

RE: P230374-01 - Roof Site Information:

Project Customer: Summit Homes Project Name: Sheffield - Traditional Lot/Block: 146 Subdivision: Highland Meadows Model:

Address: 2782 SW 12th St

City: Lee's Summit

State: MO

General Truss Engineering Criteria & Design Loads (Individual Truss Design Drawings Show Special Loading Conditions):

Design Code: IRC2018/TPI2014 Wind Code: ASCE 7-16 Wind Speed: 115 mph Roof Load: 45.0 psf

Design Program: MiTek 20/20 8.6 Design Method: MWFRS (Envelope)/C-C hybrid Wind ASCE 7-16 Floor Load: N/A psf

MiTek USA, Inc.

16023 Swinglev Ridge Rd

Chesterfield, MO 63017

314-434-1200

Mean Roof Height (feet): 35

Exposure Category: C

No.	Seal#	Truss Name	Date	No.	Seal#	Truss Name	Date
123456789111234567890112345678901233456789001233456789001233456789000000000000000000000000000000000000	I59339916I59339917I59339917I59339919I59339920I59339921I59339922I59339923I59339924I59339925I59339926I59339927I59339928I59339929I59339930I59339931I59339932I59339932I59339934I59339935I59339936I59339936I59339937I59339938I593399341I59339941I59339942I59339943I59339945I59339946I59339947I59339948I59339948I59339948	A01 A02 B01 B02 C03 C03 C04 C05 C07 C07 C07 C07 C09 CJ02 D01 D02 D01 D02 D01 D02 D01 D02 D01 E02 E03 H1 H2G1 H2G3 J1	7/5/23 7/5/23	35678901234444444901234567890123 5555555556666666666666666666666666666	I59339950 I59339951 I59339952 I59339953 I59339955 I59339956 I59339957 I59339959 I59339960 I59339961 I59339961 I59339962 I59339962 I59339964 I59339966 I59339966 I59339966 I59339966 I59339970 I59339970 I59339971 I59339974 I59339974 I59339975 I59339976 I59339978	J02 J23 J04 J4 J05 J06 J07 J08 J09 J10 J11 J12 LG01 LG04 T1 TG1 TG2 V1 V2 V07 V08 V09 V10 V11 V12 V13 V14	7/5/23 7/5/23

The truss drawing(s) referenced above have been prepared by MiTek USA, Inc. under my direct supervision based on the parameters provided by Premier Building Supply (Springhill, KS)20300 W 207th Street.

Truss Design Engineer's Name: Nathan Fox

My license renewal date for the state of Missouri is December 31, 2024.

IMPORTANT NOTE: The seal on these truss component designs is a certification that the engineer named is licensed in the jurisdiction(s) identified and that the designs comply with ANSI/TPI 1. These designs are based upon parameters shown (e.g., loads, supports, dimensions, shapes and design codes), which were given to MiTek or TRENCO. Any project specific information included is for MiTek's or TRENCO's customers file reference purpose only, and was not taken into account in the preparation of these designs. MiTek or TRENCO has not independently verified the applicability of the design parameters or the designs for any particular building. Before use, the building designer should verify applicability of design parameters and properly incorporate these designs into the overall building design per ANSI/TPI 1, Chapter 2.

Nathan Fox

32

~

~ ~

)-10-0

		3x8 II	3X4	-									
		I			20-1	0-0							
Scale = 1:52.7													
Loading TCLL (roof) TCDL BCLL BCDL	(psf) 25.0 10.0 0.0 10.0	Spacing2Plate Grip DOL1Lumber DOL1Rep Stress IncrYCodeII	-0-0 .15 .15 ⁄ES RC2018/TPI2014	CSI TC BC WB Matrix-R	0.09 0.07 0.28	DEFL Vert(LL) Vert(CT) Horz(CT)	in n/a n/a 0.00	(loc) - - 20	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 121	GRIP 197/1 Ib FT = 2	44 20%
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD	2x4 SP No.2 2x4 SP No.2 2x4 SP No.2 2x3 SPF No.2 Structural wood she 6-0-0 oc purlins, ex Rigid ceiling directly	eathing directly applied o ccept end verticals. / applied or 6-0-0 oc	TOP CHORD r BOT CHORD	2-37=-179/100, 1 3-4=-131/129, 4-5 6-7=-92/136, 7-8- 9-10=-134/257, 1 11-12=-119/228, 13-14=-65/126, 1 16-17=-82/77, 17 18-20=-144/56 36-37=-100/129, 34-35=-100/129,	-2=0/41, 5 5=-119/11 90/174, 0-11=-13 12-13=-9 4-15=-54, -18=-141, 35-36=-1 32-34=-1	2-3=-186/165, 16, 5-6=-105/1 8-9=-119/228 4/257, 0/174, /83, 15-16=-65 /102, 18-19=0, 00/129, 00/129,	12, 5/66, /41,	6) Tr bra 7) Ga 8) Th ch 9) All ca 10) Pr be joi	uss to be aced aga able studs is truss h ord live lo bearings pacity of ovide me earing pla nt 37, 73	fully sl inst late s space has bee bad not s are as 565 ps chanic te capa lb uplif	heathed from eral movemen ed at 1-4-0 oc in designed for concurrent v ssumed to be i. al connection ible of withsta t at joint 20, 2	one face or nt (i.e. diago br a 10.0 ps vith any othe SP No.2 cr (by others) anding 133 J 29 Ib uplift a	securely onal web). f bottom er live loads. ushing of truss to b uplift at t joint 29, 61
REACTIONS	bracing. (size) 20=20-10 22=20-10 24=20-10 26=20-10 30=20-10 30=20-10 35=20-10 35=20-10 37=20-10 Max Horiz 37=-236 Max Uplift 20=-73 (I	0-0, 21=20-10-0, 1-0, 23=20-10-0, 1-0, 25=20-10-0, 1-0, 25=20-10-0, 1-0, 29=20-10-0, 1-0, 31=20-10-0, 1-0, 36=20-10-0, 1-0, 36=20-10-0, 1-0, 100, 1-0, 100,	WEBS	31-32=-100/129, 29-30=-100/129, 27-28=-100/129, 25-26=-100/129, 21-22=-100/129, 10-28=-204/69, 9 7-31=-99/70, 6-32 4-35=-101/87, 3-5 12-26=-101/83, 1 15-23=-99/80, 16	20-31=-1 28-29=-1 26-27=-1 22-23=-1 22-23=-1 20-21=-1 -29=-105. 2=-99/70, 36=-95/10 3-25=-99, -22=-102	00/129, 00/129, 00/129, 00/129, 00/129, 00/129, 00/129, 00/129, 145, 8-30=-99/80, 36, 11-27=-10(770, 14-24=-95) /87, 17-21=-87	83, 0/41, 0/70, 7/96	lb joi lb ib at 11) Th Int R8 LOAD	uplift at jø nt 32, 56 uplift at jø nt 26, 52 uplift at jø joint 21. sis truss is ernationa 302.10.2 CASE(S	in and boint 30, lb uplif boint 36, lb uplif boint 23, s desig al Resid and ref s) Sta	52 lb uplift at t at joint 34, 3 25 lb uplift at t at joint 25, 5 40 lb uplift at ned in accord dential Code s erenced stan ndard	t joint 31, 5' 7 Ib uplift a t joint 27, 62 1 Ib uplift a t joint 22 an lance with t sections R5 dard ANSI/	(1) buplift at t joint 35, 152 2 lb uplift at t joint 24, 55 d 133 lb uplift he 2018 02.11.1 and TPI 1.
	22=-40 (l 24=-51 (l 26=-62 (l 29=-29 (l 31=-52 (l 34=-56 (l 34=-56 (l 36=-152 Max Grav 20=180 (22=129 (24=126 (26=128 (30=126 (32=126 ($ \begin{array}{llllllllllllllllllllllllllllllllllll$	 NOTES Unbalance this design Wind: ASC Vasd=91m Ke=1.00; C exterior zo Exterior (2N 15-5-0, Ext left and rig exposed; C reactions s DOL=1.60 Truss des 	d roof live loads ha E 7-16; Vult=115m ph; TCDL=6.0psf; Cat. II; Exp C; Enclo ne and C-C Corner V) 4-1-0 to 10-5-0, (terior(2N) 15-5-0 to ht exposed ; end ve -C for members an shown; Lumber DOI igned for wind load	ve been ph (3-sec BCDL=6. ssed; MW (3E) -0-1 Corner(3F 21-9-0 z ertical left d forces a L=1.60 pl s in the p	considered for cond gust) Opsf; h=35ft; (FRS (envelop (FRS (envelop (and right & MWFRS for ate grip lane of the true	e) r ss		e ,	K	STATE OF NAI	F MISS HANIEL FOX	SULLE STOR
FORCES	35=129 (37=228 ((Ib) - Maximum Con Tension	LC 25), 36=171 (LC 10), LC 20) npression/Maximum	see Standa or consult 4) All plates a 5) Gable requ	ard Industry Gable qualified building de are 1.5x4 MT20 unle uires continuous bo	End Deta esigner as ess other ttom chor	ils as applicab s per ANSI/TP wise indicated d bearing.	, ble, rl 1.			Q	FFF SSION	VAL EN	

Course July 5,2023

Page: 1

3x8 II

20]

ELEASE FOR CONSTRUCTION		Truss Type		Qty	Ply	Roof			
DEXELORMENT SERVICES		Common		1	1	lob Poforo	nco (ontional)		159339917
LEE'S SUMMIT, MISSOURI Premier Building Supply (Springhill, KS), Spring	lills, KS - 66083,		Run: 8.63 S Apr	6 2023 Prin	t: 8.630 S Apr 6	2023 MiTek Ind	dustries, Inc. Wed	Jul 05 09:05:42	Page: 1
10/19/2023 11:05:18			ID:7pn4iRk51xM	GpZhR6tY_N	NCzRpJn-RfC?P	sB70Hq3NSgP	qnL8w3uITXbGKV	/rCDoi7J4zJC?f	-
	-0-11-0	5-4-4	10-5-0	1	15-5-12	1	20-10-0	21-9-0	
	0-11-0	5-4-4	5-0-12	1	5-0-12	l	5-4-4	0-11-0	
				4x6 ı	I				
				4					
T T									
		1 81	2	////					
		3	Bx4 g		$\langle \rangle \gg$	3x4			
		3		//		5			
<u>.9-5</u>		/x	K //	/		- AR			
	9v9 –								
	2							6	
o					//				7
	12	•	E.		ł	1 7		8	
		11	10			9		8x8 =	
		3x4	= 3x4=		:	3x4 =			
	L	7-0-8		13-9-8		I	20-10-0		
Scale - 1:54 4	I	7-0-8	I	6-9-0		I	7-0-8	I	
Plate Offsets (X, Y): [2:Edge,0-2-12], [8:E	dge,0-2-12]								
Loading (psf) Spa	icina	2-0-0	CSI			in (loc)	l/defl L/d		GRIP
TCLL (roof) 25.0 Plat	e Grip DOL	1.15	TC	0.37	/ert(LL) -0	0.06 10-12	>999 240	MT20	197/144
TCDL 10.0 Lun	ber DOL	1.15 VES	BC	0.46	/ert(CT) -(0.12 10-12	>999 180		
BCDL 0.0 Cod	le	IRC2018/TPI2014	Matrix-S	0.79	1012(01)	1.03 0	11/a 11/a	Weight: 103 lb	FT = 20%
		5) Provide m	echanical connectior	(by others	s) of truss to				
TOP CHORD 2x4 SP No.2		bearing pla	ate capable of withst	anding 156	b uplift at				
BOT CHORD 2x4 SP No.2 WEBS 2x3 SPE No.2 *Except* 12	2-2 8-6·2x4 SP N	joint 12 an ام 2 6) This truss	d 156 lb uplift at joint is designed in accord	ance with	the 2018				
BRACING	2,0 012.41 01 1	Internation	al Residential Code	sections R	502.11.1 and				
TOP CHORD Structural wood sheathing	directly applied	LOAD CASE(S) Standard	iuaiu Anoi	/1611.				
BOT CHORD Rigid ceiling directly appli	ed or 10-0-0 oc	·	,						
bracing. REACTIONS (size) 8=0-3-8 12=0-	3-8								
Max Horiz 12=-236 (LC 10))								
Max Uplift 8=-156 (LC 13)	, 12=-156 (LC 12	2)							
FORCES (Ib) - Maximum Compress	ion/Maximum								
	0 4- 1075/074								
4-5=-1075/274, 5-6=-471/	190, 6-7=0/41,								
2-12=-462/197, 6-8=-462/ BOT CHORD 10-12172/943 9-1014	197 1/641 8-975/9	06							
WEBS 4-9=-154/450, 5-9=-294/2	46, 4-10=-153/4	49,							
3-10=-294/246, 3-12=-767	1/68, 5-8=-761/6	8							
 Unbalanced roof live loads have been 	considered for								The
this design.	cond quet							OF N	Alson
	a ono ouso								

- Vasd=91mph; 1CDL=6.0pst; BCDL=6.0pst; h=35tt; Ke=1.00; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) -0-11-0 to 4-1-0, Interior (1) 4-1-0 to 10-5-0, Exterior(2R) 10-5-0 to 15-6-8, Interior (1) 15-6-8 to 21-9-0 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- All bearings are assumed to be SP No.2 crushing capacity of 565 psi.

FOX PE-2022042259 July 5,2023

Loading TCLL (roof) TCDL BCLL BCDL		(psf) 25.0 10.0 0.0 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC20 ⁷	18/TPI2014	CSI TC BC WB Matrix-S	0.86 0.62 0.58	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.09 -0.19 0.02	(loc 19-2) 19-2) 19-2)	i) l/defl 0 >999 0 >999 9 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 190 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD WEBS JOINTS	2x4 SP No.2 2x3 SPF No No.2 2x3 SPF No Structural w 3-4-0 oc pui Rigid ceiling bracing. 1 Row at mi 1 Brace at J 33, 37, 38	2 2 0.2 *Excep 0.2 vood shea rlins, exc g directly a idpt	ot* 31-2,19-17:2x4 S athing directly applied ept end verticals. applied or 6-0-0 oc 15-22	E SP V d or	OT CHORD	30-31=-243/222 28-29=-243/222 26-27=-243/222 24-25=-176/295 20-22=-17/923, 22-33=-94/260, 15-22=-533/212 35-37=0/560, 32 7-27=-676/0, 17 25-36=-313/172 32-34=-218/127 33-38=-216/131 14-39=-193/115 9-35=-118/85, 3	, 29-30=-24 , 27-28=-24 , 25-26=-24 , 22-24=-11 11-33=-112 11-33=-112 11-33=-112 2-35=0/525 -20=-13/36 , 32-36=-22 , 33-34=-22 , 33-34=-22 , 38-39=-22 , 10-34=-11 5-36=-54/4	43/222, 43/222, 43/222, 76/295, 2/666 3/279, 22-32=0/48 1, 34/155, 00/122, 01/122, 10/71, 0, 8-37=-225	541, 0, 5/125,	 7) T 8) A c 9) P b 3 u 2 10) T Ir R LOAI 	his truss h hord live la ll bearing: apacity of trovide me earing pla 1, 191 lb o plift at joir 9 and 152 his truss i ternations. 802.10.2 D CASE(S	has bee bad nor s are as 565 ps chanic te capa uplift at t 26, 8(lb uplif s desig al Resid and ref) Star	n designed for a nooncurrent with a ssumed to be SP i. al connection (by ble of withstandii joint 19, 110 lb up 0 lb uplift at joint 2 t at joint 30. ned in accordanc dential Code sect erenced standarc ndard	10.0 psf bottom any other live loads. No.2 crushing others) of truss to ng 87 lb uplift at joint plift at joint 25, 126 lb 28, 63 lb uplift at joint se with the 2018 ions R502.11.1 and J ANSI/TPI 1.
REACTIONS	(size) 1 2 2 Max Horiz 3 Max Uplift 1 2 3 Max Grav 1 2 2 2 3 3	9=0-3-8, 2 6=11-5-8 9=11-5-8 1=-340 (L 9=-191 (L 6=-126 (L 9=-63 (LC 1=-87 (LC 9=1076 (L 5=102 (L) 7=716 (L) 9=169 (L)	24=0-3-8, 25=11-5-8 , 27=11-5-8, 28=11- , 30=11-5-8, 31=11- .C 10) .C 13), 25=-110 (LC C 12), 28=-80 (LC 1 C 12), 30=-152 (LC 1 C 1), 24=164 (LC 3 C 1), 24=164 (LC 19 C 1), 28=232 (LC 19 C 25), 30=255 (LC 1 C 20)	3, 5-8, 5-8 N 12), 1 12), 2 12), 2 3), 9), 9), 9),	IOTES) Unbalanced this design.) Wind: ASCI Vasd=91mp Ke=1.00; C exterior zor Interior (1) · 21-0-0, Inte and right ex	26-37=-260/151 4-29=-131/95, 3 13-39=-14/13 d roof live loads h E 7-16; Vult=115r oh; TCDL=6.0psf; at. II; Exp C; Enc te and C-C Exteri 4-0-0 to 16-0-0, E rior (1) 21-0-0 to sposed ; end verti	, 6-28=-18; -30=-181/1 ave been of mph (3-sec ; BCDL=6.0 losed; MW ior(22) -0-1 :xterior(2R) 32-11-0 zo ical left and	7/103, 40, 12-38=-2 considered fo ond gust) 0psf; h=35ft; FRS (enveloj 1-0 to 4-0-0, 1 16-0-0 to nne; cantileve t right	28/17, pr pe) r left	First of MISSOL				
FORCES TOP CHORD	(lb) - Maxim Tension 1-2=0/41, 2- 4-6=-55/168 8-9=-502/17 10-11=-442 12-13=-480, 14-15=-713, 17-18=0/41,	-3=-176/2 9, 6-7=-45 79, 9-10=- /231, 11 /198, 13 /207, 15 , 2-31=-1	2-37 pression/Maximum 214, 3-4=-92/177, 3/150, 7-8=-475/134, -477/214, 12=-424/218, 14=-542/179, 17=-1272/209, 13/77, 17-19=-1004/	, 3 4 235 5 6	exposed;C- reactions si DOL=1.60) Truss desig only. For si see Standa or consult co All plates ai) Truss to be braced aga) Gable studs	C for members a nown; Lumber DC gned for wind loa tuds exposed to v rd Industry Gable ualified building or re 1.5x4 MT20 v fully sheathed fro inst lateral mover a spaced at 2-0-0	nd forces & DL=1.60 pla ds in the pl wind (norm End Detai designer as iless other om one fac ment (i.e. d	MWFRS for ate grip ane of the tru al to the face ils as applica is per ANSI/TI wise indicate e or securely iagonal web)	r Jss), ble, PI 1. d. ,		-		NATHA FOI PE-20220	NIEL BER 042259

July 5,2023

AS NOTED O			Truss Type		Qty	Ply	Roof			
PE23EL-QRM			Common		6	1	lob Rofor	anco (ontional)		159339919
Premier Building	IMIT, MISSOURI Supply (Springhill, KS), Spring	lills, KS - 66083,		Run: 8.63 S Apr	6 2023 Prir	nt: 8.630 S Apr 6	5 2023 MiTek In	dustries, Inc. We	ed Jul 05 09:05:43	Page: 1
10/19/20	23 11:05:18			ID:kUZy_1nrr4g2	2a4HGPWH	?WfzRpWe-RfC?	PsB70Hq3NSg?	PqnL8w3ulTXb0	GKWrCDoi7J4zJC?f	-
	-0-11-0) 8-1-1	2	16-0-0	1	23-10-4	1	32	2-0-0 3	2-11-0
	0-11-0	8-1-1	2	7-10-4	l.	7-10-4	1	8-	1-12 (0-11-0
					4x6=					
	8 8 8	40 3 x8=	8 ¹² 3x4 = 4 15 3x4=	17 • • • • • • • • • • • • • • • • • • •	5 13 3x8=	12 3x4=	18 3x 11 3x	4.5 6 4 4 4 4	X4. 7 8:	8 9 x8=
	1	8-1-1	2	16-0-0		23-10-4	4	32	2-0-0	1
Scale = 1:71.5	F	8-1-1	2	7-10-4	I	7-10-4		8-	1-12	7
Plate Offsets ()	K, Y): [3:0-2-0,Edge], [7:0-	-2-0,Edge], [10:E	dge,0-6-2], [16:Edge,	0-6-2]						
Loading TCLL (roof) TCDL BCLL BCDL	(psf) Sp 25.0 Pla 10.0 Lui 0.0 Re 10.0 Co	acing ate Grip DOL mber DOL p Stress Incr de	2-0-0 1.15 1.15 YES IRC2018/TPI2014	CSI TC BC WB Matrix-S	0.96 0.66 0.58	DEFL Vert(LL) -(Vert(CT) -(Horz(CT) (in (loc) 0.10 15-16 0.22 15-16 0.06 10	l/defl L/d >999 240 >999 180 n/a n/a	PLATES MT20	GRIP 244/190 ET = 20%
	10.0 00	40	2) Wind: AS(`F 7-16: \/ult=115mr	b (3-seco	od quet)			Wolght. Too ib	11-2070
TOP CHORD BOT CHORD WEBS BRACING TOP CHORD	2x4 SP No.2 2x4 SP No.2 2x3 SPF No.2 *Except* 1 No.2 Structural wood sheathin except end verticals	6-2,10-8:2x4 SP g directly applied	Vasd=91n Ke=1.00; (exterior zc Interior (1) 21-0-0, Int and right e exposed;C	ph; TCDL=6.0psf; E Cat. II; Exp C; Enclos ne and C-C Exterior 4-1-0 to 16-0-0, Ext erior (1) 21-0-0 to 32 xposed ; end vertica -C for members and	CDL=6.0p Sed; MWFI (2E) -0-11 (2E) -0-11 (2-11-0 zon) al left and r forces & l	isf; h=35ft; RS (envelope) -0 to 4-1-0, 16-0-0 to e; cantilever le ight MWFRS for	ft			
BOT CHORD	Rigid ceiling directly appl bracing, Except: 8-10-10 oc bracing: 15-1	lied or 10-0-0 oc 6.	reactions s DOL=1.60 3) This truss	shown; Lumber DOL	=1.60 plate	e grip osf bottom				
WEBS REACTIONS	1 Row at midpt 6-13 (size) 10=0-3-8, 16= Max Horiz 16=-340 (LC 1 Max Uplift 10=-227 (LC 1 Max Grav 10=1501 (LC 1	4, 4-13 0-3-8 0) 3), 16=-227 (LC 1 1), 16=1501 (LC 1	4) All bearing capacity o 5) Provide m 12) bearing pla	ioad nonconcurrent is are assumed to be f 565 psi. echanical connection ate capable of withst d 227 lb uplift at ion	with any of SP No.2 n (by other anding 22 t 10	crushing s) of truss to 7 lb uplift at				
FORCES	(lb) - Maximum Compres	sion/Maximum	6) This truss	is designed in accor	dance with	the 2018				
TOP CHORD	1-2=0/41, 2-4=-1971/292 5-6=-1411/336, 6-8=-197	2, 4-5=-1411/336, /1/292, 8-9=0/41,	Internation R802.10.2 LOAD CASE(and referenced star and referenced star 5) Standard	sections F ndard ANS	(502.11.1 and I/TPI 1.				
BOT CHORD	2-10=-1424/274, 8-10=-1 15-16=-429/855, 13-15=-	+24/214 ·273/1553,								
WEBS	11-13=-111/1514, 10-11= 5-13=-157/883, 6-13=-66 4-13=-661/316, 4-15=0/2 8-11=0/894	=-252/623 51/315, 6-11=0/28 85, 2-15=0/894,	15,					E	ATE OF J	MISSOL
1) Unbalance this design	d roof live loads have beer	n considered for						R	S NATHA	INIEL Y

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

PE-2022042259

PE-2022042259

AS NOTED ON PLAN	NS REVIE	W	Truss Type		Qty	Ply	Roof			
DEXELORMENT S	ERVICES		Common		4	1	Job Roford	nco (ontional)		159339920
LEE'S SUMMIT, M Premier Building Supply (Spr 10/19/2023 1	1 S\$OURI inghill, KS), Sp 1:05:1	oring Hills, KS - 66083,		Run: 8.63 S Apr ID:V02_fmttyXgv	6 2023 Print XJuptCQtrLz	: 8.630 S Apr 6 RpWW-RfC?Ps	2023 MiTek Ind B70Hq3NSgPq	dustries, Inc. We nL8w3uITXbGK\	ed Jul 05 09:05:43 WrCDoi7J4zJC?f	Page: 1
	-(0-11-0 8-1	-12	16-0-0		23-10	-4	1	32-0-0	
	C)-11-0 8-1	-12	7-10-4	'	7-10	-4		8-1-12	
11-7-9		3 2 1/5 8x8= 8-1	8 ¹² 3x4 = 4x4 = 14 3x4=	16 16 13 3x 16-0-0	5 3 12 4= 3x8=	11 3x4= 23-10	-4	6 6 10 4x4=	3x6 • 7 32-0-0	8 9 8x8=
		8-1	- <u>12</u> -12	<u> </u>		<u>23-10</u> 7-10	-4	1	<u>32-0-0</u> 8-1-12	
Scale = 1:71.5 Plate Offsets (X, Y): [3:0)-2-0,Edge], [9:Edge,0-6-2], [15:Edge,0-6-2]	dge,0-6-2]							
Loading TCLL (roof) TCDL BCLL BCDL	(psf) 25.0 10.0 0.0 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018/TPI2014	CSI TC BC WB Matrix-S	0.77 V 0.66 V 0.59 H	EFL ert(LL) -(ert(CT) -(lorz(CT) (in (loc) 0.10 14-15 0.22 14-15 0.05 9	l/defl L/d >999 240 >999 180 n/a n/a	PLATES MT20 Weight: 154 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD 2x4 SP 1 No.2 BOT CHORD 2x4 SP 1 WEBS 2x3 SPF BRACING TOP CHORD Structure 2-2-0 oc BOT CHORD Structure 2-2-0 oc BOT CHORD Rigid ceil bracing, 8-9-8 oc WEBS 1 Row al REACTIONS (size) Max Horiz Max Uplift Max Grav FORCES (lb) - Ma. Tension TOP CHORD 1-2=0/41 5-6=-141 2-15=-14	650F 1.5E *1 No.2 *Excep al wood shea purlins, exc ling directly a Except: bracing: 14- t midpt 6 9=0-3.8, 11 9=-200 (LC 9=1426 (LC ximum Comp , 2-4=-1973/ 5/338, 6-8=- k25/274, 8-9=	Except* 1-3:2x4 SP ot* 15-2,9-8:2x4 SP N thing directly applied ept end verticals. applied or 10-0-0 oc 15. 5-12, 4-12 5=0-3-8 C 9) C 13), 15=-227 (LC 12 C 1), 15=-1502 (LC 1) pression/Maximum 293, 4-5=-1413/336, 1972/292, =-1348/243	 2) Wind: ASCE Vasd=91mph Ke=1.00; Cat exterior zone lo.2 Interior (1) 4- 21-0-0, Interior or exposed; C-C reactions sho DOL=1.60 3) This truss ha chord live loa 4) All bearings a capacity of 51 5) Provide mect bearing plate joint 15 and 2 6) This truss is of International R802.10.2 ar LOAD CASE(S) 	7-16; Vult=115mp ; TCDL=6.0psf; E . II; Exp C; Enclos and C-C Exterior 1-0 to 16-0-0, Ext or (1) 21-0-0 to 3' osed ; end vertica for members and wn; Lumber DOL s been designed 1 d nonconcurrent are assumed to be 55 psi. nanical connection capable of withst 200 lb uplift at join designed in accor Residential Code d referenced star Standard	ch (3-secon CDL=6.0ps sed; MWFR (2E) -0-11-1 erior(2R) 10 -1-10-4 zone al left and rig forces & M = 1.60 plate for a 10.0 p with any oth e SP No.2 c n (by others anding 227 t 9. dance with sections R ndard ANSI.	d gust) f; h=35ft; S (envelope) D to 4-1-0, 6-0-0 to ; cantilever le ght IWFRS for grip sf bottom her live loads. rushing) of truss to Ib uplift at the 2018 502.11.1 and (TPI 1.	ft			
BOT CHORD 14-15=-4 10-12=-1 WEBS 5-12=-16 4-12=-66 8-10=-55 NOTES 1) Unbalanced roof live this design.	139/842, 12-1 155/1525, 9-1 151/891, 6-12= 152/316, 4-14= 15/1067 10ads have b	14=-286/1545, 10=-152/462 672/321, 6-10=0/28 =0/285, 2-14=0/900, been considered for	10,						STATE OF M	MISSOLIA NIEL

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

16023 Swingley Ridge Rd Chesterfield, MO 63017

RF									
A	S NOTED ON PLANS REV	HEW		Truss Type	Qty	Ply	Roof		
	DEXELORMENT SERVICE	ES		Half Hip Girder	1	2	Job Reference (optional)	159339921	
1	Premier Building Supply (Springhill, KS), 0/19/2023 11:05:), Spring Hi 18	lls, KS - 66083,	S - 66083, ID:_SwThsMShWVpdp3CNlbxeZzRpTJ-WjBENKTqAd09la_YXuhtvpht?b4pR9yH17cvoEz?9iJ					

Scale =	1:59.2
---------	--------

Plate Offsets (X, Y): [8:0-3-0,0-2-5],	[10:0-5-8,Edge], [14	:0-4-0,Ed	ge], [21:0-3-0,0	-3-4], [23:0-3-8,0-1	·8]								
Loading TCLL (roof) TCDL BCLL BCDL	(psf) 25.0 10.0 0.0 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 NO IRC201	8/TPI2014	CSI TC BC WB Matrix-S	0.54 0.86 0.53	DEFL Vert(LL) Vert(CT) Horz(CT)	in 0.31 -0.45 0.25	(loc) 17-18 17-18 11	l/defl >999 >833 n/a	L/d 240 180 n/a	PLATES MT20 MT18HS Weight: 327 lb	GRIP 197/144 244/190 FT = 20%	
LUMBER TOP CHORD BOT CHORD WEBS WEDGE	2x4 SP No.2 *Excep 2.0E 2x4 SP No.2 *Excep 14-13:2x4 SP 1650F 2400F 2.0E 2x3 SPF No.2 Right: 2x4 SP No.2	t* 8-12:2x6 SP 2400l t* 22-3:2x3 SPF No.2 1.5E, 19-10:2x4 SP	B F 2, W	OT CHORD	3-21=-294/76, 20-2 [:] 20-42=-2890/6671, 9-43=-2890/6671, 18-44=-2689/6152, 17-45=-2689/6152, 6-46=-2084/4877, 4-15=-2377/5701, 11-13=-351/856 -23=-1242/2984 2	I=-246 19-42= 18-43= 44-45= 17-46= 15-16= 10-14= -23=-2	1/5808, -2890/6671, -2890/6671, -2689/6152, -2084/4877, -2377/5704, -2025/4857, 600/996		 4) Pro 5) All 6) All 7) Thi cho 8) Pro bea joir 9) Thi 	pvide ade plates ar plates ar is truss h ord live lo pvide med aring plat at 24 and is truss is	equate e MT2 e 3x4 as bee bad nor chanic e capa 1091	drainage to preve 0 plates unless of MT20 unless other an designed for a nconcurrent with al connection (by able of withstandii blu plift at joint 11 ped in accordance	nt water pondin therwise indicate rwise indicated 10.0 psf bottom any other live los others) of truss ng 1099 lb uplift e with the 2018	ig. ed. ads. to at
BRACING TOP CHORD BOT CHORD	Structural wood she: 6-0-0 oc purlins, exi 2-0-0 oc purlins (4-6 Rigid ceiling directly bracing, Except: 8-2-2 oc bracino: 20	athing directly applie cept end verticals, ar -15 max.): 1-8. applied or 10-0-0 oc -21	d or nd		21-23-763/1827, 2 1-21=-2330/1104, 4 2-15=-146/531, 7-17 3-20=-1105/606, 7 3-16=-643/1438, 8- 3-16=-1201/455	-21=-1: -20=-2: 7=-631 18=-24 17=-93	240/3313, 33/736, /231, 4/683, 4/1905,		Inte R8 10) Gra or 1 bot	ernationa 02.10.2 a aphical p the orient ttom chor	and ref urlin re tation o	dential Code sect erenced standard presentation doe of the purlin along	ons R502.11.1 ; I ANSI/TPI 1. s not depict the the top and/or	and size
REACTIONS	7-6-10 oc bracing: 1 (lb/size) 11=2788/0 Max Horiz 24=-191 (Max Uplift 11=-1091	8-20. 0-3-8, 24=2653/0-3-8 LC 8) (LC 13). 24=-1099 (I	N 3 1 LC 8)	OTES 2-ply truss to (0.131"x3") n Top chords o	be connected toge ails as follows: connected as follow	ther wi s: 2x3 ·	th 10d · 1 row at 0-9-0)						
FORCES	(lb) - Max. Comp./Ma	ax. Ten All forces 2	250	oc, 2x4 - 1 rc 0-9-0 oc.	w at 0-9-0 oc, 2x6	2 row	s staggered at							
TOP CHORD	(ib) of less except wi 1-24=-2516/1025, 1- 28-29=-1809/772, 2- 2-30=-3878/1596, 3- 3-31=-3905/1604, 3' 4-32=-3905/1604, 4- 5-33=-5803/2449, 6- 6-34=-5803/2449, 6- 35-36=-6628/2927, 7 7-37=-6109/2786, 8- 8-9=-5741/2572, 9-3 10-38=-6402/2707, 7	nen snown. 28=-1809/772, 29=-1809/772, 30=-3878/1596, 1-32=-3905/1604, 33=-5803/2449, 34=-5803/2449, 35=-6628/2927, 7-36=-6628/2927, 37=-6109/2786, 8=-6301/2727, 10-11=-2507/1035	3	Bottom chord 0-9-0 oc, 2x3 Web connect All loads are except if note CASE(S) see provided to c unless othern Wind: ASCE Vasd=91mpl Ke=1.00; Ca exterior zone Interior (1) 5- 31-0-4, Interi and right exp exposed;C-C reactions sho	Is connected as foll - 1 row at 0-9-0 oc ted as follows: 2x3 considered equally das font (F) or ban- tistribute only loads wise indicated. 7-16; Vult=115mph ; TCDL=6.0psf; BC t. II; Exp C; Enclose and C-C Exterior(2 1-4 to 24-2-13, Ext or (1) 31-0-4 to 32- osed ; end vertical for members and for why; Lumber DOL=	ows: 2 - 1 row applied ck (B) - nection noted (3-sec DL=6.1 - d; MW 2E) 0-1 erior(2I 1-0 zor left and orces a 1.60 pl	x4 - 1 row at at 0-9-0 oc. d to all plies, face in the LO/ s have been as (F) or (B), cond gust) Dpsf; h=35ft; FRS (envelope -4 to 5-1-4, R) 24-2-13 to le; cantilever led f right & MWFRS for ate grip	AD e) eft				PE-2022	AISSOLUTION	

Continued on page 2 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSITPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

DOL=1.60

 \mathbf{V} MiTek

16023 Swingley Ridge Rd Chesterfield, MO 63017

tone

RF FOR CONST NOTED ON PLANS REVIEW EXELORMENT SERVICES S SUMMIT, MISSOURI rBuilding Supply (Springhill, KS), Spring 9/2023 11:05:18

	Truss Type		Qty	Ply	Roof	
	Half Hip Girder		1	2	Job Reference (optional)	159339921
lills, KS - 66083.		Run: 8.63 E Jun 15.2	023 Print: 8.0	630 E Jun 15	2023 MiTek Industries, Inc. Wed Jul 05 09:10:52	Page: 2

Run: 8.63 E. Jun 15 2023 Print: 8.630 E. Jun 15 2023 MiTek Industries. Inc. Wed Jul 05 09:10:52 ID:_SwThsMShWVpdp3CNlbxeZzRpTJ-WjBENKTqAd09la_YXuhtvpht?b4pR9yH17cvoEz?9iJ

Page: 2

11) Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 77 lb down and 38 lb up at 1-1-4, 77 lb down and 38 lb up at 3-1-4, 77 lb down and 38 lb up at 5-1-4, 57 lb down at 7-1-4, 57 lb down at 9-1-4, 207 lb down and 156 lb up at 11-1-4, 207 lb down and 156 lb up at 13-1-4, 207 lb down and 156 lb up at 15-1-4, 77 lb down and 38 lb up at 17-1-4, 98 lb down and 30 lb up at 19-1-4, and 98 lb down and 30 lb up at 21-1-4, and 98 lb down and 30 lb up at 23-1-4 on top chord, and 167 lb down and 123 lb up at 1-1-4, 167 lb down and 123 lb up at 3-1-4, 167 lb down and 123 lb up at 5-1-4, 37 lb down at 11-1-4, 37 lb down at 13-1-4, 37 lb down at 15-1-4, 167 lb down and 123 lb up at 17-1-4, 294 lb down and 218 lb up at 19-1-4, 294 lb down and 218 lb up at 21-1-4, and 294 lb down and 218 lb up at 23-1-4, and 519 lb down and 286 lb up at 24-2-13 on bottom chord. The design/ selection of such connection device(s) is the responsibility of others.

