

MiTek, Inc. RE: P230812 - Roof - Osage Lot 77 16023 Swingley Ridge Rd. Site Information: Chesterfield, MO 63017 Project Customer: Clover & Hive Project Name: Twin Sienna - Farmhouse 314.434.1200 Lot/Block: 77 Subdivision: Osage Model: Twin Sienna - Farmhouse Address: 2122 / 2124 Holdsbrook Drive City: Lees Summit State: MO General Truss Engineering Criteria & Design Loads (Individual Truss Design **Drawings Show Special Loading Conditions):** Design Code: IRC2018/TPI2014 Design Program: MiTek 20/20 8.6 Wind Code: ASCE 7-16 Wind Speed: 115 mph Design Method: MWFRS (Envelope)/C-C hybrid Wind ASCE 7-16 Floor Load: N/A psf Mean Roof Height (feet): 35 Exposure Category: C No. Seal# Truss Name Date No. Seal# Truss Name Date 161779265 35 36 37 38 39 40 41 42 161779299 11/2/23 11/2/23 $\begin{array}{c}1234567891012345678911123456789\end{array}$ 161779266 A2 161779300 J5 161779267 A3 161779301 Í ÁY1 A4 161779302 161779268 LAY2 A5 B1 161779269 161779303 V1 161779270 Ů2 161779304 I61779271 I61779272 B2 161779305 V3 B3 V4 161779306 43 44 V5 161779273 **B**4 161779307 161779274 B5 161779308 I61779275 I61779276 B6 B7 161779277 **B8** 161779278 B9 l61779279 l61779280 B10 B11 B12 C1 161779281 161779282 161779283 161779 161779285 D2 161779 E1 E2 161779287 161779 288 1617792 E4 Ē5 E6 l61779291 161779292 G1 G2 G3 161779293 161779294 161779295 161779296 J1 J2 l61779297 l61779298 The truss drawing(s) referenced above have been prepared by MiTek USA, Inc. under my direct supervision based on the parameters

provided by Premier Building Supply (Springhill, KS)20300 W 207th Street.

Truss Design Engineer's Name: Nathan Fox

My license renewal date for the state of Missouri is December 31, 2024.

IMPORTANT NOTE: The seal on these truss component designs is a certification that the engineer named is licensed in the jurisdiction(s) identified and that the designs comply with ANSI/TPI 1. These designs are based upon parameters shown (e.g., loads, supports, dimensions, shapes and design codes), which were given to MiTek or TRENCO. Any project specific information included is for MiTek's or TRENCO's customers file reference purpose only, and was not taken into account in the preparation of these designs. MiTek or TRENCO has not independently verified the applicability of the design parameters or the designs for any particular building. Before use, the building designer should verify applicability of design parameters and properly incorporate these designs into the overall building design per ANSI/TPI 1, Chapter 2.

Nathan Fox

Roof Load: 45.0 psf

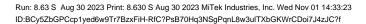
Job	Truss	Truss Type	Qty	Ply	Roof - Osage Lot 77	
P230812	A1	Half Hip Girder	2	1	Job Reference (optional)	161779265

TCDL

BCLL

BCDL

WEBS


WEBS

NOTES

1)

2)

3)

Page: 1

2-0-9

-0-10-8 5-0-0 8-10-8 12-11-8 0-10-8 5-0-0 4-1-0 3-10-8 NAII FD NAILED NAILED NAILED Special 4x4 = 3x4 = 3x4 II 12 4 Г 3 10 12 2-0-9 2-0-9 2-3-3 0-9-6 7 13 14 15 4x4 5x5 = 3x4 = Special NAILED NAILED NAILED 4-10-12 12-11-8 4-10-12 8-0-12 Scale = 1:32.8 Plate Offsets (X, Y): [5:Edge,0-2-8] Loading Spacing 2-0-0 CSI DEFL in l/defl L/d PLATES GRIP (psf) (loc) TCLL (roof) 25.0 Plate Grip DOL 1.15 TC 0.57 Vert(LL) -0.20 6-7 >771 240 MT20 197/144 10.0 Lumber DOL 1.15 BC 0.77 Vert(CT) -0.41 6-7 >371 180 Rep Stress Incr WB Horz(CT) 0.0 NO 0.83 0.03 6 n/a n/a 10.0 Code IRC2018/TPI2014 Matrix-S Weight: 50 lb FT = 20% LUMBER 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 266 lb uplift at TOP CHORD 2x4 SP No.2 joint 6 and 284 lb uplift at joint 2. 2x4 SP 1650F 1.5E BOT CHORD This truss is designed in accordance with the 2018 2x3 SPF No.2 International Residential Code sections R502.11.1 and BRACING R802.10.2 and referenced standard ANSI/TPI 1. TOP CHORD Structural wood sheathing directly applied or Graphical purlin representation does not depict the size 8) 3-4-7 oc purlins, except end verticals, and or the orientation of the purlin along the top and/or 2-0-0 oc purlins (3-10-1 max.): 3-5. bottom chord. BOT CHORD Rigid ceiling directly applied or 8-4-7 oc "NAILED" indicates Girder: 3-10d (0.148" x 3") toe-nails 9) bracing. per NDS guidelines. **REACTIONS** (size) 2=0-3-8, 6=0-3-8 10) Hanger(s) or other connection device(s) shall be Max Horiz 2=82 (LC 8) provided sufficient to support concentrated load(s) 13 lb Max Uplift 2=-284 (LC 8), 6=-266 (LC 8) down and 32 lb up at 12-10-4 on top chord, and 286 lb Max Grav 2=989 (LC 1), 6=964 (LC 1) down and 70 lb up at 5-0-0 on bottom chord. The (Ib) - Maximum Compression/Maximum FORCES design/selection of such connection device(s) is the Tension responsibility of others. TOP CHORD 1-2=0/6, 2-3=-2159/667, 3-4=-1948/675, 11) In the LOAD CASE(S) section, loads applied to the face 4-5=-97/0, 5-6=-174/118 of the truss are noted as front (F) or back (B). BOT CHORD 2-7=-670/1965, 6-7=-693/1602 LOAD CASE(S) Standard 3-7=0/422, 4-7=0/496, 4-6=-1670/766 Dead + Roof Live (balanced): Lumber Increase=1.15, 1) Plate Increase=1.15 Unbalanced roof live loads have been considered for Uniform Loads (lb/ft) this design. Vert: 1-3=-70, 3-5=-70, 2-6=-20 Wind: ASCE 7-16; Vult=115mph (3-second gust) Concentrated Loads (lb) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=35ft; Vert: 3=-90 (F), 5=-8 (F), 7=-286 (F), 4=-90 (F), Ke=1.00; Cat. II; Exp C; Enclosed; MWFRS (envelope) 9=-90 (F), 11=-90 (F), 13=-28 (F), 14=-28 (F), exterior zone and C-C Exterior(2E) -0-10-8 to 4-1-8, 15=-28 (F) NATHANIEI Interior (1) 4-1-8 to 5-0-0, Exterior(2R) 5-0-0 to 12-0-14, FOX Interior (1) 12-0-14 to 12-10-4 zone; cantilever left and right exposed ; end vertical left exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 Provide adequate drainage to prevent water ponding. C This truss has been designed for a 10.0 psf bottom

4) chord live load nonconcurrent with any other live loads. All bearings are assumed to be SP 1650F 1.5E crushing 5) capacity of 565 psi.

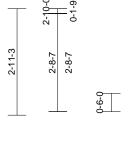
WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponent.com)

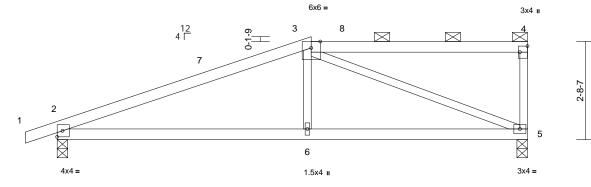
Job	Truss	Truss Type	Qty	Ply	Roof - Osage Lot 77	
P230812	A2	Half Hip	2	1	Job Reference (optional)	161779266

7-0-0

7-0-0

Premier Building Supply (Springhill, KS), Spring Hills, KS - 66083,


-0-10-8


0-10-8

Run: 8.63 S Aug 30 2023 Print: 8.630 S Aug 30 2023 MiTek Industries, Inc. Wed Nov 01 14:33:25 ID:BTUW8PT4CqydUFQNQEGqJmzxFi0-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

> 12-11-8 5-11-8 6x6 = 3 8

Page: 1

1	6-10-12	12-11-8	
	6-10-12	6-0-12	I

Scale = 1:31.7

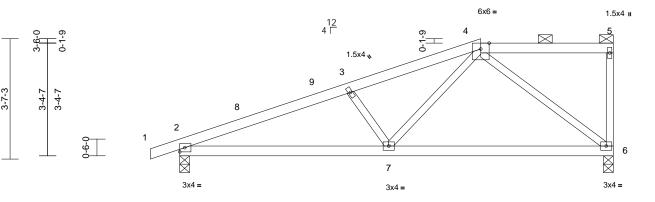
Plate Offsets (X, Y): [4:Edge,0-2-8]

	(, 1): [1:Edg0;0 E 0]											
Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15	TC	0.87	Vert(LL)	0.07	2-6	>999	240	MT20	197/144
TCDL	10.0	Lumber DOL	1.15	BC	0.55	Vert(CT)	-0.14	2-6	>999	180		
BCLL	0.0	Rep Stress Incr	YES	WB	0.88	Horz(CT)	0.02	5	n/a	n/a		
BCDL	10.0	Code	IRC2018/TPI2014	Matrix-S							Weight: 49 lb	FT = 20%
	2x4 SP No.2 2x4 SP No.2 2x3 SPF No.2 Structural wood she 2-2-0 oc purlins, ex 2-0-0 oc purlins (6-0 Rigid ceiling directly bracing. (size) 2=0-3-8, § Max Horiz 2=110 (LC	cept end verticals, a -0 max.): 3-4. applied or 8-6-15 or 5=0-3-8 C 8)	ed or c LOAD CAS	mechanical connect plate capable of with nd 164 lb uplift at join sis is designed in acc ional Residential Cor 0.2 and referenced si al purlin representati rientation of the purli chord. E(S) Standard	nstanding 1 nt 2. ordance w de sections tandard AN ion does no	33 lb uplift at ith the 2018 s R502.11.1 a ISI/TPI 1. ot depict the s	nd					
	Max Uplift 2=-164 (L Max Grav 2=646 (LC											
FORCES	(lb) - Maximum Com Tension	pression/Maximum										
TOP CHORD	1-2=0/6, 2-3=-970/3 4-5=-201/163	89, 3-4=-43/24,										
BOT CHORD WEBS	2-6=-433/838, 5-6=- 3-6=0/304, 3-5=-862											
NOTES												
1) Unbalance	d roof live loads have	been considered fo	r									
Vasd=91m Ke=1.00; C exterior zon Interior (1) zone; canti exposed;C	E 7-16; Vult=115mph ph; TCDL=6.0psf; BC Cat. II; Exp C; Enclose ne and C-C Exterior(2 4-1-8 to 7-0-0, Exterior liever left and right exp -C for members and f shown; Lumber DOL=	DL=6.0psf; h=35ft; d; MWFRS (envelop E) -0-10-8 to 4-1-8, or(2E) 7-0-0 to 12-1(posed ; end vertical orces & MWFRS for	0-4 left								STATE OF J	
3) Provide ad	lequate drainage to pr	event water ponding	g.							N7	DE 2022	042250 149

- 3 nding. 4)́
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. All bearings are assumed to be SP No.2 crushing 5)
- capacity of 565 psi.

Jo	b	Truss	Truss Type	Qty	Ply	Roof - Osage Lot 77	
P2	230812	A3	Half Hip	2	1	Job Reference (optional)	161779267

0-10-8


0-10-8

Run: 8.63 S Aug 30 2023 Print: 8.630 S Aug 30 2023 MiTek Industries, Inc. Wed Nov 01 14:33:26 ID:JzmRssdE8qanYFwthS?tLWzxFhp-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

3-4-7

5-1-4 9-0-0 12-11-8 5-1-4 3-10-12 3-11-8

				6-3-0								
Scale = 1:34.4				0-3-0				0-	8-8			
Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15	TC	0.32	Vert(LL)	-0.05	6-7	>999	240	MT20	197/144
TCDL	10.0	Lumber DOL	1.15	BC	0.48	Vert(CT)	-0.11	6-7	>999	180		
BCLL	0.0	Rep Stress Incr	YES	WB	0.37	Horz(CT)	0.01	6	n/a	n/a		
BCDL	10.0	Code	IRC2018/TPI2014	Matrix-S							Weight: 52 lb	FT = 20%
LUMBER		•	6) Provide me	chanical connec	tion (by oth	ers) of truss	to					

LUMBER	
TOP CHORD	2x4 SP No.2
BOT CHORD	2x4 SP No.2
WEBS	2x3 SPF No.2
BRACING	
TOP CHORD	Structural wood sheathing directly applied or
	5-1-9 oc purlins, except end verticals, and
	2-0-0 oc purlins (6-0-0 max.): 4-5.
BOT CHORD	Rigid ceiling directly applied or 7-8-13 oc
	bracing.
REACTIONS	(size) 2=0-3-8, 6=0-3-8
	Max Horiz 2=140 (LC 8)
	Max Uplift 2=-158 (LC 8), 6=-139 (LC 8)
	Max Grav 2=646 (LC 1), 6=569 (LC 1)
FORCES	(lb) - Maximum Compression/Maximum
	Tension
TOP CHORD	1-2=0/6, 2-3=-1102/467, 3-4=-913/416,
	4-5=-17/6, 5-6=-132/112
BOT CHORD	2-7=-574/977, 6-7=-297/487
	0 7 070/074 4 7 400/540 4 0 000/000

WFBS 3-7=-278/274, 4-7=-190/512, 4-6=-608/380 NOTES

1) Unbalanced roof live loads have been considered for this design.

- 2) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=35ft; Ke=1.00; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) -0-10-8 to 4-1-8, Interior (1) 4-1-8 to 9-0-0, Exterior(2E) 9-0-0 to 12-10-4 zone; cantilever left and right exposed ; end vertical left exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- Provide adequate drainage to prevent water ponding. 3)
- This truss has been designed for a 10.0 psf bottom 4) chord live load nonconcurrent with any other live loads.
- 5) All bearings are assumed to be SP No.2 crushing capacity of 565 psi.

This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. Graphical purlin representation does not depict the size

joint 6 and 158 lb uplift at joint 2.

8) or the orientation of the purlin along the top and/or bottom chord.

bearing plate capable of withstanding 139 lb uplift at

LOAD CASE(S) Standard

7)

Job	Truss	Truss Type	Qty	Ply	Roof - Osage Lot 77	
P230812	A4	Half Hip	2	1	Job Reference (optional)	161779268

4-2-0

4-0-7

Run: 8.63 S Aug 30 2023 Print: 8.630 S Aug 30 2023 MiTek Industries, Inc. Wed Nov 01 14:33:26 ID:vfcjoeo0r7LoEP_aVPF9wTzxFhb-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f 5-6-0 10-11-4 12-10-12 5-6-0 5-5-4 1-11-8 6x6 = 1.5x4 u 3 4 0-1-9 0-1-9 12 4 Г 1.5x4 🗸 82 4-0-7 7 -9-6 5

3x4 =

6

3x4 =

Loading TCLL (roof) TCDL	(psf) 25.0 10.0	Spacing Plate Grip DOL Lumber DOL	2-0-0 1.15 1.15		CSI TC BC	0.47 0.55	DEFL Vert(LL) Vert(CT)	in -0.09 -0.18	(loc) 1-6 1-6	l/defl >999 >832	L/d 240 180	PLATES MT20	GRIP 244/190
BCLL BCDL	0.0 10.0	Rep Stress Incr Code	YES	8/TPI2014	WB Matrix-S	0.55	Horz(CT)	-0.18 0.01	5	>032 n/a	n/a	Weight: 52 lb	FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD	2x4 SP No.2 2x4 SP No.2 2x3 SPF No.2 Structural wood she 5-0-9 oc purlins, ex 2-0-0 oc purlins (6-0 Rigid ceiling directly bracing.	cept end verticals, a -0 max.): 3-4.	nd ⁹) c	bearing plate joint 1 and 1 This truss is International R802.10.2 a Graphical pu		nstanding 1 nt 5. cordance w de sections tandard AN ion does no	01 lb uplift a th the 2018 R502.11.1 a ISI/TPI 1. ot depict the s	it and					

DOT OTIOND	Trigita com	ing directly applied of 7 0 10 00
	bracing.	
REACTIONS	(size)	1= Mechanical, 5=0-3-8
	Max Horiz	1=165 (LC 12)
	Max Uplift	1=-101 (LC 8), 5=-149 (LC 8)
	Max Grav	1=573 (LC 1), 5=573 (LC 1)
FORCES	(lb) - Max	imum Compression/Maximum
	Tension	

TOP CHORD 1-2=-1075/426, 2-3=-769/282, 3-4=-4/2, 4-5=-55/36 BOT CHORD 1-6=-574/969, 5-6=-154/250

WEBS 2-6=-423/370, 3-6=-229/616, 3-5=-564/354

NOTES

Scale = 1:35.8

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=35ft; Ke=1.00; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) 0-0-12 to 5-0-12, Interior (1) 5-0-12 to 10-11-4, Exterior(2E) 10-11-4 to 12-9-8 zone; cantilever left and right exposed ; end vertical left exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- Provide adequate drainage to prevent water ponding. 3)
- This truss has been designed for a 10.0 psf bottom 4) chord live load nonconcurrent with any other live loads.
- Bearings are assumed to be: , Joint 5 SP No.2 crushing 5) capacity of 565 psi.
- 6) Refer to girder(s) for truss to truss connections.

Page: 1

4-0-7

Ø

3x4 =

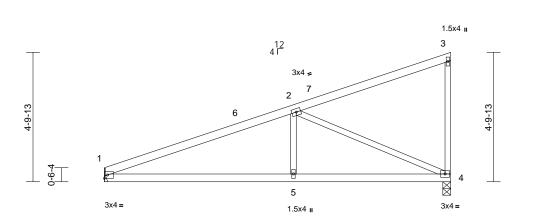
 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.
 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not beigh valid for use only with with with sets outputs into design is based only door parameters shown, and is for an individual dualing component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria**, and **DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcscomponents.com)

16023 Swingley Ridge Rd. Chesterfield MO 63017 314.434.1200 / MiTek-US.com

Job	Truss	Truss Type	Qty	Ply	Roof - Osage Lot 77	
P230812	A5	Half Hip	2	1	Job Reference (optional)	161779269

7-0-8

7-0-8


Premier Building Supply (Springhill, KS), Spring Hills, KS - 66083,

Run: 8.63 S Aug 30 2023 Print: 8.630 S Aug 30 2023 MiTek Industries, Inc. Wed Nov 01 14:33:26 ID:vfcjoeo0r7LoEP_aVPF9wTzxFhb-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

12-10-12

5-10-4

Page: 1

			7-	7-0-8			12-10-12					
Scale = 1:42.9			7-	0-8	I		5-10-4		I			
Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15	TC	0.74	Vert(LL)	-0.07	1-5	>999	240	MT20	244/190
TCDL	10.0	Lumber DOL	1.15	BC	0.69	Vert(CT)	-0.16	1-5	>959	180		
BCLL	0.0	Rep Stress Incr	YES	WB	0.92	Horz(CT)	0.02	4	n/a	n/a		
BCDL	10.0	Code	IRC2018/TPI2014	Matrix-S							Weight: 50 lb	FT = 20%

L	11	N	1 F	R	ER
ᄂ	υ	14		ונ	-n

TOP CHORD	2x4 SP N	0.2
BOT CHORD	2x4 SP N	0.2
WEBS	2x3 SPF I	No.2
BRACING		
TOP CHORD	Structural	wood sheathing directly applied or
	4-0-3 oc p	ourlins, except end verticals.
BOT CHORD	Rigid ceili	ng directly applied or 8-11-11 oc
	bracing.	
REACTIONS	(size)	1= Mechanical, 4=0-3-8
	Max Horiz	1=196 (LC 8)
	Max Liplift	1 = 01 (C 0) (- 150 (C 0))

	Max Uplint 1=-91 (LC 8), 4=-159 (LC 8)
	Max Grav 1=573 (LC 1), 4=573 (LC 1)
FORCES	(lb) - Maximum Compression/Maximum
	Tension
TOP CHORD	1-2=-980/252, 2-3=-90/25, 3-4=-146/157
BOT CHORD	1-5=-411/869. 4-5=-411/869

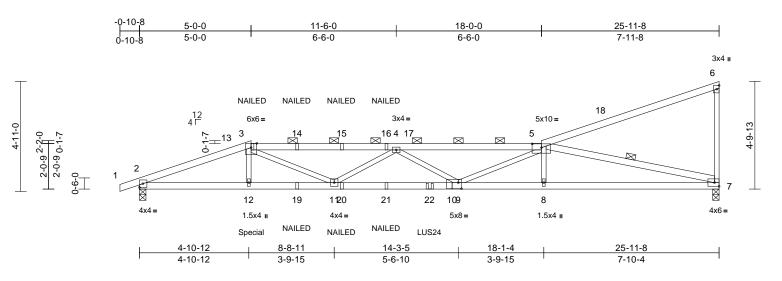
2-5=0/308, 2-4=-942/447

WEBS

NOTES

- Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=35ft; Ke=1.00; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) 0-1-8 to 5-1-8, Interior (1) 5-1-8 to 12-10-4 zone; cantilever left and right exposed ; end vertical left exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 3) Bearings are assumed to be: , Joint 4 SP No.2 crushing capacity of 565 psi.
- Refer to girder(s) for truss to truss connections.
 Provide mechanical connection (by others) of truss to
- bearing plate capable of withstanding 91 lb uplift at joint 1 and 159 lb uplift at joint 4.6) This truss is designed in accordance with the 2018
- International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard


Job	Truss	Truss Type	Qty	Ply	Roof - Osage Lot 77	
P230812	B1	Roof Special Girder	2	2	Job Reference (optional)	161779270

Run: 8.63 S Aug 30 2023 Print: 8.630 S Aug 30 2023 MiTek Industries, Inc. Wed Nov 01 14:33:26 ID:dCN3Jx9GTYSugcY53wGQS4zxFfr-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

November 2,2023

16023 Swingley Ridge Rd. Chesterfield, MO 63017 314.434.1200 / MiTek-US.com

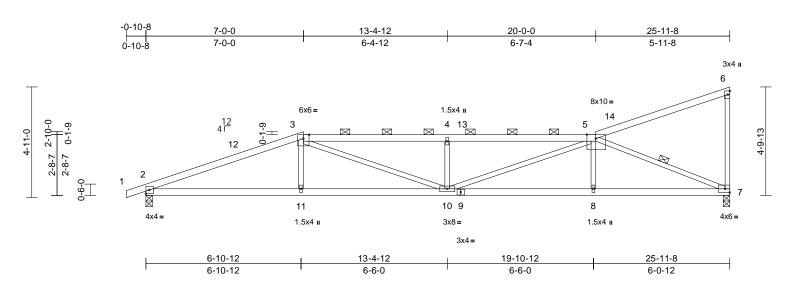

Scale = 1:51.6

Plate Offsets (X, Y): [5:0-5-0,0-2-0], [10:0-1-12,0-3-4]

