

RE: P210577 - Site Information Project Custome Lot/Block: 3A/4/ Model: Milligan Address: 512 N City: Lees Summ General Truss E	I: r: Starr Home A Residence E Promised V nit ngineering C	es Project Na S 'iew Dr. S riteria & Desig	me: Milliga Subdivision State: MO an Loads (an Residence n: Tiffany Wood (Individual Tru	ds ss Desian	MiTek USA, Inc. 16023 Swingley Ridge Rd Chesterfield, MO 63017 314-434-1200
Drawings Show	Special Load	ing Condition	s):			
Wind Code: IR	C2018/1PI20 E 7-16 Wind S	Speed: 115 mp	h I	Design Program: Design Method:	MiTek 20/ MWFRS (E	20 8.6 Envelope)/C-C hybrid Wind ASCE 7-16
Roof Load: 60.0 p	osf	1 1	Ι	Floor Load: N/A	psf	
Mean Roof Heigh	t (feet): 35			Exposure Catego	ory: C	
No. Seal#	Truss Name	Date No.	Seal#	Truss Name	Date	
1 I58733345 2 I58733346 3 I58733347 4 I58733347 4 I58733347 4 I58733349 6 I58733349 6 I58733350 7 I58733351 8 I58733352 9 I58733355 10 I58733355 11 I58733355 12 I58733355 13 I58733356 13 I58733361 16 I58733362 17 I58733362 18 I58733362 19 I58733362 19 I58733362 20 I58733362 21 I58733362 22 I58733362 23 I58733363 24 I58733362 25 I58733370 27 I58733372 30 I58733373 30 I58733375 32 I58733375	A01 A02 A03 A04 A05 A06 A07 A08 AG01 B01 B02 B03 B04 B05 B06 B07 B08 B09 B10 B11 B12 B13 B14 B12 B13 B14 B15 B16 B17 B18 B16 B17 B18 B16 B17 B18 B20 B21 B22 BG01 C01 CJ01	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	IS8733379 IS8733382 IS8733382 IS8733382 IS8733382 IS8733382 IS8733382 IS8733382 IS8733382 IS8733382 IS8733392 IS8733392 IS8733392 IS8733392 IS8733392 IS8733392 IS8733392 IS8733392 IS8733400	$\begin{array}{l} 9 & CJ02 \\ 0 & CJ03 \\ 1 & CJ04 \\ 2 & CJ05 \\ 3 & CJ06 \\ 4 & CJ07 \\ 5 & CJ08 \\ 6 & CJ09 \\ 7 & D01 \\ 8 & D02 \\ 9 & D03 \\ 0 & D04 \\ 1 & D05 \\ 2 & D06 \\ 3 & D07 \\ 4 & D08 \\ 5 & E01 \\ 6 & E02 \\ 3 & D07 \\ 4 & D08 \\ 5 & E01 \\ 6 & E02 \\ 7 & E03 \\ 8 & E04 \\ 9 & E05 \\ 0 & E06 \\ 1 & E08 \\ 3 & E09 \\ 4 & E10 \\ 5 & E11 \\ 2 & E08 \\ 3 & E09 \\ 4 & E10 \\ 5 & E11 \\ 6 & E12 \\ 7 & E13 \\ 8 & E14 \\ 9 & E15 \\ 0 & G01 \\ 1 & G02 \\ 2 & G03 \\ \end{array}$	6/6/23 6/6/23	

The truss drawing(s) referenced above have been prepared by MiTek USA, Inc. under my direct supervision based on the parameters provided by Premier Building Supply (Springhill, KS)20300 W 207th Street.

Truss Design Engineer's Name: Sevier, Scott

My license renewal date for the state of Missouri is December 31, 2023.

IMPORTANT NOTE: The seal on these truss component designs is a certification that the engineer named is licensed in the jurisdiction(s) identified and that the designs comply with ANSI/TPI 1. These designs are based upon parameters shown (e.g., loads, supports, dimensions, shapes and design codes), which were given to MiTek or TRENCO. Any project specific information included is for MiTek's or TRENCO's customers file reference purpose only, and was not taken into account in the preparation of these designs. MiTek or TRENCO has not independently verified the applicability of the design parameters or the designs for any particular building. Before use, the building designer should verify applicability of design parameters and properly incorporate these designs into the overall building design per ANSI/TPI 1, Chapter 2.

Sevier, Scott

RE: P210577 -

MiTek USA, Inc. 16023 Swingley Ridge Rd Chesterfield, MO 63017 314-434-1200

No.	Seal#	Truss Name	Date	No.	Seal#	Truss Name	Date
69 70	158733413 158733414	G04 G05	6/6/23 6/6/23	134 135	158733478 158733479	J53 J54	6/6/23 6/6/23
71 72	158733415	G06 G07	6/6/23	136	158733480	K01 K02	6/6/23
73	158733417	G08	6/6/23	138	158733482	K03	6/6/23
74 75	158733418	G10	6/6/23 6/6/23	140	158733483	LG01	6/6/23
76 77	158733420 158733421	G11 G12	6/6/23 6/6/23	141 142	158733485 158733486	LG02 LG03	6/6/23
78 70	158733422	Ğ13 GC01	6/6/23	143	158733487	LG04	6/6/23
80	158733424	H01	6/6/23	145	158733489	LG06	6/6/23
81	158733425	H02 J01	6/6/23	146	158733490	LG07 LG08	6/6/23
83 84	158733427 158733428	J02 J03	6/6/23 6/6/23	148 149	158733492 158733493	LG09 LG10	6/6/23 6/6/23
85 86	158733429	J04 105	6/6/23	150	158733494	LG11 LG12	6/6/23
87	158733431	J06	6/6/23	152	158733496	LG13	6/6/23
88 89	158733432	108 108	6/6/23	153	158733497	LG14 LG15	6/6/23
90 91	158733434 158733435	J09 J10	6/6/23 6/6/23	155 156	158733499 158733500	LG16 LG17	6/6/23 6/6/23
92 93	158733436	J11 112	6/6/23	157	158733501	LG18 LG19	6/6/23
94	158733438	J13	6/6/23	159	158733503	LG20	6/6/23
95 96	158733440	J14 J15	6/6/23	161	158733504	LG22	6/6/23
97 98	158733441 158733442	J16 J17	6/6/23 6/6/23	162 163	158733506 158733507	LG23 LG24	6/6/23 6/6/23
99 100	158733443	J18 J19	6/6/23	164 165	158733508	LG25 LG26	6/6/23
101	158733445	J20	6/6/23	166	158733510	LG27	6/6/23
102	158733440	J22	6/6/23	168	158733512	LG29	6/6/23
104 105	158733448	J23 J24	6/6/23 6/6/23	169 170	158733513	M01 M02	6/6/23 6/6/23
106 107	158733450 158733451	J25 J26	6/6/23 6/6/23	171 172	158733515 158733516	M03 M04	6/6/23
108	158733452	J27	6/6/23	173	158733517	M05	6/6/23
110	158733454	J29	6/6/23	175	158733519	M07	6/6/23
111 112	158733455	J30 J31	6/6/23	176 177	158733520	M08 M09	6/6/23
113 114	158733457 158733458	J32 J33	6/6/23 6/6/23	178 179	158733522 158733523	M10 M11	6/6/23 6/6/23
115 116	158733459	J34 J35	6/6/23	180 181	158733524	M12 M13	6/6/23
117	158733461	J36	6/6/23	182	158733526	MG01	6/6/23
119	158733463	J38	6/6/23	184	158733528	N02	6/6/23
120 121	158733464 158733465	J39 J40	6/6/23 6/6/23	185 186	158733529 158733530	N03 P01	6/6/23 6/6/23
122 123	158733466 158733467	J41 J42	6/6/23 6/6/23	187 188	158733531 158733532	P02 P03	6/6/23
124	158733468	J43	6/6/23	189	158733533	P04	6/6/23
126	158733470	J45	6/6/23	191	158733535	P06	6/6/23
127	158733471	J40 J47	6/6/23 6/6/23	192	158733536	P08	6/6/23 6/6/23
129 130	158733473 158733474	J48 J49	6/6/23 6/6/23	194 195	158733538 158733539	P09 P10	6/6/23 6/6/23
131	158733475	Ĵ50 151	6/6/23	196 197	158733540	P11 P12	6/6/23
133	158733477	J52	6/6/23	198	158733542	P13	6/6/23

2 of 3

RE: P210577 -

MiTek USA, Inc. 16023 Swingley Ridge Rd Chesterfield, MO 63017 314-434-1200

No.	Seal#	Truss Name	Date
No. 1992001220232005220222222222222222222222222	Seal# 158733543 158733544 158733546 158733546 158733547 158733546 158733550 158733550 158733551 158733552 158733555 158733555 158733555 158733556 158733556 158733560 158733560 158733560 158733566 158733566 158733566 158733566 158733566 158733566 158733566 158733567 158733570 158733570 158733571 158733574 158733574 158733574 158733574	Truss Name P14 P15 P16 Q01 Q02 Q03 Q04 Q05 Q06 Q07 Q06 Q07 Q08 Q09 QG01 QG02 R01 R02 R03 R04 R03 R04 R05 R06 R07 R08 R07 R08 R07 V01 V02 V03 V01 V02 V03 V04 V05 V05 V06 V07 V05 V06 V07 V05 V06 V07 V08 V09 V09 X01	Date 6/6/23
232	100/000/0	X02	6/6/23

Job	Truss	Truss Type	Qty	Ply		
P210577	A01	Common	1	1	Job Reference (optional)	158733345

Run: 8.63 S. Nov 19 2022 Print: 8.630 S. Nov 19 2022 MiTek Industries. Inc. Mon. Jun 05 09:37:43 ID:ya9HPcizEcbKBSa5IYXIh4z9Zqq-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

June 6,2023

MiTek 16023 Swingley Ridge Rd Chesterfield, MO 63017 Page: 1

Job	Truss	Truss Type	Qty	Ply	
P210577	A02	Common Girder	1	1	Job Reference (optional)

Run: 8.63 S. Nov 19 2022 Print: 8.630 S. Nov 19 2022 MiTek Industries. Inc. Mon. Jun 05 09:37:45 ID:Q2E5BmwG?8tnLDyYoJrzQtz9ZqY-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

NAILED	NAILED	NAILED	NAILED	NAILED
	4-6-0	1	9-0-0	
	4-6-0		4-6-0	

Scale = 1:32.6

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP	
TCLL (roof)	25.0	Plate Grip DOL	1.15	TC	0.49	Vert(LL)	-0.01	4-5	>999	240	MT20	197/144	
Snow (Pf/Pg)	13.9/20.0	Lumber DOL	1.15	BC	0.19	Vert(CT)	-0.02	4-5	>999	180			
TCDL	25.0	Rep Stress Incr	NO	WB	0.28	Horz(CT)	0.00	4	n/a	n/a			
BCLL	0.0	Code	IRC2018/TPI2014	Matrix-S									
BCDL	10.0										Weight: 47 lb	FT = 20%	
UMBER 6) This truss is designed in accordance with the 2018													

TOP CHORD 2x4 SP No.2 2x6 SPF No 2 BOT CHORD

NEBS	2x4 SPF No	.3 *Except* 6-1,4-3:2x4 SP No.2
BRACING		
FOP CHORD	Structural w	ood sheathing directly applied or
	5-6-2 oc pur	lins, except end verticals.
BOT CHORD	Rigid ceiling	directly applied or 10-0-0 oc
	bracing.	
REACTIONS	(size) 4=	=0-5-8, 6=0-5-8
	Max Horiz 6	=53 (LC 13)

- Max Grav 4=985 (LC 2), 6=985 (LC 2) FORCES (lb) - Maximum Compression/Maximum Tension TOP CHORD 1-2=-862/142, 2-3=-862/152, 1-6=-708/182, 3-4=-708/182
- BOT CHORD 5-6=-139/154, 4-5=-57/119 WEBS 2-5=0/267, 1-5=-29/634, 3-5=-61/634
- NOTES
- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=35ft; Ke=1.00; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- TCLL: ASCE 7-16; Pr=25.0 psf (roof LL: Lum DOL=1.15 3) Plate DOL=1.15); Pg=20.0 psf; Pf=13.9 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat C; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10
- Unbalanced snow loads have been considered for this 4) design.
- 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

- International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- "NAILED" indicates Girder: 3-10d (0.148" x 3") toe-nails 7)
- per NDS guidelines.
- 8) In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (F) or back (B).

LOAD CASE(S) Standard

- 1) Dead + Snow (balanced): Lumber Increase=1.15, Plate Increase=1.15
 - Uniform Loads (lb/ft)
 - Vert: 1-2=-78, 2-3=-78, 4-6=-20
 - Concentrated Loads (lb)
 - Vert: 5=-181 (B), 7=-187 (B), 8=-181 (B), 9=-181 (B), 10=-187 (B)

Page: 1

MiTek 16023 Swingley Ridge Rd Chesterfield, MO 63017

Job	Truss	Truss Type	Qty	Ply		
P210577	A03	Hip Girder	1	2	Job Reference (optional)	8733347

Run: 8,63 S Nov 19 2022 Print: 8,630 S Nov 19 2022 MiTek Industries, Inc. Mon Jun 05 09:37:46 ID:CCugGNFG5xkAY7MhFQqmt3z9Zoq-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

Scale = 1:52.2

Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 25.0 18.9/20.0 25.0 0.0 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 NO IRC2018	3/TPI2014	CSI TC BC WB Matrix-S	0.21 0.37 0.41	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.06 -0.12 0.03	(loc) 11-13 11-13 9	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 283 lb	GRIP 197/144 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 *Excep 2x6 SPF No.2 2x4 SPF No.3 Structural wood she 6-0-0 oc purlins, exc 2-0-0 oc purlins (6-0 Rigid ceiling directly bracing. (size) 9=0-5-8, 1 Max Horiz 15=-51 (L	t* 3-6:2x6 SPF No.2 athing directly applied ro max.): 3-6. applied or 6-0-0 oc 15=0-3-8 C 21)	2) d or 3) 4)	All loads are except if note CASE(S) sec provided to d unless othern Unbalanced this design. Wind: ASCE Vasd=91mph Ke=1.00; Cat exterior zone Interior (1) 5- Interior (1) 13	considered equall ed as front (F) or b ttion. Ply to ply con istribute only load vise indicated. roof live loads hav 7-16; Vult=115mp t; TCDL=6.0psf; B t. II; Exp C; Enclos and C-C Exterior 0-0 to 6-6-0, Exter 3-6-14 to 22-6-0, E	y applie ack (B) annection s noted e been o h (3-sec CDL=6.0 cd; MW (2E) 0-0 rior(2R) ixterior(2	d to all plies, face in the LC s have been as (F) or (B), considered fo cond gust) 0psf; h=35ft; FRS (envelop -0 to 5-0-0, 6-6-0 to 13-6- 2E) 22-6-0 to	DAD r De) -14,	13) Use Har con 0.0 14) Fill 15) "NA per LOAD (1) De Ur	e Simpsond Hip) o nect trus deg.to ti all nail h ILED" ir NDS gu CASE(S ead + Sr crease= niform Lo Vert: 1-3 oncentra	on Stro or equives (es) the left, oles w ideline (batter ideline (batter) Star ow (batter) (b	ng-Tie THJA26 (valent at 22-5-10 to back face of b sloping 0.0 deg. here hanger is in s Girder: 3-10d (s. ndard alanced): Lumber b/ft) 3-6=-88, 6-8=-78 ads (lb)	THJA26 on 2 ply, Left from the left end to ottom chord, skewed down. contact with lumber. 0.148" x 3") toe-nails r Increase=1.15, Plate 8, 1-8=-20
FORCES TOP CHORD BOT CHORD	Max Opliff 9=-708 (L Max Grav 9=1723 (L (Ib) - Maximum Com Tension 1-2=-269/416, 2-3=- 3-4=-1344/753, 4-5= 5-6=-1303/737, 6-7= 1-15=-302/263, 14-1	C 13), 15=-700 (LC 1 -C 2), 15=1708 (LC 5 -pression/Maximum 1473/804, 3270/1180, 1428/786, 7-8=-274, 5=-181/286,	2) 5) 5) /418	29-0-0 zone; vertical left au forces & MW DOL=1.60 pl TCLL: ASCE Plate DOL=1 DOL=1.15 Pl Exp.; Ce=0.9	cantilever left and nd right exposed;(FRS for reactions ate grip DOL=1.60 7-16; Pr=25.0 psf; ate DOL=1.05; Isg=20.0 psf; ate DOL=1.15); Is ; Cs=1.00; Ct=1.1	right ex C-C for n shown; (roof LL Pf=18.9 =1.0; Rc 0, Lu=50	posed ; end nembers and Lumber : Lum DOL=1 9 psf (Lum pugh Cat C; F 0-0-0	1.15 Fully		Vert: 3= 17=-70 23=-70 28=-24 32=-24	-24 (B) (B), 18 (B), 24 (B), 29 (B), 33	a, 6=-24 (B), 14=: =-70 (B), 19=-70 =-70 (B), 25=-70 =-24 (B), 30=-24 =-24 (B)	313 (B), 10=313 (B), (B), 21=-70 (B), (B), 27=-24 (B), (B), 31=-24 (B),
WEBS	13-14=-1105/3282, 10-11=-1105/3270, 8-9=-303/269 2-14=-720/1481, 3-1 4-14=-2153/501, 4-1 5-11=0/292, 5-10=-2 7-10=-754/1550, 2-1 7-9=-1591/736	11-13=-1105/3282, 9-10=-255/276, 4=-141/230, 3=0/285, 4-11=-101/3 2186/512, 6-10=-150/3 5=-1588/733,	6) 7) 8) 84, 230, 9)	Unbalanced a design. Provide adec This truss ha chord live loa Provide mect bearing plate joint 15 and 7	snow loads have b uate drainage to p s been designed f id nonconcurrent nanical connectior capable of withst 708 lb uplift at join	nis g. ds. o			A	STATE OF I	MISSOLA		
NOTES 1) 2-ply truss (0.131"x3", Top chords oc, 2x6 - 2 Bottom cho staggered Web conne	to be connected toget) nails as follows: s connected as follows rows staggered at 0-9 ords connected as follo at 0-9-0 oc. ected as follows: 2x4 -	ther with 10d s: 2x4 - 1 row at 0-9-0 9-0 oc. ows: 2x6 - 2 rows 1 row at 0-9-0 oc.	10) 11 12) This truss is of International R802.10.2 ar) Graphical pu or the orienta bottom chord) Use Simpsor Right Hand H to connect tru skewed 0.0 c	designed in accord Residential Code nd referenced star rlin representation tition of the purlin a b Strong-Tie THJA lip) or equivalent a uss(es) to back fac leg.to the left, slop	dance w sections idard AN does no long the 26 (THJ at 6-6-6 ce of bot	ith the 2018 R502.11.1 a ISI/TPI 1. ot depict the s top and/or A26 on 2 ply, from the left e tom chord, deg. down.	nd size end		-		SEVI NUM PE-2001	ER 1018807

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

June 6,2023

Job	Truss	Truss Type	Qty	Ply	
P210577	A04	Нір	1	1	Job Reference (optional)

Run: 8.63 S. Nov 19 2022 Print: 8.630 S. Nov 19 2022 MiTek Industries. Inc. Mon. Jun 05 09:37:47 ID:V5sAtOI_RXuMzQ?Z8X3N2jz9ZoB-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

June 6,2023

MiTek 16023 Swingley Ridge Rd Chesterfield, MO 63017

Job	Truss	Truss Type	Qty	Ply	
P210577	A05	Нір	1	1	Job Reference (optional)

Run: 8.63 S Nov 19 2022 Print: 8.630 S Nov 19 2022 MiTek Industries, Inc. Mon Jun 05 09:37:48 ID:ZFoGbK82vMwpoLRj0FduLTz9Znh-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

	2-11-0 ³⁻⁰⁻¹²	10-4-4	18-7-12	25-10-4	²⁶⁻¹⁻⁰ 29-0-0
I	2-11-0 0-1-12	7-3-8	8-3-8	7-2-8	0-2-12 2-11-0

Scale = 1:52.6

Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 25.0 18.9/20.0 25.0 0.0 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018	8/TPI2014	CSI TC BC WB Matrix-S	0.84 0.70 0.66	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.08 -0.22 0.05	(loc) 9-11 9-11 8	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 132 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD REACTIONS FORCES TOP CHORD BOT CHORD WEBS	2x4 SP No.2 2x4 SP No.2 2x4 SPF No.3 Structural wood shea 3-9-3 oc purlins, exc 2-0-0 oc purlins (4-6 Rigid ceiling directly bracing. (size) 8=0-5-8, 1 Max Horiz 12=-85 (LI Max Uplift 8=-219 (LI Max Grav 8=1747 (L (lb) - Maximum Com Tension 1-2=-353/632, 2-3=- 3-4=-1488/212, 4-5= 5-6=-1710/210, 6-7= 1-12=-448/352, 11-1 9-11=-149/1695, 8-9 2-11=-12/474, 3-11= 6-9=-22/506, 2-12=-2 6-8=-2161/513, 4-11	athing directly applie ept -15 max.): 3-5. applied or 6-0-0 oc 2=0-3-8 C 21) C 13), 12=-216 (LC C 2), 12=1733 (LC 2 pression/Maximum 1723/210, -1476/211, -355/641 2=-160/1110, =-98/1058, 7-8=-457 0/272, 5-9=0/268, 2179/515, =-392/102, 4-9=-408	3) ed or 5) 6) 7) 12) 8) 9) LC 7/356	TCLL: ASCE Plate DOL=1 DOL=1.15 P Exp.; Ce=0.5 Unbalanced design. Provide adec This truss ha chord live loa Provide mec bearing plate joint 8 and 2 This truss is International R802.10.2 ai Graphical pu or the orienta bottom chorc DAD CASE(S)	7-16; Pr=25.0 ps .15); Pg=20.0 ps late DOL=1.15); Is 0; Cs=1.00; Ct=1.1 snow loads have I quate drainage to is been designed 1 ad nonconcurrent hanical connection e capable of withst 16 Ib uplift at joint designed in accor Residential Code nd referenced star flin representation ation of the purlin a Standard	f (roof LL ; Pf=18.9 s=1.0; Rc 10, Lu=50 been cor prevent to for a 10.0 with any n (by oth tanding 2 12. dance w sections indard AN a does nd along the	: Lum DOL= 9 psf (Lum ough Cat C; F)-0-0 usidered for th vater ponding 0 psf bottom other live loa ers) of truss t 19 lb uplift at rth the 2018 R502.11.1 a st depict the s t op and/or	1.15 Fully his g. dds. to t				5555	
 NOTES 1) Unbalanced roof live loads have been considered for this design. 2) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=35ft; Ke=1.00; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) 0-0-0 to 5-2-3. 												STATE OF M	AISSOLA M. ER

exterior zone and C-C Exterior(2E) 0-0-0 to 5-2-3, Interior (1) 5-2-3 to 10-6-0, Exterior(2R) 10-6-0 to 17-6-14, Interior (1) 17-6-14 to 18-6-0, Exterior(2R) 18-6-0 to 25-6-14, Interior (1) 25-6-14 to 29-0-0 zone; cantilever left and right exposed; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent oclapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Page: 1

Job	Truss	Truss Type	Qty	Ply	
P210577	A06	Нір	1	1	Job Reference (optional)

Run: 8.63 S Nov 19 2022 Print: 8.630 S Nov 19 2022 MiTek Industries, Inc. Mon Jun 05 09:37:48 ID:Z3NYInl2u1LaQBrWVT2rvDz9Zmu-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 25.0 18.9/20.0 25.0 0.0 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018	3/TPI2014	CSI TC BC WB Matrix-S	0.77 0.84 0.60	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.18 -0.37 0.05	(loc) 10-11 10-11 7	l/defl >999 >747 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 134 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD	2x4 SP 1650F 1.5E No.2 2x4 SP No.2 2x4 SPF No.3 Structural wood she: 4-8-15 oc purlins, ex	*Except* 3-4:2x4 SP athing directly applied of ccept	2) or	Wind: ASCE Vasd=91mph Ke=1.00; Cat exterior zone Interior (1) 5- 16-6-0, Exter 23-6-14 to 29 exposed ; en	7-16; Vult=115mp i; TCDL=6.0psf; B(i. II; Exp C; Enclos and C-C Exterior(0-0 to 12-6-0, Exterior(0-0 to 12-6-0, Exterior(0/2R) 16-6-0 to 2 0-1-8 zone; cantilev d vertical left and re- d vertical left and re-	h (3-sec CDL=6.0 ed; MW 2E) 0-0 erior(2E) 3-6-14, ver left a ight exp	cond gust) Opsf; h=35ft; FRS (envelo -0 to 5-0-0, 12-6-0 to Interior (1) and right oosed;C-C fo	ope) or					
BOT CHORD WEBS REACTIONS	2-0-0 oc purlins (4-9 Rigid ceiling directly bracing. 1 Row at midpt (size) 7=0-5-8, 1 Max Horiz 11=101 (L Max Uplift 7=-205 (L) Max Grav, 7=1822 (L)	-4 max.): 3-4. applied or 6-0-0 oc 2-11, 5-7 1=0-3-8 .C 16) C 17), 11=-201 (LC 16 .C 40), 11=1787 (LC 46	3)) 4)	members and Lumber DOL TCLL: ASCE Plate DOL=1 DOL=1.15 Pl Exp.; Ce=0.9 Unbalanced design.	a torces & MWFR3 =1.60 plate grip Di 7-16; Pr=25.0 psf. 15); Pg=20.0 psf; ate DOL=1.15); Is; ; Cs=1.00; Ct=1.10 snow loads have b	5 for rea DL=1.6((roof LL Pf=18.9 =1.0; Ro 0, Lu=5(een cor	ctions shown) .: Lum DOL=) psf (Lum)ugh Cat C; I)-0-0 hsidered for t	n; ₌1.15 Fully this					
FORCES	(lb) - Maximum Com Tension	pression/Maximum	6)	This truss ha	s been designed for	or a 10.0) psf bottom	iy. ade					
TOP CHORD	1-2=-414/670, 2-3=- 3-4=-1397/215, 4-5=	1655/195, -1648/194, 5-6=-434/7	7) 19	Provide mech bearing plate	nanical connection	(by oth anding 2	ers) of truss	to t					
BOT CHORD	1-11=-462/414, 10-1 8-10=-55/1404, 7-8=	1=-225/1378, -118/1329, 6-7=-509/4	33 8)	joint 7 and 20 This truss is)1 lb uplift at joint 1 designed in accord	1. lance w	ith the 2018						~
WEBS NOTES 1) Unbalance this design	2-10=-39/204, 3-10= 4-8=0/201, 5-8=-5/22 5-7=-2427/616 ed roof live loads have n.	:0/209, 3-8=-138/118, 26, 2-11=-2401/606, been considered for	9) LC	International R802.10.2 ar Graphical pu or the orienta bottom chord	Residential Code s ad referenced stan rlin representation ttion of the purlin a Standard	sections dard AN does no long the	R502.11.1 a ISI/TPI 1. of depict the top and/or	and size				STATE OF M	MISSOURI ER

is design.

MiTek 16023 Swingley Ridge Rd Chesterfield, MO 63017

E

NUMBER PE-2001018807

C

Job	Truss	Truss Type	Qty	Ply	
P210577	A07	Common	1	1	Job Reference (optional)

1)

Run: 8.63 S. Nov 19 2022 Print: 8.630 S. Nov 19 2022 MiTek Industries. Inc. Mon. Jun 05 09:37:49 ID:P1K5FGRoTYXUIxiTLxZDjEz9Zm?-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

June 6,2023

MiTek 16023 Swingley Ridge Rd Chesterfield, MO 63017

Job	Truss	Truss Type	Qty	Ply	
P210577	A08	Common	1	1	Job Reference (optional)

Run: 8.63 S. Nov 19 2022 Print: 8.630 S. Nov 19 2022 MiTek Industries. Inc. Mon. Jun 05 09:37:49 ID:aP0h7rnMt83W6Frs_p4nr8z9ZIZ-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

June 6,2023

MiTek 16023 Swingley Ridge Rd Chesterfield, MO 63017

Job	Truss	Truss Type	Qty	Ply	
P210577	AG01	Jack-Closed Girder	1	1	Job Reference (optional)

Run: 8.63 S Nov 19 2022 Print: 8.630 S Nov 19 2022 MiTek Industries, Inc. Mon Jun 05 09:37:50 ID:TSndX01XwbiX8TxujjyiCZz9ZIE-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

3-4-0 1.5x4 🛚 12 5 Г 2 0 3x4 🚅 1 3-1-6 3-1-6 1-8-11 3 4 \bigotimes 5 3x4 II 4x4 =

HUS26

3-4-0

Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 25.0 13.9/20.0 25.0 0.0 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 NO IRC2018/TPI	12014	CSI TC BC WB Matrix-P	0.32 0.98 0.06	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.02 -0.04 0.00	(loc) 3-4 3-4 3	l/defl >999 >817 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 19 lb	GRIP 197/144 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD REACTIONS FORCES TOP CHORD BOT CHORD BOT CHORD WEBS NOTES 1) Wind: ASG Vasd=91n Ke=1.00; exterior zc and right e exposed; reactions DOL=1.60	2x4 SP No.2 2x6 SPF No.2 2x4 SPF No.3 Structural wood she 3-4-0 oc purlins, ex Rigid ceiling directly bracing. (size) 3= Mecha Max Horiz 4=116 (L0 Max Uplift 3=-128 (L Max Grav 3=717 (L0 (lb) - Maximum Com Tension 1-4=-155/94, 1-2=-9 3-4=-204/153 1-3=-122/183 CE 7-16; Vult=115mph mph; TCDL=6.0psf; BC Cat. II; Exp C; Enclose one and C-C Exterior(2 exposed ; end vertical C-C for members and f shown; Lumber DOL=:	athing directly applie cept end verticals. applied or 2-9-12 or anical, 4=0-3-8 C 13), 4=-119 (LC 1 C 2), 4=948 (LC 2) apression/Maximum 9/91, 2-3=-152/133 (3-second gust) DL=6.0psf; h=35ft; d; MWFRS (envelop E) zone; cantilever I left and right orces & MWFRS for 1.60 plate grip	6) Pro bea 4 a 7) Thi Inte 80 or R80 8) Usa 5 Tru the chc 9) Fill 6) of t LOAD (1) Dr In Un Un Co	ovide mech aring plate ind 128 lb is truss is of ernational 02.10.2 ar e Simpson iss, Single e left end to ord. all nail ho the LOAD the truss a CASE(S) ead + Sno icrease=1. niform Loa Vert: 1-2=-1	hanical connection capable of withst uplift at joint 3. designed in accor Residential Code dreferenced star Strong-Tie HUS: Ply Girder) or eq o connect truss(es connect truss(es les where hanger CASE(S) section re noted as front Standard w (balanced): Lut 15 dids (lb/ft) =-78, 3-4=-20 d Loads (lb) 1086 (F)	n (by oth tanding 1 rdance w sections ndard AN 26 (14-10 juivalent s) to fron r is in corr , loads a _l (F) or ba mber Inc	ers) of truss t 19 lb uplift at 19 lb uplift at s R502.11.1 a ISI/TPI 1. Od Girder, 6-1 at 1-4-12 fror t face of bottc ntact with lum pplied to the f ck (B). rease=1.15, f	o joint nd 0d n om ber. ace Plate			b	THE OF M	MISSOUP
 ICLL: AS Plate DOL 	CE 7-16; Pr=25.0 psf (_=1.15): Pa=20.0 psf: F	root LL: Lum DOL=1 Pf=13.9 psf (Lum	.15								A.	SEVI	ER V

- Plate DOL=1.15); Pg=20.0 pst; PI=13.9 pst (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat C; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10
- 3) Unbalanced snow loads have been considered for this design.
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) Refer to girder(s) for truss to truss connections.

PE-2001018807

E

June 6,2023

SSIONAL

0

Job	Truss	Truss Type	Qty	Ply		
P210577	B01	Roof Special Girder	1	1	Job Reference (optional)	733354

Run: 8.63 S. Nov 19 2022 Print: 8.630 S. Nov 19 2022 MiTek Industries. Inc. Mon. Jun 05 09:37:50 ID:ZUCPUb7YKSIahPnsWj0zvrz9Zfy-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

BOT CHORD	Rigid ceiling directly applied or 6-0-0 oc bracing.							
REACTIONS	(size)	10=0-5-8, 17=0-3-8						
	Max Horiz	17=-115 (LC 21)						
	Max Uplift	10=-568 (LC 17), 17=-268 (LC 16)						
	Max Grav	10=2359 (LC 2), 17=1971 (LC 2)						
FORCES	(lb) - Max Tension	imum Compression/Maximum						
TOP CHORD	1-2=-236/	169, 2-3=-2023/281,						
	3-4=-1948	3/333, 4-5=-1890/354,						
	5-6=-2546	6/451, 6-7=-1772/534,						
	7-8=-2005	5/564, 8-9=-272/226						
BOT CHORD	1-17=-87/	232, 16-17=-96/276,						
	15-16=-26	68/1794, 13-15=-257/2274,						
	12-13=-52	23/2944, 11-12=-524/2940,						
	10-11=-28	51/270, 9-10=-142/267						
WEBS	4-15=-144	4/888, 5-15=-905/293,						

2-0-0 oc purlins (4-2-9 max.): 6-7.

5-13=-120/484, 6-13=-793/313, 6-12=0/146, 6-11=-1558/256, 7-11=-138/439, 8-11=-592/2163, 8-10=-1962/572, 2-17=-1661/361, 2-16=-338/1910, 3-16=-526/202, 3-15=-267/176 NOTES

Unbalanced roof live loads have been considered for 1) this design.

exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOI = 1.60

TCLL: ASCE 7-16; Pr=25.0 psf (roof LL: Lum DOL=1.15 3) Plate DOL=1.15); Pg=20.0 psf; Pf=18.9 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat C; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10, Lu=50-0-0 Unbalanced snow loads have been considered for this 4)

- desian.
- Provide adequate drainage to prevent water ponding. This truss has been designed for a 10.0 psf bottom 6)

chord live load nonconcurrent with any other live loads. Provide mechanical connection (by others) of truss to

- 7) bearing plate capable of withstanding 568 lb uplift at joint 10 and 268 lb uplift at joint 17.
- This truss is designed in accordance with the 2018 8) International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- Graphical purlin representation does not depict the size 9) or the orientation of the purlin along the top and/or bottom chord.

10) Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 491 Ib down and 351 lb up at 25-8-4 on bottom chord. The design/selection of such connection device(s) is the responsibility of others.

11) In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (F) or back (B).

LOAD CASE(S) Standard

Page: 1

Job	Truss	Truss Type	Qty	Ply	
P210577	B02	Roof Special	1	1	Job Reference (optional)

Run: 8.63 S Nov 19 2022 Print: 8.630 S Nov 19 2022 MiTek Industries, Inc. Mon Jun 05 09:37:51 ID:_PWgyhBlcUN5FxWmgBbbTPz9Zea-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC?f Page: 1

LUMBER		2)	wind. ASCE 7-16, vult=115mph (5-second gust)	
TOP CHORD	2x4 SP No.2 *Except* 4-5:2x4 SP 1650F		Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=35ft;	
	1.5E		Ke=1.00; Cat. II; Exp C; Enclosed; MWFRS (envelope)	
BOT CHORD	2x4 SP No.2		exterior zone and C-C Exterior(2E) 0-0-0 to 5-0-0,	
WEBS	2x4 SPF No.3		Interior (1) 5-0-0 to 14-6-0, Exterior(2R) 14-6-0 to	
BRACING			19-6-0, Interior (1) 19-6-0 to 23-9-0, Exterior(2R) 23-9-0	
TOP CHORD	Structural wood sheathing directly applied or		to 28-10-4, Interior (1) 28-10-4 to 32-0-0 zone; cantilever	
	2-8-10 oc purlins, except		left and right exposed ; end vertical left and right	
	2-0-0 oc purlins (4-4-6 max.): 5-6.		exposed;C-C for members and forces & MWFRS for	
BOT CHORD	Rigid ceiling directly applied or 6-0-0 oc		reactions shown; Lumber DOL=1.60 plate grip	
	bracing.		DOL=1.60	
REACTIONS	(size) 9=0-5-8, 15=0-3-8	3)	TCLL: ASCE 7-16; Pr=25.0 psf (roof LL: Lum DOL=1.15	
	Max Horiz 15=118 (I C 20)		Plate DOL=1.15); Pg=20.0 psf; Pf=18.9 psf (Lum	
	Max Uplift 9=-257 (I C 17) 15=-227 (I C 16)		DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat C; Fully	
	Max Grav $9=1926$ (LC 2) $15=1914$ (LC 2)		Exp.; Ce=0.9; Cs=1.00; Ct=1.10, Lu=50-0-0	
FORCES	(lb) Maximum Compression/Maximum	4)	Unbalanced show loads have been considered for this	
FURGES	(ib) - Maximum Compression/Maximum	C)	design.	
		5)	Provide adequate drainage to prevent water ponding.	
TOF CHORD	1-2=-204/297, 2-3=-1907/222, 3-4=-1773/260, 4-5=-1780/265	6)	I his truss has been designed for a 10.0 pst bottom	
	5 = 1505/259 = 67 = 19/1/200, 79 = 250/227		chord live load nonconcurrent with any other live loads.	
	1-15180/242 14-15192/285	7)	Provide mechanical connection (by others) of truss to	
BOT CHORD	13-14-108/1711 11-13-164/2287		bearing plate capable of withstanding 227 ib uplift at	
	10-11-166/2283 9-10-202/246	0)	Joint 15 and 257 lb uplift at joint 9.	Jane
	8-9=-202/246	8)	Inis truss is designed in accordance with the 2018	OF MISS
WEBS	5-11=0/187 5-10=-1043/154 6-10=-1/321		PRO2 10.2 and referenced standard ANSI/TEL1	E TE SO
	4-13=-34/691 5-13=-891/217	0)	Graphical purlin representation does not depict the size	EST C
	2-15=-1787/395, 3-13=-320/155,	3)	or the orientation of the purlin along the top and/or	SCOTT M.
	3-14=-401/158, 2-14=-308/1946.		bottom chord	SEVIER
	7-9=-1805/408, 7-10=-305/1871		AD CASE(S) Standard	[4.★]
NOTES		LO	AD CASE(S) Standard	
	od roof live leads have been considered for			1 X HE A
i) Unbalance				

this design.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

PE-2001018807

E

June 6,2023

SIONAL

0

Job	Truss	Truss Type	Qty	Ply	
P210577	B03	Roof Special	1	1	I58733356 Job Reference (optional)

Run: 8.63 S Nov 19 2022 Print: 8.630 S Nov 19 2022 MiTek Industries, Inc. Mon Jun 05 09:37:51 ID:tjp1wgfaf9AionQ4vAGW0Qz9Ze_-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Scale = 1:58.6

Plate Offsets (X, Y): [5:0-2-12,0-2-0], [15:0-3-8,0-2-0]

Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 25.0 18.9/20.0 25.0 0.0 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018	3/TPI2014	CSI TC BC WB Matrix-S	0.66 0.57 0.86	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.07 -0.17 0.05	(loc) 12-14 12-14 10	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 159 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD WEBS REACTIONS	2x4 SP No.2 2x4 SP No.2 2x4 SPF No.3 Structural wood she: 3-7-12 oc purlins, ex 2-0-0 oc purlins (4-4 Rigid ceiling directly bracing. 1 Row at midpt (size) 10=0-5-8, Max Horiz 16=118 (L Max Uplift 10=-257 (Max Grav 10=1926 ((lb) - Maximum Com Toncion	athing directly applied ccept -15 max.): 5-6. applied or 6-0-0 oc 7-10 16=0-3-8 .C 16) LC 17), 16=-227 (LC 1 (LC 2), 16=1914 (LC 2 pression/Maximum	2) or 3) 6) 4)	Wind: ASCE Vasd=91mpl Ke=1.00; Ca exterior zone Interior (1) 5- 18-9-0, Interi to 26-9-0, Interi to 26	7-16; Vult=115m ;; TCDL=6.0psf; E t. II; Exp C; Enclo and C-C Exterio 0-0 to 14-6-0, Ex or (1) 18-9-0 to 2 terior (1) 26-9-0 to exposed; end vec for members and bown; Lumber DOL 7-16; Pr=25.0 ps .15); Pg=20.0 ps .15); Pg=20.0 ps .15); Pg=20.0 ps .15); Cs=1.00; Ct=1. snow loads have	ph (3-sec 3CDL=6.6 sed; MW r(2E) 0-0- terior(2E) 1-9-0, Ex- 5 32-0-0 z ritical left d forces 8 =1.60 pl: ff (roof LL f; Pf=18.5 s=1.0; Rc 10, Lu=50 been cor	ond gust) opsf; h=35ft; FRS (envelop 0 to 5-0-0, 14-6-0 to terior(2R) 21: one; cantilev and right & MWFRS for ate grip : Lum DOL= psf (Lum pugh Cat C; F) -0-0 sidered for th	pe) -9-0 rer 1.15 Fully his					
TOP CHORD	1-2=-255/288, 2-3=- 3-4=-1760/262, 4-5= 5-6=-1677/269, 6-7= 7-8=-208/352, 8-9=-2	1971/222, 1726/281, 1886/268, 292/383	5) 6) 7)	Provide adec This truss ha chord live loa Provide mec bearing plate	quate drainage to is been designed ad nonconcurrent hanical connectio e capable of withs	prevent v for a 10.0 with any n (by oth tanding 2	vater ponding) psf bottom other live loa ers) of truss t 27 lb uplift at	g. Ids. to					
BOT CHORD	1-16=-170/242, 15-1 14-15=-196/1721, 12 11-12=-129/2033, 10 9-10=-260/280	6=-187/267, 2-14=-128/2034, 0-11=-117/1403,	8)	joint 16 and 2 This truss is International R802.10.2 a	257 Ib uplift at joir designed in accou Residential Code nd referenced sta	nt 10. rdance w sections ndard AN	th the 2018 R502.11.1 a	ind				TE OF M	AISSOL
WEBS NOTES	5-12=0/90, 5-11=-61 2-16=-1786/381, 8-1 4-14=-78/800, 5-14= 3-14=-340/154, 3-15 2-15=-312/1945, 7-1 7-10=-2131/405	4/121, 6-11=-15/357, 0=-451/170, 766/191, =-383/160, 1=-37/383,	9) LC	Graphical pu or the orienta bottom chore DAD CASE(S)	rlin representation ation of the purlin d. Standard	n does no along the	ot depict the s top and/or	size				SCOTI SEVI	ER BER
											AY .	\frown > PE-2001(118807 1034

1) Unbalanced roof live loads have been considered for this design.

Page: 1

Job	Truss	Truss Type	Qty	Ply		
P210577	B04	Roof Special	1	1	Job Reference (optional)	8733357

Run: 8.63 S Nov 19 2022 Print: 8.630 S Nov 19 2022 MiTek Industries, Inc. Mon Jun 05 09:37:52 ID:fcxBRUnwlktVS31xrCRJH1z9ZcX-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Scale = 1:58.6

Plate Offsets (X, Y): [5:0-2-12,0-2-0], [11:0-3-8,0-1-8], [16:0-3-8,0-2-0]

Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 25.0 18.9/20.0 25.0 0.0 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018	3/TPI2014	CSI TC BC WB Matrix-S	0.66 0.51 0.86	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.07 -0.16 0.04	(loc) 13 15-16 10	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 166 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD	2x4 SP No.2 2x4 SP No.2 2x4 SPF No.3 Structural wood she 3-7-8 oc purlins, exo 2-0-0 oc purlins (4-4	athing directly applied cept 1-13 max.): 5-6.	2) I or	Wind: ASCE Vasd=91mph Ke=1.00; Car exterior zone Interior (1) 5- 16-9-0, Interi to 24-9-0, Int left and right exposed;C-C	7-16; Vult=115mp n; TCDL=6.0psf; B t. II; Exp C; Enclos and C-C Exterior 0-0 to 14-6-0, Ext or (1) 16-9-0 to 19 erior (1) 24-9-0 to exposed ; end ver for members and	oh (3-sec SCDL=6.0 sed; MW (2E) 0-0 erior(2E) 9-9-0, Ex 32-0-0 z rtical left forces 8	ond gust) Opsf; h=35ft; FRS (envelo 0 to 5-0-0, 14-6-0 to terior(2R) 19 one; cantilev and right MWFRS fo	pe) I-9-0 ver r					
REACTIONS	Rigid ceiling directly bracing. (size) 10=0-5-8, Max Horiz 17=118 (I Max Uplift 10=-257 (Max Grav 10=1926	, 17=0-3-8 _C 16) (LC 17), 17=-227 (LC 17) (LC 2), 17=1914 (LC 2)	3) 16) 2)	reactions sho DOL=1.60 TCLL: ASCE Plate DOL=1 DOL=1.15 Pl	own; Lumber DOL 7-16; Pr=25.0 ps .15); Pg=20.0 ps late DOL=1.15); Is	=1.60 pla f (roof LL ; Pf=18.9 s=1.0; Rc	ate grip :: Lum DOL= psf (Lum pugh Cat C; F	1.15 Fully					
FORCES	(lb) - Maximum Com	pression/Maximum	4)	Unbalanced	snow loads have l	been cor	sidered for t	his					
TOP CHORD	1-2=-255/288, 2-3=- 3-4=-1758/269, 4-5= 5-6=-1640/282, 6-7= 7-8=-1805/248, 8-9=	1972/222, =-1669/294, =-1868/275, =-265/384	5) 6) 7)	design. Provide adec This truss ha chord live loa Provide med	quate drainage to p is been designed f ad nonconcurrent p hanical connection	prevent v for a 10.0 with any	vater pondin) psf bottom other live loa	g. ads.					
BOT CHORD	1-17=-170/242, 16-1 15-16=-196/1722, 1 12-13=-100/1780, 1 10-11=-256/254, 9-1	17=-188/262, 3-15=-99/1780, 1-12=-112/1584, 10=-256/254	8)	bearing plate joint 10 and 2 This truss is International	e capable of withst 227 lb uplift at join designed in accor Residential Code	t 17. dance w sections	57 lb uplift a th the 2018 R502.11.1 a	t				OF M	AISS
WEBS	5-13=0/42, 5-12=-26 8-10=-1805/393, 2-1 4-15=-117/886, 5-15 3-15=-340/152, 3-16 2-16=-316/1947, 7-1 7-11=-530/169, 8-11	89/69, 6-12=-14/305, 17=-1786/380, 5=-708/180, 5=-383/163, 12=-39/129, 1=-305/1909	9) LC	R802.10.2 ar Graphical pu or the orienta bottom chorc DAD CASE(S)	rd referenced star rlin representation ation of the purlin a l. Standard	ndard AN n does no along the	ISI/TPI 1. of depict the solution of the solut	size			*	STATE SCOTT	ER A

NOTES

1) Unbalanced roof live loads have been considered for this design.

Page: 1

Job	Truss	Truss Type	Qty	Ply		
P210577	B05	Нір	1	1	I58733358 Job Reference (optional)	

Run: 8.63 S Nov 19 2022 Print: 8.630 S Nov 19 2022 MiTek Industries, Inc. Mon Jun 05 09:37:53 ID:jmtH9QA?DZvzI_T5jw0qanz9Zc1-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Scale = 1:57.4

Plate Offsets (X, Y): [10:0-3-8,0-2-0], [14:0-3-8,0-2-0]

Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 25.0 18.9/20.0 25.0 0.0 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018	3/TPI2014	CSI TC BC WB Matrix-S	0.72 0.51 0.86	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.06 -0.16 0.04	(loc) 13-14 13-14 9	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 158 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD	2x4 SP No.2 2x4 SP No.2 2x4 SPF No.3 Structural wood shea 3-4-13 oc purlins, ex 2-0-0 oc purlins (4-7 Rigid ceiling directly	athing directly applied cept -0 max.): 4-5. applied or 6-0-0 cc	2) d or	Wind: ASCE Vasd=91mph Ke=1.00; Cai exterior zone Interior (1) 5- 17-9-0, Exter 24-9-14 to 32 exposed ; en members and	7-16; Vult=115mp ; TCDL=6.0psf; Bt t. II; Exp C; Enclos and C-C Exterior(0-0 to 14-3-0, Exterior(2R) 17-9-0 to 2 2-0-0 zone; cantilev d vertical left and r d forces & MWFRS	h (3-sec CDL=6.0 ed; MW 2E) 0-0 erior(2E) 24-9-14, ver left a ight exp 5 for rea	cond gust) Opsf; h=35ft; FRS (envelo -0 to 5-0-0, 14-3-0 to Interior (1) and right cosed;C-C fo ctions showr	pe) r ı;					
REACTIONS	(size) 9=0-5-8, 1 Max Horiz 15=115 (L Max Uplift 9=-226 (L) Max Grav 9=1967 (L	15=0-3-8 .C 16) C 17), 15=-225 (LC 1) .C 40), 15=1955 (LC 4)	3) 6) 40) 4)	Lumber DOL TCLL: ASCE Plate DOL=1 DOL=1.15 Pl Exp.; Ce=0.9	=1.60 plate grip D0 7-16; Pr=25.0 psf .15); Pg=20.0 psf; ate DOL=1.15); Is ; Cs=1.00; Ct=1.10	OL=1.60 (roof LL Pf=18.9 =1.0; Ro 0, Lu=50) .: Lum DOL=) psf (Lum pugh Cat C; F)-0-0 pridered for t	1.15 Fully					
FORCES	(lb) - Maximum Com	pression/Maximum	-/ 4)	design.				r 1115					
TOP CHORD	1-2=-256/292, 2-3=-2 3-4=-1787/237, 4-5= 5-6=-1782/237, 6-7=	2030/218, 1536/251, 2003/215_7-8=-265/	5) 6) /312 7)	This truss ha	s been designed for ad nonconcurrent w	vith any	other live loa	y. ads.					
BOT CHORD	1-15=-175/243, 14-1 13-14=-191/1769, 11 10-11=-72/1744, 9-1 8-9=-193/253	5=-191/248, 1-13=-71/1539, 0=-193/253,	8)	joint 15 and 2 This truss is	capable of withsta 226 lb uplift at joint designed in accord	9. anding 2 9. ance w	25 lb uplift a th the 2018	t				-0101	all the
WEBS	4-13=-32/265, 4-11= 2-15=-1830/377, 7-9 6-11=-263/142, 3-13 6-10=-414/157, 7-10	150/139, 5-11=-19/2 =-1843/381, =-288/145, =-287/1956,	260, 9)	R802.10.2 ar Graphical pu or the orienta bottom chord	rlin representation ation of the purlin a	dard AN does no long the	ISI/TPI 1. ot depict the set top and/or	size			ł	STATE OF M	AISSOLD M.
NOTES	3-14=-398/154, 2-14	=-284/1958	LC	DAD CASE(S)	Standard						Ba	SEVI	

 Unbalanced roof live loads have been considered for this design.

Page: 1

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

16023 Swingley Ridge Rd Chesterfield, MO 63017

Job	Truss	Truss Type	Qty	Ply	
P210577	B06	Common	10	1	Job Reference (optional)

Run: 8.63 S Nov 19 2022 Print: 8.630 S Nov 19 2022 MiTek Industries, Inc. Mon Jun 05 09:37:53

Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 25.0 13.9/20.0 25.0 0.0 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC201	8/TPI2014	CSI TC BC WB Matrix-S	0.86 0.56 0.85	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.06 -0.17 0.03	(loc) 12-13 12-13 10	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 150 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD	2x4 SP No.2 2x4 SP No.2 2x4 SPF No.3 Structural wood she 2-2-0 oc purlins. Rigid ceiling directly bracing	athing directly appli applied or 6-0-0 oc	2 ied or	 Wind: ASCE Vasd=91mpl Ke=1.00; Ca exterior zone Interior (1) 5- 21-0-0, Interi- and right exp exposed;C-C reactions shot 	7-16; Vult=115m n; TCDL=6.0psf; t. II; Exp C; Enclc and C-C Exteric -0-0 to 16-0-0, Ex- ior (1) 21-0-0 to 3 soosed ; end vertic C for members an own; Lumber DO	nph (3-sec BCDL=6.0 bsed; MW br(2E) 0-0 kterior(2R) 32-0-0 zor cal left and d forces 8 L=1.60 pla	cond gust) Opsf; h=35ft; FRS (envelo -0 to 5-0-0,) 16-0-0 to e; cantilever t right & MWFRS fo ate grip	pe) left r					
REACTIONS	(size) 10=0-5-8, Max Horiz 14=-130 (Max Uplift 10=-240 (Max Grav 10=1926	, 14=0-3-8 (LC 17) (LC 17), 14=-239 (L (LC 2), 14=1914 (L(3 .C 16) C 2)	DOL=1.60 TCLL: ASCE Plate DOL=1 DOL=1.15 P	7-16; Pr=25.0 p 1.15); Pg=20.0 ps late DOL=1.15); 2: Cs=1.00; Ct=1	sf (roof LL sf; Pf=13.9 ls=1.0; Ro 10	: Lum DOL= psf (Lum pugh Cat C; F	1.15 Fully					
FORCES	(lb) - Maximum Com	pression/Maximum	n 4	Unbalanced	snow loads have	been cor	sidered for t	his					
TOP CHORD	1-2=-253/250, 2-3=- 3-5=-1658/248, 5-7= 7-8=-2006/243, 8-9=	2029/246, =-1657/247, =-262/271	5	design. This truss ha chord live loa	as been designed ad nonconcurrent	for a 10.0 t with any) psf bottom other live loa	ads.					
BOT CHORD	1-14=-129/238, 13-1 11-13=-222/1762, 10	14=-168/251, 0-11=-148/247,	0	bearing plate joint 10 and 2	capable of withs 239 lb uplift at joi	standing 2 nt 14.	40 lb uplift a	t					
WEBS	9-10=-148/247 8-10=-1792/398, 2-1 5-12=-36/595, 3-12= 7-12=-479/184, 3-13 2-13=-288/1932, 7-1 8-11=-293/1934	14=-1779/393, 500/187, 3=-311/154, 11=-325/157,	7 L	This truss is International R802.10.2 a OAD CASE(S)	designed in acco Residential Code nd referenced sta Standard	ordance w e sections andard AN	ith the 2018 R502.11.1 a ISI/TPI 1.	and			B	STATE OF M	MISSOLA I M.

NOTES

1) Unbalanced roof live loads have been considered for this design.

Job	Truss	Truss Type	Qty	Ply	
P210577	B07	Common Girder	1	1	I58733360 Job Reference (optional)

9

Run: 8.63 S Nov 19 2022 Print: 8.630 S Nov 19 2022 MiTek Industries. Inc. Mon Jun 05 09:37:54 Page: 1 ID:KA_rnKOPu65sNGXSVZJz1az9ZZ9-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f 16-0-0 22-6-0 3-0-12 9-7-4 28-10-4 32-0-0 3-0-12 6-6-8 6-4-12 6-6-0 6-4-4 3-1-12 4x6= 5 3x4 -3x4 👟 18 17 12 5 4 6 7-2-2 3x4 ≠ 3x4 3 7 4x6 -4x6 -2 8 0-6-2 ٠ মি 6 . ΠΠ Ø \ge 15 14 13 12 11 19 16 10 4x8= 4x8= 6x6 =7x8= 7x8= 6x6= 3x6 II 3x6 II 4x8 =HUS26 <u>2-11-0</u> 3-0-12 29-<u>1-0 32-0-0</u> 9-7-4 16-1-12 22-6-0 28-10-4 0-2-12 2-11-0 2-11-0 0-1-12 6-6-8 6-6-8 6-4-4 6-4-4 Scale = 1:56.4 Loading Spacing 2-0-0 CSI DEFL in l/defl L/d PLATES GRIP (psf) (loc) TCLL (roof) 25.0 Plate Grip DOL 1.15 TC 0.77 Vert(LL) -0.06 13-15 >999 240 MT20 244/190 BC Snow (Pf/Pg) 13 9/20 0 Lumber DOL 1 15 0.52 Vert(CT) -0.1311-13 >999 180 TCDL 25.0 Rep Stress Incr NO WB 0.83 Horz(CT) 0.02 10 n/a n/a 0.0 Code IRC2018/TPI2014 Matrix-S 10.0 Weight: 176 lb FT = 20% Wind: ASCE 7-16; Vult=115mph (3-second gust) LUMBER 2) TOP CHORD 2x4 SP 1650F 1.5E *Except* 1-3,7-9:2x4 SP

	No.2
BOT CHORD	2x8 SPF No.2
WEBS	2x4 SPF No.3
BRACING	
TOP CHORD	Structural wood sheathing directly applied or 3-8-0 oc purlins.
BOT CHORD	Rigid ceiling directly applied or 6-0-0 oc bracing.
REACTIONS	(size) 10=0-5-8, 16=0-3-8
	Max Horiz 16=127 (LC 16)
	Max Uplift 10=-751 (LC 17), 16=-265 (LC 16)
	Max Grav 10=1398 (LC 2), 16=1888 (LC 2)
FORCES	(Ib) - Maximum Compression/Maximum Tension
TOP CHORD	1-2=-223/71, 2-4=-2005/289, 4-5=-1644/299,
	5-6=-1660/298, 6-8=-1862/397, 8-9=-369/506
BOT CHORD	1-16=-10/215, 15-16=-102/230,
	13-15=-266/1741, 11-13=-240/1613,
	10-11=-375/350, 9-10=-375/350
WEBS	2-16=-1600/375, 8-10=-1706/377,
	5-13=-74/584, 2-15=-300/1719,
	4-15=-335/168, 4-13=-492/188,
	6-11=-568/233, 6-13=-325/295,
	8-11=-302/1872

NOTES

BCLL

BCDL

Unbalanced roof live loads have been considered for 1) this design.

Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=35ft; Ke=1.00; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) 0-0-0 to 5-0-0, Interior (1) 5-0-0 to 16-0-0, Exterior(2R) 16-0-0 to 21-0-0, Interior (1) 21-0-0 to 32-0-0 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

- TCLL: ASCE 7-16; Pr=25.0 psf (roof LL: Lum DOL=1.15 3) Plate DOL=1.15); Pg=20.0 psf; Pf=13.9 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat C; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10
- 4) Unbalanced snow loads have been considered for this design.
- 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 265 lb uplift at joint 16 and 751 lb uplift at joint 10.
- This truss is designed in accordance with the 2018 7) International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- Use Simpson Strong-Tie HUS26 (14-16d Girder, 6-16d 8) Truss, Single Ply Girder) or equivalent at 27-7-12 from the left end to connect truss(es) to front face of bottom chord.
- Fill all nail holes where hanger is in contact with lumber. 9) 10) In the LOAD CASE(S) section, loads applied to the face
- of the truss are noted as front (F) or back (B).
- LOAD CASE(S) Standard
- Dead + Snow (balanced): Lumber Increase=1.15, Plate 1) Increase=1.15
- Uniform Loads (lb/ft)
- Vert: 1-5=-78, 5-9=-78, 1-9=-20
 - Concentrated Loads (lb)
 - Vert: 19=554 (F)

Job	Truss	Truss Type	Qty	Ply	
P210577	B08	Common	1	1	I58733361 Job Reference (optional)

Run: 8.63 S Nov 19 2022 Print: 8.630 S Nov 19 2022 MiTek Industries, Inc. Mon Jun 05 09:37:54 ID:gVdAQADZkItdEMdpJi4Db7z9Zag-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

June 6,2023

Mitek[®] 16023 Swingley Ridge Rd Chesterfield, MO 63017

Job	Truss	Truss Type	Qty	Ply		
P210577	B09	Roof Special	1	1	Job Reference (optional)	58733362

Premier Building Supply (Springhill, KS), Spring Hills, KS - 66083,

Run: 8.63 S Nov 19 2022 Print: 8.630 S Nov 19 2022 MiTek Industries, Inc. Mon Jun 05 09:37:54 ID:s9rBsYmo77YE8GZTSfOnwcz9ZZz-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

MiTek 16023 Swingley Ridge Rd Chesterfield, MO 63017

Page: 1

	3-1	-12 6-6-	11 9	9-10-4	12-11-13	16-0-0	19-2-	4 22-5	5-14	25	-9-8	27-4-4	30-6-0	
	3-1	-12 3-4-	15 '	3-3-9	3-1-9	3-0-3	3-2-4	3-3	-10	3-3	3-10	1-6-12'	3-1-12	I
							4x4= 7							
ΤT					4x4			3x4 ≈				4x6		
2-2				1.5» 12	4 1 6			8	4x	12-	4	44-	*	
5 7	I			5	22	$\langle \rangle$			23 **		_ 1	.0		
~ +		2	4x6 ≠	1				/			<u>م</u>	1	1	
7-2-		د 4x6 م 3	x4 = 4								$\leq $	\mathcal{A}	\leq	10
5-11		2		18										
4 4					0-	17	16		1	5	14	13		3x4 -
					0 N	3x4=			3х	4=	5x	.8=		0,42
<u> </u>	<u></u>		20		19		3x8=					1.5>	K4 II	
	3x4=	∠ ı 1.5x4 ∎	4x12=	1.5>	(4 II									
					= 8xC									
	2-11	<u>1-0 ³⁻1-¹² 6-6-</u>	11	10-0-0	16-0-	0		22-7-10		25-	7-12	27-7 <u>11 27-4</u>	'-0 <u>30-6-0</u>	
Scale – 1:55 3	2-11	1-0 0-2-12 3-4-	15	3-5-5	6-0-0)	I	6-7-10	I	3-	0-2	1-8-8 0-2-	2-11-0 12	I
Plate Offsets ((X, Y): [18:0-2-0,0-3-0	0]												
Loading	(psf)	Spacing	2-0-0		CSI		DEFL	in (loc)	l/defl	L/d	PLATES	G	RIP	
TCLL (roof)	25.0 18 9/20 0	Plate Grip DOL	1.15 1.15		TC BC	0.36	Vert(LL)	-0.10 16-18	>999 _999	240	MT20	24	14/190	
TCDL	25.0	Rep Stress Incr	YES		WB	0.74	Horz(CT)	0.13 13	n/a	n/a				
BCLL BCDL	0.0 10.0	Code	IRC2018	8/TPI2014	Matrix-S						Weight: 1	53 lb F	Г = 20%	
LUMBER			2)	Wind: ASCE	7-16; Vult=115n	nph (3-seo	cond gust)							
TOP CHORD	2x4 SP No.2 2x4 SP No.2 *Excer	nt* 19-5:2v4 SPF N		Vasd=91mp Ke=1.00: Ca	h; TCDL=6.0psf; at. II: Exp C: Encl	BCDL=6. osed: MW	0psf; h=35ft; /FRS (envelop	e)						
WEBS	2x4 SPF No.3	01 19-0.274 011 1	10.5	exterior zon	e and C-C Exterio	or(2E) 0-0	-0 to 5-0-0,	-)						
BRACING TOP CHORD	Structural wood she	eathing directly ap	plied or	21-0-0, Inter	ior (1) 21-0-0 to 2	25-9-8, Ex	terior(2E) 25-9)-8						
	3-1-1 oc purlins, exe 2-0-0 oc purlins (6-0	cept 0-0 max) [.] 9-10		to 30-6-0 zo vertical left a	ne; cantilever left and right exposed	t and right d;C-C for r	exposed ; end nembers and							
BOT CHORD	Rigid ceiling directly	applied or 6-0-0	DC	forces & MV DOL=1.60 p	/FRS for reaction late grip DOL=1.0	ns shown; 60	Lumber							
REACTIONS	(size) 13=0-5-8	, 21=0-5-8	3)	TCLL: ASCE	E 7-16; Pr=25.0 p	sf (roof Ll	L: Lum DOL=1	.15						
	Max Horiz 21=179 (I Max Uplift 13=-224 (LC 16) (LC 17), 21=-233 ((LC 16)	DOL=1.15 F	late DOL=1.15);	Is=1.0; Ro	bugh Cat C; Fu	illy						
	Max Grav 13=1830	(LC 2), 21=1830 ((LC 2) 4)	Unbalanced	snow loads have	e been cor	nsidered for thi	s						
FORCES	(Ib) - Maximum Con Tension	npression/Maximu	m 5)	design. Provide ade	quate drainage to	o prevent	water ponding.							
TOP CHORD	1-2=-263/377, 2-4=- 4-5=-3077/446, 5-6=	-1447/188, =-3093/503.	6)	This truss ha	as been designed	d for a 10. t with any	0 psf bottom	s						
	6-7=-1908/256, 7-8= 8-92611/314, 9-10	=-1913/264, 0795/119	7)	Provide med	hanical connection	on (by oth	ers) of truss to							
	10-11=-897/124, 11	-12=-256/438		joint 21 and	224 lb uplift at joi	int 13.								
BUICHURD	19-20=-10/45, 18-19	21=-283/215, 9=0/67, 5-18=-308	8) 8/118,	I his truss is International	Residential Cod	ordance w le sections	ith the 2018 s R502.11.1 an	d			A	200	den -	
	16-18=-279/2190, 1 14-15=-154/2346, 1	5-16=-167/2061, 3-14=-316/250,	9)	R802.10.2 a Graphical pu	nd referenced sta urlin representation	andard AN	NSI/TPI 1.	ze		A	FIE	JF MIL	8500	N
WEBS	12-13=-316/250	15235/128	0)	or the orient	ation of the purlin	along the	e top and/or			Ac	S/s	COTT N	1.	N.
WEBS	9-14=-1884/249, 10)-14=-13/146,	LC	AD CASE(S)	Standard					BI	/	SEVIER	Ň	Ň.
	2-21=-1716/340, 2-2 4-20=-1388/255, 18	20=-230/1675, 3-20=-277/1431,								85	0			×8
	4-18=-184/1569, 6-7 6-18=-218/939, 8-16	16=-758/230, 6=-547/177.								RE	Cot	TOMPE	eni	Ø
	8-15=-83/463, 11-13	3=-1714/352,								NG	PE-	2001018	3807	g
NOTES	11-14-223/1430									Ø	SST.		ENGL	9
 Unbalance this design 	ed roof live loads have n.	e been considered	for								Sec.	NAL	S	
												June 6	6,2023	
Design va	ING - Verify design parameter alid for use only with MiTek®	ers and READ NOTES ® connectors. This desi	ON THIS AND INC	LUDED MITEK R	EFERENCE PAGE M shown, and is for an i	II-7473 rev. 5 individual bu	/19/2020 BEFORE	USE. not						

Job	Truss	Truss Type	Qty	Ply		
P210577	B10	Roof Special	1	1	I58733363 Job Reference (optional)	

Run: 8,63 S Nov 19 2022 Print: 8,630 S Nov 19 2022 MiTek Industries, Inc. Mon Jun 05 09:37:55 ID:D0L3uyGawDAe0K2ljhcsymz9ZY1-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