LOAD CASE(S) Standard

Dead + Roof Live (balanced): Lumber Increase=1.15, 1) Plate Increase=1.15

Uniform Loads (lb/ft)

Vert: 1-8=-70, 8-12=-70, 22-24=-20, 14-21=-20, 11-13=-20

Concentrated Loads (lb)

Vert: 4=-151 (B), 20=-19 (B), 17=-272 (B), 16=-495 (B), 28=-29 (B), 29=-29 (B), 30=-29 (B), 31=-19 (B), 32=-19 (B), 33=-151 (B), 34=-151 (B), 35=-29 (B), 39=-152 (B), 40=-152 (B), 41=-152 (B), 42=-19 (B), 43=-19 (B), 44=-152 (B), 45=-272 (B), 46=-272 (B)

	R CONSTRUCTION	<mark>ис</mark> w	Truss Type		Qty	Ply	Roof		
PE2351,QRN	IENT SERVICES		Half Hip		1	1	lob Deferences (ional)	159339922
Premier Building	Supply (Springhill, KS), Sp	ring Hills, KS - 66083,		Run: 8.63 E Jun	15 2023 Print: 8	3.630 E Jun 15	2023 MiTek Industries	Inc. Wed Jul 05 09:11:	14 Page: 1
10/19/20	23 11:05:18	8		ID:spNh?F4KVXB	v0vxEgJJP1bz	Rp2Z-pKeIPX	tW?2ldGp9xx7Vutgu_G	iFI3?TpYsQBdrz?9hx	
	5-	-6-8	10-8-4	14-0-0 16-4	-7	21-11-6	25-5-1	31-2-0	0 32-1-0
	5.	-6-8	5-1-12	3-3-12 2-4	-/ ·	5-6-15	3-5-12	5-8-1	^b 0-11-0
<u>0</u> 00	4x6 = 1	4x6= 252	1.5x4 i 3	∎ 3x4= 4 26	3x4=		^{6×6} ≈	12	
,					 /Я			77	
				//				3x4	
	-						í II	×	
-5-5 5-1 4-1								21	
Q	ىٰ ئ					/			28 8
			17]			9 <u>.</u>
÷ +	20 ₽		8 18	$\dot{\phi}$ 16	8 <mark>15</mark>	3	14	13 1 5 1 1	
<u> </u>	⊠ 3x4 ∎	19	1.5x4	4X4 =	1.5x4	Ш	3X4=	1.0X4 II MT18HS 5-1	⊠ ~ C 8 u 4x6=
		4x8=		7x8=	1.5x4 I	1.5x4 I			3x4 II
					3x4=	5×4			-
	-	C 0	40.0.0	10011 15 5	16-4-7	00 0	0 05 5 1	00.40.0	24.2.0
	5.	-6-8	5-3-0	13-9-14 15-9-8 3-0-6 1-11-1	0 1-8-9	3-11-	0 25-5-1	3-5-7	2-3-8
					0-6-15				
Scale = $1:59.4$ Plate Offsets ()	(Y) [2.0-2-8 0-2-0] [8.0-3-0 0-2-51 [8:0-	5-4 Edge] [9:Edge 0-0-1	3] [12:0-4-0 Edge	[17·0-3-8 F	dae] [19:0-3	-0.0-1-8]		
	(, 1). [2.0 2 0,0 2 0], [, [12:0 1 0,Eugo	,, [11:0 0 0,E				
Loading TCLL (roof)	(psf) 25.0	Spacing Plate Grip DOL	2-0-0 1.15	TC	0.92 Ver	-L t(LL) -0.	ın (loc) l/defl 18 14-15 >999	L/d PLATES 240 MT20	GRIP 197/144
TCDL	10.0	Lumber DOL	1.15	BC	0.90 Ver	t(CT) -0.	34 15-17 >999	180 MT18HS	244/190
BCLL BCDL	0.0 10.0	Rep Stress Incr Code	YES IRC2018/TPI2014	Matrix-S	0.56 Hor	z(CT) 0.	24 9 n/a	n/a Weight: 162	lb FT = 20%
LUMBER			2) Wind: ASCE	7-16; Vult=115mpl	n (3-second o	gust)			
TOP CHORD	2x4 SP No.2 *Except*	6-10:2x6 SPF No.2	Vasd=91mpt	n; TCDL=6.0psf; B0	CDL=6.0psf;	h=35ft;			
BOICHORD	16-8:2x4 SP No.2 "Except" 16-8:2x4 SP 2400F 2.	0E	exterior zone	and C-C Exterior	2E) 0-1-4 to	(envelope) 5-1-4,			
WEBS WEDGE	2x3 SPF No.2 Right: 2x4 SP No.2		Interior (1) 5- 29-0-3, Interi	-1-4 to 21-11-6, Exi ior (1) 29-0-3 to 32-	erior(2R) 21 1-0 zone; ca	-11-6 to ntilever left			
BRACING			and right exp	osed ; end vertical	left and right	ERS for			
TOP CHORD	Structural wood sheat 2-2-0 oc purlins, exce	hing directly applied opt end verticals, an	d reactions sho	own; Lumber DOL=	1.60 plate gi	ip			
	2-0-0 oc purlins (3-3-1	4 max.): 1-6.	DOL=1.60 3) Provide adec	quate drainage to p	revent water	ponding.			
	bracing, Except:		4) All plates are	MT20 plates unles	ss otherwise	indicated.			
WEBS	8-9-4 oc bracing: 11-1 1 Row at midpt 1	2. -20, 2-19	chord live loa	ad nonconcurrent w	vith any other	live loads.			
REACTIONS	(lb/size) 9=1467/0-3	-8, 20=1390/0-3-8	 Provide mechanication bearing plate 	hanical connection capable of withsta	(by others) of Inding 301 lb	of truss to uplift at			
	⊠ax Horiz 20=-245 (L Max Uplift 9=-174 (LC	U 10) 13), 20=-301 (LC 8	joint 20 and	174 lb uplift at joint	9.	2019			
FORCES	(lb) - Max. Comp./Max	k. Ten All forces 2	50 International	Residential Code s	sections R50	2.11.1 and			
TOP CHORD	(iii) or less except whe 1-20=-1341/319, 1-25	en snown. =-1138/240,	R802.10.2 ar 8) Graphical pu	nd referenced stand rlin representation	dard ANSI/TI does not der	PI 1. Dict the size			
	2-25=-1138/240, 2-3= 3-4=-2095/373 4-26=	-2086/372, -2095/373.	or the orienta	ation of the purlin a	long the top	and/or			
	5-26=-2095/373, 5-6=	-2344/409,	LOAD CASE(S)	Standard					1000
	27-28=-2868/317, 8-2	-2790/337, 8=-2898/315,						S OF	MISS
BOT CHORD	8-9=-1343/168 19-20=-178/291 3-17	=-358/164						ENTE	N'200
20.01010	16-17=-346/2343, 15-	16=-346/2343,						A ST NATI	HANIEL YE
	14-15=-168/1910, 13- 12-13=-224/2526, 8-1	14=-224/2527, 2=-167/2019,						and 12	
WEBS	9-11=-57/507 1-19=-351/1634 2-19	=-1274/347						WANT	1 steak
	17-19=-245/1092, 2-1	7=-227/1282,	<u>_</u>					1 million	BER
	6-14=-60/514, 7-14=- 5-17=-322/80, 5-15=-2	/ / 2/192, 7-13=0/30 294/231, 6-15=-238	ь, /665					Wer PE-202	22042259
NOTES	d roof live leads have h	oon oonoidered f						SSIC STON	AL ENGIL
 Unbalance this design 	u foot live loads have b	een considered for						and the second	AL
Ū									July 5,2023

Even power Hait Ho 1 Job Defense to doctoral Inside Construction Part Ho Lob Defense to doctoral Part Ho		CONSTRUCTI N PLANS REVIE	ON W	Truss Type		Qty	Ply	Roof			
Example End State A state State A stat	DE2551-QRM	ENT SERVICES		Half Hip		1	1	Job Reference (optional)		159339923
Limited R Control Contro Control Control <	Premier Building 10/19/20	Supply (Springhill, KS), Sp 23 11:05:1	oring Hills, KS - 66083, 8		Run: 8.63 S Apr 6 ID:20eYaG1uup8i?2	2023 Print: 8.6 2TQoPExkFzR	630 S Apr 62 p1K-RfC?Psl	2023 MiTek Industrie 370Hq3NSgPqnL8w	s, Inc. Wed Jul 3uITXbGKWrC	05 09:05:46 Doi7J4zJC?f	Page: 1
More Home State State 100 <td< th=""><th></th><th>ŀ</th><th>6-2-11 6-2-11</th><th>12-1-13 5-11-3</th><th>16-0-0 3-10-3</th><th>1 17-11-12 1-11-12</th><th>9-7-15</th><th>24-3-3 4-7-5</th><th> </th><th><u>31-2-0</u> 6-10-13</th><th>32-1-0 </th></td<>		ŀ	6-2-11 6-2-11	12-1-13 5-11-3	16-0-0 3-10-3	1 17-11-12 1-11-12	9-7-15	24-3-3 4-7-5		<u>31-2-0</u> 6-10-13	32-1-0
Sense 1385 Prine Offsets (X, Y): (6:0-2-8.0-1-12); (8:0-5-0.0-3-3); (9:Edge.0-1-9); (9:0-2-9.Edge); (14-0-2-4.0-4-12); (15:Edge.0-2-8] Prine Offsets (X, Y): (6:0-2-8.0-1-12); (8:0-5-0.0-3-3); (9:Edge.0-1-9); (9:0-2-9.Edge); (14-0-2-4.0-4-12); (15:Edge.0-2-8] DEFL in in (0:0): I/deft Ud PLATES GRIP TCDL 10.0 25.0 Plate Grip DOL 1.15 TC 0.58 Vert(LL) -0.15 11 >999 180 BCDL 10.0 Code IRC2018/TTP2014 Marx-S Marx-S Weight: 191 Ib FT = 20% LUMBER 10.0 244 SP No.2 "Except" 6-10:26 SP 2400F 26 Vert ASC 27-16; Vul=115mph (3-eccord gust) Vac4-91mph: TCDL=6.0gst; BCDL=6.0gst; BCDL=6.0g	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	5x5=	20 2 20 5 20 5 20 20 20 20 20 20 20 20 20 20	= 12-1-13 5-11-3	321 321 16 4x8= 18-1-(5-11-3)		x4 = 65 75 15 7x8= 19-9-3 1-8-3	24-3-3 4-6-1	12 7 7 7 7 17 7 12 12 12	2223 11 11 15 0-8 -5	$3x10 \text{ II}$ $8 \qquad 9 \qquad 10 \qquad 10$ $x10 = 31-2-0 \qquad 1$ $31-2-0 \qquad 1$
Loading (psf) TCLL (roof) Spacing 25.0 Parte Grp DOL 1.15 CSI TC 0.5 DFL in (loc) Videl L/d PLATES GRIP TCDL 10.0 10.0 Rep Stress Incr YES BC 0.46 Vert(L) -0.15 11 -999 10/k PLATES GRIP BCDL 10.0 Rep Stress Incr YES BC 0.46 Vert(L) -0.15 11 -999 10/k PLATES GRIP LUMBER 10.0 Rep Stress Incr YES Matrix:S Weight: 191 Ib FT = 20% LUMBER 10.0 Index Stress FT = 10:2AS SP A0.2 Except '15:5.2X3 SPF No.2 Matrix:S Wind: ASCE '16: Vuli=116mph (3:second gust) Vasd-94 Trip:1:10:10:10:10:10:10:10:10:10:10:10:10:1	Scale = 1:59.5 Plate Offsets (X	, Y): [6:0-2-8,0-1-12]	[8:0-5-0,0-3-3], [9:E	dge,0-1-9], [9:0-2-9,Edge	9], [14:0-2-4,0-4-12]	, [15:Edge,0	-2-8]				
LUMBER 1) Unbalanced roof live loads have been considered for this design. TOP CHORD 2x4 SP No.2 "Except" 15-5:2x3 SPF No.2, 14-3:2x6 SP 2400F 2.0E WEBS 2x3 SPF No.2 "Except" 15-5:2x3 SPF No.2, 14-3:2x6 SP 10-2, 2"Except" 15-5:2x3 SPF No.2, 2"Except" 15-5:2x3 SPF No.2 WEDS X33 SPF No.2 "Except" 15-5:2x3 SPF No.2, 14-3:2x6 SP 2400F 2.0E BOT CHORD Structural wood sheathing directly applied to 15-10: 0; Exclosed; MWFRS (envelope) BOT CHORD Structural wood sheathing directly applied to 10-0-0 chrose 3: MWFRS (or reaction show); Lumber DOL=1.60 plate grip DOL=1.60 plate grip DOL=1.60 plate grip DOL=1.60 plate grip DOL=1.60 BOT CHORD Rigid celling directly applied to 10-0-0 chrose 3: AMFR S (or reaction show); Lumber DOL=1.60 plate grip DOL=1.60 plate grip DOL=1.60 plate grip DOL=1.60 JOINTS 1 Brace at 10(s): 1, 1-19, 2:17 JOINTS 1 Brace at 10(s): 1, 1-22 -27 (LC 8) Max Uptil 9=-302 (LC 8) Max Koriz 19=-302 (LC 8) Max VpH 9=-0-3.4, 19=-0-3.8 Max Uptil 9=-4187 (LC 1), 19=-1389 (LC 1) 19=-1333221, 1-22-1010/198, 22-102 (LC 8) Max Uptil 9=-302 (AL 8) 9-1481 (LC 1), 19=-2367 (LC 8) Max Uptil 9=-1767 (X 12), 3-56-77 (X 4), 13=-102 (X 12), 13=-27 (X 12), 13=-102 (Loading TCLL (roof) TCDL BCLL BCDL	(psf) 25.0 10.0 0.0 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018/TPI2014	CSI TC BC WB Matrix-S	0.58 Vert(0.46 Vert(0.85 Horz	- LL) -0. CT) -0. (CT) 0.	in (loc) l/de 15 11 >99 27 11 >99 20 9 n/a	fl L/d PL 9 240 MT 9 180 a n/a We	ATES 720 eight: 191 lb	GRIP 244/190 FT = 20%
	LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD WEBS TOP CHORD FORCES TOP CHORD BOT CHORD WEBS	2x4 SP No.2 *Except 2.0E 2x4 SP No.2 *Except 14-8:2x6 SP 2400F 2 2x3 SPF No.2 *Except Right: 2x4 SP No.2 Structural wood shea 5-3-8 oc purlins, exc 2-0-0 oc purlins (3-11 Rigid ceiling directly a bracing, Except: 6-0-0 oc bracing: 9-1 1 Row at midpt 1 Brace at Jt(s): 1, 12 size) 9=0-3-8, 19 Max Horiz 19=-302 (L Max Uplift 9=-187 (LC Max Grav 9=1481 (LC (b) - Maximum Comp 1-19=-1333/321, 1-2= 2-3=-1488/251, 3-5=- 5-6=-1769/270, 6-7=- 7-8=-2756/273, 8-9= 17-19=-215/336, 16- 15-16=-10/134, 14-15 13-14=-97/1674, 12- 8-12=-120/2394, 8-1 3-14=-73/402, 6-14= 2-17=-1023/333, 1-17 2-16=-152/740, 3-16=	* 6-10:2x6 SP 2400F * 15-5:2x3 SPF No.2 .0E thing directly applied ept end verticals, an -13 max.): 1-6. applied or 10-0-0 oc 1. [-19, 2-17 9=0-3-8 C 8) C 13), 19=-297 (LC 8 C 1), 19=-1389 (LC 1 pression/Maximum =-1010/198, 1770/270, 2068/258, 956/140, 9-10=0/14 17=-219/1010, 5=0/106, 5-14=-345/ 3=-120/2395, I=0/71, 9-11=-38/0 206/440, 7=-324/1522, =-701/204,	 Unbalanced ra this design. Wind: ASCE 7 Vasd=91mph; Ke=1.00; Cat. exterior zone 1 Interior (1) 5-1 26-8-13, Interi desposed;C-C reactions show DOL=1.60 Provide adequ All plates are 4 This truss has chord live load All bearings a capacity of 56 Provide mech bearing plate joint 19 and 13 This truss is d International F R802.10.2 and Graphical purl or the orientat bottom chord. LOAD CASE(S) 	cof live loads have b 7-16; Vult=115mph i TCDL=6.0psf; BCD II; Exp C; Enclosee and C-C Exterior(2E -12 to 19-7-15, Ext ior (1) 26-8-13 to 32 exposed ; end vertic for members and fo wn; Lumber DOL=1 uate drainage to pre 3x4 MT20 unless of been designed for d nonconcurrent wit re assumed to be S 5 psi. anical connection (b capable of withstam- 87 lb uplift at joint 9 esigned in accordan Residential Code sed d referenced standa in representation do ion of the purlin alou Standard	(3-second gu (3-second gu (2-second gu (3-second gu (2-second gu (2-se	ered for ust) =35ft; envelope) 5-1-12, -7-15 to antilever ght RS for o cated. ottom ive loads. ning truss to uplift at 2018 .11.1 and 1. ct the size nd/or		to the second seco	NATHA PE-2022	MISSOUTH NIEL SER 042259

AS NOTED O		W	Truss Type		Qty	Ply	Roof			
DEXEL QR	MENT SERVICES		Half Hip		1	1			N	159339924
Premier Building	AMIT, MISSOURI	oring Hills KS - 66083		Run: 8 63 S Apr 6 2	023 Print: 8	630 S Apr. 6	2023 MiTek In	dustries Inc. V	ll) /ed. lul 05 09:05:47	Page: 1
10/19/20	23 11:05:1	8		ID:JvvM0rnrlMQ7uK3	BloMKx6qzR	p?3-RfC?Ps	B70Hq3NSgPq	nL8w3ulTXbG	KWrCDoi7J4zJC?f	1 496. 1
		5-11-13 5-11-13	11-8-3 5-8-5	17-4-8		2	24-1-8 6-9-0		<u>31-2-0</u> 7-0-8	32-1-0 0-11-0
	5x5=	1.5	x4 II 3x4=	3x4=	5x5	=				
+ % +	1	16 2 N N N	317 ⊠ ⊠	4 ⊠ ⊠ ⊠	5	4				
& O		8	[ŧ]	<u>₹</u>				3x4 👟		
							3x4	1.		
								$\frac{12}{17}$		
							-M	718		
8-4 8-4	8-4		\$						3x4 👟	
ထ်ထ်	ά								19	
									8	3x4
					$\parallel \parallel$	//	/			
										9 10 °
$\perp \perp$	⊥ 15 ∎	<u>, îi</u>		(¢		/		8		
	3x4 u	14		13	12			11		4x6 u
		4x8	3=	3x4=	= 3x8	=		1.5x4 I		
		5-11-13	17	<u>-5-12</u>			24-1-8		31-2-0	———————————————————————————————————————
Scale = 1:59.7		5-11-13	11	-5-15			5-7-12		7-0-8	
Plate Offsets (2	X, Y): [14:0-3-12,0-1-8	3]								
Loading	(psf)	Spacing	2-0-0	CSI	DEF	L	in (loc)	l/defl L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15	TC C	.90 Vert	(LL) -0	0.36 12-14	>999 240	MT20	244/190
BCLL	0.0	Rep Stress Incr	YES	WB C	.69 Vert .90 Horz	(CT) -(z(CT) ().74 12-14).06 9	>502 180 n/a n/a		
BCDL	10.0	Code	IRC2018/TPI2014	Matrix-S					Weight: 163 lb	FT = 20%
LUMBER			2) Wind: ASCE	7-16; Vult=115mph (3	3-second g	just)				
TOP CHORD	2x4 SP No.2		Vasd=91mpl Ke=1 00 [.] Ca	n; TCDL=6.0psf; BCD t_II: Exp_C: Enclosed:	L=6.0psf; ł MWFRS (n=35ft; (envelope)				
WEBS	2x3 SPF No.2 *Excep	ot* 15-1:2x4 SP No.	2 exterior zone	and C-C Exterior(2E) 0-1-12 to	5-1-12,				
SLIDER	Right 2x4 SP No.2	4-0-14	Interior (1) 5- 24-5-6, Interi	 1-12 to 17-4-8, Extern or (1) 24-5-6 to 32-1-0 	or(2R) 17-) zone; cai	4-8 to ntilever left				
TOP CHORD	Structural wood shea	thing directly applie	d, and right exp	osed ; end vertical lef	t and right					
	except end verticals,	and 2-0-0 oc purlins	reactions sho	own; Lumber DOL=1.6	ces & ivivi 60 plate gr	FRS for ip				
BOT CHORD	Rigid ceiling directly	applied or 10-0-0 oc	DOL=1.60	nuato drainago to pre-	iont water	ponding				
WEBS	bracing. 1 Row at midpt	1-15. 2-14 4-14 4-1	2 4) All plates are	and an analyse to prev 3x4 MT20 unless oth	erwise ind	licated.				
REACTIONS	(size) 9=0-3-8, 1	5=0-3-8	5) This truss ha	s been designed for a	10.0 psf b anv other	live loads				
	Max Horiz 15=-359 (L	C 10)	6) All bearings	are assumed to be SF	21650F 1.	5E crushing	9			
	Max Grav 9=1461 (Le	C 1), 15=1395 (LC	 capacity of 5 7) Provide measurement 	65 psi. hanical connection (b	v others) o	f truss to				
FORCES	(Ib) - Maximum Comp	pression/Maximum	bearing plate	capable of withstand	ing 295 lb	uplift at				
TOP CHORD	1-15=-1364/299, 1-2=	=-835/201,	joint 15 and 2 8) This truss is	21∠ lb uplift at joint 9. designed in accordan	ce with the	2018				
	2-4=-835/201, 4-5=-1	305/266,	International	Residential Code sec	tions R502	2.11.1 and				
BOT CHORD	14-15=-261/381, 12-	·∠140/287, 9-10=0/7 14=-172/1208,	R802.10.2 a 9) Graphical bu	na reterenced standar rlin representation do	a ANSI/TF es not dep	יו 1. ict the size				
WERS	11-12=-122/1726, 9-1	11=-122/1726	or the orienta	ation of the purlin alon	g the top a	and/or				an
WEBS	1-14=-281/1449, 2-14 4-14=-664/189, 4-12	+=-439/210, =-103/307, 5-12=0/3	bottom choro	I. Standard					OF	MISS

LOAD CASE(S) Standard

NOTES

1) Unbalanced roof live loads have been considered for this design.

7-12=-567/277, 7-11=0/233

RE ASE FOR CONST UCTIO NOTED ON PLANS REVIEW Truss Type Qty Ply Roof A 159339925 EXELORMENT SERVICES Half Hip 1 1 Job Reference (optional) S SUMMIT, MISSOURI rBuilding Supply (Springhill, KS), Spring 9/2023 11:05:18 lills, KS - 66083, Run: 8.63 S Apr 6 2023 Print: 8.630 S Apr 6 2023 MiTek Industries, Inc. Wed Jul 05 09:05:47 Page: 1 ID:8yydFbIFJmAOOY6Jc64FgBzRoz6-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f 7-8-5 15-1-1 20-4-3 25-7-6 31-2-0 7-8-5 7-4-13 5-3-2 5-3-2 5-6-10 5x5= 3x4= 5x5= 0-1-13 φ 215 3 ÷ 14 \boxtimes \bowtie \boxtimes \boxtimes \boxtimes 10-1 -4x6 $\frac{12}{17}$ 4 16 4x6👟 10-1-8 9-11-11 5 9-11-11 9-11-11 k Ø Q 3x4= 4x6 6 मे 4x6👟 9 7 3-2-10 8x8= K. _]5 12 -0-0-13 X

3x4= 5x5= 7x8 🚅 31-2-0 || 0-3-8 15-5-0 30-10-8 7-8-5 15-2-5 23-1-12 0-2-11 7-8-5 7-6-1 7-8-12 7-8-12 Scale = 1:64.6

1**1**0

Plate Offsets (X, Y): [4:0-1-0,0-2-0], [5:0-3-0,Edge], [8:0-1-8,0-2-12], [9:0-4-0,0-3-13], [10:0-7-8,0-3-8]

12

TCLL (roof) TCDL BCLL BCDL	25.0 10.0 0.0 10.0	Plate Grip DOL Lumber DOL Rep Stress Incr Code	1.15 1.15 YES IRC2010	8/TPI2014 Wind: ASCE	TC BC WB Matrix-S 7-16; Vult=115mp	0.97 0.86 0.85 oh (3-sec	Vert(LL) Vert(CT) Horz(CT) ond gust)	-0.35 -0.73 0.43	9-10 9-10 8	>999 >510 n/a	240 180 n/a	MT20 MT18HS Weight: 177 lb	244/190 197/144 FT = 20%
TOP CHORD	2x4 SP No.2 *Excep 1.5E, 5-8:2x6 SPF N 2x4 SP No.2 *Excep	t* 3-5:2x4 SP 1650F lo.2 t* 9-8:2x4 SP 1650F		Vasd=91mph Ke=1.00; Cat exterior zone	n; TCDL=6.0psf; B t. II; Exp C; Enclos and C-C Exterior	CDL=6.0 sed; MW (2E) 0-1)psf; h=35ft; FRS (envelop 12 to 5-1-12,	pe)					
WEBS	1.5E 2x3 SPF No.2 *Exce 1.5E, 9-4,9-6,10-4:22	pt* 13-1:2x4 SP 165 x4 SP No.2	0F	Interior (1) 5- 22-1-15, Inte left and right	1-12 to 15-1-1, Ex rior (1) 22-1-15 to exposed ; end ver	terior(2F 31-0-10 tical left	R) 15-1-1 to zone; cantile and right	ever					
	Right 2x4 SP No.2	- 3-0-14		exposed;C-C reactions sho	for members and wn; Lumber DOL:	l forces & =1.60 pla	& MWFRS for ate grip	r					
BOT CHORD	Structural wood shea 2-2-0 oc purlins, exu 2-0-0 oc purlins (2-2 Rigid ceiling directly bracing. 1 Row at midpt (cize) 8- Mecha	athing directly applie cept end verticals, ar -0 max.): 1-3. applied or 9-8-3 oc 1-13, 2-12, 1-12, 4-1	d or nd 3) 4) 5) 0 6)	DOL=1.60 Provide adec All plates are This truss ha chord live loa Bearings are capacity of 5	uate drainage to p MT20 plates unle s been designed f ad nonconcurrent v assumed to be: J 65 psi.	orevent vess other for a 10.0 with any oint 13 S	vater ponding wise indicate) psf bottom other live loa SP No.2 crusł	g. d. ds. ning					
ALACTIONS	Max Horiz 13=-413 (Max Uplift 8=-201 (L Max Grav 8=1391 (L	LC 8) C 13), 13=-290 (LC 8 LC 1), 13=1391 (LC 7	7) 8) 1)	Refer to girde Provide mech bearing plate	er(s) for truss to tru hanical connection capable of withsta 201 lb uplift at joint	uss conr n (by oth anding 2 t 8	ections. ers) of truss t 90 lb uplift at	0					
	(lb) - Maximum Com Tension	pression/Maximum	9)	This truss is International	designed in accord Residential Code	dance w sections	th the 2018 R502.11.1 a	ind					
BOT CHORD	2-3=-1136/289, 3-4= 4-6=-5004/445, 6-8= 12-13=-296/425, 11- 10-11=-26/122, 9-1		10 LC	or the orienta bottom chorc DAD CASE(S)	nd referenced star rlin representation ation of the purlin a l. Standard	does no does no along the	t depict the s top and/or	size			Å	ATE OF M	AISSOL
WEBS	6-9=-532/4410 4-9=-174/3459, 6-9= 1-12=-290/1398, 2-1 3-11=-19/332, 4-10=	58/354, 2-12=-956/ 1=-171/491, 1634/301	345,									S NATHA	NIEL YE Y
NOTES											N		

1) Unbalanced roof live loads have been considered for this design.

ESSIONAL E July 5,2023

MT18HS 5x8 👟

RE FOR CONST NOTED ON PLANS REVIEW Truss Type Qty Ply Roof Α 159339926 EXELORMENT SERVICES Half Hip 1 1 Job Reference (optional) S SUMMIT, MISSOURI rBuilding Supply (Springhill, KS), Spring 9/2023 11:05:18 lills, KS - 66083, Run: 8.63 S Apr 6 2023 Print: 8.630 S Apr 6 2023 MiTek Industries, Inc. Wed Jul 05 09:05:47 Page: 1 ID:sVkyltfVxAHVqlgrAd4WDpzRoxM-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f 6-6-1 12-9-10 15-3-12 23-2-4 31-2-0 _ F 2-6-2 6-3-9 7-10-8 6-6-1 7-11-12 5x5= 1.5x4 **I** 6x6= 1.5x4 II

Scale =	= 1:70.7
---------	----------

Loading	(psf)	Spacing	2-0-0		csi		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15		тс	0.71	Vert(LL)	-0.51	9-10	>727	240	MT20	244/190
TCDL	10.0	Lumber DOL	1.15		BC	0.98	Vert(CT)	-0.96	9-10	>388	180	MT18HS	197/144
BCLL	0.0	Rep Stress Incr	YES		WB	0.98	Horz(CT)	0.66	8	n/a	n/a		
BCDL	10.0	Code	IRC20	18/TPI2014	Matrix-S		- (-)					Weight: 193 lb	FT = 20%
LUMBER				2) Wind: ASCE	7-16; Vult=115n	nph (3-seo	cond gust)						
TOP CHORD	2x4 SP No.2 *Except	ot* 3-5:2x4 SP 1650F	-	Vasd=91mp	n; TCDL=6.0psf;	BCDL=6.	0psf; h=35ft;						
	1.5E, 5-8:2x6 SP 24	100F 2.0E		Ke=1.00; Ca	t. II; Exp C; Encl		FRS (envelo	pe)					
BOT CHORD	2x4 SP 1650F 1.5E	*Except* 12-10:2x4	SP	exterior zone	and C-C Exterio	Dr(2E) U-1	-12 to 5-1-12	<u>,</u>					
WEDO	NO.Z	ont* 10 1:0v4 CD 040		17-9-10 Inte	rior (1) 17-9-10	CXLEIIOI (2	zone: cantil	lU aver					
WEDS	2X3 SPF NU.2 EXU 2 OF 10-6:2v4 SP 1	1650F 1 5F 9-6.2x4	10F SP	left and right	exposed : end v	ertical left	and right						
	No.2	10001 1.02, 0 0.244		exposed;C-0	for members ar	nd forces	& MWFRS fo	or					
SLIDER	Right 2x4 SP No.2 -	4-6-9		reactions sh	own; Lumber DC	L=1.60 pl	ate grip						
BRACING				DOL=1.60									
TOP CHORD	Structural wood she	athing directly applie	ed or	 Provide ade 	quate drainage to	prevent	water pondin	g.					
	3-11-8 oc purlins, e	except end verticals,	and <u>'</u>	 All plates are 	MT20 plates ur	less other	wise indicate	ed.					
	2-0-0 oc purlins (6-0	0-0 max.): 1-3.	ŧ	 I his truss has 	is been designed	tor a 10.	0 pst bottom						
BOT CHORD	Rigid ceiling directly	/ applied or 2-2-0 oc		Chord live loa	ad nonconcurren	t with any		ads. bing					
	bracing.			capacity of 5	65 nei	JUINT 12 3	SP INU.2 CIUS	ning					
WEBS	1 Row at midpt	1-12, 1-11, 2-11, 3-	11,	 Refer to aird 	er(s) for truss to	truss conr	nections.						
WEBS	2 Rows at 1/3 nts	5-10, 4-10 6-10	8	 Provide med 	hanical connecti	on (by oth	ers) of truss	to					
REACTIONS	(size) 8- Mech	anical 12-0-3-8		bearing plate	capable of with	standing 2	285 lb uplift a	t					
REACTIONS	(Size) 0= Mecha Max Horiz 12470	(C 8)		joint 12 and	210 lb uplift at jo	int 8.							
	Max Uplift 8=-210 (I	(C 13) 12 = -285 (I C)	8) (8)	 This truss is 	designed in acco	ordance w	ith the 2018						
	Max Grav 8=1391 (I C 1) 12=1391 (I C	1)	International	Residential Cod	e sections	s R502.11.1 a	and					
FORCES	(lb) - Maximum Con	noression/Maximum	.,	R802.10.2 a	nd referenced st	andard AN	NSI/TPI1.						
TORCES	Tension	npression/maximum		0) Graphical pu	riin representatio	on does no	ot depict the	size				2000	TO
TOP CHORD	1-12=-1343/303. 1-2	2=-677/306.		bottom chore	alion of the public	along the	e top and/or					OF N	Alson
	2-3=-680/307, 3-4=-	-1439/440,			Standard						9	4 TE	
	4-6=-1441/333, 6-8	=-5562/691			Standard						A	N	Mar Car
BOT CHORD	11-12=-414/535, 10	-11=-29/938,									a	S/ NAIHA	NIEL Y
	9-10=-546/5078, 8-9	9=-536/4952									X .	FO	x and
WEBS	1-11=-307/1338, 2-	11=-527/254,									KV	Left 1	
	3-11=-569/238, 3-10	U=-346/1053,									2/1	Alasia	
	4-10=-520/264, 6-10	0=-4103/000,										ALI IN ILINKUV	

NOTES

1) Unbalanced roof live loads have been considered for this design.

