STRUCTURAL DESIGN CALCULATIONS For

Lee's Summit Commerce Center Building #2 Storage Rack Anchorage

Lee's Summit, Missouri

October 26, 2023

David M. McNaghten Professional Engineer MO# 023021

Page McNaghten Associates, Inc. Professional Engineering Corporation Missouri State Certificate of Authority #001400

	PMA Engineer	Engine	eering	Date 10.26.2023	Page	
	Checked Project		SUMIT STIPLE	Date	Sheet	of
· ·			350 lb. To each End)			
		rec H	HEIGHT TO DEPTH I NATIVELY ASEUME $M_0 = (.350 I)$ UPUFT IFORCE	$\frac{1}{3} = \frac{1}{20} = \frac{1}{20} = \frac{1}{20} = \frac{1}{300} = \frac{1}{300}$	$1^{1} > 6$.: $APPV$ LOAD $ RAC ^{2}$ B + ff b	1 360 1b AT TOP
\bigcirc						

PMA	Engineering

Date	10.	26.	2023	
------	-----	-----	------	--

_____ Page _____

	1001
D	

 Engineer
 DMM
 Date
 10:24:2023

 Checked

 Date

 Project

 LEE'S JUMIT RACKUG

_____ Sheet _____ of _____

ASCE 7 Hazards Report

Address: 64086 Lees Summit, Missouri Standard: ASCE/SEI 7-16 Risk Category: II

Soil Class: D - De

: II D - Default (see Section 11.4.3)

Latitude: 38.929646 Longitude: -94.359493 Elevation: 964.9234990402807 ft (NAVD 88)

D - Default (see Section 11.4.3)

Site Soil Class: Results:

S _s :	0.1	S _{D1} :	0.109
S ₁ :	0.068	T _L :	12
F _a :	1.6	PGA :	0.047
F _v :	2.4	PGA _M :	0.076
S _{MS} :	0.16	F _{PGA} :	1.6
S _{M1} :	0.164	l _e :	1
S _{DS} :	0.107	C _v :	0.7

Data Accessed:

Thu Oct 26 2023

Date Source:

USGS Seismic Design Maps based on ASCE/SEI 7-16 and ASCE/SEI 7-16 Table 1.5-2. Additional data for site-specific ground motion procedures in accordance with ASCE/SEI 7-16 Ch. 21 are available from USGS.

The ASCE 7 Hazard Tool is provided for your convenience, for informational purposes only, and is provided "as is" and without warranties of any kind. The location data included herein has been obtained from information developed, produced, and maintained by third party providers; or has been extrapolated from maps incorporated in the ASCE 7 standard. While ASCE has made every effort to use data obtained from reliable sources or methodologies, ASCE does not make any representations or warranties as to the accuracy, completeness, reliability, currency, or quality of any data provided herein. Any third-party links provided by this Tool should not be construed as an endorsement, affiliation, relationship, or sponsorship of such third-party content by or from ASCE.

ASCE does not intend, nor should anyone interpret, the results provided by this Tool to replace the sound judgment of a competent professional, having knowledge and experience in the appropriate field(s) of practice, nor to substitute for the standard of care required of such professionals in interpreting and applying the contents of this Tool or the ASCE 7 standard.

In using this Tool, you expressly assume all risks associated with your use. Under no circumstances shall ASCE or its officers, directors, employees, members, affiliates, or agents be liable to you or any other person for any direct, indirect, special, incidental, or consequential damages arising from or related to your use of, or reliance on, the Tool or any information obtained therein. To the fullest extent permitted by law, you agree to release and hold harmless ASCE from any and all liability of any nature arising out of or resulting from any use of data provided by the ASCE 7 Hazard Tool.

1

PMA Engineering

ENGINEER:	DMM	DATE:	10/26/2023	PAGE	: '	1	
PROJECT:	Lee's Summit Rack Anchor	rage		SHEET		1 OF '	1
	Seismic Base Shear fo	r Buildings & Nonbuildings, E	quivalent Later	al Force Procedu	ire: ASCE	E 7-16	
Input Data:						Code Refere	nce:
Risk Category:				11		Table 1.5-1	
Seismic Importanc	e Factor, I _a :			1.00		Table 1.5-2	
Site Soil Class:		Soils report NOT provided (Sect	11.4.4)	D (Default)		Table 20.3-1	
Short Period Spec	trat Acceleration, S _s :			0.100		Figure 22-1	
1 sec. Period Spec	ctral Acceleration, S ₁ :			0.068		Figure 22-2	
Site Coefficient, F	i	NOT isolated or Damped Structure (Section	on 11.4.8 llem 1)	1.60	OKAY	Table 11.4-1	
Site Coefficient, F,	;	Exceptions of Section 11.4.8 were NO	1 evaluated.	2.40	UNAT.	Table 11.4-2	
Response Modific	ation Coefficient, R:	Nonbuilding Structures Similar to Buil	dings Ch 12	4		Table 12.2-1	
System Type:	A-18. Light-frame (cold-formed st	eel) wall systems using flat strap bracing					
	Detailing Requirements:	Sect. 14.1 Exceptions of Sect 15.4.1 llem 2 are N	OT applicable.		OKAY.		
Approx Building P	eriod Parameter, C ₁ :	All Other Structural System	18	0.02		Table 12.8-2	
Approx Building P	eriod Parameter, x:			0.75		Table 12.8-2	
Long Period Trans	sition Period, T _L (sec):			12		Figure 22-14	
Building Height At	pove "Base", h _n (fl):	Ht Restriction per Table 12.2-1:	NL	20 ft.	OKAY.		
Calculated Data:						Code Refere	nce:
Short Period, Spe	cral Response, S _{MS} ≖ Fa*S _S			0.160		Eqn. 11.4-1	
1 sec. Period, Spe	ectral Response, S _{M1} =F _v *S ₁			0.163		Eqn. 11.4-2	
Short Period, Desi	ign Response, S _{DS} = 2/3*S _{MS}	Requirements of Section 12.8.1.3 were i	NOT evaluated.	0.107		Eqn. 11.4-3	
1 sec. Period, Des	sign Response, S _{D1} = 2/3*S _{M1}			0.109		Egn. 11.4-4	
SDC, Design Sho SDC, Design 1 se SDC, 1 sec Period SDC, 1 sec Period	rt Period (S _{DS}): c Period (S _{D1}): d (S ₁): d & Short Period (S ₁ & S ₆):	Req's for SDS eval only were NOT evalue	ted (Section 11.6)	A B < CON N/A N/A	TROLS	Table 11.6-1 Table 11.6-2 Sect. 11.6 Sect. 11.4.2	
Seismic Design (Category:			В			
Velocity Domain P Approximate Func	Period, Ts = SD1/(SDS) (sec) famental Period, T _a = C _T *b _n *(sec)			1.020 0.19		Sect, 11,3 Eqn. 12,8-7	
Seismic Response CS = 0,3*(SDS)*te	a Coeff, CS = (SDS)/(R/Ie) ∋	for Rigid Nonbuilding Structures w/ Tr	a < 0.06 (sec)	0.027 < CON N/A	FROLS	Eqn. 12.8-2 Eqn. 15.4-5	
CS,MAX = SD1/((CS,MAX = SD1*T	R/ie)*Ta) L/((R/le)*Ta²)	for $T_a \leq T_L$ for $T_a > \tilde{T}_L$		0.144 N/A		Eqn. 12.8-3 Eqn. 12.8-4	
CS,MIN = 0.044*() CS,MIN = 0.5*S1/	SDS)*le > 0.01 (R/le)	for $S_1 \ge 0.6$		0.010 N/A		Eqn. 12.8-5 Eqn. 12.8-6	
Selsmic Base Sh	ear:		V =	0.027 W		Eqn. 12.8-1	

www.hilti.com

Company: Address: Phone I Fax: Design: Fastening point: PMA Engineering 6717 Shawn Miss Pkwy 9138311262 | Concrete - Oct 26, 2023 Page: Specifier: E-Mail: Date: 1 David McNaghten dmcnaghten@pmaengineering.com 10/26/2023

Specifier's comments:

1 Anchor Design

1.1 Input data	
Anchor type and diameter:	KWIK-X 1/2 (4 1/4) hnom2
Item number:	418076 KH-EZ 1/2"x5" (element) / 2362252 KHC 1/2"
Effective embedment depth:	h _{ef,opti} = 4.250 in. (h _{ef,limit} = 5.500 in.), h _{nom} = 4.250 in.
Material:	Carbon Steel
Evaluation Service Report:	ESR-5065
Issued I Valid:	1/1/2023 12/1/2023
Proof:	Design Method ACI 318-19 / Chem
Stand-off installation:	e _b = 0.000 in. (no stand-off); t = 0.500 in.
Anchor plate ^{CBFEM} :	$I_x \times I_y \times t = 5.000$ in. x 8.000 in. x 0.500 in.;
Profile:	Square HSS (AISC), HSS2X2X.125; (L x W x T) = 2.000 in. x 2.000 in. x 0.125 in.
Base material:	cracked concrete, 2500, f_c' = 2,500 psi; h = 420.000 in., Temp. short/long: 32/32 °F
Installation:	hammer drilled hole, Installation condition: Dry
Reinforcement:	tension: not present, shear: not present; no supplemental splitting reinforcement present
	edge reinforcement: none or < No. 4 bar

