLAN REVIEW
						DEVELOPMENT SERVICES I62145506
P230875-01	J03	Jack-Open	2	1	Job Reference (optional	LEE'S SUMMIT, MISSOURI

-0-10-8

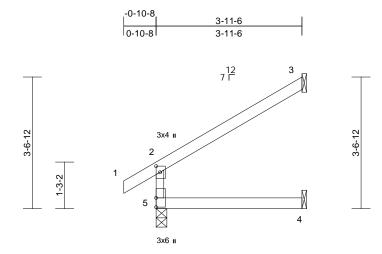
Premier Building Supply (Springhill, KS), Spring Hills, KS - 66083,

Run: 8.63 S Nov 1 2023 Print: 8.630 S Nov 1 2023 MiTek Industries, Inc. The Nov 2109.4948 07/2921 ID:O1ajU05B4hZWrqPrwG108kzviN5-RfC?PsB70Hq3NSgPqnL8w3uITXbGk WrCDoi7J4z669

2-8-12

2-8-12

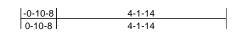
Scale = 1:29.7 Plate Offsets (X, Y): [2:0-2-0,0-1-4]


	(X, Y): [2:0-2-0,0-1-4]										-	
Loading TCLL (roof) TCDL BCLL BCDL	(psf) 25.0 10.0 0.0 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018/TPI2014	CSI TC BC WB Matrix-R	0.22 0.14 0.00	DEFL Vert(LL) Vert(CT) Horz(CT)	in 0.01 -0.01 -0.02	(loc) 4-5 4-5 3	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 11 lb	GRIP 197/144 FT = 20%
LUMBER 6) This russ is designed in accordance with the 2018 TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.2 BRACING R802.10.2 and referenced standard ANSI/TPI 1. LOAD CASE(S) Standard BOT CHORD Structural wood sheathing directly applied or 2-8-12 oc purlins, except end verticals. BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing. REACTIONS (size) 3 = Mechanical, 4 = Mechanical, 5=0-3-8 Max Horiz 5=0-3-8 Max Grav 3=86 (LC 12), 4=-3 (LC 12), 5=-7 (LC 12) Max Grav 3=86 (LC 19), 4=49 (LC 3), 5=197 (LC 12)												
Vasd=91n Ke=1.00; reactions constructions DOL=1.6C 2) This truss chord live 3) Bearings a capacity o 4) Refer to g 5) Provide m bearing pl	(lb) - Maximum Com Tension 2-5=-172/102, 1-2=0 4-5=0/0 CE 7-16; Vult=115mph mph; TCDL=6.0psf; BC Cat. II; Exp C; Enclose one and C-C Exterior(2 exposed ; end vertical I 2-C for members and for shown; Lumber DOL=1 has been designed for load nonconcurrent wi are assumed to be: , Jo	, /35, 2-3=-63/43 (3-second gust) DL=6.0psf; h=35ft; d; MWFRS (envelop E) zone; cantilever I eft and right prces & MWFRS for 1.60 plate grip a 10.0 psf bottom th any other live loa pint 5 SP No.2 crush ss connections. by others) of truss t iding 7 lb uplift at joi	left ds. ning o						ų		STATE OF I SCOT SEV. SCOT SEV. NUM PE-2001	T M. ER DER 018807

November 21,2023

Job Truss Truss Type Qty Ply Roof - HR Lot 169 DEVELOPMENT SERVICES P230875-01 104 Jack-Open 8 1 Jack-Open 1							RELEASE FOR CONSTRUCTION
	Job	Truss	Truss Type	Qty	Ply	Roof - HR Lot 169	
	P230875-01	J04	Jack-Open	8	1	Job Reference (optional	

Run: 8.63 S Nov 1 2023 Print: 8.630 S Nov 1 2023 MiTek Industries, Inc. The Nov 2119434407/2 ID:WGLCef2g0S34ND63hQys_uzviN9-RfC?PsB70Hq3NSgPqnL8w3uITXbG WrCDoi794269f


3-11-6	

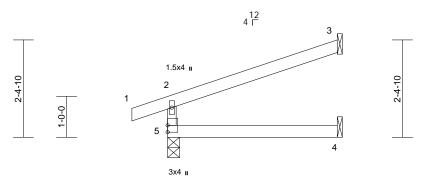
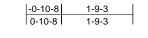
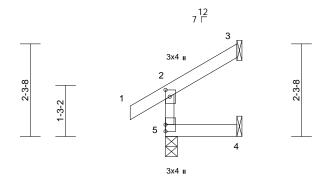

Scale = 1:31.2 Plate Offsets (X, Y): [2:0-2-0,0-1-4]

Plate Olisets ((X, Y): [2:0-2-0,0-1-4]											
Loading TCLL (roof) TCDL BCLL BCDL	(psf) 25.0 10.0 0.0 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018/TPI2014	CSI TC BC WB Matrix-R	0.33 0.22 0.00	DEFL Vert(LL) Vert(CT) Horz(CT)	in 0.02 -0.02 -0.04	(loc) 4-5 4-5 3	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 15 lb	GRIP 197/144 FT = 20%
	2x4 SP No.2 2x3 SPF No.2 Structural wood she 3-11-6 oc purlins, e Rigid ceiling directly bracing.	xcept end verticals. applied or 10-0-0 o anical, 4= Mechanica C 12) C 12), 5=-9 (LC 12)	Internationa R802.10.2 a LOAD CASE(S) ed or c	designed in acccc Residential Codu ind referenced sta Standard	e sections	R502.11.1 a	and					
Vasd=91n Ke=1.00; t exterior z and right e exposed;C reactions s DOL=1.60 2) This truss chord live 3) Bearings a capacity o 4) Refer to g 5) Provide m bearing pl	CE 7-16; Vult=115mph nph; TCDL=6.0psf; BC Cat. II; Exp C; Enclose one and C-C Exterior(2 exposed ; end vertical I C-C for members and f shown; Lumber DOL=' has been designed for load nonconcurrent wi are assumed to be: , Jo	,)/35, 2-3=-90/56 (3-second gust) DL=6.0psf; h=35ft; ,d; MWFRS (envelop 2E) zone; cantilever left and right orces & MWFRS for 1.60 plate grip r a 10.0 psf bottom th any other live loa pint 5 SP No.2 crust ss connections. (by others) of truss t	left ds. ning o								SCOT SEV NUM PE-2001	HER BER CALL 018807

						RELEASE FOR CONSTRUCTION
Job	Truss	Truss Type	Qty	Ply	Roof - HR Lot 169	AS NOTED FOR PLAN REVIEW
						DEVELOPMENT SERVICES I62145508
P230875-01	J05	Jack-Open	1	1	Job Reference (optional	LEE'S SUMMIT, MISSOURI

Run: 8.63 S Nov 1 2023 Print: 8.630 S Nov 1 2023 MiTek Industries, Inc. Te Nov 219434607/20:219 ID:5hf40d?ojXhVWINU0IO9MGzviNC-RfC?PsB70Hq3NSgPqnL8w3uITXbGr WrCDoi7.4z66?

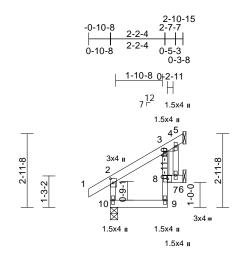

				L	4-1-14							
Scale = 1:28.2												
Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15	тс	0.33	Vert(LL)	0.02	4-5	>999	240	MT20	197/144
TCDL	10.0	Lumber DOL	1.15	BC	0.20	Vert(CT)	-0.03	4-5	>999	180		
BCLL	0.0	Rep Stress Incr	YES	WB	0.00	Horz(CT)	-0.02	3	n/a	n/a		
BCDL	10.0	Code	IRC2018/TPI2014	Matrix-R							Weight: 15 lb	FT = 20%

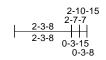

BCDL	10.0	Code	IRC2018/TPI2014	Matrix-R		Weight: 15 lb $FT = 20\%$
LUMBER			LOAD CASE(S)	Standard		
TOP CHORD						
BOT CHORD						
WEBS	2x3 SPF No.2					
BRACING						
TOP CHORD		neathing directly app				
		except end vertical				
BOT CHORD	Bigid ceiling direct bracing.	ly applied or 10-0-0	OC			
DEACTIONO	0	haniaal di Maabaa				
REACTIONS	(size) 3= Mecr 5=0-3-8	hanical, 4= Mechan	ical,			
	Max Horiz 5=64 (L0					
	Max Uplift 3=-69 (L	,	*)			
	Max Grav 3=126 (I					
	(LC 1)	20 1), 1210 (20 0),	0-200			
FORCES	()	mpression/Maximu	m			
	Tension					
TOP CHORD	2-5=-222/253, 1-2=	=0/22, 2-3=-72/31				
BOT CHORD	4-5=0/0					
NOTES						
1) Wind: AS	CE 7-16; Vult=115mp	oh (3-second gust)				
	nph; TCDL=6.0psf; B					
	Cat. II; Exp C; Enclos					
	one and C-C Exterior		er left			
	exposed ; end vertica		(ATE OF MISSOU
	C-C for members and shown; Lumber DOL:		for			FE OF MISS
DOL=1.60		= 1.00 plate grip			F	
	has been designed f	for a 10.0 psf botton	n		A	SCOTT M.
	load nonconcurrent v				A	SEVIER
	are assumed to be: ,				(he	
capacity c			0			1 the Sand
4) Refer to g	irder(s) for truss to tr	russ connections.				con and
	nechanical connection				M.S	NUMBER
	late capable of withsta	anding 68 lb uplift a	at joint		XY.	O PE-2001018807
	lb uplift at joint 3.		_		N N N N N N N N N N N N N N N N N N N	TE-200101880/
	is designed in accord					CSSIONAL ENGLY
	nal Residential Code 2 and referenced stan		and			WAL ET
R802.10.2	z and referenced star	Idard ANSI/TPLT.				Conner
						November 21,2023
						· · · · · · · · · · · · · · · · · · ·

						RELEASE FOR CONSTRUCTION
Job	Truss	Truss Type	Qty	Ply	Roof - HR Lot 169	AS NOTED FOR PLAN REVIEW
B000075 04	100					DEVELOPMENT SERVICES I62145509
P230875-01	J06	Jack-Open	1	I	Job Reference (optional	LEE'S SUMMIT, MISSOURI

Run: 8.63 S Nov 1 2023 Print: 8.630 S Nov 1 2023 MiTek Industries, Inc. The Nov 2109494607/29923 ID:DwQZAGyHgJB4184jnSKDCQzviNG-RfC?PsB70Hq3NSgPqnL8w3uITXb sKWrCDor74296?

L	1-9-3
Γ	


Scale = 1:28.5 Plate Offsets (X, Y): [2:0-2-0.0-1-4]


Plate Offsets ((X, Y): [2:0-2-0,0-1-4]											
Loading TCLL (roof) TCDL BCLL BCDL	(psf) 25.0 10.0 0.0 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018/TPI2014	CSI TC BC WB Matrix-R	0.16 0.09 0.00	DEFL Vert(LL) Vert(CT) Horz(CT)	in 0.00 0.00 -0.01	(loc) 4-5 4-5 3	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 8 lb	GRIP 197/144 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x3 SPF No.2 Structural wood she 1-9-3 oc purlins, exi Rigid ceiling directly bracing. (size) 3= Mecha 5=0-3-8 Max Horiz 5=58 (LC Max Uplift 3=-44 (LC (LC 12) Max Grav 3=50 (LC	cept end verticals. applied or 10-0-0 od inical, 4= Mechanica 9) ; 12), 4=-7 (LC 12), 5	Internation R802.10.2 LOAD CASE(ed or	is designed in acco al Residential Cod and referenced st 5) Standard	le sections	R502.11.1 a	and					
Vasd=91n Ke=1.00; (exterior zc and right e exposed;C reactions : DOL=1.60 2) This truss chord live 3) Bearings a capacity o 4) Refer to g 5) Provide m bearing pl	4-5=0/0 CE 7-16; Vult=115mph nph; TCDL=6.0psf; BC Cat. II; Exp C; Enclose one and C-C Exterior(2 exposed ; end vertical I C-C for members and for shown; Lumber DOL=) has been designed for load nonconcurrent wi are assumed to be: , Jo	35, 2-3=-44/32 (3-second gust) DL=6.0psf; h=35ft; d; MWFRS (envelop E) zone; cantilever I left and right orces & MWFRS for 1.60 plate grip r a 10.0 psf bottom th any other live load bint 5 SP No.2 crush ss connections. (by others) of truss to hding 6 lb uplift at joi	eft ds. ing							E	Several Scott	TER 1018807

							RELEASE FOR CONSTRUCTION
J	lob	Truss	Truss Type	Qty	Ply	Roof - HR Lot 169	AS NOTED FOR PLAN REVIEW DEVELOPMENT SERVICES 162145510
F	P230875-01	J07	Jack-Open	1	1	Job Reference (optional	

Run: 8.63 S Nov 1 2023 Print: 8.630 S Nov 1 2023 MiTek Industries, Inc. T ie Nov 2109495007/ ID:K9A2Kuvnc4geYXmyYcFH2azviNK-RfC?PsB70Hq3NSgPqnL8w3uITXbG WrCDoi794298/f 23

