

| RE: P230812 - Roof - Osage Lot 77       MiTek, Inc.       1603         Site Information:       Toget Clustomer: Clover & Hive Project Name: Twin Sienna - Farmhouse       1603         JUBIock: 77       Subdivision: Osage       14.434.1200         Model: Twin Sienna - Farmhouse       Address: 2122 / 2124 Holdsbrook Drive       14.434.1200         Chry: Lees Summit       State: MO       General Truss Engineering Criteria & Design Loads (Individual Truss Design Program: MiTek & 20/20 8.6         Wind Code: ASCE 7-16 Wind Speed: 115 mph       Design Program: MiTek & 20/20 8.6         No: Seal#       Truss Name Date       No. Seal#         1       161773666       A1       11/2/23         3       161773666       A1       11/2/23         4       11/2/23       36       161773000         3       161773666       A1       11/2/23         4       11/2/23       36       161773000       Jul 11/2/23         5       11/2/23       36       161773000       Jul 11/2/23         6       11/7/3666       A1       11/2/23       11/2/23         7       11/2/23       36       161773000       Jul 11/2/23         3       161773666       A1       11/2/23       11/2/23         4       161773000 <th></th> <th></th>                                                                                       |                                                                                                                                 |                                                                                                 |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|
| Contention       Chesterfield, Mo 63017         Project Customer: Clover & Hive Project Name: Twin Sienna - Farmhouse       Chesterfield, Mo 63017         Lot/Block: 77       Subdivision: Osage       State: MO         Model: Twin Sienna - Farmhouse       Address: 2122 / 2124 Holdsbrook Drive       State: MO         General Truss Engineering Criteria & Design Loads (Individual Truss Design       Design Code: IRC2018 KTP12014       Design Code: IRC2018 KTP12014         Design Code: IRC2018 KTP12014       Design Program: MiTek 20/20 8.6         Wind Code: ASCE 7-16       Wind Speed: 115 mph       Design Method: MWFRS (Envelope)/C-C hybrid Wind ASCE 7-16         Roof Load: 45.0 psf       Floor Load: N/A psf         Mean Roof Height (feet): 35       Exposure Category: C         No.       Seal#       Truss Name Date         1       11/7223 35       11/223 39         3       161/79208 A1       11/223 39         4       161/79267       11/223 39         5       161/79203 V1       11/223         6       11/223 39       161/79303 V1       11/223         7       11/223 41       161/79303 V3       11/223         8       11/223       11/223       11/223         9       161/79274 B5       11/223         10       161/79274 B5 </td <td>RE: P230812 - Roof - Osage Lot 77</td> <td></td> | RE: P230812 - Roof - Osage Lot 77                                                                                               |                                                                                                 |
| City: Lees Summit       State: MO         General Truss Engineering Criteria & Design Loads (Individual Truss Design Drawings Show Special Loading Conditions):       Design Program: MiTek 20/20 8.6         Design Code:       IRC2018/TPI2014       Design Method: MWFRS (Envelope)/C-C hybrid Wind ASCE 7-16         Roof Load:       45.0 psf       Design Method: MWFRS (Envelope)/C-C hybrid Wind ASCE 7-16         Roof Load:       45.0 psf       Exposure Category: C         Mean Roof Height (feet):       35       61779209         1       161779265       11/2/23       35         3       161779266       11/2/23       35         4       161779266       11/2/23       35         6       161779267       11/2/23       37         6       161779267       11/2/23       38       161779300         7       11/2/23       37       161779209       11/2/23         6       161779270       11/2/23       11/2/23       11/2/23         7       161779270       11/2/23       11/2/23       11/2/23         7       161779277       11/2/23       11/2/23       11/2/23         7       161779277       11/2/23       11/2/23       11/2/23         8       161779277       11/2/23                                                                                                                                     | Project Customer: Clover & Hive Project Name: Twin Sienna<br>Lot/Block: 77 Subdivision: Osage<br>Model: Twin Sienna - Farmhouse | - Farmhouse Chesterfield, MO 63017                                                              |
| Drawings Show Special Loading Conditions):       Design Code: IRC2018/TPI2014       Design Program: MiTek 20/20 8.6         Wind Code: ASCE 7-16 Wind Speed: 115 mph       Design Method: MWFRS (Envelope)/C-C hybrid Wind ASCE 7-16         Roof Load: 45.0 psf       Design Method: MWFRS (Envelope)/C-C hybrid Wind ASCE 7-16         Mean Roof Height (feet): 35       Exposure Category: C         No.       Seal#       Truss Name Date         1       161773266 A1       11/223         3       161773266 A2       11/223         4       11/223       36         1       161773266 A3       11/223         3       161773268 A4       11/223         4       161773268 A4       11/223         5       161773268 A4       11/223         6       11778270 B1       11/223         7       161778270 B1       11/223         8       161779305 V3       11/223         9       161779370 B4       11/223         9       161779370 B4       11/223         10       161779370 B4       11/223         11       11/223       11/223         10       161779370 B4       11/223         10       161779370 B4       11/223         11       11/                                                                                                                                                                                    | City: Lees Summit State: MO                                                                                                     |                                                                                                 |
| Wind Code: ASCE 7-16       Wind Speed: 115 mph       Design Method: MWFRS (Envelope)/C-C hybrid Wind ASCE 7-16         Roof Load: 45.0 psf       Floor Load: N/A psf         Mean Roof Height (feet): 35       Exposure Category: C         No. Seal#       Truss Name Date       No. Seal#         1       161779266 A1       11/223         3       161779266 A2       11/223         4       161779266 A3       11/223         5       161779200 A5       11/223         6       16779267 A3       11/223         1       161779268 A4       11/223         3       161779270 B1       11/223         4       161779300 LAY1       11/223         7       161779272 B3       11/223         8       161779307 V5       11/223         9       61779270 B1       11/223         10       161779272 B3       11/223         11       161779278 B3       11/223         12       161779270 B1       11/223         13       1617793270 B1       11/223         14       161779276 B7       11/223         15       16779270 B1       11/223         16       16779270 B1       11/223         16                                                                                                                                                                                                                                         |                                                                                                                                 | ual Truss Design                                                                                |
| No.       Seal#       Truss Name       Date         1       161779266       A1       11/2/23       35       161779299       J4       11/2/23         3       161779267       A3       11/2/23       37       161779207       11/2/23         3       161779268       A4       11/2/23       37       161779300       145       11/2/23         4       161779268       A4       11/2/23       37       161779300       147       11/2/23         5       161779270       B1       11/2/23       30       161779300       147       11/2/23         6       161779270       B1       11/2/23       40       161779300       V2       11/2/23         9       161779278       B3       11/2/23       42       161779306       V4       11/2/23         10       161779276       B7       11/2/23       14       161779307       5       11/2/23         11       161779276       B7       11/2/23       14       161779278       11/2/23         12       161779276       B7       11/2/23       14       161779278       11/2/23         12       161779226       D3       11/2/23       14       <                                                                                                                                                                                                                                       | Wind Code: ASCE 7-16Wind Speed: 115 mphDesign M                                                                                 | lethod: MWFRS (Envelope)/C-C hybrid Wind ASCE 7-16                                              |
| 1       161779266       A1       11/223       35       161779200       J       11/223         2       161779266       A2       11/223       37       161779300       J       11/223         3       161779267       A3       11/223       37       161779301       LAY1       11/223         4       161779268       A4       11/223       38       161779301       LAY1       11/223         5       161779269       B4       11/223       38       161779304       L1       11/223         6       161779276       B1       11/223       43       161779304       L1       11/223         7       161779276       B5       11/223       44       161779306       V4       11/223         10       161779276       B7       11/223       14       161779306       V6       11/2/23         11       161779277       B8       11/2/23       14       161779306       V6       11/2/23         12       161779276       B10       11/2/23       11/2/23       11       11/2/23         13       161779286       D2       11/2/23       11       11/2/23       11         13       1617                                                                                                                                                                                                                                                    | Mean Roof Height (feet): 35 Exposure                                                                                            | e Category: C                                                                                   |
| MiTek USA, Inc. under my direct supervision based on the parameters<br>provided by Premier Building Supply (Springhill, KS)20300 W 207th Street.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                           | 11/2/23<br>11/2/23<br>11/2/23<br>11/2/23<br>11/2/23<br>11/2/23<br>11/2/23<br>11/2/23<br>11/2/23 |
| My license renewal date for the state of Missouri is December 31, 2024.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | MiTek USA, Inc. under my direct supervision based on the parameter                                                              | Street.                                                                                         |

My license renewal date for the state of Missouri is December 31, 2024.

IMPORTANT NOTE: The seal on these truss component designs is a certification that the engineer named is licensed in the jurisdiction(s) identified and that the designs comply with ANSI/TPI 1. These designs are based upon parameters shown (e.g., loads, supports, dimensions, shapes and design codes), which were given to MiTek or TRENCO. Any project specific information included is for MiTek's or TRENCO's customers file reference purpose only, and was not taken into account in the preparation of these designs. MiTek or TRENCO has not independently verified the applicability of the design parameters or the designs for any particular building. Before use, the building designer should verify applicability of design parameters and properly incorporate these designs into the overall building design per ANSI/TPI 1, Chapter 2.



Nathan Fox

|                                   |                                               |                                                       |                                               |                                           |                 |                        |                    | RELE                                    | ASE FOR CONS                             | TRUCTION |
|-----------------------------------|-----------------------------------------------|-------------------------------------------------------|-----------------------------------------------|-------------------------------------------|-----------------|------------------------|--------------------|-----------------------------------------|------------------------------------------|----------|
| Job                               | Truss                                         | 3                                                     | Truss Type                                    | C                                         | Qty Ply         | Roof - Os              | age Lot 77         |                                         | DTED FOR PLA<br>VELOPMENT SE<br>1617792  |          |
| P230812                           | A1                                            |                                                       | Half Hip Girder                               | 2                                         | 2 1             | Job Refe               | ence (optional     |                                         | 1617792<br>E' <mark>S SUMMIT, M</mark> I |          |
| Premier Building                  | Supply (Springhill, KS),                      | Spring Hills, KS - 66083,                             |                                               | In: 8.63 S Aug 30 202                     |                 | Aug 30 2023 MiTe       | k Industries, Inc. | Ved Nov 01 14)                          |                                          | 023      |
|                                   |                                               |                                                       | ID:                                           | BCy5ZbGPCcp1yed6                          | w91r/BzxFiH-R   | C?PsB70Hq3NSg          | PqnL8w3ul1XbG      | WrCDoi7J4zJC                            | <u>/r 0 07 –</u>                         | 020      |
|                                   |                                               | -0-10-8                                               | 5-0-0                                         |                                           | 8-10-           | 8                      | 12                 | 2-11-8                                  |                                          |          |
|                                   |                                               | 0-10-8                                                | 5-0-0                                         | ļ                                         | 3-10-           | 8                      | 2                  | <b>I-1-0</b>                            | I                                        |          |
|                                   |                                               |                                                       |                                               | NAILED                                    | NAILE           | D NAIL                 |                    | IAILED                                  | Special                                  |          |
|                                   |                                               |                                                       |                                               |                                           |                 |                        |                    |                                         | opoola                                   |          |
|                                   |                                               |                                                       | 12<br>4 [                                     | 4x4 =                                     |                 | Зх                     | 4 =                |                                         | 3x4 II                                   |          |
|                                   | 1-7-0                                         |                                                       | 4 L<br>                                       | 8 3                                       | 9               | 10 4                   | ]                  | 11 12                                   | 5                                        |          |
|                                   | 0 3                                           |                                                       | 6                                             |                                           |                 |                        |                    |                                         | F                                        |          |
| 2-3-3                             | 2-0-9                                         | 2                                                     |                                               |                                           |                 |                        |                    |                                         |                                          | 2-0-9    |
|                                   | -9-0                                          | - 1                                                   |                                               |                                           | $\leq$          |                        | 1                  |                                         | 6                                        |          |
|                                   |                                               |                                                       |                                               | 7                                         | 13              | 14                     | 4                  | 15                                      | Ň                                        |          |
|                                   |                                               | _                                                     | ×4 =                                          | 3x4 =                                     |                 |                        |                    |                                         | 5x5 =                                    |          |
|                                   |                                               |                                                       |                                               |                                           |                 |                        |                    |                                         |                                          |          |
|                                   |                                               |                                                       |                                               | Special                                   | NAILE           |                        |                    | IAILED                                  |                                          |          |
|                                   |                                               | F                                                     | <u>4-10-12</u><br>4-10-12                     |                                           |                 | <u>12-1</u><br>8-0-    |                    |                                         |                                          |          |
| Scale = 1:32.8<br>Plate Offsets ( | X, Y): [5:Edge,0-2-8                          | 1                                                     |                                               |                                           |                 |                        |                    |                                         |                                          |          |
| Loading                           | (psf)                                         | Spacing                                               | 2-0-0 CSI                                     |                                           | DEFL            | in (loc)               | l/defl L/d         | PLATES                                  | GRIP                                     |          |
| TCLL (roof)<br>TCDL               | 25.0<br>10.0                                  | Plate Grip DOL<br>Lumber DOL                          | 1.15 TC<br>1.15 BC                            | 0.57<br>0.77                              | Vert(LL)        | -0.20 6-7<br>-0.41 6-7 | >771 240           | MT20                                    | 197/144                                  |          |
| BCLL                              | 0.0                                           | Rep Stress Incr                                       | NO WB                                         | 0.83                                      | . ,             | 0.03 6                 |                    |                                         |                                          |          |
| BCDL                              | 10.0                                          | Code                                                  | IRC2018/TPI2014 Mate<br>6) Provide mechanica  |                                           | thora) of truca | to                     |                    | Weight: 50 I                            | b FT = 20%                               |          |
| LUMBER<br>TOP CHORD               |                                               | _                                                     |                                               | ble of withstanding                       |                 |                        |                    |                                         |                                          |          |
| BOT CHORD<br>WEBS                 | 2x4 SP 1650F 1.5E<br>2x3 SPF No.2             | -                                                     | <ol> <li>This truss is design</li> </ol>      |                                           |                 | and                    |                    |                                         |                                          |          |
| BRACING<br>TOP CHORD              |                                               | eathing directly applied                              | or R802.10.2 and refe                         | erenced standard A                        | NSI/TPI 1.      |                        |                    |                                         |                                          |          |
|                                   | 3-4-7 oc purlins, e<br>2-0-0 oc purlins (3-   | xcept end verticals, an<br>10-1 max.): 3-5.           | or the orientation of                         | of the purlin along the                   |                 | 5120                   |                    |                                         |                                          |          |
| BOT CHORD                         | Rigid ceiling directl<br>bracing.             | y applied or 8-4-7 oc                                 | 9) "NAILED" indicates                         | (                                         | 148" x 3") toe- | nails                  |                    |                                         |                                          |          |
| REACTIONS                         | (size) 2=0-3-8,<br>Max Horiz 2=82 (L0         |                                                       | per NDS guideline<br>10) Hanger(s) or other   | connection device                         |                 |                        |                    |                                         |                                          |          |
|                                   | Max Uplift 2=-284 (<br>Max Grav 2=989 (I      | LC 8), 6=-266 (LC 8)<br>_C 1), 6=964 (LC 1)           | down and 32 lb up                             | to support concent<br>at 12-10-4 on top   | chord, and 28   |                        |                    |                                         |                                          |          |
| FORCES                            | (                                             | mpression/Maximum                                     | design/selection of                           | at 5-0-0 on botton<br>f such connection c |                 | )                      |                    |                                         |                                          |          |
| TOP CHORD                         |                                               | 9/667, 3-4=-1948/675,                                 | responsibility of otl<br>11) In the LOAD CASE |                                           |                 | face                   |                    |                                         |                                          |          |
| BOT CHORD<br>WEBS                 | 2-7=-670/1965, 6-7                            |                                                       | LOAD CASE(S) Star                             | ndard                                     |                 |                        |                    |                                         |                                          |          |
| NOTES                             |                                               |                                                       | Plate Increase=1                              |                                           | er Increase=1   | .15,                   |                    |                                         |                                          |          |
| , this desigr                     | ۱.                                            | e been considered for                                 | Uniform Loads (lk<br>Vert: 1-3=-70,           | o/ft)<br>3-5=-70, 2-6=-20                 |                 |                        |                    | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ | ann                                      |          |
| Vasd=91m                          | CE 7-16; Vult=115mp<br>hph; TCDL=6.0psf; B    | CDL=6.0psf; h=35ft;                                   |                                               | ads (lb)<br>, 5=-8 (F), 7=-286            | (F), 4=-90 (F), |                        |                    | FEOI                                    | E MISSOL                                 | d.       |
|                                   | Cat. II; Exp C; Enclos                        | ed; MWFRS (envelope<br>(2E) -0-10-8 to 4-1-8,         | ) 9=-90 (F), 11=<br>15=-28 (F)                | -90 (F), 13=-28 (F)                       | , 14=-28 (F),   |                        | E                  | A NAT                                   | HANIEL                                   | N.S.     |
|                                   |                                               | rior(2R) 5-0-0 to 12-0-1<br>zone; cantilever left and |                                               |                                           |                 |                        | ä                  |                                         | FOX                                      | F.B      |
| • •                               | sed ; end vertical left<br>and forces & MWFRS | exposed;C-C for<br>S for reactions shown;             |                                               |                                           |                 |                        | g'                 | 1 H                                     | - Dr.                                    | 128      |
| Lumber D                          | OL=1.60 plate grip D                          |                                                       |                                               |                                           |                 |                        | A.                 | A WANK                                  | MHR O                                    | TE A     |
| 4) This truss                     | has been designed f                           |                                                       | S.                                            |                                           |                 |                        | Ŷ                  | AT A                                    | 22042259                                 | S B      |
|                                   | is are assumed to be                          | SP 1650F 1.5E crushi                                  |                                               |                                           |                 |                        |                    | NOISSION                                | IAL ENG                                  | Ą        |
| capacity 0                        |                                               |                                                       |                                               |                                           |                 |                        |                    | and the                                 | DUTTE                                    |          |

November 2,2023



|                                                     |                                     |                                                 |                                                   |                                                |                      |                      |                          | RELEASE FOR CONSTRUCTION                                      |
|-----------------------------------------------------|-------------------------------------|-------------------------------------------------|---------------------------------------------------|------------------------------------------------|----------------------|----------------------|--------------------------|---------------------------------------------------------------|
| Job                                                 | Truss                               |                                                 | Truss Type                                        | Qty                                            | Ply                  | Roof - Osa           | ge Lot 77                | AS NOTED FOR PLAN REVIEW<br>DEVELOPMENT SERVICES<br>161779266 |
| P230812                                             | A2                                  |                                                 | Half Hip                                          | 2                                              | 1                    | Job Refere           | nce (optional            | I61779266<br>LEE'S SUMMIT, MISSOURI                           |
| Premier Building Supp                               | oly (Springhill, KS), Sp            | pring Hills, KS - 66083,                        |                                                   | n: 8.63 S Aug 30 2023 I<br>BTUW8PT4CqydUFQN0   |                      |                      |                          |                                                               |
|                                                     |                                     |                                                 | ID.                                               | BIUWOF14Cqyd0FQN                               | 2EGqJIII2XFIU-R      | (IC?FSB/0H43N3)      | grqnLow3u17A             |                                                               |
|                                                     |                                     | -0-10-8                                         | 7-0-                                              | 0                                              |                      |                      | 12-11-8                  |                                                               |
|                                                     |                                     | 0-10-8                                          | 7-0-0                                             | 0                                              | I                    |                      | 5-11-8                   |                                                               |
|                                                     |                                     |                                                 |                                                   |                                                | 6x6 =                |                      |                          |                                                               |
| 0                                                   |                                     |                                                 | 12                                                |                                                | 3                    | 8                    |                          | 3х4 и<br>4                                                    |
| 5-10-0                                              | -1-9                                |                                                 | 12<br>4                                           | 0- <u>1-</u> 0                                 |                      |                      |                          |                                                               |
|                                                     |                                     |                                                 |                                                   | 7                                              |                      | $\square$            |                          |                                                               |
| 2-11-3<br>2-8-7                                     | 2-8-7                               |                                                 |                                                   |                                                |                      |                      |                          | 2-8-7                                                         |
| 5 5                                                 | Ъ                                   | 2                                               |                                                   |                                                |                      |                      |                          | Å                                                             |
|                                                     | 0-9-0                               | 1                                               |                                                   |                                                |                      |                      |                          | 5                                                             |
|                                                     | _ 0                                 |                                                 |                                                   |                                                | 6                    |                      |                          |                                                               |
|                                                     |                                     | 4x4                                             | =                                                 |                                                | 1.5x4 ı              | II                   |                          | 3x4 =                                                         |
|                                                     |                                     |                                                 |                                                   |                                                |                      |                      |                          |                                                               |
|                                                     |                                     |                                                 |                                                   |                                                |                      |                      |                          |                                                               |
|                                                     |                                     | -                                               | <u> </u>                                          |                                                |                      |                      | <u>12-11-8</u><br>6-0-12 |                                                               |
| Scale = 1:31.7<br>Plate Offsets (X, Y):             | · [1:Edge 0-2-8]                    |                                                 |                                                   |                                                |                      |                      |                          |                                                               |
| Loading                                             |                                     | Spacing                                         | 2-0-0 CSI                                         |                                                | DEFL                 | in (loo)             | l/defl L/d               | PLATES GRIP                                                   |
| TCLL (roof)                                         | (psf)<br>25.0                       | Spacing<br>Plate Grip DOL                       | 1.15 TC                                           | 0.87                                           | Vert(LL)             | in (loc)<br>0.07 2-6 | >999 240                 | MT20 197/144                                                  |
| TCDL<br>BCLL                                        | 10.0<br>0.0                         | Lumber DOL<br>Rep Stress Incr                   | 1.15 BC<br>YES WB                                 | 0.55<br>0.88                                   | Vert(CT)<br>Horz(CT) | -0.14 2-6<br>0.02 5  | >999 180<br>n/a n/a      |                                                               |
| BCDL                                                | 10.0                                | Code                                            | IRC2018/TPI2014 Matr                              |                                                |                      |                      |                          | Weight: 49 lb FT = 20%                                        |
|                                                     | SP No.2                             |                                                 |                                                   | ble of withstanding 1                          |                      | )                    |                          |                                                               |
| BOT CHORD 2x4<br>WEBS 2x3                           | I SP No.2<br>3 SPF No.2             |                                                 |                                                   | ned in accordance wi                           |                      |                      |                          |                                                               |
| BRACING<br>TOP CHORD Stre                           | uctural wood shea                   | athing directly applied                         | or R802.10.2 and refe                             | lential Code sections<br>erenced standard AN   | SI/TPI 1.            |                      |                          |                                                               |
| 2-2                                                 |                                     | ept end verticals, and                          | d 8) Graphical purlin rep<br>or the orientation o | presentation does no<br>f the purlin along the |                      | ze                   |                          |                                                               |
| BOT CHORD Rig                                       |                                     | applied or 8-6-15 oc                            | bottom chord.<br>LOAD CASE(S) Stan                | ndard                                          |                      |                      |                          |                                                               |
| REACTIONS (size                                     | e) 2=0-3-8, 5<br>Horiz 2=110 (LC    |                                                 |                                                   |                                                |                      |                      |                          |                                                               |
| Max                                                 |                                     | C 8), 5=-133 (LC 8)                             |                                                   |                                                |                      |                      |                          |                                                               |
| FORCES (lb)                                         | - Maximum Comp                      | pression/Maximum                                |                                                   |                                                |                      |                      |                          |                                                               |
| TOP CHORD 1-2                                       | nsion<br>=0/6, 2-3=-970/38          | 39, 3-4=-43/24,                                 |                                                   |                                                |                      |                      |                          |                                                               |
| BOT CHORD 2-6                                       | i=-201/163<br>i=-433/838, 5-6=-4    |                                                 |                                                   |                                                |                      |                      |                          |                                                               |
| WEBS 3-6<br>NOTES                                   | i=0/304, 3-5=-862/                  | /451                                            |                                                   |                                                |                      |                      |                          |                                                               |
| <ol> <li>Unbalanced roc<br/>this design.</li> </ol> | of live loads have l                | been considered for                             |                                                   |                                                |                      |                      |                          |                                                               |
| 2) Wind: ASCE 7-                                    | 16; Vult=115mph<br>FCDL=6.0psf: BCE | (3-second gust)<br>DL=6.0psf; h=35ft;           |                                                   |                                                |                      |                      |                          | THE OF MISSOL                                                 |
| Ke=1.00; Cat. II                                    | I; Exp C; Enclosed                  | d; MWFRS (envelope<br>E) -0-10-8 to 4-1-8,      | )                                                 |                                                |                      |                      | A                        | THE OF MISSOL                                                 |
| Interior (1) 4-1-8                                  | 8 to 7-0-0, Exterio                 | r(2E) 7-0-0 to 12-10-<br>osed ; end vertical le |                                                   |                                                |                      |                      | A                        | S NATHANIEL FOX                                               |
| exposed;C-C fo                                      | or members and fo                   | orces & MWFRS for                               |                                                   |                                                |                      |                      | av                       | H. H.                                                         |
| DOL=1.60                                            | n; Lumber DOL=1                     |                                                 |                                                   |                                                |                      |                      | X.                       | AND BER IN 2                                                  |
| <ol><li>This truss has b</li></ol>                  | been designed for                   |                                                 |                                                   |                                                |                      |                      | 8                        | PE-2022042259                                                 |
| 5) All bearings are                                 | assumed to be S                     | h any other live loads<br>P No.2 crushing       | ).                                                |                                                |                      |                      |                          | ESSIONAL ENGLIS                                               |
| capacity of 565                                     | psi.                                |                                                 |                                                   |                                                |                      |                      |                          | WAL ST                                                        |

November 2,2023





| <b>Loading</b><br>TCLL (roof)<br>TCDL<br>BCLL<br>BCDL            | (psf)<br>25.0<br>10.0<br>0.0<br>10.0                                                                                                                                                                                                                                                                                                                         | Spacing<br>Plate Grip DOL<br>Lumber DOL<br>Rep Stress Incr<br>Code | 2-0-0<br>1.15<br>1.15<br>YES<br>IRC201 | 8/TPI2014 | CSI<br>TC<br>BC<br>WB<br>Matrix-S | 0.32<br>0.48<br>0.37 | - ( ) | in<br>-0.05<br>-0.11<br>0.01 | (loc)<br>6-7<br>6-7<br>6 | l/defl<br>>999<br>>999<br>n/a | L/d<br>240<br>180<br>n/a | <b>PLATES</b><br>MT20<br>Weight: 52 lb | <b>GRIP</b><br>197/144<br>FT = 20% |
|------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|----------------------------------------|-----------|-----------------------------------|----------------------|-------|------------------------------|--------------------------|-------------------------------|--------------------------|----------------------------------------|------------------------------------|
| LUMBER<br>TOP CHORD<br>BOT CHORD<br>WEBS<br>BRACING<br>TOP CHORD | TOP CHORD2x4 SP No.2bearing plate capable of withstanding 139 lb uplift at<br>joint 6 and 158 lb uplift at joint 2.BOT CHORD2x4 SP No.27)WEBS2x3 SPF No.27)BRACINGStructural wood sheathing directly applied or<br>5-1-9 oc purlins, except end verticals, and<br>2-0-0 oc purlins (6-0-0 max.): 4-5.7)BOT CHORDRigid ceiling directly applied or 7-8-13 oc8 |                                                                    |                                        |           |                                   |                      |       |                              |                          |                               |                          |                                        |                                    |
| BOT CHORD                                                        | SOT CHORD Rigid ceiling directly applied or 7-8-13 oc bottom chord.                                                                                                                                                                                                                                                                                          |                                                                    |                                        |           |                                   |                      |       |                              |                          |                               |                          |                                        |                                    |
|                                                                  |                                                                                                                                                                                                                                                                                                                                                              |                                                                    |                                        |           |                                   |                      |       |                              |                          |                               |                          |                                        |                                    |
|                                                                  | (lb) - Maximum Com<br>Tension                                                                                                                                                                                                                                                                                                                                |                                                                    |                                        |           |                                   |                      |       |                              |                          |                               |                          |                                        |                                    |
| TOP CHORD                                                        | 1-2=0/6, 2-3=-1102/4<br>4-5=-17/6, 5-6=-132/                                                                                                                                                                                                                                                                                                                 | , ,                                                                |                                        |           |                                   |                      |       |                              |                          |                               |                          |                                        |                                    |
| BOT CHORD<br>WEBS<br>NOTES                                       | 2-7=-574/977, 6-7=-<br>3-7=-278/274, 4-7=-                                                                                                                                                                                                                                                                                                                   |                                                                    | 80                                     |           |                                   |                      |       |                              |                          |                               |                          |                                        |                                    |
| 1) Unbalance<br>this design                                      | <ol> <li>Unbalanced roof live loads have been considered for<br/>this design.</li> </ol>                                                                                                                                                                                                                                                                     |                                                                    |                                        |           |                                   |                      |       |                              |                          |                               |                          |                                        |                                    |
| Vasd=91m<br>Ke=1.00; C<br>exterior zo                            | 2) Wind: ASCE 7-16; Vult=115mph (3-second gust)<br>Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=35ft;<br>Ke=1.00; Cat. II; Exp C; Enclosed; MWFRS (envelope)<br>exterior zone and C-C Exterior(2E) -0-10-8 to 4-1-8,<br>Interior (1) 414 02 0.0 Exterior(2E) -0.0 8 to 4-1-8,                                                                                     |                                                                    |                                        |           |                                   |                      |       |                              |                          |                               |                          |                                        |                                    |

- reactions shown; Lumber DOL=1.60 plate grip DOL=1.60Provide adequate drainage to prevent water ponding.
- 4) This truss has been designed for a 10.0 psf bottom

Interior (1) 4-1-8 to 9-0-0, Exterior(2E) 9-0-0 to 12-10-4

zone; cantilever left and right exposed ; end vertical left exposed;C-C for members and forces & MWFRS for

chord live load nonconcurrent with any other live loads.5) All bearings are assumed to be SP No.2 crushing capacity of 565 psi.



E

NATHANIEL

FOX

MULLER

PE-2022042259

November 2,2023

SSIONAL



| Loading                                                          | (psf)                                                                                                                                                                                            | Spacing              | 2-0-0   |                                                                                 | CSI                                                                                                                                                         |                                                   | DEFL                                                        | in       | (loc) | l/defl | L/d | PLATES        | GRIP     |
|------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|---------|---------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------|-------------------------------------------------------------|----------|-------|--------|-----|---------------|----------|
| TCLL (roof)                                                      | 25.0                                                                                                                                                                                             | Plate Grip DOL       | 1.15    |                                                                                 | тс                                                                                                                                                          | 0.47                                              | Vert(LL)                                                    | -0.09    | 1-6   | >999   | 240 | MT20          | 244/190  |
| TCDL                                                             | 10.0                                                                                                                                                                                             | Lumber DOL           | 1.15    |                                                                                 | BC                                                                                                                                                          | 0.55                                              | Vert(CT)                                                    | -0.18    | 1-6   | >832   | 180 |               |          |
| BCLL                                                             | 0.0                                                                                                                                                                                              | Rep Stress Incr      | YES     |                                                                                 | WB                                                                                                                                                          | 0.25                                              | Horz(CT)                                                    | 0.01     | 5     | n/a    | n/a |               |          |
| BCDL                                                             | 10.0                                                                                                                                                                                             | Code                 | IRC2018 | 3/TPI2014                                                                       | Matrix-S                                                                                                                                                    |                                                   |                                                             |          |       |        |     | Weight: 52 lb | FT = 20% |
| LUMBER<br>TOP CHORD<br>BOT CHORD<br>WEBS<br>BRACING<br>TOP CHORD | 2x4 SP No.2<br>2x4 SP No.2<br>2x3 SPF No.2<br>Structural wood she                                                                                                                                |                      |         | bearing plate<br>joint 1 and 1<br>This truss is<br>International<br>R802.10.2 a | hanical connection<br>e capable of withsta<br>49 lb uplift at joint<br>designed in accord<br>Residential Code<br>nd referenced stan<br>rifin representation | anding 1<br>5.<br>dance w<br>sections<br>ndard AN | 01 lb uplift a<br>ith the 2018<br>R502.11.1 a<br>ISI/TPI 1. | t<br>and |       |        |     |               |          |
| BOT CHORD                                                        | 2-0-0 oc purlins (6-0-0 max.): 3-4.<br>CHORD Rigid ceiling directly applied or 7-8-13 oc<br>bracing.<br>CHORD State of the purlin along the top and/or<br>bottom chord.<br>LOAD CASE(S) Standard |                      |         |                                                                                 |                                                                                                                                                             |                                                   |                                                             |          |       |        |     |               |          |
| REACTIONS                                                        | (size) 1= Mecha                                                                                                                                                                                  | anical, 5=0-3-8      |         |                                                                                 |                                                                                                                                                             |                                                   |                                                             |          |       |        |     |               |          |
|                                                                  | Max Horiz 1=165 (LC                                                                                                                                                                              | C 12)                |         |                                                                                 |                                                                                                                                                             |                                                   |                                                             |          |       |        |     |               |          |
|                                                                  | Max Uplift 1=-101 (L                                                                                                                                                                             | .C 8), 5=-149 (LC 8) |         |                                                                                 |                                                                                                                                                             |                                                   |                                                             |          |       |        |     |               |          |
|                                                                  | Max Grav 1=573 (LC                                                                                                                                                                               | C 1), 5=573 (LC 1)   |         |                                                                                 |                                                                                                                                                             |                                                   |                                                             |          |       |        |     |               |          |
| FORCES                                                           | (lb) - Maximum Com                                                                                                                                                                               | pression/Maximum     |         |                                                                                 |                                                                                                                                                             |                                                   |                                                             |          |       |        |     |               |          |
|                                                                  | Tension                                                                                                                                                                                          |                      |         |                                                                                 |                                                                                                                                                             |                                                   |                                                             |          |       |        |     |               |          |
| TOP CHORD                                                        | 1-2=-1075/426, 2-3=                                                                                                                                                                              | -769/282, 3-4=-4/2,  |         |                                                                                 |                                                                                                                                                             |                                                   |                                                             |          |       |        |     |               |          |
| DOTOLODD                                                         | 4-5=-55/36                                                                                                                                                                                       | 154/050              |         |                                                                                 |                                                                                                                                                             |                                                   |                                                             |          |       |        |     |               |          |
| BOT CHORD                                                        | 1-6=-574/969, 5-6=-                                                                                                                                                                              |                      | 254     |                                                                                 |                                                                                                                                                             |                                                   |                                                             |          |       |        |     |               |          |
| WEBS                                                             | 2-6=-423/370, 3-6=-                                                                                                                                                                              | 229/616, 3-5=-564/   | 354     |                                                                                 |                                                                                                                                                             |                                                   |                                                             |          |       |        |     |               |          |
| NOTES                                                            |                                                                                                                                                                                                  |                      |         |                                                                                 |                                                                                                                                                             |                                                   |                                                             |          |       |        |     |               |          |
|                                                                  | ed roof live loads have                                                                                                                                                                          | been considered fo   | r       |                                                                                 |                                                                                                                                                             |                                                   |                                                             |          |       |        |     |               |          |
| this desigr<br>2) Wind: ASC                                      | n.<br>CE 7-16; Vult=115mph                                                                                                                                                                       | (2 cocond quet)      |         |                                                                                 |                                                                                                                                                             |                                                   |                                                             |          |       |        |     |               |          |
|                                                                  | nph; TCDL=6.0psf; BC                                                                                                                                                                             |                      |         |                                                                                 |                                                                                                                                                             |                                                   |                                                             |          |       |        |     | and           | ADD      |
|                                                                  | Cat. II; Exp C; Enclose                                                                                                                                                                          |                      | ce)     |                                                                                 |                                                                                                                                                             |                                                   |                                                             |          |       |        |     | 8 OF 1        | ALSON    |
|                                                                  | one and C-C Exterior(2                                                                                                                                                                           |                      |         |                                                                                 |                                                                                                                                                             |                                                   |                                                             |          |       |        |     | ATE OF I      | 10.0°    |
|                                                                  | E 0 40 1- 40 44 4 E                                                                                                                                                                              |                      |         |                                                                                 |                                                                                                                                                             |                                                   |                                                             |          |       |        | 6   |               | N ( ) N  |

grip DOL=1.603) Provide adequate drainage to prevent water ponding.4) This truss has been designed for a 10.0 psf bottom

chord live load nonconcurrent with any other live loads.