6-9=-308/3978

NUMBER

E

July 5,2023

PE-202204225

RSSIONAL

1

NOTED ON PL		W	Truss Type		Qty	Ply	Roof	
EXELORMEN	T SERVICES		Roof Special		4	1	Job Reference (optional)	159339927
Premier Building Supply	, KS), Springhill, KS), Sp 11:05:1	oring Hills, KS - 6608: 8	3,	Run: 8.63 S ID:2uQYdS?	Apr 6 2023 Print: 8 3LnoWB3pDpVb4N	8.630 S Apr IjzRoww-Rf	r 6 2023 MiTek Industries, Inc. Wed Jul 05 09:05:4 fC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJ	8 Page: 1 IC?f
		5-6-5	10-9-3	15-3-12	23-1-	12	31-2-0	
		4x6 =	7 ¹² 1.5x4 µ 2 1.5x4 µ 2	3 1 1 5-0 2-11	5x4 II 413 10 10 10 18HS 9x18 =	4x6 = 5	$5x8_{*}$ 6 $4x6_{*}$ 7 9 $4x6_{*}$ 7 $4x6_{*}$ $6x12_{*}$ $6x12_{*}$ 30-10-8 31-2-0 7.8-12 0 0 0 0 0 0 0 0	- 9-2-9
Scale = 1:76.7		0 0 0 40 0 0 0			0.0.01			
Plate Offsets (X, Y):	[5:0-3-0,Edge], [[6:0-2-12,0-2-0], [8	3:0-1-8,0-3-4], [9:0-9-0,0	0-3-13], [10:1-3-0,	0-2-8]		· · · · ·	
.oading	(psf)	Spacing	2-0-0 1 15	CSI TC	0.75 Ver	FL +(1 1)	in (loc) l/defl L/d PLATES	GRIP 197/144
	20.0		4.45					407/444

Loading	(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15		TC	0.75	Vert(LL)	-0.49	9-10	>759	240	MT20	197/144
TCDL	10.0	Lumber DOL	1.15		BC	0.95	Vert(CT)	-0.91	9-10	>406	180	MT18HS	197/144
BCLL	0.0	Rep Stress Incr	YES		WB	0.96	Horz(CT)	0.64	8	n/a	n/a		
BCDL	10.0	Code	IRC2018	3/TPI2014	Matrix-S					-		Weight: 204 lb	FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS SLIDER BRACING TOP CHORD BOT CHORD WEBS	2x4 SP No.2 *Excep 1.5E, 5-8:2x6 SP 24 2x4 SP 1650F 1.5E No.2 2x4 SP No.2 *Excep SPF No.2, 10-6:2x4 Right 2x4 SP No.2 Structural wood she 3-8-11 oc purlins, e Rigid ceiling directly bracing. 1 Bow at midot	t* 3-5:2x4 SP 1650F 00F 2.0E *Except* 12-10:2x4 S t* 2-11,10-4,11-1:2x; SP 1650F 1.5E - 4-6-13 athing directly applie xcept end verticals. applied or 2-2-0 oc 2-11 3-11 3-10 4-1	2) SP 3 d or 3) 4) 0 5)	Wind: ASCE Vasd=91mpl Ke=1.00; Ca exterior zone Interior (1) 5- 15-9-3, Interi and right exp exposed;C-C reactions sho DOL=1.60 All plates are Chris truss ha chord live loa Bearings are	7-16; Vult=115mp n; TCDL=6.0psf; B t. II; Exp C; Enclose e and C-C Exterior -1-12 to 10-9-3, Ex- ior (1) 15-9-3 to 31 oosed ; end vertical cor members and own; Lumber DOL e MT20 plates unle is been designed f ad nonconcurrent v assumed to be: J	bh (3-sec SCDL=6. sed; MW (2E) 0-1 xterior(2I 1-0-10 zc al left and d forces a =1.60 pl ess other for a 10. with any loint 12 \$	cond gust) Dpsf; h=35ft; FRS (envelop -12 to 5-1-12, R) 10-9-3 to one; cantileve d right & MWFRS for ate grip wise indicate 0 psf bottom other live loa SP No.2 crust	be) rleft d. ds.					
WEBS REACTIONS	2 Rows at 1/3 pts (size) 8= Mecha Max Horiz 12=-436 (Max Uplift 8=-221 (L Max Grav 8=1391 (L	1-12 6-10 nnical, 12=0-3-8 LC 8) C 13), 12=-186 (LC ⁷ _C 1), 12=1391 (LC 1	6) 7) (3) 8)	capacity of 5 Refer to gird Provide mec bearing plate joint 12 and 2 This truss is	65 psi. er(s) for truss to tri hanical connectior capable of withst 221 lb uplift at join designed in accorr Residential Code	uss conr n (by oth anding 1 it 8. dance w	nections. ers) of truss t 86 lb uplift at ith the 2018	0					
FORCES	(lb) - Maximum Com Tension	pression/Maximum		R802.10.2 a	nd referenced star	ndard AN	ISI/TPI 1.	nu					
TOP CHORD	1-2=-896/257, 2-3=- 4-6=-1439/330, 6-8= 1-12=-1362/229	925/400, 3-4=-1468/4 =-5553/702,	484, LC	AD CASE(S)	Sidnuaru							G OF M	AISS
BOT CHORD	11-12=-301/383, 10- 9-10=-525/4946, 8-9	-11=0/806, 9=-525/4943									Å	THE	A SOC
WEBS	2-11=-449/294, 3-11 3-10=-391/1144, 4-1 6-10=-4033/669, 6-9 1-11=-182/1055	=-306/182, 0=-562/299,)=-296/3922,									A	FOZ	K STATE
NOTES 1) Unbalanc this desig	ed roof live loads have n.	been considered for										PE-20220	BER DA2259

July 5,2023

	ONETRUCTION										
AS NOTED ON PI	ANS REVIEW	Truss Type		Qty	Ply	Ro	of				
DEXEL QRMENT	T SERVIGES	Roof Special		1	1	Jol	o Refere	ence (op	tional)		159339928
Premier Building Supply 10/19/2023	, MISSOURI (Springhill, KS), Spring tills 11:05:18	, KS - 66083,	Run: 8.63 S Apr 6 ID:xCjvcSSvOSb7k	2023 Pri vjX2UG3	nt: 8.630 S A PukzRowK-Rf0	pr 6 2023 C?PsB70H	MiTek In Iq3NSgP	dustries, qnL8w3ul	Inc. Wee	d Jul 05 09:05:48 WrCDoi7J4zJC?f	Page: 1
		5-6-5 10-9-3 5-6-5 5-2-13	<u>15-3-12</u> 4-6-9	23 7	<u>8-1-12</u> -10-0			<u>31-2-0</u> 8-0-4		—	
	21-2-21 4x6 = 1.5x4 µ	7 ¹² 1.5x4 µ 2 4 6 7 1.5x4 µ 2 1 8 11 4x8=	3 1.5x4 II 413 10 MT18HS	9x18 =	4x6, 5 	5x8. 6 9 MT18HS	9x18 =	4x6. 7 	* 4x6.* M	8 <u>s</u> s	
Scale = 1:77.1	⊢	5-6-5 9-1	10-11	7	-8-12			7-8-12		0-3-8	
Plate Offsets (X, Y):	[5:0-3-0,Edge], [6:0-2-12	2,0-2-0], [8:0-2-8,0-3-0], [9:0-9-0	,0-3-13], [10:1-3-0,0-2-8]								
TCLL (roof) TCLL (roof) TCDL BCLL BCDL	(psf) Spacin 25.0 Plate G 10.0 Lumbe 0.0 Rep St 10.0 Code	ng 2-0-0 Strip DOL 1.15 r DOL 1.15 ress Incr YES IRC2018/TPI2014	CSI TC BC WB Matrix-S	0.75 0.95 0.96	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.49 -0.91 0.64	(loc) 9-10 9-10 8	l/defl >759 >406 n/a	L/d 240 180 n/a	PLATES MT20 MT18HS Weight: 204 lb	GRIP 197/144 197/144 FT = 20%

LUMBER	
TOP CHORD	2x4 SP No.2 *Except* 3-5:2x4 SP 1650F
	1.5E, 5-8:2x6 SP 2400F 2.0E
BOT CHORD	2x4 SP 1650F 1.5E *Except* 12-10:2x4 SP
	No.2
WEBS	2x4 SP No.2 *Except* 2-11,10-4,11-1:2x3
	SPF No.2, 10-6:2x4 SP 1650F 1.5E
SLIDER	Right 2x4 SP No.2 4-6-13
BRACING	
TOP CHORD	Structural wood sheathing directly applied or
	3-8-11 oc purlins, except end verticals.
BOT CHORD	Rigid ceiling directly applied or 2-2-0 oc
	bracing.
WEBS	1 Row at midpt 2-11, 3-11, 3-10, 4-10,
	1-12
WEBS	2 Rows at 1/3 pts 6-10
REACTIONS	(size) 8=0-3-8, 12=0-3-8
	Max Horiz 12=-436 (LC 8)
	Max Uplift 8=-221 (LC 13), 12=-186 (LC 13)
	Max Grav 8=1391 (LC 1), 12=1391 (LC 1)
FORCES	(lb) - Maximum Compression/Maximum
	Tension
TOP CHORD	1-2=-896/257, 2-3=-925/400, 3-4=-1468/484,
	4-6=-1439/330, 6-8=-5553/702,
	1-12=-1362/229
BOT CHORD	11-12=-301/383, 10-11=0/806,
	9-10=-525/4946, 8-9=-525/4943
WEBS	2-11=-449/294, 3-11=-306/182,
	3-10=-391/1144, 4-10=-562/299,
	6-10=-4033/669, 6-9=-296/3922,
	1-11=-182/1055

NOTES

 Unbalanced roof live loads have been considered for this design. Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=35ft; Ke=1.00; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) 0-1-12 to 5-1-12, Interior (1) 5-1-12 to 10-9-3, Exterior(2R) 10-9-3 to 15-9-3, Interior (1) 15-9-3 to 31-0-10 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
 All plates are MT20 plates unless otherwise indicated.

- All plates are M120 plates unless otherwise indicated.
 This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- Bearings are assumed to be: Joint 12 SP No.2 crushing capacity of 565 psi, Joint 8 SP 1650F 1.5E crushing capacity of 565 psi.
- Bearing at joint(s) 8 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.
- Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 186 lb uplift at joint 12 and 221 lb uplift at joint 8.
- This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard

July 5,2023

	P CONST										
AS NOTED O	N PLANS	REVIEW		Truss Type		Qty	Ply	Roof			
PE2355-QR	MENT SER	VIGES		Roof Special		2	1	Job Refe	rence (optional	l)	159339929
Premier Building	Supply (Springh	nill, KS), Spring	Hills, KS - 66083,		Run: 8.63 S Apr 6	2023 Print: 8.	.630 S Apr 6	2023 MiTek I	Industries, Inc. W	ed Jul 05 09:05:49	Page: 1
10/13/20	2011.	00.10]		15-3-4	i∪iB26F3uYzł	23-1-1	ыллындзмSgF 2	rqn∟øw3uHXbG	KvvrCD0I7J4zJC?f	
			1-8-4	6-3-5 10-9-3 4-7-1 4-5-13	<u>12-11-15</u> 1 2-2-13 2-3-5	<u>9-1-10</u> 21 3-10-61-7	-1-9 -1-15	<u> 3</u> ℓ	1-2-0 3-0-4	4	
			1-0-4		6x6=		2-0-3				
		12-7-12 1-0-0 1-0-0 1-7-12 6-4-7	3x4 II 4x6 ¢ 2 1 21 20 3x4 II MT18HS 6x1 3 1-9-8 1-9-8	7^{12} $3x4 = 22^{3}$ 22^{3} $2^{2} = 3$ $x6 = \frac{10-9-3}{8-11-11}$	4 1.5x4 II 5 4x6 62: 4x6 62: 4x6 62: 4x6 7x8 8 8 8 8 8 8 8 8 8 8 8 8 8	3 4x6 7 1 12 23-1- 7-8-1	4x6 8 3 5 12 12	x4 II 9 2 x10= 30 7	4x6 10 4x6 MT18 MT18	-2-0 -2-0 -2-0 -12 -0-0 -1 	
Scale = 1:86.7			1-9-0	0-11-11	0-8-5 0-1-4 1-5-3 2-5-1	7-0-	12	/-	-0-12 ()-	3-8	
Plate Offsets (X, Y): [7:0-0-8	8,0-1-8], [8:0-	3-0,Edge], [11:0	-2-8,0-3-0], [12:0-5-0,0-	3-13], [13:0-5-12,0-2	-8], [16:0-3- I	8,0-3-4], [1	7:0-2-0,Edg	ge], [20:Edge,0	-2-0]	
Loading TCLL (roof) TCDL BCLL BCDL		(psf) Sp 25.0 Pla 10.0 Lur 0.0 Rej 10.0 Co	acing te Grip DOL nber DOL p Stress Incr de	2-0-0 1.15 1.15 YES IRC2018/TPI2014	CSI TC BC WB Matrix-S	0.79 Vert 0.91 Vert 0.91 Horz	:L (LL) -((CT) -(z(CT) (in (loc)).39 12-13).79 12-13).61 11	l/defl L/d >958 240 >471 180 n/a n/a	PLATES MT20 MT18HS Weight: 219 lb	GRIP 197/144 197/144 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS SLIDER BRACING TOP CHORD BOT CHORD WEBS REACTIONS FORCES TOP CHORD BOT CHORD	2x4 SP No.2 2x4 SP No.2 No.2, 12-11: 2x3 SPF No 13-6,12-9,21 Right 2x4 SF Structural w 2-1-13 oc pu Rigid ceiling bracing, Ex 3-9-5 oc bra 1 Row at mii (size) 1' Max Horiz 2' Max Uplift 1' Max Grav 1' (lb) - Maxim Tension 1-2=-451/21 4-5=-1193/4 6-7=-1374/3 9-11=-5277/ 20-21=-298/ 2-19=-209/1	2 *Except* 8-1 2 *Except* 20 2x4 SP 1650 2x4 SP 1650 2x4 SP 1650 2 *Except* I-1,13-16,7-1: P No.2 4-6- ood sheathin urlins, except directly appl ccept: cing: 19-20. dpt 1-21 1=-436 (LC 8 1=-221 (LC 1 1=1391 (LC 1 1=1391 (LC 1 1=1391 (LC 1 0, 2-3=-523/2 01, 5-6=-123 46, 7-9=-502 598, 1-21=-1 380, 19-20=-	11:2x6 SPF No.2 -2,17-15:2x3 SP F 1.5E 2:2x4 SP No.2 13 g directly applied t end verticals. ied or 10-0-0 oc , 3-19, 5-14, 4-11 , 7-13 -3-8) 3), 21=-186 (LC), 21=1391 (LC sion/Maximum 267, 3-4=-1104/3 5/367, 6/780, 479/204 1112/325, 6/890, 17-18=0//	 Unbalanced this design. Wind: ASCE Vasd=91mp Ke=1.00; Ca exterior zone Interior (1) 5 15-9-3, Inter and right exp exposed;C-C reactions sh DOL=1.60 All plates are chord live los Bearings are capacity of 5 Bearing at jc using ANSI/ designer sho Provide mec bearing plate joint 21 and This truss is International R802.10.2 a CAD CASE(2) 	roof live loads have 7-16; Vult=115mph n; TCDL=6.0psf; BCI t. II; Exp C; Enclosed and C-C Exterior(2I 1-12 to 10-9-3, Exterior ior (1) 15-9-3 to 31-0 oosed; end vertical II C for members and fc pown; Lumber DOL=1 a MT20 plates unless is been designed for ad nonconcurrent wit assumed to be: Join 65 psi, Joint 11 SP 1 65 psi, int(s) 11 considers p IPI 1 angle to grain f uld verify capacity o hanical connection (I a capable of withstan 221 Ib uplift at joint 1 designed in accorda Residential Code se nd referenced stands	(3-second g)L=6.0psf; h d; MWFRS (E) 0-1-12 to rior(2R) 100- -10 zone; ci aft and right prces & MW .60 plate gr otherwise i a 10.0 psf k h any other t 21 SP No 650F 1.5E arallel to gra- ormula. Bu i bearing su by others) o ding 186 lb 1. nce with the ctions R502 arad ANSI/TF	dered for just) h=35ft; (envelope) 5-1-12, 9-3 to antilever le: FRS for ip indicated. bottom live loads. .2 crushing crushing ain value ilding rface. f truss to uplift at 2 2018 2.11.1 and P1.	ft		STE OF I	MISSOUS
WEBS NOTES	2-19=-209/1 16-17=0/837 13-14=-3/77 11-12=-438/ 6-13=-194/3 1-20=-175/1 3-18=-94/29 5-16=-110/6 6-16=-499/3 7-12=-514/3	90, 18-19=-8 7, 15-17=0/98 4687 11, 9-12=-12 270, 3-19=-9 9, 4-18=-105 9, 4-16=-392 27, 7-13=-13 725	ox890, 17-18=0/4 8, 14-15=-4/86, /1902, 6/306, 56/208, /316, 14-16=-94, /808, 13-16=0/1 44/264,	207, LOAD CASE(S) /0, 133,	Standard					PE-2022	BER 042259

RF	LEASE FOR CONST	PLICTION						
AS	NOTED ON PLANS	REVIEW		Truss Type	Qty	Ply	Roof	
	DE251-QPMENT SER	Ų ÇĘS		Diagonal Hip Girder	1	1	Job Reference (optional)	159339930
1	Premier Building Supply (Springh 0/19/2023 11	nill, KS), Spring I	lills, KS - 66083,		Page: 1			

TJC37

╞

3-4-1	5-11-8	8-10-8
3-4-1	2-7-8	2-11-0

TJC37

Scale = 1:43.3

Plate Offsets (X, Y): [10:0-3-0,0-1-12]

Loading TCLL (roof) TCDL BCLL BCDL	(psf) 25.0 10.0 0.0 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 NO IRC2018	;/TPI2014	CSI TC BC WB Matrix-S	0.25 0.29 0.27	DEFL Vert(LL) Vert(CT) Horz(CT)	in 0.03 -0.04 -0.03	(loc) 7-8 7-8 6	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 43 lb	GRIP 197/144 FT = 20%
LUMBER TOP CHORD 2x4 SP BOT CHORD 2x4 SP WEBS 2x3 SP BRACING TOP CHORD Structu 5-7-12 BOT CHORD Rigid c bracing REACTIONS (size) Max Hor Max Upli Max Gra FORCES (lb) - M Tension TOP CHORD 9-10=-7 -3-4=-62 BOT CHORD 9-10=-1 7-8=-75 WEBS 2-8=-60 4-6=-63 NOTES 1) Wind: ASCE 7-16; ' Vasd=91mph; TCD Ke=1.00; Cat. II; Ex exterior 2R 5-11-8 right exposed ; end for members and fo Lumber DOL=1.60 2) This truss has beer chord live load none 3) Bearings are assum capacity of 565 psi. 4) Refer to girder(s) fo 5) Provide mechanica bearing plate capat joint 10 and 268 lb	No.2 No.2 *Excep No.2 *Excep ral wood she bc purlins, e eiling directly 6= Mecha z 10=196 (I ft 6=-268 (L(aximum Com) 15/354, 1-2= 8/299, 4-5=- 38/133, 8-9= 5/930, 6-7=- 13/826, 3-7=- 9/441 /ult=115mph _=6.0psf; BC p C; Enclosse -C Corner (3 to 8-9-4 zon vertical left a roes & MWF blate grip DC concurrent wi led to be: Joi r truss to trus connection of le of withstar uplift at joint (6)	t* 9-3:2x3 SPF No.2 pt* 10-2:2x4 SP No.2 athing directly applied xcept end verticals. applied or 6-7-7 oc nical, 10=0-4-7 .C 9) C 9), 10=-163 (LC 12 C 19), 10=547 (LC 1) pression/Maximum :0/43, 2-3=-1046/493, 126/82, 5-6=-109/107 :-26/61, 3-8=-85/164, 403/527 435/405, 4-7=-197/32 (3-second gust) DL=6.0psf; h=35ft; d; MWFRS (envelope d; Gr reactions show L=1.60 th any other live loads nt 10 SP No.2 crushir is connections. by others) of truss to ading 163 lb uplift at 3.	6) I or 8) 9) 10) 10) 11) 5, (n; 3. 19	This truss is a International R802.10.2 an Use Simpson equivalent sp from the left of face of bottor Fill all nail ho "NAILED" ind per NDS guid Hanger(s) or provided suffi Ib down and 2 98 lb up at 6 such connect In the LOAD of the truss a AD CASE(S) Dead + Roo Plate Increa Uniform Loa Vert: 1-2= Concentrate Vert: 7=-4 14=4 (F),	designed in accorda Residential Code s d referenced stand Strong-Tie TJC37 aced at 3-0-7 oc m and to 6-0-5 to com n chord. les where hanger is icates Girder: 3-10 lelines. other connection d cient to support co 36 lb up at 2-11-14 -0-5 on top chord. ion device(s) is the CASE(S) section, la case (S) section, la ton device(s) is the CASE(S) section, la case (S) section, la standard f Live (balanced): L se=1.15 ds (lb/ft) -70, 2-5=-70, 9-10: d Loads (lb) 9 (B), 4=-13 (B), 1: 15=-27 (F), 16=-47	ance wi ections ard AN (4 nail ax. stata ect tru is in corn d (0.14 evice(s rcentra; , and 1 The de respor pads ap) or bar .umber =-20, 6 22=-2 (F)	th the 2018 R502.11.1 a SI/TPI 1. 90-150) or ting at 2-11- ss(es) to bac tact with lun 8" x 3") toe-) shall be ted load(s) 7 58 lb down a sign/selectic asibility of oth oplied to the sk (B). Increase=1. -8=-20), 13=-55 (F)	and .14 ck aber. .nails 130 and on of hers. face .15,),				STONA PE-20220	MISSOLUE BER 042259 L ENGINE

PELEASE FOR CONSTRUCTION			-		
AS NOTED ON PLANS REVIEW	Truss Type	Qty	Ply	Roof	
DEXELOBMENT SERVICES	Diagonal Hip Girder	1	1	Job Reference (optional)	159339931
Premier Building Supply (Springhill, KS), Spring Hill	lls, KS - 66083, R	un: 8.63 S Apr 6 2023 Print: 8.6 B2vmnUZVd2xNvZ2s pz.JwLzB	30 S Apr 62	2023 MiTek Industries, Inc. Wed Jul 05 09:05:50 sB70Ha3NSaPanL8w3uITXbGKWrCDoi7.J4zJC?f	Page: 1

Scale = 1:44.6

Loading FCLL (roof) FCDL BCLL BCDL	(psf) 25.0 10.0 0.0 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 NO IRC2018	8/TPI2014	CSI TC BC WB Matrix-P	0.40 0.49 0.36	DEFL Vert(LL) Vert(CT) Horz(CT)	in 0.05 -0.06 -0.01	(loc) 5-6 5-6 5	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 43 lb	GRIP 244/190 FT = 20%	
LUMBER FOP CHORD WEBS BRACING FOP CHORD BOT CHORD REACTIONS FORCES FOP CHORD BOT CHORD WEBS NOTES I) Wind: ASC Vasd=91n	2x4 SP No.2 2x4 SP No.2 2x3 SPF No.2 *Exce Structural wood she 6-0-0 oc purlins, exi Rigid ceiling directly bracing. (size) 5= Mecha Max Horiz 7=214 (LC Max Uplift 5=-268 (L Max Grav 5=566 (LC (lb) - Maximum Com Tension 2-7=-528/360, 1-2=C 3-4=-248/113, 4-5=- 6-7=-424/234, 5-6=- 2-6=-200/619, 3-6=- CE 7-16; Vult=115mph nph; TCDL=6.0psf; BC	pt* 7-2:2x4 SP No.2 athing directly applie cept end verticals. applied or 8-7-12 oc nical, 7=0-4-7 2 28) C 9), 7=-166 (LC 12) C 9), 7=548 (LC 1) pression/Maximum 1/43, 2-3=-694/278, 137/130 428/533 46/193, 3-5=-594/42 ⁻ (3-second gust) DL=6.0psf; h=35ft;	7) d or 9) 10 11 LC 1)	Use Simpsoi equivalent si from the left face of botto Fill all nail ho "NAILED" im- per NDS gui) Hanger(s) or provided suf lb down and 70 lb up at 6 such connec) In the LOAD of the truss a DAD CASE(S) Dead + Roo Plate Increa Uniform Lo Vert: 1-2 Concentrat Vert: 10= 15=-7 (B	n Strong-Tie TJC37 paced at 3-0-7 oc n end to 6-0-5 to com m chord. bles where hanger i dicates Girder: 3-10 delines. other connection of ficient to support cc 86 lb up at 2-11-1. 5-0-5 on top chord. tion device(s) is the CASE(S) section, are noted as front (I Standard of Live (balanced): aase=1.15 ads (lb/tt) =-70, 2-4=-70, 5-7= ed Loads (lb) =-2 (B), 11=-10 (F),), 16=-75 (F), 17=-	7 (4 nail nax. sta nect tru is in cor od (0.14 device(s oncentra 4, and 1 The de e respor loads a F) or ba Lumber =-20 12=-18 108 (B)	30-90) or tring at 2-11- ss(es) to fror tact with lum 8" x 3") toe-I) shall be ted load(s) 1 43 lb down a sign/selectio sibility of oth pplied to the I ck (B). Increase=1.	14 nt ber. nails 30 and n of ners. face 15,						

- Vaid=35CE 7-10; Vuit=115riph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=35ft; Ke=1.00; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone and C-C Corner (3) -1-4-11 to 5-8-2, Exterior(2R) 5-8-2 to 8-9-4 zone; cantilever left and right exposed; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
 Bearings are assumed to be: Joint 7 SP No.2 crushing capacity of 565 psi.
- 4) Refer to girder(s) for truss to truss connections.
- 5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 166 lb uplift at joint 7 and 268 lb uplift at joint 5.
 6) This truss is designed in accordance with the 2018
- 6) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

July 5,202

AS NOTED ON PLANS REVIEW	Truss Ty	/pe	Qty	Ply	Roof	
DEXELORMENT SERVICES	Half Hi	o Girder	1	1	Job Reference (optional)	159339932
Premie Building Supply (Springhill, KS), Spring 10/19/2023 11:05:19	lills, KS - 66083,	Run: 8.63 ID:kchcVp	S Apr 6 2023 Print: 8 FsRw9aP9ktRRvddxz	3.630 S Apr RorQ-RfC?F	6 2023 MiTek Industries, Inc. Wed Ju PsB70Hq3NSgPqnL8w3uITXbGKWrC	l 05 09:05:51 Page: 1 Doi7J4zJC?f
4-4-12 4-4-12 NAILED NAILEI 3x4 ⊪	9-2-15 4-10-3 D NAILED NAILED NAI 4x6=	<u> 14-2-14</u> 4-11-15 LED NAILED NAILED № 4x8= 3x	19-2-13 4-11-15 NAILED NAILED M 4= 4x4=	NAILED NA	24-2-13 27-6-10 4-11-15 3-3-14 AILED NAILED 6x6=	31-2-0 32-1-0 3-7-6 0-11-0
$\begin{array}{c} 0 \\ 0 \\ 0 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\$						
ـــــــــــــــــــــــــــــــــــــ	33 34 ^{4x6} II 7: NAILED NAILED NAI	16 35 36 15 x8= 4x4 LED ^{NAILED} NAILED	14 37 = _{6x6} = ^{NAILED}	13 3x4= NAILED NA	38 39 12 1 8x8= 3 AILED NAILED	1 ⊠ ` O x4 ⊪ MT18HS 5x8 ⊪
NAILE	C	1	AILED		Special	
<u> 4-3-0</u> 4-3-0	<u>9-2-15</u> 4-11-15	4-11-15	<u>19-2-13</u> 4-11-15		24-4-1 27-6-10 5-1-3 3-2-10	31-2-0 3-7-6

Scale = 1:60.9

Plate Offsets ((X, Y): [5:0-2-0,Edge]], [7:0-3-0,0-2-5], [9:E	Edge,0-1-0	, [16:0-2-8,0-3-	-8], [18:0-7-0,Edge	e], [19:Eo	dge,0-2-8]							
Loading TCLL (roof) TCDL	(psf) 25.0 10.0	Spacing Plate Grip DOL Lumber DOL	2-0-0 1.15 1.15		CSI TC BC	0.96 0.83	DEFL Vert(LL) Vert(CT)	in 0.28 -0.43	(loc) 13-15 13-15	l/defl >999 >854	L/d 240 180	PLATES M18AHS MT20	GRIP 142/136 197/144	
BCLL BCDL	0.0 10.0	Rep Stress Incr Code	NO IRC201	8/TPI2014	WB Matrix-S	0.93	Horz(CT)	0.09	9	n/a	n/a	MT18HS Weight: 185 lb	244/190 FT = 20%	
LUMBER TOP CHORD BOT CHORD WEBS WEDGE BRACING TOP CHORD BOT CHORD WEBS REACTIONS	2x4 SP No.2 *Exce 1.5E 2x6 SP 2400F 2.0E No.2, 2-17:2x4 SP I 2x3 SPF No.2 *Exc SP No.2 Right: 2x4 SP No.2 Structural wood sha 2-6-14 oc purlins, e 2-0-0 oc purlins (2- Rigid ceiling directly bracing. 1 Row at midpt (size) 9=0-3-8, Max Horiz 19=-169 Max Uplift 9=-968 (1	pt* 1-5:2x4 SP 16501 *Except* 19-18:2x6 No.2 ept* 19-2,18-3,18-16 eathing directly applie except end verticals, 1-6 max.): 1-7. y applied or 6-5-15 o 2-19, 6-12 19= Mechanical (LC 31) LC 13), 19=-1154 (LC	(C 8) 7	Unbalanced this design. Wind: ASCE Vasd=91mpl Ke=1.00; Car exterior zone Interior (1) 5- 31-0-4, Interi and right exp exposed;C-C reactions sho DOL=1.60 Provide adec All plates are This truss ha chord live loz Bearings are crushing cap Refer to girdd	roof live loads hav 7-16; Vult=115mg 1; TCDL=6.0psf; E t. II; Exp C; Enclose and C-C Exterior 1-4 to 24-2-13, E or (1) 31-0-4 to 32 oosed; end vertica cosed; end vertica for members and own; Lumber DOL quate drainage to MT20 plates unle s been designed ad nonconcurrent assumed to be: , acity of 805 psi. er(s) for truss to ft	ve been of CDL=6.0 Sed; MW (2E) 0-1: Aterior(2E 2-1-0 zor al left ano d forces & =1.60 pla prevent of ses other for a 10.0 with any Joint 9 S	considered for cond gust) Dpsf; h=35ft; FRS (envelop -4 to 5-1-4, R) 24-2-13 to he; cantilever 1 d right & MWFRS for ate grip water ponding wise indicated D psf bottom other live load SP 2400F 2.01 hections.	r be) left d. ds. E	1) De Pl Ur Co	ead + Ro ate Incre- hiform Lo Vert: 1-7 oncentra Vert: 14 (F), 6=-2 (F), 22= 26=-29 31=-8 (f) 35=-152 39=-152	oof Live ease=1 bads (II 7=-70, ted Lo =-152 29 (F), -29 (F), (F), 27 F), 32= 2 (F), 32 2 (F), 32	Vergit: 103 to e (balanced): Lun .15 b/ft) 7-10=-70, 18-19: ads (lb) (F), 3=-29 (F), 16 12=-521 (F), 20-), 23=-29 (F), 24 =-29 (F), 28=-29 -8 (F), 33=-152 (6=-152 (F), 37=-		5, ;2 ;; F),
FORCES	Max Grav 9=2720 ((lb) - Maximum Cor Tension	(LC 1), 19=2796 (LC npression/Maximum	1) 8)	Provide mech bearing plate	hanical connection capable of withst	n (by oth anding 1 t 9	ers) of truss to 154 lb uplift a	0 at						
TOP CHORD	1-19=-272/169, 1-2 3-4=-5159/2099, 4- 6-7=-3651/1472, 7- 8-9=-4269/1545, 9-	=-85/85, 2-3=-3052/ 6=-4969/2017, 8=-4302/1697, 10=0/13	1242, <u>9)</u> 1(This truss is International R802.10.2 ar	designed in accor Residential Code nd referenced star rlin representation	dance w sections ndard AN	ith the 2018 R502.11.1 a ISI/TPI 1.	nd				OF I		
BOT CHORD	18-19=-1280/3109, 2-18=-702/1811, 16 15-16=-1728/4318, 12-13=-1910/4969, 9-11=-1214/3423	17-18=-139/286, 5-17=-270/595, 13-15=-2029/5159, 11-12=-1214/3423,	1 [.] 1 [.]	or the orienta bottom chord I) "NAILED" inc per NDS guid D Hanger(s) or	ation of the purlin a l. dicates Girder: 3-1 delines.	along the 0d (0.14	8" x 3") toe-r	nails				STE NATHA	NIEL R	à
WEBS NOTES	2-19=-3872/1591, 3 3-16=-251/34, 16-1 3-15=-447/1111, 4- 4-13=-305/157, 6-1 6-12=-1787/766, 7- 8-12=-326/467, 8-1	3-18=-1543/657, 8=-1485/3792, 15=-254/52, 3=-357/699, 12=-767/1816, 1=-105/119	1: L:	 provided suff provided suff lb down and design/select responsibility In the LOAD of the truss a DAD CASE(S) 	icient to support of 287 lb up at 24-2 tion of such conner of others. CASE(S) section, re noted as front Standard	-13 on be ction de loads a (F) or ba	pplied to the fick (B).	38 The ace			and a second	PE-2022	BER JAC	

July 5,2023

RF				-	-			
AS	NOTED ON PLANS REVIEW		Truss Type	Qty	Ply	Roof		
	DEVELORMENT SERVICES		Half Hip	1	1	Job Reference (optional)	159339933	
1	Premier Building Supply (Springhill, KS), Sprin 0/19/2023 11:05:19) Hills, KS - 66083,	IIs, KS - 66083, Run: 8.63 S Apr 6 2023 Print: 8.630 S Apr 6 2023 MiTek Industries, Inc. Wed Jul 05 09:05:52 ID:5r0x7LWgGhwS2XP6k2IoWazRor4-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f					

Scale = 1:61

Plate Offsets (X, Y): [14:0-2-8,0-1-8]

Loading TCLL (roof) TCDL BCLL BCDL	(psf) 25.0 10.0 0.0 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018	3/TPI2014	CSI TC BC WB Matrix-S	0.80 0.81 0.57	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.18 -0.39 0.07	(loc) 9-11 9-11 9	l/defl >999 >963 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 154 lb	GRIP 197/144 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS SLIDER BRACING TOP CHORD	2x4 SP No.2 2x4 SP No.2 *Excep 2x3 SPF No.2 Right 2x4 SP No.2 Structural wood shea 3-3-1 oc purlins, exc 2-0-0 oc purlins (3-1)	t* 2-15:2x3 SPF No.2 2-9-1 athing directly applied cept end verticals, an 0-7 max.): 1-6.	2) 2 d or id	Wind: ASCE Vasd=91mph Ke=1.00; Car exterior zone Interior (1) 5- 29-0-3, Interi and right exp exposed;C-C reactions sho	7-16; Vult=115mph ; TCDL=6.0psf; BC t. II; Exp C; Enclose and C-C Exterior(2 1-4 to 21-11-6, Ext or (1) 29-0-3 to 32- osed; end vertical for members and for wm; Lumber DOL=	n (3-sec DL=6.0 ed; MW 2E) 0-1 erior(21 1-0 zor left and forces 8 1.60 pt	cond gust) Opsf; h=35ft; FRS (envelop 4 to 5-1-4, R) 21-11-6 to he; cantilever I right & MWFRS for ate grip	be) left					
BOT CHORD WEBS REACTIONS	Rigid ceiling directly bracing. 1 Row at midpt (size) 9=0-3-8, 1 Max Horiz 17=-225 (1 Max Uplift 9=-177 (LI Max Gray. 9=1463 (1	applied or 10-0-0 oc 3-16, 5-11 7= Mechanical LC 8) C 13), 17=-294 (LC 8 C 1), 17=-1397 (LC 1	3) 4) 5) 3) 6)	DOL=1.60 Provide adec This truss ha chord live loa Bearings are capacity of 5 Refer to girde	uate drainage to pr s been designed fo d nonconcurrent w assumed to be: , J 65 psi. er(s) for truss to tru:	revent v r a 10.0 ith any oint 9 \$ ss conr	vater ponding) psf bottom other live loa SP No.2 crush nections.	g. ds. hing					
FORCES TOP CHORD	(lb) - Maximum Com Tension 1-17=-1343/310, 1-2 2-3=-1120/239, 3-5= 5-6=-1607/285, 6-7= 7-9=-2165/302, 9-10	=-1122/238, 1950/389, 1913/304, =-0/7	, /) 8)	Provide mech bearing plate joint 17 and 7 This truss is International R802.10.2 ar	nanical connection capable of withsta 177 lb uplift at joint designed in accord Residential Code s and referenced stance fin representation	(by oth nding 2 9. ance w ections lard AN	ers) of truss t 94 lb uplift at ith the 2018 R502.11.1 a ISI/TPI 1.	nd					
BOT CHORD	16-17=-164/273, 15- 2-16=-381/179, 14-1 13-14=-303/1715, 11 9-11=-192/1723	16=0/102, 5=-11/88, I-13=-285/1950,	J)	or the orienta bottom chord	ition of the purlin al Standard	ong the	top and/or	5126				TE OF M	AISSO
WEBS	1-16=-357/1659, 3-1 5-11=-577/238, 6-11 3-14=-157/131, 14-1 3-13=-77/327, 5-13=	6=-764/183, =-31/569, 7-11=-216 6=-300/1650, -125/113	/203,								R.	S NATHA FOZ	NIEL E
NOTES 1) Unbalance this design	ed roof live loads have n.	been considered for									The second	PE-20220	ER (1259)

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

ELEASE FOR	R CONSTRUCTION PLANS REVIE	ON W	Truss Type		Qty	Ply	Roof			15022	0034
PF2363-74P0M	ENT SERVICES		Hip		1	1	Job Refere	nce (optiona	I)	10933	3334
Premier Building 10/19/20	supply (springhill, ks), sp 23 11:05:1	ring Hills, KS - 66083, 9		Run: 8.63 S Apr 6 20 ID:9Y?tzvJ3jzE5zgSnł	23 Print: 8.6 wUGBVzRo	30 S Apr 6 0q2-RfC?P	5 2023 MiTek Ind sB70Hq3NSgPqi	ustries, Inc. W nL8w3uITXbG	/ed Jul 05 09:05:{ KWrCDoi7J4zJC	52 ?f	Page: 1
	1-10-6 4	-4-4	11-11-7	19-7-15			25-3-3	_	31-2-0	32-1-0	
	'1-10-6' 2-	5-14 '	7-7-3	7-8-7		1	5-7-5	•	5-10-13	0-11-0	
- 8	7 ¹² 5x5= €x6 ≠ € 2	4x4= 3 ସ	3x8 19 4 21 21 22	3= 3x8= 20 5	= : N	5x5=					
- 7-7-0 - 7-5 11 7-5 6-3-11 0-1	18 17 C	3x4 II	14 3x8:	13 = 3x4=		12 3x8=		3x4 7 212 11 1.5x4 II	2 3x4= 8 3x4=	9 10 9 10 4x6 II	0-8-15
	1-9-2 4- 1-9-2 2-3	5x8= -3-0 5-14	<u>11-11-7</u> 7-8-7	<u> </u>		+	<u>25-3-3</u> 5-6-1		<u>31-2-0</u> 5-10-13		
Scale = 1:63.1 Plate Offsets (X	(, Y): [14:0-2-8.0-1-8]	[16:0-5-0.0-3-4]									
	(, , , , , , , , , , , , , , , , , , ,										
Loading TCLL (roof) TCDL BCLL BCDL	(psf) 25.0 10.0 0.0 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018/TPI2014	CSI TC 0. BC 0. WB 0. Matrix-S	67 Vert(67 Vert(69 Horz	- LL) -(CT) -((CT) (in (loc) 0.10 14-15 0.23 14-15 0.07 9	I/defl L/c >999 240 >999 180 n/a n/a	MT20 WEight: 171	GRIP 197/144 Ib FT = 20	4 0%
LUMBER TOP CHORD BOT CHORD WEBS SLIDER BRACING TOP CHORD WEBS REACTIONS FORCES TOP CHORD BOT CHORD BOT CHORD WEBS	2x4 SP No.2 *Except* 1.5E 2x4 SP No.2 *Except* 2x3 SPF No.2 *Except Right 2x4 SP No.2 *Except Right 2x4 SP No.2: Structural wood shear 3-5-15 oc purlins, exx 2-0-0 oc purlins (4-7 Rigid ceiling directly a bracing. 1 Row at midpt 3 size) 9=0-3-8, 18 Max Horiz 18=-272 (L Max Uplift 9=-201 (LC Max Grav 9=1461 (LC (Ib) - Maximum Comp Tension 1-2=-441/168, 2-3=-3 4-6=-1457/258, 6-7=- 7-9=-2173/268, 9-10= 17-18=-179/281, 16-1 15-16=0/132, 3-16=-8 12-14=-218/1529, 11- 9-11=-121/1747 2-17=-71/195, 3-17=- 14-16=-53/200, 4-12=- 7-12=-424/214, 7-11=	* 2-5,5-6:2x4 SP 165 * 3-15:2x3 SPF No.2 3-4-15 thing directly applied cept end verticals, at 14 max.): 2-6. applied or 10-0-0 oc 8-17, 4-16, 4-12 3- Mechanical C 8) * 13), 18=-208 (LC 8 C 1), 18=-1395 (LC 1) ression/Maximum 58/149, 3-4=-894/19 1776/258, 607, 1-18=-1378/196 7=-214/892, 1/824, 14-15=0/113 12=-121/1747, 1361/296, 6=-806/191, 260/202, 6-12=0/433	 Wind: ASCE Vasd=91mpi Ke=1.00; Ca exterior zone Exterior(2R) 19-7-15, Ext 26-813 to 3 exposed; er members an Lumber DOU Provide adee This truss ha chord live loi Bearings are capacity of 5 Refer to gird Provide mec bearing plate joint 18 and Rthis truss is International R802.10.2 a Geraphical pu or the orienti bottom choro LOAD CASE(S) 3, 164 	7-16; Vult=115mph (3 h; TCDL=6.0psf; BCDL and C-C Exterior(2E) 1-10-6 to 8-11-4, Interi erior(2R) 19-7-15 to 26 2-1-0 zone; cantilever I di vertical left and right di forces & MWFRS for =1.60 plate grip DOL= quate drainage to prevé as been designed for a ad nonconcurrent with a seasumed to be: , Joint 65 psi. er(s) for truss to truss of hanical connection (by a capable of withstandii 201 lb uplift at joint 9. designed in accordance rulin representation doe ation of the purlin along d. Standard	second gi =6.0psf; h MWFRS (e 0-1-12 to or (1) 8-11 -8-13, Inte eft and rigil exposed; reactions 1.60 ent water p 10.0 psf b any other I t 9 SP No.: connection others) of ng 208 lb u e with the ions R502 d ANSI/TPI s not depin; the top ar	Ist) =35ft; =nvvelope) 1-10-6, -4 to rior (1) nt 2-C for shown; ve loads. 2 crushing s. truss to uplift at 2018 1.1.1 and 1. ct the size nd/or)		STATE OF NAT	F MISS HANIEL FOX	LIN AND
 Unbalanced this design. 	d roof live loads have b	een considered for							PE-20	VAL EN	A REAL PROPERTY AND A REAL