	3-1-	-12 6-6-11	9-10-4	16-0-0	20-5	5-14 23	-9-8	30-6-0
	3-1-	-12 3-4-15	3-3-9	6-1-12	4-5	-14 3-3	3-10	6-8-8
					4x6= 6			
7-2-2 5-3-11 5-3-11 7-2-2	v v v v o − 3x4=	3x4 = 4x6 = 3 2 18 1.5x4 II	5 5 4x6 = 5 4 17 4x12 = 1.5	x8 = 19 19 10 16 5x10= 5x4 II	4 13 x6= 3x8=	4x12= 7 20 12 1.5x4 II	MT18HS 5x8	= 21 22 23 9 X X 10 24 4x6= 3x4
Scale = 1:55.1	<u>2-11</u> 2-11	1-0 3-1-12 6-6-11 1-0 0-2-12 3-4-15	<u> </u>	<u>16-0-0</u> 6-0-0	<u>20-</u> 4-7	7-10 23- 7-10 3-	7-12 27 0-2 3·	-4-4 27-7-0 <u>30-6-0</u> 8-8 0-2-12 2-11-0
Plate Offsets ((X, Y): [8:0-4-0,0-1-13]], [15:0-7-4,0-3-4]						
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL	(psf) 25.0 18.9/20.0 25.0 0.0	Spacing2Plate Grip DOL1Lumber DOL1Rep Stress IncrYCode1	2-0-0 1.15 1.15 (FES RC2018/TPI2014	CSI TC 00 BC 00 WB 00 Matrix-S	B9 Vert(LL) - 83 Vert(CT) - 79 Horz(CT)	in (loc) l/def 0.11 13-15 >999 0.29 13-15 >999 0.16 10 n/a	H L/d PLATE 9 240 MT20 9 180 MT18H a n/a	S GRIP 244/190 S 197/144
	10.0			= 7.40 \/ult 445mmh //			weight	150 ID FI = 20%
LUMBER TOP CHORD BOT CHORD WEBS WEDGE BRACING TOP CHORD BOT CHORD WEBS REACTIONS	2x4 SP No.2 *Excep 1.5E 2x4 SP No.2 *Excep 2x4 SPF No.3 Right: 2x4 SP No.3 Structural wood sheat 1-7-8 oc purlins, exc 2-0-0 oc purlins (4-4 Rigid ceiling directly bracing. 1 Row at midpt (size) 10=0-5-8, Max Horiz 18=179 (L Max Uplift 10=-222 (Max Grav 10=1816 (ot* 8-9:2x4 SP 1650F ot* 16-5:2x4 SPF No.3 athing directly applied of pept I-14 max.): 7-8. applied or 6-0-0 oc 5-13, 8-10 18=0-5-8 _C 16) (LC 17), 18=-233 (LC 16 (LC 2), 18=1844 (LC 2)	 2) Wind: ASC Vasd=91mp Ke=1.00; C exterior zor Interior (1) ! 20-5-14, Int 23-9-8 to 28 or cantilever le right expose for reaction DOL=1.60 3) TCLL: ASC Plate DOL= DOL=1.15 I Exp.; Ce=0 4) Unbalanced design. 5) Provide add 	 - /-16; Vult=115mph (2) - /-16; Vult=115mph (2) - Obs; TCDL=6.0psf; BCDI 	-second gust) =6.0psf; h=35ft; MWFRS (envelope) 0-0-0 to 5-0-0, (2E) 16-0-0 to -8, Exterior(2R) to 30-6-0 zone; nd vertical left and d forces & MWFRS 1.60 plate grip of LL: Lum DOL=1.1 18.9 psf (Lum); Rough Cat C; Full u=50-0-0 o considered for this ent water ponding.	5 Y		
FORCES	(lb) - Maximum Com Tension	pression/Maximum	 All plates an This truss b 	e MT20 plates unless of	therwise indicated.			
TOP CHORD	1-2=-262/372, 2-4=- 4-5=-3312/486, 5-6= 6-7=-1975/284, 7-8=	1456/185, =-2026/265, =-1463/216, 8-9=-357/83	chord live lo 8) Provide me 32 bearing plat	bad nonconcurrent with chanical connection (by the capable of withstand	any other live loads others) of truss to			
BOT CHORD WEBS NOTES 1) Unbalance this design	1-18=-258/254, 17-1 16-17=-18/65, 15-16 13-15=-491/3103, 12 11-12=-175/2281, 10 9-10=-621/372 5-13=-1440/372, 6-1 7-13=-651/167, 7-12 8-11=-37/791, 8-10= 2-18=-1731/334, 2-1 4-17=-1422/253, 15- 4-15=-234/1794 ed roof live loads have n.	18=-279/214, 5=0/68, 5-15=-50/499, 2-13=-177/2277, 0-11=-85/1425, 13=-62/920, 2=0/144, 7-11=-1130/16 2533/548, 17=-225/1672, -17=-267/1435, been considered for	joint 10 and 9) This truss is Internationa R802.10.2 <i>i</i> 10) Graphical p or the orien 2, bottom cho LOAD CASE(S	233 lb uplift at joint 18 a designed in accordan- Il Residential Code sec and referenced standar urlin representation do tation of the purlin alon 'd.) Standard	e with the 2018 ions R502.11.1 and J ANSI/TPI 1. es not depict the size g the top and/or	9	TO PH	OF MISSOL SCOTT M. SEVIER NUMBER S-2001018807

June 6,2023 MiTek

16023 Swingley Ridge Rd Chesterfield, MO 63017

Job	Truss	Truss Type	Qty	Ply	
P210577	B11	Half Hip Girder	1	1	Job Reference (optional)

Run; 8.63 S Nov 19 2022 Print; 8.630 S Nov 19 2022 MiTek Industries, Inc. Mon Jun 05 09:37:56 ID:esYd4oV7DNhoPPa8uuzYm_z9ZXj-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

24-2-8

Page: 1

Scale = 1:52.7 Plate Offsets (X, Y): [8:Edge,0-4-12]

Loading	(psf)	Spacing	2-0-0		CSI	0.91	DEFL	in 0.10	(loc)	l/defl	L/d	PLATES	GRIP				
Spow (Pf/Pg)	25.0		1.15			0.01	Vert(LL)	0.19	12-13	>999	100	101120	197/144				
	10.9/20.0	Pop Stross Iper	NO			0.73		-0.22	12-13	>999	n/o						
DOLL	25.0	Code			Motrix C	0.99	11012(01)	0.12	0	11/a	n/a						
BCLL BCDL	10.0	Code	IRC2018	5/1912014	Matrix-5							Weight: 146 lb	FT = 20%				
_										<u> </u>							
	0.40DNL 0		2)	Wind: ASCE	7-16; Vult=115m	ph (3-sec	ond gust)		13) Use	e Simpso	on Stro	ng-Tie LUS26 (4	-10d Girder, 3-10d				
	2X4 SP NO.2				t II: Exp C: Epclo	BCDL=0.0	FRS (envelo		the	loft and	to con	nect truss(es) to	back face of bottom				
BOICHORD	2x6 SPF No.2 "Exce	pt" 14-3:2x4 SPF NC	0.3	exterior zone	and C-C Exterio	r(2E) 0-1.	12 to 5-1-12	pe)	chc	rd skow		deg to the right	sloping 0.0 deg				
VVEBS	ZX4 SPF N0.3 EXCe	pt 16-1:2x4 SP No	Z	Interior (1) 5	-1-12 to 13-10-3	Exterior(2	PR) 13-10-3 t	, 0	down								
BRACING				20-11-1 Inte	rior (1) 20-11-1 to	24-0-12	zone: cantile	ver	(UUWI). 14) Fill all nail holes where hanger is in contact with lumbor								
TOP CHORD	Structural wood she	athing directly applie	dor	left and right	exposed : end ve	ertical left	and right		15) In t	he I OAF	CASI	F(S) section loa	ds applied to the face				
	3-0-0 oc purlins, exe	cept end verticals, ar	nd	exposed:C-C	for members an	d forces &	MWFRS for	r	of t	he truss	are no	ted as front (F) c	or back (B).				
	2-0-0 oc purlins (4-1	-10 max.): 5-7.		reactions sho	own; Lumber DOI	L=1.60 pla	ate grip			CASE(S	Sta	ndard	1 Baon (2).				
BOICHORD	kigia celling airecuy	applied of 3-9-13 oc		DOL=1.60	,		0 1		1) Dead + Snow (balanced): Lumber Increase=1 15 Plate								
WEBS	1 Row at midnt	6-8	3)	TCLL: ASCE	7-16; Pr=25.0 ps	sf (roof LL	: Lum DOL=	1.15	Increase=1.15								
DEACTIONS				Plate DOL=1	.15); Pg=20.0 ps	f; Pf=18.9) psf (Lum	U	Uniform Loads (lb/ft)								
REACTIONS	(SIZE) 8= Mecha			DOL=1.15 P	late DOL=1.15); I	s=1.0; Ro	ough Cat C; F	ully	-	Vert: 1-	5=-78.	5-7=-88. 14-16=	-20. 8-13=-20				
	Max Honz 16=283 (L	.0 13) 1 0 13) 10 074 (1 0	10)	Exp.; Ce=0.9	; Cs=1.00; Ct=1.	10, Lu=50	0-0-0		C	oncentra	ted Lo	ads (lb)					
	Max Upilit $8=-2522$ (LC 13), 16=-674 (LC	(01) (01)	Unbalanced	snow loads have	been cor	sidered for th	his		Vert: 20	=-37 (B), 21=234 (B), 2	22=234 (B), 23=234				
		.C 32), 16=1345 (LC	2)	design.						(B)	. (
FORCES	(Ib) - Maximum Com	pression/Maximum	5)	Provide adeo	quate drainage to	prevent v	water ponding	g.		()							
		25 40/2440	6)	This truss ha	is been designed	for a 10.0) psf bottom										
TOP CHORD	1-2=-1010/8/0, 2-3=	-3540/2419,		chord live loa	ad nonconcurrent	with any	other live loa	ids.									
	5-4=-24/1/10/0, 4-0	=-2031/1/94, - 116/127 7 9 226	()	Refer to gird	er(s) for truss to t	russ conr	ections.										
	1-16-1280/679	=-110/137, 7-0=-230	<i>b</i> /02, 8)	Provide mec	nanical connectio	on (by oth	ers) of truss t	0									
	15-16-411/346 14-	1561/89 13-148	8/78	ioint 9 and 6	74 lb uplift at joint	standing Z		at									
bor onone	3-13=-494/867 12-1	3=-2524/3476	,, no, 0)	This truce is	designed in 2000	rdanco wi	ith the 2019					2000	alle				
	10-12=-1956/2441.	9-10=-2023/1611.	3)	International	Residential Code	sections	R502 11 1 a	and				P OF I	MISS				
	8-9=-2023/1611	,		R802 10 2 a	nd referenced sta	ndard AN	ISI/TPI 1	ina				TE					
WEBS	2-15=-1446/1011.13	3-15=-1198/1758.	10) Graphical pu	rlin representatio	n does no	ot depict the s	size			A	NY and	New Y				
	2-13=-1484/1948, 6-	8=-2101/2667,		or the orient	ation of the purlin	along the	top and/or				A	S/ SCOT	TM. YY				
	1-15=-806/1472, 4-1	2=-129/591,		bottom chord	ł.	5					-8	SEV.	IER \ X				
	3-12=-1300/666, 4-1	0=-972/271,	11) Use Simpson	n Strong-Tie LUS	26 (4-10d	Girder, 3-10	d		1							
	5-10=-587/511, 6-10	=-348/1109,		Truss, Single	e Ply Girder) or ed	quivalent	at 16-6-8 fror	n			X		Kor allan				
	6-9=-1951/1075			the left end t	o connect truss(e	s) to back	c face of botto	om		1		Jour L	Strand				
NOTES			chord, skewe	ed 0.0 deg.to the	left, slopir	ng 0.0 deg. d	own.			27	DE 2001	010007					
1) Unbalance	ed roof live loads have	been considered for	12) Use Simpsor	n Strong-Tie LUS	26 (4-10d	I Girder, 3-10	d			N.	ON PE-2001	01880/ 201				
this desig	n			Truss, Single	e Ply Girder) or ed	quivalent	spaced at 2-0	0-0			V	100	154				

oc max. starting at 18-6-8 from the left end to 20-6-8 to

connect truss(es) to back face of bottom chord.

this design.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

&SSIONAL

E

June 6,2023

Job	Truss	Truss Type	Qty	Ply		
P210577	B12	Roof Special	1	1	Job Reference (optional)	

Run: 8.63 S. Nov 19 2022 Print: 8.630 S. Nov 19 2022 MiTek Industries. Inc. Mon. Jun 05 09:37:57 ID:LKCGJr1jsuEZhAxbT7lsYGz9ZX1-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Unbalanced roof live loads have been considered for 1) this design.

PE-2001018807

C

Job	Truss	Truss Type	Qty	Ply	
P210577	B13	Roof Special	1	1	Job Reference (optional)

Run: 8.63 S Nov 19 2022 Print: 8.630 S Nov 19 2022 MiTek Industries, Inc. Mon Jun 05 09:37:57 ID:bcJWLYZhk5eSLmjsUf1ynKz9ZWM-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:48.9

Plate Offsets (X, Y): [3:0-3-14,Edge]

Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 25.0 18.9/20.0 25.0 0.0 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018	3/TPI2014	CSI TC BC WB Matrix-S	0.76 1.00 0.55	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.27 -0.57 0.07	(loc) 7-8 7-8 7	l/defl >999 >506 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 125 lb	GRIP 197/144 FT = 20%	
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD WEBS REACTIONS	2x4 SP No.2 *Excep 1.5E 2x4 SP No.2 2x4 SPF No.3 Structural wood shea 3-6-3 oc purlins, exc 2-0-0 oc purlins (3-3 Rigid ceiling directly bracing. 1 Row at midpt (size) 7= Mecha Max Horiz 11=233 (L Max Uplift 7=-196 (Li Max Grav 7=1435 (L	t* 3-4:2x4 SP 1650F athing directly applie cept end verticals, ar -9 max.): 1-3, 4-6. applied or 1-4-12 oc 2-11, 5-7, 3-8 nical, 11= Mechanica .C 15) C 12), 11=-200 (LC 1 .C 2), 11=-240 (LC 2)	2) d or d 3) al (2) 4) (2) 5)	Wind: ASCE Vasd=91mpl Ke=1.00; Ca exterior zone Interior (1) 5- 19-6-11, Inte left and right exposed;C-C reactions sho DOL=1.60 TCLL: ASCE Plate DOL=1 DOL=1.15 Pl Exp.; Ce=0.9 Unbalanced design. Provide adec	7-16; Vult=115mp 1; TCDL=6.0psf; Bt 1. II; Exp C; Enclos and C-C Exterior(1-12 to 14-6-11, E rior (1) 19-6-11 to exposed; end ver for members and own; Lumber DOL= 7-16; Pr=25.0 psf; 15); Pg=20.0 psf; ate DOL=1.15); Is b; Cs=1.00; Ct=1.10 snow loads have b puate drainage to c	h (3-sec CDL=6.0 ed; MW 2E) 0-1 xterior(2 24-0-12 tical left forces a =1.60 pl (roof LL Pf=18.5 =1.0; Rc 0, Lu=50 ween cor	ond gust) Dpsf; h=35ft; FRS (envelo 12 to 5-1-12 2R) 14-6-11 t 2cone; cantile and right MWFRS fo ate grip : Lum DOL= psf (Lum ugh Cat C; F)-0-0 isidered for th vater ponding	pe) o over r 1.15 Fully his a.						
FORCES	(lb) - Maximum Com Tension	pression/Maximum	6)	This truss ha	s been designed for ad nonconcurrent v	or a 10.0 vith any) psf bottom other live loa	ads.						
TOP CHORD	1-11=-209/58, 1-2=-5 3-4=-1833/299, 4-5= 5-6=-132/117, 6-7=-2	99/58, 2-3=-2778/37 [.] :-1586/312, 227/69	1, 7) 8)	Refer to girde Provide mech bearing plate	er(s) for truss to tru hanical connection capable of withsta	iss conr (by oth anding 2	ections. ers) of truss t 00 lb uplift at	to t						
BOT CHORD	10-11=-545/1774, 8-	10=-593/2748,		joint 11 and	196 lb uplift at joint	7.							The	
WEBS NOTES 1) Unbalance	7-8=-295/1047 2-11=-2078/373, 2-1 3-10=-541/161, 5-7= 3-8=-1297/239, 5-8= ed roof live loads have	0=-130/1204, 1531/336, 4-8=0/25 129/802 been considered for	9) 8, 10]	This truss is International R802.10.2 ar Graphical pu or the orienta bottom chorce	designed in accord Residential Code and referenced stan rlin representation ation of the purlin a l.	lance w sections dard AN does no long the	th the 2018 R502.11.1 a SI/TPI 1. tot depict the s top and/or	and size				STATE OF M	MISSOUR T.M. ER	

this design.

LOAD CASE(S) Standard

16023 Swingley Ridge Rd Chesterfield, MO 63017

Job	Truss	Truss Type	Qty	Ply	
P210577	B14	Roof Special	1	1	Job Reference (optional)

Run: 8.63 S Nov 19 2022 Print: 8.630 S Nov 19 2022 MiTek Industries, Inc. Mon Jun 05 09:37:58 ID:b8MNUAz0jYxeQ?KOUoewAVz9ZVq-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

5-5-1 10-6-9 14-8-13 16-10-14 20-5-13 24-2-8 3-8-11 5-5-1 5-1-9 4-2-3 2-2-2 3-6-15 4x4 = 12 5 | 4 4x12= 4x4 = 3x4 II Æ ę 2 18 19 6 20 5 0-1-10 4x8= 3x4 = 4x12= 7 , M \bowtie 蔛 15 16 ⊠ 2 0 M 173 1 è 5-10-6 4-9-14 3-11-13 A 3-11-13 3-11-13 3-11-13 ╘ 14 1 • 8 13 12 10 9 11 3x4 🛛 3x6= 4x8= 3x4 = 3x4 = 3x8 = 4x4 = 5-5-1 10-8-5 14-8-13 16-9-2 24-2-8 5-5-1 5-3-5 4-0-7 2-0-6 7-5-6

Scale = 1:51.2

Plate Offsets (X, Y): [13:0-3-8,0-2-0]

Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 25.0 18.9/20.0 25.0 0.0 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018	3/TPI2014	CSI TC BC WB Matrix-S	0.74 0.63 0.89	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.09 -0.21 0.05	(loc) 8-9 8-9 8	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 139 lb	GRIP 197/144 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD WEBS	2x4 SP No.2 2x4 SP No.2 2x4 SPF No.3 Structural wood shea 3-10-11 oc purlins, o 2-0-0 oc purlins (3-3 Rigid ceiling directly bracing. 1 Row at midpt	athing directly applied except end verticals, -5 max.): 1-3, 5-7. applied or 8-5-3 oc 6-8	2) d or and 3)	Wind: ASCE Vasd=91mpl Ke=1.00; Ca exterior zone Interior (1) 5- 16-10-14, Int cantilever lef right exposed for reactions DOL=1.60 TCLL: ASCE	7-16; Vult=115mpl n; TCDL=6.0psf; BC t. II; Exp C; Encloss e and C-C Exterior(5-1 to 14-8-13, Ext erior (1) 16-10-14 t t and right exposed d;C-C for members shown; Lumber DC 7-16; Pr=25.0 psf	h (3-sec CDL=6. ed; MW 2E) 0-1 terior(2) to 24-0- d; end v ; and fo DL=1.60 (roof LL	ond gust) Dpsf; h=35ft; FRS (envelo 12 to 5-5-1, E) 14-8-13 to 12 zone; ertical left ar ces & MWFF plate grip : Lum DOL=	pe) nd RS 1.15					
REACTIONS	(size) 8= Mecha Max Horiz 14=186 (L Max Uplift 8=-163 (L Max Grav 8=1435 (L	nical, 14= Mechanica .C 13) C 17), 14=-204 (LC 1 .C 2), 14=1435 (LC 2	al 6) 4)	Plate DOL=1 DOL=1.15 Pl Exp.; Ce=0.9 Unbalanced design	.15); Pg=20.0 psf; late DOL=1.15); Is=); Cs=1.00; Ct=1.10 snow loads have b	Pf=18.9 =1.0; Ro 0, Lu=50 een cor	psf (Lum pugh Cat C; F)-0-0 isidered for tl	⁻ ully his					
FORCES	(lb) - Maximum Com Tension	pression/Maximum	5)	Provide adeo	quate drainage to p	revent	vater ponding	g.					
TOP CHORD	1-14=-1383/232, 1-2 2-3=-2294/317, 3-4= 4-5=-1655/275, 5-6= 6-7=-108/101, 7-8=- ⁻	2=-1683/263, 1699/266, 1613/255, 164/49	6) 7) 8)	chord live loa Refer to gird Provide mechanical	ad nonconcurrent w er(s) for truss to tru hanical connection	vith any iss conr (by oth anding 2	other live loa ections. ers) of truss t 04 lb uplift at	ids. to					
BOT CHORD	13-14=-266/257, 11- 10-11=-491/2277, 9- 8-9=-251/979	13=-442/1683, 10=-329/1589,	9)	joint 14 and This truss is	163 lb uplift at joint designed in accord	8. lance w	th the 2018	and				OF M	
WEBS	5-9=-629/200, 3-11= 3-10=-1066/189, 4-1 5-10=-328/52, 2-11= 2-13=-1048/243, 1-1 6-9=-134/994, 6-8=-	330/129, 0=-118/961, -122/741, 3=-294/2019, 1555/306	10 LC	R802.10.2 ar) Graphical pu or the orienta bottom chorc DAD CASE(S)	nd referenced stand rlin representation ation of the purlin a l. Standard	dard AN does no long the	ISI/TPI 1. of depict the solution top and/or	size			*	STATE SCOTT SEVI	M. ER

NOTES

1) Unbalanced roof live loads have been considered for this design.

PE-20010188

E

June 6,2023

SSIONAL

Job	Truss	Truss Type	Qty	Ply	
P210577	B15	Roof Special	1	1	I58733368 Job Reference (optional)

Run: 8.63 S Nov 19 2022 Print: 8.630 S Nov 19 2022 MiTek Industries, Inc. Mon Jun 05 09:37:59 ID:jwAjnQKqfmiN1cc9E6AyNqz9ZVM-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:55.4

Plate Offsets (X, Y): [3:0-2-8,0-2-0], [9:0-3-8,0-1-8]

Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 25.0 18.9/20.0 25.0 0.0 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018	3/TPI2014	CSI TC BC WB Matrix-S	0.94 0.55 0.84	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.07 -0.18 0.03	(loc) 12-13 12-13 8	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 145 lb	GRIP 197/144 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD	2x4 SP No.2 *Except 1.5E 2x4 SP No.2 2x4 SPF No.3 Structural wood sheet 3-11-6 oc purlins, et 2-0-0 oc purlins (4-6 Rigid ceiling directly bracing.	t* 1-3:2x4 SP 1650F athing directly applied xcept end verticals, ar -1 max.): 1-3. applied or 6-0-0 oc	2) or nd 3)	Wind: ASCE Vasd=91mph Ke=1.00; Car exterior zone Interior (1) 5- 19-6-6, Interi and right exp exposed;C-C reactions sho DOL=1.60 TCLL: ASCE	7-16; Vult=115mpl n; TCDL=6.0psf; Bd t. II; Exp C; Enclose and C-C Exterior(1-12 to 14-8-13, E or (1) 19-6-6 to 27- losed; end vertical for members and wn; Lumber DOL=	h (3-sec CDL=6. ed; MW 2E) 0-1 xterior(: -8-8 zor left and forces -1.60 pl (roof LI	cond gust) Dpsf; h=35ft; FRS (envelop -12 to 5-1-12 2R) 14-8-13 tr te; cantilever d right & MWFRS for ate grip :: Lum DOL=	pe) o left 1.15					
REACTIONS	(size) 8=0-5-8, 1 Max Horiz 14=-208 (I Max Uplift 8=-211 (Lu Max Grav 8=1876 (L	4= Mechanical LC 12) C 17), 14=-216 (LC 12 .C 2), 14=1431 (LC 2)	²⁾ 4)	Plate DOL=1 DOL=1.15 Pl Exp.; Ce=0.9 Unbalanced	.15); Pg=20.0 pst; late DOL=1.15); Is=); Cs=1.00; Ct=1.10 snow loads have b	Pf=18.9 =1.0; R(), Lu=5 een coi	9 psf (Lum ough Cat C; F 0-0-0 nsidered for th	ully nis					
FORCES	(lb) - Maximum Com Tension	pression/Maximum	5) 6)	Provide adec	quate drainage to p	revent	water ponding	g.					
TOP CHORD	1-14=-1373/244, 1-2 2-3=-1892/255, 3-4= 4-5=-1702/236, 5-6=	=-1569/240, -1690/246, -1741/178, 6-7=-283/3	6) 7) 371 8)	chord live loa Refer to girde	ad nonconcurrent w er(s) for truss to tru hanical connection	/ith any iss coni (by oth	other live loa nections. ers) of truss t	ds. o					
BOT CHORD	13-14=-127/247, 12- 10-12=-125/1883, 9-	13=-103/1569, 10=-64/1521,	-,	bearing plate joint 14 and 2	capable of withsta 211 lb uplift at joint	nding 2 8.	216 lb uplift at						m
WEBS	8-9=-254/2/3, 7-8=-2 3-12=-158/102, 2-12 2-13=-974/254, 1-13 6-8=-1755/390, 4-10 3-10=-968/147, 5-10 5-9=-464/170, 6-9=-2	254/2/3 =-87/394, =-281/1898, =-103/965, =-161/116, 303/1852	9) 10)	This truss is International R802.10.2 ar Graphical pu or the orienta bottom chore	designed in accord Residential Code s and referenced stand rlin representation ation of the purlin a I.	lance w sections dard AN does no long the	ith the 2018 R502.11.1 a NSI/TPI 1. ot depict the s top and/or	ind size				STATE OF M	HISSOLUTE M. ER
NOTES	ad roof live loade have	haan considered for	LO	AD CASE(S)	Standard						NP.	1	8

Unbalanced roof live loads have been considered for 1) this design.

16023 Swingley Ridge Rd Chesterfield, MO 63017

NUMB

PE-20010188

Job	Truss	Truss Type	Qty	Ply	
P210577	B16	Half Hip	1	1	I58733369 Job Reference (optional)

Run: 8.63 S Nov 19 2022 Print: 8.630 S Nov 19 2022 MiTek Industries, Inc. Mon Jun 05 09:37:59 ID:Jt/RH1iHMIc_FNU7Y6EE8Mz9ZUt-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

June 6,2023

Job	Truss	Truss Type	Qty	Ply		
P210577	B17	Half Hip	1	1	Job Reference (optional)	33370

Run: 8.63 S Nov 19 2022 Print: 8.630 S Nov 19 2022 MiTek Industries, Inc. Mon Jun 05 09:38:00 ID:BwJNhCzSPkG?Gbb9H169Uoz9ZUY-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

June 6,2023

Job	Truss	Truss Type	Qty	Ply	
P210577	B18	Half Hip	1	1	Job Reference (optional)

Run: 8.63 S Nov 19 2022 Print: 8.630 S Nov 19 2022 MiTek Industries, Inc. Mon Jun 05 09:38:00 ID:CBroF0A6PzPboDOQn5v8gNz9ZUH-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15	тс	0.79	Vert(LL)	-0.11	9-11	>837	240	MT20	197/144
Snow (Pf/Pg)	18.9/20.0	Lumber DOL	1.15	BC	0.49	Vert(CT)	-0.22	9-11	>426	180		
TCDL	25.0	Rep Stress Incr	YES	WB	0.73	Horz(CT)	0.01	7	n/a	n/a		
BCLL	0.0	Code	IRC2018/TPI2014	Matrix-S								
BCDL	10.0										Weight: 128 lb	FT = 20%

$\begin{array}{llllllllllllllllllllllllllllllllllll$	LUMBER		
$\begin{array}{llllllllllllllllllllllllllllllllllll$	TOP CHORD	2x4 SP N	0.2
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	BOT CHORD	2x4 SP N	0.2
$\begin{array}{llllllllllllllllllllllllllllllllllll$	WEBS	2x4 SPF I	No.3 *Except* 7-6:2x4 SP No.2
$\begin{array}{rcl} {\sf TOP\ CHORD} & {\sf Structural\ wood\ sheathing\ directly\ applied\ or\ 6-0-0\ oc\ purlins,\ except\ end\ verticals,\ and\ 2-0-0\ oc\ purlins,\ except\ end\ end\ end\ end\ end\ end\ end\ end$	BRACING		
$\begin{array}{rllllllllllllllllllllllllllllllllllll$	TOP CHORD	Structural	wood sheathing directly applied or
$\begin{array}{c} \begin{array}{c} \mbox{2-0-0 cc purlins (6-0-0 max.): 1-3.} \\ \mbox{Rigid ceiling directly applied or 10-0-0 cc bracing.} \\ \mbox{WEBS} & 1 \mbox{Row at midpt} & 2-11 \\ \mbox{REACTIONS} & (size) & 7= \mbox{Mechanical}, 9=0-4-15, 11= \\ \mbox{Max Horiz} & 11=-300 \ (LC \ 12) \\ \mbox{Max Uplift} & 7=-106 \ (LC \ 13), 9=203 \ (LC \ 13), \\ & 11=-176 \ (LC \ 12) \\ \mbox{Max Grav} & 7=669 \ (LC \ 2), 9=1143 \ (LC \ 2), \\ & 11=512 \ (LC \ 40) \\ \end{array} \right) \\ \mbox{FORCES} & (lb) - \mbox{Maximum Compression/Maximum Tension} \\ \mbox{TOP CHORD} & 1.11=-248/104, 1-2=-152/153, 2-3=-35/72, \\ & 3-4=-276/158, 4-5=-338/125, 5-6=-146/135, \\ & 6-7=-151/261, 8-9=-129/283, 7-8=-175/314 \\ \mbox{WEBS} & 2-11=-312/286, 2-9=-535/265, 3-9=-593/169, \\ & 3-8=-134/352, 4-8=-180/87, 5-7=-532/209, \\ & 5-8=-84/119 \\ \end{array} \right)$		6-0-0 oc p	ourlins, except end verticals, and
BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing. WEBS 1 Row at midpt 2-11 REACTIONS (size) 7= Mechanical, 9=0-4-15, 11= Mechanical Max Horiz 11=-300 (LC 12) Max Uplift 7=-106 (LC 13), 9=-203 (LC 13), 11=-176 (LC 12) Max Grav 7=669 (LC 2), 9=1143 (LC 2), 11=512 (LC 40) FORCES (lb) - Maximum Compression/Maximum Tension TOP CHORD 1-11=-248/104, 1-2=-152/153, 2-3=-35/72, 3-4=-276/158, 4-5=-338/125, 5-6=-146/135, 6-7=-151/261, 8-9=-129/283, 7-8=-175/314 WEBS 9-11=-151/261, 8-9=-129/283, 7-8=-175/314 WEBS 2-11=-312/286, 2-9=-535/265, 3-9=-593/169, 3-8=-134/352, 4-8=-180/87, 5-7=-532/209, 5-8=-84/119		2-0-0 oc p	ourlins (6-0-0 max.): 1-3.
$\begin{tabular}{ c c c c c } \hline bracing.\\ \hline WEBS & 1 Row at midpt & 2-11\\ \hline REACTIONS & (size) & 7= Mechanical, 9=0-4-15, 11= Mechanical & Max Horiz & 11=-300 (LC 12) & Max Horiz & 11=-300 (LC 12) & Max Uplift & 7=-106 (LC 13), 9=-203 (LC 13), 11=-176 (LC 12) & Max Grav & 7=669 (LC 2), 9=1143 (LC 2), 11=512 (LC 40) & Top CHORD & 1-11=-248/104, 1-2=-152/153, 2-3=-35/72, 3-4=-276/158, 4-5=-338/125, 5-6=-146/135, 6-7=-151/88 & BOT CHORD & 9-11=-151/261, 8-9=-129/283, 7-8=-175/314 & WEBS & 2-11=-312/286, 2-9=-535/265, 3-9=-593/169, 3-8=-134/352, 4-8=-180/87, 5-7=-532/209, 5-8=-84/119 & \end{tabular}$	BOT CHORD	Rigid ceili	ng directly applied or 10-0-0 oc
$\begin{array}{llllllllllllllllllllllllllllllllllll$		bracing.	
$\begin{array}{rcl} \textbf{REACTIONS} & (size) & 7= & \text{Mechanical}, 9=0-4-15, 11= & \\ & \text{Mechanical} & \\ & \text{Max Horiz} & 11=-300 (LC 12) & \\ & \text{Max Uplift} & 7=-106 (LC 13), 9=-203 (LC 13), \\ & 11=-176 (LC 12) & \\ & \text{Max Grav} & 7=669 (LC 2), 9=1143 (LC 2), \\ & 11=512 (LC 40) & \\ \hline \textbf{FORCES} & (lb) - & \text{Maximum Compression/Maximum} & \\ & \text{Tension} & \\ \hline \textbf{TOP CHORD} & 1-11=-248/104, 1-2=-152/153, 2-3=-35/72, \\ & 3-4=-276/158, 4-5=-338/125, 5-6=-146/135, \\ & 6-7=-151/88 & \\ \hline \textbf{BOT CHORD} & 9-11=-151/261, 8-9=-129/283, 7-8=-175/314 & \\ \hline \textbf{WEBS} & 2-11=-312/286, 2-9=-535/265, 3-9=-593/169, \\ & 3-8=-134/352, 4-8=-180/87, 5-7=-532/209, \\ & 5-8=-84/119 & \\ \hline \end{array}$	WEBS	1 Row at	midpt 2-11
Mechanical Max Horiz 11=-300 (LC 12) Max Uplift 7=-106 (LC 13), 9=-203 (LC 13), 11=-176 (LC 12) Max Grav 7=669 (LC 2), 9=1143 (LC 2), 11=512 (LC 40) FORCES (lb) - Maximum Compression/Maximum Tension TOP CHORD 1-11=-248/104, 1-2=-152/153, 2-3=-35/72, 3-4=-276/158, 4-5=-338/125, 5-6=-146/135, 6-7=-151/261, 8-9=-129/283, 7-8=-175/314 WEBS 9-11=-151/261, 8-9=-129/283, 7-8=-175/314 WEBS 2-11=-312/286, 2-9=-535/265, 3-9=-593/169, 3-8=-134/352, 4-8=-180/87, 5-7=-532/209, 5-8=-84/119	REACTIONS	(size)	7= Mechanical, 9=0-4-15, 11=
$\begin{array}{c} \mbox{Max Horiz} 11=-300 \ (LC \ 12) \\ \mbox{Max Uplift} 7=-106 \ (LC \ 13), 9=-203 \ (LC \ 13), \\ 11=-176 \ (LC \ 12) \\ \mbox{Max Grav} 7=669 \ (LC \ 2), 9=1143 \ (LC \ 2), \\ 11=512 \ (LC \ 40) \\ \mbox{FORCES} \ (lb) - Maximum Compression/Maximum \\ \mbox{Tension} \\ \mbox{TOP CHORD} \ 1-11=-248/104, \ 1-2=-152/153, \ 2-3=-35/72, \\ 3-4=-276/158, \ 4-5=-338/125, \ 5-6=-146/135, \\ 6-7=-151/88 \\ \mbox{BOT CHORD} \ 9-11=-751/261, \ 8-9=-129/283, \ 7-8=-175/314 \\ \mbox{WEBS} \ 2-11=-312/286, \ 2-9=-535/265, \ 3-9=-593/169, \\ 3-8=-134/352, \ 4-8=-180/87, \ 5-7=-532/209, \\ 5-8=-84/119 \\ \end{tabular}$			Mechanical
$\begin{array}{c} \mbox{Max Uplift} & 7=-106 \ (LC \ 13), \ 9=-203 \ (LC \ 13), \ 11=-176 \ (LC \ 12) \ Max \ Grav \ 7=669 \ (LC \ 2), \ 9=1143 \ (LC \ 2), \ 11=512 \ (LC \ 40) \ \end{array}$		Max Horiz	11=-300 (LC 12)
$\begin{array}{c} 11\mbox{=}-176\ (LC\ 12) \\ Max\ Grav\ \ \ 7\mbox{=}669\ (LC\ 2),\ 9\mbox{=}1143\ (LC\ 2), \\ 11\mbox{=}512\ (LC\ 40) \\ \hline \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$		Max Uplift	7=-106 (LC 13), 9=-203 (LC 13),
$\begin{array}{rl} \mbox{Max Grav} & 7=669 \ (LC \ 2), \ 9=1143 \ (LC \ 2), \\ & 11=512 \ (LC \ 40) \end{array} \\ \label{eq:FORCES} & (lb) - Maximum \ Compression/Maximum \ Tension \\ TOP \ CHORD & 1-11=-248/104, \ 1-2=-152/153, \ 2-3=-35/72, \\ & 3-4=-276/158, \ 4-5=-338/125, \ 5-6=-146/135, \\ & 6-7=-151/88 \\ \mbox{BOT CHORD} & 9-11=-151/261, \ 8-9=-129/283, \ 7-8=-175/314 \\ \mbox{WEBS} & 2-11=-312/286, \ 2-9=-535/265, \ 3-9=-593/169, \\ & 3-8=-134/352, \ 4-8=-180/87, \ 5-7=-532/209, \\ & 5-8=-84/119 \end{array}$			11=-176 (LC 12)
11=512 (LC 40) FORCES (lb) - Maximum Compression/Maximum Tension TOP CHORD 1-11=-248/104, 1-2=-152/153, 2-3=-35/72, 3-4=-276/158, 4-5=-338/125, 5-6=-146/135, 6-7=-151/88 BOT CHORD 9-11=-151/261, 8-9=-129/283, 7-8=-175/314 WEBS 2-11=-312/286, 2-9=-535/265, 3-9=-593/169, 3-8=-134/352, 4-8=-180/87, 5-7=-532/209, 5-8=-84/119		Max Grav	7=669 (LC 2), 9=1143 (LC 2),
FORCES (lb) - Maximum Compression/Maximum Tension TOP CHORD 1.11=-248/104, 1-2=-152/153, 2-3=-35/72, 3-4=-276/158, 4-5=-338/125, 5-6=-146/135, 6-7=-151/88 BOT CHORD 9-11=-151/261, 8-9=-129/283, 7-8=-175/314 WEBS 9-11=-151/261, 8-9=-129/283, 7-8=-175/314 WEBS 2-11=-312/286, 2-9=-535/265, 3-9=-593/169, 3-8=-134/352, 4-8=-180/87, 5-7=-532/209, 5-8=-84/119			11=512 (LC 40)
Tension TOP CHORD 1-11=-248/104, 1-2=-152/153, 2-3=-35/72, 3-4=-276/158, 4-5=-338/125, 5-6=-146/135, 6-7=-151/88 BOT CHORD 9-11=-151/261, 8-9=-129/283, 7-8=-175/314 WEBS 2-11=-312/286, 2-9=-535/265, 3-9=-593/169, 3-8=-134/352, 4-8=-180/87, 5-7=-532/209, 5-8=-84/119	FORCES	(lb) - Max	imum Compression/Maximum
TOP CHORD 1-11=-248/104, 1-2=-152/153, 2-3=-35/72, 3-4=-276/158, 4-5=-338/125, 5-6=-146/135, 6-7=-151/88 BOT CHORD 9-11=-151/261, 8-9=-129/283, 7-8=-175/314 WEBS 2-11=-312/286, 2-9=-535/265, 3-9=-593/169, 3-8=-134/352, 4-8=-180/87, 5-7=-532/209, 5-8=-84/119		Tension	
3-4=-276/158, 4-5=-338/125, 5-6=-146/135, 6-7=-151/88 BOT CHORD 9-11=-151/261, 8-9=-129/283, 7-8=-175/314 WEBS 2-11=-312/286, 2-9=-535/265, 3-9=-593/169, 3-8=-134/352, 4-8=-180/87, 5-7=-532/209, 5-8=-84/119	TOP CHORD	1-11=-248	3/104, 1-2=-152/153, 2-3=-35/72,
6-7=-151/88 BOT CHORD 9-11=-151/261, 8-9=-129/283, 7-8=-175/314 WEBS 2-11=-312/286, 2-9=-535/265, 3-9=-593/169, 3-8=-134/352, 4-8=-180/87, 5-7=-532/209, 5-8=-84/119		3-4=-276/	158, 4-5=-338/125, 5-6=-146/135,
BOT CHORD 9-11=-151/261, 8-9=-129/283, 7-8=-17/314 WEBS 2-11=-312/286, 2-9=-535/265, 3-9=-593/169, 3-8=-134/352, 4-8=-180/87, 5-7=-532/209, 5-8=-84/119		6-7=-151/	88
WEBS 2-11=-312/286, 2-9=-535/265, 3-9=-593/169, 3-8=-134/352, 4-8=-180/87, 5-7=-532/209, 5-8=-84/119	BOICHORD	9-11=-15	1/261, 8-9=-129/283, 7-8=-175/314
3-8=-134/352, 4-8=-180/87, 5-7=-532/209, 5-8=-84/119	WEBS	2-11=-312	2/286, 2-9=-535/265, 3-9=-593/169,
5-8=-84/119		3-8=-134/	352, 4-8=-180/87, 5-7=-532/209,
		o-ŏ=-84/1	19

NOTES

Scale = 1:61.3

1) Unbalanced roof live loads have been considered for this design.

- 2) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=35ft; Ke=1.00; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) 0-1-12 to 5-1-12, Interior (1) 5-1-12 to 10-11-0, Exterior(2E) 10-11-0 to 11-10-2, Interior (1) 11-10-2 to 19-1-0 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- TCLL: ASCE 7-16; Pr=25.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf; Pf=18.9 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat C; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10, Lu=50-0-0
 Unbalanced snow loads have been considered for this design.
 Provide adequate drainage to prevent water ponding.
 This truss has been designed for a 10.0 psf bottom
- chord live load nonconcurrent with any other live loads.
- Refer to girder(s) for truss to truss connections.
- Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 176 lb uplift at joint 11, 203 lb uplift at joint 9 and 106 lb uplift at joint 7.
- 9) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.
- LOAD CASE(S) Standard

Mitek* 16023 Swingley Ridge Rd Chesterfield, MO 63017

Job	Truss	Truss Type	Qty	Ply	
P210577	B19	Hip	1	1	I58733372 Job Reference (optional)

Run: 8.63 S Nov 19 2022 Print: 8.630 S Nov 19 2022 MiTek Industries, Inc. Mon Jun 05 09:38:01 ID:kGprcUM9etQJjgcVjSCuKlz9ZU1-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:61.8 Plate Offsets (X, Y): [1:0-2-8,0-2-0], [6:0-2-10, Edge]

Loading	(psf)	Spacing	2-0-0		CSI	0.00	DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
I CLL (roof)	25.0	Plate Grip DOL	1.15			0.90	Vert(LL)	-0.08	7-8	>999	240	MT20	197/144
Snow (Pf/Pg)	18.9/20.0	Lumber DOL	1.15		BC	0.39	Vert(CT)	-0.16	7-8	>830	180	MI18HS	197/144
	25.0	Rep Stress Incr	YES		WB	0.87	Horz(CT)	0.00	1	n/a	n/a		
BCLL	0.0	Code	IRC2018	3/TPI2014	Matrix-S								
BCDL	10.0											Weight: 136 lb	F1 = 20%
LUMBER			2)	Wind: ASCE	7-16; Vult=115mp	h (3-sec	ond gust)						
TOP CHORD	2x8 SPF No.2 *Exce	ept* 2-4:2x4 SP No.2	,	Vasd=91mpl	n; TCDL=6.0psf; B	CDL=6.	0psf; h=35ft;						
	4-6:2x4 SP 1650F 1	.5E		Ke=1.00; Ca	t. II; Exp C; Enclos	ed; MW	FRS (envelo	pe)					
BOT CHORD	2x4 SP No.2			exterior zone	and C-C Exterior	(2E) 15-	1-12 to 15-9-	0,					
WEBS	2x4 SPF No.3 *Exce	ept* 12-1,7-6:2x4 SP	No.2	Exterior(2R)	15-9-0 to 22-9-14,	Interior	(1) 22-9-14 t	0					
BRACING				24-8-7, Exte	10r(2R) 24-8-7 to 3	32-1-0 Z	one; cantileve	er					
TOP CHORD	Structural wood she	athing directly applie	d or	iert and right	exposed ; end ver	tical left	and right	-					
	2-2-0 oc purlins, ex	cept end verticals, ar	nd	exposed,C-C	we humber DOL.	1010es 0	to grip	I					
	2-0-0 oc purlins (6-0)-0 max.): 2-4.			JWII, LUIIIDEI DOL	= 1.00 pi	ate grip						
BOT CHORD	Rigid ceiling directly	applied or 6-0-0 oc	3)		7-16 Pr-25 0 psf	(roof L		1 15					
	bracing.		0)	Plate DOI =1	15): Pa=20.0 psf	Pf=18.9	nsf (Lum	1.10					
WEBS	1 Row at midpt	4-9, 1-12		DOL=1.15 P	late DOL=1.15): Is	=1.0: Ro	ough Cat C: F	Fully					
REACTIONS	(size) 7= Mecha	anical, 9=0-4-15, 12=		Exp.; Ce=0.9	; Cs=1.00; Ct=1.1	0, Lu=50)-0-0						
	Mex Lleria 12, 217	ai (LC 10)	4)	Unbalanced	snow loads have b	been cor	sidered for th	his					
				design.									
	12=-114 (LC	(LC 12)	^{),} 5)	Provide adeo	uate drainage to p	orevent	vater ponding	g.					
	Max Grav 7=549 (L	C 2), 9=1377 (LC 2),	6)	All plates are	MI20 plates unle	ss other	wise indicate	ed.					
	12=226 (I	LC 53)	7)	I his truss ha	s been designed f	or a 10.0	psi bottom	de					
FORCES	(lb) - Maximum Corr	pression/Maximum	0)	Pofor to gird	au nonconcurrent v		ourier live loa	ius.					
	Tension		o) 0)	Provide mec	banical connection	uss corii	ere) of truce t	to					
TOP CHORD	1-2=-214/226, 2-3=-	152/164, 3-4=-25/17	5, 3)	hearing plate	canable of withet	andina 1	14 lb unlift at	t ioint					
	4-5=-238/72, 5-6=-2	24/167, 1-12=-207/3	1,	12 298 lb ur	lift at joint 9 and 9	0 lb unli	t at ioint 7	John				Con	100h
	6-7=-475/223		10) This truss is	is truss is designed in accordance with the 2018								
BOT CHORD	11-12=-379/463, 9-1	1=-355/397,	10	International	International Residential Code sections R502.11.1 and								
	8-9=-142/275, 7-8=-	104/131		R802.10.2 a	nd referenced stan	dard AN	ISI/TPI 1.	-			R	N/ SCOTT	Nes /
WEBS	1-11=-189/306, 2-11	I=-365/307,	11) Graphical pu	rlin representation	does no	ot depict the s	size			4	S/ SCOTT	M. YY
	3-11=-209/328, 3-9=	-673/389, 4-9=-682/	324,	or the orienta	ation of the purlin a	along the	top and/or				И.	SEVI	EK / X
	4-8=-55/186, 5-8=-6	3/209		hottom chore	1	5					2 1	1	1 + 4

NOTES

1) Unbalanced roof live loads have been considered for this design.

bottom chord.

LOAD CASE(S) Standard

PE-200101880 SIONAL E June 6,2023

Job	Truss	Truss Type	Qty	Ply	
P210577	B20	Нір	1	1	Job Reference (optional)

. . .

this design

Run: 8.63 S. Nov 19 2022 Print: 8.630 S. Nov 19 2022 MiTek Industries. Inc. Mon. Jun 05 09:38:02 ID:ZzDz0ArFDASeWpgB3swGyBz9ZTP-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:08													
Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP	
TCLL (roof)	25.0	Plate Grip DOL	1.15	TC	0.64	Vert(LL)	-0.04	7-8	>999	240	MT20	197/144	
Snow (Pf/Pg)	18.9/20.0	Lumber DOL	1.15	BC	0.27	Vert(CT)	-0.08	7-8	>999	180			
TCDL	25.0	Rep Stress Incr	YES	WB	0.62	Horz(CT)	0.01	7	n/a	n/a			
BCLL	0.0	Code	IRC2018/TPI2014	Matrix-S									
BCDL	10.0										Weight: 145 lb	FT = 20%	

LUMBER TOP CHORD BOT CHORD WEBS BRACING	2x4 SP N 2x4 SP N 2x4 SPF	o.2 o.2 No.3 *Exc	cept* 11-1,7-6:2x4 SP No.	2)	Wind: ASCE 7-16; Vult= Vasd=91mph; TCDL=6. Ke=1.00; Cat. II; Exp C; exterior zone and C-CE and right exposed ; end exposed:C-C for membr
TOP CHORD	6-0-0 oc 2-0-0 oc	i wood sh purlins, e purlins (6·	eathing directly applied of except end verticals, and -0-0 max.): 2-4.	r	reactions shown; Lumbe DOL=1.60
BOT CHORD	Rigid ceil bracing, 8-11-7 oc	ing direct Except: bracing:	ly applied or 10-0-0 oc 10-11.	3)	TCLL: ASCE 7-16; Pr=2 Plate DOL=1.15); Pg=2 DOL=1.15 Plate DOL=1
WEBS	1 Row at	midpt	2-10, 4-8, 1-11, 5-8, 3-9 3-10	^{),} 4)	Unbalanced snow loads
REACTIONS	(size) Max Horiz Max Uplift Max Grav	7= Mech Mechan 11=-318 7=-169 (11=-108 7=708 (I 11=331	nanical, 9=0-4-15, 11= ical (LC 12) (LC 13), 9=-100 (LC 13), (LC 12) (LC 2), 9=754 (LC 2), (LC 2)	5) 6) 7) 8)	Provide adequate draina This truss has been des chord live load nonconc Refer to girder(s) for tru Provide mechanical con bearing plate capable of
FORCES	(lb) - Max Tension	timum Co	mpression/Maximum	9)	This truss is designed in
TOP CHORD	1-2=-202/ 4-5=-302/ 6-7=-653/	/203, 2-3= /196, 5-6= /374	=-167/204, 3-4=-264/218, =-412/198, 1-11=-291/227	[,] 10)	R802.10.2 and reference Graphical purlin represe or the orientation of the
BOT CHORD	10-11=-4 8-9=-292	06/455, 9 /360, 7-8=	-10=-292/360, =-132/148		bottom chord.
WEBS	1-10=-19 4-8=-309 3-9=-623	9/251, 2-1 /167, 6-8= /307, 3-10	10=-130/141, =-360/573, 5-8=-347/218,)=-255/228, 3-8=-303/431	LO	AD CASE(S) Standard
NOTES					
1) Unbalance	ed roof live l	loads hav	e been considered for		

2) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=35ft; Ke=1.00; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

- TCLL: ASCE 7-16; Pr=25.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf; Pf=18.9 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat C; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10, Lu=50-0-0 Unbalanced snow loads have been considered for this
- 4) desian.
- 5) Provide adequate drainage to prevent water ponding.
- 6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- Refer to girder(s) for truss to truss connections. 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 108 lb uplift at joint 11, 169 lb uplift at joint 7 and 100 lb uplift at joint 9.
- This truss is designed in accordance with the 2018 9) International Residential Code sections R502.11.1 and
- R802.10.2 and referenced standard ANSI/TPI 1. 10) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or
- OF MISSO TE SCOTT M. SEVIER PE-200101880 C SSIONAL E

June 6,2023

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TP11** Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job	Truss	Truss Type	Qty	Ply	
P210577	B21	Hip	1	1	I58733374 Job Reference (optional)

Run; 8.63 S Nov 19 2022 Print; 8.630 S Nov 19 2022 MiTek Industries, Inc. Mon Jun 05 09;38:02 ID:9TfYfOd0v8eQqp8gM?aW4uz9ZSO-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:71.2

Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	1	(psf) 25.0 8.9/20.0 25.0 0.0 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC201	8/TPI2014	CSI TC BC WB Matrix-S	0.50 0.17 0.46	DEFL Vert(LL) Vert(CT) Horz(CT)	in 0.01 -0.03 0.01	(loc) 4 4-10 7	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 168 lb	GRIP 197/144 FT = 20%	
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD 1 Row at midp WEBS REACTIONS FORCES TOP CHORD BOT CHORD BOT CHORD WEBS NOTES 1) Unbalanci this design	2x4 SP N 2x6 SPF 2x4 SPF 2x4 SPF 3tructura 6-0-0 oc 2-0-0 oc Rigid ceil bracing. ot 4-10 1 Row at (size) Max Horiz Max Uplift Max Grav (lb) - Max Tension 1-2=-163, 4-5=-278, 6-7=-649, 13-14=-4 1-12=-5 9-10=-25 7-8=-36/5 1-13=-17; 5-10=-19 3-12=-41. 2-13=-76 ed roof live I n.	0.2 No.2 No.3 *Exce J wood she purlins, expourlins, expourlins, expourlins, expourlins, expourlins (6-0 ing directly Except: midpt 7= Mechanic 14=312 (L 7=-195 (L 7=-195 (L 7=678 (LC 14=124 (L imum Com /177, 2-3=- /203, 5-6=- /447 18/411, 12- /4/78, 10-11 0/325, 8-9= i2 3/213, 10-1 1/270, 7-9= i2 3/213, 10-1 1/270, 7-9= i2 3/270, 7	pt* 14-1,7-6:2x4 SP l athing directly applied cept end verticals, an -0 max.): 3-4. applied or 10-0-0 oc 1-14, 6-7, 3-12, 2-13 unical, 13=0-4-15, 14- al C 13) C 13), 13=-90 (LC 13 C 12) C 2), 13=801 (LC 2), C 30) pression/Maximum 217/197, 3-4=-222/2' 227/193, 1-14=-173/ -13=-362/368, =0/74, 4-10=-254/14 -74/100, 5-9=-536/43 2=-287/342, =-230/235, 6-9=-453/6 2=-284/478 been considered for	2) No.2 d or d = 4) = 5) (6) (7) (8) (7) (8) (7) (8) (7) (8) (7) (8) (7) (8) (7) (8) (7) (8) (7) (8) (7) (8) (7) (8) (7) (8) (7) (8) (7) (8) (7) (7) (8) (7) (7) (8) (7) (7) (8) (7) (7) (7) (7) (7) (7) (7) (7) (7) (7	 Wind: ASCE Vasd=91mpf Ke=1.00; Ca exterior zone and right exp exposed;C-C reactions sho DOL=1.60 TCLL: ASCE Plate DOL=1 DOL=1.15 PI Exp.; Ce=0.5 Unbalanced design. Provide adec This truss ha chord live loa Refer to gird Provide mec bearing plate 14, 90 lb upli This truss is International R802.10.2 ar Graphical pu or the orienta bottom chorc DAD CASE(S) 	7-16; Vult=115mph ; TCDL=6.0psf; BC t. II; Exp C; Enclose and C-C Exterior(2 ioosed; end vertical for members and 1 pwn; Lumber DOL= 7-16; Pr=25.0 psf .15); Pg=20.0 psf; late DOL=1.15); Is= b; Cs=1.00; Ct=1.10 snow loads have be quate drainage to p is been designed for ad nonconcurrent w er(s) for truss to tru hanical connection capable of withsta ft at joint 13 and 19 designed in accord Residential Code s ad referenced stamor rlin representation of tion of the purlin al Standard	(3-sec CDL=6. ad; MW ZE) zom left and forces is 1.60 pl (roof LL Pf=18.9; at.0; Rc i, Lu=50 een cor revent i r a 10.0; thany ss conr (by oth noting § 51 bu up sance w vections 1 and AN does no ong the	cond gust) Dpsf; h=35ft; FRS (envelop e; cantilever d right & MWFRS for ate grip :: Lum DOL=' ppsf (Lum ough Cat C; F)-0-0 isidered for th water ponding 0 psf bottom other live loa tections. ers) of truss t 9 lb uplift at j lift at joint 7. tith the 2018 ; R502.11.1 a (SI/TPI 1. ot depict the s top and/or	pe) left r 1.15 				STATE OF M SCOTT SEVI SEVI PE-20010	AISSOLA M. ER BER D18807	
													Alter		

June 6,2023

Job	Truss	Truss Type	Qty	Ply	
P210577	B22	Roof Special Girder	1	1	Job Reference (optional)

Run: 8.63 E Nov 21 2022 Print: 8.630 E Nov 21 2022 MiTek Industries, Inc. Mon Jun 05 15:18:30 ID:TpS11w6j6wY70FSqG1aHMJz9ZCH-mKCkdAPMDm2_Mv22MKg3gBa5MPt1mEa8MOTBEIz9IDe

Page: 1

Scale = 1:74.4

Plate Offsets (X, Y):	[6:0-3-0,0-4-4],	[7:0-2-0,0-2-0]	
			-

DOL=1.60 plate grip DOL=1.60

	(psf)	Spacing	2-0-0		CSI	0.52	DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP	
Spow (Pf/Pg)	20.0	Lumber DOL	1.15			0.55	Vert(LL)	0.01	5-7	>999	100	101120	197/144	
	13.9/20.0	Ren Stress Incr	NO		WB	0.14	Horz(CT)	-0.03	6	>999 n/a	n/a			
BCU	25.0	Code	IRC201	8/TPI2014	Matrix-S	0.70	11012(01)	0.01	0	n/a	n/a			
BCDL	10.0	Code	11(0201	0/11/12/014	Matrix-0							Weight: 123 lb	FT = 20%	
LUMBER			3)	TCLL: ASCE	7-16; Pr=25.0 ps	sf (roof LL	.: Lum DOL=	=1.15						
TOP CHORD	2x4 SP No.2			Plate DOL=1	1.15); Pg=20.0 ps	f; Pf=13.9) psf (Lum							
BOT CHORD	2x6 SPF No.2 *Exce	pt* 8-3:2x4 SPF No	.3	DOL=1.15 P	late DOL=1.15); I	s=1.0; Ro	ough Cat C;	Fully						
WEBS	2x4 SPF No.3 *Exce	pt* 10-1,6-5:2x4 SP	No.2	Exp.; Ce=0.9; Cs=1.00; Ct=1.10 4) Unbalanced snow loads have been considered for this										
BRACING			4											
TOP CHORD	Structural wood she	athing directly applie	ed or 5	design.										
	6-0-0 oc purlins, ex	cept end verticals.	5,	chord live lo	ad nonconcurrent	with any	other live lo	ads						
BOT CHORD	Rigid ceiling directly	applied or 10-0-0 or	-0-0 c chold invertible to a nonconcentent with any other live to adds.											
	6-0-0 oc bracing: 8-0	a	- /	than input be	earing size.									
1 Row at midr	of 3-7	2.	7)	Refer to gird	er(s) for truss to t	russ conr	nections.							
WEBS	1 Row at midpt	2-9, 1-10, 5-6, 4-6	8)	Provide med	hanical connectio	on (by oth	ers) of truss	to						
REACTIONS	(lb/size) 6=534/ M	echanical 10=927/0	-1-8	bearing plate	e capable of withs	standing 4	01 lb uplift a	it						
	(reg. 0-1-	11)	,	joint 10 and	222 lb uplift at joir	nt 6.								
	Max Horiz 10=357 (L	.C [´] 13)	9	I NIS TRUSS IS	designed in accol	rdance w	Ith the 2018	and						
	Max Uplift 6=-222 (L	C 13), 10=-401 (LC	12)	R802 10 2 a	nd referenced sta	ndard AN	ISI/TPI 1	anu						
	Max Grav 6=656 (LC	C 2), 10=1086 (LC 2) 10)) Use Simpso	n Strong-Tie SUR	24 (4-SD	9112 Girder	. 4-						
FORCES	(lb) - Max. Comp./Ma	ax. Ten All forces	250	SD9112 Tru	ss, Single Ply Gird	der) or eq	uivalent at	, -						
	(lb) or less except w	hen shown.		15-2-15 from	the left end to co	onnect tru	ss(es) to fro	nt						
TOP CHORD	2-11=-284/145, 3-4=	-265/227, 1-10=-62	0/320	face of bottom chord, skewed 45.0 deg to the right,										
BOT CHORD	9-10=-465/410, 3-7=	-363/249, 6-7=-285	/330	sloping 0.0 c	leg. down.									
WEBS	1-9=-319/603, 2-9=-	552/362, 7-9=-388/4	103, 1	1) Fill all nail holes where hanger is in contact with lumber.										
	2-7=-151/288, 4-7=-	395/451, 4-6=-648/5	57 12	 In the LOAD of the truce (CASE(S) section	i, loads al	oplied to the	face				8 OF M	Alcoh	
NOTES					Are noted as norm	(F) 01 ba	ск (б).					A TE	-050,0	
1) Unbalanc	ed roof live loads have	been considered to	r L'	LOAD CASE(S) Standard										
2) Wind AS	n. CE 7-16: Vult–115mph	(3-second quist)	1,	Increase-1	15		rease=1.15,	Flate			H	SCOT	M. YAY	
Vasd=91r	mph: TCDI =6 0psf: BC	$DI = 6.0 \text{ psf} \cdot \text{h} = 35 \text{ft} \cdot \text{h}$		Uniform Lo	ads (lb/ft)						8.	SEVI	ER \ X	
Ke=1.00;	Cat. II; Exp C; Enclose	d; MWFRS (envelop	be)	Vert: 1-2	=-78, 2-4=-78, 4-5	5=-78. 8- ⁻	10=-20. 6-7=	-20			Bo			
exterior z	one and C-C Exterior(2	E) 15-1-12 to 16-10	-12,	Concentrat	ed Loads (lb)	-,-	-,	-				att	Sente	
Interior (1) 16-10-12 to 22-11-14	, Exterior(2E) 22-11-	-14	Vert: 10=	=-393 (F)					-	17-	NUM	BER A	
to 26-1-0	zone; cantilever left an	d right exposed ; en	d								127	PE-2001	018807	
vertical le	ft and right exposed;C-	C for members and									N	ALL LOOT	IZ H	
torces & N	MWFRS for reactions s	nown; Lumber									Y	100	IN H	

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

SSIONAL

E

June 6,2023

Job	Truss	Truss Type	Qty	Ply	
P210577	BG01	Half Hip Girder	1	1	I58733376 Job Reference (optional)

Run: 8.63 S Nov 19 2022 Print: 8.630 S Nov 19 2022 MiTek Industries, Inc. Mon Jun 05 09:38:04 ID:sRNcQNzS7LhqguMkyjBm6Cz9ZZi-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

Scale = 1:51.6

Plate Offsets (X, Y): [3:0-5-0,0-1-12], [5:Edge,0-5-8], [7:0-3-0,0-3-12]

Loading TCLL (roof)	(psf) 25.0	Spacing Plate Grip DOL	2-0-0 1.15		CSI TC BC	0.37	DEFL Vert(LL)	in 0.00	(loc) 6	l/defl >999	L/d 240	PLATES MT20	GRIP 197/144
Show (Fi/Fy) TCDI	10.9/20.0	Rep Stress Incr	NO		WB	0.15		0.00	5	>999 n/a	100 n/a		
BCU	25.0	Code	IRC20	18/TDI2014	Matrix-P	0.24	11012(01)	0.00	5	n/a	n/a		
BCDL	10.0	Code	11(020	10/11/2014	Wattix-1							Weight: 30 lb	FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD	2x4 SP No.2 2x8 SPF No.2 2x4 SPF No.3 Structural wood she 5-5-8 oc purlins, ex	 Unbalanced design. Provide adec This truss ha chord live loa Refer to gird Provide mec 	Unbalanced snow loads have been considered for this design. Provide adequate drainage to prevent water ponding. This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. Refer to girder(s) for truss to truss connections. Provide mechanical connection (by others) of truss to										
BOT CHORD	2-0-0 oc purlins: 3-4 Rigid ceiling directly bracing.	applied or 6-0-0 oc	g	 bearing plate capable of withstanding 1060 lb uplift at joint 5 and 486 lb uplift at joint 7. This truss is designed in accordance with the 2018 									
REACTIONS	(size) 5= Mecha Max Horiz 7=86 (LC Max Uplift 5=-1060 (Max Grav 5=364 (LC	nical, 7=0-5-8 13) LC 65), 7=-486 (LC C 76), 7=1679 (LC 2	 R802.10.2 and referenced standard ANSI/TPI 1. Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or 										
FORCES	(lb) - Maximum Com	pression/Maximum	1	1) This truss ha	is large uplift rea	ction(s) fro	om gravity loa						
TOP CHORD	Tension 1-2=-427/423, 2-3=- 4-5=-22/167	,	case(s). Proper connection is required to secure truss against upward movement at the bearings. Building decigner must provide for uplify regetings indicated										
BOT CHORD WEBS	1-7=-312/428, 6-7=- 3-6=-190/268, 3-5=- 2-7=-374/265	 1-7=-221/07 1-7=-312/428, 6-7=-243/263, 5-6=-257/284 3-6=-190/268, 3-5=-503/533, 3-7=-254/332, 2-7=-374/265 2-7=-374/265 											
NOTES				chord, skewe	ed 0.0 deg.to the	right, slop	oing 0.0 deg.						Th
 Unbalance this design Wind: AS Vasd=911 Ke=1.00; exterior z 	ed roof live loads have jn. CE 7-16; Vult=115mph mph; TCDL=6.0psf; BC Cat. II; Exp C; Enclose one and C-C Exterior(2)	(3-second gust) DL=6.0psf; h=35ft; d; MWFRS (envelop E) zone; cantilever I	r 1 1 be) 1 eft	down. 3) Fill all nail ho 4) "NAILED" ind per NDS guid 5) Hanger(s) or provided suff	bles where hange dicates Girder: 3- delines. other connectior ficient to support 4.2	er is in cor 10d (0.14 n device(s concentra	tact with lum 8" x 3") toe-) shall be tted load(s) 1	iber. nails 92				STATE OF M	MISSOUR T.M. ER

- exterior zone and C-C Exterior(2E) zone; cantilever left and right exposed; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
 3) TCLL: ASCE 7-16; Pr=25.0 psf (roof LL: Lum DOL=1.15
- File DOL=1.15 Plate DOL=1.15; Plate DOL=1.15 Plate DOL=1.15 Plate DOL=1.15; Plate DOL=1.15;
- Ib down and 717 lb up at 4-3-8 on bottom chord. The design/selection of such connection device(s) is the responsibility of others.
 16) In the LOAD CASE(S) section, loads applied to the face
- of the truss are noted as front (F) or back (B).

LOAD CASE(S) Standard

 Dead + Snow (balanced): Lumber Increase=1.15, Plate Increase=1.15

Uniform Loads (lb/ft)

Job	Truss	Truss Type	Qty	Ply	
P210577	C01	Hip Girder	1	3	I58733377 Job Reference (optional)

Run: 8.63 S Nov 19 2022 Print: 8.630 S Nov 19 2022 MiTek Industries, Inc. Mon Jun 05 09:38:04 ID:BYeMrmr_IfEUqddYLLAbLAz9ZBK-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

Scale = 1:57

Plate Offsets (X, Y): [3:0-5-0,0-2-12], [8:0-2-0,0-5-8], [9:0-3-8,0-5-8]

		J, L = J, L =	,												
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL	(psf) 25.0 18.9/20.0 25.0 0.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 NO IRC201	8/TPI2014	CSI TC BC WB Matrix-P	0.29 0.27 0.26	DEFL Vert(LL) Vert(CT) Horz(CT)	in 0.03 0.03 0.00	(loc) 8-9 8-9 7	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20	GRIP 197/144		
BCDL	10.0											Weight: 249	16 + 1 = 20%		
LUMBER TOP CHORD 2x6 SPF No.2 BOT CHORD 2x8 SPF No.2 WEBS 2x4 SPF No.3 *Except* 10-2,7-5:2x4 SP No.2 BRACING TOP CHORD Structural wood sheathing directly applied or				Wind: ASCE Vasd=91mpl Ke=1.00; Ca exterior zone zone; cantile and right exp MWFRS for	7-16; Vult=115mp n; TCDL=6.0psf; E t. II; Exp C; Enclose e and C-C Exterior ver left and right e iosed; C-C for mer reactions shown:	ph (3-seo 3CDL=6. sed; MW r(2E) -2- exposed mbers ar Lumber I	cond gust) Opsf; h=35ft; IFRS (envelop I1-0 to 10-9-0 ; end vertical I d forces & DOL=1.60 pla	oe) left te	15) Use Tru 2-3 bac 16) Fill 17) "NA nail	e Simpso ss) or eo 4 from t k face o all nail h .ILED" ir s per NE	on Stro quivale he left f bottor oles w ndicate DS quic	ng-Tie HUS26 nt spaced at 2 end to 4-3-4 t m chord. here hanger i s Girder: 3-16 delines.	5 (14-10d Girder, 4-10d 2-0-0 oc max. starting at to connect truss(es) to s in contact with lumber. 3d (0.162" x 3.5") toe-		
BOT CHORD	2-0-0 oc purlins, ex 2-0-0 oc purlins (6-0 Rigid ceiling directly bracing.	5)	grip DOL=1.0 TCLL: ASCE Plate DOL=1	60 7-16; Pr=25.0 ps .15); Pg=20.0 psf	f (roof Ll ; Pf=18.9	: Lum DOL=1) psf (Lum	.15	18) Har prov Ib d	nger(s) o vided su own and	fficient	connection d to support co b up at 1-6-12	ievice(s) shall be incentrated load(s) 317 2, and 317 lb down and			
REACTIONS	(size) 7=0-5-8, 7 Max Horiz 10=174 (L Max Uplift 7=-3719 (Max Gray 7=2830 (L	10=0-5-8 _C 15) (LC 13), 10=-2514 (L _C 32)_10=3556 (LC	-C 12) 6)	 DUL=1.15 Mate DUL=1.15; IS=1.0; Kougn Cat C; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10, Lu=50-0-0 Sho bus up at 6-3-4 on top chord. The design/sele such connection device(s) is the responsibility of LOAD CASE(S) Standard Dead + Snow (balanced): Lumber Increase=1 1 								ber Increase=1.15, Plate			
FORCES	RCES (Ib) - Maximum Compression/Maximum				s been designed osf or 2.00 times f	for great lat roof le	er of min roof bad of 13.9 ps	live of on	Increase=1.15 Uniform Loads (lb/ft)						
TOP CHORD	1-2=0/131, 2-3=-832 4-5=-936/1348, 5-6= 5-72981/3814	2/954, 3-4=-769/120 =0/131, 2-10=-2675/2	1, 8) 2802, 9)	Provide adec This truss ha	water ponding 0 psf bottom	. do	vert: 1-2=-78, 2-3=-78, 3-4=-88, 4-5=-78, 5-6=-78, 7-10=-20 Concentrated Loads (lb)								
5-7=-2981/3814 BOT CHORD 9-10=-200/231, 8-9=-825/898, 7-8=-90/98 WEBS 3-9=-289/778, 3-8=-633/308, 4-8=-536/645, 2-9=-2138/2083 5-8=-3101/2466			98 10 645,	 a) Provide mechanical connection (by other live loads. a) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 2514 lb uplift at joint 10 and 3719 lb uplift at joint 7. 						Vert: 3=280 (F), 4=280 (F), 10=-1366 (B), 9=-1 (F), 8=-769 (F=-1, B=-768), 13=-1237 (F=160, B=-1397), 14=160 (F), 15=-1250 (B), 16=160 (F)					
 NOTES 3-ply truss to be connected together with 10d (0.131"x3") nails as follows: Top chords connected as follows: 2x6 - 2 rows staggered at 0-8-0 oc, 2x4 - 1 row at 0-9-0 oc. Bottom chords connected as follows: 2x8 - 3 rows staggered at 0-5-0 oc. Web connected as follows: 2x4 - 1 row at 0-9-0 oc. All loads are considered equally applied to all plies, except if noted as front (F) or back (B) face in the LOAD CASE(S) section. Ply to ply connections have been provided to distribute only loads noted as (F) or (B), unless otherwise indicated. 			1 1: 1: DAD 14	 This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord. Use Simpson Strong-Tie LUS26 (4-10d Girder, 3-10d Truss, Single Ply Girder) or equivalent spaced at 2-0-0 oc max. starting at 2-0-12 from the left end to 5-9-4 to connect truss(es) to front face of bottom chord. Use Simpson Strong-Tie HUS26 (14-10d Girder, 4-10d Truss) or equivalent at 0-3-4 from the left end to connect truss(es) to bottom chord, skewed 0.0 						SCOTT M. SEVIER PE-2001018807					

deg.to the right, sloping 0.0 deg. down.