^{CBFEM} - The anchor calculation is based on a component-based Finite Element Method (CBFEM)

Geometry [in.] & Loading [lb, in.lb]

www.hilti.com

Company:	PMA Engineering	Page:	2
Address:	6717 Shawn Miss Pkwy	Specifier:	David McNaghten
Phone I Fax:	9138311262	E-Mail:	dmcnaghten@pmaengineering.com
Design:	Concrete - Oct 26, 2023	Date:	10/26/2023
Fastening point:			

1.1.1 Design results

	Case	Description	Forces [lb] / Moments [in lb]	Seismic	Max Util Anchor [%]
-	1	Combination 1	$N = 0: V_{i} = 340: V_{i} = 0:$		
	I	Complitation	$M = 0, V_x = 540, V_y = 0,$ M = 0: M = 0: M = 0.	no	4
			$W_{x} = 0, W_{y} = 0, W_{z} = 0,$		

1.2 Load case/Resulting anchor forces

Anchor reactions [lb] Tension force: (+Tension, -Compression)						
Anchor	Tension force	Shear force	Shear force x	Shear force y		
1	2	170	170	-0		
2	2	170	170	0		

resulting tension force in (x/y)=(0.000/0.000): 4 [lb] resulting compression force in (x/y)=(-2.015/0.003): 4 [lb]

Anchor forces are calculated based on a component-based Finite Element Method (CBFEM)

1.3 Tension load

	Load N _{ua} [lb]	Capacity 🍳 N _n [lb]	Utilization $\beta_N = N_{ua} / \Phi N_n$	Status
Steel Strength*	2	11,777	1	OK
Bond Strength**	4	10,558	1	OK
Sustained Tension Load Bond Strength*	N/A	N/A	N/A	N/A
Concrete Breakout Failure**	4	6,313	1	OK

* highest loaded anchor **anchor group (anchors in tension)

www.hilti.com

Company:	PMA Engineering	Page:	3
Address:	6717 Shawn Miss Pkwy	Specifier:	David McNaghten
Phone I Fax:	9138311262	E-Mail:	dmcnaghten@pmaengineering.com
Design:	Concrete - Oct 26, 2023	Date:	10/26/2023
Fastening point:			

1.3.1 Steel Strength

N _{sa}	= ESR value	refer to ICC-ES ESR-5065
φ N _{sa}	$n \ge N_{ua}$	ACI 318-19 Table 17.5.2

Variables

A _{se,N} [in. ²]	f _{uta} [psi]
0.16	112,540

Calculations

N_{sa} [lb] 18,119

Results

N _{sa} [lb]	∮ _{steel}	φ N _{sa} [lb]	N _{ua} [lb]
18,119	0.650	11,777	2

www.hilti.com

Company:	PMA Engineering	Page:	4
Address:	6717 Shawn Miss Pkwy	Specifier:	David McNaghten
Phone I Fax:	9138311262	E-Mail:	dmcnaghten@pmaengineering.com
Design:	Concrete - Oct 26, 2023	Date:	10/26/2023
Fastening point:			

1.3.2 Bond Strength

$N_{ag} = \begin{pmatrix} A_{Na} \\ \overline{A}_{Na0} \end{pmatrix} \psi_{ec1,Na} \psi_{ec2,Na} \psi_{ed,Na} \psi_{cp,Na} N_{ba}$	ACI 318-19 Eq. (17.6.5.1b)
$\phi N_{ag} \ge N_{ua}$	ACI 318-19 Table 17.5.2
A _{Na} see ACI 318-19, Section 17.6.5.1, Fig. R 17.6.5.1(b)	
$A_{Na0} = (2 c_{Na})^2$	ACI 318-19 Eq. (17.6.5.1.2a)
$c_{Na} = 10 d_a \sqrt{\frac{\tau uncr}{1100}}$	ACI 318-19 Eq. (17.6.5.1.2b)
$ \psi_{ec,Na} = \left(\frac{1}{1 + \frac{e_N}{c_{Na}}}\right) \le 1.0 $	ACI 318-19 Eq. (17.6.5.3.1)
$\Psi_{\text{ed,Na}} = 0.7 + 0.3 \left(\frac{c_{a,min}}{c_{Na}} \right) \le 1.0$	ACI 318-19 Eq. (17.6.5.4.1b)
$\Psi_{\text{cp,Na}} = \text{MAX}\left(\frac{c_{a,\min}}{c_{ac}}, \frac{c_{Na}}{c_{ac}}\right) \le 1.0$	ACI 318-19 Eq. (17.6.5.5.1b)
$\mathbf{N}_{ba} = \lambda_{a} \cdot \boldsymbol{\tau}_{k,c} \cdot \boldsymbol{\pi} \cdot \mathbf{d}_{a} \cdot \mathbf{h}_{ef}$	ACI 318-19 Eq. (17.6.5.2.1)

Variables

τ _{k,c,uncr} [psi]	d _a [in.]	h _{ef} [in.]	c _{a,min} [in.]	$\alpha_{overhead}$	τ _{k,c} [psi]
2,126	0.500	4.250	∞	1.000	1,901
e _{c1,N} [in.]	e _{c2,N} [in.]	c _{ac} [in.]	λ _a		
0.000	0.001	6.724	1.000		
Calculations					
c _{Na} [in.]	A _{Na} [in. ²]	A _{Na0} [in. ²]	$\psi_{\text{ ed},\text{Na}}$		
6.919	245.20	191.50	1.000		
Ψ _{ec1,Na}	$\psi_{ec2,Na}$	$\psi_{\text{cp,Na}}$	N _{ba} [lb]		
1.000	1.000	1.000	12,688		
Results					
N _{ag} [lb]	ϕ_{bond}	φ N _{ag} [lb]	N _{ua} [lb]		
16,243	0.650	10,558	4		

www.hilti.com

Company:	PMA Engineering	Page:	5
Address:	6717 Shawn Miss Pkwy	Specifier:	David McNaghten
Phone I Fax:	9138311262	E-Mail:	dmcnaghten@pmaengineering.com
Design:	Concrete - Oct 26, 2023	Date:	10/26/2023
Fastening point:			

1.3.3 Concrete Breakout Failure

N _{cbg}	$= \left(\frac{A_{Nc}}{A_{Nc0}}\right) \Psi_{ec,N} \Psi_{ed,N} \Psi_{c,N} \Psi_{cp,N} N_{b}$	ACI 318-19 Eq. (17.6.2.1b)
φ N _{cbg}	$\geq N_{ua}$	ACI 318-19 Table 17.5.2
A _{Nc}	see ACI 318-19, Section 17.6.2.1, Fig. R 17.6.2.1(b)	
A _{Nc0}	= 9 h _{ef} ²	ACI 318-19 Eq. (17.6.2.1.4)
$\psi_{\text{ec,N}}$	$= \left(\frac{1}{1 + \frac{2 e_{N}}{3 h_{ef}}}\right) \leq 1.0$	ACI 318-19 Eq. (17.6.2.3.1)
$\psi_{\text{ed},\text{N}}$	$= 0.7 + 0.3 \left(\frac{c_{a,min}}{1.5h_{ef}} \right) \le 1.0$	ACI 318-19 Eq. (17.6.2.4.1b)
$\psi_{\text{ cp},\text{N}}$	$= MAX \left(\frac{c_{a,min}}{c_{ac}}, \frac{1.5h_{ef}}{c_{ac}} \right) \le 1.0$	ACI 318-19 Eq. (17.6.2.6.1b)
N_{b}	$= k_c \lambda_a \sqrt{f_c} h_{ef}^{1.5}$	ACI 318-19 Eq. (17.6.2.2.1)

Variables

h _{ef} [in.]	e _{c1,N} [in.]	e _{c2,N} [in.]	c _{a,min} [in.]	$\Psi_{\text{c,N}}$
4.250	0.000	0.001	∞	1.000
c _{ac} [in.]	k _c	λ _a	f _c [psi]	
6.724	17	1.000	2,500	