July 5,2023

PELEASE FOR CONSTRUCTION					
AS NOTED ON PLANS REVIEW	Truss Type	Qty	Ply	Roof	
DEXELORMENT SERVICES	Нір	1	1	Job Reference (optional)	159339935
Premier Building Supply (springhill ks), spring 10/19/2023 11:05:19	lls, KS - 66083, Run: 8.63 S ID:6kiw51yJ	Apr 6 2023 Print: 8.63 EFwaqq0zCYxhqgzRo	30 S Apr 62 pD-RfC?PsE	2023 MiTek Industries, Inc. Wed Jul 05 09:05:53 370Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC?f	Page: 1

Plate Offsets (X, Y): [2:Edge,0-0-1], [6:0-5-0,0-1-2], [10:0-4-0,Edge], [13:0-1-12,0-2-12], [14:0-9-0,0-3-13], [15:0-0-14,0-2-0], [16:0-4-4,0-2-12], [20:0-2-0,0-2-0]

Cool	0	- 1	.7	0 1
Sud	ю:	= 1	. / !	U.4

Loading TCLL (roof) TCDL BCLL	(psf) 25.0 10.0 0.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr	2-0-0 1.15 1.15 YES	0/7010044	CSI TC BC WB	0.94 0.93 0.90	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.43 -0.77 0.56	(loc) 14 14 13	l/defl >858 >484 n/a	L/d 240 180 n/a	PLATES MT20 MT18HS	GRIP 197/144 197/144
BCDL	10.0	Code	IRC201	8/TPI2014	Matrix-S							Weight: 227 lb	FI = 20%
LUMBER TOP CHORD BOT CHORD WEBS SLIDER BRACING	2x4 SP No.2 *Excep 2x4 SP No.2 *Excep 16-14,14-13:2x4 SP 2x3 SPF No.2 *Exce 18-7,16-7,11-15,11- Left 2x4 SP No.2 - 2 4-6-13	ot* 10-13:2x6 SPF No t* 5-19:2x3 SPF No.2 1650F 1.5E spt* 14:2x4 SP No.2 2-2-4, Right 2x4 SP N	1) .2 2, 2) lo.2	 Unbalanced this design. Wind: ASCE Vasd=91mpt Ke=1.00; Cat exterior zone Interior (1) 4- 17-8-11, Inte 23-10-8 to 30 cantilever left 	roof live loads ha 7-16; Vult=115m 1; TCDL=6.0psf; 1: II; Exp C; Enclc and C-C Exterio 1-0 to 10-7-13, E rior (1) 17-8-11 t 1-11-6, Interior (1 and right expos	we been of pph (3-sec BCDL=6.0 bsed; MW or(2E) -0-1 Exterior(2F o 23-10-8) 30-11-6 ed ; end v	considered fo cond gust) Dpsf; h=35ft; FRS (envelop 1-0 to 4-1-0, R) 10-7-13 to , Exterior(2R) to 37-6-10 zc certical left an	r be) bne; d					
BOT CHORD BOT CHORD WEBS REACTIONS	Structural wood she except 2-0-0 oc purlins (4-8 Rigid ceiling directly bracing. 1 Row at midpt (size) 13=0-3-8, Max Horiz 19=-230 (Max Uplift 13=-188 (Max Grav 13=1347	I sheathing directly applied, (4-8-1 max.): 6-9. ectly applied or 2-2-0 oc 6-20, 7-18, 8-16, 11-15cantilever left and right exposed; -C for members and forces & MWFRS for reactions shown; Lumber DDL=1.60 plate grip DDL=1.603.9Provide adequate drainage to prevent water ponding. 4.11 plates are MT20 plates unless otherwise indicated. 5.3-8, 19=0-3-8 230 (LC 8)3.8(LC 13), 19=-236 (LC 12) 347 (LC 26), 19=2129 (LC 1)3.4Bearings are assumed to be: Joint 13 SP 1650F 1.5E crushing capacity of 565 psi.3.4Comparison Maximum											
FORCES	(lb) - Maximum Com Tension	pression/Maximum	7)	Bearing at jo	int(s) 13 conside	rs parallel	to grain valu	e					
TOP CHORD	1-2=0/7, 2-4=-236/4 5-6=-345/678, 6-7=- 8-9=-1355/262, 9-11 11-13=-5221/488	00, 4-5=-401/681, 439/135, 7-8=-1222/2 I=-1631/255,	254, 8)	designer sho Provide mech bearing plate	uld verify capacit nanical connectio capable of withs	ty of beari on (by oth standing 2 nt 13	ng surface. ers) of truss t 36 lb uplift at	0				OF M	
BOT CHORD	2-21=-274/231, 20-2 19-20=-2097/639, 5- 18-19=-218/231, 17- 16-17=-160/1028, 11 14-15=-318/4627, 13	21=-274/231, -20=-299/181, -18=-159/1028, 5-16=-97/1330, 3-14=-325/4634	9) 1() This truss is International R802.10.2 ar 2) Graphical pu or the orienta	designed in acco Residential Code nd referenced sta rlin representation tion of the purlin	e sections andard AN on does no along the	ith the 2018 R502.11.1 a ISI/TPI 1. ot depict the s	nd iize			BA	STATE NATHA FOZ	NIEL
WEBS NOTES	18-20=-106/500, 6-2 6-18=-173/823, 7-18 7-16=-102/395, 8-16 9-15=-58/483, 4-20= 4-21=-160/152, 11-1 11-14=-154/3654	20=-1672/512, 3=-1079/201, 7-17=0/. 3=-751/74, 8-15=-36/5 329/280, 15=-3594/481,	249, Lo 511, Lo	bottom chord DAD CASE(S)	Standard							PE-20220	SER 5 2023
												Jul	y 5,2023

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1** Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

NITEK 16023 Swingley Ridge Rd Chesterfield, MO 63017

	Truss Type	Qty Plv	Roof	
DEXELORMENT SERVICES	Нір		Job Reference (ontional)	159339936
EEE'S SUMMIT, MISSOURI Premier Building Supply (Springhill, KS), Spring 0/19/2023 11:05:19	Run: 8.63 S Apr 6	2023 Print: 8.630 S Apr 6 9MrQRGzazRoon-RfC2Pe	2023 MiTek Industries, Inc. Wed Jul 05 09:03 870Ha3NSaPanl 8w3ulTXbGKWrCDoi7 147 1	5:53 Page: 1 C?f
-0-11-0 3-4-12 6-7-4 8-2 0-11-0 3-4-12 3-2-8 1-7	-4 12-11-4 18-0-12 -0 4-9-0 5-1-8	<u>21-7-1</u> 26- 3-6-555	-10-3 31-9-11 -3-2 4-11-7	<u>37-8-0</u> 5-10-5
$\begin{array}{c} & & & & & & & & & & & & & & & & & & &$	5x8 = 7 7 22 22 20 4x8 = 3x4 = 8 $12 \cdot 10 \cdot 0$ $17 \cdot 11 \cdot 8$ 7 7 7 8 7 7 8 7 8 7 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 7 8 7 7 8 7 7 8 7 7 7 8 7	28 10 28 10 4 17 5x8= 21-11-0	4x6 11 29 4x8 12 3x4= 1330 16 8x8= 15 12 29-7-12 37-1	4x6 14 4x6 0 0 0 0 0 0 0 0 0 0 0 0 0
Scale = 1:71.8	-8 4-6-8 5-1-8	3-11-8	7-8-12 7-8-	-12 0-3-8
Loading(psf)SpacingTCLL (roof)25.0Plate Grip DOLTCDL10.0Lumber DOLBCLL0.0Rep Stress IncrBCDL10.0CodeLUMBER10.0CodeTOP CHORD2x4 SP 1650F 1.5E *Except* 8-10,1-5:2x4NO.2, 12-15:2x6 SPF No.2BOT CHORDBOT CHORD2x4 SP No.2 *Except* 6-23,22-7,9-18:2x3SPF No.2, 16-15:2x4 SP 1650F 1.5EWEBS2x3 SPF No.2 *Except* 17-11,16-11:2x4 SNo.2SLIDERLeft 2x4 SP No.2 - 2-2-4, Right 2x4 SP No.2- 4-5-7BRACINGTOP CHORDStructural wood sheathing directly applied2-7-4 oc purlins, except2-0-0 oc purlins (5-5-5 max.): 8-10.BOT CHORDRigid ceiling directly applied or 3-3-2 ocbracing.WEBS1 Row at midpt7-24, 8-20, 9-20, 11-1REACTIONS(size)15=0-3-8, 23=0-3-8Max Horiz23=-267 (LC 8)Max Uplift 15=-203 (LC 13), 23=-265 (LC -Max Grav15=1328 (LC 26), 23=2129 (LC -Max Grav15=	2-0-0 CSI 1.15 TC 1.15 TC 1.15 BC YES WB IRC2018/TPI2014 Matrix-S WEBS 22-24=-77/408, 7-24 SP 7-20=-186/992, 8-20 9-20=-830/197, 17-11 10-19=-219/179, 10- 11-17=-1573/299, 11 13-16=-57/290, 4-24 4-25=-156/151 20 Do.2 NOTES 1) Unbalanced roof live loads have this design. or 2) Wind: ASCE 7-16; Vult=115mph Vasd=91mph; TCDL=6.0psf; BCI Ke=1.00; Cat. II; Exp C; Enclosed exterior zone and C-C Exterior/21 Interior (1) 4-1-0 to 12-11-4, Exter 7 20-0-2, Interior (1) 20-0-2 to 21-7 to 28-7-15, Interior (1) 28-7-15 to cantilever left and right exposed; 1 10 provide adequate drainage to pre 11 DoL=1.60 3) Provide adequate drainage to pre 4) All plates are MT20 plates unless 5) This truss has been designed for chord live load nonconcurrent wit 6) Bearings are assumed to be: Joir capacity of 565 psi. 7) Bearing at joint(s) 15 considers p using ANSI/TPI 1 angle to grain f designer should verify capacity o bearing plate capable of withstam joint 23 and 203	DEFL 0.62 Vert(LL) -C Vert(CT) -C Horz(CT) -C Horz(CT) -C =-1787/632, =-72/143, =-72/143, 9=0/1047, 17=-190/396, -16=-196/3311, =-340/286,	in (loc) I/defl L/d 0.32 16-17 >999 240 0.65 16-17 >568 180 0.45 15 n/a n/a 10) Graphical purlin representatic or the orientation of the purlin bottom chord. LOAD CASE(S) Standard	GRIP 244/190 197/144 24 lb FT = 20% on does not depict the size along the top and/or

ELEASE FOR CONSTRUCTION	Truco Turco	0.1	, Div	Deef]
	Poof Special		y Fiy	ROOI		159339938
LEE'S SUMMIT, MISSOURI Premier Building Supply (Springhill KS) Spring	Hills KS - 66083	Run: 8.63 S. Apr. 6.2023 P	Print: 8 630 S Apr. 6	Job Reference (opt	ional)	Page: 1
10/19/2023 11:05:19		ID:oqpQZW_7M3P5pE70r	2QKzOzRolJ-RfC?	PsB70Hq3NSgPqnL8w3u	ITXbGKWrCDoi7J4zJC?f	1 ago. 1
-0-11-0	3-4-12 6-7-4 8-2-4 12-9-5	17-3-3 19-6-721	-9-12 27-7	.9 29-7-12	37-8-0	
0-11-0	3-4-12 3-2-8 1-7-0 4-7-1	4-5-13 2-3-5 2- 6x6=	-3-5 5-9-1	3 2-0-3	8-0-4	
336 346 346 346 346 346 346 346	7^{12} 298 $3x6 \neq 7$ $3x6 \neq 7$ $5x8 \neq 7$ 5x8 = 6x6 = 7x8 =	9 1.5x4 10 10 10 10 10 10 10 10 10 10	130 130 17 17	4x8 12 7x8 13 16 MT18HS 9x18 12	4x6 14 4x6 = 5 MT18HS 55	8 1-0-0-1-0 0-10-0 0-10-0
⊢ Scale = 1:86.3	3-4-12 6-6-0 8-3-8 12-9-5 3-4-12 3-1-4 1-9-8 4-5-13	<u>17-3-3</u> 17-11-8 21 4-5-13 0-8-5 0-1-4 1-5-11 2	-11-0 29 -4-9	-7-12 -8-12	<u>37-4-8</u> 7-8-12 0-3-8	
Plate Offsets (X, Y): [2:Edge,0-0-1], [12:0	0-4-0,Edge], [15:0-1-12,0-2-12], [16:0-9-0),0-3-13], [17:1-2-8,0-2-4],	[20:0-3-4,0-3-4],	[21:0-2-0,Edge], [27:	0-2-12,0-3-0]	
Loading (psf) Spi TCLL (roof) 25.0 Pla TCDL 10.0 Lur BCLL 0.0 Rej BCDL 10.0 Cor	acing 2-0-0 te Grip DOL 1.15 nber DOL 1.15 o Stress Incr YES je IRC2018/TPI2014	CSI TC 0.97 BC 0.91 WB 0.90 Matrix-S 0.91	DEFL Vert(LL) -C Vert(CT) -C Horz(CT) (C	in (loc) l/defl 0.48 16-17 >772 0.92 16-17 >405 0.62 15 n/a	L/d PLATES 240 MT20 180 MT18HS n/a Weight: 242 lb	GRIP 244/190 197/144 FT = 20%
LUMBER TOP CHORD $2x4$ SP No.2 *Except* 6-2 SPF No.2, 17-16, 16-15:2: WEBS $2x3$ SPF No.2, *Except* 6-2 SPF No.2, 17-16, 16-15:2: WEBS $2x3$ SPF No.2, *Except* 1 1.5E, 16-13:2x4 SP No.2 SLIDER Left 2x4 SP No.2 *Except* 1 SLIDER Left 2x4 SP No.2 - 2-24, 4-8-5 BRACING Structural wood sheathing BOT CHORD BOT CHORD Structural wood sheathing Rigid ceiling directly appli bracing. WEBS 1 Row at midpt 7-27 11-2 WEBS 2 Rows at 1/3 pts 13-1 REACTIONS (size) 15=0-3-8, 26=C Max Horiz 26=-339 (LC 8 Max Uplift Max Grav 15=1315 (LC 1 Max Grav 15=1315 (LC 1 FORCES (lb) - Maximum Compress Tension 10P CHORD 1-2=0/7, 2-4=-232/399, 4 6-7=-372/657, 7-8=-755/2 9-10=-1016/362, 10-11=- 11-13=-1297/303, 13-15= 102 2-28=-272/227, 27-28=-2 26-27=-2102/612, 6-27=- 25-26=-324/329, 24-25=- 7-24=-194/126, 23-24=-2 22-23=-73/710, 21-22=0/ 19-21=0/73, 18-19=-2/93 16-17=-508/4603, 15-16=	WEBS 2 15:2x6 SPF No.2 1 6,25-7,21-19:2x3 1 44 SP 1650F 7 7-13:2x4 SP 1650F 7 Right 2x4 SP No.2 1 g directly applied. 1 ed or 2-2-0 oc 1 8-23, 9-22, 10-18, 0, 9-20 2 7 26-2129 (LC 1) sion/Maximum 6-2-412/683, 10-186, 12/2/227, 135/686 72/227, 135/686 72/227, 135/686, 17-18=0/86, -508/4599 75/5.84, 17-18=0/86, -508/4599 9 9 Provide mech piont 26 and 210) 10 This truss ha chord live loa 11 Provide mech piont 26 and 210) 11 10 12 10 14 10 15 10 16 14 17 14 16 14 17 14 16 14 17 14 16 15 11 14 16 15 <tr< th=""><th>25-27=-130/410, 7-27=-177 11-17=-131/215, 13-17=-38 13-16=-281/3661, 4-27=-38 1-28=-168/151, 8-23=-702/ -23=-176/1001, 9-22=-186 18-20=-70/15, 10-20=-12/1 11-20=-700/387, 8-22=-126 0-20=-321/831 roof live loads have been of 7-16; Vult=115mph (3-sec 1; TCDL=6.0psf; BCDL=6.0 1. II; Exp C; Enclosed; MW and C-C Exterior(2E) -0-1 1-0 to 17-3-3, Exterior(2R) or (1) 22-3-3 to 37-6-10 zc osed ; end vertical left and for members and forces & wm; Lumber DOL=1.60 pla MT20 plates unless other 13x4 MT20 unless otherwite ion Tolerance at joint 17 = 15 been designed for a 10.0 d nonconcurrent with any assumed to be: Joint 26 S 65 psi. int(s) 15 considers parallel PI 1 angle to grain formula uld verify capacity of beari hanical connection (by oth capable of withstanding 3 220 lb uplift at joint 15. designed in accordance wi Residential Code sections and referenced standard AN Standard</th><th>75/669, 801/649, 41/306, /245, /245, /2143, 15, 17-20=0/102 6/376, considered for cond gust) 0psf; h=35ft; FRS (envelope) 11-0 to 4-1-0, 0 17-3-3 to one; cantilever let d right & MWFRS for ate grip wise indicated. 12% 0 psf bottom other live loads. SP No.2 crushing 1.5E crushing 1.</th><th>17, ft</th><th>STATE OF M STATE OF M NATHA FOX PE-20220</th><th>AISSOLUTION</th></tr<>	25-27=-130/410, 7-27=-177 11-17=-131/215, 13-17=-38 13-16=-281/3661, 4-27=-38 1-28=-168/151, 8-23=-702/ -23=-176/1001, 9-22=-186 18-20=-70/15, 10-20=-12/1 11-20=-700/387, 8-22=-126 0-20=-321/831 roof live loads have been of 7-16; Vult=115mph (3-sec 1; TCDL=6.0psf; BCDL=6.0 1. II; Exp C; Enclosed; MW and C-C Exterior(2E) -0-1 1-0 to 17-3-3, Exterior(2R) or (1) 22-3-3 to 37-6-10 zc osed ; end vertical left and for members and forces & wm; Lumber DOL=1.60 pla MT20 plates unless other 13x4 MT20 unless otherwite ion Tolerance at joint 17 = 15 been designed for a 10.0 d nonconcurrent with any assumed to be: Joint 26 S 65 psi. int(s) 15 considers parallel PI 1 angle to grain formula uld verify capacity of beari hanical connection (by oth capable of withstanding 3 220 lb uplift at joint 15. designed in accordance wi Residential Code sections and referenced standard AN Standard	75/669, 801/649, 41/306, /245, /245, /2143, 15, 17-20=0/102 6/376, considered for cond gust) 0psf; h=35ft; FRS (envelope) 11-0 to 4-1-0, 0 17-3-3 to one; cantilever let d right & MWFRS for ate grip wise indicated. 12% 0 psf bottom other live loads. SP No.2 crushing 1.5E crushing 1.	17, ft	STATE OF M STATE OF M NATHA FOX PE-20220	AISSOLUTION

RE EASE FOR CONST **NOTED ON PLANS** A EXEL QRMENT SE s Standing Supply (Springhill, KS), Spring Puilding Supply (Springhill, KS), Spring 9/2023 11:05:19

	DUCTION						
5	REVIEW		Truss Type	Qty	Ply	Roof	
R	VICES		Roof Special	1	1	Job Reference (optional)	159339939
, h	ill KS) Spring	lille KS - 66083	Rup: 8.63 S. Apr. 6.2	Page: 1			

ID:Sy7Fn3leXQL9twR71n250hzRokK-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Scale = 1:40.9 Plate Offsets (X, Y): [2:0-1-12,0-2-0], [8:0-1-12,0-2-0]

		1/1												
Loading	(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP	
TCLL (root)	25.0	Plate Grip DOL	1.15			0.21	Vert(LL)	-0.02	11-12	>999	240	IVI I 20	197/144	
TCDL	10.0		1.15		BC	0.24	Vert(CT)	-0.04	11-12	>999	180			
BOLL	0.0	Rep Stress Incr	YES		WB	0.25	Horz(CT)	0.04	10	n/a	n/a		FT 000/	
BCDL	10.0	Code	IRC2018	B/TPI2014	Matrix-S							Weight: 64 lb	FI = 20%	
			2)	Wind: ASCE	7-16; Vult=115n	nph (3-sec	ond gust)							
TOP CHORD	2X4 SP No.2				t II: Exp C: Epcl	osod: MW	ERS (envelor	20)						
MEDS	2X4 SP N0.2	NO+* 16 2 10 9.2v4 8F		exterior zone	and C-C Exterio	or(2F) -0-1	1-0 to 4-1-0	<i>be)</i>						
WEDS	No 2	ept 10-2,10-0.2x4 SF		Interior (1) $4-1-0$ to $5-8-3$. Exterior (2R) $5-8-3$ to $10-8-3$										
OTHERS	2v3 SPE No 2			Interior (1) 1	0-8-3 to 12-5-0 z	one: canti	ever left and	0,						
BRACING	2/0 011 100.2			right expose	d; end vertical le	eft and righ	t exposed;C-	-C						
	Structural wood she	athing directly applied	dor	for members	and forces & M	WFRS for	reactions sho	own;						
		cent end verticals	u 01	Lumber DOL=1.60 plate grip DOL=1.60										
BOT CHORD	Rigid ceiling directly	applied or 10-0-0 oc	3)	Truss desig	ned for wind load	ds in the pl	ane of the tru	JSS						
201 0110112	bracing.			only. For studs exposed to wind (normal to the face),										
REACTIONS	(size) 10=0-3-8	16=0-3-8		see Standar	d Industry Gable	End Deta	ls as applica	ble,						
	Max Horiz 16=150 (I	C 11)		or consult qu	alified building d	lesigner as	per ANSI/TI	PI 1.						
	Max Uplift 10=-97 (I	C 13) 16=-96 (I C 12	2) 4)	I russ to be t	ully sheathed fro	om one fac	e or securely							
	Max Grav 10=579 (I	_C 1), 16=579 (LC 1)	-,	braced again	ist lateral moven	nent (I.e. d	iagonal web)							
FORCES	(lb) - Maximum Com	nression/Maximum	5)	Gable studs	spaced at 1-4-0	UC. H for a 10 (nof bottom							
IONOLO		ipression/maximum	6)	chord live lo	as been designed	t with onv	othor live loo	de						
TOP CHORD	1-2=0/41 2-3=-278/	151 3-4=-816/297	7)	All bearings	are assumed to	ho SP No	2 crushing	us.						
	4-5=-804/333. 5-6=-	785/304. 6-7=-814/2	76. ''	canacity of 5	65 nsi		2 crushing							
	7-8=-266/144, 8-9=0)/41. 2-16=-325/175.	8)	Bearing at in	int(s) 16_10 con	siders par	allel to grain							
	8-10=-321/179	. ,,	0)	value using	ANSI/TPI 1 angle	e to grain f	ormula. Build	dina						
BOT CHORD	15-16=-103/764, 14	-15=0/449, 13-14=0/4	149,	designer sho	uld verify capaci	itv of beari	na surface.	g						
	12-13=0/450, 11-12	=0/450, 10-11=-80/70)7 9)	Provide mec	hanical connecti	on (by oth	ers) of truss t	0						
WEBS	5-18=-165/382, 11-1	18=-155/356,	,	bearing plate	e capable of with	standing 9	6 lb uplift at j	oint				Con	ADR	
	7-11=-44/135, 15-17	7=-170/406,		16 and 97 lb	uplift at joint 10.	5 -						F. OF I	MISS	
	5-17=-192/463, 3-15	5=-40/128, 3-16=-678	/60, 10) This truss is	designed in acco	ordance wi	th the 2018				1	750	W.O.	
	7-10=-678/82, 5-13=	=-5/104, 4-17=-73/50,		International	Residential Cod	le sections	R502.11.1 a	ind			R	NATUA	MILLI XXXX	
	14-17=-3/25, 6-18=-	39/36, 12-18=-6/25		R802.10.2 a	nd referenced sta	andard AN	SI/TPI 1.				A	S/ NATHA	THEF IS A	
NOTES			LC	DAD CASE(S)	Standard					-	TA A	FO	A	

- 1) Unbalanced roof live loads have been considered for this design.
 - WARNING Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1** Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

RESSIONAL

ALLER PE-2022042259

E

PELEASE FOR CONSTRUCTION					
AS NOTED ON PLANS REVIEW	Truss Type	Qty	Ply	Roof	
DEXELORMENT SERVICES	Roof Special	4	1	Job Reference (optional)	159339940
Premier Building Supply (Springhill, KS), Spring Hill	s, KS - 66083, Run: 8.63	S Apr 6 2023 Print: 8.	630 S Apr 6	2023 MiTek Industries, Inc. Wed Jul 05 09:05:56	Page: 1

Scale = 1:40.9	
Plate Offsets (X, Y):	[1:0-1-12,0-2-0], [5:0-1-12,0-2-0]

	S(X, 1). [1.0-1-12,0-2-0], [0.0-1-12,0-2-0]											
Loading TCLL (roof) TCDL BCLL BCDL	(psf) 25.0 10.0 0.0 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC20	18/TPI2014	CSI TC BC WB Matrix-S	0.21 0.32 0.28	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.04 -0.10 0.04	(loc) 8-9 8-9 7	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 56 lb	GRIP 197/144 FT = 20%
LUMBER TOP CHORI BOT CHORI WEBS BRACING TOP CHORI BOT CHORI	 2x4 SP No.2 2x4 SP No.2 2x3 SPF No.2 *Exce Structural wood she 6-0-0 oc purlins, ex Rigid ceiling directly 	ept* 10-1,7-5:2x4 SF athing directly appli cept end verticals. applied or 10-0-0 o	PNo.2 6 ed or 7 c	 5) Bearing at joint(s) 10, 7 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface. 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 69 lb uplift at joint 10 and 96 lb uplift at joint 7. 7) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R80210.2 and referenced standard ANSI/TPI 1 									
REACTIONS	bracing. 5 (size) 7=0-3-8, Max Horiz 10=-144 (Max Uplift 7=-96 (LC Max Grav 7=582 (L)	10=0-3-8 (LC 8) (13), 10=-69 (LC 12 (1), 10=501 (LC 1)	L 2)	R802.10.2 a .OAD CASE(S)	nd referenced sta Standard	andard AN	ISI/TPI1.						
FORCES	(lb) - Maximum Com	pression/Maximum											
TOP CHORI	1-2=-245/124, 2-3=- 4-5=-254/140, 5-6=(5-7=-312/173	907/334, 3-4=-873/3)/41, 1-10=-223/114	305, ,										
BOT CHORI WEBS	D 9-10=-108/825, 8-9= 3-8=-160/466, 4-8=- 2-9=-85/166, 2-10=-	=0/427, 7-8=-80/749 80/167, 3-9=-185/55 763/92, 4-7=-734/88	51, 8										
NOTES													
 Unbalan this desi Wind: A Vasd=9' Ke=1.00 	ced roof live loads have gn. SCE 7-16; Vult=115mph Imph; TCDL=6.0psf; BC ; Cat. II; Exp C; Enclose	been considered fo (3-second gust) DL=6.0psf; h=35ft; d; MWFRS (envelop	pr								B	TATE OF I	MISSOL

exterior zone and C-C Exterior(2E) 0-1-12 to 5-1-12, Interior (1) 5-1-12 to 5-9-0, Exterior(2R) 5-9-0 to 10-9-0, Interior (1) 10-9-0 to 12-5-0 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 3) All bearings are assumed to be SP No.2 crushing capacity of 565 psi. 4)

ESSIONAL E July 5,2023

FOX

UMBER

PE-2022042259

RF	FAS	F FO	RCC	NS	TR	HCI		L
٨٩	JOBT				e	5006		l
AS					3			l
L			/IEN	I SE	١R		S	l
	LEE'S	SUN	IMIT	. MI	SS	OUF	N	ł
	Premier	Building	Supply	(Spri	nghil	I, KS),	Spring	ł
1	0/19	120	23	11	11	15.1	19	

Scale = 1:46.6

			_	_			
EVIEW		Truss Type	Qty	Ply	Roof		
<u>I</u> GES		Half Hip Girder	1	2	Job Reference (optional)	159339941	
KS), Spring	lills. KS - 66083.	Run: 8.63 S Apr 6 20	023 Print: 8.6	30 S Apr 6 2	2023 MiTek Industries, Inc. Wed Jul 05 09:05:56	Page: 1	

ID:oS_zOD6LPGd3wwdpTFE5vzRojj-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

3-5-9	8-5-8	11-2-8 11-6-0
3-5-9	4-11-15	2-9-0 0-3-8

Plate Offsets (X, Y): [2:0-3-0,0-1-4], [5:0-3-7,0-1-7], [8:0-2-7,0-5-1], [9:Edge,0-4-0]

				-											
Loading	((psf)	Spacing	2-0-0		csi		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP	
TCLL (roof)		25.0	Plate Grip DOL	1.15		тс	0.93	Vert(LL)	0.13	7-8	>999	240	MT20	197/144	
TCDL		10.0	Lumber DOL	1.15		BC	0.76	Vert(CT)	-0.20	7-8	>662	180			
BCLL		0.0	Rep Stress Incr	NO		WB	0.85	Horz(CT)	0.06	5	n/a	n/a			
BCDL		10.0	Code	IRC20	18/TPI2014	Matrix-S							Weight: 133 lb	FT = 20%	
				3) Unbalanced	roof live loads have	been	considered for				Ctor	dord		
TOP CHORD	2x4 SP No.2	*Except	t* 2-6:2x4 SP 1650F		this design.							of Live	(balancod): Lum	bor Incrosco-1 15	
	1.5E	Encop		4) Wind: ASCE	Wind: ASCE 7-16; Vult=115mph (3-second gust)									
BOT CHORD	2x6 SP 2400	F 2.0E *	Except* 7-5:2x6 SPI	F	Vasd=91mpl	Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=35ft; Uniform Loads (lb/ft)									
	No.2				Ke=1.00; Ca	Ke=1.00; Cat. II; Exp C; Enclosed; MWFRS (envelope) Vert: 1-2=-70, 2-6=-70, 7-9=-20, 5-7=-20									
WEBS	ZX3 SPF No.2					exterior zone and C-C Exterior(2E) 0-1-4 to 3-5-1, Concentrated Loads (lb)									
SLIDER	Right 2x4 SP	No.2	1-10-10		Exterior(2R)	Exterior(2R) 3-5-1 to 8-4-4, Interior (1) 8-4-4 to 12-5-0 Vert: 8=-1377 (B), 10=-1375 (B), 11=-2776 (B)									
BRACING					zone; cantilever left and right exposed ; end vertical left										
TOP CHORD	Structural wo	od shea	athing directly applie	d or	and right exp	osed; C-C for mem	bers ar	a forces &							
	3-5-15 oc pur	rlins, ex	cept end verticals, a	and	arin DOL -1	MWFRS for reactions shown; Lumber DOL=1.60 plate									
	2-0-0 oc purli	ns (6-0-	-0 max.): 1-2.	F) Provide ader	ou nuate drainage to n	revent	water ponding							
BOT CHORD	Rigid ceiling o	directly	applied or 10-0-0 oc	, C) This truss ha	is heen designed fo	r = 10) nsf hottom	•						
	bracing.				chord live loa	ad nonconcurrent w	ith anv	other live load	ds.						
REACTIONS	(size) 5=	0-3-8, 9	=0-3-8	7) Bearings are	assumed to be: Jo	int 9 Sl	2400F 2.0E							
	Max Horiz 9=	-227 (L(2)	crushing cap	acity of 805 psi, Jo	int 5 SF	F No.2 crushi	ing						
		-788 (Li	(L = 13), 9 = -11111 (L = 2)	3)	capacity of 425 psi.										
		2499 (L	.C I), 9=4115 (LC I)	8) Bearing at jo	Bearing at joint(s) 5 considers parallel to grain value									
FORCES	(lb) - Maximu Tension	m Com	pression/Maximum		using ANSI/	TPI 1 angle to grain	formul	a. Building							
TOP CHORD	1-9=-99/69. 1	-2=-99/	106. 2-3=-3133/102	7. c) Provide mec	hanical connection	(by oth	ers) of trues to							
	3-5=-5730/19	32, 5-6	=0/10	., .	bearing plate	capable of withsta	ndina 1	111 lb uplift a	t						
BOT CHORD	8-9=-753/255	64, 7-8=	-1367/4254,		joint 9 and 788 lb uplift at joint 5.										
	5-7=-1490/46	511		1	0) This truss is) This truss is designed in accordance with the 2018							~		
WEBS	2-9=-4444/15	501, 3-7	=-764/2261,		International	International Residential Code sections R502.11.1 and								an	
	2-8=-1553/49	48, 3-8	=-1739/768		R802.10.2 and referenced standard ANSI/TPI 1.								AISS D		
NOTES				1	 Graphical put 	rlin representation	does no	ot depict the si	ize			6	AL	NSO	
1) 2-ply truss	s to be connecte	ed toget	her with 10d		or the orienta	ation of the purlin al	long the	e top and/or				H	NATHA	NIFL XP	
(0.131"x3) nails as follow	/s:			bottom chord	1. - Otara a Tir I II IOO						9	FO		
Top chord	ls connected as	follows	: 2x3 - 1 row at 0-9-0) i	2) Use Simpsoi	ivelent encoded	b (14-1)	Ja Girder, 4-10	Ua		-	91			
OC, 2X4 - 1 Bottom ob	row at 0-9-0 of	C. Loo folk	and are a route		1.60 from the left and to 3.60 to concert trust statility at										
Bottom chords connected as follows: 2x6 - 2 rows					hack face of bottom chord									ting	
Web connected as follows: 2x3 - 1 row at 0-9-0 oc 13					13) Use Simpson Strong-Tie HGUS26 (20-SD10212 Girder.									BER	
 All loads are considered equally applied to all plies. 					8-SD10212 Truss) or equivalent at 5-6-0 from the left										
except if noted as front (F) or back (B) face in the LOAD					end to connect truss(es) to back face of bottom chord.										
CASE(S)	section. Ply to p	ly conn	ections have been	1	Fill all nail ho	oles where hanger i	s in cor	tact with lumb	ber.				-12° A	TNU'B	
provided t	o distribute only	loads i	noted as (F) or (B),										WNA	LEY	

CASE(S) section. Ply to ply connections have been provided to distribute only loads noted as (F) or (B), unless otherwise indicated.

