

RELEASE FOR CONSTRUCTION **AS NOTED ON PLANS REVIEW DEVELOPMENT SERVICES** LEE'S SUMMIT, MISSOURI 08/28/2023 11:42:57

RE: P230431-01 - Roof - Osage Lot 59

Site Information:

Project Customer: Clover & Hive Project Name: Twin Emerald Lot/Block: 59 Subdivision: Osage Model:

Address: 2208/2210 SW Osage Dr

State: MO

City: Lee's Summit General Truss Engineering Criteria & Design Loads (Individual Truss Design Drawings Show Special Loading Conditions):

Design Code: IRC2018/TPI2014 Wind Code: ASCE 7-16 Wind Speed: 115 mph Roof Load: 45.0 psf

Mean Roof Height (feet): 35

MiTek, Inc. 16023 Swingley Ridge Rd. Chesterfield, MO 63017 314.434.1200

Design Program: MiTek 20/20 8.6 Design Method: MWFRS (Envelope)/C-C hybrid Wind ASCE 7-16 Floor Load: N/A psf

Exposure Category: C

No.	Seal#	Truss Name	Date
1234567890112345678910112345167	159801137 159801138 159801139 159801140 159801142 159801142 159801143 159801144 159801145 159801145 159801148 159801148 159801149 159801151 159801152	A1 A2 A3 A4 B1 B2 C1 C2 C3 C4 E1 E2 G1A G2A V5 V6 V7	7/28/23 7/28/23 7/28/23 7/28/23 7/28/23 7/28/23 7/28/23 7/28/23 7/28/23 7/28/23 7/28/23 7/28/23 7/28/23 7/28/23 7/28/23
14 15 16	159801150 159801151 159801152	G2A V5 V6	7/28/23 7/28/23 7/28/23

The truss drawing(s) referenced above have been prepared by MiTek USA, Inc. under my direct supervision based on the parameters provided by Premier Building Supply (Springhill, KS)20300 W 207th Street.

Truss Design Engineer's Name: Nathan Fox

My license renewal date for the state of Missouri is December 31, 2024.

IMPORTANT NOTE: The seal on these truss component designs is a certification that the engineer named is licensed in the jurisdiction(s) identified and that the designs comply with ANSI/TPI 1. These designs are based upon parameters shown (e.g., loads, supports, dimensions, shapes and design codes), which were given to MiTek or TRENCO. Any project specific information included is for MiTek's or TRENCO's customers file reference purpose only, and was not taken into account in the preparation of these designs. MiTek or TRENCO has not independently verified the applicability of the design parameters or the designs for any particular building. Before use, the building designer should verify applicability of design parameters and properly incorporate these designs into the overall building design per ANSI/TPI 1, Chapter 2.

Nathan Fox

RFI	EASE FOR CONST						-	
	NOTED ON PLANS			Truss Type	Qty	Ply	Roof - Osage Lot 59	
		VICES		Roof Special Structural Gable	1	1	Job Reference (optional)	159801137
0	Premier Building Supply (Springh 8/28/2023 11.4	ill, KS), Spring 42:57	lills, KS - 66083,	Run: 8.63 S Apr 6 20 ID:1FL_5cO5javKO0N			2023 MiTek Industries, Inc. Thu Jul 27 13:11:17 B70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f	Page: 1

Plate Offsets (X, Y): [2:0-0-6,0-1-5], [6:0-3-1,0-3-0], [10:Edge,0-2-2], [14:0-4-0,0-4-8]

						-	-						
Loading	(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15		TC	0.85	Vert(LL)	-0.58	12-14	>995	240	MT20	197/144
TCDL	10.0	Lumber DOL	1.15		BC	0.94	Vert(CT)	-1.00	12-14	>583	180	MT18HS	244/190
BCLL	0.0*	Rep Stress Incr	YES		WB	0.85	Horz(CT)	0.17	10	n/a	n/a		
BCDL	10.0	Code	IRC201	8/TPI2014	Matrix-S							Weight: 266 lb	FT = 20%
LUMBER			2	Wind: ASCE	7-16; Vult=115r	mph (3-sec	ond aust)						
TOP CHORD	2x6 SPF No.2				h; TCDL=6.0psf;								
BOT CHORD	2x6 SP 2400F 2.0E	*Except* 13-14:2x6 \$	SPF	Ke=1.00; Ca	t. II; Exp C; Encl	losed; MW	FRS (envelop	ce)					
	No.2				e and C-C Exteri								
WEBS	2x3 SPF No.2 *Exce	pt* 14-5,15-3:2x4 SF	>		-1-0 to 27-1-10,								
	No.2				rior (1) 32-1-10			er					
BRACING					exposed ; end v								
TOP CHORD	Structural wood shea	athing directly applie	d or		for members a			•					
	2-2-0 oc purlins.			DOL=1.60	own; Lumber DC	JL=1.60 pia	ate grip						
BOT CHORD	5 5 7 11				ned for wind load	da in tha n	one of the tru	100					
	bracing, Except:		3		ids exposed to w								
	2-2-0 oc bracing: 12				d Industry Gable								
NEBS		7-14, 5-14, 3-15			alified building c								
	(size) 2=0-3-8, 1		4		MT20 plates ur								
	Max Horiz 2=-177 (L	,	5	Gable studs	spaced at 2-0-0	OC.							
	Max Uplift 2=-442 (L) This truss ha	s been designed	d for a 10.0) psf bottom						
	Max Grav 2=2345 (L		2)	chord live loa	ad nonconcurren	nt with any	other live loa	ds.					
ORCES	(lb) - Maximum Com	pression/Maximum	7		nas been design)psf					
	Tension	4440 0 5 4547/07			n chord in all are								
FOP CHORD	1-2=0/11, 2-3=-5821 5-6=-3268/819, 6-7=		1,		by 2-00-00 wide								
	7-8=-4675/927, 8-10		0/12		ny other member								
BOT CHORD	2-17=-969/5411, 15-	,	0/12 8	,	are assumed to	be SP 240	UF 2.0E crus	ning					
	12-15=-677/4232, 10		9	capacity of 8	bo psi. hanical connecti	ion (by oth	are) of truce t	~				000	TO
VEBS	3-17=0/416, 6-14=-3				e capable of with							TATE OF M	Alson
-	5-15=-7/844, 7-14=-				442 lb uplift at jo		io upiin ai					4 TE	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
	5-14=-1547/384, 3-1	,	,		designed in acco		th the 2018				6	N	Ne
NOTES					Residential Cod			nd			H		
) Unbalance	d roof live loads have	been considered for		R802.10.2 a	nd referenced st	tandard AN	ISI/TPI 1.				6	FO	

this design.

LOAD CASE(S) Standard

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

RE	EASE FOR CONSTR						
	NOTED ON PLANS		Truss Type	Qty	Ply	Roof - Osage Lot 59	
1	EXELORMENT SERV		Roof Special	2	1	Job Reference (optional)	159801138
0	Premier Building Supply (Springhill, 8/28/2023 11:4	KS), Spring	Hills, KS - 66083, R	•		2023 MiTek Industries, Inc. Thu Jul 27 13:11:19 sB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f	Page: 1

Plate Offsets (X, Y):	[2:0-0-6,0-1-5], [6:0-3-1,0-3-0], [10:Edge,0-2-2], [14:0-4-0,0-4	-81

			-					-		-			
Loading	(psf)	Spacing	2-0-0		csi		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15		тс	0.85	Vert(LL)	-0.58	12-14	>995	240	MT20	197/144
TCDL	10.0	Lumber DOL	1.15		BC	0.94	Vert(CT)	-1.00	12-14	>583	180	MT18HS	244/190
BCLL	0.0*	Rep Stress Incr	YES		WB	0.85	Horz(CT)	0.17	10	n/a	n/a		
BCDL	10.0	Code	IRC201	8/TPI2014	Matrix-S							Weight: 266 lb	FT = 20%
LUMBER			2)	Wind: ASCE	7-16; Vult=115	mph (3-sec	and quet)						
TOP CHORD	2x6 SPF No.2		۷,		r; TCDL=6.0psf								
BOT CHORD	2x6 SP 2400F 2.0E	*Except* 1/-13.2v6	SDE		t. II; Exp C; End			ne)					
BOT CHORD	No.2	LACEPt 14-13.2A0			and C-C Exter								
WEBS	2x3 SPF No.2 *Exce	ont* 15-3 14-5 2x4 SI	P		1-0 to 27-1-10,	· · ·	,						
WEbb	No.2	pt 10 0,11 0.2X1 0			rior (1) 32-1-10								
BRACING				left and right	exposed ; end	vertical left	and right						
TOP CHORD	Structural wood she	athing directly applie	ad or	exposed;C-C	for members a	and forces &	MWFRS for	r					
	2-2-0 oc purlins.	auning unecuy applie	50 01	reactions sho	own; Lumber D	OL=1.60 pla	ate grip						
BOT CHORD	Rigid ceiling directly	applied or 10-0-0 or		DOL=1.60		-							
BOT ONORD	bracing, Except:		<u>´</u> 3)	All plates are	MT20 plates u	unless other	wise indicate	d.					
	2-2-0 oc bracing: 12	-14	4)	 This truss has been designed for a 10.0 psf bottom 									
WEBS		3-15, 5-14, 7-14		chord live loa	ad nonconcurre	ent with any	other live loa	ds.					
REACTIONS	(size) 2=0-3-8, 2		5)	* This truss h	nas been desigr	ned for a liv	e load of 20.0	Opsf					
REACTIONS	Max Horiz 2=-177 (L			on the bottor	n chord in all ar	reas where	a rectangle						
	Max Uplift 2=-442 (L	,	2)		y 2-00-00 wide								
			ົ່		y other membe								
	Max Grav 2=2345 (L		²⁾ 6)		are assumed to	be SP 240	0F 2.0E crus	hing					
FORCES	(lb) - Maximum Com	pression/Maximum		capacity of 8									
	Tension		7)		hanical connec		,						
TOP CHORD	1-2=0/11, 2-3=-5821		/1,		capable of wit		42 lb uplift at						
	5-6=-3268/819, 6-7=		0/40	,	44 lb uplift at joi								
	7-8=-4675/927, 8-10	,	0/12 8)		designed in acc								
BOT CHORD	2-17=-969/5411, 15-				Residential Co			ind					The
WEBS	12-15=-677/4232, 10				nd referenced s	standard AN	ISI/TPI 1.					SOFA	ALC A
WEBS	3-17=0/416, 3-15=-1		^{44,} L(DAD CASE(S)	Standard							TE OF M	NSS W
	5-14=-1547/384, 6-1	,	1/220								4		N.S.
NOTEO	7-14=-1043/331, 7-1	12=-0/894, 8-12=-31	1/229								H	NATHA	NIEL YEN

NOTES

1) Unbalanced roof live loads have been considered for this design.

July 28,2023

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent toulsible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

RELEASE FOR CONSTRUCTION							
AS NOTED ON PLANS REVIEW	Truss Type		Qty	Ply	Roof - Osage Lot 59		
DEXELORMENT SERVICES	Roof Special		5	1	Job Reference (optional)	I59801 1	139
Premier Building Supply (Springhill, KS), Spring 08/28/2023 11:42:58	- 66083,				2023 MiTek Industries, Inc. Thu Jul sB70Hq3NSgPqnL8w3uITXbGKWi		Page: 1
-0-11-0 9-10-8 +	18-10-10 9-0-2	<u>27-1-10</u> 8-3-0		<u>34-5-(</u> 7-3-7		2 <u>48-8-0</u>) 7-7-4	49-7-0 + 0-11-0
5x8=	4^{12} 4x6 = 4x4 = 4 3 11 21 20 $3x4 \parallel$ MT18HS 5x8 =	4x4 = 24 5 19 27 4x4=	6x6 = 6 6 18 8x8 =	*	25 5x10 \$ 125 7 4x4 # 8 7 4x4 # 8 10 16 1 6x6 = 4x6 #	4x12= 3x4 II	12 13 ⁴ 8 8 8

								0/0-
1	9-10-8	14-0-0	18-10-10	27-1-10	34-5-0	38-11-8	46-8-8	48-8-0
	9-10-8	4-1-8	4-10-10	8-3-0	7-3-7	4-6-8	7-9-0	1-11-8

		1			-	-			_				
bading CLL (roof)	(psf)	Spacing Plate Grip DOL	2-0-0		TC	0.05	DEFL	in 0.49	(loc)	l/defl	L/d 240	PLATES MT20	GRIP
CDL (root)	25.0	1 1	1.15		BC	0.85	Vert(LL)		17-18	>999	240 180		197/144
CLL	10.0 0.0*	Lumber DOL Rep Stress Incr	1.15 YES		WB	0.82 0.96	Vert(CT) Horz(CT)	-0.87	19-21 12	>671 n/a		MT18HS	244/190
CDL	10.0	Code		8/TPI2014	Matrix-S	0.90		0.57	12	n/a	n/a	Weight: 322 lb	FT = 20%
	1010	0000						-				110.g.m 022 10	2070
IMBER OP CHORD	2x6 SPF No.2 *Exce 2.0E Microllam® LV 2x6 SP 2400F 2.0E	Ĺ		1/2" 2.0E Mi (0.131"x3") r	-3 scab 10 to 12 crollam® LVL w nails spaced 9" o oint 10, nail 2 ro	th 2 row(s)	of 10d starting at 4	I-5-9					
	No.2, 16-18:2x6 SPI	F No.2	2)		roof live loads h	ave been o	considered fo	or					
EBS	2x3 SPF No.2 *Exce No.2	ept* 18-5,19-3:2x4 S	P 3)	this design.	7-16; Vult=115	mph (3-sec	ond quet)						
BR SCAB	10-12 Trus Joist® L	VL 2.0 E both sides	-,		n; TCDL=6.0psf								
RACING				Ke=1.00; Ca	t. II; Exp C; Enc	losed; MW	FRS (envelo	pe)					
OP CHORD	Structural wood she 2-2-0 oc purlins.	athing directly applie	ed or	Interior (1) 4	and C-C Exteri- 1-0 to 27-1-10,	Exterior(21	R) 27-1-10 to)					
OT CHORD	Rigid ceiling directly bracing.	applied or 9-3-6 oc		left and right	rior (1) 32-1-10 exposed ; end	ertical left	and right						
EBS	1 Row at midpt	7-18, 5-18, 3-19			for members a			or					
ACTIONS	(size) 2=0-3-8, *	12=0-3-8		DOL=1.60	own; Lumber D0	JL=1.60 pi	ate grip						
	Max Horiz 2=-177 (L		4)		MT20 plates u	nless other	wise indicate	he					
	Max Uplift 2=-442 (L		3) 5		is been designe			50.					
	Max Grav 2=2339 (I	_C 2), 12=2346 (LC	2) -,		ad nonconcurrer			ads.					
RCES	(lb) - Maximum Corr	pression/Maximum	6)	* This truss I	nas been design	ed for a liv	e load of 20.	0psf					
	Tension				n chord in all ar								
OP CHORD	1-2=0/11, 2-3=-5804 5-6=-3251/820, 6-7=		71,		by 2-00-00 wide								
	7-8=-5404/1174, 8-9	,	-		ny other membe								
	9-11=-6465/1330, 1		7)	capacity of 8	are assumed to	De SP 240	OF 2.0E Crus	sning				2000	TOP
	12-13=0/12		8)		hanical connect	ion (hv oth	ers) of truss	to				OF N	Alson
OT CHORD	15-16=0/84, 8-15=-1	10/276,	0)		capable of with						9	ATE OF M	10.0°
	11-15=-1144/6149,	11-14=-27/220,			442 lb uplift at jo						A	AN MARTIN	New mar
	12-14=-1/10, 2-21=-	,	9)	This truss is	designed in acc	ordance w	ith the 2018				a	S NATHA	
	19-21=-969/5395, 1	7-19=-676/4216,			Residential Co			and		· · · · ·	Mr.	FO	X
	16-17=-235/1088	00/1007			nd referenced st	andard AN	ISI/TPI 1.				11	H	
EBS	3-21=0/416, 6-18=-3		L	DAD CASE(S)	Standard						N I		$\mathcal{N} \mathcal{H}_{-}$
	9-15=-1150/340, 5-1 7-18=-1068/309, 7-1										126	W U UM	KR J VE
	5-18=-1548/384, 3-1	,									N7	PE-2022	142259 18
	7-17=-491/193, 15-1										N	11-2022	120
OTES											Y	ESSIONA	I ENGL
												A NA	L