 Unbalanced roof live loads have been considered for this design.

June 6,2023

NAL
Job	Truss	Truss Type	Qty	Ply	
P210577	CJ01	Diagonal Hip Girder	2	1	Job Reference (optional)

3-2-3

0-6-2

3x4 =

Run: 8.63 S Nov 19 2022 Print: 8.630 S Nov 19 2022 MiTek Industries, Inc. Mon Jun 05 09:38:05 ID:rF4nDgB7GO5tRMUkStEbA0z9Zov-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

4-5-1 9-0-13 4-5-1 4-7-12 Page: 1

Scale = 1:41.8

-													
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 25.0 13.9/20.0 25.0 0.0 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 NO IRC2018	3/TPI2014	CSI TC BC WB Matrix-S	0.83 0.71 0.39	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.06 0.11 -0.01	(loc) 4-5 4-5 4	l/defl >925 >518 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 37 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD REACTIONS	UMBER COP CHORD 2x4 SP 1650F 1.5E SOT CHORD 2x4 SP 1650F 1.5E VEBS 2x4 SPF No.3 SRACING -0-0 cc purlins, except end verticals. FOP CHORD Structural wood sheathing directly applied or 6-0-0 cc purlins, except end verticals. SOT CHORD Rigid ceiling directly applied or 5-8-7 oc bracing. REACTIONS (size) 4= Mechanical, 5=0-7-6 Max Horiz 5=133 (LC 15) Max Uplift 4=-435 (LC 36), 5=-482 (LC 12) Max Grav 4=88 (LC 46), 5=698 (LC 2) FORCES (lb) - Maximum Compression/Maximum Tension COP CHORD 1-2=-951/900, 2-3=-153/157, 3-4=-64/139 SOT CHORD 1-5=-802/945, 4-5=-844/895				hanical connectio capable of withs 32 lb uplift at joint designed in accor Residential Code nd referenced sta dicates Girder: 3-' felines. CASE(S) section re noted as front Standard w (balanced): Lu 15	n (by oth tanding 4 5. rdance wi e sections ndard AN 10d (0.14 I, loads af (F) or bar mber Incl	ers) of truss i 35 lb uplift at ith the 2018 R502.11.1 a ISI/TPI 1. 8" x 3") toe- oplied to the ck (B). rease=1.15,	to t and nails face Plate					
FORCES	(lb) - Maximum Com Tension	pression/Maximum		Uniform Loa Vert: 1-3	ads (lb/ft) =-78, 1-4=-20								
TOP CHORD BOT CHORD WEBS	1-2=-951/900, 2-3=- 1-5=-802/945, 4-5=-{ 2-4=-847/815, 2-5=-	153/157, 3-4=-64/13 844/895 760/900	39	Vert: 7=3	ed Loads (lb) 41 (F=170, B=17	0), 9=277	7 (F=139, B=	139)					
NOTES 1) Wind: AS Vasd=911 Ke=1.00; exterior z Exterior(2 right expo for memb Lumber D	CE 7-16; Vult=115mph mph; TCDL=6.0psf; BC Cat. II; Exp C; Enclose one and C-C Corner (3) 28) 7-0-14 to 8-11-1 zor psed ; end vertical left a vers and forces & MWFF OL=1.60 plate grip DO	be) d C own;								A	STATE OF I	MISSOLA MISSOLA	

- TCLL: ASCE 7-16; Pr=25.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf; Pf=13.9 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat C; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10
 Ubscaped expression
- 3) Unbalanced snow loads have been considered for this design.
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) Refer to girder(s) for truss to truss connections.

June 6,2023

Job	Truss	Truss Type	Qty	Ply	
P210577	CJ02	Diagonal Hip Girder	1	1	Job Reference (optional)

4-4-4

4-4-4

Premier Building Supply (Springhill, KS), Spring Hills, KS - 66083,

Run; 8.63 S Nov 19 2022 Print; 8.630 S Nov 19 2022 MiTek Industries, Inc. Mon Jun 05 09:38:05 ID:9vXGrZ5g1Xv?qy2HraSGHDz9Zg?-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

8-8-9

4-4-5

Page: 1

Scale = 1:41.4

-					1								
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL LUMBER	(psf) 25.0 13.9/20.0 25.0 0.0 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 NO IRC2018	3/TPI2014 Provide mec	CSI TC BC WB Matrix-P	0.80 0.71 0.36 on (by othe	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.06 0.07 -0.01 to	(loc) 4-5 4-5 4	l/defl >884 >728 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 36 lb	GRIP 244/190 FT = 20%
TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD	2x4 SP No.2 2x4 SP No.2 2x4 SPF No.3 Structural wood shea 5-7-5 oc purlins, ex Rigid ceiling directly	athing directly applic cept end verticals. applied or 5-0-2 oc	bearing plate joint 4 and 4 This truss is International R802.10.2 an "NAILED" inc per NDS guid	e capable of withs 74 lb uplift at joint designed in acco Residential Code nd referenced sta dicates Girder: 3- delines.	standing 3 t 5. ordance wi e sections andard AN 10d (0.14	04 lb uplift a th the 2018 R502.11.1 a SI/TPI 1. 8" x 3") toe-	t and nails						
REACTIONS	 P CHORD Structural wood sheathing directly applied or 5-7-5 oc purlins, except end verticals. PT CHORD Rigid ceiling directly applied or 5-0-2 oc bracing. EACTIONS (size) 4= Mechanical, 5=0-7-6 Max Horiz 5=128 (LC 15) Max Uplift 4=-304 (LC 36), 5=-474 (LC 12) Max Grav 4=90 (LC 46), 5=788 (LC 2) IRCES (lb) - Maximum Compression/Maximum Tension IP CHORD 1-2=-971/856, 2-3=-118/86, 3-4=-87/135 				CASE(S) section are noted as front Standard ow (balanced): Lu .15 ads (lb/ft) =-78, 1-4=-20 ed Loads (lb)	n, loads ap (F) or bac	pplied to the ck (B). rease=1.15,	face Plate					
TOP CHORD BOT CHORD WEBS	1-2=-971/856, 2-3=- 1-5=-737/965, 4-5=- 2-5=-825/965, 2-4=-	118/86, 3-4=-87/135 753/879 868/799	5	Vert: 7=2	235 (B), 9=194 (F	=-1, B=19	14)						
NOTES 1) Wind: AS Vasd=91r Ke=1.00; exterior ze Exterior(2 right expo for memb	CE 7-16; Vult=115mph mph; TCDL=6.0psf; BC Cat. II; Exp C; Enclose one and C-C Corner (3) R) 7-0-14 to 8-6-13 zor osed ; end vertical left a ers and forces & MWFT OL = 16 0 plate are DO	(3-second gust) DL=6.0psf; h=35ft; d; MWFRS (envelop) 0-0-0 to 7-0-14, ne; cantilever left an nd right exposed;C- RS for reactions should be the top of top of the top of the top of the top of top	be) d C wn;								Ē	ANTE OF M	MISSOU

- Lumber DOL=1.60 plate grip DOL=1.60 TCLL: ASCE 7-16; Pr=25.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf; Pf=13.9 psf (Lum 2) DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat C; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10
- 3) Unbalanced snow loads have been considered for this design.
- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) Refer to girder(s) for truss to truss connections.

SCOTT M. SEVIER NUMBER OF PL STONAL PE-2001018807 E

June 6,2023

Job	Truss	Truss Type	Qty	Ply	
P210577	CJ03	Diagonal Hip Girder	2	1	I58733380 Job Reference (optional)

4-4-6

4-4-6

Premier Building Supply (Springhill, KS), Spring Hills, KS - 66083,

Run: 8.63 S Nov 19 2022 Print: 8.630 S Nov 19 2022 MiTek Industries, Inc. Mon Jun 05 09:38:06 ID:X2V617JSZe8x0c6271NkQOz9ZAj-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC?f

9-7-14

5-3-8

Page: 1

Scale = 1:42.4

						_							
Loading TCLL (roof) Snow (Pf/Pg) TCDL	(psf) 25.0 13.9/20.0 25.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr	2-0-0 1.15 1.15 NO		CSI TC BC WB	1.00 0.68 0.45	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.07 0.12 -0.01	(loc) 4-5 4-5 4	l/defl >895 >496 n/a	L/d 240 180 n/a	PLATES MT20	GRIP 244/190
BCLL BCDL	0.0 10.0	Code	IRC2018	8/TPI2014	Matrix-S							Weight: 40 lb	FT = 20%
LUMBER TOP CHORD $2x4$ SP No.23OT CHORD $2x4$ SP 1650F 1.5EWEBS $2x4$ SPF No.3BRACINGStructural wood sheathing directly applied or 5-8-7 oc purlins, except end verticals.3OT CHORDStructural wood sheathing directly applied or 6-8-7 oc purlins, except end verticals.3OT CHORDRigid ceiling directly applied or 6-0-0 oc bracing.REACTIONS(size)4= Mechanical, 5=0-7-12 Max Horiz 5=141 (LC 13) Max Uplift 4=-349 (LC 36), 5=-412 (LC 12) Max GravFORCES(lb) - Maximum Compression/Maximum TensionTOP CHORD1-2=-933/890, 2-3=-150/127, 3-4=-95/140 201 CHORD				Provide mec bearing plate joint 4 and 4 This truss is International R802.10.2 ai "NAILED" in per NDS gui In the LOAD of the truss a DAD CASE(S) Dead + Snc Increase=1	hanical connection capable of with 12 lb uplift at join designed in acco Residential Cod nd referenced sta dicates Girder: 3- delines. CASE(S) section re noted as front Standard ww (balanced): Lu .15	on (by othe standing 3 it 5. ordance wi e sections andard AN -10d (0.14 n, loads ap t (F) or bac umber Ince	ers) of truss i 49 lb uplift a th the 2018 R502.11.1 a ISI/TPI 1. 8" x 3") toe- oplied to the ck (B). rease=1.15,	to t and nails face Plate					
FORCES TOP CHORD BOT CHORD WEBS	(lb) - Maximum Com Tension 1-2=-933/890, 2-3=- 1-5=-774/926, 4-5=- 2-5=-807/847, 2-4-2	150/127, 3-4=-95/14 774/821	10	Uniform Los Vert: 1-3 Concentrate Vert: 7=2	ads (lb/ft) =-78, 1-4=-20 ed Loads (lb) 282 (F=141, B=14	41), 8=230) (F=115, B=	115)					
NOTES 1) Wind: AS Vasd=91r Ke=1.00; exterior z: Exterior z: for memb Lumber D 2) TCLL: AS Plate DO	CE 7-16; Vult=115mph mph; TCDL=6.0psf; BC Cat. II; Exp C; Enclose one and C-C Corner (3) 2R) 7-0-14 to 9-6-2 zond ssed ; end vertical left a ers and forces & MWFf ODL=1.60 plate grip DO iCE 7-16; Pr=25.0 psf (L=1 15): Pm=20.0 psf.	(3-second gust) DL=6.0psf; h=35ft; d; MWFRS (envelop) 0-0-0 to 7-0-14, e; cantilever left and nd right exposed;C- RS for reactions sho L=1.60 roof LL: Lum DOL=1 2=13.9 nsf (Lum	be) C wn; I.15								H,	STATE OF J	MISSOLIA T M.

- 2) Plate DOL=1.15); Pg=20.0 psf; Pf=13.9 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat C; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10
- Unbalanced snow loads have been considered for this 3) design.
- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) Refer to girder(s) for truss to truss connections.

PE-2001018807 SSIONAL E June 6,2023

Job	Truss	Truss Type	Qty	Ply	
P210577	CJ04	Diagonal Hip Girder	1	1	Job Reference (optional)

4-7-10

4-7-10

Premier Building Supply (Springhill, KS), Spring Hills, KS - 66083,

Run: 8.63 S Nov 19 2022 Print: 8.630 S Nov 19 2022 MiTek Industries, Inc. Mon Jun 05 09:38:06 ID:iuFjrwsN7AN5RKM5njuCgBz9ZQp-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

9-7-14

5-0-4

Page: 1

Scale = 1:38.5

Plate Offsets (X, Y): [2:0-1-0,0-1-8]

Loading FCLL (roof) Snow (Pf/Pg) FCDL BCLL BCDL	(psf) 25.0 13.9/20.0 25.0 0.0 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 NO IRC2018	8/TPI2014	CSI TC BC WB Matrix-S	0.90 0.95 0.48	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.10 0.13 0.01	(loc) 4-5 4-5 4	l/defl >635 >503 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 37 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD 30T CHORD WEBS BRACING TOP CHORD BOT CHORD REACTIONS FORCES TOP CHORD BOT CHORD WEBS	2x4 SP No.2 2x4 SP No.2 2x4 SPF No.3 Structural wood shea 4-6-13 oc purlins, e: Rigid ceiling directly bracing. (size) 4= Mecha Max Horiz 5=70 (LC Max Uplift 4=-268 (L Max Grav 4=111 (LC (lb) - Maximum Com Tension 1-2=-1524/1332, 2-3 1-5=-1265/1520, 4-5 2-4=-1065/883, 2-5=	athing directly applie xcept end verticals. applied or 2-8-10 oc unical, 5=0-7-12 49) C 37), 5=-363 (LC 1) C 37), 5=-363 (LC 2) pression/Maximum 3=-142/154, 3-4=-92/ 5=-996/1167 816/844	6) 7) ed or 8) 2 9) 2) 2) 1)	Provide mec bearing plate joint 4 and 3 This truss is International R802.10.2 at "NAILED" in per NDS gui In the LOAD of the truss a DAD CASE(S) Dead + Snd Increase=1 Uniform Lo: Vert: 1-3 Concentrate Vert: 7=2	hanical connection e capable of withsta 63 lb uplift at joint 5 designed in accord Residential Code s nd referenced stand dicates Girder: 3-10 delines. CASE(S) section, I are noted as front (F Standard bw (balanced): Lum .15 ads (lb/ft) =-78, 1-4=-20 ed Loads (lb) 255 (F=128, B=128)	(by oth nding 2 ance w sections dard AN dd (0.14 oads a F) or ba ber Inc	ers) of truss t 268 lb uplift at 268 lb uplift at 250,211.1 a 251/TPI 1. 8" x 3") toe-r 2010 to the f ck (B). 26 (F=99, B=90) 26 (F=99, B=90)	nd nails face Plate					
NOTES I) Wind: ASC Vasd=91rr Ke=1.00; (exterior zc Exterior(21 right expos	CE 7-16; Vult=115mph nph; TCDL=6.0psf; BC Cat. II; Exp C; Enclose one and C-C Corner (3) R) 7-0-14 to 9-6-2 zone sed ; end vertical left a	(3-second gust) DL=6.0psf; h=35ft; d; MWFRS (envelop) 0-0-0 to 7-0-14, e; cantilever left and nd right exposed;C-1	e) C								Å	ATE OF M	MISSOL

- exterior zone and C-C Corner (3) 0-0-0 to 7-0-14, Exterior(2R) 7-0-14 to 9-6-2 zone; cantilever left and right exposed; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
 2) TCLL: ASCE 7-16; Pr=25.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf; Pf=13.9 psf (Lum DOL=1.15); Pg=20.0 psf; Pf=13.9 psf (Lum
- Plate DOL=1.15); Pg=20.0 psf; Pf=13.9 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat C; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10
- 3) Unbalanced snow loads have been considered for this design.
- 4) This truss has been designed for a 10.0 psf bottom
- chord live load nonconcurrent with any other live loads.
- 5) Refer to girder(s) for truss to truss connections.

Job	Truss	Truss Type	Qty	Ply	
P210577	CJ05	Diagonal Hip Girder	2	1	Job Reference (optional)

Run: 8.63 S Nov 19 2022 Print: 8.630 S Nov 19 2022 MiTek Industries, Inc. Mon Jun 05 09:38:06 ID:37S9NbWUoZ9gw4K73OfU3mz9ZAT-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:41.3

Plate Offsets (X, Y): [2:0-2-12,0-3-0]

														_
Loading	(psf)	Spacing	2-0-0		csi		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP	
TCLL (roof)	25.0	Plate Grip DOL	1.15		TC	0.49	Vert(LL)	-0.03	6-7	>999	240	MT20	244/190	
Snow (Pf/Pg)	13.9/20.0	Lumber DOL	1.15		BC	0.60	Vert(CT)	0.06	6-7	>999	180			
TCDL	25.0	Rep Stress Incr	NO		WB	0.24	Horz(CT)	0.00	5	n/a	n/a			
BCLL	0.0	Code	IRC2018	3/TPI2014	Matrix-P									
BCDL	10.0											Weight: 56 lb	FT = 20%	_
LUMBER			5)	This truss ha	s been designed fo	or a 10.0) psf bottom							
TOP CHORD	2x6 SP 2400F 2.0E			chord live loa	ad nonconcurrent v	vith any	other live loa	ads.						
BOT CHORD	2x4 SP No.2		6)	Refer to gird	er(s) for truss to tru	uss conr	nections.							
NEBS	2x4 SPF No.3 *Exce	pt* 7-2:2x4 SP No.2	7)	Provide mec	hanical connection	(by oth	ers) of truss	to						
BRACING				bearing plate	capable of withsta	anding 4	12 lb uplift a	t						
TOP CHORD	Structural wood she	athing directly applie	d or	joint 7 and 12	26 lb uplift at joint 5	5.								
	6-0-0 oc purlins, ex	cept end verticals.	8)	I his truss is	designed in accord	ance w	ith the 2018	ام مد م						
BOT CHORD	Rigid ceiling directly bracing.	applied or 6-0-0 oc		R802.10.2 a	nd referenced stan	dard AN	ISI/TPI 1.	and						
REACTIONS	(size) 5= Mecha	anical. 7=0-7-6	9)	"NAILED" inc	licates Girder: 3-10	0d (0.14	8" x 3") toe-	nails						
	Max Horiz 7=171 (LC	C 13)		per NDS gui	delines.			,						
	Max Uplift 5=-126 (L	.C 16). 7=-412 (LC 1)	2) 10) In the LOAD	CASE(S) section,	loads a	oplied to the	face						
	Max Grav 5=273 (LC	C 30), 7=728 (LC 2)	, ,		ne noted as front (F) or ba	ск (в).							
FORCES	(lb) - Maximum Com	pression/Maximum		DAD CASE(S)	Standard			Dista						
	Tension		1)	Dead + Sho	w (balanced): Lun	nder inc	rease=1.15,	Plate						
TOP CHORD	2-7=-755/764, 1-2=0)/127, 2-3=-528/322,			no nde (lb/ft)									
	3-4=-172/91, 4-5=-2	38/176		Vert: 1-2	78 2-478 5-7-	20								
BOT CHORD	6-7=-385/153, 5-6=-	342/563		Concentrate	= 10, 2 = 10, 0 1- d Loads (lb)	- 20								
NEBS	2-6=-351/759, 3-6=-	126/93, 3-5=-557/38	6	Vert: 9=2	28 (F=114 B=114) 12=17	76 (F=88 B=	88)						
NOTES				13=-20 (I	F=-10, B=-10)	,,	o (. 00, D	00),						
 Wind: ASC 	CE 7-16; Vult=115mph	(3-second gust)												
Vasd=91m	ph; TCDL=6.0psf; BC	DL=6.0psf; h=35ft;										000	TOP	
Ke=1.00; (Cat. II; Exp C; Enclose	d; MWFRS (envelop	e)									S OF M	Alson	
exterior zo	ne and C-C Corner (3) -4-1-8 to 2-11-6,									1	TE	-050 M	
Exterior(2)	(2-11-6 to 7-9-7 zone)	e; cantilever left and	<u>^</u>								4	SI	New	
for mombr	sed; end venical left a	na right exposed;C-									H	SCOT	ГМ. ХСХУД	
Lumber D	1 = 1.60 plate grip DO		wii,								B	/ SEVI	ER \ Y	
	CE = 1.00 plate grip DO	roof LL · Lum DOI –1	15								180*	1 mb	0 *4-	
Plate DOL	=1.15): Pa=20.0 psf: F	Pf=13.9 psf (Lum										datto.	XINU /	1
DOL=1.15	Plate DOL=1.15); Is=	1.0; Rough Cat C: Fi	ully										RER	
Exp.; Ce=0	0.9; Cs=1.00; Ct=1.10										87	DE 2001	010007 ABB	
3) Unbalance	ed snow loads have be	en considered for th	is								N.	PE-2001	N1000/ 57	
design.											Y	1 Per	IN A	
 This truss 	has been designed for	r greater of min roof	live								0	SIONIA	LENA	
load of 12.	0 psf or 2.00 times flat	t roof load of 13.9 ps	fon									UNA A		
overhangs	non-concurrent with c	other live loads.										alle	22	

load of 12.0 psf or 2.00 times flat roof load of 13.9 psf on overhangs non-concurrent with other live loads.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1** Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

June 6,2023

Job	Truss	Truss Type	Qty	Ply	
P210577	CJ06	Diagonal Hip Girder	2	1	I58733383 Job Reference (optional)

Run; 8.63 S Nov 19 2022 Print; 8.630 S Nov 19 2022 MiTek Industries, Inc. Mon Jun 05 09:38:07 ID:jRBhvhf0zFgzNwFQmwtIYIz9ZAH-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Scale = 1:41.3

Plate Offsets (X, Y): [2:0-2-12,0-3-0], [7:0-5-4,0-3-12]

Exp.; Ce=0.9; Cs=1.00; Ct=1.10

3)

design.

Unbalanced snow loads have been considered for this

Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 25.0 13.9/20.0 25.0 0.0 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 NO IRC2018	3/TPI2014	CSI TC BC WB Matrix-P	0.49 0.23 0.29	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.02 -0.02 0.01	(loc) 9-10 8-9 6	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 60 lb	GRIP 244/190 FT = 20%	
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD REACTIONS FORCES	2x6 SP 2400F 2.0E 2x4 SP No.2 *Excep 2x4 SPF No.3 *Exce Structural wood she 6-0-0 oc purlins, exi Rigid ceiling directly bracing. (size) 6= Mecha Max Horiz 10=154 (L Max Uplift 6=-128 (LC (lb) - Maximum Com	t* 8-4:2x4 SPF No.3 pt* 10-2:2x4 SP No athing directly applic cept end verticals. applied or 6-0-0 oc nical, 10=0-7-6 .C 13) C 16), 10=-411 (LC C 30), 10=730 (LC 2 pression/Maximum	4) 3 .2 5) ed or 6) 7) 8) 8) .) 9) 10	This truss ha load of 12.0 overhangs n This truss ha chord live loa Refer to gird Provide mec bearing plate 10 and 128 I This truss is International R802.10.2 ai "NAILED" inc per NDS gui) In the LOAD	is been designed psf or 2.00 times on-concurrent wi is been designed ad nonconcurren er(s) for truss to hanical connectii e capable of withs b uplift at joint 6. designed in acco Residential Cod nd referenced sta dicates Girder: 3- delines. CASE(S) section	I for greate flat roof lc ith other liv J for a 10.0 t with any truss conn on (by othe standing 4 ordance wi e sections andard AN -10d (0.14 n, loads ap	er of min rooi aad of 13.9 p re loads.) psf bottom other live loa lections. ers) of truss 11 lb uplift a th the 2018 R502.11.1 a (SI/TPI 1. 8" x 3") toe- oplied to the	f live sof on ads. to t joint and nails face						
TOP CHORD BOT CHORD WEBS NOTES 1) Wind: ASI Vasd=91r Ke=1.00; exterior22 right expo for memb Lumber D 2) TCLL: AS Plate DOI DOL=1.1{	2-10=-730/777, 1-2= 3-4=-495/230, 4-5=- 9-10=-358/122, 8-9= 4-7=-361/425, 6-7=- 2-9=-667/893, 3-9=- 3-7=-331/667, 4-6=- CE 7-16; Vult=115mph nph; TCDL=6.0psf; BC Cat. II; Exp C; Enclose one and C-C Corner (3 R) 2-10-13 to 7-10-5 zr sed ; end vertical left a ers and forces & MWFI OL=1.60 plate grip DO CE 7-16; Pr=25.0 psf (=1.15); Pg=20.0 psf; F 5 Plate DOL=1.15); Is=	0/127, 2-3=-609/58 65/60, 5-6=-108/95 -7/16, 7-8=-25/86, 391/460 503/333, 7-9=-702/6 471/412 (3-second gust) DL=6.0psf; h=35ft; d; MWFRS (envelop) -4-1-8 to 2-10-13, one; cantilever left a nd right exposed;C- RS for reactions sho L=1.60 roof LL: Lum DOL=: 7f=13.9 psf (Lum 1.0; Rough Cat C; F	3, LC 1) 584, 5684	of the truss a PAD CASE(S) Dead + Snot Increase=1 Uniform Loc Vert: 1-2 Concentrat Vert: 8=- 13=176 (Ire noted as front Standard ow (balanced): Lu .15 ads (lb/ft) =-78, 2-5=-78, 8- ed Loads (lb) 20 (F=-10, B=-10 (F=88, B=88)	t (F) or bar umber Inci -10=-20, 6 0), 12=228	ck (B). rease=1.15, -7≕-20 : (F=114, B=	Plate 114),		-		STATE OF M SCOT SEVI NUM PE-2001	AISSOUR TM. ER BER 018807	

SSIONAL June 6,2023

E

Job	Truss	Truss Type	Qty	Ply	
P210577	CJ07	Diagonal Hip Girder	3	1	Job Reference (optional)

4-4-6

4-4-6

Premier Building Supply (Springhill, KS), Spring Hills, KS - 66083,

Run; 8.63 S Nov 19 2022 Print; 8.630 S Nov 19 2022 MiTek Industries, Inc. Mon Jun 05 09;38:07 ID:Ys4OkZxRYJZidSVrcFoi_9z9Z9w-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

9-9-5

5-4-15

Page: 1

Scale = 1:42.5

Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 25.0 13.9/20.0 25.0 0.0 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 NO IRC2018/TF	기2014	CSI TC BC WB Matrix-S	0.92 1.00 0.46	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.07 0.13 -0.01	(loc) 4-5 4-5 4	l/defl >853 >476 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 40 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD REACTIONS	 2x4 SP No.2 2x4 SP No.2 2x4 SPF No.3 Structural wood she 5-9-1 oc purlins, exits Rigid ceiling directly (size) 4= Mechaa Max Horiz 5=143 (LC Max Uplift 4=-323 (L Max Grav 4=62 (LC 	athing directly appli cept end verticals. applied. nical, 5=0-7-12 C 13) C 36), 5=-398 (LC ² 46), 5=817 (LC 2)	his truss is ternational 802.10.2 ar VAILED" ind er NDS guid the LOAD the truss ar 0 CASE(S) Dead + Sno ncrease=1 Jniform Loa Vert: 1-3	designed in acco Residential Code nd referenced sta dicates Girder: 3- Jelines. CASE(S) sectior re noted as front Standard w (balanced): Lu .15 ads (lb/ft) =-78, 1-4=-20	rdance w e sections indard AN 10d (0.14 n, loads a (F) or ba imber Inc	th the 2018 R502.11.1 a ISI/TPI 1. 8" x 3") toe- oplied to the ck (B). rease=1.15, I	and nails face Plate						
FORCES	(lb) - Maximum Com Tension	pression/Maximum	(Vert: 7=2	267 (F=134, B=13	34), 8=218	8 (F=109, B=	109)					
TOP CHORD BOT CHORD WEBS	 1-2=-926/877, 2-3=- 1-5=-761/919, 4-5=- 2-5=-818/841, 2-4=- 	149/119, 3-4=-104/ [/] 761/813 756/735	139										
NOTES													
1) Wind: AS Vasd=91r Ke=1.00; exterior z Exterior(2 right expo for memb	CE 7-16; Vult=115mph mph; TCDL=6.0psf; BC Cat. II; Exp C; Enclose cone and C-C Corner (3 2R) 7-0-14 to 9-7-9 zono cosed; end vertical left a bers and forces & MWFI COL =1 60 plate grip DO	(3-second gust) DL=6.0psf; h=35ft; d; MWFRS (envelop) 0-0-0 to 7-0-14, a; cantilever left and nd right exposed;C- RS for reactions sho I =1 60	be) I •C own;									TE OF I	MISSOL

- TCLL: ASCE 7-16; Pr=25.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15; Pg=20.0 psf; Pf=13.9 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat C; Fully 2) Exp.; Ce=0.9; Cs=1.00; Ct=1.10
- Unbalanced snow loads have been considered for this 3) design.
- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- Refer to girder(s) for truss to truss connections. 5)
- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 323 lb uplift at joint 4 and 398 lb uplift at joint 5.

SCOTT M. SEVIER NUMBER PE-2001018807 O SSIONAL E

June 6,2023

Job	Truss	Truss Type	Qty	Ply	
P210577	CJ08	Diagonal Hip Girder	2	1	Job Reference (optional)

Run: 8.63 S Nov 19 2022 Print: 8.630 S Nov 19 2022 MiTek Industries, Inc. Mon Jun 05 09:38:08 ID:0K9BVj9kJrq9nDtJf16wjyz9Z9e-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:41.6

4)

Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 25.0 13.9/20.0 25.0 0.0 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 NO IRC2018	3/TPI2014	CSI TC BC WB Matrix-P	0.70 0.47 0.40	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.02 0.03 0.00	(loc) 4-5 4-5 4	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 36 lb	GRIP 197/144 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD BOT CHORD REACTIONS FORCES TOP CHORD BOT CHORD WEBS NOTES 1) Wind: AS(Vasd=91n Ke=1.00; exterior zc Exterior zc E	2x4 SP 2400F 2.0E 2x6 SPF No.2 2x4 SPF No.3 Structural wood shei 6-0-0 oc purlins, exic Rigid ceiling directly bracing. (size) 4= Mecha Max Horiz 5=119 (LC Max Uplift 4=-558 (LI Max Grav 4=116 (LC (lb) - Maximum Com Tension 1-2=-1002/941, 2-3= 1-5=-845/1000, 4-5= 2-5=-756/945, 2-4=-4 CE 7-16; Vult=115mph nph; TCDL=6.0psf; BC Cat. II; Exp C; Enclose one and C-C Corner (3) R) 7-0-14 to 8-2-4 zond sed ; end vertical left a ers and forces & MWFF OL=1.60 plate grip DO CE 7-16; Pr=25.0 psf (=1.15); Pg=20.0 psf; P 5 Plate DOL=1.15); Is=' 0.9; Cs=1.00; Ct=1.10 ed snow loads have be	athing directly applied cept end verticals. applied or 6-0-0 oc nical, 5=0-7-12 (13) C 36), 5=-523 (LC 12 C 46), 5=670 (LC 2) pression/Maximum -120/110, 3-4=-121/* -845/898 897/901 (3-second gust) DL=6.0psf; h=35ft; d; MWFRS (envelope 0-0-0 to 7-0-14, e; cantilever left and nd right exposed;C-C RS for reactions show L=1.60 roof LL: Lum DOL=1. If=13.9 psf (Lum 1.0; Rough Cat C; Fu	6) 7) d or 8) 9) 2) 10 181 1) 181 1) 181 1) 181 1) 10 181 1) 10 181 1) 11 19 10 10 10 10 10 10 10 10 10 10 10 10 10	Provide mecl bearing plate joint 4 and 52 This truss is i International R802.10.2 ar "NAILED" ind nails per NDS Hanger(s) or provided suff Ib down and design/select responsibility) In the LOAD of the truss a PAD CASE(S) Dead + Snot Increase=1. Uniform Loa Vert: 1-3 Concentrate Vert: 3=- (F=167, F	hanical connection capable of withsta 23 lb uplift at joint 5 designed in accord Residential Code s and referenced stand dicates Girder: 3-12 S guidelines. other connection of cicient to support co 63 lb up at 8-2-4 of tion of such connect of others. CASE(S) section, re noted as front (I Standard w (balanced): Lurr 15 ads (lb/ft) =-78, 1-4=-20 ad Loads (lb) 100 (F), 7=405 (F= 3=167)	(by oth anding 5 3 lance w sections dard AN 2d (0.14 device(s oncentra on top cl tion de loads a F) or ba aber Inc	ers) of truss 58 lb uplift a R502.11.1 a ISI/TPI 1. 8" x 3.25") t) shall be tted load(s) 1 vice(s) is the oplied to the ck (B). rease=1.15, -2203), 9=333	to t and oe- 128 face Plate				STATE OF M STATE OF M SEVI	MISSOUR MISSOUR ER ER

This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. Refer to girder(s) for truss to truss connections.

5)

PE-200101880

E

June 6,2023

SIONAL

Job	Truss	Truss Type	Qty	Ply	
P210577	CJ09	Diagonal Hip Girder	1	1	Job Reference (optional)

Run; 8.63 S Nov 19 2022 Print; 8.630 S Nov 19 2022 MiTek Industries, Inc. Mon Jun 05 09:38:08 ID:rI6kTCrUuM037_kGVVeHXzz9Z8I-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:42.1

Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 25.0 13.9/20.0 25.0 0.0 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 NO IRC2018	B/TPI2014	CSI TC BC WB Matrix-S	0.82 0.69 0.33	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.03 0.06 -0.01	(loc) 7-8 7-8 5	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 45 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x4 SP No.2 *Except 2x4 SPF No.3 Structural wood shee 5-10-5 oc purlins, ex Rigid ceiling directly bracing. (size) 5= Mecha Max Horiz 8=120 (LC Max Uplift 5=-403 (L	t* 7-3:2x4 SPF No.3 athing directly applie xcept end verticals. applied or 6-0-0 oc nical, 8=0-7-12 2 13) C 36), 8=-445 (LC 1	5) 6) 3 7) ed or 8) 9) 2) LC	Refer to gird Provide mec bearing plate joint 5 and 4 This truss is International R802.10.2 a "NAILED" in per NDS gui In the LOAD of the truss a DAD CASE(S)	er(s) for truss to hanical connecti e capable of with 45 lb uplift at joir designed in acco Residential Cod nd referenced st dicates Girder: 3 delines. CASE(S) sectio are noted as fron Standard	truss conr on (by oth standing 4 tt 8. ordance w le sections andard AN -10d (0.14 n, loads aj t (F) or ba	ections. ers) of truss 03 lb uplift a ith the 2018 R502.11.1 a ISI/TPI 1. 8" x 3") toe- oplied to the ck (B).	to t and nails face					
FORCES TOP CHORD BOT CHORD WEBS	Max Opinit 5=-405 (LC Max Grav 5=76 (LC (lb) - Maximum Com Tension 1-2=-902/792, 2-3=-5 4-5=-177/79 1-8=-679/895, 7-8=- 3-6=-420/357, 5-6=-4 2-8=-549/661, 6-8=-6 3-5=-411/743	46), 8=751 (LC 2) pression/Maximum 338/595, 3-4=-54/54 144/80, 6-7=-247/91 456/298 620/790, 2-6=-668/4	1) 4, 1, 406,	Dead + Sn Increase=1 Uniform Lo Vert: 1-4 Concentrat Vert: 10= B=129)	ow (balanced): L .15 ads (lb/ft) =-78, 1-7=-20, 5 ed Loads (lb) =315 (F=158, B=	umber Inc -6=-20 158), 12=2	rease=1.15, 258 (F=129,	Plate					
NOTES 1) Wind: AS Vasd=91r Ke=1.00; exterior z Exterior(2 right expor- for memb Lumber D	CE 7-16; Vult=115mph mph; TCDL=6.0psf; BCI Cat. II; Exp C; Enclosed one and C-C Corner (3) R) 7-0-14 to 9-3-5 zone osed ; end vertical left a ers and forces & MWFF OL=1.60 plate grip DO	(3-second gust) DL=6.0psf; h=35ft; d; MWFRS (envelop) 0-0-0 to 7-0-14, s; cantilever left and nd right exposed;C- RS for reactions sho L=1.60	be) I C Dwn;									STATE OF J	MISSOLIA I M. ER

- TCLL: ASCE 7-16; Pr=25.0 psf (roof LL: Lum DOL=1.15 2) Plate DOL=1.15); Pg=20.0 psf; Pf=13.9 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat C; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10
- Unbalanced snow loads have been considered for this 3) design.
- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

MiTek 16023 Swingley Ridge Rd Chesterfield, MO 63017

NUMBE

PE-200101880'

E

June 6,2023

OFFESSIONAL

Job	Truss	Truss Type	Qty	Ply		
P210577	D01	Half Hip Girder	1	1	Job Reference (optional)	158733387

Run: 8.63 S Nov 19 2022 Print: 8.630 S Nov 19 2022 MiTek Industries, Inc. Mon Jun 05 09:38:09 ID:_tVMTvqlpFDaLQQql0bHJ2z9Z7U-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Scale = 1:51.3

Plate Offsets (X, Y): [9:0-3-0,0-4-0]

Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 25.0 18.9/20.0 25.0 0.0 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 NO IRC2018	3/TPI2014	CSI TC BC WB Matrix-S	0.47 0.50 1.00	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.10 -0.16 0.04	(loc) 11-12 11-12 9	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 147 I	GRIP 197/144 b FT = 20%	
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD WEBS REACTIONS	2x6 SPF No.2 *Exce 2x6 SPF No.2 *Exce 2.0E 2x4 SPF No.3 Structural wood she 5-3-0 oc purlins, ex 2-0-0 oc purlins (4-5 Rigid ceiling directly bracing. 1 Row at midpt (size) 9=0-5-3, 1 Max Horiz 15=130 (L Max Uplift 9=-951 (L Max Grav 9=823 (LC	2) F 3) 2) 4) 5)	 2) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=35ft; Ke=1.00; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) 0-0-0 to 5-0-0, Interior (1) 5-0-0 to 6-11-0, Exterior(2R) 6-11-0 to 13-11-14, Interior (1) 13-11-14 to 26-9-4 zone; cantilever left and right exposed; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 3) TCLL: ASCE 7-16; Pr=25.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf; Pf=18.9 psf (Lum DOL=1.15 Plate DOL=1.15; Is=1.0; Rough Cat C; Fully Exp;; Ce=0.9; Cs=1.00; Ct=1.10, Lu=50-0-0 4) Unbalanced snow loads have been considered for this design. 5) Provide adequate drainage to prevent water ponding. 6) This trues has been designed for a 10.0 psf bottom 								E(S) section, lc ted as front (F) ndard alanced): Lumb b/ft) 3-8=-88, 1-9=- ads (Ib)), 6=-32 (F), 13 -32 (F), 17=-32), 22=-32 (F), 2 =25 (F), 27=25 , 31=530 (F)	ads applied to or back (B). er Increase=1. 20 =25 (F), 14=25 (F), 18=-32 (F) 3=-29 (F), 24= (F), 28=25 (F),	the face 15, Plate 7 (F), 19=-32 109 (F), 29=25	
FORCES	(Ib) - Maximum Com Tension 1-2=-270/391, 2-3=- 3-4=-1094/837, 4-5=	pression/Maximum 1215/896, 2581/1376,	6) 7)	This truss ha chord live loa Provide mec bearing plate	is been designed ad nonconcurrent hanical connectio capable of withs	for a 10.0 t with any on (by oth standing 9	0 psf bottom other live loa ers) of truss t 951 lb uplift at	ids. to						
BOT CHORD	5-7=-1601/1108, 7-8 1-15=-275/263, 14-1 12-14=-1380/2407, 10-11=-1406/2581, 9	3=-64/95, 8-9=-171/87 15=-286/275, 11-12=-1380/2407, 9-10=-1119/1601	8)	joint 9 and 7 This truss is International R802.10.2 a	55 lb uplift at join designed in acco Residential Code nd referenced sta	t 15. ordance w e sections andard AN	ith the 2018 R502.11.1 a	and				OF	MISS	
WEBS	7-9=-1833/1215, 3-1 4-14=-1514/594, 4-1 4-11=-51/200, 5-11= 7-10=-359/341, 2-15 2-14=-895/1308	4=-228/180, 2=-60/123, =-11/126, 5-10=-1125/3 5=-1313/806,	9) 330, 10	 Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord. Use Simpson Strong-Tie THJA26 (THJA26 on 1 ply, Left Hand Hip) or equivalent at 6-11-6 from the left end to 										
NOTES 1) Unbalance this design	ed roof live loads have n.	been considered for	11	connect truss(es) to front face of bottom chord.) Use Simpson Strong-Tie HUS26 (14-16d Girder, 4-16d Truss, Single Ply Girder) or equivalent at 24-11-12 from the left end to connect truss(es) to front face of bottom PE-2001018807									Ĕ	

chord.

12) Fill all nail holes where hanger is in contact with lumber.

13) "NAILED" indicates Girder: 3-10d (0.148" x 3") toe-nails per NDS guidelines.

June 6,2023

E

essional

Page: 1

MiTek 16023 Swingley Ridge Rd Chesterfield, MO 63017

Job	Truss	Truss Type	Qty	Ply	
P210577	D02	Half Hip	1	1	Job Reference (optional)

Run: 8.63 S Nov 19 2022 Print: 8.630 S Nov 19 2022 MiTek Industries, Inc. Mon Jun 05 09:38:10 ID:eGKcGFoUzqIDxjYCRp12Ywz9Z6E-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:52.9

Plate Offsets (X, Y): [6:0-3-0,Edge]

Loading	(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15		TC	0.84	Vert(LL)	-0.08	9-10	>999	240	MT20	244/190
Snow (Pf/Pg)	18.9/20.0	Lumber DOL	1.15		BC	0.65	Vert(CT)	-0.20	9-10	>999	180		
TCDL	25.0	Rep Stress Incr	YES		WB	0.99	Horz(CT)	0.06	8	n/a	n/a		
BCLL	0.0	Code	IRC2018	3/TPI2014	Matrix-S								
BCDL	10.0											Weight: 128 lb	FT = 20%
LUMBER			2)	Wind: ASCE	7-16; Vult=115m	oh (3-sec	ond gust)						
TOP CHORD	2x4 SP No.2		,	Vasd=91mph	n; TCDL=6.0psf; E	3CDL=6.0)psf; h=35ft;						
BOT CHORD	2x4 SP No.2			Ke=1.00; Ca	t. II; Exp C; Enclos	sed; MW	FRS (envelo	pe)					
WEBS	2x4 SPF No.3			exterior zone	and C-C Exterior	(2E) 0-0-	0 to 5-0-0,						
BRACING				Interior (1) 5-	0-0 to 8-11-0, Ext	erior(2R	8-11-0 to						
TOP CHORD	Structural wood she	athing directly applied	dor	15-11-14, Int	erior (1) 15-11-14	to 26-9-	4 zone; canti	lever					
	3-5-15 oc purlins, ex	xcept end verticals, a	ind	left and right	exposed ; end ve	rtical left	and right						
	2-0-0 oc purlins (3-3	-3 max.): 3-7.		exposed;C-C	for members and	forces &	MWFRS fo	r					
BOT CHORD	Rigid ceiling directly	applied or 6-0-0 oc		reactions sho	own; Lumber DOL	.=1.60 pla	ate grip						
	bracing.			DOL=1.60	7 40 5 05 0								
WEBS	1 Row at midpt	5-8	3)	TCLL: ASCE	7-16; Pr=25.0 ps	t (root LL	: Lum DOL=	1.15					
REACTIONS	(size) 8= Mecha	nical, 13=0-5-8			.15); Pg=20.0 psi	; PI=18.8	psi (Lum						
	Max Horiz 13=177 (L	-C 15)		DUL=1.15 PI	ate DOL=1.15); is	S=1.0; R0	ugn Cal C; F	ully					
	Max Uplift 8=-235 (L	C 13), 13=-262 (LC 1	2) (1)	Linbalanced	snow loads have	heen cor	sidered for t	hie					
	Max Grav 8=1496 (L	C 36), 13=1820 (LC	2) 4)	design.				113					
FORCES	(lb) - Maximum Com	pression/Maximum	5)	Provide adec	uate drainage to	prevent v	vater pondine	q.					
	Tension		6)	This truss ha	s been designed	for a 10.0) psf bottom						
TOP CHORD	1-2=-256/312, 2-3=-	1758/243,		chord live loa	ad nonconcurrent	with any	other live loa	ids.					
	3-4=-1529/250, 4-5=	-1852/314, 5-7=-105	/88, 7)	Refer to girde	er(s) for truss to tr	uss conr	ections.						
	7-8=-291/84		8)	Provide mecl	hanical connection	n (by oth	ers) of truss t	o					
BOT CHORD	1-13=-173/242, 12-1	3=-263/267,		bearing plate	capable of withst	anding 2	35 lb uplift at	t					
	10-12=-419/2341, 9-	·10=-419/2341,		joint 8 and 26	62 lb uplift at joint	13.							m
	8-9=-328/1852		9)	This truss is	designed in accor	dance w	th the 2018					OFA	ALC D
WEBS	5-8=-2142/340, 3-12	2=0/214, 2-13=-1704/	389,	International	Residential Code	sections	R502.11.1 a	and				ALEUT	NOS STE
	2-12=-2/3/1/39, 4-1	2=-900/100, 4-10=0/	230,	R802.10.2 ar	nd referenced star	ndard AN	ISI/TPI 1.				A	AN I	N.S.
	4-9=-000/100, 0-9=0	// + 0+	10) Graphical pu	riin representation	1 does no	aepict the s	size			A	SCOTT	M. NEW
NOTES				or the orienta	auon of the purlin a	aiong the	top and/or				4	7 SEVI	ER \V
1) Unbalance	ed root live loads have											1+2	

this design.

LOAD CASE(S) Standard

MiTek 16023 Swingley Ridge Rd Chesterfield, MO 63017

Job	Truss	Truss Type	Qty	Ply	
P210577	D03	Half Hip	1	1	Job Reference (optional)

Run; 8.63 S Nov 19 2022 Print; 8.630 S Nov 19 2022 MiTek Industries, Inc. Mon Jun 05 09:38:11 ID:0D_3ZGC3RnpZj8BN8TNhX5z9ZNn-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Scale = 1:53

Plate Offsets (X, Y): [13:0-3-8,0-1-8]

Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 25.0 18.9/20.0 25.0 0.0 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018	;/TPI2014	CSI TC BC WB Matrix-S	0.67 0.50 0.76	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.05 -0.14 0.05	(loc) 9-10 10-12 8	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 139 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD	2x4 SP No.2 2x4 SP No.2 2x4 SPF No.3 Structural wood she 4-3-5 oc purlins, ex 2-0-0 oc purlins (3-1	athing directly applie cept end verticals, ar 1-13 may): 4-7	2) ed or nd	Wind: ASCE Vasd=91mph Ke=1.00; Car exterior zone Interior (1) 5- 17-11-14, Int left and right exposed;C-C	7-16; Vult=115mp n; TCDL=6.0psf; E t. II; Exp C; Enclos and C-C Exterior 0-0 to 10-11-0, E: erior (1) 17-11-14 exposed ; end ve i for members and	oh (3-sec 8CDL=6.0 sed; MW (2E) 0-0 xterior(2F to 26-9- rtical left d forces 8	ond gust) Dpsf; h=35ft; FRS (envelo 0 to 5-0-0, R) 10-11-0 to 4 zone; canti and right & MWFRS fo	pe) lever r					
BOT CHORD WEBS REACTIONS	Rigid ceiling directly bracing. 1 Row at midpt (size) 8=0-2-2, 1 Max Horiz 14=216 (I Max Uplift 8=-233 (L Max Grav 8=1466 (I	⁶⁻⁸ 14=0-5-8 _C 13) _C 13), 14=-244 (LC _C 36), 14=1820 (LC	Id left and fight exposed, end ventice and infinite exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 3) TCLL: ASCE 7-16; Pr=25.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf; Pf=18.9 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat C; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10, Lu=50-0-0 4) Unbalanced snow loads have been considered for this										
FORCES	(lb) - Maximum Com Tension	pression/Maximum	, 5) 6)	Provide adec	uate drainage to	prevent v	water ponding	g.					
TOP CHORD	1-2=-264/406, 2-3=- 3-4=-1706/255, 4-5= 5-6=-1358/250, 6-7=	1539/181, 1514/253, 111/105, 7-8=-255/	7) 76	chord live loa Provide mech	ad nonconcurrent hanical connection	with any n (by oth	other live loa ers) of truss t	ids. to					
BOT CHORD	1-14=-281/255, 13-1 12-13=-298/1348, 1 9-10=-347/1830, 8-9	14=-376/288, 0-12=-347/1830, 9=-260/1358	8)	Provide mech bearing plate ioint 8 and 24	hanical connection capable of withst	n (by oth anding 2 14.	ers) of truss t 33 lb uplift at	to t				CONT	all a
WEBS	4-12=0/258, 2-14=-1 3-13=-571/158, 2-13 5-12=-497/86, 6-8=- 5-9=-649/116, 6-9=-	1703/364, 3-12=-55/3 3=-263/1712, 1767/285, 5-10=0/21 1/547	314, 9) 12, 10)	This truss is International R802.10.2 ar Graphical pu	designed in accor Residential Code nd referenced star rlin representation	dance w sections ndard AN n does no	ith the 2018 R502.11.1 a ISI/TPI 1. ot depict the s	and size			Å	STATE OF M	M. E.
NOTES 1) Unbalance	ed roof live loads have	been considered for		or the orienta bottom chord	ation of the purlin a I.	along the	top and/or				8*	J SEVI	

this design.

LOAD CASE(S) Standard

MiTek 16023 Swingley Ridge Rd Chesterfield, MO 63017

Job	Truss	Truss Type	Qty	Ply	
P210577	D04	Half Hip	1	1	Job Reference (optional)

Run: 8.63 S Nov 19 2022 Print: 8.630 S Nov 19 2022 MiTek Industries, Inc. Mon Jun 05 09:38:11 ID:0D_3ZGC3RnpZj8BN8TNhX5z9ZNn-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Scale = 1:53.1

Plate Offsets (X, Y): [9:0-2-12,0-3-0], [10:0-3-8,0-1-8]

Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 25.0 18.9/20.0 25.0 0.0 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018	3/TPI2014	CSI TC BC WB Matrix-S	0.87 0.60 0.78	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.07 -0.15 0.04	(loc) 7-8 7-8 7	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 136 lb	GRIP 244/190 FT = 20%	
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD WEBS REACTIONS	2x4 SP No.2 *Excep 1.5E 2x4 SP No.2 2x4 SPF No.3 Structural wood she 4-1-10 oc purlins, e 2-0-0 oc purlins (4-1 Rigid ceiling directly bracing. 1 Row at midpt (size) 7=0-2-2, 1 Max Horiz 11=254 (L Max Uplift 7=-231 (L Max Grav 7=1426 (L	t* 4-6:2x4 SP 1650F athing directly applied xcept end verticals, a 1-2 max.): 4-6. applied or 6-0-0 oc 5-7, 5-9 11=0-5-8 .C 13), 11=-226 (LC 1 .C 36), 11=1820 (LC	2) d or ind 3) 2) 4) 2) 5)	Wind: ASCE Vasd=91mph Ke=1.00; Cat exterior zone Interior (1) 5- 19-9-4, Interia and right exp exposed;C-C reactions sho DOL=1.60 TCLL: ASCE Plate DOL=1 DOL=1.15 PI Exp.; Ce=0.9 Unbalanced s design.	7-16; Vult=115mph ; TCDL=6.0psf; BC and C-C Exterior(2 0-0 to 12-11-0, Ext or (1) 19-9-4 to 26- osed ; end vertical for members and i wm; Lumber DOL= 7-16; Pr=25.0 psf 15); Pg=20.0 psf; ate DOL=1.15); Is= ; Cs=1.00; Ct=1.10 snow loads have be uate drainage to p	n (3-sec CDL=6.0 ed; MW 2E) 0-0.0 erior(2F 9-4 zor left and forces & 1.60 pla (roof LL Pf=18.9 e1.0; Rc 0, Lu=50 een cor	ond gust) Dpsf; h=35ft; FRS (envelo 0 to 5-0-0, R) 12-11-0 to le; cantilever i right & MWFRS fo ate grip :: Lum DOL= psf (Lum nugh Cat C; F)-0-0 isidered for t vater pondin	pe) left r 1.15 Fully his a.						
FORCES	(lb) - Maximum Com Tension 1-2=-265/373, 2-3=-	pression/Maximum 1692/180,	6) 7)	This truss had chord live loa Provide mech	s been designed fo d nonconcurrent w nanical connection	r a 10.0 ith any (by oth) psf bottom other live loa ers) of truss	ads. to						
BOT CHORD	3-4=-1652/240, 4-5= 5-6=-133/123, 6-7=- 1-11=-244/254, 10-1 8-10=-356/1474, 7-8	1448/242, 322/95 1=-376/294, 3=-275/1361	8)	bearing plate Provide mech bearing plate joint 7 and 22	at joint(s) 7. nanical connection capable of withsta 26 lb uplift at joint 1	(by oth nding 2 1.	ers) of truss 31 lb uplift a	to t				Contraction of the	don a	
WEBS NOTES 1) Unbalance this desigr	5-7=-1689/282, 2-11 5-9=-76/234, 5-8=0/: 3-10=-446/152, 2-10 ed roof live loads have h.	=-1698/375, 4-9=0/1 306, 3-9=-165/151,)=-277/1768 been considered for	87, 9) 10]	This truss is of International R802.10.2 ar Graphical put or the orienta bottom chord	designed in accord Residential Code s ad referenced stand rlin representation tion of the purlin al	ance w ections dard AN does no ong the	ith the 2018 R502.11.1 a ISI/TPI 1. ot depict the top and/or	and size		c	Res and	STATE OF M	M. ER O	8

LOAD CASE(S) Standard

June 6,2023

Page: 1

Job	Truss	Truss Type	Qty	Ply	
P210577	D05	Half Hip	1	1	Job Reference (optional)

Run: 8.63 S. Nov 19 2022 Print: 8.630 S. Nov 19 2022 MiTek Industries. Inc. Mon. Jun 05 09:38:12 ID:UPXRncDhC5xQKImZiAuw4Jz9ZNm-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to preven tbuckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses sand truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

MiTek 16023 Swingley Ridge Rd Chesterfield, MO 63017

June 6,2023

Job	Truss	Truss Type	Qty	Ply	
P210577	D06	Half Hip	1	1	Job Reference (optional)

Run: 8.63 S Nov 19 2022 Print: 8.630 S Nov 19 2022 MiTek Industries, Inc. Mon Jun 05 09:38:12 ID:J1rsv1t7oUPOz?dB3IOMxPz9ZOC-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

Job	Truss	Truss Type	Qty	Ply		
P210577	D07	Half Hip Girder	1	2	I58 Job Reference (optional)	8733393

Run: 8.63 S. Nov 19 2022 Print: 8.630 S.Nov 19 2022 MiTek Industries. Inc. Mon. Jun 05 09:38:13 ID:BWW39EdqAXSfA49QLklhjzz9Z3s-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Provide adequate drainage to prevent water ponding. This truss has been designed for a 10.0 psf bottom

chord live load nonconcurrent with any other live loads.

Provide mechanical connection (by others) of truss to

bearing plate capable of withstanding 1018 lb uplift at

joint 9 and 1307 lb uplift at joint 15.

NOTES

WEBS

Loading

TCDL

BCLL

BCDL

WEBS

WEBS

5-12=-723/4658, 5-11=-4999/887

Continued on page 2 Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE WARNING Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

7)

8)

9)

PE-2001018807

E

June 6,2023

SSIONAL

C

Job	Truss	Truss Type		Qty	Ply		
P210577	D07	Half Hip Girder		1	2	Job Reference (optional)	158733393
Premier Building Supply (Spring)	nill KS) Spring Hills KS - 66083	F	Run: 8.63 S. Nov 19.3	2022 Print: 8	630 S Nov 1	9 2022 MiTek Industries Inc. Mon. Jun 05 09:38:13	Page: 2

ID:BWW39EdqAXSfA49QLklhjzz9Z3s-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Premier Building Supply (Springhill, KS), Spring Hills, KS - 66083,

- 15) Use Simpson Strong-Tie LUS28 (6-SD9112 Girder, 4-SD9212 Truss, Single Ply Girder) or equivalent at 12-8-12 from the left end to connect truss(es) to back face of bottom chord, skewed 0.0 deg.to the left, sloping 0.0 deg. down.
- 16) Use Simpson Strong-Tie LUS28 (6-10d Girder, 4-10d Truss) or equivalent at 14-8-12 from the left end to connect truss(es) to back face of bottom chord, skewed 0.0 deg.to the right, sloping 0.0 deg. down.
- 17) Use Simpson Strong-Tie LUS24 (4-10d Girder, 2-10d Truss, Single Ply Girder) or equivalent at 16-8-12 from the left end to connect truss(es) to back face of bottom chord, skewed 0.0 deg.to the left, sloping 0.0 deg. down.
- 18) Use Simpson Strong-Tie LUS24 (4-10d Girder, 2-10d Truss, Single Ply Girder) or equivalent at 20-8-12 from the left end to connect truss(es) to back face of bottom chord, skewed 0.0 deg.to the left, sloping 0.0 deg. down.
- 19) Fill all nail holes where hanger is in contact with lumber.
- 20) "NAILED" indicates Girder: 3-10d (0.148" x 3") toe-nails per NDS guidelines.

LOAD CASE(S) Standard

- Dead + Snow (balanced): Lumber Increase=1.15, Plate 1) Increase=1.15
 - Uniform Loads (lb/ft)
 - Vert: 1-6=-78, 6-8=-88, 1-9=-20
 - Concentrated Loads (lb)
 - Vert: 19=-1282 (B), 20=-1382 (B), 21=-1403 (B), 22=-1402 (B), 23=-1408 (B), 24=-1269 (B), 25=-492
 - (B), 26=-177 (B), 27=-293 (B), 28=-56 (B)

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TP11** Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Page: 2

Job	Truss	Truss Type	Qty	Ply	
P210577	D08	Roof Special Girder	1	1	I58733394 Job Reference (optional)

Run: 8.63 S Nov 19 2022 Print: 8.630 S Nov 19 2022 MiTek Industries, Inc. Mon Jun 05 09:38:14 ID:n0yeoSQbtVeRT4dveuQwrgz9Z2r-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:64.7

Plate Offsets (X, Y):	[2:0-2-10,0-3-4]
-----------------------	------------------

		-				-							
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 25.0 13.9/20.0 25.0 0.0 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 NO IRC2018	3/TPI2014	CSI TC BC WB Matrix-S	0.87 0.54 0.39	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.01 -0.03 0.00	(loc) 8-9 8-9 6	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 104 lb	GRIP 197/144 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP 1650F 1.5E No.2 2x8 SPF No.2 2x4 SPF No.3 Structural wood she 6-0-0 oc purlins, ex Rigid ceiling directly bracing. (size) 6=0-4-3, 9 Max Horiz 10=304 (I Max Uplift 6=-160 (L 10=-452 (Max Grav 6=551 (L 10=656 (I	*Except* 4-5:2x4 SF eathing directly applie cept end verticals. applied or 6-0-0 oc 9=0-7-12, 10=0-4-4 LC 15) .C 13), 9=-424 (LC 1 (LC 37) C 2), 9=2081 (LC 22) LC 2)	2) 3) ed or 4) 5) 6), 7)	TCLL: ASCE Plate DOL=1 DOL=1.15 P Exp.; Ce=0.9 Unbalanced design. This truss ha chord live loa Provide mec bearing plate joint 6, 424 II This truss is International R802.10.2 at Use Simpson Truss, Single	7-16; Pr=25.0 ps .15); Pg=20.0 ps late DOL=1.15); I 2; Cs=1.00; Ct=1. snow loads have as been designed ad nonconcurrent hanical connectio e capable of withs to uplift at joint 9 a designed in accoo Residential Code nd referenced stat o Strong-Tie HUS e Ply Girder) or ec o connect russ(e	sf (roof LL f; Pf=13.5 is=1.0; Rc 10 been cor for a 10.0 with any on (by oth tanding 1 ind 452 lb rdance w e sections indard AN s28 (22-11 quivalent is) to had	: Lum DOL= p psf (Lum ough Cat C; I asidered for t p psf bottom other live loa ers) of truss 60 lb uplift at join uplift at join th the 2018 R502.11.1 at ISI/TPI 1.)d Girder, 4- at 8-11-12 fm (face of bott	1.15 Fully his dds. to t t 10. and 10d om					
FORCES	(lb) - Maximum Com Tension	npression/Maximum		chord, skewe down.	ed 0.0 deg.to the	right, slop	bing 0.0 deg.	UIII					
TOP CHORD	1-2=-788/948, 2-3=- 4-5=-125/122, 5-6=-	·483/95, 3-4=-204/10 ·41/34)3, 8) 9)	Fill all nail ho	les where hange	r is in cor	tact with lum	iber. face					
BOT CHORD	1-10=-735/805, 9-10 8-9=-442/474, 7-8=-	0=-442/474, ·168/362, 6-7=-110/1	⁵⁹ LC	of the truss a	are noted as front	(F) or ba	ck (B).	lace					-
WEBS 4-7=-52/156, 4-6=-362/103, 2-9=-868/253, 2-10=-909/641, 3-7=-476/145, 3-8=-95/418, 2-8=-382/892 LOAD CASE(S) NOTES 1) Dead + Sr Increase= Uniform L Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=35ft; Ke=1.00; Cat. II; Exp C; Enclosed; MWFRS (envelope) 1 Dead + Sr Increase= Uniform L Vert: 1-					balanced): Lu .15 ads (lb/ft) =-78, 4-5=-78, 1-6 ed Loads (lb) 1476 (B)	ımber Inc 6=-20	rease=1.15,	Plate				STATE OF M	AISSOUR M. ER

Wind: ASCL 7-10, Wind: FISHING (SSECUTING SSECUTING) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=35ft; Ke=1.00; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) 0-0-0 to 5-0-0, Interior (1) 5-0-0 to 15-6-9 zone; cantilever left and right exposed; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1** Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

PE-200101880

SSIONAL EN

June 6,2023

Job	Truss	Truss Type	Qty	Ply		
P210577	E01	Half Hip Girder	1	4	Job Reference (optional)	158733395

Run; 8.63 S Nov 19 2022 Print; 8.630 S Nov 19 2022 MiTek Industries, Inc. Mon Jun 05 09:38:16 ID:6TxsUyuFQ5lflo5gSrSvIqz9ZQm-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Scale = 1:51.6

Plate Offsets (X, Y): [7:0-8-	12,0-5-0], [16:0-9-4,Edge]
-------------------------------	----------------------------

Loading TCLL (roof) Snow (Pf/Pg) TCDL	(psf) 25.0 18.9/20.0 25.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr	2-0-0 1.15 1.15 NO		CSI TC BC WB	0.49 0.62 0.14	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.11 -0.28 0.08	(loc) 17-18 17-18 14	l/defl >999 >636 n/a	L/d 240 180 n/a	PLATES MT20 MT18HS	GRIP 244/190 197/144			
BCLL BCDL	0.0 10.0	Code	IRC201	8/TPI2014	Matrix-S							Weight: 452 lb	FT = 20%			
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD	2x4 SP No.2 2x4 SP No.2 *Excep 2400F 2.0E 2x4 SPF No.3 Structural wood she 10-0-0 oc purlins, e 2-0-0 oc purlins (6-0 Rigid ceiling directly bracing.	t* 21-7,12-15:2x8 SF athing directly applie xcept end verticals, a -0 max.): 4-13. applied or 6-0-0 oc	W ed or and N 1)	/EBS 1 6 6 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	4-16=-1276/251, 1 3-22=-449/128, 20- 3-20=-139/801, 4-2 5-24=-183/256, 5-2 2-25=-363/214, 3-2 3-25=-505/498, 8-1 10-17=-261/101 be connected toge ails as follows: connected as follows	3-16=- 22=-13 4=-285 2=-793 4=-210 9=-161 ether wi	233/1058, 41/211, /92, /314, 5-23=-3 /128, /76, 9-18=-12 th 10d - 1 row at 0-9	3/86, 21/59, -0	 6) Unbalanced snow loads have been considered for this design. 7) Provide adequate drainage to prevent water ponding. 8) All plates are MT20 plates unless otherwise indicated. 9) All plates are 3x4 MT20 unless otherwise indicated. 10) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads 11) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 184 lb uplift at joint 14, 372 lb uplift at joint 22 and 312 lb uplift at join 25. 							
REACTIONS	(size) 14=0-5-8, Max Horiz 25=67 (LC Max Uplift 14=-184 (25=-312 (Max Grav 14=1047 25=-712 (22=0-5-8, 25=0-3-0 C 13) LC 12), 22=-372 (LC LC 12) (LC 51), 22=1660 (L0 C 27)	C 13), C 2), 2)	oc. Bottom choro staggered at oc. Web connect All loads are	ds connected as fol 0-7-0 oc, 2x8 - 2 ro ted as follows: 2x4 considered equally	lows: 2 ows sta - 1 row	x4 - 2 rows ggered at 0-9 at 0-9-0 oc. d to all plies,	9-0	 12) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. 13) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord. 							
FORCES	(lb) - Maximum Com	pression/Maximum	,	except if note CASE(S) sec	cept if noted as front (F) or back (B) face in the LOAD ASE(S) section. Ply to ply connections have been						 Use Simpson Strong-Tie LUS24 (4-10d Girder, 2-10d Truss, Single Ply Girder) or equivalent at 24-11-12 from the left and the property reg(ar) to fract for a first them. 					
TOP CHORD	1-2=-532/559, 2-3=- 4-5=-346/344, 5-6=- 7-8=-4409/788, 8-9= 9-10=-4409/788, 10- 12-13=-1090/218, 1:	475/515, 3-4=-369/3 160/980, 6-7=-45/21 4409/788, -12=-4409/788, 3-14=-380/99	79, 1, 3) 4)	 provided to distribute only loads noted as (F) or (B), unless otherwise indicated. 3) Unbalanced roof live loads have been considered for this design. 4) Wind: ASCE 7-16; Vult=115mph (3-second gust) 						 the left end to connect truss(es) to front face of bottom chord. 15) Fill all nail holes where hanger is in contact with lumber 						
BOT CHORD	1-25=-493/526, 24-2 23-24=-438/184, 22- 21-22=-57/185, 20-2 7-20=-427/103, 19-2 18-19=-832/4409, 1 16-17=-834/4420, 1 12-16=-286/97, 14-1	vasd=91mpf Ke=1.00; Cai exterior zone Interior (1) 5- 14-0-14, Inte left and right exposed;C-C reactions sho DOL=1.60 TCLL: ASCE Plate DOL=1 DOL=1.15 PI Exp.; Ce=0.9	1; ICDL=6.0pst; BC t. II; Exp C; Enclose and C-C Exterior(0-1 to 6-11-0, Exterior(1) 14-0-14 to 2 exposed; end vert for members and wn; Lumber DOL= 7-16; Pr=25.0 psf -15); Pg=20.0 psf; ate DOL=1.15); Is= ; Cs=1.00; Ct=1.10;	upsr; n=35tt; (FRS (envelog) 0 to 5-0-1,) 6-11-0 to cone; cantilev and right & MWFRS for ate grip .: Lum DOL== 0 psf (Lum ough Cat C; F D-0-0	pe) /er r 1.15 Fully	SCOTT M. SEVER CONTRUMENTER PE-2001018807 STONAL ENGINE										

June 6,2023

Page: 1

Continued on page 2

Job	Truss	Truss Type	Qty	Ply	
P210577	E01	Half Hip Girder	1	4	I58733395 Job Reference (optional)

- 16) "NAILED" indicates Girder: 3-10d (0.148" x 3") toe-nails per NDS guidelines.
- 17) Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 122 lb down and 317 lb up at 6-11-0 on bottom chord. The design/selection of such connection device(s) is the responsibility of others.