		1											-
Loading	(psf)	Spacing	2-0-0		csi		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15		TC	0.81	Vert(LL)	-0.34	9-11	>914	240	MT20	197/144
TCDL	10.0	Lumber DOL	1.15		BC	0.89	Vert(CT)	-0.61	9-11	>508	180		
BCLL	0.0	Rep Stress Incr	NO		WB	0.64	Horz(CT)	0.11	7	n/a	n/a		
BCDL	10.0	Code	IRC2018	3/TPI2014	Matrix-S							Weight: 218 lb	FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD WEBS REACTIONS	1.5E 2x4 SP 1650F 1.5E 2x3 SPF No.2 *Exce Structural wood she 5-5-5 oc purlins, ex 2-0-0 oc purlins (4-9 Rigid ceiling directly bracing. 1 Row at midpt (size) 2=0-3-8, 7	ept* 7-5:2x4 SP No.2 athing directly applie cept end verticals, ar -15 max.): 3-5. applied or 10-0-0 oc 5-7 7=0-3-8	3) d or nd	except if note CASE(S) see provided to c unless other Wind: ASCE Vasd=91mpl Ke=1.00; Ca exterior zone Interior (1) 4 Interior (1) 12 right expose for members	considered equally ed as front (F) or ba titon. Ply to ply con distribute only loads wise indicated. 7-16; Vult=115mpl n; TCDL=6.0psf; BC t. II; Exp C; Encloss e and C-C Exterior(-1-8 to 5-0-0, Exterior 2-0-14 to 25-10-4 z d; end vertical left and forces & MWP =1.60 plate grip DC	ack (B) nection noted h (3-sec CDL=6. ed; MW 2E) -0 ior(2R) one; ca and righ FRS for	face in the LC s have been as (F) or (B), cond gust) Dpsf; h=35ft; FRS (envelop 0-8 to 4-1-8, 5-0-0 to 12-0 ntilever left a t exposed;C- reactions shot	pe) -14, nd -C	pro lb c des res LOAD 1) D Pl U	vided su down and sign/sele ponsibili CASE(S ead + Ro ate Incre niform Lo Vert: 1- oncentra Vert: 3= 16=-90	d 70 lb ction o ty of ot) Sta oof Live ease=1 oads (I 3=-70, ated Lo =-90 (F) (F), 19	up at 5-0-0 on b if such connection thers. ndard e (balanced): Lun 1.15 b/ft) 3-5=-70, 5-6=-70 ads (lb)	entrated load(s) 286 ottom chord. The n device(s) is the nber Increase=1.15, 0, 2-7=-20 4=-90 (F), 15=-90 (F),
Max Horiz 2=216 (LC 11) Max Uplift 2=-533 (LC 8), 7=-385 (LC 12) Max Grav 2=1968 (LC 1), 7=1548 (LC 1) FORCES (Ib) - Maximum Compression/Maximum				Provide adeo This truss ha chord live loa	Lumber DOL=1.60 plate grip DOL=1.60 Provide adequate drainage to prevent water ponding. This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. All bearings are assumed to be SP 1650F 1.5E crushing								
TOROLO	Tension	pression/maximum	0)	capacity of 5		SF 100	OF 1.5E Clus	inng					
TOP CHORD	1-2=0/6, 2-3=-4891/ 4-5=-6712/1763, 5-6	6=-175/91, 6-7=-256/		Provide mec bearing plate	hanical connection capable of withsta	inding 3							
BOT CHORD	9-11=-1996/7077, 8- 7-8=-1297/5251 3-12=-7/356, 5-8=0/2	-9=-1304/5248, 233, 5-7=-5346/1361	,	joint 7 and 533 lb uplift at joint 2. This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.								all	
	4-11=-1032/427, 3-1 4-9=-435/285, 5-9=-		9)	or the orienta	rlin representation ation of the purlin a			size			A	TATE OF I	NISSO STA
(0.131"x3' Top chord oc, 2x3 - 1 Bottom ch 0-9-0 oc.	s to be connected toge ') nails as follows: Is connected as follows I row at 0-9-0 oc. Nords connected as follows nected as follows: 2x3 - -9-0 oc.	s: 2x4 - 1 row at 0-9-0 ows: 2x4 - 1 row at) 11 12	Truss, Single the left end to chord. Fill all nail ho	n Strong-Tie LUS24 Ply Girder) or equ o connect truss(es) ples where hanger i dicates Girder: 3-10	ivalent to fron s in cor	at 13-0-0 from t face of botto tact with lum	n om ber.		1		PE-2022	AR 042259

Job	Truss	Truss Type	Qty	Ply	Roof - Osage Lot 77	
P230812	B2	Roof Special	2	1	Job Reference (optional)	161779271

Run: 8.63 S Aug 30 2023 Print: 8.630 S Aug 30 2023 MiTek Industries, Inc. Wed Nov 01 14:33:27 ID:SvoBiceM2qVDTmcnPK_o4WzxFfD-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

Scale = 1:51.2

Plate Offsets (X, Y): [5:0-4-12,Edge]

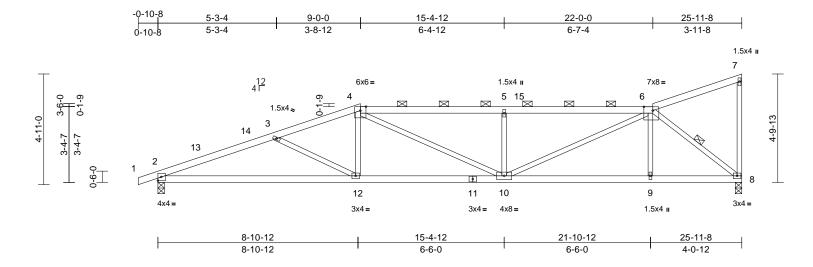
	, , , , , , , , , , , , , , , , , , , ,												
Loading TCLL (roof) TCDL BCLL BCDL	(psf) 25.0 10.0 0.0 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC201	8/TPI2014	CSI TC BC WB Matrix-S	0.85 0.90 0.99	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.24 -0.43 0.10	(loc) 8-10 8-10 7	l/defl >999 >713 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 104 lb	GRIP 197/144 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD	2x4 SP 1650F 1.5E No.2 2x4 SP No.2 2x3 SPF No.2 Structural wood she 2-2-0 oc purlins, ex 2-0-0 oc purlins (3-3	athing directly applie cept end verticals, a I-4 max.): 3-5.	5) 6) ed or nd 7)	capacity of £ Provide med bearing plat joint 7 and 2 This truss is Internationa R802.10.2 a Graphical pu	chanical connectic e capable of withs 83 lb uplift at joint designed in acco I Residential Code nd referenced sta urlin representatio	on (by oth standing 2 t 2. ordance w e sections andard AN on does no	ers) of truss 169 lb uplift a 1802.11.1 a ISI/TPI 1. 101 depict the	t and					
WEBS REACTIONS													
FORCES	(lb) - Maximum Com Tension	,, (,										
TOP CHORD	1-2=0/6, 2-3=-2680/ 4-5=-3193/755, 5-6=												
BOT CHORD	2-11=-706/2446, 10- 8-10=-505/2249, 7-8	-11=-709/2439,											
WEBS	3-11=0/296, 3-10=-1 5-10=-361/1005, 5-8	41/808, 4-10=-520/2	,									55000	ADD
Vasd=91m Ke=1.00; (exterior zo Interior (1)	CE 7-16; Vult=115mph nph; TCDL=6.0psf; BC Cat. II; Exp C; Enclose ne and C-C Exterior(2 4-1-8 to 7-0-0, Exterior 14-0-14 to 25-10-4 zc	DL=6.0psf; h=35ft; d; MWFRS (envelop E) -0-10-8 to 4-1-8, pr(2R) 7-0-0 to 14-0-	·14,							-		STATE OF M	NIEL RE

- right exposed ; end vertical left exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
 Provide adequate drainage to prevent water ponding.
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

November 2,2023

E

DUGBER


PE-2022042

RSSIONAL

Job	Truss	Truss Type	Qty	Ply	Roof - Osage Lot 77	
P230812	B3	Roof Special	2	1	Job Reference (optional)	161779272

Run: 8.63 S Aug 30 2023 Print: 8.630 S Aug 30 2023 MiTek Industries, Inc. Wed Nov 01 14:33:27 ID:agcX?t?A_2Hz3NvY9dWrIrzxFel-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:51.2

Plate Offsets (X, Y): [6:0-4-12,0-2-0]

	(7, 1): [0:0 1 12,0 2 0	<u>ا</u> ر											
Loading TCLL (roof)	(psf) 25.0	Spacing Plate Grip DOL	2-0-0 1.15		CSI TC	0.88	DEFL Vert(LL)	in -0.19	(loc) 2-12	l/defl >999	L/d 240	PLATES MT20	GRIP 197/144
TCDL	10.0	Lumber DOL	1.15		BC	0.92	Vert(CT)	-0.42	2-12	>740	180		
BCLL	0.0	Rep Stress Incr	YES		WB	0.51	Horz(CT)	0.08	8	n/a	n/a		
BCDL	10.0	Code	IRC201	8/TPI2014	Matrix-S			_				Weight: 109 lb	FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD WEBS REACTIONS	2x4 SP No.2 2x3 SPF No.2 Structural wood she 2-10-13 oc purlins, 2-0-0 oc purlins (2-2 Rigid ceiling directly bracing. 1 Row at midpt	r applied or 2-2-0 oc 6-8 8=0-3-8 C 8) .C 8), 8=-269 (LC 12	ed or 6) , and 7) L(capacity of 5 Provide mec bearing plate joint 8 and 20 This truss is International R802.10.2 an Graphical pu	hanical connectio capable of withs 33 lb uplift at joint designed in accoo Residential Code nd referenced sta filn representation ation of the purlin l.	n (by oth tanding 2 2. dance w sections ndard AN	ers) of truss t 169 lb uplift a 1869 lb uplift a 1802.11.1 a 181/TPI 1. 10 depict the s	t and					
FORCES	(lb) - Maximum Com												
TOP CHORD	,	/666, 3-4=-2355/556, =-2438/598, 6-7=-60/	23,										
BOT CHORD													
WEBS	3-12=-239/227, 4-12	2=-3/354, 4-10=-56/2)=-406/1300, 6-9=0/2	,									TATE OF M	AISS
Vasd=91r Ke=1.00; exterior zc Interior (1 Interior (1 right expo members Lumber D 2) Provide ar 3) This truss	CE 7-16; Vult=115mph mph; TCDL=6.0psf; BC Cat. II; Exp C; Enclose one and C-C Exterior(2) 4-1-8 to 9-0-0, Exterior) 16-0-14 to 25-10-4 zo sed ; end vertical left e and forces & MWFRS OL=1.60 plate grip DC dequate drainage to pr s has been designed fo load nonconcurrent w	iDL=6.0psf; h=35ft; d; MWFRS (envelop 2E) -0-10-8 to 4-1-8, or(2R) 9-0-0 to 16-0- one; cantilever left ar exposed;C-C for for reactions shown; DL=1.60 revent water ponding r a 10.0 psf bottom	14, nd							•	K	FOI	SER CONSTRUCTION

November 2,2023

Job	Truss	Truss Type	Qty	Ply	Roof - Osage Lot 77	
P230812	B4	Roof Special	2	1	Job Reference (optional)	161779273

Run: 8.63 S Aug 30 2023 Print: 8.630 S Aug 30 2023 MiTek Industries, Inc. Wed Nov 01 14:33:27 ID:tl3b14IEKQIZx3k9ZfyTGvzxFeN-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

-0-10-8 2<u>5-11-8</u> 6-1-2 11-0-0 17-6-0 24-0-0 4-10-14 1-11-8 0-10-8 6-1-2 6-6-0 6-6-0 1.5x4 u 6x6= 1.5x4 **I** 6x6 = 7 _12 4⊺ 5 14 4 6 0-1-9 \bowtie \bowtie \bowtie 3x4 🛥 3 4-9-13 4-11-0 4-0-7 4-0-7 13 0-9-0 8 • X 12 11 10 9 4x4 = 4x4 = 1.5x4 **I** 5x8= 3x4 = 3x4= 6-1-2 10-10-12 17-6-0 25-11-8 6-1-2 4-9-10 6-7-4 8-5-8

Scale = 1:51.2

Scale = 1:51.2													
Loading TCLL (roof) TCDL BCLL BCDL	(psf) 25.0 10.0 0.0 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC201	8/TPI2014	CSI TC BC WB Matrix-S	0.74 0.82 0.55	· · /	in -0.16 -0.35 0.07	(loc) 8-9 8-9 8	l/defl >999 >889 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 110 lb	GRIP 197/144 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD	2-3-3 oc purlins, ex 2-0-0 oc purlins (3-4 Rigid ceiling directly bracing.	applied or 6-10-11 c	nd ⁷⁾ oc	bearing plate joint 8 and 20 This truss is International R802.10.2 an Graphical pu		tanding 2 2. rdance w sections ndard AN n does no	269 Ib uplift at ith the 2018 s R502.11.1 a ISI/TPI 1. ot depict the s	t and					
	(size) 2=0-3-8, 8 Max Horiz 2=201 (LC Max Uplift 2=-283 (L Max Grav 2=1230 (L												
FORCES	(lb) - Maximum Com Tension	pression/Maximum											
TOP CHORD	1-2=0/6, 2-3=-2688/	607, 3-4=-2099/516, =-1853/456, 6-7=-49/											
BOT CHORD	2-12=-731/2454, 11 9-11=-539/1935, 8-9												
WEBS	3-12=0/231, 3-11=-5	563/222, 4-11=-37/35 53/272, 6-9=-391/15											
Vasd=91m	NOTES 1) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=35ft; Vasd=91mph; TCDL=5.0psf; h=35ft;										6	TE OF M	AISSO

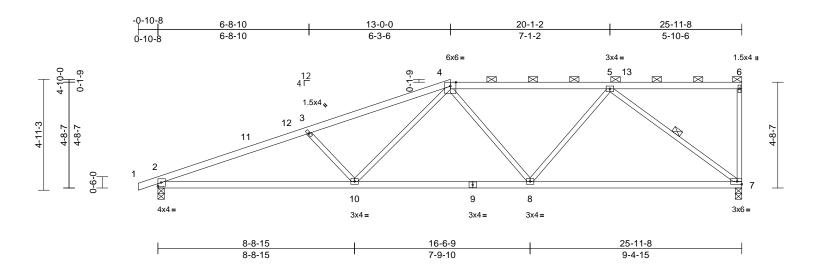
- Wind: ASCE 7-16; Vult=115mpn (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=35ft; Ke=1.00; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) -0-10-8 to 4-1-8, Interior (1) 4-1-8 to 11-0-0, Exterior(2R) 11-0-0 to 18-0-14, Interior (1) 18-0-14 to 25-10-4 zone; cantilever left and right exposed; end vertical left exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- Provide adequate drainage to prevent water ponding.
 This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- All bearings are assumed to be SP No.2 crushing capacity of 565 psi.

NATHANIEL

FOX

PE-2022042259

November 2,2023


THE SSIONAL

ER

E

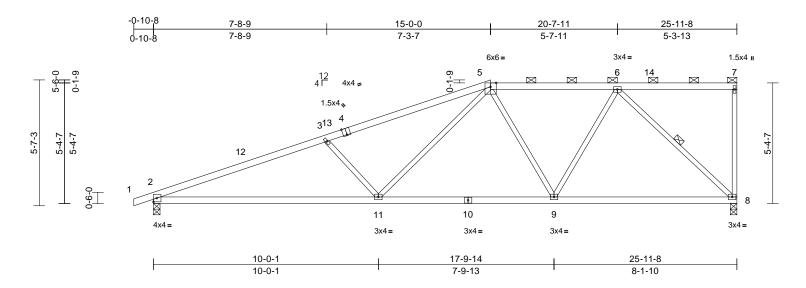
Job	Truss	Truss Type	Qty	Ply	Roof - Osage Lot 77	
P230812	B5	Half Hip	2	1	Job Reference (optional)	161779274

Run: 8.63 S Aug 30 2023 Print: 8.630 S Aug 30 2023 MiTek Industries, Inc. Wed Nov 01 14:33:28 ID:LICGyswr5OsBB2j9caufNtzxFdZ-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Scale = 1:51.2

Scale = 1.51.2													
Loading TCLL (roof) TCDL BCLL BCDL	(psf) 25.0 10.0 0.0 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC20	18/TPI2014	CSI TC BC WB Matrix-S	0.79 0.95 0.77	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.24 -0.50 0.07	(loc) 7-8 7-8 7	l/defl >999 >619 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 105 lb	GRIP 197/144 FT = 20%
	2x4 SP No.2 2x4 SP No.2 2x3 SPF No.2 Structural wood she 2-2-0 oc purlins, ex 2-0-0 oc purlins, (3-2 Rigid ceiling directly bracing. 1 Row at midpt (size) 2=0-3-8, 7 Max Horiz 2=198 (LC Max Uplift 2=-284 (L Max Grav 2=1230 (L	cept end verticals, ai -10 max.): 4-6. applied or 2-2-0 oc 5-7 7=0-3-8 C 8), 7=-268 (LC 8)	nd 8 L	 capacity of 5 Provide mec bearing plate joint 7 and 2 This truss is International R802.10.2 a Graphical pu 	chanical connecti e capable of with 84 lb uplift at joir designed in acc Residential Coc nd referenced st urlin representati ation of the purlin d.	ion (by oth istanding 2 nt 2. ordance wi de sections andard AN on does no	ers) of truss 68 lb uplift a th the 2018 R502.11.1 a ISI/TPI 1. ot depict the	t and					
FORCES	(lb) - Maximum Com	pression/Maximum											
TOP CHORD	Tension 1-2=0/6, 2-3=-2622/0 4-5=-1530/380, 5-6=												
BOT CHORD	2-10=-765/2411, 8-1 7-8=-362/1220	,											
WEBS	3-10=-407/271, 4-10 4-8=-253/171, 5-8=-		160										
, this design	ed roof live loads have n. CE 7-16; Vult=115mph		r									TE OF M	AISSO

- 2) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=35ft; Ke=1.00; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) -0-10-8 to 4-1-8, Interior (1) 4-1-8 to 13-0-0, Exterior(2R) 13-0-0 to 20-1-2, Interior (1) 20-1-2 to 25-10-4 zone; cantilever left and right exposed ; end vertical left exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Provide adequate drainage to prevent water ponding.
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.


Page: 1

Job	Truss	Truss Type	Qty	Ply	Roof - Osage Lot 77	
P230812	B6	Half Hip	2	1	Job Reference (optional)	161779275

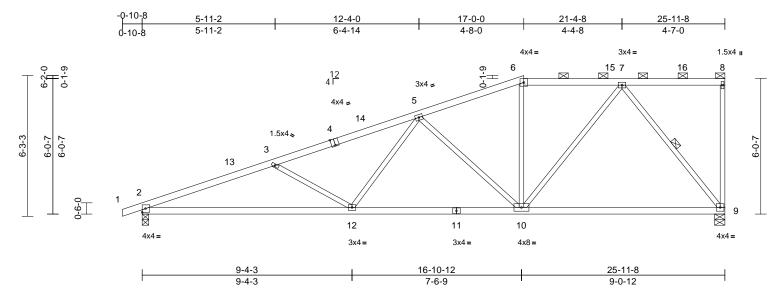
Run: 8.63 S Aug 30 2023 Print: 8.630 S Aug 30 2023 MiTek Industries, Inc. Wed Nov 01 14:33:28 ID:LICGyswr5OsBB2j9caufNtzxFdZ-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:51.3

Plate Offsets (X, Y): [4:0-2-0,Edge]

	(X, T): [1:0 2 0,Edg0]												
Loading TCLL (roof) TCDL BCLL BCDL	(psf) 25.0 10.0 0.0 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018/TF	912014	CSI TC BC WB Matrix-S	0.91 0.73 0.68	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.27 -0.59 0.07	(loc) 2-11 2-11 8	l/defl >999 >525 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 107 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD WEBS REACTIONS	2x4 SP No.2 *Excep 1.5E 2x4 SP No.2 *Excep 1.5E 2x3 SPF No.2 Structural wood she except end verticals (4-10-0 max.): 5-7. Rigid ceiling directly bracing. 1 Row at midpt (size) 2=0-3-8, i Max Horiz 2=227 (Lt Max Grav 2=1230 (I (lb) - Maximum Com Tension	ot* 4-1:2x4 SP 1650F ot* 10-2:2x4 SP 1650f eathing directly applied and 2-0-0 oc purlins applied or 8-1-8 oc 6-8 8=0-3-8 C 8) C 8), 8=-273 (LC 8) LC 1), 8=1155 (LC 1)	4) Th ch 5) Be cr ca 6) Pr be d, joi d, joi d, joi bc d, joi bc bc bc bc bc bc bc bc bc bc bc bc bc	his truss ha bord live loa earings are ushing cap apacity of 5 rovide mec aring plate and 2 his truss is ternational 802.10.2 a 802.10.2 a the orienta bottom chord	as been designed as been designed a assumed to be: bacity of 565 psi, hanical connection e capable of withs 79 lb uplift at join designed in acco Residential Cod nd referenced sta riln representatic ation of the purlin	t with any Joint 2 SI Joint 8 SF on (by oth standing 2 t 2. ordance w e sections andard AN on does no	other live loa P 1650F 1.5E P No.2 crushi ers) of truss 73 lb uplift a ith the 2018 F R502.11.1 a ISI/TPI 1. ot depict the	ing to t and					
TOP CHORD BOT CHORD	5-6=-1250/336, 6-7=	=-13/1, 7-8=-148/95											-
this design 2) Wind: AS(Vasd=91n Ke=1.00; exterior zc Interior (1) 22-0-14, II left and rig members Lumber D	ed roof live loads have	78/564, 6-8=-1343/4 been considered for (3-second gust) (DL=6.0psf; h=35ft; d; MWFRS (envelope 2E) -0-10-8 to 4-1-8, rior(2R) 15-0-0 to (25-10-4 zone; cantilev ical left exposed;C-C for reactions shown; DL=1.60	e) er								The second second	PE-20220	ALL


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

November 2,2023

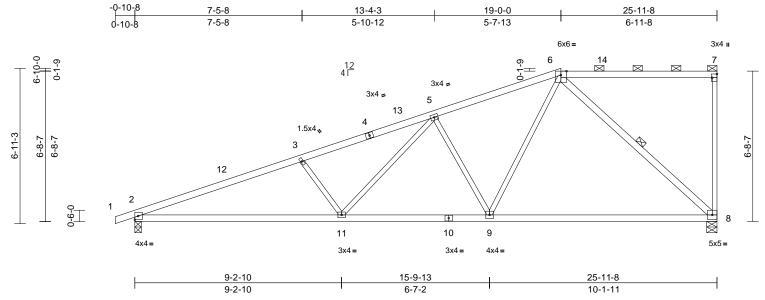
Job	Truss	Truss Type	Qty	Ply	Roof - Osage Lot 77	
P230812	B7	Half Hip	2	1	Job Reference (optional)	161779276