July 5,2023

	етрист											
S NOTED ON PLA	NS REVIE	W	Truss Type		Qty	Ply	Ro	oof				
DEXEL QRMENT S	SERVICES	5	Common Girder		1	2		h Pofora	nco (onti	ional)		159339942
EEE'S SUMMIT, N Premier Building Supply (Sp	MSSOUR	pring Hills, KS - 66083,		Run: 8.63 S Apr 6	2023 Pr	rint: 8.630 S Ap	pr 6 2023	MiTek In	dustries, Ir	nc. Wec	d Jul 05 09:05:56	Page: 1
10/19/2023 1	1:05:1	9	2 4 4 2	ID:I5GY3O8gYHvxZ	FhU1h4	41Suz?AJU-Rf	fC?PsB70	Hq3NSgF	qnL8w3ul	TXbGK	WrCDoi7J4zJC?f	Ũ
			3-1-12	2-10-4	+	2-10-4		3-1-12	2			
					4.46							
					4x0							
				<u>12</u>	-+ ∕/t٩							
				01		\searrow						
				3x8 🕫			3x8 👟					
				3		\sim	5					
		0-01	3x6 🞜			/	×	3>	6 👟			
		4	11 2				< ``	$\langle \rangle$) 12			
								He	12			
		9 ⊤	1	$H \sim$			Н		\sim	7		
		-10						П				
		0	13	14 10 15	9 -	16	8	17				
			4x8 II	3x10 II	8x8 =		3x10 "		4x8	I		
			111626	1000		1000 11	11000		20			
				JS26 HUS26	HU	1526 H	10526	HUS	26			
OTHER MEA	NS TO ALLOW	FOR THE MINIMUM I	REQUIRED SUPPORT									
WIDTH (SUC ARE THE RE	H AS COLUMN SPONSIBILITY	I CAPS, BEARING BLO OF THE TRUSS MAN	OCKS, ETC.) IUFACTURER									
OR THE BUIL	DING DESIGN	ER.										
			3-1-12	6-0-0	_	8-10-4		12-0-0)			
Scale = 1:43.1			3-1-12	2-10-4	1	2-10-4	I	3-1-12				
Plate Offsets (X, Y): [9:	:0-4-0,0-4-8]											
Loading	(nsf)	Spacing	2-0-0	csi		DEEL	in	(loc)	l/defl	I/d		GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15	TC	0.83	Vert(LL)	-0.05	9-10	>999	240	MT20	197/144
TCDL	10.0	Lumber DOL	1.15	BC	0.77	Vert(CT)	-0.09	9-10	>999	180		
BCLL	0.0	Rep Stress Incr	NO	WB	0.67	Horz(CT)	0.03	7	n/a	n/a		FT 000/
BCDL	10.0	Code	IRC2018/1PI2014	Matrix-S							Weight: 123 lb	F1 = 20%
LUMBER			3) Unbalanced	roof live loads have b	been c	onsidered fo	or					
TOP CHORD 2x4 SP	No.2		this design.	7-16: \/ult-115mph	3-500	aust)						
	FINU.Z			r io, vuit–riomphi	0-3500	Jina yusij						

	276 8051	
WERS	2x0 3FF 1	N0.2
		10.2 DNo 2 1 10 2 Dight 2v/ SD
SLIDER	No.2 1-	10-2
BRACING		
TOP CHORD	Structural	wood sheathing directly applied or
	3-8-2 oc p	ourlins.
BOT CHORD	Rigid ceili	ng directly applied or 10-0-0 oc
	bracing.	
REACTIONS	(size)	1=0-3-8, (req. 0-3-13), 7=0-3-8
	Max Horiz	1=-124 (LC 31)
	Max Uplift	1=-779 (LC 12), 7=-733 (LC 13)
	Max Grav	1=4863 (LC 1), 7=4446 (LC 1)
FORCES	(lb) - Max	imum Compression/Maximum
	Tension	·
TOP CHORD	1-3=-5449	9/978, 3-4=-3924/772,
	4-5=-3924	4/772, 5-7=-5462/991
BOT CHORD	1-10=-720	0/4256, 9-10=-720/4256,
	8-9=-713/	4265, 7-8=-713/4265
WEBS	3-10=-279	9/1936, 3-9=-1322/301,
	4-9=-724/	3900, 5-9=-1335/316,
	5-8=-298/	1954

NOTES

 2-ply truss to be connected together with 10d (0.131"x3") nails as follows: Top chords connected as follows: 2x4 - 1 row at 0-9-0 oc. Bottom chords connected as follows: 2x6 - 3 rows

staggered at 0-7-0 oc. Web connected as follows: 2x3 - 1 row at 0-9-0 oc. All loads are considered equally applied to all plies,

 All loads are considered equally applied to all plies, except if noted as front (F) or back (B) face in the LOAD CASE(S) section. Ply to ply connections have been provided to distribute only loads noted as (F) or (B), unless otherwise indicated.

- Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=35ft; Ke=1.00; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) 0-0-0 to 5-0-0, Interior (1) 5-0-0 to 6-0-0, Exterior(2R) 6-0-0 to 11-0-0, Interior (1) 11-0-0 to 12-0-0 zone; cantilever left and right exposed; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
 WARNING: Required bearing size at joint(s) 1 greater
- than input bearing size.
- 7) All bearings are assumed to be SPF No.2 crushing capacity of 425 psi.
- Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 779 lb uplift at joint 1 and 733 lb uplift at joint 7.
- This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 10) Use Simpson Strong-Tie HUS26 (14-10d Girder, 4-10d Truss) or equivalent spaced at 2-0-0 oc max. starting at 0-8-0 from the left end to 10-8-0 to connect truss(es) to front face of bottom chord.
- 11) Fill all nail holes where hanger is in contact with lumber.
- LOAD CASE(S) Standard
- 1) Dead + Roof Live (balanced): Lumber Increase=1.15, Plate Increase=1.15 Uniform Loads (lb/ft) Vert: 1-4=-70, 4-7=-70, 1-7=-20 Concentrated Loads (lb) Vert: 0.4074 (E) 40, 4074 (E)
 - Vert: 8=-1371 (F), 13=-1374 (F), 14=-1371 (F), 15=-1371 (F), 16=-1371 (F), 17=-1371 (F)

RF								
AS	NOTED ON PLANS	REVIEW	Truss Type		Qty	Ply	Roof	
	DEVELORMENT SER		Hip Girder		1	1	Job Reference (optional)	159339943
1	Premier Building Supply (Springhil 0/19/2023 11.	l, KS), Spring Hills, KS - 66	6083,	Run: 8.63 S Apr ID:btoNkJSQ6TW	6 2023 Print: 8.6 dWrxEMN0Mrfz	530 S Apr 62 ?AHo-RfC?P	2023 MiTek Industries, Inc. Wed Jul 05 09:05:57 sB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f	Page
			-0-11-0	0.0.10			12-10-8	

	NAILED									
	3-2-8	8-9-8	12-0-0							
	3-2-8	5-7-0	3-2-8							
Scale = 1:41										
Plate Offsets (X, Y): [3:0-3-6,Edge], [4:Edge,0-0-0], [7:Edge,0-6-2], [7:Edge,	10:Edge,0-6-2]									

	.,		<u> </u>	, C 0 ,	-								
Loading TCLL (roof) TCDL BCLL BCDL	(psf) 25.0 10.0 0.0 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 NO IRC2)18/TPI2014	CSI TC BC WB Matrix-S	0.88 0.44 0.22	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.04 -0.08 0.01	(loc) 8-9 8-9 7	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 56 lb	GRIP 197/144 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD	2x4 SP No.2 2x4 SP No.2 2x3 SPF No.2 *Exce Structural wood she 6-0-0 oc purlins, ex 2-0-0 oc purlins (4-3	pt* 10-2,7-5:2x4 SP athing directly applie cept end verticals, a -12 max.): 3-4.	° No.2 ed or nd	 Provide met bearing platu joint 10 and This truss is Internationa R802.10.2 a Graphical pu or the orient 	hanical connection e capable of withs 222 lb uplift at join designed in acco Residential Code nd referenced sta urlin representatio ation of the purlin	on (by oth standing 2 nt 7. Indance w e sections andard AN in does no along the	ers) of truss t 23 lb uplift at th the 2018 SR502.11.1 a ISI/TPI 1. ot depict the s top and/or	o nd iize					
BOT CHORD	Rigid ceiling directly bracing. (size) 7=0-3-8, 1 Max Horiz 10=102 (L Max Uplift 7=-222 (L Max Gray 7=752 (LC	applied or 10-0-0 or 10=0-3-8 .C 11) C 13), 10=-223 (LC C 1), 10=755 (LC 1)	c 12)	bottom chor 9) "NAILED" in per NDS gui 10) In the LOAD of the truss a LOAD CASE(S)	d. dicates Girder: 3- delines. CASE(S) sectior are noted as front Standard	10d (0.14 n, loads a t (F) or ba	8" x 3") toe-r pplied to the f ck (B).	nails ace					
FORCES	(lb) - Maximum Com Tension 1-2=0/41, 2-3=-865/3 4-5=-866/310, 5-6=0	pression/Maximum 317, 3-4=-685/307,)/40, 2-10=-737/288	,	1) Dead + Ro Plate Incre Uniform Lo Vert: 1-2 7-10=-20	of Live (balanced) ase=1.15 ads (lb/ft) =-70, 2-3=-70, 3-)): Lumbei 4=-70, 4-	5=-70, 5-6=-7	15, 0,					
BOT CHORD WEBS	5-7=-734/293 9-10=-93/125, 8-9=- 3-9=0/193, 3-8=-42/- 2-9=-242/673, 5-8=-	247/695, 7-8=-47/53 43, 4-8=-3/194, 247/673	3	Concentrat Vert: 3=- 11=-58 (ed Loads (lb) 58 (B), 4=-58 (B) B), 12=-58 (B), 13	, 9=-19 (E 3=-19 (B)	3), 8=-19 (B), , 14=-19 (B)						
 NOTES 1) Unbalance this design 2) Wind: ASC Vasd=91m 	ed roof live loads have n. CE 7-16; Vult=115mph ppb: TCDI =6 0psf: BC	been considered for (3-second gust) $DI = 6 0 \text{ orsf} \cdot h = 35 \text{ ft}$	r								Å	TATE OF M	MISSOLU

- 2) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=35ft; Ke=1.00; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- Provide adequate drainage to prevent water ponding.
 This truss has been designed for a 10.0 psf bottom
- chord live load nonconcurrent with any other live loads.5) All bearings are assumed to be SP No.2 crushing
- capacity of 565 psi.

July 5,2023

RELEASE FOR CONSTRUCTION AS NOTED ON PLANS REVIEW DEXELQRMENT SERVICES LEE'S SUMMIT, MISSOURI Promise Building Supply (Spring ML KS), Spring M 10/19/2023 11:05:19

Scale = 1:38.1

4-11-8	7-0-8	12-0-0	1
4-11-8	2-1-0	4-11-8]

Plate Offsets (X, Y): [3:0-3-6,Edge], [4:Edge,0-0-0], [7:Edge,0-6-2], [10:Edge,0-6-2]

Loading TCLL (roof) TCDL BCLL BCDL	(psf) 25.0 10.0 0.0 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC201	8/TPI2014	CSI TC BC WB Matrix-S	0.34 0.19 0.07	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.02 -0.03 0.01	(loc) 9-10 9-10 7	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 60 lb	GRIP 197/144 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD	 2x4 SP No.2 2x4 SP No.2 2x3 SPF No.2 *Exce Structural wood she 6-0-0 oc purlins, exit 2-0-0 oc purlins (6-0 	pt* 10-2,7-5:2x4 SF athing directly appli cept end verticals, a -0 max.): 3-4.	5) 6) 9 No.2 ed or 7) ind	All bearings capacity of 5 Provide meo bearing plate 10 and 93 lb This truss is International R802.10.2 a	are assumed to be 65 psi. hanical connectior a capable of withst uplift at joint 7. designed in accor Residential Code nd referenced star	e SP No. n (by oth anding 9 dance w sections ndard AN	2 crushing ers) of truss t 94 lb uplift at j ith the 2018 \$ R502.11.1 a ISI/TPI 1.	to joint and					
BOT CHORD	 Rigid ceiling directly bracing. (size) 7=0-3-8, 1 Max Horiz 10=134 (L Max Uplift 7=-93 (LC Max Grav 7=598 (LC 	applied or 10-0-0 o 10=0-3-8 _C 11) ; 13), 10=-94 (LC 12 C 1), 10=602 (LC 1)	c 8) L(2)	Graphical pu or the orienta bottom chord DAD CASE(S)	irlin representation ation of the purlin a d. Standard	along the	ot depict the s	SIZE					
FORCES	(lb) - Maximum Com Tension	pression/Maximum											
TOP CHORD	1-2=0/41, 2-3=-589/ 4-5=-590/155, 5-6=0 5-7=-550/207	153, 3-4=-403/177,)/40, 2-10=-553/198	,										
BOT CHORD WEBS	9-10=-160/336, 8-9= 3-9=0/121, 3-8=-80/3 2-9=-58/205, 5-8=-63	29/403, 7-8=-114/2 82, 4-8=-17/122, 5/207	247										
NOTES													~
 Unbalance this designed Wind: AS Vasd=911 Ke=1.00; 	ed roof live loads have n. CE 7-16; Vult=115mph mph; TCDL=6.0psf; BC Cat. II; Exp C; Enclose	been considered fo (3-second gust) DL=6.0psf; h=35ft; d; MWFRS (envelop	r pe)								E.	STATE OF I	MISSOLA

Vind: 1021 Ptb, Vind: 10510, 05 500 and gdx) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=35ft; Ke=1.00; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) -0-11-0 to 4-1-0, Interior (1) 4-1-0 to 5-0-12, Exterior(2E) 5-0-12 to 12-10-8 zone; cantilever left and right exposed; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

 Provide adequate drainage to prevent water ponding.
 This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

NATHANIEL FOX PE-2022042259 SIONAL ENGLASSIONAL ENGLASSIO

RF	LEASE FOR CONSTRUCTION				_		
A	NOTED ON PLANS REVIEW	Truss Ty	vpe	Qty	Ply	Roof	
	DEVELORMENT SERVICES	Lay-In (Gable	1	1	Job Reference (optional)	159339945
	Premier Building Supply (Springhill, KS), Spring	lills, KS - 66083.	Run: 8.63 S Apr 6 20)23 Print: 8.6	30 S Apr 62	2023 MiTek Industries, Inc. Wed Jul 05 09:05:58	Page: 1

10/19/2023 11:05:19

ID:5W0a_TnUNNG3anzvr52Enmz?AJx-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Scale = 1:30.6

Loading FCLL (roof) FCDL BCLL BCDL	(psf) 25.0 10.0 0.0 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018	3/TPI2014	CSI TC BC WB Matrix-P	0.16 0.05 0.02	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 3	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 22 lb	GRIP 244/190 FT = 20%	
LUMBER FOP CHORD BOT CHORD DTHERS BRACING FOP CHORD BOT CHORD	2x4 SP No.2 2x4 SP No.2 2x4 SPF No.3 Structural wood shea 5-2-3 oc purlins. Rigid ceiling directly bracing.	athing directly applie	7) 8) ed or 9) c LO	All bearings a capacity of 50 Provide mech bearing plate 1 and 39 lb u This truss is of International R802.10.2 ar PAD CASE(S)	are assumed to be 65 psi. nanical connectior capable of withst plift at joint 3. designed in accord Residential Code nd referenced star Standard	e SP No.: n (by othe anding 4 dance wi sections ndard AN	2 crushing ers) of truss te 6 lb uplift at jo th the 2018 R502.11.1 a ISI/TPI 1.	o oint nd						
REACTIONS	(size) 1=5-1-13, Max Horiz 1=-92 (LC Max Uplift 1=-46 (LC Max Grav 1=137 (LC (LC 1)	3=5-1-13, 4=5-1-13 8) 13), 3=-39 (LC 12) 1), 3=137 (LC 1), 4	l=139											
ORCES	(lb) - Maximum Com	pression/Maximum												
TOP CHORD BOT CHORD WEBS	1-2=-119/61, 2-3=-10 1-4=-36/64, 3-4=-36/ 2-4=-82/22	09/52 /64												
NOTES Unbalanc this desig Wind: AS Vasd=91r Ke=1.00;	ed roof live loads have n. CE 7-16; Vult=115mph nph; TCDL=6.0psf; BC Cat. II; Exp C; Enclose	been considered for (3-second gust) DL=6.0psf; h=35ft; d; MWFRS (envelop	ne)										and	

exterior zone and C-C Exterior(2E) zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 3) Truss designed for wind loads in the plane of the truss

only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1. Gable requires continuous bottom chord bearing. 4)

Gable studs spaced at 2-0-0 oc. 5)

- 6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

Loading TCLL (roof) TCDL BCLL BCDL		(psf) 25.0 10.0 0.0 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC20 ⁴	8/TPI2014	CSI TC BC WB Matrix-S	0.22 0.09 0.18	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 11	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 99 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD	2x4 SP N 2x4 SP N 2x4 SPF I 2x4 SPF I Structural	o.2 o.2 No.3 No.3 I wood shea	athing directly applie	V N 1 ed or	VEBS	4-17=-215/145, 3-1 2-20=-216/180, 5-1 6-15=-145/69, 7-14 9-12=-117/72 roof live loads have	8=-191/ 6=-227/ =-138/6 e been (159, 182, 3, 8-13=-148 considered fo	/69, r	12) Gra or th bott LOAD C	phical prine orient om chor CASE(S)	urlin re ation o d. Sta	presentation doe of the purlin along ndard	s not depict the size the top and/or
BOT CHORD REACTIONS	6-0-0 oc p 2-0-0 oc p Rigid ceili bracing. (size)	2000 Durlins, exc burlins (6-0- bing directly 1=17-2-6, 13=17-2-6 16=17-2-6	cept end verticals, au -0 max.): 5-10. applied or 6-0-0 oc 11=17-2-6, 12=17-2 5, 14=17-2-6, 15=17- 5, 17=17-2-6, 18=17-	2-6, -2-6, -2-6, -2-6,	 Wind: ASCE Vasd=91mpl Ke=1.00; Ca exterior zone Interior (1) 5 Interior (1) 8 right expose for mombers 	7-16; Vult=115mpl h; TCDL=6.0psf; BC t. II; Exp C; Enclose and C-C Exterior(4-1 to 6-5-13, Exter 6-3 to 17-0-14 zon d; end vertical left : and constants	n (3-sec CDL=6.0 ed; MW 2E) 0-4 rior(2E) e; canti and righ	cond gust) Dpsf; h=35ft; FRS (envelop 1 to 5-4-1, 6-5-13 to 8-6 lever left and at exposed;C- reactions of con-	be) 6-3, •C					
	Max Horiz Max Uplift Max Grav	20=17-2-6 1=247 (LC 1=-101 (Lu 12=-26 (Lu 14=-38 (Lu 16=-76 (Lu 18=-133 (lu 1=198 (LC	; ; 9) C 8), 11=-32 (LC 11 C 8), 13=-46 (LC 9), C 13), 15=-45 (LC 9 C 8), 17=-105 (LC 1 LC 12), 20=-161 (LC ; 11), 11=22 (LC 8),), 3)), 1), 2 2 12) 4 5 5	 Jumber DOL Lumber DOL Truss desig only. For stuse see Standard or consult quitor Provide aded All plates are 	and forces & MWF =1.60 plate grip DC ned for wind loads i ids exposed to wind d Industry Gable Er lalified building des quate drainage to p a 1.5x4 MT20 unles	DL=1.60 in the p d (norm nd Deta igner as revent s other	ane of the tru al to the face ils as applical s per ANSI/TF vater ponding vise indicated						
		12=132 (L 14=177 (L 16=206 (L 18=210 (L	.C 26), 13=190 (LC .C 26), 15=185 (LC .C 20), 17=226 (LC .C 19), 20=241 (LC	1), 0 1), 7 19), 8 19)) Gable requir) Gable studs) This truss ha chord live loa	spaced at 2-0-0 oc sbeen designed fo ad nonconcurrent w	or a 10.0 vith any	o bearing.) psf bottom other live loa	ds.				TE OF M	AISSO
FORCES	(lb) - Max Tension 1-2=-287/ 4-5=-187/ 7-8=-89/9 10-11=-5!	imum Com /291, 2-3=-2 /196, 5-6=-{ /6, 8-9=-89/ 5/58	pression/Maximum 216/171, 3-4=-193/2 39/96, 6-7=-89/96, '96, 9-10=-89/96,	9 201, 1	 All bearings are assumed to be SP No.2 crushing capacity of 565 psi. Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 101 lb uplift at joint 17, 133 lb uplift at joint 11, 105 lb uplift at joint 17, 133 									NIEL PL
BOT CHORD	1-20=-94/ 17-18=-94 15-16=-92 13-14=-92 11-12=-92	4/101, 18-20 4/101, 16-1 2/100, 14-1 2/100, 12-1 2/100	=-94/101, 7=-94/101, 5=-92/100, 3=-92/100,	1	joint 16, 45 ll lb uplift at joi 1) This truss is International R802.10.2 a	b uplift at joint 15, 3 nt 13 and 26 lb upli designed in accord Residential Code s nd referenced stand	8 lb upl ft at joir ance w sections dard AN	ift at joint 14, nt 12. ith the 2018 R502.11.1 a ISI/TPI 1.	46 Ind			A A A A A A A A A A A A A A A A A A A	PE-20220	BER () 142259

July 5,2023

24-0-10

Scale = 1:49.8 Plate Offsets (X, Y): [4:0-1-7,Edge]

Loading		(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP	
TCLL (roof)		25.0	Plate Grip DOL	1.15		TC	0.13	Vert(LL)	n/a	-	n/a	999	MT20	197/144	
TCDL		10.0	Lumber DOL	1.15		BC	0.07	Vert(TL)	n/a	-	n/a	999			
BCLL		0.0	Rep Stress Incr	YES		WB	0.16	Horiz(TL)	0.01	14	n/a	n/a			
BCDL		10.0	Code	IRC20	18/TPI2014	Matrix-S							Weight: 152 lb	FT = 20%	
LUMBER					TOP CHORD	1-27=-56/41, 1-2=-6	69/67,2	-3=-183/191,		9) All	bearings	are a	ssumed to be SI	^o No.2 crushing	
TOP CHORD	2x4 SP N	0.2			:	3-4=-215/219, 4-5=-	183/20	0, 5-6=-183/2	200,	, cap	acity of	565 ps	si.	0	
BOT CHORD	2x4 SP N	0.2			(6-7=-183/200, 7-8=-	183/20	0, 8-9=-183/2	200,	10) Pro	vide me	chanic	al connection (b	y others) of truss to	
WEBS	2x4 SPF	No.3			9	9-10=-183/200, 10-	11=-18	3/199,		bea	ring plat	te capa	able of withstand	ling 20 lb uplift at joint	
OTHERS	2x4 SPF	No.3				11-12=-232/244, 12	-13=-19	99/191,		27,	113 lb u	plift at	joint 14, 69 lb u	plift at joint 17, 49 lb	
BRACING						13-14=-246/226				upli	ft at join	t 18, 3	9 lb uplift at joint	19, 40 lb uplift at joint	
TOP CHORD	Structura	l wood she	athing directly applie	d or	BOT CHORD	26-27=-163/196, 25	-26=-10	63/196,		20,	39 lb up	lift at j	oint 21, 57 lb up	lift at joint 23, 47 lb	
	6-0-0 oc i	ourlins, exe	cept end verticals, ar	nd	:	24-25=-163/196, 23	-24=-10	63/196,		upli	ft at join	t 24, 4	6 lb uplift at joint	25, 171 lb uplift at	
	2-0-0 oc	purlins (6-0	-0 max.): 4-11.		:	21-23=-163/196, 20	-21=-10	63/196,		join	t 26, 114	4 lb up	lift at joint 16 an	d 193 lb uplift at joint	
BOT CHORD	Rigid ceil	ing directly	applied or 10-0-0 oc	;		19-20=-163/196, 18	-19=-10	63/196,		15.					
	bracing.	0 1				17-18=-163/196, 16	-1/=-10	51/194,		11) I hi	s truss is	desig	ned in accordan	ce with the 2018	
REACTIONS	(size)	14=24-0-1	0, 15=24-0-10,			15-16=-161/194, 14	-15=-10	01/194 04/74		Inte	rnationa		dential Code sec		
		16=24-0-1	0, 17=24-0-10,		WEB5	11-17=-145/109,10	-18=-11	$\frac{04}{14}$, $\frac{1}{2}$	62	12) Cro	JZ. IU.Z i phical n	and rei	erenced standa	ANSI/TPLT.	
		18=24-0-1	0, 19=24-0-10,			6-23-142/82 5-24-	130/7	7 3-25143	/72	12) Gia	he orien	tation	of the purlin alor	a the top and/or	
		20=24-0-1	0, 21=24-0-10,			2-26=-184/179 12-	16=-15	7, 3 23= 143/ 2/138	12,	bot	om cho	rd		g the top and/or	
		23=24-0-1	10, 24=24-0-10,			13-15=-246/214	10- 10	2/100,				0. N Sta	ndard		
		25=24-0-1	10, 26=24-0-10,		NOTES					LOAD) 01a	nuaru		
		27=24-0-1	10		1) Unbalanced	roof live loads have	hoon	considered for	r						
	Max Horiz	27=-229 (this design		been								
	Max Uplift	14=-113 (LC 9), 15=-193 (LC 1	13),	2) Wind ASCE	7-16. Vult=115mph	(3-sec	cond aust)							
		16=-114 (LC 13), 17=-69 (LC 3	8),	Vasd=91mpl	h: TCDL=6.0psf: BC	DL=6.0	Dpsf: h=35ft:							
		18=-49 (L	C 8, 19=-39 (LC 9), C 0, 21 – 20 (LC 9),		Ke=1.00: Ca	it. II: Exp C: Enclose	d: MW	FRS (envelop	e)						
		20=-40 (L 2357 (L	C 9, 21=-39 (LC 8), C 9) 24=-47 (LC 8)		exterior zone	e and C-C Exterior(2	2E) 0-1	-12 to 4-1-9,	- /					and the	
		2546 (L	C 12) 26-171 (I C 1	12)	Exterior(2R)	4-1-9 to 11-0-8, Inte	erior (1)) 11-0-8 to 17	-4-0,				OOF	MICH	
		27=-20 (L	C 8)	12),	Exterior(2E)	17-4-0 to 23-8-13 z	one; ca	antilever left a	nd				AFE OF	MISS	
	Max Grav	14=205 (L	C 19) 15=291 (I C 2	20)	right expose	d ; end vertical left a	and righ	nt exposed;C-	С			4		N.S.	
	max orav	16=173 (L	_C 20), 17=187 (LC 2	21).	for members	and forces & MWF	RS for	reactions sho	wn;			H	NATH.	ANIEL TO A	
		18=206 (L	.C 25), 19=174 (LC	1).	Lumber DOL	.=1.60 plate grip DC	DL=1.60)				H.	FC	X V X	
		20=181 (L	C 26), 21=180 (LC 2	25),	Truss desig	ned for wind loads i	n the p	lane of the tru	SS			M	11		<u>۲</u>
		23=183 (L	C 26), 24=179 (LC 2	25),	only. For stu	ids exposed to wind	l (norm	al to the face)				XI	HT.		
		25=185 (L	C 25), 26=217 (LC '	19),	see Standar	d Industry Gable En	d Deta	ils as applicat	ole,			M/	a handia		<u>ا</u>
		27=62 (LC	C 21)		or consult qu	anned building desi	gner as	s per ANSI/TH	11.			W.		iber 🥑 /	/
FORCES	(lb) - Max	timum Com	pression/Maximum			quate trainage to pl		water ponding). I			N	ON PE-2022	2042259 / SA	
	Tension				S) Coble require	a continuous hatta	mohor	d booring	ı.			OV N	The second	12A	
					7) Gable requir	enaced at 2-0-0 oc		u bearing.				Y	A Ser	C'A	
					 Gable Sluds This trues has 	spaceu al 2-0-0 00.	r a 10 () not bottom					V ON	LEFE	
					<i>)</i> 11115 11105 118	is neell designed 10	1 a 10.0	par bollotti					AL TIT		

This truss has been designed for a 10.0 psf bottom 8) chord live load nonconcurrent with any other live loads.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Come

RF	LEASE FOR CONSTRUCTION					
A	NOTED ON PLANS REVIEW	Truss Type	Qty	Ply	Roof	
	EVELORMENT SERVICES	Jack-Open	2	1	Job Reference (optional)	159339948
	Premier Building Supply (Springhill, KS), Spring	lills, KS - 66083,	Run: 8.63 S Apr 6 2023 Print: 8.6	630 S Apr 62	2023 MiTek Industries, Inc. Wed Jul 05 09:06:00	Page: 1

10/19/2023 11:05:20

ID:SkjSFJoQa5BKY2Ygxhz_RAzRpiE-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

-0-11-0 2-4-1 0-11-0 2-4-1

2-4-1

Scale = 1:28

Plate Offsets (X, Y): [2:Edge,0-0-0]

	-								-				
Loading	(1	psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	2	25.0	Plate Grip DOL	1.15	тс	0.10	Vert(LL)	0.00	2-5	>999	240	MT20	244/190
TCDL	1	0.0	Lumber DOL	1.15	BC	0.06	Vert(CT)	0.00	2-5	>999	180		
BCLL		0.0	Rep Stress Incr	YES	WB	0.00	Horz(CT)	0.00	4	n/a	n/a		
BCDL	1	0.0	Code	IRC2018/TPI2014	Matrix-P							Weight: 12 lb	FT = 20%
LUMBER				6) This truss is	designed in accord	ance w	ith the 2018						
TOP CHORD	2x4 SP No.2			Ínternational	Residential Code s	ections	R502.11.1 a	nd					
BOT CHORD	2x4 SP No.2			R802.10.2 ar	nd referenced stand	dard AN	ISI/TPI 1.						
SLIDER	Left 2x4 SP No	o.2 1	-5-15	LOAD CASE(S)	Standard								
BRACING				(-)									
TOP CHORD	Structural woo	od shea	athing directly applied	dor									
	2-4-1 oc purlir	าร.	and an oblight applied										
BOT CHORD	Rigid ceiling d	lirectly	applied or 10-0-0 oc										
REACTIONS	(size) 2=0)-3-8.4	= Mechanical, 5=										
	Me	chanica	al										
	Max Horiz 2=8	31 (LC	12)										
	Max Uplift 2=-2	21 (LC	12), 4=-61 (LC 12)										
	Max Grav 2=1	180 (LC	1), 4=75 (LC 19), 5	=46									
	(LC	; 3)											
FORCES	(lb) - Maximun	n Com	pression/Maximum										
	1-2-0/7 2-4	71/40											
BOT CHORD	2-5=0/0	/ 1/40											
NOTES	2 0-0/0												
1) Wind AS	CE 7 16: \/ult_11	15mnh	(2 cocond quet)										
I) WIND. AS	CE 7-10, $Vuil=11$		(3-Second gust)										
Ke-1 00.	Cat II: Exp.C: E	ncloser	MWERS (envelope	(د									
exterior 70	one and C-C Ext	erior(2	E) zone: cantilever le	s) ft								Con	ADD.
and right e	exposed : end ve	ertical le	eft and right									A OF M	AISC
exposed:0	C-C for members	and fo	prces & MWFRS for								1	750	W.OS
reactions	shown; Lumber I	DOL=1	.60 plate grip								R	NATURA	
DOL=1.60)										4	S/ NATHA	MEL 15 V
2) This truss	has been desigr	ned for	a 10.0 psf bottom							•	YN	FO	
chord live	load nonconcurr	rent wit	h any other live load	S.							V T	11	1 STA
3) Bearings a	are assumed to b	be: , Jo	int 2 SP No.2 crushi	ng							NI.	516	1 the
capacity o	of 565 psi.										NA	v u vmu	ER (MAN
Refer to g	irder(s) for truss	s to trus	s connections.								17	DE 2022	12250 180
5) Provide m	echanical conne	ection (I	by others) of truss to								N.	FE-2022	59
bearing pl	ate capable of w	lithstan	aing 61 lb uplift at joi	int							Y	1 Ce	10 B
4 and 21 I	b uplift at joint 2.	•									12	UNIONIA	TENA
												ANA NA	

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

RF	LEASE FOR CONSTRU							
AS	NOTED ON PLANS RE	E%IE ₩	Truss Type	Qt	ty	Ply	Roof	
	DEXELORMENT SERVIC	CES	Jack-Open	4		1	Job Reference (optional)	159339949
1	Premier Building Supply (Springhill, K 0/19/2023 11:05	(S), Spring 20	lills, KS - 66083,	Run: 8.63 S Apr 6 2023 F ID:1ecvqLc4vmNBHUK1S	Print: 8.63 SSHjgcz?/	30 S Apr 6 2 AKA-RfC?Ps	023 MiTek Industries, Inc. Wed Jul 05 09:05:59 B70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f	Page: 1

-0-11-0

3-11-4

		3-11-4	_
Scale = 1:29.6	I		I
Plate Offsets (X, Y): [2:Edge,0-0-1]			