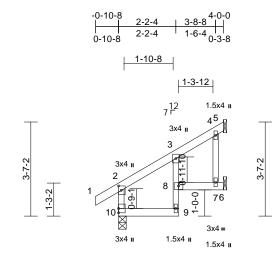
Scale = 1:46.3

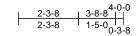
Plate Offsets (X, Y): [2:0-2-0,0-1-4]

	())[]				-							
Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15	тс	0.14	Vert(LL)	0.00	` <i>Ś</i>	>999	240	MT20	197/144
TCDL	10.0	Lumber DOL	1.15	BC	0.13	Vert(CT)	0.00	9	>999	180		
BCLL	0.0	Rep Stress Incr	YES	WB	0.01	Horz(CT)	-0.01	5	n/a	n/a		
BCDL	10.0	Code	IRC2018/TPI2014	Matrix-S							Weight: 14 lb	FT = 20%
LUMBER				mechanical connect								
TOP CHORE			•	plate capable of with			oint					
BOT CHORE		ot* 9-3:2x3 SPF No.2		o uplift at joint 5 and								
WEBS	2x3 SPF No.2			ss is designed in acc ional Residential Co			and					
BRACING			D002 1).2 and referenced s			anu					
TOP CHORE	D Structural wood she 2-10-15 oc purlins,		led of	E(S) Standard								
BOT CHORE			0.									
Doi onone	bracing.											
REACTIONS	0	anical, 6= Mechanic	al,									
	10=0-3-8											
	Max Horiz 10=76 (LO	,										
	Max Uplift 5=-26 (LC),									
	10=-7 (LC Max Grav 5=59 (LC											
	10=204 (I											
FORCES	(lb) - Maximum Com	,	1									
	Tension											
TOP CHORE	0 2-10=-180/99, 1-2=0	0/35, 2-3=-74/2,										
	3-4=-9/20, 4-5=-22/2											
BOT CHORE	,	9/40, 3-8=-58/103,										
WEBS	7-8=0/0, 6-7=0/0 4-7=-40/24											
NOTES	4-7-40/24										000	all
	SCE 7-16; Vult=115mph	(3-second qust)									TATE OF	MISCO
	mph; TCDL=6.0psf; BC										TE	-0.0
	; Cat. II; Exp C; Enclose		pe)							R	SCOT	West MT
	zone and C-C Exterior(2		left							R	SCOT SEV	
	exposed ; end vertical									11	SEV	
	;C-C for members and f s shown; Lumber DOL=		r								and a	X X
DOL=1.6		1.00 plate grip									att -	Silenter
	s has been designed fo	r a 10.0 psf bottom								33	NUM	
	e load nonconcurrent w		ads.							N	PE-2001	018807
2) Decringe	ore enclosed to be:	aint 10 CD No 2								N N	The second secon	

3) Bearings are assumed to be: , Joint 10 SP No.2 crushing capacity of 565 psi.

4) Refer to girder(s) for truss to truss connections.


November 21,2023


E

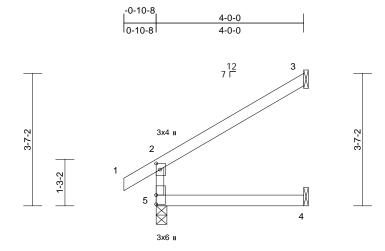
SSIONAL

						RELEASE FOR CONSTRUCTION
Job	Truss	Truss Type	Qty	Ply	Roof - HR Lot 169	AS NOTED FOR PLAN REVIEW DEVELOPMENT SERVICES I62145511
P230875-01	J08	Jack-Open	4	1	Job Reference (optional	

Run: 8.63 S Nov 1 2023 Print: 8.630 S Nov 1 2023 MiTek Industries, Inc. Te Nov 219:3950 07/21202 ID:CNMi1eYygsuuywTBnJjFqFzviNo-RfC?PsB70Hq3NSgPqnL8w3uITXbGK vrCDoi7J42,007/2102

Scale = 1:44

Plate Offsets	(X,	Y):	[2:0-2-0,0-1-4]
---------------	-----	-----	-----------------


	(A, T). [2.0-2-0,0-1-4]				_							
Loading TCLL (roof) TCDL BCLL BCDL	(psf) 25.0 10.0 0.0 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018/TPI2014	CSI TC BC WB Matrix-S	0.17 0.17 0.01	DEFL Vert(LL) Vert(CT) Horz(CT)	in 0.02 -0.03 -0.02	(loc) 8 9 5	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 18 lb	GRIP 197/144 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 *Excep 2x3 SPF No.2 Structural wood she 4-0-0 oc purlins, ex Rigid ceiling directly bracing.	athing directly applie cept end verticals. applied or 10-0-0 or anical, 6= Mechanica _C 12) C 12), 6=-47 (LC 12), C 12) 19), 6=116 (LC 19),	bearing 10, 43 lb 6) This trus Internati R802.11 LOAD CASI c al,	mechanical connecti plate capable of with o uplift at joint 5 and 4 ss is designed in acco onal Residential Coc 0.2 and referenced st E(S) Standard	istanding 1 47 lb uplift ordance w de sections	0 lb uplift at j at joint 6. ith the 2018 s R502.11.1 a	joint					
FORCES	(lb) - Maximum Com	,										
TOP CHORD	Tension 2-10=-222/108, 1-2=	=0/35, 2-3=-116/0,										
	3-4=-56/50, 4-5=-35	/37	- / -									
BOT CHORD	9-10=-84/74, 8-9=-2 6-7=0/0	5/38, 3-8=-2/48, 7-8	=0/0,									
WEBS	4-7=-62/31											
NOTES											OF	ALL ALL
Vasd=91n Ke=1.00; exterior zc and right e exposed; reactions DOL=1.60 2) This truss chord live 3) Bearings a crushing c	CE 7-16; Vult=115mph nph; TCDL=6.0psf; BC Cat. II; Exp C; Enclose one and C-C Exterior(2 exposed; end vertical C-C for members and f shown; Lumber DOL=) has been designed fo load nonconcurrent wi are assumed to be: , Ju capacity of 565 psi. irder(s) for truss to tru	DL=6.0psf; h=35ft; d; MWFRS (envelop E) zone; cantilever l left and right orces & MWFRS for 1.60 plate grip r a 10.0 psf bottom ith any other live load oint 10 SP No.2	left								PE-2001	I M. HER 018807

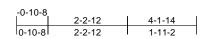
November 21,2023

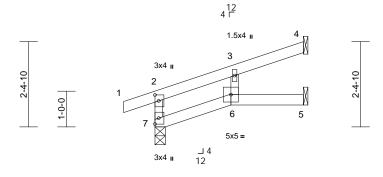
						RELEASE FOR CONSTRUCTION
Job	Truss	Truss Type	Qty	Ply	Roof - HR Lot 169	AS NOTED FOR PLAN REVIEW
P230875-01	J09	Jack-Open	15	1	Job Reference (optional	DEVELOPMENT SERVICES 162145512 LEE'S SUMMIT, MISSOURI
Premier Building Supply (Sprir	nghill, KS), Spring Hills, KS - 66083,				2023 MiTek Industries, Inc. T BZ0Ha3NSaPant 8w3uITXbG	

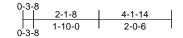
Run: 8.63 S Nov 1 2023 Print: 8.630 S Nov 1 2023 MiTek Industries, Inc. The Nov 21194350 07/2 ID:oohaPcW4NxWK5SIc6B9YCczviNr-RfC?PsB70Hq3NSgPqnL8w3uITXbG

4-0-0	

Scale = 1:31.2 te Offsets (X Y): [2:0-2-0 0-1-4] Pla


Loading TCLL (roof) (p.sf) 25.0 Pate Grip DOL Lumber DOL 1.15 CSI TC 0.33 BC DEFL vert(LL) in (loc) Videl Lub PLATES GRIP BCLL 0.0 Rep Stress Incr YES 0.23 Vert(LL) 0.02 4.5 >999 24.0 MT20 197/144 BCLL 0.0 Rep Stress Incr YES WB 0.00 Horz(CT) 0.04 3 n/a N/a Weight: 15 lb FT = 20% LUMBER TOP CHORD 2x4 SP No.2 6) This trues is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and references at shard ANS/TPI 1. LOAD CASE(S) Standard BTCHORD Structural wood sheathing directly applied or 4-0-0 oc purifies, except and verticals, 5=0-3.8 Max Horiz 5=104 (LC 12) LOAD CASE(S) Standard BTCHORD Structural wood sheathing directly applied or 4-0-0 applied or 5=0-3.8 Max Horiz 5=104 (LC 12) LOAD CASE(S) Standard Not ASE 7-16; Vulte-115, 1.2-0/35, 2-3-91/57 Max Horiz 5=104 (LC 12), 5-210 (LC 12) Max Horiz 5=104 (LC 12), 5-210 (LC 12) Max Horiz 5=104 (LC 12), 5-200 (LC 12) Max Horiz 5=104 (LC 12), 5-200 (LC 1	Plate Offsets (X, Y): [2:0-2-0,0-1-4]											
TOP CHORD 2x4 SP No.2 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. UAD CASE(S) Standard TOP CHORD 2x4 SP No.2 LOAD CASE(S) Standard MSI/TPI 1. UAD CASE (S) TAD CASE (S) TAD CASE (S) TAD CASE (S) TAD	TCLL (roof) TCDL BCLL	25.0 10.0 0.0	Plate Grip DOL Lumber DOL Rep Stress Incr	1.15 1.15 YES	TC BC WB	0.23	Vert(LL) Vert(CT)	0.02 -0.02	4-5 4-5	>999 >999	240 180	MT20	197/144
 capacity of 565 psi. 4) Refer to girder(s) for truss to truss connections. 5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 10 lb uplift at joint 5 and 93 lb uplift at joint 3. November 21,2023 	LUMBER TOP CHORD BOT CHORD BOT CHORD BOT CHORD BOT CHORD BOT CHORD REACTIONS FORCES TOP CHORD BOT CHORD BOT CHORD NOTES 1) Wind: ASC Vasd=91n Ke=1.00; 0 exterior 20 and right e exposed;0 reactions s DOL=1.60 2) This truss chord live 3) Bearings a capacity o 4) Refer to gi 5) Provide m bearing pla	2x4 SP No.2 2x4 SP No.2 2x3 SPF No.2 Structural wood she 4-0-0 oc purlins, exi Rigid ceiling directly bracing. (size) 3= Mecha 5=0-3-8 Max Horiz 5=104 (LC Max Upliff 3=-93 (LC (LC 1) (lb) - Maximum Com Tension 2-5=-216/115, 1-2=0 4-5=0/0 CE 7-16; Vult=115mph nph; TCDL=6.0psf; BC Cat. II; Exp C; Enclose one and C-C Exterior(2 exposed ; end vertical I C-C for members and fo shown; Lumber DOL=1 has been designed for load nonconcurrent wi are assumed to be: , Jo f 565 psi. irder(s) for truss to tru echanical connection (ate capable of withstar	athing directly applie cept end verticals. applied or 10-0-0 or inical, 4= Mechanica C 12) C 12), 5=-10 (LC 12) C 19), 4=74 (LC 3), 5 ipression/Maximum 0/35, 2-3=-91/57 (3-second gust) DL=6.0psf; h=35ft; d; MWFRS (envelop E) zone; cantilever I left and right orces & MWFRS for 1.60 plate grip r a 10.0 psf bottom th any other live load bit 5 SP No.2 crush ss connections. (by others) of truss to	6) This truss is Internationa R802.10.2 a LOAD CASE(S) ed or 5 5=250 be) eft ds. ing	designed in accor Residential Code and referenced star	sections	s R502.11.1 a	and				STATE OF I STATE OF I SCOT SEVI PE-2001	MISSOL T M. ER 018807




						RELEASE FOR CONSTRUCTION
Job	Truss	Truss Type	Qty	Ply	Roof - HR Lot 169	
P230875-01	J10	Jack-Open	1	1	Job Reference (optional	DEVELOPMENT SERVICES 162145513 LEE'S SUMMIT, MISSOURI

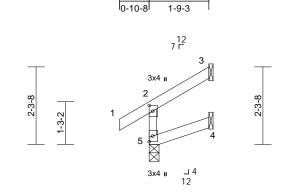
Run: 8.63 S Nov 1 2023 Print: 8.630 S Nov 1 2023 MiTek Industries, Inc. The Nov 2119:4950 07/2 ID:w1R3ZESZKi0ucrRrtL5c2mzviNv-RfC?PsB70Hq3NSgPqnL8w3uITXbGKV rCDoi7J4zJeff

<u>@2</u>

Scale = 1:32.2

Plate Offsets (X, Y): [2:0-2-0,0-1-4]