Calculations

A _{Nc} [in. ²]	A _{Nc0} [in. ²]	$\Psi_{\text{ec1,N}}$	$\psi_{ec2,N}$	$\psi_{\text{ed},\text{N}}$	$\psi_{\text{cp},\text{N}}$	N _b [lb]
212.04	162.57	1.000	1.000	1.000	1.000	7,447
Results						
N _{cbg} [lb]	ϕ_{concrete}	φ N _{cbg} [lb]	N _{ua} [lb]			
9,712	0.650	6,313	4			

www.hilti.com

Company:	PMA Engineering	Page:	6
Address:	6717 Shawn Miss Pkwy	Specifier:	David McNaghten
Phone I Fax:	9138311262	E-Mail:	dmcnaghten@pmaengineering.com
Design:	Concrete - Oct 26, 2023	Date:	10/26/2023
Fastening point:			

1.4 Shear load

	Load V _{ua} [lb]	Capacity ¢ V _n [lb]	Utilization $\beta_{\rm V} = V_{\rm ua} / \Phi V_{\rm n}$	Status
Steel Strength*	170	5,547	4	OK
Steel failure (with lever arm)*	N/A	N/A	N/A	N/A
Pryout Strength (Concrete Breakout Strength controls)**	340	13,599	3	OK
Concrete edge failure in direction **	N/A	N/A	N/A	N/A

* highest loaded anchor **anchor group (relevant anchors)

1.4.1 Steel Strength

V_{sa}	= ESR value	refer to ICC-ES ESR-5065
φ V _{stee}	$V_{ua} \ge V_{ua}$	ACI 318-19 Table 17.5.2

Variables

A _{se,V} [in. ²]	f _{uta} [psi] 112 540	_	
Calculations	112,040		
V _{sa} [lb]			
9,245			
Results			
V _{sa} [lb]	ϕ_{steel}	φ V _{sa} [lb]	V _{ua} [lb]
9,245	0.600	5,547	170

www.hilti.com

Company:	PMA Engineering	Page:	7
Address:	6717 Shawn Miss Pkwy	Specifier:	David McNaghten
Phone I Fax:	9138311262	E-Mail:	dmcnaghten@pmaengineering.com
Design:	Concrete - Oct 26, 2023	Date:	10/26/2023
Fastening point:			

1.4.2 Pryout Strength (Concrete Breakout Strength controls)

$V_{cpg} = k_{cp} \left[\left(\frac{A_{Nc}}{A_{Nc0}} \right) \psi_{ec,N} \psi_{ed,N} \psi_{c,N} \psi_{cp,N} N_{b} \right]$	ACI 318-19 Eq. (17.7.3.1b)
$\phi V_{cpg} \ge V_{ua}$	ACI 318-19 Table 17.5.2
A _{Nc} see ACI 318-19, Section 17.6.2.1, Fig. R 17.6.2.1(b	p)
$A_{\rm Nc0} = 9 h_{\rm ef}^2$	ACI 318-19 Eq. (17.6.2.1.4)
$\psi_{ec,N} = \left(\frac{1}{1 + \frac{2 e_N}{3 h_{ef}}}\right) \le 1.0$	ACI 318-19 Eq. (17.6.2.3.1)
$\Psi_{ed,N} = 0.7 + 0.3 \left(\frac{c_{a,min}}{1.5 h_{ef}} \right) \le 1.0$	ACI 318-19 Eq. (17.6.2.4.1b)
$\Psi_{cp,N} = MAX \left(\frac{c_{a,min}}{c_{ac}}, \frac{1.5h_{ef}}{c_{ac}} \right) \le 1.0$	ACI 318-19 Eq. (17.6.2.6.1b)
$N_{b} = k_{c} \lambda_{a} \sqrt{f_{c}} h_{ef}^{1.5}$	ACI 318-19 Eq. (17.6.2.2.1)

Variables

k _{cp}	h _{ef} [in.]	e _{c1,N} [in.]	e _{c2,N} [in.]	c _{a,min} [in.]
2	4.250	0.000	0.000	∞
W	c [in]	k	λ	f [nsi]
Ψ c,N	C _{ac} [III.]	K _C	∕°a	IC [DOI]
1.000	6.724	17	1.000	2.500

Calculations

A _{Nc} [in. ²]	A _{Nc0} [in. ²]	$\Psi_{\text{ec1,N}}$	$\Psi_{ec2,N}$	$\psi_{\text{ed},\text{N}}$	$\Psi_{\text{cp},\text{N}}$	N _b [lb]
212.04	162.57	1.000	1.000	1.000	1.000	7,447
Results						
V _{cpg} [lb]	ϕ_{concrete}	φ V _{cpg} [lb]	V _{ua} [lb]	_		
19,428	0.700	13,599	340	-		

1.5 Combined tension and shear loads, per ACI 318-19 section 17.8

β_N	β_V	ζ	Utilization $\beta_{N,V}$ [%]	Status
0.001	0.031	5/3	1	OK

 $\beta_{\mathsf{NV}} = \beta_{\mathsf{N}}^{\zeta} + \beta_{\mathsf{V}}^{\zeta} <= 1$

www.hilti.com

Company:	PMA Engineering	Page:	8
Address:	6717 Shawn Miss Pkwy	Specifier:	David McNaghten
Phone I Fax:	9138311262	E-Mail:	dmcnaghten@pmaengineering.com
Design:	Concrete - Oct 26, 2023	Date:	10/26/2023
Fastening point:			

1.6 Warnings

- The anchor design methods in PROFIS Engineering require rigid anchor plates as per current regulations (ETAG 001/Annex C, EOTA TR029, etc.). This means load re-distribution on the anchors due to elastic deformations of the anchor plate are not considered the anchor plate is assumed to be sufficiently stiff, in order not to be deformed when subjected to the design loading. PROFIS Engineering calculates the minimum required anchor plate thickness with CBFEM to limit the stress of the anchor plate based on the assumptions explained above. The proof if the rigid base plate assumption is valid is not carried out by PROFIS Engineering. Input data and results must be checked for agreement with the existing conditions and for plausibility!
- Condition A applies where the potential concrete failure surfaces are crossed by supplementary reinforcement proportioned to tie the potential concrete failure prism into the structural member. Condition B applies where such supplementary reinforcement is not provided, or where pullout or pryout strength governs.
- Design Strengths of adhesive anchor systems are influenced by the cleaning method. Refer to the INSTRUCTIONS FOR USE given in the Evaluation Service Report for cleaning and installation instructions.
- For additional information about ACI 318 strength design provisions, please go to https://submittals.us.hilti.com/PROFISAnchorDesignGuide/
- Installation of Hilti adhesive anchor systems shall be performed by personnel trained to install Hilti adhesive anchors. Reference ACI 318-19, Section 26.7.
- The anchor design methods in PROFIS Engineering require rigid anchor plates, as per current regulations (AS 5216:2021, ETAG 001/Annex C, EOTA TR029 etc.). This means that the anchor plate should be sufficiently rigid to prevent load re-distribution to the anchors due to elastic/plastic displacements. The user accepts that the anchor plate is considered close to rigid by engineering judgment."

www.hilti.com

Company: Address: Phone I Fax: Design: Fastening point: PMA Engineering 6717 Shawn Miss Pkwy 9138311262 | Concrete - Oct 26, 2023 Page: Specifier: E-Mail: Date:

KHC 1/2" LARGE (capsule)

Maximum installation torque: -

9 David McNaghten dmcnaghten@pmaengineering.com 10/26/2023

Anchor type and diameter: KWIK-X 1/2 (4 1/4) hnom2

Hole diameter in the base material: 0.500 in. Hole depth in the base material: 5.250 in.

Minimum thickness of the base material: 6.500 in.

Item number: 418076 KH-EZ 1/2"x5" (element) / 2362252

1.7 Installation data

Profile: Square HSS (AISC), HSS2X2X.125; (L x W x T) = 2.000 in. x 2.000 in. x 0.125 in.

Hole diameter in the fixture: $d_f = 0.625$ in.

Plate thickness (input): 0.500 in.

Drilling method: Hammer drilled Cleaning: No cleaning of the drilled hole is required

1/2 (4 1/4) hnom2 Hilti KH-EZ Carbon steel screw anchor with Hilti KHC

1.7.1 Recommended accessories

Drilling	Cleaning	Setting
Suitable Rotary Hammer	 No accessory required 	SIW 6-A22 Impact Screw Driver
Properly sized drill bit		

Coordinates Anchor [in.]