Run: 8.63 S Aug 30 2023 Print: 8.630 S Aug 30 2023 MiTek Industries, Inc. Wed Nov 01 14:33:28 ID:LICGyswr5OsBB2j9caufNtzxFdZ-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

Scale = 1:51.3

Plate Offsets (X, Y): [4:0-2-0,Edge]

	(x, i): [::0 2 0,20g0]											
Loading TCLL (roof) TCDL BCLL BCDL	(psf) 25.0 10.0 0.0 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018/TPI2	CSI TC BC WB 014 Matrix-S	0.56 0.98 0.76	Vert(CT) -	0.22 2	2-12	l/defl >999 >630 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 113 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD WEBS REACTIONS	2x4 SP No.2 2x3 SPF No.2 Structural wood she 2-11-1 oc purlins, e 2-0-0 oc purlins (5-1 Rigid ceiling directly bracing. 1 Row at midpt	xcept end verticals, I-10 max.): 6-8. applied or 2-2-0 oc 7-9 9=0-5-8 C 8) C 8), 9=-280 (LC 8)	chor 5) All b capa 6) Prov bear joint 7) This Inter R80. 8) Grap or th bottt LOAD C	truss has been designer d live load nonconcurrer earings are assumed to acity of 565 psi. ide mechanical connecti ing plate capable of with 9 and 273 lb uplift at join truss is designed in acc national Residential Coo 2.10.2 and referenced st shical purlin representati e orientation of the purlin om chord. ASE(S) Standard	nt with any be SP No. ion (by oth astanding 2 nt 2. ordance w de sections tandard AN on does no	other live loads 2 crushing ers) of truss to 80 lb uplift at ith the 2018 s R502.11.1 and ISI/TPI 1. ot depict the size						
FORCES	(lb) - Maximum Com Tension	npression/Maximum	,									
BOT CHORD	5-6=-1317/333, 6-7= 8-9=-129/80	=-1197/340, 7-8=-14										
WEBS	9-10=-247/749 3-12=-455/269, 5-12 5-10=-777/298, 6-10 7-9=-1202/404		724,								OF M	
this desig 2) Wind: AS Vasd=91r Ke=1.00; exterior zr Interior (1 24-0-14, 1 left and rig members Lumber D	ed roof live loads have n. CE 7-16; Vult=115mph mph; TCDL=6.0psf; BC Cat. II; Exp C; Enclose one and C-C Exterior(2) 4-1-8 to 17-0-0, Exter Interior (1) 24-0-14 to 2 ght exposed ; end verti and forces & MWFRS DOL=1.60 plate grip DC dequate drainage to pr	(3-second gust) :DL=6.0psf; h=35ft; ad; MWFRS (envelop 2E) -0-10-8 to 4-1-8, rior(2R) 17-0-0 to :5-10-4 zone; cantile ical left exposed;C-C for reactions shown DL=1.60	be) Ver 5 for ;						•		PE-20220	HILL ENGINE

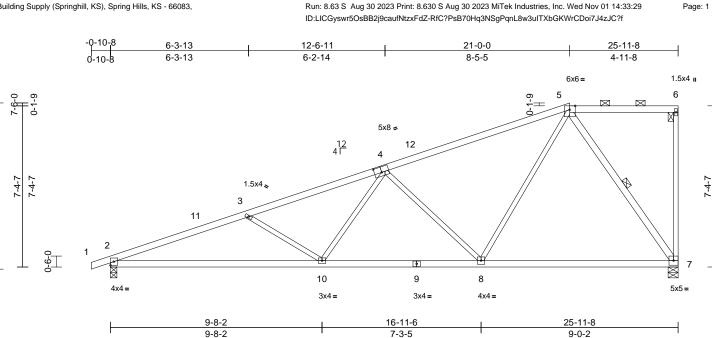

November 2,2023

Job	Truss	Truss Type	Qty	Ply	Roof - Osage Lot 77	
P230812	B8	Half Hip	2	1	Job Reference (optional)	161779277

Run: 8.63 S Aug 30 2023 Print: 8.630 S Aug 30 2023 MiTek Industries, Inc. Wed Nov 01 14:33:29 ID:LICGyswr5OsBB2j9caufNtzxFdZ-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:51.4


Plate Offsets (X, Y): [7:Edge,0-2-8]

		1										
Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15	TC	0.90	Vert(LL)	-0.34	8-9	>906	240	MT20	244/190
TCDL	10.0	Lumber DOL	1.15	BC	0.98	Vert(CT)	-0.70	8-9	>442	180		
BCLL	0.0	Rep Stress Incr	YES	WB	0.51	Horz(CT)	0.06	8	n/a	n/a		
BCDL	10.0	Code	IRC2018/TPI201	4 Matrix-S							Weight: 116 lb	FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD WEBS REACTIONS	1.5E 2x3 SPF No.2 *Exce Structural wood she 3-0-12 oc purlins, e 2-0-0 oc purlins (3-9 Rigid ceiling directly bracing. 1 Row at midpt (size) 2=0-3-8, 8	t* 10-2:2x4 SP 1650f ept* 8-6:2x4 SP No.2 athing directly applier xcept end verticals, a h-12 max.): 6-7. applied or 2-2-0 oc 6-8 3=0-5-8	chord li 5) Bearing crushin capacit 6) Provide bearing d or joint 8 a ind 7) This tru Interna R802.1 8) Graphic or the c bottom	ss has been designed ve load nonconcurrent is are assumed to be: g capacity of 565 psi, y of 565 psi. mechanical connectio plate capable of withs ind 266 lb uplift at joint ss is designed in acco ional Residential Code 0.2 and referenced sta cal purlin representatio rientation of the purlin chord. E(S) Standard	with any Joint 2 SI Joint 8 SF on (by oth standing 2 t 2. rdance w e sections indard AN n does no	other live loa P 1650F 1.5E No.2 crushin ers) of truss t 286 lb uplift at ith the 2018 5 R502.11.1 a JSI/TPI 1. ot depict the s	ing to t					
	Max Horiz 2=285 (LC Max Uplift 2=-266 (L Max Grav 2=1230 (L	.C 8), 8=-286 (LC 8) _C 1), 8=1155 (LC 1)										
FORCES	(lb) - Maximum Com Tension	pression/Maximum										
TOP CHORD	1-2=0/6, 2-3=-2559/	528, 3-5=-2287/492, =-19/4, 7-8=-230/138										
BOT CHORD												
WEBS	3-11=-432/242, 5-11 5-9=-709/291, 6-9=-	=-154/697, 158/901, 6-8=-1224/4	412								ATE OF M	AISS
NOTES										E	7 11	N'SON
 Unbalance this design Wind: ASC Vasd=91m Ke=1.00; (exterior zo Interior (1) 25-10-4 zc vertical lef MWFRS fc grip DOL= 	CE 7-16; Vult=115mph hph; TCDL=6.0psf; BC Cat. II; Exp C; Enclose one and C-C Exterior(2 0 4-1-8 to 19-0-0, Exter one; cantilever left and t exposed;C-C for mer pr reactions shown; Lu	(3-second gust) DL=6.0psf; h=35ft; d; MWFRS (envelope E) -0-10-8 to 4-1-8, ior(2E) 19-0-0 to right exposed ; end mbers and forces & mber DOL=1.60 plate	e								NATHA FO PO PE-20220 PE-20220	NIEL P BER 042259 S

November 2,2023

Job	Truss	Truss Type	Qty	Ply	Roof - Osage Lot 77	
P230812	B9	Half Hip	2	1	Job Reference (optional)	l61779278

Scale = 1:52.7

7-7-3

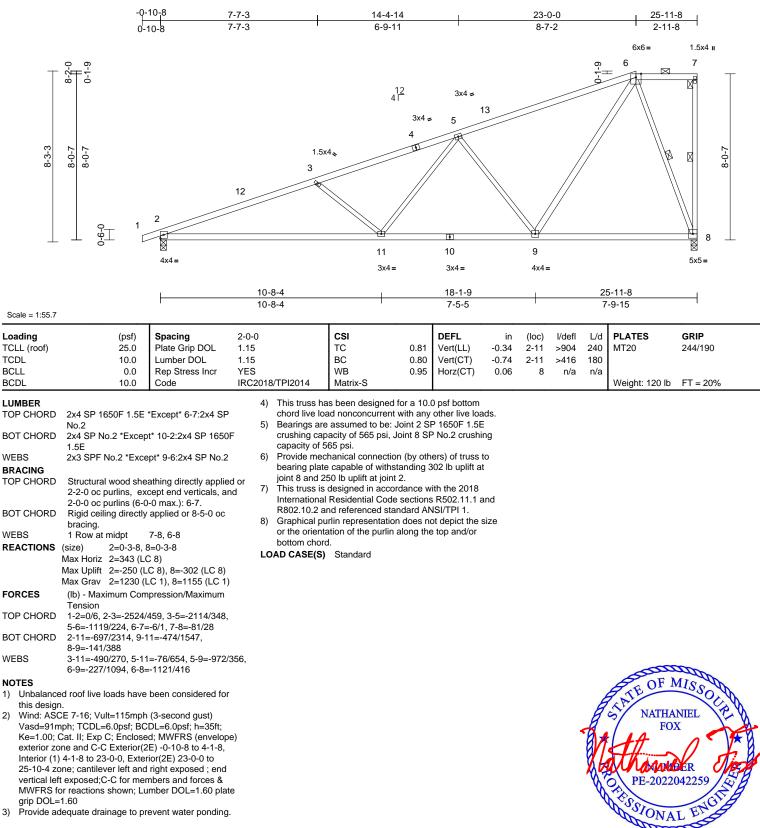
Plate Offsets (X, Y): [4:0-4-0,0-3-0]

			-			-							
Loading TCLL (roof) TCDL	(psf) 25.0 10.0	Spacing Plate Grip DOL Lumber DOL	2-0-0 1.15 1.15		CSI TC BC	0.87 0.76	DEFL Vert(LL) Vert(CT)	in -0.24 -0.53	(loc) 2-10 2-10	l/defl >999 >579	L/d 240 180	PLATES MT20	GRIP 197/144
BCLL	0.0	Rep Stress Incr	YES		WB	0.91	Horz(CT)	0.06	7	n/a	n/a		
BCDL	10.0	Code	IRC201	8/TPI2014	Matrix-S	-		_				Weight: 117 lb	FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD WEBS REACTIONS	1.5E 2x4 SP No.2 *Excep 1.5E 2x3 SPF No.2 *Excep Structural wood she 2-2-0 oc purlins, ex 2-0-0 oc purlins (6-0 Rigid ceiling directly bracing. 1 Row at midpt (size) 2=0-3-8, 1 Max Horiz 2=314 (L0 Max Uplift 2=-258 (L Max Grav 2=-1230 (I (lb) - Maximum Com Tension	et* 9-2:2x4 SP 1650F ept* 7-5:2x4 SP No.2 athing directly applie cept end verticals, ar -0 max.): 5-6. applied or 7-9-1 oc 5-7 7=0-5-8 C 8), 7=-294 (LC 8) LC 1), 7=1155 (LC 1) ppression/Maximum	6) d or nd 7) 8)	chord live loa Bearings are crushing cap capacity of 5 Provide mec bearing plate joint 7 and 2 This truss is International R802.10.2 ar	hanical connection e capable of withs 58 lb uplift at joint designed in acco Residential Code and referenced sta arlin representation ation of the purlin d.	with any Joint 2 SI Joint 7 SF on (by oth standing 2 t 2. rdance w e sections indard AN n does no	other live loa P 1650F 1.5E No.2 crushi 294 lb uplift a th the 2018 S R502.11.1 a USI/TPI 1.	ng to t					
TOP CHORD	5-6=-10/1, 6-7=-158	/86											
WEBS	7-8=-232/648)=-36/490, 4-8=-933/3	348,									OF M	
this design 2) Wind: ASC Vasd=91n Ke=1.00; exterior zc Interior (1) 25-10-4 zc	ed roof live loads have	been considered for (3-second gust) DL=6.0psf; h=35ft; d; MWFRS (envelop E) -0-10-8 to 4-1-8, ior(2E) 21-0-0 to right exposed ; end	e)								and the second se	STE OF M NATHA FOI PE-20220	BER TOTAL

vertical left exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 3) Provide adequate drainage to prevent water ponding.

November 2,2023

SSIONAL



E

Job	Truss	Truss Type	Qty	Ply	Roof - Osage Lot 77	
P230812	B10	Half Hip	2	1	Job Reference (optional)	l61779279

Run: 8.63 S Aug 30 2023 Print: 8.630 S Aug 30 2023 MiTek Industries, Inc. Wed Nov 01 14:33:29 ID:LICGyswr5OsBB2j9caufNtzxFdZ-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

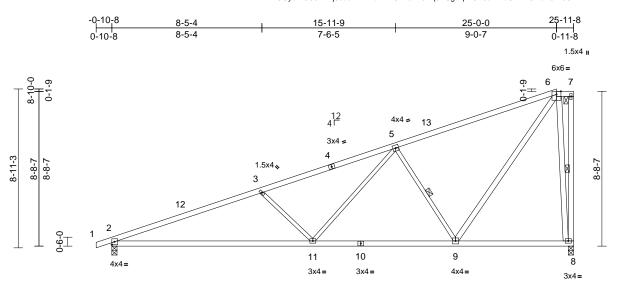
Page: 1

Provide adequate drainage to prevent water ponding.

1)

2)

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponent.com)



November 2,2023

Job	Truss	Truss Type	Qty	Ply	Roof - Osage Lot 77	
P230812	B11	Half Hip	2	1	Job Reference (optional)	161779280

Run: 8.63 S Aug 30 2023 Print: 8.630 S Aug 30 2023 MiTek Industries, Inc. Wed Nov 01 14:33:30 ID:LICGyswr5OsBB2j9caufNtzxFdZ-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

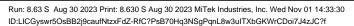
Page: 1

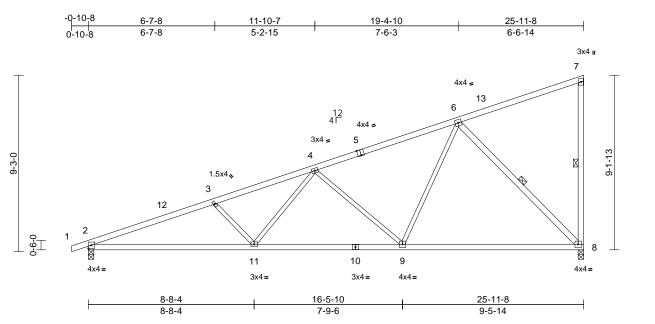
		 	<u>11-3-10</u> 11-3-10		+	<u>19-3-15</u> 8-0-5				2 <u>5-11-8</u> 6-7-9	8	
Scale = 1:64.8												
Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15	TC	0.99	Vert(LL)	-0.41	2-11	>749	240	MT20	244/190
TCDL	10.0	Lumber DOL	1.15	BC	0.88	Vert(CT)	-0.90	2-11	>345	180		
BCLL	0.0	Rep Stress Incr	YES	WB	0.52	Horz(CT)	0.06	8	n/a	n/a		
BCDL	10.0	Code	IRC2018/TPI2014	Matrix-S							Weight: 134 lb	FT = 20%

			-	_
LL	JM	в	E,	к

LUMBER	
TOP CHORD	2x4 SP 1650F 1.5E *Except* 6-7:2x4 SP No.2
BOT CHORD	2x4 SP No.2 *Except* 10-2:2x4 SP 1650F 1.5E
WEBS	2x4 SP No.2 *Except* 11-3,11-5,9-5:2x3 SPF No.2
BRACING	
TOP CHORD	Structural wood sheathing directly applied, except
	2-0-0 oc purlins (10-0-0 max.): 6-7.
BOT CHORD	Rigid ceiling directly applied or 8-5-9 oc
	bracing.
WEBS	1 Row at midpt 6-8, 5-9
REACTIONS	(size) 2=0-3-8, 8=0-3-8
	Max Horiz 2=372 (LC 8)
	Max Uplift 2=-242 (LC 8), 8=-308 (LC 8)
	Max Grav 2=1234 (LC 1), 8=1150 (LC 1)
FORCES	(lb) - Maximum Compression/Maximum
	Tension
TOP CHORD	1-2=0/6, 2-3=-2486/423, 3-5=-2072/323,
	5-6=-978/172, 6-7=-3/5
BOT CHORD	2-11=-686/2275, 9-11=-410/1365,
	8-9=-61/150
WEBS	7-8=-173/261, 3-11=-547/297,
	6-9=-278/1221, 6-8=-1364/561,
	5-11=-116/811, 5-9=-1023/375
NOTES	
AN 11 1 1	

- Unbalanced roof live loads have been considered for 1) this design. 2)
- Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=35ft; Ke=1.00; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) -0-10-8 to 4-1-8, Interior (1) 4-1-8 to 25-0-0, Exterior(2E) 25-0-0 to 25-9-12 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60


- 3) Provide adequate drainage to prevent water ponding. This truss has been designed for a 10.0 psf bottom 4)
- chord live load nonconcurrent with any other live loads.
- Bearings are assumed to be: Joint 2 SP 1650F 1.5E 5) crushing capacity of 565 psi, Joint 8 SP No.2 crushing
- capacity of 565 psi. 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 308 lb uplift at joint 8 and 242 lb uplift at joint 2.
- This truss is designed in accordance with the 2018 7) International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- Graphical purlin representation does not depict the size 8) or the orientation of the purlin along the top and/or bottom chord.


LOAD CASE(S) Standard

Job	Truss	Truss Type	Qty	Ply	Roof - Osage Lot 77	
P230812	B12	Monopitch	4	1	Job Reference (optional)	l61779281

Scale = 1:60.4

Plate Offsets (X, Y): [5:0-2-0,Edge]

	. , , , , ,											
Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15	тс	0.95	Vert(LL)	-0.24	8-9	>999	240	MT20	244/190
TCDL	10.0	Lumber DOL	1.15	BC	0.95	Vert(CT)	-0.49	8-9	>632	180		
BCLL	0.0	Rep Stress Incr	YES	WB	0.81	Horz(CT)	0.07	8	n/a	n/a		
BCDL	10.0	Code	IRC2018/TPI2014	Matrix-S							Weight: 124 lb	FT = 20%

LUMBER

WFBS

NOTES

2)

3)

4)

TOP CHORD

2x4 SP No.2 BOT CHORD 2x4 SP No.2 2x3 SPF No.2 *Except* 7-8,8-6:2x4 SP No.2 WEBS BRACING Structural wood sheathing directly applied, TOP CHORD except end verticals. BOT CHORD Rigid ceiling directly applied or 2-2-0 oc bracing. WEBS 1 Row at midpt 7-8, 6-8 **REACTIONS** (size) 2=0-3-8, 8=0-3-8 Max Horiz 2=390 (LC 8) Max Uplift 2=-234 (LC 8), 8=-317 (LC 12) Max Grav 2=1228 (LC 1), 8=1154 (LC 1) FORCES (lb) - Maximum Compression/Maximum Tension TOP CHORD 1-2=0/6, 2-3=-2610/416, 3-4=-2319/355, 4-6=-1343/175, 6-7=-100/44, 7-8=-175/129 BOT CHORD 2-11=-711/2381, 9-11=-525/1816, 8-9=-265/876

6-9=-95/809, 6-8=-1244/381

Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=35ft;

Interior (1) 4-1-8 to 25-9-12 zone; cantilever left and

This truss has been designed for a 10.0 psf bottom

All bearings are assumed to be SP No.2 crushing

chord live load nonconcurrent with any other live loads.

Provide mechanical connection (by others) of truss to

bearing plate capable of withstanding 317 lb uplift at

right exposed ; end vertical left exposed;C-C for members and forces & MWFRS for reactions shown;

Lumber DOL=1.60 plate grip DOL=1.60

joint 8 and 234 lb uplift at joint 2.

capacity of 565 psi.