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling or individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com) July 28,2023

12x14=

4x4 **II**

RELEASE FOR CONSTRUCTION					
AS NOTED ON PLANS REVIEW	Truss Type	Qty	Ply	Roof - Osage Lot 59	
DEXELORMENT SERVICES	Roof Special Supported Gable	1	1	Job Reference (optional)	
Premier Building Supply (Springhill, KS), Spring Hill 08/28/2023 11:42:58	ls, KS - 66083, Run: 8.63 S ID:9CS9baXE	•		2023 MiTek Industries, Inc. Thu Jul 27 13:11:20 370Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f	Page: 1

Scale = 1:86.3

00010 = 1.00.0		
Plate Offsets (X, Y):	[16:0-3-0,0-0-15], [38:0-4-0,0-4-8]	

Plate Offsets (X, Y): [16:0-3-	0,0-0-1	5], [38:0-4-0,0-4-8]											
TCLL (roof) TCDL BCLL BCDL LUMBER	(psf) 25.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2) 018/TPI2014	CSI TC BC WB Matrix-	0.00 0.04 0.2 S 2=199 (LC 1), 28=315 (LC 20	Vert(CT Horz(CT 27=139 (LC) n/a) 0.01 		- n/a - n/a 7 n/a		PLATES MT20 Weight: 266 lb	-143/62,
6-0-0 oc purl BOT CHORD WEBS 1 Row at mic REACTIONS (size) 2= 32 33 39 42 46 49 Max Horiz 2= Max Uplift 29 31 33 36 39 41 43 46 48	2 2 directly 48-8-0, =48-8-0, =48-8-0 =48-8-0 =48-8-0 =48-8-0 =48-8-0 =48-8-0 =48-8-0 (L =-22 (LC =-40 (L =-50 (L =-50 (L =-50 (L =-50 (L =-50 (L =-49 (L =-49 (L =-44 (L	athing directly applie applied or 10-0-0 or 16-38, 15-39, 17-37 ,27=48-8-0, 28=48- ϵ 0, 30=48-8-0, 31=48 0, 33=48-8-0, 35=48 0, 37=48-8-0, 38=48 0, 40=48-8-0, 41=48 0, 41=48-8-0, 41=480, 41=48 0, 41=48-8-0,	c -8-0, -8-0, -8-0, -8-0, -8-0, -8-0, -8-0, -8-0, 3), 3), 3), 3), 3), 2), 2), 2), 2), 2),	FORCES TOP CHORD BOT CHORD	Tension 1-2=0/11 4-5=-134 7-9=-74/1 11-12=-7 13-14=-9 15-16=-1 17-18=-1 17-18=-1 19-20=-7 21-22=-4 25-26=-8 2-51=-42 49-50=-4 47-48=-4 44-46=-4 42-43=-4 40-41=-4 37-39=-4 32-33=-4 30-31=-4	28=315 (LC 22 30=200 (LC 1) 32=181 (LC 2) 35=180 (LC 1) 37=188 (LC 1) 37=188 (LC 1) 39=188 (LC 1) 41=180 (LC 1) 43=179 (LC 2) 46=187 (LC 1) 48=171 (LC 2) 50=151 (LC 2) 46=187 (LC 1) 48=171 (LC 2) 48=171	, 31=171 (L), 33=181 (, 36=181 (L , 40=182 (L , 42=181 (L), 44=175 (, 47=186 (L), 44=175 (, 47=186 (L), 51=268 (sion/Maxim -4=-162/84, 3, 6-7=-89, 56, 10-11=- 4/207, 09/254, 120/283, 92/216, 1/142, 9/69, 23-25 7/49 /150, 2/150, 2/150, 2/150, 2/150, 2/150, 2/150, 2/150, 2/150, 2/150, 2/150, 2/150, 2/150, 2/150, 2/150, 2/150,	C 26), LC 1), C 26), C 22), C 25), C 1), LC 25), LC 1), LC 25) um	2) W 2) W V K ex In 32 Ie ex re	nbalance is design /ind: ASC asd=91m e=1.00; C xterior zo iterior (1) 2-1-10, In ift and rig xposed;C	12-42 10-44 6-48= 3-51= 18-36 20-33 22-31 25-29 d roof I E 7-16 ph; TC 25-29 d roof I E 7-16 ph; TC 25-29 c for r hown;	-131/68, 5-49=- -198/134, 17-37 =-143/103, 19-3 =-140/78, 21-32 =-132/74, 23-30 =-108/61, 26-28 ive loads have b ; Vult=115mph (; DL=6.0psf; BCD Exp C; Enclosed; C-C Exterior(2E o 27-1-10, Exterior(2E o 27-1-10, to 48- sed ; end vertica nembers and for Lumber DOL=1.0 FTE OF NATH PE-2022 PE-2022	=-140/73, -144/75, 7-47=-149 144/75, 4-50=-122/0 =-143/70, =-143/70, =-141/79, =-155/87, =-232/180 een considered for 3-second gust) L=6.0psf; h=35ft; : MWFRS (envelop:) -0-11-0 to 4-1-0, ior(2R) 27-1-10 to 8-0 zone; cantilevea I left and right ces & MWFRS for 60 plate grip MISSOURCE ANIEL X ANIEL X ANIEL

there July 28,2023

Continued on page 2 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, reaction and bracing of trusses and truss systems, see **ANSI/TP1 Quility Criteria**, and **DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcscomponents.com)

RF FOR CONST UCTIO NOTED ON PLANS REVIEW <u>KELORMENT SERVICES</u> JMMIT, MISSOURI ing Supply (Springhill, KS), Spring 023 11:42:58

Truss designed for wind loads in the plane of the truss 3) only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

lills, KS - 66083,

All plates are 3x4 MT20 unless otherwise indicated. 4)

5) Gable requires continuous bottom chord bearing.

- 6) Gable studs spaced at 2-0-0 oc.
- 7) This truss has been designed for a 10.0 psf bottom
- chord live load nonconcurrent with any other live loads. * This truss has been designed for a live load of 20.0psf 8) on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom
- chord and any other members. 9) All bearings are assumed to be SPF No.2 crushing capacity of 425 psi.
- 10) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 22 lb uplift at joint 2, 27 lb uplift at joint 39, 57 lb uplift at joint 40, 50 lb uplift at joint 41, 49 lb uplift at joint 42, 50 lb uplift at joint 43, 45 lb uplift at joint 44, 49 lb uplift at joint 46, 56 lb uplift at joint 47, 44 lb uplift at joint 48, 50 lb uplift at joint 49, 44 lb uplift at joint 50, 81 lb uplift at joint 51, 25 lb uplift at joint 37, 64 lb uplift at joint 36, 55 lb uplift at joint 35, 54 lb uplift at joint 33, 55 lb uplift at joint 32, 50 lb uplift at joint 31, 62 lb uplift at joint 30, 40 lb uplift at joint 29 and 103 lb uplift at joint 28.
- 11) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard

Truss Type	Qty	Ply	Roof - Osage Lot 59	
Roof Special Supported Gable	1	1	Job Reference (optional)	159801140

Run: 8.63 S Apr 6 2023 Print: 8.630 S Apr 6 2023 MiTek Industries, Inc. Thu Jul 27 13:11:20 ID:9CS9baXEWIG0D9YvLzpIp8z_bgI-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 2

 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.
 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not beigh valid for use only with with with sets outputs into design is based only door parameters shown, and is for an individual dualing component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria**, and **DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcscomponents.com)

RELEASE FOR CONSTRUCTION												
AS NOTED ON PLANS REVIEW		Truss Type	Qty	Ply	Roof - Osage Lot 59	159801141						
DEXELORMENT SERVICES		Roof Special Structural Gable 2 1 Job Reference (optional)										
Premier Building Supply (Springhill, KS), Spring B 08/28/2023 11:42:58	lills, KS - 66083,	Run: 8.63 S Apr 6 20 ID:?AVNLbq4WBVV5	Page: 1									

Plate Offsets (X, Y): [2:0-3-0,Edge],	[7:0-2-13,0-4-4], [18	:0-1-12,0-	0-10], [24:0-4-	-0,0-4-8], [26:0-4	1-0,0-4-8]							
Loading	(psf)	Spacing	1-11-4		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15		TC BC	0.68	Vert(LL)	-0.24		>999	240	MT20	197/144
TCDL BCLL	10.0 0.0*	Lumber DOL Rep Stress Incr	1.15 YES		WB	0.97 0.86	Vert(CT) Horz(CT)	-0.48 0.10	28-30 22	>999 n/a	180 n/a		
BCDL	10.0	Code		3/TPI2014	Matrix-S	0.00		0.10	22	n/a	n/a	Weight: 290 lb	FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD WEBS JOINTS	2x6 SPF No.2 2x6 SPF No.2 *Exce 2400F 2.0E 2x3 SPF No.2 *Exce 28-3,23-15,23-11,26 2x3 SPF No.2 Structural wood she 2-8-8 oc purlins. Rigid ceiling directly bracing. 1 Row at midpt 1 Brace at Jt(s): 31, 32, 33, 34, 36 (size) 2=0-3-8, ' 21=7-7-8, Max Horiz 2=-169 (L Max Uplift 2=-365 (L 22=-380 (Max Grav 2=1787 (L	2220-3-8 (2220-3-8 (2220-3-8 (2220-3-8 (2220-3-8 (2220-3-8 (2220-3-8 (2220-3-8 (2220-3-8 (2220-3-8 (2220-3-8 (2220-3-8 (2220-3-8 (2220-3-8 (2220-3-8 (2220-3-8 (2220-3-8 (2220-3-8) (2220-3-8 (2220-3-8) (Wi SP d or 1) 2) 7), ,	DTES Unbalanced this design. Wind: ASCE Vasd=91mp Ke=1.00; Cr exterior zon Interior (1) 4 31-9-3, Inter and right ex exposed;C-1	3-30=0/394, 5-2 7-26=-134/773, 15-37=-323/183 35-36=-2057/39 5-31=-1452/350 26-32=-138/712 33-34=-132/66 6-31=-105/35, 8 10-34=0/151, 22 12-36=0/32, 13- 17-20=-222/148 1 roof live loads h E 7-16; Vult=115 th; TCDL=6.0psf at. II; Exp C; Enc e and C-C Exter 1-1-0 to 26-9-3, E rior (1) 31-9-3 to posed ; end vert C for members a town; Lumber D0	23-37=-29 88, 11-35=- 11, 23-36=- 12, 32-33=- 5, 11-34=-1 5, 32-33=-14/71 5-34=0/202 -37=-13/10 3, 15-22=-2 may been of mph (3-sec 5, BCDL=6, closed; MW ior(2E) -0- Exterior(2R 48-11-0 zc cical left and and forces 8	0/1884, 1994/384, 2037/394, 518/372, 30/669, 40/730, , 9-33=-22/12 , 24-35=-8/79 1, 16-21=-114 271/471 considered for cond gust) Dpsf, h=35ft; FRS (envelop 11-0 to 4-1-0,) 26-9-3 to one; cantilevel 4 right & MWFRS for	e, ,/61, r pe)	y cap cap cap 9) Pro bea joir lb u 10) Thi Inte R8	bacity of bacity of bacity of bovide me aring pla at 18, 36 uplift at jo s truss is crnationa	425 ps 805 ps lochanic 5 lb up bint 20 s desig and rel and rel) Sta	Imed to be: Joint : is, Joint 22 SP 24(is, Joint 22 SP 24(is, Joint 22 SP 24(is, Joint 22 SP 24(is, Joint 22 SP 24(and 380 lb uplift ; and 380 lb uplift ; and 380 lb uplift ; and and 20 de sect ferenced standard ndard	2 SPF No.2 crushing 20F 2.0E crushing 00F 2.0E crushing others) of truss to ng 410 lb uplift at lb uplift at joint 21, 94 at joint 22. we with the 2018 ions R502.11.1 and 1 ANSI/TPI 1.
FORCES TOP CHORD BOT CHORD	(lb) - Maximum Com Tension 1-2=0/11, 2-3=-4156 5-6=-1710/504, 6-7= 7-8=-1637/521, 8-9= 9-10=-1735/503, 10- 11-12=-103/275, 12- 13-15=-204/208, 15- 16-17=-224/1203, 11- 18-19=0/11 2-30=-735/3862, 28- 25-28=-405/2687, 22- 22-23=-1084/303, 14- 20-21=-1084/303, 14-	- 5/835, 3-5=-2919/651 1633/522, 1-10-1809/464, -13=-158/251, -16=-193/1215, 7-18=-286/1240, -30=-735/3862, 3-25=-106/1079, 1-22=-1084/303,	4) 5) 6)	only. For st see Standar or consult q All plates ar Gable studss This truss h chord live lo * This truss on the botto 3-06-00 tall	Ined for wind loa uds exposed to ' d' Industry Gable ualified building e 3x4 MT20 unle spaced at 2-0-C as been designe ad nonconcurrei has been design m chord in all ar by 2-00-00 wide ny other membe	wind (norm e End Deta designer as ess otherwi) oc. ed for a 10. nt with any ned for a liv eas where will fit betw	al to the face) ils as applicat s per ANSI/TF se indicated. 0 psf bottom other live load e load of 20.0 a rectangle veen the botto	ble, ple, pl 1. ds. ppsf				NATHA FOI PE-20220 PE-20220	X ER 042259