Anchor	x	У	с _{-х}	C+x	C_y	c _{+y}	_
1	0.000	-1.940	-	-	-	-	
2	0.000	1.940	-	-	-	-	

www.hilti.com

Company:	PMA Engineering	Page:	10
Address:	6717 Shawn Miss Pkwy	Specifier:	David McNaghten
Phone I Fax:	9138311262	E-Mail:	dmcnaghten@pmaengineering.com
Design:	Concrete - Oct 26, 2023	Date:	10/26/2023
Fastening point:			

2 Anchor plate design

2.1 Input data	
Anchor plate:	Shape: Rectangular I _x x I _y x t = 5.000 in x 8.000 in x 0.500 in
	Calculation: CBFEM Material: ASTM A36; F _y = 36,000 psi; ε _{lim} = 5.00%
Anchor type and size:	KWIK-X 1/2 (4 1/4) hnom2, h _{ef} = 4.250 in
Anchor stiffness:	The anchor is modeled considering stiffness values determined from load displacement curves tested in an independent laboratory. Please note that no simple replacement of the anchor is possible as the anchor stiffness has a major impact on the load distribution results.
Design method:	AISC and LRFD-based design using component-based FEM
Stand-off installation:	e _b = 0.000 in (No stand-off); t = 0.500 in
Profile:	HSS2X2X.125; (L x W x T x FT) = 2.000 in x 2.000 in x 0.125 in x - Material: ASTM A500 Gr.B Rect; F _y = 46,000 psi; ε _{lim} = 5.00%
	Eccentricity x: 0.000 in Eccentricity y: 0.000 in
Base material:	Cracked concrete; 2500; f _{c,cyl} = 2,500 psi; h = 420.000 in
Welds (profile to anchor plate):	Type of redistribution: Plastic Material: E70xx
Mesh size:	Number of elements on edge: 8 Min. size of element: 0.394 in Max. size of element: 1.969 in

2.2 Summary

	Description	Pro	file		Anchor plate		Concrete [%]
		σ_{Ed} [psi]	ε _{ΡΙ} [%]	σ_{Ed} [psi]	ε _{ΡΙ} [%]	Hole bearing [%]	
1	Combination 1	2,784	0.00	529	0.00	1	1

2.3 Anchor plate classification

Results below are displayed for the decisive load combinations: Combination 1

Anchor tension forces	Equivalent rigid anchor plate (CBFEM)	Component-based Finite Element Method (CBFEM) anchor plate design
Anchor 1	2 lb	2 lb
Anchor 2	2 lb	2 lb

User accepted to consider the selected anchor plate as rigid by his/her engineering judgement. This means the anchor design guidelines can be applied.

2.4 Profile/Stiffeners/Plate

Profile and stiffeners are verified at the level of the steel to concrete connection. The connection design does not replace the steel design for critical cross sections, which should be performed outside of PROFIS Engineering.

2.4.1 Equivalent stress and plastic strain

Part	Load combination	Material	f _y [psi]	ε _{lim} [%]	σ_{Ed} [psi]	ε _{ΡΙ} [%]	Status
Plate	Combination 1	ASTM A36	36,000	5.00	529	0.00	OK
Profile	Combination 1	ASTM A500 Gr.B Rect	46,000	5.00	2,784	0.00	OK
Profile	Combination 1	ASTM A500 Gr.B	46,000	5.00	2,783	0.00	OK

www.hilti.com

Company:PMA EngineeringAddress:6717 Shawn Miss PkwyPhone I Fax:9138311262 Design:Concrete - Oct 26, 2023Fastening point:		Page: Specifier: E-Mail: Date:		11 David McNaghten dmcnaghten@pmaengineering.com 10/26/2023			
Part	Load combination	Material	f _y [psi]	ε _{lim} [%]	$\sigma_{\sf Ed}$ [psi]	ε _{ΡΙ} [%]	Status
		Rect					
Profile	Combination 1	ASTM A500 Gr.B Rect	46,000	5.00	2,139	0.00	OK
Profile	Combination 1	ASTM A500 Gr.B Rect	46,000	5.00	2,139	0.00	OK

2.4.1.1 Equivalent stress

Results below are displayed for the decisive load combination: 1 - Combination 1

www.hilti.com

Company:	PMA Engineering	Page:	12
Address:	6717 Shawn Miss Pkwy	Specifier:	David McNaghter
Phone I Fax:	9138311262	E-Mail:	dmcnaghten@pmaengineering.com
Design: Fastening point:	Concrete - Oct 26, 2023	Date:	10/26/2023

2.4.1.2 Plastic strain

Results below are displayed for the decisive load combination: 1 - Combination 1

2.4.2 Plate hole bearing resistance, AISC 360-16 Section J3

Decisive load combination: 1 - Combination 1

Equations

= min(1.2 l _c t F _u , 2.4 d t F _u)	(AISC 360-16 J3-6a, c)
= 0.75 R _n	
≤ ΦR _n	
	= $\min(1.2 \ I_c \ t \ F_u , 2.4 \ d \ t \ F_u)$ = $0.75 \ R_n$ $\leq \Phi R_n$

Variables

	l _c [in]	t [in]	F _u [psi]	d [in]	R _n [lb]
Anchor 1	2.188	0.500	58,000	0.500	34,800
Anchor 2	2.188	0.500	58,000	0.500	34,800

Results

	V [lb]	ΦR _n [lb]	Utilization [%]	Status
Anchor 1	170	26,100	1	OK
Anchor 2	170	26,100	1	OK

2.5 Concrete

Decisive load combination: 1 - Combination 1

www.hilti.com

Company:	PMA Engineering	Page:	13
Address:	6717 Shawn Miss Pkwy	Specifier:	David McNaghten
Phone Fax:	9138311262	E-Mail:	dmcnaghten@pmaengineering.com
Design: Fastening point:	Concrete - Oct 26, 2023	Date:	10/26/2023

2.5.1 Compression in concrete under the anchor plate

2.5.2 Concrete block compressive strength resistance check, AISC 360-16 Section J8

www.hilti.com

Company: Address: Phone I Fax: Design: Fastening po	int:	PMA Engineerin 6717 Shawn Mis 9138311262 Concrete - Oct 2	g s Pkwy 6, 2023		Page: Specifier: E-Mail: Date:	dmcnaghten@pn	14 David McNaghten naengineering.com 10/26/2023
Equations							
Fp	= $\Phi f_{p,max}$	K					
		А		Α			
$f_{p,max}$	=	$0.85 f_{c}' \sqrt{(\frac{2}{A})}$) ≤ 1.7 f _c ; √($\frac{2}{A}$)≤2		
σ	$= \frac{N}{A}$						
Utilization	$= \frac{\sigma}{F_p}$						
Variables							
I	N [lb]	f _c ' [psi]	Φ		A ₁ [in ²]		A ₂ [in ²]
	4	2,500	0.65		8.38	52	6,416.23
Results							
Load c	ombination	F _p [psi]	σ[psi]		Utilization [%]		Status
Com	bination 1	2,762	0		1		OK
2.6 Symbol	explanation						
A ₁		Loaded area of con	crete				
A ₂		Supporting area					
d		Nominal diameter o	f the bolt				
Elim		Plastic strain from (PEEM reculte				
EPI f.		Concrete compress	ive strength				
fc'		Concrete compress	ive strength				
, Fu		Specified minimum	tensile strength of the connect	ed materia	I		
Fp		Concrete block des	ign bearing strength				
f _{p,max}		Concrete block des	ign bearing strength maximum				
fy		Yield strength					
lc		Clear distance, in the	ne direction of the force, betwee	en the edge	e of the hole and the	edge of the adjace	nt hole or edge of
Ν		Resulting compress	sion force				
σ		Average stress in c	oncrete				
σ_{Ed}		Equivalent stress					
Φ		Resistance factor					
ΦR_n		Factored resistance)				
t V		Thickness of the an Resultant of shear f	chor plate orces Vy, Vz in bolt.				

2.7 Warnings

- By using the CBFEM calculation functionality of PROFIS Engineering you may act outside the applicable design codes and your specified anchor plate may not behave rigid. Please, validate the results with a professional designer and/or structural engineer to ensure suitability and adequacy for your specific jurisdiction and project requirements.
- The anchor is modeled considering stiffness values determined from load displacement curves tested in an independent laboratory. Please note that no simple replacement of the anchor is possible as the anchor stiffness has a major impact on the load distribution results.

www.hilti.com

Company:	PMA Engineering	Page:	15
Address:	6717 Shawn Miss Pkwy	Specifier:	David McNaghten
Phone I Fax:	9138311262	E-Mail:	dmcnaghten@pmaengineering.com
Design:	Concrete - Oct 26, 2023	Date:	10/26/2023
Fastening point:			

3 Summary of results

Design of the anchor plate, anchors, welds and other elements are based on CBFEM (component based finite element method) and AISC.