Ke=1.00; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) -0-10-8 to 4-1-8,

1) Wind: ASCE 7-16; Vult=115mph (3-second gust)

3-11=-347/214, 4-11=-82/543, 4-9=-830/300,

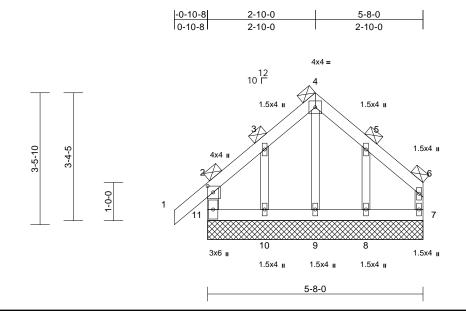
5) This truss is designed in accordance with the 2018

International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard

Page: 1

November 2,2023



Job	Truss	Truss Type	Qty	Ply	Roof - Osage Lot 77	
P230812	C1	Common Supported Gable	2	1	Job Reference (optional)	161779282

Run: 8.63 S Aug 30 2023 Print: 8.630 S Aug 30 2023 MiTek Industries, Inc. Wed Nov 01 14:33:30 ID:qNSd8uN6qGz9aVuDen1oEAzxFbh-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

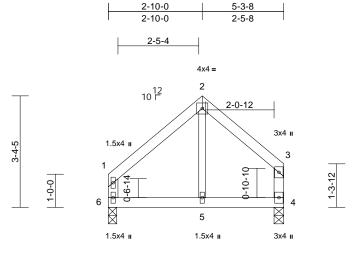
Page: 1

Scale = 1:30.3

Plate Offsets (X, Y): [2:0-2-0,0-1-12]

				-								
Loading	(psf)	Spacing	4-0-0	csi		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15	TC	0.29	Vert(LL)	n/a	-	n/a	999	MT20	244/190
TCDL	10.0	Lumber DOL	1.15	BC	0.08	Vert(CT)	n/a	-	n/a	999		
BCLL	0.0	Rep Stress Incr	NO	WB	0.09	Horz(CT)	0.00	7	n/a	n/a		
BCDL	10.0	Code	IRC2018/TPI2014	Matrix-R							Weight: 28 lb	FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	 2x4 SP No.2 2x4 SP No.2 *Excep 2x3 SPF No.2 2-0-0 oc purlins, ex. (Switched from sheet Rigid ceiling directly bracing. (size) 7=5-8-0, 8 10=5-8-0, Max Horiz 11=220 (I Max Horiz 11=220 (I Max Grav 7=134 (LC 9=237 (LC 11=313 (I 	cept end verticals sted: Spacing > 2-8-0 applied or 6-0-0 oc 3=5-8-0, 9=5-8-0, 11=5-8-0 _C 9) 12), 8=-168 (LC 13) LC 12), 11=-100 (LC C 19), 8=345 (LC 20), C 19, 8=345 (LC 19 _C 20)	 only. For st see Standar or consult q 4) Gable requi 5) Truss to be braced agai 6) Gable studs 7) This truss h chord live lo 8) All bearings capacity of 4 9) Provide met bearing plat joint 11, 69 8) 168 lb uplift 10) This truss is Internationa 	chanical connection (e capable of withstar lb uplift at joint 7, 173	(norm d Deta gner as m chor one fac t (i.e. d r a 10.1 th any SP No. (by oth adding 1 3 lb upl ance w ections	al to the face) ils as applicab s per ANSI/TP d bearing. e or securely iagonal web).) psf bottom other live load 2 crushing ers) of truss to 00 lb uplift at ift at joint 10 a ith the 2018 : R502.11.1 ar	, ole, 11. ds. o and					
FORCES	(lb) - Maximum Com Tension 2-11=-275/426, 1-2=		or the orient	urlin representation of the purlin alo			ize					
	3-4=-171/382, 4-5=- 6-7=-96/163	178/392, 5-6=-93/139	bottom chor LOAD CASE(S)									~
BOT CHORD	7-8=-83/79	, ,									TATE OF I	MISS
WEBS	4-9=-287/59, 3-10=-	237/264, 5-8=-260/36	65								950	1,0°
this desig 2) Wind: AS Vasd=91 Ke=1.00; exterior z and right exposed;	CE 7-16; Vult=115mph mph; TCDL=6.0psf; BC Cat. II; Exp C; Enclose one and C-C Corner(3E exposed ; end vertical C-C for members and f shown; Lumber DOL="	(3-second gust) DL=6.0psf; h=35ft; d; MWFRS (envelope 2) zone; cantilever lef left and right orces & MWFRS for								Pit a	Jathan	042259

November 2,2023



Job	Truss	Truss Type	Qty	Ply	Roof - Osage Lot 77	
P230812	C2	Common	8	1	Job Reference (optional)	161779283

Run: 8.63 S Aug 30 2023 Print: 8.630 S Aug 30 2023 MiTek Industries, Inc. Wed Nov 01 14:33:31 ID:uXOjrqmBI5?cQPKNWVcIXwzxFbB-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Scale = 1:34.8				2 10 0	·	200						
Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15	TC	0.16	Vert(LL)	0.01	5-6	>999	240	MT20	244/190
TCDL	10.0	Lumber DOL	1.15	BC	0.13	Vert(CT)	0.01	5-6	>999	180		
BCLL	0.0	Rep Stress Incr	YES	WB	0.04	Horz(CT)	0.00	4	n/a	n/a		
BCDL	10.0	Code	IRC2018/TPI2014	Matrix-R							Weight: 23 lb	FT = 20%
LUMBER			This truss is	designed in acco	rdance w	ith the 2018						
FOP CHORD	2x4 SP No.2		Internationa	I Residential Code	e sections	R502.11.1 a	and					
BOT CHORD	2x4 SP No.2		R802.10.2 a	and referenced sta	andard AN	ISI/TPI 1.						
NEBS	2x4 SP No.2 *Excep	ot* 5-2:2x3 SPF No.2	2 LOAD CASE(S	Standard								
BRACING			· ·									
TOP CHORD	Structural wood she	athing directly appli	ed or									
0. 0010	5-3-8 oc purlins, ex											
BOT CHORD	Rigid ceiling directly		с									
	bracing.											
REACTIONS	(size) 4=0-3-8, 0	6=0-3-0										
	Max Horiz 6=99 (LC											
	Max Uplift 4=-31 (LC											
	Max Grav 4=225 (L0											
FORCES	(lb) - Maximum Corr	<i>,,, , , ,</i>										
ONCLO	Tension	ipression/maximum										
TOP CHORD	1-2=-181/239, 2-3=-	177/266 3-4170/	242									
	1-6=-178/229	111/200, 0 4= 110/2	<u>_</u> ,									
BOT CHORD	5-6=-154/90, 4-5=-1	54/90										
WEBS	2-5=-173/73	0 11 0 0										
NOTES												
	ed roof live loads have	boon considered fo	r									
this design		been considered to	1									
	CE 7-16; Vult=115mph	(3-second quist)										
	nph; TCDL=6.0psf; BC											
	Cat. II; Exp C; Enclose		ne)								and a	TOD
	one and C-C Exterior(2										ATE OF	MICON
	exposed ; end vertical									9	BIE	10°0
	and sight and a solo C		, , , , , , , , , , , , , , , , , , ,							6		

exterior zone and C-C Exterior(2E) zone; cantilever left and right exposed ; end vertical left and right exposed; porch left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

- 3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. All bearings are assumed to be SP No.2 crushing 4)
- capacity of 565 psi. 5)
- Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 25 lb uplift at joint 6 and 31 lb uplift at joint 4.

NATHANIEL

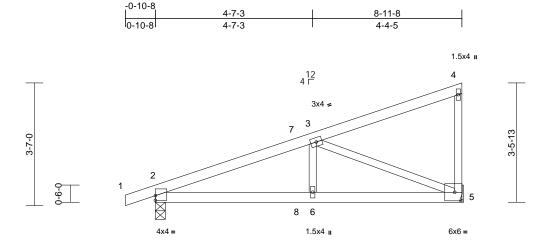
FOX

MBER

November 2,2023

E

PE-2022042259


THE SSIONAL

 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.
 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not besign value to dury with with where outputs into design is based only door parameters shown, and is for an individual building design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members and property incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TPH1 Quality Criteria**, and **DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcscomponents.com)

Job	Truss	Truss Type	Qty	Ply	Roof - Osage Lot 77	
P230812	D1	Monopitch	10	1	Job Reference (optional)	161779284

Run: 8.63 S Aug 30 2023 Print: 8.630 S Aug 30 2023 MiTek Industries, Inc. Wed Nov 01 14:33:31 ID:_sXE6HoZjjAnaEAfModiLMzxFYZ-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

4-7-3	8-11-8
4-7-3	4-4-5

Scale = 1:33.7	
Plate Offsets (X_Y)	[2·Edge 0-1-10]

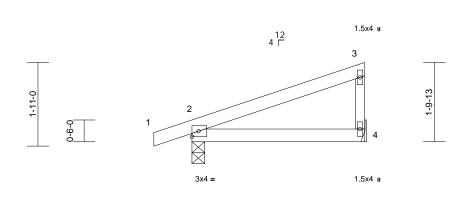
Plate Offsets ((X, Y): [2:Edge,0-1-10)] 		-	-						-	
Loading	(psf)	Spacing	2-0-0	csi		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15	TC	0.36	Vert(LL)	0.06	2-6	>999	240	MT20	197/144
TCDL	10.0	Lumber DOL	1.15	BC	0.28	Vert(CT)	0.05	2-6	>999	180		
BCLL	0.0	Rep Stress Incr	YES	WB	0.33	Horz(CT)	-0.01	5	n/a	n/a		
BCDL	10.0	Code	IRC2018/TPI2014	Matrix-P							Weight: 36 lb	FT = 20%
LUMBER TOP CHORD BOT CHORD	2x4 SP No.2 2x4 SP No.2		Internationa	s designed in acc al Residential Co and referenced s	de sections	R502.11.1	and					
WEBS	2x3 SPF No.2		LOAD CASE(S) Standard								
BRACING				-								
TOP CHORD	Structural wood she 6-0-0 oc purlins, ex	cept end verticals.										
BOT CHORD	Rigid ceiling directly bracing.	applied or 5-6-1 oc										
REACTIONS	()	5= Mechanical										
	Max Horiz 2=143 (LC	,										
	Max Uplift 2=-201 (L											
	Max Grav 2=468 (L0											
FORCES	(lb) - Maximum Corr Tension	pression/Maximum										
TOP CHORD	1-2=0/6, 2-3=-670/9	00 3-461/27										
	4-5=-116/139	00, 3-4=-01/27,										
BOT CHORD	2-6=-1017/580, 5-6=	-1017/580										
WEBS	3-5=-626/1098, 3-6=											
NOTES												
	CE 7-16; Vult=115mph nph; TCDL=6.0psf; BC											
	Cat. II; Exp C; Enclose		pe)								200	an
	one and C-C Exterior(2										STATE OF	MIG
) 4-1-8 to 8-10-4 zone;		ight							6	BAE	J.S.S.
	end vertical left expos		_							6	AN'	NSY
	C-C for members and f		ſ							8	SY NATH	ANIEL YZY
DOL=1.60	shown; Lumber DOL=	1.00 plate grip								B	FO	X. X
	, has been designed fo	r a 10.0 psf bottom								2 1	1/	1 AVX
	load nonconcurrent w		ds.							ar.	I the	A A
	are assumed to be: Jo									N.	A ROM	KER ON
	f EGE poi		-							V 4		

- capacity of 565 psi. 4)
- Refer to girder(s) for truss to truss connections. Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 198 lb uplift at 5)
- joint 5 and 201 lb uplift at joint 2.

Job	Truss	Truss Type	Qty	Ply	Roof - Osage Lot 77	
P230812	D2	Monopitch	10	1	Job Reference (optional)	161779285

3-11-8

3-11-8


-0-10-8

0-10-8

Premier Building Supply (Springhill, KS), Spring Hills, KS - 66083,

Run: 8.63 S Aug 30 2023 Print: 8.630 S Aug 30 2023 MiTek Industries, Inc. Wed Nov 01 14:33:31 ID:78C7o6q0croABosuZ?dZ0HzxFUe-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

3-11-8	
	3-11-8

Scale = 1:26.4				I								
Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15	тс	0.28	Vert(LL)	-0.01	2-4	>999	240	MT20	197/144
TCDL	10.0	Lumber DOL	1.15	BC	0.16	Vert(CT)	-0.02	2-4	>999	180		
BCLL	0.0	Rep Stress Incr	YES	WB	0.00	Horz(CT)	n/a	-	n/a	n/a		
BCDL	10.0	Code	IRC2018/TPI2014	Matrix-P							Weight: 15 lb	FT = 20%

LUMBER

TOP CHORD	2x4 SP No.2
BOT CHORD	2x4 SP No.2
WEBS	2x3 SPF No.2
BRACING	
TOP CHORD	Structural wood sheathing directly applied or
	4-0-0 oc purlins, except end verticals.

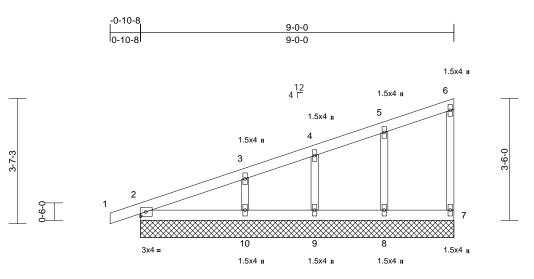
BOT CHORD		ourlins, except end verticals. Ing directly applied or 10-0-0 oc
REACTIONS	(size)	2=0-3-8, 4= Mechanical
	Max Horiz	2=70 (LC 8)
	Max Uplift	2=-77 (LC 8), 4=-46 (LC 12)
	Max Grav	2=248 (LC 1), 4=157 (LC 1)
FORCES	(lb) - Max	imum Compression/Maximum

Tension TOP CHORD 1-2=0/6, 2-3=-82/36, 3-4=-120/175 BOT CHORD 2-4=0/0

NOTES

- Wind: ASCE 7-16; Vult=115mph (3-second gust) 1) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=35ft; Ke=1.00; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) zone; cantilever left and right exposed ; end vertical left exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- This truss has been designed for a 10.0 psf bottom 2) chord live load nonconcurrent with any other live loads.
- 3) Bearings are assumed to be: Joint 2 SP No.2 crushing capacity of 565 psi.
- 4) Refer to girder(s) for truss to truss connections.
- 5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 46 lb uplift at joint 4 and 77 lb uplift at joint 2.
- This truss is designed in accordance with the 2018 6) International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard


November 2,2023

Job	Truss	Truss Type	Qty	Ply	Roof - Osage Lot 77		
P230812	D3	Monopitch Supported Gable	2	1	Job Reference (optional)	161779286	

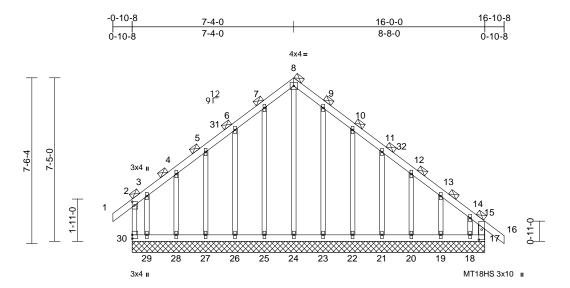
Run: 8.63 S Aug 30 2023 Print: 8.630 S Aug 30 2023 MiTek Industries, Inc. Wed Nov 01 14:33:31 ID:R6HKgN9OyKXimYirSO47xGzxFSx-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale =	1:33.1
---------	--------

9-0-0

Scale = 1.55.	•												
Loading TCLL (roof) TCDL BCLL	(psf) 25.0 10.0 0.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr	2-0-0 1.15 1.15 YES		CSI TC BC WB	0.11 0.07 0.07	DEFL Vert(LL) Vert(CT) Horz(CT)	in n/a n/a n/a	(loc) - -	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20	GRIP 197/144
BCDL	10.0	Code	IRC2018	/TPI2014	Matrix-S		- (-)					Weight: 35 lb	FT = 20%
LUMBER TOP CHORE BOT CHORE WEBS OTHERS BRACING TOP CHORE BOT CHORE REACTIONS	 2x4 SP No.2 2x3 SPF No.2 2x3 SPF No.2 2x3 SPF No.2 Structural wood she 6-0-0 oc purlins, ex Rigid ceiling directly bracing. (size) 2=9-0-0, 7 9=9-0-0, 7 Max Horiz 2=143 (LC Max Uplift 2=-26 (LC (LC 12), 5 12) Max Grav 2=183 (LC 	cept end verticals. • applied or 10-0-0 o 7=9-0-0, 8=9-0-0, 10=9-0-0 C 8) \$ 8), 7=-18 (LC 8), 8 \$=-43 (LC 8), 10=-75	5) 6) 7) ed or 8) c 9) =-54 -0 (LC =202	Gable studs This truss ha chord live loa All bearings capacity of 5 Provide mec bearing plate 7, 26 lb upliff at joint 9 and This truss is International	hanical connectio e capable of withsi at joint 2, 54 lb u I 79 lb uplift at join designed in accor Residential Code nd referenced star	oc. for a 10. with any e SP No. n (by oth tanding 1 plift at joi nt 10. rdance w e sections	D psf bottom other live load 2 crushing ers) of truss to 8 lb uplift at jo nt 8, 43 lb upli ith the 2018 5 R502.11.1 ar	int ft					
FORCES	(lb) - Maximum Corr Tension	pression/Maximum											
TOP CHORE													
BOT CHORE WEBS	2-10=0/0, 9-10=0/0, 5-8=-156/196, 4-9=-	,	/273									600	an
Vasd=91 Ke=1.00; exterior 2 Exterior(exposed; reactions DOL=1.6 2) Truss de only. Fo see Stan or consul	SCE 7-16; Vult=115mph mph; TCDL=6.0psf; BC ; Cat. II; Exp C; Enclose zone and C-C Corner(3I 2N) 4-1-8 to 8-10-12 zo ;C-C for members and f s shown; Lumber DOL= 50 esigned for wind loads in r studs exposed to wind idard Industry Gable En It qualified building desi s are 1.5x4 MT20 unless	DL=6.0psf; h=35ft; d; MWFRS (envelop E) -0-10-8 to 4-1-8, ne; end vertical left orces & MWFRS for 1.60 plate grip n the plane of the tru I (normal to the face d Details as applica gner as per ANSI/TI	uss), ble, Pl 1.								A STATE OF	PE-2022	X 1042259


November 2,2023

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

16023 Swingley Ridge Rd. Chesterfield, MO 63017 314.434.1200 / MiTek-US.com

Job	Truss	Truss Type	Qty	Ply	Roof - Osage Lot 77	
P230812	E1	Common Supported Gable	2	1	Job Reference (optional)	161779287

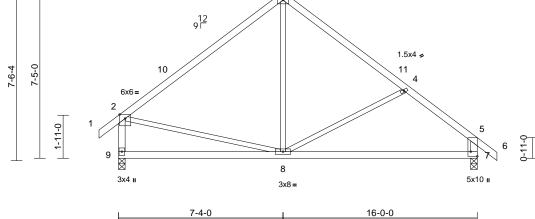
Run: 8.63 S Aug 30 2023 Print: 8.630 S Aug 30 2023 MiTek Industries, Inc. Wed Nov 01 14:33:32 ID:zTnobfY4ATh0DdjBuqAsmEzxFSQ-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Scale = 1:52.	2	F		1	6-0-0							
-	s (X, Y): [2:0-2-0,0-1-4]	, [17:0-5-8,0-1-8]										
Loading TCLL (roof) TCDL BCLL BCDL	(psf) 25.0 10.0 0.0 10.0	Plate Grip DOL1Lumber DOL1Rep Stress IncrN	-0-0 .15 .15 IO RC2018/TPI2014	CSI TC BC WB Matrix-R	0.29	DEFL Vert(LL) Vert(CT) Horz(CT)	in n/a n/a).01	(loc) - - 17	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 MT18HS Weight: 97 lb	GRIP 197/144 244/190 FT = 20%
LUMBER TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.2 WEBS 2x3 SPF No.2 *Except* 17-15:2x4 SP No.2 OTHERS 2x3 SPF No.2 BRACING 2-0-0 oc purlins (6-0-0 max.), except end verticals (Switched from sheeted: Spacing > 2-8-0). BOT CHORD Rigid ceiling directly applied or 6-0-0 oc			TOP CHORD BOT CHORD	3-4=-100/266, 4-5= 6-7=-298/669, 7-8= 9-10=-298/669, 10- 11-12=-350/391, 12 13-14=-408/402, 14 15-16=0/86, 15-17=	, 8 , 9 1	 Truss to be fully sheathed from one face or securely braced against lateral movement (i.e. diagonal web). Gable studs spaced at 1-4-0 oc. This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. All bearings are assumed to be SP No.2 crushing capacity of 565 psi. Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 138 lb uplift at joint 30, 701 lb uplift at joint 17, 121 lb uplift at joint 24, 						
	KOT CHORD Rigid ceiling directly applied or 6-0-0 oc bracing. REACTIONS 17=16-0-0, 18=16-0-0, 19=16-0-0, 20=16-0-0, 21=16-0-0, 22=16-0-0, 23=16-0-0, 24=16-0-0, 25=16-0-0, 26=16-0-0, 27=16-0-0, 28=16-0-0, 29=16-0-0, 30=16-0-0 Max Horiz 30=-485 (LC 10) Max Uplift 17=-701 (LC 9), 18=-553 (LC 8), 19=-107 (LC 13), 20=-121 (LC 13), 21=-116 (LC 13), 22=-138 (LC 13),			23-24=-386/387, 22 21-22=-386/387, 20 19-20=-386/387, 18 17-18=-386/387 8-24=-679/227, 7-2 6-26=-211/224, 5-2 4-28=-204/221, 3-2 9-23=-228/100, 10- 11-21=-203/186, 12 13-19=-210/228, 14)-21=-38 -19=-38 5=-195/8 7=-202/2 9=-142/ ² 22=-198 2-20=-20	-386/387, -386/387,47 lb uplift at joint 25, 145 lb uplift at joint 26, 118 lb u at joint 27, 115 lb uplift at joint 28, 188 lb uplift at joint 29, 68 lb uplift at joint 23, 138 lb uplift at joint 22, 116 uplift at joint 21, 121 lb uplift at joint 20, 107 lb uplift at joint 19 and 553 lb uplift at joint 18.395/80, 202/216, 121/121, 198/218, -201/216,17 lb uplift at joint 28, 188 lb uplift at joint 22, 116 uplift at joint 21, 121 lb uplift at joint 20, 107 lb uplift at joint 19 and 553 lb uplift at joint 18.395/80, 202/216, 121, 121, 132, 13317 lb uplift at joint 28, 188 lb uplift at joint 22, 116 uplift at joint 21, 121 lb uplift at joint 20, 107 lb uplift at joint 19 and 553 lb uplift at joint 18.305/80, 202/216, 123, 133120 lb uplift at joint 28, 188 lb uplift at joint 18.305/80, 202/216,120 lb uplift at joint 28, 188 lb uplift at joint 18.305/80, 202/216,120 lb uplift at joint 28, 188 lb uplift at joint 18.305/80, 202/216,120 lb uplift at joint 28, 188 lb uplift at joint 18.305/80, 202/216,130 graphical purlin representation does not depict the sit at joint 198 lb uplift at joint 28, 188 lb uplift at joint 18.305/80, 201/216,130 graphical purlin representation does not depict the sit at joint 28, 188 lb uplift at joint 29, 188 lb uplift at joint 29, 188 lb uplift at joint 28, 188 lb uplift a					at joint 26, 118 lb uplift 188 lb uplift at joint 187 lb uplift at joint 187 lb uplift at joint 20, 107 lb uplift at 200 cc with the 2018 tions R502.11.1 and d ANSI/TPI 1. 20 not depict the size	
23=-68 (LC 13), 24=-121 (LC 10), 25=-47 (LC 12), 26=-145 (LC 12), 27=-118 (LC 12), 28=-115 (LC 12), 29=-188 (LC 9), 30=-138 (LC 8) Max Grav 17=780 (LC 10), 18=616 (LC 11), 19=250 (LC 26), 20=258 (LC 20), 21=255 (LC 20), 22=251 (LC 20), 23=281 (LC 20), 24=510 (LC 12), 25=249 (LC 1), 26=264 (LC 19), 27=257 (LC 19), 28=252 (LC 19), 29=266 (LC 10), 30=265 (LC 20)			 Unbalanced roof live loads have been considered for this design. Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=35ft; Ke=1.00; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone and C-C Corner(3E) -0-10-8 to 4-1-8, Exterior(2N) 41-8 to 7-4-0, Corner(3R) 7-4-0 to 12-4-0, Exterior(2N) 12-4-0 to 16-10-8 zone; cantilever left and right exposed; end vertical left and right exposed;C-C 					LOAD CASE(S) Standard				INIEL YON
FORCES	(Ib) - Maximum Con Tension	,. , ,	 Truss desonly. For see Standor or consult All plates All plates 	DOL=1.60 plate grip DC signed for wind loads i studs exposed to wind dard Industry Gable Er t qualified building des are MT20 plates unles are 1.5x4 MT20 unles quires continuous botto	n the pla d (norma d Detail igner as s otherw s otherw	ane of the truss al to the face), ls as applicable, per ANSI/TPI 1 wise indicated. vise indicated.			,		PE-2022	042259 E

- All plates are MT20 plates unless otherwise indicated. 4)
- 5) All plates are 1.5x4 MT20 unless otherwise indicated.
- 6) Gable requires continuous bottom chord bearing.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent oulgase with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

November 2,2023


Page: 1

Job	Truss	Truss Type	Qty	Ply	Roof - Osage Lot 77	
P230812	E2	Common	10	1	Job Reference (optional)	161779288