Interior (1) 5-0-12 to 10-11-4, Exterior(2E) 10-11-4 to

12-9-8 zone; cantilever left and right exposed ; end

vertical left exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate

 Bearings are assumed to be: , Joint 5 SP No.2 crushing capacity of 565 psi.

6) Refer to girder(s) for truss to truss connections.





NATHANIEL

FOX

OMBER

November 2,2023

PE-2022042259

SSIONAL EN

|         |       |            |      |      |                         | RELEASE FOR CONSTRUCTION          |
|---------|-------|------------|------|------|-------------------------|-----------------------------------|
| Job     | Truss | Truss Type | Qty  | Plv  | Roof - Osage Lot 77     | AS NOTED FOR PLAN REVIEW          |
| 000     | 11033 |            | Gily | i iy | 1001 - Osage Lot 11     | DEVELOPMENT SERVICES<br>161779269 |
| P230812 | A5    | Half Hip   | 2    | 1    | Job Reference (optional | LEFTE CUMMIT, MICCOUDI            |
|         |       |            |      |      | -                       |                                   |

7-0-8 7-0-8

Premier Building Supply (Springhill, KS), Spring Hills, KS - 66083,

Run: 8.63 S Aug 30 2023 Print: 8.630 S Aug 30 2023 MiTek Industries, Inc. Ved Nov 4 43340 6/2023 ID:vfcjoeo0r7LoEP\_aVPF9wTzxFhb-RfC?PsB70Hq3NSgPqnL8w3uITXbGKV/rCDoi7J4zJeff

12-10-12

5-10-4





|                |       |                 | 7.              | 12-10-12 |      |          |        |       |        |     |               |          |
|----------------|-------|-----------------|-----------------|----------|------|----------|--------|-------|--------|-----|---------------|----------|
| Scale = 1:42.9 |       |                 | 7-              | -0-8     | I    |          | 5-10-4 |       |        |     |               |          |
| Loading        | (psf) | Spacing         | 2-0-0           | CSI      |      | DEFL     | in     | (loc) | l/defl | L/d | PLATES        | GRIP     |
| TCLL (roof)    | 25.0  | Plate Grip DOL  | 1.15            | тс       | 0.74 | Vert(LL) | -0.07  | 1-5   | >999   | 240 | MT20          | 244/190  |
| FCDL           | 10.0  | Lumber DOL      | 1.15            | BC       | 0.69 | Vert(CT) | -0.16  | 1-5   | >959   | 180 |               |          |
| BCLL           | 0.0   | Rep Stress Incr | YES             | WB       | 0.92 | Horz(CT) | 0.02   | 4     | n/a    | n/a |               |          |
| BCDL           | 10.0  | Code            | IRC2018/TPI2014 | Matrix-S |      |          |        |       |        |     | Weight: 50 lb | FT = 20% |

| TOP CHORD | 2x4 SP No.2                                                                           |
|-----------|---------------------------------------------------------------------------------------|
| BOT CHORD | 2x4 SP No.2                                                                           |
| WEBS      | 2x3 SPF No.2                                                                          |
| BRACING   |                                                                                       |
| TOP CHORD | Structural wood sheathing directly applied or 4-0-3 oc purlins, except end verticals. |
| BOT CHORD | Rigid ceiling directly applied or 8-11-11 oc bracing.                                 |
|           |                                                                                       |

| REACTIONS | (size)     | 1= Mechanical, 4=0-3-8        |
|-----------|------------|-------------------------------|
|           | Max Horiz  | 1=196 (LC 8)                  |
|           | Max Uplift | 1=-91 (LC 8), 4=-159 (LC 8)   |
|           | Max Grav   | 1=573 (LC 1), 4=573 (LC 1)    |
| FORCES    | (lb) - Max | imum Compression/Maximum      |
|           | Tension    |                               |
| TOP CHORD | 1-2=-980/  | 252, 2-3=-90/25, 3-4=-146/157 |
| BOT CHORD | 1-5=-411/  | 869. 4-5=-411/869             |

2-5=0/308, 2-4=-942/447

WEBS

NOTES

- 1) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=35ft; Ke=1.00; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) 0-1-8 to 5-1-8, Interior (1) 5-1-8 to 12-10-4 zone; cantilever left and right exposed ; end vertical left exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- This truss has been designed for a 10.0 psf bottom 2) chord live load nonconcurrent with any other live loads.
- Bearings are assumed to be: , Joint 4 SP No.2 crushing 3) capacity of 565 psi.
- Refer to girder(s) for truss to truss connections. 4) Provide mechanical connection (by others) of truss to 5)
- bearing plate capable of withstanding 91 lb uplift at joint 1 and 159 lb uplift at joint 4. This truss is designed in accordance with the 2018 6)
- International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard



November 2,2023







#### Plate Offsets (X, Y): [5:0-5-0,0-2-0], [10:0-1-12,0-3-4]

|                                                                                       |                                                                                                                                                                                 | I                                                        |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                        |                                             |                                                     |                  |       | _      |     |                |                    |  |
|---------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------|------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------|-----------------------------------------------------|------------------|-------|--------|-----|----------------|--------------------|--|
| Loading                                                                               | (psf)                                                                                                                                                                           | Spacing                                                  | 2-0-0            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | CSI                                                                                                                                    |                                             | DEFL                                                | in               | (loc) | l/defl | L/d | PLATES         | GRIP               |  |
| TCLL (roof)                                                                           | 25.0                                                                                                                                                                            | Plate Grip DOL                                           | 1.15             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | TC                                                                                                                                     | 0.81                                        | Vert(LL)                                            | -0.34            | 9-11  | >914   | 240 | MT20           | 197/144            |  |
| TCDL                                                                                  | 10.0                                                                                                                                                                            | Lumber DOL                                               | 1.15             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | BC                                                                                                                                     | 0.89                                        | Vert(CT)                                            | -0.61            | 9-11  | >508   | 180 |                |                    |  |
| BCLL                                                                                  | 0.0                                                                                                                                                                             | Rep Stress Incr                                          | NO               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | WB                                                                                                                                     | 0.64                                        | Horz(CT)                                            | 0.11             | 7     | n/a    | n/a |                |                    |  |
| BCDL                                                                                  | 10.0                                                                                                                                                                            | Code                                                     | IRC201           | 8/TPI2014                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Matrix-S                                                                                                                               |                                             |                                                     |                  |       |        |     | Weight: 218 lb | FT = 20%           |  |
| LUMBER<br>TOP CHORD<br>BOT CHORD<br>WEBS<br>BRACING<br>TOP CHORD<br>BOT CHORD<br>WEBS | 1.5E<br>2x4 SP 1650F 1.5E<br>2x3 SPF No.2 *Exce<br>Structural wood she<br>5-5-5 oc purlins, ex<br>2-0-0 oc purlins (4-9<br>Rigid ceiling directly<br>bracing.<br>1 Row at midpt | applied or 10-0-0 oc<br>5-7                              | 3)<br>d or<br>id | <ul> <li>Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=35ft;<br/>Ke=1.00; Cat. II; Exp C; Enclosed; MWFRS (envelope)<br/>exterior zone and C-C Exterior(2E) -0-10-8 to 4-1-8,<br/>Interior (1) 4-1-8 to 5-0-0, Exterior(2R) 5-0-0 to 12-0-14,<br/>Interior (1) 12-0-14 to 25-10-4 zone; cantilever left and<br/>right exposed ; end vertical left and right exposed; C-C<br/>for members and forces &amp; MWFRS for reactions shown;</li> <li>Used H and C (b) Landard (c) Lumber Increase<br/>Plate Increase=1.15<br/>Uniform Loads (lb/ft)<br/>Vert: 1-3=-70, 3-5=-70, 5-6=-70, 2-7=-20<br/>Concentrated Loads (lb)<br/>Vert: 3-90 (F), 12=-286 (F), 14=-90 (F), 14</li> </ul> |                                                                                                                                        |                                             |                                                     |                  |       |        |     |                |                    |  |
| REACTIONS                                                                             | Max Horiz 2=216 (LC<br>Max Uplift 2=-533 (L<br>Max Grav 2=1968 (I                                                                                                               | C 11)<br>.C 8), 7=-385 (LC 12)<br>.C 1), 7=1548 (LC 1)   | 5)               | <ul> <li>Lumber DOL=1.60 plate grip DOL=1.60</li> <li>Provide adequate drainage to prevent water ponding.</li> <li>This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                        |                                             |                                                     |                  |       |        |     |                |                    |  |
| FORCES                                                                                | (lb) - Maximum Corr<br>Tension                                                                                                                                                  | pression/Maximum                                         | 6)               | <ol> <li>All bearings are assumed to be SP 1650F 1.5E crushing<br/>capacity of 565 psi.</li> </ol>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                        |                                             |                                                     |                  |       |        |     |                |                    |  |
| TOP CHORD                                                                             | 1-2=0/6, 2-3=-4891/<br>4-5=-6712/1763, 5-6                                                                                                                                      | 1363, 3-4=-6208/164<br>6=-175/91, 6-7=-256/ <sup>-</sup> |                  | <ul> <li>Provide mechanical connection (by others) of truss to<br/>bearing plate capable of withstanding 385 lb uplift at</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                        |                                             |                                                     |                  |       |        |     |                |                    |  |
| BOT CHORD                                                                             | 9-11=-1996/7077, 8-<br>7-8=-1297/5251                                                                                                                                           | -9=-1304/5248,<br>233, 5-7=-5346/1361<br> 1=-362/1881,   |                  | This truss is<br>International<br>R802.10.2 a<br>Graphical pu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 33 lb uplift at joint<br>designed in accord<br>Residential Code<br>nd referenced star<br>urlin representation<br>ation of the purlin a | dance w<br>sections<br>ndard AN<br>ndoes ne | s R502.11.1 a<br>NSI/TPI 1.<br>ot depict the s      |                  |       |        |     | TATE OF I      | MISSO              |  |
| NOTES                                                                                 | ,                                                                                                                                                                               |                                                          |                  | bottom chore                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | d.                                                                                                                                     | Ū                                           | ·                                                   |                  |       |        | B   | NATHA          | NIFI               |  |
| (0.131"x3<br>Top chord<br>oc, 2x3 -<br>Bottom ch<br>0-9-0 oc.                         | s to be connected toge<br>") nails as follows:<br>ds connected as follows<br>1 row at 0-9-0 oc.<br>hords connected as foll<br>hected as follows: 2x3 -<br>0-9-0 oc.             | s: 2x4 - 1 row at 0-9-0<br>ows: 2x4 - 1 row at           | )<br>11<br>12    | Truss, Single<br>the left end t<br>chord.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | n Strong-Tie LUS2<br>e Ply Girder) or eq<br>o connect truss(es<br>bles where hanger<br>dicates Girder: 3-1<br>delines.                 | uivalent<br>a) to fron<br>is in cor         | at 13-0-0 from<br>t face of botto<br>ntact with lum | m<br>om<br>Iber. |       |        |     | PE-2022        | X<br>DER<br>042259 |  |

November 2,2023

16023 Swingley Ridge Rd. Chesterfield MO 63017 314.434.1200 / MiTek-US.com

 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.
 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not besign value to dury with with where outputs into design is based only door parameters shown, and is for an individual building design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members and property incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TPH1 Quality Criteria**, and **DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcscomponents.com)

|                         |                               |                 |              |                          |       |     |                                                            | RELEASE FOR              |                                            |
|-------------------------|-------------------------------|-----------------|--------------|--------------------------|-------|-----|------------------------------------------------------------|--------------------------|--------------------------------------------|
| Job                     | Truss                         |                 | Truss Type   |                          | Qty   | Ply | Roof - Osage Lot 77                                        |                          | DR PLAN REVIEW<br>ENT SERVICES<br>61779271 |
| P230812                 | B2                            |                 | Roof Special |                          | 2     | 1   | Job Reference (optional                                    |                          | MIT, MISSOURI                              |
| Premier Building Supply | (Springhill, KS), Spring Hill | ls, KS - 66083, |              | -                        |       | -   | 30 2023 MiTek Industries, Inc.<br>IsB70Hq3NSgPqnL8w3uITXb0 |                          | 5/2023                                     |
|                         | -0-10-8                       |                 |              |                          |       |     |                                                            |                          |                                            |
|                         | 0-10-8                        | 7-0-0           |              | <u>13-4-12</u><br>6-4-12 |       |     | 20-0-0<br>6-7-4                                            | <u>25-11-8</u><br>5-11-8 |                                            |
| T                       |                               |                 | 6x6 <b>=</b> |                          | 1.5x4 | 11  | 8x10:<br>1.                                                |                          | 3x4 II<br>6                                |
| +                       |                               | 12<br>4<br>12   | • 3<br>•     |                          | 4 1   | 3   |                                                            |                          | 4-9-13                                     |
| - 0                     | 4x4 =                         |                 | 11           |                          | 10 9  |     | 8                                                          |                          | 4x6 =                                      |
|                         | 4x4 =                         |                 | 1.5x4 u      |                          | 3x8=  |     | 1.5x4 I                                                    | I                        | 4X0 =                                      |



#### Plate Offsets (X, Y): [5:0-4-12,Edge]

| TCLL (roof)25.0Plate Grip DOL1.15TC0.85Vert(LL)-0.248-10>999240MT20TCDL10.0Lumber DOL1.15BC0.90Vert(CT)-0.438-10>713180BCLL0.0Rep Stress IncrYESWB0.99Matrix-SHorz(CT)0.107n/an/aBCDL10.0CodeIRC2018/TPI2014Matrix-SHorz(CT)0.107n/am/aLUMBERTOP CHORD2x4 SP 1650F 1.5E *Except* 5-6:2x4 SP<br>No.2All bearings are assumed to be SP No.2 crushing<br>capacity of 565 psi.Provide mechanical connection (by others) of truss to<br>bearing plate capable of withstanding 269 lb uplift at<br>joint 7 and 283 |          |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|
| TCDL10.0Lumber DOL1.15BC0.90Vert(CT)-0.438-10>713180BCL0.00.0CodeIRC2018/TPI2014WB0.99Wert(CT)0.107n/an/aBCDL10.0CodeIRC2018/TPI2014Matrix-SWeight: 104 lbILUMBERTOP CHORD2x4 SP 1650F 1.5E *Except* 5-6:2x4 SP<br>No.2All bearings are assumed to be SP No.2 crushing<br>capacity of 565 psi.9Provide mechanical connection (by others) of truss to<br>bearing plate capable of withstanding 269 lb uplift at<br>joint 7 and 283 lb uplift at joint 2.9Provide mechanical Code sections R502.11.1 and<br>R802.10.2 and referenced standard ANSI/TPI 1.BOT CHORDRigid ceiling directly applied or<br>2-2-0 oc purlins, except end verticals, and<br>2-0-0 oc purlins (3-3-4 max.): 3-5.6This truss is designed in accordance with the 2018<br>International Residential Code sections R502.11.1 and<br>R802.10.2 and referenced standard ANSI/TPI 1.BOT CHORDRigid ceiling directly applied or 6-10-12 oc<br>bracing.75-7WEBS1 Row at midpt5-75-7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | GRIP     |
| BCLL       0.0       Rep Stress Incr       YES       WB       0.99       Horz(CT)       0.10       7       n/a       n/a         BCDL       10.0       Code       IRC2018/TPI2014       Matrix-S       Horz(CT)       0.10       7       n/a       n/a         LUMBER       TOP CHORD       2x4 SP 1650F 1.5E *Except* 5-6:2x4 SP No.2       +       All bearings are assumed to be SP No.2 crushing capacity of 565 psi.       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       - <td>197/144</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 197/144  |
| BCDL       10.0       Code       IRC2018/TPI2014       Matrix-S       Weight: 104 lb         LUMBER       TOP CHORD       2x4 SP 1650F 1.5E *Except* 5-6:2x4 SP No.2       4) All bearings are assumed to be SP No.2 crushing capacity of 565 psi.       5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 269 lb uplift at joint 7 and 283 lb uplift at joint 7.       6) This truss is designed in accordance with the 2018 lnternational Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.       7) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.         WEBS       1 Row at midpt       5-7       5.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |          |
| LUMBER       TOP CHORD       2x4 SP 1650F 1.5E *Except* 5-6:2x4 SP No.2       4) All bearings are assumed to be SP No.2 crushing capacity of 565 psi.         BOT CHORD       2x4 SP No.2       5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 269 lb uplift at joint 7 and 283 lb uplift at joint 2.         BRACING       6) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.         TOP CHORD       Structural wood sheathing directly applied or 2-2-0 oc purlins, (3-3-4 max.): 3-5.         BOT CHORD       Rigid ceiling directly applied or 6-10-12 oc bracing.         WEBS       1 Row at midpt         5-7       LOAD CASE(S) Standard                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |          |
| TOP CHORD2x4 SP 1650F 1.5E *Except* 5-6:2x4 SP<br>No.2capacity of 565 psi.BOT CHORD2x4 SP No.2Provide mechanical connection (by others) of truss to<br>bearing plate capable of withstanding 269 lb uplift at joint 7BRACING<br>TOP CHORDStructural wood sheathing directly applied or<br>2-2-0 oc purlins, except end verticals, and<br>2-0-0 oc purlins (3-3-4 max.): 3-5.6)BOT CHORDRigid ceiling directly applied or 6-10-12 oc<br>bracing.7)WEBS1 Row at midpt5-7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | FT = 20% |
| bracing. bottom chord.<br>WEBS 1 Row at midpt 5-7 LOAD CASE(S) Standard                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |          |
| REACTIONS         (size)         2=0-3-8, 7=0-3-8           Max Horiz         2=201 (LC 8)           Max Uplift         2=-283 (LC 8), 7=-269 (LC 12)           Max Grav         2=1230 (LC 1), 7=1155 (LC 1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |
| FORCES (Ib) - Maximum Compression/Maximum<br>Tension                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |          |
| TOP CHORD 1-2=0/6, 2-3=-2680/618, 3-4=-3195/757,<br>4-5=-3193/755, 5-6=-94/45, 6-7=-185/134                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |          |
| BOT CHORD 2-11=-706/2446, 10-11=-709/2439,<br>8-10=-505/2249, 7-8=-509/2243                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |          |
| WEBS 3-11=0/296, 3-10=-141/808, 4-10=-520/254,<br>5-10=-361/1005, 5-8=0/273, 5-7=-2407/542                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | app      |
| 5-10=-361/1005, 5-8=0/273, 5-7=-2407/542<br>NOTES<br>1) Wind: ASCE 7-16; Vult=115mph (3-second gust)<br>Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=35ft;<br>Ke=1.00; Cat. II: Exp C: Enclosed; MWFRS (envelope)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ISSOLA   |

- Ke=1.00; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) -0-10-8 to 4-1-8, Interior (1) 4-1-8 to 7-0-0, Exterior(2R) 7-0-0 to 14-0-14, Interior (1) 14-0-14 to 25-10-4 zone; cantilever left and right exposed ; end vertical left exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) Provide adequate drainage to prevent water ponding. This truss has been designed for a 10.0 psf bottom 3)
  - chord live load nonconcurrent with any other live loads.



November 2,2023



|                                                        |                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |               |                                                        |                                                             | RELEASE FOR CONSTRUCTION                                      |
|--------------------------------------------------------|-------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|--------------------------------------------------------|-------------------------------------------------------------|---------------------------------------------------------------|
| Job                                                    | Truss                                     | Truss Type                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Qty           | Ply                                                    | Roof - Osage Lot 77                                         | AS NOTED FOR PLAN REVIEW<br>DEVELOPMENT SERVICES<br>161779272 |
| P230812                                                | В3                                        | Roof Special                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2             | 1                                                      | Job Reference (optional                                     | I61779272<br>LEE'S SUMMIT, MISSOURI                           |
| Premier Building Supply (Sp                            | oringhill, KS), Spring Hills, KS - 66083, |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |               |                                                        | 30 2023 MiTek Industries, Inc. \<br>'0Hq3NSgPqnL8w3uITXbGKV |                                                               |
|                                                        |                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |               |                                                        |                                                             |                                                               |
|                                                        | -0-10-8 5-3-4                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 5-4-12        |                                                        | 22-0-0                                                      | 25-11-8                                                       |
|                                                        | 0-10-8 5-3-4                              | 3-8-12 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -4-12         | •                                                      | 6-7-4                                                       | 3-11-8                                                        |
| $\begin{array}{ c c c c c c c c c c c c c c c c c c c$ | 14<br>13<br>1<br>2<br>4x4=                | 4 <sup>12</sup> 6x6=<br>1.5x4<br>3<br>1.5x4<br>1.5x4<br>1.5x4<br>1.5x4<br>1.5x4<br>1.5x4<br>1.5x4<br>1.5x4<br>1.5x4<br>1.5x4<br>1.5x4<br>1.5x4<br>1.5x4<br>1.5x4<br>1.5x4<br>1.5x4<br>1.5x4<br>1.5x4<br>1.5x4<br>1.5x4<br>1.5x4<br>1.5x4<br>1.5x4<br>1.5x4<br>1.5x4<br>1.5x4<br>1.5x4<br>1.5x4<br>1.5x4<br>1.5x4<br>1.5x4<br>1.5x4<br>1.5x4<br>1.5x4<br>1.5x4<br>1.5x4<br>1.5x4<br>1.5x4<br>1.5x4<br>1.5x4<br>1.5x4<br>1.5x4<br>1.5x4<br>1.5x4<br>1.5x4<br>1.5x4<br>1.5x4<br>1.5x4<br>1.5x4<br>1.5x4<br>1.5x4<br>1.5x4<br>1.5x4<br>1.5x4<br>1.5x4<br>1.5x4<br>1.5x4<br>1.5x4<br>1.5x4<br>1.5x4<br>1.5x4<br>1.5x4<br>1.5x4<br>1.5x4<br>1.5x4<br>1.5x4<br>1.5x4<br>1.5x4<br>1.5x4<br>1.5x4<br>1.5x4<br>1.5x4<br>1.5x4<br>1.5x4<br>1.5x4<br>1.5x4<br>1.5x4<br>1.5x4<br>1.5x4<br>1.5x4<br>1.5x4<br>1.5x4<br>1.5x4<br>1.5x4<br>1.5x4<br>1.5x4<br>1.5x4<br>1.5x4<br>1.5x4<br>1.5x4<br>1.5x4<br>1.5x4<br>1.5x4<br>1.5x4<br>1.5x4<br>1.5x4<br>1.5x4<br>1.5x4<br>1.5x4<br>1.5x4<br>1.5x4<br>1.5x4<br>1.5x4<br>1.5x4<br>1.5x4<br>1.5x4<br>1.5x4<br>1.5x4<br>1.5x4<br>1.5x4<br>1.5x4<br>1.5x4<br>1.5x4<br>1.5x4<br>1.5x4<br>1.5x4<br>1.5x4<br>1.5x4<br>1.5x4<br>1.5x4<br>1.5x4<br>1.5x4<br>1.5x4<br>1.5x4<br>1.5x4<br>1.5x4<br>1.5x4<br>1.5x4<br>1.5x4<br>1.5x4<br>1.5x4<br>1.5x4<br>1.5x4<br>1.5x4<br>1.5x4<br>1.5x4<br>1.5x4<br>1.5x4<br>1.5x4<br>1.5x4<br>1.5x4<br>1.5x4<br>1.5x4<br>1.5x4<br>1.5x4<br>1.5x4<br>1.5x4<br>1.5x4<br>1.5x4<br>1.5x4<br>1.5x4<br>1.5x4<br>1.5x4<br>1.5x4<br>1.5x4<br>1.5x4<br>1.5x4<br>1.5x4<br>1.5x4<br>1.5x4<br>1.5x4<br>1.5x4<br>1.5x4<br>1.5x4<br>1.5x4<br>1.5x4<br>1.5x4<br>1.5x4<br>1.5x4<br>1.5x4<br>1.5x4<br>1.5x4<br>1.5x4<br>1.5x4<br>1.5x4<br>1.5x4<br>1.5x4<br>1.5x4<br>1.5x4<br>1.5x4<br>1.5x4<br>1.5x4<br>1.5x4<br>1.5x4<br>1.5x4<br>1.5x4<br>1.5x4<br>1.5x4<br>1.5x4<br>1.5x4<br>1.5x4<br>1.5x4<br>1.5x4<br>1.5x4<br>1.5x4<br>1.5x4<br>1.5x4<br>1.5x4<br>1.5x4<br>1.5x4<br>1.5x4<br>1.5x4<br>1.5x4<br>1.5x4<br>1.5x4<br>1.5x4<br>1.5x4<br>1.5x4<br>1.5x4<br>1.5x4<br>1.5x4<br>1.5x4<br>1.5x4<br>1.5x4<br>1.5x4<br>1.5x4<br>1.5x4<br>1.5x4<br>1.5x4<br>1.5x4<br>1.5x4<br>1.5x4<br>1.5x4<br>1.5x4<br>1.5x4<br>1.5x4<br>1.5x4<br>1.5x4<br>1.5x4<br>1.5x4<br>1.5x4<br>1.5x4<br>1.5x4<br>1.5x4<br>1.5x4<br>1.5x4<br>1.5x4<br>1.5x4<br>1.5x4<br>1.5x4<br>1.5x4<br>1.5x4<br>1.5x4<br>1.5x4<br>1.5x4<br>1.5x4<br>1.5x4<br>1.5x4<br>1.5x4<br>1.5x4<br>1.5x4<br>1.5x4<br>1.5x4<br>1.5x4<br>1.5x4<br>1.5x4<br>1.5x4<br>1.5x4<br>1.5x4<br>1.5x4<br>1.5x4<br>1.5x4<br>1.5x4<br>1.5x4<br>1.5x4<br>1.5x4<br>1.5x4<br>1.5x4<br>1.5x4<br>1.5x4<br>1.5x4<br>1.5x4<br>1.5x4<br>1.5x4<br>1.5x4<br>1.5x4<br>1.5x4<br>1.5x4<br>1.5x4<br>1.5x4<br>1.5x4<br>1.5x4<br>1.5x4<br>1.5x4<br>1.5x4<br>1.5x4<br>1.5x4<br>1.5x4<br>1.5x4<br>1 | 1             | 1.5x4<br>5 1!<br>• • • • • • • • • • • • • • • • • • • |                                                             | 1.5x4 II<br>7<br>7<br>6<br>9<br>1.5x4 II<br>8<br>8            |
|                                                        |                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | -4-12<br>-6-0 |                                                        | <u>21-10-12</u><br>6-6-0                                    | <u>25-11-8</u><br>4-0-12                                      |

Plate Offsets (X, Y): [6:0-4-12,0-2-0]

|                                                                                                                                         | (X, 1). [0.0-4-12,0-2-0                                                                                                                                                                                                                                                                                            | ,<br>                                                                                                                                                                                                                      |                                                                                                                                                        |                                                                                                                                                                                                                                                                          | _                                                                                |                                                                                                        |                              |                            |                               |                          |                                         |                                    |
|-----------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|------------------------------|----------------------------|-------------------------------|--------------------------|-----------------------------------------|------------------------------------|
| Loading<br>TCLL (roof)<br>TCDL<br>BCLL<br>BCDL                                                                                          | (psf)<br>25.0<br>10.0<br>0.0<br>10.0                                                                                                                                                                                                                                                                               | <b>Spacing</b><br>Plate Grip DOL<br>Lumber DOL<br>Rep Stress Incr<br>Code                                                                                                                                                  | 2-0-0<br>1.15<br>1.15<br>YES<br>IRC2018/TPI2014                                                                                                        | CSI<br>TC<br>BC<br>WB<br>Matrix-S                                                                                                                                                                                                                                        | 0.88<br>0.92<br>0.51                                                             | DEFL<br>Vert(LL)<br>Vert(CT)<br>Horz(CT)                                                               | in<br>-0.19<br>-0.42<br>0.08 | (loc)<br>2-12<br>2-12<br>8 | l/defl<br>>999<br>>740<br>n/a | L/d<br>240<br>180<br>n/a | <b>PLATES</b><br>MT20<br>Weight: 109 lb | <b>GRIP</b><br>197/144<br>FT = 20% |
| LUMBER<br>TOP CHORD<br>BOT CHORD<br>WEBS<br>BRACING<br>TOP CHORD<br>BOT CHORD<br>WEBS<br>REACTIONS                                      | 2x4 SP No.2<br>2x3 SPF No.2<br>Structural wood she<br>2-10-13 oc purlins,<br>2-0-0 oc purlins (2-2<br>Rigid ceiling directly<br>bracing.<br>1 Row at midpt                                                                                                                                                         | r applied or 2-2-0 oc<br>6-8<br>8=0-3-8<br>C 8)<br>.C 8), 8=-269 (LC 12                                                                                                                                                    | capacity<br>5) Provide<br>bearing<br>joint 8 ar<br>6) This trus<br>s, and 6) This trus<br>R802.10<br>7) Graphica<br>or the or<br>bottom c<br>LOAD CASE | ngs are assumed to<br>of 565 psi.<br>mechanical connect<br>blate capable of with<br>d 283 lb uplift at join<br>s is designed in acc<br>onal Residential Coo<br>.2 and referenced si<br>al purlin representati<br>entation of the purlin<br>hord.<br><b>:(S)</b> Standard | ion (by oth<br>istanding 2<br>ordance w<br>de sections<br>andard AN<br>on does n | ers) of truss to<br>269 lb uplift at<br>ith the 2018<br>s R502.11.1 a<br>NSI/TPI 1.<br>ot depict the s | nd                           |                            |                               |                          |                                         |                                    |
| FORCES                                                                                                                                  | (lb) - Maximum Con<br>Tension                                                                                                                                                                                                                                                                                      | npression/Maximum                                                                                                                                                                                                          | ,                                                                                                                                                      |                                                                                                                                                                                                                                                                          |                                                                                  |                                                                                                        |                              |                            |                               |                          |                                         |                                    |
| TOP CHORD                                                                                                                               | 1-2=0/6, 2-3=-2632/<br>4-5=-2438/598, 5-6=<br>7-8=-110/84                                                                                                                                                                                                                                                          | =-2438/598, 6-7=-60/                                                                                                                                                                                                       |                                                                                                                                                        |                                                                                                                                                                                                                                                                          |                                                                                  |                                                                                                        |                              |                            |                               |                          |                                         |                                    |
| BOT CHORD                                                                                                                               | 2-12=-790/2418, 10<br>9-10=-290/1261, 8-9                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                            |                                                                                                                                                        |                                                                                                                                                                                                                                                                          |                                                                                  |                                                                                                        |                              |                            |                               |                          |                                         |                                    |
| WEBS                                                                                                                                    |                                                                                                                                                                                                                                                                                                                    | 2=-3/354, 4-10=-56/2<br>)=-406/1300, 6-9=0/2                                                                                                                                                                               |                                                                                                                                                        |                                                                                                                                                                                                                                                                          |                                                                                  |                                                                                                        |                              |                            |                               |                          | TATE OF M                               | AISS                               |
| Vasd=91r<br>Ke=1.00;<br>exterior zc<br>Interior (1<br>Interior (1<br>right expo<br>members<br>Lumber D<br>2) Provide a<br>3) This truss | CE 7-16; Vult=115mph<br>mph; TCDL=6.0psf; BC<br>Cat. II; Exp C; Enclose<br>one and C-C Exterior(2<br>) 4-1-8 to 9-0-0, Exterior<br>) 16-0-14 to 25-10-4 zo<br>used ; end vertical left e<br>and forces & MWFRS<br>VOL=1.60 plate grip DC<br>dequate drainage to pr<br>has been designed fo<br>load nonconcurrent w | SDL=6.0psf; h=35ft;<br>cd; MWFRS (envelop<br>2E) -0-10-8 to 4-1-8,<br>or(2R) 9-0-0 to 16-0-<br>one; cantilever left ar<br>exposed;C-C for<br>for reactions shown<br>DL=1.60<br>revent water ponding<br>r a 10.0 psf bottom | -14,<br>nd<br>;<br>g.                                                                                                                                  |                                                                                                                                                                                                                                                                          |                                                                                  |                                                                                                        |                              |                            | •                             | K                        | FOI                                     | HIEL<br>BER<br>042259              |





| Job       Truss       Truss Type       Qty       Ply       Roof - Osage Lot 77       AS NOTED FOR PLAN REVIEW         P230812       B4       Roof Special       2       1       Job Reference (optional)       DEVELOPMENT SERVICES<br>IO1779273         Premier Building Supply (Springhill, KS), Spring Hills, KS - 66083,<br>ID:tl3b14lEKQIZx3k9ZfyTGvzxFeN-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKW       Ved Nov ¶       Ply and Plan Review |                              |                               |              |                                  |               |                                | RELEASE FOR CONSTRUCTION   |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|-------------------------------|--------------|----------------------------------|---------------|--------------------------------|----------------------------|
| P230812     B4     Roof Special     2     1     Job Reference (optional)     LEE'S SUMMIT, MISSOURI                                                                                                                                                                                                                                                                                                                                     | Job                          | Truss                         | Truss Type   | Qty                              | Ply           | Roof - Osage Lot 77            |                            |
| Premier Building Supply (Springhill, KS), Spring Hills, KS - 66083,<br>ID:tl3b14lEKQIZx3k9ZfyTGvzxFeN-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKW_CDoi7J4zUC++                                                                                                                                                                                                                                                                                       | P230812                      | B4                            | Roof Special | 2                                | 1             | Job Reference (optional        |                            |
| ID:ti3014IEKQI2X3K92ty1GV2XFen-RtC (PSB/UHq3N5gPqnL8W3UI1XbGKW CD0I/142UCH-                                                                                                                                                                                                                                                                                                                                                             | Premier Building Supply (Spr | inghill, KS), Spring Hills, K | S - 66083,   | Run: 8.63 S Aug 30 2023 Print: 8 | 8.630 S Aug 3 | 30 2023 MiTek Industries, Inc. | Ved Nov 1 1433/27)6/299:23 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                         |                              |                               |              | ID:1130141EKQIZX3K9ZIY1GVZXF6    | IN-RIC (PSB/  | rungsinsgegnLawsun AbGKW       | CD0173423CH                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                         |                              |                               |              |                                  |               |                                |                            |



| Loading<br>TCLL (roof)                                      | (psf)<br>25.0                                                           | Spacing<br>Plate Grip DOL               | 2-0-0<br>1.15          |                                                                   | CSI<br>TC                                                                                                       | 0.74                                                   | DEFL<br>Vert(LL)                             | in<br>-0.16 | (loc)<br>8-9 | l/defl<br>>999 | L/d<br>240 | PLATES<br>MT20 | <b>GRIP</b><br>197/144 |
|-------------------------------------------------------------|-------------------------------------------------------------------------|-----------------------------------------|------------------------|-------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|--------------------------------------------------------|----------------------------------------------|-------------|--------------|----------------|------------|----------------|------------------------|
| TCDL                                                        | 10.0                                                                    | Lumber DOL                              | 1.15                   |                                                                   | BC                                                                                                              | 0.82                                                   | Vert(CT)                                     | -0.35       | 8-9          | >889           | 180        |                |                        |
| BCLL                                                        | 0.0                                                                     | Rep Stress Incr                         | YES                    |                                                                   | WB                                                                                                              | 0.55                                                   | Horz(CT)                                     | 0.07        | 8            | n/a            | n/a        |                |                        |
| BCDL                                                        | 10.0                                                                    | Code                                    | IRC2018                | 3/TPI2014                                                         | Matrix-S                                                                                                        |                                                        |                                              |             |              |                |            | Weight: 110 lb | FT = 20%               |
| UMBER<br>OP CHORD<br>OT CHORD<br>/EBS<br>RACING<br>OP CHORD | 2x4 SP No.2<br>2x4 SP No.2<br>2x3 SPF No.2<br>Structural wood she       | athing directly applied                 | 5)<br>6)               | bearing plate<br>joint 8 and 28<br>This truss is<br>International | hanical connect<br>capable of with<br>33 lb uplift at joud<br>designed in act<br>Residential Cond<br>referenced | thstanding 2<br>bint 2.<br>cordance wi<br>ode sections | 69 lb uplift a<br>th the 2018<br>R502.11.1 a | t           |              |                |            |                |                        |
| OF CHORD                                                    | 2-3-3 oc purlins, ex<br>2-0-0 oc purlins (3-4<br>Rigid ceiling directly | cept end verticals, a -9 max.): 4-6.    | nd <sup>7)</sup><br>oc | Graphical pu<br>or the orienta<br>bottom choro<br>DAD CASE(S)     | ation of the pur<br>I.                                                                                          |                                                        |                                              | size        |              |                |            |                |                        |
| EACTIONS                                                    | bracing.<br>(size) 2=0-3-8, 8                                           | 3=0-3-8                                 |                        | //D 0//02(0)                                                      | otandara                                                                                                        |                                                        |                                              |             |              |                |            |                |                        |
|                                                             | Max Horiz 2=201 (LC                                                     |                                         |                        |                                                                   |                                                                                                                 |                                                        |                                              |             |              |                |            |                |                        |
|                                                             | Max Uplift 2=-283 (L                                                    | C 8), 8=-269 (LC 12                     | <u>?</u> )             |                                                                   |                                                                                                                 |                                                        |                                              |             |              |                |            |                |                        |
|                                                             | Max Grav 2=1230 (L                                                      | _C 1), 8=1155 (LC 1                     | )                      |                                                                   |                                                                                                                 |                                                        |                                              |             |              |                |            |                |                        |
| ORCES                                                       | (lb) - Maximum Com                                                      | pression/Maximum                        |                        |                                                                   |                                                                                                                 |                                                        |                                              |             |              |                |            |                |                        |
| OP CHORD                                                    | Tension<br>1-2=0/6, 2-3=-2688/<br>4-5=-1853/457, 5-6=<br>7-8=-13/24     | , , , , , , , , , , , , , , , , , , , , |                        |                                                                   |                                                                                                                 |                                                        |                                              |             |              |                |            |                |                        |
| BOT CHORD                                                   | 2-12=-731/2454, 11-<br>9-11=-539/1935, 8-9                              | ,                                       |                        |                                                                   |                                                                                                                 |                                                        |                                              |             |              |                |            |                |                        |
| VEBS                                                        | 3-12=0/231, 3-11=-5<br>4-9=-97/107, 5-9=-5<br>6-8=-1189/347             | 63/222, 4-11=-37/3                      |                        |                                                                   |                                                                                                                 |                                                        |                                              |             |              |                |            |                |                        |
|                                                             | E 7-16; Vult=115mph                                                     |                                         |                        |                                                                   |                                                                                                                 |                                                        |                                              |             |              |                |            | G OF M         | AISSO                  |

- 1) Wind: ASCE 7-16; Vull=115hiph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=35ft; Ke=1.00; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) -0-10-8 to 4-1-8, Interior (1) 4-1-8 to 11-0-0, Exterior(2R) 11-0-0 to 18-0-14, Interior (1) 18-0-14 to 25-10-4 zone; cantilever left and right exposed; end vertical left exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- Provide adequate drainage to prevent water ponding.
   This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- All bearings are assumed to be SP No.2 crushing capacity of 565 psi.