	Load combination	Max. utilization	Status
Anchors	Combination 1	4%	OK
Anchor plate	Combination 1	2%	ОК
Concrete	Combination 1	1%	OK
Profile	Combination 1	7%	ОК

Fastening meets the design criteria!

www.hilti.com

Company:	PMA Engineering	Page:	16
Address:	6717 Shawn Miss Pkwy	Specifier:	David McNaghten
Phone I Fax:	9138311262	E-Mail:	dmcnaghten@pmaengineering.com
Design:	Concrete - Oct 26, 2023	Date:	10/26/2023
Fastening point:			

4 Remarks; Your Cooperation Duties

- Any and all information and data contained in the Software concern solely the use of Hilti products and are based on the principles, formulas and security regulations in accordance with Hilti's technical directions and operating, mounting and assembly instructions, etc., that must be strictly complied with by the user. All figures contained therein are average figures, and therefore use-specific tests are to be conducted prior to using the relevant Hilti product. The results of the calculations carried out by means of the Software are based essentially on the data you put in. Therefore, you bear the sole responsibility for the absence of errors, the completeness and the relevance of the data to be put in by you. Moreover, you bear sole responsibility for having the results of the calculation checked and cleared by an expert, particularly with regard to compliance with applicable norms and permits, prior to using them for your specific facility. The Software serves only as an aid to interpret norms and permits without any guarantee as to the absence of errors, the correctness and the relevance of the results or suitability for a specific application.
- You must take all necessary and reasonable steps to prevent or limit damage caused by the Software. In particular, you must arrange for the
 regular backup of programs and data and, if applicable, carry out the updates of the Software offered by Hilti on a regular basis. If you do not
 use the AutoUpdate function of the Software, you must ensure that you are using the current and thus up-to-date version of the Software in
 each case by carrying out manual updates via the Hilti Website. Hilti will not be liable for consequences, such as the recovery of lost or
 damaged data or programs, arising from a culpable breach of duty by you.

www.hilti.com

Company: Address: Phone I Fax: Design: Fastening point: PMA Engineering 6717 Shawn Miss Pkwy 9138311262 | Concrete - Oct 26, 2023 Page: Specifier: E-Mail: Date: 1 David McNaghten dmcnaghten@pmaengineering.com 10/26/2023

Specifier's comments:

1 Anchor Design

1.1 Input data	And the second
Anchor type and diameter:	KWIK-X 1/2 (4 1/4) hnom2
Item number:	418076 KH-EZ 1/2"x5" (element) / 2362252 KHC 1/2"
Effective embedment depth:	h _{ef,opti} = 4.250 in. (h _{ef,limit} = 5.500 in.), h _{nom} = 4.250 in.
Material:	Carbon Steel
Evaluation Service Report:	ESR-5065
Issued I Valid:	1/1/2023 12/1/2023
Proof:	Design Method ACI 318-19 / Chem
Stand-off installation:	e _b = 0.000 in. (no stand-off); t = 0.500 in.
Anchor plate ^{CBFEM} :	l _x x l _y x t = 5.000 in. x 8.000 in. x 0.500 in.;
Profile:	Square HSS (AISC), HSS2X2X.125; (L x W x T) = 2.000 in. x 2.000 in. x 0.125 in.
Base material:	cracked concrete, 2500, f_c ' = 2,500 psi; h = 420.000 in., Temp. short/long: 32/32 °F
Installation:	hammer drilled hole, Installation condition: Dry
Reinforcement:	tension: not present, shear: not present; no supplemental splitting reinforcement present
	edge reinforcement: none or < No. 4 bar

^{CBFEM} - The anchor calculation is based on a component-based Finite Element Method (CBFEM)

Geometry [in.] & Loading [lb, in.lb]

www.hilti.com

Company:	PMA Engineering	Page.	2
Address:	6717 Shawn Miss Pkwy	Specifier:	David McNaghten
Phone I Fax:	9138311262	E-Mail:	dmcnaghten@pmaengineering.com
Design: Fastening point:	Concrete - Oct 26, 2023	Date:	10/26/2023

1.1.1 Design results

•				
Case	Description	Forces [lb] / Moments [in.lb]	Seismic	Max. Util. Anchor [%]
1	Combination 1	N = 1,167; V _x = 123; V _y = 0;	no	19
		$M_x = 0; M_y = 0; M_z = 0;$		

1.2 Load case/Resulting anchor forces

nchor	Tension force	Shear force	Shear force x	Shear force y
1	584	62	62	3
2	584	62	61	-3

Anchor forces are calculated based on a component-based Finite Element Method (CBFEM)

1.3 Tension load

	Load N _{ua} [lb]	Capacity 🍳 N _n [lb]	Utilization $\beta_N = N_{ua} / \Phi N_n$	Status
Steel Strength*	584	11,777	5	ОК
Bond Strength**	1,168	10,560	12	OK
Sustained Tension Load Bond Strength*	N/A	N/A	N/A	N/A
Concrete Breakout Failure**	1,168	6,314	19	ОК

* highest loaded anchor **anchor group (anchors in tension)

www.hilti.com

Company:	PMA Engineering	Page:	3
Address:	6717 Shawn Miss Pkwy	Specifier:	David McNaghten
Phone I Fax:	9138311262	E-Mail:	dmcnaghten@pmaengineering.com
Design:	Concrete - Oct 26, 2023	Date:	10/26/2023
Fastening point:			

1.3.1 Steel Strength

N _{sa}	= ESR value	refer to ICC-ES ESR-5065
φ N _{sa}	$n \ge N_{ua}$	ACI 318-19 Table 17.5.2

Variables

A _{se,N} [in. ²]	f _{uta} [psi]
0.16	112,540

Calculations

N_{sa} [lb] 18,119

Results

N _{sa} [lb]	ф _{steel}	φ N _{sa} [lb]	N _{ua} [lb]
18,119	0.650	11,777	584

www.hilti.com

Company:	PMA Engineering	Page:	4
Address:	6717 Shawn Miss Pkwy	Specifier:	David McNaghten
Phone I Fax:	9138311262	E-Mail:	dmcnaghten@pmaengineering.com
Design:	Concrete - Oct 26, 2023	Date:	10/26/2023
Fastening point:			

1.3.2 Bond Strength

N_{ag}	$= \left(\frac{A_{Na}}{A_{Na0}}\right) \psi_{ec1,Na} \psi_{ec2,Na} \psi_{ed,Na} \psi_{cp,Na} N_{ba}$	ACI 318-19 Eq. (17.6.5.1b)
φ N _{ag}	$\geq N_{ua}$	ACI 318-19 Table 17.5.2
A _{Na}	see ACI 318-19, Section 17.6.5.1, Fig. R 17.6.5.1(b)	
A_{Na0}	$= (2 c_{Na})^2$	ACI 318-19 Eq. (17.6.5.1.2a)
C _{Na}	$= 10 d_a \sqrt{\frac{\tau_{uncr}}{1100}}$	ACI 318-19 Eq. (17.6.5.1.2b)
$\psi_{\text{ec,Na}}$	$= \left(\frac{1}{1 + \frac{e_{N}}{c_{Na}}}\right) \le 1.0$	ACI 318-19 Eq. (17.6.5.3.1)
$\psi_{\text{ ed,Na}}$	$= 0.7 + 0.3 \left(\frac{c_{a,min}}{c_{Na}} \right) \le 1.0$	ACI 318-19 Eq. (17.6.5.4.1b)
$\psi_{\text{cp,Na}}$	$= MAX \left(\frac{c_{a,min}}{c_{ac}}, \frac{c_{Na}}{c_{ac}} \right) \le 1.0$	ACI 318-19 Eq. (17.6.5.5.1b)
N_{ba}	$= \lambda_{a} \cdot \tau_{k,c} \cdot \pi \cdot d_{a} \cdot h_{ef}$	ACI 318-19 Eq. (17.6.5.2.1)

Variables

τ _{k,c,uncr} [psi]	d _a [in.]	h _{ef} [in.]	c _{a,min} [in.]	$\alpha_{overhead}$	τ _{k,c} [psi]
2,126	0.500	4.250	∞	1.000	1,901
e _{c1,N} [in.]	e _{c2,N} [in.]	c _{ac} [in.]	λ _a		
0.000	0.000	6.724	1.000		
Calculations					
c _{Na} [in.]	A _{Na} [in. ²]	A _{Na0} [in. ²]	$\psi_{\text{ ed},\text{Na}}$		
6.919	245.20	191.50	1.000		
$\Psi_{\rm ec1,Na}$	$\Psi_{ec2,Na}$	$\psi_{\text{cp,Na}}$	N _{ba} [lb]		
1.000	1.000	1.000	12,688		
Results					
N _{ag} [lb]	ϕ_{bond}	φ N _{ag} [lb]	N _{ua} [lb]		
16,246	0.650	10,560	1,168		

www.hilti.com

Company:	PMA Engineering	Page:	5
Address:	6717 Shawn Miss Pkwy	Specifier:	David McNaghten
Phone I Fax:	9138311262	E-Mail:	dmcnaghten@pmaengineering.com
Design:	Concrete - Oct 26, 2023	Date:	10/26/2023
Fastening point:			