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

RELEASE FOR CONSTRUCTION									
AS NOTED ON PLANS REVIEW	Truss Type	Qty	Ply	Roof - Osage Lot 59	159801142				
DEXELORMENT SERVICES	Roof Special								
LEE'S SUMMIT, MISSOURI Premier Building Supply (Springhill, KS), Spring 08/28/2023 11:42:58									

Plate Offsets (X, Y): [2:0-0-6,0-1-5], [6:0-3-1,0-3-0], [14:0-4-0,0-4-8]

		1											
Loading TCLL (roof)	(psf) 25.0	Spacing Plate Grip DOL	2-0-0 1.15		CSI TC	0.83	DEFL Vert(LL)	in -0.59	(loc) 12-14	l/defl >978	L/d 240	PLATES MT20	GRIP 197/144
TCDL	10.0	Lumber DOL	1.15		BC	0.96	Vert(CT)	-1.01	12-14	>566	180	MT18HS	244/190
BCLL	0.0*	Rep Stress Incr	YES		WB	0.88	Horz(CT)	0.17	10	n/a	n/a		
BCDL	10.0	Code	IRC201	8/TPI2014	Matrix-S							Weight: 263 lb	FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD WEBS REACTIONS	2x6 SP 2400F 2.0E No.2 2x3 SPF No.2 *Exce No.2 Structural wood she 2-2-0 oc purlins. Rigid ceiling directly bracing, Except: 2-2-0 oc bracing: 12	ept* 14-5,15-3:2x4 SI athing directly applie applied or 10-0-0 oc -14. 7-14, 5-14, 3-15	ed or	Vasd=91mp Ke=1.00; Ca exterior zonu- Interior (1) 4 31-9-3, Inter and right ex exposed;C-0 reactions sh DOL=1.60 All plates arr This truss ha chord live lo	7-16; Vult=115m h; TCDL=6.0psf; I. II; Exp C; Enclo and C-C Exterio -1-0 to 26-9-3, Eb ior (1) 31-9-3 to 4 obsed; end vertic C for members an own; Lumber DOI a MT20 plates uni as been designed ad nonconcurrent has been designed	BCDL=6. bosed; MW br(2E) -0-1 cterior(2R 48-11-0 zc cal left and d forces 8 L=1.60 pl less other l for a 10.0 t with any ed for a liv	Dpsf; h=35ft; FRS (envelop 1-0 to 4-1-0,) 26-9-3 to nne; cantileve i right & MWFRS for ate grip wise indicate 0 psf bottom other live loa e load of 20.0	er left r ed.					
	Max Horiz 2=-174 (L Max Uplift 2=-437 (L Max Grav 2=2311 (L	.C 8), 10=-339 (LC 1		3-06-00 tall chord and a	m chord in all area by 2-00-00 wide v ny other members are assumed to b	vill fit betv s, with BC	veen the botto DL = 10.0ps1	f.					
FORCES	(lb) - Maximum Com Tension	pression/Maximum	7)	capacity of 8				0					
TOP CHORD	1-2=0/11, 2-3=-5724 5-6=-3214/810, 6-7= 7-9=-4729/930, 9-10	-3312/822,	52, [′]	bearing plate joint 10 and	e capable of withs 437 lb uplift at join	standing 3 nt 2.	39 lb uplift at						
BOT CHORD	2-17=-953/5319, 15- 12-15=-659/4129, 10	-17=-953/5319,	0/12 8)	Internationa	designed in acco Residential Code nd referenced sta	e sections	R502.11.1 a	and				Contra	all
WEBS NOTES	3-17=0/419, 6-14=-3 5-15=-11/838, 7-14= 7-12=-14/928, 5-14= 3-15=-1287/350	-1047/332,	/251, L(DAD CASE(S)								STATE OF M	MISSOLE NIEL

1) Unbalanced roof live loads have been considered for this design.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent toulsable personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

RF	EASE FOR CONSTR										
	NOTED ON PLANS		Truss Type	Qty	Ply	Roof - Osage Lot 59					
	EXELORMENT SER		Roof Special Structural Gable	1	1	Job Reference (optional)	159801143				
0	Premier Building Supply (Springh 8/28/2023 11:4	ills, KS - 66083,									

Plate Offsets (X, Y):	Plate Offsets (X, Y): [2:0-0-6,0-1-5], [6:0-2-13,0-3-0], [11:0-5-10,Edge], [14:0-4-0,0-4-8]													
Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP		
TCLL (roof)	25.0	Plate Grip DOL	1.15	тс	0.84	Vert(LL)	-0.57	12-14	>999	240	MT20	197/144		
TCDL	10.0	Lumber DOL	1.15	BC	0.92	Vert(CT)	-0.98	12-14	>587	180	MT18HS	244/190		
BCLL	0.0*	Rep Stress Incr	YES	WB	0.80	Horz(CT)	0.16	11	n/a	n/a				
BCDL	10.0	Code	IRC2018/TPI2014	Matrix-S							Weight: 271 lb	FT = 20%		

LUMBER TOP CHORD	2x6 SPF No.2 *Except* 9-11:2x6 SP 2400F	2)	Wind: ASCE 7-16; Vult=115mp Vasd=91mph; TCDL=6.0psf; B
BOT CHORD	2.0E 2x6 SP 2400F 2.0E *Except* 13-14:2x6 SPF No.2		Ke=1.00; Cat. II; Exp C; Enclos exterior zone and C-C Exterior Interior (1) 4-1-0 to 27-1-10. Ex
WEBS	2x3 SPF No.2 *Except* 14-5,15-3:2x4 SP No.2		32-1-10, Interior (1) 32-1-10 to left and right exposed ; end ver
SLIDER	Right 2x4 SP No.2 3-8-8		exposed;C-C for members and
BRACING			reactions shown; Lumber DOL
TOP CHORD	Structural wood sheathing directly applied or 2-2-0 oc purlins.	3)	DOL=1.60 Truss designed for wind loads
BOT CHORD	Rigid ceiling directly applied or 10-0-0 oc bracing, Except: 2-2-0 oc bracing: 12-14.		only. For studs exposed to win see Standard Industry Gable E or consult qualified building des
WEBS	1 Row at midpt 7-14, 5-14, 3-15	4)	All plates are MT20 plates unle
REACTIONS	(size) 2=0-3-8, 11=0-3-8 Max Horiz 2=179 (LC 12)	5) 6)	Gable studs spaced at 2-0-0 or This truss has been designed f chord live load nonconcurrent
	Max Uplift 2=-440 (LC 8), 11=-310 (LC 13) Max Grav 2=2321 (LC 2), 11=2275 (LC 2)	7)	
FORCES	(Ib) - Maximum Compression/Maximum Tension		3-06-00 tall by 2-00-00 wide wi chord and any other members,
TOP CHORD	1-2=0/11, 2-3=-5749/1132, 3-5=-4473/963, 5-6=-3193/805, 6-7=-3284/830,	8)	All bearings are assumed to be capacity of 805 psi.
	7-8=-4439/908, 8-11=-4640/941	9)	Provide mechanical connection
BOT CHORD	2-17=-962/5343, 15-17=-962/5343, 12-15=-675/4162, 11-12=-733/4088		bearing plate capable of withsta joint 11 and 440 lb uplift at joint
WEBS	3-17=0/416, 6-14=-320/1806, 8-12=-208/214, 5-15=-7/844, 7-14=-976/321, 7-12=0/763, 5-14=-1549/384, 3-15=-1276/348	10)	This truss is designed in accord International Residential Code R802.10.2 and referenced star
NOTES		LO	AD CASE(S) Standard
1) Unhalance	ed roof live loads have been considered for		

Unbalanced roof live loads have been considered for 1) this design.

ph (3-second gust) BCDL=6.0psf; h=35ft; osed; MWFRS (envelope) or(2E) -0-11-0 to 4-1-0, Exterior(2R) 27-1-10 to o 48-0-0 zone; cantilever ertical left and right nd forces & MWFRS for L=1.60 plate grip ds in the plane of the truss vind (normal to the face),

- End Details as applicable, esigner as per ANSI/TPI 1. less otherwise indicated. c.
- for a 10.0 psf bottom with any other live loads. ed for a live load of 20.0psf

- on (by others) of truss to
- standing 310 lb uplift at nt 2. rdance with the 2018

e sections R502.11.1 and andard ANSI/TPI 1.

July 28,2023

 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.
 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not besign value to dury with with where outputs into design is based only door parameters shown, and is for an individual building design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members and property incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TPH1 Quality Criteria**, and **DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcscomponents.com)

as where a rectangle vill fit between the bottom s, with BCDL = 10.0psf. e SP 2400F 2.0E crushing

RE	EASE FOR CONSTR											
	NOTED ON PLANS		Truss Type		Qty	Ply	Roof - Osage Lot 59					
1	DEXELORMENT SER	VICES	Roof Special	Job Relefence (optional)								
0	Premier Building Supply (Springhi 8/28/2023 11:4	II, KS), Spring 12:59	fills, KS - 66083,									

Plate Offsets (X, Y): [2:0-0-6,0-1-5], [6:0-2-13,0-3-0], [14:0-4-0,0-4-8]

Loading TCLL (root) (psf) 25.0 Spacing Plate Grip DOL 1.15 2-0-0 Plate Grip DOL 1.15 CSI TC TC DCL BC DEFL vert(L) in (loc) Vert(L) //dett -0.57 //dett L/dett -1.2 PLATES Plate Grip DOL 1.15 GRIP Plate Grip DOL 1.15 BCLL 0.0* 0.0* 0.0* Rep Stress Inor YES BC 0.84 Vert(L) -0.57 12.14 >599 440 MT20 197/144 BCDL 0.0* 0.0* Rep Stress Inor YES WB 0.80 Vert(L) -0.57 12.14 >589 44/190 BCDL 1.00 2x6 SPF No.2 *Except* 9-112x6 SP 2400F Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasce91mph; 120-16, Opsi; Eccle.0.597; H=351; Ke=1.00; Cat. II; Exp C; Icolosed; IW/FRS (revelope) Vertific 2.0* 7.0* Vertific 2.0* 7.0*														
BCDL10.0CodeIRC2018/TPI2014Matrix-SWeight: 270 lbFT = 20%LUMBER TOP CHORD2x6 SPF No.2 *Except* 9-11:2x6 SP 2400F 2.0E2.0E*Except* 9-11:2x6 SP 2400F 2.0E2.0E*Except* 13-14:2x6 SPF No.220Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=35ft; Ke=1.00; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior 22no cantilever left and right exposed; 0-11-0 to 14-1-0, Interior (1) 4-1-0 to 27-1-10, Exterior(2R) 27-1-10 to 32-1-10, Interior (1) 32-1-10 to 48-0-0 zone; cantilever left and right exposed; 0-11-0 to 48-0-0 zone; cantilever left and right exposed; 0-11-0 to 48-0-0 zone; cantilever left and right exposed; 0-11-0 to 48-0-0 zone; cantilever left and right exposed; 0-2 for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60SUIDERRigid ceiling directly applied or 10-0-0 oc bracing, Except: 2-2-0 oc bracing: 12-14.All plates are MT20 plates unless otherwise indicated. This truss has been designed for a 10.0 psf bottom chord in all areas where a rectangle 3-06-00 outid will fit between the bottom chord and any other iwe load of 20.0psf.WEBS1 Row at midpt Max Horiz 2=179 (LC 12) Max Grav 2=2321 (LC 2), 11=2275 (LC 2)6FORCES(b) - Maximum Compression/Maximum Tension7FORCES(b) - Maximum Compression/Maximum Tension8TensionTension7	TCLL (roof) TCDL	25.0 10.0	Plate Grip DOL	1.15 1.15		TC BC		Vert(LL)	-0.57	12-14	>999	240 180	MT20	197/144
TOP CHORD 2.0E2x6 SPF No.2 *Except* 9-11:2x6 SP 2400F 2.0EVasd=91mph; TCDL=6.0psf; BCDL=6.0psf; b=35ft; Ke=1.00; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2R) 27-1-10 to 43-0-0 zone; cantilever left and right s2-1-01 Interior (1) 41-10 to 27-1-10; Exterior(2R) 27-1-10 to 32-1-10 to 43-0-0 zone; cantilever left and right s2-10 co purlins.Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=35ft; Ke=1.00; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2R) 27-1-10 to 32-1-10 to 43-0-0 zone; cantilever left and right s2-1-0c purlins.BOT CHORD BCT CHORDStructural wood sheathing directly applied or 			1 '		8/TPI2014		0.80	Horz(CT)	0.16	11	n/a	n/a	Weight: 270 lb	FT = 20%
101 61 12-01 110 101 110 101 12-01 101 12-01 101 12-01 101 12-01 101 12-01 101 12-01 101 12-01 101 110 101 12-01 101 12-01 101 12-01 101 12-01 101 12-01 101 12-01 101 12-01 101 12-01 101 12-01 101 12-01 101 12-01 101 12-01 101 12-01 101 12-01 101 110 101 12-01 101 12-01 101 110 101 101 101 101 12-01 101	TOP CHORD BOT CHORD WEBS SLIDER BRACING TOP CHORD BOT CHORD WEBS TOP CHORD BOT CHORD BOT CHORD WEBS NOTES	2.0E 2x6 SP 2400F 2.0E No.2 2x3 SPF No.2 *Exce No.2 Right 2x4 SPF No.3 Structural wood shee 2-2-0 oc purlins. Rigid ceiling directly bracing, Except: 2-2-0 oc bracing: 12 1 Row at midpt (size) 2=0-3-8, 1 Max Horiz 2=179 (LC Max Uplift 2=-440 (L Max Grav 2=2321 (L (lb) - Maximum Com Tension 1-2=0/11, 2-3=-5749 5-6=-3193/805, 6-7= 7-8=-4439/908, 8-11 2-17=-962/5343, 15- 12-15=-675/4162, 1' 3-17=0/416, 6-14=-3 5-15=-7/844, 7-14=- 5-14=-1549/384, 3-1	*Except* 13-14:2x6 3 *Except* 13-14:2x6 3 *pt* 14-5,15-3:2x4 SI 3-8-5 athing directly applie applied or 10-0-0 oc -14. 7-14, 5-14, 3-15 11= Mechanical C 12) C 8), 11=-310 (LC 1: C 2), 11=2275 (LC 2: pression/Maximum //1132, 3-5=-4473/96 -3284/830, =-4640/941 -17=-962/5343, 1-12=-733/4088 \$20/1806, 8-12=-208 \$20/1806, 8-12=-208 \$26/2348	SPF P ed or 3) 3 4) 5) 3) 6) 2) 7) 8) 63, 9) /214, L 3, L	Vasd=91mp Ke=1.00; Ca exterior zon Interior (1) 4 32-1.10, Inti- left and righ exposed;C-1 reactions sh DOL=1.60 All plates ar This truss h chord live lo * This truss on the botto 3-06-00 tall chord and a Bearings ar crushing ca Provide met bearing plat joint 11 and This truss is Internationa R802.10.2 a	h; TCDL=6.0psf; at. II; Exp C; Encl e and C-C Exteric 1-0 to 27-1-10, E erior (1) 32-1-10 t t exposed ; end vic C for members ar own; Lumber DO e MT20 plates un as been designed an onconcurremi has been designed an chord in all are by 2-00-00 wide v ny other members e assumed to be: lef(s) for truss to i chanical connection e capable of withs 440 lb uplift at joi designed in accccl I Residential Codi und referenced sta	BCDL=6. bosed; MW bor(2E) -0 Exterior(2I) or 48-0-0 are ertical left di forces & 'L=1.60 pl less other i for a 10. t with any ed for a liv as where will fit betw s, with BC Joint 2 SI truss conr on (by oth standing 3 int 2. ordance w e sections	Dipsf; $h=35ft$; FRS (envelo 1-0 to 4-1-0, R) 27-1-10 to icone; cantilev and right MWFRS for ate grip wise indicate 0 psf bottom other live load e load of 20.1 a rectangle veen the bott DL = 10.0psi P 2400F 2.0E enections. ers) of truss 1 10 lb uplift at th the 2018 R502.11.1 a	d. ds. Dpsf om				STATE OF M STATE OF M	MISSOUR NIEL

Unbalanced roof live loads have been considered for 1) this design.