16023 Swingley Ridge Rd. Chesterfield, MO 63017 314.434.1200/ MITek-US.com

|                                            |                              |                    |                                                                                             |       |     |                                                          | RELEASE FOR | CONSTRUCTION                            |
|--------------------------------------------|------------------------------|--------------------|---------------------------------------------------------------------------------------------|-------|-----|----------------------------------------------------------|-------------|-----------------------------------------|
| Job                                        | Truss                        | Truss              | Туре                                                                                        | Qty   | Ply | Roof - Osage Lot 77                                      |             | R PLAN REVIEW<br>NT SERVICES<br>1779274 |
| P230812                                    | B5                           | Half H             | lip                                                                                         | 2     | 1   | Job Reference (optional                                  |             | 1779274<br>IT, MISSOURI                 |
| Premier Building Supply                    | y (Springhill, KS), Spring H | lills, KS - 66083, |                                                                                             |       |     | 0 2023 MiTek Industries, Inc.<br>70Hq3NSgPqnL8w3uITXbGKV |             | /2023                                   |
|                                            |                              |                    |                                                                                             |       |     |                                                          |             |                                         |
|                                            | -0-10-8                      | 6-8-10             | 13-0-0                                                                                      |       |     | 0-1-2                                                    | 25-11-8     |                                         |
|                                            | 0-10-8                       | 6-8-10             | 6-3-6                                                                                       | I     | -   | 7-1-2                                                    | 5-10-6      | ļ                                       |
|                                            |                              |                    |                                                                                             | 6x6 = |     | 3x4=                                                     |             | 1.5x4 <b>u</b>                          |
| 4-11-3<br>4-8-7<br>4-8-7<br>4-8-7<br>0-1-9 |                              | 1                  | 12<br>4<br>1.5x4<br>2<br>3<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5 | 4     |     |                                                          |             | 4-8-7                                   |
|                                            |                              |                    |                                                                                             | [¢    |     |                                                          |             | 7                                       |
| •                                          |                              |                    | 10                                                                                          | g     | )   | 8                                                        |             | <u> </u>                                |



| <b>Loading</b><br>TCLL (roof)<br>TCDL<br>BCLL<br>BCDL | (psf)<br>25.0<br>10.0<br>0.0<br>10.0                                                | <b>Spacing</b><br>Plate Grip DOL<br>Lumber DOL<br>Rep Stress Incr<br>Code                       | 2-0-0<br>1.15<br>1.15<br>YES<br>IRC201 | 8/TPI2014                                                                                                                         | CSI<br>TC<br>BC<br>WB<br>Matrix-S                                                                                                                                                      | 0.79<br>0.95<br>0.77                                                                   | DEFL<br>Vert(LL)<br>Vert(CT)<br>Horz(CT)                                       | in<br>-0.24<br>-0.50<br>0.07 | (loc)<br>7-8<br>7-8<br>7 | l/defl<br>>999<br>>619<br>n/a | L/d<br>240<br>180<br>n/a | PLATES<br>MT20<br>Weight: 105 lb | <b>GRIP</b><br>197/144<br>FT = 20% |  |
|-------------------------------------------------------|-------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|----------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|------------------------------|--------------------------|-------------------------------|--------------------------|----------------------------------|------------------------------------|--|
|                                                       | 2-2-0 oc purlins, ex<br>2-0-0 oc purlins (3-2<br>Rigid ceiling directly<br>bracing. | r applied or 2-2-0 oc<br>5-7<br>7=0-3-8<br>C 8)<br>.C 8), 7=-268 (LC 8)<br>LC 1), 7=1155 (LC 1) | nd<br>8)<br>L(                         | capacity of 5<br>Provide mec<br>bearing plate<br>joint 7 and 20<br>This truss is<br>International<br>R802.10.2 an<br>Graphical pu | hanical connection<br>a capable of withs<br>84 Ib uplift at joinin<br>designed in accoor<br>Residential Code<br>and referenced sta<br>rifn representation<br>ation of the purlin<br>d. | on (by oth<br>standing 2<br>t 2.<br>ordance w<br>e sections<br>andard AN<br>on does no | ers) of truss<br>68 lb uplift a<br>18502.11.1 a<br>ISI/TPI 1.<br>10 depict the | t<br>and                     |                          |                               |                          |                                  |                                    |  |
| TOP CHORD                                             |                                                                                     | /658, 3-4=-2325/577,<br>=-23/0, 6-7=-153/100<br>10=-484/1684                                    |                                        |                                                                                                                                   |                                                                                                                                                                                        |                                                                                        |                                                                                |                              |                          |                               |                          |                                  |                                    |  |
| WEBS                                                  | 7-8=-362/1220<br>3-10=-407/271, 4-10                                                |                                                                                                 | 60                                     |                                                                                                                                   |                                                                                                                                                                                        |                                                                                        |                                                                                |                              |                          |                               |                          |                                  |                                    |  |
| NOTES<br>1) Unbalance                                 | ed roof live loads have                                                             | been considered for                                                                             |                                        |                                                                                                                                   |                                                                                                                                                                                        |                                                                                        |                                                                                |                              |                          |                               |                          | STIT                             | TOP                                |  |

 Unbalanced roof live loads have been considered for this design.

4x4 =

- 2) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=35ft; Ke=1.00; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) -0-10-8 to 4-1-8, Interior (1) 4-1-8 to 13-0-0, Exterior(2R) 13-0-0 to 20-1-2, Interior (1) 20-1-2 to 25-10-4 zone; cantilever left and right exposed ; end vertical left exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Provide adequate drainage to prevent water ponding.
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.



3x6 =

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSITPTI Quality Criteria**, and **DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcscomponents.com) November 2,2023



|                                                        |                                        |                                                                                          |                       |      |                                                            | RELEASE FOR CONSTRUCTION                                                                                                              |
|--------------------------------------------------------|----------------------------------------|------------------------------------------------------------------------------------------|-----------------------|------|------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|
| Job                                                    | Truss                                  | Truss Type                                                                               | Qty                   | Ply  | Roof - Osage Lot 77                                        | AS NOTED FOR PLAN REVIEW<br>DEVELOPMENT SERVICES<br>161779275                                                                         |
| P230812                                                | B6                                     | Half Hip                                                                                 | 2                     | 1    | Job Reference (optional                                    | LEE'S SUMMIT, MISSOURI                                                                                                                |
| Premier Building Supply (Spr                           | inghill, KS), Spring Hills, KS - 66083 |                                                                                          |                       |      | 0 2023 MiTek Industries, Inc. \<br>'0Hq3NSgPqnL8w3uITXbGKV |                                                                                                                                       |
|                                                        | -0-10-8 7<br>0-10-8 7                  | 3-9 15-<br>3-9 7-3                                                                       |                       |      | 20-7-11<br>5-7-11                                          | <u>25-11-8</u><br>5-3-13                                                                                                              |
|                                                        |                                        |                                                                                          |                       | 6x6= | 3:                                                         | x4= 1.5x4 u                                                                                                                           |
| $\begin{array}{ c c c c c c c c c c c c c c c c c c c$ | 1<br>1<br>2<br>4x4=                    | 4 <sup>12</sup> 4x4 =<br>1.5x4 &<br>313 4<br>2<br>4<br>1.5x4 &<br>1.5x4 &<br>11<br>3x4 = |                       |      | 9<br>3x4=                                                  | 14<br>7<br>14<br>7<br>14<br>7<br>14<br>7<br>14<br>7<br>14<br>7<br>14<br>7<br>14<br>14<br>14<br>14<br>14<br>14<br>14<br>14<br>14<br>14 |
|                                                        |                                        | 10-0-1<br>10-0-1                                                                         | <u>17-9</u> -<br>7-9- |      |                                                            | 25-11-8<br>8-1-10                                                                                                                     |

Plate Offsets (X, Y): [4:0-2-0,Edge]

members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 3) Provide adequate drainage to prevent water ponding.

| Plate Olisets                                                                                                         | (A, f). [4.0-2-0,Euge]                                                                                                                                                                                                               |                                                                                                                                                                          |                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                       |                                                                                                                                                   |                              |                            |                               |                          |                                  |                                    |
|-----------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|----------------------------|-------------------------------|--------------------------|----------------------------------|------------------------------------|
| Loading<br>TCLL (roof)<br>TCDL<br>BCLL<br>BCDL                                                                        | (psf)<br>25.0<br>10.0<br>0.0<br>10.0                                                                                                                                                                                                 | Spacing<br>Plate Grip DOL<br>Lumber DOL<br>Rep Stress Incr<br>Code                                                                                                       | 2-0-0<br>1.15<br>1.15<br>YES<br>IRC2018/TPI:                                                                                                                                                                                    | 2014 CSI<br>TC<br>BC<br>WB<br>Matrix-                                                                                                                                                                                                                                                                | 0.91<br>0.73<br>0.68<br>S                                                                                                                                                                                                             | DEFL<br>Vert(LL)<br>Vert(CT)<br>Horz(CT)                                                                                                          | in<br>-0.27<br>-0.59<br>0.07 | (loc)<br>2-11<br>2-11<br>8 | l/defl<br>>999<br>>525<br>n/a | L/d<br>240<br>180<br>n/a | PLATES<br>MT20<br>Weight: 107 lb | <b>GRIP</b><br>244/190<br>FT = 20% |
| LUMBER<br>TOP CHORD<br>BOT CHORD<br>WEBS<br>BRACING<br>TOP CHORD<br>BOT CHORD<br>WEBS<br>REACTIONS                    | 1.5E<br>2x4 SP No.2 *Excep<br>1.5E<br>2x3 SPF No.2<br>Structural wood she<br>except end verticals<br>(4-10-0 max.): 5-7.<br>Rigid ceiling directly<br>bracing.<br>1 Row at midpt                                                     | et* 10-2:2x4 SP 1650<br>eathing directly applie<br>, and 2-0-0 oc purlin<br>applied or 8-1-8 oc<br>6-8<br>8=0-3-8<br>C 8), 8=-273 (LC 8)                                 | <ul> <li>cho</li> <li>5) Bez</li> <li>5) Bez</li> <li>cap</li> <li>cap</li> <li>6) Pro</li> <li>bez</li> <li>join</li> <li>s</li> <li>7) This</li> <li>Inte</li> <li>R80</li> <li>8) Grz</li> <li>or t</li> <li>bott</li> </ul> | truss has been d<br>id live load nonco<br>rings are assume<br>shing capacity of 5<br>acity of 565 psi.<br>vide mechanical c<br>ring plate capable<br>and 279 lb upli<br>truss is designed<br>2.10.2 and refere<br>phical purlin repre-<br>te orientation of th<br>om chord.<br><b>CASE(S)</b> Standa | ncurrent with any<br>d to be: Joint 2 S<br>(65 psi, Joint 8 SF<br>onnection (by oth<br>of withstanding 2<br>ft at joint 2.<br>l in accordance w<br>tial Code sections<br>need standard At<br>sentation does n<br>lee purlin along the | other live loa<br>P 1650F 1.5E<br>No.2 crushi<br>ers) of truss<br>73 lb uplift a<br>ith the 2018<br>\$ R502.11.1 a<br>JSI/TPI 1.<br>ot depict the | ads.<br>E<br>ing<br>to<br>at |                            |                               |                          |                                  |                                    |
| FORCES                                                                                                                | (lb) - Maximum Com<br>Tension                                                                                                                                                                                                        |                                                                                                                                                                          | ,<br>,                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                       |                                                                                                                                                   |                              |                            |                               |                          |                                  |                                    |
| TOP CHORD                                                                                                             |                                                                                                                                                                                                                                      |                                                                                                                                                                          |                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                       |                                                                                                                                                   |                              |                            |                               |                          |                                  |                                    |
| BOT CHORD                                                                                                             |                                                                                                                                                                                                                                      |                                                                                                                                                                          |                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                       |                                                                                                                                                   |                              |                            |                               |                          |                                  |                                    |
| WEBS                                                                                                                  | 3-11=-523/315, 5-11<br>5-9=-380/192, 6-9=-                                                                                                                                                                                           | ,                                                                                                                                                                        | 114                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                       |                                                                                                                                                   |                              |                            |                               |                          | TATE OF I                        | MISS                               |
| NOTES                                                                                                                 |                                                                                                                                                                                                                                      |                                                                                                                                                                          |                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                       |                                                                                                                                                   |                              |                            |                               | 1                        | 950                              |                                    |
| 1) Unbalanc<br>this desig                                                                                             | ed roof live loads have                                                                                                                                                                                                              | been considered for                                                                                                                                                      | r                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                       |                                                                                                                                                   |                              |                            |                               | A                        |                                  |                                    |
| 2) Wind: AS<br>Vasd=91r<br>Ke=1.00;<br>exterior zr<br>Interior 1<br>22-0-14, I<br>left and rig<br>members<br>Lumber D | CE 7-16; Vult=115mph<br>mph; TCDL=6.0psf; BC<br>Cat. II; Exp C; Enclose<br>one and C-C Exterior(2)<br>4-1-8 to 15-0-0, Exter<br>Interior (1) 22-0-14 to 2<br>ght exposed ; end verti<br>and forces & MWFRS<br>DOL=1.60 plate grip DC | DL=6.0psf; h=35ft;<br>bd; MWFRS (envelop<br>E) -0-10-8 to 4-1-8,<br>rior(2R) 15-0-0 to<br>5-10-4 zone; cantile<br>cal left exposed;C-C<br>for reactions shown<br>DL=1.60 | ver<br>for                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                       |                                                                                                                                                   |                              |                            |                               | Physics                  | PE-2022                          | 042259                             |

SSIONAL EN

November 2,2023

MiTek<sup>®</sup> 16023 Swingley Ridge Rd. Chesterfield, MO 63017 314.434.1200 / MiTek-US.com





| BCDL      | 10.0                                                                                                   | Code                                                                 | IRC2018            | /TPI2014                                                                                                                                                                    | Matrix-S                                                                                                                                                                                                                               |                                                                                                                                                   |
|-----------|--------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|--------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|
|           | 2-11-1 oc purlins, ex<br>2-0-0 oc purlins (5-1<br>Rigid ceiling directly<br>bracing.<br>1 Row at midpt | applied or 2-2-0 oc<br>7-9<br>9=0-5-8<br>2 8)<br>C 8), 9=-280 (LC 8) | ind 7)<br>8)<br>LO | chord live loa<br>All bearings a<br>capacity of 56<br>Provide mech<br>bearing plate<br>joint 9 and 27<br>This truss is of<br>International<br>R802.10.2 ar<br>Graphical put | nanical connection (by oth<br>capable of withstanding 2<br>3 lb uplift at joint 2.<br>designed in accordance w<br>Residential Code sections<br>d referenced standard AP<br>flin representation does no<br>tion of the purlin along the | other live loads.<br>.2 crushing<br>hers) of truss to<br>280 lb uplift at<br>with the 2018<br>s R502.11.1 and<br>NSI/TPI 1.<br>ot depict the size |
| FORCES    | (lb) - Maximum Com<br>Tension                                                                          | pression/Maximum                                                     |                    |                                                                                                                                                                             |                                                                                                                                                                                                                                        |                                                                                                                                                   |
| TOP CHORD | 1-2=0/6, 2-3=-2645/6                                                                                   | 607, 3-5=-2228/477,<br>-1197/340, 7-8=-14/0                          | ),                 |                                                                                                                                                                             |                                                                                                                                                                                                                                        |                                                                                                                                                   |
| BOT CHORD | 2-12=-776/2436, 10-<br>9-10=-247/749                                                                   | 12=-554/1761,                                                        |                    |                                                                                                                                                                             |                                                                                                                                                                                                                                        |                                                                                                                                                   |
| WEBS      | 3-12=-455/269, 5-12<br>5-10=-777/298, 6-10<br>7-9=-1202/404                                            | =-43/495,<br>=0/199, 7-10=-149/72                                    | 24,                |                                                                                                                                                                             |                                                                                                                                                                                                                                        |                                                                                                                                                   |
| NOTES     |                                                                                                        |                                                                      |                    |                                                                                                                                                                             |                                                                                                                                                                                                                                        |                                                                                                                                                   |

- 1) Unbalanced roof live loads have been considered for this design.
- Wind: ASCE 7-16; Vult=115mph (3-second gust) 2) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=35ft; Ke=1.00; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) -0-10-8 to 4-1-8, Interior (1) 4-1-8 to 17-0-0, Exterior(2R) 17-0-0 to 24-0-14, Interior (1) 24-0-14 to 25-10-4 zone; cantilever left and right exposed ; end vertical left exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Provide adequate drainage to prevent water ponding.



 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.
 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not beigh valid for use only with with with sets outputs into design is based only door parameters shown, and is for an individual dualing component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria**, and **DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcscomponents.com)

16023 Swingley Ridge Rd. Chesterfield MO 63017 314.434.1200 / MiTek-US.com



WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPH Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbsccomponents.com)

16023 Swingley Ridge Rd. Chesterfield, MO 63017 314.434.1200 / MITek-US.com

|                 |                            |                               |                    |                                              |              |                      |               |            |             |            | RELEAS            | E FOR CONSTRUCTION                                  |
|-----------------|----------------------------|-------------------------------|--------------------|----------------------------------------------|--------------|----------------------|---------------|------------|-------------|------------|-------------------|-----------------------------------------------------|
| Job             | Truss                      |                               | Truss Type         |                                              | Qty          | Ply                  | R             | oof - Osa  | age Lot 7   | 77         |                   |                                                     |
| P230812         | В9                         |                               | Half Hip           |                                              | 2            | 1                    |               | ob Refere  | ance (on    | tional     |                   | LOPMENT SERVICES<br>161779278<br>S SUMMIT, MISSOURI |
|                 | Supply (Springhill, KS), S | pring Hills, KS - 66083,      |                    | Run: 8.63 S Au                               | g 30 2023    | Print: 8.630 S       |               |            |             |            |                   |                                                     |
|                 |                            |                               |                    | ID:LICGyswr50                                | sBB2j9cau    | NtzxFdZ-RfC          | ?PsB70H       | q3NSgPqn   | L8w3uIT     | XbGKV      | rCDoi7J42JC91     | 00/2023                                             |
|                 | -0-10-                     | <sup>8</sup> 6-3-13           | 1                  | 12-6-11                                      | I            |                      | 21-           | 0-0        |             |            | 25-11             | -8                                                  |
|                 | 0-10-                      | 3 6-3-13                      | I                  | 6-2-14                                       | ſ            |                      | 8-5           | 5-5        |             | 1          | 4-11-             | 8                                                   |
|                 |                            |                               |                    |                                              |              |                      |               |            |             | 6          | ×6 =              | 1.5x4 <b>n</b>                                      |
| - °             | 0-1-9                      |                               |                    |                                              |              |                      |               |            | 0-1-9<br>H  | 5          | . 🖂               | 6                                                   |
| - <u></u>       | <b>o</b>                   |                               |                    |                                              |              |                      |               | _          | 6           | -1         |                   |                                                     |
|                 |                            |                               |                    |                                              | 5x8 =        |                      |               | $\bigcirc$ |             |            |                   |                                                     |
|                 |                            |                               |                    | 1 <u>2</u><br>4 Г                            | 4            | 12                   |               |            | 1           | //         |                   |                                                     |
|                 |                            |                               |                    |                                              | - TH         |                      |               |            |             |            |                   |                                                     |
| 7-7-3           | 1-4-1                      |                               | 1.5x4 👟            |                                              | $\neg$       | $\sim$               |               |            |             |            | $\langle \rangle$ | 7-4-7                                               |
|                 |                            |                               | 3                  |                                              |              |                      |               | /          | //          |            |                   | ×    ×                                              |
|                 |                            | 1                             | 1                  | //                                           | /            |                      |               |            | /           |            | ·                 |                                                     |
|                 |                            |                               |                    | _ //                                         |              |                      |               |            |             |            |                   |                                                     |
|                 | o 1 <sup>2</sup>           |                               |                    |                                              |              |                      |               |            |             |            |                   |                                                     |
| $\perp$ $\perp$ |                            |                               |                    |                                              |              | ¢                    |               | Ŧ          |             |            |                   | ₩ 7 ⊥                                               |
|                 |                            | ͡3<br>4x4 =                   |                    | 10                                           |              | 9                    |               | 8          |             |            |                   | ⊠<br>5x5 <b>=</b>                                   |
|                 |                            |                               |                    | 3x4 =                                        |              | 3x4 =                |               | 4x4 =      |             |            |                   | 0.00 -                                              |
|                 | 1                          |                               | 9-8-2              |                                              |              | 11-6                 |               | 1          |             |            | 5-11-8            |                                                     |
| Scale = 1:52.7  | ľ                          |                               | 9-8-2              | I                                            | 7.           | 3-5                  |               | 1          |             | ę          | 9-0-2             | I                                                   |
|                 | , Y): [4:0-4-0,0-3-0]      |                               |                    |                                              |              |                      |               |            |             |            |                   |                                                     |
| Loading         | (psf)                      | Spacing                       | 2-0-0              | CSI                                          |              | DEFL                 | in            | (loc)      | l/defl      | L/d        | PLATES            | GRIP                                                |
| TCLL (roof)     | 25.0                       | Plate Grip DOL                | 1.15               | TC                                           | 0.87         | Vert(LL)             | -0.24         | 2-10       | >999        | 240        | MT20              | 197/144                                             |
| TCDL<br>BCLL    | 10.0<br>0.0                | Lumber DOL<br>Rep Stress Incr | 1.15<br>YES        | BC<br>WB                                     | 0.76<br>0.91 | Vert(CT)<br>Horz(CT) | -0.53<br>0.06 |            | >579<br>n/a | 180<br>n/a |                   |                                                     |
| BCDL            | 10.0                       | Code                          | IRC2018/TPI2014    | Matrix-S                                     | 0.01         | 1012(01)             | 0.00          | •          |             |            | Weight: 117 lb    | FT = 20%                                            |
| LUMBER          |                            |                               | 4) This truss I    | nas been designed                            | for a 10.0   | psf bottom           |               |            |             |            |                   |                                                     |
|                 | 2x4 SP No.2 *Excep         | t* 4-5:2x4 SP 1650F           |                    | oad nonconcurrent                            |              |                      |               |            |             |            |                   |                                                     |
|                 | 1.5E<br>2x4 SP No.2 *Excep | t* 9-2:2x4 SP 1650F           | crushing ca        | re assumed to be: .<br>apacity of 565 psi, J |              |                      |               |            |             |            |                   |                                                     |
|                 | 1.5E<br>2x3 SPF No.2 *Exce |                               | capacity of        | 565 psi.<br>echanical connectio              | n (by oth    | ers) of trues        | to            |            |             |            |                   |                                                     |
| BRACING         | 2AD OFF NU.Z EXCE          | pt 1-0.234 OF 110.2           | bearing pla        | te capable of withs                          | tanding 2    |                      |               |            |             |            |                   |                                                     |
| TOP CHORD       | Structural wood she        |                               |                    | 258 lb uplift at joint<br>s designed in acco |              | th the 2018          |               |            |             |            |                   |                                                     |
|                 | 2-2-0 oc purlins, ex       | cept end verticals, ar        | nd () Inis Iruss I | s designed in accor                          |              |                      |               |            |             |            |                   |                                                     |

- International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- Graphical purlin representation does not depict the size 8) or the orientation of the purlin along the top and/or bottom chord. LOAD CASE(S) Standard

#### 7-8=-232/648 3-10=-405/242, 4-10=-36/490, 4-8=-933/348, 5-8=-162/955, 5-7=-1140/415 Unbalanced roof live loads have been considered for

2) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=35ft; Ke=1.00; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) -0-10-8 to 4-1-8, Interior (1) 4-1-8 to 21-0-0, Exterior(2E) 21-0-0 to 25-10-4 zone; cantilever left and right exposed ; end vertical left exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

2-0-0 oc purlins (6-0-0 max.): 5-6.

Rigid ceiling directly applied or 7-9-1 oc

2=0-3-8, 7=0-5-8

Max Uplift 2=-258 (LC 8), 7=-294 (LC 8) Max Grav 2=1230 (LC 1), 7=1155 (LC 1)

(lb) - Maximum Compression/Maximum

1-2=0/6, 2-3=-2595/508, 3-5=-2214/409,

2-10=-732/2384, 8-10=-558/1780,

5-7

BOT CHORD

REACTIONS (size)

WFBS

FORCES

WEBS

NOTES 1)

TOP CHORD

BOT CHORD

this design.

bracing.

Tension

1 Row at midpt

Max Horiz 2=314 (LC 8)

5-6=-10/1, 6-7=-158/86

3) Provide adequate drainage to prevent water ponding.



#### **[ek** 16023 Swingley Ridge Rd. Chesterfield MO 63017 314.434.1200 / MiTek-US.com

|                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                          |                                                                                                       |                 |                                               | RELEASE FOR CONSTRUCTION                                                                     |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|-----------------|-----------------------------------------------|----------------------------------------------------------------------------------------------|
| Job                                                                                                                                                                                       | Trus                                                                                                                                                                                                                                                                                                                                                                | SS                                                                                                                                                                                                                                                                                                                                                                                                                                                | Truss Type                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                   | Qty F                                                                                                                                                    | Ply                                                                                                   | Roof - Osag     | e Lot 77                                      | AS NOTED FOR PLAN REVIEW                                                                     |
| P230812                                                                                                                                                                                   | B10                                                                                                                                                                                                                                                                                                                                                                 | )                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Half Hip                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                   | 2 1                                                                                                                                                      | 1                                                                                                     | Job Referen     | ce (ontional                                  | DEVELOPMENT SERVICES<br>161779279<br>LEE'S SUMMIT, MISSOURI                                  |
| Premier Building                                                                                                                                                                          | Supply (Springhill, KS                                                                                                                                                                                                                                                                                                                                              | ), Spring Hills, KS - 66083,                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                            | Run: 8.63 S Aug 30 2                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                          |                                                                                                       | 0 2023 MiTek In | dustries, Inc.                                | Ved Nov 1 1432 6/29 23                                                                       |
|                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                            | ID:LICGyswr5OsBB2j                                                                                                                                                                                                                                                                                                                                                | 9caufNtzxFdZ-l                                                                                                                                           | RfC?PsB7                                                                                              | 0Hq3NSgPqnL8    | 3w3ulTXbGKV                                   |                                                                                              |
|                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                   | /-7-3<br>/-7-3                                                                                                                                                                                                             | <u>14-4-14</u><br>6-9-11                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                          |                                                                                                       | 23-0-           |                                               | 25-11-8                                                                                      |
|                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                     | 0-10-8                                                                                                                                                                                                                                                                                                                                                                                                                                            | -7-3                                                                                                                                                                                                                       | 6-9-11                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                          |                                                                                                       | 0-7-2           | -                                             |                                                                                              |
|                                                                                                                                                                                           | 0 0                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                          |                                                                                                       |                 | o                                             |                                                                                              |
| 8-3-3                                                                                                                                                                                     | 0-6-0<br>                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1.3<br>3<br>12                                                                                                                                                                                                             | 412<br>5x4                                                                                                                                                                                                                                                                                                                                                        | 3x4<br>1x4 = 5                                                                                                                                           | 13                                                                                                    | 9               | 6-1-0                                         |                                                                                              |
|                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                     | 4x4 =                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                            | 3x4=                                                                                                                                                                                                                                                                                                                                                              | 3x4 =                                                                                                                                                    |                                                                                                       | 4x4 =           |                                               | 5x5 =                                                                                        |
|                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                     | I                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 10-8-4                                                                                                                                                                                                                     | 1                                                                                                                                                                                                                                                                                                                                                                 | 18-1-                                                                                                                                                    | 9                                                                                                     | I               | 2                                             | 5-11-8                                                                                       |
| Scale = 1:55.7                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 10-8-4                                                                                                                                                                                                                     | 1                                                                                                                                                                                                                                                                                                                                                                 | 7-5-5                                                                                                                                                    |                                                                                                       |                 |                                               | 7-9-15                                                                                       |
| Loading<br>TCLL (roof)<br>TCDL<br>BCDL<br>BCDL<br>LUMBER<br>TOP CHORD<br>BOT CHORD<br>WEBS<br>BRACING<br>TOP CHORD<br>BOT CHORD<br>WEBS<br>REACTIONS                                      | No.2<br>2x4 SP No.2 *Exc<br>1.5E<br>2x3 SPF No.2 *Ex<br>Structural wood s<br>2-2-0 oc purlins,<br>2-0-0 oc purlins,<br>(Rigid ceiling direc<br>bracing,<br>1 Row at midpt<br>(size) 2=0-3-1<br>Max Horiz 2=343<br>Max Uplift 2=-250<br>Max Grav 2=1233<br>(lb) - Maximum C<br>Tension<br>1-2=0/6, 2-3=-252<br>5-6=-1119/224, 6<br>2-11=-697/2314, 1<br>8-9=-141/388 | Plate Grip DOL<br>Lumber DOL<br>Rep Stress Incr<br>Code<br>5E *Except* 6-7:2x4 SP<br>sept* 10-2:2x4 SP 1650<br>except* 9-6:2x4 SP No.2<br>heathing directly applie<br>except end verticals, ar<br>6-0-0 max.): 6-7.<br>ttly applied or 8-5-0 oc<br>7-8, 6-8<br>8, 8=0-3-8<br>(LC 8), 8=-302 (LC 8)<br>0 (LC 1), 8=1155 (LC 1)<br>ompression/Maximum<br>24/459, 3-5=-2114/348,<br>-7=-6/1, 7-8=-81/28<br>9-11=-474/1547,<br>-11=-76/654, 5-9=-972/ | chord live I<br>5) Bearings a<br>crushing ca<br>capacity of<br>6) Provide me<br>bearing pla<br>joint 8 and<br>d 7) This truss i<br>Internation<br>R802.10.2<br>8) Graphical p<br>or the orier<br>bottom cho<br>LOAD CASE(S | BC 0<br>WB 0<br>Matrix-S<br>has been designed for a<br>oad nonconcurrent with<br>re assumed to be: Joint<br>apacity of 565 psi, Joint<br>565 psi.<br>echanical connection (by<br>the capable of withstandi<br>250 lb uplift at joint 2.<br>Is designed in accordance<br>and referenced standar<br>ourlin representation doe<br>nation of the purlin along<br>ord. | any other live<br>2 SP 1650F<br>8 SP No.2 cru<br>r others) of tru<br>ng 302 lb upl<br>ce with the 20<br>cions R502.11<br>d ANSI/TPI 1<br>es not depict f | -) -0.<br>T) 0.<br>om<br>e loads.<br>1.5E<br>ushing<br>uss to<br>ift at<br>118<br>I.1 and<br>the size | 34 2-11 :       | l/defl L/d<br>>904 240<br>>416 180<br>n/a n/a | PLATES         GRIP           MT20         244/190           Weight: 120 lb         FT = 20% |
| <ol> <li>Unbalance<br/>this design</li> <li>Wind: ASC<br/>Vasd=91m<br/>Ke=1.00; C<br/>exterior zo<br/>Interior (1)<br/>25-10-4 zc<br/>vertical left<br/>MWFRS fc<br/>grip DOL=</li> </ol> | n.<br>CE 7-16; Vult=115m<br>nph; TCDL=6.0psf; I<br>Cat. II; Exp C; Encle<br>one and C-C Exterio<br>) 4-1-8 to 23-0-0, Ex<br>one; cantilever left a<br>t exposed;C-C for n<br>or reactions shown;<br>e1.60                                                                                                                                                           | ve been considered for<br>ph (3-second gust)<br>BCDL=6.0psf; h=35ft;<br>ssed; MWFRS (envelop<br>r(2E) -0-10-8 to 4-1-8,<br>tterior(2E) 23-0-0 to<br>ind right exposed ; end<br>nembers and forces &<br>Lumber DOL=1.60 plat<br>prevent water ponding                                                                                                                                                                                              |                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                          |                                                                                                       |                 |                                               | NATHANIEL<br>FOX<br>PE-2022042259<br>FSSIONAL ENGLISH<br>November 2,2023                     |
| Design va<br>a truss sy<br>building d                                                                                                                                                     | alid for use only with MiTe<br>/stem. Before use, the bu                                                                                                                                                                                                                                                                                                            | ek® connectors. This design i<br>ilding designer must verify the<br>I is to prevent buckling of indiv                                                                                                                                                                                                                                                                                                                                             | based only upon parameter<br>applicability of design paran<br>idual truss web and/or chord                                                                                                                                 | EK REFERENCE PAGE MII-74<br>s shown, and is for an individu<br>neters and properly incorporate<br>members only. Additional terr                                                                                                                                                                                                                                   | al building compo<br>this design into<br>porary and perm                                                                                                 | onent, not<br>the overall<br>nanent brac                                                              |                 |                                               | MiTek®                                                                                       |