Run: 8.63 S Aug 30 2023 Print: 8.630 S Aug 30 2023 MiTek Industries, Inc. Wed Nov 01 14:33:32 ID:_YuWsvNk9MFNN4wGt6OpXZzxFRM-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

16-10-8 7-4-0 12-8-12 16-0-0 7-4-0 5-4-12 3-3-4 0-10-8 4x6= 3 1.5x4 ዾ 11 4

8-8-0

7-4-0

Scale = 1:51.4	
----------------	--

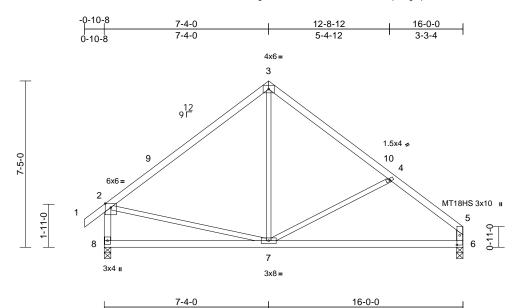
Plate Offsets (X, Y): [7:Edge,0-3-8]

- 1000 0110010 ((;;;; ;): [::=age;e e e]												-
Loading	(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15		TC	0.73	Vert(LL)	-0.12	7-8	>999	240	MT20	197/144
TCDL	10.0	Lumber DOL	1.15		BC	0.61	Vert(CT)	-0.23	7-8	>825	180		
BCLL	0.0	Rep Stress Incr	YES		WB	0.23	Horz(CT)	0.01	7	n/a	n/a	-	
BCDL	10.0	Code	IRC2018	/TPI2014	Matrix-S							Weight: 77 lb	FT = 20%
LUMBER			5)	Provide med	hanical connectio	n (by oth	ers) of truss	to					
TOP CHORD	2x4 SP No.2		0)		e capable of withs								
BOT CHORD					uplift at joint 7.	5							
WEBS	2x3 SPF No.2 *Exce	ept* 9-2,7-5:2x4 SP	No.2 6)	This truss is	designed in accor	rdance w	ith the 2018						
BRACING		,			Residential Code			and					
TOP CHORD	P CHORD Structural wood sheathing directly applied or R802.10.2 and referenced standard ANSI/TPI 1.												
	5-0-6 oc purlins, ex			AD CASE(S)	Standard								
BOT CHORD													
	bracing.												
REACTIONS													
Max Horiz 9=-243 (LC 10)													
	Max Uplift 7=-121 (LC 13), 9=-110 (LC 12)												
	Max Grav 7=778 (L0	,, , ,											
FORCES	(lb) - Maximum Com	npression/Maximum											
TOP CHORD	Tension 1-2=0/43, 2-3=-687/	462 2 4 621/102											
TOP CHORD	4-5=-832/206, 5-6=0	, ,											
	5-7=-688/210	5/45, 2-5=-7 15/202,											
BOT CHORD		84/577											
WEBS	3-8=-3/323, 4-8=-23												
NOTES													
	ed roof live loads have	been considered fo	or										
, this desig	n.												Th
	CE 7-16; Vult=115mph											S OF I	ALCON D
	nph; TCDL=6.0psf; BC										G	ASE	WISS W
	Cat. II; Exp C; Enclose		pe)								B	STATE OF I	NSY
	one and C-C Exterior(2		0								R	SY NATHA	NIEL VEN
) 4-1-8 to 7-4-0, Exterio) 12-4-0 to 16-10-8 zor									-	R	FO	X Y
) 12-4-0 (0 16-10-8 201												

- right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 3) This truss has been designed for a 10.0 psf bottom
- chord live load nonconcurrent with any other live loads. All bearings are assumed to be SP No.2 crushing 4) capacity of 565 psi.

MBER PE-2022042259 RSSIONAL ET

November 2,2023



Job	Truss	Truss Type	Qty	Ply	Roof - Osage Lot 77	
P230812	E3	Common	8	1	Job Reference (optional)	161779289

Run: 8.63 S Aug 30 2023 Print: 8.630 S Aug 30 2023 MiTek Industries, Inc. Wed Nov 01 14:33:32 ID:wlbY_10_gexrEDTRTkrEAlzxFQX-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC?f

8-8-0

Page: 1

7-4-0

Sca	ale = 1:51	.4			
					_

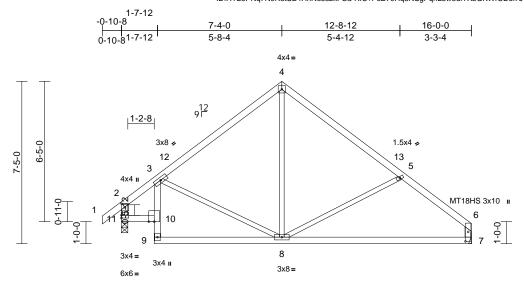
Plate Offsets (X, Y)	: [5:0-5-3,0-1-8]
----------------------	-------------------

		-										
Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15	TC	0.73	Vert(LL)	-0.12	6-7	>999	240	MT20	197/144
TCDL	10.0	Lumber DOL	1.15	BC	0.60	Vert(CT)	-0.22	6-7	>841	180	MT18HS	244/190
BCLL	0.0	Rep Stress Incr	YES	WB	0.24	Horz(CT)	0.01	6	n/a	n/a		
BCDL	10.0	Code	IRC2018/TPI20	14 Matrix-S							Weight: 75 lb	FT = 20%
LUMBER			6) Provid	de mechanical connecti	on (by oth	ers) of truss	to					
TOP CHORD	2x4 SP No.2			ng plate capable of with								
BOT CHORD												
WEBS												
BRACING	Internetional Desidential Orde sections D500.44.4 and											
TOP CHORD	Structural wood she	athing directly appli	ed or R802	.10.2 and referenced sta	andard AN	ISI/TPI 1.						
	5-4-12 oc purlins, e	0 7 11		SE(S) Standard								
BOT CHORD												
	bracing.											
REACTIONS	EACTIONS (size) 6=0-3-8, 8=0-3-8											
	Max Horiz 8=-229 (LC 10)											
	Max Uplift 6=-95 (LC		2)									
	Max Grav 6=705 (L0	C 1), 8=781 (LC 1)										
FORCES	(lb) - Maximum Com	npression/Maximum										
	Tension											
TOP CHORD	,	, ,										
	4-5=-839/208, 2-8=-		160									
BOT CHORD	, -											
WEBS	3-7=-3/323, 4-7=-25	2/229, 2-7=-53/328										
NOTES												
,	ed roof live loads have	been considered for	r									
this desig	•	(2 accord such)										
	CE 7-16; Vult=115mph mph; TCDL=6.0psf; BC										Same	ADR
			ne)								F. OF I	MISC
,	2) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=35ft; Ke=1.00; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) -0-10-8 to 4-1-8, Interior (1) 4-1-8 to 7-4-0, Exterior(2R) 7-4-0 to 12-4-0, Interior (1) 12-4-0 to 15-10-4 zone; cantilever left and											
) 4-1-8 to 7-4-0, Exterio		-0,							A	NATUA	NIEL XA
`) 12-4-0 to 15-10-4 zor	· · /	,							A	S NATHA	
`	·		-								/ PU	A

Lumber DOL=1.60 plate grip DOL=1.60 All plates are MT20 plates unless otherwise indicated. 3)

right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown;

- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 4)
- 5) All bearings are assumed to be SP No.2 crushing capacity of 565 psi.


 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.
 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not besign value for use only with with twit even connectors. This design is based only upon parameters shown, and is for an individual building designer must verify the applicability of design parameters and properly incorporate this design into the overall building designer must verify the applicability of design parameters and properly incorporate this design into the overall building designer. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcscomponents.com)

Job	Truss	Truss Type	Qty	Ply	Roof - Osage Lot 77	
P230812	E4	Roof Special	4	1	Job Reference (optional)	161779290

Run: 8.63 S Aug 30 2023 Print: 8.630 S Aug 30 2023 MiTek Industries, Inc. Wed Nov 01 14:33:33 ID:HY28PNq7N0R8tSE4HnNes3zxFCa-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

	1-6-0	7-4-0	16-0-0	
	1-6-0	5-10-0	8-8-0	
Scale = 1:52.7				
Plate Offsets (X, Y): [2:0-2-0,0-1-12], [6:0-5-3,0-1-8]				

Loading	(psf)	Spacing	2-0-0	csi		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15	TC	0.53	Vert(LL)	-0.13	7-8	>999	240	MT20	197/144
TCDL	10.0	Lumber DOL	1.15	BC	0.73	Vert(CT)	-0.26	7-8	>731	180	MT18HS	244/190
BCLL	0.0	Rep Stress Incr	YES	WB	0.24	Horz(CT)	0.04	7	n/a	n/a		
BCDL	10.0	Code	IRC2018/TPI2014	Matrix-S							Weight: 76 lb	FT = 20%

TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.2 2x3 SPF No.2 *Except* 11-2,7-6:2x4 SP No.2 WEBS BRACING TOP CHORD Structural wood sheathing directly applied or 5-5-0 oc purlins, except end verticals. Rigid ceiling directly applied or 10-0-0 oc BOT CHORD bracing. REACTIONS 7= Mechanical, 11=0-3-8 (size) Max Horiz 11=209 (LC 11) Max Uplift 7=-101 (LC 13), 11=-115 (LC 12) Max Grav 7=705 (LC 1), 11=781 (LC 1) FORCES (Ib) - Maximum Compression/Maximum Tension TOP CHORD 1-2=0/43, 2-3=-594/124, 3-4=-636/184, 4-5=-626/173, 5-6=-838/213, 2-11=-510/129, 6-7=-607/155

10-11=-119/491, 9-10=0/85, 3-10=-183/93, BOT CHORD 8-9=-125/452, 7-8=-131/593 WEBS 3-8=-56/163, 4-8=-36/321, 5-8=-255/230

NOTES

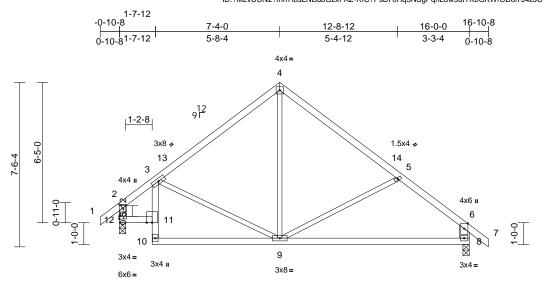
- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=35ft; Ke=1.00; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) -0-10-8 to 4-1-8, Interior (1) 4-1-8 to 7-4-0, Exterior(2R) 7-4-0 to 12-4-0, Interior (1) 12-4-0 to 15-10-4 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- All plates are MT20 plates unless otherwise indicated. 3) This truss has been designed for a 10.0 $\ensuremath{\mathsf{psf}}$ bottom 4)
- chord live load nonconcurrent with any other live loads. 5)
- Bearings are assumed to be: Joint 11 SP No.2 crushing capacity of 565 psi.

7) Provide mechanical connection (by others) of truss to

bearing plate capable of withstanding 115 lb uplift at joint 11 and 101 lb uplift at joint 7.

- 8) This truss is designed in accordance with the 2018
 - International Residential Code sections R502.11.1 and

R802.10.2 and referenced standard ANSI/TPI 1.


LOAD CASE(S) Standard

Job	Truss	Truss Type	Qty	Ply	Roof - Osage Lot 77	
P230812	E5	Roof Special	2	1	Job Reference (optional)	161779291

Run: 8.63 S Aug 30 2023 Print: 8.630 S Aug 30 2023 MiTek Industries, Inc. Wed Nov 01 14:33:33 ID:?MLvUUN2?fhrrHbsLNBubGzxFAZ-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

	1-6-0	7-4-0	16-0-0	I
	1-6-0	5-10-0	8-8-0	Į.
Scale = 1:52.7				

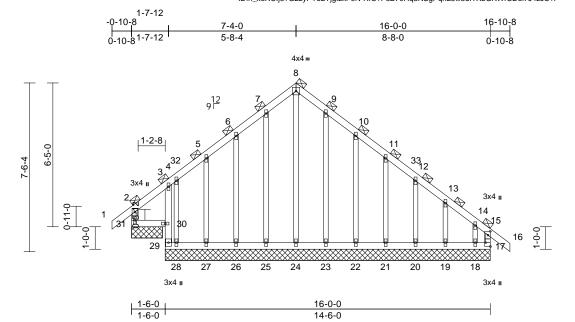
Plate Offsets (X, Y)): [2:0-2-0,0-7	1-12]

(psf)	Spacing	2-0-0		csi		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
25.0	Plate Grip DOL	1.15		TC	0.69	Vert(LL)	-0.12	8-9	>999	240	MT20	197/144
10.0	Lumber DOL	1.15		BC	0.72	Vert(CT)	-0.25	8-9	>763	180		
0.0	Rep Stress Incr	YES		WB	0.22	Horz(CT)	0.04	8	n/a	n/a		
10.0	Code	IRC201	8/TPI2014	Matrix-S							Weight: 78 lb	FT = 20%
		5)	Provide med	chanical connect	ion (by oth	ers) of truss t	to					
2x4 SP No 2		0)										
	pt* 8-6:2x6 SPF No	o.2. 6)	This truss is	designed in acc	ordance w	th the 2018						
12-2:2x4 SP No.2		,	Internationa	Residential Cod	de sections	R502.11.1 a	and					
			R802.10.2 a	nd referenced st	tandard AN	ISI/TPI 1.						
Structural wood she	athing directly appli	ed or LC	DAD CASE(S)	Standard								
Rigid ceiling directly	applied or 10-0-0 o	С										
bracing.												
(size) 8=0-3-8, 1	12=0-3-8											
Max Horiz 12=218 (L	_C 11)											
Max Grav 8=781 (L0	C 1), 12=774 (LC 1)											
(lb) - Maximum Com	pression/Maximum											
Tension												
,	, ,											
,												
		3/92,										
		1										
4-9=-40/315, 3-9=-5	1/100, 5-9=-221/22	1										
											000	ADD
	been considered to	or									OF I	MIGON
	(2 second quet)										BIE	-0.0
										6	N	New Mark
		ne)								H	S' NATHA	NIEL YS Y
										R	FO	X \V
										1		1 ATA
	10.0 0.0 10.0 2x4 SP No.2 2x4 SP No.2 2x3 SPF No.2 *Exce 12-2:2x4 SP No.2 Structural wood she 4-10-1 oc purlins, e Rigid ceiling directly bracing. (size) 8=0-3-8, - Max Horiz 12=218 (I Max Uplift 8=-130 (L Max Grav 8=781 (LC (lb) - Maximum Corr Tension 1-2=0/43, 2-3=-588/ 4-5=-620/177, 5-6=- 6-8=-688/212, 2-12= 11-12=-105/498, 10 9-10=-114/457, 8-9= 4-9=-40/315, 3-9=-5 d roof live loads have E 7-16; Vult=115mph oh; TCDL=6.0psf; BC at II; Exp C; Enclose te and C-C Exterior(2	25.0 Plate Grip DOL 10.0 Lumber DOL Rep Stress Incr Code 2x4 SP No.2 2x4 SP No.2 2x3 SPF No.2 *Except* 8-6:2x6 SPF No 12-2:2x4 SP No.2 Structural wood sheathing directly appli 4-10-1 oc purlins, except end verticals. Rigid ceiling directly applied or 10-0-0 c bracing. size) 8=0-3-8, 12=0-3-8 Max Horiz 12=218 (LC 11) Max Uplift 8=-130 (LC 13), 12=-114 (LC Max Grav 8=781 (LC 1), 12=774 (LC 1) (lb) - Maximum Compression/Maximum Tension 1-2=0/43, 2-3=-588/125, 3-4=-630/187, 4-5=-620/177, 5-6=-815/213, 6-7=0/46, 6-8=-688/212, 2-12=-505/131 11-12=-105/498, 10-11=0/85, 3-11=-18: 9-10=-114/457, 8-9=-80/560 4-9=-40/315, 3-9=-57/166, 5-9=-227/22 d roof live loads have been considered for E 7-16; Vult=115mph (3-second gust) bh; TCDL=6.0psf; BCDL=6.0psf; h=35ft; at. II; Exp C; Enclosed; MWFRS (envelo the and C-C Exterior(2E) -0-10-8 to 4-1-8,	25.0 Plate Grip DOL 1.15 10.0 Lumber DOL 1.15 0.0 Rep Stress Incr YES 10.0 Code IRC201 2x4 SP No.2 2x3 SPF No.2 *Except* 8-6:2x6 SPF No.2, 6) 5) 2x4 SP No.2 Structural wood sheathing directly applied or 12-2:2x4 SP No.2 L Structural wood sheathing directly applied or 10-0-0 oc bracing. Size) 8=0-3-8, 12=0-3-8 Yax Horiz 12=218 (LC 11) Yax Grav 8=781 (LC 1), 12=774 (LC 1) (b) - Maximum Compression/Maximum Tension 1-2=0/43, 2-3=-588/125, 3-4=-630/187, 4-5=-620/177, 5-6=-815/213, 6-7=0/46, 6-8=-688/212, 2-12=-505/131 11-12=-105/498, 10-11=0/85, 3-11=-183/92, 9-10=-114/457, 8-9=-80/560 4-9=-40/315, 3-9=-57/166, 5-9=-227/221 d roof live loads have been considered for E 7-16; Vult=115mph (3-second gust)	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	25.0 Piate Grip DOL 1.15 TC 0.69 Vert(LL) 10.0 Lumber DOL 1.15 BC 0.72 Vert(CT) 10.0 Code IRC2018/TPI2014 Matrix-S Vert(CT) Horz(CT) 2x4 SP No.2 SP No.2 * Except* 8-6:2x6 SPF No.2, 5) Provide mechanical connection (by others) of truss bearing plate capable of withstanding 114 lb uplift a 12 and 130 lb uplift at joint 8. 12 and 130 lb uplift at joint 8. 6) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 at R802.10.2 and referenced standard ANSI/TPI 1. Structural wood sheathing directly applied or 4-10-1 oc purlins, except end verticals. Rigid ceiling directly applied or 10-0-0 oc bracing. CAD CASE(S) Standard Size) 8=0-3-8, 12=0-3-8 Vax Uplift 8=-130 (LC 13), 12=-714 (LC 12) Vax Grav 8=781 (LC 1), 12=774 (LC 1) (lb) - Maximum Compression/Maximum Tension 1-2=0/43, 2-3=-588/125, 3-4=-630/187, 4-55=-620/177, 5-68=-1815/213, 6-7=0/46, 6-8=-688/212, 2-12==505/131 11-12=-105/498, 10-11=0/85, 3-11=-183/92, 9-10=-114/457, 8-9==-80/560 4-9=-40/315, 3-9=-57/166, 5-9=-227/221 droof live loads have been considered for E7-16; Vult=115mph (3-second gust) h; TCDL=6.0psf; BCDL=6.0psf; h=35f; tat II; Exp C; Enclosed; MWFRS (envelope) he and C-C Exterior(2E) -0-10-8 to 4-1-8,	25.0 Plate Grip DOL 1.15 TC 0.69 Vert(LL) -0.12 10.0 Lumber DOL 1.15 BC 0.72 Vert(CT) -0.25 10.0 Code IRC2018/TPI2014 Matrix-S Horz(CT) 0.04 2x4 SP No.2 Structural wood sheathing directly applied or 10-0-0 cc 5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 114 lb uplift at joint 12 and 130 lb uplift at joint 8. Structural wood sheathing directly applied or 4-10-1 oc purtins, except end verticals. 6) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. LOAD CASE(S) Standard Wax Horiz 12-2218 (LC 11) LOAD CASE(S) Standard Max Uplift 8=-130 (LC 13), 12=-114 (LC 12) Varget at a considered for Source at a considered for 1-2=0/43, 2-3=-588/125, 3-4=-630/187, 4-5=-620/177, 5-6=-815/213, 6-7=0/46, 6-8=-688/212, 2-12=-505/131 Fine at a considered for E7-16; Vult=115mph (3-second gust) 0; trous the at here at a considered for Fine at a considered for E7-16; Vult=115mph (3-second gust) 0; trous considered for Fine at a considered for E7-16; Vult=115mph (3-second gust) 0; trous considered for	25.0 Plate Grip DOL 1.15 TC 0.69 Vert(LL) -0.12 8-9 0.0 Rep Stress Incr YES WB 0.22 Vert(CT) -0.25 8-9 10.0 Code IRC2018/TPI2014 Matrix-S Vert(CT) -0.25 8-9 2x4 SP No.2 Code IRC2018/TPI2014 Matrix-S Vert(CT) -0.04 8 2x4 SP No.2 2x3 SPF No.2 * Except* 8-6:2x6 SPF No.2, 12-2:2x4 SP No.2 5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 114 lb uplift at joint 12 and 130 lb uplift at joint 8. 13 and 130 lb uplift at joint 8. 15) This trues is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. LOAD CASE(S) Standard Vert(LT) 12-213, 2-3-8 Wax Horiz 12-2124 (LC 1) Harmon Compression/Maximum Tension 1-22-0/43, 2-3-588/125, 3-4=-630/187, 4-5=-620/177, 5-6=-815/213, 6-7=0/46, 6-8=-688/212, 2-12=-505/131 1-12=-105/498, 10-11=0/85, 3-11=-183/92, 9-10=-114/457, 8-9=-80/560 4-9=-40/315, 3-9=-57/166, 5-9=-227/221 droof live loads have been considered for E F-16; Vult=115mph (3-second gust) br; TCD_=6.0pst; h=35ft; at. I; Exp C; Enclosed; MWFRS (envelope) be and C-C Exterior(CE) -0-10-8 to 4-1-8, 5 Ext	25.0 Plate Grip DOL 1.15 TC 0.69 Vert(LL) -0.12 8-9 >999 10.0 Lumber DOL 1.15 BC 0.72 Vert(CT) -0.25 8-9 >763 10.0 Code IRC2018/TPI2014 Matrix-S Horz(CT) 0.04 8 n/a 2x4 SP No.2 Code IRC2018/TPI2014 Matrix-S Horz(CT) 0.04 8 n/a 2x4 SP No.2 5 Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 114 lb uplift at joint 12 and 130 lb uplift at joint 24 and 10 lb uplift at joint 12 and 130 lb uplift at joint 12 and 130 lb uplift at joint 24 and 10 lb uplift at joint 12 and 130 lb uplift at joint 12 and 130 lb uplift at joint 24 and 10 lb uplift at joint 12 and 130 lb uplift at joint 24 and 10 lb uplift at joint 12 and 130 lb uplift at joint 12 and 130 lb uplift at joi	25.0 Plate Grip DOL 1.15 TC 0.69 Vert(LL) -0.12 8-9 >999 240 0.0 Rep Stress Incr YES BC 0.72 Vert(CT) -0.25 8-9 >763 180 10.0 Code IRC2018/TPI2014 Matrix-S Horz(CT) 0.04 8 n/a n/a 2x4 SP No.2 2x3 SPF No.2 * Except* 8-6:2x6 SPF No.2, 5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 114 lb uplift at joint 12 and 130 tb uplift at joint 8. 6) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. Structural wood sheathing directly applied or 4.10-0.0 oc bracing. BC 3.12.2-748 (LC 1) LOAD CASE(S) Standard Vax Horiz 12=218 (LC 11) Vax Horiz 12=218 (LC 1) Vax Horiz 12=2-165/131 C1.12.2-765/131 L1-22=-105/131 11-12=105/48, 10-11=0/88, 3-11=-183/92, 9-10=-114/457, 8-9=-80/560 4-9=-40/315, 3-9=-57/166, 5-9=-227/221 Verticurum Verticurum	25.0 Plate Grip DOL 1.15 TC 0.09 Vert(LL) -0.12 8-9 >999 240 MT20 0.0 Rep Stress incr VES WB 0.22 Horz(CT) 0.04 8 n/a N/a 2x4 SP No.2 Code IRC2018/TPI2014 Matrix-S WB 0.22 Horz(CT) 0.04 8 n/a Weight: 78 lb 2x4 SP No.2 2x4 SP No.2 2x4 SP No.2 2x3 SPF No.2 * Except* 8-6:2x6 SPF No.2, 6 This truss is designed in accordance with the 2018 11 and 180 uplift at joint 12 and 130 lb uplift at joint 12 an