Plate Offsets ((X, Y): [2:0-2-0,0-1-4]											
Loading TCLL (roof) TCDL BCLL BCDL	(psf) 25.0 10.0 0.0 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018/TPI201	CSI TC BC WB 4 Matrix-P	0.23 0.22 0.03	DEFL Vert(LL) Vert(CT) Horz(CT)	in 0.03 -0.03 -0.03	(loc) 6-7 6 4	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 15 lb	GRIP 197/144 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x3 SPF No.2 Structural wood she 4-1-14 oc purlins, e Rigid ceiling directly bracing.	xcept end verticals. applied or 6-0-0 oc anical, 5= Mechanica 9) ; 12), 5=-10 (LC 12), ; 8)	ed or 7, 49 ll 7) This tr Interna R802. ⁻ al, LOAD CA	g at joint(s) 7 considers ANSI/TPI 1 angle to gra er should verify capaci e mechanical connecti g plate capable of with: b uplift at joint 4 and 10 uss is designed in acco ational Residential Cod 10.2 and referenced sta SE(S) Standard	in formul ty of bear on (by oth standing 6) lb uplift a ordance w e sections	a. Building ing surface. ers) of truss to 37 lb uplift at jo at joint 5. ith the 2018 5 R502.11.1 ar	pint					
FORCES TOP CHORD BOT CHORD WEBS	3-4=-50/30)/22, 2-3=-107/32,										
NOTES 1) Wind: ASG Vasd=91n Ke=1.00; t exterior zc and right exposed; reactions DOL=1.60 2) This truss chord live 3) Bearings a capacity o	CE 7-16; Vult=115mph nph; TCDL=6.0psf; BC Cat. II; Exp C; Enclose one and C-C Exterior(2 exposed ; end vertical I C-C for members and f shown; Lumber DOL=') has been designed for load nonconcurrent wi are assumed to be: , Jo	DL=6.0psf; h=35ft; d; MWFRS (envelop E) zone; cantilever l left and right orces & MWFRS for 1.60 plate grip r a 10.0 psf bottom th any other live load oint 7 SP No.2 crush	eft						e		NUM PE-2001 November	T M. IER BER 018807 EL ENGINE



						RELEASE FOR CONSTRUCTION
Job	Truss	Truss Type	Qty	Ply	Roof - HR Lot 169	AS NOTED FOR PLAN REVIEW DEVELOPMENT SERVICES 162145514
P230875-01	J11	Jack-Open	1	1	Job Reference (optional	
Premier Building Supply (Spring	ghill, KS), Spring Hills, KS - 66083,				2023 MiTek Industries, Inc. T B70Ha3NSaPanL8w3uITXbG	

-0-10-8

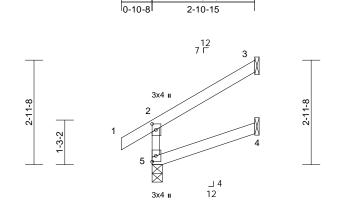
1-9-3

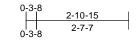
Run: 8.63 S Nov 1 2023 Print: 8.630 S Nov 1 2023 MiTek Industries, Inc. Te Nov 219935/07/ ID:dhWQ5rNAzZ7tGmPVzNTzFIzviO0-RfC?PsB70Hq3NSgPqnL8w3uITXbG WrCDoi794

Scale = 1:34.1

Plate Offsets (X, Y): [2:0-2-0,0-1-4]

	.]										
Loading (psf) TCLL (roof) 25.0 TCDL 10.0	Spacing Plate Grip DOL Lumber DOL	2-0-0 1.15 1.15	CSI TC BC	0.17 0.10	Vert(CT)	0.00 0.00	4-5	l/defl >999 >999	L/d 240 180	PLATES MT20	GRIP 197/144
BCLL 0.0 BCDL 10.0	Rep Stress Incr Code	YES IRC2018/TPI2014	WB Matrix-R	0.00	Horz(CT)	-0.01	3	n/a	n/a	Weight: 8 lb	FT = 20%
REACTIONS (size) 43–45 (LC 12	C 9) LC 12), 4=-8 (LC 12),	bearing 5, 45 lb 7) This tru: Internat R802.11 LOAD CAS al, 5=-4	mechanical connect plate capable of with uplift at joint 3 and 8 ss is designed in acc ional Residential Co .2 and referenced s E(S) Standard	nstanding 4 B lb uplift at cordance w de sections	l lb uplift at joint joint 4. ith the 2018 3 R502.11.1 and						
(LC 1)	.C 19), 4=32 (LC 3), 5 ompression/Maximum										
Tension TOP CHORD 2-5=-145/95, 1-2: BOT CHORD 4-5=-15/9	0/35, 2-3=-45/33										
 NOTES Wind: ASCE 7-16; Vult=115m Vasd=91mph; TCDL=6.0psf; Ke=1.00; Cat. II; Exp C; Encle exterior zone and C-C Exterior and right exposed ; end vertic exposed; C-C for members an reactions shown; Lumber DO DOL=1.60 This truss has been designed chord live load nonconcurrent Bearings are assumed to be: capacity of 565 psi. Refer to girder(s) for truss to 5) Bearing at joint(s) 5 considers using ANSI/TPI 1 angle to gra designer should verify capacit 	BCDL=6.0psf; h=35ft; sed; MWFRS (envelo (2E) zone; cantilever d forces & MWFRS foi =1.60 plate grip for a 10.0 psf bottom with any other live loa Joint 5 SP No.2 crust russ connections. parallel to grain value n formula. Building	left r Ids. hing						, 	B	SEV	TIER TO INCLUSION OF THE TO INCLUSION OF THE TO INCLUSION OF THE TOP THE TO INCLUSION OF THE TOP THE T


November 21,2023


						RELEASE FOR CONSTRUCTION
Job	Truss	Truss Type	Qty	Ply	Roof - HR Lot 169	AS NOTED FOR PLAN REVIEW
P230875-01	J12	Jack-Open	1	1	Job Reference (optional	DEVELOPMENT SERVICES 162145515 LEE'S SUMMIT, MISSOURI
Premier Building Supply (S	Springhill, KS), Spring Hills, KS	5 - 66083,			2023 MiTek Industries, Inc. T PsB70Ha3NSaPant &w3uITXb	

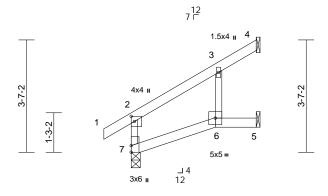
-0-10-8

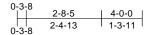
Run: 8.63 S Nov 1 2023 Print: 8.630 S Nov 1 2023 MiTek Industries, Inc. The Nov 21 9:4951 DRZMGo4EHZAIRS43NpZmNJzzviOB-RfC?PsB70Hq3NSgPqnL8w3uITXb GKWrCDo17JzzvC?

2-10-15

Scale = 1:32.7

Plate Offsets (X, Y): [2:0-2-0,0-1-4]
---------------------	--------------------


Loading TCLL (roof) TCDL BCLL BCDL	(psf) 25.0 10.0 0.0 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018/TPI2014	CSI TC BC WB Matrix-R	0.25 0.16 0.00	DEFL Vert(LL) Vert(CT) Horz(CT)	in 0.01 -0.01 -0.02	(loc) 4-5 4-5 3	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 12 lb	GRIP 197/144 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x3 SPF No.2 Structural wood she 2-10-15 oc purlins, Rigid ceiling directly bracing.	eathing directly applie except end verticals / applied or 6-0-0 oc anical, 4= Mechanica 12) C 12), 4=-2 (LC 12), 4	6) Provide bearing 5, 70 lb 7) This tru- Internat R802.10 LOAD CAS	mechanical connect plate capable of with uplift at joint 3 and 2 ss is designed in acc ional Residential Coc 0.2 and referenced st E(S) Standard	nstanding 6 Ib uplift at ordance w de sections	b lb uplift at ju joint 4. ith the 2018 R502.11.1	oint					
Vasd=91m Ke=1.00; C exterior 20 and right e exposed;C reactions 5 DOL=1.60 2) This truss chord live l 3) Bearings a capacity of 4) Refer to gi 5) Bearing at using ANS	4-5=-16/13 CE 7-16; Vult=115mpt nph; TCDL=6.0psf; BC Cat. II; Exp C; Enclose one and C-C Exterior(2 exposed; end vertical C-C for members and t shown; Lumber DOL= has been designed for load nonconcurrent w are assumed to be: , J) (3-second gust) DJ=6.0psf; h=35ft; d; MWFRS (envelop 2E) zone; cantilever I left and right forces & MWFRS for 1.60 plate grip or a 10.0 psf bottom ith any other live load oint 5 SP No.2 crush uss connections. arallel to grain value formula. Building	eft ds.								State OF J State OF J Scot Sev NUM PE-2001	ER BER 018807


16023 Swingley Ridge Rd. Chesterfield, MO 63017 314.434.1200 / MiTek-US.com

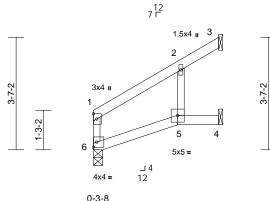
						RELEASE FOR CONSTRUCTION
Job	Truss	Truss Type	Qty	Ply	Roof - HR Lot 169	AS NOTED FOR PLAN REVIEW DEVELOPMENT SERVICES 162145516
P230875-01	J13	Jack-Open	9	1	Job Reference (optional	

Run: 8.63 S Nov 1 2023 Print: 8.630 S Nov 1 2023 MiTek Industries, Inc. Te Nov 2109.495/07/2023 ID:Yj?2hTN6W3gfp0ZYbRTVOozviPJ-RfC?PsB70Hq3NSgPqnL8w3ulTXbGF WrCDoi7J42664

Scale = 1:36.9

Plate Offsets (X, Y): [2:0-2-0,0-1-4], [7:0-2-8,Edge]


Plate Offsets ((X, Y): [2:0-2-0,0-1-4],	[7:0-2-8,Edge]										
Loading TCLL (roof) TCDL BCLL BCDL	(psf) 25.0 10.0 0.0 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018/TPI2014	CSI TC BC WB Matrix-P	0.29 0.19 0.02	DEFL Vert(LL) Vert(CT) Horz(CT)	in 0.03 -0.03 -0.04	(loc) 6-7 6-7 4	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 17 lb	GRIP 197/144 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x3 SPF No.2 Structural wood she 4-0-0 oc purlins, ex Rigid ceiling directly bracing.	cept end verticals. applied or 6-0-0 oc anical, 5= Mechanica C 12) C 12), 5=-37 (LC 12), C 19), 5=82 (LC 19),	ed or al, , 7=-8	at joint(s) 7 consider ISI/TPI 1 angle to gr. should verify capaci nechanical connecti plate capable of with uplift at joint 4 and 37 s is designed in acco onal Residential Cod 2. and referenced st. (S) Standard	ain formula ity of beari on (by oth standing 8 7 lb uplift a ordance w le sections	a. Building ing surface. ers) of truss to b buplift at join t joint 5. ith the 2018 5 R502.11.1 an	ıt					
FORCES	(lb) - Maximum Com Tension 2-7=-195/81, 1-2=0/ 3-4=-49/47											
BOT CHORD WEBS												
Vasd=91n Ke=1.00; exterior zc and right exposed; reactions DOL=1.60 2) This truss chord live 3) Bearings a capacity c	has been designed for load nonconcurrent wi are assumed to be: , Jo	DL=6.0psf; h=35ft; d; MWFRS (envelop E) zone; cantilever l left and right orces & MWFRS for 1.60 plate grip r a 10.0 psf bottom th any other live load oint 7 SP No.2 crush	leŕt ds.						(E.	STATE OF J SEV SEV PE-2001	I M. HER 018807


November 21,2023

Job Truss Truss Type Otv Plv Roof - HR Lot 169	ONSTRUCTION	RELEASE FOR CONSTRUCT							
		AS NOTED FOR PLAN REVI DEVELOPMENT SERVICE	Roof - HR Lot 169	Ply	Qty	Truss Type	russ Type	Truss	Job
		DEVELOPMENT SERVICE 162145517 LEE'S SUMMIT, MISSOUR	Job Reference (optional)	1	1	Jack-Open	14 Jack-Open	J14	P230875-01

Run: 8.63 S Nov 1 2023 Print: 8.630 S Nov 1 2023 MiTek Industries, Inc. The Nov 2109495/07/2023 ID:nAW0?kH5Pbgosny?7mKd36zviPR-RfC?PsB70Hq3NSgPqnL8w3ulTXbCKWrCDoi7042981

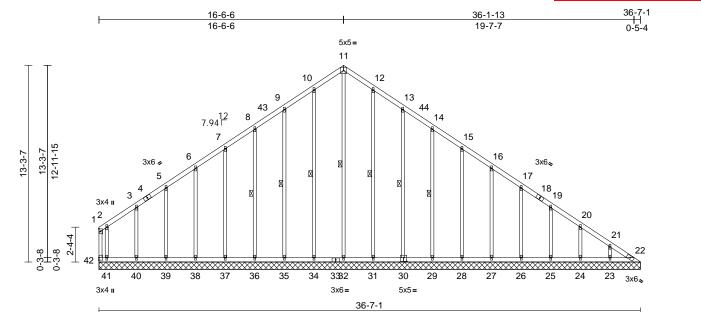
Scale = 1:36.8

00010 - 110010												
Loading TCLL (roof)	(psf) 25.0	Spacing Plate Grip DOL	2-0-0 1.15	CSI TC	0.26	DEFL Vert(LL)	in 0.03	(loc) 5-6	l/defl >999	L/d 240	PLATES MT20	GRIP 197/144
TCDL	10.0	Lumber DOL	1.15	BC	0.21	Vert(CT)	-0.03	5-6	>999	180		
BCLL	0.0	Rep Stress Incr	YES	WB	0.02	Horz(CT)	-0.04	3	n/a	n/a		
BCDL	10.0	Code	IRC2018/TPI2014	Matrix-P							Weight: 15 lb	FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD	2x4 SP No.2 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 53 lb uplift at joint 3 and 38 lb uplift at joint 4. 2x3 SPF No.2 7) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. Structural wood sheathing directly applied or 4-0-0 oc purlins, except end verticals. Rigid ceiling directly applied or 6-0-0 oc bracing. EVALUATE: Code Sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. (size) 3 = Mechanical, 4= Mechanical, Standard											
	(size) 3= Mecha 6=0-3-8 Max Horiz 6=82 (LC Max Uplift 3=-53 (LC Max Grav 3=102 (LC 6=173 (LC	12) C 12), 4=-38 (LC 12) C 19), 4=88 (LC 19),										
FORCES TOP CHORD BOT CHORD	(lb) - Maximum Com Tension 1-6=-117/8, 1-2=-11 5-6=-19/11, 4-5=0/0	2/58, 2-3=-47/48										
WEBS	2-5=-61/92											

NOTES

- 1) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=35ft; Ke=1.00; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) This truss has been designed for a 10.0 psf bottom
- chord live load nonconcurrent with any other live loads. 3) Bearings are assumed to be: , Joint 6 SP No.2 crushing capacity of 565 psi.
- 4)
- Refer to girder(s) for truss to truss connections. Bearing at joint(s) 6 considers parallel to grain value 5)
- using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.