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

16023 Swingley Ridge Rd. Chesterfield, MO 63017 314.434.1200 / MiTek-US.com

|                                                                                                       |                                                                                                             |                                                                                                            |                                |                                           |                    |                         |                                        | RELEASE FOR CONSTRUCTION                                    |
|-------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|--------------------------------|-------------------------------------------|--------------------|-------------------------|----------------------------------------|-------------------------------------------------------------|
| Job                                                                                                   | Truss                                                                                                       |                                                                                                            | Truss Type                     |                                           | Qty                | Ply                     | Roof - Osage Lot 77                    | AS NOTED FOR PLAN REVIEW                                    |
| P230812                                                                                               | B11                                                                                                         |                                                                                                            | Half Hip                       |                                           | 2                  | 1                       | Job Reference (option                  | DEVELOPMENT SERVICES<br>161779280<br>LEE'S SUMMIT, MISSOURI |
| Premier Building                                                                                      | Supply (Springhill, KS), Sp                                                                                 | oring Hills, KS - 66083,                                                                                   |                                | Run: 8.63 S                               | Aug 30 2023 Print: | : 8.630 S Aug (         | 30 2023 MiTek Industries, In           |                                                             |
|                                                                                                       |                                                                                                             |                                                                                                            |                                | ID:LICGyswr5                              | 5OsBB2j9caufNtzx   | :FdZ-RfC?PsB            | 370Hq3NSgPqnL8w3uITXbG                 |                                                             |
|                                                                                                       |                                                                                                             | -0-10-8                                                                                                    | 8-5-4                          |                                           | 15-11-9            |                         | 25-0-0                                 | 25-11-8                                                     |
|                                                                                                       |                                                                                                             | 0-10-8                                                                                                     | 8-5-4                          | ·                                         | 7-6-5              |                         | 9-0-7                                  | 0-11-8<br>1.5x4 u                                           |
|                                                                                                       |                                                                                                             |                                                                                                            |                                |                                           |                    |                         |                                        | 1.5X4 II<br>6X6=                                            |
|                                                                                                       |                                                                                                             |                                                                                                            |                                |                                           |                    |                         |                                        | ი 6 7                                                       |
|                                                                                                       | 0-1-9                                                                                                       |                                                                                                            |                                |                                           |                    |                         |                                        |                                                             |
|                                                                                                       |                                                                                                             |                                                                                                            |                                |                                           | 12<br>4            | 4x4 =                   | 13                                     |                                                             |
|                                                                                                       |                                                                                                             |                                                                                                            |                                |                                           | 3x4 <b>=</b>       | 5                       |                                        |                                                             |
|                                                                                                       |                                                                                                             |                                                                                                            |                                | 1.5x4 💊                                   | 4                  |                         | /                                      |                                                             |
|                                                                                                       | 8-11-3<br>8-8-7<br>8-8-7                                                                                    |                                                                                                            |                                | 3                                         | Ter //             | $/\!/$                  | × //                                   | 8-8-1                                                       |
|                                                                                                       |                                                                                                             |                                                                                                            |                                | T                                         |                    | Ň                       |                                        |                                                             |
|                                                                                                       |                                                                                                             |                                                                                                            | 12                             |                                           |                    |                         |                                        |                                                             |
|                                                                                                       |                                                                                                             | 1 2                                                                                                        | <u> </u>                       |                                           | V                  |                         |                                        |                                                             |
|                                                                                                       |                                                                                                             |                                                                                                            |                                |                                           | 11 10              |                         | 9                                      |                                                             |
|                                                                                                       |                                                                                                             | 4x4=                                                                                                       |                                |                                           | 3x4= 3x4           | ↓ <b>=</b>              | 4x4=                                   | 8<br>3x4=                                                   |
|                                                                                                       |                                                                                                             |                                                                                                            |                                |                                           |                    |                         |                                        | 0                                                           |
|                                                                                                       |                                                                                                             |                                                                                                            | <u>11-3-10</u><br>11-3-10      |                                           |                    | <u>19-3-15</u><br>8-0-5 |                                        | <u>11-8</u><br>7-9                                          |
| Scale = 1:64.8                                                                                        |                                                                                                             |                                                                                                            | 11-0-10                        |                                           |                    | δ-0-0                   |                                        |                                                             |
| Loading                                                                                               | (psf)                                                                                                       | Spacing                                                                                                    | 2-0-0                          | CSI                                       |                    | FL                      |                                        | /d PLATES GRIP                                              |
| TCLL (roof)<br>TCDL                                                                                   | 25.0<br>10.0                                                                                                | Plate Grip DOL<br>Lumber DOL                                                                               | 1.15<br>1.15                   | TC<br>BC                                  |                    | . ,                     | ).41 2-11 >749 24<br>).90 2-11 >345 18 |                                                             |
| BCLL                                                                                                  | 0.0                                                                                                         | Rep Stress Incr                                                                                            | YES                            | WB                                        |                    | . ,                     |                                        | /a                                                          |
| BCDL                                                                                                  | 10.0                                                                                                        | Code                                                                                                       | IRC2018/TPI2014                | Matrix-S                                  |                    |                         |                                        | Weight: 134 lb FT = 20%                                     |
| LUMBER<br>TOP CHORD                                                                                   | 2x4 SP 1650F 1.5E *                                                                                         | Except* 6-7:2x4 SP                                                                                         | <ol><li>This truss h</li></ol> | lequate drainage<br>has been designe      | ed for a 10.0 psf  | fbottom                 |                                        |                                                             |
|                                                                                                       | No.2<br>2x4 SP No.2 *Except                                                                                 | ·                                                                                                          | chord live l                   | load nonconcurre                          | ent with any othe  | er live loads.          |                                        |                                                             |
|                                                                                                       | 1.5E                                                                                                        |                                                                                                            | crushing ca                    | apacity of 565 psi                        |                    |                         |                                        |                                                             |
| WEBS                                                                                                  | 2x4 SP No.2 *Except<br>No.2                                                                                 | * 11-3,11-5,9-5:2x3                                                                                        | <ol><li>Provide me</li></ol>   | echanical connec                          | tion (by others)   | of truss to             |                                        |                                                             |
| BRACING<br>TOP CHORD                                                                                  | Structural wood shee                                                                                        | thing directly applie                                                                                      | bearing pla                    | ate capable of wit<br>242 lb uplift at jo | hstanding 308 lb   | o uplift at             |                                        |                                                             |
|                                                                                                       | Structural wood shea                                                                                        |                                                                                                            | 7) This truss i                | is designed in actional Residential Co    | cordance with th   |                         |                                        |                                                             |
| BOT CHORD                                                                                             | 2-0-0 oc purlins (10-0<br>Rigid ceiling directly a                                                          |                                                                                                            | R802.10.2                      | and referenced s                          | standard ANSI/T    | TPI 1.                  |                                        |                                                             |
| WEBS                                                                                                  | bracing.<br>1 Row at midpt 6                                                                                | 6-8, 5-9                                                                                                   |                                | purlin representat<br>ntation of the purl |                    |                         |                                        |                                                             |
| REACTIONS (                                                                                           | (size) 2=0-3-8, 8=                                                                                          | =0-3-8                                                                                                     | bottom cho<br>LOAD CASE(S      |                                           |                    |                         |                                        |                                                             |
|                                                                                                       | Max Horiz 2=372 (LC<br>Max Uplift 2=-242 (LC                                                                | ,                                                                                                          |                                | ) Stanuara                                |                    |                         |                                        |                                                             |
| 1                                                                                                     | Max Grav 2=1234 (L0                                                                                         | C 1), 8=1150 (LC 1)                                                                                        |                                |                                           |                    |                         |                                        |                                                             |
| FORCES                                                                                                | (lb) - Maximum Comp<br>Tension                                                                              |                                                                                                            |                                |                                           |                    |                         |                                        |                                                             |
| TOP CHORD                                                                                             | 1-2=0/6, 2-3=-2486/4<br>5-6=-978/172, 6-7=-3                                                                |                                                                                                            |                                |                                           |                    |                         |                                        |                                                             |
| BOT CHORD                                                                                             | 2-11=-686/2275, 9-11<br>8-9=-61/150                                                                         |                                                                                                            |                                |                                           |                    |                         |                                        |                                                             |
| WEBS                                                                                                  | 7-8=-173/261, 3-11=-                                                                                        |                                                                                                            |                                |                                           |                    |                         |                                        | Manag                                                       |
|                                                                                                       | 6-9=-278/1221, 6-8=-<br>5-11=-116/811, 5-9=-                                                                |                                                                                                            |                                |                                           |                    |                         |                                        | TE OF MISSO                                                 |
|                                                                                                       |                                                                                                             |                                                                                                            |                                |                                           |                    |                         |                                        | NATHANIEL                                                   |
| this design.                                                                                          |                                                                                                             |                                                                                                            |                                |                                           |                    |                         | ŧ                                      | FOX                                                         |
|                                                                                                       | E 7-16; Vult=115mph (                                                                                       | (3-second gust)                                                                                            |                                |                                           |                    |                         | a                                      | MAA ACANA                                                   |
|                                                                                                       | nn' ICDL=6.00ST BCL                                                                                         | ) =6.0psf: h=35ft;                                                                                         |                                |                                           |                    |                         | N                                      |                                                             |
| Vasd=91m<br>Ke=1.00; C                                                                                | Cat. II; Exp C; Enclosed                                                                                    |                                                                                                            | э)                             |                                           |                    |                         | 8                                      | Ta handler the                                              |
| Vasd=91m<br>Ke=1.00; C<br>exterior zor<br>Interior (1)                                                | Cat. II; Exp C; Enclosed<br>ne and C-C Exterior(2E<br>4-1-8 to 25-0-0, Exterio                              | d; MWFRS (envelope<br>E) -0-10-8 to 4-1-8,<br>or(2E) 25-0-0 to                                             | e)                             |                                           |                    |                         | Ę                                      | PE-2022042259                                               |
| Vasd=91m<br>Ke=1.00; C<br>exterior zor<br>Interior (1)<br>25-9-12 zor                                 | Cat. II; Exp C; Enclosed<br>ne and C-C Exterior(2E                                                          | t; MWFRS (envelope<br>=) -0-10-8 to 4-1-8,<br>or(2E) 25-0-0 to<br>right exposed ; end                      | e)                             |                                           |                    |                         |                                        | PE-2022042259                                               |
| Vasd=91mj<br>Ke=1.00; C<br>exterior zor<br>Interior (1)<br>25-9-12 zor<br>vertical left<br>forces & M | Cat. II; Exp C; Enclosed<br>ne and C-C Exterior(2E<br>4-1-8 to 25-0-0, Exterio<br>ne; cantilever left and r | t; MWFRS (envelope<br>E) -0-10-8 to 4-1-8,<br>or(2E) 25-0-0 to<br>right exposed ; end<br>C for members and | e)                             |                                           |                    |                         | Į                                      |                                                             |

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)





R802.10.2 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard

TOP CHORD

BOT CHORD 2x4 SP No.2

2x3 SPF No.2 \*Except\* 7-8,8-6:2x4 SP No.2 WEBS BRACING Structural wood sheathing directly applied, TOP CHORD except end verticals. BOT CHORD Rigid ceiling directly applied or 2-2-0 oc bracing. WEBS 1 Row at midpt 7-8.6-8 2=0-3-8, 8=0-3-8 **REACTIONS** (size) Max Horiz 2=390 (LC 8) Max Uplift 2=-234 (LC 8), 8=-317 (LC 12) Max Grav 2=1228 (LC 1), 8=1154 (LC 1) FORCES (lb) - Maximum Compression/Maximum Tension TOP CHORD 1-2=0/6, 2-3=-2610/416, 3-4=-2319/355, 4-6=-1343/175, 6-7=-100/44, 7-8=-175/129 BOT CHORD 2-11=-711/2381, 9-11=-525/1816, 8-9=-265/876

WFBS 3-11=-347/214, 4-11=-82/543, 4-9=-830/300, 6-9=-95/809, 6-8=-1244/381

#### NOTES

- 1) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=35ft; Ke=1.00; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) -0-10-8 to 4-1-8, Interior (1) 4-1-8 to 25-9-12 zone; cantilever left and right exposed ; end vertical left exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. All bearings are assumed to be SP No.2 crushing 3)

capacity of 565 psi. 4) Provide mechanical connection (by others) of truss to

bearing plate capable of withstanding 317 lb uplift at joint 8 and 234 lb uplift at joint 2.

OF MISSO NATHANIEL FOX MAR PE-2022042259 ARSSIONAL E

November 2,2023





|         |       |                        |     |     |                         | RELEASE FOR CONSTRUCTION                                      |
|---------|-------|------------------------|-----|-----|-------------------------|---------------------------------------------------------------|
| Job     | Truss | Truss Type             | Qty | Ply | Roof - Osage Lot 77     | AS NOTED FOR PLAN REVIEW<br>DEVELOPMENT SERVICES<br>161779282 |
| P230812 | C1    | Common Supported Gable | 2   | 1   | Job Reference (optional |                                                               |

Run: 8.63 S Aug 30 2023 Print: 8.630 S Aug 30 2023 MiTek Industries, Inc. Ved Nov 91 1433 ID:qNSd8uN6qGz9aVuDen1oEAzxFbh-RfC?PsB70Hq3NSgPqnL8w3uITXbC KWrCDoi J4-307f



Scale = 1:30.3

Plate Offsets (X, Y): [2:0-2-0,0-1-12]

|                                                                                                                                     |                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                          |                                                   |       |        |            |               | -                                                                                                          |
|-------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------|-------|--------|------------|---------------|------------------------------------------------------------------------------------------------------------|
| Loading                                                                                                                             | (psf)                                                                                                                                                                                                                                                                                                                        | Spacing                                                                                                                                                                                 | 4-0-0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | CSI                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                       | DEFL                                                                                                                                                                                                                                                     | in                                                | (loc) | l/defl | L/d        | PLATES        | GRIP                                                                                                       |
| TCLL (roof)                                                                                                                         | 25.0                                                                                                                                                                                                                                                                                                                         | Plate Grip DOL                                                                                                                                                                          | 1.15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | TC                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.29                                                                                                                                                                                                                  | Vert(LL)                                                                                                                                                                                                                                                 | n/a                                               | -     | n/a    | 999        | MT20          | 244/190                                                                                                    |
| TCDL                                                                                                                                | 10.0                                                                                                                                                                                                                                                                                                                         | Lumber DOL                                                                                                                                                                              | 1.15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | BC                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.08                                                                                                                                                                                                                  | Vert(CT)                                                                                                                                                                                                                                                 | n/a                                               | -     | n/a    | 999        |               |                                                                                                            |
| BCLL                                                                                                                                | 0.0                                                                                                                                                                                                                                                                                                                          | Rep Stress Incr                                                                                                                                                                         | NO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | WB                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.09                                                                                                                                                                                                                  | Horz(CT)                                                                                                                                                                                                                                                 | 0.00                                              | 7     | n/a    | n/a        |               |                                                                                                            |
| BCDL                                                                                                                                | 10.0                                                                                                                                                                                                                                                                                                                         | Code                                                                                                                                                                                    | IRC2018/TPI2014                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Matrix-R                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                          |                                                   |       |        |            | Weight: 28 lb | FT = 20%                                                                                                   |
| LUMBER<br>TOP CHORD<br>BOT CHORD<br>WEBS<br>OTHERS<br>BRACING<br>TOP CHORD<br>BOT CHORD<br>REACTIONS                                | <ul> <li>2x4 SP No.2</li> <li>2x4 SP No.2 *Excep</li> <li>2x3 SPF No.2</li> <li>2-0-0 oc purlins, ex</li> <li>(Switched from shee</li> <li>Rigid ceiling directly bracing.</li> <li>(size) 7=5-8-0, 8</li> <li>10=5-8-0, Max Horiz 11=220 (I</li> <li>Max Uplift 7=-69 (LC)</li> <li>10=-173 (Max Grav 7=134 (LC)</li> </ul> | eted: Spacing > 2-8-0<br>applied or 6-0-0 oc<br>3=5-8-0, 9=5-8-0,<br>11=5-8-0<br>_C 9)<br>> 12), 8=-168 (LC 13)<br>LC 12), 11=-100 (LC<br>2 19), 8=345 (LC 20)<br>C 22), 10=301 (LC 15) | <ul> <li>only. For see Stand or consult</li> <li>4) Gable req</li> <li>5) Truss to b braced ag</li> <li>5) This truss chord live</li> <li>8) All bearing capacity of gable stury capacity of gable stury for the struss of the strust of the struct of the str</li></ul> | igned for wind loa<br>studs exposed to v<br>ard Industry Gable<br>qualified building of<br>uires continuous b<br>e fully sheathed fr<br>ainst lateral mover<br>ls spaced at 1-4-0<br>has been designe<br>load nonconcurrer<br>is are assumed to<br>f 565 psi.<br>echanical connect<br>ate capable of with<br>D buplift at joint 7.<br>ft at joint 8.<br>is designed in accural<br>Residential Coc<br>and referenced si | wind (norm<br>e End Deta<br>designer a:<br>bottom chor<br>om one fac<br>ment (i.e. d<br>) oc.<br>d for a 10.0<br>nt with any<br>be SP No.<br>tion (by oth<br>histanding 1<br>, 173 lb up<br>cordance w<br>de sections | al to the face<br>ils as applica<br>s per ANSI/TI<br>d bearing.<br>d bearing.<br>e or securely<br>iagonal web)<br>0 psf bottom<br>other live loa<br>2 crushing<br>ers) of truss t<br>00 lb uplift at<br>ift at joint 10<br>ith the 2018<br>s R502.11.1 a | ),<br>ble,<br>PI 1.<br>,<br>ds.<br>to<br>t<br>and |       |        |            |               |                                                                                                            |
| FORCES                                                                                                                              | (lb) - Maximum Com<br>Tension                                                                                                                                                                                                                                                                                                | pression/Maximum                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | purlin representati<br>ntation of the purli                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                          | size                                              |       |        |            |               |                                                                                                            |
| TOP CHORD                                                                                                                           |                                                                                                                                                                                                                                                                                                                              | =0/91, 2-3=-157/193,<br>178/392, 5-6=-93/13                                                                                                                                             | bottom ch                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ord.                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                          |                                                   |       |        |            |               |                                                                                                            |
| BOT CHORD                                                                                                                           | 0 10-11=-83/79, 9-10=<br>7-8=-83/79                                                                                                                                                                                                                                                                                          | -83/79, 8-9=-83/79,                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                          |                                                   |       |        |            | OF            | MISSO                                                                                                      |
| WEBS                                                                                                                                | 4-9=-287/59, 3-10=-                                                                                                                                                                                                                                                                                                          | 237/264, 5-8=-260/3                                                                                                                                                                     | 65                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                          |                                                   |       |        | 5          | THE OF I      | 10°0                                                                                                       |
| NOTES                                                                                                                               |                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                          |                                                   |       |        | A          | 1221          | N CAN                                                                                                      |
| <ol> <li>Unbalance<br/>this design</li> <li>Wind: AS<br/>Vasd=910<br/>Ke=1.00;<br/>exterior z<br/>and right<br/>exposed;</li> </ol> | CE 7-16; Vult=115mph<br>mph; TCDL=6.0psf; BC<br>Cat. II; Exp C; Enclose<br>cone and C-C Corner(3E<br>exposed ; end vertical<br>C-C for members and f<br>shown; Lumber DOL=                                                                                                                                                   | (3-second gust)<br>DL=6.0psf; h=35ft;<br>d; MWFRS (envelop<br>E) zone; cantilever lei<br>left and right<br>orces & MWFRS for                                                            | e)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                          |                                                   |       |        | Phil Price | Jathan        | X<br>042259<br>X<br>X<br>K<br>X<br>X<br>X<br>X<br>X<br>X<br>X<br>X<br>X<br>X<br>X<br>X<br>X<br>X<br>X<br>X |

November 2,2023

6/2023

0



| A WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.                                          |            |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|
| Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not                       |            |
| a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall                |            |
| building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing                   |            |
| is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the                            |            |
| fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.t | pinst.org) |
| and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)                                      |            |

|         |       |            |     |     |                         | RELEASE FOR CONSTRUCTION                                      |
|---------|-------|------------|-----|-----|-------------------------|---------------------------------------------------------------|
| Job     | Truss | Truss Type | Qty | Ply | Roof - Osage Lot 77     | AS NOTED FOR PLAN REVIEW<br>DEVELOPMENT SERVICES<br>161779283 |
| P230812 | C2    | Common     | 8   | 1   | Job Reference (optional |                                                               |

Run: 8.63 S Aug 30 2023 Print: 8.630 S Aug 30 2023 MiTek Industries, Inc. Ved Nov 1 1433 DI:UXOjrqmBI5?cQPKNWVcIXwzxFbB-RfC?PsB70Hq3NSgPqnL8w3uITXbG KWrCDoirJuter 1





| Scale = 1:34.8 |                                                 |                         |                        | 2.00                 |           | 200        |      |       |        |     |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|----------------|-------------------------------------------------|-------------------------|------------------------|----------------------|-----------|------------|------|-------|--------|-----|---------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Loading        | (psf)                                           | Spacing                 | 2-0-0                  | CSI                  |           | DEFL       | in   | (loc) | l/defl | L/d | PLATES        | GRIP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| TCLL (roof)    | 25.0                                            | Plate Grip DOL          | 1.15                   | TC                   | 0.16      | Vert(LL)   | 0.01 | 5-6   | >999   | 240 | MT20          | 244/190                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| TCDL           | 10.0                                            | Lumber DOL              | 1.15                   | BC                   | 0.13      | Vert(CT)   | 0.01 | 5-6   | >999   | 180 |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| BCLL<br>BCDL   | 0.0<br>10.0                                     | Rep Stress Incr<br>Code | YES<br>IRC2018/TPI2014 | WB<br>Matrix-R       | 0.04      | Horz(CT)   | 0.00 | 4     | n/a    | n/a | Weight: 23 lb | FT = 20%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| BCDL           | 10.0                                            | Code                    | IRG2010/1FI2014        | IVIAUIX-R            |           |            |      |       |        |     | Weight. 23 lb | FT = 20%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| LUMBER         |                                                 |                         |                        | is designed in acco  |           |            |      |       |        |     |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| TOP CHORD      |                                                 |                         |                        | nal Residential Cod  |           |            | and  |       |        |     |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| BOT CHORD      | 2x4 SP No.2                                     |                         |                        | 2 and referenced sta | andard AN | ISI/TPI 1. |      |       |        |     |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| WEBS           | 2x4 SP No.2 *Excep                              | ot* 5-2:2x3 SPF No.2    | 2 LOAD CASE(           | S) Standard          |           |            |      |       |        |     |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| BRACING        | o                                               |                         |                        |                      |           |            |      |       |        |     |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| TOP CHORD      | Structural wood she<br>5-3-8 oc purlins, ex     |                         | ed or                  |                      |           |            |      |       |        |     |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| BOT CHORD      | Rigid ceiling directly                          |                         | c                      |                      |           |            |      |       |        |     |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| BOT ONORE      | bracing.                                        |                         | 0                      |                      |           |            |      |       |        |     |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| REACTIONS      | (size) 4=0-3-8, 6                               | 6=0-3-0                 |                        |                      |           |            |      |       |        |     |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                | Max Horiz 6=99 (LC                              |                         |                        |                      |           |            |      |       |        |     |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                | Max Uplift 4=-31 (LC                            | ,                       |                        |                      |           |            |      |       |        |     |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                | Max Grav 4=225 (LC                              | C 1), 6=225 (LC 1)      |                        |                      |           |            |      |       |        |     |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| FORCES         | (lb) - Maximum Com                              | pression/Maximum        |                        |                      |           |            |      |       |        |     |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                | Tension                                         |                         |                        |                      |           |            |      |       |        |     |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| TOP CHORD      | 1-2=-181/239, 2-3=-                             | 177/266, 3-4=-170/2     | 242,                   |                      |           |            |      |       |        |     |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| BOT CHORD      | 1-6=-178/229<br>5-6=-154/90, 4-5=-1             | 54/00                   |                        |                      |           |            |      |       |        |     |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| WEBS           | 2-5=-173/73                                     | 54/90                   |                        |                      |           |            |      |       |        |     |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| NOTES          | 2 0- 110/10                                     |                         |                        |                      |           |            |      |       |        |     |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                | ed roof live loads have                         | been considered fo      | r                      |                      |           |            |      |       |        |     |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| this design    |                                                 |                         |                        |                      |           |            |      |       |        |     |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                | CE 7-16; Vult=115mph                            | (3-second gust)         |                        |                      |           |            |      |       |        |     |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                | nph; TCDL=6.0psf; BC                            |                         |                        |                      |           |            |      |       |        |     |               | and the second se |
|                | Cat. II; Exp C; Enclose                         |                         |                        |                      |           |            |      |       |        |     | STATE OF I    | A Participant                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                | one and C-C Exterior(2                          |                         |                        |                      |           |            |      |       |        | 6   | ALE OF I      | WIISS W                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                | exposed ; end vertical<br>and right exposed;C-C |                         | ad,                    |                      |           |            |      |       |        | A   | 7.5           | N.S.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                | IWFRS for reactions s                           |                         |                        |                      |           |            |      |       |        | A   | S NATHA       | ANIEL CAN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                | plate grip DOL=1.60                             |                         |                        |                      |           |            |      |       |        | 1   | FO            | X V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                | has been designed for                           | r a 10.0 nef bottom     |                        |                      |           |            |      |       |        | ИA  |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |

- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 4) All bearings are assumed to be SP No.2 crushing capacity of 565 psi.
- Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 25 lb uplift at joint 6 and 31 lb uplift at joint 4.



6/202



|     |        |       |            |     |      |                         | RELEASE FOR CONSTRUCTION          |
|-----|--------|-------|------------|-----|------|-------------------------|-----------------------------------|
| Jo  | h      | Truss | Truss Type | Qty | Plv  | Roof - Osage Lot 77     | AS NOTED FOR PLAN REVIEW          |
| 100 | 6      | 11033 |            | QUY | 1 19 | Noor - Osage Lot II     | DEVELOPMENT SERVICES<br>I61779284 |
| P2  | 230812 | D1    | Monopitch  | 10  | 1    | Job Reference (optional |                                   |
|     |        |       |            |     | -    |                         |                                   |

Run: 8.63 S Aug 30 2023 Print: 8.630 S Aug 30 2023 MiTek Industries, Inc. Ved Nov 1 133 06/2023 ID:\_sXE6HoZjjAnaEAfModiLMzxFYZ-RfC?PsB70Hq3NSgPqnL8w3uITXbGK VrCDoi7Jzzerf



| 4-7-3 | 8-11-8 |
|-------|--------|
| 4-7-3 | 4-4-5  |

#### Plate Offsets (X, Y): [2:Edge,0-1-10]

Scale = 1:33.7

|             | (,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,     | ,<br>1                | -               | -                    |             |               |       |       |        |     |               |            |
|-------------|---------------------------------------------|-----------------------|-----------------|----------------------|-------------|---------------|-------|-------|--------|-----|---------------|------------|
| Loading     | (psf)                                       | Spacing               | 2-0-0           | CSI                  |             | DEFL          | in    | (loc) | l/defl | L/d | PLATES        | GRIP       |
| TCLL (roof) | 25.0                                        | Plate Grip DOL        | 1.15            | TC                   | 0.36        | Vert(LL)      | 0.06  | 2-6   | >999   | 240 | MT20          | 197/144    |
| TCDL        | 10.0                                        | Lumber DOL            | 1.15            | BC                   | 0.28        | Vert(CT)      | 0.05  | 2-6   | >999   | 180 |               |            |
| BCLL        | 0.0                                         | Rep Stress Incr       | YES             | WB                   | 0.33        | Horz(CT)      | -0.01 | 5     | n/a    | n/a |               |            |
| BCDL        | 10.0                                        | Code                  | IRC2018/TPI2014 | Matrix-P             |             |               |       |       |        |     | Weight: 36 lb | FT = 20%   |
| LUMBER      |                                             |                       | 6) This trus    | s is designed in acc | cordance w  | ith the 2018  |       |       |        |     |               |            |
| TOP CHORD   | 2x4 SP No.2                                 |                       | Internatio      | nal Residential Co   | de sections | s R502.11.1 a | and   |       |        |     |               |            |
| BOT CHORD   | 2x4 SP No.2                                 |                       | R802.10         | 2 and referenced s   | tandard AN  | ISI/TPI 1.    |       |       |        |     |               |            |
| WEBS        | 2x3 SPF No.2                                |                       | LOAD CASE       | (S) Standard         |             |               |       |       |        |     |               |            |
| BRACING     |                                             |                       |                 |                      |             |               |       |       |        |     |               |            |
| TOP CHORD   | Structural wood she                         | athing directly appli | ed or           |                      |             |               |       |       |        |     |               |            |
|             | 6-0-0 oc purlins, ex                        |                       |                 |                      |             |               |       |       |        |     |               |            |
| BOT CHORD   | Rigid ceiling directly<br>bracing.          | applied or 5-6-1 oc   |                 |                      |             |               |       |       |        |     |               |            |
| REACTIONS   | (size) 2=0-3-8,                             | 5= Mechanical         |                 |                      |             |               |       |       |        |     |               |            |
|             | Max Horiz 2=143 (LO                         | C 8)                  |                 |                      |             |               |       |       |        |     |               |            |
|             | Max Uplift 2=-201 (L                        |                       | 1               |                      |             |               |       |       |        |     |               |            |
|             | Max Grav 2=468 (L0                          | C 1), 5=388 (LC 1)    |                 |                      |             |               |       |       |        |     |               |            |
| FORCES      | (lb) - Maximum Com<br>Tension               | npression/Maximum     |                 |                      |             |               |       |       |        |     |               |            |
| TOP CHORD   |                                             | 00. 3-4=-61/27.       |                 |                      |             |               |       |       |        |     |               |            |
|             | 4-5=-116/139                                | 00,01 01/21,          |                 |                      |             |               |       |       |        |     |               |            |
| BOT CHORD   | 2-6=-1017/580, 5-6=                         | -1017/580             |                 |                      |             |               |       |       |        |     |               |            |
| WEBS        | 3-5=-626/1098, 3-6=                         | =-421/212             |                 |                      |             |               |       |       |        |     |               |            |
| NOTES       |                                             |                       |                 |                      |             |               |       |       |        |     |               |            |
| 1) Wind: AS | CE 7-16; Vult=115mph                        | (3-second gust)       |                 |                      |             |               |       |       |        |     |               |            |
| Vasd=91r    | nph; TCDL=6.0psf; BC                        | DL=6.0psf; h=35ft;    |                 |                      |             |               |       |       |        |     |               |            |
|             | Cat. II; Exp C; Enclose                     |                       | pe)             |                      |             |               |       |       |        |     |               | an         |
|             | one and C-C Exterior(2                      |                       |                 |                      |             |               |       |       |        |     | TATE OF       | MIG        |
|             | ) 4-1-8 to 8-10-4 zone;                     |                       | right           |                      |             |               |       |       |        | 9   | BIE           | N. OSCIM   |
|             | end vertical left expos                     |                       | _               |                      |             |               |       |       |        | B   | AN .          | N N        |
|             | C-C for members and f<br>shown; Lumber DOL= |                       | r               |                      |             |               |       |       |        | B   | S/ NAIN       | TIMEL VY   |
| DOL=1.60    |                                             | 1.00 plate grip       |                 |                      |             |               |       |       |        | 2   | FO            | X-         |
|             | has been designed fo                        | r a 10.0 psf bottom   |                 |                      |             |               |       |       |        |     | 11            | avx y      |
|             | load nonconcurrent w                        |                       | ids.            |                      |             |               |       |       |        | 81  | 111           | A          |
|             | are assumed to be: Jo                       |                       |                 |                      |             |               |       |       |        | N.  | a raw         | KED ONAN   |
| capacity c  |                                             |                       | -               |                      |             |               |       |       |        | N S | PE-2022       | 042250 758 |
|             | irder(s) for truss to trus                  |                       |                 |                      |             |               |       |       |        | N   | PE-2022       | 1042239 SA |
|             | nechanical connection                       |                       |                 |                      |             |               |       |       |        | Y   | A Co          | 1 SPA      |
|             | late capable of withsta                     |                       | t               |                      |             |               |       |       |        |     | PE-2022       | TENA       |
| joint 5 and | d 201 lb uplift at joint 2.                 |                       |                 |                      |             |               |       |       |        |     | and the       | L'A        |
|             |                                             |                       |                 |                      |             |               |       |       |        |     | alle          |            |

November 2,2023



|         |       |            |     |     |                         | RELEASE FOR CONSTRUCTION                                    |
|---------|-------|------------|-----|-----|-------------------------|-------------------------------------------------------------|
| Job     | Truss | Truss Type | Qty | Ply | Roof - Osage Lot 77     |                                                             |
| P230812 | D2    | Monopitch  | 10  | 1   | lah Deference (antional | DEVELOPMENT SERVICES<br>161779285<br>LEE'S SUMMIT, MISSOURI |
|         |       |            | -   |     | Job Reference (optional |                                                             |

Run: 8.63 S Aug 30 2023 Print: 8.630 S Aug 30 2023 MiTek Industries, Inc. Ved Nov 01 49333 ID:78C7o6q0croABosuZ?dZ0HzxFUe-RfC?PsB70Hq3NSgPqnL8w3uITXbGFWrCDoi7J4z5



b

-0-10-8 3-11-8 0-10-8 3-11-8



|  |  |  | 3-11- | -8 |  |
|--|--|--|-------|----|--|
|  |  |  |       |    |  |

| Scale = 1:26.4 |       |                 |                 |          |      |          |       |       |        |     |               |          |
|----------------|-------|-----------------|-----------------|----------|------|----------|-------|-------|--------|-----|---------------|----------|
| Loading        | (psf) | Spacing         | 2-0-0           | CSI      |      | DEFL     | in    | (loc) | l/defl | L/d | PLATES        | GRIP     |
| TCLL (roof)    | 25.0  | Plate Grip DOL  | 1.15            | TC       | 0.28 | Vert(LL) | -0.01 | 2-4   | >999   | 240 | MT20          | 197/144  |
| TCDL           | 10.0  | Lumber DOL      | 1.15            | BC       | 0.16 | Vert(CT) | -0.02 | 2-4   | >999   | 180 |               |          |
| BCLL           | 0.0   | Rep Stress Incr | YES             | WB       | 0.00 | Horz(CT) | n/a   | -     | n/a    | n/a |               |          |
| BCDL           | 10.0  | Code            | IRC2018/TPI2014 | Matrix-P |      |          |       |       |        |     | Weight: 15 lb | FT = 20% |

LUMBER

| TOP CHORD | 2x4 SP No.2                                   |
|-----------|-----------------------------------------------|
| BOT CHORD | 2x4 SP No.2                                   |
| WEBS      | 2x3 SPF No.2                                  |
| BRACING   |                                               |
| TOP CHORD | Structural wood sheathing directly applied or |
|           | 4-0-0 oc purlins, except end verticals.       |
|           | Pigid coiling directly applied or 10.0.0 oc   |

| BOT CHORD | Rigid ceili<br>bracing.            | ing directly applied or 10-0-0 oc |  |  |  |  |  |
|-----------|------------------------------------|-----------------------------------|--|--|--|--|--|
| REACTIONS | (size)                             | 2=0-3-8, 4= Mechanical            |  |  |  |  |  |
|           | Max Horiz                          | 2=70 (LC 8)                       |  |  |  |  |  |
|           | Max Uplift                         | 2=-77 (LC 8), 4=-46 (LC 12)       |  |  |  |  |  |
|           | Max Grav                           | 2=248 (LC 1), 4=157 (LC 1)        |  |  |  |  |  |
| FORCES    | (lb) - Maximum Compression/Maximum |                                   |  |  |  |  |  |

Tension TOP CHORD 1-2=0/6, 2-3=-82/36, 3-4=-120/175 BOT CHORD 2-4=0/0

#### NOTES

- Wind: ASCE 7-16; Vult=115mph (3-second gust) 1) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=35ft; Ke=1.00; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) zone; cantilever left and right exposed ; end vertical left exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- This truss has been designed for a 10.0 psf bottom 2) chord live load nonconcurrent with any other live loads.
- 3) Bearings are assumed to be: Joint 2 SP No.2 crushing capacity of 565 psi.
- 4) Refer to girder(s) for truss to truss connections.
- 5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 46 lb uplift at joint 4 and 77 lb uplift at joint 2.
- This truss is designed in accordance with the 2018 6) International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard



November 2,2023



|         |       |                           |         |      |                         | RELEASE FOR CONSTRUCTION          |
|---------|-------|---------------------------|---------|------|-------------------------|-----------------------------------|
| Job     | Truss | Truss Type                | Qty Ply | Plv  | Roof - Osage Lot 77     | AS NOTED FOR PLAN REVIEW          |
| 000     | 11033 |                           | Giy     | i iy | Rool - Osage Lot II     | DEVELOPMENT SERVICES<br>161779286 |
| P230812 | D3    | Monopitch Supported Gable | 2       | 1    | Job Reference (optional |                                   |
|         |       |                           |         |      |                         |                                   |

9-0-0

Premier Building Supply (Springhill, KS), Spring Hills, KS - 66083,

-0-10-8

Run: 8.63 S Aug 30 2023 Print: 8.630 S Aug 30 2023 MiTek Industries, Inc. Ved Nov 1 1433 DI:R6HKgN9OyKXimYirSO47xGzxFSx-RfC?PsB70Hq3NSgPqnL8w3uITXbG KWrCDoi 1423



| Scale | _ | 1.22 1 |
|-------|---|--------|
| Scale | = | 1:33.1 |

TOP CHORD

BOT CHORD

WEBS

OTHERS

BRACING

TOP CHORD

BOT CHORD

FORCES

TOP CHORD

BOT CHORD

DOL=1.60

WEBS

1)

2)

3)

NOTES

**REACTIONS** (size)

2x4 SP No.2

2x4 SP No.2

2x3 SPF No.2

2x3 SPF No.2

bracing.