LOAD CASE(S) Standard

- 1) Dead + Snow (balanced): Lumber Increase=1.15, Plate Increase=1.15
 - Uniform Loads (lb/ft)
 - Vert: 1-4=-78, 4-13=-88, 1-21=-20, 16-20=-20, 14-15=-20

Concentrated Loads (lb)

Vert: 4=-18 (F), 11=-112 (F), 16=-213 (F), 24=185 (F), 19=-6 (F), 26=-14 (F), 27=-14 (F), 28=-14 (F), 35=-6 (F), 36=-6 (F), 37=-6 (F), 38=-2 (F)

Run: 8.63 S Nov 19 2022 Print: 8.630 S Nov 19 2022 MiTek Industries, Inc. Mon Jun 05 09:38:16 ID:6TxsUyuFQ5lflo5gSrSvIqz9ZQm-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 2

Job	Truss	Truss Type	Qty	Ply	
P210577	E02	Half Hip	1	1	Job Reference (optional)

Run: 8.63 S Nov 19 2022 Print: 8.630 S Nov 19 2022 MiTek Industries, Inc. Mon Jun 05 09:38:17 ID:Bj_fT85_tqLTI9kuJrFMLvz9ZPC-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:51.6

late Offsets (X, Y): [5:0-2-8,0-1-8], [13:0-3-4,0-2-0], [15:0-2-8,0-1-8], [16:0-5-12,0-2-8]														
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 25.0 18.9/20.0 25.0 0.0 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018	3/TPI2014	CSI TC BC WB Matrix-S	0.71 0.60 0.97	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.09 -0.20 0.06	(loc) 14-15 14-15 11	l/defl >999 >866 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 122 lb	GRIP 244/190 FT = 20%	
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x4 SP No.2 *Excep No.3 2x4 SPF No.3 Structural wood shea 8-2-11 oc purlins, et 2-0-0 oc purlins (3-7 Rigid ceiling directly bracing. (size) 11=0-5-8, Max Horiz 20=86 (LC Max Uplift 11=-113 (I 20=-180 (I Max Grav 11=693 (L 20=749 (L 20=749 (L 20=749 (L	t* 17-5,9-12:2x4 SPI athing directly applie xcept end verticals, a -11 max.): 3-10. applied or 6-0-0 oc 18=0-5-8, 20=0-3-0 C 13) LC 12), 18=-295 (LC LC 12) LC 36), 18=1871 (LC .C 37) pression/Maximum	1) = 2) d or and 3) : 12), : 2), 4)	Unbalanced this design. Wind: ASCE Vasd=91mpl Ke=1.00; Ca exterior zone Interior (1) 5- 15-11-14, Int left and right exposed;C-C reactions sho DOL=1.60 TCLL: ASCE Plate DOL=1 DOL=1.15 Pl Exp.; Ce=0.5 Unbalanced design. Brouido adoc	roof live loads have 7-16; Vult=115mp n; TCDL=6.0psf; Bd t. II; Exp C; Enclos e and C-C Exterior(0-0 to 8-11-0, Extt erior (1) 15-11-14 exposed ; end ver c for members and own; Lumber DOL= 7-16; Pr=25.0 psf; late DOL=1.15); Is; C S=1.00; Ct=1.11 snow loads have b	e been h (3-see CDL=6. ed; MW 2E) 0-0 erior(2R to 26-9- tical left forces =1.60 pl (roof LI Pf=18.8 =1.0; R 0, Lu=5 been con	considered fc considered fc 2005; h=35ft; FRS (envelo -0 to 5-0-0, -0 to 5-0, -0 t	pe) lever r 1.15 Fully his						
TOP CHORD	Tension 1-2=-481/326, 2-3=- 4-5=-197/880, 5-6=- 6-7=-2157/373, 7-9= 9-10=-1245/264, 10-	169/521, 3-4=-288/1 1408/237, -1429/302, -11=-635/162	417, 7)	This truss ha chord live loa Provide mec bearing plate 11, 180 lb up	is been designed for ad nonconcurrent v hanical connection capable of withsta voint 20 and 2	or a 10. vith any (by oth anding 1 295 lb u	0 psf bottom other live loa ers) of truss f 13 lb uplift at plift at joint 1	ads. to t joint 8.					an	
BOT CHORD	1-20=-252/471, 19-2 18-19=-495/185, 17- 16-17=-17/20, 5-16= 15-16=-743/174, 14- 13-14=-428/2157, 12 9-13=-296/132, 11-1	20=-260/461, .18=-80/14, 877/191, .15=-259/1408, 2-13=0/43, 2=-24/95	8) 9)	This truss is International R802.10.2 ar Graphical pu or the orienta	designed in accord Residential Code and referenced stan rlin representation ation of the purlin a	dance w sections dard AN does n long the	ith the 2018 R502.11.1 a ISI/TPI 1. ot depict the s top and/or	and size				STATE OF M	M. ER	à
WEBS NOTES	11-13=-101/59, 10-1 2-20=-638/374, 3-19 16-18=-1504/279, 2- 4-18=-474/126, 4-16 7-13=-753/121, 6-15 5-15=-377/2192, 6-1 7-14=-145/97, 3-18=	3=-313/1334, =0/197, 19=-321/172, =-116/589, =-511/143, 4=-193/779, -1217/190	LC	DAD CASE(S)	. Standard					~	and the second	NUME PE-20010	L ENGLAS	

NOTES

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1** Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

June 6,2023

Job	Truss	Truss Type	Qty	Ply		
P210577	E03	Half Hip	1	1	Job Reference (optional)	8733397

Run: 8.63 S Nov 19 2022 Print: 8.630 S Nov 19 2022 MiTek Industries, Inc. Mon Jun 05 09:38:18 ID:bqjeEoYB9B0DEr3?_7P1Ljz9ZOd-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Scale = 1:51.2

Plate Offsets (X, Y): [15:0-2-12,0-2-4]

Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 25.0 18.9/20.0 25.0 0.0 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018	3/TPI2014	CSI TC BC WB Matrix-S	0.43 0.26 0.40	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.03 -0.07 0.02	(loc) 16-17 16-17 13	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 132 II	GRIP 244/190 DFT = 20%	
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD	2x4 SP No.2 2x4 SP No.2 *Excep No.3 2x4 SPF No.3 Structural wood she 6-0-0 oc purlins, ex 2-0-0 oc purlins (6-0	athing directly applic cept end verticals, a I-0 max.): 4-11.	WI PF ed or Ind NC	EBS	13-15=-493/137, 1 12-23=-690/347, 4- 18-20=-997/230, 5 5-18=-132/666, 3- 3-22=-72/139, 2-2 10-13=-399/133, 1 7-18=-1195/198, 8 7-17=0/134, 7-16=	1-13=-88 21=-8/29 5-20=-460 21=-650/ 2=-302/6 0-15=-1 5-15=-10 5-15=-10 5-47/106,	81/176, 16, 4-20=-795 5/108, 103, 138, 17/370, 42/172, 8-16=0/108	5/165,	10) This Inte R80 11) Gra or ti bott	s truss is rnationa 02.10.2 a phical prine orient om chor CASE(S)	desig I Resid and ref urlin re tation o d.) Sta	ned in accordau dential Code se ierenced standa apresentation do of the purlin alou ndard	nce with the 2018 ctions R502.11.1 ar Ird ANSI/TPI 1. ses not depict the sing the top and/or	nd ize
BOT CHORD	Rigid ceiling directly bracing, Except: 10-0-0 oc bracing: 1	7 applied or 6-0-0 oc 7-18.16-17.15-16.	1) 2)	Unbalanced this design. Wind: ASCE	7-16; Vult=115m	ve been o oh (3-sec	considered fo	or						
REACTIONS	(size) 12=0-5-8 23=0-3-0 Max Horiz 23=105 (I Max Uplift 12=-861 (20=-261 (Max Grav 12=159 (I 20=1646	, 13=0-2-2, 20=0-5-8 LC 13) LC 36), 13=-302 (LC LC 12), 23=-188 (LC LC 13), 13=1728 (LC (LC 13), 13=1728 (LC (LC 2), 23=801 (LC)	3, C 13), C 12) C 36), 37)	Vasd=91mpł Ke=1.00; Ca exterior zone Interior (1) 5- 17-11-14, Int left and right exposed;C-C	n; TCDL=6.0psf; E t. II; Exp C; Enclos and C-C Exterior 0-0 to 10-11-0, E: erior (1) 17-11-14 exposed ; end ve c for members and	CDL=6.0 sed; MW (2E) 0-0 kterior(2F to 26-9- rtical left forces 8	Dpsf; h=35ft; FRS (envelo -0 to 5-0-0, R) 10-11-0 to 4 zone; canti and right & MWFRS fo	pe) lever r						
FORCES	(lb) - Maximum Com	pression/Maximum	01)	reactions sho DOL=1.60	own; Lumber DOL	=1.60 pla	ate grip							
TOP CHORD	1-2=-509/494, 2-3=- 4-5=-203/947, 5-6=- 7-8=-874/166, 8-9=- 10-11110/382, 11	265/196, 3-4=-150/6 106/410, 6-7=-100/3 31/98, 9-10=-41/14§ -12=-151/782	625, 3) 370, 9,	TCLL: ASCE Plate DOL=1 DOL=1.15 Pl Exp.; Ce=0.9	7-16; Pr=25.0 ps .15); Pg=20.0 psf ate DOL=1.15); ls ; Cs=1.00; Ct=1.1	f (roof LL ; Pf=18.9 s=1.0; Ro 0, Lu=50	.: Lum DOL=) psf (Lum ough Cat C; F)-0-0	1.15 Fully				FE OF	MISSO	
BOT CHORD	1-23=-427/503, 22- 21-22=-176/201, 20 19-20=-42/5, 18-19= 17-18=-167/807, 16 15-16=-186/874, 14 9-15=-272/118, 13-	-21=-609/176, -21=-609/176, -9/18, 6-18=-307/12 -17=-167/807, -15=-72/19, 14=-23/2, 12-13=-57	4) 21, 5) 6) 7) 7/54 8) 9)	Unbalanced design. Provide adec All plates are This truss ha chord live loz Provide mec bearing plate Provide mec	snow loads have l uate drainage to 3x4 MT20 unless s been designed ad nonconcurrent hanical connection at joint(s) 13. hanical connection	been cor prevent v s otherwi for a 10.0 with any n (by oth n (by oth	nsidered for the water ponding se indicated. D psf bottom other live loa ers) of truss the ers) of truss the	his g. ads. to to				SCO SEV	ГТ М. ЛЕК 1018807	

 Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 861 lb uplift at joint 12, 188 lb uplift at joint 23, 261 lb uplift at joint 20 and 302 lb uplift at joint 13.

June 6,2023

E

Page: 1

16023 Swingley Ridge Rd Chesterfield, MO 63017

SSIONAL

Job	Truss	Truss Type	Qty	Ply	
P210577	E04	Half Hip	1	1	Job Reference (optional)

Run: 8.63 S Nov 19 2022 Print: 8.630 S Nov 19 2022 MiTek Industries, Inc. Mon Jun 05 09:38:18 ID:FPzcJjvNK5g6DInZBjQq1qz9ZOA-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:51.3

Plate Offsets (X, Y): [5:0-2-0,Edge], [13:0-3-0,0-2-0]

Loading		(psf)	Spacing	2-0-0		CSI	0.57	DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (root)		25.0	Plate Grip DOL	1.15			0.57	Vert(LL)	-0.03	14-15	>999	240	MT20	244/190
Show (PI/Pg)	10	5.9/20.0		1.15		BC	0.34	Ven(CT)	-0.07	14-15	>999	180		
TODL		25.0	Rep Stress Incr	TEO		VVB	0.47		0.03	11	n/a	n/a		
BCLL		0.0	Code	IRC201	8/TPI2014	Matrix-S							Waisht 120 lb	FT 000/
BCDL		10.0											weight: 130 lb	F1 = 20%
LUMBER				1)	Unbalanced	roof live loads have	e been	considered fo	or					
TOP CHORD	2x4 SP No	0.2			this design.									
BOT CHORD	2x4 SP No No.3	o.2 *Excep	t* 17-6,9-12:2x4 SPF	= 2)	Wind: ASCE Vasd=91mpl	7-16; Vult=115mph n; TCDL=6.0psf; BC	n (3-seo CDL=6.	cond gust) 0psf; h=35ft;						
WEBS	2x4 SPF N	No.3			Ke=1.00; Ca	t. II; Exp C; Enclose	ed; MW	FRS (envelo	pe)					
BRACING					exterior zone	and C-C Exterior(2	2E) 0-0	-0 to 5-0-0,						
TOP CHORD	Structural	wood she	athing directly applie	d or	Interior (1) 5	0-0 to 12-11-0, Ext	erior(2	R) 12-11-0 to						
	6-0-0 oc p	19-11-14, Interior (1) 19-11-14 to 26-9-4 zone; cantilever												
	2-0-0 oc p	ourlins (5-1	-9 max.): 5-10.		errand right	for mombors and f	forcos	and right	r					
BOT CHORD	Rigid ceili bracing.	ng directly	applied or 6-0-0 oc		reactions sho	own; Lumber DOL=	1.60 pl	ate grip	I					
REACTIONS	(size)	11=0-5-8,	18=0-5-8, 20=0-3-0	2	DOL=1.60	7 40. Dr. 05 0 mot	(*****		4 45					
	Max Horiz	20=123 (L	.C 15)	3)	Plate DOI =1	15): Pg=20.0 psf	(1001 LI	.: Lum DOL=	1.15					
	Max Uplift	11=-118 (LC 13), 18=-299 (LC	12),		late DOI -1 15); Is-	-1 0· R	ough Cat C: F	Fully					
		20=-177 (LC 12)		Exp : Ce=0.9	$C_{s=1} 00 C_{t=1} 10$) Lu=5	0-0-0	uny					
	Max Grav	11=710 (L 20=756 (L	.C 36), 18=1861 (LC	2), 4)	Unbalanced	snow loads have be	een co	nsidered for t	his					
FORCES	(lb) - Mavi	imum Com	pression/Maximum	-	design.									
TOROLO	Tension		pression/maximum	5)	Provide adeo	uate drainage to pi	revent	water ponding	g.					
TOP CHORD	1-2=-508/	466 2-3=-	181/355 3-4=-252/10	018	All plates are	3x4 IVI I 20 UNIESS (otherw	se indicated.						
	4-5=-123/	426, 5-6=-	128/441, 6-7=-119/40	01, 7)	chord live los	s been designed to	vith anv	other live los	de					
	7-8=-1234	4/239, 8-9=	-768/151,	8)	Provide mec	hanical connection	(by oth	ers) of truss t	to					-
	9-10=-727	7/146, 10-1	1=-673/170	0)	hearing plate	canable of withsta	ndina 1	18 lb unlift at	t ioint				COOL	ADDA
BOT CHORD	1-20=-398	3/501, 19-2	0=-401/494,		11. 177 lb up	lift at joint 20 and 2	299 lb u	plift at joint 1	8.				F OF I	AIS C
	18-19=-32	24/220, 17-	18=-36/0, 16-17=-17	7/12, 9)	This truss is	designed in accord	ance w	ith the 2018				1	950	N.O.
	6-16=-269	9/95, 15-16	=-196/879,	- /	International	Residential Code s	ections	R502.11.1 a	and			R	N SCOT	New Yar
	14-15=-19	96/879, 13-	14=-265/1234,	_	R802.10.2 a	nd referenced stand	dard AN	ISI/TPI 1.				A	S SCOL	
	12-13=0/4	13, 9-13=-3	05/139, 11-12=-11/3	¹⁸ 10)) Graphical pu	rlin representation of	does n	ot depict the s	size			Ø.	SEVI	
WEBS	16-18=-10)23/263, 11	1-13=-84/75,		or the orienta	ation of the purlin al	ong the	e top and/or				N.		
	10-13=-22	21/926, 2-2	0 = -643/342,		bottom chore	1.						21	1 ++	
	3-10-12/	୬/∠୦୦, ୦-1୪ '138 2_10_	=-013/143, 278/168	L	DAD CASE(S)	Standard						Nº.	CALL	ame
	4-16=-150	130, ∠-19=)/746 7-16	=-1327/253									W.	PE-2001	018807
	8-13=-523	3/99 7-15=	0/135 7-14=-111/43	2								N	11-2001	1000/28
	8-14=-126	5/94	0, 100, 1 11 11 10	-,								Y	199	NON B
NOTES													STONIA	TENA
NOTES													A TVA	

tour

June 6,2023

Job	Truss	Truss Type	Qty	Ply		
P210577	E05	Half Hip	1	1	Job Reference (optional)	33399

Run: 8.63 S Nov 19 2022 Print: 8.630 S Nov 19 2022 MiTek Industries, Inc. Mon Jun 05 09:38:19 ID:QofCCIExkiB8acwyqbxO9kz9ZNk-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

ONAL

Mitek* 16023 Swingley Ridge Rd Chesterfield, MO 63017

June 6,2023

Scale = 1:51.3

Plate Offsets ((X, Y): [7:0-3-8,0-1-8],	[11:Edge,0-2-12],	[13:0-4-12	2,0-	6-12], [14:0-	-3-8,0-7-8], [15:	0-2-0,0-4-12	, [16:0-3-12,	0-7-12]						
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 25.0 18.9/20.0 25.0 0.0 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC20)18/	TPI2014	CSI TC BC WB Matrix-S	1.00 0.67 0.84	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.10 -0.22 0.09	(loc) 14-15 14-15 11	l/defl >999 >784 n/a	L/d 240 180 n/a	PLATES MT20 MT18HS Weight: 163 lb	GRIP 244/190 197/144 FT = 20%	
LUMBER TOP CHORD BOT CHORD	2x4 SP No.2 *Except 2x4 SP No.2 *Except No.3, 16-13:1 1/2" x LVL 2x4 SPE No.3 *Except	t* 6-10:2x6 SPF No t* 17-5,9-12:2x4 SF 9 1/4" 2.0E Microlla pt* 13-10 15-6:2x4	o.2 PF am®	WE	BS	16-18=-2503/4 11-13=-95/79, 2-20=-211/57(4-18=-2495/5(3-19=0/270, 2 7-15=-1302/2	441, 6-16=-27 , 10-13=-738/ 6, 3-18=-1243 07, 4-16=-438 -19=-991/239 77, 6-15=-717	761/446, '4558, 3/210, 3/2788, 9, 8-13=-3573 7/4994,	3/513,	10) Gra or ti bott 11) Har prov des	phical p he orien om choi nger(s) c vided su ign/sele	urlin re tation o d. r othei fficient ction o	epresentation do of the purlin alor r connection dev t to support cond f such connection	tes not depict the siz ng the top and/or vice(s) shall be centrated load(s). T on device(s) is the	⊻e ſhe
WEBO	1650F 1.5E, 16-4:2x	4 SP No.2	01			7-14=-254/162	25, 8-14=-219	9/1619		responsibility of others.					
BRACING				NO	TES					LOAD	CASE(S) Sta	ndard		
TOP CHORD BOT CHORD WEBS REACTIONS	Structural wood shea 2-2-0 oc purlins, exc 2-0-0 oc purlins (2-4- Rigid ceiling directly bracing. 1 Row at midpt (size) 11=0-5-8, Max Horiz 20=138 (L Max Uplift 11=-457 (l 20=-422 (l Max Grav 11=3136 (20=307 (L	athing directly appli sept end verticals, a -12 max.): 6-10. applied or 5-0-13 c 8-13 18=0-5-8, 20=0-3- C 13) LC 13), 18=-635 (L LC 56) LC 36), 18=4353 (C 37)	ied or 2 and 2 oc 0 .C 12), LC 2),	1) 2)	Unbalance this design. Wind: ASC Vasd=91m Ke=1.00; C exterior zor Interior (1) 21-11-14, I left and righ exposed;C- reactions s DOL=1.60	d roof live loads F 7-16; Vult=11 ph; TCDL=6.0p fat. II; Exp C; E he and C-C Ext 5-0-0 to 14-11- nterior (1) 211- nterior (1) 211- t exposed ; en -C for members hown; Lumber I	s have been of ISmph (3-sec sf; BCDL=6.0 nclosed; MW erior(2E) 0-0- 0, Exterior(2E) 1-14 to 26-9- 1 d vertical left s and forces & DOL=1.60 pla	considered for ond gust) Jpsf; h=35ft; FRS (envelo 0 to 5-0-0, R) 14-11-0 to 4 zone; canti and right & MWFRS fo ate grip	pe) lever r	1) De Inc Ur Cc	ead + Sr crease= hiform Lo Vert: 1-1 11-12=- oncentra Vert: 25	iow (ba 1.15 bads (ll 6=-78, 20 ted Lo =-1426	alanced): Lumbo b/ft) 6-10=-88, 1-17: ads (lb) 6, 26=-3106	er Increase=1.15, PI 20, 13-16=-20,	ate
FORCES	(lb) - Maximum Com Tension	pression/Maximum	n .	3)	Plate DOL=	=1.15); Pg=20.0) psf; Pf=18.9	. Lun DOL= psf (Lum	1.15						
TOP CHORD	Instant Instant Instant PCHORD 1-2=-517/532, 2-3=-335/1329, 3-4=-438/2392, 4-5=-103/84, 5-6=-187/60, 6-7=-5355/801, 7-8=-6729/995, 8-9=-3631/550, 9-10=-3477/529, 10-11=-3087/514 DT CHORD 1-20=-465/511, 19-20=-468/506, 18-19=-1277/351, 17-18=-144/24, 16-17=-46/14, 5-16=-110/19, 15-16=-234/1080, 14-15=-823/5349, 13-14=-1043/6729, 12-13=0/38, 9-13=-346/141					Plate DDL=1.15); Pg=20.0 psr; Pf=18.9 psr (LUM DDL=1.15 Plate DDL=1.15); Is=1.0; Rough Cat C; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10, Lu=50-0-0 Jubalanced snow loads have been considered for this tesign. Provide adequate drainage to prevent water ponding. All plates are MT20 plates unless otherwise indicated. This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 457 lb uplift at						MISSOLATING			
	७-१३=-३४७/१४१, ११-१	∠=•10/4 <i>1</i>	9	9)	18. This truss i Internation	s designed in a al Residential C	ccordance wi	ith the 2018 R502.11.1 a	and			Ø	FE-200	ENGLE	

R802.10.2 and referenced standard ANSI/TPI 1.

Job	Truss	Truss Type	Qty	Ply	
P210577	E06	Roof Special	1	1	Job Reference (optional)

Run: 8.63 S Nov 19 2022 Print: 8.630 S Nov 19 2022 MiTek Industries, Inc. Mon Jun 05 09:38:20 ID:GIfbIPL0IffD_bNRfC3kLwz9ZMJ-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:51.9

Plate Offsets (X, Y): [15:0-2-0,0-2-0], [18:0-3-8,0-2-0]

Loading	(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP	
TCLL (roof)	2	25.0	Plate Grip DOL	1.15		тс	0.46	Vert(LL)	-0.02	16-17	>999	240	MT20	197/144	
Snow (Pf/Pg)	18.9/2	20.0	Lumber DOL	1.15		BC	0.33	Vert(CT)	-0.06	16-17	>999	180			
TCDL	2	25.0	Rep Stress Incr	YES		WB	0.99	Horz(CT)	0.04	13	n/a	n/a]		
BCLL		0.0	Code	IRC2	018/TPI2014	Matrix-S									
BCDL	1	10.0											Weight: 154 lb	FT = 20%	
LUMBER					WEBS	3-22=-193/103, 5-21	1=-23/4	-30,		10) Gra	phical p	urlin re	epresentation do	es not depict 1	the size
TOP CHORD	2x4 SP No.2 *	*Except	* 8-12:2x8 SPF No.:	2		5-20=-651/104, 18-2	20=-13	11/230,		or t	he orient	ation	of the purlin alon	g the top and/	/or
BOT CHORD	2x4 SP No.2 * No.3	*Except	* 19-7,11-14:2x4 SF	PF		8-18=-591/262, 13-1 12-15=-220/932, 1-2	15=-89/ 23=-35/	′88, 0/333,		bot 11) Hai	tom chor nger(s) o	d. r othe	r connection dev	ice(s) shall be	9
WEBS	2x4 SPF No.3	8 *Excep	ot* 24-1:2x4 SP No.:	2		6-20=-2105/380, 6-1	18=-35	8/2232,		pro	vided su	fficien	t to support conc	entrated load	(s). The
BRACING						2-23=-476/363, 2-22	2=-241	/197,		des	ign/sele	ction c	of such connection	n device(s) is	the
TOP CHORD	Structural woo	od shea	thing directly applie	ed or		8-17=-54/276, 4-22=	=-81/30	0, 4-21=-560	/112,	res	ponsibilit	y of of	thers.		
	6-0-0 oc purlir	ns, exc	ept end verticals, ar	nd		9-16=-96/51, 9-17=-	312/15	2, 10-16=0/1	92,	LOAD	CASE(S)	Sta	ndard		
	2-0-0 oc purlir	ns (6-0-	0 max.): 3-5, 8-12.			10-15=-611/112				1) De	ead + Sn	ow (ba	alanced): Lumbe	r Increase=1.	15, Plate
BOT CHORD	Rigid ceiling d	directly a	applied or 6-0-0 oc		NOTES					In	crease='	1.15			
	bracing.				1) Unbalanced	roof live loads have	been	considered fo	r	Ui	niform Lo	bads (I	b/ft)		
REACTIONS	(size) 13=	=0-5-8, 2	20=0-5-8, 23=0-3-0		this design.	7 40 14 14 44 5	(0				Vert: 1-3	3=-78,	3-5=-88, 5-8=-7	3, 8-12=-88,	
	Max Horiz 23=	=152 (L	C 13)		2) Wind: ASCE	7-16; Vult=115mph	(3-sec	cond gust)		0	19-24=-	20, 15	-18=-20, 13-14=	-20	
	Max Uplift 13=	=-138 (L	_C 12), 20=-460 (LC	C 12),	Vasu=9111p	it, ICDL=0.0psi, BC		$SPSI, \Pi=SSII,$	20)		Vort 19		aus (ib)		
	23=	=-266 (L	-C 68)	-	exterior zon	and C-C Exterior(2	2E) 0-1	-12 to 9-5-0	Je)		ven. io	=-140	0		
	Max Grav 13=	=848 (L)	C 2), 20=3151 (LC 2	2),	Interior (1) 9	-5-0 to 26-10-12 zor	ne: can	tilever left and	d						
	23=	=603 (Li	C Z)		right expose	d : end vertical left a	and riat	t exposed:C-	-C						
FORCES	(Ib) - Maximur	m Comp	pression/Maximum		for members	and forces & MWF	RS for	reactions sho	own;						
	1 2_ 297/262	2 2 - 1	05/221 2 4- 171/1	00	Lumber DOI	=1.60 plate grip DC	DL=1.60)							
TOF CHORD	4-5245/716	, 2-3=-1	95/221, 5-4=-171/1	126	TCLL: ASCE	7-16; Pr=25.0 psf (roof LL	.: Lum DOL=1	1.15						
	7-8=-680/145	, 8-9=-9	94/191.	120,	Plate DOL=	I.15); Pg=20.0 psf; I	Pf=18.9) psf (Lum							
	9-10=-1166/20	, o o o o	11=-644/136.		DOL=1.15 F	late DOL=1.15); Is=	1.0; Ro	ough Cat C; F	ully				San	The	
	11-12=-625/13	36, 12-1	13=-815/200,		Exp.; Ce=0.	9; Cs=1.00; Ct=1.10	, Lu=50)-()-() sidered for th	. i.e.				OF.	MISO	
	1-24=-95/53				 4) Unbalanced docign 	show loads have be	en cor	isidered for tr	115				4 SE		<i>b</i>
BOT CHORD	23-24=-52/44,	, 22-23=	=-343/310,		 5) Provide ade 	nuate drainage to pr	event	water ponding	ı			A	N/ SCOT		No
	21-22=-389/12	23, 20-2	21=-689/154,		 This truss have 	as been designed fo	r a 10 () psf bottom	J.			A	S SCOI	$\sum_{n=1}^{\infty} N^n$	~ 1/
	19-20=-6/19,	18-19=-	16/16, 7-18=-179/1	04,	chord live lo	ad nonconcurrent wi	ith anv	other live loa	ds.			65	/ SEV	IER \	, ,
	17-18=-227/10	004, 16	-17=-276/1200,		7) Provide med	hanical connection	(by oth	ers) of truss to	0			NC.		•	120
	10-10=-2/3/10	14 12 4	-15=0/43, 14- 9/26		bearing plate	e at joint(s) 23.						W	TT.	·-K _	
	11-13=-234/1	14, 13-	14=-0/20		8) Provide med	hanical connection	(by oth	ers) of truss to	0		2		COL NUM	er er	nea
					bearing plate	e capable of withsta	nding 1	38 lb uplift at				N	PE-2001	018807	EA .
					JUINE 13, 460 23	io upilit at joint 20 a	110 200	o io upilit at jo	mit			V	15		A
					 20. 9) This trues is 	designed in accord	ance w	ith the 2018					1. Ser-	- NO'	9
					International	Residential Code s	ections	R502.11.1 a	nd				NA	LEY	

9) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

June 6,2023

Job	Truss	Truss Type	Qty	Ply		
P210577	E07	Roof Special	1	1	Job Reference (optional)	158733401

Loading

TCDL

BCLL

BCDL

WEBS

BRACING

FORCES

LUMBER

TCLL (roof)

8) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

MiTek 16023 Swingley Ridge Rd Chesterfield, MO 63017

Job	Truss	Truss Type	Qty	Ply	
P210577	E08	Half Hip	1	2	Job Reference (optional)

Scale = 1:41.5

Run: 8.63 S Nov 19 2022 Print: 8.630 S Nov 19 2022 MiTek Industries, Inc. Mon Jun 05 09:38:22 ID:tuBtCtyS_XQMS12?yeywEzz9ZKE-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Loa TCI Snc TCI BCI BCI	ading _L (roof) ow (Pf/Pg) DL _L DL	(psf) 25.0 18.9/20.0 25.0 0.0 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018	3/TPI2014	CSI TC BC WB Matrix-S	0.68 0.28 0.65	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.01 -0.03 0.01	(loc) 7 6-7 6	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 182 lb	GRIP 197/144 FT = 20%
LUI TOI BO' WE BR, TOI	MBER CHORD T CHORD BS ACING CHORD	2x4 SP No.2 *Excep 2x4 SP No.2 2x4 SPF No.3 *Exce Structural wood she 10-0-0 oc purlins, e 2-0-0 oc purlins (6-0	t* 2-5:2x8 SPF No.2 apt* 10-1:2x4 SP No.3 athing directly applie xcept end verticals, a I-0 max.): 2-5.	4) 2 d or and	Wind: ASCE Vasd=91mph Ke=1.00; Cat exterior zone Exterior(2R) zone; cantiler and right exp MWFRS for r grip DOL=1.6	7-16; Vult=115mpf ; TCDL=6.0psf; BC . II; Exp C; Enclose and C-C Exterior(; 8-0-3 to 15-1-6, Int ver left and right ex osed;C-C for mem eactions shown; Li i0	n (3-sec CDL=6.0 ed; MW 2E) 5-1 erior (1 posed bers an umber I	ond gust) Opsf; h=35ft; FRS (envelo 11 to 8-0-3, 15-1-6 to 1 end vertical d forces & OOL=1.60 pl	ope) 9-1-7 I left ate	C	oncentra Vert: 3=	ted Lo: 1466,	ads (lb) 11=-1302, 13=-2	982
RE	ACTIONS	Rigid ceiling directly bracing. (size) 6= Mecha Max Horiz 8=145 (LC Max Uplift 6=-487 (L Max Gray 6=2924 (I	applied or 6-0-0 oc anical, 8=0-5-8 C 13) C 13), 8=-847 (LC 12 -C 36), 8=4453 (LC 2	5) 2) 6)	gnp DOL=1.00) TCLL: ASCE 7-16; Pr=25.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf; Pf=18.9 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat C; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10, Lu=50-0-0) Unbalanced snow loads have been considered for this									
FO	RCES	(lb) - Maximum Com	pression/Maximum	-/ 7)	 Provide adequate drainage to prevent water ponding. 									
toi bo ⁻	P CHORD	Tension 1-2=-146/174, 2-3=- 4-5=-99/88, 5-6=-12 9-10=-53/57, 8-9=-4	109/124, 3-4=-1861/ 68/250, 1-10=-96/59 50/675, 7-8=-468/81	8) 298, 9) 2, 10	 8) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 9) Refer to girder(s) for truss to truss connections. 10) Provide mechanical connection (by others) of truss to 									
WE	BS	6-7=-360/1861 1-9=-215/210, 3-8=- 4-6=-2420/433, 2-9= 4-7=-1924/629, 3-7=	4300/1533, =-207/186, 3-9=-807/ =-833/2943	489, 11	bearing plate joint 6 and 84) This truss is a International	capable of withsta 7 lb uplift at joint 8 designed in accord Residential Code s	nding 4 ance w	87 lb uplift a th the 2018 R502.11.1	t and					
NO ⁷ 1)	TES 2-ply truss (0.131"x3" Top chord oc, 2x8 - 2 Bottom ch 0-9-0 oc. Web conn	s to be connected toge ') nails as follows: Is connected as follows 2 rows staggered at 0-5 iords connected as follows: ected as follows: 2x4 -	ther with 10d s: 2x4 - 1 row at 0-9-0 9-0 oc. ows: 2x4 - 1 row at - 1 row at 0-9-0 oc.	12 0 13	 R802.10.2 and referenced standard ANSI/TPI 1. 2) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord. 3) Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 1344 lb down and 212 lb up at 14-1-3, and 3024 lb down and 476 lb up at 16-11-2 on top chord. The design/selection 								AISSOLIA MER ER	
2) 3)	All loads a except if n CASE(S) s provided to unless oth Unbalance this design	are considered equally noted as front (F) or basection. Ply to ply comr o distribute only loads nerwise indicated. ed roof live loads have n.	applied to all plies, ck (B) face in the LO nections have been noted as (F) or (B), been considered for	AD LC 1)	ot such conn others. DAD CASE(S) Dead + Sno Increase=1. Uniform Loa Vert: 1-2=	ection device(s) is Standard w (balanced): Lum 15 ads (lb/ft) =-78, 2-5=-88, 6-10	the res ber Inc =-20	eonsibility of rease=1.15,	Plate		ر ا		PE-20010	L ENGL

June 6,2023

Job	Truss	Truss Type	Qty	Ply	
P210577	E09	Half Hip	1	1	Job Reference (optional)

3x8=

3

8-8-1

4-4-0

4-4-1

2 - 4 - 4

4x4 =

2

1-11-12

1-11-12

3.54 F

3x4 =

Premier Building Supply (Springhill, KS), Spring Hills, KS - 66083,

4-11-1

Run: 8.63 S. Nov 19 2022 Print: 8.630 S. Nov 19 2022 MiTek Industries. Inc. Mon. Jun 05 09:38:23 ID:X5cPigXd7nwmf9ZA7foe2bz9ZIB-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

1.5x4 u

12-4-14

3-8-13

3x4 =

Page: 1

0-1-10 0-1-10 413 12 5 \square 3-9-7 4-9-7 4-9-7 -4-1 6 8 1.5x4 II Ø 10 9 1.5x4 u 1.5x4 🛚 3x8 = 6x6 = 4x12 = 4-4-1 1-10-0 4-2-5 8-9-13 12-4-14 1-10-0 4-5-12 2-4-4 0-1-12 3-7-1 Spacing 2-0-0 CSI DEFL in (loc) l/defl L/d PLATES GRIP Plate Grip DOL 1.15 тс 0.35 Vert(LL) -0.01 8-9 >999 240 MT20 197/144 BC Lumber DOL 1 15 0.15 Vert(CT) 180 -0.02 8-9 >999 Rep Stress Incr YES WB 0.43 Horz(CT) 0.00 6 n/a n/a IRC2018/TPI2014 Matrix-S Weight: 87 lb FT = 20%TCLL: ASCE 7-16; Pr=25.0 psf (roof LL: Lum DOL=1.15 3) Plate DOL=1.15); Pg=20.0 psf; Pf=18.9 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat C; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10, Lu=50-0-0 4) Unbalanced snow loads have been considered for this desian. Provide adequate drainage to prevent water ponding. 5) This truss has been designed for a 10.0 psf bottom 6) chord live load nonconcurrent with any other live loads. 7) Refer to girder(s) for truss to truss connections. 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 119 lb uplift at joint 6 and 329 lb uplift at joint 9. 9) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. 10) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord. LOAD CASE(S) Standard

- Unbalanced roof live loads have been considered for 1) this design.
- 2) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=35ft; Ke=1.00; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) 9-0-1 to 10-10-2, Exterior(2R) 10-10-2 to 17-10-15, Interior (1) 17-10-15 to 21-1-7 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TP11** Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Loading	
TCLL (roof)	

Scale = 1:45.3

Snow (Pf/Pg)

TCDL

BCLL

BCDL

LUMBER										
TOP CHORD	2x4 SP No	o.2								
BOT CHORD	2x4 SP No	0.2 *Except* 8-4:2x4 SPF No.3								
WEBS	2x4 SPF N	2x4 SPF No.3 *Except* 11-1:2x4 SP No.2								
BRACING										
TOP CHORD	Structural	wood sheathing directly applied or								
	10-0-0 oc	purlins, except end verticals, and								
	2-0-0 oc p	ourlins (6-0-0 max.): 2-5.								
BOT CHORD	Rigid ceili	ng directly applied or 10-0-0 oc								
	bracing,	Except:								
	6-0-0 oc b	oracing: 9-10.								
REACTIONS	(size)	6= Mechanical, 9=0-3-8								
	Max Horiz	9=167 (LC 13)								
	Max Uplift	6=-119 (LC 13), 9=-329 (LC 12)								
	Max Grav	6=395 (LC 36), 9=1111 (LC 2)								
FORCES	(lb) - Maxi	imum Compression/Maximum								
	Tension									
TOP CHORD	1-2=-85/1	02, 2-3=-63/78, 3-4=-219/66,								
	4-5=-220/	65, 5-6=-356/162, 1-11=-69/39								
BOT CHORD	10-11=-83	3/90, 9-10=-212/329, 8-9=-6/30,								
	7-8=0/74,	4-7=-460/257, 6-7=-63/77								
WEBS	5-7=-132/	316, 1-10=-121/126,								
	2-10=-167	7/122, 7-9=-317/414, 3-9=-959/803								
	3-10=-444	4/320, 3-7=-303/471								

(psf)

25.0

25.0

0.0

10.0

Code

18 9/20 0

OF MISS SCOTT M.

SEVIER

NUMBER

Job	Truss	Truss Type	Qty	Ply	
P210577	E10	Half Hip	1	1	Job Reference (optional)

Run: 8.63 S Nov 19 2022 Print: 8.630 S Nov 19 2022 MiTek Industries, Inc. Mon Jun 05 09:38:23 ID:bFYVQdwhbcyDV4?K?NN8LLz9ZHh-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

Scale = 1:55.1

Plate Offsets (X, Y): [1:0-9-4,0-1-8], [7:0-5-8,0-2-4]

Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 25.0 18.9/20.0 25.0 0.0 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC201	8/TPI2014	CSI TC BC WB Matrix-S	0.36 0.16 0.39	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.01 -0.02 0.00	(loc) 8-9 8-9 6	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 89 lb	GRIP 197/144 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD REACTIONS FORCES TOP CHORD BOT CHORD BOT CHORD WEBS	2x8 SPF No.2 *Excep 2x4 SP No.2 *Excep 2x4 SPF No.3 *Excep 2x4 SPF No.3 *Excep 2x4 SPF No.3 *Exce Structural wood she 10-0-0 oc purlins, e 2-0-0 oc purlins, e 2-0-0 oc purlins (6-0 Rigid ceiling directly bracing. (size) 6= Mecha Max Horiz 9=204 (L0 Max Uplift 6=-147 (L Max Grav 6=468 (L1 (Ib) - Maximum Com Tension 1-2=-128/140, 2-3=- 4-5=-95/98, 5-6=-15 10-11=-104/113, 9- 7-8=0/74, 4-7=-222/ 7-9=-256/279, 4-6=- 3-7=-241/353, 2-10= 1-10=-96/102	apt* 2-5:2x4 SP No.2 ot* 8-4:2x4 SPF No.3 apt* 11-1:2x4 SP No. apt* 11-1:2x4 SP No. eathing directly applie except end verticals, -0 max.): 2-5. applied or 6-0-0 oc anical, 9=0-3-8 C 13) C 13), 9=-241 (LC 1 C 36), 9=-775 (LC 2) apression/Maximum 98/117, 3-4=-240/12 1/91, 1-11=-95/92 10=-120/167, 8-9=-1 279, 6-7=-251/352 431/290, 3-9=-639/5 =-100/87, 3-10=-164,	2; 3; 4; 3; 4; 4; 2; 5; 6; 6; 7; 8; 2; 9; 2; 9; 4; 2; 5; 4; 2; 5; 4; 4; 4; 4; 4; 5; 5; 5; 5; 5; 5; 6; 6; 6; 7; 7; 8; 9; 6; 6; 7; 8; 9; 6; 6; 6; 7; 7; 8; 9; 6; 6; 6; 7; 7; 8; 9; 6; 6; 6; 7; 7; 8; 9; 6; 6; 6; 6; 7; 7; 8; 9; 6; 6; 6; 7; 7; 8; 9; 6; 6; 7; 7; 8; 9; 6; 6; 7; 7; 8; 9; 6; 6; 7; 7; 7; 8; 7; 6; 7; 7; 8; 7; 6; 7; 7; 7; 8; 7; 7; 7; 8; 7; 7; 8; 7; 7; 8; 7; 7; 8; 7; 7; 8; 7; 7; 8; 7; 7; 7; 7; 7; 8; 7; 7; 8; 7; 7; 8; 7; 7; 8; 7; 7; 8; 7; 7; 8; 7; 8; 7; 8; 7; 8; 7; 8; 7; 8; 7; 8; 7; 8; 7; 8; 7; 8; 7; 8; 7; 8; 7; 8; 7; 8; 7; 8; 7; 8; 7; 8; 7; 8; 7; 8; 7; 7; 8; 7; 7; 7; 7; 7; 7; 7; 7; 7; 7	 Unbalanced design. Provide adea This truss ha chord live loa Refer to gird Provide mec bearing plate joint 6 and 2. This truss is International R802.10.2 a Graphical pu or the orienta bottom chord OAD CASE(S) 	snow loads have quate drainage to is been designed ad nonconcurrent er(s) for truss to tr hanical connection e capable of withst 41 lb uplift at joint designed in accor Residential Code nd referenced star rlin representation ation of the purlin standard	been cor prevent 1 for a 10.0 with any uss conr n (by oth canding 1 9. dance w sections ndard AN n does no along the	sidered for the water ponding D psf bottom other live loa nections. ers) of truss t 47 lb uplift at ith the 2018 s R502.11.1 a JSI/TPI 1. ot depict the se top and/or	his g. ds. to t size					
NOTES 1) Wind: ASI Vasd=91r Ke=1.00; exterior/2 23-1-7 zoi vertical lei forces & M DOL=1.66 2) TCLL: ASI Plate DOI	CE 7-16; Vult=115mph mph; TCDL=6.0psf; BC Cat. II; Exp C; Enclose one and C-C Exterior(2 (R) 13-8-1 to 20-8-14, 1 ne; cantilever left and 1 ft and right exposed;C- WWFRS for reactions s 0 plate grip DOL=1.60 iCE 7-16; Pr=25.0 psf (=1 15): Pg=20.0 psf. 1	(3-second gust) ;DL=6.0psf; h=35ft; ;d; MWFRS (envelop ;E) 13-0-1 to 13-8-1, nterior (1) 20-8-14 tr right exposed; end .C for members and shown; Lumber (roof LL: Lum DOL=1 Pf=18.9 psf (Lum	be) D									PE-2001	T M. HER 018807

2) TCLL: ASCE 7-16; Pr=25.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf; Pf=18.9 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat C; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10, Lu=50-0-0

June 6,2023

ONAL E

Job	Truss	Truss Type	Qty	Ply	
P210577	E11	Roof Special	1	1	Job Reference (optional)

Run: 8.63 S Nov 19 2022 Print: 8.630 S Nov 19 2022 MiTek Industries, Inc. Mon Jun 05 09:38:24 ID: Mn1W5M0 iii3y5SJdsT2W1g1z9ZHZ-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

4-7-8 8-2-9 4-7-8 3-7-1

Scale = 1:47.7

Plate Offsets	(Х,	Y):	[5:0-5-4,0-3-12]

Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 25.0 18.9/20.0 25.0 0.0 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018	8/TPI2014	CSI TC BC WB Matrix-P	0.76 0.26 0.91	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.02 -0.05 0.01	(loc) 6-7 6-7 4	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 73 lb	GRIP 197/144 FT = 20%	
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD WEBS REACTIONS FORCES	2x8 SP 2400F 2.0E 2x4 SP No.2 *Excep 2x4 SPF No.3 2-0-0 oc purlins (6-0 end verticals. Rigid ceiling directly bracing. 1 Row at midpt (size) 4= Mecha Max Horiz 7=-236 (L Max Upit 4=-256 (L Max Grav 4=988 (LC (lb) - Maximum Com	t* 6-2:2x4 SPF No.3 -0 max.): 1-3, excep applied or 9-2-5 oc 1-7 nical, 7=0-3-8 C 12) C 11), 7=-343 (LC 1) C 2), 7=1508 (LC 2) pression/Maximum	5) 6) 7) 5t 8) 9) 0)	Refer to girc Provide mec bearing plati joint 7 and 2 This truss is Internationa R802.10.2 a Graphical pu or the orient bottom chor Hanger(s) o provided suf Ib down and design/selec responsibilit DAD CASE(S)	ler(s) for truss to t hanical connectic e capable of withs 56 lb uplift at joint designed in acco I Residential Code und referenced sta urlin representatio ation of the purlin d. r other connection ficient to support 259 lb up at 2-9- tion of such conn y of others.	russ conr n (by oth tanding 3 : 4. rdance w s sections ndard AN n does no along the a device(s concentra 4 on top ection de	ections. ers) of truss 43 lb uplift a ith the 2018 is R502.11.1 i SI/TPI 1. of depict the top and/or) shall be ated load(s) ' chord. The vice(s) is the	to it and size 1546						
TOP CHORD BOT CHORD	Tension 1-7=-1461/541, 1-2= 3-4=-66/208 6-7=-6/13, 5-6=0/87, 4-5=-410/711	-705/263, 2-3=-103/ , 2-5=-677/452,	(112, ¹)	Dead + Sn Increase=1 Uniform Lo Vert: 1-3	ow (balanced): Lu .15 ads (lb/ft) 8=-88, 6-7=-20, 4-3	imber Inc 5=-20	rease=1.15,	Plate						
WEBS	5-7=-317/322, 1-5=-4	428/1058, 2-4=-1219	9/579	Vert: 8=	ed Loads (Ib) -1437									
NOTES												000	The	
 Wind: AS Vasd=910 Ke=1.00; exterior z and right exposed; reactions DOL=1.6 	CE 7-16; Vult=115mph mph; TCDL=6.0psf; BC Cat. II; Exp C; Enclose one and C-C Corner (3; exposed ; end vertical I C-C for members and f shown; Lumber DOL=1 0	(3-second gust) DL=6.0psf; h=35ft; d; MWFRS (envelop) zone; cantilever lef eft and right orces & MWFRS for 1.60 plate grip	e) t								R	STATE OF I	MISSOURI FM. ER	C
 TCLL: AS Plate DO DOL=1.1 Exp.; Ce= Provide a This truss 	CCE 7-16; Pr=25.0 psf (L=1.15); Pg=20.0 psf; F 5 Plate DOL=1.15); Is= =0.9; Cs=1.00; Ct=1.10, idequate drainage to pro- s has been designed for	roof LL: Lum DOL=1 f=18.9 psf (Lum 1.0; Rough Cat C; Fi , Lu=50-0-0 event water ponding ; a 10.0 psf bottom	.15 ully								P.N. S	NUM PE-2001	DI8807	
chord live	load nonconcurrent wi	th any other live load	ds.									and and	5555	

June 6,2023

Job	Truss	Truss Type	Qty	Ply	
P210577	E12	Roof Special	1	1	Job Reference (optional)

Run: 8.63 E Nov 21 2022 Print: 8.630 E Nov 21 2022 MiTek Industries, Inc. Mon Jun 05 15:20:22 ID:J1rsv1t7oUPOz?dB3IOMxPz9ZOC-y4XSLpmFbUHyQGBmTYCZI0IJgyR3kOTmLTLfhFz9IBt

Scale = 1:51.5 Plate Offsets (X, Y): [5:0-5-4,0-3-12]

Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDI	(psf) 25.0 18.9/20.0 25.0 0.0 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018	3/TPI2014	CSI TC BC WB Matrix-P	0.93 0.23 0.51	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.02 -0.05 0.01	(loc) 6-7 6-7 4	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 66 lb	GRIP 197/144 ET = 20%
BCDL	10.0											weight: 66 lb	F1 = 20%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x4 SP No.2 *Excep 2x4 SPF No.3 2-0-0 oc purlins (6-0 end verticals. Rigid ceiling directly bracing. (lb/size) 4=427/ M Max Horiz 7=-275 (L Max Uplift 4=-203 (L Max Grav 4=475 (LC	t* 6-2:2x4 SPF No.(-0 max.): 1-3, exce applied or 9-10-10 echanical, 7=427/0- C 12) C 11), 7=-202 (LC 1 C 2), 7=475 (LC 2)	5) 6) 7) pt 00c 8) 3-8 LC	Refer to gird Provide mec bearing plate joint 7 and 2 This truss is International R802.10.2 a Graphical pu or the orient: bottom chorr DAD CASE(S)	er(s) for truss to t chanical connectic e capable of withs 03 lb uplift at joint designed in acco Residential Code nd referenced sta urlin representatio ation of the purlin d. Standard	russ conr n (by oth standing 2 t 4. rdance w e sections andard AN n does no along the	ections. ers) of truss 1 02 lb uplift at ith the 2018 R502.11.1 at ISI/TPI 1. of depict the top and/or	to t and size					
FORCES	(lb) - Max. Comp./Ma	ax. Ten All forces	250										
TOP CHORD	1-7=-431/462	nen snown.											
BOT CHORD	2-5=-320/452, 4-5=-	353/361											
WEBS	5-7=-351/361, 1-5=-	378/376, 2-4=-525/	531										
 Wind: AS' Vasd=91r Ke=1.00; exterior ze and right exposed; reactions DOL=1.60 TCLL: AS Plate DOD 	CE 7-16; Vult=115mph mph; TCDL=6.0psf; BC Cat. II; Exp C; Enclose one and C-C Corner (3 exposed ; end vertical I C-C for members and fr shown; Lumber DOL=) CE 7-16; Pr=25.0 psf (L=1.15); Pg=20.0 psf; F	(3-second gust) DL=6.0psf; h=35ft; d; MWFRS (envelop)) zone; cantilever le left and right orces & MWFRS for 1.60 plate grip roof LL: Lum DOL= 2f=18.9 psf (Lum	be) ft 1.15									STATE OF I	MISSOLP TM. ER

- DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat C; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10, Lu=50-0-0; Min. flat roof snow load governs. Rain surcharge applied to all exposed surfaces with slopes less than 0.500/12 in accordance with IBC 1608.3.4.
- Provide adequate drainage to prevent water ponding. 3)
- 4)́ This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

PROFILESSIONAL ET NUMBER June 6,2023

Page: 1

Job	Truss	Truss Type	Qty	Ply		
P210577	E13	Half Hip	1	1	Job Reference (optional)	158733407

Run: 8.63 S Nov 19 2022 Print: 8.630 S Nov 19 2022 MiTek Industries, Inc. Mon Jun 05 09:38:24 ID:UNQ852?WeyAbglJRiZT0S6z9ZGI-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:56.9	
Plate Offsets (X, Y):	[5:0-2-4,0-2-4]

Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 25.0 18.9/20.0 25.0 0.0 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018/TPI20	14	CSI TC BC WB Matrix-P	0.88 0.20 0.58	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.01 -0.03 0.00	(loc) 6-7 6-7 4	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 76 lb	GRIP 197/144 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD	2x8 SPF No.2 2x4 SP No.2 *Except 2x4 SPF No.3 *Except 2-0-0 oc purlins (6-0- end verticals. Rigid ceiling directly bracing.	t* 6-2:2x4 SPF No.3 pt* 7-1:2x4 SP No.2 -0 max.): 1-3, excep applied or 10-0-0 oc	6) Provi bearin joint 4 7) This t Interr R802 8) Grapl or the bottoo	de mech ng plate and 23 russ is o ational .10.2 ar nical pu orienta n chord	nanical connection capable of withsta 33 lb uplift at joint 7 designed in accord Residential Code s di referenced stand rlin representation tion of the purlin al	(by oth inding 2 ance w sections dard AN does no long the	ers) of truss t 34 lb uplift at th the 2018 R502.11.1 a ISI/TPI 1. ot depict the s top and/or	o Ind size					
REACTIONS	(size) 4= Mecha Max Horiz 7=-303 (Lu Max Uplift 4=-234 (Lu Max Grav 4=445 (Lu	nical, 7= Mechanical C 12) C 11), 7=-233 (LC 10 C 2), 7=445 (LC 2)))	ISE(S)	Standard								
FORCES	(lb) - Maximum Com	pression/Maximum											
TOP CHORD BOT CHORD	Tension 1-2=-140/155, 2-3=- ⁻ 1-7=-456/505 6-7=-5/5, 5-6=0/76, 2 4-5=-134/146	141/155, 3-4=-560/60 2-5=-417/405,)8,										
WEBS	5-7=-399/409, 1-5=-4	402/400, 3-5=-523/51	17										
 NOTES Wind: ASC Vasd=91m Ke=1.00; (exterior zo and right e exposed;C reactions s DOL=1.60 TCLL: ASC Plate DOL DOL=1.15 Exp.; Ce=(Provide ac Provide ac This truss chord live Refer to gi 	CE 7-16; Vult=115mph nph; TCDL=6.0psf; BCI Cat. II; Exp C; Encloser ine and C-C Corner (3) exposed ; end vertical Ih -C for members and for shown; Lumber DOL=1 CE 7-16; Pr=25.0 psf (r =1.15); Pg=20.0 psf; P Plate DOL=1.15); Is=' 0.9; Cs=1.00; Ct=1.10, dequate drainage to pre has been designed for hoad nonconcurrent wit rder(s) for truss to trus	(3-second gust) DL=6.0psf; h=35ft; d; MWFRS (envelope) zone; cantilever left eft and right proces & MWFRS for .60 plate grip roof LL: Lum DOL=1. 'f=18.9 psf (Lum 1.0; Rough Cat C; Fu Lu=50-0-0 event water ponding. 'a 10.0 psf bottom th any other live load: s connections.	e) 15 Ily s.							2		NUME PE-20010	MISSOLA ER DI8807

June 6,2023

MiTek 16023 Swingley Ridge Rd Chesterfield, MO 63017

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE.
Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not
a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall
building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing
is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the
fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component
Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job	Truss	Truss Type	Qty	Ply		
P210577	E14	Roof Special	1	1	I5 Job Reference (optional)	58733408

Run: 8.63 S Nov 19 2022 Print: 8.630 S Nov 19 2022 MiTek Industries, Inc. Mon Jun 05 09:38:25 ID:njLoZR4v_62c0qLndX5fEbz9ZGB-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Fd

Scale = 1:58.2

Plate Offsets	(X, Y):	[5:0-5-4,0-4-0]
---------------	---------	-----------------

Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 25.0 18.9/20.0 25.0 0.0 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018/TPI2014	CSI TC BC WB Matrix-P	1.00 0.25 0.81	DEFL Vert(LL) Vert(CT) Horz(CT)	in 0.01 -0.02 -0.01	(loc) 2 4-5 7	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 70 lb	GRIP 197/144 FT = 20%	
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD 1 Row at midpt WEBS REACTIONS FORCES TOP CHORD BOT CHORD BOT CHORD WEBS NOTES 1) Wind: ASC Vasd=91m Ke=1.00; C exterior zo and right e exposed;C reactions DOL=1.60 2) TCLL: ASC Plate DOL: DOL=1.15 Exp.; Ce=C 3) Provide ad 4) This truss I	2x4 SP No.2 2x4 SP No.2 *Excep 2x4 SPF No.3 *Exce 2-0-0 oc purlins: 1-3, Rigid ceiling directly bracing. Except: t 2-5 1 Row at midpt (size) 4= Mecha Max Horiz 4=-343 (Li Max Uplift 4=-343 (Li Max Uplift 4=-343 (Li Max Uplift 4=-343 (Li Max Grav 4=392 (LC (lb) - Maximum Com Tension 1-7=-650/686, 1-2= 3-4=-149/157 6-7=-15/14, 5-6=0/36 4-5=-270/279 5-7=-184/202, 1-5=-0 25 7-16; Vult=115mph ph; TCDL=6.0psf; BC Cat. II; Exp C; Enclose: ne and C-C Corner (3) xposed ; end vertical I -C for members and fo shown; Lumber DOL=1 DE 7-16; Pr=25.0 psf (i =1.15); Pg=20.0 psf; P Plate DOL=1.15); Is=- 0.9; Cs=1.00; Ct=1.10, .9: (cs=1.00; Ct=1.10, .9: (cs=1.00; ct=1.10); Is=-	t* 6-2:2x4 SPF No.3 spt* 7-1,3-4:2x4 SP N , except end vertical applied or 10-0-0 oc 1-7, 2-4 nical, 7= Mechanical C 12) C 11), 7=-273 (LC 10 C 25), 7=393 (LC 26) pression/Maximum 106/127, 2-3=-151/16 6, 2-5=-507/626, 666/641, 2-4=-523/54 (3-second gust) DL=6.0psf; h=35ft; d; MWFRS (enveloped) J zone; cantilever left left and right orces & MWFRS for 1.60 plate grip roof LL: Lum DOL=1. 2f=18.9 psf (Lum 1.0; Rough Cat C; Fu , Lu=50-0-0 event water ponding. r a 10.0 psf bottom	 5) Refer to gird 6) Provide merestearing platestic joint 7 and 2 7) This truss is international R802.10.2 a 8) Graphical proof or the orient bottom chorestearing bottom chorestearing	ler(s) for truss to trus thanical connection a capable of withsta 72 lb uplift at joint 4 designed in accorda Residential Code s nd referenced stanc urlin representation of ation of the purlin ald d. Standard	ss conr (by oth nding 2 ance w ections lard AN does no ong the	ections. ers) of truss to 73 lb uplift at 8502.11.1 an ISI/TPI 1. ot depict the s top and/or	o nd ize				STATE OF M STATE OF M SCOT SEVI NUM PE-2001	AISSOLD MISSOLD ER ER DISSO7 L ENGINE	
		any other live load	з.									0.0000	

June 6,2023

Job	Truss	Truss Type	Qty	Ply	
P210577	E15	Roof Special	1	1	I58733409 Job Reference (optional)

Run: 8.63 S Nov 19 2022 Print: 8.630 S Nov 19 2022 MiTek Industries, Inc. Mon Jun 05 09:38:25 ID:IdJ5NhnoTd8zG5ueBsbymcz9ZCi-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:49.2

Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 25.0 18.9/20.0 25.0 0.0 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018/	TPI2014	CSI TC BC WB Matrix-P	0.68 0.14 0.36	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.01 -0.02 0.00	(loc) 3-4 3-4 4	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 45 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD WEBS	2x4 SP No.2 2x4 SP No.2 2x4 SP 1650F 1.5E No.3 2-0-0 oc purlins: 1-2 Rigid ceiling directly bracing. 1 Row at midpt	*Except* 3-1:2x4 SPF , except end verticals applied or 10-0-0 oc 1-4, 2-3, 1-3	6) 7) ;. 8) LOA	Provide mec bearing plate joint 4 and 40 This truss is International R802.10.2 ar Graphical pu or the orienta bottom chorce AD CASE(S)	hanical connecti e capable of with 55 lb uplift at joir designed in acco Residential Cod nd referenced st rlin representation tion of the purlir I. Standard	on (by oth standing 4 it 3. ordance w le sections andard AN on does no along the	ers) of truss 65 lb uplift a th the 2018 R502.11.1 i ISI/TPI 1. tot depict the top and/or	to at and size					
REACTIONS	(size) 3= Mecha Max Horiz 3=-347 (Lu Max Uplift 3=-465 (Lu Max Grav 3=498 (LC (lb) - Maximum Com	nical, 4= Mechanical C 10) C 11), 4=-465 (LC 10) C 12), 4=498 (LC 13) pression/Maximum)										

FORCES

TOP CHORD 1-4=-839/906, 1-2=-165/180, 2-3=-171/181 BOT CHORD 3-4=-165/180 WEBS 1-3=-782/782

Tension

NOTES

- 1) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=35ft; Ke=1.00; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone and C-C Corner (3) zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- TCLL: ASCE 7-16; Pr=25.0 psf (roof LL: Lum DOL=1.15 2) Plate DOL=1.15); Pg=20.0 psf; Pf=18.9 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat C; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10, Lu=50-0-0
- Provide adequate drainage to prevent water ponding. 3) 4) This truss has been designed for a 10.0 psf bottom
- chord live load nonconcurrent with any other live loads. 5) Refer to girder(s) for truss to truss connections.

June 6,2023

Job	Truss	Truss Type	Qty	Ply		
P210577	G01	Roof Special Girder	1	3	Job Reference (optional)	3410

Run: 8.63 S. Nov 19 2022 Print: 8.630 S. Nov 19 2022 MiTek Industries. Inc. Mon. Jun 05 09:38:26 ID:9HGM0glt60CrcM24wAc7sSz9Yvz-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

ontinued on page 2

Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE WARNING WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITER REFERENCE PAGE MIT-74/3 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITER® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

June 6,2023

Job	Truss	Truss Type	Qty	Ply	
P210577	G01	Roof Special Girder	1	3	Job Reference (optional)

- 14) Use Simpson Strong-Tie SUR24 (4-16d Girder, 4-10dx1 1/2 Truss) or equivalent at 10-5-2 from the left end to connect truss(es) to front face of bottom chord, skewed 45.0 deg.to the right, sloping 0.0 deg. down.
- 15) Use Simpson Strong-Tie SUR26 (6-10d Girder, 6-10dx1 1/2 Truss) or equivalent at 13-3-2 from the left end to connect truss(es) to front face of bottom chord, skewed 45.0 deg.to the right, sloping 0.0 deg. down.
- 16) Use Simpson Strong-Tie SUR26 (6-10d Girder, 6-10dx1 1/2 Truss) or equivalent at 16-1-1 from the left end to connect truss(es) to front face of bottom chord, skewed 45.0 deg.to the right, sloping 0.0 deg. down.
- 17) Use Simpson Strong-Tie SUR26 (6-10d Girder, 6-10dx1 1/2 Truss) or equivalent at 18-11-0 from the left end to connect truss(es) to front face of bottom chord, skewed 45.0 deg.to the right, sloping 0.0 deg. down.
- 18) Use Simpson Strong-Tie LUS26 (4-10d Girder, 3-10d Truss, Single Ply Girder) or equivalent spaced at 4-0-0 oc max. starting at 22-9-4 from the left end to 32-9-4 to connect truss(es) to front face of bottom chord.
- 19) Use Simpson Strong-Tie LUS24 (4-10d Girder, 2-10d Truss, Single Ply Girder) or equivalent spaced at 10-0-0 oc max. starting at 24-9-4 from the left end to 34-9-4 to connect truss(es) to front face of bottom chord.
- 20) Use Simpson Strong-Tie HUS26 (14-10d Girder, 4-10d Truss) or equivalent at 30-9-4 from the left end to connect truss(es) to front face of bottom chord.
- 21) Use Simpson Strong-Tie HHUS26-2 (14-SD10212 Girder, 6-SD10212 Truss) or equivalent at 36-8-7 from the left end to connect truss(es) to front face of bottom chord.
- 22) Fill all nail holes where hanger is in contact with lumber.
- 23) Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 1348 lb down and 179 lb up at 1-11-5, and 1228 lb down and 194 lb up at 4-9-4 on bottom chord. The design/ selection of such connection device(s) is the responsibility of others.