 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.
 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not besign value to dury with with where outputs into design is based only door parameters shown, and is for an individual building design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members and property incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TPH1 Quality Criteria**, and **DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcscomponents.com)


						RELEASE FOR CONSTRUCTION
Job	Truss	Truss Type	Qty	Ply	Roof - HR Lot 169	AS NOTED FOR PLAN REVIEW DEVELOPMENT SERVICES 162145518
P230875-01	LGD1	Lay-In Gable	1	1	Job Reference (option	
Premier Building Supply	(Springhill, KS), Spring Hills, KS - (66083,	Run: 8.63 S Nov 1 2023 Print: ID:r_p_tcdstJ_J?eOqX7tBQwzv			
				QG-RIC?PS	B70Hq3N3gFqHLow3u11AbGr	
		6-5			13-1-14	13-7-1
		6-5	j-9 i		6-4-5	0-5-4
			3x4	-		
			5 #			
			4	6		
	4-6-3		3		7	
	4 4	12 2			8	
		7.94 ¹² 2				
	4	1				9
	ė ė					
		15 3x4 ¢	14 13	12	11 10	3x4
		I	13-7-			1
Scale = 1:37.9						
late Offsets (X, Y):	[5:0-2-0,Edge]					
.oading CLL (roof)	(psf) Spacing 25.0 Plate Grip D0		CSI DE TC 0.05 Ver	=L t(LL)	in (loc) l/defl L/ n/a - n/a 99	
CDL BCLL	10.0 Lumber DOL 0.0 Rep Stress In	-		t(TL) iz(TL)	n/a - n/a 99 0.00 9 n/a n/	
BCDL	10.0 Code		Matrix-S	()		Weight: 53 lb FT = 20%
UMBER OP CHORD 2x4 S	SP No 2		16; Vult=115mph (3-second TCDL=6.0psf; BCDL=6.0psf;			
BOT CHORD 2x4 S		Ke=1.00; Cat. I	I; Exp C; Enclosed; MWFRS nd C-C Exterior(2E) 0-5-13 to	(envelope)	
RACING		Interior (1) 5-5-	13 to 6-9-15, Exterior(2R) 6- or (1) 11-7-13 to 13-2-0 zone;	9-15 to		
6-0-0	ctural wood sheathing directly) oc purlins.	left and right exposed C-C fr	posed ; end vertical left and or members and forces & MV	right		
BOT CHORD Rigic braci	l ceiling directly applied or 10- ng.		n; Lumber DOL=1.60 plate g			
REACTIONS (size)	1=13-7-1, 9=13-7-1, 10= 11=13-7-1, 12=13-7-1, 1	13-7-1, 3-13-7-1 3) Truss designe	d for wind loads in the plane		5	
Max H	14=13-7-1, 15=13-7-1 loriz 1=117 (LC 11)	see Standard I	s exposed to wind (normal to ndustry Gable End Details as	applicable	·	
	lplift 1=-12 (LC 8), 10=-73 (LC 11), 12=-12	(IC 13), 4) All plates are 1	ified building designer as per .5x4 MT20 unless otherwise	ndicated.	1.	
	13=-24 (LC 12), 14=-88 15=-73 (LC 12)	(LC 12), 6) Gable requires	continuous bottom chord be aced at 2-0-0 oc.	•		
Max G	irav 1=82 (LC 21), 9=74 (LC	ZZ), chord live load	been designed for a 10.0 psf nonconcurrent with any othe		5.	
	10=182 (LC 20), 11=199 12=148 (LC 1), 13=159	(LC 19), 6) All bearings are	e assumed to be SP No.2 cru psi.	shing		
ORCES (lb) -	14=197 (LC 19), 15=183 Maximum Compression/Maxim	9) Provide mecha	nical connection (by others) apable of withstanding 12 lb		nt	
Tens OP CHORD 1-2=	ion -138/86, 2-3=-89/64, 3-4=-77/5	1, 73 lb uplift at	t joint 15, 88 lb uplift at joint 1 , 73 lb uplift at joint 10, 90 lb	4, 24 lb		Amaria
	-55/66, 5-6=-55/66, 6-7=-61/43 -76/39, 8-9=-120/66	^{3,} 11 and 12 lb up				STE OF MISSOL
	=-57/114, 14-15=-57/114, 13-1 3=-57/114, 11-12=-57/114,	4=-57/114, International Re	esidential Code sections R50 referenced standard ANSI/T	2.11.1 and	4 E	SCOTT M.
10-1	1=-57/114, 9-10=-57/114 =-141/93, 3-14=-156/122, 4-13	LOAD CASE(S)			C+	SEVIER
8-10:	=-140/93, 7-11=-158/123, 6-12				*	Scatts Server
	live loads have been consider	ed for			8	NUMBER PE-2001018807
this design.					,	A TAL
						SSIONAL ENGAS
						Aller a
						November 21,2023

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

16023 Swingley Ridge Rd. Chesterfield, MO 63017 314.434.1200 / MITek-US.com

						RELEASE FOR CONSTRUCTION
Job	Truss	Truss Type	Qty	Ply	Roof - HR Lot 169	AS NOTED FOR PLAN REVIEW
						DEVELOPMENT SERVICES 162145519
P230875-01	LGE1	Lay-In Gable	1	1	Job Reference (optional)	LEE'S SUMMIT, MISSOURI

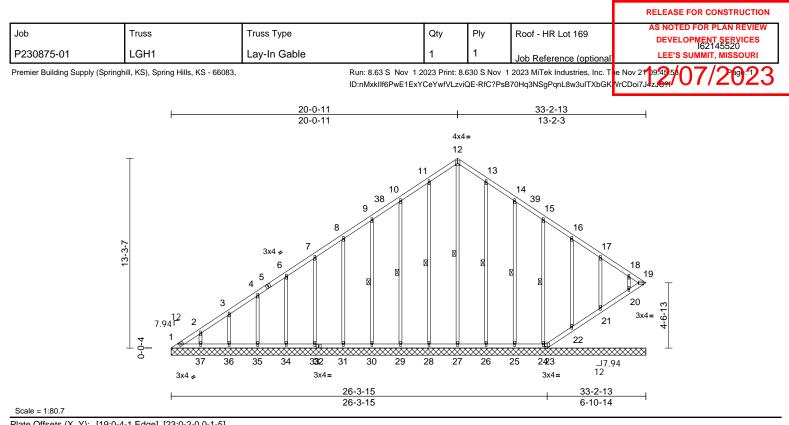
Run: 8.63 S Nov 1 2023 Print: 8.630 S Nov 1 2023 MiTek Industries, Inc. Tie Nov 21094952 07/260:23 ID:JANM5yeUed6Acoz04rPQy8zviQF-RfC?PsB70Hq3NSgPqnL8w3uITXbGi WrCDoi7J42694

Scale =	1:77.8
---------	--------

Plate Offsets (X, Y): [30:0-2-8,0-3-0]

	,, , , , , , , , , , , , , , , , , , , ,					-								1	
Loading	(ps	sf)	Spacing	2-0-0)	CSI			DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.	.0	Plate Grip DOL	1.15		TC		0.14	Vert(LL)	n/a	-	n/a	999	MT20	197/144
TCDL	10.	.0	Lumber DOL	1.15		BC		0.12	Vert(TL)	n/a	-	n/a	999		
BCLL	0.	.0	Rep Stress Incr	YES		WB		0.67	Horiz(TL)	0.02	22	n/a	n/a		
BCDL	10.	.0	Code	IRC	2018/TPI2014	Matrix	(-S							Weight: 220 lb	FT = 20%
LUMBER						Max Grav	/ 22=232 (LC 10),	23=189 (LC	20),	NOTES	5			
TOP CHORD	2x4 SP No.2								25=189 (LC		1) Un	balanced	d roof l	ive loads have be	en considered for
BOT CHORD	2x4 SP No.2								27=189 (LC			s design.			
WEBS	2x3 SPF No.2								29=189 (LC					; Vult=115mph (3	
OTHERS	2x3 SPF No.2								31=207 (LC					DL=6.0psf; BCDL	
BRACING									34=188 (LC						MWFRS (envelope)
TOP CHORD	Structural wood	sheat	hing directly applie	ed or					36=188 (LC					C-C Exterior(2E)	
	6-0-0 oc purlins								38=189 (LC					o 16-6-6, Exterior	
BOT CHORD	· ·	ectly a	pplied or 10-0-0 oc	;					40=198 (LC 42=184 (LC) 21-6-6 to 36-1-1 ; end vertical left	0 zone; cantilever lef
WEBS	bracing.		1 22 10 24 0 25	0.26	FORCES	(lb) - Ma	```	/ /	on/Maximum	/					es & MWFRS for
WEB5	1 Row at midpt		1-32, 10-34, 9-35, 2-31, 13-30, 14-29		1 ONOLO	Tension		iipi oooli	onymaximam					Lumber DOL=1.6	
REACTIONS	(ai=a) 00.00		23=36-7-1, 24=36·		TOP CHORD			-99/69.	2-3=-68/69,			L=1.60			
REACTIONS			26=36-7-1, 27=36-			3-5=-10	9/127, 5-6=	-146/18	80, 6-7=-184/2	235,					e plane of the truss
			29=36-7-1, 27=36- 29=36-7-1, 30=36-			7-8=-22	2/289, 8-9=	-258/34	4, 9-10=-302	/421,	onl	y. For s	tuds ex	posed to wind (n	ormal to the face),
			32=36-7-1, 34=36			10-11=-	324/471, 11	-12=-32	24/484,						Details as applicable,
			36=36-7-1, 37=36			12-13=-	302/466, 13	8-14=-20	65/418,						er as per ANSI/TPI 1.
			39=36-7-1, 40=36	,		14-15=-	285/380, 15	-16=-3	04/341,						herwise indicated.
		'	42=36-7-1	,			324/344, 17							ntinuous bottom o	chord bearing.
	Max Horiz 42=-3	'					363/354, 20	-21=-3	82/362,					ed at 2-0-0 oc.	
			C 9), 23=-77 (LC 1	3).			412/386							en designed for a	
			13), 25=-77 (LC 1		BOT CHORD		319/351, 40				cho	ord live lo	bad no	nconcurrent with	any other live loads.
	26=-7	77 (LC	13), 27=-78 (LC 1)	3),			319/351, 38								
	28=-7	77 (LC	13), 29=-77 (LC 1	3),			319/351, 36		,					000	TO
			13), 31=-54 (LC 1				319/351, 34		,					OF M	Alson
			C 10), 34=-41 (LC				319/351, 31 320/351, 28		,					A TE	-0.0
			12), 36=-75 (LC 1				320/351, 28 320/351, 26						E	TATE OF M	N S
			12), 38=-78 (LC 1				320/351, 24		,				H	- DCOI	
			12), 40=-86 (LC 1				320/351, 22		,				R	/ SEVI	ER \ Y
	41=-2	201 (LC	C 12), 42=-168 (LC	; 10)	WEBS		441/241, 10								• \★Ŋ
							53/118, 8-3		,				MV	-the	X 124
							49/102, 6-3							cotto s	serven
							47/99, 3-40:					-	Y .	NUM	DER IEA
							44/140, 12-3						N.	O PE-2001	018807
						13-30=-	145/113, 14	-29=-1	50/100,				V	NON NON	154
							149/102, 16		,					V SION	ENCH
							149/102, 19		,					C'SSIONA	L
						20-24=-	150/102, 21	-23=-14	45/98					Car	505

November 21,2023


						RELEASE FOR CONSTRUCTION
Job	Truss	Truss Type	Qty	Ply	Roof - HR Lot 169	AS NOTED FOR PLAN REVIEW
P230875-01	LGE1	Lay-In Gable	1	1	Job Reference (optional	DEVELOPMENT SERVICES 162145519 LEE'S SUMMIT, MISSOURI
Premier Building Supply (Spring	nill, KS), Spring Hills, KS - 66083,				2023 MiTek Industries, Inc. T B70Hq3NSgPqnL8w3uITXbGł	