1.3.3 Concrete Breakout Failure

N _{cbg}	$= \left(\frac{A_{Nc}}{A_{Nc0}}\right) \Psi_{ec,N} \Psi_{ed,N} \Psi_{c,N} \Psi_{cp,N} N_{b}$	ACI 318-19 Eq. (17.6.2.1b)
φ N _{cbg}	$\geq N_{ua}$	ACI 318-19 Table 17.5.2
A _{Nc}	see ACI 318-19, Section 17.6.2.1, Fig. R 17.6.2.1(b)	
A _{Nc0}	= 9 h _{ef} ²	ACI 318-19 Eq. (17.6.2.1.4)
$\psi_{\text{ec,N}}$	$= \left(\frac{1}{1 + \frac{2 e_{N}}{3 h_{ef}}}\right) \leq 1.0$	ACI 318-19 Eq. (17.6.2.3.1)
$\psi_{\text{ed},\text{N}}$	$= 0.7 + 0.3 \left(\frac{c_{a,min}}{1.5h_{ef}} \right) \le 1.0$	ACI 318-19 Eq. (17.6.2.4.1b)
$\psi_{\text{ cp},\text{N}}$	$= MAX\left(\frac{c_{a,min}}{c_{ac}}, \frac{1.5h_{ef}}{c_{ac}}\right) \le 1.0$	ACI 318-19 Eq. (17.6.2.6.1b)
N_{b}	$= k_c \lambda_a \sqrt{f_c} h_{ef}^{1.5}$	ACI 318-19 Eq. (17.6.2.2.1)

Variables

h _{ef} [in.]	e _{c1,N} [in.]	e _{c2,N} [in.]	c _{a,min} [in.]	$\Psi_{c,N}$
4.250	0.000	0.000	∞	1.000
c _{ac} [in.]	k _c	λ_{a}	f _c [psi]	
6.724	17	1.000	2,500	

Calculations

A _{Nc} [in. ²]	A _{Nc0} [in. ²]	$\Psi_{\text{ec1,N}}$	$\psi_{ec2,N}$	$\psi_{\text{ed},\text{N}}$	$\psi_{\text{cp},\text{N}}$	N _b [lb]
212.04	162.57	1.000	1.000	1.000	1.000	7,447
Results						
N _{cbg} [lb]	ϕ_{concrete}	φ N _{cbg} [lb]	N _{ua} [lb]			
9,714	0.650	6,314	1,168	-		

www.hilti.com

Company:	PMA Engineering	Page:	6
Address:	6717 Shawn Miss Pkwy	Specifier:	David McNaghten
Phone I Fax:	9138311262	E-Mail:	dmcnaghten@pmaengineering.com
Design:	Concrete - Oct 26, 2023	Date:	10/26/2023
Fastening point:			

1.4 Shear load

	Load V _{ua} [lb]	Capacity ଦ V _n [lb]	Utilization $\beta_v = V_{ua}/\Phi V_n$	Status
Steel Strength*	62	5,547	2	OK
Steel failure (with lever arm)*	N/A	N/A	N/A	N/A
Pryout Strength (Concrete Breakout Strength controls)**	123	13,598	1	OK
Concrete edge failure in direction **	N/A	N/A	N/A	N/A

* highest loaded anchor **anchor group (relevant anchors)

1.4.1 Steel Strength

V_{sa}	= ESR value	refer to ICC-ES ESR-5065
φ V _{stee}	$V_{ua} \ge V_{ua}$	ACI 318-19 Table 17.5.2

Variables

A _{se,V} [in. ²]	f _{uta} [psi]	_	
0.16	112,540		
Calculations			
V _{sa} [lb]			
9,245			
Results			
V _{sa} [lb]	ф _{steel}	φ V _{sa} [lb]	V _{ua} [lb]
9,245	0.600	5,547	62

www.hilti.com

Company:	PMA Engineering	Page:	7
Address:	6717 Shawn Miss Pkwy	Specifier:	David McNaghten
Phone I Fax:	9138311262	E-Mail:	dmcnaghten@pmaengineering.com
Design:	Concrete - Oct 26, 2023	Date:	10/26/2023
Fastening point:			

1.4.2 Pryout Strength (Concrete Breakout Strength controls)

$V_{cpg} = k_{cp} \left[\left(\frac{A_{Nc}}{A_{NcO}} \right) \psi_{ec,N} \psi_{ed,N} \psi_{c,N} \psi_{cp,N} N_{b} \right]$	ACI 318-19 Eq. (17.7.3.1b)
$\phi V_{cpg} \ge V_{ua}$	ACI 318-19 Table 17.5.2
A _{Nc} see ACI 318-19, Section 17.6.2.1, Fig. R 17.6.2.1(b)	
$A_{\rm Nc0}$ = 9 $h_{\rm ef}^2$	ACI 318-19 Eq. (17.6.2.1.4)
$\psi_{ec,N} = \left(\frac{1}{1 + \frac{2 e_N}{3 h_{ef}}}\right) \le 1.0$	ACI 318-19 Eq. (17.6.2.3.1)
$\Psi_{\text{ed,N}} = 0.7 + 0.3 \left(\frac{c_{a,\text{min}}}{1.5h_{\text{ef}}} \right) \le 1.0$	ACI 318-19 Eq. (17.6.2.4.1b)
$\Psi_{cp,N} = MAX \left(\frac{c_{a,min}}{c_{ac}}, \frac{1.5h_{ef}}{c_{ac}} \right) \le 1.0$	ACI 318-19 Eq. (17.6.2.6.1b)
$N_{\rm b} = K_{\rm c} \lambda_{\rm a} \sqrt{f_{\rm c}} h_{\rm ef}^{1.5}$	ACI 318-19 Eq. (17.6.2.2.1)

Variables

k _{cp}	h _{ef} [in.]	e _{c1,N} [in.]	e _{c2,N} [in.]	c _{a,min} [in.]
2	4.250	0.000	0.000	~
		1.	2	é roca
$\Psi_{c,N}$	c _{ac} [in.]	К _с	λ _a	r _c [psi]
1.000	6.724	17	1.000	2,500

Calculations

A _{Nc} [in. ²]	A _{Nc0} [in. ²]	$\Psi_{\text{ec1,N}}$	$\Psi_{ec2,N}$	$\psi_{\text{ed},\text{N}}$	$\Psi_{\text{cp},\text{N}}$	N _b [lb]
212.04	162.57	1.000	1.000	1.000	1.000	7,447
Results						
V _{cpg} [lb]	ϕ_{concrete}	φ V _{cpg} [lb]	V _{ua} [lb]	_		
19,426	0.700	13,598	123	-		

1.5 Combined tension and shear loads, per ACI 318-19 section 17.8

β_N	β_V	ζ	Utilization $\beta_{N,V}$ [%]	Status
0.185	0.011	5/3	7	OK

 $\beta_{\mathsf{NV}} = \beta_{\mathsf{N}}^{\zeta} + \beta_{\mathsf{V}}^{\zeta} <= 1$

www.hilti.com

Company:	PMA Engineering	Page:	8
Address:	6717 Shawn Miss Pkwy	Specifier:	David McNaghten
Phone I Fax:	9138311262	E-Mail:	dmcnaghten@pmaengineering.com
Design:	Concrete - Oct 26, 2023	Date:	10/26/2023
Fastening point:			

1.6 Warnings

- The anchor design methods in PROFIS Engineering require rigid anchor plates as per current regulations (ETAG 001/Annex C, EOTA TR029, etc.). This means load re-distribution on the anchors due to elastic deformations of the anchor plate are not considered the anchor plate is assumed to be sufficiently stiff, in order not to be deformed when subjected to the design loading. PROFIS Engineering calculates the minimum required anchor plate thickness with CBFEM to limit the stress of the anchor plate based on the assumptions explained above. The proof if the rigid base plate assumption is valid is not carried out by PROFIS Engineering. Input data and results must be checked for agreement with the existing conditions and for plausibility!
- Condition A applies where the potential concrete failure surfaces are crossed by supplementary reinforcement proportioned to tie the potential concrete failure prism into the structural member. Condition B applies where such supplementary reinforcement is not provided, or where pullout or pryout strength governs.
- Design Strengths of adhesive anchor systems are influenced by the cleaning method. Refer to the INSTRUCTIONS FOR USE given in the Evaluation Service Report for cleaning and installation instructions.
- For additional information about ACI 318 strength design provisions, please go to https://submittals.us.hilti.com/PROFISAnchorDesignGuide/
- Installation of Hilti adhesive anchor systems shall be performed by personnel trained to install Hilti adhesive anchors. Reference ACI 318-19, Section 26.7.
- The anchor design methods in PROFIS Engineering require rigid anchor plates, as per current regulations (AS 5216:2021, ETAG 001/Annex C, EOTA TR029 etc.). This means that the anchor plate should be sufficiently rigid to prevent load re-distribution to the anchors due to elastic/plastic displacements. The user accepts that the anchor plate is considered close to rigid by engineering judgment."

www.hilti.com

Company: Address: Phone I Fax: Design: Fastening point: PMA Engineering 6717 Shawn Miss Pkwy 9138311262 | Concrete - Oct 26, 2023 Page: Specifier: E-Mail: Date:

KHC 1/2" LARGE (capsule)

Maximum installation torque: -

9 David McNaghten dmcnaghten@pmaengineering.com 10/26/2023

Anchor type and diameter: KWIK-X 1/2 (4 1/4) hnom2

Hole diameter in the base material: 0.500 in. Hole depth in the base material: 5.250 in.