LOAD CASE(S) Standard

1) Dead + Snow (balanced): Lumber Increase=1.15, Plate Increase=1.15

Uniform Loads (lb/ft)

Vert: 1-7=-78, 7-12=-78, 21-26=-20, 15-20=-20, 13-14=-20

Concentrated Loads (lb)

Vert: 24=-1034 (F), 22=-649 (F), 16=-891 (F), 31=-1144 (F), 32=-582 (F), 33=-517 (F), 34=-618 (F), 35=-510 (F), 36=-168 (F), 37=-278 (F), 38=-388 (F), 39=-389 (F), 40=-448 (F), 41=-375 (F), 42=-2904 (F)

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to preven tbuckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses sand truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Run: 8.63 S Nov 19 2022 Print: 8.630 S Nov 19 2022 MiTek Industries, Inc. Mon Jun 05 09:38:26 ID:9HGM0glt60CrcM24wAc7sSz9Yvz-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 2
Job	Truss	Truss Type	Qty	Ply	
P210577	G02	Roof Special	1	1	I58733411 Job Reference (optional)

Run: 8.63 S Nov 19 2022 Print: 8.630 S Nov 19 2022 MiTek Industries, Inc. Mon Jun 05 09:38:27 ID:9NN4Hw6X5vmBnpF8vSq4doz9Yuv-RfC?PsB70Hq3NSqPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

Mitek[®] 16023 Swingley Ridge Rd Chesterfield, MO 63017

Job	Truss	Truss Type	Qty	Ply		
P210577	G03	Roof Special	1	1	Job Reference (optional)	412

<u>3-1-12</u> 3-1-12

9-0-4

5-10-8

14-10-1

5-9-13

Run; 8.63 S Nov 19 2022 Print; 8.630 S Nov 19 2022 MiTek Industries, Inc. Mon Jun 05 09;38:28

Page: 1 ID:L1b4kJfmUkRpgjBo2P8dyHz9YuC-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f 40-10-4 38-9-8[.] 20-7-4 30-9-8 24-2-0 37-4-15 5-9-3 3-6-12 6-7-8 6-7-8 1-4-8 2-0-12 5x10= 7 ₂₇ 6 ²⁸ 29 8 30 26 $\frac{12}{12.5}$ 5x8 II 7x8=

Scale = 1:74

Plate Offsets (X, Y): [9:0-3-11,Edge], [11:0-2-0,0-1-8], [14:0-5-8,0-4-4], [15:0-3-0,0-2-4], [22:0-3-8,0-2-8]

															_
Loading		(psf)	Spacing	2-0-0		CSI	0.77	DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP	
I CLL (roof)	10	25.0	Plate Grip DOL	1.15			0.77	Vert(LL)	-0.15	6-19	>999	240	MT20	244/190	
Snow (Pt/Pg)	18.	9/20.0		1.15		BC	0.75	Vert(CT)	-0.35	6-19	>999	180			
		25.0	Rep Stress Incr	YES		VVB	0.96	Horz(CT)	0.16	12	n/a	n/a			
BCLL		0.0	Code	IRC20	018/TPI2014	Matrix-S								FT 000/	
BCDL		10.0											Weight: 254 lb	FT = 20%	_
LUMBER					WEBS	7-19=-331/1238, 9-	15=-19	12/390,		11) Gra	phical p	urlin re	presentation doe	s not depict the size	
TOP CHORD	2x4 SP No.	2 *Excep	t* 7-9:2x4 SP 1650F			10-15=-288/1881, ⁻	12-14=-	135/117,		or th	he orient	ation o	of the purlin along	the top and/or	
	1.5E					11-14=-423/2176, 2	2-24=-2	512/657,		bott	om chor	d.			
BOT CHORD	2x4 SP No.	2 *Excep	t* 20-6,10-13:2x4 SF	PF	:	5-19=-313/152, 3-2	2=-654	/229,		LOAD C	CASE(S)	Star	ndard		
	No.3				:	2-22=-573/3013, 3-	21=-17	/163,							
WEBS	2x4 SPF No	o.3 *Exce	pt* 12-11,22-2,19-21	1:2x4	-	5-21=-392/169, 19-	21=-56	8/2721,							
	SP No.2					7-18=-74/570, 8-18	624/1	99,							
BRACING						8-16=-265/151, 9-1	6=-135	831							
TOP CHORD	Structural v	vood she	athing directly applie	ed or	NOTES										
	2-7-7 oc pu	irlins, exe	cept end verticals, ar	nd	1) Unbalanced	roof live loads have	e been	considered for	r						
	2-0-0 oc pu	Irlins (4-1	-5 max.): 9-10.		this design.	7 40 34 14 445									
BOT CHORD	Rigid ceiling	g directly	applied or 6-0-0 oc		2) Wind: ASCE	7-16; Vult=115mp	n (3-sec	cond gust)							
1 Davy at mida	Dracing. Ex	kcept:			Vasa=91mpi	n; ICDL=6.0pst; Bi	ODL=6.	Jpst; n=35tt;	2						
I ROW at IIIIUP	1 Pow of m	idat	0 10		exterior zone	and C-C Exterior	2E) 0-0		je)						
		nupi D Maab			Interior (1) 5	-0-0 to 24-2-0 Exterior	2L) 0-0	0 10 3-0-0, 0 24-2-0 to							
REACTIONS	(SIZE)		anical, 24=0-5-8		29-2-0. Inter	ior (1) 29-2-0 to 40	-8-8 zor	e: cantilever	left						
	Max Horiz 2	24=209 (L		10)	and right exp	osed : end vertical	left and	l right							
	Max Opint 1	2=-240 (LC 17), 24=-337 (LC	· 10)	exposed;C-C	for members and	forces	& MWFRS for							
		2=2230 (LC 2), 24=2047 (LC	- 2)	reactions she	own; Lumber DOL=	=1.60 pl	ate grip							
FURGES	(ID) - Maxin	ium Com	pression/maximum		DOL=1.60										
	1_2336/2	70 2-3	3106/422		TCLL: ASCE	7-16; Pr=25.0 psf	(roof Ll	.: Lum DOL=1	.15						
	3-5=-3177/	547 5-6=	-3015/585		Plate DOL=1	.15); Pg=20.0 psf;	Pf=18.9	9 psf (Lum					0000	m	
	6-7=-2968/	682 7-8=	-2577/551		DOL=1.15 P	late DOL=1.15); Is	=1.0; Ro	ough Cat C; F	ully				OF M	Alson	
	8-9=-2917/	528. 9-10	=-1783/337.		Exp.; Ce=0.9	9; CS=1.00; Ct=1.10	0, Lu=5)-0-0				1	TE	-0.0 M	
	10-11=-112	25/234, 11	-12=-2193/425		 Unbalanced 	snow loads have b	een cor	isidered for th	IIS			4	SI	New	
BOT CHORD	1-24=-159/3	322, 22-2	4=-253/327,		Uesign.	nueto dreinego to r	rovent	votor ponding				B	s scor	M. YOY	
	21-22=-572	2/2763, 20)-21=-11/150,		5) FIUVILLE aueu	And MT20 uploce	othorwi	nater portuing				Br	/ SEVI	ER \ Y	
	19-20=0/10	8, 6-19=-	477/209,		7) This trues he	s heen designed fo	or a 10) nef hottom				24		1 * 12	
	18-19=-420)/2243, 16	6-18=-508/2583,		chord live lo	ad nonconcurrent v	vith anv	other live loa	ds			5	La .	8	
	15-16=-390	/1858, 14	1-15=-302/1207,		 Refer to gird 	er(s) for truss to tru	iss conr	ections.					Colling	Servin	
	13-14=-10/3	32, 10-14	=-1687/271, 12-13=	0/36	9) Provide med	hanical connection	(by oth	ers) of truss to	0			VA 7		010007 AP	
					bearing plate	e capable of withsta	anding 2	46 lb uplift at	-			N	PE-2001	11000/201	
					joint 12 and	337 lb uplift at joint	24.	·				Y	Pa	1 SA	
					10) This truss is	designed in accord	lance w	ith the 2018				0	SION	TENS	
					International	Residential Code	sections	R502.11.1 a	nd				UNA A	1	

10) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

June 6,2023

MiTek° 16023 Swingley Ridge Rd Chesterfield, MO 63017

Job	Truss	Truss Type	Qty	Ply	
P210577	G04	Roof Special	1	1	I58733413 Job Reference (optional)

10-6-15

TCDL

BCLL

BCDL

Run: 8.63 S. Nov 19 2022 Print: 8.630 S. Nov 19 2022 MiTek Industries. Inc. Mon. Jun 05 09:38:28 Page: 1 ID:k2JNIDprGdCwsh3mG0obU7z9Yq8-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f 38-11-4 40-10-4 36-8-7 30-3-8 3-1-12 9-0-4 14-10-1 20-7-4 24-2-0 36-4-15 3-1-12 5-10-8 5-9-13 5-9-3 3-6-12 6-1-8 6-1-7 1-11-0 0-3-8 2-2-13 5x10= 7 27 6 ²⁸ 298 12 12.5 26 10-6-15 4 12 51 5-1 5x5 = 5 5x10= 3x6 -6x6= 9 л 10 11 3 6x6 🞜 5-5-12 5-5-12 25 tal 0-6-2 ę 18 17 16 15 20 13 4x6= 21 23 22 6x6= 3x6= 6x6= 24 6x12= 3x6 =5x8= 7x8= 8x8= 3-1-12 38-9-8 40-10-4 2-11-0 9-0-4 14-10-1 20-9-0 24-2-0 26-9-8 30-3-8 36-6-11 H 2-2-13 2-0-12 2-11-0 5-10-8 5-9-13 5-10-15 2-7-8 3-5-0 3-6-0 6-3-3 0-2-12 Scale = 1:74 Plate Offsets (X, Y): [9:0-6-12,0-3-0], [11:0-2-8,0-1-8], [14:0-5-8,0-4-4], [22:0-3-8,0-2-8] Loading Spacing 2-0-0 CSI DEFL in l/defl L/d PLATES GRIP (psf) (loc) TCLL (roof) 25.0 Plate Grip DOL 1.15 тс 0.77 Vert(LL) -0.15 6-19 >999 240 MT20 244/190 Snow (Pf/Pg) 13.9/20.0 Lumber DOL 1.15 BC 0.75 Vert(CT) -0.35 18-19 >999 180 Rep Stress Incr WB 25.0 YES 0.94 Horz(CT) 0.16 12 n/a n/a 0.0 Code IRC2018/TPI2014 Matrix-S 10.0 Weight: 254 lb FT = 20% LUMBER WEBS 7-19=-330/1244, 9-15=-1498/326, LOAD CASE(S) Standard 10-15=-275/1761, 12-14=-145/123, TOP CHORD 2x4 SP No.2 *Except* 7-9:2x4 SP 1650F 11-14=-451/2135, 2-24=-2512/657, 1.5E 5-19=-313/152, 3-22=-654/229, BOT CHORD 2x4 SP No.2 *Except* 20-6,10-13:2x4 SPF No.3 2-22=-573/3013. 3-21=-17/127 5-21=-392/169, 19-21=-567/2722, WEBS 2x4 SPF No.3 *Except* 12-11,22-2,19-21:2x4 7-18=-84/561.8-18=-590/197. SP No.2 8-16=-218/125. 9-16=-82/628 BRACING TOP CHORD NOTES Structural wood sheathing directly applied or Unbalanced roof live loads have been considered for 2-7-9 oc purlins, except end verticals. 1) BOT CHORD Rigid ceiling directly applied or 6-0-0 oc this design Wind: ASCE 7-16; Vult=115mph (3-second gust) bracing. Except: 2) 1 Row at midpt 6-19

- WEBS 1 Row at midpt 8-18 REACTIONS 12= Mechanical, 24=0-5-8 (size) Max Horiz 24=209 (LC 20) Max Uplift 12=-246 (LC 17), 24=-337 (LC 16) Max Grav 12=2238 (LC 2), 24=2647 (LC 2) FORCES (lb) - Maximum Compression/Maximum Tension TOP CHORD 1-2=-336/280, 2-3=-3106/422, 3-5=-3177/547, 5-6=-3015/592, 6-7=-2972/690, 7-8=-2563/561, 8-9=-2884/532, 9-10=-2084/386 10-11=-1114/232, 11-12=-2185/450 BOT CHORD 1-24=-159/322, 22-24=-250/327, 21-22=-571/2763, 20-21=-12/149, 19-20=0/108, 6-19=-481/212, 18-19=-421/2241, 16-18=-509/2568, 15-16=-440/2043, 14-15=-297/1100, 13-14=-10/32, 10-14=-1750/347, 12-13=-5/48
- Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=35ft; Ke=1.00; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) 0-0-0 to 5-0-0, Interior (1) 5-0-0 to 24-2-0, Exterior(2R) 24-2-0 to 29-2-0, Interior (1) 29-2-0 to 40-8-8 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) TCLL: ASCE 7-16; Pr=25.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf; Pf=13.9 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat C; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10
- Unbalanced snow loads have been considered for this 4) desian.
- Provide adequate drainage to prevent water ponding. 5)
- All plates are 3x4 MT20 unless otherwise indicated. 6) 7) This truss has been designed for a 10.0 psf bottom
- chord live load nonconcurrent with any other live loads. 8) Refer to girder(s) for truss to truss connections.
- Provide mechanical connection (by others) of truss to 9) bearing plate capable of withstanding 246 lb uplift at joint 12 and 337 lb uplift at joint 24.
- 10) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

12

June 6,2023

Job	Truss	Truss Type	Qty	Ply	
P210577	G05	Roof Special	1	1	I58733414 Job Reference (optional)

Run: 8.63 S. Nov 19 2022 Print: 8.630 S. Nov 19 2022 MiTek Industries. Inc. Mon. Jun 05 09:38:29 Page: 1 ID:5qhY2MU_4qFzaHLXYnoklwz9YpG-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f <u>38-11-</u>4 40-10-4 9-0-4 14-10-1 20-7-4 24-2-0 30-1-12 36-1-8 3-1-12 5-9-3 5-11-12 2-9-12 1-11-0 3-1-12 5-10-8 5-9-13 3-6-12 5-11-12 5x10= 7 27 6 26 28 10-6-15 4-11-13 8 12 51 12 12.5 5x5= 5 5x5-3x6 🚅 5x5= 9 10-6-15 4 10 11 3 6x6 🚽 5-7-3 5-7-3 25 0-6-2 ÷ 18 17 16 15 20 13 12 23 22 21 4x6= 5x5= 24 6x6= 3x6= 6x12= 3x6= 5x8= 7x8= 8x8= 3-1-12 2-11-0 38-9-8 40-10-4 2-6-4 2-0-12 14-10-1 20-9-0 26-9-8 30-1-12 36-3-4 9-0-4 24-2-0 -11 \vdash 2-11-0 5-10-8 5-9-13 5-10-15 3-5-0 2-7-8 3-4-4 6-1-8 0-2-12 Scale = 1:74 Plate Offsets (X, Y): [11:0-2-8,0-1-8], [14:0-5-8,0-4-4], [22:0-3-8,0-2-8] Loading Spacing 2-0-0 CSI DEFL in l/defl L/d PLATES GRIP (psf) (loc) Plate Grip DOL TCLL (roof) 25.0 1.15 тс 0.89 Vert(LL) -0.15 6-19 >999 240 MT20 244/190 Snow (Pf/Pg) 13.9/20.0 Lumber DOL 1.15 BC 0.75 Vert(CT) -0.35 18-19 >999 180 TCDL 25.0 Rep Stress Incr WB 0.95 Horz(CT) YES 0.16 12 n/a n/a BCLL 0.0 Code IRC2018/TPI2014 Matrix-S Weight: 255 lb BCDL 10.0 FT = 20% WEBS LUMBER 7-19=-330/1245, 9-15=-1369/301, 10-15=-261/1681, 12-14=-147/125, TOP CHORD 2x4 SP No 2 11-14=-459/2140, 2-24=-2512/657, 2x4 SP No.2 *Except* 20-6,10-13:2x4 SPF BOT CHORD 5-19=-312/152, 3-22=-654/229, No.3 2-22=-573/3013, 3-21=-17/127, WEBS 2x4 SPF No.3 *Except* 12-11,22-2,19-21:2x4 5-21=-392/169, 19-21=-566/2722, SP No.2 7-18=-86/564. 8-18=-588/195. BRACING 8-16=-192/114. 9-16=-61/539 TOP CHORD Structural wood sheathing directly applied, NOTES except end verticals. BOT CHORD Unbalanced roof live loads have been considered for Rigid ceiling directly applied or 6-0-0 oc 1) bracing. Except: this design Wind: ASCE 7-16; Vult=115mph (3-second gust) 1 Row at midpt 6-19 2) WEBS 1 Row at midpt 8-18 Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=35ft; Ke=1.00; Cat. II; Exp C; Enclosed; MWFRS (envelope) REACTIONS (size) 12= Mechanical, 24=0-5-8 exterior zone and C-C Exterior(2E) 0-0-0 to 5-0-0, Max Horiz 24=209 (LC 16)

Max Uplift 12=-246 (LC 17), 24=-337 (LC 16) Max Grav 12=2238 (LC 2), 24=2647 (LC 2) FORCES (lb) - Maximum Compression/Maximum Tension TOP CHORD 1-2=-336/280, 2-3=-3106/422, 3-5=-3177/546, 5-6=-3016/595, 6-7=-2972/692, 7-8=-2559/564, 8-9=-2871/535, 9-10=-2144/395 10-11=-1115/232, 11-12=-2184/454 BOT CHORD 1-24=-159/322, 22-24=-250/327, 21-22=-570/2763, 20-21=-12/148, 19-20=0/108, 6-19=-481/212, 18-19=-421/2240, 16-18=-508/2561, 15-16=-459/2123, 14-15=-300/1103, 13-14=-10/33, 10-14=-1764/362, 12-13=-6/49 Interior (1) 5-0-0 to 24-2-0, Exterior(2R) 24-2-0 to 29-2-0, Interior (1) 29-2-0 to 40-8-8 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

- 3) TCLL: ASCE 7-16; Pr=25.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf; Pf=13.9 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat C; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10
- Unbalanced snow loads have been considered for this 4) desian.
- All plates are 3x4 MT20 unless otherwise indicated. 5)
- This truss has been designed for a 10.0 psf bottom 6) chord live load nonconcurrent with any other live loads.
- 7) Refer to girder(s) for truss to truss connections. Provide mechanical connection (by others) of truss to 8) bearing plate capable of withstanding 246 lb uplift at joint 12 and 337 lb uplift at joint 24.
- 9) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard

Job	Truss	Truss Type	Qty	Ply	
P210577	G06	Roof Special	1	1	Job Reference (optional)

Run: 8.63 S Nov 19 2022 Print: 8.630 S Nov 19 2022 MiTek Industries, Inc. Mon Jun 05 09:38:30 ID:hYWwELDzi7caC9iUy0Y4T8z9XqL-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

	<u>3-1-12</u> 3-1-12	<u>8-9-1</u> 5-7-5	<u>14-2-4</u> 5-5-3	<u>20-7-4</u> 6-5-0	<u>24-2-0</u> 3-6-12	30-1-12 5-11-12	<u>36-</u> 5-1	<u>1-8 38-1</u> 1-12 2-9-	41-0-4 1-4 •12 2-1-0	<u>47</u> 6-	<u>-6-3</u> 5-15		54-1-1 6-6-14	57-6- 55-1-1 1-0-0 2-5-f	6 <u>61-8-0</u> 4-1-10
Segent 2.102 $+ 10.6 + 15$ + 1.102 + 10.6 + 15 + 1.2 + 2.7 + 10.6 + 15 + 1.2 + 2.7 + 10.6 + 15 + 1.12 + 3.8 + 15 + 4.11 + 13 + 1.12 + 1.9	4x8 2 1 335 3x4 3-1-1 2-11-0 0-2-1	= 36 34 2 8-9-1 5-7-5 2 SUPI OTH WID ARE OR 1	12 + 53 $4x8 = 4$ 3 $4x8 = 4$ 3 33 32 $6x6 = 5x1$ $+ 14-2-4$ $+ 5-5-3$ PLEMENTARY BEARI ER MEANS TO ALLOO TH (SUCH AS COLUM THE RESPONSIBILIT HE RESPONSIBILIT HE BUILDING DESIG	38 = 37 38 = 37 20 = 20 = 20 = 20 = 20 = 20 = 20 = 20 =	3x4 II 6 3x4 II 6 3x4 II 8x8= 24-2-0 3-5-0 PECIAL ANC VIMUM REQ ING BLOCK SS MANUFA	7 40 6 9 26-9-8,30-1-12 29 28 2-7-8 3-4-4 HORAGE, OR UIRED SUPPORT S, ETC.) ACTURER	x6 _≈ 8 27 27 2 6-	6x6= 9 26 6x6= 6x 3-4 1-8 2-6	6x6= 6x6 10 1 24 3x4 = 25 12=41-0-4 -4 2-2-12	b = 1 0 = 45-8 4-7-1	12 12.5 11 22 -0 47-1 12 1-11	12 21 5x5= 6-3 	13 42 6 53-11-5 5 6-5-2	7x8= ix12= 2 144 3 20 19 5-2-13 57 1-3-8 0- 2-3-5	16 44 17ლ 18 ψ [⊥] 18 0 ⁴ 6 ⁴ 161-8-0 7-9-0 11 2-10 3-11-0
Plate Offsets (2	X, Y): [30:0-2	2-4,0-4-12	2], [31:Edge,0-3-8]												
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	18.9	(psf) 25.0 9/20.0 25.0 0.0 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018/TI	912014	CSI TC BC WB Matrix-S	0.60 0.79 0.83	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.10 -0.24 0.07	(loc) 6-30 6-30 23	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 37	GR 197 75 lb FT	RIP 7/144 = 20%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD 1 Row at midpi WEBS REACTIONS	2x6 SPF No 2x6 SPF No No.3 2x4 SPF No SP No.2 Structural w 4-1-11 oc p 2-0-0 oc pu Rigid ceiling bracing. Ex t 6-30 1 Row at mi (size) 1 3 Max Uplift 1 3 Max Uplift 1 3 Max Grav 1 (lb) - Maxim Tension 1-2=-313/14 3-5=-2919/5 6-7=-2573/6 8-9=-2136/4 10-11=-8/75 12-14=-191, 15-16=-514,	5.2 5.2 *Exce 2.3 *Exce 2.3 *Exce 2.3 *Exce 2.4 sec 2.5 with the sec 3.5 with	pt* 31-6,10-24:2x4 \$ pt* 26-10,30-32,33-2 athing directly applie cept -0 max.): 14-15. applied or 6-0-0 oc 12-23, 8-29 23=0-5-8, (req. 0-6- C 20) _C 13), 23=-456 (LC _C 13), 23=-456 (LC _C 14), 23=3843 (L' LC 2) pression/Maximum 2866/408, -2632/547, -2156/523, =-724/245, =-167/1797, 15=-588/159, 17=-753/794	BOT (SPF 2:2x4 d or (), (), (), (), (), (), (), (), (), (),	CHORD 1 3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	-35=-42/300, 33- 32-33=-418/2533, 30-31=0/127, 6-30 93-09-98/1871, 2 26-27=-34/760, 2 27-25=-113/13, 11 32-24=-116/18, 2 20-21=-83/543, 19 8-19=-723/748, 9 0-26=-325/2378, 4-20=-417/204, 1 5-19=-412/217, 1 1-25=-210/1693, 2 2-21=0/345, 14-2 6-18=-959/376, 1 30-32=-324/2331, 5 3-22=-28/130, 5 3-22=-24/136, 3 3-22=-24/136, 3 3-22=-24/136, 3 3-22=-24/136, 5 3-22=-24/136, 5 3-22=-146/1363 roof live loads ha 7-16; Vult=115m 1; TCDL=6.0psf; E 1; Exp C; Enclo and C-C Exterio 2-0 to 24-2-0, 5 2-0 to 24-2-0, 5 2-0 to 24-2-0, 5 2-0 to 24-2-1, 2 2-0 to 24-2-0, 5 2-0 to	35=-172/ 31-32=- 31-32=- 31-32=- 31-32=- 31-32=- 32-599/23 27-29=-11 5-20=-73 30-25=-22 12-23=- 12-23=- 21=-591/ 2-35=-21 30=-449 33=-567/2 7-29=-63/ 33=-567/2 7-29=-63/ ve been of ph (3-sec 3CDL=6.0 sec; MW r(2E) 0-0 terior(2R) 0-61-8-0 2 ortical left d forces 8 2005	2990, 32/307, 36, 50/1881, 5/202, 09/318, 0/175, 6/552, 23/748 50/329, 1746/310, 60/714, 228/374, 1585/288, 77, 55/821, 260/630, 1711, 1585/288, 77, 260/630, 1714, 1585/288, 77, 55/821, 260/630, 1714, 1585/288, 77, 55/821, 260/630, 1714, 1585/288, 77, 55/821, 260/630, 1714, 1585/288, 77, 55/821, 260/630, 1714, 1585/288, 77, 55/821, 260/630, 174, 1585/288, 77, 55/821, 260/630, 174, 1585/288, 77, 55/821, 260/630, 174, 174, 174, 174, 174, 174, 174, 174	c c f f f r r r	 TCL Plat DOI Exp Exp (and erecessee Brand ("BC buil con for ti inditi ass han Pro All p 	L: ASC te DOL= L=1.15 l .; Ce=0 Jalanced ign. RNING: experie ction. Fo Guide t csl"), jo ding ow tract wit the desi allation vidual tr umes no diling, ei vide ade blates a	E 7-16 =1.15); Plate D .9; Cs= d snow : This I ence fol or gene to Good Wetal P intly pri- ner or t th a qua gn and restrain russ me o respo rection, equate re 4x6 l	; Pr=25.0 ps Pg=20.0 ps OL=1.15); I: 1.00; Ct=1 loads have ong span frr r proper and ral handling d Practice fo late Connec oduced by S the owner's alified regist: inspection d dracing ar ember restra nsibility for i or bracing. drainage to MT20 unles:	f (roof LL: ; Pf=18.9 s=1.0; Roi 10, Lu=50 been cons uss require I safe hand and erect or Handling ted Wooc BCA and authorized ered desig of the tem int/bracing truss man prevent w s otherwis DF MIS COTT M SEVIER	Lum DOL=1.15 psf (Lum ugh Cat C; Fully -0-0 sidered for this es extreme care dling and tion guidance, g, Installing & d Trusses TPI. The d agent shall porary manent g. MiTek ufacture, vater ponding. e indicated.
				re D	actions sho OL=1.60	wn; Lumber DOL	_=1.60 pla	ate grip				Ø	FESSIO	NAL June 6	,2023

Page: 1

Continued on page 2 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and bracing of trusses and truss systems. See ANSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute. 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job	Truss	Truss Type	Qty	Ply	
P210577	G06	Roof Special	1	1	I58733415 Job Reference (optional)

- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 9) WARNING: Required bearing size at joint(s) 23 greater than input bearing size.
- Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 456 lb uplift at joint 23, 315 lb uplift at joint 18 and 329 lb uplift at joint 35.
- 11) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

LOAD CASE(S) Standard

Run: 8.63 S Nov 19 2022 Print: 8.630 S Nov 19 2022 MiTek Industries, Inc. Mon Jun 05 09:38:30 ID:hYWwELDzi7caC9iUy0Y4T8z9XqL-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 2

Job	Truss	Truss Type	Qty	Ply	
P210577	G07	Roof Special	1	1	Job Reference (optional)

Run: 8.63 S. Nov 19 2022 Print: 8.630 S. Nov 19 2022 MiTek Industries. Inc. Mon. Jun 05 09:38:31 ID:_F4iXoKh2OCXFIkALLCeBYz9Xov-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

continued on page 2

WARNING Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not besign valid to less only with with twe contractors. This besign is based only upon parameters and properly incorporate this design into the overall a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

June 6,2023

Job	Truss	Truss Type	Qty	Ply	
P210577	G07	Roof Special	1	1	I58733416 Job Reference (optional)

- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 9) WARNING: Required bearing size at joint(s) 23 greater than input bearing size.
- 10) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 329 lb uplift at joint 35, 459 lb uplift at joint 23 and 312 lb uplift at joint 18.
- 11) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

LOAD CASE(S) Standard

Run: 8.63 S Nov 19 2022 Print: 8.630 S Nov 19 2022 MiTek Industries, Inc. Mon Jun 05 09:38:31 ID:_F4iXoKh2OCXFIkALLCeBYz9Xov-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 2

Job	Truss	Truss Type	Qty	Ply	
P210577	G08	Roof Special	1	1	Job Reference (optional)

Run: 8.63 S Nov 19 2022 Print: 8.630 S Nov 19 2022 MiTek Industries, Inc. Mon Jun 05 09:38:33 ID:bIZ7JeXnkogUdVpBedUsiQz9XnM-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

Mitek° 16023 Swingley Ridge Rd Chesterfield, MO 63017

ontinued on page 2

Job	Truss	Truss Type	Qty	Ply	
P210577	G08	Roof Special	1	1	I58733417 Job Reference (optional)

- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 9) WARNING: Required bearing size at joint(s) 24 greater than input bearing size.
- 10) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 329 lb uplift at joint 36, 458 lb uplift at joint 24 and 313 lb uplift at joint 18.
- 11) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

LOAD CASE(S) Standard

Run: 8.63 S Nov 19 2022 Print: 8.630 S Nov 19 2022 MiTek Industries, Inc. Mon Jun 05 09:38:33 ID:bIZ7JeXnkogUdVpBedUsiQz9XnM-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 2

Job	Truss	Truss Type	Qty	Ply	
P210577	G09	Roof Special	1	1	Job Reference (optional)

Run: 8.63 S Nov 19 2022 Print: 8.630 S Nov 19 2022 MiTek Industries, Inc. Mon Jun 05 09:38:34 ID:MBgHqSf6qNOHHoQ3bfegz1z9XIv-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

ontinued on page 2

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and property incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601 June 6,2023

Job	Truss	Truss Type	Qty	Ply	
P210577	G09	Roof Special	1	1	I58733418 Job Reference (optional)

- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 9) WARNING: Required bearing size at joint(s) 23 greater than input bearing size.
- Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 329 lb uplift at joint 35, 314 lb uplift at joint 18 and 456 lb uplift at joint 23.
- 11) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

LOAD CASE(S) Standard

Run: 8.63 S Nov 19 2022 Print: 8.630 S Nov 19 2022 MiTek Industries, Inc. Mon Jun 05 09:38:34 ID:MBgHqSf6qNOHHoQ3bfegz1z9XIv-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 2

Job	Truss	Truss Type	Qty	Ply	
P210577	G10	Roof Special	1	1	Job Reference (optional)

Run: 8.63 S Nov 19 2022 Print: 8.630 S Nov 19 2022 MiTek Industries, Inc. Mon Jun 05 09:38:36 ID:NGn_6iUmpGyeRFc8axsdkNz9Xkr-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

	<u>3-1-12</u> 3-1-12	8-9-1 5-7-5	<u> 14-2-4</u> 5 5-5-3	<u>↓ 2</u> €	<u>0-7-4</u> 6-5-0	<u>24-2-(</u> 3-6-12	0 <u>30-1-12</u> 2 5-11-12 8x8=	<u> 36</u> 5-1	<u>-1-8</u> 1-12	41 38-11-4 2-9-12 2	-0-4 -1-0	<u>46-1</u> 5-0-	<u>-1</u> 47- 131-0	1-1 <u>5</u> -0 6	<u>3-3-13</u> 5-2-12	<u>57-6-6</u> 4-2-9	<u>61-8-0</u> 4-1-10))
Scale = 1.900×10^{-6} 15×10^{-6} 15×10^{-6} 15×10^{-6} 12×10^{-6} 12×10^{-15} 12×1	4 1 3 3 3 1 <u>2-11-0</u> 2-11-0 0-2	x8 = 35 x4 = 33 x4 = -12 -12 -12 -12 S 0 W 0 0	4x8 = 4 3 32 $6x6 =$ $1 + 14 - 2 - 4$ $5 - 5 - 3$ UPPLEMENTARY UTHER MEANS TO UPPLEMENTARY UTHER MEANS TO UPPLEMENTARY UPPLEMENTARY THE BUILDING	2 4x8 = 36 5 31 5x10= 4 2 6 0 BEARING 0 ALLOW FC COLUMN C COLUMN C COLUMN C SIBILITY O SIBILITY O SIBILITY O	37 ³⁸ 0-9-0 -6-12 PLATES, DR THE M APS, BEA F THE TR 8.	3x4 II 6 4 30 4x4 II 8x8= 24-2-1 3-5-C SPECIAL A INIMUM R RING BLC USS MANI	7 39 6 28 27 28 27 28 27 28 27 20 2-7-8 3-4-4 20 2-7-8 3-4-4 20 2-7-8 3-4-4 20 2-7-8 3-4-4 20 2-7-8 3-4-4 20 2-7-8 20 2-9-8, 30-1-12 2-7-8 3-4-4 2-9-8, 30-1-12 2-7-8 3-4-4 2-9-8, 30-1-12 2-7-8 3-4-4 2-9-8, 30-1-12 2-7-8 3-3-4-4 2-9-8, 30-1-12 2-7-8 3-3-4-4 2-9-8, 30-1-12 2-7-8 3-3-4-4 2-9-8, 30-1-12 2-7-8 3-4-4 2-9-8, 30-1-12 2-7-8 3-3-4-4 2-9-8, 30-1-12 2-7-8 3-3-4-4 2-9-8, 30-1-12 2-7-8 3-3-4-4 2-9-8, 30-1-12 2-7-8 3-3-4-4 2-9-8, 30-1-12 2-7-8 3-3-4-4 2-9-8, 30-1-12 2-7-8 3-3-4-4 2-9-8, 30-1-12 2-7-8 3-3-4-4 2-7-8 3-4-4 2-7-8 3-4-4 2-7-8 3-4-4 2-7-8 3-4-4 2-7-8 3-4-4 2-7-8 2-7-8 3-4-4 2-7-8 3-7-7-8 3-7-7-7-7-7-7-7-7-7-7-7-7-7-7-7-7-7-7-7	x6 8 26 26 27	<u>6-3-4</u> -1-8	6x6= 9 10 25 23 6x6= 3x4 6x12= 1 38-9-8 2-6-42-;	122 646 11 4 22 8×10 -0-4 -0-4	.5 = <u>45-11</u> 4-11	6x12 6y 1 220 46-4 -1 0-10	$x_{z} = 213$ 19 $z_{z} = 13$ 1 + 5 2 2 2 2 2 2 13 1 1 2 2 2 13 1 2 2 13 1 1 2 2 13 1 1 2 2 13 1 1 2 2 2 2 2 2 2 2	40 1 11 13 33-3-13 6-1-0	4 41 ⁶ 3 <u>57-6-6</u> 4-2-9 0	3×12 <i>µ</i> 15 17 17 17 17 17 17 17 17 17 17	
Plate Offsets (2	X, Y): [15:0	-3-0,0-2-8]	, [20:0-3-0,0-4-8	8], [29:0-2-4	4,0-4-12]	[30:Edge	e,0-3-8]											
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	18	(psf) 25.0 2.9/20.0 25.0 0.0 10.0	Spacing Plate Grip DOI Lumber DOL Rep Stress Inc Code	2-0-0 L 1.15 1.15 cr YES IRC2) 2018/TPI:	2014	CSI TC BC WB Matrix-S	0.56 0.80 0.82	DEFL Vert(L Vert(C Horz(C	L) -0.2 CT) -0.2 CT) 0.0	in (10 6 24 6 07	(loc) 6-29 6-29 22	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 38	Gi 19 30 lb F	RIP }7/144 T = 20%	
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD 1 Row at midpl WEBS REACTIONS	2x6 SPF N 2x6 SPF N No.3 2x4 SPF N SP No.2 Structural 4-1-13 oc 2-0-0 oc p Rigid ceilir bracing. E 6-29 1 Row at r (size) Max Horiz Max Uplift Max Grav (lb) - Maxin Tension	lo.2 lo.3 *Exce wood shea purlins, ex urlins (10-i g directly Except: nidpt 17=0-5-4, 34=0-58 34=-190 (I 17=-312 (I 34=-329 (I 17=-1191 (I 34=-2465 (mum Com	pt* 30-6,10-23:2 pt* 25-10,29-31, athing directly ag cept 0-0 max.): 12-13 applied or 6-0-0 8-28 22=0-5-8, (req. LC 21) LC 13), 22=-457 LC 16) LC 44), 22=384 LC 2) pression/Maxim	2x4 SPF ,32-2:2x4 oplied or 3. 0 oc 0-6-1), 7 (LC 17), 7 (LC 2), um	NOTES 1) Unit	HORD 1 3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	-34=-42/300, 32- 31-32=-418/2531, 19-30=0/127, 6-22 28-29=-98/1868, 22 5:-26=-5/748, 24- 3:-24=-119/20, 10 22-23=-120/23, 21 19-21=-437/218, 1 7-18=-649/755, 1 7-29=-324/1225, 9 10-25=-334/2377, 12-22=-1209/216, 13-21=-912/123, 13-31=-221/135, 3-3 3:-32=-525/2633, 1 12-24=-210/131, 3-26=-666/172, 9- 14-18=-227/214, 1 15-18=-422/1194, toof live loads have	34=-173 30-31=- 599/2: 6-28=-1 25=-745 -24=-22 -22=-67 8-19=-8 6-17=-6 -25=-18 22-24=- 12-21=- 3-19=0/ 2-34=-2 29=-450 2=-566/2 1-22=-8 8-28=-1 26=-161 4-19=-7 15-17=- ve been v	/290, 32/306, 36, 37/1876 /212, 44/335, 8/245, 4/536, 49/755 50/338, 1768/34 67/768, 398, 7-2 259/627 /171, 213, 3259/627 /171, 213,359 79/168, /1370, 24/123, 988/423	0, /8=-62/287 /, i, i,	4) 5) 6) 7) 8) 9)	Unb desi WAP and erec see Braa ("BC build cont for ti insta indiv assu hano Prov. All p This chor WAP	alanced gn. RNING: experie tion. Fc Guide t sing of N SI"), jo ding own ract with ne desig allation i ridual tr umes nd dling, er ride ade lates ar truss h d live lk RNING: input b	I snow This I nce foi o Goor Aletal P Intly pri ner or t h a quu gn and restrair uss me ection, equate e 4x6 f as bee e etx6, respo ection, requate earing	loads have ong span tru r proper and ral handling d Practice for late Connect oduced by S the owner's inspection of trybracing ar ember restra mosibility for i or bracing. drainage to MT20 unless on designed hoconcurrent red bearing size.	been cor iss requii safe har and erec r Handlin ted Woo iBCA and authorize authorize of the tem int/bracir inuss mai prevent t s otherwi for a 10.0 with any size at jo	nsidered for res extrem hdling and y, Installin d Trusses d TPI. The ad agent sh ign profess hporary rmanent ng. MiTek nufacture, water ponc ise indicate 0 psf botto other live l bint(s) 22 g	r this e care nce, g & vall ional ing. d. n ocads. reater
TOP CHORD	1-2=-313/1 3-5=-2916 6-7=-2570 8-9=-2130 10-11=-27 12-13=-10 14-15=-59	148, 2-3=-2 /516, 5-6= /643, 7-8= /448, 9-10 /770, 11-1 5/715, 13- 4/149, 15-	2864/401, -2628/537, -2153/513, =-713/212, 2=-193/1823, 14=-113/461, 16=-761/718		2) Wir Vas Ke= extt Inte 30- left exp rea DO 3) TCI Pla DO	design. d: ASCE d=91mpl- 1.00; Cat rior cone rior (1) 6- 1-12, Inte and right osed;C-C ctions sho L=1.60 L: ASCE te DOL=1 L=1.15 Pl	7-16; Vult=115m n; TCDL=6.0psf; B t. II; Exp C; Enclos and C-C Exterior 2-0 to 24-2-0, Ext rior (1) 30-1-12 to exposed ; end ve for members and own; Lumber DOL 7-16; Pr=25.0 ps .15); Pg=20.0 psf ate DOL=1.15); Is	bh (3-sec GDL=6. sed; MW (2E) 0-0 erior(2R 61-8-0 f forces 6 =1.60 pl f (roof LI ; Pf=18.5 s=1.0; Ro	cond gus 0psf; h= /FRS (er -0 to 6-2) 24-2-0 zone; ca : and rig! & MWFF ate grip _: Lum E 9 psf (Lu bugh Ca	st) 35ft; nvelope) 2-0, to untilever ht RS for DOL=1.15 im it C; Fully			ļ		PE-2	F MI	SSOLIN BOT LENGT	

Plate DOL=1.15); Pg=20.0 psf; Pf=18.9 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat C; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10, Lu=50-0-0

Continued on page 2 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSITPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

June 6,2023

Job	Truss	Truss Type	Qty	Ply		
P210577	G10	Roof Special	1	1	Job Reference (optional)	158733419

- Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 457 lb uplift at joint 22, 329 lb uplift at joint 34 and 312 lb uplift at joint 17.
- 11) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

LOAD CASE(S) Standard

Run: 8.63 S Nov 19 2022 Print: 8.630 S Nov 19 2022 MiTek Industries, Inc. Mon Jun 05 09:38:36 ID:NGn_6iUmpGyeRFc8axsdkNz9Xkr-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 2

Job	Truss	Truss Type	Qty	Ply	
P210577	G11	Roof Special	1	1	Job Reference (optional)

Run: 8.63 S. Nov 19 2022 Print: 8.630 S. Nov 19 2022 MiTek Industries. Inc. Mon. Jun 05 09:38:37 ID:CVFze?NBO0H8JdGMvUBzkzz9Xjh-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

June 6,2023

Page: 1

continued on page 2

Job	Truss	Truss Type	Qty	Ply	
P210577	G11	Roof Special	1	1	I58733420 Job Reference (optional)

- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 9) WARNING: Required bearing size at joint(s) 23 greater than input bearing size.
- 10) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 456 lb uplift at joint 23, 329 lb uplift at joint 35 and 312 lb uplift at joint 18.
- 11) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

LOAD CASE(S) Standard

Run: 8.63 S Nov 19 2022 Print: 8.630 S Nov 19 2022 MiTek Industries, Inc. Mon Jun 05 09:38:37 ID:CVFze?NBO0H8JdGMvUBzkzz9Xjh-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 2

Job	Truss	Truss Type	Qty	Ply	
P210577	G12	Roof Special	1	1	Job Reference (optional)

Run: 8.63 S Nov 19 2022 Print: 8.630 S Nov 19 2022 MiTek Industries, Inc. Mon Jun 05 09:38:39 ID:LMA0CWZfJ7dE4hmBf3yyiez9Xi9-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Scale = 1:106.5

Plate Offsets ((X, Y): [12:0-4-	-0,0-3-1	2], [16:0-2-12,0-3-0], [30:0-2-	0,0-4-8], [31:E	dge,0-3-8]								
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	18.9/	(psf) 25.0 /20.0 25.0 0.0 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC20	18/TPI2014	CSI TC BC WB Matrix-S	0.67 0.80 0.71	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.10 -0.24 0.07	(loc) 6-30 6-30 23	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 390 I	GRIP 197/144 b FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD 1 Row at midp WEBS REACTIONS	2x6 SPF No. 2x6 SPF No. No.3, 24-20: 2x4 SPF No. SP No.2 Structural wo 4-1-13 oc pu 2-0-0 oc purl Rigid ceiling bracing. Exc t 6-30 1 Row at mic (size) 18 Max Horiz 35 Max Uplift 18 35 Max Grav 18 35 (lb) - Maximu	2 2 *Exce 2x6 SP 3 *Exce ood shea arlins, ex lins (10- directly cept: dpt 3=0-5-4, 5=190 (L 3=-310 (5=-329 (5=-329 (5=-2463 (um Com	pt* 31-6,10-24:2x4 2400F 2.0E pt* 26-10,33-2,30-3 athing directly appli cept 0-0 max.): 12-13. applied or 6-0-0 oc 8-29, 14-21 23=0-5-8, 35=0-5-{ C 20) LC 13), 23=-456 (Li LC 16) (LC 44), 23=3852 (I (LC 42), 23=3852 (I (LC 2))	SPF 32:2x4 ed or 8 C 17), _C 2),	BOT CHORD	$\begin{array}{l} 1.35 = -43/300, 33\\ 32-33 = -419/2529\\ 30-31 = 0/127, 6-3\\ 29-30 = -99/1865, 26-27 = -5/737, 25\\ 24-25 = -360/66, 1\\ 23-24 = -176/39, 2\\ 21-22 = -1615/360\\ 18-19 = -559/746, 7-30 = -324/1226, 10-26 = -341/2367\\ 10-26 = -341/2367\\ 12-21 = -222/1614\\ 2-35 = -2258/624, 3-33 = -566/212, 2\\ 3-32 = -21/35, 5 = -30-325/2327\\ 3-32 = -3$	-35=-173, , 31-32=- 0=-599/2; 27-29=-1 -26=-750, 0-25=-22 2-23=-16 , 19-21=- 17-18=-5 9-26=-18 , 12-22=- , 13-21=- 5-30=-45 -33=-520 32=-287/1 , 7-29=-6 -27=-670, 11-23=-1 1-25=-19 , 16-18=- , 14-19=-	/290, 32/306, 36, 25/1870, /250, 64/366, 26/357, 99/680, 59/746 49/346, 945/126, 808/224, 0/170, /2631, 1/26, 2/284, 1/80, 678/231, 2/1546, 982/448, 82/203,		 TC Pla DC Expl 4) Un dess W/A and ere see Bra ("B bui cor for ins ind ass har Prc 7) All 	LL: ASC te DOL= L=1.15 F o; Cc=0. oalancec sign. RNING: e Guide t ccion. Fc e Guide t ccing of N CSI"), jo Iding ow tract wit the desig allation widual tr sumes no dling, er vide ade plates an	E 7-16(1.1.15); Plate D 9; Cs= d snow This I snoce fo or gene o Gooo Metal F ner or h a qui gen and restrain uss mo o respor- rection equate re 4x6	; Pr=25.0 psf (f Pg=20.0 psf; P OL=1.15); Is=' 1.00; Ct=1.10, loads have be long span truss r proper and sa ral handling ar d Practice for p Plate Connecter oduced by SBC the owner's au alified registerer inspection of t mb/bracing and i ember restraint onsibility for trus , or bracing. drainage to pro	oof LL: Lum DOL=1.15 f=18.9 psf (Lum I.0; Rough Cat C; Fully Lu=50-0-0 en considered for this requires extreme care fie handling and d erection guidance, landling, Installing & d Wood Trusses CA and TPI. The horized agent shall d design professional he temporary he permanent /bracing. MiTek ss manufacture, event water ponding. therwise indicated.
TOP CHORD	Tension 1-2=-314/144 3-5=-2914/50 6-7=-2567/63 8-9=-2124/42 10-11=-57/77 12-13=-134/ 14-16=-753/7	8, 2-3=-2 07, 5-6= 33, 7-8= 29, 9-10 78, 11-1 1152, 13 175, 16-	2862/395, -2625/527, -2149/502, =-708/178, 2=-197/1792, 3-14=-189/1283, 17=-753/630	:	NOTES 1) Unbalance this design 2) Wind: ASC Vasd=91m Ke=1.00; C exterior zol Interior (1)	d roof live loads ha E 7-16; Vult=115m ph; TCDL=6.0psf; at. II; Exp C; Encl e and C-C Exteric	ave been nph (3-sec BCDL=6. osed; MW or(2E) 0-0	considered for cond gust) 0psf; h=35ft; /FRS (envelop -0 to 6-2-0, 24 2 0 to	n be)				STATE OF STATE OF SE	MISSOLA

Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=35ft; Ke=1.00; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) 0-0 to 6-2-0, Interior (1) 6-2-0 to 24-2-0, Exterior(2R) 24-2-0 to 30-1-12, Interior (1) 30-1-12 to 61-8-0 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

Page: 1

16023 Swingley Ridge Rd Chesterfield, MO 63017

Continued on page 2 WARNING - Verify

Job	Truss	Truss Type	Qty	Ply	
P210577	G12	Roof Special	1	1	I58733421 Job Reference (optional)

- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 329 lb uplift at joint 35, 456 lb uplift at joint 23 and 310 lb uplift at joint 18.
- 10) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

LOAD CASE(S) Standard

Run: 8.63 S Nov 19 2022 Print: 8.630 S Nov 19 2022 MiTek Industries, Inc. Mon Jun 05 09:38:39 ID:LMA0CWZfJ7dE4hmBf3yyiez9Xi9-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 2

Job	Truss	Truss Type	Qty	Ply	
P210577	G13	Roof Special	1	1	Job Reference (optional)

Run: 8.63 S Nov 19 2022 Print: 8.630 S Nov 19 2022 MITek Industries, Inc. Mon Jun 05 09:38:40 ID:Xv50dbYXhWIzIulijGWuPLDz9Xfb-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

ontinued on page 2

Job	Truss	Truss Type	Qty	Ply	
P210577	G13	Roof Special	1	1	Job Reference (optional)

- Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 467 lb uplift at joint 20, 301 lb uplift at joint 16 and 329 lb uplift at joint 29.
- 11) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

LOAD CASE(S) Standard

Run: 8.63 S Nov 19 2022 Print: 8.630 S Nov 19 2022 MiTek Industries, Inc. Mon Jun 05 09:38:40 ID:Xv50dbYXhWIzluIjGWuPLDz9Xfb-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 2

Job	Truss	Truss Type	Qty	Ply		
P210577	GG01	Half Hip Girder	1	3	Job Reference (optional)	58733423

TCDL

BCLL

BCDL

WEBS

WEBS

NOTES

1) N/A

2)

Run: 8.63 S. Nov 19 2022 Print: 8.630 S. Nov 19 2022 MiTek Industries. Inc. Mon. Jun 05 09:38:41

Page: 1

June 6,2023

Job	Truss	Truss Type	Qty	Ply	
P210577	H01	Common Girder	2	1	I58733424 Job Reference (optional)

Run; 8.63 S Nov 19 2022 Print; 8.630 S Nov 19 2022 MiTek Industries, Inc. Mon Jun 05 09;38;42 ID:DP4A23Tn?jSTok25oHljX0z9Yo?-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

NAILED

NAI	LED
1-11-0	3-10-0
1-11-0	1-11-0

Scale = 1:28.7

Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 25.0 13.9/20.0 25.0 0.0 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 NO IRC2018	8/TPI2014	CSI TC BC WB Matrix-P	0.33 0.18 0.04	DEFL Vert(LL) Vert(CT) Horz(CT)	in 0.00 0.00 0.00	(loc) 6 4	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 19 lb	GRIP 197/144 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD	2x4 SP No.2 2x6 SPF No.2 2x4 SPF No.3 Structural wood she 3-10-0 oc purlins. Rigid ceiling directly bracing	athing directly applie applied or 6-0-0 oc	5) 6) ed or 7) 8)	This truss ha load of 12.0 p overhangs no This truss ha chord live loa Provide mecl bearing plate 2 and 78 lb u This truss is	s been designed osf or 2.00 times f on-concurrent with s been designed d nonconcurrent hanical connection capable of withsi plift at joint 4. designed in accor	for great flat roof k h other liv for a 10.0 with any n (by oth tanding 7 rdance w	er of min roof bad of 13.9 ps ve loads. D psf bottom other live loa ers) of truss t '8 lb uplift at j ith the 2018	live sf on ds. o oint					
REACTIONS	(size) 2=0-3-8, 4 Max Horiz 2=-26 (LC Max Uplift 2=-78 (LC Max Grav 2=378 (LC (lb) - Maximum Com	4=0-3-8 ; 45) ; 12), 4=-78 (LC 13) C 2), 4=378 (LC 2) pression/Maximum	International R802.10.2 ar "NAILED" inc per NDS guid) In the LOAD of the truss a	Iternational Residential Code sections R502.11.1 and Iso2.10.2 and referenced standard ANSI/TPI 1. VAILED" indicates Girder: 3-10d (0.148" x 3") toe-nails er NDS guidelines. 1 the LOAD CASE(S) section, loads applied to the face f the truss are noted as front (F) or back (B).									
TOP CHORD BOT CHORD WEBS	Tension 1-2=0/31, 2-3=-162/2 4-5=0/31 2-6=-1/117, 4-6=-1/1 3-6=0/101	27, 3-4=-162/35, 17	LC 1)	LOAD CASE(S) Standard 1) Dead + Snow (balanced): Lumber Increase=1.15, Plate Increase=1.15 Uniform Loads (lb/ft)									
NOTES 1) Unbalance this design 2) Wind: ASC Vasd=91n Ke=1.00; exterior zo	ed roof live loads have n. CE 7-16; Vult=115mph nph; TCDL=6.0psf; BC Cat. II; Exp C; Enclose one and C-C Exterior(2	been considered fo (3-second gust) DL=6.0psf; h=35ft; d; MWFRS (envelop E) zone; cantilever	r be) left	Vent: 1-3: Concentrate Vert: 3=-:	= 7 6, 3-5=-78, 2-4 ed Loads (lb) 2 (F), 6=-18 (F)	+=-2U						TE OF	MISSOL

Ke=1.00; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

- TCLL: ASCE 7-16; Pr=25.0 psf (roof LL: Lum DOL=1.15 3) Plate DOL=1.15); Pg=20.0 psf; Pf=13.9 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat C; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10
- 4) Unbalanced snow loads have been considered for this design.

HESSIONAL E June 6,2023 **MiTek**°

6

SCOTT M.

SEVIER

NUMBER

PE-2001018807

16023 Swingley Ridge Rd Chesterfield, MO 63017

Job	Truss	Truss Type	Qty	Ply	
P210577	H02	Common	6	1	Job Reference (optional)

Run: 8.63 S Nov 19 2022 Print: 8.630 S Nov 19 2022 MiTek Industries, Inc. Mon Jun 05 09:38:42 ID:pNSuZfrEiEM40Vv26lp_IYz9YnW-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

1-11-0	3-10-0
1-11-0	1-11-0

Scale = 1:26.1

Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 25.0 13.9/20.0 25.0 0.0 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC201	8/TPI2014	CSI TC BC WB Matrix-P	0.23 0.05 0.04	DEFL Vert(LL) Vert(CT) Horz(CT)	in 0.00 0.00 0.00	(loc) 6-8 6-8 6	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 22 lb	GRIP 197/144 FT = 20%	
LUMBER TOP CHORD BOT CHORD WEBS SLIDER BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x4 SP No.2 2x4 SPF No.3 Left 2x4 SP No.2 	1-6-9, Right 2x4 SP athing directly applie applied or 10-0-0 or 6=0-3-8 2 21) 2 12), 6=-67 (LC 13) C 2), 6=-372 (LC 2) apression/Maximum	4) 5) No.2 6) ed or 7) c 8) LG	Unbalanced design. This truss ha load of 12.0 overhangs n This truss ha chord live loa Provide mec bearing plate 2 and 67 lb u This truss is International R802.10.2 ai	snow loads have ss been designed psf or 2.00 times on-concurrent wi ls been designed ad nonconcurrent hanical connection capable of withs uplift at joint 6. designed in acccc Residential Cod- nd referenced sta Standard	e been cor d for greate flat roof lo th other lin d for a 10.0 t with any on (by oth- standing 6 ordance wi e sections andard AN	isidered for the er of min roof pad of 13.9 pic re loads.) psf bottom other live loa other live loa ers) of truss t 7 lb uplift at j ith the 2018 R502.11.1 a ISI/TPI 1.	nis live sf on ds. o oint nd						
TOP CHORD BOT CHORD WEBS	1-2=0/23, 2-4=-208/ 6-7=0/23 2-8=0/114, 6-8=0/11 4-8=0/90													
 Unbalance this design Wind: AS(Vasd=91n Ke=1.00; i exterior zc and right e exposed; reactions DOL=1.60 TOULE 20 	ed roof live loads have n. CE 7-16; Vult=115mph nph; TCDL=6.0psf; BC Cat. II; Exp C; Enclose one and C-C Exterior(2 exposed; end vertical I C-C for members and f shown; Lumber DOL= 0	been considered fo (3-second gust) DL=6.0psf; h=35ft; ed; MWFRS (envelop 2E) zone; cantilever left and right orces & MWFRS for 1.60 plate grip	r De) left							ر		STATE OF M SCOT: SEVI	AISSOUR MER ER BER 018807	

 TCLL: ASCE 7-16; Pr=25.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf; Pf=13.9 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat C; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10

June 6,2023

Page: 1

SSIONAL E

Job	Truss	Truss Type	Qty	Ply	
P210577	J01	Jack-Open	4	1	I58733426 Job Reference (optional)

Run: 8.63 S Nov 19 2022 Print: 8.630 S Nov 19 2022 MiTek Industries, Inc. Mon Jun 05 09:38:43 ID:IVEJsGOwYk_0AxPlcHtxt0z9aCT-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

3-0-12	4-4-15
3-0-12	1-4-3

Scale = 1:36.3

Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 25.0 13.9/20.0 25.0 0.0 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018/TPI:	2014	CSI TC BC WB Matrix-P	0.67 0.66 0.14	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.01 0.01 -0.12	(loc) 4-5 4-5 3	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 15 lb	GRIP 244/190 FT = 20%	
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x4 SP No.2 2x4 SPF No.3 Structural wood shea 4-4-15 oc purlins. Rigid ceiling directly bracing. (size) 3= Mecha 5=0-3-8	athing directly applie applied or 10-0-0 oc nical, 4= Mechanica	5) Ref 6) Pro bea join 7) This ed or Inte R8(c LOAD (er to girder vide mecha ring plate o t 3, 192 lb s truss is de rnational R v2.10.2 and CASE(S)	(s) for truss to tru- anical connection capable of withsta uplift at joint 4 and esigned in accord tesidential Code s d referenced stand Standard	uss coni (by othe anding 1 d 144 lb lance wi sections dard AN	nections. ers) of truss t 75 lb uplift at uplift at joint th the 2018 R502.11.1 a SI/TPI 1.	o 5. Ind						
FORCES	Max Horiz 5=88 (LC Max Uplift 3=-175 (L 5=-144 (L Max Grav 3=18 (LC (LC 22) (lb) - Maximum Com	16) C 22), 4=-192 (LC 2 C 12) 12), 4=30 (LC 12), 5 pression/Maximum	2), 5=899											
TOP CHORD BOT CHORD WEBS	Tension 1-2=-150/112, 2-3=- 1-5=-62/154, 4-5=0/0 2-5=-564/453	118/55)												
 Wind: AS(Vasd=91n Ke=1.00; exterior zc and right e exposed;(C) reactions : DOL=1.60 TCLL: AS Plate DOL DOL=1.15 Exp.; Ce= Unbalance design. 	CE 7-16; Vult=115mph nph; TCDL=6.0psf; BCI Cat. II; Exp C; Enclose one and C-C Exterior(2 exposed ; end vertical I C-C for members and fc shown; Lumber DOL=1 CE 7-16; Pr=25.0 psf (r =1.15); Pg=20.0 psf; P is Plate DOL=1.15); Is= 0.9; CS=1.00; Ct=1.10 ed snow loads have be	(3-second gust) DL=6.0psf; h=35ft; d; MWFRS (envelop E) zone; cantilever I eft and right prces & MWFRS for .60 plate grip roof LL: Lum DOL=1 Yf=13.9 psf (Lum 1.0; Rough Cat C; Fi en considered for th	ne) eft I.15 ully is									STE OF M SCOT SEVI	MISSOLA T.M. ER D18807	
4) This truss chord live	has been designed for load nonconcurrent wit	a 10.0 pst bottom th any other live load	ds.									WANA	L	

June 6,2023

Job	Truss	Truss Type	Qty	Ply	
P210577	J02	Jack-Partial	2	1	Job Reference (optional)

6

3x4 =

Premier Building Supply (Springhill, KS), Spring Hills, KS - 66083,

3-2-10

9-

Run: 8.63 S Nov 19 2022 Print: 8.630 S Nov 19 2022 MiTek Industries, Inc. Mon Jun 05 09:38:43 ID:s?WDaiY4UkcAExvotWc?vlz9aCG-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

3

Page: 1

12 5 Г 1.5x4 u 2

Scale = 1:33.9

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15	TC	0.69	Vert(LL)	-0.03	4-5	>999	240	MT20	244/190
Snow (Pf/Pg)	13.9/20.0	Lumber DOL	1.15	BC	0.61	Vert(CT)	0.03	4-5	>999	180		
TCDL	25.0	Rep Stress Incr	YES	WB	0.12	Horz(CT)	-0.16	3	n/a	n/a		
BCLL	0.0	Code	IRC2018/TPI2014	Matrix-P								
BCDL	10.0										Weight: 22 lb	FT = 20%
LUMBER			5) Refer to gi	rder(s) for truss to	truss conr	nections.						
TOP CHORD	2x4 SP No.2		Provide m	echanical connection	on (by oth	ers) of truss	to					
BOT CHORD	2x4 SP No.2		bearing pla	ate capable of with	standing 6	3 lb uplift at	joint					
WEBS	2x4 SPF No.3		3, 37 lb up	lift at joint 4 and 99	9 lb uplift a	it joint 5.						
BRACING			7) This truss	is designed in acco	ordance w	ith the 2018						
TOP CHORD	Structural wood shea 6-0-0 oc purlins.	athing directly applied	d or Internation R802.10.2	al Residential Cod and referenced sta	le sections andard AN	SR502.11.1 a ISI/TPI 1.	and					
BOT CHORD	Rigid ceiling directly bracing.	applied or 10-0-0 oc	LOAD CASE(Standard 								
REACTIONS	(size) 3= Mecha 5=0-3-8	nical, 4= Mechanical	,									
	Max Horiz 5=126 (LC	2 16)										
	Max Uplift 3=-63 (LC	16), 4=-37 (LC 2), 5	=-99									
	(LC 12)											
	Max Grav 3=89 (LC 2)	22), 4=20 (LC 12), 5=	=737									
FORCES	(lb) - Maximum Com Tension	pression/Maximum										
TOP CHORD	1-2=-210/127, 2-3=-2	103/28										
BOT CHORD	1-5=-83/208, 4-5=0/0)										
WEBS	2-5=-523/387											
NOTES												
1) Wind: AS	CE 7-16: Vult=115mph	(3-second aust)										
Vasd=91n	nph; TCDL=6.0psf; BCI	DL=6.0psf; h=35ft;	`								COL I	A DE
Ke=1.00;	Cat. II; Exp C; Enclosed	d; MWFRS (envelope	e)								A E OF I	11SS
exterior zo	one and C-C Exterior(2)	E) 0-0-0 to 5-0-0,								4		1.5
interior (1)) 5-0-0 to 6-5-4 Zone; C	antilever left and right	IL							E.	SCOTT	M YPY
exposed,	and forces & MWERS	for reactions shown:								.8	SEVI	FR
Lumber D	$\Omega = 1.60$ plate grip $\Omega \Omega$									41 +		
	CE 7-16: Pr-25 0 psf (r	roof LL · Lum DOL –1	15						•			0 128
Plate DOI	=1.15) Pa=20.0 psf P	f=13.9 psf (I um								WK.		X
DOL=1.15	5 Plate DOL=1.15): ls=1	1.0: Rough Cat C: Fu	llv							X	NUM	and the second
Exp.: Ce=	0.9: Cs=1.00: Ct=1.10	,	,							XX (O PE-20010	018807
3) Unbalance	ed snow loads have be	en considered for this	S							N	m)	12A
design.										X	1980	G A
4) This truss	has been designed for	a 10.0 psf bottom									ONA	LETA
chord live	load nonconcurrent wit	th any other live load	S.								an	DITE:

> **MiTe**k[®] 16023 Swingley Ridge Rd Chesterfield, MO 63017

June 6,2023

Job	Truss	Truss Type	Qty	Ply	
P210577	J03	Jack-Open	7	1	Job Reference (optional)

Run; 8.63 S Nov 19 2022 Print; 8.630 S Nov 19 2022 MiTek Industries, Inc. Mon Jun 05 09;38;43 ID:DzJ6eQcDJGFSKinmg3CAbpz9aCB-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

3-7-0

Scale = 1:25.3

_ L

Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 25.0 13.9/20.0 25.0 0.0 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018/TPI2014	CSI TC BC WB Matrix-R	0.36 0.27 0.00	DEFL Vert(LL) Vert(CT) Horz(CT)	in 0.02 -0.02 -0.05	(loc) 3-4 3-4 2	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 13 lb	GRIP 197/144 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD	 2x4 SP No.2 2x4 SP No.2 2x4 SPF No.3 Structural wood she 3-7-0 oc purlins, ex Rigid ceiling directly bracing. 	athing directly appli cept end verticals. applied or 10-0-0 c	6) Provide bearing 2. 7) This tru Internat R802.11 LOAD CAS	mechanical connecti plate capable of with ss is designed in acco onal Residential Cod 0.2 and referenced st E(S) Standard	on (by oth standing 7 ordance wi le sections andard AN	ers) of truss 1 lb uplift at ith the 2018 R502.11.1 a ISI/TPI 1.	to joint and					
REACTIONS	(size) 2= Mecha 4=0-3-8 Max Horiz 4=75 (LC Max Uplift 2=-71 (LC Max Grav 2=159 (LI (LC 2)	anical, 3= Mechanic 13) C 16) C 2), 3=69 (LC 7), 4	al, =202									
FORCES	(lb) - Maximum Con Tension	pression/Maximum										
TOP CHORD BOT CHORD	1-4=-179/78, 1-2=-7 3-4=0/0	8/52										
NOTES 1) Wind: AS Vasd=91n Ke=1.00; exterior z and right exposed; reactions DOL=1.60 2) TOLE1.60	CE 7-16; Vult=115mpt mph; TCDL=6.0psf; BC Cat. II; Exp C; Enclose one and C-C Exterior(2 exposed ; end vertical C-C for members and f shown; Lumber DOL= 0	(3-second gust) DL=6.0psf; h=35ft; d; MWFRS (envelo 2E) zone; cantilever left and right orces & MWFRS fo 1.60 plate grip	pe) left r								STATE OF J	MISSOUR

- 2) DOL=1.15 Plate DOL=1.15); Pg=20.0 psf; Pf=13.9 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat C; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10
- Unbalanced snow loads have been considered for this 3) design.
- 4) This truss has been designed for a 10.0 psf bottom
- chord live load nonconcurrent with any other live loads.
- 5) Refer to girder(s) for truss to truss connections.