BER PE-2022042259 ARSSIONAL EN July 28,2023

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent toulsible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

RFL	EASE FOR CONSTR							
	NOTED ON PLANS			Truss Type	Qty	Ply	Roof - Osage Lot 59	
ļţ	EXELORMENT SER	HÇES		Roof Special	5	1	Job Reference (optional)	159801145
	Premier Building Supply (Springhi 8/28/2023 11:4		lills, KS - 66083,				2023 MiTek Industries, Inc. Thu Jul 27 13:11:22 в70Нq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f	Page: 1

TCLL (root) 25.0 Plane Grip POL 1.15 TC 0.83 Vert(LL) -0.45 21:23 >699 240 MT20 197/144 BCLL 0.0 ⁺ Lumber DOL 1.15 BC 0.78 Vert(LL) -0.45 21:23 >697 400 MT20 197/144 BCLL 0.0 ⁺ Rep Stress Incr YES WB 0.88 Horz(CT) 0.82 1:20 n/a n/a LUMBER Code IRC2018/TPI2014 MT19 0.88 Horz(CT) 0.32 1:2 n/a n/a LUMBER Code IRC2018/TPI2014 MT18 NT20 197/144 MT18HS 197/144 LUMBER Code IRC2018/TPI2014 MA NOTES 1 Unbalanced roof live loads have been considered for 10 10:20 10:20 10:20 10:20 10:20 10:20 10:20 10:20 10:20 10:20 10:20 10:20 10:20 10:20 10:20 10:20 10:20 10:20	Plate Offsets ((X, Y): [2:0-0-6,0-1-5],	, [6:0-3-9,0-3-4], [7:0-	3-10,0-2-	8], [11:Edge,0-	3-8], [17:0-8-8,0-	5-0], [18:I	Edge,0-3-8], [19:0-2-8	3,0-3-0],	[20:0-4-(),0-4-8	3]	
TCDL 10.0 Lumber DOL 1.15 CC 0.78 Ver(CT) -0.82 21-23 -597 180 M118HS 197/144 BCDL 10.0 Code IRC2018/TP12014 Marix-S 0.88 Horz(CT) -0.32 1.2 n/a n/a Weight: 287 lb FT = 20% LUMBER DCD CHORD 2x6 SPF No.2 2x3 SPF No.2* TSXxeppt' 10.0 NOTES NOTES </th <th>Loading TCLL (roof)</th> <th>u ,</th> <th></th> <th></th> <th></th> <th></th> <th>0.83</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th>	Loading TCLL (roof)	u ,					0.83							
BCLL 0.0 Reg Stress Indr YES WB 0.8 Horz(CT) 0.32 12 n/a N/a BCDL 10.0 Code IRC2018/TPI2014 Matrix-S Note Horz(CT) 0.32 12 n/a n/a BCDL 10.00 Code IRC2018/TPI2014 Matrix-S Note	TCDL		1 1					. ,						
 LUMBER TOP CHORD ZdS SPF No.2 BOT CHORD ZdS SPF No.2 Structural wood sheating directly applied or 20-5.21.319-17.10.14,12-11.2x4 SP No.2 BRACING TOP CHORD Structural wood sheating directly applied or 2-2-00 cpuritins (6-0-0 max): 10-11. BOT CHORD Directly applied or 10-0-00 cb bracing: Except: 2-2-00 cpuritins (6-0-0 max): 10-11. BOT CHORD Rigid ceiling directly applied or 10-0-00 cb bracing: 16-16 B-10-12 co bracing: 16-17 B-10-12 co bracing: 16-17 B-10-12 co bracing: 16-16 B-10-12 co bracing: 16-16 B-10-12 co bracing: 16-17 B-10-12 co bracing: 19-20. Max Grav 2-2309 (LC 2), 12-2267 (LC 2) Max Grav 2-2309 (LC 2), 12	BCLL	0.0*	Rep Stress Incr	YES		WB	0.88	Horz(CT)	0.32	12	n/a	n/a		
 TOP CHORD 2: Set SPF No.2 / Structural Words Sheathing directly applied of 22-00 c putlins, except 2: 2-00 c putlins, except 3: 2-101. Ctast 2: 2-100. Ctast 1: Exp C: Enclosed: MWFRS [envelope] 2: 2-00 c putlins, except 3: 2-101. Ctast 2: 2-100. Ctast 1: Exp C: Enclosed: MWFRS [envelope] 2: 2-00 c putlins, except 3: 2-101. Ctast 2: 2-100. Ctast 1: Exp C: Enclosed: MWFRS [envelope] 2: 2-00 c putlins, except 3: 2-101. Ctast 2: 2-100. Ctast 1: Exp C: Enclosed: MWFRS [envelope] 2: 2-00 c putlins, except 3: 2-101. Ctast 2: 2-100. Ctast 1: Exp C: Enclosed: MWFRS [envelope] 2: 2-00 c putlins, except 3: 2-101. Ctast 2: 2-100. Ctast 1: Exp C: Enclosed: MWFRS [envelope] 2: 2-100. Ctast 1: Exp C: Enclosed: MWFRS [envelope] 2: 2-00 c putlins, except 3: 2-101. Ctast 2: 2-100. Ctast 1: Exp C: Enclosed: MWFRS [envelope] 2: 2-10. Ctast 1: Exp C: Enclosed: MWFRS [envelope] 2: 2-10. Ctast 1: 2: 2-100. Ctast 1: Exp C: Enclosed: MWFRS [envelope] 2: 2-10. Ctast 1: 2: 2-100. Ctast 1: Exp C: 2: 2: 2: 2: 2: 2: 2: 2: 2: 2: 2: 2: 2:	BCDL	10.0	Code	IRC201	8/TPI2014	Matrix-S	-						Weight: 287 lb	FT = 20%
BOT CHORD No.2, 17-44, 2022;22:26 28 P2 400F 2.05 22:30 SPT No.2 "Except"this design.WEBS 20:5,217-31,91-7,10-14,12:41:2x4 SP No.2Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; BCDL=6.0ps	LUMBER			N	OTES									
 No.2, 17-14, 20-22, 22, 22, 26, 5P 2400F 2, 02 WEES 23, SF No.2, T2-14, 20-22, 22, 226, 5P 2400F 2, 02 WGES 23, SF No.2, T2-14, 20-22, 22, 226, 5P 2400F 2, 02 WGES 20-5, 21-3, 19-17, 10-14, 12-11-2x4 SP No.2, 20-5, 21-3, 19-17, 10-14, 12-11-2x4 SP No.2, 21-3, 19-17, 10-14, 12-12, 12-2x4 SP No.2, 21-3, 19-17, 10-14, 12-11-2, 22-3, 19-17, 10-14, 12-12, 20-17, 12-14, 10-14, 12-14, 1	TOP CHORD					roof live loads ha	ave been	considered fo	or					
WEBS 2x3 SPF No.2 *Except* Vasd=0 tmph; TCDL=6.0psf; EcDL=6.0psf; EcDL=6.0	BOT CHORD				0	7-16; Vult=115m	nph (3-seo	cond gust)						
 BRACING TOP CHORD TOP CHORD Structural wood sheathing directly applied of 2-20 oc purlins, except 2-00 oc purlins, is except 2-01 do characting, is 1-17 8-11-2 oc bracing; 15-16 8-10-12 oc bracing; 15-16 8-10-12 oc bracing; 15-16 8-10-12 oc bracing; 15-16 8-10-12 oc bracing; 15-20, 1-20011, 2-3-8, 12-Mechanical Max Horiz, 2-235 (LC 12) Max Upit: 2-437 (LC 13) Max reviz: 2-230 (LC 2), 12-2227 (LC 13) Max Grav 2-230 (LC 2), 12-2227 (LC 13) Max Grav 2-230 (LC 2), 12-2227 (LC 12) Max Upit: 2-437 (LC 13) Max Kar are 2-230 (LC 2), 12-2227 (LC 13) Max Kar are 2-230 (LC 2), 12-2227 (LC 13) Max Kar are 2-230 (LC 2), 12-2227 (LC 13) Max Kar are 2-230 (LC 17), 12-13-204 Effect og index(3) for truss to fruss to frust to frus to fruss to fruss to frust to frus to frust t	WEBS	2x3 SPF No.2 *Exce	ept*						ne)					
 Interior (1) 41-10 to 27-110, Lexterior (2R) 27-110 to 42000 c purins, except 22-0 or purins, except 42-0 or purins, except 42-0	BRACING	20-3,21-3,19-17,10-	14,12-11.2X4 OF NU.	2										
 2:2-0 oc purlins, except 32:1-10, Interior (1) 32:1-10 to 47-10-4 zone; cantilever BOT CHORD BOT CHORD Rigid ceiling directly applied or 10:0-oc bracing; 15:16 8:10-12 oc bracing; 15:16 8:10-12 oc bracing; 19:20. WEBS 1 Row at midpt 7:20, 5:20, 3:21, 10:14 (size) 2:20-3.8, 12=Mechanical Maximum Compression/Maximum FORCES (b) - Maximum Compression/Maximus Top CHORD 17:8=066, 8:17=-3241/809, 7:82-435/946, 10:11=236/44 BOT CHORD 10:11=236/44 BOT CHORD 17:8=0668, 1:7=-378/184, 10:11=236/44 BOT CHORD 19:21=-786/4126, 11:9=-1011/403 19:21=-786/4126, 11:9=-1011/403 19:21=-786/4126, 11:9=-1011/403 19:21=-786/4126, 11:9=-1011/403 10:11=233/44, 3:21=-786/4126, 11:9=-1011/403 10:11=278/57 WEBS 3:23=-0061/3:300, 12:-13=-9061/281, 1:14=-78/57 223=-1061/3:300, 12:-14=-22271/195, 1:14=-1278/344, 3:21=-1278/344, 3:21=-1278/344, 5:21=-786/4126, 11:9=-1011/403 10:11=278/57 23:23=-0061/321, 1:1=-0101/303 23:23=-0061/321, 1:1=-0101/433 32:10:11:11:11:11:11:11:11:11:11:11:11:11:		Structural wood she	athing directly applied	1 or										
 2-0-0 oc journins (6-0-ór max.); 10-11. BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing: Except: 8-10-14 oc bracing: 15-16 8-10-12 oc bracing: 15-20. WEBS I Row at midpt 7-20, 5-20, 3-21, 10-14 WESS I Row at midpt 7-20, 5-20, 3-21, 10-14 Standard Arstein Structure (10, 10, 10, 10, 10, 10, 10, 10, 10, 10,					32-1-10, Inte	rior (1) 32-1-10 t	o 47-10-4	zone; cantile	ever					
 In the second state of the second sta														
 Boltoning, Exception <	BOT CHORD	Rigid ceiling directly	applied or 10-0-0 oc						r					
 BOT 14 400 transfer 15-16 B11-2 oc bracing: 15-16 B-10-12 o						own; Lumber DO	L=1.60 pi	ate grip						
 All plates are MT20 plates unless otherwise indicated. This truss has been designed for a 10.0 gs blottom chord in ella areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members, with BCDL = 10.0 psf. FORCES (b) - Maximum Compression/Maximum Tension TOP CHORD 1-2=0/11, 2-3=-5713/1122, 3-5=-4435/946, 5-6=-3157/795, 6-7=-3241/809, 7-8=-5471/1235, 8+10=-5557/1171, 10-11=-235/44 BOT CHORD 17-18=0/66, 8-17=-378/184, 10-17=-350/63360, 15-16=-1339/6354, 11-14=-78/57 WEBS 3-23=0/416, 6-20=-2971/755, 7-20=-961/281, 7-19=-568/232, 5-20=-1547/384, 3-21=-1278/44, 2371324, 17-19=-598/3300, 7-17=-497/2120, 10-16=-144/123, 10-14=-78/57 All plates are MT20 plates unless otherwise indicated. This truss has been designed for a 10.0 gs blottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and y other members, with BCDL = 10.0 psf. Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 310 lb uplift at joint 2. This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802-102 and referenced standard ANSI/TP1 1. Max Data Barber and and and and the top and/or bottom chord. LOAD CASE(S) Standard LoAD CASE(S) Standard 		•		3		nuate drainage to	prevent	water ponding	n					
 WEBS 1 Row at midpt 7-20, 5-20, 3-21, 10-14 REACTIONS (size) 2-03-8, 12= Mechanical Max Horiz 2=236 (LC 12) Max Grav 2=2309 (LC 2), 12=2267 (LC 2) FORCES (b) - Maximum Compression/Maximum Tension TOP CHORD 1-2=0/11, 2-3=-5713/1122, 3-5=-4435/946, 5-6=-31577/95, 6-7=-3241/809, 7-8=-5471/1235, 8-10=-5557/1171, 10-11=-235/44 BOT CHORD 17-18=0/66, 8-17=-378/184, 16-17=-1330/6329, 13-15=0/17, 12-13=-9/25, 2-23=-1061/5309, 21-23=-1061/53														
 REACTIONS (size) 2=0-3-8, 12= Mechanical Max Horiz 2=235 (LC 12) Charlen to the function of the purphene the set of the set	WEBS	•		14 5) This truss ha	s been designed	for a 10.	0 psf bottom						
 Max Horiz 2=235 (LC 12) Max Uplift 2=-437 (LC 8), 12=-237 (LC 2) Max Grav 2=2309 (LC 2), 12=2267 (LC 2) Max mum Compression/Maximum Tension TOP CHORD 1-2=011, 2-3=-5713/1122, 3-5=-4435/946, 5-6=-3157/795, 6-7=-3241/809, 7-8=-5471/1235, 8-10=-5557/1171, 10-11=-235/44 BOT CHORD 17-18=0/66, 8-17=-378/184, 16-17=-1330/6320, 15-16=-1339/6354, 14-15=-1330/6320, 15-16=-1339/6354, 14-15=-1330/6320, 15-16=-1339/6354, 14-15=-1330/6320, 15-16=-1339/6354, 14-15=-7380/4126, 18-19=-101/403 WEBS 3-23=0/416, 6-20=-297/1755, 7-20=-981/281, 7-19=-569/232, 5-20=-1547/844, 10-17=-1278/348, 5-21=-7/844, 10-17=-1278/348, 5-21=-7/844, 10-17=-1278/348, 5-21=-7/844, 10-17=-497/2120, 10-16=-144/123, 10-14=-6425/1360, 12-14=-2227/499, 11-14=-78/57 (a) This truss is designed to a larce with the purlin along the top and/or bottom chord. (b) Partial purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord. (c) AD CASE(S) Standard (c) AD CASE(S) Standard 														