Minimum thickness of the base material: 6.500 in.

Item number: 418076 KH-EZ 1/2"x5" (element) / 2362252

1.7 Installation data

Profile: Square HSS (AISC), HSS2X2X.125; (L x W x T) = 2.000 in. x 2.000 in. x 0.125 in.

Hole diameter in the fixture: $d_f = 0.625$ in.

Plate thickness (input): 0.500 in.

Drilling method: Hammer drilled Cleaning: No cleaning of the drilled hole is required

1/2 (4 1/4) hnom2 Hilti KH-EZ Carbon steel screw anchor with Hilti KHC

1.7.1 Recommended accessories

Drilling	Cleaning	Setting
Suitable Rotary Hammer	 No accessory required 	SIW 6-A22 Impact Screw Driver
Properly sized drill bit		

Coordinates Anchor [in.]

Anchor	x	У	с _{-х}	C+x	C_y	c _{+y}	_
1	0.000	-1.940	-	-	-	-	
2	0.000	1.940	-	-	-	-	

www.hilti.com

Company:	PMA Engineering	Page:	10
Address:	6717 Shawn Miss Pkwy	Specifier:	David McNaghten
Phone I Fax:	9138311262	E-Mail:	dmcnaghten@pmaengineering.com
Design:	Concrete - Oct 26, 2023	Date:	10/26/2023
Fastening point:			

2 Anchor plate design

2.1 Input data	
Anchor plate:	Shape: Rectangular I _x x I _y x t = 5.000 in x 8.000 in x 0.500 in
	Calculation: CBFEM Material: ASTM A36; F _y = 36,000 psi; ε _{lim} = 5.00%
Anchor type and size:	KWIK-X 1/2 (4 1/4) hnom2, h _{ef} = 4.250 in
Anchor stiffness:	The anchor is modeled considering stiffness values determined from load displacement curves tested in an independent laboratory. Please note that no simple replacement of the anchor is possible as the anchor stiffness has a major impact on the load distribution results.
Design method:	AISC and LRFD-based design using component-based FEM
Stand-off installation:	e _b = 0.000 in (No stand-off); t = 0.500 in
Profile:	HSS2X2X.125; (L x W x T x FT) = 2.000 in x 2.000 in x 0.125 in x - Material: ASTM A500 Gr.B Rect; F _y = 46,000 psi; ε _{lim} = 5.00%
	Eccentricity x: 0.000 in Eccentricity y: 0.000 in
Base material:	Cracked concrete; 2500; f _{c,cyl} = 2,500 psi; h = 420.000 in
Welds (profile to anchor plate):	Type of redistribution: Plastic Material: E70xx
Mesh size:	Number of elements on edge: 8 Min. size of element: 0.394 in Max. size of element: 1.969 in

2.2 Summary

	Description	Pro	file		Anchor plate		Concrete [%]
		σ_{Ed} [psi]	ε _{ΡΙ} [%]	σ_{Ed} [psi]	ε _{ΡΙ} [%]	Hole bearing [%]	
1	Combination 1	4,204	0.00	2,452	0.00	1	1

2.3 Anchor plate classification

Results below are displayed for the decisive load combinations: Combination 1

Anchor tension forces	Equivalent rigid anchor plate (CBFEM)	Component-based Finite Element Method (CBFEM) anchor plate design
Anchor 1	584 lb	584 lb
Anchor 2	584 lb	584 lb

User accepted to consider the selected anchor plate as rigid by his/her engineering judgement. This means the anchor design guidelines can be applied.

2.4 Profile/Stiffeners/Plate

Profile and stiffeners are verified at the level of the steel to concrete connection. The connection design does not replace the steel design for critical cross sections, which should be performed outside of PROFIS Engineering.

2.4.1 Equivalent stress and plastic strain

Part	Load combination	Material	f _y [psi]	ε _{lim} [%]	σ_{Ed} [psi]	ε _{ΡΙ} [%]	Status
Plate	Combination 1	ASTM A36	36,000	5.00	2,452	0.00	OK
Profile	Combination 1	ASTM A500 Gr.B Rect	46,000	5.00	3,920	0.00	OK
Profile	Combination 1	ASTM A500 Gr.B	46,000	5.00	4,204	0.00	OK

www.hilti.com

Company: Address: Phone I Fax: Design: Fastening point:	PMA Engineering 6717 Shawn Miss Pkwy 9138311262 Concrete - Oct 26, 2023		Page: Specifier: E-Mail: Date:		11 David McNaghten dmcnaghten@pmaengineering.com 10/26/2023		
Part	Load combination	Material	f _y [psi]	ε _{lim} [%]	$\sigma_{\sf Ed}$ [psi]	ε _{ΡΙ} [%]	Status
		Rect					
Profile	Combination 1	ASTM A500 Gr.B Rect	46,000	5.00	3,997	0.00	OK
Profile	Combination 1	ASTM A500 Gr.B Rect	46,000	5.00	3,997	0.00	OK

2.4.1.1 Equivalent stress

Results below are displayed for the decisive load combination: 1 - Combination 1

www.hilti.com

Company:	PMA Engineering	Page:	12
Address:	6717 Shawn Miss Pkwy	Specifier:	David McNaghten
Phone I Fax:	9138311262	E-Mail:	dmcnaghten@pmaengineering.com
Design: Fastening point:	Concrete - Oct 26, 2023	Date:	10/26/2023

2.4.1.2 Plastic strain

Results below are displayed for the decisive load combination: 1 - Combination 1

2.4.2 Plate hole bearing resistance, AISC 360-16 Section J3

Decisive load combination: 1 - Combination 1

Equations

R _n	= min(1.2 l _c t F _u , 2.4 d t F _u)	(AISC 360-16 J3-6a, c)
ΦR_n	$= 0.75 R_n$	
V	$\leq \Phi R_n$	

Variables

	l _c [in]	t [in]	F _u [psi]	d [in]	R _n [lb]
Anchor 1	2.190	0.500	58,000	0.500	34,800
Anchor 2	2.190	0.500	58,000	0.500	34,800

Results

	V [lb]	Φ R _n [lb]	Utilization [%]	Status
Anchor 1	62	26,100	1	OK
Anchor 2	61	26,100	1	OK

2.5 Concrete

Decisive load combination: 1 - Combination 1

www.hilti.com

Company:	PMA Engineering	Page:	13
Address:	6717 Shawn Miss Pkwy	Specifier:	David McNaghten
Phone I Fax:	9138311262	E-Mail:	dmcnaghten@pmaengineering.com
Design:	Concrete - Oct 26, 2023	Date:	10/26/2023
Fastening point:			

2.5.1 Compression in concrete under the anchor plate

2.5.2 Concrete block compressive strength resistance check, AISC 360-16 Section J8

www.hilti.com

Company: Address: Phone I Fax: Design: Fastening po	int:	PMA Engineering 6717 Shawn Miss 9138311262 Concrete - Oct 26	9 s Pkwy 5, 2023		Page: Specifier: E-Mail: Date:	Dav dmcnaghten@pmaen	14 id McNaghten gineering.com 10/26/2023
Equations							
Fp	= $\Phi f_{p,max}$	x					
		А		А			
$f_{p,max}$	=	$0.85 f_{c}' \sqrt{\frac{2}{A}}$	$) \leq 1.7 f_c; \sqrt{(}$	$\frac{2}{A}$)≤2		
σ	$= \frac{N}{A}$						
Utilization	$= \frac{\sigma}{F_p}$						
Variables							
I	N [lb]	f _c ' [psi]	Φ		A ₁ [in ²]	A ₂ [ir	1²]
	4	2,500	0.65		0.50	534,78	2.11
Results							
Load c	ombination	F _p [psi]	σ [psi]		Utilization [%]	Statu	ıs
Com	bination 1	2,762	8		1	OK	
2.6 Symbol	explanation						
A ₁		Loaded area of cond	crete				
A ₂		Supporting area					
d		Nominal diameter of	the bolt				
Elim		Plastic strain from C	REEM recults				
EPI f.		Concrete compressi	ve strength				
fc'		Concrete compressi	ve strength				
, Fu		Specified minimum t	ensile strength of the connect	ted materia	al		
Fp		Concrete block desig	gn bearing strength				
f _{p,max}		Concrete block desig	gn bearing strength maximum				
fy		Yield strength					
lc		Clear distance, in the	e direction of the force, betwe	en the edg	ge of the hole and the	edge of the adjacent ho	le or edge of
Ν		Resulting compressi	ion force				
σ		Average stress in co	oncrete				
σ_{Ed}		Equivalent stress					
Φ		Resistance factor					
ΦR_n		Factored resistance					
t V		Thickness of the and Resultant of shear fo	chor plate prces Vy, Vz in bolt.				