- Interior (1) 12-4-0 to 16-10-8 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 This truss has been designed for a 10.0 psf bottom
- 3) chord live load nonconcurrent with any other live loads.
- All bearings are assumed to be SP No.2 crushing capacity of 565 psi. 4)

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent colleges with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

November 2,2023


PE-20220422

SSIONAL EN

Page: 1

Job	Truss	Truss Type	Qty	Ply	Roof - Osage Lot 77	
P230812	E6	Roof Special Supported Gable	2	1	Job Reference (optional)	161779292

Run: 8.63 S Aug 30 2023 Print: 8.630 S Aug 30 2023 MiTek Industries, Inc. Wed Nov 01 14:33:33 ID:n_xeRUIj5?G2zyPToLYjgIzxF9N-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Plate Offsets (X, Y): [15:0-2-0,0-1-4], [17:Edge,0-2-8] Loading (psf) Spacing 4-0-0 CSI DEFL in (loc) I/defl L/d PLATES GRIP TCLL (roof) 25.0 Plate Grip DOL 1.15 TC 0.19 Vert(LL) 0.00 30-31 >999 180 TCDL 10.0 Lumber DOL 1.15 BC 0.17 Vert(CT) 0.00 30-31 >999 180 BCDL 10.0 Code IRC2018/TPI2014 Matrix-R Vert(CT) 0.02 17 n/a n/a LUMBER TOP CHORD 2:41=-327/212, 1-2=0/86, 2-3=-264/258, 5) Truss to be fully sheathed from one face or securely TOP CHORD 2:x4 SP No.2 6-7=-263/454, 7-8=-298/501, 8-9=-298/494, 6) Gable studs spaced at 1-4-0 oc. 6) Gable studs spaced at 1-4-0 oc.	Scale = 1:51.4				10	0		14	00							
TCLL (roof) 25.0 Plate Grip DOL 1.15 TC 0.19 Vert(LL) 0.00 30-31 >999 240 MT20 244/190 TCDL 10.0 Lumber DOL 1.15 BC 0.17 Vert(LL) 0.00 30-31 >999 240 MT20 244/190 BCL 0.0 Rep Stress Incr NO WB 0.55 Horz(CT) 0.02 17 n/a n/a BCDL 10.0 Code IRC2018/TPI2014 Matrix-R Vert(CT) 0.02 17 n/a n/a Veright: 98 lb FT = 20% LUMBER TOP CHORD 2:44 SP No.2 TOP CHORD 2:31=-327/212, 1-2=0/86, 2-3=-264/258, 3-4=-282/305, 4-5=-265/319, 5-6=-231/380, 5) Truss to be fully sheathed from one face or securely braced against lateral movement (i.e. diagonal web).	Plate Offsets (X, Y): [15:0-2-0,	,0-1-4]], [17:Edge,0-2-8]												
TOP CHORD2x4 SP No.23-4=-282/305, 4-5=-265/319, 5-6=-231/380,braced against lateral movement (i.e. diagonal web).	TCLL (roof) TCDL BCLL	25 10 (5.0 0.0 0.0	Plate Grip DOL Lumber DOL Rep Stress Incr	1.15 1.15 NO		TC BC WB	0.17	Vert(LL) Vert(CT)	0.00 0.00	30-31 30-31	>999 >999	240 180	MT20	244/190	
 BOT CHORD 244 SP No.2 BACKING 24 SP No.2	TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x4 SP No.2 *E 2x3 SPF No.2 *E 2x3 SPF No.2 2-0-0 oc purlin: verticals (Switched from Rigid ceiling di bracing. (size) 17= 20= 23= 26= 29= Max Horiz 31= Max Uplift 17= 19= 21= 23= 25= 27= 29= Max Grav 17= 21= 23= 25= 25= 27= 29= (lb) - Maximum	s (6-0 h shee irectly 14-6-C 14-10 (L) 1-113 (L) 2259 (L) 2259 (L) 2259 (L) 2257 (L) 2274 (L) 2	-0 max.), except end tted: Spacing > 2-8-0 applied or 6-0-0 oc), 18=14-6-0, 19=14-), 24=14-6-0, 22=14-), 24=14-6-0, 22=14-), 24=14-6-0, 28=14-), 24=14-6-0, 28=14-), 31=1-4-8 C 11) LC 9), 18=-261 (LC 1- LC 13), 22=-143 (LC C 13), 24=-35 (LC 1- C 13), 24=-35 (LC 1- C 12), 26=-140 (LC 2- LC 12), 28=-262 (LC 2- C 12), 28=-262 (LC 2- C 20), 22=262 (LC 2- C 20), 24=465 (LC 1- C 19), 18=246 (LC 1- C 19), 28=240 (LC 2- C 19), 28=240 (LC 2- C 19), 28=240 (LC 2- C 19), 31=392 (LC 2- C 10), 31=392 (LC 2- C 10), 31=392 (LC 2- C 10), 31=392 (LC 2- C 20) (LC 2- C 10), 31=392 (LC 2- C 20) (L	d)). 6-0, 6-0, 6-0, 6-0, 13), 13), 13), 113), 113), 113), 113), 113), 113, 113	WEBS NOTES 1) Unbalance this design 2) Wind: ASC Vasd=91m Ke=1.00; C exterior zo Interior (1) Interior (1) Interior (1) Interior (1) Interior (1) Interior (1) Interior (1) Sector 20 for membe Lumber DC 3) Truss des only. For s see Standa or consult	3-4=-282/305, 4 6-7=-263/454, 7 9-10=-262/426, 11-12=-130/211, 13-14=-106/105, 15-16=0/82, 15- 30-31=-214/245, 3-30=-129/121, 27-28=-143/174, 25-26=-143/174, 25-26=-143/174, 21-22=-143/174, 19-20=-143/174, 19-20=-143/174, 19-20=-143/174, 19-20=-143/174, 19-20=-143/174, 19-20=-202/148, 14-18=-170/159 ad roof live loads h ZE 7-16; Vult=115r nph; TCDL=6.0psf; Cat. II; Exp C; Encl. ne and C-C Exteri 4-1-8 to 7-4-0, Ex 12-4-0 to 16-10-8 Sed; end vertical liers and forces & M DL=1.60 plate grip igned for wind loads studs exposed to ward and Industry Gable qualified building C	-5=-265/31 8=-298/50 10-11=-19, 12-13=-8, 14-15=-11 17=-263/1, 28-29=-14, 28-29=-14, 28-29=-14, 28-29=-14, 28-29=-14, 28-29=-14, 28-29=-14, 28-29=-14, 28-29=-14, 28-29=-14, 28-29=-14, 28-29=-14, 28-29=-14, 28-29=-14, 28-29=-14, 28-29=-14, 28-29=-14, 29-21=-14, 13-19=-21, 13-	9, 5-6=-231/2 11, 8-9=-298/4 2/304, 5/141, 90/137, 12 80/157, 3/174, 43/174,	or pe) -0, d -C -Dwn; uss), ble, PI 1.	br. 6) Ga 7) Th ch 8) Al ca 9) Pr be joi 35 at 28 up joi 10) Th Rt 11) Gi or bc	aced agai able studs his truss h ord live lc bearings pacity of ovide me earing plat int 31, 166 i lb uplift joint 26, 7 i, 53 lb up blift at join int 19 and his truss is ternationa 302.10.2 a "aphical p	inst lat s space bad noi s are as 565 ps chanic te capa 0 lb up lift at joint 113 lb lift at joint 113 lb lift at joint 113 lb s desig al Resid and refe tation of) Stal	eral movement ed at 1-4-0 oc. en designed for nconcurrent wit ssumed to be S si. al connection ((able of withstan lift at joint 17, 21 24, 68 lb uplift at joint 27 oint 23, 143 lb u 20 lb uplift at joint 12 yned in accordai dential Code se ferenced standa of the purlin alo ndard	(i.e. diagonal web). a 10.0 psf bottom h any other live load P No.2 crushing by others) of truss to ding 184 lb uplift at 20 lb uplift at joint 25, 140 lb uplift at joint 22, 140 lb uplift at joint 22, 151 lb uplift at joint 22, 152 lb uplift at joint 22, 152 lb uplift at joint 22, 153 lb uplift at joint 22, 154 lb uplift at joint 22, 155 lb uplift at joint 25, 155 lb uplift a	9, olift t Ib it

- only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) All plates are 1.5x4 MT20 unless otherwise indicated.

November 2,2023

Page: 1

Job	Truss	Truss Type	Qty	Ply	Roof - Osage Lot 77	
P230812	G1	Common Supported Gable	2	1	Job Reference (optional)	161779293

Run: 8.63 S Aug 30 2023 Print: 8.630 S Aug 30 2023 MiTek Industries, Inc. Wed Nov 01 14:33:34

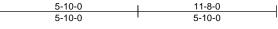
Page: 1

ID:RNmtDqGvFaLiZFXrU8_Uw9zxF87-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f -0-10-8 12-6-8 5-10-0 11-8-0 5-10-0 5-10-0 0-10-8 0-10-8 4x4 = 7 1<u>2</u> 10 Г **8** ₩24 23∉ 5 ∯ 9 Ð 5-10-5 5-11-10 10 4 $\widehat{}$ Ð 4x4 II 4x4 🛛 3 12 1-0-0 13 21 20 19 18 17 16 15 3x6 = 3x6 =

			I		11	I-8-0				1			
Scale = 1:40.6			Γ										
Plate Offsets (X, Y):	[2:0-2-0,0-1-12	2], [12:0-2-0,0-1-12]											
Loading	(psf)	Spacing	4-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP	
TCLL (roof)	25.0	Plate Grip DOL	1.15	TC	0.26	Vert(LL)	n/a	-	n/a	999	MT20	197/144	
TODI	10.0		4.45		0.40	Mark(OT)			- 1-	000			

TCLL (roof)		25.0	Plate Grip DOL	1.15		TC	0.26	Vert(LL)	n/a	-	n/a	999	MT20	197/144
TCDL		10.0	Lumber DOL	1.15		BC	0.13	Vert(CT)	n/a	-	n/a	999		
BCLL		0.0	Rep Stress Incr	NO		WB	0.39	Horz(CT)	0.00	14	n/a	n/a		
BCDL		10.0	Code	IRC201	B/TPI2014	Matrix-R							Weight: 66 lb	FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x4 SP No.2 2x3 SPF No.2 (size) 1 1 2 Max Horiz 2 Max Horiz 2 Max Uplift 1 1 1 2 Max Grav 1 1 2 2 2	2 2 2 2 2 2 2 2 2 2 2 2 2 2 3 7 6 1 1 8 0 2 3 7 6 1 1 8 - 0 2 3 7 6 (L 4 - - 138 (I 6 - - 119 (I) 9 - - 11-8-0 0 2 - - - - - - - - - - - - - - - - -	-0 max.), except end ted: Spacing > 2-8-0; applied or 6-0-0 oc), 15=11-8-0, 16=11-{), 18=11-8-0, 19=11-{ C 11) LC 9), 15=-255 (LC 1 LC 12), 20=-116 (LC LC 12), 20=-116 (LC LC 12), 22=-176 (LC C 19), 15=-348 (LC 2) C 26), 17=279 (LC 1) C 22), 2=-279 (LC 1) C 22), 2=-279 (LC 1) C 22), 2=-279 (LC 1) C 22), 2=-279 (LC 1)	W N(1 1)). 2) 3-0, 3-0 3), 12), 8) 3) 0), 0), 0), 9), 9), 4)	EBS T Unbalanced this design. Wind: ASCE Vasd=91mph Ke=1.00; Cal exterior zone Exterior(2N) 10-10-0, Exter left and right exposed;C-C reactions sho DOL=1.60 Truss design only. For stu see Standarc or consult qu All plates are Gable require Truss to be fi braced again	7-18=-532/175, 6 5-20=-195/299, 4 3-22=-316/252, 8 9-16=-197/300, 11 11-14=-267/202 roof live loads ha 7-16; Vult=115m 7; TCDL=6.0psf; 1 1, 11; Exp C; Encl. and C-C Corner 4-1-8 to 5-10-0, (erior(2N) 10-10-0 exposed; end ve 6 for members an own; Lumber DOI ned for wind load ids exposed to wi d Industry Gable alified building de 1.5x4 MT20 unlu es continuous boully sheathed fror sis lateral movem	-21=-267/ -17=-218/ 0-15=-254 we been of BCDL=6. Ssed; MW (3E) -0-10 Corner(3F) to 12-6-8 errical left d forces & L=1.60 pla s in the pl ind (norm End Detai esigner as ess othen ttom chor m one fac een (i.e. d	338, 176, 4/337, considered for cond gust) 0psf; h=35ft; FRS (envelop 0-8 to 4-1-8, t) 5-10-0 to 2 zone; cantile and right & MWFRS for ate grip ane of the tru al to the face) ils as applicats per ANSI/TF d bearing. e or securely	oe) ever ss), ole, Pl 1. i.	Inter R802 12) Grap or th	nationa 2.10.2 a hical p e orient om chor	I Resi and rei urlin re tation d.	ned in accordant dential Code sec ferenced standar epresentation doe of the purlin along indard	ce with the 2018 tions R502.11.1 and d ANSI/TPI 1. es not depict the size
TOP CHORD	2-22=-278/4 3-4=-228/22 6-7=-270/56 9-10=-124/2 11-12=-18/1	24, 4-5=-2 61, 7-8=-2 257, 10-1 124, 12-1	3=0/91, 12-14=-266/4	^{34,} 9) 447	Gable studs This truss ha chord live loa All bearings a capacity of 5	spaced at 1-4-0 o s been designed ad nonconcurrent are assumed to b	oc. for a 10.0 with any be SP No.) psf bottom other live load 2 crushing	ds.				STATE OF I	NIEL
BOT CHORD	19-20=-184 17-18=-184	/229, 18- /229, 16-	21=-184/229, 19=-184/229, 17=-184/229, 15=-184/229		bearing plate joint 22, 138 116 lb uplift a	capable of withs lb uplift at joint 1/ at joint 20, 266 lb 17, 119 lb uplift a	standing 1 4, 103 lb u uplift at jo	76 lb uplift at uplift at joint 1 pint 21, 101 lb	9,			and a second	PE-2022	LENGT


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)


16023 Swingley Ridge Rd. Chesterfield, MO 63017 314.434.1200 / MiTek-US.com

November 2,2023

Job	Truss	Truss Type Qty Ply Roof - Osage Lot 77			Roof - Osage Lot 77	
P230812	G2	Common	4	1	Job Reference (optional)	161779294

Run: 8.63 S Aug 30 2023 Print: 8.630 S Aug 30 2023 MiTek Industries, Inc. Wed Nov 01 14:33:34 ID:KybgmexPJUHvfiEQCBTNemzxF7G-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15	TC	0.46	Vert(LL)	-0.03	7-8	>999	240	MT20	197/144
TCDL	10.0	Lumber DOL	1.15	BC	0.27	Vert(CT)	-0.05	7-8	>999	180		
BCLL	0.0	Rep Stress Incr	YES	WB	0.08	Horz(CT)	0.01	6	n/a	n/a		
BCDL	10.0	Code	IRC2018/TPI2014	Matrix-R							Weight: 50 lb	FT = 20%

This truss is designed in accordance with the 2018 6) International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. 2x4 SP No.2 *Except* 7-3:2x3 SPF No.2

LOAD CASE(S) Standard

WEBS NOTES

Scale = 1:48.6

LUMBER

WEBS BRACING TOP CHORD

TOP CHORD

BOT CHORD

BOT CHORD

FORCES

TOP CHORD

BOT CHORD

REACTIONS (size)

Unbalanced roof live loads have been considered for 1) this design

7-8=-10/316, 6-7=-10/316

Max Horiz 8=188 (LC 11)

2x4 SP No.2

2x4 SP No.2

bracing.

Tension

3-7=0/241

Structural wood sheathing directly applied or 6-0-0 oc purlins, except end verticals.

Rigid ceiling directly applied or 10-0-0 oc

6=0-3-8, 8=0-3-8

Max Uplift 6=-87 (LC 13), 8=-87 (LC 12) Max Grav 6=583 (LC 1), 8=583 (LC 1)

(Ib) - Maximum Compression/Maximum

1-2=0/46, 2-3=-510/184, 3-4=-510/184, 4-5=0/46, 2-8=-528/254, 4-6=-528/254

- 2) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=35ft; Ke=1.00; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) -0-10-8 to 4-1-8, Interior (1) 4-1-8 to 5-10-0, Exterior(2R) 5-10-0 to 10-10-0, Interior (1) 10-10-0 to 12-6-8 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- This truss has been designed for a 10.0 psf bottom 3) chord live load nonconcurrent with any other live loads.

All bearings are assumed to be SP No.2 crushing 4) capacity of 565 psi.

5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 87 lb uplift at joint 8 and 87 lb uplift at joint 6.

Page: 1

Job	Truss	Truss Type	Qty	Ply	Roof - Osage Lot 77	
P230812	G3	Common Girder	2	2	Job Reference (optional)	161779295

Run: 8.63 S Aug 30 2023 Print: 8.630 S Aug 30 2023 MiTek Industries, Inc. Wed Nov 01 14:33:34 ID:2QFI?hT?x?pfxTbtnRFiQ1zxF6a-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

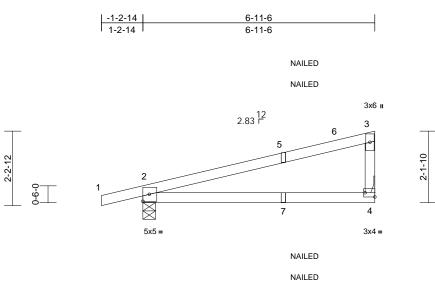
5-10-0 11-8-0 5-10-0 5-10-0 4x4 = 2 12 10 Г 5-4-1 4-12 5-10-5 M18AHS 8x12, M18AHS 8x12 II 7 8 3 4 1-0-0 Ň 4 Ř 9 10 5 11 12 3x10 u LUS26 LUS26 LUS26 LUS26 LUS26 <u>5-10-0</u> 11-8-0 5-10-0 5-10-0

Scale =	1.12 0

Plate Offsets (X, Y): [3:Edge,0-3-8]

													-
Loading	(psf)	Spacing	2-0-0		csi		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15		TC	0.45	Vert(LL)	-0.05	4-5	>999	240	MT20	244/190
TCDL	10.0	Lumber DOL	1.15		BC	0.51	Vert(CT)	-0.08	4-5	>999	180	M18AHS	142/136
BCLL	0.0	Rep Stress Incr	NO		WB	0.26	Horz(CT)	0.01	4	n/a	n/a		
BCDL	10.0	Code	IRC201	8/TPI2014	Matrix-R		- (-)					Weight: 106 lb	FT = 20%
LUMBER			4)	Wind: ASCE	7-16; Vult=115m	nph (3-sec	cond gust)						
TOP CHORD	2x4 SP No.2				h; TCDL=6.0psf;								
BOT CHORD	2x6 SPF No.2				t. II; Exp C; Encl								
WEBS		*Except* 5-2:2x4 SP			e and C-C Exterio -1-12 to 5-10-0, E			,					
BRACING	No.2				erior (1) 10-10-0, t			/er					
TOP CHORD	Structural wood she	athing directly applie	dor		exposed ; end v								
	6-0-0 oc purlins, ex		4 01		c for members ar			r					
BOT CHORD		applied or 10-0-0 oc			own; Lumber DO	L=1.60 pla	ate grip						
	bracing.		5	DOL=1.60	e MT20 plates un	less other	wice indicate	d					
REACTIONS	· · · · ·		6		tion Tolerance at								
	Max Horiz 6=161 (L	,	7		as been designed			- / -					
	Max Uplift 4=-325 (L		<u>2)</u>		ad nonconcurren			ıds.					
	Max Grav 4=2183 (8)		are assumed to b	be SPF No	o.2 crushing						
FORCES	(lb) - Maximum Con Tension	npression/Maximum		capacity of 4									
TOP CHORD		2034/426	9)		hanical connection capable of with								
	1-6=-1435/356, 3-4	,			25 lb uplift at join		44 ib upilit a	L					
BOT CHORD			1		designed in acco		ith the 2018						
WEBS	2-5=-287/2082				Residential Cod			and					
NOTES					nd referenced sta								
	s to be connected toge	ther with 10d	1	1) Use Simpso	n Strong-Tie LUS	626 (4-10d	Girder, 4-10)d					
	") nails as follows:				e Ply Girder) or e								Th
Top chore	ds connected as follow	s: 2x4 - 1 row at 0-9-0)		ting at 1-8-0 from)				TATE OF M	ALC D
OC.					s(es) to back fac			h				AGE	NOSCH SCILL
	nords connected as fol	lows: 2x6 - 2 rows		,	bles where hange	er is in con	nact with jurr	iber.			6	A.M.	N.S.
staggered	d at 0-9-0 oc. nected as follows: 2x4	1 may at 0 0 0 as		OAD CASE(S)		N . I	1	45			R	S NATHA	NIEL
	are considered equally		1)	Plate Increa	of Live (balanced	i): Lumber	Increase=1.	15,			R	FO	X
	noted as front (F) or ba		ΔD	Uniform Lo							UH.	11	
	section. Ply to ply con				=-70, 2-3=-70, 4-	-6=-20					8		
	to distribute only loads				ed Loads (lb)	0-20					1 -	va ingr	Ko Mars
	herwise indicated.	., .,			685 (B), 9=-685	(B). 10=-6	85 (B), 11=-6	685			27		
3) Unbalanc	ed roof live loads have	been considered for		(B), 12=-		、,, ··· ·	(-),				N	PE-2022	042239 A
this desig	n.			· //							Y	PE-2022	LSA
											12	C'SSIONA	LENA
												ANA	L'A

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)