 Max Uplift 2=-437 (LC 8), 12=-310 (LC 13) Max Grav 2=2309 (LC 2), 12=-2267 (LC 2) (b) - Maximum Compression/Maximum Tension TOP CHORD 1-2=0/11, 2-3=-5713/1122, 3-5=-4435/946, 5-6=-3157/795, 6-7=-3241/809, 7-8=-5471/1235, 8-10=-5557/1171, 10-11=-235/44 BOT CHORD 17-18=0/66, 8-17=-378/184, 16-17=-1330/6329, 13-15=0/17, 12-13=-9/25, 2-23=-1061/5309, 21-23=-1061/5309, 19-21=-786/4126, 18-19=-101/403 WEBS 3-23=0/416, 6-20=-297/1755, 7-20=-961/281, 7-19=-569/232, 5-20=-1547/384, 3-21=-1278/348, 5-21=-7/844, 10-17=-2197/324, 17-19=-598/3300, 7-17=-497/2120, 10-16=-1441/123, 10-14=-6425/1360, 12-14=-2227/499, 11-14=-78/57 		· · · ·		6)					Opsf					
Max Grav 2=2309 (LC 2), 12=2267 (LC 2) ForCES (lb) - Maximum Compression/Maximum Tension TOP CHORD 1-2=0/11, 2-3=-5713/1122, 3-5=-4435/946, 5-6=-3157/795, 6-73241/809, 7-8=-5471/1235, 8-10=-5557/1171, 10-11=-235/44 BOT CHORD 1-2=0/66, 8-17=-378/184, 16-17=-1330/6329, 13-15=0/17, 12-13=-9/25, 2-23=-1061/5309, 21-23=-1061/5309, 19-21=-786/4126, 18-19=-101/403 WEBS 3-23=0/416, 6-20=-297/1755, 7-20=-961/281, 7-19=-569/232, 5-20=-1547/384, 3-21=-1278/348, 5-21=-7/844, 10-17=-1291/324, 17-19=-598/3300, 7-17=-497/2120, 10-16=144/123, 10-14=-6425/1360, 12-14=-2227/499, 11-14=-78/57				5)										
FORCES (b) - Maximum Compression/Maximum Tension 7) Bearings are assumed to be: Joint 2 SP 2400F 2.0E crushing capacity of 805 psi. TOP CHORD 1-2-0/11, 2-3=-5713/1122, 3-5=-4435/946, 5-6=-3157/795, 6-7=-3241/809, 7-8=-5471/1235, 8-10=-5557/1171, 10-11=-235/44 7) Bearings are assumed to be: Joint 2 SP 2400F 2.0E crushing capacity of 805 psi. 80T CHORD 17-18-0/66, 8-17=-378/184, 16-17=-1350/6360, 15-16=-1339/6354, 14-15=-1330/6329, 13-15=0/17, 12-13=-9/25, 2-23=-1061/5309, 21-23=-1061/5309, 19-21=-786/4126, 18-19=-101/403 7) Bearings are assumed to be: Joint 2 SP 2400F 2.0E crushing capacity of 805 psi. WEBS 3-23=-0/416, 6-20=-297/1755, 7-20=-961/281, 7-19=-569/232, 5-20=-1547/384, 3-21=-1278/348, 5-21=-7/844, 10-17=-1291/324, 17-19=-598/3300, 7-17=-497/2120, 10-16=-144/123, 10-14=-6425/1360, 12-14=-2227/499, 11-14=-78/57 This true is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TP1 1. 11) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord. NATHANIEL FOX UADD CASE(S) Standard		Max Grav 2=2309 (I	LC 2), 12=2267 (LC 2)										
 TOP CHORD 1-2=0/11, 2-3=-5713/1122, 3-5=-4435/946, 5-6=-3157/795, 6-7=-3241/809, 7-8=-54711/255, 8-10=-5557/1171, 10-11=-235/44 BOT CHORD 17.18=0/66, 8-17=-378/184, 16-17=-1330/6329, 13-15=0/17, 12-13=-9/25, 2-23=-1061/5309, 21-23=-1061/5309, 21-23=-1061/5309, 21-23=-1061/5309, 21-23=-1061/5309, 21-23=-1061/5309, 21-23=-1061/303, 21-23=-1061/303, 21-23=-1061/303, 21-23=-1061/303, 21-23=-1061/303, 21-23=-1061/281, 7-19=-598/3300, 7-17=-4971/2120, 10-16=-144/123, 10-17=-1291/324, 17-19=-598/3300, 7-17=-4971/2120, 10-16=-144/123, 10-14=-6425/1360, 12-14=-2227/499, 11-14=-78/57 Refer to girder(5) for truss to truss connections. Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 310 lb uplift at joint 2. Refer to girder(5) for truss to truss connections. Provide mechanical connection (by others) of truss to truss to truss to truss to truss connections. Tother capable of withstanding 310 lb uplift at joint 2. This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord. LOAD CASE(S) Standard LOAD CASE(S) Standard 	FORCES		pression/Maximum	7)) Bearings are	assumed to be:								
 5-6=-3157/795, 6-7=-3241/809, 7-8=-5471/1235, 8-10=-5557/1171, 10-11=-235/44 BOT CHORD 17-18=0/66, 8-17=-378/184, 16-17=-1350/6360, 15-16=-1339/6354, 14-15=-1300/6329, 13-15=0/17, 12-13=-9/25, 2-23=-1061/5309, 21-23=-1061/5309, 19-21=-786/4126, 18-19=-101/403 WEBS 3-23=0/416, 6-20=-297/1755, 7-20=-961/281, 7-19=-569/232, 5-20=-1547/384, 3-21=-1278/348, 5-21=-7/844, 10-17=-1291/324, 17-19=-598/3300, 7-17=-497/2120, 10-16=-144/123, 10-14=-6425/1360, 12-14=-2227/499, 11-14=-78/57 O This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TP1 1. OF MISSION UNDER TO THE COMPARISON OF THE COMPARISON	TOP CHORD		3/1122 3-5=-4435/94	6			truce con	actiona						
10-17=-1330/6360, 19-16=-1339(634, International Residential Code sections R502.11.1 and 14-15=-1330/6329, 13-15=0/17, 12-13=-9/25, R802.10.2 and referenced standard ANSI/TPI 1. 12-21=-786/4126, 18-19=-101/403 10 Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord. WEBS 3-23=0/416, 6-20=-297/1755, 7-20=-961/281, 7-19=-569/232, 5-20=-1547/384, 10 Graphical purlin representation of the purlin along the top and/or bottom chord. LOAD CASE(S) Standard PE-2022042259 PE-2022042259 0.17=-497/2120, 10-16=-144/123, 10-14=-6425/1360, 12-14=-2227/499, 11-14=-78/57 PE-2022042259		,	,	, 0,		()			'n				and	TOP
10-17=-1330/6360, 19-16=-1339(634, International Residential Code sections R502.11.1 and 14-15=-1330/6329, 13-15=0/17, 12-13=-9/25, R802.10.2 and referenced standard ANSI/TPI 1. 12-21=-786/4126, 18-19=-101/403 10 Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord. WEBS 3-23=0/416, 6-20=-297/1755, 7-20=-961/281, 7-19=-569/232, 5-20=-1547/384, 10 Graphical purlin representation of the purlin along the top and/or bottom chord. LOAD CASE(S) Standard PE-2022042259 PE-2022042259 0.17=-497/2120, 10-16=-144/123, 10-14=-6425/1360, 12-14=-2227/499, 11-14=-78/57 PE-2022042259		7-8=-5471/1235, 8-1	10=-5557/1171,	5									A OF M	AISO
10-17=-1330/6360, 19-16=-1339(634, International Residential Code sections R502.11.1 and 14-15=-1330/6329, 13-15=0/17, 12-13=-9/25, R802.10.2 and referenced standard ANSI/TPI 1. 12-21=-786/4126, 18-19=-101/403 10 Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord. WEBS 3-23=0/416, 6-20=-297/1755, 7-20=-961/281, 7-19=-569/232, 5-20=-1547/384, 10 Graphical purlin representation of the purlin along the top and/or bottom chord. LOAD CASE(S) Standard PE-2022042259 PE-2022042259 0.17=-497/2120, 10-16=-144/123, 10-14=-6425/1360, 12-14=-2227/499, 11-14=-78/57 PE-2022042259												1	9 SE	W.OS
10-17=-1330/6360, 19-16=-1339(634, International Residential Code sections R502.11.1 and 14-15=-1330/6329, 13-15=0/17, 12-13=-9/25, R802.10.2 and referenced standard ANSI/TPI 1. 12-21=-786/4126, 18-19=-101/403 10 Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord. WEBS 3-23=0/416, 6-20=-297/1755, 7-20=-961/281, 7-19=-569/232, 5-20=-1547/384, 10 Graphical purlin representation of the purlin along the top and/or bottom chord. LOAD CASE(S) Standard PE-2022042259 PE-2022042259 0.17=-497/2120, 10-16=-144/123, 10-14=-6425/1360, 12-14=-2227/499, 11-14=-78/57 PE-2022042259	BOT CHORD			10	0) This truss is	designed in acco	ordance w	ith the 2018				8	NATHA	NIEI X
 2-231061/5309, 21-231061/5309, 11-231061/5309, 19-21=-786/4126, 18-19=-101/403 WEBS 3-23=0/416, 6-20=-297/1755, 7-20=-961/281, 7-19=-569/232, 5-20=-1547/384, 3-21=-1278/348, 5-21=-7/844, 10-17=-1291/324, 17-19=-598/3300, 7-17=-497/2120, 10-16=-144/123, 10-14=-6425/1360, 12-14=-2227/499, 11-14=-78/57 In Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord. LOAD CASE(S) Standard 									ind			R		
19-21=-786/4126, 18-19=-101/403 11 originital optication does not depict the size or the orientation does not depict the size or the orientation of the purlin along the top and/or bottom chord. WEBS 3-23=0/416, 6-20=-297/1755, 7-20=-961/281, 7-19=-569/323, 5-20=-1547/384, 3-21=-7/844, 10-17=-1291/324, 17-19=-598/3300, 7-17=-497/2120, 10-16=-144/123, 10-14=-6425/1360, 12-14=-2227/499, 11-14=-78/57 LOAD CASE(S) Standard		,	,	,								77 🖌		
WEBS 3-23=0/416, 6-20=-297/1755, 7-20=-961/281, 7-19=-569/322, 5-20=-1547/384, 3-21=-1278/348, 5-21=-7/844, 10-17=-1291/324, 17-19=-598/3300, 7-17=-497/2120, 10-16=-144/123, 10-14=-6425/1360, 12-14=-2227/499, 11-14=-78/57 Load Case(s) Standard		,	,	1	/ / /				size			0/2	I It	
7-19=-569/322, 5-20=-1547/384, LOAD CASE(S) Standard 3-21=-1278/348, 5-21=-7/844, LOAD CASE(S) Standard 10-17=-1291/324, 17-19=-598/3300, PE-2022042259 7-17=-497/2120, 10-16=-144/123, 10-14=-6425/1360, 12-14=-2227/499, 11-14=-78/57 Control of the standard	WEBS			281.			along the	e top and/or					a Kan	N Tink
3-21=-12/8/348, 5-21=-//844, 10-17=-1291/324, 17-19=-598/3300, 7-17=-497/2120, 10-16=-144/123, 10-14=-6425/1360, 12-14=-2227/499, 11-14=-78/57		,	,	,								MI	M Y WWW	PER DER
7-17=-497/2120, 10-16=-144/123, 10-14=-6425/1360, 12-14=-2227/499, 11-14=-78/57		3-21=-1278/348, 5-2	21=-7/844,	-	OAD CASE(S)	Standard						N'	ON PE-2022	042259
10-14=-6425/1360, 12-14=-2227/499, 11-14=-78/57												Q	The second	158
		,	,									6	N'S'ST	ENUE
			12-14=-2227/499,										UNA	L
July 28,2023		11-14=10/07											and and	
													July	28,2023

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

RELEASE FOR CONSTRUCTION					
AS NOTED ON PLANS REVIEW	Truss Type	Qty	Ply	Roof - Osage Lot 59	
DEXELORMENT SERVICES	Roof Special Supported Gable	1	1	Job Reference (optional)	159801146
Premier Building Supply (Springhill, KS), Spring Hills 08/28/2023 11:42:59	, KS - 66083, Run: 8.63 S Apr ID:IDEkMeSePs(2023 MiTek Industries, Inc. Thu Jul 27 13:11:22 sB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f	Page: 1