- All bearings are assumed to be SP No.2 crushing 8) capacity of 565 psi.
- Provide mechanical connection (by others) of truss to 9) bearing plate capable of withstanding 168 lb uplift at joint 42, 124 lb uplift at joint 32, 41 lb uplift at joint 34, 94 Ib uplift at joint 35, 75 lb uplift at joint 36, 78 lb uplift at joint 37, 78 lb uplift at joint 38, 76 lb uplift at joint 39, 86 Ib uplift at joint 40, 201 Ib uplift at joint 41, 54 Ib uplift at joint 31, 89 lb uplift at joint 30, 77 lb uplift at joint 29, 77 Ib uplift at joint 28, 78 lb uplift at joint 27, 77 lb uplift at joint 26, 77 lb uplift at joint 25, 78 lb uplift at joint 24, 77 Ib uplift at joint 23 and 181 lb uplift at joint 22.
- 10) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard

 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.
 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not besign value for use only with with twit even connectors. This design is based only upon parameters shown, and is for an individual building designer must verify the applicability of design parameters and properly incorporate this design into the overall building designer must verify the applicability of design parameters and properly incorporate this design into the overall building designer. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcscomponents.com)

vading (psf) Spacing 2-0-0 CSI DEFL in (loc) l/defl L/d PLATES GRIP CLL (roof) 25.0 Plate Grip DOL 1.15 TC 0.07 Vert(LL) n/a - n/a 999 MT20 244/190 CDL 10.0 Lumber DOL 1.15 BC 0.04 Vert(TL) n/a - n/a 999	
	0
CLL 0.0 Rep Stress Incr YES WB 0.27 Horiz(TL) 0.01 19 n/a n/a	
CDL 10.0 Code IRC2018/TPI2014 Matrix-S Weight: 198 lb FT = 20	0%
IMBER Max Grav 1=235 (LC 12), 19=214 (LC 13), 2) Wind: ASCE 7-16; Vult=115mph (3-second g	gust)
OP CHORD 2x4 SP No.2 20=160 (LC 20), 21=194 (LC 20), Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf;	
DT CHORD 2x4 SP No.2 22=187 (LC 20), 23=66 (LC 11), Ke=1.00; Cat. II; Exp C; Enclosed; MWFRS	
FIERS 2x3 SPF No.2 24=185 (LC 20), 25=191 (LC 20), exterior zone and C-C Exterior(2E) 0-5-13 to	
RACING 26=192 (LC 20), 27=202 (LC 13), Interior (1) 5-5-13 to 20-1-1, Exterior(2R) 20	
DP CHORD Structural wood sheathing directly applied or 28=196 (LC 19), 29=189 (LC 19), 25-1-1, Interior (1) 25-1-1 to 33-0-1 zone; ca	
6-0-0 oc purlins. 30=189 (LC 19), 31=189 (LC 19), and right exposed; end vertical left and right	
DT CHORD Rigid ceiling directly applied or 10-0-0 oc 33=189 (LC 19), 34=189 (LC 19), exposed;C-C for members and forces & MW.	
bracing. 35=189 (LC 19), 36=189 (LC 19), reactions shown; Lumber DOL=1.60 plate gr	rip
EBS 1 Row at midpt 12-27, 11-28, 10-29, 37=189 (LC 19) DOL=1.60	of the true
9-30, 13-26, 14-25, 15-24 FORCES (Ib) - Maximum Compression/Maximum 3) Truss designed for wind loads in the plane of only. For study exposed to wind (normal to control of the plane)	
-ACTIONS (SIZE) 1=33-2-13 19=33-2-13	
20=33-2-13, $21=33-2-13$, $4 = 0.245(470) = 0.245(470) = 0.245(470)$	
24=33-2-13, 25=33-2-13, 10 11 - 129(107 11 12 - 161/227 5) Gable requires continuous bottom chord bes	
20=33-2-13, $21=33-2-13$, $12=12-161/215=12.14$, $129/456$ (a) Gable study spaced at 2-0-0 oc	g.
28=33-2-13, $29=33-2-13$, $12 + 6 + 6 + 6 + 6 + 6 + 6 + 6 + 6 + 6 +$	bottom
30=33-2-13, $31=33-2-13$, $47.40-444/400-40.404/440$	
33=33-2-13, $34=33-2-13$, POT CHORD 1 27, 05/457 25 27, 05/467 8) All bearings are assumed to be SP No 2 cru	
35=33-2-13, 36=33-2-13, 35-36=-95/167, 34-35=-95/167, 34-35=-95/167, 37=33-2-13 35-36=-95/167, 34-35=-95/167, 34-35=-95/167, 34-35=-95/167, 34-35=-95/167, 35-36=-95/167, 34-35=-95/167, 35-36=-95/167, 35=-95/	U
Max Horiz 1=354 (LC 12) 33-34=-95/167, 31-33=-95/167,	
Max Uplift 1=-101 (LC 10), 19=-114 (LC 11), 20, 66 (LC 10), 21, 70 (LC 12), 28-29=-95/167, 27-28=-95/167,	
20=-66 (LC 13), 21=-79 (LC 13), 26-27=-95/167, 25-26=-95/167, 25-2	h
24-25=-95/167, 23-24=	de la
26=-63 (I C 13), 28=-66 (I C 12) 22-23=-122/208, 21-22=-124/206,	NS
	NAN
31=-78 (I C 12) 33=-77 (I C 12) WEBS 12-27=-178/71, 11-28=-156/90,	1 0
34=-77 (LC 12), 35=-77 (LC 12), 10-29=-149/108, 9-30=-149/101,	1+1
36=-78 (LC 12), 37=-78 (LC 12) 8-31=-149/102, 7-33=-149/101,	
	W
3-36=-150/103, 2-37=-145/97, NUMBER	IN
13-26=-152/87, 14-25=-150/109, 15-24=-148/100, 16-22=-148/101, 17-21=-153/104_18-20=-125/85	154
15-24=-148/100, 16-22=-148/101, 17-21=-153/104, 18-20=-125/85	12H
	SA
NOTES 1) Unbalanced roof live loads have been considered for	Ø
1) Unbalanced roof live loads have been considered for this design.	-
this design.	100

November 21,2023

Continued on page 2

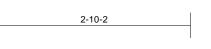
WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not besign value to dury with with where outputs into design is based only door parameters shown, and is for an individual building design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members and property incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TPH1 Quality Criteria**, and **DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcscomponents.com)

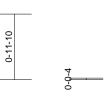
						RELEASE FOR CONSTRUCTION		
Job	Truss	Truss Type	Qty	Plv	Roof - HR Lot 169	AS NOTED FOR PLAN REVIEW		
305	11035	Truss Type	Quy	I IY	KOOI - HIK LOL 109	DEVELOPMENT SERVICES 162145520		
P230875-01	LGH1	Lay-In Gable	1	1	Job Reference (optional			
Premier Building Supply (Spring	Premier Building Supply (Springhill, KS), Spring Hills, KS - 66083, ID:nMxkIlf6PwE1ExYCeYwfVLzviQE-RfC?PsB70Hq3NSgPqnL8w3ulTXbGK							

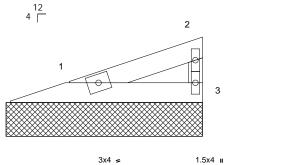
9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 114 lb uplift at joint 19, 101 lb uplift at joint 1, 107 lb uplift at joint 23, 66 lb uplift at joint 28, 84 lb uplift at joint 29, 77 lb uplift at joint 30, 78 lb uplift at joint 31, 77 lb uplift at joint 33, 77 lb uplift at joint 34, 77 lb uplift at joint 35, 78 lb uplift at joint 36, 78 lb uplift at joint 37, 63 lb uplift at joint 26, 85 lb uplift at joint 25, 82 lb uplift at joint 24, 75 lb uplift at joint 22, 79 lb uplift at joint 21 and 66 lb uplift at joint 20.

 Beveled plate or shim required to provide full bearing surface with truss chord at joint(s) 19, 22, 21, 20.
 This truss is designed in accordance with the 2018

International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.


LOAD CASE(S) Standard


						RELEASE FOR CONSTRUCTION
Job	Truss	Truss Type	Qtv	Plv	Roof - HR Lot 169	AS NOTED FOR PLAN REVIEW
366	11035	Thuss Type	Quy	i iy	KOOI - HIK LOL 109	DEVELOPMENT SERVICES I62145521
P230875-01	V4	Valley	1	1	Job Reference (optional	
Premier Building Supply (Spring	ghill, KS), Spring Hills, KS - 66083,	Run: 8.63 S Nov	1 2023 Print: 8	3.630 S Nov	1 2023 MiTek Industries, Inc. T	e Nov 2119.49.56 7/260 23


ID:jl3UjzhMxYVIUFibmzy7amzviQC-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKVrCDoi7J4zJorr/U//2023

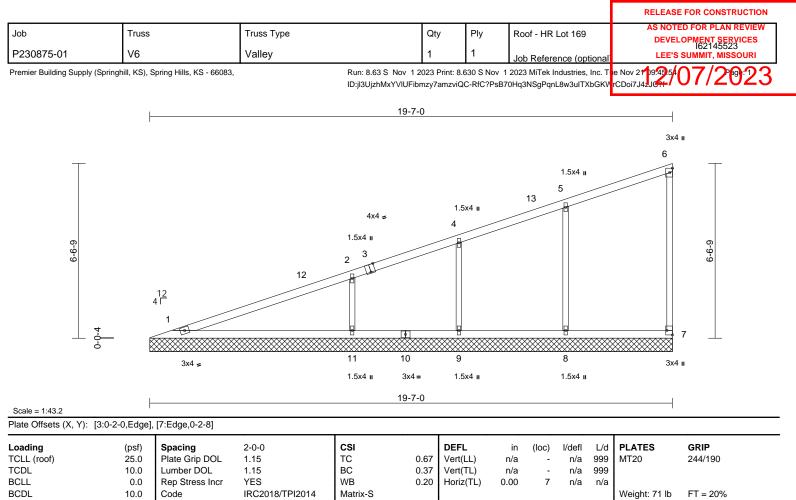


0-11-10

1.5x4 🛚

Scale = 1:17.1	
----------------	--

Scale = 1:17.1								· · · · · ·				
Loading TCLL (roof) TCDL BCLL BCDL	(psf) 25.0 10.0 0.0 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018/TPI2014	CSI TC BC WB Matrix-P	0.07 0.04 0.00	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 3	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 8 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD BOT CHORD REACTIONS FORCES TOP CHORD BOT CHORD BOT CHORD BOT CHORD BOT CHORD NOTES 1) Wind: ASC Vasd=91n Ke=1.00; exterior zc and right e exposed; (reactions s DOL=1.60 2) Truss des only. For see Stand or consult 3) Gable req 4) Gable stud 5) This truss chord live 6) All bearing capacity of 7) Provide m bearing pl	2x4 SP No.2 2x3 SPF No.2 2x3 SPF No.2 Structural wood she 2-10-14 oc purlins, Rigid ceiling directly bracing. (size) 1=2-10-14 Max Horiz 1=30 (LC Max Uplift 1=-16 (LC Max Uplift 1=-16 (LC Max Grav 1=84 (LC (lb) - Maximum Com Tension 1-2=-43/26, 2-3=-65 1-3=-13/14 CE 7-16; Vult=115mph mph; TCDL=6.0psf; BC Cat. II; Exp C; Enclose one and C-C Exterior(2 exposed ; end vertical I C-C for members and f Shown; Lumber DOL=-) signed for wind loads ir studs exposed to wind ard Industry Gable En qualified building desi uires continuous bottor ds spaced at 4-0-0 oc. has been designed for load nonconcurrent wi js are assumed to be S	athing directly applie except end verticals applied or 10-0-0 oc 4, 3=2-10-14 9) 2, 8), 3=-21 (LC 12) 1), 3=84 (LC 1) pression/Maximum /86 (3-second gust) DL=6.0psf; h=35ft; d; MWFRS (envelop E) zone; cantilever I left and right orces & MWFRS for 1.60 plate grip n the plane of the tru I (normal to the face) d Details as applicat gner as per ANSI/TF m chord bearing. r a 10.0 psf bottom th any other live loar SP No.2 crushing (by others) of truss to	8) This truss is Internationa R802.10.2 a LOAD CASE(S) ed or c	designed in accor I Residential Code and referenced star	sections	R502.11.1 a	Ind				STATE OF STATE OF SEV SEV PE-2001	MISSOUR T M. TER
											NOVEINDE	, <i>21,2020</i>


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

MiTek[®] 16023 Swingley Ridge Rd. Chesterfield, MO 63017 314.434.1200 / MiTek-US.com