2.7 Warnings

- By using the CBFEM calculation functionality of PROFIS Engineering you may act outside the applicable design codes and your specified anchor plate may not behave rigid. Please, validate the results with a professional designer and/or structural engineer to ensure suitability and adequacy for your specific jurisdiction and project requirements.
- The anchor is modeled considering stiffness values determined from load displacement curves tested in an independent laboratory. Please note that no simple replacement of the anchor is possible as the anchor stiffness has a major impact on the load distribution results.

www.hilti.com

Company:	PMA Engineering	Page:	15
Address:	6717 Shawn Miss Pkwy	Specifier:	David McNaghten
Phone I Fax:	9138311262	E-Mail:	dmcnaghten@pmaengineering.com
Design:	Concrete - Oct 26, 2023	Date:	10/26/2023
Fastening point:			

3 Summary of results

Design of the anchor plate, anchors, welds and other elements are based on CBFEM (component based finite element method) and AISC.

	Load combination	Max. utilization	Status
Anchors	Combination 1	19%	OK
Anchor plate	Combination 1	7%	ОК
Concrete	Combination 1	1%	OK
Profile	Combination 1	10%	ОК

Fastening meets the design criteria!

www.hilti.com

Company:	PMA Engineering	Page:	16
Address:	6717 Shawn Miss Pkwy	Specifier:	David McNaghten
Phone I Fax:	9138311262	E-Mail:	dmcnaghten@pmaengineering.com
Design:	Concrete - Oct 26, 2023	Date:	10/26/2023
Fastening point:			

4 Remarks; Your Cooperation Duties

- Any and all information and data contained in the Software concern solely the use of Hilti products and are based on the principles, formulas and security regulations in accordance with Hilti's technical directions and operating, mounting and assembly instructions, etc., that must be strictly complied with by the user. All figures contained therein are average figures, and therefore use-specific tests are to be conducted prior to using the relevant Hilti product. The results of the calculations carried out by means of the Software are based essentially on the data you put in. Therefore, you bear the sole responsibility for the absence of errors, the completeness and the relevance of the data to be put in by you. Moreover, you bear sole responsibility for having the results of the calculation checked and cleared by an expert, particularly with regard to compliance with applicable norms and permits, prior to using them for your specific facility. The Software serves only as an aid to interpret norms and permits without any guarantee as to the absence of errors, the correctness and the relevance of the results or suitability for a specific application.
- You must take all necessary and reasonable steps to prevent or limit damage caused by the Software. In particular, you must arrange for the
 regular backup of programs and data and, if applicable, carry out the updates of the Software offered by Hilti on a regular basis. If you do not
 use the AutoUpdate function of the Software, you must ensure that you are using the current and thus up-to-date version of the Software in
 each case by carrying out manual updates via the Hilti Website. Hilti will not be liable for consequences, such as the recovery of lost or
 damaged data or programs, arising from a culpable breach of duty by you.

Pallet Rack KC, LLC

Invoice

7

8600 E Old 23rd Street Kansas City, MO 64129	Date	Invoice #					
(816) 444-6500	2/22/202	15681					
Bill To	22 24 Ship To						
Midwest Distribution 10 N.E. Skyline Dr. Lee's Summit MO. 64086	Midwest Distribution 10 N.E. Skyline Dr Lee's Summit MO. Steve 816-246-21	Midwest Distribution 10 N.E. Skyline Dr. Lee's Summit MO. 64086 Steve 816-246-2149					

Т

P.O. Number		Terms	Rep	5	Ship		Via	
				ST	2/2	2/2021		
Qty	Item		Description			Price E	ach	Amount
8 30 1	NEupright48"x144" NEBeams96"x4" Delivery	Teardr (15,30 Teardr Delive	op upright 48"x144" 00#) op Beams 96" x 4" f ry customer aske	Green NEW NEW (5,370≉ d for discour	¢) t	10	05.00 32.50 75.00	840.00T 975.00T 75.00
X				s	ubto	tal		\$1,890.00
Seller makes sold, whethe	Seller makes no representation, warranties or covenants with respect to the property being sold, whether expressed, implied, or otherwise; and transfers all property being sold as is,			y being d as is, S	ales	Tax (8.0	6%)	\$156.09
where is, with all faults and no warranty on merchantability or fitness by seller. Buyer waives any rights it has by statute or otherwise with respect to the property being sold and agrees to indemnify seller against claims made by its officers, agents, employees or			old and	otal			\$2,046.09	
transferees. FEE.	transferees. CREDIT CARD PAYMENTS WILL BE CHARGED A 3.5% PROCESSING FEE.			P	aym	ents/Cr	edits	5 -\$2,046.09
Thank you for your business!! Give us a review on Google			E	Balar	nce Due	9	\$0.00	

Pallet Rack KC, LLC

Invoice

8600 E Old 23rd Street Kansas City, MO 64129	Date	Invoice #					
(816) 444-6500	6/16/2021	16082					
Bill To	Ship To						
Midwest Distribution 10 N.E. Skyline Dr. Lee's Summit MO. 64086	Midwest Distribution 10 N.E. Skyline Dr. Lee's Summit MO. 64 Steve 816-246-2149	Midwest Distribution 10 N.E. Skyline Dr. Lee's Summit MO. 64086 Steve 816-246-2149					

Т

P.O. Number		Terms	Rep	9	Ship		Via	
				AC	6/1	6/2021		
Qty	Item		Description Price Each				Amount	
42	U303036-144	36" x 1	144" Tear Drop Uprig	ht-NEW BLU	E in	10	9.00	4,578.00T
144	NEBeams96"x4.5"	Teardr	op Beams 96" x 4.5"	(5500#) lb	NEW	4	14.00	6,336.00T
144	WD3646WW	36"x46 each	k 5" Step Wire Deck, 2 NEW in stock (2,50)	500 lb capac 0#)	ity	1	19.00	2,736.00T
		Delive	ry week of July 6					
X				s	ubto	tal		\$13,650.00
Seller makes sold, whethe	Seller makes no representation, warranties or covenants sold, whether expressed, implied, or otherwise; and trans where is, with all faults and no warranty on merchantabi waives any rights it has by statute or otherwise with resp agrees to indemnify seller against claims made by its off		ts with respect to the propert ansfers all property being sol	y being d as is, S	ales	Tax (5.	6%)	\$764.40
waives any r agrees to ind			with respect to the property being sold and by its officers, agents, employees or					\$14,414.40
transferees. CREDIT CARD PAYMENTS WILL BE CHARGED A 3.5% PROCESSIN FEE.			P	aymo	ents/Cr	edits	\$14,414.40	
	Thank you f Give us a re	or your view on	business!! Google	B	alan	ice Du	9	\$0.00

Pallet Rack KC, LLC

8600 E Old 23rd Street Kansas City, MO 64129 (816) 444-6500

Bill To

Midwest Distribution 10 N.E. Skyline Dr. Lee's Summit MO. 64086

Ship To

Midwest Distribution 421 NW Capital Drive Lee's Summit MO. 64086 Steve (816)246-2149

Date

10/20/2023

P.O. Number			Terms	Rep	S	Ship	Via	
				TR	10/2	20/2023	Cer	tified Tow
Qty	Item	Description		on		Price Each		Amount
8 12 46 2	U303048-240 U303036-240 NEupright36"x240" Delivery	48" x 2 36" x 2 36" x 2 Delive	240" Tear Drop Uprig 240" Tear Drop Uprig 240" Tear Drop Uprig ry	ht-NEW BLU ht-NEW BLU ht- GREEN	EE	33 27 27 15	34.00 78.00 78.00 50.00	2,672.00T 3,336.00T 12,788.00T 300.00
X					ubto	tal		\$19,096.00
Seller makes no representation, warranties or covenants with respect to the property being sold, whether expressed, implied, or otherwise; and transfers all property being sold as is, where is, with all faults and no warranty on merchantability or fitness by seller. Buyer waives any rights it has by statute or otherwise with respect to the property being sold and agrees to indemnify seller against claims made by its officers, agents, employees or transferees. CREDIT CARD PAYMENTS WILL BE CHARGED A 3.5% PROCESSING FEE.					Sales Tax (5.6%) \$1,052.58			
					otal			\$20,148.58
					Payments/Credits \$0.00			
Thank you for your business!! Give us a review on Google					alan	ice Due	9	\$20,148.58

Invoice

Invoice #

18502