Scale =	1:86.2
---------	--------

$\frac{\text{Scale} = 1:86.2}{\text{Plate Offsets (X, Y): [16:0]}}$	0-3-0,0-0-1	5], [39:0-4-0,0-4-8]										
Plate Offsets (X, Y): [16:0 Loading TCLL (roof) TCDL BCLL BCDL LUMBER TOP CHORD 2x6 SPF I BOT CHORD 2x6 SPF I OTHERS 2x3 SPF I SLIDER Right 2x4 BRACING TOP CHORD Structural 6-0-0 oc p	(psf) 25.0 10.0 0.0* 10.0 No.2 No.2 No.2 SP No.2 l wood she purlins. ing directly midpt	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code		Max Grav	0.05 0.03 0.21 5 2=201 (LC 1), 24 29=252 (LC 26), 31=193 (LC 26), 33=180 (LC 26), 36=180 (LC 1), 2 40=187 (LC 1), 4 40=187 (LC 1), 4 44=179 (LC 25), 47=187 (LC 1), 4 49=171 (LC 25), 51=151 (LC 25), imum Compressi	30=159 (LC 32=172 (LC 34=181 (LC 37=182 (LC 39=170 (LC 41=182 (LC 43=180 (LC 45=175 (LC 45=175 (LC 50=187 (LC 52=268 (LC	(1), (1), (26), (22), (25), (1), (25), (25), (1), (25)	'	balance	14-41 12-43 10-45 6-49= 3-52= 18-37 20-34 22-32 25-30 d roof li	-131/68, 5-50=-1 -198/134, 17-38= =-143/103, 19-36 =-140/78, 21-33= =-133/74, 23-31= =-128/74, 26-29=	140/74, 140/73, 144/75, 7-48=-149/7 44/75, 4-51=-122/66 142/70, =-140/79, 141/79, 141/79, 151/86,
Max Horiz Max Uplift	$\begin{array}{c} 33 = 48 - 0 - 0 \\ 37 = 48 - 0 - 0 \\ 40 = 48 - 0 - 0 \\ 43 = 48 - 0 - 0 \\ 50 = 48 - 0 - 0 \\ 2 = 179 \ (LC \\ 2 = -23 \ (LC \\ 30 = -40 \ (L \\ 32 = -50 \ (L \\ 32 = -50 \ (L \\ 40 = -27 \ (L \\ 40 = -27 \ (L \\ 42 = -50 \ (L \\ 44 = -50 \ (L \\ 47 = -49 \ (L \\ 49 = -44 \ (L \ (L \\ 49 = -44 \ (L \\ 49 = -44 \ (L \ (L \ (L \\ 49 = -44 \ (L \ $), $31=48-0-0$, $32=48$,), $34=48-0-0$, $36=48$.), $38=48-0-0$, $39=48$.), $41=48-0-0$, $42=448$.), $44=48-0-0$, $49=48$.), $48=48-0-0$, $49=48$.), $48=48-0-0$, $49=48$.), $48=48-0-0$, $49=48$.), $51=48-0-0$, $49=48$.), $51=48-0-0$, $49=48$.), $51=48-0-0$, $49=48$.), $51=48-0-0$, $49=48$. (C 13), $33=-55$ (LC 11 C 13), $36=-55$ (LC 12 C 13), $36=-55$ (LC 12 C 13), $38=-25$ (LC 12 C 13), $43=-49$ (LC 12) C 12), $41=-57$ (LC 8) C 8), $43=-49$ (LC 12) C 8), $52=-81$ (LC 12) C 8), $52=-81$ (LC 12)	0-0, 0-0, 0-0, 0-0, 0-0, 0-0, 0-0, 0-0 3), 3), 3), 3), BOT CHOR),),),),	Tension 1-2=0/11, 4-5=-133) 7-9=-78/1 11-12=-7(13-14=-9; 15-16=-12 17-18=-17 17-18=-17 19-20=-80 21-22=-52 25-26=-74 25-26=-74 25-26=-74 25-26=-74 25-25=-40 50-51=-44 45-47=-44 43-44=-44 43-44=-44 38-40=-44 33-34=-44 31-32=-40	2-3=-212/81, 3-4 95, 5-6=-110/106 41, 9-10=-62/159 5/193, 12-13=-87, 3/228, 14-15=-11: 20/282, 16-17=-1: 12/262, 18-19=-99 1/15, 20-21=-65, 2/111, 22-23=-54, 3/20, 26-28=-130, 147, 51-52=-40/1 0/147, 47-48=-40, 0/147, 42-43=-40, 0/147, 42-43=-40, 0/147, 42-43=-40, 0/147, 37-38=-40, 0/147, 32-33=-40, 0/147, 32-33=-40, 0/147, 28-29=-40, 1/147, 28-29=-40,	161/86, ;, 6-7=-93/12 , 10-11=-64, (211, 2/257, 23/289, 5/222, (148, 175, 23-25=- (38 47, (14	23, /176,	2) Wii Va Ke ext Inte 32- left exp rea	sd=91m =1.00; C terior zor erior (1) -1-10, In t and righ posed;C	E 7-16; ph; TCl at. II; E he and 4-1-0 to terior (1 ht expo -C for n hown; I	C-C Exterior(2E) o 27-1-10, Exterior 1) 32-1-10 to 48-C- sed ; end vertical nembers and forc Lumber DOL=1.6 VITE OF I NATHA FO: PE-2022	=6.0psf; h=35ft; MWFRS (envelope) -0-11-0 to 4-1-0, or(2R) 27-1-10 to -0-0 zone; cantilever left and right ses & MWFRS for 0 plate grip MISSOUTH NIEL

HESSIONAL EN July 28,2023

Continued on page 2 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, reaction and tracing of trusses and truss systems, see AMS/TPTI Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

RF FOR CONST UCTIO NOTED ON PLANS REVIEW <u>ұғ</u>ұормент services S SUMMIT, MISSOURI er Building Supply (Springhill, KS), Spring 8/2023 11:42:59

Truss designed for wind loads in the plane of the truss 3) only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

lills, KS - 66083,

All plates are 3x4 MT20 unless otherwise indicated. 4)

5) Gable requires continuous bottom chord bearing.

- 6) Gable studs spaced at 2-0-0 oc.
- 7) This truss has been designed for a 10.0 psf bottom
- chord live load nonconcurrent with any other live loads. * This truss has been designed for a live load of 20.0psf 8) on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom
- chord and any other members. 9) All bearings are assumed to be SPF No.2 crushing capacity of 425 psi.
- 10) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 23 lb uplift at joint 2, 27 lb uplift at joint 40, 57 lb uplift at joint 41, 50 lb uplift at joint 42, 49 lb uplift at joint 43, 50 lb uplift at joint 44, 45 lb uplift at joint 45, 49 lb uplift at joint 47, 56 lb uplift at joint 48, 44 lb uplift at joint 49, 50 lb uplift at joint 50, 44 lb uplift at joint 51, 81 lb uplift at joint 52, 25 lb uplift at joint 38, 64 lb uplift at joint 37, 55 lb uplift at joint 36, 54 lb uplift at joint 34, 55 lb uplift at joint 33, 50 lb uplift at joint 32, 62 lb uplift at joint 31, 40 lb uplift at joint 30 and 111 lb uplift at joint 29.
- 11) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard

Truss Type	Qty	Ply	Roof - Osage Lot 59	
Roof Special Supported Gable	1	1	Job Reference (optional)	159801146

Run: 8.63 S Apr 6 2023 Print: 8.630 S Apr 6 2023 MiTek Industries, Inc. Thu Jul 27 13:11:22 ID:IDEkMeSePsGXytVpYj8zJQz_WR9-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 2

 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.
 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not beigh valid for use only with with with sets outputs into design is based only door parameters shown, and is for an individual dualing component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria**, and **DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcscomponents.com)

RELEASE FOR CONSTRUCTION					
AS NOTED ON PLANS REVIEW	Truss Type	Qty	Ply	Roof - Osage Lot 59	
DEXELORMENT SERVICES	Roof Special Supported Gable	2	1	Job Reference (optional)	159801147
Premier Building Supply (Springhill, KS), Spring Hills, H 08/28/2023 11:42:59	KS - 66083, Run: 8.63 S Apr ID:_3koBplF41zm		•	2023 MiTek Industries, Inc. Thu Jul 27 13:11:23 B70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f	Page: 1

Plate Offsets (X X)	[14:0-3-0,0-0-15], [33:0-4-0,0-4-8]	
riale Olisels (A, I).	114.0-3-0.0-0-131, 133.0-4-0.0-4-01	

Plate Olisets (A, T). [14.0	J-3-0,0-0-1:	5], [33:0-4-0,0-4-8]]										
Loading TCLL (roof) TCDL BCLL BCDL		(psf) 25.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	1-11 1.15 1.15 YES IRC2		CSI TC BC WB Matrix-S	0.04 0.02 0.18	DEFL Vert(LL) Vert(CT) Horz(CT)	in n/a n/a 0.01	(loc) - - 24	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 213 lb	
LUMBER TOP CHORD BOT CHORD OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	OP CHORD 2x6 SPF No.2 DT CHORD 2x6 SPF No.2 HERS 2x3 SPF No.2 RACING 2 OP CHORD Structural wood sheathing directly applied on 6-0-0 oc purlins. DT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing. EACTIONS (size) 2=40-8-0, 24=40-8-0, 26=40-8-0, 30=40-8-0, 31=40-8-0, 32=40-8-0, 33=40-8-0, 34=40-8-0, 35=40-8-0, 33=40-8-0, 34=40-8-0, 35=40-8-0					(lb) - Maximum Cc Tension 1-2=0/11, 2-3=-17 4-5=-100/82, 5-7= 8-9=-50/129, 9-10 11-12=-76/180, 12 13-14=-97/230, 14 15-16=-88/207, 16 17-18=-57/133, 18 20-21=-53/28, 21- 24-25=0/11 2-45=-35/125, 44- 43-44=-35/125, 44-	63, 4/61, 4/39,	 Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=35ft; Ke=1.00; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) -0-11-0 to 4-1-0, Interior (1) 4-1-0 to 22-8-4, Exterior(2R) 22-8-4 to 27-8-4, Interior (1) 27-8-4 to 41-7-0 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable. 						
	$\begin{array}{c} 30 = 40 \cdot 8 \cdot 0, \ 31 = 40 \cdot 8 \cdot 0, \ 32 = 40 \cdot 8 \cdot 0, \ 33 = 40 \cdot 8 \cdot 0, \ 34 = 40 \cdot 8 \cdot 0, \ 35 = 40 \cdot 8 \cdot 0, \ 36 = 40 \cdot 8 \cdot 0, \ 37 = 40 \cdot 8 \cdot 0, \ 39 = 40 \cdot 8 \cdot 0, \ 36 = 40 \cdot 8 \cdot 0, \ 37 = 40 \cdot 8 \cdot 0, \ 43 = 40 \cdot 8 \cdot 0, \ 41 = 40 \cdot 8 \cdot 0, \ 42 = 40 \cdot 8 \cdot 0, \ 43 = 40 \cdot 8 \cdot 0, \ 41 = 40 \cdot 8 \cdot 0, \ 42 = 40 \cdot 8 \cdot 0, \ 43 = 40 \cdot 8 \cdot 0, \ 41 = 40 \cdot 12, \ 40 = -48 \ (LC \ 8), \ 41 = -44 \ (LC \ 12), \ 42 = -49 \ (LC \ 8), \ 43 = -53 \ (LC \ 8), \ 43 =$					41-42=-35/125, 40-41=-35/125, or consult qualified building designer 39-40=-35/125, 37-39=-35/125, All plates are 3x4 MT20 unless other 36-37=-35/125, 32-34=-35/125, Gable requires continuous bottom ch 31-32=-35/125, 28-29=-35/125, This truss has been designed for a 1 29-30=-35/125, 28-29=-35/125, This truss has been designed for a 1 29-30=-35/125, 28-29=-35/125, This truss has been designed for a 1 27-28=-35/125, 26-27=-35/125, * This truss has been designed for a 1 24-26=-35/125 or the bottom chord in all areas whe 30-36=-138/92, 11-37=-135/71, or the bottom chord in all areas whe 3-06-00 tall by 2-00-00 wide will fit by chord and any other members. 0-39=-138/72, 5-43=-146/76, 4-44=-118/64, -44=-118/64, 3-45=-169/116, 15-33=-139/75, Gable study spaced at 2-0-0 to wide will fit by 16-32=-138/98, 17-31=-135/76, Yes 19 20 12-36/74							er as per ANSI/TPI 1. erwise indicated. chord bearing. 10.0 psf bottom any other live loads. a live load of 20.0psf ere a rectangle between the bottom	
	$\begin{array}{rl} 44{=}{-}42\;({\rm LC}\;8),45{=}{-}69\;({\rm LC}\;12)\\ {\rm Max\;Grav}& 2{=}{178}\;({\rm LC}\;1),24{=}{155}\;({\rm LC}\;1),\\ 26{=}{170}\;({\rm LC}\;26),27{=}{184}\;({\rm LC}\;26),\\ 28{=}{167}\;({\rm LC}\;1),29{=}{175}\;({\rm LC}\;26),\\ 30{=}{175}\;({\rm LC}\;1),31{=}{173}\;({\rm LC}\;1),\\ 32{=}{182}\;({\rm LC}\;26),33{=}{169}\;({\rm LC}\;1),\\ 34{=}{170}\;({\rm LC}\;22),35{=}{177}\;({\rm LC}\;1),\\ 36{=}{175}\;({\rm LC}\;25),37{=}{177}\;({\rm LC}\;1),\\ 39{=}{174}\;({\rm LC}\;1),40{=}{174}\;({\rm LC}\;25),\\ 41{=}{169}\;({\rm LC}\;25),42{=}{177}\;({\rm LC}\;25),\\ 45{=}{226}\;({\rm LC}\;25)\end{array}$				NOTES 1) Unbalance this design	20-28=-128/72, 21 23-26=-130/103 d roof live loads hav	1-27=-14	6/97,				Ha	FOL PE-20220 PE-20220	X 042259

Continued on page 2 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design in the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent parameters and properly incorporate this design in the overall is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSVITPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

RF FOR CONST NICTIO NOTED ON PLANS REVIEW KELORMENT SERVICES S SUMMIT, MISSOURI er Building Supply (Springhill, KS), Sprin 8/2023 11:43:00 Spring

		Truss Type	Qty	Ply	Roof - Osage Lot 59	150004447
		Roof Special Supported Gable	2	1	Job Reference (optional)	159801147
3	lills. KS - 66083.	Run: 8.63 S Apr 6 20)23 Print: 8.6	30 S Apr 6 2	2023 MiTek Industries. Inc. Thu Jul 27 13:11:23	Page: 2

All bearings are assumed to be SPF No.2 crushing 9) capacity of 425 psi.