								T	RELEASE F	FOR CONSTRUCTION	
Job	Truss	Truss Type		Qty	Ply	Roof - HR	Lot 169	1		D FOR PLAN REVIEW	
P230875-01	V5	Valley		1	1	Job Refere	ence (opt	tion <u>al</u>	1 5510 01	DPMENT SERVICES 162145522 SUMMIT, MISSOURI	
Premier Building Supply (Spring	ghill, KS), Spring Hills, KS - 66083,		Run: 8.63 S Nov 1 20			/ 1 2023 MiTek I	Industries, I	, Inc. T	e Nov 2109.45.58	17/2023	
			ID:jl3UjzhMxYVIUFibm	izy7amzvic	QC-Rt∪ (rs∟	370Hq3Nъg⊢qп	L8w3ui i 🗸	DGKv	rCDoi7J4zJ utr		_
		L	6	-4-2				_			
								I			
							1	1.5x4 ॥	u .		
							, 2				
						_	4	1		_	
		10			_		P	ł			
-10		4		/					-10		
2-1-10					/				2-1-10		
		1						J			
				-	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	_		∐ 3 ⊠		_	
	0							à			
			+ =	_	_	_		1.5x4 ॥			
			6-'	-4-2				_			
Scale = 1:21.6			·								
Loading TCLL (roof)	(psf) Spacing 25.0 Plate Grip DOL		CSI TC 0.6	.67 Vert	E FL rt(LL)	in (loc) n/a -	l/defl n/a	L/d 999		GRIP 244/190	
TCDL BCLL	10.0 Lumber DOL 0.0 Rep Stress Incr	1.15	BC 0.3	.36 Vert	rt(TL)	n/a - 0.00 3	n/a	999 n/a		211/100	
BCDL	10.0 Code		Matrix-P	00	12(1 ⊑)			17.0		FT = 20%	
LUMBER TOP CHORD 2x4 SP No. BOT CHORD 2x4 SP No.	.2	International F R802.10.2 and	designed in accordance Residential Code secti nd referenced standard	tions R502	02.11.1 and	I					
WEBS 2x3 SPF No BRACING	0.2	LOAD CASE(S)	Standard								
TOP CHORD Structural v	wood sheathing directly applied urlins, except end verticals.	l or									
	ig directly applied or 10-0-0 oc										
-	1=6-4-14, 3=6-4-14 1=86 (LC 9)										
Max Uplift 1	1=-46 (LC 8), 3=-59 (LC 12) 1=241 (LC 1), 3=241 (LC 1)										
FORCES (lb) - Maxim	num Compression/Maximum										
	3, 2-3=-188/234										
BOT CHORD 1-3=-37/40 NOTES											
	.0psf; BCDL=6.0psf; h=35ft;										
Ke=1.00; Cat. II; Exp C exterior zone and C-C E	; Enclosed; MWFRS (envelope Exterior(2E) 0-11-5 to 5-11-5,										
Interior (1) 5-11-5 to 6-3 exposed ; end vertical le	3-10 zone; cantilever left and ri left and right exposed;C-C for										
members and forces & Lumber DOL=1.60 plate	MWFRS for reactions shown; e grip DOL=1.60								TE OF M	IIS o D	
2) Truss designed for win	nd loads in the plane of the trus ad to wind (normal to the face),							Å	1251	N S S	
see Standard Industry (Gable End Details as applicabl ding designer as per ANSI/TPI	ole,						A	SCOTT SEVIE		
	ous bottom chord bearing.							8*	\$ 1	. \ ★₿	
5) This truss has been des		łe						ØĘ	and the se	Service	
	ed to be SP No.2 crushing	5.						N.	PE-200101	18807	
7) Provide mechanical cor	nnection (by others) of truss to of withstanding 46 lb uplift at joi							Y	SSIONAL	ENGL	
1 and 59 lb uplift at join		in a second seco							COLO AL	SSS	
								_	November 2	21,2023	
	sign parameters and READ NOTES ON	N THIS AND INCLUDED MITEK F s based only upon parameters sh							N AT	Tok	

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEX REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

16023 Swingley Ridge Rd. Chesterfield, MO 63017 314.434.1200 / MiTek-US.com

-		
LUMBER		
TOP CHORD	2x4 SP N	0.2
BOT CHORD		0.2
WEBS	2x3 SPF	No.2
OTHERS	2x3 SPF	No.2
BRACING		
TOP CHORD	Structura	wood sheathing directly applied or
		ourlins, except end verticals.
BOT CHORD	Rigid ceil	ing directly applied or 10-0-0 oc
	bracing.	
REACTIONS	(size)	1=19-7-0, 7=19-7-0, 8=19-7-0,
		9=19-7-0, 11=19-7-0
	Max Horiz	1=296 (LC 9)
	Max Uplift	7=-33 (LC 9), 8=-114 (LC 8), 9=-68
		(LC 12), 11=-169 (LC 12)
	Max Grav	(-)) - (-))
		(LC 1), 9=251 (LC 1), 11=619 (LC
		1)
FORCES	(lb) - Max Tension	imum Compression/Maximum
TOP CHORD	1-2=-363/	219, 2-4=-268/162, 4-5=-224/154,
	5-6=-132/	/120, 6-7=-107/102
BOT CHORD		5/136, 9-11=-125/136,
		/136, 7-8=-125/136
WEBS	5-8=-325/	/255, 4-9=-203/113, 2-11=-464/281
NOTES		
1) \\/:mal. AC(t 11 Frank () as as and such)

 Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=35ft; Ke=1.00; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) 0-11-5 to 5-11-5, Interior (1) 5-11-5 to 19-6-8 zone; cantilever left and right exposed; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

 Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1. 3) Gable requires continuous bottom chord bearing.

4) Gable studs spaced at 4-0-0 oc.

5) This truss has been designed for a 10.0 psf bottom

chord live load nonconcurrent with any other live loads.

6) All bearings are assumed to be SP No.2 crushing

- capacity of 565 psi.
- Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 33 lb uplift at joint 7, 114 lb uplift at joint 8, 68 lb uplift at joint 9 and 169 lb uplift at joint 11.
- This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard

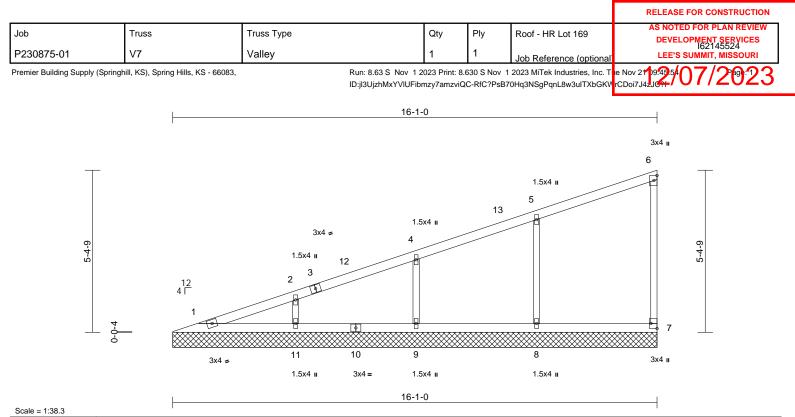
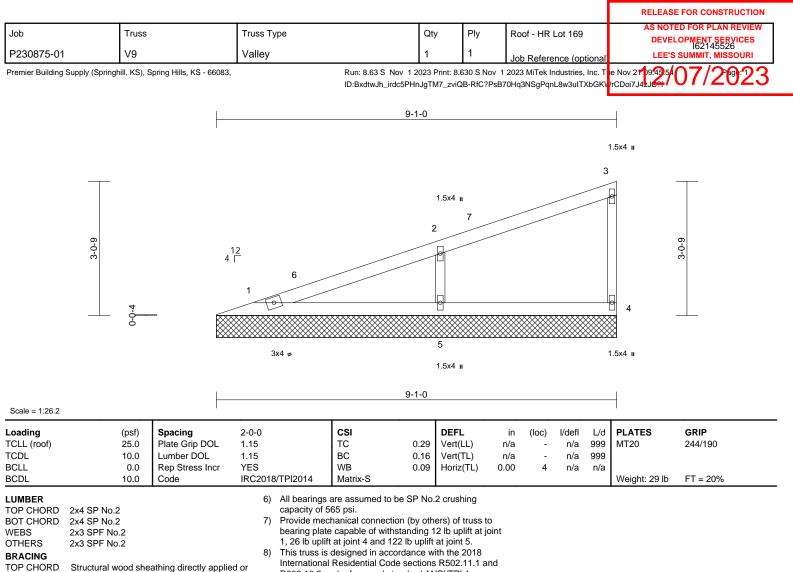


Plate Offsets (X, Y): [7:Edge.0-2-8]

Plate Offsets ((X, Y): [7:Edge,0-2-8]												
Loading TCLL (roof) TCDL BCLL BCDL	(psf) 25.0 10.0 0.0 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC201	8/TPI2014	CSI TC BC WB Matrix-S	0.33 0.13 0.11	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 7	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 57 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x3 SPF No.2 2x3 SPF No.2 Structural wood shea 6-0-0 oc purlins, exa Rigid ceiling directly bracing. (size) 1=16-1-0, 9=16-1-0, Max Horiz 1=240 (LC Max Uplift 7=-30 (LC (LC 12), 1 Max Grav 1=117 (LC	cept end verticals. applied or 10-0-0 or 7=16-1-0, 8=16-1-0 11=16-1-0 2 9) 8 9), 8=-107 (LC 8), 9 1=-99 (LC 12) 2 02), 7=142 (LC 1), 2 1), 9=352 (LC 1),	4) 5) ed or 7) c , 8) 9=-96 L4	Gable studs This truss ha chord live loa All bearings capacity of 5 Provide mec bearing plate 7, 107 lb upli uplift at joint This truss is International	hanical connection e capable of withst ift at joint 8, 96 lb of 11. designed in accor Residential Code nd referenced star	c. for a 10. with any e SP No. n (by oth anding 3 uplift at ju dance w sections) psf bottom other live loa 2 crushing ers) of truss t i0 lb uplift at j joint 9 and 99 ith the 2018 ; R502.11.1 a	to oint Ib					
	(lb) - Maximum Com Tension		24										
TOP CHORD	1-2=-333/182, 2-4=-3 5-6=-117/96, 6-7=-1 1-11=-102/112, 9-11	10/114	,										
WEBS	7-8=-102/112 5-8=-307/263, 4-9=-2	,	,									OF	MISC
Vasd=91n Ke=1.00; (exterior zc Interior (1) exposed; members Lumber D 2) Truss des only. For see Stand	CE 7-16; Vult=115mph nph; TCDL=6.0psf; BC Cat. II; Exp C; Enclose one and C-C Exterior(2) 5-11-5 to 16-0-8 zone end vertical left and rig and forces & MWFRS OL=1.60 plate grip DO Signed for wind loads ir studs exposed to wind lard Industry Gable Enq qualified building desig	DL=6.0psf; h=35ft; d; MWFRS (envelop E) 0-11-5 to 5-11-5, s; cantilever left and ght exposed;C-C for for reactions shown L=1.60 the plane of the tru (normal to the face) d Details as applicat	right ; iss), ole,									OF PE-2001 November	T M. IER 018807


							RELEASE FOR CONSTRUCTION
Job	Truss		Truss Type	Qty	Ply	Roof - HR Lot 169	AS NOTED FOR PLAN REVIEW
P230875-01	V8		Valley	1	1	lob Reference (entioned	DEVELOPMENT SERVICES 162145525 LEE'S SUMMIT, MISSOURI
Premier Building Supply (Sp		Hills, KS - 66083,	Run: 8.63 S Nov 1			Job Reference (optional 2023 MiTek Industries, Inc. T	e Nov 219949.5407/20012
			ID:jl3UjzhMxYVIUFi	bmzy7amzvi	QC-RfC?PsB7	70Hq3NSgPqnL8w3ulTXbGKV	
		I	12-	7-0			1
							1.5x4 и
							4
					1.5x	4	
					3		
			1 5 4 4	9	P		
4-2-9			^{1.5x4} ¹ 8				4-2-9
7		12 4	-				7
		.,					
	4	1					<u>6</u> 5
_	0-0-0-						
		******	3x4 = 7	******	6	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	1.5x4 II
			1.5x4 u		1.5x	4 u	
		I	12-	7-0			1
Scale = 1:33.3							
Loading		acing	2-0-0 CSI	DEI		in (loc) l/defl L/d	
TCLL (roof) TCDL		te Grip DOL nber DOL			. ,	n/a - n/a 999 n/a - n/a 999	
BCLL BCDL	0.0 Rep 10.0 Cod	o Stress Incr de	YES WB IRC2018/TPI2014 Matrix-S	0.07 Hor	iz(TL) 0	.00 5 n/a n/a	Weight: 43 lb FT = 20%
LUMBER			5) This truss has been designed for	a 10.0 psf	bottom		
TOP CHORD 2x4 SP BOT CHORD 2x4 SP			chord live load nonconcurrent wit6) All bearings are assumed to be S	h any other	live loads.		
WEBS 2x3 SPF	No.2		capacity of 565 psi.		Ū		
OTHERS 2x3 SPF BRACING	· N0.2		bearing plate capable of withstan	ding 26 lb ι	uplift at joint		
	al wood sheathing purlins, except e		I his truss is designed in accorda	nce with the	e 2018		
	iling directly appli		International Residential Code se R802.10.2 and referenced standa				
REACTIONS (size)	1=12-7-0, 5=12	2-7-0, 6=12-7-0,	LOAD CASE(S) Standard				
	7=12-7-0 z 1=185 (LC 9)						
	t 5=-26 (LC 9), 6 7=-104 (LC 12))					
Max Grav	 1=133 (LC 1), 5 (LC 1), 7=382 (-386				
FORCES (lb) - Ma Tension	ximum Compress						
TOP CHORD 1-2=-28	2/149, 2-3=-210/1	18, 3-4=-103/79	,				
	/85, 6-7=-76/85, 5						
WEBS 3-6=-30 NOTES	2/290, 2-7=-290/2	213					
1) Wind: ASCE 7-16; V Vasd=91mph; TCDL							OF MIS
Ke=1.00; Cat. II; Ex exterior zone and C	C; Enclosed; MV	WFRS (envelope	e)				TE OF MISSO
Interior (1) 5-11-5 to	12-6-8 zone; can	tilever left and ri	ght			a di	SCOTT M.
exposed ; end vertic members and forces	& MWFRS for re	actions shown;				E,	SEVIER
2) Lumber DOL=1.60 p			s			12	series
only. For studs exp see Standard Indust	osed to wind (norr	mal to the face),					NUMBER PE-2001018807
or consult qualified I 3) Gable requires cont	uilding designer a	as per ANSI/TPI				y v	The State

Gable requires continuous bottom chord bearing.
 Gable studs spaced at 4-0-0 oc.