November 2,2023

Job	Truss Truss Type Qt		Qty	Ply	Roof - Osage Lot 77	
P230812	J1	Jack-Closed	4	1	Job Reference (optional)	161779296

Run: 8.63 S Aug 30 2023 Print: 8.630 S Aug 30 2023 MiTek Industries, Inc. Wed Nov 01 14:33:35 ID:j?OjMFFnRIhAKU2wMSycbzzxFil-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

6-11-6

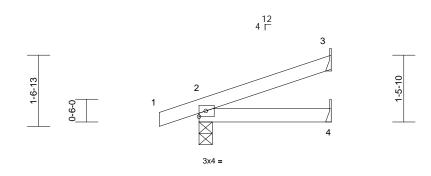
Scale = 1:34.5

Plate Offsets (X, Y): [4:Edge,0-1-8]

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15	тс	0.65	Vert(LL)	-0.04	2-4	>999	240	MT20	244/190
TCDL	10.0	Lumber DOL	1.15	BC	0.40	Vert(CT)	-0.10	2-4	>821	180		
BCLL	0.0	Rep Stress Incr	NO	WB	0.00	Horz(CT)	0.00	4	n/a	n/a		
BCDL	10.0	Code	IRC2018/TP	2014 Matrix-R							Weight: 25 lb	FT = 20%
LUMBER			7) "N	AILED" indicates Girder: 3	3-10d (0.14	8" x 3") toe-	nails					
TOP CHORD	2x4 SP No.2			r NDS guidelines.	,	,						
BOT CHORD			8) İn	the LOAD CASE(S) section	on, loads a	oplied to the	face					
OTHERS	2x4 SP No.2		of	the truss are noted as from	nt (F) or ba	ck (B).						
BRACING			LOAD	CASE(S) Standard								
TOP CHORD	Structural wood she	athing directly appl	ied or 1) D	ead + Roof Live (balance	d): Lumber	Increase=1.	15,					
	6-0-0 oc purlins.	0 , 11	P	late Increase=1.15								
BOT CHORD	0 0 ,	applied or 10-0-0 o	oc U	niform Loads (lb/ft) Vert: 1-3=-70, 2-4=-20								
REACTIONS	bracing. (size) 2=0-4-9,	4= Mechanical		ven. 1-3=-70, 2-4=-20								
	Max Horiz 2=94 (LC											
	Max Uplift 2=-132 (L)									
	Max Grav 2=408 (L		/									
FORCES	(lb) - Maximum Con											
	Tension	iprecedent, maximum										
TOP CHORD	1-2=0/6, 2-3=-282/1	26, 3-4=-189/230										
BOT CHORD	2-4=-200/218											
NOTES												
	CE 7-16; Vult=115mph	(3-second aust)										
Vasd=91n	nph; TCDL=6.0psf; BC	DL=6.0psf; h=35ft;										
	Cat. II; Exp C; Enclose		pe)									
	one and C-C Corner (3											
	R) 5-10-0 to 6-9-10 zo		nd								000	all
	sed ; end vertical left e										TATE OF	MICON
	and forces & MWFRS		ז;							9	BIE	000
	OL=1.60 plate grip DC has been designed fo									6	AT	N S
,	load nonconcurrent w		ade							B	S NATH	ANIEL YE Y
	are assumed to be: Jo									h	FO	X
capacity o			ing							2 /	9 1/2	
	irder(s) for truss to trus	ss connections.								W	TI	
, 0	nechanical connection		to							× 6	R/UMAN	BER VISA
,	late capable of withsta	· · ·								27		
	d 69 lb uplift at joint 4.	5								N.	PE-2022	042259
	is designed in accord	ance with the 2018								4	1 Al	158
Internetion	nal Basidantial Cada a	actiona BE02 11 1	and								100	- NUH

6 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent colleges with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)



16023 Swingley Ridge Rd. Chesterfield, MO 63017 314.434.1200 / MiTek-US.com

Job	Truss	Truss Type	Qty	Ply	Roof - Osage Lot 77	
P230812	J2	Jack-Open	8	1	Job Reference (optional)	161779297

Run: 8.63 S Aug 30 2023 Print: 8.630 S Aug 30 2023 MiTek Industries, Inc. Wed Nov 01 14:33:35 ID:j?OjMFFnRIhAKU2wMSycbzzxFil-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

2-10-15

Scale = 1:25.4				I								
Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15	тс	0.12	Vert(LL)	0.00	2-4	>999	240	MT20	244/190
TCDL	10.0	Lumber DOL	1.15	BC	0.08	Vert(CT)	-0.01	2-4	>999	180		
BCLL	0.0	Rep Stress Incr	YES	WB	0.00	Horz(CT)	0.00	3	n/a	n/a		
BCDL	10.0	Code	IRC2018/TPI2014	Matrix-P							Weight: 10 lb	FT = 20%

L	u	М	R	F	R
-	v	141		-	1

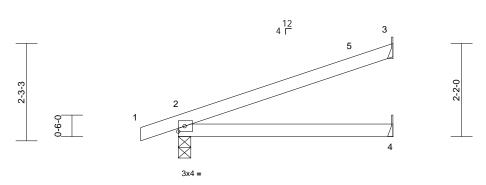
TOP CHORD	2x4 SP N	0.2
BOT CHORD	2x4 SP N	0.2
BRACING		
TOP CHORD	Structura	wood sheathing directly applied or
	2-10-15 c	c purlins.
BOT CHORD	Rigid ceil	ing directly applied or 10-0-0 oc
	bracing.	
REACTIONS	(size)	2=0-3-8, 3= Mechanical, 4=
		Mechanical
	Max Horiz	2=55 (LC 8)
	Max Uplift	2=-72 (LC 8), 3=-48 (LC 12)
	Max Grav	2=207 (LC 1), 3=81 (LC 1), 4=54
		(LC 3)
FORCES	(lb) - Max	imum Compression/Maximum
	Tension	
TOP CHORD	1-2=0/6, 2	2-3=-60/28
BOT CHORD	2-4=0/0	

NOTES

- Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=35ft; Ke=1.00; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) zone; cantilever left and right exposed; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- Bearings are assumed to be: , Joint 2 SP No.2 crushing capacity of 565 psi.
- 4) Refer to girder(s) for truss to truss connections.
- Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 48 lb uplift at joint 3 and 72 lb uplift at joint 2.
- 6) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard




Page: 1

Job	Truss	Truss Type	Qty	Ply	Roof - Osage Lot 77	
P230812	J3	Jack-Open	16	1	Job Reference (optional)	161779298

Run: 8.63 S Aug 30 2023 Print: 8.630 S Aug 30 2023 MiTek Industries, Inc. Wed Nov 01 14:33:35 ID:hqFJuF70xwCBQJPjyVEyNfzxFft-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Scale	=	1:26.8

Scale = 1:26.8								I				
Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15	TC	0.48	Vert(LL)	-0.03	2-4	>999	240	MT20	244/190
TCDL	10.0	Lumber DOL	1.15	BC	0.28	Vert(CT)	-0.06	2-4	>909	180		
BCLL	0.0	Rep Stress Incr	YES	WB	0.00	Horz(CT)	0.00	3	n/a	n/a		
BCDL	10.0	Code	IRC2018/TPI2014	Matrix-P							Weight: 17 lb	FT = 20%

5-0-0

BCDL	
LUMBER	

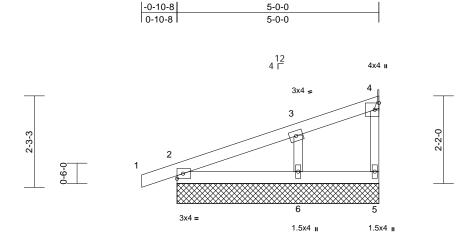
2x4 SP N	0.2
2x4 SP N	0.2
Structura	wood sheathing directly applied or
5-0-0 oc p	ourlins.
Rigid ceil	ing directly applied or 10-0-0 oc
bracing.	
(size)	2=0-3-8, 3= Mechanical, 4=
	Mechanical
Max Horiz	2=86 (LC 8)
Max Uplift	2=-84 (LC 8), 3=-89 (LC 12)
Max Grav	2=295 (LC 1), 3=160 (LC 1), 4=96
	(LC 3)
(lb) - Max	imum Compression/Maximum
Tension	
1-2=0/6, 2	2-3=-95/46
2-4=0/0	
	5-0-0 oc p Rigid ceili bracing. (size) Max Horiz Max Uplift Max Grav (lb) - Max Tension 1-2=0/6, 2

NOTES

- Wind: ASCE 7-16; Vult=115mph (3-second gust) 1) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=35ft; Ke=1.00; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) -0-10-8 to 4-1-8, Interior (1) 4-1-8 to 4-11-4 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 3) Bearings are assumed to be: , Joint 2 SP No.2 crushing capacity of 565 psi.
- 4) Refer to girder(s) for truss to truss connections.
- 5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 89 lb uplift at joint 3 and 84 lb uplift at joint 2.
- This truss is designed in accordance with the 2018 6) International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard

Page: 1



Job	Truss	Truss Type	Qty	Ply	Roof - Osage Lot 77	
P230812	J4	Jack-Open Supported Gable	2	1	Job Reference (optional)	161779299

Run: 8.63 S Aug 30 2023 Print: 8.630 S Aug 30 2023 MiTek Industries, Inc. Wed Nov 01 14:33:35 ID:j?OjMFFnRIhAKU2wMSycbzzxFil-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

5-0-0

Scale = 1:28.5

00010 = 1.20.0													
Loading TCLL (roof) TCDL BCLL BCDL	(psf) 25.0 10.0 0.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr	2-0-0 1.15 1.15 YES	3/TPI2014	CSI TC BC WB Matrix-P	0.13 0.07 0.08	DEFL Vert(LL) Vert(CT) Horz(CT)	in 0.00 -0.01 0.00	(loc) 2-6 2-6 4	l/defl >999 >999 n/a	L/d 240 180 n/a	MT20	GRIP 197/144
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	6=5-0-0 Max Horiz 2=85 (LC Max Uplift 2=-50 (LC (LC 12) Max Grav 2=184 (LC	applied or 10-0-0 o 4= Mechanical, 5=5- 8) 2 8), 4=-22 (LC 8), 6	5) 6) 7) ed or 8) c 9) ·0-0, LC =-76	Bearings are capacity of 5 Refer to gird Provide mec bearing plate 4, 50 lb uplift This truss is International R802.10.2 ar Gap betweer	assumed to be: 65 psi. er(s) for truss to t hanical connectic e capable of withs at joint 2 and 76 designed in acco Residential Code nd referenced sta n inside of top chr rertical web shall	iruss conr on (by oth standing 2 Ib uplift a ordance w e sections andard AN ord bearir	nections. ers) of truss 2 lb uplift at t joint 6. ith the 2018 R502.11.1 a ISI/TPI 1. ng and first	to joint				Weight: 19 lb	FT = 20%
Vasd=91m	(lb) - Maximum Com Tension 1-2=0/6, 2-3=-148/5 2-6=-12/7, 5-6=0/0 4-5=0/0, 3-6=-203/3 CE 7-16; Vult=115mph nph; TCDL=6.0psf; BC Cat. II; Exp C: Enclose	2, 3-4=-30/9 42 1 (3-second gust) 2DL=6.0psf; h=35ft;										65- OF J	
exterior zo	one and C-C Corner(3 N) 4-1-8 to 4-10-12 zo	E) -0-10-8 to 4-1-8,	,								A	THE OF I	

Lumber DOL=1.60 plate grip DOL=1.60 2) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown;

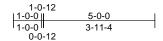
Gable studs spaced at 2-0-0 oc. 3) This truss has been designed for a 10.0 psf bottom 4)

chord live load nonconcurrent with any other live loads.

NATHANIEL

FOX

 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.
 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not besign value for use only with with twit even connectors. This design is based only upon parameters shown, and is for an individual building designer must verify the applicability of design parameters and properly incorporate this design into the overall building designer must verify the applicability of design parameters and properly incorporate this design into the overall building designer. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcscomponents.com)


16023 Swingley Ridge Rd. Chesterfield MO 63017 314.434.1200 / MiTek-US.com

Job	Truss	Truss Type	Qty	Ply	Roof - Osage Lot 77
P230812	J5	Jack-Closed Girder	2	1	Job Reference (optional)

Run: 8.63 E Jun 15 2023 Print: 8.630 E Jun 15 2023 MiTek Industries, Inc. Thu Nov 02 11:35:13 ID:90ph5b8eiEK22SzvVDIBvtzxFfs-DqcyVwXhbUSh8nVAs9RQLsVaL2o4nFXJDRlyjryNFF_

5-0-0 3x4 = 4 r 2 2-2-0 2-2-0 0-9-0 ПП ۳¢ 3 5 3x4 1.5x4 u 3x4 = LUS24

LUS24

Scale = 1:40.7

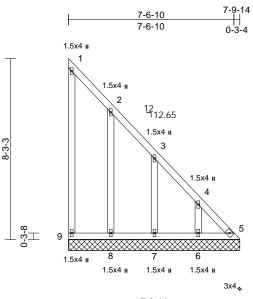
TCLL (roof) 25.0 F TCDL 10.0 L BCLL 0.0 F	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 NO IRC2018/TPI201	CSI TC BC WB 4 Matrix-P	0.60 0.83 0.02	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.05 -0.10 0.00	(loc) 3-4 3-4 3	l/defl >925 >491 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 20 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP 1650F 1.5E WEBS 2x3 SPF No.2 BRACING TOP CHORD Structural wood sheatt 5-0-0 oc purlins, exce BOT CHORD Rigid ceiling directly ap bracing. REACTIONS (lb/size) 1=-462/0-3-1	hing directly applied ppt end verticals. pplied or 6-0-0 oc -8, 3=420/ Mechanic -8, (req. 0-1-14)) 1), 3=-105 (LC 12), 8) 3), 3=420 (LC 1), :1)	Truss, oc max conner 8) Fill all 9) In the l of the t LOAD CA3 1) Dead cal, Plate Unifo Ve Conc Ve	mpson Strong-Tie LU Single Ply Girder) or . . starting at 1-0-12 fm truss(es) to front far aail holes where hang .OAD CASE(S) section russ are noted as from SE(S) Standard + Roof Live (balance Increase=1.15 rm Loads (lb/ft) tt: 1-2=-70, 1-3=-20 entrated Loads (lb) tt: 4=-554 (F), 5=-553	equivalent : ce of botton ger is in con on, loads ap nt (F) or ba	spaced at 2-(end to 3-0-12 n chord. tact with lum oplied to the s ck (B).	D-0 2 to ber. face					
(lb) or less except whe	en shown.										

- Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=35ft; Ke=1.00; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- WARNING: Required bearing size at joint(s) 4 greater 3) than input bearing size.
- Refer to girder(s) for truss to truss connections. 4)
- Provide mechanical connection (by others) of truss to 5) bearing plate capable of withstanding 462 lb uplift at joint 1, 105 lb uplift at joint 3 and 207 lb uplift at joint 4.
- 6) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

OF MISSO TE NATHANIEL FOX PE-2022042259 THE SSIONAL E

Page: 1

November 2,2023



 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.
 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not besign value to dury with with where outputs into design is based only door parameters shown, and is for an individual building design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members and property incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TPH1 Quality Criteria**, and **DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcscomponents.com)

Job	Truss	Truss Type	Qty	Ply	Roof - Osage Lot 77	
P230812	LAY1	Lay-In Gable	2	1	Job Reference (optional)	161779301

Run: 8.63 S Aug 30 2023 Print: 8.630 S Aug 30 2023 MiTek Industries, Inc. Wed Nov 01 14:33:36 ID:j?OjMFFnRIhAKU2wMSycbzzxFil-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

7-9-14

Scale = 1:52	.6
--------------	----

							·						
Loading	(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof) TCDL	25.0	Plate Grip DOL Lumber DOL	1.15		TC	0.81 0.08	Vert(LL)	n/a	-	n/a	999	MT20	244/190
BCLL	10.0 0.0	Rep Stress Incr	1.15 YES		BC WB	0.08	Vert(TL) Horiz(TL)	n/a 0.00	- 5	n/a n/a	999 n/a		
BCDL	10.0	Code		3/TPI2014	Matrix-P	0.15		0.00	5	n/a	n/a	Weight: 51 lb	FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD	2x4 SP No.2 2x4 SP No.2 2x4 SPF No.3 Structural wood she 6-0-0 oc purlins, exe	cept end verticals.	8)	Gable requir Gable studs This truss ha chord live loa All bearings capacity of 5 Provide mec	1.5x4 MT20 unless continuous bo spaced at 0-0-0 dis been designed ad nonconcurrent are assumed to b 65 psi. hanical connectice capable of withs	ottom chor oc. I for a 10. t with any be SP No. on (by oth	d bearing. 0 psf bottom other live loa 2 crushing ers) of truss t	ds. o					
BOT CHORD	bracing.	applied of 9-1-12 of	نا ا	9, 132 lb upli	ift at joint 5, 139 l	b uplift at	joint 8, 139 lb						
REACTIONS	8=7-9-14, Max Horiz 9=-330 (L Max Uplift 5=-132 (L 7=-139 (L 9=-113 (L Max Grav 5=258 (LC	C 8) C 11), 6=-135 (LC 1 C 13), 8=-139 (LC 1 C 10) C 8), 6=205 (LC 20), C 20), 8=215 (LC 20)	3), 3), LC	This truss is International	7 and 135 lb upli designed in acco Residential Code nd referenced sta Standard	ordance w e sections	ith the 2018 8 R502.11.1 a	nd					
FORCES	(lb) - Maximum Com Tension	pression/Maximum											
TOP CHORD	1-9=-195/163, 1-2=- 3-4=-473/473, 4-5=-		353,										
BOT CHORD	8-9=-422/435, 7-8=- 5-6=-422/435	422/435, 6-7=-422/4	135,										m
WEBS	2-8=-216/196, 3-7=-	209/196, 4-6=-204/1	90									OFI	MIG
NOTES												BIE	N.OSem
Vasd=91n	CE 7-16; Vult=115mph nph; TCDL=6.0psf; BC Cat. II; Exp C; Enclose	DL=6.0psf; h=35ft;	be)								A	STATE OF I	NIEL

- Ke=1.00; Cat. II; Exp C; Enclosed; MWFRS (envelope exterior zone and C-C Exterior(2R) zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- Truss designed for wind loads in the plane of the truss 2) only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.
 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not besign value for use only with with twit even connectors. This design is based only upon parameters shown, and is for an individual building designer must verify the applicability of design parameters and properly incorporate this design into the overall building designer must verify the applicability of design parameters and properly incorporate this design into the overall building designer. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcscomponents.com) 314.434.1200 / MiTek-US.com

MBER

November 2,2023

PE-2022042259

SSIONAL EN

Job	Truss	Truss Type	Qty	Ply	Roof - Osage Lot 77	
P230812	LAY2	Lay-In Gable	2	1	Job Reference (optional)	161779302

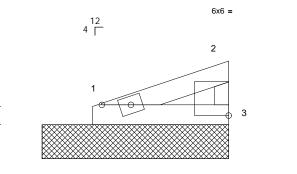
Run: 8.63 S Aug 30 2023 Print: 8.630 S Aug 30 2023 MiTek Industries, Inc. Wed Nov 01 14:33:36 ID:hqFJuF70xwCBQJPjyVEyNfzxFft-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

Scale = 1:104.1 Plate Offsets (X, Y): [6:0-2-8,0-3-0]

	, . ,. [010		1			-							1	
Loading		(psf)	Spacing	2-0-0		csi		DEFL	in	(loc	c) l/def	L/d	PLATES	GRIP
TCLL (roof)		25.0	Plate Grip DOL	1.15		TC	0.21	Vert(LL)	n/a		- n/a	999	MT20	244/190
TCDL		10.0	Lumber DOL	1.15		BC	0.03	Vert(TL)	n/a		- n/a	999		
BCLL		0.0	Rep Stress Incr	YES		WB	0.23	Horiz(TL)	0.00	1	5 n/a	n/a		
BCDL		10.0	Code	IRC2	018/TPI2014	Matrix-S					-		Weight: 232 lb	FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS		lo.2			TOP CHORD	1-2=-1319/1039, 2 3-4=-1058/833, 4 7-8=-528/420, 8-9 10-11=-121/100,	-5=-927/7)=-394/31	'31, 5-7=-796 5, 9-10=-261	/212,	, b 1	earing pl 3, 321 lb	ate capa uplift at	able of withstandi	others) of truss to ng 24 lb uplift at joint lift at joint 24, 137 lb t 22, 134 lb uplift at
OTHERS	2x4 SP N	lo.2 *Exce	pt* 5:2x4 SPF No.3		BOT CHORD	1-24=0/0, 23-24= 20-21=0/0, 19-20	0/0, 22-2 =-1/0, 18	3=0/0, 21-22= -19=-1/0,	=0/0,	jo 1	oint 21, 1 40 lb upl	37 lb up ift at joir	lift at joint 20, 13	3 lb uplift at joint 19, at joint 16, 145 lb
BRACING TOP CHORD			eathing directly applie	ed or	WEBS	17-18=-6/23, 16-1 14-15=-30/28, 13- 2-24=-177/152, 3-	-14=-21/4 -23=-186	, /163,	29,	9) E s	Beveled p surface wi	late or s th truss	shim required to p chord at joint(s)	rovide full bearing 13, 17, 16, 15, 14.
BOT CHORD	Rigid cei bracing.	ling directly	y applied or 6-0-0 oc			4-22=-180/157, 5- 6-20=-186/162, 7-	-19=-182	/159,		Ĺ	nternatior	nal Resi		tions R502.11.1 and
WEBS	1 Row at	midpt	12-13, 6-20, 7-19, 8 9-16, 10-15, 11-14	-17,		8-17=-184/161, 9- 10-15=-194/169,					802.10.2 D CASE(ferenced standar Indard	d ANSI/TPI 1.
REACTIONS	Max Horiz Max Uplift Max Grav	$\begin{array}{c} 14=\!20\!\cdot\!9\!\cdot\\ 16=\!20\!\cdot\!9\!\cdot\\ 20=\!20\!\cdot\!9\!\cdot\\ 22=\!20\!\cdot\!9\!\cdot\\ 24=\!20\!\cdot\!9\!\cdot\\ 24=\!20\!\cdot\!9\!\cdot\\ 1=\!\cdot\!321(l\\ 16=\!-\!135\\ 19=\!-\!138\\ 21=\!134\\ 23=\!137\\ 14=\!153(l\\ 16=\!206(l\\ 18=\!20(l\\ 20=\!210(l\\ 20=\!210(l\\ 22=\!203(l\\ 24=\!209(l\\ 24=\!20(l\\ 24=20(l\\ 24=20(l(l)(l)(l)(l)(l)(l)(l)(l)(l)$	C 12) LC 10), 13=-24 (LC 1 LC 12), 15=-145 (LC (LC 12), 17=-140 (LC (LC 12), 20=-137 (LC (LC 12), 22=-134 (LC (LC 12), 24=-138 (LC C 12), 13=21 (LC 19) LC 19), 15=217 (LC LC 19), 17=201 (LC C 3), 19=198 (LC 19) LC 19), 21=202 (LC LC 19), 23=207 (LC LC 19), 23=207 (LC LC 19)	12), 2 12), 2 12), 2 12), 2 12), 2 12), 2 12), 19), 19), 19), 19),	 Vasd=91rr Ke=1.00; 0 exterior zoo Interior (1) exposed; and forces DOL=1.60 2) Truss des only. For see Stand- or consult 3) All plates a 4) Gable requi 5) Gable stud 6) This truss chord live 	E 7-16; Vult=115m ph; TCDL=6.0psf; I Cat. II; Exp C; Enclo ne and C-C Exterio 5-4-1 to 20-8-6 zor end vertical left exp & MWFRS for read plate grip DOL=1.6 igned for wind load: studs exposed to wi ard Industry Gable I qualified building de tre 1.5x4 MT20 unle irres continuous boi ls spaced at 0-0-0 of has been designed load nonconcurrent s are assumed to b 565 psi.	CDL=6. sed; MW r(2E) 0-4 r(2E) 0-4 r	Opsf; h=35ft; FRS (envelop -1 to 5-4-1, aver left and r f for member: wm; Lumber lane of the tru al to the face ils as applica s per ANSI/TI wise indicated d bearing. D psf bottom other live loa	ight s Jss), ble, PI 1. d.				STATE OF I STATE OF I NATHA FO PE-2022	X BER STOR
FORCES	(lb) - Max Tension	kimum Cor	npression/Maximum									Ø	FESSIONA	L ENGLISH