NUMB OFFESSIONAL PE-2001018807 E June 6,2023

MiTek 16023 Swingley Ridge Rd Chesterfield, MO 63017

Job	Truss	Truss Type	Qty	Ply	
P210577	J04	Jack-Open	1	1	I58733429 Job Reference (optional)

Run: 8.63 S Nov 19 2022 Print: 8.630 S Nov 19 2022 MiTek Industries, Inc. Mon Jun 05 09:38:44 ID:27gNuThzv6?c2dFw0KJar4z9aC5-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

1-2-15

1-2-15

Scale = 1:25.6 -

		i										
Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15	тс	0.14	Vert(LL)	0.00	3-4	>999	240	MT20	197/144
Snow (Pf/Pg)	13.9/20.0	Lumber DOL	1.15	BC	0.09	Vert(CT)	0.00	3-4	>999	180		
TCDL	25.0	Rep Stress Incr	YES	WB	0.00	Horz(CT)	-0.01	2	n/a	n/a		
BCLL	0.0	Code	IRC2018/TPI2014	Matrix-R								
BCDL	10.0		-								Weight: 5 lb	FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD	2x4 SP No.2 2x4 SP No.2 2x4 SPF No.3 Structural wood she 1-2-15 oc purlins, e	athing directly applied xcept end verticals.	 6) Provide mec bearing plate 3 and 29 lb u 7) This truss is International R802.10.2 ar LOAD CASE(S) 	hanical connection (capable of withstar plift at joint 2. designed in accorda Residential Code so nd referenced stand Standard	(by oth nding 1 ance w ections ard AN	ers) of truss 8 lb uplift at j ith the 2018 R502.11.1 a ISI/TPI 1.	to joint and					
BOICHORD	bracing.	applied of 10-0-0 oc										
REACTIONS	(size) 2= Mecha 4=0-3-8 Max Horiz 4=47 (LC Max Uplift 2=-29 (LC Max Grav 2=53 (LC	nical, 3= Mechanical 13) 313), 3=-18 (LC 13) 2), 3=24 (LC 14), 4=1	68									
	(LC 30)											
FORCES	(Ib) - Maximum Corr	pression/Maximum										
TOP CHORD	1-4=-56/17 1-2=-36	/25										
BOT CHORD	3-4=0/0											
NOTES												
 Wind: ASG Vasd=91n Ke=1.00; exterior zc and right e exposed; reactions: DOL=1.60 TCLL: AS Plate DOL DOL=1.15 Exp.: Ce= 	CE 7-16; Vult=115mph nph; TCDL=6.0psf; BC Cat. II; Exp C; Enclose one and C-C Exterior(2 exposed ; end vertical 2-C for members and f shown; Lumber DOL= 0 CE 7-16; Pr=25.0 psf (=1.15); Pg=20.0 psf; F i Plate DOL=1.10; Is= 0.9: Cs=1.00; Ct=1.10	(3-second gust) DL=6.0psf; h=35ft; d; MWFRS (envelope E) zone; cantilever le left and right orces & MWFRS for 1.60 plate grip roof LL: Lum DOL=1. 2f=13.9 psf (Lum 1.0; Rough Cat C; Fu	e) ft 15								STATE OF M	AISSOUR MER ER
 Unbalance design. This truss chord live Refer to g 	has been designed fo load nonconcurrent w irder(s) for truss to tru	een considered for thi r a 10.0 psf bottom th any other live load ss connections.	s.							A A A	PE-20010	LENGT

June 6,2023

Page: 1

Job	Truss	Truss Type	Qty	Ply	
P210577	J05	Jack-Open	1	1	I58733430 Job Reference (optional)

3-1-12 3-1-12

Premier Building Supply (Springhill, KS), Spring Hills, KS - 66083,

Run: 8.63 S Nov 19 2022 Print: 8.630 S Nov 19 2022 MiTek Industries, Inc. Mon Jun 05 09:38:44 ID:pf9PaCn?0Z0T0ssSU?SSAmz9aBz-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

4-1-15

Page: 1

Scale = 1:38

Loading TCLL (roof) Snow (Pf/Pg) TCDL 3CLL 3CDL	(psf) 25.0 13.9/20.0 25.0 0.0 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018	3/TPI2014	CSI TC BC WB Matrix-P	0.70 0.69 0.17	DEFL Vert(LL) Vert(CT) Horz(CT)	in 0.00 0.00 -0.12	(loc) 4-5 4-5 3	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 15 lb	GRIP 244/190 FT = 20%	
LUMBER TOP CHORD SOT CHORD WEBS BRACING TOP CHORD BOT CHORD	2x4 SP No.2 2x4 SP No.2 2x4 SPF No.3 Structural wood shea 4-1-15 oc purlins. Rigid ceiling directly bracing.	athing directly applie applied or 10-0-0 oc	5) 6) 7) d or LC	Refer to gird Provide mec bearing plate joint 3, 281 lt This truss is International R802.10.2 ar DAD CASE(S)	er(s) for truss to tru hanical connection capable of withsta o uplift at joint 4 and designed in accord Residential Code s ad referenced stand Standard	USS CON (by oth Inding 2 d 178 lb lance w sections dard AN	nections. ers) of truss t 92 lb uplift at uplift at joint th the 2018 R502.11.1 a SI/TPI 1.	o 5. nd						
FORCES	(size) 3= Mecha 5=0-5-8 Max Horiz 5=84 (LC Max Uplift 3=-292 (L 5=-178 (L Max Grav 3=40 (LC 5=1071 (L (lb) - Maximum Com Tension	nical, 4= Mechanica 16) C 22), 4=-281 (LC 2; C 12) 12), 4=43 (LC 12), .C 22) pression/Maximum	l, 2),											
TOP CHORD BOT CHORD WEBS	1-2=-141/114, 2-3=- 1-5=-59/146, 4-5=0/0 2-5=-652/536	150/94 D												
 Wind: ASC Vasd=91n Ke=1.00; (vasd=91n Ke=1.00; (exterior zc and right e exposed; C reactions : DOL=1.60 TCLL: ASI Plate DOL DOL=1.15 Exp.; Ce= Unbalance design. This truss chord live 	CE 7-16; Vult=115mph nph; TCDL=6.0psf; BC Cat. II; Exp C; Enclose one and C-C Exterior(2 exposed ; end vertical I C-C for members and fc shown; Lumber DOL=1 CE 7-16; Pr=25.0 psf (=1.15); Pg=20.0 psf; F Plate DOL=1.15); Is= 0.9; Cs=1.00; Ct=1.10 ad snow loads have be has been designed for load nonconcurrent wi	(3-second gust) DL=6.0psf; h=35ft; d; MWFRS (envelop E) zone; cantilever le eft and right orces & MWFRS for I.60 plate grip roof LL: Lum DOL=1 2f=13.9 psf (Lum 1.0; Rough Cat C; Fu en considered for the a 10.0 psf bottom th any other live load	e) eft .15 ully is							2		THE OF M SCOTT SEVI DE-20010 PE-20010 PE-20010	MISSOLA ER DISSO7	

June 6,2023

Job	Truss	Truss Type	Qty	Ply	
P210577	J06	Jack-Open	1	1	I58733431 Job Reference (optional)

3-1-12 3-1-12

Premier Building Supply (Springhill, KS), Spring Hills, KS - 66083,

Run: 8.63 S Nov 19 2022 Print: 8.630 S Nov 19 2022 MiTek Industries, Inc. Mon Jun 05 09:38:45 ID:6?422bsOMjuTLxuoOz45yEz9aBs-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

4-3-8

Page: 1

Scale = 1:38.1

Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 25.0 13.9/20.0 25.0 0.0 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018	3/TPI2014	CSI TC BC WB Matrix-P	0.70 0.70 0.16	DEFL Vert(LL) Vert(CT) Horz(CT)	in 0.00 0.00 -0.13	(loc) 4-5 4-5 3	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 15 lb	GRIP 244/190 FT = 20%	
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD	2x4 SP No.2 2x4 SP No.2 2x4 SPF No.3 Structural wood shea 4-3-8 oc purlins. Rigid ceiling directly bracing.	athing directly applie applied or 10-0-0 oc	5) 6) rd or c LC	Refer to gird Provide mec bearing plate joint 3, 245 lt This truss is International R802.10.2 ar DAD CASE(S)	er(s) for truss to t hanical connectio capable of withsi o uplift at joint 4 ai designed in accor Residential Code nd referenced star Standard	truss con n (by oth tanding 2 nd 165 lb rdance wi s sections ndard AN	nections. ers) of truss 45 lb uplift a uplift at join ith the 2018 R502.11.1 a ISI/TPI 1.	to t t 5. and						
FORCES	(size) 3= Mecha 5=0-5-8 Max Horiz 5=86 (LC Max Uplift 3=-245 (Li 5=-165 (Li Max Grav 3=31 (LC 5=1006 (L (lb) - Maximum Com Tension 1-2=-146/115, 2-3=-7 1-5=-60/150, 4-5=0/(nical, 4= Mechanica 16) C 22), 4=-245 (LC 2 C 12) 12), 4=38 (LC 12), C 22) pression/Maximum 137/78	ı, 2),											
 VICES NOTES Nind: ASC Vasd=91n Ke=1.00; exterior zc and right e exposed;C reactions : DOL=1.60 TCLL: ASI Plate DOL DOL=1.15 Exp.; Ce= Unbalance design. His truss chord live 	2-o=-b20/504 CE 7-16; Vult=115mph hph; TCDL=6.0psf; BCI Cat. II; Exp C; Enclose one and C-C Exterior(2 exposed ; end vertical I C-C for members and fc shown; Lumber DOL=1 CE 7-16; Pr=25.0 psf (r =1.15); Pg=20.0 psf; P i Plate DOL=1.15); Is=' 0.9; Cs=1.00; Ct=1.10 ad snow loads have be has been designed for load nonconcurrent with	(3-second gust) DL=6.0psf; h=35ft; d; MWFRS (envelop E) zone; cantilever le eft and right porces & MWFRS for I.60 plate grip roof LL: Lum DOL=1 Yf=13.9 psf (Lum 1.0; Rough Cat C; Fi en considered for th a 10.0 psf bottom th any other live load	re) eft .15 ully ds.							Ļ		STATE OF M SCOT SEVI NUM PE-2001	MISSOLA F.M. ER DISSO7	

> **MiTek** 16023 Swingley Ridge Rd Chesterfield, MO 63017

June 6,2023

Job	Truss	Truss Type	Qty	Ply	
P210577	J07	Jack-Open	1	1	Job Reference (optional)

Run: 8.63 S Nov 19 2022 Print: 8.630 S Nov 19 2022 MiTek Industries, Inc. Mon Jun 05 09:38:45 ID:tYZ4jKzPUAvLJ9VKsfDzHwz9aBk-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Scale = 1:37.6

Plate Offsets (X, Y): [3:0-3-0,0-0-8]

Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 25.0 13.9/20.0 25.0 0.0 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018	3/TPI2014	CSI TC BC WB Matrix-P	0.59 0.56 0.55	DEFL Vert(LL) Vert(CT) Horz(CT)	in 0.00 0.00 0.01	(loc) 5-6 5-6 3	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 23 lb	GRIP 244/190 FT = 20%	
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x4 SP No.2 2x4 SPF No.3 Structural wood she 5-6-9 oc purlins. Rigid ceiling directly bracing. (size) 3= Mecha 6=0-7-12 Max Horiz 6=82 (LC Max Uplift 3=-99 (LC 6=-428 (L Max Grav 3=36 (LC 6=1487 (eathing directly applie r applied or 6-0-0 oc anical, 5= Mechanica 12) C 2), 5=-704 (LC 2), C 12) 12), 5=194 (LC 12), (C 2)	4) 5) 6) ed or 7) 1, 8) LC	This truss ha chord live loa Refer to gird Provide mec bearing plate joint 6, 99 lb This truss is International R802.10.2 a Gap betweed diagonal or v DAD CASE(S)	as been designed ad nonconcurrent er(s) for truss to t hanical connectic e capable of withs uplift at joint 3 an designed in acco Residential Code not referenced sta n inside of top cho vertical web shall Standard	for a 10.0 with any rruss conn- russ conn- truss conn- dy oth- standing 4 d 704 lb u rdance wi e sections andard AN ord bearin not excee	D) psf bottom other live loa eections. ers) of truss t 28 lb uplift at uplift at joint 5 tith the 2018 R502.11.1 a R502.11.1 ag and first ad 0.500in.	ds. 5.						
FORCES TOP CHORD BOT CHORD WEBS NOTES 1) Wind: ASC Vasd=91n Ke=1.00; (exterior zc and right e exposed;C reactions : DOL=1.60 2) TCLL: ASC Plate DOL DOL=1.15 Exp.; Ce= 3) Unbalance design.	(lb) - Maximum Con Tension 1-2=-1010/695, 2-3: 1-6=-575/1005, 5-6: 2-6=-1361/1724, 3-4 CE 7-16; Vult=115mph nph; TCDL=6.0psf; BC Cat. II; Exp C; Enclose one and C-C Corner (G exposed ; end vertical C-C for members and f shown; Lumber DOL= 0 CE 7-16; Pr=25.0 psf ==1.15); Pg=20.0 psf; I 5 Plate DOL=1.15); Is= 0.9; Cs=-1.00; Ct=1.10 ed snow loads have be		2 t 1.15 ully is							-		THE OF I SCOT SEVI DE PE-2001	MISSOLUP ER 018807	

design.

June 6,2023

and

Page: 1

Job	Truss	Truss Type	Qty	Ply	
P210577	J08	Jack-Open Structural Gable	2	1	I58733433 Job Reference (optional)

Run: 8.63 S Nov 19 2022 Print: 8.630 S Nov 19 2022 MiTek Industries, Inc. Mon Jun 05 09:38:45 ID:laL07WDaXdYMKOcNbZ5udMz9aBP-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

-4-1-8 2-1-0 4-1-8 2-1-0 12 3.54 Г 4x8 II 7x8 = 3 2 5-5-13 5-5-13 4-10-7 5 \ge 6x6 = 3x6 II

2-1-0

Scale = 1:41

Plate Offsets (X, Y): [2:0-2-4,0-4-12]

			-											
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	1	(psf) 25.0 3.9/20.0 25.0 0.0 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC20	018/TPI2014	CSI TC BC WB Matrix-P	0.91 0.05 0.28	DEFL Vert(LL) Vert(CT) Horz(CT)	in 0.00 0.00 -0.03	(loc) 4-5 4-5 3	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 32 lb	GRIP 197/144 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD REACTIONS	2x6 SPF 2x4 SP N 2x4 SPF Structura 2-1-0 oc Rigid ceil bracing. (size) Max Horiz Max Uplift Max Grav	No.2 o.2 No.3 *Exce burlins, ex- ing directly 3= Mecha 5=0-7-6 5=238 (L0 3=-491 (L 5=-495 (L 3=246 (L0 5=1049 (I	ept* 5-2:2x4 SP No.2 athing directly applie cept end verticals. applied or 9-4-14 oc anical, 4= Mechanica C 13) C 22), 4=-346 (LC 13 C 12), 4=98 (LC 14), C 22)	ed or ; l, 3),	 TCLL: ASCE Plate DOL=' DOL=1.15 P Exp.; Ce=0.! Unbalanced design. This truss ha load of 12.0 overhangs n Truss to be i braced agaii braced agaii Gable studs This truss ha chord live lo Refer to gird Provide mec bacing alci 	E 7-16; Pr=25.0 psi 1.15); Pg=20.0 psi Plate DOL=1.15); Is 9; Cs=1.00; Ct=1.1 snow loads have I as been designed f psf or 2.00 times fl ion-concurrent with fully sheathed from nst lateral moveme spaced at 2-0-0 or as been designed f ad nonconcurrent ler(s) for truss to tru- thanical connection or concurse of without	f (roof LI Pf=13.9 =1.0; R o peen col for great lat roof I o other li o other li o other li o one fac ont (i.e. c c. for a 10. with any uss conin o (b) other on b (b) othe	L: Lum DOL= 9 psf (Lum ough Cat C; I asidered for t er of min roo oad of 13.9 p ve loads. e or securely iagonal web) 0 psf bottom other live loa nections. ers) of truss 01 lb willt o	:1.15 Fully his f live ssf on /). ads. to					
FORCES TOP CHORD BOT CHORD WEBS NOTES	(lb) - Max Tension 1-2=0/12 2-5=-113 4-5=-399, 2-4=-435,	imum Com 7, 2-3=-223 5/1165 /241 /887	pression/Maximum 3/278, 3-4=0/0,		joint 3, 346 l joint 3, 346 l 11) This truss is International R802.10.2 a 12) Gap betwee diagonal or	b uplift at joint 4 ar designed in accorr I Residential Code nd referenced star n inside of top cho vertical web shall n Standard	anding 2 nd 495 lk dance w sections ndard AN rd bearin not excee	a uplift at joint uplift at joint th the 2018 STO2.11.1 at ISI/TPI 1. and and first and 0.500in.	t 5. and				GERER	all
1) Wind: ASC Vasd=91m	CE 7-16; Vu nph: TCDL=	lt=115mph 6.0psf: BC	(3-second gust) DL=6.0psf: h=35ft:		LOAD CASE(S)	Standard							TE OF I	AISSO

Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=35ft; Ke=1.00; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone and C-C Corner (3) zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

 Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

for

June 6,2023

Page: 1

Job	Truss	Truss Type	Qty	Ply	
P210577	J09	Jack-Closed	3	1	I58733434 Job Reference (optional)

Run: 8.63 S Nov 19 2022 Print: 8.630 S Nov 19 2022 MiTek Industries, Inc. Mon Jun 05 09:38:46 ID:a0EiyNV?7hR5bwsoRu0H3Cz9aB2-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

1-6-12

Scale = 1:47.4

Plate Offsets (X, Y): [2:0-2-0,0-4-4]

	7, 1). [2.0 2 0,0 4 4]												
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 25.0 13.9/20.0 25.0 0.0 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018/TPI20	CSI TC BC WB 14 Matrix-P	0.50 0.04 0.31	DEFL Vert(LL) Vert(CT) Horz(CT)	in 0.00 0.00 0.00	(loc) 4-5 4-5 4	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 27 lb	GRIP 197/144 FT = 20%	
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD BOT CHORD REACTIONS FORCES TOP CHORD BOT CHORD WEBS NOTES 1) Wind: ASC Vasd=91n Ke=1.00; C exterior 20 and right e exposed; C reactions 3 DOL=1.60 DOL=1.15 Exp.; Ce=I 3) Unbalance design. 4) This truss load of 12. overhangs	2x6 SPF No.2 2x4 SP No.2 2x4 SPF No.3 Structural wood she 1-6-12 oc purlins, e Rigid ceiling directly bracing. (size) 4= Mecha Max Horiz 5=239 (LC Max Uplift 4=-585 (L Max Grav 4=255 (LC (lb) - Maximum Com Tension 2-5=-1073/738, 1-2= 3-4=-332/357 4-5=-338/241 2-4=-593/985 CE 7-16; Vult=115mph nph; TCDL=6.0psf; BC Cat. II; Exp C; Enclose one and C-C Exterior(2 exposed ; end vertical I C-C for members and fis shown; Lumber DOL=' CE 7-16; Pr=25.0 psf (==1.15); Pg=20.0 psf; F 5 Plate DOL=1.15); Is= 0.9; Cs=-1.00; Ct=1.10 ed snow loads have be has been designed for .0 psf or 2.00 times flat s non-concurrent with c	athing directly applie xcept end verticals. applied or 10-0-0 oc anical, 5=0-5-8 C 13) C 31), 5=-368 (LC 1: C 12), 5=922 (LC 31) pression/Maximum =0/124, 2-3=-228/232 (3-second gust) DL=6.0psf; h=35ft; d; MWFRS (envelop E) zone; cantilever le left and right orces & MWFRS for 1.60 plate grip roof LL: Lum DOL=1 Pf=13.9 psf (Lum 1.0; Rough Cat C; Fi een considered for th r greater of min roof t roof load of 13.9 ps other live loads.	5) This t chord 6) Refer 7) Provi- bearing bearing 8) This t Interr R802 LOAD CA 2) 2, 2, 2, 2, 2, 2, 115 ully is live if on	russ has been design live load nonconcurre to girder(s) for truss le mechanical connee g plate capable of wit and 585 lb uplift at jo russ is designed in ac ational Residential Cc 10.2 and referenced SE(S) Standard	ed for a 10.4 ent with any to truss con ttion (by oth thstanding 3 int 4. cordance w ode sections standard AN	D psf bottom other live loa nections. ers) of truss t i68 lb uplift at ith the 2018 i R502.11.1 a ISI/TPI 1.	ids.				STATE OF I STATE OF I SEVI PE-2001 PE-2001	MISSOLUTION T.M. ER 018807 L ENGINA ER L ENGINA ER L ENGINA ER	
🔬 WARN	IING - Verify design paramete	ers and READ NOTES ON	THIS AND INCLUDED	WITEK REFERENCE PAGE	MII-7473 rev. 5	/19/2020 BEFOR	E USE.						

Job	Truss	Truss Type	Qty	Ply	
P210577	J10	Jack-Open	4	1	I58733435 Job Reference (optional)

Run: 8.63 S Nov 19 2022 Print: 8.630 S Nov 19 2022 MiTek Industries, Inc. Mon Jun 05 09:38:46 ID:EJyFTUeXINyO1mn58QE5Ykz9aAs-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

1	3-1-12	4-9-15
	3-1-12	1-8-3

Scale = 1:36.6

Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 25.0 13.9/20.0 25.0 0.0 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018/TPI201	CSI TC BC WB Matrix-P	0.72 0.70 0.14	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.01 0.01 -0.15	(loc) 4-5 4-5 3	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 17 lb	GRIP 244/190 FT = 20%	
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x4 SP No.2 2x4 SPF No.3 Structural wood shea 4-9-15 oc purlins. Rigid ceiling directly bracing. (size) 3= Mecha 5=0-5-8 Max Horiz 5=96 (LC Max Uplift 3=-120 (LL) 5=-134 (LL)	athing directly applie applied or 10-0-0 oc nical, 4= Mechanical 16) C 22), 4=-157 (LC 22 C 12) 2), 4=27 (LC 12), 5=	5) Refer tr 6) Provide bearing joint 3, 7) This tru Internar R802.1 LOAD CAS I, 2), 865	o girder(s) for truss f mechanical connec plate capable of wit 157 lb uplift at joint 4 ss is designed in ac ional Residential Co 0.2 and referenced s E(S) Standard	to truss con ction (by oth thstanding 1 4 and 134 lb cordance wi ode sections standard AN	nections. ers) of truss 20 lb uplift a uplift at join th the 2018 R502.11.1 a SI/TPI 1.	to t t 5. and						
FORCES TOP CHORD BOT CHORD	(LC 22) (lb) - Maximum Com Tension 1-2=-163/116, 2-3=- 1-5=-67/167, 4-5=0/0	pression/Maximum 111/37 0											
 WEBS NOTES 1) Wind: ASC Vasd=91n Ke=1.00; (exterior zc and right exposed); reactions : DOL=1.60 2) TCLL: ASP Plate DOL DOL=1.15 Exp.; Ce= 3) Unbalance design. 4) This truss chord live 	2-b=-555/437 CE 7-16; Vult=115mph nph; TCDL=6.0psf; BCI Cat. II; Exp C; Enclose- one and C-C Exterior(2 exposed ; end vertical I D-C for members and for shown; Lumber DOL=1) CE 7-16; Pr=25.0 psf (I _=1.15); Pg=20.0 psf; P 5 Plate DOL=1.15); Is=' 0.9; Cs=1.00; Ct=1.10 ed snow loads have be has been designed for load nonconcurrent with	(3-second gust) DL=6.0psf; h=35ft; d; MWFRS (envelop E) zone; cantilever le eft and right prces & MWFRS for 1.60 plate grip roof LL: Lum DOL=1 2f=13.9 psf (Lum 1.0; Rough Cat C; Fu en considered for thi r a 10.0 psf bottom th any other live load	e) eft .15 ully is								ST E OF M SCOTT SEVI DE DE 20010 PE-20010 PE-20010	MISSOLA T.M. ER DISSOT	Ь

June 6,2023

Page: 1

Job	Truss	Truss Type	Qty	Ply	
P210577	J11	Jack-Partial	15	1	Job Reference (optional)

Run: 8,63 S Nov 19 2022 Print: 8,630 S Nov 19 2022 MiTek Industries, Inc. Mon Jun 05 09:38:46 ID:q0oXPGpJ?hjPiwsnzMUN6hz9aAe-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Scale = 1:34.2

Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 25.0 13.9/20.0 25.0 0.0 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018/TPI201	CSI TC BC WB Matrix-P	0.74 0.64 0.13	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.04 0.04 -0.17	(loc) 4-5 4-5 3	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 23 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD	2x4 SP No.2 2x4 SP No.2 2x4 SPF No.3 Structural wood shea 6-0-0 oc purlins. Rigid ceiling directly bracing. (size) 3- Mecha	athing directly applie applied or 10-0-0 or	5) Refer to 6) Provide bearing 3, 30 lb 7) This tru Interna R802.1 c LOAD CAS	o gider(s) for truss to mechanical connect plate capable of with uplift at joint 4 and 1 ss is designed in acc ional Residential Co 0.2 and referenced s E(S) Standard	o truss conr tion (by oth hstanding 6 100 lb uplift cordance wi de sections standard AN	ections. ers) of truss 9 lb uplift at at joint 5. ith the 2018 R502.11.1 a ISI/TPI 1.	to joint and					
REACTION O	(3)207 5=05-8 Max Horiz 5=134 (LC Max Uplift 3=-69 (LC 5=-100 (L Max Grav 3=111 (LC 5=760 (L)	C 16) C 16), 4=-30 (LC 2), C 12) C 22), 4=20 (LC 12), C 22)	" ,									
FORCES	(lb) - Maximum Com	pression/Maximum										
TOP CHORD BOT CHORD WEBS	Tension 1-2=-220/132, 2-3=- 1-5=-85/216, 4-5=0/0 2-5=-546/394	110/32 0										
NOTES												
 Wind: ASI Vasd=91r Ke=1.00; exterior zc Interior (1 exposed; members Lumber D TCLL: AS Plate DOI DOL=1.15 Exp.; Ce= Unbalanci design. This truss chord live 	CE 7-16; Vult=115mph mph; TCDL=6.0psf; BC Cat. II; Exp C; Enclose one and C-C Exterior(2) 5-0-0 to 6-10-4 zone; end vertical left and rig and forces & MWFRS IOL=1.60 plate grip DO CE 7-16; Pr=25.0 psf (L=1.15); Pg=20.0 psf; F 5 Plate DOL=1.15); Is= 0.9; Cs=1.00; Ct=1.10 ed snow loads have be	(3-second gust) DL=6.0psf; h=35ft; d; MWFRS (envelop E) 0-0 to 5-0-0, cantilever left and ri ght exposed;C-C for for reactions shown VL=1.60 roof LL: Lum DOL= ² Pf=13.9 psf (Lum 1.0; Rough Cat C; F een considered for th r a 10.0 psf bottom th any other live load	be) ght ; I.15 ully iis								CHITE OF I SCOT SEVI OF BE-2001	MISSOUR TM. HER 018807

This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

MiTek 16023 Swingley Ridge Rd Chesterfield, MO 63017

June 6,2023

Job	Truss	Truss Type	Qty	Ply	
P210577	J12	Jack-Partial	1	1	Job Reference (optional)

Run: 8.63 S Nov 19 2022 Print: 8.630 S Nov 19 2022 MiTek Industries, Inc. Mon Jun 05 09:38:47 ID:XxPJWhxael_vSdjYSfkWoz9aAU-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

3-2-6	6-11-0
3-2-6	3-8-10

Scale = 1:34.2

Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 25.0 13.9/20.0 25.0 0.0 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018/TPI2014	CSI TC BC WB Matrix-P	0.76 0.66 0.13	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.04 0.04 -0.18	(loc) 4-5 4-5 3	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 23 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x4 SP No.2 2x4 SPF No.3 Structural wood shea 6-0-0 oc purlins. Rigid ceiling directly bracing. (size) 3= Mecha	athing directly applie applied or 10-0-0 or nical. 4= Mechanica	5) Refer to g 6) Provide n bearing p 3, 34 lb u 7) This truss Internatio R802.10. c LOAD CASE	jirder(s) for truss to techanical connecti late capable of with olift at joint 4 and 1 is designed in acco nal Residential Cod and referenced sta (S) Standard	truss conr on (by oth standing 6 03 lb uplift ordance w le sections andard AN	nections. ers) of truss i8 lb uplift at at joint 5. ith the 2018 is R502.11.1 iSI/TPI 1.	to joint and					
	5=0-6-11 Max Horiz 5=134 (LC Max Uplift 3=-68 (LC 5=-103 (L Max Grav 3=105 (LC 5=770 (LC	C 16) 5 16), 4=-34 (LC 2), C 12) C 22), 4=21 (LC 12), C 2)										
FORCES TOP CHORD BOT CHORD WEBS	(lb) - Maximum Com Tension 1-2=-219/132, 2-3=- 1-5=-85/216, 4-5=0/0 2-5=-551/398	pression/Maximum 110/31 0										
NOTES 1) Wind: AS Vasd=91r Ke=1.00; exterior zı Interior (1 exposed ; members Lumber D 2) TCLL: AS Plate DOI DOL=1.1{ Exp.; Ce= 3) Unbalanc design. 4) This truss chord live	CE 7-16; Vult=115mph mph; TCDL=6.0psf; BC Cat. II; Exp C; Enclose one and C-C Exterior(2) 5-0-0 to 6-10-4 zone; end vertical left and rig and forces & MWFRS)0L=1.60 plate grip DO CC 7-16; Pr=25.0 psf (L=1.15); Pg=20.0 psf; F 5 Plate DOL=1.15); Is= =0.9; Cs=1.00; Ct=1.10 ed snow loads have be thas been designed for load nonconcurrent wi	(3-second gust) DL=6.0psf; h=35ft; d; MWFRS (envelop E) 0-0-0 to 5-0-0, cantilever left and right pht exposed;C-C for for reactions shown JL=1.60 roof LL: Lum DOL= ² Pf=13.9 psf (Lum 1.0; Rough Cat C; F een considered for th r a 10.0 psf bottom th any other live load	be) ight ; 1.15 ully nis ds.								STATE OF I SCOT SEV. SEV. NUM PE-2001	MISSOLUE T.M. ER BER 018807

This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

June 6,2023

Job	Truss	Truss Type	Qty	Ply	
P210577	J13	Jack-Partial	1	1	I58733438 Job Reference (optional)

Run: 8.63 S Nov 19 2022 Print: 8.630 S Nov 19 2022 MiTek Industries, Inc. Mon Jun 05 09:38:47 ID:bqp_fp6?6MtsCmGbx6QFdyz9aAF-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Scale = 1:42

Plate Offsets (X, Y): [3:0-3-0,0-0-8]

Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 25.0 13.9/20.0 25.0 0.0 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018	3/TPI2014	CSI TC BC WB Matrix-P	0.75 0.44 0.43	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.01 0.00 -0.03	(loc) 5-6 5-6 3	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 30 lb	GRIP 244/190 FT = 20%	
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x4 SP No.2 2x4 SPF No.3 Structural wood shea 6-0-0 oc purlins. Rigid ceiling directly bracing. (size) 3= Mecha 6=0-7-12 Max Horiz 6-129 (LC Max Upliff 3=-116 (L 6=-311 (L Max Grav 3=45 (LC 6=1785 (L	athing directly applie applied or 6-0-0 oc unical, 5= Mechanica C 16) C 2), 5=-868 (LC 2), C 12) 16), 5=128 (LC 12), C 2)	4) 5) 6) 1, 8) 1, LC	This truss ha chord live loa Refer to gird Provide mec bearing plate 6, 116 lb upli This truss is International R802.10.2 ar Gap betweer diagonal or v	s been designed ad nonconcurrent er(s) for truss to tr hanical connection capable of withst ft at joint 3 and designed in accor Residential Code nd referenced star i inside of top cho rertical web shall r Standard	for a 10.0 with any russ conr n (by oth tanding 3 88 lb uplit dance w sections ndard AN ord bearin not excee) psf bottom other live loa actions. ers) of truss i 11 lb uplift at t at joint 5. th the 2018 R502.11.1 a ISI/TPI 1. g and first ed 0.500in.	ads. to t joint and						
FORCES TOP CHORD BOT CHORD WEBS NOTES 1) Wind: ASC Vasd=91n Ke=1.00; (exterior zc Interior (1) exposed ; members Lumber D	(lb) - Maximum Com Tension 1-2=-643/704, 2-3=- 1-6=-522/643, 5-6=- 2-6=-1647/1322, 3-5 CE 7-16; Vult=115mph nph; TCDL=6.0psf; BC Cat. II; Exp C; Enclose one and C-C Exterior(2) 5-1-13 to 6-7-8 zone; end vertical left and rig and forces & MWFRS OL=1.60 plate grip DO	Pression/Maximum 102/40 522/446, 4-5=0/0 522/446, 4-5=0/0 522/446, 4-5=0/0 (3-second gust) DL=6.0psf; h=35ft; d; MWFRS (envelop E) 0-0 to 5-1-13, cantilever left and rig fot exposed;C-C for for reactions shown; L=1.60	e) ght									STATE OF M SCOTT	MISSOUR M. ER	

- TCLL: ASCE 7-16; Pr=25.0 psf (roof LL: Lum DOL=1.15 2) Plate DOL=1.15); Pg=20.0 psf; Pf=13.9 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat C; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10
- Unbalanced snow loads have been considered for this 3) design.

NUMBER ROF PE-200101880 SSIONAL E June 6,2023

Page: 1

Job	Truss	Truss Type	Qty	Ply	
P210577	J14	Jack-Open	2	1	Job Reference (optional)

Run: 8.63 S Nov 19 2022 Print: 8.630 S Nov 19 2022 MiTek Industries, Inc. Mon Jun 05 09:38:47 ID:fiDfpxIPazmkV3vUJICmk7z9aA0-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:33.7

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15	TC	0.67	Vert(LL)	-0.01	4-5	>999	240	MT20	244/190
Snow (Pf/Pg)	13.9/20.0	Lumber DOL	1.15 VEC	BC	0.63	Vert(CT)	-0.01	4-5	>999	180		
	25.0	Rep Stress Incr		WD Motrix D	0.18	HOIZ(CT)	0.08	3	n/a	n/a		
BCDL	10.0	Code	IRC2016/1912014	Matrix-P							Weight: 15 lb	FT = 20%
LUMBER			5) Refer to	girder(s) for truss to	o truss con	nections.						
TOP CHORD	2x4 SP No.2		6) Provide r	nechanical connecti	ion (by oth	ers) of truss	to					
BOT CHORD	2x4 SP No.2		bearing p	late at joint(s) 5.								
WEBS	2x4 SPF No.3 7) Provide mechanical connection (by others) of truss to best full as a state of the state											
BRACING	RACING bearing plate capable of withstanding 93 lb uplift at joint											
TOP CHORD Structural wood sheathing directly applied or 4-9-15 oc purlins. 3, 126 lb uplitt at joint 4 and 231 lb uplitt at joint 5. 8) This truss is designed in accordance with the 2018												
BOT CHORD	Rigid ceiling directly bracing.	applied or 10-0-0 o	c Internatio R802.10	nal Residential Coo 2 and referenced st	de sections tandard AN	s R502.11.1 ; ISI/TPI 1.	and					
REACTIONS	(size) 3= Mecha	anical, 4= Mechanica	al, LOAD CASE	(S) Standard								
	0=0-3-0 Max Horiz 5-52 (LC	12)										
	Max Uplift 3=-93 (LC	(12) (1) (1) (1) (2)										
	5=-231 (L	.C 12)										
	Max Grav 3=24 (LC (LC 2)	12), 4=50 (LC 12), 5	5=790									
FORCES	(lb) - Maximum Com Tension	pression/Maximum										
TOP CHORD	1-2=-115/66. 2-3=-5	4/30										
BOT CHORD	1-5=-36/115, 4-5=0/	0										
WEBS	2-5=-518/572											
NOTES												
1) Wind: AS	CE 7-16; Vult=115mph	(3-second gust)										(The
Vasd=91r	mph; TCDL=6.0psf; BC	DL=6.0psf; h=35ft;									OF I	A Part
Ke=1.00;	Cat. II; Exp C; Enclose	d; MWFRS (envelop	pe)								ALE OF I	NISS N
and right	exposed : end vertical	left and right	leit							6	A.M.	N.S.
exposed;	C-C for members and f	orces & MWFRS for	r							B	SCOT	TM. YZY
reactions	shown; Lumber DOL="	1.60 plate grip								8	SEV.	IER \ Y
DOL=1.60 $(K \neq I)$												
2) TCLL: AS	CE 7-16; Pr=25.0 psf (roof LL: Lum DOL=	1.15							81	9	
Plate DOI	L=1.15); Pg=20.0 pst; F	Pt=13.9 pst (Lum								12-	Cat MM	BONNER I
	=0.9. Cs=1.00; IS=	1.0, Rough Cal C; F	ully							W7	PE-2001	018807
3) Unbalanc	ed snow loads have be	en considered for th	his							N	11-2001	128
design	design											

This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 4)

> **MiTek** 16023 Swingley Ridge Rd Chesterfield, MO 63017

ONAL E

June 6,2023

Job	Truss	Truss Type	Qty	Ply	
P210577	J15	Jack-Partial	4	1	I58733440 Job Reference (optional)

3-0-8

3-0-8

Premier Building Supply (Springhill, KS), Spring Hills, KS - 66083,

Run: 8.63 S Nov 19 2022 Print: 8.630 S Nov 19 2022 MiTek Industries, Inc. Mon Jun 05 09:38:48 ID:uRG3i0P2SkuS4S5CL8stb0z9a9t-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

6-11-0

3-10-8

Page: 1

Scale = 1:30.9

Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 25.0 13.9/20.0 25.0 0.0 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018	8/TPI2014	CSI TC BC WB Matrix-P	0.71 0.59 0.16	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.06 -0.05 0.10	(loc) 4-5 4-5 3	l/defl >816 >889 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 22 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD	2x4 SP No.2 2x4 SP No.2 2x4 SPF No.3 Structural wood she 6-0-0 oc purlins. Rigid ceiling directly	athing directly applie applied or 10-0-0 oc	5) 6) 7) ed or c LC	Refer to girde Provide mech bearing plate 3, 20 lb uplift This truss is of International R802.10.2 ar DAD CASE(S)	er(s) for truss to tri nanical connection capable of withst at joint 4 and 194 designed in accord Residential Code Id referenced star Standard	uss conr n (by oth anding 4 l b uplift dance w sections ndard AN	nections. ers) of truss 9 lb uplift at at joint 5. ith the 2018 i R502.11.1 a ISI/TPI 1.	to joint and					
REACTIONS	(size) 3= Mecha 5=0-3-0 Max Horiz 5=71 (LC Max Uplift 3=-49 (LC 5=-194 (L Max Grav 3=103 (LC (LC 2)	anical, 4= Mechanica 12) 2 16), 4=-20 (LC 2), C 12) C 2), 4=34 (LC 12), 5	il, 5=739										
FORCES	(lb) - Maximum Com Tension 1-2=-142/73, 2-3=-5	npression/Maximum 7/16											
WEBS	1-5=-45/138, 4-5=0/ 2-5=-541/512	0											
NOTES 1) Wind: ASG Vasd=91r Ke=1.00; exterior zc Interior (1 exposed; members Lumber D 2) TCLL: AS Plate DOL DOL=1.15 Exp; Ce= 3) Unbalance	CE 7-16; Vult=115mph nph; TCDL=6.0psf; BC Cat. II; Exp C; Enclose one and C-C Exterior(2)) 5-0-0 to 6-10-4 zone; end vertical left and ri, and forces & MWFRS IOL=1.60 plate grip DC CE 7-16; Pr=25.0 psf; 5 Plate DOL=1.15); Is= 0.9; Cs=1.00; Ct=1.10	(3-second gust) DL=6.0psf; h=35ft; d; MWFRS (envelop E) 0-0-0 to 5-0-0, cantilever left and ri ght exposed;C-C for for reactions shown; DL=1.60 roof LL: Lum DOL=1 Pf=13.9 psf (Lum 1.0; Rough Cat C; F	pe) ght .15 ully							، ر		STATE OF M SCOT SEVI NUM PE-2001	MISSOLIA I M. HER BER 018807

3) snow loads have been considered for this Un design.

This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 4)

MiTek 16023 Swingley Ridge Rd Chesterfield, MO 63017

SSIONAL

E

June 6,2023

Job	Truss	Truss Type	Qty	Ply	
P210577	J16	Jack-Partial	4	1	Job Reference (optional)

Run: 8.63 S Nov 19 2022 Print: 8.630 S Nov 19 2022 MiTek Industries, Inc. Mon Jun 05 09:38:48 ID:yKgkr9aSwLnKOll5jodOiBz9a9e-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

1-11-2

0-0-

Page: 1

Scale = 1:36.8

Plate Offsets (X, Y): [3:0-2-4,0-2-0], [3:0-5-6,0-1-12], [6:0-1-4,2-7-6]

1-11-2

-5-13

Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 25.0 13.9/20.0 25.0 0.0 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018	3/TPI2014	CSI TC BC WB Matrix-P	0.42 0.26 0.25	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.07 -0.06 0.04	(loc) 7 7 6	l/defl >666 >693 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 27 lb	GRIP 244/190 FT = 20%	
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x4 SP No.2 *Excep 2x4 SPF No.3 Structural wood she 6-0-0 oc purlins. Rigid ceiling directly bracing. (size) 4= Mecha 8=0-5-8 Max Horiz 8=69 (LC Max Uplift 4=-36 (LC Max Grav 4=67 (LC (LC 2)	 t* 7-3:2x4 SPF No.3 athing directly applie applied or 6-0-0 oc anical, 6= Mechanical 16) 216), 8=-185 (LC 12) 2), 6=53 (LC 7), 8=7 	4) 5) 6) d or 7) , 8) LC 20	This truss ha chord live loa Refer to gird Provide mec bearing plate joint 8 and 30 This truss is International R802.10.2 ar Gap betweer diagonal or v	is been designed for ad nonconcurrent w er(s) for truss to tru- hanical connection e capable of withsts 5 lb uplift at joint 4. designed in accord Residential Code and referenced stan h inside of top chord retrical web shall no Standard	or a 10.0 vith any uss conr (by oth anding 1 dance w sections dard AN d bearir ot excee) psf bottom other live loa lections. ers) of truss t 85 lb uplift at ith the 2018 R502.11.1 a ISI/TPI 1. Ig and first d 0.500in.	uds. to and						
FORCES	(lb) - Maximum Com Tension	pression/Maximum												
TOP CHORD BOT CHORD	1-2=-760/534, 2-3=- 1-8=-469/760, 7-8=- 5-6=0/0	712/493, 3-4=-29/16 29/0, 3-7=0/61, 3-6= 0/0, 2, 8= 568/704	-2/2,											
WEBS	2-8=-312/143, 4-6=0	0/0, 3-8=-568/794												
1) Wind: ASC Vasd=91m Ke=1.00; (exterior zo Interior (1) exposed ; members a; Lumber D0 2) TCLL: ASC Plate DOL DOL=1.15 Exp.; Ce=1	CE 7-16; Vult=115mph hph; TCDL=6.0psf; BC Cat. II; Exp C; Enclose ine and C-C Exterior(2 5-0-0 to 6-7-8 zone; c end vertical left and rig and forces & MWFRS OL=1.60 plate grip DC CE 7-16; Pr=25.0 psf (=1.15); Pg=20.0 psf; F Plate DOL=1.15); Is= 0.9; Cs=1.00; Ct=1.10	(3-second gust) DL=6.0psf; h=35ft; d; MWFRS (envelop: E) 0-0-0 to 5-0-0, cantilever left and righ ght exposed; C-C for for reactions shown; DL=1.60 Toof LL: Lum DOL=1 Pf=13.9 psf (Lum 1.0; Rough Cat C; Fu	e) nt .15 .Illy									STATE OF I SCOT SEVI	MISSOLA T.M. ER JULE MISSOLA T.M. ER	

3) Unbalanced snow loads have been considered for this design.

June 6,2023

ONALE

Job	Truss	Truss Type	Qty	Ply	
P210577	J17	Jack-Open	1	1	Job Reference (optional)

4-0-0

Premier Building Supply (Springhill, KS), Spring Hills, KS - 66083,

Run: 8.63 S Nov 19 2022 Print: 8.630 S Nov 19 2022 MiTek Industries, Inc. Mon Jun 05 09:38:48 ID:qez5q82Iz0axxbfOxnJIFCz9a92-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:26.3

Loading TCLL (roof) Snow (Pf/Pg)	(psf) 25.0 13.9/20.0	Spacing Plate Grip DOL Lumber DOL	2-0-0 1.15 1.15	CSI TC BC	0.51	DEFL Vert(LL) Vert(CT)	in 0.07 -0.10	(loc) 5 5	l/defl >658 >438	L/d 240 180	PLATES MT20	GRIP 197/144
	25.0	Rep Stress Incr		WB Matrix D	0.02	Horz(CT)	0.06	4	n/a	n/a		
BCDL	10.0	Code	IRC2018/1PI2014	Matrix-P							Weight: 18 lb	FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x4 SP No.2 *Excep 2x4 SPF No.3 Structural wood shea 4-0-0 oc purlins, exc Rigid ceiling directly bracing. (size) 3= Mecha 6=0-5-8 Max Horiz 6=41 (LC Max Uplift 3=-57 (LC Max Grav 3=211 (LC	t* 5-2:2x4 SPF No.3 athing directly applie cept end verticals. applied or 6-0-0 oc nical, 4= Mechanica 13) : 16), 6=-24 (LC 12) 2 2), 4=45 (LC 7), 6=	5) Refer to gir 6) Provide me bearing pla 6 and 57 lb 7) This truss i Internationa R802.10.2 LOAD CASE(S I,	der(s) for truss to t chanical connectio te capable of withst uplift at joint 3. s designed in accor al Residential Code and referenced star) Standard	russ con n (by oth tanding 2 rdance wi sections ndard AN	nections. nections. 4 lb uplift at j ith the 2018 R502.11.1 a ISI/TPI 1.	to oint und					
FORCES	(LC 2)	pression/Maximum										
IOROLO	Tension											
TOP CHORD	1-6=-221/169, 1-2=-	57/56, 2-3=-40/38										
BOT CHORD	5-6=-23/0, 2-5=0/49, 2-6=-103/66	, 2-4=-2/2										
NOTES	20 100,00											
 Wind: ASC Vasd=91n Ke=1.00; (exterior zc and right e exposed; reactions s DOL=1.60 TCLL: ASC Plate DOL DOL=1.15 Exp.; Ce= Unbalance design. This truss chord live 	CE 7-16; Vult=115mph nph; TCDL=6.0psf; BCI Cat. II; Exp C; Enclose- one and C-C Exterior(2 exposed ; end vertical I -C for members and fc shown; Lumber DOL=1 -C 7-16; Pr=25.0 psf (I -=1.15); Pg=20.0 psf; F - Plate DOL=1.15); Is=- 0.9; Cs=1.00; Ct=1.10 ed snow loads have be has been designed for load nonconcurrent wit	(3-second gust) DL=6.0psf; h=35ft; d; MWFRS (envelop E) zone; cantilever li- eft and right orcces & MWFRS for 1.60 plate grip roof LL: Lum DOL=1 2f=13.9 psf (Lum 1.0; Rough Cat C; Fi ven considered for th r a 10.0 psf bottom th any other live load	e) eft .15 ully is							*	PE-2001	MISSOLA T.M. ER MISSOLA ER MISSOL

June 6,2023

Job	Truss	Truss Type	Qty	Ply	
P210577	J18	Roof Special	1	1	I58733443 Job Reference (optional)

4-2-1

3-4-10

0-9-7

0-9-7

Premier Building Supply (Springhill, KS), Spring Hills, KS - 66083,

Run: 8.63 S Nov 19 2022 Print: 8.630 S Nov 19 2022 MiTek Industries, Inc. Mon Jun 05 09:38:49 ID:4M?ViD9xsnifXzr7zAzP65z9a8v-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:25.2

Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 25.0 18.9/20.0 25.0 0.0 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC20 ⁷	8/TPI2014	CSI TC BC WB Matrix-P	0.32 0.05 0.05	DEFL Vert(LL) Vert(CT) Horz(CT)	in 0.00 0.00 0.00	(loc) 5 5-6 4	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 20 lb	GRIP 197/144 FT = 20%	
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x4 SP No.2 2x4 SPF No.3 Structural wood shea 4-2-1 oc purlins, exu 2-0-0 oc purlins: 1-2. Rigid ceiling directly bracing. (size) 4= Mecha Max Horiz 6=68 (LC Max Uplift 4=-39 (LC Max Grav 4=233 (LC	athing directly applie cept end verticals, a applied or 10-0-0 or nical, 6= Mechanica 13) 16), 6=-38 (LC 12) 2 37), 6=233 (LC 2)	6 7 ed or nd 9 c al L	 Refer to gird Provide met bearing plate and 39 lb This truss is International R802.10.2 a Graphical pu or the orient bottom chorn DAD CASE(S) 	er(s) for truss to chanical connecti e capable of with uplift at joint 4. designed in acct Residential Coo nd referenced st urlin representati ation of the purlin d. Standard	truss conr ion (by oth istanding 3 ordance w de sections candard AN on does no n along the	ections. ers) of truss t 8 lb uplift at j ith the 2018 F R502.11.1 a ISI/TPI 1. ot depict the s top and/or	to oint and size						
FORCES	(lb) - Maximum Com Tension	pression/Maximum												
TOP CHORD	1-6=-32/27, 1-2=-19/ 3-4=-216/184	/21, 2-3=-115/25,												
SOT CHORD	5-6=-187/181, 4-5=-3	33/36 68/121 2 5- 72/120	`											
	2-0=-223/110, 2-3=-0	00/134, 3-3=-72/130)											
 Wind: ASC Vasd=91m Ke=1.00; C exterior zo Interior (1) exposed; members a Lumber DC TCLL: ASC Plate DOL 	E 7-16; Vult=115mph hph; TCDL=6.0psf; BCl Cat. II; Exp C; Enclose ne and C-C Exterior(2 0-9-7 to 4-0-5 zone; c end vertical left and rig and forces & MWFRS DL=1.60 plate grip DO CE 7-16; Pr=25.0 psf (I =1.15); Pg=20.0 psf; F	(3-second gust) DL=6.0psf; h=35ft; d; MWFRS (envelop E) 0-1-12 to 0-9-7, antilever left and rig ght exposed;C-C for for reactions shown L=1.60 roof LL: Lum DOL= ² 2f=18.9 psf (Lum	be) ht ; 1.15									STATE OF SCOT	MISSOURT M. HER	A MARK

- DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat C; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10, Lu=50-0-0 3) Unbalanced snow loads have been considered for this
- design.
- 4) Provide adequate drainage to prevent water ponding.
- 5) This truss has been designed for a 10.0 psf bottom
- chord live load nonconcurrent with any other live loads.

NUMBE

Job	Truss	Truss Type	Qty	Ply	
P210577	J19	Diagonal Hip Girder	1	1	Job Reference (optional)

Run: 8.63 S Nov 19 2022 Print: 8.630 S Nov 19 2022 MiTek Industries, Inc. Mon Jun 05 09:38:49 ID:Yq5JUNNEdJz6hIDa0yleruz9a8d-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

TJC37

Scale = 1:34.2

Plate Offsets (X, Y): [3:0-3-5,0-1-8], [5:0-3-12,0-4-12]

		, [,]											
Loading	(psf)	Spacing	2-0-0		csi		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15		TC	0.87	Vert(LL)	0.00	4-5	>999	240	MT20	197/144
Snow (Pf/Pa)	13.9/20.0	Lumber DOL	1.15		BC	0.55	Vert(CT)	0.00	4-5	>999	180	-	
TCDL	25.0	Rep Stress Incr	NO		WB	0.58	Horz(CT)	0.00	4	n/a	n/a		
BCLL	0.0	Code	IRC201	8/TPI2014	Matrix-P		- (-)						
BCDL	10.0					_						Weight: 29 lb	FT = 20%
			6)	Provide mer	hanical connectio	n (hy oth	ers) of truss t	0					
	2x4 SP No 2		0,	bearing plate	e capable of withs	standing 1	379 lb uplift a	at					
	2x6 SPE No 2			ioint 4 and 7	44 lb uplift at joint	t 5.							
WEBS	2x4 SPE No 3 *Exce	ont* 5-3:2x4 SP No 2	7	This truss is	designed in acco	rdance w	ith the 2018						
		pr 0 0.2x1 01 110.2	. ,	International	Residential Code	e sections	R502.11.1 a	nd					
	Structural wood cho	athing directly applic	od or	R802.10.2 a	nd referenced sta	andard AN	ISI/TPI 1.						
	3-6-2 oc purlins ex	cent end verticals	8)	This truss ha	as large uplift read	ction(s) fr	om gravity loa	ad					
BOT CHORD	Rigid ceiling directly	applied or 6-0-0 oc		case(s). Proj against upwa	per connection is ard movement at	required the beari	to secure trus nas. Buildina	ss					
	bracing.			designer mu	st provide for upli	ift reaction	ns indicated.						
REACTIONS	(SIZE) 4= Mecha	anical, 5=0-7-12	9)	Use Simpson	n Strong-Tie TJC	37 (4 nail	, 30-90) or						
	Max Unlift 4 1270	13) (102) <u>5 - 744 (104</u>	2)	equivalent at	t 5-1-0 from the le	eft end to	connect truss	s(es)					
	Max Opint 4=-1379 ((LC 2), 5=-744 (LC 1	Z)	to back face	of bottom chord,	skewed 4	15.0 deg.to th	е					
		C 12), 5=2441 (LC 2	,	left, sloping (0.0 deg. down.								
FURCES	(ID) - Maximum Corr	pression/iviaximum	1()) Fill all nail ho	bles where hange	r is in cor	tact with lum	ber.					
		- 2522/17/7	1	I) In the LOAD	CASE(S) section	n, loads a	pplied to the f	ace					
I OF CHORD	3-4-1659/1084	=-2322/1747,		of the truss a	are noted as front	(F) or ba	ск (В).						
	1-6=-869/1385 5-6=		/25 L	DAD CASE(S)	Standard								
WEBS	2-6=-185/90 2-5=-9	02/1274 3-5=-2239	(3265 1)	Dead + Sho	ow (balanced): Lu	imber Inc	rease=1.15, I	late					
NOTES	2 0- 100/00, 2 0- 0	02/12/1, 0 0- 2200	0200	Increase=1	.15 ada (lb/ft)								
	E 7 16: \/ult 115mph	(2 accord quat)		Vort: 1.2	aus (ID/IL)								
Vasd-91m	nh: TCDI -6 (nsf: BC	DI -6 Onsf: h-35ft		Concontrat	=-70, 1-4=-20								The second se
Ke-1 00.0	Cat. II: Evp.C: Enclose	d MWFRS (envelor		Vort: 7-								A	all
exterior zo	one and C-C Corner (3) zone: cantilever lef	it	ven. /=-	213 (D)							B & OF I	NISS W
and right e	exposed : end vertical	left and right	-								6	- AL	N.S.
exposed;C	C for members and f	orces & MWFRS for									B	SCOT	TM XPN
reactions s	shown; Lumber DOL=	1.60 plate grip									B	SEVI	
DOL=1.60											8.	SEVI	
2) TCLL: ASC	CE 7-16; Pr=25.0 psf ((roof LL: Lum DOL=1	1.15								<u>и ~</u>		1 ~ 8
Plate DOL	=1.15); Pg=20.0 psf; F	Pf=13.9 psf (Lum									9	20 42	· Q
DOL=1.15	Plate DOL=1.15); ls=	1.0; Rough Cat C; F	ully								23	K COMUNA	Den VXX I
Exp.; Ce=(0.9; Cs=1.00; Ct=1.10										N	PE-2001	018807
 Unbalance 	ea snow loads have be	een considered for th	lis								N	A.	12A
4) This truce	has been designed fo	r a 10.0 psf bottom									X	1 Ser	JO'A
chord live	load nonconcurrent wi	ith any other live log	de									ONA	LERA
5) Refer to di	rder(s) for truss to trus	ss connections.										an	TITE
-,												Jur	ne 6.2023

NITEK° 16023 Swingley Ridge Rd Chesterfield, MO 63017

Job	Truss	Truss Type	Qty	Ply	
P210577	J20	Jack-Open	4	1	Job Reference (optional)

Run: 8.63 S Nov 19 2022 Print: 8.630 S Nov 19 2022 MiTek Industries, Inc. Mon Jun 05 09:38:50 ID:YN89d?nZcmFHmzp605vcD3z9a85-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

2-5-15

Page: 1

Scale = 1:24.7		

Plate Offsets (X, Y): [2:0-3-4,0-0-9]

Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 25.0 13.9/20.0 25.0 0.0 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018	3/TPI2014	CSI TC BC WB Matrix-P	0.48 0.07 0.00	DEFL Vert(LL) Vert(CT) Horz(CT)	in 0.00 0.00 0.00	(loc) 2-5 2-5 4	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 13 lb	GRIP 244/190 FT = 20%	
LUMBER TOP CHORD 3OT CHORD SUDER BRACING TOP CHORD 3OT CHORD 3OT CHORD REACTIONS FORCES TOP CHORD BOT CHORD NOTES 1) Wind: AS(Vasd=91r Ke=1.00; exterior zc and right of exposed;(reactions DOL=1.6(2) TCLL: AS Plate DOL DOL=1.15 Exp.; Ce= 3) Unbalanci design. 4) This truss load of 12 overhangs	2x4 SP No.2 2x4 SP No.2 Left 2x4 SP No.2 1 Structural wood shea 2-5-15 oc purlins. Rigid ceiling directly bracing. (size) 2=0-4-9, 4 Mechanica Max Horiz 2=60 (LC Max Uplift 2=-144 (LI Max Grav 2=429 (LC (LC 7) (lb) - Maximum Com Tension 1-2=0/22, 2-4=-102/2 2-5=0/0 CE 7-16; Vult=115mph nph; TCDL=6.0psf; BC Cat. II; Exp C; Enclose one and C-C Corner (3) exposed ; end vertical I C-C for members and for shown; Lumber DOL=1 0 CE 7-16; Pr=25.0 psf ([=1.15); Pg=20.0 psf; F ; Plate DOL=1.15; Is=' 0.9; Cs=1.00; Ct=1.10 ed snow loads have be has been designed for .0 psf or 2.00 times flat is non-concurrent with o	L -5-13 athing directly applied applied or 10-0-0 oc H= Mechanical, 5= al 12) C 12), 4=-28 (LC 16) C 2), 4=-28 (LC 2), 5=-2 pression/Maximum 20 (3-second gust) DL=6.0psf; h=35ft; d; MWFRS (envelope) J zone; cantilever left eft and right prces & MWFRS for .60 plate grip roof LL: Lum DOL=1. Yf=13.9 psf (Lum 1.0; Rough Cat C; Fu en considered for this roof load of 13.9 psf ther live loads.	5) 6) 7) d or 8) LC 49 49 (49 (49 (49) (49) (49) (49) (49)	This truss ha chord live loa Refer to girde Provide mecl bearing plate 4 and 144 lb This truss is of International R802.10.2 ar PAD CASE(S)	s been designed fo d nonconcurrent w gr(s) for truss to tru- nanical connection capable of withsta uplift at joint 2. designed in accord Residential Code s ad referenced stand Standard	or a 10.0 vith any uss connu (by othe unding 2 lance wi sections dard AN) psf bottom other live loan nections. ers) of truss tr 8 lb uplift at jo th the 2018 R502.11.1 a ISI/TPI 1.	ds. o pint nd				THE OF M STATE OF M SEVI PE-20010 PE-20010	AISSOLUTION T.M. ER DISSOT L ENGINE E 6 2023	

16023 Swingley Ridge Rd Chesterfield, MO 63017

Job	Truss	Truss Type	Qty	Ply	
P210577	J21	Jack-Open	2	1	I58733446 Job Reference (optional)

Run: 8.63 S Nov 19 2022 Print: 8.630 S Nov 19 2022 MiTek Industries, Inc. Mon Jun 05 09:38:50 ID:rG7fE0HHyMQTBGS?wC8DNiz9a7S-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

NAILED

NAILED

1-11-0

Scale = 1:32.4

Plate Offsets (X, Y): [2:0-1-8,0-0-1]

Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL	(psf) 25.0 13.9/20.0 25.0 0.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018/	/TPI2014	CSI TC BC WB Matrix-P	0.23 0.04 0.00	DEFL Vert(LL) Vert(CT) Horz(CT)	in 0.00 0.00 0.00	(loc) 2-5 2-5 4	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20	GRIP 244/190	
BCDL	10.0											Weight: 11 lb	FI = 20%	
LUMBER TOP CHORD BOT CHORD SLIDER BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x4 SP No.2 Left 2x4 SP No.2 1 Structural wood shea 1-11-0 oc purlins. Rigid ceiling directly bracing. (size) 2=0-3-8, 4 Mechanic: Max Horiz 2=59 (LC Max Grav 2=309 (LC Max Grav 2=309 (LC (LC 7)	I-5-7 athing directly applied applied or 10-0-0 oc I= Mechanical, 5= al 16) : 12), 4=-47 (LC 17) C 2), 4=51 (LC 24), 5	5) 6) 7) d or 8) 9) 10) =77 LO / 1)	This truss ha chord live loa Refer to girde Provide mech bearing plate 2 and 47 lb u This truss is International R802.10.2 ar "NAILED" ind per NDS guid In the LOAD of the truss a AD CASE(S) Dead + Soo	s been designed for d nonconcurrent w er(s) for truss to tru- nanical connection capable of withsta plift at joint 4. designed in accord Residential Code s d referenced stand icates Girder: 3-10 lelines. CASE(S) section, I re noted as front (F Standard w (balanced): Lum	or a 10.0 vith any uss con (by oth nding 6 ance w sections dard AN od (0.14 coads ap c) or ba ber Inc	D psf bottom other live load nections. ers) of truss tr 2 lb uplift at jc ith the 2018 R502.11.1 at (SI/TPI 1. 8" x 3") toe-n oplied to the fa ck (B). rease=1.15, F	ds. o oint nd aails ace Plate						
FORCES	(Ib) - Maximum Com Tension 1-2=0/23 2-4=-86/25	pression/Maximum		Uniform Loa Vert: 1-4=	nds (lb/ft) =-78, 2-5=-20									
BOT CHORD	2-5=0/0	-		Concentrate	ed Loads (lb)									
NOTES				vert: 5=-	19 (F=-10, B=-10)									
 Wind: ASC Vasd=91m Ke=1.00; C exterior zoo and right e exposed;C reactions s DOL=1.60 TCLL: ASC Plate DOL DOL=1.15 Exp.; Ce= design. This truss load of 12. overhangs 	E 7-16; Vult=115mph ph; TCDL=6.0psf; BCI cat. II; Exp C; Enclose ne and C-C Exterior(2 xposed ; end vertical I -C for members and for thown; Lumber DOL=1 CE 7-16; Pr=25.0 psf (i =1.15); Pg=20.0 psf; P Plate DOL=1.15); Is=' 0.9; Cs=1.00; Ct=1.10 d snow loads have be has been designed for 0 psf or 2.00 times flat non-concurrent with o	(3-second gust) DL=6.0psf; h=35ft; d; MWFRS (envelop E) zone; cantilever le eft and right orcces & MWFRS for 1.60 plate grip roof LL: Lum DOL=1. 2f=13.9 psf (Lum 1.0; Rough Cat C; FL een considered for thi r greater of min roof I t roof load of 13.9 pst ther live loads.	e) ⊧ft .15 .lly s ive i on							-		State OF M SCOTT SEVI NUM PE-20010 PE-20010 DEFOSIONA	AISSOLUTION M. ER BER D18807	

Job	Truss	Truss Type	Qty	Ply	
P210577	J22	Jack-Open	8	1	I58733447 Job Reference (optional)

Run: 8.63 S Nov 19 2022 Print: 8.630 S Nov 19 2022 MiTek Industries, Inc. Mon Jun 05 09:38:50 ID:8c2liQMgJWITWLULqAmsABz9a7L-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

1-7-15 1-4-7 1-4-7 0-3-8

Scale = 1:36.6

Plate Offsets (X, Y): [2:0-2-0,0-4-4]

Loading TCLL (roof) Snow (Pf/Pg)	(psf) 25.0 13.9/20.0	Spacing Plate Grip DOL Lumber DOL	2-0-0 1.15 1.15		CSI TC BC	0.45 0.01	DEFL Vert(LL) Vert(CT)	in 0.00 0.00	(loc) 6 6-7	l/defl >999 >999	L/d 240 180	PLATES MT20	GRIP 197/144	
TCDL	25.0	Rep Stress Incr	YES	TDIO044	WB	0.05	Horz(CT)	0.00	3	n/a	n/a			
	0.0	Code	IRC2018/	I PI2014	Matrix-P							Woight: 15 lb	ET - 20%	
BCDL	10.0											Weight. 15 lb	FT = 2076	
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD REACTIONS	2x6 SPF No.2 2x4 SP No.2 2x4 SPF No.3 Structural wood she 1-7-15 oc purlins, e Rigid ceiling directly bracing. (size) 3= Mecha 7=0-5-8 Max Horiz 7=67 (LC Max Uplift 3=-337 (L 7=-218 (L Max Grav 3=117 (LI (LC 23)	eathing directly applie except end verticals. applied or 10-0-0 oc anical, 5= Mechanica 15) .C 22), 5=-13 (LC 12) .C 12) C 12), 5=-1 (LC 4), 7:	4) 5) d or 6) 7) i, 8) i, 9) ₌₇₈₀ LOA	This truss ha load of 12.0 j overhangs n This truss ha chord live loa Refer to gird Provide mec bearing plate joint 7, 13 lb This truss is International R802.10.2 ar Gap betweer diagonal or v AD CASE(S)	as been designed fi psf or 2.00 times fl on-concurrent with is been designed fi ad nonconcurrent w er(s) for truss to tr hanical connection e capable of withsta uplift at joint 5 and designed in accord Residential Code and referenced stan in inside of top chor vertical web shall in Standard	or greate at roof lo o other liv or a 10.0 with any russ com o (by othe anding 2 I 337 lb u dance wi sections idard AN rd bearin ot excee	er of min roof pad of 13.9 ps re loads. 0 psf bottom other live load nections. ers) of truss to 18 lb uplift at julift at joint 3 th the 2018 R502.11.1 at ISI/TPI 1. Ig and first d 0.500in.	live sf on ds. o s. nd						
FORCES	(lb) - Maximum Con	pression/Maximum												
TOP CHORD	2-7=-768/513, 1-2=(3-4=-12/0	0/124, 2-3=-174/115,												
BOT CHORD	6-7=-130/31, 5-6=0/	0												
WEBS	3-6=-54/39, 2-6=-39	/161											The	
NOTES												OF	ALC D	
 Wind: AS(Vasd=91n Ke=1.00; exterior zc and right e exposed; reactions : DOL=1.6C TCLL: AS Plate DOL DOL=1.1E Exp.; Ce= Unbalance design. 	CE 7-16; Vult=115mph nph; TCDL=6.0psf; BC Cat. II; Exp C; Enclose one and C-C Exterior(2 exposed ; end vertical 2-C for members and f shown; Lumber DOL= 0 CE 7-16; Pr=25.0 psf =1.15); Pg=20.0 psf; 5 Plate DOL=1.15); Is= 0.0; Cs=1.00; Ct=1.10 ed snow loads have be	n (3-second gust) DL=6.0psf; h=35ft; ad; MWFRS (envelop 2E) zone; cantilever le left and right forces & MWFRS for 1.60 plate grip (roof LL: Lum DOL=1 Pf=13.9 psf (Lum r.1.0; Rough Cat C; Fu been considered for this	e) eft .15 .1ly is							2		PE-2001	I ENCIDE	
												Jur	e 6,2023	

Job	Truss	Truss Type	Qty	Ply	
P210577	J23	Jack-Open	8	1	I58733448 Job Reference (optional)

Run: 8.63 S Nov 19 2022 Print: 8.630 S Nov 19 2022 MiTek Industries, Inc. Mon Jun 05 09:38:51 ID:5XDvFjoFqarMrtEGxkPIdnz9a6n-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:32.6

Plate Offsets (X, Y): [3:0-4-12,0-0-8]

-													
Loading	(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15		TC	0.42	Vert(LL)	-0.01	5-6	>999	240	MT20	197/144
Snow (Pf/Pg)	13.9/20.0	Lumber DOL	1.15		BC	0.12	Vert(CT)	-0.01	5-6	>999	180		
TCDL	25.0	Rep Stress Incr	YES		WB	0.07	Horz(CT)	0.00	3	n/a	n/a		
BCLL	0.0	Code	IRC201	8/TPI2014	Matrix-P								
BCDL	10.0											Weight: 25 lb	FT = 20%
LUMBER			4)	Unbalanced	snow loads have	been cor	nsidered for t	his					
TOP CHORD	2x6 SPF No.2		,	design.									
BOT CHORD	2x4 SP No.2		5)	This truss ha	s been designed	for greate	er of min root	f live					
WEBS	2x4 SPF No.3			load of 12.0	d of 12.0 psf or 2.00 times flat roof load of 13.9 psf on								
BRACING				overhangs n	on-concurrent with	n other liv	/e loads.						
TOP CHORD	Structural wood she	athing directly applie	ed or ⁶⁾	This truss ha	s been designed	for a 10.0) psf bottom						
	3-7-15 oc purlins, ex	xcept end verticals.		chord live loa	ad nonconcurrent	with any	other live loa	ads.					
BOT CHORD	Rigid ceiling directly	applied or 10-0-0 or	c 7)	Refer to gird	er(s) for truss to t	russ con	nections.						
	bracing.		8)	Provide mec	hanical connection	n (by oth	ers) of truss	to					
REACTIONS	(size) 3= Mecha	nical, 5= Mechanica	al,	bearing plate	capable of withst	anding 1	42 ID UPIIIT a	τ					
	6=0-5-8		0)	This truce is	designed in accord	u o io upi donco w	ith the 2019						
	Max Horiz 6=93 (LC	16)	9)	International	Residential Code	sections	R502 11 1	and					
	Max Uplift 3=-73 (LC	22), 5=-5 (LC 16),		R802 10 2 a	nd referenced star	A hard An	ISI/TPI 1						
	6=-142 (L	C 12)	1()) Gap betweer	n inside of top cho	rd bearir	and first						
	Max Grav 3=41 (LC	23), 5=77 (LC 7), 6=	=645	diagonal or v	ertical web shall r	not excee	ed 0.500in.						
	(LC 2)		L	DAD CASE(S)	Standard								
FORCES	(lb) - Maximum Com	pression/Maximum		(-)									
		404 0 0 440/05											
TOP CHORD	2-6=-613/390, 1-2=0	//124, 2-3=-118/35											
BOICHORD	5-6=-211/58, 4-5=0/0	0											
WEBS	3-5=0/0, 2-5=-60/220	0											
NOTES												000	TOP
1) Unbalanc	ed roof live loads have	been considered for	r									8. OF M	AIC D
this desig								9 TE	1000				
2) Wind: ASCE 7-16; Vuit=115mpn (3-second gust)											6	SI	NST
Ke=1.00: Cat. II: Exp.C: Enclosed: MWERS (envelope)											B	SCOT	M. Yr Y
ovtorior 7	oal. II, EAP C, ENCLOSE								RC	/ SEVI	ER \ Y		

exterior zone and C-C Exterior(2E) -2-11-0 to 2-1-0, Interior (1) 2-1-0 to 3-4-7 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

TCLL: ASCE 7-16; Pr=25.0 psf (roof LL: Lum DOL=1.15 3) Plate DOL=1.15); Pg=20.0 ps; Pf=13.9 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat C; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

PE-2001018807

E

Job	Truss	Truss Type	Qty	Ply	
P210577	J24	Jack-Closed	3	1	I58733449 Job Reference (optional)

Run: 8.63 S Nov 19 2022 Print: 8.630 S Nov 19 2022 MiTek Industries, Inc. Mon Jun 05 09:38:51 ID:jeckYm4ITLR8JHIIg4mJzQz9a1F-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

51 F

5-8-6

Casla		1.24	1 2
	- 1		- X -
CACHER	_		

Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 25.0 13.9/20.0 25.0 0.0 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018/	/TPI2014	CSI TC BC WB Matrix-P	0.42 0.37 0.10	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.05 -0.10 0.00	(loc) 4-5 4-5 4	l/defl >999 >633 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 35 lb	GRIP 197/144 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD REACTIONS	2x6 SPF No.2 2x4 SP No.2 2x4 SPF No.3 Structural wood she 5-8-6 oc purlins, ex Rigid ceiling directly bracing. (size) 4= Mecha Max Horiz 5=171 (LC Max Uplift 4=-50 (LC	athing directly applie cept end verticals. applied or 9-8-5 oc anical, 5=0-5-8 C 15) 2 16), 5=-147 (LC 12	5) 6) 7) ed or 8) LO	This truss ha chord live loa Refer to gird Provide mec bearing plate joint 5 and 50 This truss is International R802.10.2 ai AD CASE(S)	as been designed ad nonconcurrent er(s) for truss to th hanical connectio c capable of withs 0 lb uplift at joint 4 designed in accor Residential Code nd referenced sta Standard	for a 10.0 with any russ conr n (by oth tanding 1 4. rdance w e sections ndard AN	D psf bottom other live loa nections. ers) of truss t 47 lb uplift at ith the 2018 s R502.11.1 a JSI/TPI 1.	ds. o nd					
FORCES TOP CHORD BOT CHORD WEBS NOTES 1) Wind: ASC	Max Grav 4=268 (LC 23), 5=/17 (LC 2) (lb) - Maximum Compression/Maximum Tension IRD 2-5=-663/427, 1-2=0/124, 2-3=-167/126, 3-4=-232/179 IRD 4-5=-354/157 2-4=-108/313 : ASCE 7-16: \ult=115mpb /3-second gust)												

- Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=35ft; Ke=1.00; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) -2-11-0 to 2-1-0, Interior (1) 2-1-0 to 5-6-10 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) TCLL: ASCE 7-16; Pr=25.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf; Pf=13.9 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat C; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10
- 3) Unbalanced snow loads have been considered for this design.
- 4) This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 13.9 psf on overhangs non-concurrent with other live loads.