Max Horiz

Max Uplift

Max Grav

Tension

Structural wood sheathing directly applied or

2=9-0-0, 7=9-0-0, 8=9-0-0,

2=-26 (LC 8), 7=-18 (LC 8), 8=-54 (LC 12), 9=-43 (LC 8), 10=-79 (LC

2=183 (LC 1), 7=66 (LC 1), 8=202

(LC 1), 9=149 (LC 1), 10=261 (LC

6-0-0 oc purlins, except end verticals.

Rigid ceiling directly applied or 10-0-0 oc

9=9-0-0, 10=9-0-0

(lb) - Maximum Compression/Maximum

1-2=0/6, 2-3=-259/84, 3-4=-151/45, 4-5=-97/33, 5-6=-28/12, 6-7=-52/65

2-10=0/0, 9-10=0/0, 8-9=0/0, 7-8=0/0 5-8=-156/196, 4-9=-118/147, 3-10=-199/273

2=143 (LC 8)

12)

1)

Wind: ASCE 7-16; Vult=115mph (3-second gust)

Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=35ft;

Exterior(2N) 4-1-8 to 8-10-12 zone; end vertical left exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip

Ke=1.00; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone and C-C Corner(3E) -0-10-8 to 4-1-8,

Truss designed for wind loads in the plane of the truss

or consult qualified building designer as per ANSI/TPI 1.

only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable,

All plates are 1.5x4 MT20 unless otherwise indicated.

Loading TCLL (roof) TCDL BCLL BCDL LUMBER

| 33.1 |                                                                     |                 |                 |          |      |          |     |       |        |     |               |          |
|------|---------------------------------------------------------------------|-----------------|-----------------|----------|------|----------|-----|-------|--------|-----|---------------|----------|
|      | (psf)                                                               | Spacing         | 2-0-0           | CSI      |      | DEFL     | in  | (loc) | l/defl | L/d | PLATES        | GRIP     |
| f)   | 25.0                                                                | Plate Grip DOL  | 1.15            | тс       | 0.11 | Vert(LL) | n/a | -     | n/a    | 999 | MT20          | 197/144  |
|      | 10.0                                                                | Lumber DOL      | 1.15            | BC       | 0.07 | Vert(CT) | n/a | -     | n/a    | 999 |               |          |
|      | 0.0                                                                 | Rep Stress Incr | YES             | WB       | 0.07 | Horz(CT) | n/a | -     | n/a    | n/a |               |          |
|      | 10.0                                                                | Code            | IRC2018/TPI2014 | Matrix-S |      |          |     |       |        |     | Weight: 35 lb | FT = 20% |
|      | <ol> <li>Gable requires continuous bottom chord bearing.</li> </ol> |                 |                 |          |      |          |     |       |        |     |               |          |

9-0-0

| 4)         | Gable | requires | continuous        | DOLLOH |
|------------|-------|----------|-------------------|--------|
| <b>F</b> ) | Cable |          | a a a d a d a d a | 0.00   |

) Gable studs spaced at 2-0-0 oc.

6) This truss has been designed for a 10.0 psf bottom

chord live load nonconcurrent with any other live loads.

- 7) All bearings are assumed to be SP No.2 crushing
- capacity of 565 psi.

 Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 18 lb uplift at joint 7, 26 lb uplift at joint 2, 54 lb uplift at joint 8, 43 lb uplift at joint 9 and 79 lb uplift at joint 10.

 This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard

# PE-2022042259

6/2023

November 2,2023



| A WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.                                                    |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not                                 |
| a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall                          |
| building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing                             |
| is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the                                      |
| fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) |
| and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)                                                |

|                                  |       |                        |           |   |                         | RELEASE FOR CONSTRUCTION          |
|----------------------------------|-------|------------------------|-----------|---|-------------------------|-----------------------------------|
| Job                              | Truss | Truss Type             | Qty Ply   |   | Roof - Osage Lot 77     | AS NOTED FOR PLAN REVIEW          |
| 000                              | 11400 |                        | Cety 1 ly | , |                         | DEVELOPMENT SERVICES<br>I61779287 |
| P230812                          | E1    | Common Supported Gable | 2         | 1 | Job Reference (optional |                                   |
| Premier Building Supply (Springh |       |                        |           |   |                         |                                   |

ID:zTnobfY4ATh0DdjBuqAsmEzxFSQ-RfC?PsB70Hq3NSgPqnL8w3uITXbGtWrCDoi7342991



|                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                    | L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 16-0-0                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                          |                                                                                                                                                                         |                                                                                                                                                                                                                                                                   | _                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Scale = 1:52.3                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                    | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                          |                                                                                                                                                                         |                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Plate Offsets (                                                                                                                                                                                                                                                                                                                                    | (X, Y): [2:0-2-0,0-1-4                                                                                                                                                                                                                                                                                                                                 | , [17:0-5-8,0-1-8]                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                          |                                                                                                                                                                         |                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Loading<br>TCLL (roof)<br>TCDL<br>BCLL<br>BCDL                                                                                                                                                                                                                                                                                                     | (psf)<br>25.0<br>10.0<br>0.0<br>10.0                                                                                                                                                                                                                                                                                                                   | Spacing<br>Plate Grip DOL<br>Lumber DOL<br>Rep Stress Incr<br>Code                                                                                                                                                                                                                 | 4-0-0<br>1.15<br>1.15<br>NO<br>IRC2018/TPI2014                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | CSI<br>TC<br>BC<br>WB<br>Matrix-R                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.29<br>0.29<br>0.83                                                                                                                                                                                                                                                                 | <b>DEFL</b><br>Vert(LL)<br>Vert(CT)<br>Horz(CT)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | in<br>n/a<br>n/a<br>0.01 | (loc)<br>-<br>-<br>17                                                                                                                                                   | l/defl<br>n/a<br>n/a<br>n/a                                                                                                                                                                                                                                       | L/d<br>999<br>999<br>n/a                                                                                                                                                                                                     | PLATES<br>MT20<br>MT18HS<br>Weight: 97 lb                                                                                                                                                                                                                                                                                                                                                         | <b>GRIP</b><br>197/144<br>244/190<br>FT = 20%                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| LUMBER<br>TOP CHORD<br>BOT CHORD<br>WEBS<br>OTHERS<br>BRACING<br>TOP CHORD<br>BOT CHORD<br>REACTIONS                                                                                                                                                                                                                                               | 2x4 SP No.2<br>2x4 SP No.2<br>2x3 SPF No.2 *Exc<br>2x3 SPF No.2 *Exc<br>2x3 SPF No.2<br>2-0-0 oc purlins (6-<br>verticals<br>(Switched from she<br>Rigid ceiling directh<br>bracing.<br>(size) 17=16-0<br>20=16-0<br>23=16-0<br>29=16-0<br>29=16-0<br>29=16-0<br>Max Horiz 30=-485<br>Max Uplift 17=-701<br>19=-107<br>21=-116<br>23=-68 (<br>25=-47 ( | ept* 17-15:2x4 SP No.<br>D-0 max.), except end<br>eted: Spacing > 2-8-0)<br>y applied or 6-0-0 oc<br>0, 18=16-0-0, 19=16-0<br>0, 21=16-0-0, 22=16-0<br>0, 27=16-0-0, 28=16-0<br>0, 30=16-0-0                                                                                       | TOP CHORD<br>2<br>BOT CHORD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2-30=-249/273,<br>3-4=-100/266, 4<br>6-7=-298/669,<br>11-12=-350/391<br>13-14=-408/402<br>15-16=0/86, 15<br>29-30=-386/387<br>27-28=-386/387<br>23-24=-386/387<br>23-24=-386/387<br>19-20=-386/387<br>19-20=-386/387<br>19-20=-386/387<br>19-20=-386/387<br>19-20=-386/387<br>19-20=-386/387<br>19-20=-386/387<br>19-20=-386/387<br>19-20=-386/387<br>19-20=-386/387<br>19-20=-386/387<br>19-20=-386/387<br>19-20=-211/224,<br>4-28=-204/221,<br>9-23=-228/100,<br>11-21=-203/186<br>13-19=-210/228<br>red roof live loads l | 4-5=-166/39<br>7-8=-331/73<br>10-11=-31<br>1, 12-13=-3<br>2, 14-15=-5<br>-17=-527/44<br>7, 28-29=-3<br>7, 26-27=-3<br>7, 26-27=-3<br>7, 20-21=-3<br>7, 20-21=-3<br>7, 20-21=-3<br>7, 18-19=-3<br>7<br>7-25=-195<br>5-27=-202<br>3-29=-142<br>10-22=-19<br>5, 12-20=-2<br>3, 14-18=-2 | 14, 5-6=-226/52<br>16, 8-9=-331/73<br>175<br>179/392,<br>17/533,<br>175<br>179/392,<br>17/533,<br>175<br>179/392,<br>1773,<br>179/392,<br>179/392,<br>179/392,<br>179/392,<br>179/392,<br>179/392,<br>170/387,<br>186/387,<br>186/387,<br>186/387,<br>186/387,<br>186/387,<br>196/387,<br>196/387,<br>196/387,<br>196/387,<br>196/387,<br>196/387,<br>196/387,<br>196/387,<br>196/387,<br>196/387,<br>196/387,<br>196/387,<br>196/387,<br>196/387,<br>196/387,<br>196/387,<br>196/387,<br>196/387,<br>196/387,<br>196/387,<br>196/387,<br>196/387,<br>196/387,<br>196/387,<br>196/387,<br>196/387,<br>196/387,<br>196/387,<br>196/387,<br>196/387,<br>196/387,<br>196/387,<br>196/387,<br>196/387,<br>196/387,<br>196/387,<br>196/387,<br>196/387,<br>196/387,<br>196/387,<br>196/387,<br>196/387,<br>196/387,<br>196/387,<br>196/387,<br>196/387,<br>196/387,<br>196/387,<br>196/387,<br>196/387,<br>196/387,<br>196/387,<br>196/387,<br>196/387,<br>196/387,<br>196/387,<br>196/387,<br>196/387,<br>196/387,<br>196/387,<br>196/387,<br>196/387,<br>196/387,<br>196/387,<br>196/387,<br>196/387,<br>196/387,<br>196/387,<br>196/387,<br>196/387,<br>196/387,<br>196/387,<br>196/387,<br>196/387,<br>196/387,<br>196/387,<br>196/387,<br>196/387,<br>196/387,<br>196/387,<br>196/387,<br>196/387,<br>196/387,<br>196/387,<br>196/387,<br>196/387,<br>196/387,<br>196/387,<br>196/387,<br>196/387,<br>196/387,<br>196/387,<br>196/387,<br>196/387,<br>196/387,<br>196/387,<br>196/387,<br>196/387,<br>196/387,<br>196/387,<br>196/387,<br>196/387,<br>196/387,<br>196/387,<br>196/387,<br>196/387,<br>196/387,<br>196/387,<br>196/387,<br>196/387,<br>196/387,<br>196/387,<br>196/387,<br>196/387,<br>196/387,<br>196/387,<br>196/387,<br>196/387,<br>196/387,<br>196/387,<br>196/387,<br>196/387,<br>196/387,<br>196/387,<br>196/387,<br>196/387,<br>196/387,<br>196/387,<br>196/387,<br>196/387,<br>196/387,<br>196/387,<br>196/387,<br>196/387,<br>196/387,<br>196/387,<br>196/387,<br>196/387,<br>196/387,<br>196/387,<br>196/387,<br>196/387,<br>196/387,<br>196/387,<br>196/387,<br>196/387,<br>196/387,<br>196/387,<br>196/387,<br>196/387,<br>196/387,<br>196/387,<br>196/387,<br>196/387,<br>196/387,<br>196/387,<br>196/387,<br>196/387,<br>196/387,<br>196/387,<br>196/387,<br>196/387,<br>196/387,<br>196/387,<br>196/387,<br>196/387,<br>196/387,<br>196/387,<br>196/387,<br>196/387,<br>196/387,<br>196/387,<br>196/387,<br>196/387,<br>196/387,<br>196/387,<br>196/387,<br>196/387,<br>196/387,<br>196/387,<br>196/387,<br>196/387,<br>19 | '                        | brace<br>8) Gat<br>9) This<br>cho<br>10) All H<br>cap<br>11) Pro<br>bea<br>join<br>47 I<br>at jc<br>29,<br>upli<br>join<br>12) This<br>Inte<br>R80<br>13) Gra<br>30 Gat | ced agai<br>le studs<br>s truss h<br>rd live lc<br>bearings<br>acity of s<br>vide me-<br>ring plat<br>t 30, 701<br>b uplift a 30, 701<br>b uplift a 30, 701<br>68 lb up<br>ff at joint<br>t 19 and<br>s truss is<br>rnationa<br>02.10.2 a<br>phical p<br>phical p | inst lat<br>s space<br>as bee<br>bad nois<br>s are as<br>565 ps<br>chanic<br>te capa<br>1 lb up<br>at joint<br>115 lb<br>lift at ju<br>t 21, 12<br>553 lb<br>s desig<br>al Resid<br>and ref<br>urlin re-<br>tation of<br>rd. | heathed from on-<br>eral movement (<br>ed at 1-4-0 oc.<br>en designed for a<br>nconcurrent with<br>ssumed to be SF<br>si.<br>cal connection (by<br>able of withstand<br>lift at joint 17, 12<br>25, 145 lb uplift<br>uplift at joint 28,<br>oint 23, 138 lb up<br>21 lb uplift at joint 18<br>oned in accordan<br>dential Code sec<br>ferenced standar<br>epresentation doo<br>of the purlin alon | e face or securely<br>i.e. diagonal web).<br>10.0 psf bottom<br>any other live loads.<br>No.2 crushing<br>y others) of truss to<br>ing 138 lb uplift at<br>1 lb uplift at joint 24,<br>at joint 26, 118 lb uplift<br>188 lb uplift at joint 24,<br>at joint 26, 118 lb uplift<br>188 lb uplift at joint<br>188 lb uplift at joint<br>188 lb uplift at joint<br>ift at joint 22, 116 lb<br>t 20, 107 lb uplift at<br>ce with the 2018<br>tions R502.11.1 and<br>d ANSI/TPI 1.<br>es not depict the size |
| 29=-188 (LC 9), 30=-138 (LC 8)<br>Max Grav 17=780 (LC 10), 18=616 (LC 11),<br>19=250 (LC 26), 20=258 (LC 20),<br>21=255 (LC 20), 22=251 (LC 20),<br>23=281 (LC 20), 24=510 (LC 12),<br>25=249 (LC 1), 26=264 (LC 19),<br>27=257 (LC 19), 28=252 (LC 19),<br>29=266 (LC 10), 30=265 (LC 20)<br>FORCES (lb) - Maximum Compression/Maximum<br>Tension |                                                                                                                                                                                                                                                                                                                                                        | <ol> <li>Winci AS<br/>Vasd=91i</li> <li>Ke=1.00;</li> <li>exterior (2)</li> <li>Exterior(2)</li> <li>Exterior(2)</li> <li>right expc</li> <li>for memb<br/>Lumber E</li> <li>Truss de<br/>only. For<br/>see Stanc<br/>or consul</li> <li>All plates</li> <li>All plates</li> </ol> | Wind: ASCE 7-16; Vult=115mph (3-second gust)<br>Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=35ft;<br>Ke=1.00; Cat. II; Exp C; Enclosed; MWFRS (envelope)<br>exterior zone and C-C Corner(3E] -0-10-8 to 4-1-8,<br>Exterior(2N) 4-1-8 to 7-4-0, Corner(3R) 7-4-0 to 12-4-0,<br>Exterior(2N) 12-4-0 to 16-10-8 zone; cantilever left and<br>right exposed ; end vertical left and right exposed;C-C<br>for members and forces & MWFRS for reactions shown;<br>Lumber DOL=1.60 plate grip DOL=1.60<br>Truss designed for wind loads in the plane of the truss<br>only. For studs exposed to wind (normal to the face),<br>see Standard Industry Gable End Details as applicable,<br>or consult qualified building designer as per ANSI/TPI 1.<br>All plates are 1.5x4 MT20 unless otherwise indicated.<br>Gable requires continuous bottom chord bearing. |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                          | -                                                                                                                                                                       |                                                                                                                                                                                                                                                                   | PE-2022                                                                                                                                                                                                                      | BER<br>042259                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |

- see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- All plates are MT20 plates unless otherwise indicated. 4)
- 5) All plates are 1.5x4 MT20 unless otherwise indicated.
- 6) Gable requires continuous bottom chord bearing.

16023 Swingley Ridge Rd. Chesterfield, MO 63017 314.434.1200 / MiTek-US.com

|                           |                                            |                                                         |            |       |                                                           | RELEASE FOR CONSTRUCTION                                                                                                                 |
|---------------------------|--------------------------------------------|---------------------------------------------------------|------------|-------|-----------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|
| Job                       | Truss                                      | Truss Type                                              | Qty        | Ply   | Roof - Osage Lot 77                                       | AS NOTED FOR PLAN REVIEW<br>DEVELOPMENT SERVICES<br>161779288                                                                            |
| P230812                   | E2                                         | Common                                                  | 10         | 1     | Job Reference (option                                     |                                                                                                                                          |
| Premier Building Supply ( | (Springhill, KS), Spring Hills, KS - 66083 |                                                         |            |       | g 30 2023 MiTek Industries, In<br>fC?PsB70Hq3NSgPqnL8w3uI |                                                                                                                                          |
|                           | -0-1                                       | 0-8 7-4-0                                               |            | -8-12 | 16-0-0 16                                                 | 5-10-8                                                                                                                                   |
|                           | 0-1                                        | 0-8 7-4-0                                               | 5-         | 4-12  | 3-3-4 0                                                   | -10-8                                                                                                                                    |
|                           |                                            |                                                         | 4x6 =      |       |                                                           |                                                                                                                                          |
|                           | TT                                         | 9 <sup>12</sup>                                         | 3          | ~     |                                                           |                                                                                                                                          |
|                           | 7-6-4<br>7-5-0                             | 10<br>6x6=                                              |            |       | 1.5x4 =<br>11<br>4                                        |                                                                                                                                          |
|                           |                                            | 2                                                       |            |       | Ì                                                         | 5<br>6 <del>1</del> |
|                           | -                                          | ) <del>9<br/>                                    </del> | 8<br>3x8 = |       | 5x1                                                       |                                                                                                                                          |
| Scale = 1:51.4            |                                            | 7-4-0                                                   |            |       | -0-0<br>8-0                                               |                                                                                                                                          |

Plate Offsets (X, Y): [7:Edge.0-3-8]

| Plate Offsets (                                                               | (X, Y): [7:Edge,0-3-8]                                                                                                                                     |                                                                                         |                                                 |                                                                                     |                                                                   |                                                   |                              |                          |                               |                          | -              |                        |
|-------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|-------------------------------------------------|-------------------------------------------------------------------------------------|-------------------------------------------------------------------|---------------------------------------------------|------------------------------|--------------------------|-------------------------------|--------------------------|----------------|------------------------|
| Loading<br>TCLL (roof)<br>TCDL<br>BCLL                                        | (psf)<br>25.0<br>10.0<br>0.0                                                                                                                               | <b>Spacing</b><br>Plate Grip DOL<br>Lumber DOL<br>Rep Stress Incr                       | 2-0-0<br>1.15<br>1.15<br>YES                    | CSI<br>TC<br>BC<br>WB                                                               | 0.73<br>0.61<br>0.23                                              | DEFL<br>Vert(LL)<br>Vert(CT)<br>Horz(CT)          | in<br>-0.12<br>-0.23<br>0.01 | (loc)<br>7-8<br>7-8<br>7 | l/defl<br>>999<br>>825<br>n/a | L/d<br>240<br>180<br>n/a | PLATES<br>MT20 | <b>GRIP</b><br>197/144 |
| BCDL                                                                          | 10.0                                                                                                                                                       | Code                                                                                    | IRC2018/TF                                      | PI2014 Mat                                                                          | rix-S                                                             |                                                   |                              |                          |                               |                          | Weight: 77 lb  | FT = 20%               |
| LUMBER<br>TOP CHORD<br>BOT CHORD<br>WEBS<br>BRACING<br>TOP CHORD<br>BOT CHORD | 2x4 SP No.2<br>2x3 SPF No.2 *Exce<br>Structural wood she<br>5-0-6 oc purlins, ex                                                                           | athing directly appli cept end verticals.                                               | be<br>9<br>No.2 6) Th<br>In<br>ed or Ri<br>LOAD | earing plate capa<br>and 121 lb uplift<br>his truss is design<br>ternational Resign | ned in accordance v<br>lential Code section<br>erenced standard A | 110 lb uplift a<br>vith the 2018<br>s R502.11.1 a | it joint                     |                          |                               |                          |                |                        |
| REACTIONS                                                                     | 0                                                                                                                                                          | 9=0-3-8                                                                                 |                                                 |                                                                                     |                                                                   |                                                   |                              |                          |                               |                          |                |                        |
|                                                                               | Max Horiz 9=-243 (L                                                                                                                                        |                                                                                         |                                                 |                                                                                     |                                                                   |                                                   |                              |                          |                               |                          |                |                        |
|                                                                               | Max Uplift 7=-121 (L<br>Max Grav 7=778 (L0                                                                                                                 |                                                                                         | 12)                                             |                                                                                     |                                                                   |                                                   |                              |                          |                               |                          |                |                        |
| FORCES                                                                        | (lb) - Maximum Corr                                                                                                                                        | ,, , ,                                                                                  |                                                 |                                                                                     |                                                                   |                                                   |                              |                          |                               |                          |                |                        |
|                                                                               | Tension                                                                                                                                                    |                                                                                         |                                                 |                                                                                     |                                                                   |                                                   |                              |                          |                               |                          |                |                        |
| TOP CHORD                                                                     | 1-2=0/43, 2-3=-687/<br>4-5=-832/206, 5-6=0<br>5-7=-688/210                                                                                                 | , , ,                                                                                   |                                                 |                                                                                     |                                                                   |                                                   |                              |                          |                               |                          |                |                        |
| BOT CHORD                                                                     | 8-9=-245/362, 7-8=-                                                                                                                                        |                                                                                         |                                                 |                                                                                     |                                                                   |                                                   |                              |                          |                               |                          |                |                        |
| WEBS                                                                          | 3-8=-3/323, 4-8=-23                                                                                                                                        | 9/226, 2-8=-53/328                                                                      |                                                 |                                                                                     |                                                                   |                                                   |                              |                          |                               |                          |                |                        |
| NOTES<br>1) Unbalance                                                         | ed roof live loads have                                                                                                                                    | been considered fo                                                                      | r                                               |                                                                                     |                                                                   |                                                   |                              |                          |                               |                          |                |                        |
| this design                                                                   |                                                                                                                                                            |                                                                                         |                                                 |                                                                                     |                                                                   |                                                   |                              |                          |                               |                          |                | and a                  |
| Vasd=91n<br>Ke=1.00;<br>exterior zc<br>Interior (1)                           | CE 7-16; Vult=115mph<br>nph; TCDL=6.0psf; BC<br>Cat. II; Exp C; Enclose<br>one and C-C Exterior(2<br>) 4-1-8 to 7-4-0, Exterior<br>) 12-4-0 to 16-10-8 zor | DL=6.0psf; h=35ft;<br>d; MWFRS (envelo<br>PE) -0-10-8 to 4-1-8,<br>or(2R) 7-4-0 to 12-4 | -0,                                             |                                                                                     |                                                                   |                                                   |                              |                          | -                             |                          | STATE OF I     |                        |
|                                                                               | sed ; end vertical left a                                                                                                                                  |                                                                                         |                                                 |                                                                                     |                                                                   |                                                   |                              |                          |                               | N/*                      | 11             |                        |

- for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. All bearings are assumed to be SP No.2 crushing 3)
- 4) capacity of 565 psi.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)



314.434.1200 / MiTek-US.com

MBER

PE-2022042259

OFFESSIONAL ET

Corona -

|                           |                                                                                                                                     |            |                   |     |     |                         | RELEASE FOR CONSTRUCTION                                      |
|---------------------------|-------------------------------------------------------------------------------------------------------------------------------------|------------|-------------------|-----|-----|-------------------------|---------------------------------------------------------------|
| Job                       | Truss                                                                                                                               | Truss Type |                   | Qty | Ply | Roof - Osage Lot 77     | AS NOTED FOR PLAN REVIEW<br>DEVELOPMENT SERVICES<br>161779289 |
| P230812                   | E3                                                                                                                                  | Common     |                   | 8   | 1   | Job Reference (optional | LEE'S SUMMIT MISSOURI                                         |
| Premier Building Supply ( | Premier Building Supply (Springhill, KS), Spring Hills, KS - 66083,<br>DisklbY_10_gexrEDTRTkrEAlzxFQX-RfC?PsB70Hq3NSgPqnL8w3ulTXbGK |            |                   |     |     |                         |                                                               |
|                           |                                                                                                                                     | 0.10.8     | D.wib1_10_gexiLD1 |     |     |                         |                                                               |



| Scale = 1:51.4   |     |                 |
|------------------|-----|-----------------|
| Plata Offcate (V | V١٠ | [5·0 5 2 0 1 9] |

| Loading     | (psf) | Spacing         | 2-0-0           | CSI      |      | DEFL     | in    | (loc) | l/defl | L/d | PLATES        | GRIP     |
|-------------|-------|-----------------|-----------------|----------|------|----------|-------|-------|--------|-----|---------------|----------|
| TCLL (roof) | 25.0  | Plate Grip DOL  | 1.15            | тс       | 0.73 | Vert(LL) | -0.12 | 6-7   | >999   | 240 | MT20          | 197/144  |
| TCDL        | 10.0  | Lumber DOL      | 1.15            | BC       | 0.60 | Vert(CT) | -0.22 | 6-7   | >841   | 180 | MT18HS        | 244/190  |
| BCLL        | 0.0   | Rep Stress Incr | YES             | WB       | 0.24 | Horz(CT) | 0.01  | 6     | n/a    | n/a |               |          |
| BCDL        | 10.0  | Code            | IRC2018/TPI2014 | Matrix-S |      |          |       |       |        |     | Weight: 75 lb | FT = 20% |

16-0-0

8-8-0

LUMBER

TOP CHORD

#### BOT CHORD 2x4 SP No.2 2x3 SPF No.2 \*Except\* 8-2,6-5:2x4 SP No.2 WEBS BRACING TOP CHORD Structural wood sheathing directly applied or 5-4-12 oc purlins, except end verticals. BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing.

2x4 SP No.2

7-5-0

- (size) REACTIONS 6=0-3-8, 8=0-3-8 Max Horiz 8=-229 (LC 10) Max Uplift 6=-95 (LC 13), 8=-110 (LC 12) Max Grav 6=705 (LC 1), 8=781 (LC 1) FORCES (Ib) - Maximum Compression/Maximum Tension TOP CHORD 1-2=0/43, 2-3=-688/162, 3-4=-632/182, 4-5=-839/208, 2-8=-713/202, 5-6=-610/160 BOT CHORD 7-8=-254/353, 6-7=-133/591
- WFBS 3-7=-3/323, 4-7=-252/229, 2-7=-53/328
- NOTES
- Unbalanced roof live loads have been considered for 1) this design
- 2) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=35ft; Ke=1.00; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) -0-10-8 to 4-1-8, Interior (1) 4-1-8 to 7-4-0, Exterior(2R) 7-4-0 to 12-4-0, Interior (1) 12-4-0 to 15-10-4 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- All plates are MT20 plates unless otherwise indicated. 3)
- This truss has been designed for a 10.0 psf bottom 4)
- chord live load nonconcurrent with any other live loads. All bearings are assumed to be SP No.2 crushing 5) capacity of 565 psi.

- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 110 lb uplift at joint 8 and 95 lb uplift at joint 6.
- This truss is designed in accordance with the 2018 7) International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard

7-4-0

7-4-0



16023 Swingley Ridge Rd. Chesterfield MO 63017 314.434.1200 / MiTek-US.com

|         |       |              |     |       |                         | RELEASE FOR CONSTRUCTION          |
|---------|-------|--------------|-----|-------|-------------------------|-----------------------------------|
| Job     | Truss | Truss Type   | Qty | Plv   | Roof - Osage Lot 77     | AS NOTED FOR PLAN REVIEW          |
| 000     | 11033 |              | Quy | l' ly | Rool - Osage Lot II     | DEVELOPMENT SERVICES<br>161779290 |
| P230812 | E4    | Roof Special | 4   | 1     | Job Reference (optional |                                   |
|         |       |              | -   | -     |                         |                                   |

Run: 8.63 S Aug 30 2023 Print: 8.630 S Aug 30 2023 MiTek Industries, Inc. Ved Nov 4 143:43 6/29 23 ID:HY28PNq7N0R8tSE4HnNes3zxFCa-RfC?PsB70Hq3NSgPqnL8w3ulTXb4 KWrCDoir J 42:49 6/29 23



|                                                         | 1-6-0 | 7-4-0  | 16-0-0 |  |
|---------------------------------------------------------|-------|--------|--------|--|
|                                                         | 1-6-0 | 5-10-0 | 8-8-0  |  |
| Scale = 1:52.7                                          |       |        |        |  |
| Plate Offsets (X, Y): [2:0-2-0,0-1-12], [6:0-5-3,0-1-8] |       |        |        |  |

| Loading     | (psf) | Spacing         | 2-0-0           | CSI      |      | DEFL     | in    | (loc) | l/defl | L/d | PLATES        | GRIP     |
|-------------|-------|-----------------|-----------------|----------|------|----------|-------|-------|--------|-----|---------------|----------|
| TCLL (roof) | 25.0  | Plate Grip DOL  | 1.15            | тс       | 0.53 | Vert(LL) | -0.13 | 7-8   | >999   | 240 | MT20          | 197/144  |
| TCDL        | 10.0  | Lumber DOL      | 1.15            | BC       | 0.73 | Vert(CT) | -0.26 | 7-8   | >731   | 180 | MT18HS        | 244/190  |
| BCLL        | 0.0   | Rep Stress Incr | YES             | WB       | 0.24 | Horz(CT) | 0.04  | 7     | n/a    | n/a |               |          |
| BCDL        | 10.0  | Code            | IRC2018/TPI2014 | Matrix-S |      |          |       |       |        |     | Weight: 76 lb | FT = 20% |

LUMBER TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.2 2x3 SPF No.2 \*Except\* 11-2,7-6:2x4 SP No.2 WEBS BRACING Structural wood sheathing directly applied or TOP CHORD 5-5-0 oc purlins, except end verticals. BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing. REACTIONS 7= Mechanical, 11=0-3-8 (size) Max Horiz 11=209 (LC 11) Max Uplift 7=-101 (LC 13), 11=-115 (LC 12) Max Grav 7=705 (LC 1), 11=781 (LC 1) FORCES (Ib) - Maximum Compression/Maximum Tension TOP CHORD 1-2=0/43, 2-3=-594/124, 3-4=-636/184, 4-5=-626/173, 5-6=-838/213, 2-11=-510/129, 6-7=-607/155 BOT CHORD 10-11=-119/491, 9-10=0/85, 3-10=-183/93, 8-9=-125/452.7-8=-131/593 WEBS 3-8=-56/163, 4-8=-36/321, 5-8=-255/230

#### NOTES

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=35ft; Ke=1.00; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) -0-10-8 to 4-1-8, Interior (1) 4-1-8 to 7-4-0, Exterior(2R) 7-4-0 to 12-4-0, Interior (1) 12-4-0 to 15-10-4 zone; cantilever left and right exposed; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- All plates are MT20 plates unless otherwise indicated.
   This truss has been designed for a 10.0 psf bottom
- chord live load nonconcurrent with any other live loads.5) Bearings are assumed to be: Joint 11 SP No.2 crushing
- Bearings are assumed to be: Joint 11 SP No.2 crushing capacity of 565 psi.