- 10) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 20 lb uplift at joint 2, 34 lb uplift at joint 35, 54 lb uplift at joint 36, 46 lb uplift at joint 37, 48 lb uplift at joint 39, 48 lb uplift at joint 40, 44 lb uplift at joint 41, 49 lb uplift at joint 42, 53 lb uplift at joint 43, 42 lb uplift at joint 44, 69 lb uplift at joint 45, 39 lb uplift at joint 33, 57 lb uplift at joint 32, 54 lb uplift at joint 31, 52 lb uplift at joint 30, 53 lb uplift at joint 29, 49 lb uplift at joint 28, 58 lb uplift at joint 27, 62 lb uplift at joint 26 and 14 lb uplift at joint 24.
- 11) Beveled plate or shim required to provide full bearing surface with truss chord at joint(s) 2.
- 12) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard

ID:_3koBpIF41zm?y3f9Y6MyBz_WS3-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 2

RELEASE FOR CONSTRUCTION			_		
AS NOTED ON PLANS REVIEW	Truss Type	Qty	Ply	Roof - Osage Lot 59	
DEXELORMENT SERVECES	Roof Special	4	1	Job Reference (optional)	159801148
Premier Building Supply (Springhill, KS), Spring P 08/28/2023 11:43:00	iills, KS - 66083, Run: 8.63 S Apr 6 ID:H8704Oe_QziBo		•	2023 MiTek Industries, Inc. Thu Jul 27 13:11:23 sB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f	Page: 1

Plate Offsets (X, Y): [2:0-3-0,Edge], [6:0-2-13,0-3-8], [10:0-0-13,0-2-0]

	, , , , , , , , , , , , , , , , , , , ,		,.										
Loading TCLL (roof) TCDL	(psf) 25.0 10.0	Spacing Plate Grip DOL Lumber DOL	2-0-0 1.15 1.15		CSI TC BC	0.92 0.96	DEFL Vert(LL) Vert(CT)	in -0.26 -0.55	(loc) 15-17 15-17	l/defl >999 >874	L/d 240 180	PLATES MT20	GRIP 197/144
BCLL BCDL	0.0* 10.0	Rep Stress Incr Code	YES IRC201	8/TPI2014	WB Matrix-S	0.98	Horz(CT)	0.15	10	n/a	n/a	Weight: 206 lb	FT = 20%
	No.2 Structural wood she 2-2-0 oc purlins. Rigid ceiling directly bracing. 1 Row at midpt (size) 2=0-3-8, ' Max Horiz 2=-149 (L Max Uplift 2=-377 (L Max Grav 2=1891 (L	3-15, 7-14 10=0-3-8 C 17) C 8), 10=-291 (LC 13 .C 1), 10=1891 (LC 1	d or 3) 4)	Vasd=91mpl Ke=1.00; Ca exterior zone Interior (1) 4 27-8-4, Interi and right exp exposed;C-C reactions she DOL=1.60 This truss ha chord live loa * This truss h on the bottor 3-06-00 tall b	7-16; Vult=115mp 7-16; Vult=115mp n; TCDL=6.0psf; Bd t. II; Exp C; Enclos and C-C Exterior(1-0 to 22-8-4, Exterior (1) 27-8-4 to 41- bosed; end vertical C for members and bown; Lumber DOL= as been designed fr ad nonconcurrent v has been designed n chord in all areas by 2-00-00 wide will by other members.	CDL=6. ed; MW 2E) -0- ⁻ erior(2R -7-0 zor l left and forces 8 =1.60 pl or a 10. vith any for a liv s where	Dpsf; h=35ft; FRS (envelop 11-0 to 4-1-0,) 22-8-4 to e; cantilever d right & MWFRS for ate grip D psf bottom other live loa e load of 20.0 a rectangle	left ds. Dpsf					
FORCES	(lb) - Maximum Com Tension	pression/Maximum	5)	5) All bearings are assumed to be SPF No.2 crushing									
TOP CHORD	1-2=0/11, 2-3=-4410 5-6=-2570/697, 6-7=)/924, 3-5=-3163/749 =-2707/687,)=-3910/910, 10-11=0	,	bearing plate	hanical connection capable of withsta	anding 3	,						
BOT CHORD	2-17=-758/4059, 15- 14-15=-466/2902, 12 10-12=-762/3488	-17=-758/4059,		joint 2 and 291 lb uplift at joint 10. 7) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.									
WEBS	3-17=0/404, 6-14=-3	333/1488, 9-12=-212/ =0/484, 5-14=-1045/3 4=-885/362		LOAD CASE(S) Standard							AISSOL		
NOTES											a	NATHA	

1)

Unbalanced roof live loads have been considered for this design.

16023 Swingley Ridge Rd. Chesterfield, MO 63017 314.434.1200 / MiTek-US.com

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent toulsible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

RE LEASE FOI AS NOTED OI		RUCTK RE%IE		Truss Type		Qty	Ply	Roof	f - Osage	e Lot 59		
DE23643 RM				Common Supporte	d Gable	1	1	Job I	Referenc	ce (optio	nal)	159801149
Premier Building	Supply (Springh 23 11	300RI 111, KS), Sp 43:0	ring Hills, KS - 66083,		•		•	or 6 2023 M	liTek Indu	stries, Inc.	. Thu Jul 27 13:11:23 KbGKWrCDoi7J4zJC?	Page: 1 'f
			-0-11-	9	7-5-4				14-1			
			0-11-	b	7-5-4		I		7-5	-4		
							4x4 = 6					
Scale = 1:39.8	5-11-1	5-10-14 0-11-6	1 19	3	⁸ Γ 5 20 17 16	1	15 14-10-8	7		8	9 9 12	10 11
Loading TCLL (roof) TCDL BCLL BCDL		25.0 10.0 0.0*	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018/TPI2014	CSI TC BC WB Matrix-R	0.09 0.06	DEFL Vert(LL) Vert(CT) Horz(CT)	in n/a n/a 0.00	(loc) l - - 11	n/a 9 n/a 9	L/d PLATES 1999 MT20 1999 n/a Weight: 70 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD	6-0-0 oc pur	2 2 2.2 rood sheat	hing directly applied pt end verticals. pplied or 10-0-0 oc	 Unbalanced this design. Wind: ASCE Vasd=91mp Ke=1.00; Ca exterior zone Exterior(2n) Exterior(2n) right expose 	roof live loads have 7-16; Vult=115mph h; TCDL=6.0psf; BC t. II; Exp C; Enclose and C-C Corner(3I 4-1-0 to 7-5-4, Corr 12-5-4 to 14-8-12 z d; end vertical left as and forces & MWF	n (3-secc CDL=6.0p ed; MWF E) -0-11 ner(3R) 5 cone; car and right	ond gust) psf; h=35ft; RS (envelop -0 to 4-1-0, 7-5-4 to 12-5 ntilever left an exposed;C-1	be) i-4, nd C			1.5.g.n. 10 10	

REACTIONS (size) 11=14-10-8, 12=14-10-8, 13=14-10-8, 14=14-10-8, 15=14-10-8, 16=14-10-8, 17=14-10-8, 18=14-10-8, 19=14-10-8 Max Horiz 19=178 (LC 9) Max Uplift 11=-54 (LC 9), 12=-115 (LC 13), 13=-75 (LC 13), 14=-79 (LC 13), 16=-79 (LC 12), 17=-74 (LC 12), 18=-119 (LC 12), 19=-87 (LC 8) Max Grav 11=91 (LC 19), 12=206 (LC 20), 13=187 (LC 20), 14=198 (LC 20), 15=185 (LC 22), 16=199 (LC 19), 17=189 (LC 19), 18=186 (LC 19), 19=191 (LC 20) FORCES (Ib) - Maximum Compression/Maximum Tension 2-19=-154/89, 1-2=0/41, 2-3=-121/109, TOP CHORD 3-4=-91/88, 4-5=-85/164, 5-6=-126/246, 6-7=-126/246, 7-8=-85/163, 8-9=-69/76, 9-10=-81/75. 10-11=-65/40 BOT CHORD 18-19=-73/79, 17-18=-73/79, 16-17=-73/79, 15-16=-73/79, 14-15=-73/79, 13-14=-73/79,

bracing.

12-13=-73/79, 11-12=-73/79 WFBS 6-15=-182/39, 5-16=-158/123, 4-17=-151/160, 3-18=-132/132, 7-14=-158/137, 8-13=-149/164, 9-12=-150/156 NOTES

- right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- Truss designed for wind loads in the plane of the truss 3) only. For studs exposed to wind (normal to the face). see Standard Industry Gable End Details as applicable or consult qualified building designer as per ANSI/TPI 1. 4) All plates are 1.5x4 MT20 unless otherwise indicated.
- 5)
- Gable requires continuous bottom chord bearing. 6) Truss to be fully sheathed from one face or securely
- braced against lateral movement (i.e. diagonal web). 7) Gable studs spaced at 2-0-0 oc.
- This truss has been designed for a 10.0 psf bottom 8)
- chord live load nonconcurrent with any other live loads. 9)
 - * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- 10) All bearings are assumed to be SP No.2 crushing capacity of 565 psi.
- 11) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 87 lb uplift at joint 19, 54 lb uplift at joint 11, 79 lb uplift at joint 16, 74 lb uplift at joint 17, 119 lb uplift at joint 18, 79 lb uplift at joint 14, 75 lb uplift at joint 13 and 115 lb uplift at joint 12.
- 12) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard

OF MISSO TE NATHANIEL SER PE-2022042259 ARSSIONAL ET July 28,2023

16023 Swingley Ridge Rd. Chesterfield MO 63017 314.434.1200 / MiTek-US.com

 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.
 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a trust system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

RELEASE FOR CONSTRUCTION	
AS NOTED ON PLANS REVIEW	
DE23549BMENT SERVICES	
EEE'S SUMMIT, MISSOURI Premier Building Supply (Springhill, KS), Spring 08/28/2023 11:43:00	Hills

CTION						
₩EW	Truss Type		Qty	Ply	Roof - Osage Lot 59	
ES	Common Girc	ler	1	3	Job Reference (optional)	159801150
	lills, KS - 66083,	Run: 8.63 S Apr 6 20)23 Print: 8.6	30 S Apr 62	2023 MiTek Industries, Inc. Thu Jul 27 13:11:24	Page: 1

ID:P3Fn?fAeoNHL7fkarwdBaSz_WL4-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Plate Offsets (X, Y): [1:Edge,0-0-0], [6:0-2-4,0-2-4], [8:0-5-0,0-5-4]

	() / [3]		,										
Loading	(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15		TC	0.61	Vert(LL)	-0.05	8-9	>999	240	MT20	197/144
TCDL	10.0	Lumber DOL	1.15		BC	0.41	Vert(CT)	-0.09	8-9	>999	180	-	
BCLL	0.0*	Rep Stress Incr	NO		WB	0.87	Horz(CT)	0.02	6	n/a	n/a		
BCDL	10.0	Code	IRC201	8/TPI2014	Matrix-S							Weight: 292 lb	FT = 20%
			4		7 40. 1/114 445-	mmh (2 aa				Van. 10	040	2 (D) 42 2420 (I	D) 44 0400 (D)
LUMBER TOP CHORD	OVC ODE No. 0		4		7-16; Vult=115r h; TCDL=6.0psf;							3 (B), 13=-2126 (I 16=-2126 (B), 17	
BOT CHORD					t. II; Exp C; Enc			ne)		18=-213		10=-2120 (D), 17	=-2120 (D),
WEBS	2x3 SPF No.2				and C-C Exteri					10= 210	00 (D)		
SLIDER	Right 2x4 SP No.2 -	- 2-4-0			-1-12 to 7-5-4, E								
BRACING				Interior (1) 1	2-5-4 to 14-8-12	zone; can	tilever left an	nd					
TOP CHORD	Structural wood she	athing directly applie	ed or		d ; end vertical le								
	6-0-0 oc purlins.	an oblig an oblig applie			and forces & M			own;					
BOT CHORD		applied or 10-0-0 or	c _		=1.60 plate grip								
	bracing.		5		is been designe								
REACTIONS	(size) 1=0-3-8, 6	6=0-3-8	6		ad nonconcurrer nas been design								
	Max Horiz 1=149 (LO	C 32)	0,		n chord in all are			opsi					
	Max Uplift 1=-1160 (by 2-00-00 wide			om					
	Max Grav 1=8033 (I	LC 2), 6=8843 (LC 2))		ny other member								
FORCES	(lb) - Maximum Corr	npression/Maximum	7)	All bearings	are assumed to	be SP 240	0F 2.0E crus	shing					
	Tension			capacity of 8									
TOP CHORD	,	,	8)	Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 1160 lb uplift at									
BOT CHORD	3-4=-7394/1187, 4-6 1-9=-1187/8047, 8-9						160 lb uplift	at					
BOT CHORD	7-8=-1123/7919, 6-7	,	Q,		275 lb uplift at jo designed in acc		ith the 2018						
WEBS	2-9=-517/3948, 2-8=		0,		Residential Coc			and					
	3-8=-1173/7592, 4-8				nd referenced st								
	4-7=-498/3765		10) Use Simpso	n Strong-Tie HU	S26 (14-1	Dd Girder, 6-	10d				~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~
NOTES					uivalent spaced							A	and
1) 3-ply trus	s to be connected toge	ther with 10d			the left end to 13		onnect truss((es)				TATE OF M	AISS OF
	s") nails as follows:				of bottom chord						A		1.5
	ds connected as follows	s: 2x6 - 2 rows	1		n Strong-Tie HU						A	S NATHA	NIEL
	d at 0-9-0 oc.				uivalent spaced						H	FOL	
	hords connected as foll d at 0-5-0 oc.	ows: 2x8 - 3 10ws	3-9-12 from the left end to 11-9-12 to connect truss(es) to back face of bottom chord.										
	nected as follows: 2x3 -	- 1 row at 0-9-0 oc									1 4 1		
	are considered equally			DAD CASE(S)	•						XL	d (Nassi	L (Las)
	noted as front (F) or ba				of Live (balanced	d): Lumber	Increase=1.	15,			W	SK Y MADM	
CASE(S)	section. Ply to ply conr	nections have been		Plate Increa		,		,			N.	O PE-2022	042259
	to distribute only loads	noted as (F) or (B),		Uniform Lo	ads (lb/ft)						Y	1 Bal	154
	herwise indicated.				=-70, 3-6=-70, 1	-6=-20					6	W Stor	FN
-,	ed roof live loads have	been considered for	r	Concentrat	ed Loads (lb)							C'SSIONA	
this desig	in.											and and	

July 28,2023

Loading	(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15		TC	0.27	Vert(LL)	n/a	-	n/a	999	MT20	244/190
TCDL	10.0	Lumber DOL	1.15		BC	0.17	Vert(TL)	n/a	-	n/a	999		
BCLL	0.0*	Rep Stress Incr	YES		WB	0.06	Horiz(TL)	0.00	3	n/a	n/a		
BCDL	10.0	Code	IRC201	8/TPI2014	Matrix-S							Weight: 31 lb	FT = 20%
	Max Horiz 1=-80 (LC Max Uplift 1=-41 (LC 4=-21 (LC Max Grav 1=192 (LC	applied or 10-0-0 o 3=9-5-6, 4=9-5-6 2 10) 2 12), 3=-51 (LC 13) 2 12)	9) c 1(, L(on the bottor 3-06-00 tall b chord and ar All bearings capacity of 5 Provide mec bearing plate 1, 51 lb uplifi D) This truss is International	hanical conne capable of wi t at joint 3 and designed in ac Residential C nd referenced	reas where e will fit betw ers. o be SP No. ction (by oth thstanding 4 21 lb uplift a ccordance w ode sections	a rectangle veen the both 2 crushing ers) of truss t 1 lb uplift at j t joint 4. ith the 2018 5 R502.11.1 a	om to oint					
FORCES	(LC 1) (Ib) - Maximum Com	pression/Maximum											
TOP CHORD	Tension 1-2=-149/76, 2-3=-1	46/76											
BOT CHORD	1-4=-17/69. 3-4=-17												
	2-4=-227/105	,											
WEBS													
NOTES	2 4- 221/100												

this design.