November 21,2023

Afford Swingley Ridge Rd. Chesterfield, MO 63017 314.434.1200 / MITek-US.com

International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard

WEBS NOTES

FORCES

TOP CHORD

BOT CHORD

BOT CHORD

REACTIONS (size)

bracing.

Max Uplift

Max Grav

Tension

2-5=-342/357

Max Horiz 1=129 (LC 9)

(LC 1)

1-5=-50/57, 4-5=-50/57

1) Wind: ASCE 7-16: Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=35ft; Ke=1.00; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) 0-11-5 to 5-11-5, Interior (1) 5-11-5 to 9-0-8 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

6-0-0 oc purlins, except end verticals.

5=-122 (LC 12)

(lb) - Maximum Compression/Maximum

1-2=-214/112, 2-3=-88/59, 3-4=-103/120

Rigid ceiling directly applied or 10-0-0 oc

1=9-1-0, 4=9-1-0, 5=9-1-0

1=-12 (LC 8), 4=-26 (LC 12),

1=149 (LC 1), 4=132 (LC 1), 5=448

2) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1. Gable requires continuous bottom chord bearing. 3)

4) Gable studs spaced at 4-0-0 oc.

- 5) This truss has been designed for a 10.0 psf bottom
- chord live load nonconcurrent with any other live loads.

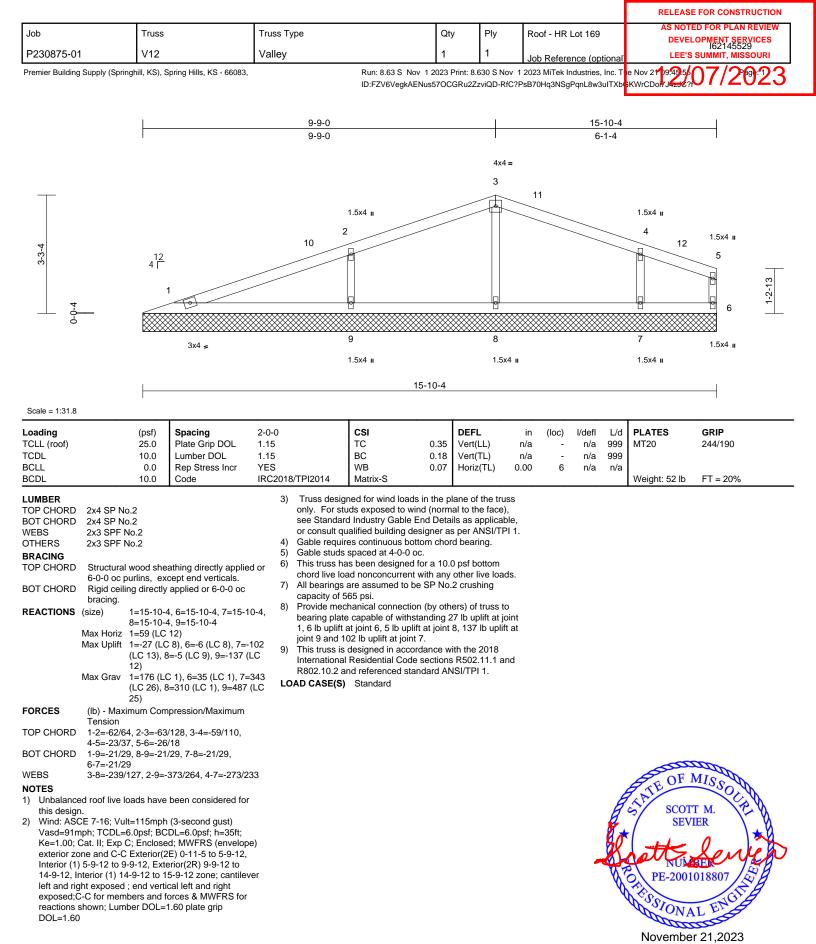
OF MISS SCOTT M. SEVIER NUMBER PE-2001018807 C SIONAL F

November 21,2023

16023 Swingley Ridge Rd. Chesterfield MO 63017 314.434.1200 / MiTek-US.com

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITEk® connectors. This design is based only upon parameters shown, and is for an individual building component, not and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponent.com)

											RELEASE FOR CONSTRUCTION
Job	Т	Truss	Truss Type		Qty	Ply	r	Roof - HR L	Lot 169	-	AS NOTED FOR PLAN REVIEW
P230875-01	ı v	/10	Valley		1	1		Job Refere	no) ence	tional	DEVELOPMENT SERVICES 162145527 LEE'S SUMMIT, MISSOURI
		, KS), Spring Hills, KS - 66083,		Run: 8.63 S Nov 1	2023 Prir	nt: 8.630 S Nr	Nov 120	023 MiTek In	Industries, I	, Inc. T	
				ID:nMxkIIf6PwE1Ex	.YCeYwfVl	LzviQE-RfC?	/PsB70l	Hq3NSgPqr	הL8w3uIT≻	XbGK	NrCDoi7JazJ ori VIICUCU
			I		5-7-0				I		
					3-1-0				$\neg \uparrow$		
									1.5x4	∽4 u	
									•	4 n	
									2		
		-						/			
			12 4			/	/	/			
	1-10-9			_	/	/	/	_			1-10-9
	,		1			/					÷
		4		<u>[]</u>						3	
			K		****	*****	***	*****		0	
							<u> </u>				
				3x4 =					1.5x4	x4 u	
										• -	
					5-7-0						
Scale = 1:20.6											
Loading		osf) Spacing	2-0-0	CSI		DEFL	in	. ,	l/defl	L/d	
TCLL (roof) TCDL	25.	5.0 Plate Grip DOL 0.0 Lumber DOL	1.15 1.15			Vert(LL) Vert(TL)	n/a n/a			999 999	MT20 244/190
BCLL BCDL	0.	0.0 Rep Stress Incr	YES	WB		Horiz(TL)	0.00		n/a	999 n/a	
		0.0 Code	IRC2018/TPI2014	Matrix-P		<u></u>				'	Weight: 17 lb FT = 20%
			Internationa	s designed in accordar al Residential Code sec and referenced standa	ections R5	R502.11.1 an	nd				
	2x4 SP No.2 2x3 SPF No.2		R802.10.2 a LOAD CASE(S)	and referenced standa S) Standard	IN AINON	/TPI 1.					
BRACING TOP CHORD	Structural woo	od sheathing directly applied									
	5-7-12 oc purlin	ins, except end verticals. irectly applied or 10-0-0 oc									
	bracing.										
	Max Horiz 1=74										
Ν	Max Uplift 1=-40	40 (LC 8), 3=-51 (LC 12) 07 (LC 1), 3=207 (LC 1)									
FORCES		n Compression/Maximum									
TOP CHORD	1-2=-103/63, 2-3	3=-161/207									
BOT CHORD NOTES	1-3=-32/35										
1) Wind: ASCE		5mph (3-second gust) sf; BCDL=6.0psf; h=35ft;									
Ke=1.00; Ca	Cat. II; Exp C; End	nclosed; MWFRS (envelope erior(2E) zone; cantilever let									
and right ex	exposed ; end vert	ertical left and right									
reactions sh	shown; Lumber D0	and forces & MWFRS for DOL=1.60 plate grip									A MARCE
	signed for wind loa	bads in the plane of the trus								1	THE OF MISSOL
see Standar	lard Industry Gable	o wind (normal to the face), ble End Details as applicable	ole,							A	ST SCOTT M. YAY
or consult q	qualified building	g designer as per ANSI/TPI bottom chord bearing.								8,	SEVIER
4) Gable studs	ds spaced at 4-0-0								/	R.	Hr. Lander
chord live lo	load nonconcurrent	rent with any other live loads to be SP No.2 crushing	iS.						-	W.F	O. PE-2001018807
capacity of	of 565 psi.									Ø	PE-2001018807
bearing plat	ate capable of with	ction (by others) of truss to ithstanding 40 lb uplift at join								8	SIONAL ENG
1 and 51 lb	b uplift at joint 3.										November 21,2023
							_		_		
								_			


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

16023 Swingley Ridge Rd. Chesterfield, MO 63017 314.434.1200 / MiTek-US.com

									RELEAS	E FOR CONSTRUCTIO	лс
Job	Tru	ISS	Truss Type		Qty	Ply	Roof - HR	Lot 169		ED FOR PLAN REVIEN LOPMENT SERVICES 162145528	
P230875-01	V1	1	Valley		1	1	Job Refer	ence (optional	1	I62145528 SUMMIT, MISSOURI	
Premier Building Su	oply (Springhill, K	S), Spring Hills, KS - 66083,							e Nov 21 19.43.55 KWrCDoi7J4230?	07/202	3
			<u> </u>					<u>16-9-</u> 6-1-4			
₹ + + + + + + + - - - - - - - - - - - - -		2 1 3x4 =		9 5x5 =	9-2	4x4 3 ••••••••••••••••••••••••••••••••••	4 = 		1.5х4 и 4 12 12 12 12 7 1.5х4 и	1.5x4 и 5 6 1.5x4 и	
Plate Offsets (X, Y	r): [9:0-2-8,0-3	3-0]									
Loading TCLL (roof) TCDL BCLL BCDL LUMBER TOP CHORD 2:	(psf 25.0 10.0 0.0 10.0 x4 SP No.2	 Plate Grip DOL Lumber DOL Rep Stress Incr 		CSI TC BC WB Matrix-S E 7-16; Vult=115mph ph; TCDL=6.0psf; BC	0.49 Ve 0.28 Ve 0.08 Ho (3-second	gust)	in (loc) n/a - n/a - 0.00 6	l/defl L/d n/a 999 n/a 999 n/a n/a	MT20	GRIP 244/190 FT = 20%	
BOT CHORD 22 WEBS 22 OTHERS 22 BRACING TOP CHORD 5 BOT CHORD R b 1 REACTIONS (siz REACTIONS (siz Ma Ma FORCES (II T TOP CHORD 1 WEBS 3 NOTES	x4 SP No.2 x3 SPF No.2 x3 SPF No.2 tructural wood -0-0 oc purlins, igid ceiling dire racing, Excep 0-0-0 oc bracin ze) 1=16- 8=16- x Horiz 1=66 x Uplift 1=-37 (LC 1: 12) x Grav 1=219 (LC 22 25) b) - Maximum C ension -2=-80/56, 2-3= -8=-30/34, 7-8= -8=-223/116, 2-	g: 1-9. 9-2, 6=16-9-2, 7=16-9-2, 9-2, 9=16-9-2 (LC 16) (LC 8), 6=-7 (LC 8), 7=-1 3), 8=-6 (LC 9), 9=-150 (L 0 (LC 1), 6=31 (LC 1), 7=: 6), 8=283 (LC 1), 9=548 (C Compression/Maximum -70/137, 3-4=-65/117,	Ke=1.00; C exterior zo Interior (1) 15-8-10, In 15-8-10, In 15-8-10, In exposed; C reactions s DOL=1.60 3) Truss des only. For s see Stands or consult + 4) Gable requ 5) Gable stuc 6) This truss chord live 12 C 348 10 Provide m bearing pla 1, 7 lb uplii joint 8 and 9) This truss Internation	At. II; Exp C; Enclose ne and C-C Exterior(2 5-11-5 to 10-8-10, Ex terior (1) 15-8-10 to 1 ht exposed; end vertii -C for members and fi shown; Lumber DOL=' igned for wind loads in studs exposed to wind ard Industry Gable En- qualified building desig- uires continuous bottoo is spaced at 4-0-0 oc. has been designed for load nonconcurrent wis s are assumed to be 5 565 psi. echanical connection (ate capable of withstar t at joint 6, 150 lb upii 100 lb uplift at joint 7. is designed in accorda al Residential Code si and referenced stand	d; MWFRS E) 0-11-5 terior(2R) 6-8-10 zom cal left and brces & MV .60 plate g h the plane (normal to d Details a gner as pein n chord be a 10.0 psi th any othe SP No.2 cri by others) hding 37 lb ft at joint 9, ance with th	6 (envelope) to 5-11-5, 10-8-10 to e; cantileved right WFRS for grip of the truss o the face), s applicable r ANSI/TPI 1 earing. f bottom er live loads. ushing of truss to uplift at join , 6 lb uplift at on 2018 02.11.1 and	r I. t		STATE OF STATE OF SEV SEV NUM PE-2001	IER ter ter ter ter ter ter ter ter	

SSION - her November 21,2023

							FOR CONSTRUCTION
Job	Truss	Truss Type	Qty	Ply	Roof - HR Lot 169		ED FOR PLAN REVIEW OPMENT SERVICES 162145530
P230875-01	V13	Valley	1	1	Job Reference (optional		I62145530 SUMMIT, MISSOURI
Premier Building Supply (Springh	hill, KS), Spring Hills, KS - 66083,				1 2023 MiTek Industries, Inc. T ?PsB70Hq3NSgPqnL8w3uITXb)7/2023
		3-0-14			5-7-0		
		3-0-14		ļ	2-6-2		
				3x4 =	=	3х8 ш	
1-0-9 0-1-12	—		2				0-10-13
	0-0 4-					4	
		3x4 =					