Refer to girder(s) for truss to truss connections.
 Provide mechanical connection (by others) of tru

Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 115 lb uplift at joint

11 and 101 lb uplift at joint 7.

- 8) This truss is designed in accordance with the 2018
  - International Residential Code sections R502.11.1 and

R802.10.2 and referenced standard ANSI/TPI 1. LOAD CASE(S) Standard



16023 Swingley Ridge Rd. Chesterfield MO 63017

314.434.1200 / MiTek-US.com

|                                        |                                                                               |                                           |                                |                    |                         |                    |                                          |                     | RELEA                 | SE FOR CONSTRUCTION           |
|----------------------------------------|-------------------------------------------------------------------------------|-------------------------------------------|--------------------------------|--------------------|-------------------------|--------------------|------------------------------------------|---------------------|-----------------------|-------------------------------|
| Job                                    | Truss                                                                         | Truss Type                                |                                | Qty                | Ply                     | Roof -             | Osage Lot                                | 77                  |                       | ELOPMENT SERVICES             |
| P230812                                | E5                                                                            | Roof Special                              |                                | 2                  | 1                       | Job Re             | ference (o                               | ptional             | LEE                   | I61779291<br>SUMMIT, MISSOURI |
| Premier Building Supply                | y (Springhill, KS), Spring Hills, KS                                          |                                           | Run: 8.63 S Au<br>ID:?MLvUUN2? |                    |                         |                    |                                          |                     |                       |                               |
|                                        |                                                                               | 1-7-12<br>-0-10-8<br>                     | 7-4-0<br>5-8-4                 |                    | <u>2-8-12</u><br>5-4-12 |                    | <u>16-0-0</u><br>3-3-4                   | 16-10-<br>0-10-     |                       |                               |
|                                        |                                                                               | 0 10 0                                    |                                | 4x4 =<br>4         |                         |                    |                                          | 0 10 1              | 5                     |                               |
|                                        | 7-6-4<br>6-5-0<br>1-0-0                                                       | 3x8 ¢<br>13<br>3x8 ¢<br>13<br>1<br>1<br>1 |                                | 9<br>3x8=          |                         | 1.5x4 a            |                                          | 4x6 II<br>6<br>3x4= | 7 0                   |                               |
| Scale = 1:52.7                         |                                                                               | <u>1-6-0</u><br>  1-6-0                   | 7-4-0<br>5-10-0                |                    |                         | <u>-0-0</u><br>8-0 |                                          | $\neg$              |                       |                               |
| Plate Offsets (X, Y):                  | [2:0-2-0,0-1-12]                                                              |                                           |                                |                    |                         |                    |                                          |                     |                       |                               |
| Loading<br>TCLL (roof)<br>TCDL<br>BCLL | (psf) <b>Spacing</b><br>25.0 Plate Grip 1<br>10.0 Lumber DC<br>0.0 Rep Stress | L 1.15                                    | CSI<br>TC<br>BC<br>WB          | 0.69 Ve<br>0.72 Ve |                         |                    | c) l/defl<br>-9 >999<br>-9 >763<br>8 n/a | 240<br>180          | <b>PLATES</b><br>MT20 | <b>GRIP</b><br>197/144        |

LUMBER

Т

BRACING

TOP CHORD

BOT CHORD

**REACTIONS** (size)

BCDL

| TOP CHORD | 2x4 SP No.2                             |
|-----------|-----------------------------------------|
| BOT CHORD | 2x4 SP No.2                             |
| WEBS      | 2x3 SPF No.2 *Except* 8-6:2x6 SPF No.2. |

Max Horiz 12=218 (LC 11)

12-2:2x4 SP No.2

bracing.

Tension

10.0

Code

Structural wood sheathing directly applied or 4-10-1 oc purlins, except end verticals. Rigid ceiling directly applied or 10-0-0 oc

8=0-3-8, 12=0-3-8

(lb) - Maximum Compression/Maximum

1-2=0/43, 2-3=-588/125, 3-4=-630/187, 4-5=-620/177, 5-6=-815/213, 6-7=0/46, 6-8=-688/212 2-12=-505/131

11-12=-105/498, 10-11=0/85, 3-11=-183/92,

4-9=-40/315, 3-9=-57/166, 5-9=-227/221

Max Uplift 8=-130 (LC 13), 12=-114 (LC 12) Max Grav 8=781 (LC 1), 12=774 (LC 1)

| 5) | Provide mechanical connection (by others) of truss to        |
|----|--------------------------------------------------------------|
|    | bearing plate capable of withstanding 114 lb uplift at joint |
|    | 12 and 130 lb unlift at joint 8                              |

2 and 130 lb uplift at joint 8.

Matrix-S

This truss is designed in accordance with the 2018 6) International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard

IRC2018/TPI2014

#### WEBS NOTES

FORCES

TOP CHORD

BOT CHORD

1) Unbalanced roof live loads have been considered for this design.

9-10=-114/457.8-9=-80/560

- Wind: ASCE 7-16; Vult=115mph (3-second gust) 2) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=35ft; Ke=1.00; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) -0-10-8 to 4-1-8, Interior (1) 4-1-8 to 7-4-0, Exterior(2R) 7-4-0 to 12-4-0, Interior (1) 12-4-0 to 16-10-8 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- This truss has been designed for a 10.0 psf bottom 3) chord live load nonconcurrent with any other live loads.
- All bearings are assumed to be SP No.2 crushing 4) capacity of 565 psi.

#### OF MISSO E NATHANIEL FOX ER PE-2022042259 SSIONAL E November 2,2023

Weight: 78 lb

FT = 20%



|                         |                                     |                                                                                                                                           |                                                                                                  |                                                             |                                                              | RELEASE FOR CONSTRUCTION                                      |
|-------------------------|-------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|-------------------------------------------------------------|--------------------------------------------------------------|---------------------------------------------------------------|
| Job                     | Truss                               | Truss Type                                                                                                                                | Qty                                                                                              | Ply                                                         | Roof - Osage Lot 77                                          | AS NOTED FOR PLAN REVIEW<br>DEVELOPMENT SERVICES<br>161779292 |
| P230812                 | E6                                  | Roof Special Supported Gable                                                                                                              | 2                                                                                                | 1                                                           | Job Reference (optional)                                     |                                                               |
| Premier Building Supply | / (Springhill, KS), Spring Hills, ł | ID:n_xeRUIj5                                                                                                                              |                                                                                                  | 30 2023 MiTek Industries, Inc. V<br>70Hq3NSgPqnL8w3uITXbGKV |                                                              |                                                               |
|                         |                                     | 1-7-12<br>-0-10-8 7-4-0<br>0-10-81-7-12 5-8-4                                                                                             |                                                                                                  | <u>16-0</u><br>8-8                                          |                                                              | _                                                             |
|                         |                                     |                                                                                                                                           | 4x4 <b>=</b>                                                                                     |                                                             |                                                              |                                                               |
|                         | 7-6-4                               | 9 <sup>12</sup><br>7<br>6<br>1 -2-8<br>3x4    -2-8<br>3x4    -2-8<br>3x4    -2-8<br>3x4    -2-8<br>3x4    -2-8<br>30<br>29<br>28 27 26 25 | 8<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9 |                                                             | <sup>2</sup> 33 <sub>12</sub><br>13 3×4 II<br>14 14<br>14 15 |                                                               |

|                                        | <u> </u> 1-6-0    | 16-0-0 |  |
|----------------------------------------|-------------------|--------|--|
|                                        | 1-6-0             | 14-6-0 |  |
| Scale = 1:51.4                         |                   |        |  |
| Plate Offsets (X, Y): [15:0-2-0.0-1-4] | . [17:Edge.0-2-8] |        |  |

3x4 II

|                                                                            | (X, Y): [15:0-2-0,0-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 4j, [17.Euge,0-2-6]                                                       |                                      |                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                      |     |                            |                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                          |                                 |                                                       |  |
|----------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------|--------------------------------------|-----------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|-----|----------------------------|-------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|---------------------------------|-------------------------------------------------------|--|
| Loading<br>TCLL (roof)<br>TCDL<br>BCLL<br>BCDL                             | (psf)<br>25.0<br>10.0<br>0.0<br>10.0                                                                                                                                                                                                                                                                                                                                                                                                                                                     | <b>Spacing</b><br>Plate Grip DOL<br>Lumber DOL<br>Rep Stress Incr<br>Code | 4-0-0<br>1.15<br>1.15<br>NO<br>IRC20 | 18/TPI2014                                                      | CSI<br>TC<br>BC<br>WB<br>Matrix-R                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.19<br>0.17<br>0.55 | ( ) | in<br>0.00<br>0.00<br>0.02 | (loc)<br>30-31<br>30-31<br>17 | l/defl<br>>999<br>>999<br>n/a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | L/d<br>240<br>180<br>n/a | PLATES<br>MT20<br>Weight: 98 lb | <b>GRIP</b><br>244/190<br>FT = 20%                    |  |
| LUMBER<br>TOP CHORD<br>BOT CHORD<br>WEBS<br>OTHERS<br>BRACING<br>TOP CHORD | PP CHORD       2x4 SP No.2         DT CHORD       2x4 SP No.2         EBS       2x4 SP No.2 *Except* 15-17:2x3 SPF No.2         'HERS       2x3 SPF No.2         CACING       2-0-0 oc purlins (6-0-0 max.), except end verticals (Switched from sheeted: Spacing > 2-8-0).                                                                                                                                                                                                              |                                                                           |                                      |                                                                 | 2-31=-327/212, 1-2=0/86, 2-3=-264/258,<br>3-4=-282/305, 4-5=-265/319, 5-6=-231/380,<br>6-7=-263/454, 7-8=-298/501, 8-9=-298/494,<br>9-10=-262/426, 10-11=-192/304,<br>11-12=-130/211, 12-13=-85/141,<br>13-14=-106/105, 14-15=-190/137,<br>15-16=0/82, 15-17=-263/112<br>30-31=-214/245, 29-30=-180/157,<br>3-30=-129/121, 28-29=-143/174,<br>20-20-140/174, 00-27, 440/174,<br>20-20-140/174, 00-27, 440/174,<br>20-20-140/174,<br>20-20-140/174,<br>20-20-140/174,<br>20-20-140/174,<br>20-20-140/174,<br>20-20-140/174,<br>20-20-140/174,<br>20-20-140/174,<br>20-20-140/174,<br>20-20-140/174,<br>20-20-140/174,<br>20-20-140/174,<br>20-20-140/174,<br>20-20-140/174,<br>20-20-140/174,<br>20-20-140/174,<br>20-20-140/174,<br>20-20-140/174,<br>20-20-140/174,<br>20-20-140/174,<br>20-20-140/174,<br>20-20-140/174,<br>20-20-140/174,<br>20-20-140/174,<br>20-20-140/174,<br>20-20-140/174,<br>20-20-140/174,<br>20-20-140/174,<br>20-20-140/174,<br>20-20-140/174,<br>20-20-140/174,<br>20-20-140/174,<br>20-20-140/174,<br>20-20-140/174,<br>20-20-140/174,<br>20-20-140/174,<br>20-20-140/174,<br>20-20-140/174,<br>20-20-140/174,<br>20-20-140/174,<br>20-20-140/174,<br>20-20-140/174,<br>20-20-140/174,<br>20-20-140/174,<br>20-20-140/174,<br>20-20-140/174,<br>20-20-140/174,<br>20-20-140/174,<br>20-20-140/174,<br>20-20-140/174,<br>20-20-140/174,<br>20-20-140/174,<br>20-20-140/174,<br>20-20-140/174,<br>20-20-140/174,<br>20-20-140/174,<br>20-20-140/174,<br>20-20-140/174,<br>20-20-140/174,<br>20-20-140/174,<br>20-20-140/174,<br>20-20-140/174,<br>20-20-140/174,<br>20-20-140/174,<br>20-20-140/174,<br>20-20-140/174,<br>20-20-140/174,<br>20-20-140/174,<br>20-20-140/174,<br>20-20-140/174,<br>20-20-140/174,<br>20-20-140/174,<br>20-20-140/174,<br>20-20-140/174,<br>20-20-140/174,<br>20-20-140/174,<br>20-20-140/174,<br>20-20-140/174,<br>20-20-140/174,<br>20-20-140/174,<br>20-20-140/174,<br>20-20-140/174,<br>20-20-140/174,<br>20-20-140/174,<br>20-20-140/174,<br>20-20-140/174,<br>20-20-140/174,<br>20-20-140/174,<br>20 |                      |     |                            |                               | <ol> <li>5) Truss to be fully sheathed from one face or securely braced against lateral movement (i.e. diagonal web).</li> <li>6) Gable studs spaced at 1-4-0 oc.</li> <li>7) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.</li> <li>8) All bearings are assumed to be SP No.2 crushing capacity of 565 psi.</li> <li>9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 184 lb uplift at</li> </ol>                                                                       |                          |                                 |                                                       |  |
| BOT CHORD                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                           | <i>.</i> ,.                          | 27-28=-143/174, 26-27=-143/174, 25-26=-143/174, 24-25=-143/174, |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                      |     |                            |                               | lb uplift a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | at joint                 | 24, 68 lb uplift a              | 2 lb uplift at joint 29,<br>t joint 25, 140 lb uplift |  |
| REACTIONS                                                                  | REACTIONS         (size)         17=14-6-0, 18=14-6-0, 19=14-6-0, 20=14-6-0, 20=14-6-0, 21=14-6-0, 22=14-6-0, 23=14-6-0, 23=14-6-0, 23=14-6-0, 22=14-6-0, 29=14-6-0, 29=14-6-0, 29=14-6-0, 32=14-6-0, 32=14-6-0, 32=14-6-0, 31=431 (LC 11)           Max Horiz         31=431 (LC 11)           Max Uplift         17=-160 (LC 9), 18=-261 (LC 13), 19=-111 (LC 13), 20=-120 (LC 13), 21=-116 (LC 13), 22=-143 (LC 13), 23=-53 (LC 13), 23=-53 (LC 11), 25=-68 (LC 12), 26=-140 (LC 12), |                                                                           |                                      | NEBS<br>NOTES                                                   | 23-24=-143/174, 22-23=-143/174,<br>21-22=-143/174, 20-21=-143/174,<br>19-20=-143/174, 18-19=-143/174,<br>17-18=-143/174<br>EBS 8-24=-451/192, 7-25=-220/101,<br>6-26=-201/173, 5-27=-207/150,<br>4-28=-136/98, 9-23=-197/85,<br>10-22=-208/175, 11-21=-202/149,<br>12-20=-202/148, 13-19=-209/155,<br>14-18=-170/159<br>OTES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                      |     |                            |                               | <ul> <li>at joint 26, 113 lb uplift at joint 27, 262 lb uplift at joint 28, 53 lb uplift at joint 23, 143 lb uplift at joint 22, 1 uplift at joint 12, 120 lb uplift at joint 20, 111 lb upli joint 19 and 261 lb uplift at joint 18.</li> <li>10) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 R802.10.2 and referenced standard ANSI/TPI 1.</li> <li>11) Graphical purlin representation does not depict the or the orientation of the purlin along the top and/or bottom chord.</li> <li>LOAD CASE(S) Standard</li> </ul> |                          |                                 |                                                       |  |
| FORCES                                                                     | 27=-113 (LC 12), 28=-262 (LC 13),<br>29=-202 (LC 11), 31=-184 (LC 8)<br>Max Grav 17=329 (LC 19), 18=246 (LC 11),<br>19=259 (LC 20), 20=256 (LC 20),<br>21=255 (LC 20), 22=262 (LC 20),<br>23=250 (LC 20), 24=465 (LC 13),<br>25=274 (LC 19), 26=252 (LC 19),<br>27=267 (LC 19), 28=240 (LC 20),<br>29=307 (LC 10), 31=392 (LC 20)<br>ORCES (lb) - Maximum Compression/Maximum<br>Tension                                                                                                 |                                                                           |                                      |                                                                 | adains a root interfeated inte                                                                                                                                                                                                                       |                      |     |                            |                               | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | K                        | STATE OF                        | x<br>dr Hac                                           |  |

or consult qualified building designer as per ANSI/TPI 1.

4) All plates are 1.5x4 MT20 unless otherwise indicated.

STONAL EN GIN Com November 2,2023

**Tek**° 16023 Swingley Ridge Rd. Chesterfield, MO 63017 314.434.1200 / MiTek-US.com

3x4 II

|                         |                                             |                        |                         |            |     |                                                           | RELEASE FOR CONSTRUCTION                                      |
|-------------------------|---------------------------------------------|------------------------|-------------------------|------------|-----|-----------------------------------------------------------|---------------------------------------------------------------|
| Job                     | Truss                                       | Truss Type             |                         | Qty        | Ply | Roof - Osage Lot 77                                       | AS NOTED FOR PLAN REVIEW<br>DEVELOPMENT SERVICES<br>161779293 |
| P230812                 | G1                                          | Common Suppo           | orted Gable             | 2          | 1   | Job Reference (optiona                                    |                                                               |
| Premier Building Supply | (Springhill, KS), Spring Hills, KS - 66083, |                        |                         |            |     | 30 2023 MiTek Industries, Inc.<br>sB70Hq3NSgPqnL8w3uITXb0 |                                                               |
|                         |                                             | -0-10-8                | <u>5-10-0</u><br>5-10-0 |            |     | <u> </u>                                                  | 12-6-8                                                        |
|                         |                                             | ბ-10-8                 | 5-10-0                  | ·          |     | 5-10-0                                                    | b-10-8                                                        |
|                         |                                             |                        |                         | 4x4 =<br>7 |     |                                                           |                                                               |
|                         | 5-10-10<br>5-10-5                           | 4x4 II<br>2<br>1<br>22 |                         |            | 824 | 9<br>8<br>10                                              | 12                                                            |

18

17

16

15

3x6 =

11-8-0

21

3x6 =

20

19

#### Plate Offsets (X, Y): [2:0-2-0,0-1-12], [12:0-2-0,0-1-12]

Scale = 1:40.6

|                                                | X, Y): [2:0-2-0,0-1-12                                                                                                                                                                                                                             | 2], [12:0-2-0,0-1-12]                                                                                                                                                                                                                                                                 |                                                                                      |                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                     |                                 |                                                           |                                                    |                                                                        |                                                                                   |
|------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------|---------------------------------|-----------------------------------------------------------|----------------------------------------------------|------------------------------------------------------------------------|-----------------------------------------------------------------------------------|
| Loading<br>TCLL (roof)<br>TCDL<br>BCLL<br>BCDL | (psf)<br>25.0<br>10.0<br>0.0<br>10.0                                                                                                                                                                                                               | Spacing<br>Plate Grip DOL<br>Lumber DOL<br>Rep Stress Incr<br>Code                                                                                                                                                                                                                    | 4-0-0<br>1.15<br>1.15<br>NO<br>IRC2018                                               | 8/TPI2014                                                                                                                                                                                                                                                                                                             | <b>CSI</b><br>TC<br>BC<br>WB<br>Matrix-R                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.26<br>0.13<br>0.39                                                                                                                                                                                            | DEFL<br>Vert(LL)<br>Vert(CT)<br>Horz(CT)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | in<br>n/a<br>n/a<br>0.00                            | (loc)<br>-<br>-<br>14           | l/defl<br>n/a<br>n/a<br>n/a                               | L/d<br>999<br>999<br>n/a                           | PLATES<br>MT20<br>Weight: 66 lb                                        | <b>GRIP</b><br>197/144<br>FT = 20%                                                |
|                                                | verticals<br>(Switched from she,<br>Rigid ceiling directly<br>bracing.<br>(size) 14=11-8-<br>17=11-8-<br>20=11-8-<br>Max Horiz 22=376 (I<br>Max Uplift 14=-138<br>16=-119<br>19=-103<br>21=-266 (I<br>Max Grav 14=355 (I<br>16=247 (I<br>18=348 (I | 0, 15=11-8-0, 16=11-4<br>0, 18=11-8-0, 19=11-4<br>0, 21=11-8-0, 22=11-4<br>LC 11)<br>(LC 13), 15=-255 (LC 1<br>(LC 12), 15=-255 (LC 1<br>(LC 12), 20=-116 (LC<br>(LC 12), 22=-176 (LC<br>LC 12), 15=348 (LC 2<br>LC 26), 17=274 (LC 2<br>LC 22), 19=279 (LC 1<br>LC 25), 21=368 (LC 1 | N(<br>1 1)<br>). 2)<br>3-0,<br>3-0<br>3),<br>13),<br>12),<br>8) 3)<br>0),<br>9), (1) | DTES<br>Unbalanced<br>this design.<br>Wind: ASCE<br>Vasd=91mph<br>Ke=1.00; Car<br>exterior zone<br>Exterior Zone<br>Exterior(2N)<br>10-10-0, Exter<br>left and right<br>exposed;C-C<br>reactions sho<br>DOL=1.60<br>Truss design<br>only. For stu<br>see Standarc<br>or consult qu<br>All plates are<br>Gable require | 7-18=-532/175, 6-<br>5-20=-195/299, 4-2<br>3-22=-316/252, 8-<br>9-16=-197/300, 10<br>11-14=-267/202<br>roof live loads hav<br>7-16; Vult=115mp<br>n; TCDL=6.0psf; B<br>t. II; Exp C; Enclos<br>and C-C Corner(<br>4-1-8 to 5-10-0, C<br>erior(2N) 10-10-0 t<br>exposed ; end ver<br>f or members and<br>pwn; Lumber DOL:<br>ned for wind loads<br>ds exposed to wir<br>d Industry Gable E<br>alified building de:<br>1.5x4 MT20 unle:<br>s continuous bott | 21=-267<br>17=-218<br>-15=-25<br>re been<br>oh (3-sec<br>CDL=6.<br>sed; MW<br>3E) -0-1<br>so 12-6-8<br>trical left<br>forces<br>= 1.60 pl<br>in the p<br>nd (norm<br>nd Deta<br>signer a<br>ss other<br>om choi | /338,<br>/176,<br>/176,<br>/176,<br>/176,<br>/176,<br>/176,<br>/176,<br>/176,<br>/176,<br>/176,<br>/176,<br>/176,<br>/176,<br>/176,<br>/176,<br>/176,<br>/176,<br>/176,<br>/176,<br>/176,<br>/176,<br>/176,<br>/176,<br>/176,<br>/176,<br>/176,<br>/176,<br>/176,<br>/176,<br>/176,<br>/176,<br>/176,<br>/176,<br>/176,<br>/176,<br>/176,<br>/176,<br>/176,<br>/176,<br>/176,<br>/176,<br>/176,<br>/176,<br>/176,<br>/176,<br>/176,<br>/176,<br>/176,<br>/176,<br>/176,<br>/176,<br>/176,<br>/176,<br>/176,<br>/176,<br>/176,<br>/176,<br>/176,<br>/176,<br>/176,<br>/176,<br>/176,<br>/176,<br>/176,<br>/176,<br>/176,<br>/176,<br>/176,<br>/176,<br>/176,<br>/176,<br>/176,<br>/176,<br>/176,<br>/176,<br>/176,<br>/176,<br>/176,<br>/176,<br>/176,<br>/176,<br>/176,<br>/176,<br>/176,<br>/176,<br>/176,<br>/176,<br>/176,<br>/176,<br>/176,<br>/176,<br>/176,<br>/176,<br>/176,<br>/176,<br>/176,<br>/176,<br>/176,<br>/176,<br>/176,<br>/176,<br>/176,<br>/176,<br>/176,<br>/176,<br>/176,<br>/176,<br>/176,<br>/176,<br>/176,<br>/176,<br>/176,<br>/176,<br>/176,<br>/176,<br>/176,<br>/176,<br>/176,<br>/176,<br>/176,<br>/176,<br>/176,<br>/176,<br>/176,<br>/176,<br>/176,<br>/176,<br>/176,<br>/176,<br>/176,<br>/176,<br>/176,<br>/176,<br>/176,<br>/176,<br>/176,<br>/176,<br>/176,<br>/176,<br>/176,<br>/176,<br>/176,<br>/176,<br>/176,<br>/176,<br>/176,<br>/176,<br>/176,<br>/176,<br>/176,<br>/176,<br>/176,<br>/176,<br>/176,<br>/176,<br>/176,<br>/176,<br>/176,<br>/176,<br>/176,<br>/176,<br>/176,<br>/176,<br>/176,<br>/176,<br>/176,<br>/176,<br>/176,<br>/176,<br>/176,<br>/176,<br>/176,<br>/176,<br>/176,<br>/176,<br>/176,<br>/176,<br>/176,<br>/176,<br>/176,<br>/176,<br>/176,<br>/176,<br>/176,<br>/176,<br>/176,<br>/176,<br>/176,<br>/176,<br>/176,<br>/176,<br>/176,<br>/176,<br>/176,<br>/176,<br>/176,<br>/176,<br>/176,<br>/176,<br>/176,<br>/176,<br>/176,<br>/176,<br>/176,<br>/176,<br>/176,<br>/176,<br>/176,<br>/176,<br>/176,<br>/176,<br>/176,<br>/176,<br>/176,<br>/176,<br>/176,<br>/176,<br>/176,<br>/176,<br>/176,<br>/176,<br>/176,<br>/176,<br>/176,<br>/176,<br>/176,<br>/176,<br>/176,<br>/176,<br>/176,<br>/176,<br>/176,<br>/176,<br>/176,<br>/176,<br>/176,<br>/176,<br>/176,<br>/176,<br>/176,<br>/176,<br>/176,<br>/176,<br>/176,<br>/176,<br>/176,<br>/176,<br>/176,<br>/176,<br>/176,<br>/176,<br>/176,<br>/176,<br>/176,<br>/176,<br>/176,<br>/176,<br>/176,<br>/176,<br>/176,<br>/176,<br>/176,<br>/176,<br>/176,<br>/176,<br>/176,<br>/176,<br>/176,<br>/176,<br>/176,<br>/176,<br>/176,<br>/176,<br>/176,<br>/176,<br>/176,<br>/176,<br>/176,<br>/176,<br>/176,<br>/176,<br>/176,<br>/176,<br>/176,<br>/176,<br>/176,<br>/176,<br>/176,<br>/176,<br>/176,<br>/176,<br>/176,<br>/176,<br>/176,<br>/176,<br>/176,<br>/176,<br>/176,<br>/176,<br>/176,<br>/176,<br>/176,<br>/176,<br>/176,<br>/176,<br>/176,<br>/176,<br>/176,<br>/176,<br>/176,<br>/176,<br>/176,<br>/176,<br>/176,<br>/176,<br>/176,<br>/176,<br>/176,<br>/176,<br>/176,<br>/176,<br>/176,<br>/176,<br>/176,<br>/176,<br>/176,<br>/176,<br>/176,<br>/176,<br>/176,<br>/176,<br>/176,<br>/176,<br>/176,<br>/176,<br>/176,<br>/176,<br>/176,<br>/176,<br>/176, | be)<br>ever<br>,<br>ss<br>),<br>ble,<br>Pl 1.<br>d. | Inte<br>R80<br>12) Gra<br>or ti | rnationa<br>)2.10.2 a<br>phical p<br>ne orien<br>com choi | al Resid<br>and ref<br>urlin re<br>tation o<br>rd. | ferenced standard<br>spresentation doe<br>of the purlin along<br>ndard | ions R502.11.1 and<br>d ANSI/TPI 1.<br>is not depict the size<br>g the top and/or |
| FORCES<br>TOP CHORD<br>BOT CHORD               | 6-7=-270/561, 7-8=-<br>9-10=-124/257, 10-                                                                                                                                                                                                          | =0/91, 2-3=-13/124,<br>.130/258, 5-6=-206/43<br>:270/563, 8-9=-205/43<br>11=-185/188,<br>13=0/91, 12-14=-266/<br>-21=-184/229,<br>-19=-184/229,<br>-17=-184/229,                                                                                                                      | <sup>34,</sup> 9)                                                                    | braced again<br>Gable studs<br>This truss ha<br>chord live loa<br>All bearings a<br>capacity of 5<br>Provide mecl<br>bearing plate<br>joint 22, 138<br>116 lb uplift a                                                                                                                                                | ully sheathed from<br>st lateral moveme<br>spaced at 1-4-0 or<br>s been designed f<br>ad nonconcurrent v<br>are assumed to be<br>65 psi.<br>hanical connection<br>capable of withst<br>lb uplift at joint 14,<br>at joint 20, 266 lb u<br>17, 119 lb uplift at                                                                                                                                                                                             | ent (i.e. c<br>c<br>for a 10.<br>with any<br>e SP No<br>an (by oth<br>anding 1<br>, 103 lb<br>uplift at j                                                                                                       | liagonal web).<br>0 psf bottom<br>other live load<br>2 crushing<br>ers) of truss to<br>176 lb uplift at<br>uplift at joint 1<br>point 21, 101 lb                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ds.<br>o<br>9,                                      |                                 |                                                           | TIM                                                | PE-2022                                                                | NIEL<br>X<br>042259                                                               |

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling or individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

\* States field, MO 63017 314.434.1200 / MITek-US.com

November 2,2023

|         |       |            |     |     |                         | RELEASE FOR CONSTRUCTION                                      |
|---------|-------|------------|-----|-----|-------------------------|---------------------------------------------------------------|
| Job     | Truss | Truss Type | Qty | Ply | Roof - Osage Lot 77     | AS NOTED FOR PLAN REVIEW<br>DEVELOPMENT SERVICES<br>161779294 |
| P230812 | G2    | Common     | 4   | 1   | Job Reference (optional |                                                               |
|         |       |            |     |     |                         |                                                               |

Run: 8.63 S Aug 30 2023 Print: 8.630 S Aug 30 2023 MiTek Industries, Inc. Ved Nov 4 143/06/2023 ID:KybgmexPJUHvfiEQCBTNemzxF7G-RfC?PsB70Hq3NSgPqnL8w3ulTXbe KWrCDoi 1423/06/2023





| Loading     | (psf) | Spacing         | 2-0-0           | CSI      |      | DEFL     | in    | (loc) | l/defl | L/d | PLATES        | GRIP     |
|-------------|-------|-----------------|-----------------|----------|------|----------|-------|-------|--------|-----|---------------|----------|
| TCLL (roof) | 25.0  | Plate Grip DOL  | 1.15            | TC       | 0.46 | Vert(LL) | -0.03 | 7-8   | >999   | 240 | MT20          | 197/144  |
| TCDL        | 10.0  | Lumber DOL      | 1.15            | BC       | 0.27 | Vert(CT) | -0.05 | 7-8   | >999   | 180 |               |          |
| BCLL        | 0.0   | Rep Stress Incr | YES             | WB       | 0.08 | Horz(CT) | 0.01  | 6     | n/a    | n/a |               |          |
| BCDL        | 10.0  | Code            | IRC2018/TPI2014 | Matrix-R |      |          |       |       |        |     | Weight: 50 lb | FT = 20% |

LUMBER

Scale = 1:48.6

TOP CHORD 2x4 SP No.2

BOT CHORD 2x4 SP No 2

| BOT CHORD | 284 35 11   | 0.2                                |
|-----------|-------------|------------------------------------|
| WEBS      | 2x4 SP N    | o.2 *Except* 7-3:2x3 SPF No.2      |
| BRACING   |             |                                    |
| TOP CHORD | Structural  | wood sheathing directly applied or |
|           | 6-0-0 oc p  | ourlins, except end verticals.     |
| BOT CHORD | Rigid ceili | ng directly applied or 10-0-0 oc   |
|           | bracing.    |                                    |
| REACTIONS | (size)      | 6=0-3-8, 8=0-3-8                   |
|           | Max Horiz   | 8=188 (LC 11)                      |
|           | Max Uplift  | 6=-87 (LC 13), 8=-87 (LC 12)       |
|           | Max Grav    | 6=583 (LC 1), 8=583 (LC 1)         |
|           |             |                                    |

| FORCES    | (lb) - Maximum Compression/Maximum    |
|-----------|---------------------------------------|
|           | Tension                               |
| TOP CHORD | 1-2=0/46, 2-3=-510/184, 3-4=-510/184, |
|           | 4-5=0/46, 2-8=-528/254, 4-6=-528/254  |
| BOT CHORD | 7-8=-10/316, 6-7=-10/316              |

3-7=0/241

WEBS

#### NOTES

- Unbalanced roof live loads have been considered for this design.
- 2) Wind: AŠCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=35ft; Ke=1.00; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) -0-10-8 to 4-1-8, Interior (1) 4-1-8 to 5-10-0, Exterior(2R) 5-10-0 to 10-10-0, Interior (1) 10-10-0 to 12-6-8 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

4) All bearings are assumed to be SP No.2 crushing capacity of 565 psi.

 Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 87 lb uplift at joint 8 and 87 lb uplift at joint 6.  This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
 LOAD CASE(S) Standard

> NATHANIEL FOX PE-2022042259 November 2,2023



|         |       |               |     |     |                         | KELEASE I |
|---------|-------|---------------|-----|-----|-------------------------|-----------|
| Job     | Truss | Truss Type    | Qty | Plv | Roof - Osage Lot 77     | AS NOTED  |
| 305     | 11035 | Truss Type    | Quy | ту  | RUUI - Osage LUI //     | DEVELO    |
| P230812 | G3    | Common Girder | 2   | 2   | Job Reference (optional | LEE'S S   |

Run: 8.63 S Aug 30 2023 Print: 8.630 S Aug 30 2023 MiTek Industries, Inc. ved Nov 41 1433 40 6/2 19:2 ID:2QFI?hT?x?pfxTbtnRFiQ1zxF6a-RfC?PsB70Hq3NSgPqnL8w3uITXbGKV rCDoi7J4zJ644 ID:2QFI?hT?x?pfxTbtnRFiQ1zxF6a-RfC?PsB70Hq3NSgPqnL8w3uITXbGKW



November 2,2023

16023 Swingley Ridge Rd. Chesterfield, MO 63017 314.434.1200 / MiTek-US.com



#### Plate Offsets (X, Y): [3:Edge,0-3-8]

|                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1                                                                                                                                                                                                                                                                                                                                                                                             | -                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                             | -                                                                                                                                                                                                                                                                                                                                                         |       |       |        |           | 1                                                            |                  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|-------|--------|-----------|--------------------------------------------------------------|------------------|
| Loading                                                                                                                                                                           | (psf)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Spacing                                                                                                                                                                                                                                                                                                                                                                                       | 2-0-0                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | CSI                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                             | DEFL                                                                                                                                                                                                                                                                                                                                                      | in    | (loc) | l/defl | L/d       | PLATES                                                       | GRIP             |
| TCLL (roof)                                                                                                                                                                       | 25.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Plate Grip DOL                                                                                                                                                                                                                                                                                                                                                                                | 1.15                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | TC                                                                                                                                                                                                                                                                                                                                                                                | 0.45                                                                                                                                                                                                                                                        | Vert(LL)                                                                                                                                                                                                                                                                                                                                                  | -0.05 | 4-5   | >999   | 240       | MT20                                                         | 244/190          |
| TCDL                                                                                                                                                                              | 10.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Lumber DOL                                                                                                                                                                                                                                                                                                                                                                                    | 1.15                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | BC                                                                                                                                                                                                                                                                                                                                                                                | 0.51                                                                                                                                                                                                                                                        | Vert(CT)                                                                                                                                                                                                                                                                                                                                                  | -0.08 | 4-5   | >999   | 180       | M18AHS                                                       | 142/136          |
| BCLL                                                                                                                                                                              | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Rep Stress Incr                                                                                                                                                                                                                                                                                                                                                                               | NO                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | WB                                                                                                                                                                                                                                                                                                                                                                                | 0.26                                                                                                                                                                                                                                                        | Horz(CT)                                                                                                                                                                                                                                                                                                                                                  | 0.01  | 4     | n/a    | n/a       |                                                              |                  |
| BCDL                                                                                                                                                                              | 10.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Code                                                                                                                                                                                                                                                                                                                                                                                          | IRC2018                                                             | /TPI2014                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Matrix-R                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                           |       |       |        |           | Weight: 106 lb                                               | FT = 20%         |
| <ul> <li>(0.131"x3<br/>Top chorco<br/>oc.</li> <li>Bottom ch<br/>staggered<br/>Web conr</li> <li>All loads a<br/>except if r<br/>CASE(S)<br/>provided t<br/>unless oth</li> </ul> | 2x6 SPF No.2<br>2x4 SP 2400F 2.0E<br>No.2<br>Structural wood she<br>6-0-0 oc purlins, exx<br>Rigid ceiling directly<br>bracing.<br>(size) 4=0-3-8, @<br>Max Horiz 6=161 (LC<br>Max Uplift 4=-325 (L<br>Max Grav 4=2183 (L<br>(Ib) - Maximum Com<br>Tension<br>1-2=-2034/426, 2-3=<br>1-6=-1435/356, 3-4=<br>5-6=-223/1452, 4-5=<br>2-5=-287/2082<br>s to be connected togel<br>") nails as follows:<br>bords connected as follows<br>ords connected as follows<br>at 0-9-0 oc.<br>prote as follows: 2x4 -<br>are considered equally<br>noted as foront (F) or bar<br>section. Ply to ply com<br>to distribute only loads<br>nerwise indicated. | athing directly applied<br>cept end verticals.<br>applied or 10-0-0 oc<br>3=0-3-8<br>2 9)<br>C 13), 6=-344 (LC 12<br>C 1), 6=2263 (LC 1)<br>pression/Maximum<br>-2034/426,<br>-1435/357<br>-223/1452<br>ther with 10d<br>s: 2x4 - 1 row at 0-9-0<br>cows: 2x6 - 2 rows<br>1 row at 0-9-0 oc.<br>applied to all plies,<br>ck (B) face in the LO/<br>nections have been<br>noted as (F) or (B), | d or<br>5)<br>6)<br>7)<br>8)<br>9)<br>10)<br>11)<br>12)<br>LO<br>1) | Vasd=91mpt<br>Ke=1.00; Cat<br>exterior zone<br>Interior (1) 5-<br>10-10-0, Intel<br>left and right<br>exposed;C-C<br>reactions sho<br>DOL=1.60<br>All plates are<br>The Fabricati<br>This truss ha<br>chord live loa<br>All bearings a<br>capacity of 4:<br>Provide medi<br>bearing plate<br>joint 6 and 32<br>This truss is<br>International<br>R802.10.2 ar<br>Use Simpsor<br>Truss, Single<br>oc max. start<br>connect truss<br>Fill all nail ho<br><b>AD CASE(S)</b><br>Dead + Roo<br>Plate Increas<br>Uniform Loa<br>Vert: 1-2:<br>Concentrate | nanical connection<br>capable of withsta<br>25 lb uplift at joint 4<br>designed in accord<br>Residential Codes<br>and referenced stand<br>Strong-Tie LUS26<br>Ply Girder) or equing at 1-8-0 from th<br>s(es) to back face c<br>les where hanger i<br>Standard<br>of Live (balanced): I<br>ise=1.15<br>ads (lb/ft)<br>=-70, 2-3=-70, 4-6=<br>ed Loads (lb)<br>685 (B), 9=-685 (B) | CDL=6.1<br>ed; MW<br>2E) 0-1<br>erior(2)<br>ical left<br>forces a<br>1.60 pl<br>so other<br>nt 6 = (<br>or a 10.0<br>ith any<br>SPF No<br>(by oth<br>noding 3<br>ance w<br>sections<br>dard AN<br>6 (4-100<br>ivalent<br>le left e<br>of bottor<br>s in cor | Dpsf; h=35ft;<br>FRS (envelop<br>-12 to 5-1-12,<br>R) 5-10-0 to<br>icone; cantilev<br>and right<br>& MWFRS for<br>ate grip<br>wise indicate<br>(%, joint 4 = 0<br>0 psf bottom<br>other live loa<br>0.2 crushing<br>ers) of truss t<br>i44 lb uplift at<br>i81/TPI 1.<br>1 Girder, 4-10<br>spaced at 2-0<br>nd to 9-8-0 to<br>n chord.<br>itact with lumi | er    |       |        | Part Part | STATE OF M<br>STATE OF M<br>NATHA<br>FO.<br>PE-20220<br>NOVA | ER <b>1</b> 2259 |

|         |       |             |     |     |                                       | RELEASE FOR CONSTRUCTION          |
|---------|-------|-------------|-----|-----|---------------------------------------|-----------------------------------|
| Job     | Truss | Truss Type  | Qty | Ply | Roof - Osage Lot 77                   | AS NOTED FOR PLAN REVIEW          |
| P230812 | 14    | Jack-Closed | 4   | 1   | , , , , , , , , , , , , , , , , , , , | DEVELOPMENT SERVICES<br>161779296 |
| P230012 | JI    | Jack-Closed | 4   | 1   | Job Reference (optional               |                                   |

Run: 8.63 S Aug 30 2023 Print: 8.630 S Aug 30 2023 MiTek Industries, Inc. Ved Nov 1 1233 10: 2015 Nov 1 12





6-11-6

Scale = 1:34.5 Plate Offsets (X, Y): [4:Edge.0-1-8]

|             | [4.Luge,0-1-0] |                 |                 |          |      |          |       |       |        |     |               |          |
|-------------|----------------|-----------------|-----------------|----------|------|----------|-------|-------|--------|-----|---------------|----------|
| Loading     | (psf)          | Spacing         | 2-0-0           | CSI      |      | DEFL     | in    | (loc) | l/defl | L/d | PLATES        | GRIP     |
| TCLL (roof) | 25.0           | Plate Grip DOL  | 1.15            | TC       | 0.65 | Vert(LL) | -0.04 | 2-4   | >999   | 240 | MT20          | 244/190  |
| TCDL        | 10.0           | Lumber DOL      | 1.15            | BC       | 0.40 | Vert(CT) | -0.10 | 2-4   | >821   | 180 |               |          |
| BCLL        | 0.0            | Rep Stress Incr | NO              | WB       | 0.00 | Horz(CT) | 0.00  | 4     | n/a    | n/a |               |          |
| BCDL        | 10.0           | Code            | IRC2018/TPI2014 | Matrix-R |      |          |       |       |        |     | Weight: 25 lb | FT = 20% |

- TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.2 2x4 SP No.2 OTHERS BRACING TOP CHORD Structural wood sheathing directly applied or 6-0-0 oc purlins. BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing. REACTIONS 2=0-4-9, 4= Mechanical (size) Max Horiz 2=94 (LC 9) Max Uplift 2=-132 (LC 8), 4=-69 (LC 12) Max Grav 2=408 (LC 1), 4=287 (LC 1) FORCES (Ib) - Maximum Compression/Maximum Tension
- TOP CHORD 1-2=0/6, 2-3=-282/126, 3-4=-189/230 BOT CHORD 2-4=-200/218

NOTES

LUMBER

- Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=35ft; Ke=1.00; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone and C-C Corner (3) -1-2-14 to 5-10-0, Exterior(2R) 5-10-0 to 6-9-10 zone; cantilever left and right exposed; end vertical left exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- Bearings are assumed to be: Joint 2 SP No.2 crushing capacity of 565 psi.
- 4) Refer to girder(s) for truss to truss connections.
- Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 132 lb uplift at joint 2 and 69 lb uplift at joint 4.
- 6) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

 "NAILED" indicates Girder: 3-10d (0.148" x 3") toe-nails per NDS guidelines.

- 8) In the LOAD CASE(S) section, loads applied to the face
- of the truss are noted as front (F) or back (B).

LOAD CASE(S) Standard

1) Dead + Roof Live (balanced): Lumber Increase=1.15,

Plate Increase=1.15

Uniform Loads (lb/ft) Vert: 1-3=-70, 2-4=-20





| Job     Truss     Truss Type     Qty     Ply     Roof - Osage Lot 77     AS NOTED FOR PLAN REVIEW<br>DEVELOPMENT SERVICES<br>161779297       P230812     J2     Jack-Open     8     1     Job Reference (optional<br>LEE'S SUMMIT, MISSOURI |         |       |            |     |     |                         | RELEASE FOR CONSTRUCTION                         |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|-------|------------|-----|-----|-------------------------|--------------------------------------------------|
|                                                                                                                                                                                                                                             | Job     | Truss | Truss Type | Qty | Ply | Roof - Osage Lot 77     | AS NOTED FOR PLAN REVIEW<br>DEVELOPMENT SERVICES |
|                                                                                                                                                                                                                                             | P230812 | J2    | Jack-Open  | 8   | 1   | Job Reference (optional |                                                  |

Run: 8.63 S Aug 30 2023 Print: 8.630 S Aug 30 2023 MiTek Industries, Inc. Ved Nov 4 1433 DI: POINTER INAKU2wMSycbzzxFil-RfC?PsB70Hq3NSgPqnL8w3uITXbGK VrCDoi7J42, Ort





| 2-10-15 |
|---------|
|         |

| Scale = 1:25.4 |       |                 |                 |          |      |          |       |       |        |     |               |          |
|----------------|-------|-----------------|-----------------|----------|------|----------|-------|-------|--------|-----|---------------|----------|
| Loading        | (psf) | Spacing         | 2-0-0           | CSI      |      | DEFL     | in    | (loc) | l/defl | L/d | PLATES        | GRIP     |
| TCLL (roof)    | 25.0  | Plate Grip DOL  | 1.15            | тс       | 0.12 | Vert(LL) | 0.00  | 2-4   | >999   | 240 | MT20          | 244/190  |
| TCDL           | 10.0  | Lumber DOL      | 1.15            | BC       | 0.08 | Vert(CT) | -0.01 | 2-4   | >999   | 180 |               |          |
| BCLL           | 0.0   | Rep Stress Incr | YES             | WB       | 0.00 | Horz(CT) | 0.00  | 3     | n/a    | n/a |               |          |
| BCDL           | 10.0  | Code            | IRC2018/TPI2014 | Matrix-P |      |          |       |       |        |     | Weight: 10 lb | FT = 20% |

| TOP CHORD | 2x4 SP N   | 0.2                                |
|-----------|------------|------------------------------------|
| BOT CHORD | 2x4 SP N   | 0.2                                |
| BRACING   |            |                                    |
| TOP CHORD | Structura  | wood sheathing directly applied or |
|           | 2-10-15 c  | c purlins.                         |
| BOT CHORD | 0          | ing directly applied or 10-0-0 oc  |
|           | bracing.   |                                    |
| REACTIONS | (size)     | 2=0-3-8, 3= Mechanical, 4=         |
|           |            | Mechanical                         |
|           | Max Horiz  | 2=55 (LC 8)                        |
|           | Max Uplift | 2=-72 (LC 8), 3=-48 (LC 12)        |
|           | Max Grav   | 2=207 (LC 1), 3=81 (LC 1), 4=54    |
|           |            | (LC 3)                             |
| FORCES    | (lb) - Max | imum Compression/Maximum           |
|           | Tension    |                                    |
| TOP CHORD | 1-2=0/6, 2 | 2-3=-60/28                         |
| BOT CHORD | 2-4=0/0    |                                    |

NOTES

- Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=35ft; Ke=1.00; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) zone; cantilever left and right exposed; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- Bearings are assumed to be: , Joint 2 SP No.2 crushing capacity of 565 psi.
- 4) Refer to girder(s) for truss to truss connections.
- Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 48 lb uplift at joint 3 and 72 lb uplift at joint 2.
- 6) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard



6/202

Hora Swingley Ridge Rd. Chesterfield, MC 63017 314.434.1200 / MITek-US.com

|         |       |            |     |     |                         | RELEASE FOR CONSTRUCTION                                    |
|---------|-------|------------|-----|-----|-------------------------|-------------------------------------------------------------|
| Job     | Truss | Truss Type | Qty | Ply | Roof - Osage Lot 77     | AS NOTED FOR PLAN REVIEW<br>DEVELOPMENT SERVICES            |
| P230812 | J3    | Jack-Open  | 16  | 1   | Job Reference (optional | DEVELOPMENT SERVICES<br>161779298<br>LEE'S SUMMIT, MISSOURI |
|         |       |            |     |     |                         |                                                             |

Run: 8.63 S Aug 30 2023 Print: 8.630 S Aug 30 2023 MiTek Industries, Inc. Ved Nov 4 1433 5 6/2 9 23 ID:hqFJuF70xwCBQJPjyVEyNfzxFft-RfC?PsB70Hq3NSgPqnL8w3uITXbGKVrCDoi7J4zJeft





| 5-0-0 |
|-------|
|       |
|       |

| Loading     | (psf) | Spacing         | 2-0-0           | CSI      |      | DEFL     | in    | (loc) | l/defl | L/d | PLATES        | GRIP     |
|-------------|-------|-----------------|-----------------|----------|------|----------|-------|-------|--------|-----|---------------|----------|
| TCLL (roof) | 25.0  | Plate Grip DOL  | 1.15            | TC       | 0.48 | Vert(LL) | -0.03 | 2-4   | >999   | 240 | MT20          | 244/190  |
| TCDL        | 10.0  | Lumber DOL      | 1.15            | BC       | 0.28 | Vert(CT) | -0.06 | 2-4   | >909   | 180 |               |          |
| BCLL        | 0.0   | Rep Stress Incr | YES             | WB       | 0.00 | Horz(CT) | 0.00  | 3     | n/a    | n/a |               |          |
| BCDL        | 10.0  | Code            | IRC2018/TPI2014 | Matrix-P |      |          |       |       |        |     | Weight: 17 lb | FT = 20% |

LUMBER

Scale - 1.26.8

| LUMBER    |            |                                    |
|-----------|------------|------------------------------------|
| TOP CHORD | 2x4 SP N   | 0.2                                |
| BOT CHORD | 2x4 SP N   | 0.2                                |
| BRACING   |            |                                    |
| TOP CHORD | Structura  | wood sheathing directly applied or |
|           | 5-0-0 oc p | ourlins.                           |
| BOT CHORD | Rigid ceil | ing directly applied or 10-0-0 oc  |
|           | bracing.   |                                    |
| REACTIONS | (size)     | 2=0-3-8, 3= Mechanical, 4=         |
|           |            | Mechanical                         |
|           | Max Horiz  | 2=86 (LC 8)                        |
|           | Max Uplift | 2=-84 (LC 8), 3=-89 (LC 12)        |
|           | Max Grav   | 2=295 (LC 1), 3=160 (LC 1), 4=96   |
|           |            | (LC 3)                             |
| FORCES    | (lb) - Max | imum Compression/Maximum           |
|           | Tension    |                                    |
| TOP CHORD | 1-2=0/6, 2 | 2-3=-95/46                         |
| BOT CHORD | 2-4=0/0    |                                    |
|           |            |                                    |

NOTES

- Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=35ft; Ke=1.00; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) -0-10-8 to 4-1-8, Interior (1) 4-1-8 to 4-11-4 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- Bearings are assumed to be: , Joint 2 SP No.2 crushing capacity of 565 psi.
- 4) Refer to girder(s) for truss to truss connections.
- Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 89 lb uplift at joint 3 and 84 lb uplift at joint 2.
- 6) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard





|                                |                                       |                                         |                        |     |                         | RELEASE FOR CONSTRUCTION                                    |
|--------------------------------|---------------------------------------|-----------------------------------------|------------------------|-----|-------------------------|-------------------------------------------------------------|
| Job                            | Truss                                 | Truss Type                              | Qty                    | Ply | Roof - Osage Lot 77     | AS NOTED FOR PLAN REVIEW<br>DEVELOPMENT SERVICES            |
| P230812                        | J4                                    | Jack-Open Supported Gable               | 2                      | 1   | Job Reference (optional | DEVELOPMENT SERVICES<br>161779299<br>LEE'S SUMMIT, MISSOURI |
| Premier Building Supply (Sprin | ghill, KS), Spring Hills, KS - 66083, | Run: 8.63 S Aug 30<br>ID:j?OjMFFnRIhAKI | Ved Nov 1 133/106/2023 |     |                         |                                                             |





5-0-0



| Loading<br>TCLL (roof)<br>TCDL<br>BCLL<br>BCDL                                                       | (psi<br>25.<br>10.<br>0.<br>10.                                                                                                                | <ul><li>Plate Grip DOL</li><li>Lumber DOL</li><li>Rep Stress Incr</li></ul> | 2-0-0<br>1.15<br>1.15<br>YES<br>IRC201 | 8/TPI2014                                                                                                                                         | CSI<br>TC<br>BC<br>WB<br>Matrix-P                                                                                                                                            | 0.13<br>0.07<br>0.08                                                                                                      | DEFL<br>Vert(LL)<br>Vert(CT)<br>Horz(CT)                                                                                | in<br>0.00<br>-0.01<br>0.00 | (loc)<br>2-6<br>2-6<br>4 | l/defl<br>>999<br>>999<br>n/a | L/d<br>240<br>180<br>n/a | PLATES<br>MT20<br>Weight: 19 lb | <b>GRIP</b><br>197/144<br>FT = 20% |
|------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------|----------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|-----------------------------|--------------------------|-------------------------------|--------------------------|---------------------------------|------------------------------------|
| LUMBER<br>TOP CHORD<br>BOT CHORD<br>WEBS<br>OTHERS<br>BRACING<br>TOP CHORD<br>BOT CHORD<br>REACTIONS | 5-0-0 oc purlins.<br>Rigid ceiling dire<br>bracing.<br>(size) 2=5-0<br>6=5-0<br>Max Horiz 2=85<br>Max Uplift 2=-50<br>(LC 1:<br>Max Grav 2=184 | (LC 8)<br>(LC 8), 4=-22 (LC 8),                                             | oc 9)<br><sup>5-0-0,</sup> LC<br>6=-76 | capacity of 5<br>Refer to gird<br>Provide mec<br>bearing plate<br>4, 50 lb uplit<br>This truss is<br>International<br>R802.10.2 ar<br>Gap between | er(s) for truss to<br>hanical connect<br>capable of wit<br>at joint 2 and 7<br>designed in aco<br>Residential Co<br>nd referenced s<br>n inside of top o<br>vertical web sha | o truss conr<br>tion (by oth<br>hstanding 2<br>76 lb uplift a<br>cordance w<br>de sections<br>standard AN<br>chord bearin | nections.<br>ers) of truss<br>2 lb uplift at<br>t joint 6.<br>ith the 2018<br>5 R502.11.1<br>iSI/TPI 1.<br>ng and first | to<br>joint                 |                          |                               |                          |                                 |                                    |
| FORCES<br>TOP CHORD<br>BOT CHORD<br>WEBS                                                             | (Ib) - Maximum (<br>Tension<br>1-2=0/6, 2-3=-14<br>2-6=-12/7, 5-6=0<br>4-5=0/0, 3-6=-20                                                        | )/0                                                                         | n                                      |                                                                                                                                                   |                                                                                                                                                                              |                                                                                                                           |                                                                                                                         |                             |                          |                               |                          |                                 |                                    |

NOTES

 Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=35ft; Ke=1.00; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone and C-C Corner(3E) -0-10-8 to 4-1-8, Exterior(2N) 4-1-8 to 4-10-12 zone; cantilever left and right exposed; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

2-3-3

 Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

Gable studs spaced at 2-0-0 oc.
 This truss has been designed for a 10.0 psf bottom

chord live load nonconcurrent with any other live loads.



16023 Swingley Ridge Rd. Chesterfield, MO 63017 314.434.1200 / MiTek-US.com

|         |       |                    |     |     |                         | RELEASE FOR CONSTRUCTION                         |
|---------|-------|--------------------|-----|-----|-------------------------|--------------------------------------------------|
| Job     | Truss | Truss Type         | Qty | Ply | Roof - Osage Lot 77     | AS NOTED FOR PLAN REVIEW<br>DEVELOPMENT SERVICES |
| P230812 | J5    | Jack-Closed Girder | 2   | 1   | Job Reference (optional | LEE'S SUMMIT, MISSOURI                           |

Run: 8.63 E Jun 15 2023 Print: 8.630 E Jun 15 2023 MiTek Industries, Inc. Thu Nov 02 113: ID:90ph5b8eiEK22SzvVDIBvtzxFfs-DqcyVwXhbUSh8nVAs9RQLsVaL2o4nF, JDRIyjryNFr



LUS24



Scale = 1:40.7

| Loading<br>TCLL (roof)<br>TCDL<br>BCLL<br>BCDL                                             | (psf)<br>25.0<br>10.0<br>0.0<br>10.0                                                                                                                                                                                                                                                                                     | <b>Spacing</b><br>Plate Grip DOL<br>Lumber DOL<br>Rep Stress Incr<br>Code                                                                                                                                          | 2-0-0<br>1.15<br>1.15<br>NO<br>IRC20     | 18/TPI2014                                                                                                                                                                                    | CSI<br>TC<br>BC<br>WB<br>Matrix-P | 0.60<br>0.83<br>0.02                                                                            | DEFL<br>Vert(LL)<br>Vert(CT)<br>Horz(CT)                                                | in<br>-0.05<br>-0.10<br>0.00 | (loc)<br>3-4<br>3-4<br>3 | l/defl<br>>925<br>>491<br>n/a | L/d<br>240<br>180<br>n/a | <b>GRIP</b><br>244/190<br>FT = 20% |
|--------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------|-------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|------------------------------|--------------------------|-------------------------------|--------------------------|------------------------------------|
| LUMBER<br>TOP CHORE<br>BOT CHORE<br>WEBS<br>BRACING<br>TOP CHORE<br>BOT CHORE<br>REACTIONS | <ul> <li>2x4 SP 1650F 1.5E<br/>2x3 SPF No.2</li> <li>Structural wood she<br/>5-0-0 oc purlins, ex<br/>D Rigid ceiling directly<br/>bracing.</li> <li>(lb/size) 1=-462/0<br/>4=1575/C<br/>Max Horiz 1=87 (LC<br/>Max Uplift 1=-462 (I<br/>4=-207 (I<br/>Max Grav 1=52 (LC<br/>4=1575 (<br/>(lb) - Max. Comp./N</li> </ul> | eathing directly applie<br>coept end verticals.<br>y applied or 6-0-0 oc<br>1-3-8, 3=420/ Mechar<br>0-1-8, (req. 0-1-14)<br>2 9)<br>LC 1), 3=-105 (LC 12<br>LC 8)<br>(LC 1),<br>420 (LC 1),<br>Max. Ten All forces | ed or <sup>S</sup><br>L<br>nical,<br>2), | Truss, Singl<br>oc max. struc<br>connect trus<br>Fill all nail h<br>) In the LOAE<br>of the truss<br><b>.OAD CASE(S)</b><br>) Dead + Rc<br>Plate Ince<br>Uniform Lc<br>Vert: 1-2<br>Concentra | of Live (balanced<br>ase=1.15     | quivalent<br>m the left<br>e of bottor<br>r is in cor<br>n, loads a<br>t (F) or ba<br>): Lumber | spaced at 2-<br>end to 3-0-12<br>n chord.<br>ttact with lum<br>oplied to the<br>ck (B). | 0-0<br>2 to<br>nber.<br>face |                          |                               |                          |                                    |
| NOTES                                                                                      | (lb) or less except w                                                                                                                                                                                                                                                                                                    | vnen snown.                                                                                                                                                                                                        |                                          |                                                                                                                                                                                               |                                   |                                                                                                 |                                                                                         |                              |                          |                               |                          |                                    |

NOTES

- Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=35ft; Ke=1.00; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- WARNING: Required bearing size at joint(s) 4 greater than input bearing size.
- 4) Refer to girder(s) for truss to truss connections.
- 5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 462 lb uplift at joint 1, 105 lb uplift at joint 3 and 207 lb uplift at joint 4.
- This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

### NATHANIEL FOX PE-2022042259 FSS/ONAL ENGINE

6



rg) Mittek-US.com

|         |       |              |     |     |                         | RELEASE FOR CONSTRUCTION                                      |
|---------|-------|--------------|-----|-----|-------------------------|---------------------------------------------------------------|
| Job     | Truss | Truss Type   | Qty | Ply | Roof - Osage Lot 77     | AS NOTED FOR PLAN REVIEW<br>DEVELOPMENT SERVICES<br>161779301 |
| P230812 | LAY1  | Lay-In Gable | 2   | 1   | Job Reference (optional |                                                               |

Run: 8.63 S Aug 30 2023 Print: 8.630 S Aug 30 2023 MiTek Industries, Inc. Ved Nov 1 1233 DI: POINTER Industries, Inc. Ved Nov 1 1233 DI: POINTER INAKU2wMSycbzzxFil-RfC?PsB70Hq3NSgPqnL8w3uITXbGK VrCDoi7J 22 OFF



| Scale | _ ^ | 1.52  | 6 |
|-------|-----|-------|---|
| Scale | =   | 1:52. | 0 |

|                                                               |                                                                                                                   | 1                                                                                                            |                            |                                                                               | 1                                                                                                          |                                                      |                                              |      |       |        |     | 1             |          |
|---------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|----------------------------|-------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|------------------------------------------------------|----------------------------------------------|------|-------|--------|-----|---------------|----------|
| Loading                                                       | (psf)                                                                                                             | Spacing                                                                                                      | 2-0-0                      |                                                                               | CSI                                                                                                        |                                                      | DEFL                                         | in   | (loc) | l/defl | L/d | PLATES        | GRIP     |
| TCLL (roof)                                                   | 25.0                                                                                                              | Plate Grip DOL                                                                                               | 1.15                       |                                                                               | тс                                                                                                         | 0.81                                                 | Vert(LL)                                     | n/a  | -     | n/a    | 999 | MT20          | 244/190  |
| TCDL                                                          | 10.0                                                                                                              | Lumber DOL                                                                                                   | 1.15                       |                                                                               | BC                                                                                                         | 0.08                                                 | Vert(TL)                                     | n/a  | -     | n/a    | 999 |               |          |
| BCLL                                                          | 0.0                                                                                                               | Rep Stress Incr                                                                                              | YES                        |                                                                               | WB                                                                                                         | 0.15                                                 | Horiz(TL)                                    | 0.00 | 5     | n/a    | n/a |               |          |
| BCDL                                                          | 10.0                                                                                                              | Code                                                                                                         | IRC201                     | 8/TPI2014                                                                     | Matrix-P                                                                                                   |                                                      |                                              |      |       |        |     | Weight: 51 lb | FT = 20% |
| LUMBER<br>TOP CHORD<br>BOT CHORD<br>WEBS<br>OTHERS<br>BRACING | 2x4 SP No.2<br>2x4 SP No.2<br>2x4 SP No.2<br>2x4 SPF No.3                                                         |                                                                                                              | 3)<br>4)<br>5)<br>6)<br>7) | Gable requir<br>Gable studs<br>This truss ha<br>chord live lo<br>All bearings | e 1.5x4 MT20 u<br>res continuous l<br>spaced at 0-0-<br>as been design<br>ad nonconcurre<br>are assumed to | bottom chor<br>0 oc.<br>ed for a 10.<br>ent with any | d bearing.<br>) psf bottom<br>other live loa |      |       |        |     |               |          |
| TOP CHORD                                                     | Structural wood she<br>6-0-0 oc purlins, ex                                                                       |                                                                                                              | ed or<br>8)                |                                                                               | hanical connec                                                                                             |                                                      |                                              |      |       |        |     |               |          |
| BOT CHORD                                                     | Rigid ceiling directly<br>bracing.                                                                                | applied or 9-1-12 o                                                                                          | с                          | 9, 132 lb upl                                                                 | e capable of wit<br>lift at joint 5, 13                                                                    | 9 lb uplift at                                       | joint 8, 139 l                               |      |       |        |     |               |          |
| REACTIONS                                                     | 8=7-9-14<br>Max Horiz 9=-330 (L<br>Max Uplift 5=-132 (L<br>7=-139 (L<br>Max Grav 5=258 (L<br>7=206 (L<br>9=115 (L | LC 11), 6=-135 (LC 1<br>LC 13), 8=-139 (LC 1<br>LC 10)<br>C 8), 6=205 (LC 20)<br>C 20), 8=215 (LC 20<br>C 9) | 9)<br>13), L0<br>,<br>)),  | This truss is<br>International                                                | 7 and 135 lb u<br>designed in ac<br>I Residential Cc<br>nd referenced s<br>Standard                        | cordance worde sections                              | ith the 2018<br>R502.11.1 a                  | and  |       |        |     |               |          |
| FORCES                                                        | (lb) - Maximum Com<br>Tension                                                                                     |                                                                                                              |                            |                                                                               |                                                                                                            |                                                      |                                              |      |       |        |     |               |          |
| TOP CHORD                                                     | 1-9=-195/163, 1-2=-<br>3-4=-473/473, 4-5=-                                                                        |                                                                                                              | 353,                       |                                                                               |                                                                                                            |                                                      |                                              |      |       |        |     |               |          |
| BOT CHORD                                                     | 8-9=-422/435, 7-8=-<br>5-6=-422/435                                                                               | 422/435, 6-7=-422/4                                                                                          | 435,                       |                                                                               |                                                                                                            |                                                      |                                              |      |       |        |     |               | m        |
| ,                                                             | 2-8=-216/196, 3-7=-<br>CE 7-16; Vult=115mph                                                                       | (3-second gust)                                                                                              | 190                        |                                                                               |                                                                                                            |                                                      |                                              |      |       |        | B   | TATE OF       | 10x VA   |

- Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=35ft; Ke=1.00; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2R) zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.



202

6/



|                                 |                                      |              |     |     |                                                           | RELEASE FOR CONSTRUCTION          |
|---------------------------------|--------------------------------------|--------------|-----|-----|-----------------------------------------------------------|-----------------------------------|
| Job                             | Truss                                | Truss Type   | Qty | Ply | Roof - Osage Lot 77                                       | AS NOTED FOR PLAN REVIEW          |
| 000                             | 11400                                |              | Quy | ,   | Robi Osage Lot II                                         | DEVELOPMENT SERVICES<br>I61779302 |
| P230812                         | LAY2                                 | Lay-In Gable | 2   | 1   | Job Reference (optional                                   |                                   |
| Premier Building Supply (Spring | hill, KS), Spring Hills, KS - 66083, |              |     |     | 30 2023 MiTek Industries, Inc.<br>70Hq3NSqPqnL8w3uITXbGKV |                                   |

Run: 8.63 S Aug 30 2023 Print: 8.630 S Aug 30 2023 MiTek Industries, Inc. Ved Nov 4 133/10 6 ID:hqFJuF70xwCBQJPjyVEyNfzxFft-RfC?PsB70Hq3NSgPqnL8w3uITXbGKV/rCDoi7J4zJ5ff



Scale = 1:104.1 Plate Offsets (X, Y): [6:0-2-8,0-3-0]

| Plate Offsets (                                                                         | (X, Y): [6:0                                                | -2-8,0-3-0]                                                                       |                                                                                      |                                      |                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                      |                                                                                                                                                                                                                                                          |                                                                   |                                                                                                                                             |                                                                                                                     |                                                                                                                                                                                                          |                                                                                      |                                    |
|-----------------------------------------------------------------------------------------|-------------------------------------------------------------|-----------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|--------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|------------------------------------|
| Loading<br>TCLL (roof)<br>TCDL<br>BCLL<br>BCDL                                          |                                                             | (psf)<br>25.0<br>10.0<br>0.0<br>10.0                                              | Spacing<br>Plate Grip DOL<br>Lumber DOL<br>Rep Stress Incr<br>Code                   | 2-0-0<br>1.15<br>1.15<br>YES<br>IRC2 | 018/TPI2014                                                                                                                                                                                                                                                                                                | CSI<br>TC<br>BC<br>WB<br>Matrix-S                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.21<br>0.03<br>0.23                                                                                                                                                                                 | DEFL<br>Vert(LL)<br>Vert(TL)<br>Horiz(TL)                                                                                                                                                                                                                | in<br>n/a<br>n/a<br>0.00                                          | (loc)<br>-<br>-<br>15                                                                                                                       | n/a<br>n/a                                                                                                          | L/d<br>999<br>999<br>n/a                                                                                                                                                                                 | PLATES<br>MT20<br>Weight: 232 lb                                                     | <b>GRIP</b><br>244/190<br>FT = 20% |
| LUMBER<br>TOP CHORD<br>BOT CHORD<br>WEBS<br>OTHERS<br>BRACING<br>TOP CHORD<br>BOT CHORD | 24-2,23-3<br>Structura<br>5-2-3 oc<br>Rigid cei<br>bracing. | lo.2<br>lo.2 *Excep<br>3,22-4,21-5<br>al wood she<br>purlins, ex<br>ling directly | 2x4 SPF No.3<br>athing directly applie<br>cept end verticals.<br>applied or 6-0-0 oc | ed or                                | TOP CHORD<br>BOT CHORD<br>WEBS                                                                                                                                                                                                                                                                             | 1-2=-1319/1039, 2<br>3-4=-1058/833, 4-<br>7-8=-528/420, 8-9<br>10-11=-121/100, 1<br>1-24=0/0, 23-24=(<br>20-21=0/0, 19-20=<br>17-18=-6/23, 16-1<br>14-15=-30/28, 13-<br>2-24=-177/152, 3-<br>4-22=-180/157, 5-<br>6-20=-186/162, 7-<br>8-17=-184/161, 9-                                                                                                                                                                                                | 731, 5-7=-796<br>15, 9-10=-261<br>2/15, 12-13=-<br>3=0/0, 21-22=<br>-19=-1/0,<br>0, 15-16=-29/2<br>4<br>/163,<br>/158,<br>/159,                                                                      | /212,<br>-21/20<br>=0/0,                                                                                                                                                                                                                                 | be<br>13<br>up<br>joi<br>14<br>up<br>9) Be<br>su<br>10) Th<br>Int | aring pla<br>, 321 lb u<br>lift at join<br>nt 21, 13<br>0 lb uplifi<br>lift at join<br>eveled pla<br>rface with<br>is truss is<br>ernationa | te capa<br>uplift at<br>at 23, 1:<br>7 Ib up<br>t at join<br>at 15 ar<br>ate or s<br>h truss<br>s desig<br>al Resid | able of withstandi<br>joint 1, 138 lb up<br>34 lb uplift at joint<br>34 lb uplift at joint<br>17, 135 lb uplift<br>ad 90 lb uplift at jo<br>shim required to p<br>chord at joint(s)<br>ned in accordance | rovide full bearing<br>13, 17, 16, 15, 14.<br>ce with the 2018<br>ions R502.11.1 and |                                    |
| 5 5 <i>1</i> 1                                                                          |                                                             |                                                                                   |                                                                                      |                                      | <ul> <li>Vasd=91mp<br/>Ke=1.00; C<br/>exterior zor<br/>Interior (1)<br/>exposed; e<br/>and forces<br/>DOL=1.60 p</li> <li>Truss desii<br/>only. For s<br/>see Standa<br/>or consult c</li> <li>All plates and</li> <li>Gable requi</li> <li>Gable studs</li> <li>This truss h<br/>chord live lo</li> </ul> | 10-15=-194/169, 1<br>E 7-16; Vult=115m,<br>oh; TCDL=6.0psf; E<br>at. II; Exp C; Enclor<br>e and C-C Exterior<br>5-4-1 to 20-8-6 zon<br>and vertical left expo<br>& MWFRS for reac<br>plate grip DOL=1.6;<br>gned for wind loads<br>tuds exposed to wii<br>rd Industry Gable E<br>qualified building de<br>re 1.5x4 MT20 unle<br>ires continuous bot<br>s spaced at 0-0-0 o<br>has been designed<br>bad nonconcurrent<br>a are assumed to be<br>565 psi. | ph (3-see<br>3CDL=6.<br>sed; MW<br>r(2E) 0-4<br>e; cantili<br>cosed;C-0<br>tions sho<br>0<br>s in the p<br>nd (norm<br>End Deta<br>signer a<br>sss other<br>tom choi<br>sc.<br>for a 10.<br>with any | cond gust)<br>Opsf; h=35ft;<br>/FRS (envelo<br>-1 to 5-4-1,<br>ever left and r<br>C for member<br>own; Lumber<br>lane of the trr<br>al to the face<br>iils as applica<br>s per ANSI/TI<br>wise indicate<br>rd bearing.<br>0 psf bottom<br>other live loa | right<br>s<br>),<br>ble,<br>PI 1.<br>d.                           | LOAD                                                                                                                                        | CASE(S                                                                                                              |                                                                                                                                                                                                          | NATHA                                                                                | X<br>BER JICK                      |
| FORCES                                                                                  | (lb) - Max<br>Tension                                       | ximum Corr                                                                        | pression/Maximum                                                                     |                                      |                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                      |                                                                                                                                                                                                                                                          |                                                                   |                                                                                                                                             |                                                                                                                     | Ø                                                                                                                                                                                                        | RESSIONA                                                                             | LENGI                              |