SCOTT M. SEVIER PE-2001018807 SSIONAL ENCIDENCID

> 16023 Swingley Ridge Rd Chesterfield, MO 63017

Job	Truss	Truss Type	Qty	Ply	
P210577	J25	Jack-Open	3	1	Job Reference (optional)

Run: 8.63 S Nov 19 2022 Print: 8.630 S Nov 19 2022 MiTek Industries, Inc. Mon Jun 05 09:38:51 ID:gZnL64Wt_Pz1dp2DnePmR0z9a0h-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Scale = 1:33.6

Plate Offsets (X, Y): [2:0-4-8,0-1-8]	, [5:0-2-0,0-0-8]			
Loading	(psf)	Spacing	2-0-0	CSI	
TCLL (roof)	25.0	Plate Grip DOL	1.15	TC	
Snow (Pf/Pg)	13 0/20 0		1 15	BC	

Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 25.0 13.9/20.0 25.0 0.0 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC201	8/TPI2014	CSI TC BC WB Matrix-R	0.70 0.36 0.00	DEFL Vert(LL) Vert(CT) Horz(CT)	in 0.05 -0.09 0.03	(loc) 4-5 4-5 4	l/defl >999 >739 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 28 lb	GRIP 197/144 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP 1650F 1.5E 2x4 SP No.2 *Except 2x4 SPF No.3 Structural wood shea 5-9-0 oc purlins, exc Rigid ceiling directly bracing. (size) 3= Mecha 7=0-5-8 Max Horiz 7=134 (LC Max Uplift 3=-83 (LC Max Grav 3=225 (LC	t* 6-5:2x4 SPF No.3 athing directly applie cept end verticals. applied or 6-0-0 oc nical, 4= Mechanical 2 16) 16), 7=-102 (LC 12) 2 23), 4=108 (LC 7),	4) 5) d or 6) 7) I, 8) J LC	This truss ha load of 12.0 overhangs n This truss ha chord live loa Refer to gird Provide mec bearing plate joint 7 and 8 This truss is International R802.10.2 a DAD CASE(S)	as been designed psf or 2.00 times f on-concurrent with as been designed ad nonconcurrent er(s) for truss to tr hanical connectio e capable of withs 3 lb uplift at joint 3 designed in accor Residential Code nd referenced star Standard	for great flat roof li h other li for a 10. with any russ conr n (by oth tanding 1 }. rdance w e sections ndard AN	er of min roof oad of 13.9 p ve loads. D psf bottom other live loa tections. ers) of truss t 02 lb uplift at 02 lb uplift at ith the 2018 i R502.11.1 a ISI/TPI 1.	f live sf on ids. to t					
FORCES	(lb) - Maximum Com	pression/Maximum											
TOP CHORD BOT CHORD	2-7=-723/382, 1-2=0 6-7=-169/167, 5-6=-4 4-5=0/0	/124, 2-3=-137/66 40/27, 2-5=-168/169,	,										
NOTES 1) Wind: ASC Vasd=91n Ke=1.00; c exterior zc Interior (1) exposed; members Lumber D 2) TCLL: ASC Plate DOL	CE 7-16; Vult=115mph nph; TCDL=6.0psf; BCI Cat. II; Exp C; Enclosec one and C-C Exterior(2)) 2-1-0 to 5-8-4 zone; c end vertical left and rig and forces & MWFRS I OL=1.60 plate grip DO CE 7-16; Pr=25.0 psf; P .=1.15); Pg=20.0 psf; P	(3-second gust) DL=6.0psf; h=35ft; d; MWFRS (envelop E) -2-11-0 to 2-1-0, antilever left and rigt ht exposed;C-C for for reactions shown; L=1.60 cof LL: Lum DOL=1 f=13.9 psf (Lum	e) nt .15							(and the second sec	STATE OF M SCOT	MISSOLIN I M. ER Service

PE-200101880

E

June 6,2023

SIONAL

Job	Truss	Truss Type	Qty	Ply	
P210577	J26	Jack-Open	5	1	Job Reference (optional)

Run: 8.63 S Nov 19 2022 Print: 8.630 S Nov 19 2022 MiTek Industries, Inc. Mon Jun 05 09:38:52 ID:JtWudBgP95UK3fzWU9dawYz9a0V-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

I	3-1-12	4-10-15
Γ	3-1-12	1-9-3

Scale = 1:36.6

L oading TCLL (roof) Snow (Pf/Pg) TCDL 3CLL 3CDL	(psf) 25.0 13.9/20.0 25.0 0.0 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018	/TPI2014	CSI TC BC WB Matrix-P	0.73 0.70 0.14	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.01 0.01 -0.15	(loc) 4-5 4-5 3	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 17 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD SOT CHORD WEBS BRACING TOP CHORD BOT CHORD	2x4 SP No.2 2x4 SP No.2 2x4 SPF No.3 Structural wood shea 4-10-15 oc purlins. Rigid ceiling directly bracing.	athing directly applie applied or 10-0-0 oc	5) 6) 7) d or LO	Refer to girde Provide mech bearing plate joint 3, 148 lk This truss is of International R802.10.2 ar AD CASE(S)	er(s) for truss to tru- nanical connection capable of withsta uplift at joint 4 and designed in accord Residential Code s Id referenced stand Standard	uss coni (by oth Inding 1 d 131 lb lance wi sections dard AN	nections. ers) of truss t 06 lb uplift at uplift at joint th the 2018 R502.11.1 a ISI/TPI 1.	to t t 5. and					
REACTIONS	(size) 3= Mecha 5=0-5-8 Max Horiz 5=97 (LC Max Uplift 3=-106 (Li 5=-131 (Li Max Grav 3=4 (LC 1 (LC 22)	nical, 4= Mechanica 16) C 22), 4=-148 (LC 2: C 12) 2), 4=26 (LC 12), 5=	I, 2), :853										
FORCES	(lb) - Maximum Com Tension	pression/Maximum											
TOP CHORD	1-2=-166/117, 2-3=-	109/32											
BOT CHORD	1-5=-68/169, 4-5=0/0	0											
NEBS	2-5=-551/431												
NOTES													
 Wind: ASC Vasd=91m Ke=1.00; (exterior zo and right e exposed;C reactions : DDL=1.60 TCLL: AS(Plate DOL DOL=1.15 Exp.; Ce= 	CE 7-16; Vult=115mph nph; TCDL=6.0psf; BCl Cat. II; Exp C; Enclose one and C-C Exterior(2 exposed; end vertical I C-C for members and for shown; Lumber DOL=1 CE 7-16; Pr=25.0 psf (r =1.15); Pg=20.0 psf; F Plate DOL=1.15); Is= 0.9; Cs=1.00; Ct=1.10	(3-second gust) DL=6.0psf; h=35ft; d; MWFRS (envelop E) zone; cantilever le eft and right prces & MWFRS for I.60 plate grip roof LL: Lum DOL=1 Y=13.9 psf (Lum 1.0; Rough Cat C; Fu	e) eft .15 ully							ļ		STATE OF M SCOTT SEVI SEVI NUME PE-20010	AISSOLUTE ER BER 018807
design	ed snow loads have be	en considered for the	IS								Y	Re	158
4) This truss	has been designed for	a 10.0 psf bottom	4.0									SIONA	LENG

- rd live load nonconcurrent with any other live loads.

Page: 1

Job	Truss	Truss Type	Qty	Ply	
P210577	J27	Jack-Closed	5	1	I58733452 Job Reference (optional)

Run: 8.63 S Nov 19 2022 Print: 8.630 S Nov 19 2022 MiTek Industries, Inc. Mon Jun 05 09:38:52 ID:vZMAZzqBsOFLIp2DJ5tsUVz9a0H-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Scale = 1:36.6

Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 25.0 13.9/20.0 25.0 0.0 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018	8/TPI2014	CSI TC BC WB Matrix-S	0.68 0.57 0.13	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.02 0.02 0.00	(loc) 4-5 4-5 4	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 27 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD	2x4 SP No.2 2x4 SP No.2 2x4 SPF No.3 Structural wood she 6-0-0 cc purlins, ex Rigid ceiling directly bracing.	athing directly applie cept end verticals. applied or 6-0-0 oc	6) 7) ed or LC	Provide mec bearing plate 4 and 130 lb This truss is International R802.10.2 ar DAD CASE(S)	hanical connectio capable of withs uplift at joint 5. designed in acco Residential Code nd referenced sta Standard	n (by oth tanding 6 rdance w sections ndard AN	ers) of truss t i2 lb uplift at j ith the 2018 i R502.11.1 a ISI/TPI 1.	oint					
REACTIONS	(size) 4= Mecha Max Horiz 5=143 (LC Max Uplift 4=-62 (LC Max Grav 4=93 (LC	nical, 5=0-5-8 C 13) S 13), 5=-130 (LC 12 22), 5=760 (LC 2))										
FORCES	(lb) - Maximum Com Tension	pression/Maximum											
TOP CHORD BOT CHORD WEBS	1-2=-284/176, 2-3=- 1-5=-132/279, 4-5=- 2-5=-537/403	115/88, 3-4=-132/10 82/115	00										
NOTES													
 Wind: ASK Vasd=91n Ke=1.00; exterior zz Interior (1 exposed; members Lumber D TCLL: AS Plate DOL DOL=1.15 	CE /-16; Vuit=115mph nph; TCDL=6.0psf; BC Cat. II; Exp C; Enclose one and C-C Exterior(2) 5-0-0 to 6-10-4 zone; end vertical left and rig and forces & MWFRS OL=1.60 plate grip DO CE 7-16; Pr=25.0 psf (=1.15); Pg=20.0 psf; F 5 Plate DOL=1.15); Is=	(J-second gust) DL=6.0psf; h=35ft; d; MWFRS (envelop E) 0-0-0 to 5-0-0, cantilever left and ri ght exposed;C-C for for reactions shown L=1.60 roof LL: Lum DOL=1 ½=13.9 psf (Lum 1.0; Rough Cat C; F	be) ght ; I.15 ully							l		STATE OF M	MISSOLDE TM. ER

Exp.; Ce=0.9; Cs=1.00; Ct=1.10 3) Unbalanced snow loads have been considered for this

- design.
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) Refer to girder(s) for truss to truss connections.

June 6,2023

Job	Truss	Truss Type	Qty	Ply	
P210577	J28	Jack-Open Structural Gable	1	1	Job Reference (optional)

Run: 8.63 S Nov 19 2022 Print: 8.630 S Nov 19 2022 MiTek Industries, Inc. Mon Jun 05 09:38:52 ID:GX93cguKhwtdrawA5eT1BYz9a0C-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

5-0-7

Scale = 1:24.4

Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	13	(psf) 25.0 3.9/20.0 25.0 0.0 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC20	18/TPI2014	CSI TC BC WB Matrix-P	0.21 0.07 0.08	DEFL Vert(LL) Vert(CT) Horz(CT)	in 0.00 -0.01 0.00	(loc) 1-5 1-5 3	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 19 lb	GRIP 244/190 FT = 20%	
TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP Nc 2x4 SP Nc 2x4 SPF N 2x4 SPF N Structural 5-0-7 oc p Rigid ceilin bracing. (size) Max Horiz Max Uplift Max Grav	0.2 1.2 10.3 10.3 wood shea urlins, exu ng directly 1=3-6-0, 3 Mechanic 1=102 (LC 1=102 (LC 1=102) (LC 1=153 (LC	athing directly applie cept end verticals. applied or 10-0-0 or 3= Mechanical, 4= al, 5=3-6-0 C 13) 16), 3=-18 (LC 13), 5 C 22), 3=48 (LC 22),	4 ed or 5 c 7 8 5=-91 9 4=18 1	 Plate DOL=1 Plate DOL=1 DOL=1.15 Pl Exp.; Ce=0.9 Unbalanced design. Gable studs This truss ha chord live loa Refer to gird Provide mec bearing plate 1, 18 lb uplift This truss is International R802.10.2 ar Gap betweer 	15); Pg=20.0 ps late DOL=1.15); 1); Cs=1.00; Ct=1. snow loads have spaced at 2-0-0 c is been designed ad nonconcurrent er(s) for truss to t hanical connectio e capable of withs at joint 3 and 91 designed in acco Residential Code nd referenced sta a inside of top cho	f; FI=13.5 f; FI=13.5 s=1.0; Rc 10 been cor oc. for a 10.0 with any russ conr on (by oth tanding 2 lb uplift a rdance w e sections indard AN ord bearin	psf (Lum pugh Cat C; F asidered for th 0 psf bottom other live loa nections. ers) of truss t 1b uplift at jo t joint 5. ith the 2018 R502.11.1 a ISI/TPI 1. ng and first	Tully his ids. to int						
FORCES	(lb) - Maxi Tension	mum Com	pression/Maximum	L	diagonal or v OAD CASE(S).	vertical web shall Standard	not excee	ed 0.500in.							
TOP CHORD BOT CHORD WEBS	1-2=-175/ 1-5=-45/49 2-5=-331/2	132, 2-3=- ⁻ 9, 4-5=-45/ 258	76/50, 3-4=0/0 /49												
NOTES 1) Wind: AS Vasd=91r Ke=1.00; exterior zc and right of exposed;(reactions DOL=1.60	CE 7-16; Vul- nph; TCDL=6 Cat. II; Exp C one and C-C exposed ; en C-C for memi shown; Lumi	t=115mph 6.0psf; BC C; Enclose Exterior(2 d vertical I bers and fo ber DOL=1	(3-second gust) DL=6.0psf; h=35ft; d; MWFRS (envelop E) zone; cantilever I eft and right orces & MWFRS for I.60 plate grip	be) left									STATE OF J	MISSOURT M. HER	

2) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

Th

PE-200101880

SSIONAL EN

June 6,2023

Job	Truss	Truss Type	Qty	Ply	
P210577	J29	Jack-Partial	8	1	I58733454 Job Reference (optional)

3-1-12 3-1-12

Premier Building Supply (Springhill, KS), Spring Hills, KS - 66083,

Run: 8.63 S Nov 19 2022 Print: 8.630 S Nov 19 2022 MiTek Industries, Inc. Mon Jun 05 09:38:53 ID:ReKEwR1D5IG3gGGHFS9c8tz9a01-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

7-0-0

3-10-4

Page: 1

Scale = 1:34.2

Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 25.0 13.9/20.0 25.0 0.0 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018/TPI2014	CSI TC BC WB Matrix-P	0.75 0.63 0.13	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.04 0.04 -0.17	(loc) 4-5 4-5 3	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 23 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD	2x4 SP No.2 2x4 SP No.2 2x4 SPF No.3 Structural wood she 6-0-0 oc purlins. Rigid ceiling directly bracing.	athing directly applie applied or 10-0-0 oc	5) Refer to gir 6) Provide me bearing pla 3, 27 lb upl 7) This truss i Internation R802.10.2 LOAD CASE(S	der(s) for truss to chanical connecti te capable of with ft at joint 4 and 11 s designed in acco al Residential Cod and referenced st) Standard	truss conr on (by oth standing 7 00 lb uplift ordance w le sections andard AN	nections. ers) of truss (1 lb uplift at at joint 5. ith the 2018 R502.11.1 ISI/TPI 1.	to joint and					
REACTIONS	NS (size) $3=$ Mechanical, $4=$ Mechanical, 5=0-5-8 Max Horiz $5=135$ (LC 16) Max Uplift $3=-71$ (LC 16), $4=-27$ (LC 2), 5=-100 (LC 12) Max Grav $3=117$ (LC 22), $4=20$ (LC 12), 5=762 (LC 2)											
FORCES	(lb) - Maximum Com	pression/Maximum										
TOP CHORD BOT CHORD WEBS	Tension 1-2=-222/133, 2-3=- 1-5=-86/218, 4-5=0/ 2-5=-549/394	111/34 0										
NOTES												
 Wind: ASC Vasd=91n Ke=1.00; exterior zc Interior (1) exposed; members Lumber D TCLL: AS Plate DOL DOL=1.15 Exp.; Ce= Unbalance design. This truss chord live 	CE 7-16; Vult=115mph nph; TCDL=6.0psf; BC Cat. II; Exp C; Enclose one and C-C Exterior(2) 5-0-0 to 6-11-4 zone; end vertical left and riq and forces & MWFRS OL=1.60 plate grip DO CE 7-16; Pr=25.0 psf (_=1.15); Pg=20.0 psf; F 5 Plate DOL=1.15); Is= 0.9; Cs=1.00; Ct=1.10 ed snow loads have be has been designed for	(3-second gust) DL=6.0psf; h=35ft; d; MWFRS (envelop E) 0-0-0 to 5-0-0, cantilever left and rig fht exposed;C-C for for reactions shown; u=1.60 roof LL: Lum DOL=1 Pf=13.9 psf (Lum 1.0; Rough Cat C; Fi een considered for th r a 10.0 psf bottom th any other live load	le) ght .15 ully is						,		NUM PE-2001	MISSOLE T M. ER BER 018807

design This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 4)

> **MiTek**[®] 16023 Swingley Ridge Rd Chesterfield, MO 63017

June 6,2023

Job	Truss	Truss Type	Qty	Ply	
P210577	J30	Jack-Open	3	1	Job Reference (optional)

Scale = 1:28.9

Run: 8.63 S Nov 19 2022 Print: 8.630 S Nov 19 2022 MiTek Industries, Inc. Mon Jun 05 09:38:53 ID:oc77z95/MwruMm18F1?Inrwz9a?y-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

4 - 0 - 0 $5 \frac{12}{5}$ 2 $4 \frac{3}{44}$ $4 \frac{1}{44}$

4-0-0

Loading (psf) Spacing 2-0-0 CSI DEFL l/defl L/d PLATES GRIP in (loc) TCLL (roof) 25.0 Plate Grip DOL 1.15 TC 0.42 Vert(LL) 0.03 3-4 >999 240 MT20 197/144 BC Snow (Pf/Pg) 13 9/20 0 Lumber DOL 1 15 0.32 Vert(CT) 180 -0.03 3-4 >999 TCDL 25.0 Rep Stress Incr YES WB 0.00 Horz(CT) -0.07 2 n/a n/a BCLL 0.0 Code IRC2018/TPI2014 Matrix-R BCDL 10.0 Weight: 14 lb FT = 20%LUMBER Provide mechanical connection (by others) of truss to 6) bearing plate capable of withstanding 78 lb uplift at joint TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.2 2x4 SPF No.3 This truss is designed in accordance with the 2018 WFBS 7) International Residential Code sections R502.11.1 and BRACING R802.10.2 and referenced standard ANSI/TPI 1. TOP CHORD Structural wood sheathing directly applied or 4-0-0 oc purlins, except end verticals. LOAD CASE(S) Standard BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing. **REACTIONS** (size) 2= Mechanical, 3= Mechanical, 4=0-5-8 Max Horiz 4=80 (LC 13) Max Uplift 2=-78 (LC 16) Max Grav 2=179 (LC 22), 3=78 (LC 7), 4=229 (LC 22) FORCES (lb) - Maximum Compression/Maximum Tension TOP CHORD 1-4=-203/90, 1-2=-88/57 BOT CHORD 3-4=0/0 NOTES 1) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=35ft; Ke=1.00; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) zone; cantilever left OF MISS and right exposed ; end vertical left and right F exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip SCOTT M. DOL=1.60 SEVIER 2) TCLL: ASCE 7-16; Pr=25.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf; Pf=13.9 psf (Lum

DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat C; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10 3) Unbalanced snow loads have been considered for this

- Unbalanced show loads have been considered for this design.
- 4) This truss has been designed for a 10.0 psf bottom
- chord live load nonconcurrent with any other live loads.

5) Refer to girder(s) for truss to truss connections.

SCOTT M. SEVIER PE-2001018807 SIONAL ENCLUSE June 6,2023

Job	Truss	Truss Type	Qty	Ply	
P210577	J31	Jack-Open	1	1	Job Reference (optional)

Run: 8.63 S Nov 19 2022 Print: 8.630 S Nov 19 2022 MiTek Industries, Inc. Mon Jun 05 09:38:53 ID:5y2mRYAIG_nM66Bbx_NQdPz9a?r-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

4-0-0

Soolo	1.20 1
JOCAIE =	

		-				-					-	
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 25.0 13.9/20.0 25.0 0.0 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018/T	PI2014	0.58 0.38 0.00	DEFL Vert(LL) Vert(CT) Horz(CT)	in 0.03 -0.03 -0.12	(loc) 3-4 3-4 2	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 14 lb	GRIP 197/144 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD	 2x4 SP No.2 2x4 SP No.2 2x4 SPF No.3 Structural wood she 6-0-0 oc purlins, ex Rigid ceiling directly bracing. 	athing directly applie cept end verticals. applied or 10-0-0 or	6) P b 4 7) T Ir ed or R LOAI	Provide mechanical connect earing plate capable of wi and 71 lb uplift at joint 2. 'his truss is designed in ac international Residential Co 802.10.2 and referenced D CASE(S) Standard	ction (by oth thstanding 1 ccordance w ode sections standard AN	ers) of truss t 4 lb uplift at j ith the 2018 : R502.11.1 a ISI/TPI 1.	to joint and					
REACTIONS	(size) 2= Mecha 4=0-3-8 Max Horiz 4=79 (LC Max Uplift 2=-71 (LC Max Grav 2=179 (LC (LC 2)	anical, 3= Mechanica 13) 2 16), 4=-14 (LC 12) 2 2), 3=77 (LC 7), 4:	al, =228									
FORCES	(lb) - Maximum Com Tension 1-4=-200/136 1-2=-	pression/Maximum										
BOT CHORD	3-4=0/0	01/12										
NOTES 1) Wind: AS Vasd=91 Ke=1.00; exterior z and right exposed; reactions DOL=1.6 2) TCLL: AS Plate DO DOI =1 1	CE 7-16; Vult=115mph mph; TCDL=6.0psf; BC Cat. II; Exp C; Enclose one and C-C Corner (3 exposed ; end vertical I C-C for members and f shown; Lumber DOL=' 0 SCE 7-16; Pr=25.0 psf (L=1.15); Pg=20.0 psf; F 5 Plate DOI =1 15'. Is-	(3-second gust) DL=6.0psf; h=35ft; d; MWFRS (envelop) zone; cantilever lel left and right orcces & MWFRS for 1.60 plate grip roof LL: Lum DOL= ² 2f=13.9 psf (Lum 1.0: Rough Cat C: E	be) ft 1.15						C	a la	STATE OF I	MISSOLUTION T.M. EER

Exp.; Ce=0.9; Cs=1.00; Ct=1.10 Unbalanced snow loads have been considered for this 3) design.

4) This truss has been designed for a 10.0 psf bottom

chord live load nonconcurrent with any other live loads.

5) Refer to girder(s) for truss to truss connections.

June 6,2023

NUMBER

PE-2001018807

E

SSIONAL

ROFF

Job	Truss	Truss Type	Qty	Ply	
P210577	J32	Jack-Open	1	1	Job Reference (optional)

Run: 8.63 S Nov 19 2022 Print: 8.630 S Nov 19 2022 MiTek Industries, Inc. Mon Jun 05 09:38:54 ID:v6Q1ibFWsqXWq1eIIEUqsgz9a?I-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

2-11-14	

Scale = 1:33													
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 25.0 13.9/20.0 25.0 0.0 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018	3/TPI2014	CSI TC BC WB Matrix-R	0.70 0.42 0.00	DEFL Vert(LL) Vert(CT) Horz(CT)	in 0.02 0.02 -0.16	(loc) 3-4 3-4 2	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 12 lb	GRIP 197/144 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD	2x4 SP No.2 2x4 SP No.2 2x4 SPF No.3 Structural wood she 6-0-0 oc purlins, ex Rigid ceiling directly bracing.	eathing directly applie cept end verticals. v applied or 10-0-0 or	6) 7) ^{ed or} LC c	Provide med bearing plat 4, 56 lb uplit This truss is Internationa R802.10.2 a DAD CASE(S)	chanical connection e capable of withs t at joint 2 and 19 designed in accorr I Residential Codu and referenced stat Standard	on (by oth standing 1) Ib uplift a ordance w e sections andard AN	ers) of truss t 2 lb uplift at j it joint 3. ith the 2018 s R502.11.1 a ISI/TPI 1.	to joint and					
REACTIONS	(size) 2= Mecha 4=0-3-8 Max Horiz 4=91 (LC Max Uplift 2=-56 (LC 4=-12 (LC Max Grav 2=134 (LC (LC 2)	anical, 3= Mechanica 13) C 16), 3=-19 (LC 13) C 12) C 2), 3=56 (LC 7), 4:	al, , =167										
FORCES TOP CHORD BOT CHORD NOTES 1) Wind: AS	(Ib) - Maximum Corr Tension 1-4=-144/89, 1-2=-5 3-4=0/0 CE 7-16; Vult=115mph	ppression/Maximum 59/38 (3-second gust)											
Vasd=91r Ke=1.00; exterior zo and right exposed;(reactions DOL=1.60 2) TCLL: AS	nph; TCDL=6.0psf; BC Cat. II; Exp C; Enclose one and C-C Corner (3 exposed ; end vertical C-C for members and f shown; Lumber DOL= D CE 7-16; Pr=25.0 psf (:DL=6.0psf; h=35ft; d; MWFRS (envelop) zone; cantilever lei left and right forces & MWFRS for 1.60 plate grip (roof LL: Lum DOL=:	be) ft 1.15									STATE OF SCOT	MISSOLINI T M. HER
Plate DOI DOL=1.15 Exp.; Ce= 3) Unbalanc design. 4) This truss chord live 5) Refer to c	L=1.15); Pg=20.0 psf; I 5 Plate DOL=1.15); Is= 60.9; Cs=1.00; Ct=1.10 ed snow loads have be has been designed fo load nonconcurrent w inder(s) for truss to true	Pf=13.9 psf (Lum 1.0; Rough Cat C; F een considered for th r a 10.0 psf bottom ith any other live loa ss connections	fully his ds.								and the second sec	PE-2001	DI8807
o, noici to g												Jur	ne 6,2023

Job	Truss	Truss Type	Qty	Ply		
P210577	J33	Jack-Closed	1	1	I58733458 Job Reference (optional)	

Run: 8.63 S Nov 19 2022 Print: 8.630 S Nov 19 2022 MiTek Industries, Inc. Mon Jun 05 09:38:54 ID:9qSRbgM9kbgEPQqUKd8xkZz9a?c-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

4-7-9

Scale = 1:41.7

Plate Offsets	(X, 1	Y):	[3:Edge,0-3-8]
---------------	-------	-----	----------------

L oading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 25.0 13.9/20.0 25.0 0.0 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018/TPI2014	CSI TC BC WB Matrix-R	0.76 0.36 0.00	DEFL Vert(LL) Vert(CT) Horz(CT)	in 0.00 0.00 0.00	(loc) 3-4 3-4 3	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 12 lb	GRIP 197/144 FT = 20%
LUMBER TOP CHORD SOT CHORD WEBS BRACING TOP CHORD BOT CHORD BOT CHORD	2x4 SP No.2 2x4 SP No.2 2x4 SPF No.3 Structural wood she 6-0-0 oc purlins, ex Rigid ceiling directly bracing. (size) 3= Mecha	athing directly applie cept end verticals. applied or 10-0-0 oc inical, 4=0-3-8	 6) Provide me bearing pla joint 4 and 7) This truss i Internation R802.10.2 LOAD CASE(S 	echanical connection te capable of withs 548 lb uplift at joint s designed in account al Residential Code and referenced sta s) Standard	n (by oth tanding 4 3. rdance wi sections ndard AN	ers) of truss t 70 lb uplift at ith the 2018 R502.11.1 a ISI/TPI 1.	ind					
FORCES TOP CHORD BOT CHORD	ACTIONS (size) 3= Mechanical, 4=0-3-8 Max Horiz 4=176 (LC 13) Max Uplift Max Uplift 3=4574 (LC 13), 4=-470 (LC 12) Max Grav 3=477 (LC 14), 4=-565 (LC 15) IRCES (lb) - Maximum Compression/Maximum Tension Max Uplift IP CHORD 1-4=-374/340, 1-2=-116/109, 2-3=-397/428 3-4=-157/159 Max Grav											
 Wind: ASC Vasd=91n Ke=1.00; (exterior zc and right e exposed; Creactions : DOL=1.60 DOL=1.60 TCLL: ASC Plate DOL DOL=1.15 Exp.; Ce= Unbalance 	CE 7-16; Vult=115mph nph; TCDL=6.0psf; BC Cat. II; Exp C; Enclose one and C-C Corner (3 exposed ; end vertical I -C for members and fi shown; Lumber DOL= ⁻¹) CE 7-16; Pr=25.0 psf (_=1.15); Pg=20.0 psf; F 5 Plate DOL=1.15); Is= 0.9; Cs=1.00; Ct=1.10 ed snow loads have be	(3-second gust) DL=6.0psf; h=35ft; d; MWFRS (envelop)) zone; cantilever lefi left and right orcces & MWFRS for 1.60 plate grip roof LL: Lum DOL=1 2f=13.9 psf (Lum 1.0; Rough Cat C; Fu een considered for th	e) t .15 ully is						1		STATE OF M STATE OF M SEVI	MISSOLUE I M. ER

design.4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

Refer to girder(s) for truss to truss connections.

Page: 1

Job	Truss	Truss Type	Qty	Ply	
P210577	J34	Jack-Open	3	1	Job Reference (optional)

Run: 8.63 S Nov 19 2022 Print: 8.630 S Nov 19 2022 MiTek Industries, Inc. Mon Jun 05 09:38:54 ID:SSvVdteD4zhqH6f5kgaZidz9a?E-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

I	3-1-12	4-3-15
	3-1-12	1-2-3

Scale = 1:38.1

Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 25.0 13.9/20.0 25.0 0.0 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018/TPI2014	CSI TC BC WB Matrix-P	0.70 0.70 0.16	DEFL Vert(LL) Vert(CT) Horz(CT)	in 0.00 0.01 -0.13	(loc) 4-5 4-5 3	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 15 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x4 SP No.2 2x4 SPF No.3 Structural wood shea 4-3-15 oc purlins. Rigid ceiling directly bracing. (size) 3= Mecha	athing directly applie applied or 10-0-0 oc nical, 4= Mechanical	 5) Refer to gir 6) Provide me bearing plat joint 3, 237 7) This truss is Internationa R802.10.2 a LOAD CASE(S 	der(s) for truss to chanical connection e capable of withs ib uplift at joint 4 at designed in acco I Residential Code and referenced sta) Standard	truss com on (by othe standing 2 and 162 lb ordance wi e sections andard AN	nections. ers) of truss i 34 lb uplift ai uplift at joint th the 2018 R502.11.1 a SI/TPI 1.	to t t 5. and					
FORCES TOP CHORD BOT CHORD WEBS	Max Horiz 5=87 (LC Max Uplift 3=-234 (LI 5=-162 (LI Max Grav 3=29 (LC (LC 22) (lb) - Maximum Com Tension 1-2=-147/115, 2-3=-' 1-5=-61/151, 4-5=0/0 2=5=-612/2497	16) C 22), 4=-237 (LC 22 C 12) 12), 4=37 (LC 12), 5 pression/Maximum 134/74)	2), =991									
 NOTES 1) Wind: AS(Vasd=91n Ke=1.00; i exterior zc and right e exposed;(reactions : DOL=1.60 2) TCLL: AS Plate DOL DOL=1.15 Exp.; Ce= 3) Unbalance design. 4) This truss chord live 	CE 7-16; Vult=115mph mph; TCDL=6.0psf; BCI Cat. II; Exp C; Enclose- one and C-C Exterior(2 exposed ; end vertical I C-C for members and fc shown; Lumber DOL=1) CE 7-16; Pr=25.0 psf (r =1.15); Pg=20.0 psf; P 5 Plate DOL=1.15); Is= 0.9; Cs=1.00; Ct=1.10 ed snow loads have be has been designed for load nonconcurrent wit	(3-second gust) DL=6.0psf; h=35ft; d; MWFRS (envelop E) zone; cantilever le eft and right prces & MWFRS for 1.60 plate grip roof LL: Lum DOL=1 Pf=13.9 psf (Lum 1.0; Rough Cat C; Fu en considered for thi r a 10.0 psf bottom th any other live load	e) eft .15 .lly is								STATE OF M SCOTT SEVI DE 20010 PE-20010 PE-20010	MISSOLA T.M. ER 018807 L ENGLA

June 6,2023

Job	Truss	Truss Type	Qty	Ply	
P210577	J35	Jack-Open	1	1	I58733460 Job Reference (optional)

1-4-15

Premier Building Supply (Springhill, KS), Spring Hills, KS - 66083,

Run: 8,63 S Nov 19 2022 Print: 8,630 S Nov 19 2022 MiTek Industries, Inc. Mon Jun 05 09:38:55 ID:loq95GkcR7ardAiReeCDU6z9a?7-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

1-4-15

Scale = 1:25.7

Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 25.0 13.9/20.0 25.0 0.0 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018/T	CSI TC BC WB TPI2014 Matrix	0.15 0.10 0.00 -R	DEFL Vert(LL) Vert(CT) Horz(CT)	in 0.00 0.00 -0.01	(loc) 3-4 3-4 2	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 6 lb	GRIP 197/144 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD	2x4 SP No.2 2x4 SP No.2 2x4 SPF No.3 Structural wood she 1-4-15 oc purlins, e Rigid ceiling directly bracing.	athing directly appli xcept end verticals. applied or 10-0-0 c	6) F 2 7) T lied or F LOA	Provide mechanical bearing plate capabl 3 and 31 lb uplift at j This truss is designe nternational Reside R802.10.2 and refere D CASE(S) Stand	connection (by oth e of withstanding 1 pint 2. d in accordance w ntial Code sections enced standard AN ard	I ers) of truss 5 lb uplift at ith the 2018 \$ R502.11.1 \$SI/TPI 1.	to joint and				Weight. 0 ib	11 - 2078
REACTIONS	(size) 2= Mecha 4=0-5-8 Max Horiz 4=49 (LC Max Uplift 2=-31 (LC Max Grav 2=61 (LC (LC 30)	anical, 3= Mechanic 13) 216), 3=-15 (LC 13) 2), 3=25 (LC 7), 4=	al,) -75									
FORCES	(lb) - Maximum Com Tension 1-4=-65/21, 1-2=-38	npression/Maximum /27	I									
NOTES 1) Wind: AS(Vasd=91r Ke=1.00; exterior zc and right exposed; reactions DOL=1.66 2) TCLL: AS Plate DOL DOL=1.15 Exp.; Ce=	CE 7-16; Vult=115mph mph; TCDL=6.0psf; BC Cat. II; Exp C; Enclose one and C-C Exterior(2 exposed ; end vertical I C-C for members and f shown; Lumber DOL=) CE 7-16; Pr=25.0 psf (=1.15); Pg=20.0 psf; F 5 Plate DOL=1.15); Is= 0.9; Cs=1.00; Ct=1.10	(3-second gust) DL=6.0psf; h=35ft; d; MWFRS (envelo E) zone; cantilever left and right orces & MWFRS fo 1.60 plate grip roof LL: Lum DOL= Pf=13.9 psf (Lum 1.0; Rough Cat C; F	pe) left r .1.15 Eully								STATE OF STATE OF SEV	MISSOLA T M. HER Server

- 3) balanced snow loads have been considered for this design.
- 4) This truss has been designed for a 10.0 psf bottom
- chord live load nonconcurrent with any other live loads.
- 5) Refer to girder(s) for truss to truss connections.

PE-200101880' SIONAL ET June 6,2023

> MiTek 16023 Swingley Ridge Rd Chesterfield, MO 63017

Job	Truss	Truss Type	Qty	Ply	
P210577	J36	Jack-Open	5	1	Job Reference (optional)

Run: 8.63 S Nov 19 2022 Print: 8.630 S Nov 19 2022 MiTek Industries, Inc. Mon Jun 05 09:38:55 ID:WLJAm?qdYaaiaPJz6JL5poz9a??-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

3-1-12	5-11-12
3-1-12	2-10-0

Scale = 1:34

-

Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 25.0 13.9/20.0 25.0 0.0 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018/TPI2014	CSI TC BC WB Matrix-P	0.71 0.66 0.13	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.02 0.03 -0.17	(loc) 4-5 4-5 3	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 20 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD	2x4 SP No.2 2x4 SP No.2 2x4 SPF No.3 Structural wood shea 5-11-12 oc purlins. Rigid ceiling directly bracing. (size) 3- Mecha	athing directly applie applied or 10-0-0 oc nical 4- Machanica	5) Refer to gird 6) Provide mec bearing plat 3, 68 lb uplit 7) This truss is Internationa R802.10.2 a LOAD CASE(S)	ler(s) for truss to tru chanical connection e capable of withsta t at joint 4 and 109 designed in accord Residential Code s nd referenced stand Standard	ss conr (by oth Inding 4 Ib uplift ance w sections dard AN	ections. ers) of truss 9 lb uplift at joint 5. ith the 2018 R502.11.1 a ISI/TPI 1.	to joint and					
REACTIONS	EACTIONS (size) 3= Mechanical, 4= Mechanical, 5=0-5-8 Max Horiz 5=117 (LC 16) Max Uplif 3=-49 (LC 16), 4=-68 (LC 2), 5=-109 (LC 12) Max Grav 3=32 (LC 22), 4=20 (LC 12), 5=758 (LC 2)											
FORCES TOP CHORD BOT CHORD	(lb) - Maximum Com Tension 1-2=-197/123, 2-3=-{ 1-5=-79/198, 4-5=0/(pression/Maximum 99/14)										
 WEBS 2-5=-519/398 NOTES 1) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=35ft; Ke=1.00; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) 0-0-0 to 5-0-0, Interior (1) 5-0-0 to 5-11-0 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 2) TCLL: ASCE 7-16; Pr=25.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pl=20.0 psf; Pf=13.9 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat C; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10 3) Unbalanced snow loads have been considered for this design. 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 								MISSOLLE TM. ER MER MER MER MER MER MER MER MER MER				

June 6,2023

Page: 1

Job	Truss	Truss Type	Qty	Ply	
P210577	J37	Jack-Closed	1	1	Job Reference (optional)

Run: 8.63 S Nov 19 2022 Print: 8.630 S Nov 19 2022 MiTek Industries, Inc. Mon Jun 05 09:38:55 ID:ohEqEPv0vkTiwULJ0HzkbGz9a_u-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:31.6

Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 25.0 13.9/20.0 25.0 0.0 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018/TPI2014	CSI TC BC WB Matrix-P	0.96 0.30 0.31	DEFL Vert(LL) Vert(CT) Horz(CT)	in 0.00 0.00 0.00	(loc) 3-4 3-4 3	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 20 lb	GRIP 244/190 FT = 20%	
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x4 SP No.2 2x4 SPF No.3 Structural wood shea except end verticals. Rigid ceiling directly bracing. (size) 3= Mecha Max Horiz 4=100 (LC Max Uplift 3=-291 (L Max Grav 3=81 (LC	athing directly applie applied or 6-0-0 oc nical, 4=0-5-15 C 13) C 22), 4=-220 (LC 1: 12), 4=892 (LC 22)	 6) Provide mec bearing plati joint 3 and 2 7) This truss is International R802.10.2 a LOAD CASE(S) 	hanical connecti e capable of with 20 lb uplift at join designed in accc Residential Cod nd referenced sta Standard	on (by oth standing 2 it 4. ordance wi le sections andard AN	ers) of truss ti 91 lb uplift at ith the 2018 R502.11.1 a ISI/TPI 1.	o						
FORCES	(lb) - Maximum Com Tension	pression/Maximum											
TOP CHORD BOT CHORD WEBS	1-2=-710/758, 2-3=- 1-4=-624/724, 3-4=- 2-4=-1008/989	344/274 43/47											
NOTES													
 Wind: ASC Vasd=91m Ke=1.00; C exterior zon and right e: exposed;C reactions s DOL=1.60 TCLL: ASC Plate DOL= DOL=1.15 	E 7-16; Vult=115mph ph; TCDL=6.0psf; BC cat. II; Exp C; Enclose ne and C-C Corner (3) xposed ; end vertical I -C for members and ft hown; Lumber DOL=1 CE 7-16; Pr=25.0 psf (=1.15); Pg=20.0 psf; F Plate DOL=1.15): Is=	(3-second gust) DL=6.0psf; h=35ft; d; MWFRS (envelop) 2 one; cantilever left eft and right orcces & MWFRS for 1.60 plate grip roof LL: Lum DOL=1 ½=13.9 psf (Lum 1.0: Rough Cat C: Fi	e) t .15 ullv								STATE OF I	MISSOURI I M. IER	

ıg U; шу Exp.; Ce=0.9; Cs=1.00; Ct=1.10

- Unbalanced snow loads have been considered for this 3) design.
- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) Refer to girder(s) for truss to truss connections.

PE-200101880 SIONAL E

June 6,2023

Job	Truss	Truss Type	Qty	Ply		
P210577	J38	Jack-Closed	1	1	Job Reference (optional)	63

Run: 8.63 S Nov 19 2022 Print: 8.630 S Nov 19 2022 MiTek Industries, Inc. Mon Jun 05 09:38:56 ID:wBWkzr3Ark5s_UrpHWind0z9a_h-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:31.4

Loading TCLL (roof)	(psf) 25.0	Spacing Plate Grip DOL	2-0-0 1.15	CSI TC	0.75	DEFL Vert(LL)	in -0.01	(loc) 3-4	l/defl >999	L/d 240	PLATES MT20	GRIP 244/190
Snow (Pf/Pg)	13.9/20.0	Lumber DOL	1.15	BC	0.27	Vert(CT)	-0.01	3-4	>999	180		21.0.00
TCDL	25.0	Rep Stress Incr	YES	WB	0.40	Horz(CT)	0.00	3	n/a	n/a		
BCLL	0.0	Code	IRC2018/TPI2014	Matrix-P								
BCDL	10.0										Weight: 28 lb	FT = 20%
LUMBER			6) Provide m	echanical connecti	on (by oth	ers) of truss	to					
TOP CHORD	2x4 SP 2400F 2.0E		bearing pl	ate capable of with	standing 5	4 lb uplift at	joint					
BOT CHORD	2x4 SP No.2		3 and 173	lb uplift at joint 4.								
WEBS	2x4 SPF No.3		This truss	is designed in acco	ordance w	ith the 2018						
BRACING			Internation	hal Residential Cod	le sections	8 R502.11.1 a	and					
TOP CHORD	Structural wood she	athing directly applie		Canu referenceu Sa	anuaru An	ISI/TFTT.						
	6-8-6 oc purlins, exe	cept end verticals.	LUAD CASE(Stanuaru								
BUICHURD	bracing.	applied of 6-0-0 oc										
REACTIONS	(size) 3= Mecha	nical, 4=0-5-15										
	Max Horiz 4=130 (LC	C 13)										
	Max Uplift 3=-54 (LC	: 13), 4=-173 (LC 12	2)									
	Max Grav 3=48 (LC	22), 4=763 (LC 2)										
FORCES	(lb) - Maximum Com Tension	pression/Maximum										
TOP CHORD	1-2=-821/985, 2-3=-	96/70										
BOT CHORD	1-4=-816/844, 3-4=-	56/61										
WEBS	2-4=-1050/914											
NOTES												
1) Wind: AS	CE 7-16; Vult=115mph	(3-second gust)										
Vasd=91r	npn; TCDL=6.0pst; BC	DL=6.0pst; n=35π;	20)									
exterior 7	one and C-C Corner (3)	u, IVIVERS (enveloy	h									
and right	exposed : end vertical I	eft and right	it i								Carto	TOP
exposed;(C-C for members and for	orces & MWFRS for									OF I	MISC
reactions	shown; Lumber DOL=1	1.60 plate grip								6	7.21	N Sol
DOL=1.60)									B	SCOT	TM XPN
2) TCLL: AS	CE 7-16; Pr=25.0 psf (roof LL: Lum DOL=	1.15							Ø	SEV	
	= 1.15), Py=20.0 psi, P 5 Plate DOI =1 15): le=:	1 0: Rough Cat C: F	ully							-n+		
Exp.: Ce=	0.9: Cs=1.00: Ct=1.10	1.0, 1.0ugii Out 0, 1	uny							X	ITT	Kanlin
3) Unbalance	ed snow loads have be	en considered for th	nis							S C	on y	Juny
design.										27	NUM	BER A
This truss	has been designed for	a 10.0 psf bottom								IV.	$O \setminus PE-2001$	01880/ / ASH

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) Refer to girder(s) for truss to truss connections.

SIONAL

E

June 6,2023

Job	Truss	Truss Type	Qty	Ply	
P210577	J39	Jack-Closed	1	1	Job Reference (optional)

4-1-1

4-1-1

Premier Building Supply (Springhill, KS), Spring Hills, KS - 66083,

Run: 8.63 S Nov 19 2022 Print: 8.630 S Nov 19 2022 MiTek Industries, Inc. Mon Jun 05 09:38:56 ID:srAwyLI5MZVAmPoTu0YEu0z9a_O-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

8-4-4

4-3-3

Page: 1

Scale = 1:37.9

Loading	(psf)	Spacing	2-0-0	CSI	0.50	DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
	25.0	Plate Grip DOL	1.15		0.56	Vert(LL)	-0.02	4-5	>999	240	MT20	244/190
Show (PI/Pg)	13.9/20.0	Lumber DOL Bon Stress Inor	1.15 VES	BC	0.25		-0.04	4-5	>999	180		
RCU	25.0	Codo	1 EO IDC2019/TDI201		0.19		0.00	4	n/a	n/a		
BCDL	10.0	Code	11(02010/11/1201								Weight: 36 lb	FT = 20%
		•	6) Provide	e mechanical connec	tion (by oth	ere) of truce	to	-				
TOP CHORD	2x4 SP No 2		bearing	plate capable of with	hstanding 6	3 lb uplift at	ioint					
BOT CHORD	2x4 SP No.2		4 and	75 lb uplift at joint 5.			,					
WEBS	2x4 SPF No.3		This true	uss is designed in acc	cordance w	ith the 2018						
BRACING			Interna	tional Residential Co	de sections	s R502.11.1 a	and					
TOP CHORD	Structural wood she	athing directly appli	ed or R802.1	0.2 and referenced s	tandard AN	ISI/TPI 1.						
	6-0-0 oc purlins, ex	cept end verticals.	LOAD CAS	SE(S) Standard								
BOT CHORD	Rigid ceiling directly bracing.	applied or 6-0-0 oc										
REACTIONS	(size) 4= Mecha	anical, 5=0-5-15										
	Max Horiz 5=160 (LC	C 13)										
	Max Uplift 4=-63 (LC	C 13), 5=-175 (LC 12	2)									
	Max Grav 4=193 (L0	C 22), 5=824 (LC 2)										
FORCES	(lb) - Maximum Com Tension	pression/Maximum										
TOP CHORD	1-2=-503/497, 2-3=-	133/97, 3-4=-172/12	21									
BOT CHORD	1-5=-362/498, 4-5=-	178/218										
WEBS	2-4=-154/146, 2-5=-	762/590										
NOTES												
1) Wind: AS	CE 7-16; Vult=115mph	(3-second gust)										
Vasd=91r	nph; TCDL=6.0psf; BC	DL=6.0psf; h=35ft;	,									
Ke=1.00;	Cat. II; Exp C; Enclose	d; MWFRS (envelop	pe)									
Exterior/2	P) 7-0-14 to 8-2-8 zon) 0-0-0 10 7-0-14, e: cantilever left and	4								000	TOP
right expo	sed : end vertical left a	ind right exposed C	-C								OF I	MISSIN
for memb	ers and forces & MWF	RS for reactions sho	own;							1	750	-20 M
Lumber D	OL=1.60 plate grip DO	DL=1.60								R	ST SCOT	New Y
2) TCLL: AS	CE 7-16; Pr=25.0 psf (roof LL: Lum DOL=	1.15							R	S SCOI	
Plate DOL	_=1.15); Pg=20.0 psf; F	Pf=13.9 psf (Lum								0.0	SEV.	
DOL=1.15	5 Plate DOL=1.15); Is=	1.0; Rough Cat C; F	ully							W	1 1	
Exp.; Ce=	:0.9; US=1.00; Ut=1.10	on considered for th	hic								Catto	serus
s) Unbalanc	eu snow loaus nave be		1115						-	VIE	NITIM	REP IC

- 3 design.
- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) Refer to girder(s) for truss to truss connections.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

PE-2001018807

E

SIONAL

Job	Truss	Truss Type	Qty	Ply	
P210577	J40	Jack-Closed	1	1	Job Reference (optional)

4-11-2

4-11-2

Premier Building Supply (Springhill, KS), Spring Hills, KS - 66083,

Run: 8.63 S Nov 19 2022 Print: 8.630 S Nov 19 2022 MiTek Industries, Inc. Mon Jun 05 09:38:56 ID:wjab6TUVqAO23iRLGfJI?Bz9a_9-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

10-0-2

5-1-1

Page: 1

Scale = 1:43.4													
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 25.0 13.9/20.0 25.0 0.0 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018	/TPI2014	CSI TC BC WB Matrix-S	0.70 0.34 0.23	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.05 -0.10 0.00	(loc) 4-5 4-5 4	l/defl >999 >797 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 44 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD	2x4 SP No.2 2x4 SP No.2 2x4 SPF No.3 Structural wood she 6-0-0 oc purlins, ex Rigid ceiling directly bracing.	athing directly appli cept end verticals. applied or 6-0-0 oc	6) 7) ed or LO	Provide mec bearing plate 4 and 173 lb This truss is International R802.10.2 ar AD CASE(S)	hanical connectii e capable of withs uplift at joint 5. designed in acco Residential Cod nd referenced sta Standard	on (by oth standing 7 ordance w e sections andard AN	ers) of truss t '6 lb uplift at j ith the 2018 ; R502.11.1 a ISI/TPI 1.	to ioint and					
REACTIONS	(size) 4= Mecha Max Horiz 5=191 (LC Max Uplift 4=-76 (LC Max Grav 4=325 (LC	anical, 5=0-5-15 C 13) C 16), 5=-173 (LC 12 C 22), 5=882 (LC 2)	2)										
FORCES TOP CHORD BOT CHORD WEBS	(lb) - Maximum Com Tension 1-2=-524/568, 2-3=- 1-5=-419/525, 4-5=- 2-4=-205/131 2-5=-	npression/Maximum 172/97, 3-4=-216/14 165/274 909/635	40										
NOTES 1) Wind: AS Vasd=911 Ke=1.00; exterior z Exterior z for memb Lumber E 2) TCLL: AS Plate DO DOL=1.1: Exp.; Ce=	CE 7-16; Vult=115mph mph; TCDL=6.0psf; BC Cat. II; Exp C; Enclose one and C-C Corner (3 2R) 7-0-14 to 9-10-6 zo ssed; end vertical left a ivers and forces & MWF DOL=1.60 plate grip DC SCE 7-16; Pr=25.0 psf (L=1.15); Pg=20.0 psf; f 5 Plate DOL=1.15); Is= =0.9; Cs=1.00; Ct=1.10	 (3-second gust) :DL=6.0psf; h=35ft; :d; MWFRS (envelop)) 0-0-0 to 7-0-14, ne; cantilever left an ind right exposed;C-RS for reactions sho DL=1.60 (roof LL: Lum DOL=' Pf=13.9 psf (Lum 1.0; Rough Cat C; F 	be) C Wwn; 1.15 fully									STATE OF M SCOTT	MISSOUR ER ER

- Unbalanced snow loads have been considered for this 3) design.
- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) Refer to girder(s) for truss to truss connections.

MiTek 16023 Swingley Ridge Rd Chesterfield, MO 63017

NUMBE

PE-2001018807

E

June 6,2023

NOTITS STONAL

Job	Truss	Truss Type	Qty	Ply	
P210577	J41	Jack-Partial	1	1	I58733466 Job Reference (optional)

Run: 8.63 S Nov 19 2022 Print: 8.630 S Nov 19 2022 MiTek Industries, Inc. Mon Jun 05 09:38:57 ID:SoYeTxgX35Pm_AfQC0cVeYz9Zzv-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Scale = 1:34.1

Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 25.0 13.9/20.0 25.0 0.0 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018/TPI2014	CSI TC BC WB Matrix-P	0.73 0.64 0.12	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.03 0.04 -0.17	(loc) 4-5 4-5 3	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 22 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x4 SP No.2 2x4 SPF No.3 Structural wood shea 6-0-0 oc purlins. Rigid ceiling directly bracing. (size) 3= Mecha 5=0-5.8	athing directly applie applied or 10-0-0 oc nical, 4= Mechanica	5) Refer to 6) Provide bearing 3, 39 lb 7) This true d or Internat R802.10 5 LOAD CAS	girder(s) for truss to mechanical connect plate capable of with uplift at joint 4 and 1 ss is designed in acc onal Residential Coo 0.2 and referenced st E(S) Standard	truss conr ion (by oth standing 6 02 lb uplift cordance w de sections tandard AN	ections. ers) of truss i 4 lb uplift at j at joint 5. ith the 2018 R502.11.1 a ISI/TPI 1.	to joint and					
	Max Horiz 5=129 (LC Max Uplift 3=-64 (LC 5=-102 (L1 Max Grav 3=91 (LC (LC 2)	C 16) 16), 4=-39 (LC 2), C 12) 22), 4=20 (LC 12), 5	5=757									
FORCES TOP CHORD BOT CHORD WEBS	(lb) - Maximum Com Tension 1-2=-213/129, 2-3=- 1-5=-84/211, 4-5=0/0 2-5=-537/394	pression/Maximum 106/28)										
NOTES 1) Wind: AS(Vasd=91n Ke=1.00; exterior zc Interior (1) exposed; members Lumber D 2) TCLL: AS: Plate DOL DOL=1.15 Exp.; Ce= 3) Unbalance design. 4) This truss chord live	CE 7-16; Vult=115mph nph; TCDL=6.0psf; BC Cat. II; Exp C; Enclose one and C-C Exterior(2) 5-0-0 to 6-7-1 zone; c end vertical left and rig and forces & MWFRS OL=1.60 plate grip DO CE 7-16; Pr=25.0 psf (L=1.15); Pg=20.0 psf; P 5 Plate DOL=1.15); Is= 0.9; Cs=1.00; Ct=1.10 ed snow loads have be has been designed for load nonconcurrent wit	(3-second gust) DL=6.0psf; h=35ft; d; MWFRS (envelop E) 0-0-0 to 5-0-0, antilever left and rigi the exposed;C-C for for reactions shown; L=1.60 roof LL: Lum DOL=1 f=13.9 psf (Lum 1.0; Rough Cat C; Fi en considered for th a 10.0 psf bottom th any other live load	le) ht .15 ully is						ţ		STATE OF I SCOT SEVI NUM PE-2001	MISSOLUE TM. ER BER 018807

MiTek[®] 16023 Swingley Ridge Rd Chesterfield, MO 63017

June 6,2023

Job	Truss	Truss Type	Qty	Ply	
P210577	J42	Jack-Closed	1	1	Job Reference (optional)

Run: 8.63 S. Nov 19 2022 Print: 8.630 S. Nov 19 2022 MiTek Industries. Inc. Mon. Jun 05 09:38:57 ID:p1ty4TxKtrAedYLfVe?fXBz9ZzZ-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

in

-0.20

-0.40

0.00

(loc)

4-5

4-5

4

l/defl

>452

>226

L/d

240

180

n/a n/a

PLATES

Weight: 42 lb

MT20

GRIP

197/144

FT = 20%

7-10-15 2-0-0 CSI DEFL Plate Grip DOL 1.15 тс 0.38 Vert(LL) BC Lumber DOL 1 15 0.81 Vert(CT) Rep Stress Incr YES WB 0.20 Horz(CT) IRC2018/TPI2014 Matrix-P Provide mechanical connection (by others) of truss to 6) bearing plate capable of withstanding 51 lb uplift at joint 5 and 98 lb uplift at joint 4.

2x4 SP No.2 This truss is designed in accordance with the 2018 7) International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. Structural wood sheathing directly applied or 6-0-0 oc purlins, except end verticals. LOAD CASE(S) Standard Rigid ceiling directly applied or 9-6-6 oc 4= Mechanical, 5=0-5-8

- 1-5=-148/102, 1-2=-72/95, 2-3=-144/118, TOP CHORD 3-4=-151/123 BOT CHORD 4-5=-335/355 WEBS 2-4=-378/348, 2-5=-373/163 NOTES
 - 1) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=35ft; Ke=1.00; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) 0-1-12 to 5-1-12, Interior (1) 5-1-12 to 7-9-3 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
 - TCLL: ASCE 7-16; Pr=25.0 psf (roof LL: Lum DOL=1.15 2) Plate DOL=1.15); Pg=20.0 psf; Pf=13.9 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat C; Fully Exp.: Ce=0.9: Cs=1.00: Ct=1.10
 - 3) Unbalanced snow loads have been considered for this desian.
 - This truss has been designed for a 10.0 psf bottom 4)
 - chord live load nonconcurrent with any other live loads. 5)
 - Refer to girder(s) for truss to truss connections.

June 6,2023

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TP11** Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Scale	=	1:40	

Loading

TCDL

BCLL

BCDL

LUMBER

TOP CHORD

BOT CHORD

TCLL (roof)

Snow (Pf/Pg)

2x4 SPF No.3 WFBS BRACING TOP CHORD BOT CHORD bracing. REACTIONS (size)

Max Horiz 5=209 (LC 13) Max Uplift 4=-98 (LC 16), 5=-51 (LC 16) Max Grav 4=462 (LC 22), 5=457 (LC 2) FORCES (lb) - Maximum Compression/Maximum Tension

(psf)

25.0

25.0

0.0

10.0

13 9/20 0

2x4 SP No.2

Spacing

Code

Job	Truss	Truss Type	Qty	Ply	
P210577	J43	Diagonal Hip Girder	1	1	Job Reference (optional)

Run: 8.63 S Nov 19 2022 Print: 8.630 S Nov 19 2022 MiTek Industries, Inc. Mon Jun 05 09:38:57 ID:xX9tpv5UqrpohYq9mtkiZxz9ZzM-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

3x4 II Special 4 6 3x4 🚅 12 4.62 Г ₉ 3 8 1A 4x6 🚅 5-0-1 5-0-1 2 0-6-2 è. 5 ⊠ 7 106 3x4 = 3x4 = 3x4 = 1.5x4 🏿 TJC37

Scale =	1:46
---------	------

Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL	(psf) 25.0 13.9/20.0 25.0 0.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 NO IRC201	8/TPI2014	CSI TC BC WB Matrix-S	0.48 0.22 0.20	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.01 -0.02 0.00	(loc) 6-7 5-6 5	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20	GRIP 244/190
BCDL	10.0											Weight: 56 lb	FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD BOT CHORD BOT CHORD BOT CHORD	2x4 SP No.2 2x4 SP No.2 2x4 SPF No.3 Structural wood she 6-0-0 oc purlins, ex Rigid ceiling directly bracing. (size) 5= Mecha Max Horiz 7=221 (Lt Max Uplift 5=-118 (L Max Grav 5=393 (Lt (lb) - Maximum Corr Tension 1-2=-421/499, 2-3=- 4-5=-168/108 1-7=-376/418, 6-7=- 2 e 272/429 2	eathing directly applie ccept end verticals. <i>v</i> applied or 6-0-0 oc anical, 7=0-5-15 C 13) .C 16), 7=-204 (LC 1 C 22), 7=941 (LC 2) npression/Maximum -314/83, 3-4=-140/10 -274/241, 5-6=-192/2	6) 7) ed or 8) 9) 2) ¹⁰ 07, 11	Provide mec bearing plat 5 and 204 lb This truss is Internationa R802.10.2 a Use Simpso equivalent a to front face left, sloping Fill all nail h Hanger(s) o provided suf down and 10 selection of responsibilit) In the LOAD of the truss a	hanical connect e capable of with ouplift at joint 7. designed in acc Residential Coo nd referenced si n Strong-Tie TJ0 t 7-4-6 from the of bottom chord 0.0 deg. down. oles where hang rother connection ficient to suppor 01 lb up at 7-4-6 such connection y of others. O CASE(S) sectic are noted as fror Standard	tion (by oth histanding 1 cordance w de sections tandard AN C37 (4 nail left end to l, skewed 6 uper is in cor on device(s t concentra 5 on top chi a device(s) on, loads ap ht (F) or ba	ers) of truss 18 lb uplift a ith the 2018 R502.11.1 ; SI/TPI 1. , 22-30) or connect trus 7.5 deg.to th ttact with lum) shall be tated load(s) ; ord. The des is the oplied to the ck (B).	to tt joint and s(es) ne nber. 37 lb sign/ face					
	2-7=-861/499	170/100, 0 0 - 204/1	100, 1)	Dead + Sn Increase=1	ow (balanced): L	umber Inc	rease=1.15,	Plate					
 Wind: ASI Vasd=91r Ke=1.00; exterior 2d Exterior(2 right expo for memb Lumber D TCLL: AS Plate DOI DOL=1.15 Exp.; Ce= 	CE 7-16; Vult=115mph mph; TCDL=6.0psf; BC Cat. II; Exp C; Enclose one and C-C Corner (3 R) 7-0-14 to 11-6-5 zo sed ; end vertical left a ers and forces & MWF OL=1.60 plate grip DC CE 7-16; Pr=25.0 psf ($_{2}$ =1.15); Pg=20.0 psf; I 5 Plate DOL=1.15); Is= 0.9; Cs=1.00; Ct=1.10	n (3-second gust) ;DL=6.0psf; h=35ft; ;d; MWFRS (envelop 3) 0-0-0 to 7-0-14, ine; cantilever left an and right exposed;C- RS for reactions sho DL=1.60 (roof LL: Lum DOL= Pf=13.9 psf (Lum :1.0; Rough Cat C; F	be) d C own; 1.15 fully	Vert: 1-4 Concentrat Vert: 10:	iaos (io/it) I=-78, 1-5=-20 ied Loads (Ib) =64 (F)					4		STATE OF J STATE OF J SEV	MISSOLA T M. HER BER OLISSOT

- Unbalanced snow loads have been considered for this design.
- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) Refer to girder(s) for truss to truss connections.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

SSIONAL EN

June 6,2023

Job	Truss	Truss Type	Qty	Ply	
P210577	J44	Jack-Open Structural Gable	1	1	I58733469 Job Reference (optional)

Run: 8.63 S Nov 19 2022 Print: 8.630 S Nov 19 2022 MiTek Industries, Inc. Mon Jun 05 09:38:58 ID:AGCHi_C7icxXGw0tnGOqQqz9ZzD-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

47.IC2f

Scale = 1:49

Plate Offsets (X, Y): [2:0-2-4,0-4-8]

Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	13	(psf) 25.0 3.9/20.0 25.0 0.0 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC20 ⁷	8/TPI2014	CSI TC BC WB Matrix-S	0.91 0.26 0.25	DEFL Vert(LL) Vert(CT) Horz(CT)	in 0.00 0.00 -0.03	(loc) 7 3 4	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 36 lb	GRIP 197/144 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD REACTIONS	2x6 SPF N 2x4 SP Nc 2x4 SPF N Structural 2-2-0 oc p Rigid ceilin bracing. (size) Max Horiz Max Uplift Max Grav	No.2 2.2 *Excep No.3 *Excep wood she: urlins, exc ng directly 4= Mecha 8=0-7-6 8=223 (LC 4=-194 (L 8=-462 (L 4=27 (LC 8=1007 (L	t* 7-3:2x4 SPF No.3 pt* 8-2:2x4 SP No.2 athing directly applie cept end verticals. applied or 6-0-0 oc nical, 5= Mechanica C 13) C 22), 5=-348 (LC 3: C 12) 12), 5=199 (LC 12), C 2)	3 4 d or 5 1, 6 1), 8 9 1	 TCLL: ASCE Plate DOL=1 DOL=1.15 P Exp.; Ce=0.9 Unbalanced design. This truss ha load of 12.0 overhangs n Truss to be f braced agair Gable studs This truss ha chord live loa Refer to gird Provide mec bacring plate 	7-16; Pr=25.0 ps .15); Pg=20.0 ps late DOL=1.15); I); Cs=1.00; Ct=1. snow loads have as been designed psf or 2.00 times on-concurrent wit ully sheathed fror ust lateral movem spaced at 2-0-0 o is been designed ad nonconcurrent er(s) for truss to t hanical connection	sf (roof LL f; Pf=13.9 Is=1.0; Rc 10 been cor for greate flat roof Ic th other lix m one fac ient (i.e. d oc. f or a 10.0 with any russ conr on (by oth	: Lum DOL= psf (Lum ough Cat C; F isidered for t er of min roof pad of 13.9 p re loads. e or securely iagonal web) 0 psf bottom other live loa lections. ers) of truss i	Fully Fully flive sfon /). ads.					
FORCES TOP CHORD BOT CHORD WEBS NOTES 1) Wind: ASt Vasd=91r Ke=1.00;	(lb) - Maxi Tension 1-2=0/127 4-5=0/0, 2 7-8=-340// 5-6=-94/9/ 2-7=-403// CE 7-16; Vul mph; TCDL== Cat. II; Exp 0	mum Com -8=-1031/9 210, 6-7=- ⁻ 8 788 t=115mph 6.0psf; BC C; Enclose	pression/Maximum //204, 3-4=-108/96, 941 776/434, 3-6=-416/2 (3-second gust) DL=6.0psf; h=35ft; d; MWFRS (envelop	1 ^{87,} 1 L e)	joint 4, 348 ll 1) This truss is International R802.10.2 a 2) Gap betwee diagonal or v OAD CASE(S)	o uplift at joint 5 a designed in acco Residential Code nd referenced sta n inside of top cho rertical web shall Standard	and 462 lb irdance wi e sections andard AN ord bearir not excee	uplift at joint th the 2018 R502.11.1 a SI/TPI 1. g and first d 0.500in.	t 8. and				STATE OF I	MISSOLA

Ke=1.00; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) -4-1-8 to 0-10-8, Interior (1) 0-10-8 to 2-1-7 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

 Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

Job	Truss	Truss Type	Qty	Ply	
P210577	J45	Jack-Closed	1	1	I58733470 Job Reference (optional)

Run: 8.63 S Nov 19 2022 Print: 8.630 S Nov 19 2022 MiTek Industries, Inc. Mon Jun 05 09:38:58 ID:a6PquqSg_IThf?YjySIWE2z9Zyv-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Scale = 1:49.4

Plate Offsets	(X, Y): [2:0-2-4,0-4-8],	[6:0-3-0,0-1-12]											
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 25.0 13.9/20.0 25.0 0.0 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC20 ⁷	8/TPI2014	CSI TC BC WB Matrix-P	0.80 0.30 0.21	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.01 0.01 0.00	(loc) 3 3 5	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 42 lb	GRIP 197/144 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD	2x6 SPF No.2 2x4 SP No.2 *Excep 2x4 SPF No.3 Structural wood she 2-8-12 oc purlins, e Rigid ceiling directly bracing.	t* 7-3:2x4 SPF No.3 athing directly applie xcept end verticals. applied or 10-0-0 or	4 3 5 ed or 6 7 c	 This truss ha load of 12.0 overhangs n This truss ha chord live loa Refer to gird Provide mec bearing plate joint 8 and 3. This truss is 	as been designed i psf or 2.00 times f on-concurrent with seen designed i ad nonconcurrent er(s) for truss to t hanical connection capable of withst 57 lb uplift at joint designed in accord	for great lat roof len o ther lin for a 10.1 with any russ con n (by oth anding 4 5.	er of min roo bad of 13.9 p ve loads. 0 psf bottom other live loa nections. ers) of truss 14 lb uplift a ith the 2018	f live osf on ads. to t					
REACTIONS	(size) 5= Mecha Max Horiz 8=229 (LC Max Uplift 5=-357 (L Max Grav 5=169 (LC	nical, 8=0-7-6 C 13) C 31), 8=-414 (LC 1 C 12), 8=948 (LC 2)	²⁾ L	International R802.10.2 a OAD CASE(S)	Residential Code nd referenced star Standard	sections	SR502.11.1 a	and					
FORCES	(lb) - Maximum Com Tension 2-8=-925/983, 1-2=0 3-4=-48/96, 4-5=-36	pression/Maximum)/127, 2-3=-117/182, 3/459	,										
BOT CHORD	7-8=-9/10, 6-7=0/33 5-6=-87/95 6-8458/257 2-6	, 3-6=-694/589, 249/651 4-6486/4	112										
NOTES	0 0 - 100/201, 2 0 - 1	210/001, 102 100/1											
 Wind: AS Vasd=911 Ke=1.00; exterior z and right exposed; reactions DOL=1.6 TCLL: AS Plate DO DOL=1.1: 	CE 7-16; Vult=115mph mph; TCDL=6.0psf; BC Cat. II; Exp C; Enclose one and C-C Corner (3 exposed ; end vertical I C-C for members and fr shown; Lumber DOL='0 GCE 7-16; Pr=25.0 psf (L=1.15); Pg=20.0 psf; F 5 Plate DOL=1.15); Is=	(3-second gust) DL=6.0psf; h=35ft; d; MWFRS (envelop)) zone; cantilever lef left and right orcces & MWFRS for 1.60 plate grip roof LL: Lum DOL=1 2f=13.9 psf (Lum 1.0; Rough Cat C: F	be) ft 1.15 fully									STATE OF I	MISSOLUTION

3) Unbalanced snow loads have been considered for this design.