5-7-0

Scale = 1:18.5

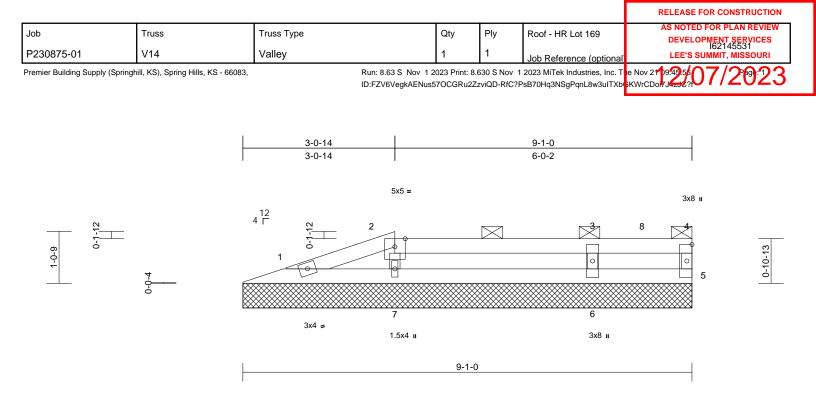

Plate Offsets (X, Y): [2:0-2-0,Edge]

Plate Offsets (X, Y): [2:0-2-0,Edge]									
Loading (psf) TCLL (roof) 25.0 TCDL 10.0 BCLL 0.0 BCDL 10.0	Plate Grip DOL Lumber DOL Rep Stress Incr	2-0-0 1.15 1.15 YES RC2018/TPI2014	CSI TC 0.32 BC 0.20 WB 0.00 Matrix-R	DEFLiVert(LL)n/Vert(TL)n/Horiz(TL)0.0	a - a -	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 16 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.2 WEBS 2x3 SPF No.2 BRACING TOP CHORD Structural wood she 5-7-12 oc purlins; e- 2-0-0 oc purlins; e- BOT CHORD Rigid ceiling directly bracing. REACTIONS (size) 1=5-7-0, 4 Max Horiz 1=28 (LC Max Uplift 1=-44 (LC Max Grav 1=207 (LC FORCES (lb) - Maximum Com Tension	athing directly applied of applied or 10-0-0 oc 4=5-7-0 9) 28, 4=-46 (LC 8) C 1), 4=207 (LC 1) pression/Maximum 234/246, 3-4=-145/175 been considered for (3-second gust) DL=6.0psf; h=35ft; d; MWFRS (envelope) E) zone; cantilever left left and right orces & MWFRS for 1.60 plate grip n the plane of the truss (normal to the face), d Details as applicable, gner as per ANSI/TPI 1 event water ponding.	 8) All bearings : capacity of 5 9) Provide mec bearing plate 1 and 46 lb u 10) This truss is International R802.10.2 at 11) Graphical pu or the orienta bottom chorc LOAD CASE(S) 	are assumed to be SP No 65 psi. hanical connection (by oth e capable of withstanding 4 uplift at joint 4. designed in accordance w Residential Code sections nd referenced standard AN Irlin representation does n ation of the purlin along the d.	ers) of truss to 44 lb uplift at joint ith the 2018 5 R502.11.1 and NSI/TPI 1. ot depict the size		ſ	K	STATE OF J STATE OF J SEV SEV DE STONA	MISSOURT T.M. IER BER 018807

 This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

Scale = 1:23.3

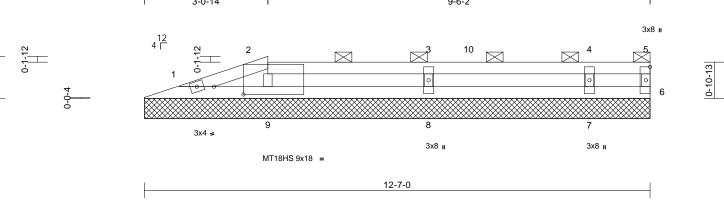
Scale = 1:23.3													
Loading TCLL (roof) TCDL BCLL	(psf) 25.0 10.0 0.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr	2-0-0 1.15 1.15 YES		CSI TC BC WB	0.21 0.09 0.09	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 5	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20	GRIP 244/190
BCDL	10.0	Code	IRC2018	B/TPI2014	Matrix-S							Weight: 27 lb	FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD		except end verticals,	and ⁹⁾	Gable requir Gable studs This truss ha chord live loo All bearings capacity of 5 Provide mec bearing plate 1, 4 lb uplift a	hanical connecti e capable of with at joint 5, 60 lb u	ottom chor oc. d for a 10.0 nt with any be SP No. ion (by oth standing 2	d bearing.) psf bottom other live loa 2 crushing ers) of truss to 1 lb uplift at je	ds. o					
REACTIONS	Max Horiz 1=28 (LC Max Uplift 1=-21 (LC (LC 9), 7= Max Grav 1=67 (LC	C 12), 5=-4 (LC 8), 6 =-60 (LC 8) 1), 5=25 (LC 1), 6= 7=299 (LC 1)	=9-1-0 =-79 11 342	International R802.10.2 a) Graphical pu	designed in acco Residential Cod nd referenced st urlin representation ation of the purlin d.	le sections andard AN on does no	R502.11.1 a ISI/TPI 1. ot depict the s						
TOROLO	Tension	pression/maximum											
TOP CHORD	1-2=-51/33, 2-3=-11, 4-5=-18/20	/16, 3-4=-11/16,											
BOT CHORD WEBS		,											
NOTES													con .
this design 2) Wind: ASC Vasd=91n Ke=1.00; exterior zc Corner(3F 9-0-8 zone	ed roof live loads have n. CE 7-16; Vult=115mph nph; TCDL=6.0psf; BC Cat. II; Exp C; Enclose one and C-C Corner(3B R) 3-1-10 to 8-1-10, Exi e; cantilever left and rig	(3-second gust) DL=6.0psf; h=35ft; d; MWFRS (envelog E) 0-11-5 to 3-1-10, terior(2N) 8-1-10 to ght exposed ; end										STATE OF SCOT	MISSOUR T.M. HER

DOL=1.60 plate grip DOL=1.60 Truss designed for wind loads in the plane of the truss 3) only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber

 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.
 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not besign value to dury with with where outputs into design is based only door parameters shown, and is for an individual building design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members and property incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TPH1 Quality Criteria**, and **DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcscomponents.com)

16023 Swingley Ridge Rd. Chesterfield MO 63017 314.434.1200 / MiTek-US.com


November 21,2023

E

NOTESSIONAL

PE-200101880'

							RELEASE FOR CONSTRUCTION
Job	Truss	Truss Type		Qty	Ply	Roof - HR Lot 169	AS NOTED FOR PLAN REVIEW
P230875-01	V15	Valley		1	1	Job Reference (optional	DEVELOPMENT SERVICES 162145532 LEE'S SUMMIT, MISSOURI
Premier Building Supply ((Springhill, KS), Spring Hills, KS	S - 66083,	Run: 8.63 S Nov 1 2 ID:FZV6VegkAENus5	023 Print: 70CGRu2	8.630 S Nov ZzviQD-RfC	1 2023 MiTek Industries, Inc. T ?PsB70Hq3NSgPqnL8w3uITXb	e Nov 2109395607/21923
	1	3-0-14			12	-7-0	I
		3-0-14			9-	·6-2	

Scale = 1:28.7

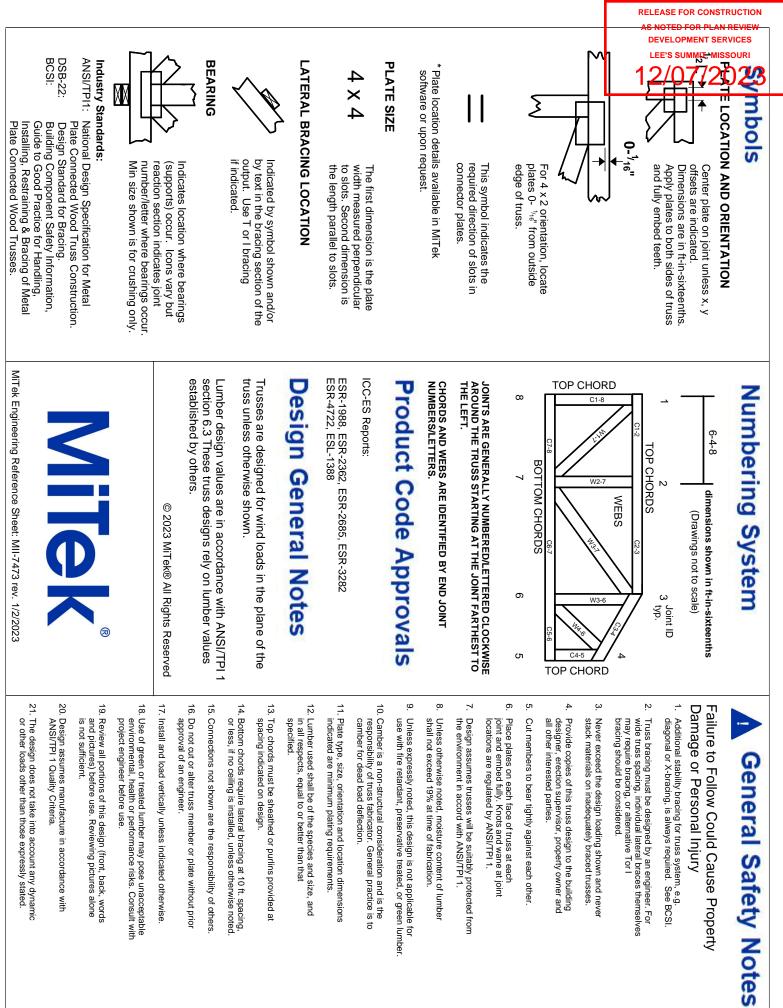

1-0-9

Plate Offsets (X, Y): [9:0-8-13,0-2-6]

Plate Offsets	(X, Y): [9:0-8-13,0-2-6]											
Loading TCLL (roof) TCDL BCLL BCDL	(psf) 25.0 10.0 0.0 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC201	8/TPI2014	CSI TC BC WB Matrix-S	0.25 0.12 0.08	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 6	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 MT18HS Weight: 37 lb	GRIP 244/190 197/144 FT = 20%
LUMBER TOP CHORE BOT CHORE WEBS OTHERS BRACING TOP CHORE BOT CHORE REACTIONS	 2x4 SP No.2 2x3 SPF No.2 2x3 SPF No.2 2x3 SPF No.2 Structural wood she 10-0-0 oc purlins, e 2-0-0 oc purlins (10- Rigid ceiling directly bracing. (size) 1=12-7-0, 8=12-7-0, Max Horiz 1=28 (LC Max Uplift 1=-21 (LC (LC 8), 8= Max Grav 1=70 (LC 	xcept end verticals, a 0-0 max.): 2-5. applied or 6-0-0 oc 6=12-7-0, 7=12-7-0 9=12-7-0 9) : 12), 6=-1 (LC 3), 7= -90 (LC 9), 9=-58 (L	and 7) 8) 9) 62 62 292 1 ⁻	only. For stu see Standarr or consult qu) Provide adea) All plates are) Gable requir) Gable studs) This truss ha chord live loa) All bearings capacity of 5 0) Provide mec bearing plate 1, 1 Ib uplift joint 8 and 6 1) This truss is International	ned for wind load dis exposed to w d Industry Gable lalified building d quate drainage to MT20 plates un es continuous bo spaced at 4-0-0 / us been designed ad nonconcurrent are assumed to b 65 psi. hanical connectit e capable of withs at joint 6, 58 lb up 2 lb uplift at joint designed in acct Residential Cod nd referenced sta	ind (norm End Deta esigner a:) prevent less other bottom chor oc. I for a 10. t with any pe SP No. on (by oth standing 2 olift at join 7. ordance w e sections	al to the face) ils as applicat s per ANSI/TF water ponding wise indicated d bearing.) psf bottom other live load 2 crushing ers) of truss to 11 b uplift at jo t 9, 90 lb uplif ith the 2018 i R502.11.1 a	, ble, l 1. l. ds. ds. o bint t at					
FORCES	(lb) - Maximum Com Tension 1-2=-43/32, 2-3=-11/			 Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord. 									
BOT CHORD	4-5=-10/16, 5-6=-1/3	3	L	OAD CASE(S)	Standard							OF I	dealer and
2) Wind: AS Vasd=91 Ke=1.00; exterior z Corner(3 12-6-8 zc vertical le forces &	2-9=-214/216, 3-8=- ced roof live loads have gn. CCE 7-16; Vult=115mph mph; TCDL=6.0psf; BC ; Cat. II; Exp C; Enclose cone and C-C Corner(3E R) 3-1-10 to 8-1-10, Ext noe; cantilever left and r one; cantilever left and r off and right exposed;C- MWFRS for reactions s i0 plate grip DOL=1.60	been considered for (3-second gust) DL=6.0psf; h=35ft; d; MWFRS (envelop E) 0-11-5 to 3-1-10, terior(2N) 8-1-10 to ight exposed ; end C for members and	r) د	R	STATE OF I SCOT SEVI NOM PE-2001	L ENGINE

November 21,2023

- 21. The design does not take into account any dynamic or other loads other than those expressly stated.