November 2,2023

16023 Swingley Ridge Rd. Chesterfield, MO 63017 314.434.1200 / MiTek-US.com

|                         |                                      |            |     |     |                                                             | RELEASE FOR CONSTRUCTION                                      |
|-------------------------|--------------------------------------|------------|-----|-----|-------------------------------------------------------------|---------------------------------------------------------------|
| Job                     | Truss                                | Truss Type | Qty | Ply | Roof - Osage Lot 77                                         | AS NOTED FOR PLAN REVIEW<br>DEVELOPMENT SERVICES<br>161779303 |
| P230812                 | V1                                   | Valley     | 2   | 1   | Job Reference (optional                                     |                                                               |
| Premier Building Supply | v (Springhill, KS), Spring Hills, KS | - 66083,   |     |     | 30 2023 MiTek Industries, Inc. \<br>0Ha3NSaPapl 8w3uITXbGKW |                                                               |

Run: 8.63 S Aug 30 2023 Print: 8.630 S Aug 30 2023 MiTek Industries, Inc. Ved Nov 1 1233 106/20

3





0-11-4 D-3-4





 $\overline{}$ 



Scale = 1:16.9

Plate Offsets (X, Y): [2:Edge,0-1-14]

| Plate Offsets (                                                                                                                                                                                                       | X, Y): [2:Edge,0-1-14                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                      |                                                                                 |                                                                                                                                                                                   |                                           |                                                      |                             |     |                                       |                                   |                                                                                     |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|------------------------------------------------------|-----------------------------|-----|---------------------------------------|-----------------------------------|-------------------------------------------------------------------------------------|
| Loading<br>TCLL (roof)<br>TCDL<br>BCLL<br>BCDL                                                                                                                                                                        | (psf)<br>25.0<br>10.0<br>0.0<br>10.0                                                                                                                                                                                                                                            | Spacing<br>Plate Grip DOL<br>Lumber DOL<br>Rep Stress Incr<br>Code                                                                                                                                                                                                                                   | 2-0-0<br>1.15<br>1.15<br>YES<br>IRC2018/TPI20 <sup>7</sup>                      | CSI<br>TC<br>BC<br>WB<br>14 Matrix-P                                                                                                                                              | 0.06<br>0.03<br>0.00                      | <b>DEFL</b><br>Vert(LL)<br>Vert(TL)<br>Horiz(TL)     | in (I<br>n/a<br>n/a<br>0.00 | - n | efl L/d<br>/a 999<br>/a 999<br>/a n/a | PLATES<br>MT20<br>Weight: 6 lb    | <b>GRIP</b><br>244/190<br>FT = 20%                                                  |
| LUMBER<br>TOP CHORD<br>BOT CHORD<br>WEBS<br>BRACING<br>TOP CHORD<br>BOT CHORD<br>REACTIONS<br>FORCES<br>TOP CHORD<br>BOT CHORD                                                                                        | 2x4 SP No.2<br>2x4 SP No.2<br>2x3 SPF No.2<br>Structural wood she<br>2-9-11 oc purlins, e<br>Rigid ceiling directly<br>bracing.<br>(size) 1=2-8-15,<br>Max Horiz 1=29 (LC<br>Max Uplift 1=-15 (LC<br>Max Grav 1=79 (LC<br>(lb) - Maximum Com<br>Tension<br>1-2=-40/25, 2-3=-62. | xcept end verticals.<br>applied or 10-0-0 or<br>3=2-8-15<br>9)<br>C 8), 3=-20 (LC 12)<br>1), 3=79 (LC 1)<br>opression/Maximum                                                                                                                                                                        | 7) Provid<br>bearin<br>1 and<br>8) This tr<br>Interna<br>ed or R802.<br>LOAD CA | e mechanical connect<br>g plate capable of with<br>20 lb uplift at joint 3.<br>uss is designed in acc<br>ational Residential Co<br>10.2 and referenced s<br><b>SE(S)</b> Standard | hstanding 1<br>cordance wi<br>de sections | 5 lb uplift at joi<br>ith the 2018<br>: R502.11.1 an | int                         |     |                                       |                                   |                                                                                     |
| Vasd=91m<br>Ke=1.00; (<br>exterior zo<br>and right e<br>exposed;C<br>reactions s<br>DOL=1.60<br>2) Truss des<br>only. For<br>see Stand<br>or consult<br>3) Gable requ<br>4) Gable stuc<br>5) This truss<br>chord live | signed for wind loads ir<br>studs exposed to wind<br>ard Industry Gable En-<br>qualified building desig<br>uires continuous bottoo<br>ds spaced at 4-0-0 oc.<br>has been designed for<br>load nonconcurrent wi<br>gs are assumed to be \$                                       | DL=6.0psf; h=35ft;<br>d; MWFRS (envelop<br>E) zone; cantilever l<br>left and right<br>orces & MWFRS for<br>1.60 plate grip<br>n the plane of the tru<br>l (normal to the face)<br>d Details as applicat<br>gner as per ANSI/TF<br>m chord bearing.<br>r a 10.0 psf bottom<br>ith any other live load | left<br>),<br>ble,<br>PI 1.                                                     |                                                                                                                                                                                   |                                           |                                                      |                             |     |                                       | STATE OF<br>NATH<br>OF<br>PE-2027 | ANIEL<br>DX<br>DX<br>DX<br>DX<br>DX<br>DX<br>DX<br>DX<br>DX<br>DX<br>DX<br>DX<br>DX |

November 2,2023



|   |                                  |                                      |                                 |                                         |                           |                               | RELEASE FOR CONSTRUCTION          |
|---|----------------------------------|--------------------------------------|---------------------------------|-----------------------------------------|---------------------------|-------------------------------|-----------------------------------|
| 1 | Job                              | Truss                                | Truss Type                      | Qtv                                     | Plv                       | Roof - Osage Lot 77           | AS NOTED FOR PLAN REVIEW          |
|   | 505                              | 11055                                | Truss Type                      | Qty                                     | i iy                      | KUUI - Osage LUI / /          | DEVELOPMENT SERVICES<br>161779304 |
|   | P230812                          | V2                                   | Valley                          | 2                                       | 1                         | Job Reference (optional       | LEE'S SUMMIT, MISSOURI            |
|   | Premier Building Supply (Springh | hill, KS), Spring Hills, KS - 66083, | Run: 8.63 S Ai<br>ID:vXDyld3MSi | ug 30 2023 Print: 8.<br>mhkXsev2E4pqAzx | 630 S Aug 3<br>F0e-RfC?Ps | 0 2023 MiTek Industries, Inc. | Ved Nov 1 193/106/2023            |



6-0-0

Scale = 1:23.3

| Loading                                                                    | (psf)                                                                                                                                             | Spacing                                                     | 3-0-0   |                                                                                                                                                                                                                                                       | CSI                         |      | DEFL      | in   | (loc) | l/defl | L/d | PLATES        | GRIP     |
|----------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------|---------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|------|-----------|------|-------|--------|-----|---------------|----------|
| TCLL (roof)                                                                | 25.0                                                                                                                                              | Plate Grip DOL                                              | 1.15    |                                                                                                                                                                                                                                                       | TC                          | 0.26 | Vert(LL)  | n/a  | -     | n/a    | 999 | MT20          | 244/190  |
| TCDL                                                                       | 10.0                                                                                                                                              | Lumber DOL                                                  | 1.15    |                                                                                                                                                                                                                                                       | BC                          | 0.13 | Vert(TL)  | n/a  | -     | n/a    | 999 |               |          |
| BCLL                                                                       | 0.0                                                                                                                                               | Rep Stress Incr                                             | NO      |                                                                                                                                                                                                                                                       | WB                          | 0.12 | Horiz(TL) | 0.00 | 5     | n/a    | n/a |               |          |
| BCDL                                                                       | 10.0                                                                                                                                              | Code                                                        | IRC2018 | 8/TPI2014                                                                                                                                                                                                                                             | Matrix-P                    |      |           |      |       |        |     | Weight: 22 lb | FT = 20% |
| LUMBER<br>TOP CHORD<br>BOT CHORD<br>WEBS<br>OTHERS<br>BRACING<br>TOP CHORD | 2x4 SP No.2<br>2x4 SP No.2<br>2x3 SPF No.2<br>2x3 SPF No.2<br>2-0-0 oc purlins (6-0<br>verticals<br>(Switched from shee<br>Rigid ceiling directly | ted: Spacing > 2-8-0                                        | ). 8)   | <ul> <li>capacity of 565 psi.</li> <li>Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 15 lb uplift at joint 1, 17 lb uplift at joint 5, 20 lb uplift at joint 6 and 124 lb uplift at joint 7.</li> </ul> |                             |      |           |      |       |        |     |               |          |
|                                                                            | bracing.                                                                                                                                          | 9) Graphical purlin representation does not depict the size |         |                                                                                                                                                                                                                                                       |                             |      |           |      |       |        |     |               |          |
|                                                                            | 7=6-11-9<br>Max Horiz 1=143 (LC<br>Max Uplift 1=-15 (LC<br>(LC 12), 7<br>Max Grav 1=175 (LC                                                       | , 5=-17 (LC 9), 6=<br>=-124 (LC 12)                         | -20 LC  |                                                                                                                                                                                                                                                       | ation of the purlin a<br>I. |      |           | size |       |        |     |               |          |
| FORCES                                                                     | (lb) - Maximum Com<br>Tension                                                                                                                     | pression/Maximum                                            |         |                                                                                                                                                                                                                                                       |                             |      |           |      |       |        |     |               |          |
| TOP CHORD                                                                  | 1-2=-293/154, 2-3=-<br>4-5=-68/106                                                                                                                | 114/84, 3-4=-81/81,                                         |         |                                                                                                                                                                                                                                                       |                             |      |           |      |       |        |     |               |          |
| BOT CHORD<br>WEBS                                                          | 1-7=-62/83, 6-7=-62<br>3-6=-58/79, 2-7=-34                                                                                                        | ,                                                           |         |                                                                                                                                                                                                                                                       |                             |      |           |      |       |        |     |               |          |
| Vasd=91m<br>Ke=1.00; 0                                                     | CE 7-16; Vult=115mph<br>hph; TCDL=6.0psf; BC<br>Cat. II; Exp C; Enclose<br>ne and C-C Corner(3E                                                   | DL=6.0psf; h=35ft;<br>d; MWFRS (envelope                    | e)      |                                                                                                                                                                                                                                                       |                             |      |           |      |       |        | ł   | STATE OF D    | MISSOUR  |

- vasu=9 mpn, TCDL=0.0psi, DEDL=0.0psi, TESOI,
   Ke=1.00; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone and C-C Corner(3E) 1-2-1 to 6-2-1,
   Exterior(2N) 6-2-1 to 6-11-1 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown;
   Lumber DOL=1.60 plate grip DOL=1.60
- Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 3) Gable requires continuous bottom chord bearing.
- 4) Gable studs spaced at 1-4-0 oc.



FOX

PE-2022042259

SSIONAL ET

ABER

|                                  |                                      |            |     |     |                                                          | RELEASE FOR CONSTRUCTION                                    |
|----------------------------------|--------------------------------------|------------|-----|-----|----------------------------------------------------------|-------------------------------------------------------------|
| Job                              | Truss                                | Truss Type | Qty | Ply | Roof - Osage Lot 77                                      |                                                             |
| P230812                          | V3                                   | Valley     | 2   | 1   | Job Reference (optional                                  | DEVELOPMENT SERVICES<br>161779305<br>LEE'S SUMMIT, MISSOURI |
| Premier Building Supply (Springl | nill, KS), Spring Hills, KS - 66083, |            |     |     | 0 2023 MiTek Industries, Inc.<br>170Hq3NSgPqnL8w3uITXbGK |                                                             |

3-0-0







1.5x4 🛚

1.5x4 🛚



3-0-0

| Scale = 1:17.4 | Scale | = ' | 1:17 | ′.4 |
|----------------|-------|-----|------|-----|
|----------------|-------|-----|------|-----|

| Scale = 1:17.4                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                     |                                                                 |                      |                                           |                          |                      |                             |                          |                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------|----------------------|-------------------------------------------|--------------------------|----------------------|-----------------------------|--------------------------|-----------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| TCLL (roof) 2<br>TCDL 1<br>BCLL                                                                                                                                                                                                                             | sf)Spacing6.0Plate Grip DOL0.0Lumber DOL0.0Rep Stress Incr0.0Code                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2-0-0<br>1.15<br>1.15<br>YES<br>IRC2018/TPI2014                                                                                     | CSI<br>TC<br>BC<br>WB<br>Matrix-P                               | 0.09<br>0.05<br>0.00 | DEFL<br>Vert(LL)<br>Vert(TL)<br>Horiz(TL) | in<br>n/a<br>n/a<br>0.00 | (loc)<br>-<br>-<br>3 | l/defl<br>n/a<br>n/a<br>n/a | L/d<br>999<br>999<br>n/a | PLATES<br>MT20<br>Weight: 8 lb                | <b>GRIP</b><br>244/190<br>FT = 20%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| LUMBER<br>TOP CHORD 2x4 SP No.2<br>BOT CHORD 2x4 SP No.2<br>WEBS 2x3 SPF No.2<br>BRACING<br>TOP CHORD Structural woo<br>3-2-1 oc purlin<br>BOT CHORD Rigid ceiling d<br>bracing.<br>REACTIONS (size) 1=3<br>Max Horiz 1=3<br>Max Uplift 1=-<br>Max Grav 1=9 | d sheathing directly appli<br>s, except end verticals.<br>rectly applied or 10-0-0 c<br>1-5, 3=3-1-5<br>4 (LC 9)<br>8 (LC 8), 3=-24 (LC 12)<br>9 (LC 1), 3=96 (LC 1)<br>Compression/Maximum<br>3=-74/98<br>5 mph (3-second gust)<br>f; BCDL=6.0psf; h=35ft;<br>clossed; MWFRS (envelo<br>cior(2E) zone; cantilever<br>tical left and right<br>and forces & MWFRS fo<br>OL=1.60 plate grip<br>ads in the plane of the tr<br>wind (normal to the face<br>le End Details as applica<br>designer as per ANSI/T<br>bottom chord bearing.<br>0 oc.<br>ed for a 10.0 psf bottom<br>int with any other live loa<br>o be SP No.2 crushing<br>tion (by others) of truss | 8) This truss<br>Internation<br>R802.10.2<br>LOAD CASE(<br>ied or<br>bc<br>pe)<br>left<br>r<br>uss<br>s),<br>ible,<br>PI 1.<br>ads. | is designed in accornal Residential Code<br>and referenced star | sections             | 8 R502.11.1 a                             | ind                      |                      |                             |                          | STATE OF<br>STATE OF<br>NATH<br>FC<br>PE-2022 | MISSOUTH<br>ANIEL<br>X<br>MARCHAR<br>MARCHAR<br>MARCHAR<br>MARCHAR<br>MARCHAR<br>MARCHAR<br>MARCHAR<br>MARCHAR<br>MARCHAR<br>MARCHAR<br>MARCHAR<br>MARCHAR<br>MARCHAR<br>MARCHAR<br>MARCHAR<br>MARCHAR<br>MARCHAR<br>MARCHAR<br>MARCHAR<br>MARCHAR<br>MARCHAR<br>MARCHAR<br>MARCHAR<br>MARCHAR<br>MARCHAR<br>MARCHAR<br>MARCHAR<br>MARCHAR<br>MARCHAR<br>MARCHAR<br>MARCHAR<br>MARCHAR<br>MARCHAR<br>MARCHAR<br>MARCHAR<br>MARCHAR<br>MARCHAR<br>MARCHAR<br>MARCHAR<br>MARCHAR<br>MARCHAR<br>MARCHAR<br>MARCHAR<br>MARCHAR<br>MARCHAR<br>MARCHAR<br>MARCHAR<br>MARCHAR<br>MARCHAR<br>MARCHAR<br>MARCHAR<br>MARCHAR<br>MARCHAR<br>MARCHAR<br>MARCHAR<br>MARCHAR<br>MARCHAR<br>MARCHAR<br>MARCHAR<br>MARCHAR<br>MARCHAR<br>MARCHAR<br>MARCHAR<br>MARCHAR<br>MARCHAR<br>MARCHAR<br>MARCHAR<br>MARCHAR<br>MARCHAR<br>MARCHAR<br>MARCHAR<br>MARCHAR<br>MARCHAR<br>MARCHAR<br>MARCHAR<br>MARCHAR<br>MARCHAR<br>MARCHAR<br>MARCHAR<br>MARCHAR<br>MARCHAR<br>MARCHAR<br>MARCHAR<br>MARCHAR<br>MARCHAR<br>MARCHAR<br>MARCHAR<br>MARCHAR<br>MARCHAR<br>MARCHAR<br>MARCHAR<br>MARCHAR<br>MARCHAR<br>MARCHAR<br>MARCHAR<br>MARCHAR<br>MARCHAR<br>MARCHAR<br>MARCHAR<br>MARCHAR<br>MARCHAR<br>MARCHAR<br>MARCHAR<br>MARCHAR<br>MARCHAR<br>MARCHAR<br>MARCHAR<br>MARCHAR<br>MARCHAR<br>MARCHAR<br>MARCHAR<br>MARCHAR<br>MARCHAR<br>MARCHAR<br>MARCHAR<br>MARCHAR<br>MARCHAR<br>MARCHAR<br>MARCHAR<br>MARCHAR<br>MARCHAR<br>MARCHAR<br>MARCHAR<br>MARCHAR<br>MARCHAR<br>MARCHAR<br>MARCHAR<br>MARCHAR<br>MARCHAR<br>MARCHAR<br>MARCHAR<br>MARCHAR<br>MARCHAR<br>MARCHAR<br>MARCHAR<br>MARCHAR<br>MARCHAR<br>MARCHAR<br>MARCHAR<br>MARCHAR<br>MARCHAR<br>MARCHAR<br>MARCHAR<br>MARCHAR<br>MARCHAR<br>MARCHAR<br>MARCHAR<br>MARCHAR<br>MARCHAR<br>MARCHAR<br>MARCHAR<br>MARCHAR<br>MARCHAR<br>MARCHAR<br>MARCHAR<br>MARCHAR<br>MARCHAR<br>MARCHAR<br>MARCHAR<br>MARCHAR<br>MARCHAR<br>MARCHAR<br>MARCHAR<br>MARCHAR<br>MARCHAR<br>MARCHAR<br>MARCHAR<br>MARCHAR<br>MARCHAR<br>MARCHAR<br>MARCHAR<br>MARCHAR<br>MARCHAR<br>MARCHAR<br>MARCHAR<br>MARCHAR<br>MARCHAR<br>MARCHAR<br>MARCHAR<br>MARCHAR<br>MARCHAR<br>MARCHAR<br>MARCHAR<br>MARCHAR<br>MARCHAR<br>MARCHAR<br>MARCHAR<br>MARCHAR<br>MARCHAR<br>MARCHAR<br>MARCHAR<br>MARCHAR<br>MARCHAR<br>MARCHAR<br>MARCHAR<br>MARCHAR<br>MARCHAR<br>MARCHAR<br>MARCHAR<br>MARCHAR<br>MARCHAR<br>MARCHAR<br>MARCHAR<br>MARCHAR<br>MARCHAR<br>MARCHAR<br>MARCHAR<br>MARCHAR<br>MARCHAR<br>MARCHAR<br>MARCHAR<br>MARCHAR<br>MARCHAR<br>MARCHAR<br>MARCHAR<br>MARCHAR<br>MARCHAR<br>MARCHAR<br>MARCHAR<br>MARCHAR<br>MARCHAR<br>MARCHAR<br>MARCHAR<br>MARCHAR<br>MARCHAR<br>MARCHAR<br>MARCHAR<br>MARCHAR<br>MARCHAR<br>MARCHAR<br>MARCHAR<br>MARCHAR<br>MARCHAR<br>MARCHAR<br>MARCHAR<br>MARCHAR<br>MARCHAR<br>MARCHAR<br>MARCHAR<br>MARCHAR<br>MARCHAR<br>MARCHAR<br>MARCHAR<br>MARCHAR<br>MARCHAR<br>MARCHAR<br>MARCHAR<br>MARCHAR<br>MARCHAR<br>MARCHAR<br>MARCHAR<br>MARCHAR<br>MARCHAR<br>MARCH |





| Loading                     | (                                                  | (psf)                          | Spacing                | 2-0-0   |                            | CSI                            |               | DEFL       | in   | (loc) | l/defl | L/d | PLATES        | GRIP     |
|-----------------------------|----------------------------------------------------|--------------------------------|------------------------|---------|----------------------------|--------------------------------|---------------|------------|------|-------|--------|-----|---------------|----------|
| TCLL (roof)                 | :                                                  | 25.0                           | Plate Grip DOL         | 1.15    |                            | TC                             | 0.33          | Vert(LL)   | n/a  | -     | n/a    | 999 | MT20          | 244/190  |
| TCDL                        |                                                    | 10.0                           | Lumber DOL             | 1.15    |                            | BC                             | 0.20          | Vert(TL)   | n/a  | -     | n/a    | 999 |               |          |
| BCLL                        |                                                    | 0.0                            | Rep Stress Incr        | YES     |                            | WB                             | 0.08          | Horiz(TL)  | 0.00 | 3     | n/a    | n/a |               |          |
| BCDL                        |                                                    | 10.0                           | Code                   | IRC201  | 8/TPI2014                  | Matrix-S                       |               |            |      |       |        |     | Weight: 34 lb | FT = 20% |
| LUMBER                      |                                                    |                                |                        | 7       | All bearings               | are assumed                    | to be SP No.: | 2 crushing |      |       |        |     |               |          |
| TOP CHORD                   | 2x4 SP No.2                                        |                                |                        |         | capacity of 5              | 65 psi.                        |               |            |      |       |        |     |               |          |
| BOT CHORD                   | 2x4 SP No.2                                        |                                |                        | 8       |                            | hanical conne                  |               |            |      |       |        |     |               |          |
| OTHERS                      | 2x3 SPF No.2                                       | 2                              |                        |         |                            | e capable of w                 |               |            | oint |       |        |     |               |          |
| BRACING                     |                                                    |                                |                        |         | · ·                        | at joint 3 and                 |               |            |      |       |        |     |               |          |
| TOP CHORD                   | Structural wo<br>6-0-0 oc purli                    |                                | athing directly applie | ed or 9 |                            | designed in a<br>Residential C |               |            | ind  |       |        |     |               |          |
| BOT CHORD                   |                                                    |                                | applied or 10-0-0 o    |         | R802.10.2 a<br>OAD CASE(S) | nd referenced<br>Standard      | standard AN   | ISI/TPI 1. |      |       |        |     |               |          |
| l                           | Max Horiz 1=<br>Max Uplift 1=<br>4=<br>Max Grav 1= | -104 (LC<br>-44 (LC<br>-16 (LC | 12), 3=-56 (LC 13)     | ·       |                            |                                |               |            |      |       |        |     |               |          |
| FORCES                      | (lb) - Maximu<br>Tension                           | m Comp                         | pression/Maximum       |         |                            |                                |               |            |      |       |        |     |               |          |
| TOP CHORD                   | 1-2=-187/91,                                       | 2-3=-18                        | 34/101                 |         |                            |                                |               |            |      |       |        |     |               |          |
| BOT CHORD                   | 1-4=-24/88, 3                                      | 8-4=-24/8                      | 88                     |         |                            |                                |               |            |      |       |        |     |               |          |
| WEBS                        | 2-4=-218/106                                       | 5                              |                        |         |                            |                                |               |            |      |       |        |     |               |          |
| NOTES                       |                                                    |                                |                        |         |                            |                                |               |            |      |       |        |     |               |          |
| 1) Unbalance<br>this design | •                                                  |                                | been considered fo     | r       |                            |                                |               |            |      |       |        |     |               |          |

- 2) Wind: AŠCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=35ft; Ke=1.00; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) Gable requires continuous bottom chord bearing.
- 5) Gable studs spaced at 4-0-0 oc.
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.





|                                 |       |                    |                    |             |            |                                                      | RELEASE FOR CONSTRUCTION                                    |
|---------------------------------|-------|--------------------|--------------------|-------------|------------|------------------------------------------------------|-------------------------------------------------------------|
| Job                             | Truss | Truss Type         |                    | Qty         | Ply        | Roof - Osage Lot 77                                  |                                                             |
| P230812                         | V5    | Valley             |                    | 2           | 1          | Job Reference (optional                              | DEVELOPMENT SERVICES<br>161779307<br>LEE'S SUMMIT, MISSOURI |
| Premier Building Supply (Spring | •     | Run: 8.63 S Aug 30 | 2023 Print: 8      | 3.630 S Aug |            | Ved Nov 4 193/106/2923<br>VrCDoi7J4zJ <del>591</del> |                                                             |
|                                 |       |                    | ID.NyO2F2CT MinjGN | SJ_FSDUy2   | r_i-ric?rs | Brondsingedurowani yadak                             |                                                             |
|                                 |       | 1                  | 3-0-0              |             | 1          | 5-8-4                                                |                                                             |

3-0-0

2-8-4



6-0-0

| Casla |   | 4.07 |
|-------|---|------|
| Scale | = | 1:27 |

| Scale = 1:27                                                                                 |                                                                                                              |                                                                                                                     |                                        |                                                                                                |                                                                                                                    |                                                            |                                                                   |                          |                      |                             |                          |                                 |                                    |
|----------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|----------------------------------------|------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------|-------------------------------------------------------------------|--------------------------|----------------------|-----------------------------|--------------------------|---------------------------------|------------------------------------|
| Loading<br>TCLL (roof)<br>TCDL<br>BCLL<br>BCDL                                               | (psf)<br>25.0<br>10.0<br>0.0<br>10.0                                                                         | <b>Spacing</b><br>Plate Grip DOL<br>Lumber DOL<br>Rep Stress Incr<br>Code                                           | 2-0-0<br>1.15<br>1.15<br>YES<br>IRC201 | 8/TPI2014                                                                                      | <b>CSI</b><br>TC<br>BC<br>WB<br>Matrix-P                                                                           | 0.18<br>0.07<br>0.03                                       | <b>DEFL</b><br>Vert(LL)<br>Vert(TL)<br>Horiz(TL)                  | in<br>n/a<br>n/a<br>0.00 | (loc)<br>-<br>-<br>3 | l/defl<br>n/a<br>n/a<br>n/a | L/d<br>999<br>999<br>n/a | PLATES<br>MT20<br>Weight: 21 lb | <b>GRIP</b><br>244/190<br>FT = 20% |
| LUMBER<br>TOP CHORD<br>BOT CHORD<br>OTHERS<br>BRACING<br>TOP CHORD<br>BOT CHORD<br>REACTIONS | Max Horiz 1=-62 (LC<br>Max Uplift 1=-34 (LC<br>Max Grav 1=144 (LC<br>(LC 1)<br>(Ib) - Maximum Com<br>Tension | applied or 10-0-0 or<br>3=6-0-13, 4=6-0-13<br>8)<br>12), 3=-41 (LC 13)<br>C 1), 3=144 (LC 1), 4<br>pression/Maximum |                                        | capacity of 8<br>Provide med<br>bearing plate<br>1 and 41 lb<br>This truss is<br>International | chanical connect<br>e capable of with<br>uplift at joint 3.<br>designed in ac<br>Residential Co<br>nd referenced s | ction (by oth<br>hstanding 3<br>cordance w<br>ode sections | ers) of truss<br>34 lb uplift at<br>ith the 2018<br>5 R502.11.1 a | joint                    |                      |                             |                          |                                 |                                    |
| TOP CHORD<br>BOT CHORD<br>WEBS<br><b>NOTES</b><br>1) Unbalance                               | 1-2=-102/66, 2-3=-96<br>1-4=-14/49, 3-4=-14/<br>2-4=-123/77<br>ed roof live loads have                       | 49                                                                                                                  | r                                      |                                                                                                |                                                                                                                    |                                                            |                                                                   |                          |                      |                             |                          |                                 |                                    |

this design. Wind: ASCE 7-16; Vult=115mph (3-second gust)

2-6-9

2) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=35ft; Ke=1.00; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

Gable requires continuous bottom chord bearing. 4)

5) Gable studs spaced at 4-0-0 oc.

6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.
 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not besign value to dury with with where outputs into design is based only door parameters shown, and is for an individual building design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members and property incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TPH1 Quality Criteria**, and **DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcscomponents.com)





|                         |                                      |            |                         |           |             |                               | RELEASE FOR CONSTRUCTION          |
|-------------------------|--------------------------------------|------------|-------------------------|-----------|-------------|-------------------------------|-----------------------------------|
| Job                     | Truss                                | Truss Type | Qtv                     |           | Plv         | Roof - Osage Lot 77           | AS NOTED FOR PLAN REVIEW          |
| 300                     | Truss                                | Truss Type |                         | y         | гіу         | Rool - Osage Lot 77           | DEVELOPMENT SERVICES<br>161779308 |
| P230812                 | V6                                   | Valley     | 2                       |           | 1           | Job Reference (optional       |                                   |
| Premier Building Supply | y (Springhill, KS), Spring Hills, KS | 66083,     | Run: 8.63 S Aug 30 2023 | Print: 8. | 630 S Aug 3 | 0 2023 MiTek Industries, Inc. |                                   |

ng Supply (Springhill, KS), Spring H IIIIS, KS - 66083, INGIN. 0.09 S AUG 30 2023 PTINT: 8.630 S AUG 30 2023 MITEK Industries, Inc. Ved Nov 41 423/48 6/26 20 10:TmPQfbvifSrAmDG7y9oS\_DzxF\_G-RfC?PsB70Hq3NSgPqnL8w3uITXbG WrCDoi794299 f







2-0-0

Scale = 1:23.2

Plate Offsets (X, Y): [2:0-2-0,Edge]

|                                                                                                                                                                                                                                                                                                                                                                                                                     | ,,                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                  |                                                                                                                                                                                                                    |                                       |                                                    |                          |                      |                             |                          |                                  |                                    |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|----------------------------------------------------|--------------------------|----------------------|-----------------------------|--------------------------|----------------------------------|------------------------------------|
| Loading<br>TCLL (roof)<br>TCDL<br>BCLL<br>BCDL                                                                                                                                                                                                                                                                                                                                                                      | (psf)<br>25.0<br>10.0<br>0.0<br>10.0                                                                                                                                                                                                                                                                                                                                                                                                                            | Spacing<br>Plate Grip DOL<br>Lumber DOL<br>Rep Stress Incr<br>Code                                                                                                                                                                                                                                                                                                                                                                 | 2-0-0<br>1.15<br>1.15<br>YES<br>IRC2018/TPI20 <sup>-</sup>                       | CSI<br>TC<br>BC<br>WB<br>14 Matrix-P                                                                                                                                                                               | 0.02<br>0.02<br>0.00                  | DEFL<br>Vert(LL)<br>Vert(TL)<br>Horiz(TL)          | in<br>n/a<br>n/a<br>0.00 | (loc)<br>-<br>-<br>3 | l/defl<br>n/a<br>n/a<br>n/a | L/d<br>999<br>999<br>n/a | PLATES<br>MT20<br>Weight: 6 lb   | <b>GRIP</b><br>244/190<br>FT = 20% |
| LUMBER<br>TOP CHORD<br>BOT CHORD<br>BRACING<br>TOP CHORD<br>BOT CHORD<br>BOT CHORD<br>REACTIONS<br>FORCES<br>TOP CHORD<br>BOT CHORD<br>BOT CHORD<br>BOT CHORD<br>NOTES<br>1) Unbalance<br>this design<br>2) Wind: ASC<br>Vasd=91m<br>Ke=1.00; (<br>exterior zo<br>and right e<br>exposed; (<br>reactions s<br>DOL=1.60<br>3) Truss des<br>only. For s<br>see Stand,<br>or consult<br>4) Gable requ<br>5) Gable stud | 2x4 SP No.2<br>2x4 SP No.2<br>Structural wood she<br>2-6-3 oc purlins.<br>Rigid ceiling directly<br>bracing.<br>(size) 1=2-5-10,<br>Max Horiz 1=-20 (LC<br>Max Uplift 1=-7 (LC<br>Max Grav 1=60 (LC<br>(lb) - Maximum Com<br>Tension<br>1-2=-46/34, 2-3=-46<br>1-3=-6/26<br>ad roof live loads have<br>b<br>CE 7-16; Vult=115mph<br>nph; TCDL=6.0psf; BC<br>Cat. II; Exp C; Enclose<br>one and C-C Exterior(2<br>exposed ; end vertical I<br>shown; Lumber DOL= | Code<br>athing directly applie<br>applied or 10-0-0 or<br>3=2-5-10<br>3), 3=-7 (LC 12)<br>1), 3=60 (LC 1)<br>pression/Maximum<br>/36<br>been considered for<br>(3-second gust)<br>DL=6.0psf; h=35ft;<br>d; MWFRS (envelop<br>E) zone; cantilever I<br>left and right<br>orces & MWFRS for<br>1.60 plate grip<br>n the plane of the tru<br>(normal to the face)<br>d Details as applicat<br>gner as per ANSI/TF<br>m chord bearing. | 8) Provid<br>bearin<br>and 7<br>9) This tr<br>Interna<br>R802.<br><b>LOAD CA</b> | Id     Matrix-P       e     mechanical connection of withs plate capable of withs the uplift at joint 3.       uss is designed in accoational Residential Code 10.2 and referenced states       SE(S)     Standard | standing 7<br>ordance w<br>e sections | ' lb uplift at jo<br>ith the 2018<br>s R502.11.1 a | int 1                    |                      |                             |                          | STATE OF<br>STATE OF<br>NATHLING | MISSOLANIEL<br>DX<br>BER           |
|                                                                                                                                                                                                                                                                                                                                                                                                                     | load nonconcurrent wi<br>gs are assumed to be \$<br>f 565 psi.                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                    | ls.                                                                              |                                                                                                                                                                                                                    |                                       |                                                    |                          |                      |                             | Y                        | ESSION/                          | IL ENGLAS                          |

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling or individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)



November 2,2023