- 2) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=35ft; Ke=1.00; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- Truss designed for wind loads in the plane of the truss 3) only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1. Gable requires continuous bottom chord bearing.
- 4) 5) Gable studs spaced at 4-0-0 oc.
- 6)
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

NUMBER PE-2022042259 SSIONAL EN

OF MISSO

NATHANIEL

FOX

E

July 28,2023

 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.
 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not besign value to dury with with where outputs into design is based only door parameters shown, and is for an individual building design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members and property incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TPH1 Quality Criteria**, and **DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcscomponents.com)

TCLL (roof) 25.0 Plate Grip DOL 1.15 TC 0.27 Vert(LL) n/a - n/a 999 MT20 244/190 TCDL 0.0° Rep Stress Incr YES WB 0.06 No Na - n/a 999 MT20 244/190 BCLL 0.0° Rep Stress Incr YES WB 0.06 Natrix-S Weight: 31 lb FT = 20% LUMBER 2x4 SP No.2 Code IRC2018/TPI2014 Matrix-S Natrix-S Weight: 31 lb FT = 20% LUMBER 2x4 SP No.2 Structural wood sheathing directly applied or 10-0-0 oc bracing. - <td< th=""><th>Loading</th><th>(psf)</th><th>Spacing</th><th>2-0-0</th><th></th><th>CSI</th><th></th><th>DEFL</th><th>in</th><th>(loc)</th><th>l/defl</th><th>L/d</th><th>PLATES</th><th>GRIP</th></td<>	Loading	(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
BCLL BCDL 0.0* 10.0 Rep Stress Incr Code YES IRC2018/TPI2014 WB 0.06 Matrix-S Horiz(TL) 0.00 3 n/a Weight: 31 lb FT = 20% LUMBER TOP CHORD 2x4 SP No.2 7) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tail by 2-00-00 wide will fit between the bottom chord and any other members. 7) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tail by 2-00-00 wide will fit between the bottom chord and any other members. BRACING TOP CHORD Structural wood sheathing directly applied or 6-0-0 oc purlins. All bearings are assumed to be SP No.2 crushing capacity of 565 psi. BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing. 1=9-5-6, 3=9-5-6, 4=9-5-6 Max Horiz 1=9-5-6, 3=9-5-6, 4=9-5-6 Max Horiz 1=9-5-6, 3=9-5-6, 4=9-5-6 Max Horiz 1=01 This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TP11. LOAD CASE(S) Standard FORCES (b) - Maximum Compression/Maximum Tension Nat Weight: 1=417(6) Standard TOP CHORD 1-4=-17/69, 3-4=-17/69 Standard	TCLL (roof)	25.0	Plate Grip DOL	1.15		тс	0.27	Vert(LL)	n/a	-	n/a	999	MT20	244/190
BCDL 10.0 Code IRC2018/TPI2014 Matrix-S Weight: 31 lb FT = 20% LUMBER TOP CHORD 2x4 SP No.2 FT = 20% BOT CHORD 2x4 SP No.2	TCDL	10.0	Lumber DOL	1.15		BC	0.17	Vert(TL)	n/a	-	n/a	999		
LUMBER 7) * This truss has been designed for a live load of 20.0psf TOP CHORD 2x4 SP No.2 7) * This truss has been designed for a live load of 20.0psf BOT CHORD 2x4 SP No.2 7) * This truss has been designed for a live load of 20.0psf OTHERS 2x3 SPF No.2 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members. BRACING 6-0-0 oc purlins. BOT CHORD Rigid ceiling directly applied or no-oo cbracing. 9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 41 lb uplift at joint 4. SI II bearings are assumed to be SP No.2 crushing capacity of 565 psi. 9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 41 lb uplift at joint 4. SI II buplift at joint 3 and 21 lb uplift at joint 4. 10) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. Max Horiz 1=180 (LC 10) Max Grav 1=192 (LC 1), 4=352 (LC 1), 4=352 (LC 1) Max Grav 1=129 (LC 1), 3=192 (LC 1), 4=352 (LC 1) Standard FORCES (b) - Maximum Compression/Maximum Tension Torp CHORD 1-2=-149/76, 2-3=-146/76 BOT CHORD 1-4=-17/69, 3-4=-17/69	BCLL	0.0*	Rep Stress Incr	YES		WB	0.06	Horiz(TL)	0.00	3	n/a	n/a		
TOP CHORD 2x4 SP No.2 on the bottom chord in all areas where a rectangle BOT CHORD 2x4 SP No.2 3-06-00 clall by 2-00-00 wide will fit between the bottom OTHERS 2x3 SPF No.2	BCDL	10.0	Code	IRC2018/TPI	12014	Matrix-S							Weight: 31 lb	FT = 20%
BOT CHORD 1-4=-17/69, 3-4=-17/69	TOP CHORD BOT CHORD OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x3 SPF No.2 Structural wood she 6-0-0 oc purlins. Rigid ceiling directly bracing. (size) 1=9-5-6, Max Horiz 1=-80 (LC Max Grav 1=192 (L (LC 1) (lb) - Maximum Cor Tension	v applied or 10-0-0 oc 3=9-5-6, 4=9-5-6 C 10) C 12), 3=-51 (LC 13), C 12), 3=192 (LC 1), 4 npression/Maximum	on f 3-0 cho 8) All I d or 9) Pro bea 1, 5 10) This Inte R80 LOAD (the bottom 06-00 tall by ord and any bearings ar pacity of 566 voide mecha aring plate of 51 lb uplift a is truss is de ernational R 02.10.2 and	chord in all ar 2-00-00 wide other membe e assumed to 5 psi. anical connect apable of with t joint 3 and 2 esigned in acc tesidential Coo d referenced s	eas where will fit betw rs. be SP No. ion (by oth standing 4 1 lb uplift a cordance w de sections	a rectangle veen the bott 2 crushing ers) of truss 1 lb uplift at t joint 4. ith the 2018 5 R502.11.1 a	om to joint					
		,												
WEBS 2-4=-227/105		, .	7/69											
NOTES		2-4=-227/105												

 Unbalanced roof live loads have been considered for this design.

- 2) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=35ft; Ke=1.00; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
 Gable requires continuous bottom chord bearing.
- 4) Gable requires continuous bottom5) Gable studs spaced at 4-0-0 oc.
- 5) Gable studs spaced at 4-0-0 oc.6) This truss has been designed for a 10.0 p
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

July 28,2023

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPH Claulity Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

RELEASE FOR CONSTRUCTION							
		Truss Type		Qty	Ply	Roof - Osage Lot 59	159801153
LEE'S SUMMIT, MISSOURI		Valley		1	1	Job Reference (optional)	
Premier Building Supply (Springhill, KS), Spring 08/28/2023 11:43:01	lills, KS - 66083,					5 2023 MiTek Industries, Inc. Thu Jul 27 13:11:24 PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f	Page: 1
			3-6-0 3-6-0			6-8-1 3-2-1 0-3-15	
					4x4 = 2		
2.5-1	1 2-5-1 1 2-1-6		8 ¹²			3	
	0-3-1	0-+-1	3x4 ¢			3x4 s	
					1.5x4 ı	u la	

Scale - 1:26.5

Scale = 1.20.3					_								
Loading	(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15		TC	0.22	Vert(LL)	n/a	-	n/a	999	MT20	244/190
TCDL	10.0	Lumber DOL	1.15		BC	0.10	Vert(TL)	n/a	-	n/a	999		
BCLL	0.0*	Rep Stress Incr	YES		WB	0.03	Horiz(TL)	0.00	3	n/a	n/a		
BCDL	10.0	Code	IRC2018	3/TPI2014	Matrix-P							Weight: 23 lb	FT = 20%
TOP CHORD BOT CHORD OTHERS BRACING TOP CHORD BOT CHORD	2x4 SP No.2 2x4 SP No.2 2x3 SPF No.2 Structural wood she 6-0-0 oc purlins. Rigid ceiling directly bracing.	0 7 11	9)	3-06-00 tall chord and a All bearings capacity of Provide me bearing plat	om chord in all a by 2-00-00 wide any other memb s are assumed to 565 psi. cchanical connect te capable of wir uplift at joint 3.	e will fit betw ers. o be SP No. ction (by oth	veen the bott 2 crushing ers) of truss t	to					
REACTIONS	0	3=7-2-7, 4=7-2-7	10	,	s designed in ac			and					

7-0-0

Max Horiz 1=-59 (LC 8) Max Uplift 1=-40 (LC 12), 3=-48 (LC 13) Max Grav 1=160 (LC 1), 3=160 (LC 1), 4=248 (LC 1)

FORCES (lb) - Maximum Compression/Maximum Tension

- TOP CHORD 1-2=-100/63, 2-3=-95/63
- BOT CHORD 1-4=-12/47, 3-4=-12/47

WFBS 2-4=-169/96

NOTES

- 1) Unbalanced roof live loads have been considered for this design.
- Wind: ASCE 7-16; Vult=115mph (3-second gust) 2) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=35ft; Ke=1.00; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- Gable requires continuous bottom chord bearing. 4)
- Gable studs spaced at 2-0-0 oc. 5)
- This truss has been designed for a 10.0 psf bottom 6) chord live load nonconcurrent with any other live loads.

- International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- LOAD CASE(S) Standard

 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.
 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not beign value of use only wan win exec connectors, this design is based only upon parameters shown, and is for an individual building domponent, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality** Criteria, and **DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcscomponents.com)

REL	EASE FOR CONSTI									
T	NOTED ON PLANS		Truss Type		Qty	Ply	Roof - Osage Lot 59			
	EXELORMENT SER		Valley		1	1	Job Reference (optional)	159801154		
	Premier Building Supply (Springh 8/28/2023 11	lills, KS - 66083,	Run: 8.63 S Apr 6 2023 Print: 8.630 S Apr 6 2023 MiTek Industries, Inc. Thu Jul 27 13:11:25 ID:93gyYmrKwO?1?flaJT95Wzz_WLU-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC?f							

4-0-0

3

Scale = 1:24.1										I		
Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15	TC	0.07	Vert(LL)	n/a	-	n/a	999	MT20	244/190
TCDL	10.0	Lumber DOL	1.15	BC	0.04	Vert(TL)	n/a	-	n/a	999		
BCLL	0.0*	Rep Stress Incr	YES	WB	0.02	Horiz(TL)	0.00	3	n/a	n/a		
BCDL	10.0	Code	IRC2018/TPI2014	Matrix-P							Weight: 14 lb	FT = 20%
LUMBER TOP CHORD BOT CHORD OTHERS BRACING	2x4 SP No.2 2x4 SP No.2 2x3 SPF No.2	 7) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members. 8) All bearings are assumed to be SP No.2 crushing 										

BRACING	
TOP CHORD	Structural wood sheathing directly applied or 4-9-3 oc purlins.
BOT CHORD	Rigid ceiling directly applied or 10-0-0 oc bracing.

1-7-1

REACTIONS (size) 1=4-8-7, 3=4-8-7, 4=4-8-7 Max Horiz 1=-35 (LC 8) Max Uplift 1=-24 (LC 12), 3=-28 (LC 13) Max Grav 1=95 (LC 1), 3=95 (LC 1), 4=145 (LC 1)

FORCES (lb) - Maximum Compression/Maximum Tension 1-2=-60/42, 2-3=-57/42

TOP CHORD

BOT CHORD 1-4=-8/28, 3-4=-8/28 2-4=-98/64

WEBS

NOTES

Unbalanced roof live loads have been considered for 1) this design.

Wind: ASCE 7-16; Vult=115mph (3-second gust) 2) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=35ft; Ke=1.00; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

Gable requires continuous bottom chord bearing. 4)

5) Gable studs spaced at 2-0-0 oc.

This truss has been designed for a 10.0 psf bottom 6) chord live load nonconcurrent with any other live loads.

- capacity of 565 psi. 9)
- Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 24 lb uplift at joint 1 and 28 lb uplift at joint 3.
- 10) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- LOAD CASE(S) Standard

 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.
 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not beigh valid for use only with with with sets outputs into design is based only door parameters shown, and is for an individual dualing component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria**, and **DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcscomponents.com)

General Safety Notes

Damage or Personal Injury Failure to Follow Could Cause Property

- Additional stability bracing for truss system, e.g. diagonal or X-bracing, is always required. See BCSI
- Ņ Truss bracing must be designed by an engineer. For wide truss spacing, individual lateral braces themselves may require bracing, or alternative Tor I bracing should be considered.
- ω Never exceed the design loading shown and never stack materials on inadequately braced trusses.

TOP CHORD

- 4 Provide copies of this truss design to the building designer, erection supervisor, property owner and all other interested parties.
- ςī Cut members to bear tightly against each other

СЛ

- <u>о</u> Place plates on each face of truss at each joint and embed fully. Knots and wane at joint locations are regulated by ANSI/TPI 1.
- Design assumes trusses will be suitably protected from the environment in accord with ANSI/TPI 1.

7

- œ Unless otherwise noted, moisture content of lumber shall not exceed 19% at time of fabrication.
- <u>ب</u> Unless expressly noted, this design is not applicable for use with fire retardant, preservative treated, or green lumber.
- 10. Camber is a non-structural consideration and is the camber for dead load deflection responsibility of truss fabricator. General practice is to
- 11. Plate type, size, orientation and location dimensions indicated are minimum plating requirements.
- Lumber used shall be of the species and size, and in all respects, equal to or better than that specified
- Top chords must be sheathed or purlins provided at spacing indicated on design.
- . Bottom chords require lateral bracing at 10 ft. spacing, or less, if no ceiling is installed, unless otherwise noted.
- 15. Connections not shown are the responsibility of others
- Do not cut or alter truss member or plate without prior approval of an engineer.
- 17. Install and load vertically unless indicated otherwise.
- Use of green or treated lumber may pose unacceptable project engineer before use. environmental, health or performance risks. Consult with
- 19. Review all portions of this design (front, back, words is not sufficient. and pictures) before use. Reviewing pictures alone
- 20. Design assumes manufacture in accordance with ANSI/TPI 1 Quality Criteria.
- 21. The design does not take into account any dynamic or other loads other than those expressly stated.