November 2,2023

Mittek 16023 Swingley Ridge Rd. Chesterfield, MO 63017 314.434.1200 / MiTek-US.com


Job	Truss	Truss Type	Qty	Ply	Roof - Osage Lot 77	
P230812	V1	Valley	2	1	Job Reference (optional)	161779303

Run: 8.63 S Aug 30 2023 Print: 8.630 S Aug 30 2023 MiTek Industries, Inc. Wed Nov 01 14:33:37 ID:90ph5b8eiEK22SzvVDIBvtzxFfs-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

0-11-4

2-0-0

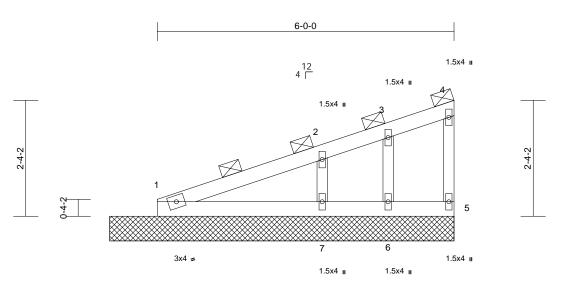
3x4 =

Scale = 1:16.9

Plate Offsets (X, Y): [2:Edge,0-1-14]

	A, 1). [Z.Luge,0-1-14	r]										
Loading TCLL (roof) TCDL BCLL BCDL	(psf) 25.0 10.0 0.0 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018/TPI20	CSI TC BC WB 14 Matrix-P	0.06 0.03 0.00	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 3	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 6 lb	GRIP 244/190 FT = 20%
BCDL LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD REACTIONS FORCES TOP CHORD BOT CHORD BOT CHORD BOT CHORD NOTES 1) Wind: ASC Vasd=91m Ke=1.00; C exterior zo and right e exposed;C reactions s DOL=1.60	10.0 2x4 SP No.2 2x4 SP No.2 2x3 SPF No.2 Structural wood she 2-9-11 oc purlins, e Rigid ceiling directly bracing. (size) 1=2-8-15, Max Horiz 1=29 (LC Max Uplift 1=-15 (LC Max Grav 1=79 (LC (lb) - Maximum Com Tension 1-2=-40/25, 2-3=-62 1-3=-12/13 CE 7-16; Vult=115mph ph; TCDL=6.0psf; BC Cat. II; Exp C; Enclose ne and C-C Exterior(2 exposed ; end vertical -C for members and f shown; Lumber DOL=	Code athing directly applivation applied or 10-0-0 or 3=2-8-15 9) 2 8), 3=-20 (LC 12) 1), 3=79 (LC 1) appression/Maximum /81 (3-second gust) DL=6.0psf; h=35ft; d; MWFRS (envelop 2) zone; cantilever left and right orces & MWFRS for 1.60 plate grip	IRC2018/TPI20 7) Provi bearin 1 and 8) This t Interr ed or R802 LOAD CA c		ion (by oth Instanding 1 Fordance w de sections	ers) of truss t 5 lb uplift at j ith the 2018 R502.11.1 a	o oint				Weight: 6 lb	MISSOL
 only. For s see Standa or consult (3) Gable required (3) Gable stud (5) This truss chord live light (1) 	studs exposed to wind ard Industry Gable En qualified building desi iires continuous botto ds spaced at 4-0-0 oc. has been designed fo load nonconcurrent wi s are assumed to be s	I (normal to the face d Details as applical gner as per ANSI/TF m chord bearing. r a 10.0 psf bottom ith any other live loa), ble, Pl 1.								a han	BER STOP

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)


November 2,2023

Com

Job	Truss	Truss Type	Qty	Ply	Roof - Osage Lot 77	
P230812	V2	Valley	2	1	Job Reference (optional)	161779304

Run: 8.63 S Aug 30 2023 Print: 8.630 S Aug 30 2023 MiTek Industries, Inc. Wed Nov 01 14:33:37 ID:vXDyId3MSmhkXsev2E4pqAzxF0e-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

6-0-0

Scale = 1:23.3

					i								
Loading	(psf)	Spacing	3-0-0		csi		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15		TC	0.26	Vert(LL)	n/a	-	n/a	999	MT20	244/190
TCDL	10.0	Lumber DOL	1.15		BC	0.13	Vert(TL)	n/a	-	n/a	999		
BCLL	0.0	Rep Stress Incr	NO		WB	0.12	Horiz(TL)	0.00	5	n/a	n/a		
BCDL	10.0	Code	IRC201	8/TPI2014	Matrix-P							Weight: 22 lb	FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING	2x4 SP No.2 2x4 SP No.2 2x3 SPF No.2 2x3 SPF No.2		5) 6) 7)	chord live loa All bearings capacity of 5 Provide mec bearing plate	hanical connection connectication connecticatio	t with any be SP No. on (by oth standing 1	other live loa 2 crushing ers) of truss t 5 lb uplift at j	to oint					
TOP CHORD	2-0-0 oc purlins (6-0 verticals (Switched from shee	-0 max.), except energiested: Spacing > 2-8-0	9)	uplift at joint This truss is	designed in acco	ordance w	ith the 2018						
BOT CHORD	Rigid ceiling directly bracing.	applied or 10-0-0 oc	, a)	R802.10.2 a	Residential Cod nd referenced sta rlin representation	andard AN	ISI/TPI 1.						
	7=6-11-9 Max Horiz 1=143 (LC Max Uplift 1=-15 (LC (LC 12), 7 Max Grav 1=175 (LC	; 8), 5=-17 (LC 9), 6= ′=-124 (LC 12)	20 LC		ation of the purlin			520					
FORCES	(lb) - Maximum Com Tension	pression/Maximum											
TOP CHORD	1-2=-293/154, 2-3=- 4-5=-68/106	114/84, 3-4=-81/81,											
BOT CHORD WEBS	1-7=-62/83, 6-7=-62 3-6=-58/79, 2-7=-34	,											
NOTES												- march	alle
1) Wind: ASC Vasd=91m Ke=1.00; 0	CE 7-16; Vult=115mph nph; TCDL=6.0psf; BC Cat. II; Exp C; Enclose one and C-C Corner(3B	DL=6.0psf; h=35ft; d; MWFRS (envelop	e)								Å	STATE OF D	MISSOUR

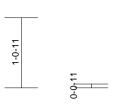
- Vasd=91mpn; 1CDL=6.0psr; BCDL=6.0psr; n=35rr; Ke=1.00; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone and C-C Corner(3E) 1-2-1 to 6-2-1, Exterior(2N) 6-2-1 to 6-11-1 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DDL=1.60 plate grip DDL=1.60
- Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 3) Gable requires continuous bottom chord bearing.
- 4) Gable studs spaced at 1-4-0 oc.

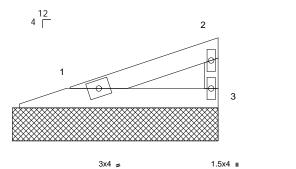
November 2,2023

IBER

E

PE-2022042259


SSIONAL


Job	Truss	Truss Type	Qty	Ply	Roof - Osage Lot 77	
P230812	V3	Valley	2	1	Job Reference (optional)	161779305

Run: 8.63 S Aug 30 2023 Print: 8.630 S Aug 30 2023 MiTek Industries, Inc. Wed Nov 01 14:33:37 ID:ZN?LPLdDduUD2x9lkvvbhtzxF?w-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

1.5x4 🛚

Page: 1

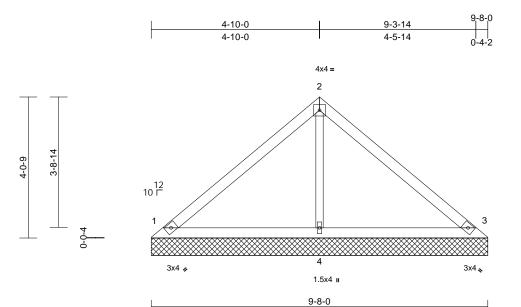
1.5x4 🛚

3-0-0	
3-0-0	

3-0-0

Loading	(psf)	Spacing	2

Scale = 1:17.4


Loading (psf) TCLL (roof) 25.0 TCDL 10.0 BCLL 0.0 BCDL 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018/TPI2014	CSI TC BC WB Matrix-P	0.09 0.05 0.00	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 3	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 8 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.2 WEBS 2x3 SPF No.2 BRACING TOP CHORD Structural wood she 3-2-1 oc purlins, ex BOT CHORD Rigid ceiling directly bracing. REACTIONS (size) 1=3-1-5, 5 Max Horiz 1=34 (LC Max Uplift 1=-18 (LC	cept end verticals. applied or 10-0-0 oc 3=3-1-5 9)	Internationa R802.10.2 a LOAD CASE(S)	designed in acco I Residential Code and referenced sta Standard	e sections	R502.11.1 a	and					
 Max Grav 1=96 (LC FORCES (lb) - Maximum Com Tension TOP CHORD 1-2=-49/29, 2-3=-74 BOT CHORD 1-3=-15/16 NOTES 1) Wind: ASCE 7-16; Vult=115mph Vasd=91mph; TCDL=6.0psf; BC Ke=1.00; Cat. II; Exp C; Enclose exterior zone and C-C Exterior(2 and right exposed; end vertical exposed;C-C for members and f reactions shown; Lumber DOL=* DOL=1.60 2) Truss designed for wind loads ir only. For studs exposed to wind see Standard Industry Gable En- or consult qualified building desi; 3) Gable requires continuous bottoo 4) Gable studs spaced at 4-0-0 oc. 5) This truss has been designed for chord live load nonconcurrent wi 6) All bearings are assumed to be S capacity of 565 psi. 7) Provide mechanical connection (bearing plate capable of withstar 1 and 24 lb uplift at joint 3. 	1), 3=96 (LC 1) pression/Maximum /98 (3-second gust) DL=6.0psf; h=35ft; d; MWFRS (envelop E) zone; cantilever I left and right orces & MWFRS for 1.60 plate grip n the plane of the tru (normal to the face) d Details as applicat gner as per ANSI/TF m chord bearing. r a 10.0 psf bottom th any other live load SP No.2 crushing (by others) of truss to	eft ss , ole, 11. ds.								PE-2022 Novemb	NULL ENGINE

Job	Truss	Truss Type	Qty	Ply	Roof - Osage Lot 77	
P230812	V4	Valley	2	1	Job Reference (optional)	161779306

Run: 8.63 S Aug 30 2023 Print: 8.630 S Aug 30 2023 MiTek Industries, Inc. Wed Nov 01 14:33:37 ID:dGP0ZTpd5VN4LEpd6Yg6o1zxF?h-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:33.1

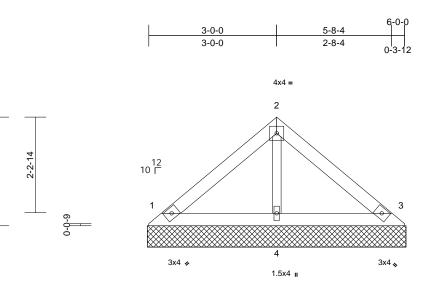
Loading TCLL (roof) TCDL BCLL BCDL	(psf) 25.0 10.0 0.0 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC201	8/TPI2014	CSI TC BC WB Matrix-S	0.33 0.20 0.08	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 3	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 34 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	6-0-0 oc purlins. Rigid ceiling directly bracing. (size) 1=9-8-0, 1 Max Horiz 1=-104 (L Max Uplift 1=-44 (LC 4=-16 (LC Max Grav 1=223 (LC	C 12), 3=-56 (LC 13), C 12)	с L(capacity of 5 Provide med bearing plate 1, 56 lb uplif This truss is International	hanical conne capable of w at joint 3 and designed in a Residential C nd referenced	ection (by oth vithstanding 4 I 16 lb uplift a ccordance wi Code sections	ers) of truss 4 lb uplift at t joint 4. ith the 2018 R502.11.1 a	joint					
FORCES TOP CHORD BOT CHORD WEBS	(LC 1) (lb) - Maximum Com Tension 1-2=-187/91, 2-3=-1 1-4=-24/88, 3-4=-24 2-4=-218/106	84/101											

NOTES

1) Unbalanced roof live loads have been considered for this design.

- 2) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=35ft; Ke=1.00; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- Truss designed for wind loads in the plane of the truss 3) only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- Gable requires continuous bottom chord bearing. 4)
- 5) Gable studs spaced at 4-0-0 oc.
- 6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.
 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not besign value to dury with with where outputs into design is based only door parameters shown, and is for an individual building design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members and property incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TPH1 Quality Criteria**, and **DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcscomponents.com)



Job	Truss	Truss Type	Qty	Ply	Roof - Osage Lot 77	
P230812	V5	Valley	2	1	Job Reference (optional)	161779307

2-6-9

Run: 8.63 S Aug 30 2023 Print: 8.630 S Aug 30 2023 MiTek Industries, Inc. Wed Nov 01 14:33:37 ID:hyOzP2c1YnhjGNsJ_PsbUyzxF_f-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

6-0-0

Scale = 1:27

Scale = 1.27		1			1								
Loading	(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15		TC	0.18	Vert(LL)	n/a	-	n/a	999	MT20	244/190
TCDL	10.0	Lumber DOL	1.15		BC	0.07	Vert(TL)	n/a	-	n/a	999		
BCLL	0.0	Rep Stress Incr	YES		WB	0.03	Horiz(TL)	0.00	3	n/a	n/a		
BCDL	10.0	Code	IRC20	18/TPI2014	Matrix-P							Weight: 21 lb	FT = 20%
LUMBER			-	7) All bearings	are assumed	to be SP No.	2 crushina						
TOP CHORD	2x4 SP No.2			capacity of			5						
BOT CHORD	2x4 SP No.2		8	B) Provide me	chanical conne	ection (by oth	ers) of truss	to					
OTHERS	2x3 SPF No.2				e capable of w		4 lb uplift at	joint					
BRACING					uplift at joint 3.								
TOP CHORD	Structural wood she	eathing directly applie	ed or 🤅		designed in a								
	6-0-0 oc purlins.	• • • •			I Residential C			and					
BOT CHORD	Rigid ceiling directly	applied or 10-0-0 o			and referenced	standard AN	ISI/TPI 1.						
	bracing.			OAD CASE(S	Standard								
REACTIONS	(size) 1=6-0-13	, 3=6-0-13, 4=6-0-13	3										
	Max Horiz 1=-62 (LC	C 8)											
	Max Uplift 1=-34 (LC	C 12), 3=-41 (LC 13)											
	Max Grav 1=144 (L	C 1), 3=144 (LC 1), 4	4=190										
	(LC 1)												
FORCES	(lb) - Maximum Con	npression/Maximum											
	Tension												
TOP CHORD	1-2=-102/66, 2-3=-9												
BOT CHORD	1-4=-14/49, 3-4=-14	1/49											
WEBS	2-4=-123/77												
NOTES													
,	ed roof live loads have	e been considered fo	r										
this design													
Wind ASC	CF 7-16: Vult=115mph	(3-second aust)											

2) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=35ft; Ke=1.00; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

Gable requires continuous bottom chord bearing. 4)

5) Gable studs spaced at 4-0-0 oc.

6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

OF MISSO TE NATHANIEL FOX CMBER PE-2022042259 ESSIONAL E

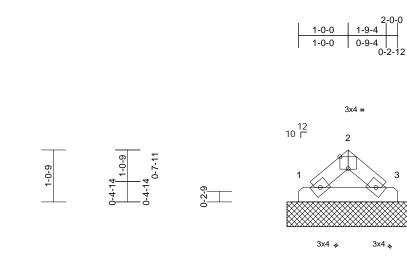
Page: 1

November 2,2023

 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.
 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not besign value to dury with with where outputs into design is based only door parameters shown, and is for an individual building design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members and property incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TPH1 Quality Criteria**, and **DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcscomponents.com)

Job	Truss	Truss Type	Qty	Ply	Roof - Osage Lot 77	
P230812	V6	Valley	2	1	Job Reference (optional)	161779308

Run: 8.63 S Aug 30 2023 Print: 8.630 S Aug 30 2023 MiTek Industries, Inc. Wed Nov 01 14:33:38 ID:TmPQfbvifSrAmDG7y9oS_DzxF_G-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

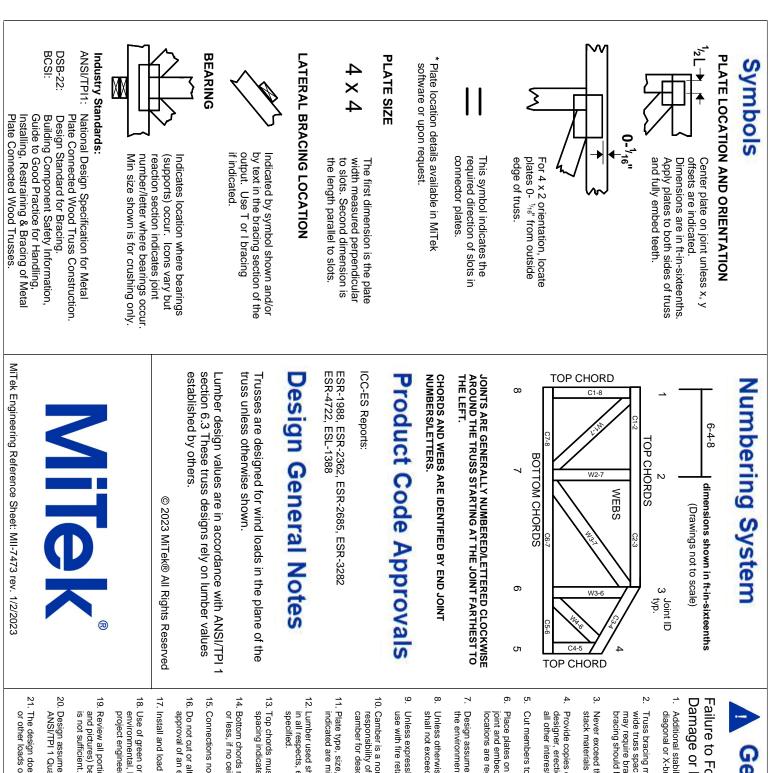

3

3x4 💊

2-0-0

Page: 1

Scale = 1:23.2


Plate Offsets (X, Y): [2:0-2-0,Edge]

·····(), E	, .3.1				-								
Loading TCLL (roof) TCDL	(psf) 25.0 10.0	Spacing Plate Grip DOL Lumber DOL	2-0-0 1.15 1.15		CSI TC BC	0.02	DEFL Vert(LL) Vert(TL)	in n/a n/a	(loc) - -	l/defl n/a n/a	L/d 999 999	PLATES MT20	GRIP 244/190
BCLL BCDL	0.0 10.0	Rep Stress Incr Code	YES IRC2018	/TPI2014	WB Matrix-P	0.00	Horiz(TL)	0.00	3	n/a	n/a	Weight: 6 lb	FT = 20%
BOT CHORD 2-6-3 oc pur Rigid ceiling bracing. REACTIONS (size) 1= Max Horiz 1= Max Uplift 1= Max Grav 1=	bod she ins. directly =2-5-10, =-20 (LC =-7 (LC =-7 (LC =-7 (LC =-7 (LC =	 13), 3=-7 (LC 12) 1), 3=60 (LC 1) 1), 40 (LC 1) <	9) d or LO e) eft ss , le, I 1.	bearing plate and 7 lb uplif This truss is International	designed in acco Residential Code nd referenced sta	standing 7 ordance wi e sections	b uplift at jo ith the 2018 R502.11.1 a	int 1				STATE OF STATE OF NATH FO PE-2022	BER 042259

November 2,2023

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.
Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not
a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall
building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing
is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the
fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org)
and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

General Safety Notes

Failure to Follow Could Cause Property Damage or Personal Injury

- 1. Additional stability bracing for truss system, e.g. diagonal or X-bracing, is always required. See BCSI.
- Truss bracing must be designed by an engineer. For wide truss spacing, individual lateral braces themselves may require bracing, or alternative Tor1 bracing should be considered.
- Never exceed the design loading shown and never stack materials on inadequately braced trusses.
- Provide copies of this truss design to the building designer, erection supervisor, property owner and all other interested parties.
- 5. Cut members to bear tightly against each other
- Place plates on each face of truss at each joint and embed fully. Knots and wane at joint locations are regulated by ANSI/TPI 1.
- Design assumes trusses will be suitably protected from the environment in accord with ANSI/TPI 1.
- Unless otherwise noted, moisture content of lumber shall not exceed 19% at time of fabrication.
- Unless expressly noted, this design is not applicable for use with fire retardant, preservative treated, or green lumber.
- Camber is a non-structural consideration and is the responsibility of truss fabricator. General practice is to camber for dead load deflection.
- 11. Plate type, size, orientation and location dimensions indicated are minimum plating requirements.
- 12. Lumber used shall be of the species and size, and in all respects, equal to or better than that specified.
- 13. Top chords must be sheathed or purlins provided at spacing indicated on design.
- Bottom chords require lateral bracing at 10 ft. spacing, or less, if no ceiling is installed, unless otherwise noted.
- 15. Connections not shown are the responsibility of others.
- Do not cut or alter truss member or plate without prior approval of an engineer.
- 17. Install and load vertically unless indicated otherwise.
- Use of green or treated lumber may pose unacceptable environmental, health or performance risks. Consult with project engineer before use.
- Review all portions of this design (front, back, words and pictures) before use. Reviewing pictures alone is not sufficient.
- 20. Design assumes manufacture in accordance with ANSI/TPI 1 Quality Criteria.
- 21. The design does not take into account any dynamic or other loads other than those expressly stated.