(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
25.0	Plate Grip DOL	1.15	TC	0.30	Vert(LL)	-0.01	2-5	>999	240	MT20	244/190
10.0	Lumber DOL	1.15	BC	0.18	Vert(CT)	-0.03	2-5	>999	180		
0.0	Rep Stress Incr	YES	WB	0.00	Horz(CT)	-0.01	4	n/a	n/a		
10.0	Code	IRC2018/TPI2014	Matrix-P							Weight: 18 lb	FT = 20%
		6) This truss is	s designed in acco	rdance w	ith the 2018						
2x4 SP No.2		Internationa	al Residential Code	e sections	s R502.11.1 a	and					
2x4 SP No.2		R802.10.2	and referenced sta	Indard AN	ISI/TPI 1.						
Left 2x4 SP No.2 2	2-4-1	LOAD CASE(S) Standard								
		,	,								
Structural wood she	athing directly applie	ed or									
3-11-4 oc purlins.	5										
Rigid ceiling directly bracing.	applied or 10-0-0 or										
(size) 2=0-3-8, 4	4= Mechanical, 5=										
Mechanic	al										
Max Horiz 2=121 (LC	C 12)										
Max Uplift 2=-23 (LC	2 12), 4=-99 (LC 12)										
Max Grav 2=246 (LC (LC 3)	C 1), 4=138 (LC 19),	5=77									
(lb) - Maximum Com Tension	pression/Maximum										
1-2=0/7, 2-4=-106/5 2-5=0/0	9										
CE 7-16; Vult=115mph hph; TCDL=6.0psf; BC Cat. II; Exp C; Enclose one and C-C Exterior(2 exposed; end vertical I -C for members and fi shown; Lumber DOL= has been designed for load nonconcurrent wi are assumed to be: , Jo f 565 psi. rder(s) for truss to tru echanical connection (ate capable of withstar o uplift at joint 2.	(3-second gust) DL=6.0psf; h=35ft; d; MWFRS (envelop E) zone; cantilever I left and right orces & MWFRS for 1.60 plate grip r a 10.0 psf bottom th any other live load oint 2 SP No.2 crush es connections. (by others) of truss to holing 99 lb uplift at jo	be) eft ds. ing D Dint						•		PE-2022	MISSOLA INTEL X 042259
	(psf) 25.0 10.0 0.0 10.0 2x4 SP No.2 2x4 SP No.2 Left 2x4 SP No.2 - 2 Structural wood she 3-11-4 oc purlins. Rigid ceiling directly bracing. (size) 2=0-3-8, 4 Mechanic Max Horiz 2=121 (LC Max Uplift 2=-23 (LC Max Grav 2=246 (LC (LC 3) (lb) - Maximum Com Tension 1-2=0/7, 2-4=-106/5 2-5=0/0 E 7-16; Vult=115mph ph; TCDL=6.0psf; BC 2at. II; Exp C; Enclose ne and C-C Exterior(2 xposed ; end vertical I -C for members and f ishown; Lumber DOL=* has been designed foi oad nonconcurrent wi the assumed to be: , Jo 565 psi. rder(s) for truss to tru schanical connection (the capable of withstar o uplift at joint 2.	(psf) 25.0 10.0 10.0 10.0 25.0 10.0 10.0 25.0 10.0 25.0 10.0 26.0 27.4 SP No.2 27.4 SP	(psf) 25.0Spacing Plate Grip DOL 1.152-0-0 Plate Grip DOL 1.1510.0Lumber DOL Nep Stress Incr (Code1.15 Rep Stress Incr YES Code2x4 SP No.26)This truss is International R802.10.2 : Left 2x4 SP No.2 2-4-1Structural wood sheathing directly applied or 3-11-4 oc purlins. Rigid ceiling directly applied or 10-0-0 oc bracing. (size)2=0-3-8, 4= Mechanical, 5= MechanicalMax Horiz 2=121 (LC 12) Max Grav 2=246 (LC 1), 4=-99 (LC 12) Max Grav 2=246 (LC 1), 4=138 (LC 19), 5=77 (LC 3)(b) - Maximum Compression/Maximum Tension 1-2=0/7, 2-4=-106/59 2-5=0/02:57-16; Vult=115mph (3-second gust) ph; TCDL=6.0psf; BCDL=6.0psf; h=35ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) ne and C-C Exterior(2E) zone; cantilever left xposed; end vertical left and right -C for members and forces & MWFRS for thown; Lumber DOL=1.60 plate griphas been designed for a 10.0 psf bottom oad nonconcurrent with any other live loads. re assumed to be: , Joint 2 SP No.2 crushing 565 psi.def(s) for truss to truss connections. schanical connection (by others) of truss to the capable of withstanding 99 lb uplift at joint ouplift at joint 2.	(psf) Spacing 2-0-0 CSi 10.0 Plate Grip DOL 1.15 TC 10.0 Lumber DOL 1.15 BC 10.0 Code IRC2018/TPI2014 Matrix-P 2x4 SP No.2 Code IRC2018/TPI2014 Matrix-P 6) This truss is designed in acco International Residential Code R802.10.2 and referenced sta 2x4 SP No.2 Left 2x4 SP No.2 2-4-1 COAD CASE(S) Standard Structural wood sheathing directly applied or 3-11-4 oc purlins. Rigid ceiling directly applied or 10-0-0 oc bracing. Ferenced sta (size) 2=0-3-8, 4= Mechanical, 5= Mechanical Max Horiz 2=121 (LC 12) Max Grav 2=246 (LC 1), 4=138 (LC 19), 5=77 (LC 3) (b) - Maximum Compression/Maximum Tension Tersion 1-2=07, 2-4=-106/59 2-5=0/0 Second gust) Fr, TCDL=6.0psf; BCDL=6.0psf; h=35ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) has been designed for a 10.0 psf bottom oad nonconcurrent with any other live loads. commeters and forces & MWFRS for has been designed for a 10.0 psf bottom oad nonconcurrent with any othe		(psf) 25.0 (0.0) Spacing Plate Grip DOL Lumber DOL 0.0 (0.0) 2-0-0 Plate Grip DOL Lumber DOL 0.0 CSI TC 0.0 (DU 0.0 DEFL TC 0.030 0.0 0.0 Rep Stress Incr VES TC 0.00 0.00 Vert(LL) Vert(CT) Horz(CT) 2x4 SP No.2 2x4 SP No.2 Left 2x4 SP No.2 - 2-4-1 6) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 a R802.10.2 and referenced standard ANSI/TPI 1. Left 2x4 SP No.2 2x4 SP No.2 Left 2x4 SP No.2 - 2-4-1 LOAD CASE(S) Standard Structural wood sheathing directly applied or 3-11-4 cc purlins. R802.10.2 and referenced standard ANSI/TPI 1. LOAD CASE(S) Structural wood sheathing directly applied or 10-0-0 cc bracing. Standard Standard (size) 2=0-3-8, 4= Mechanical, 5= Mechanical Mechanical, 5= Mechanical Standard Max Upifit 2=-23 (LC 12), 4=-99 (LC 12) Max Grav 2=246 (LC 1), 4=138 (LC 19), 5=77 (LC 3) Standard (b) - Maximum Compression/Maximum Tension 1-2=0/7, 2-4=-106/59 2-5=0/0 Standard Standard 2E 7-16; Vult=115mph (3-second gust) ph; TCDL=6.0psf; BCDL=6.0psf; h=35ft; 2at. II; Exp C; Enclosed; MWFRS for hown; Lumber DOL=1.60 plate grip Standard Standard has been designed for a 10.0 pst bottom oad nonconcurrent with any other live loads, re assumed to be: , Joint 2 SP No.2 crushing 565 psi.	(pst) Spacing 2-0-0 CSi DEFL in 25.0 Lumber DOL 1.15 TC 0.30 Vert(LL) -0.01 0.0 Rep Stress Incr YES WB 0.00 Horz(CT) -0.03 10.0 Code IRC2018/TPI2014 Matrix-P Horz(CT) -0.01 2x4 SP No.2 Code IRC2018/TPI2014 Matrix-P Horz(CT) -0.01 2x4 SP No.2 International Residential Code sections R502.11.1 and R602.10.2 and referenced standard ANSI/TPI 1. LDAD CASE(S) Standard Left 2x4 SP No.2 2-0-3-8.4 = Mechanical, 5= Mechanical Structural wood sheathing directly applied or 10-0-0 oc bracing. Standard Structural wood sheathing directly applied or 10-0-0 oc bracing. (LC 12) Max Grav 2=246 (LC 1), 4=99 (LC 12) Max Grav 2=246 (LC 1), 4=99 (LC 12) Max Grav 2=246 (LC 1), 4=138 (LC 19), 5=77 (LC 3) (LC 3) Structural WFRS (or how/FRS for how/FI Lumber DOL=1.60 plate grip Has been designed for a 10.0 psf bottom cad nonconcurrent with any other live loads. re assumed be:	(psf) Spacing 2-0-0 CSI DEFL in (loc) 25.0 Plate Grip DOL 1.15 TC 0.30 Vert(LL) -0.01 2-5 0.0 Rep Stress Incr YES BC 0.18 Vert(CT) -0.03 2-5 10.0 Code IRC2018/TPI2014 Matrix-P Horz(CT) -0.01 4 2x4 SP No.2 Structural wood sheathing directly applied or 3-11-4 oc purlins. R802.10.2 and referenced standard ANSUTP1 1. LOAD CASE(S) Standard Structural wood sheathing directly applied or 3-11-4 oc purlins. Rigid celling directly applied or 10-0-0 oc bracing. Structural wood sheathing directly applied or 10-0-0 oc bracing. Standard Structural wood sheathing directly applied or 3-17 (LC 3) Structural wood sheathing directly applied or 3-17 (LC 3) Structural wood sheathing directly applied or 3-17 (LC 3) Structural wood sheathing directly applied or 3-17 (LC 3) Structural wood sheathing directly applied or 3-17 (LC 3) Structural wood sheathing directly applied or 3-17 (LC 3) Structural wood sheathing directly applied or 3-17 (LC 3) Structural wood sheathing directly applied or 3-17 (LC 3) Structural wood sheathing directly applied or 3-17 (LC 3) Structural wood sheathing directly applied or 3-17 (LC 3) <td>(pst) Spacing 2-0-0 CSI DEFL in (loc) I/deft 25.0 Plate Grip DOL 1.15 TC 0.30 Vert(L1) -0.01 2-5 >999 10.0 Rep Stress Incr YES WB 0.01 Wert(CT) -0.03 2-5 >999 10.0 Code IRC2018/TPI2014 Matrix-P Matrix-P No.2 -0.01 4 n/a 2x4 SP No.2 Code IRC2018/TPI2014 Matrix-P International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. LoAD CASE(S) Standard Standard Standard Standard Standard NSI/TPI 1. LOAD CASE(S) Standard Standard<td>(psf) Spacing 2-0-0 CSI DEFL in (loc) //deft L/d 10.0 Lumber DOL 1.15 BC 0.30 BC 0.01 2-5 >999 240 0.0 Rep Stress Incr YES WB 0.00 Horz(CT) -0.01 4 n/a n/a 2x4 SP No.2 Code IRC2018/TPI2014 WB 0.00 Horz(CT) -0.01 4 n/a n/a 2x4 SP No.2 Editational Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. LOAD CASE(S) Standard Structural wood sheathing directly applied or 3-11-4 oc puritins. Figure Color Col</td><td>(pst) Spacing 2-0-0 CSI DEFL in (loc) I/deft L/d 10.0 Lumber DoL 1.15 TC 0.30 Vert(CT) -0.01 2-5 >999 160 10.0 Rep Stress Incr YES WB 0.00 Horz(CT) -0.01 4 n/a n/a 2x4 SP No.2 Code IRC2018/TPI2014 Watrix-P No 10.0 Weight: 18 lb 2x4 SP No.2 International Residential Code sections R502.11.1 and R502.10.2 and referenced standard ANSI/TPI 1. LOAD CASE(S) Standard Structural wood sheathing directly applied or 3-11-4 oc purins. R502.10.2 and referenced standard ANSI/TPI 1. LOAD CASE(S) Standard Structural wood sheathing directly applied or 3-214 (LC 12) Max Grav 2-246 (LC 1), 4-138 (LC 19), 5=77 (LC 3) (LO 1) (LO 2) (b) - Maximum Compression/Maximum Tension Tension 1-2007, 2-4a-106/59 2-5-600 -2-5-600 -2-5-600 -2-5-600 -2-7-16 (Vill-115mph (3-second gus)) FO NNTHA ph: Colore distand for a 10.0 pst botom cad nonconcurrent with any other live loads. re assumed to</td></td>	(pst) Spacing 2-0-0 CSI DEFL in (loc) I/deft 25.0 Plate Grip DOL 1.15 TC 0.30 Vert(L1) -0.01 2-5 >999 10.0 Rep Stress Incr YES WB 0.01 Wert(CT) -0.03 2-5 >999 10.0 Code IRC2018/TPI2014 Matrix-P Matrix-P No.2 -0.01 4 n/a 2x4 SP No.2 Code IRC2018/TPI2014 Matrix-P International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. LoAD CASE(S) Standard Standard Standard Standard Standard NSI/TPI 1. LOAD CASE(S) Standard Standard <td>(psf) Spacing 2-0-0 CSI DEFL in (loc) //deft L/d 10.0 Lumber DOL 1.15 BC 0.30 BC 0.01 2-5 >999 240 0.0 Rep Stress Incr YES WB 0.00 Horz(CT) -0.01 4 n/a n/a 2x4 SP No.2 Code IRC2018/TPI2014 WB 0.00 Horz(CT) -0.01 4 n/a n/a 2x4 SP No.2 Editational Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. LOAD CASE(S) Standard Structural wood sheathing directly applied or 3-11-4 oc puritins. Figure Color Col</td> <td>(pst) Spacing 2-0-0 CSI DEFL in (loc) I/deft L/d 10.0 Lumber DoL 1.15 TC 0.30 Vert(CT) -0.01 2-5 >999 160 10.0 Rep Stress Incr YES WB 0.00 Horz(CT) -0.01 4 n/a n/a 2x4 SP No.2 Code IRC2018/TPI2014 Watrix-P No 10.0 Weight: 18 lb 2x4 SP No.2 International Residential Code sections R502.11.1 and R502.10.2 and referenced standard ANSI/TPI 1. LOAD CASE(S) Standard Structural wood sheathing directly applied or 3-11-4 oc purins. R502.10.2 and referenced standard ANSI/TPI 1. LOAD CASE(S) Standard Structural wood sheathing directly applied or 3-214 (LC 12) Max Grav 2-246 (LC 1), 4-138 (LC 19), 5=77 (LC 3) (LO 1) (LO 2) (b) - Maximum Compression/Maximum Tension Tension 1-2007, 2-4a-106/59 2-5-600 -2-5-600 -2-5-600 -2-5-600 -2-7-16 (Vill-115mph (3-second gus)) FO NNTHA ph: Colore distand for a 10.0 pst botom cad nonconcurrent with any other live loads. re assumed to</td>	(psf) Spacing 2-0-0 CSI DEFL in (loc) //deft L/d 10.0 Lumber DOL 1.15 BC 0.30 BC 0.01 2-5 >999 240 0.0 Rep Stress Incr YES WB 0.00 Horz(CT) -0.01 4 n/a n/a 2x4 SP No.2 Code IRC2018/TPI2014 WB 0.00 Horz(CT) -0.01 4 n/a n/a 2x4 SP No.2 Editational Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. LOAD CASE(S) Standard Structural wood sheathing directly applied or 3-11-4 oc puritins. Figure Color Col	(pst) Spacing 2-0-0 CSI DEFL in (loc) I/deft L/d 10.0 Lumber DoL 1.15 TC 0.30 Vert(CT) -0.01 2-5 >999 160 10.0 Rep Stress Incr YES WB 0.00 Horz(CT) -0.01 4 n/a n/a 2x4 SP No.2 Code IRC2018/TPI2014 Watrix-P No 10.0 Weight: 18 lb 2x4 SP No.2 International Residential Code sections R502.11.1 and R502.10.2 and referenced standard ANSI/TPI 1. LOAD CASE(S) Standard Structural wood sheathing directly applied or 3-11-4 oc purins. R502.10.2 and referenced standard ANSI/TPI 1. LOAD CASE(S) Standard Structural wood sheathing directly applied or 3-214 (LC 12) Max Grav 2-246 (LC 1), 4-138 (LC 19), 5=77 (LC 3) (LO 1) (LO 2) (b) - Maximum Compression/Maximum Tension Tension 1-2007, 2-4a-106/59 2-5-600 -2-5-600 -2-5-600 -2-5-600 -2-7-16 (Vill-115mph (3-second gus)) FO NNTHA ph: Colore distand for a 10.0 pst botom cad nonconcurrent with any other live loads. re assumed to

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Contra

RE	EASE FOR CONST	
	EVEL-QRMENT SER	VIGES
1	EES SUMMIT, MIS Premier Building Supply (Springh 0/19/2023 11	500RI 111, KS), Spring I 05:20

	Truss Type		Qty	Ply	Roof		
	Jack-Open	Jack-Open		1	Job Reference (optional)	159339950	
lills, KS - 66083,		Run: 8.63 S Apr 6 20	023 Print: 8.6	30 S Apr 62	2023 MiTek Industries, Inc. Wed Jul 05 09:06:00	Page: 1	

ID:Hu4jWMtBAxxTGz0pHy4OhRzRpi8-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

4-7-8

age

July 5,2023

MiTek 16023 Swingley Ridge Rd Chesterfield, MO 63017

2-2-4

Scale = 1:31.7			
Plate Offsets (X	٧١	[2:Edge 0-0-0] [8:Edge 0-2-8]	

	(, .). [=.=	,[====3=,= = =]										
Loading TCLL (roof) TCDL BCLL BCDL	(psf) 25.0 10.0 0.0 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018/TPI2014	CSI TC BC WB Matrix-R	0.24 0.32 0.00	DEFL Vert(LL) Vert(CT) Horz(CT)	in 0.03 -0.04 0.02	(loc) 6-7 6-7 6	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 20 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD SLIDER BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x4 SP No.2 *Excep Left 2x4 SP No.2 Structural wood she 4-7-8 oc purlins. Rigid ceiling directly bracing. (size) 2=0-3-8, 4 Mechanic Max Horiz 2=139 (L0 Max Uplift 2=-25 (L0 6=-19 (L0 Max Grav 2=276 (L1 (L 19)	ot* 8-4:2x3 SPF No.2 1-7-2 eathing directly applie r applied or 10-0-0 oc 5= Mechanical, 6= cal C 12) C 12), 5=-69 (LC 12), C 12), 5=-126 (LC 19),	6) This truss Internatio R802.10.2 LOAD CASE d or 6=84	is designed in acc nal Residential Coc 2 and referenced st (S) Standard	ordance w de sections andard AN	ith the 2018 R502.11.1 a ISI/TPI 1.	and					
FORCES TOP CHORD BOT CHORD NOTES 1) Wind: AS Vasd=91r Ke=1.00; exterior zr Interior (z Interior (z Interior (z exterior z Interior (z) exterior z Interior (z) (z) Fisition (z) (z) (z) (z) (z) (z) (z) (z) (z) (z)	(lb) - Maximum Com Tension 1-2=0/7, 2-4=-240/3 2-8=-101/139, 7-8=- CE 7-16; Vult=115mph mph; TCDL=6.0psf; BC Cat. II; Exp C; Enclose one and C-C Exterior(2) 4-1-0 to 4-6-12 zone; end vertical left and ri and forces & MWFRS DOL=1.60 plate grip DC b has been designed fo load nonconcurrent w are assumed to be: , Jo of 565 psi. girder(s) for truss to tru- nechanical connection late capable of withstaa plift at joint 2 and 19 lb	npression/Maximum 4, 4-5=-60/56 17/58, 4-7=0/72, 6-7: (3-second gust) EDL=6.0psf; h=35ft; ad; MWFRS (envelop: ED-0-11-0 to 4-1-0, cantilever left and rig ght exposed;C-C for for reactions shown; DL=1.60 r a 10.0 psf bottom ith any other live load oint 2 SP No.2 crushi uss connections. (by others) of truss to nding 69 lb uplift at jo uplift at joint 6.	=0/0 e) ght ls. ing						-	a	PE-2022	MISSOLA NIEL X BER 042259

RF	EASE FOR CONSTR				-			
AS	NOTED ON PLANS	REVIEW		Truss Type	Qty	Ply	Roof	
	EXELORMENT SER	VICES		Jack-Open	2	1	Job Reference (optional)	159339951
1	Premier Building Supply (Springhi 0/19/2023 11:0	II, KS), Spring 1 05:20	lills, KS - 66083,	Run: 8.63 S Apr 6 2 ID:x10_4buZxLj8?m0	023 Print: 8.6 QPgjBZzyz?A	30 S Apr 6	2023 MiTek Industries, Inc. Wed Jul 05 09:05:59 970Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f	Page: 1

-0-11-0

0-11-0

1-6-11

1-6-11

1-6-11

Scale = 1:28.2	
----------------	--

Plate Offsets (X, Y): [2:Edge,0-0-1]

-												
Loading	(psf)	Spacing	2-0-0	csi		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15	тс	0.06	Vert(LL)	0.00	2-5	>999	240	MT20	244/190
TCDL	10.0	Lumber DOL	1.15	BC	0.02	Vert(CT)	0.00	2-5	>999	180		
BCLL	0.0	Rep Stress Incr	YES	WB	0.00	Horz(CT)	0.00	4	n/a	n/a		
BCDL	10.0	Code	IRC2018/TPI2014	Matrix-P							Weight: 9 lb	FT = 20%
			O) This tauss is									
LUMBER	0.400 N 0		6) I NIS TRUSS IS	designed in accordar	nce w	Ith the 2018	nd					
TOP CHORD	2X4 SP No.2		P802 10 2 a	nd referenced standa		ISI/TDI 1	nu					
SUDED	2X4 5P NO.2	1 5 0		Stondord		NOI/1111.						
SLIDER	Leit 2x4 SP No.2	1-9-9	LUAD CASE(S)	Standard								
BRACING	0 (- 4										
TOP CHORD	Structural wood she	athing directly applie	ed or									
	1-6-11 OC purlins.	opplied or 10.0.0 o	2									
BOT CHORD	bracing	applied of 10-0-0 of	C .									
REACTIONS	(size) 2=0-3-8 4	1= Mechanical 5=										
	Mechanic	al										
	Max Horiz 2=62 (LC	12)										
	Max Uplift 2=-20 (LC	(LC 12), 4=-42 (LC 12)										
	Max Grav 2=153 (L0	C 1), 4=43 (LC 19), 8	5=31									
	(LC 3)	,, (,,										
FORCES	(lb) - Maximum Com	pression/Maximum										
	Tension											
TOP CHORD	1-2=0/7, 2-4=-55/31											
BOT CHORD	2-5=0/0											
NOTES												
1) Wind: AS	CE 7-16; Vult=115mph	(3-second gust)										
Vasd=91r	mph; TCDL=6.0psf; BC	DL=6.0psf; h=35ft;										
Ke=1.00;	Cat. II; Exp C; Enclose	d; MWFRS (envelop	be)									Th
exterior z	one and C-C Exterior(2	E) zone; cantilever	left								S OF M	ALC
and right	exposed ; end vertical	eft and right								6	ACE	ISS W
exposed;	C-C for members and f	orces & MWFRS for								A	T. T.	N.S.
reactions	snown; Lumber DOL=	1.60 plate grip								R	S NATHA	NIEL
DUL=1.00	U . haa haan daalamad fa									4	FO	X V
Z) THIS truss chord live	load popopourront wi	th any other live log	de							7/ H	I LA	A A A
3) Bearings	are assumed to be .	any other live load	us. nina							W	Til	V J
capacity of	of 565 psi.									XL	Vhank	K SIAD
4) Refer to c	irder(s) for truss to tru	ss connections.								127	N MUN	DEK
5) Provide m	nechanical connection ((by others) of truss t	0							N.	ON PE-2022	042259
bearing p	late capable of withstar	nding 20 lb uplift at j	oint							V	1 th	158
0 and 40	In unlift of inint 4											100

- 2 and 42 lb uplift at joint 4.

PELEASE FOR CONSTRUCTION				
AS NOTED ON PLANS REVIEW	Truss Type	Qty Ply	Roof	
DEXELORMENT SERVICES	Jack-Open	2 1	Job Reference (optional)	159339952
Premier Building Supply (Springbill KS) Spring Hills KS	. 66083 Run: 8	63 S Apr 6 2023 Print: 8 630 S Apr 6	2023 MiTek Industries, Inc. Wed. Jul 05 09:06:00	Page: 1

-0-11-0

0-11-0

1-6-7

1-6-7

10/19/2023 11:05:20

ID:9fKDLkwhEARvlaJbWo8LrHzRpi4-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

age

Scale = 1:26.8

1-6-7

				_	_							
Loading	(psf)	Spacing	2-0-0	csi		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15	TC	0.11	Vert(LL)	0.00	4-5	>999	240	MT20	244/190
TCDL	10.0	Lumber DOL	1.15	BC	0.05	Vert(CT)	0.00	4-5	>999	180		
BCLL	0.0	Rep Stress Incr	YES	WB	0.00	Horz(CT)	0.00	3	n/a	n/a		
BCDL	10.0	Code	IRC2018/TPI2014	Matrix-R							Weight: 8 lb	FT = 20%
LUMBER			6) This truss i	s designed in acco	ordance wi	ith the 2018						
TOP CHORD	2x4 SP No.2		Internationa	al Residential Code	e sections	R502.11.1 a	and					
BOT CHORD	2x4 SP No.2 R802.10.2 and referenced standard ANSI/TPI 1.											
WEBS	2x4 SP No.2		LOAD CASE(S) Standard								
BRACING												
TOP CHORD	HORD Structural wood sheathing directly applied or 1-6-7 oc purlins, except end verticals.											
BOT CHORD	OT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing.											
REACTIONS	(size) 3= Mecha	nical, 4= Mechanic	al,									
	5=0-3-8											
	Max Horiz 5=57 (LC	12)										
	Max Uplift 3=-33 (LC	\$ 12), 4=-4 (LC 12),	5=-17									
	(LC 12)	40) 4 04 (10 0) 5	405									
	Max Grav 3=34 (LC (LC 1)	19), 4=24 (LC 3), 5	=165									
FORCES	(lb) - Maximum Com Tension	pression/Maximum										
TOP CHORD BOT CHORD	2-5=-144/121, 1-2=0 4-5=0/0)/41, 2-3=-42/30										
NOTES												
1) Wind: ASC	CE 7-16; Vult=115mph	(3-second gust)										
Vasd=91n	nph; TCDL=6.0psf; BC	DL=6.0psf; h=35ft;										
Ke=1.00; (Cat. II; Exp C; Enclose	d; MWFRS (envelo	pe)									
exterior zo	rior zone and C-C Exterior(2E) zone; cantilever left											
and right e	ight exposed ; end vertical left and right											
exposed;C	C-C for members and f	orces & MWFRS for	r								750	NO S
reactions	s shown; Lumber DOL=1.60 plate grip											
DOL=1.60)		A CALL NATHANIEL NY M									

- This truss has been designed for a 10.0 psf bottom 2)
- chord live load nonconcurrent with any other live loads.
- 3) Bearings are assumed to be: , Joint 5 SP No.2 crushing capacity of 565 psi.
- Refer to girder(s) for truss to truss connections. 4)
- 5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 17 lb uplift at joint 5, 4 lb uplift at joint 4 and 33 lb uplift at joint 3.

PE-2022042259 SSIONAL ET July 5,2023

FOX

UMBER

PELEASE FOR CONSTRUCTION				
AS NOTED ON PLANS REVIEW	Truss Type	Qty Ply	Roof	
DEXELORMENT SERVICES	Jack-Open	1 1	Job Reference (optional)	159339953
Promier Ruilding Supply (Springhill KS) Spring Hills k	(S 66092 Pup:	9.63 S Apr. 6 2022 Print: 9.620 S A	pr 6 2022 MiTok Industrias Inc. Wed Jul 05 00:05:50	Bago: 1

Premier Building Supply (Springhill, KS), Spring 10/19/2023 11:05:20

Aμ ID:SZwAIRgHBpSir?2xcxsLF9z?Alo-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

-0-11-0 0-11-0 1-5-12

	1-{	5-12
1-:	3-12	
1-:	3-12	
	0-	2-0

Scale = 1:35.1

Plate Offsets (X, Y): [5:Edge,0-6-8]

Loading TCLL (roof) TCDL BCLL BCDL	(psf) 25.0 10.0 0.0 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018/TPI2014	CSI TC 0. BC 0. WB 0. Matrix-P	.11 .02 .03	DEFLVert(LL)0.Vert(CT)0.Horz(CT)0.	in 0.00 0.00 0.00	(loc) 4-5 4-5 3	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 8 lb	GRIP 197/144 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD REACTIONS FORCES TOP CHORD BOT CHORD BOT CHORD BOT CHORD BOT CHORD WEBS NOTES 1) Wind: ASC Vasd=91m Ke=1.00; (exterior zo and right e exposed;(C reactions s DOL=1.60 2) This truss chord live 3) Bearings a capacity of 4) Refer to gi 5) Provide m bearing pla 5, 20 lb up	2x4 SP No.2 2x4 SP No.2 2x4 SP No.2 2x4 SP No.2 *Excep Structural wood she 1-5-12 oc purlins, e Rigid ceiling directly bracing. (size) $3=$ Mecha 5=0-3-8 Max Horiz $5=56$ (LC Max Uplift $3=-16$ (LC 5=-17 (LC Max Grav $3=20$ (LC (LC 1) (lb) - Maximum Com Tension 2-5=-151/105, 1-2=0 4-5=-124/42 2-4=-47/136 Cat. II; Exp C; Enclose ine and C-C Exterior(2 exposed ; end vertical I combers and f shown; Lumber DOL= ⁻ has been designed for load nonconcurrent wi the assumed to be: , Jo f 565 psi. rder(s) for truss to tru echanical connection (ate capable of withstar lift at joint 4 and 16 lb	ht* 4-2:2x3 SPF No.2 athing directly applied xcept end verticals. applied or 10-0-0 oc anical, 4= Mechanical 12) (12), 4=-20 (LC 12), (12), 4=-20 (LC 12), (12) 19), 4=27 (LC 10), 5: appression/Maximum 0/41, 2-3=-42/30 (3-second gust) DL=6.0psf; h=35ft; d; MWFRS (enveloped (3-second gus	 6) This truss is International R802.10.2 ar LOAD CASE(S) d or =164 =) oft s. ng int 	designed in accordanc Residential Code sect d referenced standarc Standard	d AN	th the 2018 R502.11.1 and SI/TPI 1.					PE-20220	AISSOLUTION
											Jul	y 5,2023

4	WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE.
	Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not
	a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall
	building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing
	is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the
	fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component
	Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

FLEASE FOR CONSTRUCTION				-		
AS NOTED ON PLANS REVIEW	Truss Type		Qty	Ply	Roof	
DEVELORMENT SERVICES	Jack-Open		1	1	Job Reference (optional)	159339954
Premier Building Supply (Springhill, KS), Spring	lills, KS - 66083,	Run: 8.63 S Apr 6 20	23 Print: 8.6	30 S Apr 6 2	2023 MiTek Industries, Inc. Wed Jul 05 09:06:01	Page: 1

10/19/2023 11:05:20

Run: 8.63 S Apr 6 2023 Print: 8.630 S Apr 6 2023 MiTek Industries, Inc. Wed Jul 05 09:06:01 ID:Wd76PR_q2i4BsMCYJLkWYLzRpi?-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Scale = 1:36.3

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15	TC	0.11	Vert(LL)	0.01	6	>999	240	MT20	197/144
TCDL	10.0	Lumber DOL	1.15	BC	0.11	Vert(CT)	-0.01	7	>999	180		
BCLL	0.0	Rep Stress Incr	YES	WB	0.00	Horz(CT)	-0.01	5	n/a	n/a		
BCDL	10.0	Code	IRC2018/TPI2014	Matrix-R							Weight: 15 lb	FT = 20%
LUMBER			6) This trus	s is designed in acco	ordance wi	ith the 2018						
TOP CHORD	2x4 SP No.2		Internati	onal Residential Cod	le sections	R502.11.1	and					
BOT CHORD	2x4 SP No.2 *Excep	ot* 7-3:2x3 SPF No.2	2 R802.10	.2 and referenced sta	andard AN	ISI/TPI 1.						
WEBS	2x4 SP No.2		LOAD CASE	E(S) Standard								
BRACING												
TOP CHORD	Structural wood she	athing directly appli	ed or									
	3-3-7 oc purlins, ex	cept end verticals.										
BOT CHORD	Rigid ceiling directly	applied or 10-0-0 o	C									
	bracing.											
REACTIONS	(size) 4= Mecha	anical, 5= Mechanic	al,									
	8=0-3-8	0.40)										
	Max Horiz 8=107 (L											
	Max Upliπ 4=-41 (LC	5 12), 5=-33 (LC 12)),									
	0=-13 (LC Max Gray 4-77 (LC	(10) 5-63 (1 C 10)	8-226									
	(LC 1)	19), 3–03 (EC 19),	0-220									
FORCES	(lb) - Maximum Con Tension	npression/Maximum										
TOP CHORD	2-8=-204/118, 1-2=0	0/41, 2-3=-101/0,										
	3-4=-46/40											
BOT CHORD	7-8=-61/57, 6-7=-16	6/40, 3-6=-19/59, 5-6	6=0/0									
NOTES												
1) Wind: AS	CE 7-16; Vult=115mph	n (3-second gust)										
Vasd=91r	mph; TCDL=6.0psf; BC	DL=6.0psf; h=35ft;										~
Ke=1.00;	Cat. II; Exp C; Enclose	ed; MWFRS (envelo	pe)								an	and
exterior z	one and C-C Exterior(2	2E) zone; cantilever	left								Br. OF I	MISS W
and right	C C for mombors and f	forcos & MWERS for	r							6	A	NSON
reactions	shown: Lumber DOI –	1 60 plate grip	I							B	NATHA	NIFL XP
DOL=1 6		1.00 plate grip							_	B	FO	x V X
2) This truss	- s has been designed fo	r a 10.0 psf bottom								VA	1 10	
chord live	load nonconcurrent w	ith any other live loa	ads.							MA	ATT:	

- Bearings are assumed to be: , Joint 8 SP No.2 crushing 3) capacity of 565 psi.
- 4) Refer to girder(s) for truss to truss connections.
- Provide mechanical connection (by others) of truss to 5) bearing plate capable of withstanding 13 lb uplift at joint 8, 41 lb uplift at joint 4 and 33 lb uplift at joint 5.

BER PE-2022042259 HRSSIONAL ET July 5,2023

PELEASE FOR CONSTRUCTION					
AS NOTED ON PLANS REVIEW	Truss Type	Qty	Ply	Roof	
DEXELORMENT SERVICES	Jack-Open	1	1	Job Reference (optional)	159339955
Dromier Building Supply (Springhill KS) Spring		Bup: 9.62 C. Apr. 6.2022 Drint: 9.62	20 S Apr 6 3	022 MiTek Industrias, Inc. Wed. Jul 05 00:06:00	Dogo: 1

10/19/2023 11:05:20

In: 8.63 S Apr 6 2023 Print: 8.630 S Apr 6 2023 MiTek Inc ID:2XIup12jtKMI3mwvwxwd?iz?AIJ-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page:

1-5	5-12
1-3-12	
1-3-12	Π
0-	2-0

Scale = 1:35.1

Plate Offsets (X, Y): [5:Edge,0-6-8]

Loading TCLL (roof) TCDL BCLL BCDL	(psf) 25.0 10.0 0.0 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018/TPI2014	CSI TC 0. BC 0. WB 0. Matrix-P	.10 .02 .03	DEFL Vert(LL) Vert(CT) Horz(CT)	in 0.00 0.00 0.00	(loc) 4-5 4-5 3	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 8 lb	GRIP 197/144 FT = 20%	
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x4 SP No.2 2x4 SP No.2 *Excep Structural wood shea 1-5-12 oc purlins, ex Rigid ceiling directly bracing. (size) 3= Mecha 5=0-3-8 Max Horiz 5=55 (LC	t* 4-2:2x3 SPF No.2 athing directly applied xcept end verticals. applied or 10-0-0 oc nical, 4= Mechanical, 12)	6) This truss is International R802.10.2 ar LOAD CASE(S) d or	designed in accordanc Residential Code sect Id referenced standarc Standard	ce wittions	th the 2018 R502.11.1 and SI/TPI 1.	I						
FORCES TOP CHORD BOT CHORD WEBS	Max Uplift 3=-17 (LC 5=-15 (LC Max Grav 3=23 (LC (LC 1) (lb) - Maximum Com Tension 2-5=-145/99, 1-2=0/4 4-5=-121/42 2-4=-46/133	: 12), 4=-19 (LC 12), : 12) 19), 4=27 (LC 10), 5= pression/Maximum 40, 2-3=-41/30	=159										
 Wind: ASC Vasd=91m Ke=1.00; C exterior zo and right e exposed;C reactions s DOL=1.60 This truss chord live I Bearings a capacity of Refer to gi Provide me bearing pla 5, 19 lb up 	CE 7-16; Vult=115mph hph; TCDL=6.0psf; BCl Cat. II; Exp C; Enclose ine and C-C Exterior(2 exposed ; end vertical I -C for members and for shown; Lumber DOL=1 has been designed for load nonconcurrent with are assumed to be: , Jo f 565 psi. rder(s) for truss to trus echanical connection (ate capable of withstar lift at joint 4 and 17 lb	(3-second gust) DL=6.0psf; h=35ft; d; MWFRS (envelope E) zone; cantilever le eft and right orces & MWFRS for 1.60 plate grip • a 10.0 psf bottom th any other live load bint 5 SP No.2 crushin ss connections. by others) of truss to iding 15 lb uplift at joi uplift at joint 3.	e) ft s. ng						7		NATHA FOI PE-20220 PE-20220 PE-20220 Jul	MISSOLUTION MEL MA2259 AU L ENGT	.0

RE	EASE FOR CONST	RUCTION
AS	NOTED ON PLANS	REVIEW
1	EXELORMENT SER	Viges
1	Premier Building Supply (Springh 0/19/2023	ill, KS), Spring 1

ON PLANS REVIEW	Truss Type	Qty	Ply	Roof	
	Jack-Open	1	1	Job Reference (optional)	159339956
g Supply (Springhill, KS), Spring Hills, KS - 66083,	Run: 8.63 S Apr 6 20)23 Print: 8.6	30 S Apr 6 2	2023 MiTek Industries, Inc. Wed Jul 05 09:06:01	Page: 1

ID:ILAWHW5TxTCwRkOHLkOdPEzRphs-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Scale = 1:33.5											_	
Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15	тс	0.33	Vert(LL)	0.06	5-6	>908	240	MT20	197/144
TCDL	10.0	Lumber DOL	1.15	BC	0.29	Vert(CT)	-0.07	5-6	>806	180		
BCLL	0.0	Rep Stress Incr	YES	WB	0.00	Horz(CT)	-0.04	5	n/a	n/a		
BCDL	10.0	Code	IRC2018/TPI2014	Matrix-R							Weight: 20 lb	FT = 20%

LUMBER

TOP CHORD	2x4 SP N	0.2
BOT CHORD	2x4 SP N	o.2 *Except* 7-3:2x3 SPF No.2
WEBS	2x4 SP N	0.2
BRACING		
TOP CHORD	Structural	wood sheathing directly applied or
	5-0-7 oc p	ourlins, except end verticals.
BOT CHORD	Rigid ceili bracing.	ing directly applied or 10-0-0 oc
REACTIONS	(size)	4= Mechanical, 5= Mechanical, 8=0-3-8
	Max Horiz	8=158 (LC 12)
	Max Uplift	4=-93 (LC 12), 5=-17 (LC 12),
		8=-12 (LC 12)
	Max Grav	4=149 (LC 19), 5=81 (LC 3), 8=300
		(LC 1)
FORCES	(lb) - Max	imum Compression/Maximum
	Tension	
TOP CHORD	2-8=-280/	/127, 1-2=0/41, 2-3=-187/0,
	3-4=-97/7	4

BOT CHORD 7-8=-121/114, 6-7=-26/43, 3-6=0/73, 5-6=0/0 NOTES

- Wind: ASCE 7-16; Vult=115mph (3-second gust) 1) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=35ft; Ke=1.00; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) -0-11-0 to 4-1-0, Interior (1) 4-1-0 to 4-11-11 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- This truss has been designed for a 10.0 psf bottom 2) chord live load nonconcurrent with any other live loads.
- Bearings are assumed to be: , Joint 8 SP No.2 crushing 3) capacity of 565 psi.
- Refer to girder(s) for truss to truss connections. 4)
- 5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 12 lb uplift at joint 8, 93 lb uplift at joint 4 and 17 lb uplift at joint 5.

6) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. LOAD CASE(S) Standard

RE	EASE FOR CONST	RUCTION
AS	NOTED ON PLANS	RE₩IEW
1	EXELORMENT SER	VIGES
1	Premier Building Supply (Springh 0/19/2023 11	ill, KS), Spring 1

	Truss Type	Qty	Ply	Roof	
	Jack-Open	3	1	Job Reference (optional)	159339957
lills, KS - 66083,	Run: 8.63 S Apr 6 2	023 Print: 8.6	30 S Apr 6 2	2023 MiTek Industries, Inc. Wed Jul 05 09:06:01	Page: 1

ID:Ofu3pdE?69jDtala2FcRvmzRphg-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Scale = 1:43.4

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15	тс	0.49	Vert(LL)	0.13	7-8	>546	240	MT20	197/144
	10.0		1 15	BC	0.42	Vert(CT)	-0.15	7-8	~471	180		
BCU	0.0	Ren Stress Incr	VES	WB	0.42	Horz(CT)	0.10	6	n/2	n/a		
BCLL	10.0	Codo		Motrix S	0.07	11012(01)	0.07	0	11/a	n/a	Waight: 26 lb	ET 200/
BCDL	10.0	Code	IRC2018/1912014	Matrix-5							weight: 26 lb	FT = 20%
LUMBER			This truss is	s designed in acc	ordance w	ith the 2018						
TOP CHORE	2x4 SP No.2		Internationa	al Residential Coc	de sections	R502.11.1	and					
BOT CHORE	2x4 SP No 2 *Excer	ot* 9-3:2x3 SPF No 2	R802.10.2	and referenced st	tandard AN	ISI/TPI 1.						
WERS	2x4 SP No 2 *Excer	of* 7-4:2x3 SPE No 2	LOAD CASE(S) Standard								
DRAGING	2A4 01 140.2 EA00	DI 7 4.270 OFT NO.2	LOVD OVOF(O									
BRACING												
TOP CHORL	5-11-4 oc purling	eathing directly applies	d or									
	D Digid coiling directly	applied or 10.0.0 oc										
BUT CHURL	bracing.	applied of 10-0-0 oc										
REACTIONS	5 (size) 5= Mecha 10=0-3-8	anical, 6= Mechanical	,									
	Max Horiz 10-184 (I C 12)										
	Max 110112 10=104 ((1012)										
	wax upint 5=-44 (LC	C 12)	,									
	Mox Grov 5-79 (LC	(12) = 214 (10 10)										
	10=339 (LC 1)										
FORCES	(lb) - Maximum Con	npression/Maximum										
TOPOUOD		0/11 0.0 001/0										
TOP CHORL	2-10=-321/132, 1-2 3-4=-131/93, 4-5=-3	=0/41, 2-3=-231/0, 32/57										
BOT CHORE	D 9-10=-147/140, 8-9	=-32/45, 3-8=0/94,										
	7-8=0/0, 6-7=0/0											
WEBS	4-7=-245/298											
NOTES												
 Wind: AS 	SCE 7-16; Vult=115mpl	n (3-second gust)									an	ADD.
Vasd=91	Imph; TCDL=6.0psf; BC	CDL=6.0psf; h=35ft;									A OF I	MISS
Ke=1.00	; Cat. II; Exp C; Enclose	ed; MWFRS (envelope	e)							4	4.50	~0.4
exterior 2	zone and C-C Exterior(2	2E) -0-11-0 to 4-1-0,								6	18	No.
Interior (1) 4-1-0 to 5-10-8 zone	; cantilever left and rig	ght							B	∽′∕ NATHA	NIEL YE Y
exposed	; end vertical left and ri	ight exposed;C-C for								-9-	/ FO	X
member	s and forces & MWFRS	for reactions shown;							•	1/	110	
Lumber	DOL=1.60 plate grip DO	DL=1.60								Kr	11-	
2) This trus	s has been designed fo	or a 10.0 psf bottom								M.		I Then
chord liv	e load nonconcurrent w	ith any other live load	s.						/	W	N/V/V/B	BER
3) Bearings	s are assumed to be: , J	loint 10 SP No.2								NY.	O PE-2022	042259
crushing	capacity of 565 psi.									N	A	124
4) Refer to	girder(s) for truss to tru	ss connections.								Y	29.0	10 B
5) Provide	mechanical connection	(by others) of truss to	1								UNIONTA	TENA
bearing	plate capable of withsta	nding 12 lb uplift at jo	int								UNA A	

5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 12 lb uplift at joint 10, 44 lb uplift at joint 5 and 206 lb uplift at joint 6.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1** Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

RE AS	LEASE FOR CONSTINUTED ON PLANS	RUCTION REVIEW
1	EXELOPMENT SER	VIÇES
1	Premier Building Supply (Springh	ill, KS), Spring 1

	Truss Type	Qty	Ply	Roof	
	Jack-Open	14	1	Job Reference (optional)	159339958
lills KS - 66083	Run: 8 63 S Apr 6 2	023 Print: 8 6	30 S Apr. 62	2023 MiTek Industries Inc. Wed Jul 05 09:06:02	Page: 1

ID:SYIjyIQPamc4AuyTQvNy0xzRphR-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

5-11-4

Pag

-0-11-0

Scale = 1:40.1

Loading		(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)		25.0	Plate Grip DOL	1.15		TC	0.50	Vert(LL)	0.12	6-7	>583	240	MT20	244/190
TCDL		10.0	Lumber DOL	1.15		BC	0.45	Vert(CT)	-0.14	6-7	>504	180		
BCLL		0.0	Rep Stress Incr	YES		WB	0.05	Horz(CT)	-0.05	4	n/a	n/a		
BCDL		10.0	Code	IRC2018/T	PI2014	Matrix-P							Weight: 25 lb	FT = 20%
				6) T	his truss is	designed in acco	ordance wi	th the 2018						
TOP CHORD	2x4 SP N	0.2		lr	ternational	Residential Cod	e sections	R502.11.1 a	and					
BOT CHORD	2x4 SP N	0.2		R	802.10.2 ar	nd referenced sta	andard AN	ISI/TPI 1.						
WEBS	2x4 SP N	o.2 *Excep	t* 3-6:2x3 SPF No.2	LOAD	CASE(S)	Standard								
BRACING					(-)									
TOP CHORD	Structura	l wood she	athing directly applie	ed or										
	5-11-4 oc	purlins, e	xcept end verticals.											
BOT CHORD	Rigid ceil	ing directly	applied or 10-0-0 or	2										
	bracing.													
REACTIONS	(size)	4= Mecha	inical, 5= Mechanica	ıl,										
		7=0-3-8												
	Max Horiz	7=184 (LC	C 12)											
	Max Uplift	4=-16 (LC	2 12), 5=-111 (LC 12),										
	May Cray	7=-12 (LC	; 12) 2) 5 490 (LC 40) 5	7 220										
	Max Grav	4=87 (LC	3), 5=186 (LC 19), 7	/=339										
FORCES	(lb) Max		n reacion /Maximum											
FURCES	(ID) - IVIA) Tension	amum Com	pression/waximum											
TOP CHORD	2-7=-266	/110 1-2=0)/41 2-3=-171/90											
	3-4=-25/4	17 17	<i>"</i> , 11, 2 0– 11 1/00,											
BOT CHORD	6-7=0/0,	5-6=0/0												
WEBS	3-6=-142	/210												
NOTES														
1) Wind: AS	CE 7-16: Vu	llt=115mph	(3-second aust)											
Vasd=91r	nph; TCDL=	6.0psf; BC	DL=6.0psf; h=35ft;										and	alle
Ke=1.00;	Cat. II; Exp	C; Enclose	d; MWFRS (envelop	e)									BOF N	Alson
exterior 7	one and C-C	Exterior(2	E) -0-11-0 to 4-1-0									- C2	HAV	- SO W

- xterior(2E) -0-11-0 to 4-1-Interior (1) 4-1-0 to 5-10-8 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 3) Bearings are assumed to be: , Joint 7 SP No.2 crushing capacity of 565 psi.
- 4) Refer to girder(s) for truss to truss connections.
- 5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 12 lb uplift at joint 7, 16 lb uplift at joint 4 and 111 lb uplift at joint 5.

NATHANIEL FOX **BER** PE-2022042259 ESSIONAL ET

July 5,2023

RELEASE FOR CONSTRUCTION						
AS NOTED ON PLANS REVIEW	Truss Type	Qty	Ply	Roof		
DEVELOPMENT SERVICES	Jack-Open	5	1	Job Reference (optional)	159339959	
Premier Building Supply (Springhill KS) Spring	lills KS - 66083					

10/19/2023 11:05:20

ID:_dGnJDcSphdp5LAYMGgifJzRphB-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Scale = 1:40.9

Plate Offsets (X, Y): [2:0-3-5,Edge]

Loading TCLL (roof) TCDL BCLL BCDI	(psf) 25.0 10.0 0.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr	2-0-0 1.15 1.15 YES IRC2018/TPI	CSI TC BC WB	0.59 0.12 0.04	DEFL Vert(LL) Vert(CT) Horz(CT)	in 0.28 -0.29 0.17	(loc) 6 6 5	l/defl >255 >244 n/a	L/d 240 180 n/a	PLATES MT20	GRIP 244/190 ET = 20%
DODL	10.0	Code	11(02010/11/2	Widtinx-1							Weight. 20 lb	11 = 2070
LUMBER TOP CHORD BOT CHORD WEBS SLIDER BRACING TOP CHORD BOT CHORD	2x4 SP 1650F 1.50 2x4 SP 1650F 1.50 2x3 SPF No.2 Left 2x4 SP 1650F Structural wood sh 5-11-4 oc purlins. Rigid ceiling direct bracing.	E E 1.5E 2-5-15 neathing directly applie ly applied or 10-0-0 or	6) Pro bea join 7) This Inte R80 ed or LOAD (vide mechanical conn ing plate capable of 4 and 5 lb uplift at jo truss is designed in mational Residential 2.10.2 and reference ASE(S) Standard	ection (by oth withstanding 1 int 2. accordance w Code sections d standard AN	ers) of truss t 157 lb uplift at ith the 2018 s R502.11.1 a ISI/TPI 1.	nd					
REACTIONS	(size) 2=0-3-8 Mechan Max Horiz 2=198 (Max Uplift 2=-5 (LC Max Grav 2=334 ((LC 3)	, 4= Mechanical, 5= ical LC 12) C 12), 4=-157 (LC 12) LC 1), 4=240 (LC 19),	5=77									
FORCES TOP CHORD BOT CHORD	(Ib) - Maximum Co Tension 1-2=-3/0, 2-3=-212 2-6=0/32, 5-6=0/0	mpression/Maximum 2/23, 3-4=-152/121										
WEBS	3-6=0/126											
NOTES												
 Wind: ASC Vasd=91m Ke=1.00; C exterior zo Interior (1) exposed; members a Lumber DC This truss chord live Bearings a crushing c Refer to gi Bearing at using ANS designer s 	CE 7-16; Vult=115mp pph; TCDL=6.0psf; E Cat. II; Exp C; Enclos one and C-C Exterior 4-1-0 to 5-10-8 zon end vertical left and and forces & MWFR DL=1.60 plate grip D has been designed 1 load noncourrent are assumed to be: , apacity of 565 psi. rder(s) for truss to tr joint(s) 2 considers i/TPI 1 angle to grai hould verify capacity	ch (3-second gust) CDL=6.0psf; h=35ft; sed; MWFRS (envelop (2E) -0-11-0 to 4-1-0, e; cantilever left and ri right exposed; C-C for S for reactions shown OL=1.60 for a 10.0 psf bottom with any other live load Joint 2 SP 1650F 1.5ft uss connections. parallel to grain value n formula. Building y of bearing surface.	be) ight ; ds. E								PE-2022	MISSOLUE NIEL X BER 042259 L ENGT S Hy 5,2023
WARN Design va	IING - Verify design param alid for use only with MiTe	eters and READ NOTES ON k® connectors. This design	THIS AND INCLUDE is based only upon p	O MITEK REFERENCE PAG arameters shown, and is fo	GE MII-7473 rev. 5 or an individual bui	/19/2020 BEFOR ilding component	E USE. , not					

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

16023 Swingley Ridge Rd Chesterfield, MO 63017

REI AS	<u>е</u> А 190	SE TEC	F0) ()	R C N P	O LA	4 8	TI S	R	U	CT VII	io Ev	N V
0	E	55-2	B	IEN	IT :	SE	ER	V		E	S	
1	Prem	ier Bui		Supp	ly (S	Spri	ngh		K	S), S	prij	ng

	Truss Type	Qty	Ply	Roof	
	Jack-Open	1	1	Job Reference (optional)	159339960
lills, KS - 66083,	Run: 8.63 S Apr 6 20) 23 Print: 8.6	30 S Apr 6 2	2023 MiTek Industries, Inc. Wed Jul 05 09:06:02	Page: 1

ID:?9KdSr0no7v_Aam4MPHg1TzRpgf-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

4-7-8

tone

MiTek 16023 Swingley Ridge Rd Chesterfield, MO 63017

July 5,2023

3-6-0

-0-11-0

Scale = 1:34.8

Plate Offsets (X, Y): [7:0-4-2,0-1-8]

Loading TCLL (roof) TCDL BCLL BCDL	(psf) 25.0 10.0 0.0 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018/TPI2014	CSI TC 0.26 BC 0.26 WB 0.03 Matrix-P	DEFL Vert(LL) Vert(CT) Horz(CT)	in (l 0.04 -0.05 0.02	oc) 6-7 > 6-7 > 4	l/defl >999 : >999 : n/a	L/d 240 180 n/a	PLATES MT20 Weight: 19 lb	GRIP 197/144 FT = 20%	
LUMBER TOP CHORD BOT CHORD WEBS BBRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x4 SP No.2 2x4 SP No.2 *Excep Structural wood shea 4-7-8 oc purlins, exc Rigid ceiling directly bracing. (size) 4= Mecha 7=0-3-8 Max Horiz 7=128 (LC 7=-27 (LC Max Grav 4=90 (LC 7=282 (LC	t* 6-3:2x3 SPF No.2 athing directly applied cept end verticals. applied or 10-0-0 oc nical, 5= Mechanical. C 12) 12), 5=-51 (LC 12), 19), 5=-112 (LC 19), 2 1)	5) Provide mec bearing plate 7, 36 lb uplift 6) This truss is International d or LOAD CASE(S)	hanical connection (by ot e capable of withstanding t at joint 4 and 51 lb uplift designed in accordance v Residential Code section nd referenced standard A Standard	hers) of truss to 27 lb uplift at joi at joint 5. vith the 2018 s R502.11.1 an NSI/TPI 1.	int				Wolgin. To io		
FORCES TOP CHORD BOT CHORD WEBS NOTES 1) Wind: AS(Vasd=91n Ke=1.00; (exterior zc Interior (1) exposed ; members Lumber D 2) This truss chord live 3) Bearings a capacity o 4) Refer to gi	(lb) - Maximum Com Tension 2-7=-221/106, 1-2=0 3-4=-32/42 6-7=0/0, 5-6=0/0 3-6=-84/111 CE 7-16; Vult=115mph mph; TCDL=6.0psf; BC Cat. II; Exp C; Enclose one and C-C Exterior(2) 4-1-0 to 4-6-12 zone; end vertical left and rig and forces & MWFRS IOL=1.60 plate grip DO load nonconcurrent wi are assumed to be: , Jo of 565 psi. jirder(s) for truss to trus	pression/Maximum //37, 2-3=-107/60, //37, 2-3=-107/60, DL=6.0psf; h=35ft; d; MWFRS (envelope E) -0-11-0 to 4-1-0, cantilever left and rig ght exposed;C-C for for reactions shown; L=1.60 : a 10.0 psf bottom th any other live load bint 7 SP No.2 crushin ss connections.	e) Iht s. ng					2	t and	NATHA FOY PE-20220	AISSOLUE NIEL BER 042259	8

RELEASE FOR CONSTRUCTION		
AS NOTED ON PLANS REVIEW		
DEXEL-QRMENT SERVICES		,
EE'S SUMMIT, MISSOURI Premier Building Supply (Springhill, KS), Spring	lills. KS - 66083.	-
10/19/2023 11:05:20		

Truss Type	Qty	Ply	Roof	
Jack-Open	1	1	Job Reference (optional)	159339961
Run: 8 63 S Apr 6 20	23 Print: 8 6	30 S Apr. 6.3	2023 MiTek Industries Inc. Wed Jul 05 09:06:02	Page: 1

ID:L77WVZ4vdgXHGLf18ytrkXzRpga-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

'age

3-3-7

-0-11-0

				L	3-3	-7	_					
Scale = 1:29.2												
Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15	TC	0.16	Vert(LL)	0.01	4-5	>999	240	MT20	244/190
TCDL	10.0	Lumber DOL	1.15	BC	0.16	Vert(CT)	-0.01	4-5	>999	180		
BCLL	0.0	Rep Stress Incr	YES	WB	0.00	Horz(CT)	-0.01	3	n/a	n/a		
PCDI	10.0	Codo	IDC2010/TDI2014	Motrix D							Wajaht 12 lh	ET 200/

LUMBER LOAD CASE(S) Standard TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.2	
WEBS 2x4 SP No.2 BRACING	
TOP CHORD Structural wood sheathing directly applied or 3-3-7 oc purlins, except end verticals. BOT CHORD Rigid ceiling directly applied or 10-0-0 oc	
Bracing. 5=0-3-8 Max Horiz 5=107 (LC 12) Max Grav 3=101 (LC 12), 5=-13 (LC 12) Max Grav 3=101 (LC 19), 4=58 (LC 3), 5=226	
FORCES (lb) - Maximum Compression/Maximum Tension	
TOP CHORD 2-5=-198/127, 1-2=0/41, 2-3=-86/52 BOT CHORD 4-5=0/0	
NOTES	
1) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=35ft; Ke=1.00; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60	A A
2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.	5 A
3) Bearings are assumed to be: , Joint 5 SP No.2 crushing capacity of 565 psi.	4
 4) Refer to girder(s) for truss to truss connections. 5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 13 lb uplift at joint 5 and 74 lb uplift at joint 3. 	NET A
6) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.	J.
July 5,2023)

RFI	E۸	SE				Δ	15	Т	2	ш	<u> </u>	CL	۵M	L
ΔS	400	TF		0	NP		N	s	R	Ē	166	IF	w	
	DEV	EL	OF	N	IEN	T	SE	ER	v		E	S		
		503	SH	J.L.	MIT	-	MI	9	ł)	-	21		L
4	Prem	ier B	yildi	ng i	Supp	ly (S	pri	ngh	iЩ,	K	S),	Sp	ring	łi
		M	17	U	1.1			-		n	Γ.	/		

	Truss Type		Qty	Ply	Roof	
	Jack-Open		1	1	Job Reference (optional)	159339962
ills KS - 66083	Run	363 S Apr 6 20)23 Print: 8 6	30 S Apr 6 2	2023 MiTek Industries Inc. Wed Jul 05 09:06:03	Page: 1

ID:LOfx3NHadugtpySle0gqw6zRpgJ-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

0-11-0

Scale = 1:37.7

Loading TCLL (roof) TCDL BCLL BCDL		(psf) 25.0 10.0 0.0 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018/TPI20	C T B V 014 M	CSI FC BC WB Matrix-P	0.33 0.31 0.04	DEFL Vert(LL) Vert(CT) Horz(CT)	in 0.06 -0.07 -0.03	(loc) 6-7 6-7 4	l/defl >923 >856 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 21 lb	GRIP 197/144 FT = 20%	
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD	2x4 SP No 2x4 SP No 2x4 SP No Structural	0.2 0.2 0.2 *Excep wood shea	t* 3-6:2x3 SPF No.2 athing directly applied	6) This Inter R802 LOAD C	truss is des national Re 2.10.2 and 1 ASE(S) S	signed in accorda esidential Code s referenced stand Standard	ance wi ections lard AN	th the 2018 R502.11.1 a ISI/TPI 1.	nd						
BOT CHORD	5-0-7 oc p Rigid ceilir bracing.	urlins, exo ng directly	cept end verticals. applied or 10-0-0 oc												
REACTIONS	(size) Max Horiz Max Uplift Max Grav	4= Mecha 7=0-3-8 7=158 (LC 4=-29 (LC 7=-12 (LC 4=84 (LC 7=300 (LC	nical, 5= Mechanical (12), 5=-81 (LC 12), (12), 5=142 (LC 19), (13), 5=142 (LC 19), (14), 5=142 (LC 19), (15), 5=142 (LC 19), (16), 5=142 (LC 19), (17), 5=142 (LC 19), (18), 5=142 (LC 19), (19), 5=142 (LC 19),	ļ,											
FORCES	(lb) - Maxi Tension	mum Com	pression/Maximum												
TOP CHORD	2-7=-236/ 3-4=-35/44	103, 1-2=0 4	/41, 2-3=-150/78,												
BOT CHORD WEBS	6-7=0/0, 5 3-6=-108/	-6=0/0 164													
NOTES 1) Wind: AS(Vasd=91n Ke=1.00; exterior zo	CE 7-16; Vul nph; TCDL=6 Cat. II; Exp C one and C-C	t=115mph 6.0psf; BC 2; Enclose Exterior(2	(3-second gust) DL=6.0psf; h=35ft; d; MWFRS (envelope E) -0-11-0 to 4-0-7,	e)									E OF M	AISSO	

- Interior (1) 4-0-7 to 4-11-11 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 3) Bearings are assumed to be: , Joint 7 SP No.2 crushing capacity of 565 psi.
- 4) Refer to girder(s) for truss to truss connections.
- 5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 12 lb uplift at joint 7, 29 lb uplift at joint 4 and 81 lb uplift at joint 5.

MiTek 16023 Swingley Ridge Rd Chesterfield, MO 63017

NATHANIEL

FOX

DAMARK

PE-2022042259

SSIONAL EN

July 5,2023

REI AS	LEASE FOR CONST NOTED ON PLANS	RUCTION REVIEW
1	EXELORMENT SER	VIGES
1	Premier Building Supply (Springh 0/19/2023	ill, KS), Spring 1

			-		
	Truss Type	Qty	Ply	Roof	
	Jack-Open	2	1	Job Reference (optional)	159339963
Building Supply (Springhill, KS), Spring Hills, KS - 66083,	Run: 8.63 S Apr 6 2	023 Print: 8.6	30 S Apr 62	2023 MiTek Industries, Inc. Wed Jul 05 09:06:03	Page: 1

Run: 8.63 S Apr 6 2023 Print: 8.630 S Apr 6 2023 MiTek Industries, Inc. Wed Jul 05 09:06:03 ID:ekabXmNzz1Zt91UfY?ITibzRpgC-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Scale = 1:39.4

															_
Loading TCLL (roof) TCDL BCLL BCDI		(psf) 25.0 10.0 0.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr	2-0-0 1.15 1.15 YES	18/TPI2014	CSI TC BC WB Matrix-P	0.85 0.10 0.13	DEFL Vert(LL) Vert(CT) Horz(CT)	in 0.26 -0.30 0.11	(loc) 6 6 5	l/defl >262 >230 n/a	L/d 240 180 n/a	PLATES MT20	GRIP 197/144	
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD	2x4 SP No 2x4 SP No 2x3 SPF N Structural 4-10-14 oo Rigid ceilir	0.2 0.2 lo.2 *Exce wood shea c purlins, on ng directly	pt* 7-2:2x4 SP No.2 athing directly applie except end verticals. applied or 10-0-0 oc	d or	 Provide mecl bearing plate 7 and 146 lb This truss is International R802.10.2 ar CAD CASE(S) 	hanical connection capable of withst uplift at joint 4. designed in accor Residential Code nd referenced star Standard	n (by oth anding 1 dance wi sections ndard AN	ers) of truss to 0 lb uplift at jo ith the 2018 R502.11.1 a ISI/TPI 1.	o pint nd				weight. 20 ib	11 - 2078	
REACTIONS	bracing. (size) Max Horiz Max Uplift Max Grav	4= Mecha 7=0-3-8 7=183 (LC 4=-146 (L1 4=242 (LC (LC 1)	nical, 5= Mechanica (; 12) (; 12), 7=-10 (LC 12 (; 19), 5=57 (LC 3), 7	I,) =339											
FORCES	(lb) - Maxi Tension	mum Com	pression/Maximum												
TOP CHORD	2-7=-329/3 3-4=-142/	331, 1-2=0 126	/41, 2-3=-155/214,												
BOT CHORD WEBS	6-7=-8/24, 3-6=0/118	5-6=0/0 , 3-7=-381	/145												
1) Wind: AS(Vasd=91n Ke=1.00; exterior zo	CE 7-16; Vul nph; TCDL=6 Cat. II; Exp C one and C-C	t=115mph 6.0psf; BC C; Enclose Exterior(2	(3-second gust) DL=6.0psf; h=35ft; d; MWFRS (envelop E) -0-11-0 to 4-1-0,	e)									OF M	and a slike	
Interior (1) exposed ; members) 4-1-0 to 5-1 end vertical and forces 8	0-8 zone; left and rig MWFRS	cantilever left and right exposed;C-C for for reactions shown;	ght								A	STATE NATHA	NIEL	

- Lumber DOL=1.60 plate grip DOL=1.60 2) This truss has been designed for a 10.0 psf bottom
- chord live load nonconcurrent with any other live loads. 3) Bearings are assumed to be: , Joint 7 SP No.2 crushing capacity of 565 psi.
- Refer to girder(s) for truss to truss connections. 4)
- 5) Bearing at joint(s) 7 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.

		DUOTION								
AS NOTED O	N PLANS			Truss Type		Qty	Ply	Roof		
DEXEL-QRA	IENT SEF	VICES		Lay-In Gable		1	1	Job Roferance (and	ional)	159339964
Premier Building	Supply (Spring	SOURI hill, KS), Spring	g Hills, KS - 66083,		Run: 8.63 S Apr 6 2	023 Print:	8.630 S Apr 62	2023 MiTek Industries, I	nc. Wed Jul 05 09:06:03	B Page: 1
10/19/20	23 11:	05:21			ID:TR?jxRs3YKbCy/	YLuO0sK	1zRpfa-RfC?Ps	B70Hq3NSgPqnL8w3ul	TXbGKWrCDoi7J4zJC?	f
		1	6-8-11	1			24-0-10			1
			6-8-11				17-4-0			
				3x4 🍫					5x5=	Зх4 II
				4 5	6 7	8	9	10 11	12 13	14
-	T									
1-1-2	12	.62 F	2	B						7-1-1
_	4									15
	0		27	26 25 2	<u> </u>	21	20	19 18	17 16	2.4
		3x4 🍫	2.		3x4=				10	3X4 II
					2⊿-∩-	10				
Scale = 1:49.7					24.0	10				
Plate Offsets (X, Y): [4:0-1-	7,Edge], [12:	0-2-8,0-3-0]							
Loading TCLL (roof) TCDL BCLL BCDL		(psf) Sp 25.0 Pla 10.0 Lu 0.0 Re 10.0 Co	ate Grip DOL mber DOL ep Stress Incr ode	2-0-0 1.15 1.15 YES IRC2018/TPI2014	CSI TC 0 BC 0 WB 0 Matrix-S).53 Ve).19 Ve).24 Ho	E FL rt(LL) r rt(TL) r rriz(TL) 0.	in (loc) l/defl n/a - n/a n/a - n/a 00 15 n/a	L/d PLATES 999 MT20 999 n/a Weight: 158	GRIP 244/190 lb FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x4 SP No.2 2x4 SPF No 2x4 SPF No 2x4 SPF No Structural w 6-0-0 oc pu 2-0-0 oc pu Rigid ceiling bracing, E 10-0-0 oc b (size) 1 1 2 2 2 2 Max Horiz 1 Max Uplift 1 1 2 2 2 2 2 2 3 3 4 3 4 4 4 5 2 2 2 2 2 2 3 3 4 3 4 5 3 5 4 5 4 5 4 5 4 5 5 5 5 5	2 2 2 3.3 vood sheathir rlins, except racing: 16-17 =24-0-10, 15 6=24-0-10, 15 6=24-0-10, 12 2=24-0-10, 2 2=24-0-10, 2 2=24-0-10, 2 2=24-0-10, 2 2=24-0-10, 2 5=24-0-10, 2 5=24-0, 10, 2 5=-10, 10, 10, 10, 10, 10, 10, 10, 10, 10,	ng directly applied end verticals, an hax.): 4-14. lied or 6-0-0 oc ',15-16. =24-0-10, 7=24-0-10, 3=24-0-10, 15=-20 (LC 9), , 17=-49 (LC 9), , 21=-39 (LC 8), , 23=-52 (LC 8),), 15=-26 (LC 1), 6), 17=188 (LC 2), 19=179 (LC 26), , 23=187 (LC 26)	TOP CHORD BOT CHORD d or d WEBS NOTES 1) Unbalanc this desig 2) Wind: AS Vasd=91 Ke=1.00; exterior z Interior (1 13-9-12, 2), left and ri exposed; reactions 6), 3) Truss de 0, only. Foo see Stan	1-2=-440/442, 2-3=-2 4-5=-135/147, 5-6=-1 7-8=-135/147, 5-6=-1 10-11=-135/147, 8-9=-1 10-11=-135/147, 11-1 13-14=-136/147, 11-1 13-14=-136/147, 14-1 1-27=-138/149, 26-27 25-26=-138/149, 27-2 20-21=-138/149, 19-2 18-19=-138/149, 19-2 18-19=-138/149, 19-2 18-19=-138/149, 19-2 18-19=-138/149, 19-2 18-19=-138/149, 19-2 18-17=-244/211, 3-26 5-25=-251/176, 6-23 8-21=-140/63, 9-20=- 11-18=-143/65, 12-17 13-16=-153/102 ed roof live loads have b pn. CG T-16; Vult=115mph (mph; TCDL=6.0psf; BCD CCat. II; Exp C; Enclosed cone and C-C Exterior(2E 1) 5-4-1 to 6-8-15, Exterior Interior (1) 13-9-12 to 23 ght exposed ; end vertic; 0 signed for wind loads in studs exposed to wind (dard Industry Gable End	96/302, 3 35/147, 6 35/147, 6 35/147, 9 35-136/1 5=-114/1 =-138/14 5=-138/1 5=-138/1 5=-138/1 6=-138/1 6=-138/1 6=-138/1 6=-138/1 6=-138/1 6=-138/1 6=-138/1 6=-138/1 6=-138/1 1-177/143 -147/767 een cons 3-second L=6.0psf; 11-2 zon al left and ces & MV 60 plate (the plane normal to Details a:	-4=-183/196, -7=-135/147, -10=-135/147, -10=-135/147 47, 14 9, 49, 49, 49, 49, 49, 49, 49, 49, 49,	 9) All bearings capacity of 5 10) N/A 11) This truss is internationa R802.10.2 a 12) Graphical pi or the orient bottom chor LOAD CASE(S) 	are assumed to be \$ 65 psi. designed in accorda Residential Code so nd referenced stand rlin representation c ation of the purlin alc . Standard	SP No.2 crushing ance with the 2018 ections R502.11.1 and ard ANSI/TPI 1. loes not depict the size ong the top and/or
FORCES	2 2 (Ib) - Maxim Tension	:5=185 (LC 1 :7=285 (LC 1 :um Compres), 26=187 (LC 19 9) ssion/Maximum), 4) Provide a 5) All plates 6) Gable red 7) Gable stu 8) This truss chord live	adequate drainage building deslig idequate drainage to pre are 1.5x4 MT20 unless i quires continuous bottom ids spaced at 0-0-0 oc. s has been designed for a load nonconcurrent with	chord be chord be a 10.0 psi a any othe	f hottom er live loads.		PE-202	AL ENGL July 5,2023

RFI	EASE FOR CONST	DUCTION	
AS	NOTED ON PLANS	REVIEW	
9	EXELORMENT SER	ү_ЮĘS	
1	Premier Building Supply (Springh 0/19/2023 11	ill, KS), Spring I 05:21	łil

FION								
IEW		Truss Type	Qty	Ply	Roof			
S		Lay-In Gable	1	1	Job Reference (optional)	159339965		
Spring	lills, KS - 66083,	Run: 8.63 S Apr 6 20 ID:7IjFSY?aj06VO0Te)23 Print: 8.6 bvEgpZzRpf	30 S Apr 6 2 O-RfC?PsB7	2023 MiTek Industries, Inc. Wed Jul 05 09:06:04 70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f	Page: 1		

Scale = 1:44.8

Loading TCLL (roof) TCDL BCLL BCDL	(psf) 25.0 10.0 0.0 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC201	8/TPI2014	CSI TC BC WB Matrix-S	0.08 0.05 0.10	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 7	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 67 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x4 SP No.2 2x4 SPF No.3 Structural wood she 6-0-0 oc purlins. Rigid ceiling directly bracing. (size) 1=12-11- 8=12-11- 10=12-11 12=12-11 Max Horiz 1=-183 (L Max Uplift 1=-46 (LC 8=-162 (L 11=-134 (L 8=243 (L(10=161 (I 12=242 (I	athing directly applied applied or 10-0-0 oc 10, 7=12-11-10, 10, 9=12-11-10, -10, 11=12-11-10, -10, 11=12-11-10, -10, 11=12-11-10, C 8) (C 13), 9=-133 (LC 13), (C 13), 9=-133 (LC 14), (C 12), 7=142 (LC 22), 2 (20), 9=205 (LC 20), -C 22), 11=207 (LC 1 -C 19)	2) d or 3) (1), 5) (12) 7) 9), 8) 9), 9)	Wind: ASCE Vasd=91mpl Ke=1.00; Ca exterior zone Interior (1) 5- 11-5-13, Inte left and right exposed;C-C reactions she DOL=1.60 Truss design only. For stu see Standard or consult qu All plates are Gable requirn Gable studs This truss ha chord live loa All bearings a capacity of 5 N/A	7-16; Vult=115m n; TCDL=6.0psf; B and C-C Exterio 4-1 to 6-5-13, Ex rior (1) 11-5-13 to exposed ; end ve c for members an own; Lumber DOL med for wind loads to seposed to wid a Industry Gable I alified building de 1.5x4 MT20 unle es continuous boi spaced at 0-0-0 o s been designed ad nonconcurrent are assumed to b 65 psi.	ph (3-sec 3CDL=6.1 ssed; MW r(2E) 0-4 terior(2R 0 12-7-9 z rrtical left d forces a _=1.60 pl s in the p nd (norm End Deta ss other ttom chor bc. for a 10.0 with any e SP No.	cond gust) Dpsf; h=35ft; FRS (envelop -1 to 5-4-1, 0 e-5-13 to cone; cantilevo and right & MWFRS for ate grip lane of the tru al to the face) is as applicat s per ANSI/TF wise indicated d bearing. D psf bottom other live load 2 crushing	er ss , ole, 111.					
FORCES	(lb) - Maximum Corr Tension	pression/Maximum	-,										
TOP CHORD	1-2=-214/147, 2-3=- 4-5=-142/128, 5-6=-	137/89, 3-4=-142/135 107/48, 6-7=-188/128	5, ³ 10)) This truss is	designed in acco	rdance w	ith the 2018						m
BOT CHORD WEBS NOTES	1-12=-112/167, 11- 10-11=-112/167, 9- 8-9=-112/167, 7-8=- 2-12=-222/180, 3-1 4-10=-121/73, 5-9=-	12=-112/167, 10=-112/167, 112/167 1=-190/159, 190/158, 6-8=-222/18	LC 31	International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. LOAD CASE(S) Standard							AISSOURI NIEL		

1) Unbalanced roof live loads have been considered for this design.

RE FOR CONST NOTED ON PLANS REVIEW Δ SEL-ORMENT SERVICES (Springhill, KS) lills

	Truss Type	Qty	Ply	Roof				
	Common		1	1	Job Reference (optional)	159339966		
KS - 66083, Run: 8.63 S Apr 6 20			023 Print: 8.6	30 S Apr 6 2	2023 MiTek Industries, Inc. Wed Jul 05 09:06:04	Page: 1		
ID:KF3 tYu7F80n9A9esUjLfqz?AJo-RfC?PsB70Hq3NSqPqnL8w3ulTXbGKWrCDoi7J4zJC?f								

L	6-0-0	12-0-0
Г	6-0-0	6-0-0

Scale = 1:40.4 Plate Offsets (X, Y): [6:Edge,0-6-2], [8:Edge,0-6-2]

	1												
Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP	
TCLL (roof)	25.0	Plate Grip DOL	1.15	TC	0.49	Vert(LL)	-0.02	7-8	>999	240	MT20	197/144	
TCDL	10.0	Lumber DOL	1.15	BC	0.32	Vert(CT)	-0.05	6-7	>999	180			
BCLL	0.0	Rep Stress Incr	YES	WB	0.11	Horz(CT)	0.01	6	n/a	n/a			
BCDL	10.0	Code	IRC2018/TPI2014	Matrix-S							Weight: 57 lb	FT = 20%	
UMBER 6) This truss is designed in accordance with the 2018													

International Residential Code sections R502.11.1 and

R802.10.2 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard

LUMBER

TOP CHORD 2x4 SP No.2

BOT CHORD 2x4 SP No.2 2x3 SPF No.2 *Except* 8-2,6-4:2x4 SP No.2 WEBS BRACING TOP CHORD Structural wood sheathing directly applied or 6-0-0 oc purlins, except end verticals. BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing. REACTIONS (size) 6=0-3-8, 8=0-3-8 Max Horiz 8=153 (LC 11) Max Uplift 6=-98 (LC 13), 8=-99 (LC 12) Max Grav 6=598 (LC 1), 8=602 (LC 1) FORCES (Ib) - Maximum Compression/Maximum Tension TOP CHORD 1-2=0/41, 2-3=-571/156, 3-4=-571/156, 4-5=0/40, 2-8=-550/223, 4-6=-547/220 BOT CHORD 7-8=-240/454, 6-7=-181/350 WFBS 3-7=0/245, 2-7=-112/245, 4-7=-125/251 NOTES

- Unbalanced roof live loads have been considered for 1) this design.
- 2) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=35ft; Ke=1.00; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) -0-11-0 to 4-1-0, Interior (1) 4-1-0 to 6-0-0, Exterior(2R) 6-0-0 to 11-0-0, Interior (1) 11-0-0 to 12-10-8 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

This truss has been designed for a 10.0 psf bottom 3) chord live load nonconcurrent with any other live loads.

All bearings are assumed to be SP No.2 crushing 4) capacity of 565 psi.

5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 99 lb uplift at joint 8 and 98 lb uplift at joint 6.

OF MISSO NATHANIEL FOX R PE-2022042259 ESSIONAL E

July 5,2023

PELEASE FOR CONSTRUCTION	
AS NOTED ON PLANS REVIEW	
DEXELORMENT SERVICES	
LEE'S SUMMIT, MISSOURI Premier Building Supply (Springhill, KS), Spring	lills. KS
10/19/2023 11:05:21	-, -

CTI	DICTION				_		
NS	REVIEW		Truss Type	Qty	Ply	Roof	
ER	VICES		Diagonal Hip Girder	1	1	Job Reference (optional)	159339967
ringh	ill, KS), Spring I	lills, KS - 66083,		Page: 1			

ID:x10_4buZxLj8?mQPgjBZzyz?AIW-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

NAILED

TJC37

4-10-10

Scale = 1	1:36.5
-----------	--------

Loading TCLL (roof) TCDL BCLL BCDL	(psf) 25.0 10.0 0.0 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 NO IRC2018	J/TPI2014	CSI TC BC WB Matrix-P	0.44 0.29 0.06	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.03 -0.06 0.00	(loc) 4-5 4-5 4	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 24 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD 25 BOT CHORD 25 WEBS 25 BRACING TOP CHORD S BOT CHORD S BOT CHORD R BOT CHORD R REACTIONS (siz Ma Ma FORCES (III TOP CHORD 2- BOT C	x4 SP No.2 x4 SP No.2 x3 SPF No.2 *Exce tructural wood shea- 1-4 oc purlins, exc igid ceiling directly racing. ze) 4= Mecha x Horiz 5=133 (LC x Uplift 4=-68 (LC x Grav 4=191 (LC b) - Maximum Com ension -5=-288/298, 1-2=0 -4=-152/181 -5=-291/143 -4=-101/255 7-16; Vult=115mph ; TCDL=6.0psf; BCI II; Exp C; Enclosed and C-C Corner (3) ssed; end vertical II for members and for wn; Lumber DOL=1 s been designed for d nonconcurrent wit assumed to be: , Jc 55 psi. r(s) for truss to trus anical connection ((capable of withstan Difft at joint 4. lesigned in accorda Residential Code sed d referenced stand	pt* 5-2:2x4 SP No.2 athing directly applied sept end verticals. applied or 10-0-0 oc nical, 5=0-3-8 : 9) 12), 5=-90 (LC 12) : 1), 5=334 (LC 1) pression/Maximum /43, 2-3=-190/96, (3-second gust) DL=6.0psf; h=35ft; j; MWFRS (envelope zone; cantilever left eft and right prces & MWFRS for .60 plate grip a 10.0 psf bottom th any other live loads int 5 SP No.2 crushin s connections. by others) of truss to ding 90 lb uplift at joi nce with the 2018 actions R502.11.1 and ard ANSJ/TP1 1.	7) or 9) 10) 11) LO 1)) s. ng nt	Use Simpson equivalent at (es) to back f: the right, slop Fill all nail ho "NAILED" ind per NDS guid Hanger(s) or provided suffi Ib down and (design/select responsibility In the LOAD of the truss a AD CASE(S) Dead + Roo Plate Increa Uniform Loa Vert: 1-2=	Strong-Tie TJC37 2-1-15 from the le ace of bottom choi ing 0.0 deg. down les where hanger i icates Girder: 3-10 lelines. other connection of cient to support cr 55 lb up at 2-1-15 ion of such connec of others. CASE(S) section, re noted as front (I Standard f Live (balanced): se=1.15 ids (lb/ft) -70, 2-3=-70, 4-5=	7 (4 nail ft end to rd, skew is in con Od (0.14 device(s on top of ction de loads ap F) or bar Lumber =-20	90-150) or o connect trus yed 48.8 deg.t (tact with lumb 8" x 3") toe-n) shall be tted load(s) 14 chord. The vice(s) is the oplied to the fa ck (B). Increase=1.1	s poer. hails 40 5,				STATE OF M NATHA FOI PE-20220 PE-20220	MISSOLUT NIEL BER 042259

July 5,2023

REI AS	EASE FOR CONST NOTED ON PLANS	RUCTION REVIEW	
1	EXELORMENT SER	VIGES	
1	Premier Building Supply (Springh	ill, KS), Spring I	łi

N PLANS	REVIEW		Truss Type	Qty	Ply	Roof	
ENT SEF	VICES		Diagonal Hip Girder	1	1	Job Reference (optional)	159339968
Supply (Spring	hill, KS), Spring	lills, KS - 66083,		Page: 1			

4-10-10

Run: 8.63 S Apr 6 2023 Print: 8.630 S Apr 6 2023 MiTek Indu s. Inc. We $ID: X_OibBG0 esdIDXIM_jErkVz?AI1-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f$

TJC37

NAILED

4-10-10

Scale = 1:38.5

Loading (psf) TCLL (roof) 25.0 TCDL 10.0 BCLL 0.0 BCDL 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 NO IRC2018/TPI2014	CSI TC BC WB Matrix-P	0.45 0.29 0.06	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.03 -0.06 0.00	(loc) 4-5 4-5 4	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 24 lb	GRIP 244/190 FT = 20%	
LUMBER TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.2 BRACING TOP CHORD Structural wood she 5-1-4 oc purlins, ex BOT CHORD Structural wood she 5-1-4 oc purlins, ex BOT CHORD Rigid ceiling directly bracing. REACTIONS (size) 4= Mecha Max Horiz 5=132 (LC Max Uplift 4=-68 (LC Max Grav 4=192 (LC FORCES (Ib) - Maximum Com Tension TOP CHORD 2-5=-282/290, 1-2=C 3-4=-152/182 BOT CHORD 4-5=-289/143 WEBS 2-4=-102/253 NOTES 1) Wind: ASCE 7-16; Vult=115mph Vasd=91mph; TCDL=6.0ps; BC Ke=1.00; Cat. II; Exp C; Enclose exterior zone and C-C Corner (3 and right exposed ; end vertical exposed; C-C for members and f reactions shown; Lumber DOL=: DOL=1.60 2) This truss has been designed fo chord live load nonconcurrent wi 3) Bearings are assumed to be: , Ju capacity of 565 psi. 4) Refer to girder(s) for truss to trus 5) Provide mechanical connection bearing plate capable of withsat 5 and 68 lb uplift at joint 4. 6) This truss is designed in accordar International Residential Code s R802.10.2 and referenced stanc	ept* 5-2:2x4 SP No.2 athing directly applied cept end verticals. applied or 10-0-0 oc anical, 5=0-3-8 C 11) C 12), 5=-87 (LC 12) C 1), 5=328 (LC 1) apression/Maximum 0/41, 2-3=-191/96, (3-second gust) DL=6.0psf; h=35ft; d; MWFRS (envelope) zone; cantilever left left and right orces & MWFRS for 1.60 plate grip r a 10.0 psf bottom th any other live loads oint 5 SP No.2 crushir ss connections. (by others) of truss to nding 87 lb uplift at join ance with the 2018 ections R502.11.1 and lard ANSI/TPI 1.	 7) Use Simp equivaler (es) to from the left, s 8) Fill all nail nail of per NDS 10) Hanger(s provided lb down a design/second responsite 11) In the LO of the true LOAD CASE 1) Dead + Plate Introduction Vert: b) 	son Strong-Tie TJC3 t at 2-1-15 from the lent face of bottom cho oping 0.0 deg. down. holes where hanger indicates Girder: 3-1 guidelines. or other connection sufficient to support c not 65 lb up at 2-1-15 lection of such conne lifty of others. AD CASE(S) section, s are noted as front (S) Standard Roof Live (balanced): rease=1.15 Loads (lb/ft) I-2=-70, 2-3=-70, 4-5	7 (4 nail ff end to rd, skew is in cor 0d (0.14 device(s oncentra 6 on top cloads a F) or ba Lumber =-20	, 30-90) or o connect trus red 48.8 deg: ttact with lum 8" x 3") toe-r) shall be ated load(s) 1 chord. The vice(s) is the oplied to the f ck (B). Increase=1.	ss to ber. nails 40 face 15,		-		STATE OF I NATHA FO PE-2022	MISSOLUT NIEL X BER 042259 L ENGINE	- 3

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

LEASE FOR CONSTRUCTION						
S NOTED ON PLANS REVIEW		Truss Type	Qty	Ply	Roof	
DEXELOBMENT SERVICES		Valley	1	1	Job Reference (optional)	159339969
Premier Building Supply (Springbill, KS), Spring 0/19/2023 11:05:21	lills, KS - 66083,	Run: 8.63 S Apr 6 2 ID:PgWV9JUsjCZqX	2023 Print: 8 iP3EH5q8?z	.630 S Apr z?AJ1-RfC?	6 2023 MiTek Industries, Inc. Wed Jul 05 09:06:05 PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f	Page: 1
		4-3-6 4-3-6			8-6-12 3-10-3 0-5-3	
·				4x4 = 2		
2-10-8	2-6-13	8 ¹²				
	0-0-0-	3x4 •		4 1.5x4 II	3x4 •	
Scale = 1:28.3			8-	6-12		

Loading TCLL (roof) TCDL BCLL BCDL	(psf) 25.0 10.0 0.0 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC20	18/TPI2014	CSI TC BC WB Matrix-P	0.33 0.15 0.05	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 3	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 28 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD OTHERS BRACING TOP CHORD BOT CHORD	2x4 SP No.2 2x4 SP No.2 2x3 SPF No.2 Structural wood she 6-0-0 oc purlins. Rigid ceiling directly bracing.	athing directly applie applied or 10-0-0 oc	7 ٤ d or ^و ٤ ل	 All bearings capacity of 5 Provide mec bearing plate 1, 58 lb uplifh This truss is International R802.10.2 a CAD CASE(S) 	are assumed to 65 psi. hanical connecti e capable of with : at joint 3 and 1 designed in acco Residential Coo nd referenced st Standard	be SP No. ion (by oth standing ² Ib uplift at ordance w le sections andard AN	2 crushing ers) of truss 9 lb uplift at j joint 4. ith the 2018 i R502.11.1 a ISI/TPI 1.	io oint and					
REACTIONS	(size) 1=8-6-12, Max Horiz 1=71 (LC Max Uplift 1=-49 (LC (LC 12) Max Grav 1=194 (LC (LC 1)	, 3=8-6-12, 4=8-6-12 9) C 12), 3=-58 (LC 13), C 1), 3=194 (LC 1), 4	4=-1 =302										
FORCES	(lb) - Maximum Com	pression/Maximum											
TOP CHORD BOT CHORD WEBS NOTES	1-2=-122/69, 2-3=-1 1-4=-15/57, 3-4=-15 2-4=-206/102	16/69 /57											

1) Unbalanced roof live loads have been considered for this design.

- 2) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=35ft; Ke=1.00; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1. Gable requires continuous bottom chord bearing.
- 4) 5)

- Gable studs spaced at 4-0-0 oc.
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 6)

PE---July 5,2023

GI

OF MISSOL

NATHANIEL

FOX

NUMBER

PE-2022042259

TE

PELEASE FOR CONSTRUCTION					
AS NOTED ON PLANS REVIEW	Truss Type	Qty	Ply	Roof	
DEVELORMENT SERVICES	Valley	1	1	Job Reference (optional)	159339970
Premier Building Supply (Springhill, KS), Spring 10/19/2023 11:05:21	lills, KS - 66083, Ru ID:	n: 8.63 S Apr 6 2023 Print: 8.6 AD?Xq2buqfahVw0bizEiShz?A	330 S Apr 62 Iv-RfC?PsB7	2023 MiTek Industries, Inc. Wed Jul 05 09:06:05 70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f	Page: 1
				5-0-12	
	l	2-6-6		4-7-9	
		2-6-6		2-1-3 0-5-3	

1-4-13

1-8-8

4x4 =

5-0-12

Scale = 1:23.6

Loading TCLL (roof) TCDL BCLL BCDL	(psf) 25.0 10.0 0.0 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018/TPI2014	CSI TC BC WB Matrix-P	0.09 0.04 0.02	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 3	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 16 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x4 SP No.2 2x3 SPF No.2 Structural wood she 5-1-8 oc purlins. Rigid ceiling directly bracing. (size) 1=5-0-12, Max Horiz 1=-39 (LC Max Uplift 1=-27 (LC Max Grav 1=105 (LC (LC 1)	athing directly applie applied or 10-0-0 oc 3=5-0-12, 4=5-0-12 2 10) 2 12), 3=-31 (LC 13) C 1), 3=105 (LC 1), 4	7) All bearin, capacity of 8) Provide m bearing p 1 and 31 9) This truss Internatio R802.10.2 LOAD CASE(gs are assumed to of 565 psi. nechanical connec iate capable of wit b uplift at joint 3. is designed in acc nal Residential Co 2 and referenced s S) Standard	b be SP No. tion (by oth hstanding 2 cordance w ode sections standard AN	2 crushing ers) of truss t 17 lb uplift at j ith the 2018 i R502.11.1 a ISI/TPI 1.	o oint nd					
FORCES TOP CHORD BOT CHORD WEBS NOTES 1) Unbalance this design	(lb) - Maximum Com Tension 1-2=-66/47, 2-3=-63 1-4=-8/31, 3-4=-8/37 2-4=-112/73 ed roof live loads have	npression/Maximum /47 1 been considered for										

- 2) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=35ft; Ke=1.00; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) zone; cantilever left and right exposed; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

4) Gable requires continuous bottom chord bearing.

5) Gable studs spaced at 4-0-0 oc.

 This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

RELEASE FOR CONSTRUCTION					
AS NOTED ON PLANS REVIEW	Truss Type	Qty	Ply	Roof	
DEXELOBMENT SERVICES	Valley	1	1	Job Reference (optional)	159339971
Premier Building Supply (Springhill, KS), Spring Hills, KS 10/19/2023 11:05:21	S - 66083, Run: ID:col	8.63 S Apr 6 2023 Print: 8.6 RixevBN?qcwF8iuWV_gcz5C	30 S Apr 62 Dj?-RfC?PsB	2023 MiTek Industries, Inc. Wed Jul 05 09:06:06 70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f	Page: 1

5-0-7

Coolo		1.07	2
1 D COL	_		

Scale = 1.27.3															
Loading		(psf) 25.0	Spacing Plate Grip DOI	2-0-0		CSI TC	0.45	DEFL Vert(LL)	in n/a	(loc)	l/defl	L/d 999	PLATES	GRIP 244/190	
TCDL		10.0	Lumber DOL	1.15		BC	0.10	Vert(TL)	n/a	-	n/a	999	11120	211/100	
BCLL		0.0	Rep Stress Incr	YES		WB	0.00	Horiz(TL)	0.00	3	n/a	n/a			
BCDL		10.0	Code	IRC2018	3/TPI2014	Matrix-P							Weight: 17 lb	FT = 20%	
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD	2x4 SP No 2x4 SP No 2x3 SPF I Structural 5-0-14 oc Rigid ceili bracing.	o.2 o.2 No.2 I wood she purlins, e ing directly	athing directly appli xcept end verticals. applied or 10-0-0 c	8) 9) ied or LC	Provide mec bearing plate 1 and 60 lb to This truss is International R802.10.2 a	hanical conne e capable of w uplift at joint 3. designed in ad Residential C nd referenced Standard	ction (by oth ithstanding 2 ccordance w ode sections standard AN	ers) of truss 7 lb uplift at ith the 2018 R502.11.1 a ISI/TPI 1.	to joint and						
REACTIONS	(size)	1=5-0-14,	3=5-0-14												
	Max Horiz	1=110 (LC	C 9)												
	Max Uplift	1=-27 (LC	2 12), 3=-60 (LC 12))											
	Max Grav	1=199 (LC	C 1), 3=212 (LC 19))											

FORCES

Tension TOP CHORD 1-2=-157/122, 2-3=-180/200 BOT CHORD 1-3=-53/58

NOTES

Wind: ASCE 7-16; Vult=115mph (3-second gust) 1) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=35ft; Ke=1.00; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

(lb) - Maximum Compression/Maximum

2-10-6

- 2) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- Provide adequate drainage to prevent water ponding. 3)
- Gable requires continuous bottom chord bearing. 4)
- Gable studs spaced at 4-0-0 oc. 5)
- This truss has been designed for a 10.0 psf bottom 6) chord live load nonconcurrent with any other live loads.
- 7) All bearings are assumed to be SP No.2 crushing capacity of 565 psi.

AS NOTED ON PLANS REVIE DEVELORMENT SERVICES	EW	Truss Type		Qty	Ply 1	Roof	159339972
EE'S SUMMIT, MISSOUR Prenier Building Supply (Springhill, KS), S 10/19/2023 11:05:2	pring Hills, KS - 66083,	Valley	Run: 8.63 S Apr 6 2 ID:fMk9xecyyNPPOil-	023 Print: 8. IFXQ7Or5zI	630 S Apr 6 Rpec-RfC?P	Job Reference (optional) 5 2023 MiTek Industries, Inc. Wed Jul 05 09:06:06 9 SB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f	Page: 1
			<u>5-9-8</u> 5-9-8		<u>7-3</u> 1-	<u>3-14</u> 6-6	
						1.5x4 u	
	4-3-8	7 ¹²			1.5x4 u 2	3	
			5-9-8 5-9-8		5 1.5x4 II 7-3	4 ⊥ 1.5x4 µ 3-14 6-6	

Scale = 1:35.9

WEBS

Loading TCLL (roof) TCDL BCLL BCDL	(psf) 25.0 10.0 0.0 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC201	8/TPI2014	CSI TC BC WB Matrix-P	0.46 0.23 0.11	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 4	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 28 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x4 SP No.2 2x3 SPF No.2 Structural wood she 6-0-0 oc purlins, ex Rigid ceiling directly bracing. (size) 1=7-4-5, 4 Max Horiz 1=167 (LC Max Uplift 4=-109 (L Max Grav 1=191 (LC (LC 19)	athing directly applie cept end verticals. applied or 10-0-0 oc 4=7-4-5, 5=7-4-5 C 9) C 1), 5=-198 (LC 12) C 1), 4=65 (LC 12), 5	7) 8) dor c c : =541	Provide mec bearing plate joint 4 and 19 This truss is International R802.10.2 ar DAD CASE(S)	hanical conne e capable of w 98 lb uplift at j designed in a Residential C nd referenced Standard	ection (by oth ithstanding 1 oint 5. ccordance w code sections standard AN	ers) of truss 09 lb uplift a ith the 2018 i R502.11.1 a ISI/TPI 1.	to t					
FORCES TOP CHORD BOT CHORD	(lb) - Maximum Com Tension 1-2=-232/185, 2-3=- 1-5=-81/88, 4-5=-81	npression/Maximum 141/138, 3-4=-125/1 /88	12										

NOTES Wind: ASCE 7-16; Vult=115mph (3-second gust) 1) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=35ft; Ke=1.00; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) 0-6-8 to 5-9-15,

2-5=-424/326

Interior (1) 5-9-15 to 7-3-1 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

- 2) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1. Gable requires continuous bottom chord bearing. 3)
- Gable studs spaced at 4-0-0 oc. 4)
- This truss has been designed for a 10.0 psf bottom 5)
- chord live load nonconcurrent with any other live loads. All bearings are assumed to be SP No.2 crushing capacity of 565 psi. 6)

RELEASE FOR CONSTRUCTION					
AS NOTED ON PLANS REVIEW	Truss Type	Qty	Ply	Roof	
DEXELOPMENT SERVICES	Valley	1	1	Job Reference (optional)	159339973
Premier Building Supply (Springhill, KS), Spring 10/19/2023 11.05.21	lills, KS - 66083, Ri ID	ın: 8.63 S Apr 6 2023 Print: 8.6 :fMk9xecyyNPPOiHFXQ7Or5zR	30 S Apr 62 pec-RfC?Psl	2023 MiTek Industries, Inc. Wed Jul 05 09:06:06 B70Hq3NSqPqnL8w3uITXbGKWrCDoi7J4zJC?f	Page: 1

Scale = 1:32.9

Loading	(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15		TC	0.40	Vert(LL)	n/a	-	n/a	999	MT20	244/190
TCDL	10.0	Lumber DOL	1.15		BC	0.20	Vert(TL)	n/a	-	n/a	999		
BCLL	0.0	Rep Stress Incr	YES		WB	0.09	Horiz(TL)	0.00	4	n/a	n/a		
BCDL	10.0	Code	IRC201	8/TPI2014	Matrix-P							Weight: 27 lb	FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x4 SP No.2 2x3 SPF No.2 Structural wood she 6-0-0 oc purlins, ex Rigid ceiling directly bracing. (size) 1=7-0-2, 4	athing directly applie cept end verticals. applied or 10-0-0 or 4=7-0-2. 5=7-0-2	7) 8) d or L(Provide mec bearing plate 4 and 184 lb This truss is International R802.10.2 ar DAD CASE(S)	hanical connection capable of withs uplift at joint 5. designed in accor Residential Cod- nd referenced sta Standard	on (by oth standing 8 ordance w e sections andard AN	ers) of truss t 8 lb uplift at j ith the 2018 R502.11.1 a ISI/TPI 1.	to joint and					
FORCES	Max Horiz 1=159 (LC Max Uplift 4=-88 (LC Max Grav 1=180 (LC (LC 19) (lb) - Maximum Com	C 9) C 20), 5=-184 (LC 12 C 1), 4=55 (LC 12), 5) =501										

Tension TOP CHORD 1-2=-224/178, 2-3=-130/127, 3-4=-110/98 BOT CHORD 1-5=-77/83, 4-5=-77/83 WFBS 2-5=-393/305

NOTES

- Wind: ASCE 7-16; Vult=115mph (3-second gust) 1)
- Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=35ft; Ke=1.00; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) 0-6-8 to 5-6-3, Interior (1) 5-6-3 to 6-11-5 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- Truss designed for wind loads in the plane of the truss 2) only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1. Gable requires continuous bottom chord bearing.
- 3) Gable studs spaced at 4-0-0 oc.
- 4)
- This truss has been designed for a 10.0 psf bottom 5) chord live load nonconcurrent with any other live loads.
- 6) All bearings are assumed to be SP No.2 crushing capacity of 565 psi.

RF	LEASE FOR CONSTR								
A	S NOTED ON PLANS	REVIEW	Т	Truss Type		Qty	Ply	Roof	
	DEXEL QRMENT SERV	(ICES	V	/alley		1	1	Job Reference (optional)	159339974
1	Premier Building Supply (Springhill 0/19/2023 11:0	, KS), Spring 5:21	lills, KS - 66083,		Run: 8.63 S Apr 6 20 ID:fMk9xecyyNPPOiH)23 Print: 8.6 IFXQ7Or5zR	30 S Apr 62 pec-RfC?Psl	2023 MiTek Industries, Inc. Wed Jul 05 09:06:06 370Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f	Page: 1

Scale = 1:29.8

Loading TCLL (roof) TCDL BCLL BCDL	(psf) 25.0 10.0 0.0 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC201	8/TPI2014	CSI TC BC WB Matrix-P	0.11 0.05 0.04	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 4	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 17 lb	GRIP 244/190 FT = 20%	
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x4 SP No.2 2x3 SPF No.2 Structural wood she 4-9-2 oc purlins, ex Rigid ceiling directly bracing. (size) 1=4-8-12, Max Horiz 1=102 (LC Max Uplift 4=-15 (LC Max Grav 1=101 (LC 5=258 (LC	athing directly applie cept end verticals. applied or 10-0-0 oc 4=4-8-12, 5=4-8-12 C 9) C 11), 5=-94 (LC 12) C 20), 4=29 (LC 19), C 19)	7) 8) d or LC	Provide mec bearing plat 4 and 94 lb This truss is Internationa R802.10.2 a	chanical conne e capable of w uplift at joint 5. designed in a I Residential C nd referenced Standard	ction (by oth ithstanding 1 ccordance wi ode sections standard AN	ers) of truss 5 lb uplift at ith the 2018 R502.11.1 ISI/TPI 1.	to joint and						
FORCES TOP CHORD BOT CHORD WEBS	(lb) - Maximum Com Tension 1-2=-156/121, 2-3=- 1-5=-49/54, 4-5=-49 2-5=-202/176	npression/Maximum 67/53, 3-4=-38/36 /54												

NOTES

- Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=35ft; Ke=1.00; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) zone; cantilever left and right exposed; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 3) Gable requires continuous bottom chord bearing.
- 4) Gable studs spaced at 4-0-0 oc.
- 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 6) All bearings are assumed to be SP No.2 crushing capacity of 565 psi.

NITEK° 16023 Swingley Ridge Rd Chesterfield, MO 63017

RELEASE FOR CONSTRUCTION					
AS NOTED ON PLANS REVIEW	Truss Type	Qty	Ply	Roof	
DEXELORMENT SERVICES	Valley	1	1	Job Reference (optional)	159339975
Premier Building Supply (Springhill, KS), Spring	lills, KS - 66083,	Run: 8.63 S Apr 6 2023 Print: 8.6	30 S Apr 6 2	2023 MiTek Industries, Inc. Wed Jul 05 09:06:07	Page: 1

10/19/2023 11:05:21

ID:fMk9xecyyNPPOiHFXQ7Or5zRpec-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Scale - 1:33.6

Loading TCLL (roof) TCDL BCLL BCDL	(psf) 25.0 10.0 0.0 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC20 ⁷	18/TPI2014	CSI TC BC WB Matrix-P	0.32 0.12 0.07	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 3	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 24 lb	GRIP 197/144 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD	2x4 SP No.2 2x4 SP No.2 2x3 SPF No.2 2x3 SPF No.2 Structural wood shea 6-0-0 oc purlins, exc Rigid ceiling directly bracing.	athing directly applie cept end verticals. applied or 10-0-0 oc	6 7 8 d or L	 All bearings capacity of 5 Provide mec bearing plate 5, 34 lb uplifi This truss is International R802.10.2 a OAD CASE(S) 	are assumed to 65 psi. hanical conne capable of w at joint 3 and designed in au Residential C nd referenced Standard	to be SP No. action (by oth ithstanding 4 157 lb uplift accordance w ode sections standard AN	2 crushing ers) of truss 2 lb uplift at at joint 4. ith the 2018 R502.11.1 ISI/TPI 1.	to joint and					
REACTIONS	(size) 3=6-6-8, 4 Max Horiz 5=-169 (L0 Max Uplift 3=-34 (LC	=6-6-8, 5=6-6-8 C 8) 11), 4=-157 (LC 13)	,										

		5=-42 (LC 8)
	Max Grav	3=85 (LC 8), 4=381 (LC 20), 5=160
		(LC 20)
FORCES	(lb) - Max	imum Compression/Maximum
	Tension	
TOP CHORD	1-5=-137	/149, 1-2=-156/124, 2-3=-324/218
BOT CHORD	4-5=-172	/282, 3-4=-172/282

2-4=-300/289

WEBS

- NOTES
- Wind: ASCE 7-16; Vult=115mph (3-second gust) 1) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=35ft; Ke=1.00; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1. Gable requires continuous bottom chord bearing. 3)

Gable studs spaced at 4-0-0 oc. 4)

- 5)
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

OF MISSO TE NATHANIEL FOX GER PE-2022042259 ESSIONAL ET July 5,2023

PELEASE FOR CONSTRUCTION					
AS NOTED ON PLANS REVIEW	Truss Type	Qty	Ply	Roof	
DEXELORMENT SERVICES	Valley	1	1	Job Reference (optional)	159339976
Premier Building Supply (Springhill, KS), Spring H	ills, KS - 66083, Ri	un: 8.63 S Apr 6 2023 Print: 8.6 :fMk9xecvvNPPOiHFXQ7Or5zR	30 S Apr 62	2023 MiTek Industries, Inc. Wed Jul 05 09:06:07 B70Ha3NSaPanL8w3uITXbGKWrCDoi7J4zJC?f	Page: 1

2

4-3-15

Scale = 1:27.6												
Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15	TC	0.40	Vert(LL)	n/a	-	n/a	999	MT20	197/144
TCDL	10.0	Lumber DOL	1.15	BC	0.21	Vert(TL)	n/a	-	n/a	999		
BCLL	0.0	Rep Stress Incr	YES	WB	0.00	Horiz(TL)	0.00	2	n/a	n/a		
BCDL	10.0	Code	IRC2018/TPI2014	Matrix-P							Weight: 17 lb	FT = 20%

8) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard

LUMBER

TOP CHORD	2x4 SP No.2
BOT CHORD	2x4 SP No.2
WEBS	2x3 SPF No.2
BRACING	
TOP CHORD	Structural wood sheathing directly applied or
	4-9-8 oc purlins, except end verticals.
BOT CHORD	Rigid ceiling directly applied or 10-0-0 oc
	bracing.
REACTIONS	(size) 2=4-9-8, 3=4-9-8

Max Horiz 3=-119 (LC 8) Max Uplift 2=-20 (LC 13), 3=-62 (LC 13) Max Grav 2=189 (LC 1), 3=206 (LC 20) FORCES (lb) - Maximum Compression/Maximum Tension TOP CHORD 1-3=-164/187, 1-2=-162/122 BOT CHORD 2-3=-127/211

NOTES

- Wind: ASCE 7-16; Vult=115mph (3-second gust) 1) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=35ft; Ke=1.00; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- Truss designed for wind loads in the plane of the truss 2) only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- Gable requires continuous bottom chord bearing. 3) Gable studs spaced at 4-0-0 oc.

4)

This truss has been designed for a 10.0 psf bottom 5) chord live load nonconcurrent with any other live loads. All bearings are assumed to be SP No.2 crushing 6)

capacity of 565 psi. 7) Provide mechanical connection (by others) of truss to

bearing plate capable of withstanding 62 lb uplift at joint 3 and 20 lb uplift at joint 2.

MiTek 16023 Swingley Ridge Rd Chesterfield, MO 63017

RE	LEASE FOR CONSTR								
AS	NOTED ON PLANS	REVIEW		Truss Type		Qty	Ply	Roof	
1	EXELORMENT SERV	(IGES		Valley		1	1	Job Reference (optional)	159339977
1	Premier Building Supply (Springhill 0/19/2023 11:0	, KS), Spring 1 5:22	lills, KS - 66083,		Run: 8.63 S Apr 6 20 ID:fMk9xecyyNPPOiH	23 Print: 8.6 FXQ7Or5zR	30 S Apr 62 pec-RfC?Psl	2023 MiTek Industries, Inc. Wed Jul 05 09:06:07 B70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f	Page: 1

2-0-5 J-3-8

2-6-15 2-6-15 3-0-2

3-0-2

Scale = 1:24.6

Loading	(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15		TC	0.12	Vert(LL)	n/a	-	n/a	999	MT20	197/144
TCDL	10.0	Lumber DOL	1.15		BC	0.07	Vert(TL)	n/a	-	n/a	999		
BCLL	0.0	Rep Stress Incr	YES		WB	0.03	Horiz(TL)	0.00	2	n/a	n/a		
BCDL	10.0	Code	IRC2018/1	TPI2014	Matrix-P							Weight: 10 lb	FT = 20%
LUMBER			7)	Provide mech	nanical connectior	n (by oth	ers) of truss t	to					
TOP CHORD	2x4 SP No.2		ł	bearing plate	capable of withst	anding 4	l8 lb uplift at j	oint					
BOT CHORD	2x4 SP No.2		:	3.									
WEBS	2x3 SPF No.2		8)	This truss is o	designed in accor	dance w	ith the 2018						
BRACING	RACING International Residential Code sections R502.11.1 and												
TOP CHORD	Structural wood she	athing directly applie	ed or I	R802.10.2 ar	nd referenced star	ndard AN	ISI/TPI 1.						
	3-0-8 oc purlins.		LOA	D CASE(S)	Standard								
BOT CHORD	Rigid ceiling directly bracing.	applied or 10-0-0 of	0										
REACTIONS	(size) 2=3-0-8.3	3=3-0-8											
	Max Horiz 3=-71 (LC	2 13)											
	Max Uplift 3=-48 (LC	2 13)											
	Max Grav 2=110 (L0	C 1), 3=116 (LC 20)											
FORCES	(lb) - Maximum Com	pression/Maximum											
TOP CHORD	1-2=-72/43												
BUT CHURD	2-3=-52/108												
NOTES	1-3=-91/103												
NUIES		(2 accord such)											
I) Wind: AS	CE 7-16; Vuit=115mpn	DI 6 Opoti b 25th											
Vasu=911	Cot II: Evp C: Epologo	DL=0.0psi, n=35it,											
exterior 7	one and C-C Exterior(2	PE) zone: cantilever l	oft										
and right	exposed · end vertical	left and right	on										
exposed.	C-C for members and f	orces & MWFRS for										San	alle
reactions	reactions shown: Lumber DOL=1.60 plate orig												
DOL=1.60	0	51										4 TE	
2) Truss de	signed for wind loads in	n the plane of the tru	SS								A	N	New
only. For	studs exposed to wind	(normal to the face)),								H	S/ NATHA	WIEL / X
see Stand	dard Industry Gable En	d Details as applicat	ole,								Sh	FO	X
or consult	t qualified building desi	oner as per ANSI/TE	기 1	or consult qualified building designer as per ANSI/TPI 1									

- Gable requires continuous bottom chord bearing.
- 4) Gable studs spaced at 4-0-0 oc.
- This truss has been designed for a 10.0 psf bottom 5)
- chord live load nonconcurrent with any other live loads. All bearings are assumed to be SP No.2 crushing 6) capacity of 565 psi.

RELEASE FOR CONSTRUCTION					
AS NOTED ON PLANS REVIEW	Truss Type	Qty Ply	ly Roof		
DEXELOPMENT SERVICES	Valley	1 1	Job Referer	nce (optional)	159339978
Premier Building Supply (Springhill, KS), Spring P 10/19/2023 11:05:22	ills, KS - 66083, Run: 8 ID:fMk	.63 S Apr 6 2023 Print: 8.630 S 9xecyyNPPOiHFXQ7Or5zRpec-	S Apr 6 2023 MiTek Ind -RfC?PsB70Hq3NSgPq	ustries, Inc. Wed Jul 05 09:06:08 nL8w3uITXbGKWrCDoi7J4zJC?f	Page: 1

0-9-15 0-9-15

12 7 8

1-3-2

Scale = 1:21.3

Loading TCLL (roof) TCDL BCLL BCDL	(psf) 25.0 10.0 0.0 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018	8/TPI2014	CSI TC BC WB Matrix-P	0.02 0.01 0.00	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 2	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 3 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x4 SP No.2 2x3 SPF No.2 Structural wood sh 1-3-8 oc purlins. Rigid ceiling directl bracing. (size) 1=1-3-8, Max Horiz 1=-24 (L Max Uplift 1=-5 (LC Max Grav 1=28 (LC	eathing directly applie y applied or 10-0-0 oc 2=1-3-8, 3=1-3-8 C 13) : 13), 2=-16 (LC 13) C 1), 2=38 (LC 20), 3=	7) 8) ^{d or} LC 16	Provide mec bearing plate and 16 lb up This truss is International R802.10.2 a DAD CASE(S)	hanical connection capable of withst ift at joint 2. designed in accor Residential Code nd referenced star Standard	n (by oth tanding 5 rdance w sections ndard AN	ers) of truss to Ib uplift at joi ith the 2018 R502.11.1 a ISI/TPI 1.	ont 1					
FORCES TOP CHORD BOT CHORD NOTES 1) Wind: ASC Vasd=91m Ke=1.00; (exterior zc and right exposed;C reactions s DOL=1.60 2) Truss des only. For see Stand or consult 3) Gable requ 4) Gable stud 5) This truss chord live 6) All bearing capacity o	(b) - Maximum Cor Tension 1-2=-15/27 2-3=0/0 CE 7-16; Vult=115mp ph; TCDL=6.0psf; B Cat. II; Exp C; Enclos one and C-C Exterior(exposed ; end vertica)-C for members and shown; Lumber DOL= oligined for wind loads studs exposed to wind ard Industry Gable E qualified building des uires continuous bott ds spaced at 4-0-0 oc has been designed f load nonconcurrent v ps are assumed to be f 565 psi.	h (3-second gust) CDL=6.0psf; h=35ft; ed; MWFRS (envelop 2E) zone; cantilever le left and right forces & MWFRS for e1.60 plate grip in the plane of the tru d (normal to the face) nd Details as applicat isigner as per ANSI/TP om chord bearing. or a 10.0 psf bottom vith any other live load SP No.2 crushing							•		STREOF M NATHA FOI PE-20220 PE-20220	MISSOLIA NIEL ER 042259 L ENOTIS	

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

July 5,2023

Com