Page: 1

Job	Truss	Truss Type	Qty	Ply	
P210577	J46	Jack-Open	2	1	Job Reference (optional)

Run: 8.63 S Nov 19 2022 Print: 8.630 S Nov 19 2022 MiTek Industries, Inc. Mon Jun 05 09:38:59 ID:Xm30uKgbWbs?RwVNaybzW3z9Zyc-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

1	3-1-12	4-7-15
	3-1-12	1-6-3

Scale = 1:36.5

Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 25.0 13.9/20.0 25.0 0.0 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018/TPI20)14	CSI TC BC WB Matrix-P	0.71 0.70 0.14	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.01 0.01 -0.14	(loc) 4-5 4-5 3	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 16 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x4 SP No.2 2x4 SPF No.3 Structural wood shea 4-7-15 oc purlins. Rigid ceiling directly bracing. (size) 3= Mecha	athing directly applied applied or 10-0-0 oc nical, 4= Mechanical	5) Refe 6) Provi beari joint 7) This 1 or Intern R802 LOAD Cr	r to girde de mec ng plate 3, 178 lt truss is national 2.10.2 ar ASE(S)	er(s) for truss to tri hanical connection capable of withsta o uplift at joint 4 an designed in accorc Residential Code s nd referenced stan Standard	uss con (by oth anding 1 d 141 lb lance w sections dard AN	nections. ers) of truss i 51 lb uplift at uplift at joint ith the 2018 i R502.11.1 a ISI/TPI 1.	to t t 5.					
	5=0-5-8 Max Horiz 5=93 (LC Max Uplift 3=-151 (LI 5=-141 (LI Max Grav 3=13 (LC (LC 22)	16) C 22), 4=-178 (LC 22 C 12) 12), 4=29 (LC 12), 5	2), =895										
FORCES	(lb) - Maximum Com	pression/Maximum											
TOP CHORD	1-2=-158/116, 2-3=-1	116/47											
WEBS	1-5=-65/162, 4-5=0/0 2-5=-567/451)											
NOTES	20 000,000												
 Wind: ASC Vasd=91n Ke=1.00; exterior zc and right e exposed; reactions DOL=1.60 TCLL: AS Plate DOL DOL=1.15 Exp.; Ce= Unbalancc design. This truss chord live 	CE 7-16; Vult=115mph nph; TCDL=6.0psf; BCi Cat. II; Exp C; Enclose- one and C-C Exterior(2 exposed ; end vertical I C-C for members and for shown; Lumber DOL=1) CE 7-16; Pr=25.0 psf (r =1.15); Pg=20.0 psf; P 5; Plate DOL=1.15); Is= 0.9; Cs=1.00; Ct=1.10 ed snow loads have be has been designed for load nonconcurrent wit	(3-second gust) DL=6.0psf; h=35ft; d; MWFRS (envelop E) zone; cantilever le eft and right prces & MWFRS for .60 plate grip roof LL: Lum DOL=1. Pf=13.9 psf (Lum 1.0; Rough Cat C; Fu en considered for thi r a 10.0 psf bottom th any other live load	e) eft .15 .lly is									NUM PE-20010	MISSOCHER ER DISSOCHER LENCIT

June 6,2023

Page: 1

Job	Truss	Truss Type	Qty	Ply	
P210577	J47	Jack-Partial	7	1	I58733472 Job Reference (optional)

Run: 8.63 S Nov 19 2022 Print: 8.630 S Nov 19 2022 MiTek Industries, Inc. Mon Jun 05 09:38:59 ID:BRQhEUsRgO4EaqQ0lqqjxWz9Zx5-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:49.4

Plate Offsets (X, Y): [4:0-3-0,0-0-8]

(psf) 25.0 13.9/20.0 25.0 0.0 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC201	8/TPI2014	CSI TC BC WB Matrix-P	0.32 0.18 0.13	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.01 -0.01 0.01	(loc) 8-9 8-9 4	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 33 lb	GRIP 244/190 FT = 20%
2x4 SP No.2 2x4 SP No.2 *Excep 2x4 SPF No.3 Structural wood she 6-0-0 oc purlins. Rigid ceiling directly bracing.	t* 8-3:2x4 SPF No.3 athing directly applie applied or 6-0-0 oc	4) 5) 6) ed or 7)	This truss ha chord live loa Refer to gird Provide mec bearing plate joint 9 and 60 This truss is International R802.10.2 ai	is been designed ad nonconcurrent er(s) for truss to t hanical connectio capable of withs 3 lb uplift at joint 4 designed in acco Residential Code nd referenced sta	for a 10.0 with any russ conr on (by oth standing 1 4. rdance wi e sections undard AN) psf bottom other live loa ections. ers) of truss 03 lb uplift a th the 2018 R502.11.1 a ISI/TPI 1.	ads. to t					
(size) 4= Mecha 9=0-5-8 Max Horiz 9=126 (LC Max Uplift 4=-63 (LC Max Grav 4=39 (LC (LC 2)	anical, 6= Mechanica C 16) C 16), 9=-103 (LC 12 22), 6=29 (LC 7), 9=	al, ^{o)} L() =755	diagonal or v DAD CASE(S)	vertical web shall Standard	not excee	d 0.500in.						
(lb) - Maximum Com	pression/Maximum											
Tension	70/36 3-131/28											
1-9=-297/399, 8-9=- 3-7=-155/161, 6-7=-	1/1, 7-8=0/37, 3/2, 5-6=0/0											
2-9=-545/380, 7-9=- 4-6=0/0	323/222, 2-7=-208/3	800,										ALL .
CF 7-16: Vult=115mph	(3-second gust)										OF I	AISe
nph; TCDL=6.0psf; BC Cat. II; Exp C; Enclose one and C-C Exterior(2)) 5-0-0 to 6-5-8 zone; c end vertical left and rig and forces & MWFRS OL=1.60 plate grip DC CE 7-16; Pr=25.0 psf (DL=6.0ps; h=35ft; d; MWFRS (envelop E) 0-0-0 to 5-0-0, antilever left and rig ght exposed;C-C for for reactions shown DL=1.60 roof LL: Lum DOL=1	be) ht ; 1.15								*	SCOT SEVI	I M. ER Samera
	(psf) 25.0 13.9/20.0 25.0 0.0 10.0 25.0 0.0 10.0 2x4 SP No.2 2x4 SP No.2 *Excep 2x4 SP No.2 *Excep 2x4 SPF No.3 Structural wood she 6-0-0 oc purlins. Rigid ceiling directly bracing. (size) 4= Mecha 9=0-5-8 Max Horiz 9=126 (LC Max Uplift 4=-63 (LC Max Grav 4=39 (LC (LC 2) (lb) - Maximum Com 1-2=-400/413, 2-3=- 1-9=-297/399, 8-9=- 3-7=-155/161, 6-7=- 2-9=-545/380, 7-9=- 4-6=0/0 CE 7-16; Vult=115mph nph; TCDL=6.0psf; BC Cat. II; Exp C; Encloses one and C-C Exterior(2) 5-0-0 to 6-5-8 zone; c end vertical left and ri; and forces & MWFRS OL=1.60 plate grip DC CE 7-16; Pr=25.0 psf ((psf) Spacing 25.0 Plate Grip DOL 13.9/20.0 Lumber DOL 25.0 0.0 10.0 Rep Stress Incr Code Code 2x4 SP No.2 Except* 8-3:2x4 SPF No.3 2x4 SP No.2 *Except* 8-3:2x4 SPF No.3 Structural wood sheathing directly applie 6-0-0 oc purlins. Rigid ceiling directly applied or 6-0-0 oc bracing. (size) 4= Mechanical, 6= Mechanica 9=0-5-8 Max Horiz 9=126 (LC 16) Max Uplift 4=-63 (LC 16), 9=-103 (LC 12 Max Grav 4=39 (LC 22), 6=29 (LC 7), 9= (LC 2) (lb) - Maximum Compression/Maximum Tension 1-2=-400/413, 2-3=-70/36, 3-4=-34/28 1-9=-297/399, 8-9=-1/1, 7-8=0/37, 3-7=-155/161, 6-7=-3/2, 5-6=0/0 2-9=-545/380, 7-9=-323/222, 2-7=-208/3 4-6=0/0 CE 7-16; Vult=115mph (3-second gust) nph; TCDL=6.0psf; BCDL=6.0psf; h=35ft; Cat. II; Exp C; Enclosed; MWFRS (envelop me and C-C Exterior(2E) 0-0-0 to 5-0-0, 15-0-0, 5-0-0 to 5-0-0, 5-0-0 to 5-0-3 zone; cantilever left and rig end vertical left and right exposed; C-C for and forces & MWFRS for reactions shown OL=1.60 CE 7-16; Pr=25.0 psf (roof LL: Lum DOL=1 CF	$ \begin{array}{c} (\text{psf}) \\ 25.0 \\ 13.9/20.0 \\ 25.0 \\ 13.9/20.0 \\ 25.0 \\ 0.0 \\ 10.0 \end{array} \begin{array}{c} \text{Plate Grip DOL} & 1.15 \\ \text{Lumber DOL} & 1.15 \\ \text{Lumber DOL} & 1.15 \\ \text{Rep Stress Incr} & YES \\ \text{Code} & \text{IRC2011} \end{array} \right. \\ \begin{array}{c} (modernormal of the set o$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	(psf) (25.0) 13.9/20.0 25.0 0.0 10.0Spacing Plate Grip DOL 1.15 Rep Stress Incr CodeCSI TC BC WB Matrix-P2x4 SP No.2 2x4 SPF No.3*Except* 8-3:2x4 SPF No.3 2x4 SPF No.2 2x4 SPF No.34)This truss has been designed chord live load nonconcurrent Structural wood sheathing directly applied or 6-0-0 oc purlins. Rigid ceiling directly applied or 6-0-0 oc bracing.4)This truss has been designed chord live load nonconcurrent provide mechanical connectic bearing plate capable of withs joint 9 and 63 lb uplift at joint 4 p=0-5-8Max Horiz 9=0-58 (size) 4= Mechanical, 6= Mechanical, 9=0-5-8 (LC 2)4= Mechanical, 6= Mechanical, 9=0-5-84Max Horiz 9=0-58 (LC 2)4= Mechanical, 6= Mechanical, 9=0-5-86ap between inside of top ch diagonal or vertical web shall LOAD CASE(S)(b) - Maximum Compression/Maximum Tension 1-2=-400/413, 2-3=-70/36, 3-4=-34/28 1-9=-297/399, 8-9=-1/1, 7-8=0/37, 3-7=-155/161, 6-7=-3/2, 5-6=0/0 2-9=-545/380, 7-9=-323/222, 2-7=-208/300, 4-6=0/0CF 7-16; Vult=115mph (3-second gust) nph; TCDL=6.0psf; BCDL=6.0psf; h=35ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) one and C-C Exterior(2E) 0-0-0 to 5-0-0, 5-0-0 to 6-5-8 zone; cantilever left and right end vertical left and right exposed; C-C for and forces & MWFRS for reactions shown; OL=1.60 plate grip DOL=1.60 CE 7-16; Pr=25.0 psf (roof LL: Lum DOL=1.15	$ \begin{array}{ c c c c c } \hline (psf) \\ 25.0 \\ 13.9/20.0 \\ 25.0 \\ 0.0 \\ 25.0 \\ 0.0 \\ 10.0 \\ \hline \end{array} \begin{array}{ c c c c } \hline Spacing \\ Plate Grip DOL \\ 1.15 \\ Rep Stress Incr \\ YES \\ Code \\ \hline \\ IRC2018/TPI2014 \\ \hline \end{array} \begin{array}{ c c c } TC \\ TC \\ BC \\ 0.18 \\ WB \\ 0.13 \\ Matrix-P \\ \hline \end{array} \begin{array}{ c c } \hline \\ Matrix-P \\ \hline \end{array} \begin{array}{ c c } \hline \\ Matrix-P \\ \hline \end{array} \begin{array}{ c c } \hline \\ Matrix-P \\ \hline \end{array} \begin{array}{ c } \hline \\ \ \\ Matrix-P \\ \hline \end{array} \begin{array}{ c } \hline \\ Matrix-P \\ \hline \end{array} \begin{array}{ c } \hline \\ \ \\ Matrix-P \\ \hline \end{array} \begin{array}{ } \hline \end{array} \begin{array}{ c } \hline \\ \ \\ \ \end{array} \begin{array}{ c } \hline \end{array} \begin{array}{ c } \hline \\ \ \end{array} \begin{array}{ c } \hline \end{array} \end{array} \begin{array}{ c } \hline \end{array} \begin{array}{ c } \hline \end{array} \begin{array}{ c } \hline \end{array} \end{array} \end{array}$ \begin{array}{ } \hline \end{array} \end{array} \begin{array}{ } \hline \end{array} \end{array} \end{array} \end{array} \begin{array}{ } \hline \end{array} \end{array} \end{array} \begin{array}{ } \hline \end{array} \end{array} \end{array} \end{array} \begin{array}{ } \hline \end{array} \end{array} \end{array} \begin{array}{ } \hline \end{array} \end{array} \end{array} \end{array} \end{array} \end{array} \begin{array}{ } \hline \end{array}	$ \begin{array}{ c c c c c } \hline (psf) \\ 25.0 \\ 13.9/20.0 \\ 25.0 \\ 13.9/20.0 \\ 25.0 \\ 0.0 \\ 0.0 \\ 10.0 \end{array} \begin{array}{ c c c c c c } \hline Spacing \\ Plate Grip DOL \\ 1.15 \\ Horp CDL \\ Hor (CT) \\ Hor$	$ \begin{array}{ c c c c } \hline (psf)\\ 25.0\\ 13.9/20.0\\ 25.0\\ 13.9/20.0\\ 25.0\\ 0.0\\ 10.0\\ \hline \end{array} \end{array} \begin{array}{ c c c c } \hline Spacing & 2-0-0\\ Plate Grip DOL & 1.15\\ Rep Stress Incr YES\\ Code & IRC2018/TPI2014\\ \hline TC & 0.32\\ BC & 0.18\\ WB & 0.13\\ \hline WB & 0.$	(psf) Spacing 2-0-0 CSI DEFL in (loc) 13.9/20.0 Plate Grip DOL 1.15 TC 0.32 0.6 Vert(LL) -0.01 8-9 25.0 0.0 10.0 Rep Stress Incr YES WB 0.13 Vert(CT) -0.01 4 2x4 SP No.2 Except* 8-3:2x4 SPF No.3 A This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. Structural wood sheathing directly applied or 6-0-0 oc purlins. 60-0 oc purlins. 60-0 oc purlins. 60-0 oc purlins. 60-0 oc purlins. 7) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANS/ITP1 1. 63 lb uplift at joint 4. 7) 9=0-5-8 Max Uplift 4-63 (LC 16), 9=-103 (LC 12) 63 ab tevene inside of top chord bearing and first diagonal or vertical web shall not exceed 0.500in. CASE(S) Standard 12=-400/413, 2-33=-70/36, 3-4=-34/28 1-9=-297/399, 8-9=-1/1, 7-8=-0/37, 3-7=-155/161, 6-7=-3/2, 5-6=-0/0 Standard 2-9=-545/300, 7-9=-323/322, 2, 2-7=-208/300, 4-6=0/0 2-9=-545/300, 7-9=-323/322, 2, 2-7=-208/300, 4-6=0/0 Standard 2-9=-545/300, 7-9=-323/32	(pst) Spacing 2-0-0 CSI DEFL in (loc) I/defi 13.9/20.0 Plate Grip DOL 1.15 BC 0.32 Vert(CL) -0.01 8-9 >9999 0.0 0.0 0.0 Vert(CL) -0.01 8-9 >9999 2x4 SP No.2 Code IRC2018/TPI2014 Matrix-P Vert(CT) -0.01 4 n/a 2x4 SP No.2 2x4 SP No.2 53:2x4 SPF No.3 5 Refer to girder(9) for truss to truss to truss to truss to russ to rus to r	(psf) Spacing 2-0-0 CSI DEFL in (loc) l/deft L/d 13.9/20.0 Plate Grip DOL 1.15 TC 0.32 Vert(LL) -0.01 8-9 >999 240 0.0 0.0 0.0 Imber DOL 1.15 BC 0.13 Vert(CT) -0.01 8-9 >999 240 2x4 <sp no.2<="" td=""> Code IRC2018/TPI2014 Matrix-P Vert(CT) -0.01 4 n/a n/a 2x4 SP No.2 Except* 8-3:2x4 SPF No.3 S S Fefer to girder(s) for truss to truss conconcurrent with any other live loads. S Refer to girder(s) for truss to truss conconcurrent with any other live loads. S Refer to girder(s) for truss to truss to truss to bearing plate capable of withstanding 103 ib uplift at joint 4 S S Plate matrix and and ANSI/TP1 1. S Gap between inside of top chord bearing and first digonal or vertical web shall not exceed 0.500in. DADE ABASI 0.11.2 ABASI 0.11.2 ABASI 0.11.2 ABASI 0.11.2 ABASI 0.11.1 and Residential Code sections RS02.11.1 ABASI 0.11.1 ABASI 0.11.1 ABASI 0.11.1 ABASI 0.11.1 <</sp>	(psf) Spacing 2-0-0 CSI DEFL in (loc) //deft L/d PLATES 13.9/20.0 Lumber DOL 1.15 BC 0.13 Vert(CT) -0.01 8-9 >999 180 25.0 0.0 Dot Rep Stress Incr YES BC 0.18 Wert(CT) -0.01 8-9 >999 180 2x4 SP No.2 Code IRC2018/TPI/2014 Matrix-P Matrix-P Weight: 33 lb Weight: 33 lb 2x4 SP No.2 Except* 8-3:2x4 SPF No.3 5 Refer to gidref(s) for truss to truss connections. 6 Provide mechanical connection (by others) of truss lo assonance times. 6 9 Provide mechanical connection (by others) of truss lo assonance times. 7 This truss is designed in accordance with the 2018 1

 TCLL: ASCE 7-16; Pr=25.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf; Pf=13.9 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat C; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10

3) Unbalanced snow loads have been considered for this design.

June 6,2023

ESSIONAL E

Job	Truss	Truss Type	Qty	Ply	
P210577	J48	Jack-Open	1	1	I58733473 Job Reference (optional)

Run; 8.63 S Nov 19 2022 Print; 8.630 S Nov 19 2022 MiTek Industries, Inc. Mon Jun 05 09:39:00 ID:MYarYF_L4nTgOWm8udXIuqz9Zww-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

3-10-0

Page: 1

Scale = 1:50.5

Plate Offsets (X, Y): [3:0-3-0,0-0-8]

Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 25.0 13.9/20.0 25.0 0.0 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018	3/TPI2014	CSI TC BC WB Matrix-S	0.15 0.24 0.00	DEFL Vert(LL) Vert(CT) Horz(CT)	in 0.00 -0.01 -0.02	(loc) 2 2 3	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 18 lb	GRIP 197/144 FT = 20%	
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x4 SP No.2 *Excep 2x4 SPF No.3 Structural wood shea 3-10-0 oc purlins, e: Rigid ceiling directly bracing. (size) 3= Mecha 8=0-5-8 Max Horiz 8=75 (LC Max Uplift 3=-11 (LC	t* 7-2:2x4 SPF No.3 athing directly applie xcept end verticals. applied or 10-0-0 oc nical, 5= Mechanica 13) : 16), 5=-53 (LC 16)	4) 5) d or 7) ; 8) I, 9)	Unbalanced design. This truss ha chord live loa Refer to girde Provide mec bearing plate 3 and 53 lb u This truss is International R802.10.2 an Gap betweer diagonal or v	snow loads have b s been designed fo ad nonconcurrent w er(s) for truss to tru- hanical connection capable of withsta plift at joint 5. designed in accord Residential Code s ad referenced stan- h inside of top chor ertical web shall no Standard	been cor or a 10.0 vith any uss con (by oth anding 1 dance w sections dard AN d bearir ot excee	bisidered for the psf bottom other live loan nections. ers) of truss in the point of trust in the 2018 R502.11.1 and R502.11.1 and SI/TPI 1. Ing and first and 0.500in.	his Ids. to joint and						
FORCES TOP CHORD BOT CHORD WEBS	(lb) - Maximum Com Tension 1-8=-168/61, 1-2=-11 7-8=-85/72, 6-7=-18, 5-6=-0/0, 4-5=0/0 3-5=0/0	pression/Maximum 08/12, 2-3=-16/29 /47, 2-6=-94/137,	-203											
NOTES 1) Unbalance this design 2) Wind: ASC Vasd=91r Ke=1.00; exterior zc and right e exposed; reactions	ed roof live loads have n. CE 7-16; Vult=115mph nph; TCDL=6.0psf; BC Cat. II; Exp C; Enclose one and C-C Exterior(2 exposed ; end vertical I C-C for members and for shown; Lumber DOL=1	been considered for (3-second gust) DL=6.0psf; h=35ft; d; MWFRS (envelop E) zone; cantilever le eft and right orces & MWFRS for I.60 plate grip	e) eft							~		STATE OF M SCOTT	MISSOUR M. BER BER	

DOL=1.60 TCLL: ASCE 7-16; Pr=25.0 psf (roof LL: Lum DOL=1.15 3) Plate DOL=1.15); Pg=20.0 psf; Pf=13.9 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat C; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

June 6,2023

PE-2. PE-2. PE-2. PE-2.

Job	Truss	Truss Type	Qty	Ply	
P210577	J49	Jack-Closed	1	1	Job Reference (optional)

Run: 8.63 S Nov 19 2022 Print: 8.630 S Nov 19 2022 MiTek Industries, Inc. Mon Jun 05 09:39:00 ID:Biy6pI36gdDp7RDHFuei75z9Zwq-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

NAILED

Page: 1

Scale = 1:34.5

Plate Offsets (X, Y): [3:0-3-5,0-1-8]

Loading	(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP	
TCLL (roof)	25.0	Plate Grip DOL	1.15		тс	0.96	Vert(LL)	-0.03	4-5	>999	240	MT20	244/190	
Snow (Pf/Pa)	13.9/20.0	Lumber DOL	1.15		BC	0.84	Vert(CT)	-0.03	4-5	>999	180	-		
TCDL	25.0	Rep Stress Incr	YES		WB	0.84	Horz(CT)	0.00	4	n/a	n/a			
BCLL	0.0	Code	IRC2018	3/TPI2014	Matrix-P		- ()		-					
BCDL	10.0											Weight: 32 lb	FT = 20%	
			6)	Provide med	hanical connection	on (by oth	ers) of truss	to						
	2x4 SP No 2		0)	bearing plate	e capable of with	standing 1	295 lb uplift	at						
	2x4 SP No 2			ioint 4 and 5	05 lb uplift at join	it 5.								
WEBS	2x4 SPE No 3		7)	This truss is	designed in acco	ordance w	ith the 2018							
	EXTOL NO.0		.,	International	Residential Code	e sections	R502.11.1 a	and						
	Structural wood cho	athing directly applic	ador	R802.10.2 a	nd referenced sta	andard AN	ISI/TPI 1.							
	2-2-0 oc purlins ex	cept end verticals	8)	This truss ha	as large uplift rea	ction(s) fro	om gravity lo	ad						
BOT CHORD	Rigid ceiling directly	applied or 5-9-8 oc		case(s). Pro	per connection is	required	to secure tru	SS						
	bracing.			against upwa	ard movement at	the bearing	ngs. Building							
REACTIONS	(size) 4= Mecha	anical, 5=1-1-1		designer mu	st provide for upl	Ift reaction	ns indicated.							
	Max Horiz 5=62 (LC	49)	9)	"NAILED" IN	dicates Girder: 3-	-10d (0.14	8" x 3") toe-	nails						
	Max Uplift 4=-1295 ((LC 37), 5=-505 (LC	12) 10		ueillies.	n dovice/a) shall bo							
	Max Grav 4=439 (LC	C 48), 5=1602 (LC 2) / 10	provided suf	ficient to support	concentre) si idli De	172						
FORCES	(lb) - Maximum Com	pression/Maximum		Ib down and	556 lb up at 8-4	-0 on bott	om chord T	he .						
	Tension			design/selec	tion of such conr	nection de	vice(s) is the							
TOP CHORD	1-2=-1671/1006, 2-3	3=-2337/1851,		responsibility	of others.		.,							
	3-4=-911/717		11) In the LOAD	CASE(S) section	n, loads ap	oplied to the	face						
BOT CHORD	1-5=-937/1660, 4-5=	=-29/32		of the truss a	are noted as front	t (F) or ba	ck (B).							
WEBS	2-5=-992/847, 3-5=-	2069/2647	LC	AD CASE(S)	Standard									
NOTES			1)	Dead + Sno	ow (balanced): Lu	umber Inc	rease=1.15,	Plate						
1) Wind: ASC	CE 7-16; Vult=115mph	(3-second gust)		Increase=1	.15									
Vasd=91m	nph; TCDL=6.0psf; BC	DL=6.0psf; h=35ft;		Uniform Lo	ads (lb/ft)								100	
Ke=1.00; (Cat. II; Exp C; Enclose	ed; MWFRS (envelop	be)	Vert: 1-3	=-78, 1-4=-20							8 OF I	ALC: NIC	
exterior zo	one and C-C Corner (3) 0-0-0 to 7-0-14,		Concentrat	ed Loads (lb)						4	FIE	-0.0 M	
Exterior(2)	R) 7-0-14 to 8-4-0 zon	e; cantilever left and		Vert: 4=3	329 (F), 3=70 (F)						G	SI	101	h l
right expos	sed ; end vertical left a	and right exposed;C-	C.								8	SCOT	ГМ. \7	<i>N</i>
for member	OL 1 60 ploto grin DC	KO IUF REACTIONS Sho	own;							-	R	/ SEV	ER \	Ŋ
	OL=1.00 plate grip DC		1 15								h t	1 1	~ ~	N S
	-1 15) Pa-20.0 psi (26-13 9 nsf (Lum	1.15								XX _	47	Q2.11	AT >
DOI = 1.15	Plate DOI =1 15): Is=	1 0' Rough Cat C' F	ully										and	<u> </u>
Exp.: Ce=	0.9: Cs=1.00: Ct=1 10	,									NX	NUM		A
3) Unbalance	ed snow loads have be	en considered for th	nis								N.	OX PE-2001	018807	4
design.											V	(Pa)	154	1
4) This truss	has been designed fo	r a 10.0 psf bottom										SID.	FNUA	
chord live	load nonconcurrent wi	ith any other live load	ds.									WNA	L	
5) Refer to di	irder(s) for truss to trus	ss connections										Un	0	

June 6,2023

Job	Truss	Truss Type	Qty	Ply	
P210577	J50	Jack-Open	1	1	I58733475 Job Reference (optional)

Run: 8.63 S Nov 19 2022 Print: 8.630 S Nov 19 2022 MiTek Industries, Inc. Mon Jun 05 09:39:00 ID:jWOkbz2TvJ5yVHe5hB7Tbuz9Zwr-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Scale = 1:35.6

Plate Offsets (X, Y): [3:0-2-14,0-0-8]

						-							
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 25.0 13.9/20.0 25.0 0.0 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC201	8/TPI2014	CSI TC BC WB Matrix-P	0.58 0.50 0.44	DEFL Vert(LL) Vert(CT) Horz(CT)	in 0.00 0.00 0.01	(loc) 5-6 5-6 3	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 21 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD	2x4 SP No.2 2x4 SP No.2 2x4 SPF No.3 Structural wood she 5-4-11 oc purlins. Rigid ceiling directly bracing.	eathing directly applie	4 5 6 ed or 7	 This truss ha chord live loa Refer to gird Provide mec bearing plate joint 6, 65 lb This truss is International R802.10.2 a 	as been designed ad nonconcurren er(s) for truss to hanical connecti e capable of with uplift at joint 3 ar designed in acco Residential Cod nd referenced st	d for a 10.0 t with any truss conr on (by oth standing 3 nd 548 lb i ordance w le sections andard AN ord An	D psf bottom other live loa nections. ers) of truss t 90 lb uplift at uplift at joint 5 ith the 2018 5 R502.11.1 a ISI/TPI 1.	ids. to t 5.					
REACTIONS	(size) 3= Mecha 6=0-4-8 Max Horiz 6=59 (LC Max Uplift 3=-65 (LC 6=-390 (I Max Grav 3=23 (LC 6=1283 (anical, 5= Mechanica : 16) C 2), 5=-548 (LC 2), -C 12) : (2), 5=177 (LC 12), LC 2)	anical, 8) Gap between inside of top chord bearing and first diagonal or vertical web shall not exceed 0.500in. LOAD CASE(S) Standard C 2), C 12),										
FORCES	(lb) - Maximum Con Tension	npression/Maximum											
TOP CHORD BOT CHORD WEBS	1-2=-1104/796, 2-3 1-6=-711/1103, 5-6 2-6=-1161/1388, 3-	=-43/17 =-711/979, 4-5=0/0 5=0/0, 2-5=-1211/87	9										
NOTES 1) Wind: AS Vasd=911 Ke=1.00; exterior z Interior (1 exposed members Lumber D 2) TCLL: AS Plate DO	CE 7-16; Vult=115mpt mph; TCDL=6.0psf; BC Cat. II; Exp C; Enclose one and C-C Exterior(;) 5-0-0 to 5-6-7 zone; ; end vertical left and ri and forces & MWFRS OCL=1.60 plate grip DC SCE 7-16; Pr=25.0 psf; L=1.15); Pg=20.0 psf;	n (3-second gust) DDL=6.0psf; h=35ft; ad; MWFRS (envelop 2E) 0-0-0 to 5-0-0, cantilever left and rig ght exposed;C-C for for reactions shown DL=1.60 (roof LL: Lum DOL=' Pf=13.9 psf (Lum	be) jht ; 1.15									State OF M SCOT SEVI	MISSOLP TM. ER MISSOLP TM.

Plate DOL=1.15); Pg=20.0 psf; Pf=13.9 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat C; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10

3) Unbalanced snow loads have been considered for this design.

June 6,2023

Page: 1

ESSIONAL E

Job	Truss	Truss Type	Qty	Ply	
P210577	J51	Jack-Partial	3	1	I58733476 Job Reference (optional)

Run: 8.63 S Nov 19 2022 Print: 8.630 S Nov 19 2022 MiTek Industries, Inc. Mon Jun 05 09:39:01 ID:QiWxGBNPYcV7ERCHmM6oBaz9ZwQ-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:35.8

Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 25.0 13.9/20.0 25.0 0.0 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018/TPI201	CSI TC BC WB 4 Matrix-P	0.43 0.44 0.47	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.01 -0.01 0.01	(loc) 5-6 5-6 4	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 22 lb	GRIP 244/190 FT = 20%	
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD	2x4 SP No.2 2x4 SP No.2 2x4 SPF No.3 Structural wood shea 5-2-6 oc purlins. Rigid ceiling directly bracing.	athing directly applie applied or 6-0-0 oc	5) Refer to 6) Provide bearing joint 4, 7) This tru- Interna R802.1 LOAD CAS	o girder(s) for truss to mechanical connect plate capable of with 17 lb uplift at joint 5 a ss is designed in acc ional Residential Co 0.2 and referenced s E(S) Standard	o truss conr tion (by oth hstanding 3 and 339 lb u cordance wi de sections trandard AN	ections. ers) of truss 96 lb uplift a uplift at joint ith the 2018 R502.11.1 a ISI/TPI 1.	to t 6. and						
FORCES	(size) 4= Mecha 6=0-4-8 Max Horiz 6=63 (LC Max Uplift 4=-396 (L0 6=-339 (L1 Max Grav 4=-112 (L0 6=1135 (L1 (lb) - Maximum Com	nical, 5= Mechanica 16) C 2), 5=-17 (LC 2), C 12) C 12), 5=23 (LC 12), C 2) pression/Maximum	1 ,										
TOP CHORD BOT CHORD WEBS	Tension 1-2=-911/567, 2-3=-' 1-6=-500/905, 5-6=0 2-6=-478/426, 3-6=-'	1182/939, 3-4=-86/1 /0 1163/1465	16										
 Wind: ASC Viasd=91m Ke=1.00; (exterior zc Interior (1) exposed; ; members: Lumber Di TCLL: ASC Plate DOL DOL=1.15 Exp.; Ce=1 Unbalance design. 	CE 7-16; Vult=115mph nph; TCDL=6.0psf; BCI Cat. II; Exp C; Enclosed one and C-C Exterior(2I 5-0-0 to 6-0-4 zone; c end vertical left and rig and forces & MWFRS 1 OL=1.60 plate grip DO CE 7-16; Pr=25.0 psf (r =1.15); Pg=20.0 psf; P IPlate DOL=1.15); Is= 0.9; Cs=1.00; Ct=1.10 ad snow loads have be	(3-second gust) DL=6.0psf; h=35ft; d; MWFRS (envelop E) 0-0-0 to 5-0-0, antilever left and rig ght exposed;C-C for for reactions shown L=1.60 roof LL: Lum DOL=1 /f=13.9 psf (Lum 1.0; Rough Cat C; F en considered for th	be) ht 1.15 fully nis						-		STATE OF I SCOT SEV NUMP PE-2001	MISSOLA I M. LER DER 018807	ל

 This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

> 16023 Swingley Ridge Rd Chesterfield, MO 63017

June 6,2023

Job	Truss	Truss Type	Qty	Ply	
P210577	J52	Jack-Closed	3	1	I58733477 Job Reference (optional)

Run: 8.63 S Nov 19 2022 Print: 8.630 S Nov 19 2022 MiTek Industries, Inc. Mon Jun 05 09:39:01 ID:Rz2Nq?a4Yqejn2?YGQvnNAz9Zw9-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

1-4-0

5-5-15

Scale = 1:49.1

Plate Offsets (X, Y): [2:0-2-0,0-4-4]

,														
L oading TCLL (roof) Snow (Pf/Pg) TCDL 3CLL 3CDL	(psf) 25.0 13.9/20.0 25.0 0.0 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018	3/TPI2014	CSI TC BC WB Matrix-P	0.60 0.04 0.38	DEFL Vert(LL) Vert(CT) Horz(CT)	in 0.00 0.00 0.00	(loc) 5 4-5 4	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 26 lb	GRIP 197/144 FT = 20%	
3CDL JUMBER IOP CHORD 3OT CHORD WEBS 3RACING IOP CHORD 3OT CHORD 3OT CHORD REACTIONS FORCES IOP CHORD WEBS NOTES 1) Wind: ASC Vasd=91m Ke=1.00; C exterior zo and right e exposed;C reactions s DOL=1.60 2) TCLL: ASC Plate DOL: DOL=1.60 2) Unbalance design. 4) This truss 1	10.0 2x6 SPF No.2 2x4 SP No.2 2x4 SPF No.3 Structural wood sheat 1-6-0 oc purlins, exi Rigid ceiling directly bracing. (size) 4= Mecha Max Horiz 5=239 (LC Max Uplift 4=-773 (L Max Grav 4=332 (LC (Ib) - Maximum Com Tension 2-5=-1299/894, 1-2= 3-4=-459/502 4-5=-337/237 2-4=-709/1201 E 7-16; Vult=115mph ph; TCDL=6.0psf; BC Cat. II; Exp C; Enclose ne and C-C Exterior(2 xposed ; end vertical I -C for members and fi shown; Lumber DOL=1 CE 7-16; Pr=25.0 psf (I =1.15); Pg=20.0 psf; F Plate DOL=1.15); Is=: 0.9; Cs=1.00; Ct=1.10 d snow loads have be has been designed for	athing directly applie cept end verticals. applied or 10-0-0 oc nical, 5=0-3-8 C 31), 5=-449 (LC 12 C 12), 5=1099 (LC 31 pression/Maximum co/131, 2-3=-267/280 (3-second gust) DL=6.0psf; h=35ft; d; MWFRS (envelop E) zone; cantilever le left and right orces & MWFRS for 1.60 plate grip roof LL: Lum DOL=1. 2f=13.9 psf (Lum 1.0; Rough Cat C; Fu- ten considered for thi greater of min roof I	5) 6) 7) d or 8) LC 2) 1) , e) eft .15 .115 .115 .115 .115 .115	This truss ha chord live loa Refer to girde Provide meci bearing plate joint 5 and 7. This truss is International R802.10.2 ar DAD CASE(S)	s been designed fo d nonconcurrent w er(s) for truss to tru- nanical connection capable of withsta '3 lb uplift at joint 4 designed in accord Residential Code s of referenced stand Standard	or a 10.0 ith any uss coni (by oth nding 4 ance wi sections dard AN) psf bottom other live loac nections. ers) of truss to 49 lb uplift at th the 2018 R502.11.1 at SI/TPI 1.	ds. p				Weight: 26 lb	FT = 20%	~
overhangs	non-concurrent with c	other live loads.										Jun	e 6,2023	

Job	Truss	Truss Type	Qty	Ply	
P210577	J53	Jack-Closed	1	1	I58733478 Job Reference (optional)

Run: 8.63 S Nov 19 2022 Print: 8.630 S Nov 19 2022 MiTek Industries, Inc. Mon Jun 05 09:39:01 ID:vR8Ac9oMIMv9xpO0KCE?6yz9Zvt-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

1-4-0

Scale = 1:48.2				F	1-4-0							
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 25.0 13.9/20.0 25.0 0.0 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018/TPI20	CSI TC BC WB 14 Matrix-P	0.62 0.05 0.43	DEFL Vert(LL) Vert(CT) Horz(CT)	in 0.00 0.00 0.00	(loc) 4 3-4 3	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 20 lb	GRIP 197/144 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x4 SP No.2 2x4 SPF No.3 Structural wood she 1-6-0 oc purlins, ex Rigid ceiling directly bracing. (size) 3= Mecha Max Horiz 4=212 (LC Max Uplift 3=-531 (L Max Cryst 2=442 (LC)	athing directly applie cept end verticals. applied or 10-0-0 o anical, 4=0-3-8 C 13), 4=-420 (LC 1 C 13), 4=-556 (LC 1	6) Provi bearin joint 4 7) This t Interr ed or R802 LOAD CA c	de mechanical connec ng plate capable of wit 4 and 531 lb uplift at jo russ is designed in acc ational Residential Co .10.2 and referenced s (SE(S) Standard	ction (by oth ihstanding 4 int 3. cordance w ode sections standard AN	ers) of truss t 20 lb uplift at ith the 2018 R502.11.1 a ISI/TPI 1.	o					
FORCES TOP CHORD BOT CHORD WEBS	(lb) - Maximum Com Tension 1-4=-957/862, 1-2=- 3-4=-284/274 1-3=-888/976	npression/Maximum 115/108, 2-3=-79/7	1									
 Wind: ASC Vasd=91n Ke=1.00; (exterior zc and right e exposed;C reactions s DOL=1.60 TCLL: ASC Plate DOL DOL=1.15 Exp.; Ce= Unbalance design. This truss chord live Refer to gi 	CE 7-16; Vult=115mph nph; TCDL=6.0psf; BC Cat. II; Exp C; Enclose one and C-C Exterior(2 exposed ; end vertical I c-C for members and f shown; Lumber DOL=') CE 7-16; Pr=25.0 psf (=1.15); Pg=20.0 psf; F i Plate DOL=1.15); Is= 0.9; Cs=1.00; Ct=1.10 ed snow loads have be has been designed for load nonconcurrent wi irder(s) for truss to tru	(3-second gust) DL=6.0psf; h=35ft; d; MWFRS (envelop E) zone; cantilever left and right orces & MWFRS for 1.60 plate grip roof LL: Lum DOL=: Pf=13.9 psf (Lum 1.0; Rough Cat C; F een considered for th r a 10.0 psf bottom ith any other live loa ss connections.	pe) left r 1.15 Fully his ids.								STATE OF I SCOT SEV	MISSOLP TM. ER 018807

Job	Truss	Truss Type	Qty	Ply	
P210577	J54	Roof Special Girder	1	1	Job Reference (optional)

5-0-14

Premier Building Supply (Springhill, KS), Spring Hills, KS - 66083,

Scale = 1:36.5

Run: 8.63 S Nov 19 2022 Print: 8.630 S Nov 19 2022 MiTek Industries, Inc. Mon Jun 05 09:39:02 ID:JHLkp?1vbVQKKuvsVPbhvAz9ZvZ-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

7-11-0

6-0-14

Page: 1

Special

4-11-2	6-2-10	7-11-0
4-11-2	1-3-8	1-8-6

Loading TCLL (roof)	(psf 25.0	 Spacing Plate Grip DOL 	2-0-0 1.15		CSI TC	0.64	DEFL Vert(LL)	in 0.00	(loc) 8-9	l/defl >999	L/d 240	PLATES MT20	GRIP 244/190
	18.9/20.0	D Lumber DOL	1.15 NO		BC	0.50		0.00	8-9	>999	180 n/o		
BCU	25.		IRC201	8/TPI2014	Matrix-P	0.25	11012(C1)	0.00	0	11/a	n/a		
BCDL	10.0		11(0201	0/11/12/14	Induix-1							Weight: 32 lb	FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD	2x4 SP No.2 2x4 SP No.2 2x4 SPF No.3 2x4 SPF No.3 Structural wood 5-10-9 oc purlins 2-0-0 oc purlins Rigid ceiling dire	sheathing directly appli s, except end verticals, 3-4. ctly applied or 6-0-0 oc	3) 4) ied or 5) , and 6) 7)	TCLL: ASCE Plate DOL=' DOL=1.15 P Exp.; Ce=0.9 Unbalanced design. Provide adee Gable studs This truss ha chord live loo	F7-16; Pr=25.0 1.15); Pg=20.0 Jate DOL=1.15) 9; Cs=1.00; Ct= snow loads hav quate drainage spaced at 2-0-(as been designed ad nonconcurre	psf (roof Ll psf; Pf=18.9 ; Is=1.0; Rd 1.10, Lu=5 re been col to prevent 0 oc. ed for a 10. nt with any	L: Lum DOL= ∂ psf (Lum bugh Cat C; F 0-0-0 nsidered for the water ponding 0 psf bottom other live loa	1.15 Fully his g.					
REACTIONS	bracing. (size) 6=4-0 Max Horiz 9=72 Max Uplift 6=-29 8=-10 Max Grav 6=137 8=458	-0, 7=4-0-0, 8=4-0-0, 9 (LC 13) (LC 16), 7=-79 (LC 43 79 (LC 65), 9=-231 (LC (LC 29), 7=43 (LC 12) (LC 87), 9=695 (LC 4	o) =4-0-0), 9) 2 12)), 1) 10	bearing plate 6, 1079 lb up uplift at joint This truss is International R802.10.2 a	e capable of wit oblift at joint 8, 79 9. designed in acc Residential Co nd referenced s	billion (by oth histanding 2) Ib uplift at cordance w de sections tandard Al	29 Ib uplift at j joint 7 and 2 ith the 2018 \$ R502.11.1 a NSI/TPI 1.	ioint 31 Ib and					
FORCES	(lb) - Maximum (Tension	Compression/Maximum)	or the orient	ation of the purl	in along the	e top and/or	SIZE					
TOP CHORD	1-2=-934/744, 2- 4-5=-44/40, 5-6=	-3=-826/651, 3-4=-291/ 252/161	/209, 1 ⁻	I) This truss ha	as large uplift re	action(s) fr	om gravity loa	ad					
BOT CHORD	1-9=-661/933, 8- 6-7=-244/344	-9=-661/873, 7-8=-607/	/803,	against upwa	ard movement a	at the beari	ngs. Building						
WEBS	3-8=-458/581, 3- 4-6=-376/298, 2-	-7=-715/574, 4-7=-306/ -9=-538/481	/308, 12	2) Hanger(s) or provided suf	other connecti ficient to suppo	on device(s	s) shall be ated load(s) 1	74				OF	MISCO
NOTES	℃E 7-16: \/ult–115r	mph (3-second quet)		lb down and	87 lb up at 7-9	-4 on top c	hord, and 453	3 lb			A	TE	

- Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=35ft; Ke=1.00; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) 0-0-0 to 6-0-14, Interior (1) 6-0-14 to 7-9-4 zone; cantilever left and right exposed; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

responsibility of others.
13) In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (F) or back (B).
LOAD CASE(S) Standard

1) Dead + Snow (balanced): Lumber Increase=1.15, Plate Increase=1.15

design/selection of such connection device(s) is the

- Uniform Loads (lb/ft) Vert: 1-3=-78, 3-4=-88, 4-5=-78, 1-6=-20
- Concentrated Loads (lb) Vert: 5=-150 (F), 8=816 (B)

SCOTT M. SEVIER NUMBER PE-2001018807

Job	Truss	Truss Type	Qty	Ply	
P210577	K01	Hip Girder	1	2	I58733480 Job Reference (optional)

Run: 8.63 S. Nov 19 2022 Print: 8.630 S. Nov 19 2022 MiTek Industries. Inc. Mon. Jun 05 09:39:03 ID:4?5x?PqjbOdHPFV2gC5oCIz9Xzu-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

1	2-11-15	5-6-10	9-11-6	12-6-1	15-6-0
ſ	2-11-15	2-6-11	4-4-12	2-6-11	2-11-15

Scale = 1:40.4

Loading TCLL (roof) Snow (Pf/Pg)	(psf) 25.0 18.9/20.0 25.0	Spacing Plate Grip DOL Lumber DOL	2-0-0 1.15 1.15 NO		CSI TC BC	0.26 0.29	DEFL Vert(LL) Vert(CT)	in -0.02 -0.04	(loc) 11-12 11-12	l/defl >999 >999	L/d 240 180	PLATES MT20	GRIP 197/144	
BCLL BCDL	0.0	Code	IRC2018	3/TPI2014	Matrix-S	0.01	11012(01)	0.01	Ū	174	n/u	Weight: 196 lb	FT = 20%	
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD	2x6 SPF No.2 2x6 SPF No.2 2x4 SPF No.3 *Exce Structural wood shee 6-0-0 oc purlins, exc 2-0-0 oc purlins (6-0 Rigid ceiling directly bracing.	pt* 14-2,9-7:2x4 SP athing directly applie cept end verticals, a -0 max.): 4-5. applied or 6-0-0 oc	2) No.2 ed or 3) nd 4)	All loads are except if note CASE(S) see provided to o unless othern Unbalanced this design. Wind: ASCE Vasd=91mpl Ke=1.00; Cas	considered equ ed as front (F) o titon. Ply to ply o listribute only lo wise indicated. roof live loads h 7-16; Vult=115i n; TCDL=6.0psf. t. II; Exp C; Enc and C-C Exteri	ally applied r back (B) f connection ads noted a ave been of mph (3-sec ; BCDL=6.0 losed; MW losed; MW	d to all plies, face in the LC s have been as (F) or (B), considered fo cond gust) Opsf; h=35ft; FRS (envelog FRS (2-1-0	DAD r pe)	13) Use PLN trus 14) Use Tru left cho 15) Use PLN trus 16) Fill	Simpso ') or equ s(es) to Simpso ss, Single end to co rd. Simpso ') or equ s(es) to all paid	n Stror ivalent front fa in Stror e Ply C onnect in Stror ivalent front fa	ng-Tie THJU26 (S at 5-9-1 from the ace of bottom cho ng-Tie LUS24 (4- Birder) or equivale truss(es) to front ng-Tie THJU26 (S at 9-8-15 from th ace of bottom cho	GL & SGL LC 2- left end to connect rd. 10d Girder, 2-10d ent at 7-9-0 from th face of bottom GL & SGL RC 2- le left end to connect rd.	ie ect

- **REACTIONS** (size) 9=0-5-8, 14=0-5-8 14=37 (LC 64) Max Horiz Max Uplift 9=-411 (LC 13), 14=-411 (LC 12) Max Grav 9=1827 (LC 41), 14=1827 (LC 41)
- FORCES (lb) - Maximum Compression/Maximum Tension 1-2=0/131, 2-3=-1759/529, 3-4=-2107/660, TOP CHORD 4-5=-1932/637, 5-6=-2112/660, 6-7=-1758/530, 7-8=0/131, 2-14=-1744/609, 7-9=-1744/610 BOT CHORD
- 13-14=-115/222, 12-13=-386/1528, 11-12=-469/1926, 10-11=-352/1527, 9-10=-115/190 WEBS 3-13=-494/164, 3-12=-224/567,
- 4-12=-124/444, 4-11=-57/68, 5-11=-129/451, 6-11=-224/575, 6-10=-499/164, 2-13=-378/1536, 7-10=-377/1534

NOTES

- 1) 2-ply truss to be connected together with 10d (0.131"x3") nails as follows: Top chords connected as follows: 2x6 - 2 rows staggered at 0-9-0 oc, 2x4 - 1 row at 0-9-0 oc. Bottom chords connected as follows: 2x6 - 2 rows staggered at 0-9-0 oc. Web connected as follows: 2x4 - 1 row at 0-9-0 oc.

- Interior (1) 2-1-0 to 5-8-6, Exterior(2E) 5-8-6 to 9-9-10, Exterior(2R) 9-9-10 to 16-10-8, Interior (1) 16-10-8 to 18-5-0 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown: Lumber DOL=1.60 plate grip DOL=1.60
- 5) TCLL: ASCE 7-16; Pr=25.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf; Pf=18.9 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat C; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10, Lu=50-0-0
- 6) Unbalanced snow loads have been considered for this design.
- This truss has been designed for greater of min roof live 7) load of 12.0 psf or 2.00 times flat roof load of 13.9 psf on overhangs non-concurrent with other live loads.
- Provide adequate drainage to prevent water ponding. 8) This truss has been designed for a 10.0 psf bottom 9)
- chord live load nonconcurrent with any other live loads. 10) Provide mechanical connection (by others) of truss to
- bearing plate capable of withstanding 411 lb uplift at joint 14 and 411 lb uplift at joint 9.
- 11) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 12) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

where hanger is in contact with lumb

LOAD CASE(S) Standard

Dead + Snow (balanced): Lumber Increase=1.15, Plate 1) Increase=1.15

Page: 1

- Uniform Loads (lb/ft)
- Vert: 1-2=-78, 2-4=-78, 4-5=-88, 5-7=-78, 7-8=-78, 9-14 = -20
- Concentrated Loads (lb)
 - Vert: 12=-473 (F), 11=-473 (F), 21=-248 (F)

Job	Truss	Truss Type	Qty	Ply	
P210577	K02	Roof Special	14	1	I58733481 Job Reference (optional)

Run: 8.63 S Nov 19 2022 Print: 8.630 S Nov 19 2022 MiTek Industries, Inc. Mon Jun 05 09:39:03 ID:nTIZESMJEvA1h0sWERt6_az9XzC-RfC?PsB70Ha3NSaPanI 8w3uITXhGKWrCDoi7 14z IC?f

Page: 1

9

ID:nTIZESMJEvA1h0sWFRt6_az9XzC-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f -2-11-0 1-11-14 3-10-1 7-9-0 11-7-15 13-6-1 15-6-0 18-5-0 2-11-0 1-11-14 1-10-2 3-10-15 3-10-15 1-10-3 1-11-15 2-11-0 5x5 = 12 5 Г 5 L. 4x4 🚅 4x4 👟 3x4 🚅 3x4 👟 4 6 19 20 4-5-9 7 3 4-11-5 4x6 🥃 4x6 👟 Įφ Ź۴ 2 8 FQ. 15 1 113 1-2-13 th 1-0-0 ¥ 14 Ĩ ٥ 18 Ю 16 12 10 3x8 = \ge 17 11 4x8 = 1.5x4 **॥** 3x6 II 3x6 II 3x8 = 3x8 = 1.5x4 🛛 4x8 = 11<u>-6-3</u> 1-11-14 3-11-13 7-9-0 13-6-1 15-6-0 1-11-14 1-11-14 3-9-3 3-9-3 1-11-15 1-11-15 Scale = 1:39.8

Plate Offsets (X, Y): [3:0-0-0,0-0-0], [6:0-0-0,0-0-0], [13:0-5-8,0-2-12], [15:0-5-8,0-2-12]

													-	
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 25.0 13.9/20.0 25.0 0.0 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018	3/TPI2014	CSI TC BC WB Matrix-S	0.45 0.44 0.44	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.03 -0.08 0.06	(loc) 14-15 14-15 10	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 98 lb	GRIP 197/144 FT = 20%	
LUMBER TOP CHORD 3OT CHORD WEBS BRACING TOP CHORD 3OT CHORD REACTIONS FORCES TOP CHORD BOT CHORD WEBS	2x6 SPF No.2 2x4 SP No.2 *Excep No.3 2x4 SPF No.3 *Excep No.2 Structural wood she 5-7-14 oc purlins, e Rigid ceiling directly bracing, Except: 6-0-0 oc bracing: 17 (size) 10=0-5-8, Max Horiz 18=51 (LC Max Uplift 10=-188 (Max Grav 10=1219 (lb) - Maximum Com Tension 1-2=0/124, 2-3=-72E 4-5=-1164/249, 5-6= 6-7=-1635/321, 7-8= 2-18=-1192/423, 8-1 17-18=-103/122, 16- 4-15=-16/182, 14-15 13-14=-165/1536, 11 11-12=-12/67, 10-11 6-14=-575/186, 2-17 5-14=-30/427, 4-14=	t* 16-4,6-12:2x4 SPF athing directly applied xcept end verticals. applied or 10-0-0 oc -18,10-11. 18=0-5-8 C 16) LC 17), 18=-188 (LC (LC 2), 18=1219 (LC pression/Maximum 3/171, 3-4=-1635/354 -1164/260, 729/172, 8-9=0/124 (0=-1192/423 -17=-15/67, 15-16=0/- 5=-239/1537, 2-13=0/43, 6-13=-16/- 1=-103/80 =-76/672, 8-11=-75/6 576/203, 7-11=-563	2) d or 3) (16) 4) 2) 5) , 6) , 7) 43, 8) 182, 8) 182, LC (62, 66, 86)	Wind: ASCE Vasd=91mpł Ke=1.00; Ca exterior zone Interior (1) 1- 12-9-0, Interi and right exp exposed;C-C reactions sho DOL=1.60 TCLL: ASCE Plate DOL=1 DOL=1.15 Pl Exp.; Ce=0.9 Unbalanced design. This truss ha load of 12.0 g overhangs n This truss ha chord live loa Provide mecl bearing plate joint 18 and This truss is International R802.10.2 ar	7-16; Vult=115mp 7-16; Vult=115mp 7, TCDL=6.0psf; B t. II; Exp C; Enclose and C-C Exterior 11-14 to 7-9-0, Ex- or (1) 12-9-0 to 18 osed; end verticas for members anc- town; Lumber DOL 7-16; Pr=25.0 psf ate DOL=1.15); Is y; Cs=1.00; Ct=1.1 snow loads have I bs been designed factor to account with s been designed factor to account the the the the the table of withst 188 lb uplift at join designed in accor Residential Code nd referenced star Standard	ch (3-sec GCDL=6. Sec), MW (2E) -2-1 Aterior(2F) 3-5-0 zor al left and f forces & = 1.60 pl: f (roof LL ; Pf=13.9 = 1.60 pl: f (roof LL ; Pf=13.9 = 1.0; Rc 0 been cor for greate lat roof lo n other lin for a 10.0 with any n (by oth anding 1 t 10. dance w sections ndard AN	ond gust) opsf; h=35ft; FRS (envelop 1-0 to 1-11-1 R) 7-9-0 to e; cantilever I right & MWFRS for ate grip : Lum DOL== psf (Lum ugh Cat C; F asidered for th er of min roof bad of 13.9 ps re loads. 0 psf bottom other live load ers) of truss t 88 lb uplift at th the 2018 R502.11.1 a ISI/TPI 1.	pe) 14, 1eft 1.15 Tully his live sf on ds. o				STATE OF M	AISSOUR MISSOUR FM. ER	
NOTES	15-17=-49/555, 3-15	5=-183/999									12	att	Derne	

 Unbalanced roof live loads have been considered for this design.

Mİİ'

PE-200101880

E

June 6,2023

SIONAL

Job	Truss	Truss Type	Qty	Ply	
P210577	K03	Common	1	1	Job Reference (optional)

Run; 8.63 S Nov 19 2022 Print; 8.630 S Nov 19 2022 MiTek Industries, Inc. Mon Jun 05 09:39:04 Page: 1 ID:FxrN?cac?RRUrnEzIDCKjMz9Xyw-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f -2-11-0 4-0-1 7-9-0 11-5-15 15-6-0 18-5-0 2-11-0 4-0-1 3-8-15 3-8-15 4-0-1 2-11-0 5x5 = 12 5 [4 山 4x6 🚅 4x6 👟 3 5 13 12 14 11 4x4 🚅 Fort 4x4 👟 2 6 Ð 47 T, ∜ 10 8 X 9

7-9-0	15-6-0
7-9-0	7-9-0

3x8 =

Scale = 1:39.8

4-5-9

1-2-13

4-11-5

Plate Offsets (X, Y): [2:0-0-13,0-2-0], [6:0-0-13,0-2-0]

5x5 =

Loading ICLL (roof) Snow (Pf/Pg) ICDL 3CLL 3CDL LUMBER IOP CHORD 3OT CHORD	(psf) 25.0 13.9/20.0 25.0 0.0 10.0 2x6 SPF No.2 2x6 SPF No.2	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC20 ⁻ 4	8/TPI2014) Unbalanced design.) This truss ha	CSI TC BC WB Matrix-S snow loads have is been designed	0.45 0.60 0.45 been cor	DEFL Vert(LL) Vert(CT) Horz(CT) sidered for t	in -0.07 -0.14 0.02 his	(loc) 9-10 8-9 8	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 91 lb	GRIP 197/144 FT = 20%	
WEBS BRACING FOP CHORD BOT CHORD REACTIONS	2x4 SPF No.3 *Exce Structural wood shea 6-0-0 oc purlins, exc Rigid ceiling directly bracing. (size) 8=0-5-8, 1	pt* 10-2,8-6:2x4 SP athing directly applie cept end verticals. applied or 10-0-0 or 0=0-5-8	[•] No.2 _{ed or} 6 c 7 8	 load of 12.0 overhangs n This truss ha chord live loa Provide mec bearing plate joint 10 and This truss is 	psf or 2.00 times on-concurrent wit as been designed ad nonconcurrent hanical connectio e capable of withs 188 lb uplift at joir designed in accord	flat roof lo h other liv for a 10.0 with any n (by othe tanding 1 ht 8. rdance with	bad of 13.9 p ve loads.) psf bottom other live loa ers) of truss t 88 lb uplift at th the 2018	sf on ads. to t						
FORCES TOP CHORD BOT CHORD WEBS	Max Holiz 10=51 (LC Max Uplift 8=-188 (L Max Grav 8=1219 (L (lb) - Maximum Com Tension 1-2=0/124, 2-3=-156 4-5=-909/228, 5-6=- 2-10=-595/323, 6-8= 9-10=-149/822, 8-9= 4-9=0/307, 3-10=-10 3-9=-95/145, 5-9=-9	 (16) (17), 10=-188 (LC. (L), 10=1219 (LC pression/Maximum (80, 3-4=-909/229, 156/80, 6-7=0/124, -595/324 -106/822 02/232, 5-8=-1002/25/145 	16) ²⁾ L	International R802.10.2 a OAD CASE(S)	Residential Code nd referenced sta Standard	e sections ndard AN	R502.11.1 a	and						
NOTES 1) Unbalance this design 2) Wind: AS Vasd=91 Ko=1.00	ced roof live loads have n. CE 7-16; Vult=115mph mph; TCDL=6.0psf; BC	been considered fo (3-second gust) DL=6.0psf; h=35ft; d: MWEPS (op:oloc	r								B.	STATE OF M	AISSOLD	

- Ke=1.00; Cat. II; Ex C; Enclosed; MWFRS (envelo exterior zone and C-C Exterior(2E) -2-11-0 to 2-1-0, Interior (1) 2-1-0 to 7-9-0, Exterior(2R) 7-9-0 to 12-9-0, Interior (1) 12-9-0 to 18-5-0 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- TCLL: ASCE 7-16; Pr=25.0 psf (roof LL: Lum DOL=1.15 3) Plate DOL=1.15); Pg=20.0 psf; Pf=13.9 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat C; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10

SEVIER PE-200101880' SSIONAL E June 6,2023

7

5x5 =

Job	Truss	Truss Type	Qty	Ply		
P210577	K04	Hip Girder	1	2	Job Reference (optional)	58733483

Run: 8.63 S Nov 19 2022 Print: 8.630 S Nov 19 2022 MiTek Industries, Inc. Mon Jun 05 09:39:05 ID:B5bYBufEIAS5NkZp_8TNSDz9XZ?-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Scale = 1:	40.6
------------	------

Plate Offsets (X, Y): [14:0-5-8,0-2-8]], [17:0-5-8,0-2-8]											
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 25.0 18.9/20.0 25.0 0.0 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 NO IRC2018	3/TPI2014	CSI TC BC WB Matrix-S	0.64 0.30 0.35	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.03 -0.07 0.04	(loc) 15-16 15-16 11	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 193	GRIP 197/144 lb FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD	2x4 SP No.2 2x6 SPF No.2 *Exce No.3 2x4 SPF No.3 *Exce No.2 Structural wood shea 6-0-0 oc purlins, exc	pt* 18-4,7-13:2x4 SF pt* 20-2,11-9:2x4 SF athing directly applie sept end verticals, ar on av b 5-6	1) PF d or 2)	2-ply truss to (0.131"x3") n Top chords c oc. Bottom chord staggered at Web connect All loads are except if note CASE(S) sec	be connected tog ails as follows: connected as follow ds connected as follow ds connected as follow 0-9-0 oc, 2x4 - 1 ted as follows: 2x4 considered equal ad as front (F) or b tion. Ply to ply co	yether wi ws: 2x4 - pollows: 2 row at 0- 1 - 1 row ly applie pack (B) nnection	th 10d 1 row at 0-9- x6 - 2 rows 9-0 oc. at 0-9-0 oc. d to all plies, face in the LC s have been	0 DAD	 Probea join This Inte R80 Gra or ti bott Use 	vide me ring plat t 20 and s truss is rnationa 02.10.2 a phical p he orient com chor s Simpso	chanica e capa 374 lb desig l Resid and ref urlin re tation c d. on Stro	al connection of bible of withstar ouplift at joint of ned in accorda dential Code so erenced stand presentation of of the purlin alo ng-Tie THJA2	by others) of truss to nding 374 lb uplift at 11. ance with the 2018 ections R502.11.1 and lard ANSI/TPI 1. does not depict the size ong the top and/or 6 (THJA26 on 2 ply,
BOT CHORD	Rigid ceiling directly bracing, Except: 6-0-0 oc bracing: 19- (size) 11=0-5-8, Max Horiz 20=34 (LC Max Uplift 11=-374 (L Max Croy, 11=1754)	applied or 10-0-0 oc -20,11-12. 20=0-5-8 264) LC 13), 20=-374 (LC	; 3) 4) ; 12) ; 41)	provided to d unless other Unbalanced this design. Wind: ASCE Vasd=91mph Ke=1.00; Cat	listribute only load wise indicated. roof live loads hav 7-16; Vult=115mp n; TCDL=6.0psf; B t. II; Exp C; Enclos	s noted ve been o oh (3-sec CDL=6.0 sed; MW	as (F) or (B), considered fo cond gust) Dpsf; h=35ft; FRS (envelop	r be)	Rig to c 15) Use Har con 16) Fill 17) "NA	ht Hand onnect t Simpso nd Hip) o nect trus all nail h ILED" ir	Hip) or russ(e: on Stro or equiv ss(es) t oles w ndicate	r equivalent at s) to back face ng-Tie THJA2 valent at 9-8-1 to back face of here hanger is s Girder: 3-10	5-9-6 from the left end of bottom chord. 6 (THJA26 on 2 ply, Left 0 from the left end to f bottom chord. s in contact with lumber. d (0.148" x 3") toe-nails
FORCES TOP CHORD	(lb) - Maximum Com Tension 1-2=0/131, 2-3=-123 4-5=-2676/728, 5-6= 6-7=-2665/701, 7-8= 8-9=-1235/356, 9-10 9-11=-1686/564	4/356, 3-4=-2731/73 -2444/673, -2732/703, =0/131, 2-20=-1686,	(564, 5)	exterior zone Interior (1) 1- Exterior(2R) 18-5-0 zone; vertical left ar forces & MW DOL=1.60 pli TCLL: ASCE	and C-C Exterior 11-14 to 5-9-0, Ex 9-9-0 to 16-9-14, cantilever left and nd right exposed; FRS for reactions ate grip DOL=1.60 7-16: Pr=25.0 ps	(2E) -2- ² kterior(2I Interior (I right ex C-C for n shown;) f (roof L)	11-0 to 1-11-1 E) 5-9-0 to 9-9 1) 16-9-14 to posed ; end nembers and Lumber	4,)-0,	per LOAD (1) De Inc Ur	NDS gu CASE(S) ead + Sn crease=' hiform Lo	ideline) Star low (ba 1.15 bads (Il	s. ndard alanced): Luml o/ft)	per Increase=1.15, Plate
BOT CHORD	19-20=-282/292, 18- 17-18=-9/89, 4-17=-8 16-17=-571/2522, 15 14-15=-504/2524, 13 12-13=-44/217, 11-1	19=-51/219, 88/107, 5-16=-531/2454, 3-14=-8/89, 7-14=-83 2=-282/251	3/90, 6)	Plate DOL=1 DOL=1.15 Pl Exp.; Ce=0.9 Unbalanced	.15); Pg=20.0 psf ate DOL=1.15); Is b; Cs=1.00; Ct=1.1 snow loads have l	; Pf=18.9 ;=1.0; Ro 0, Lu=50 been cor) psf (Lum bugh Cat C; F)-0-0 nsidered for th	ully				STATE SCC SE	DTT M. IVIER
WEBS NOTES	4-16=-116/159, 5-16 6-15=-58/501, 7-15= 2-19=-319/1401, 9-1 3-19=-1137/295, 17- 3-17=-345/1564, 8-1 12-14=-177/949, 8-1	92/511, 5-15=-69/ -82/150, 2=-319/1402, 19=-217/947, 2=-1137/274, 4=-366/1564	69, 7) 8) 9) 10	This truss ha load of 12.0 p overhangs no Provide adec All plates are) This truss ha chord live loa	s been designed f osf or 2.00 times f on-concurrent with uate drainage to 3x4 MT20 unless s been designed f id nonconcurrent	for greate lat roof lo other liv prevent otherwi for a 10.0 with any	er of min roof bad of 13.9 ps ve loads. water ponding se indicated. 0 psf bottom other live load	live sf on J. ds.		-	A A A A A A A A A A A A A A A A A A A	PE-200	AL ENGINE

June 6,2023

Page: 1

Job	Truss	Truss Type	Qty	Ply	
P210577	K04	Hip Girder	1	2	I58733483 Job Reference (optional)

Run: 8.63 S Nov 19 2022 Print: 8.630 S Nov 19 2022 MiTek Industries, Inc. Mon Jun 05 09:39:05 ID:B5bYBufEIAS5NkZp_8TNSDz9XZ?-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 2

Vert: 1-2=-78, 2-5=-78, 5-6=-88, 6-9=-78, 9-10=-78, 18-20=-20, 14-17=-20, 11-13=-20

Concentrated Loads (lb)

Vert: 5=-142 (B), 6=-142 (B), 16=-272 (B), 15=-272 (B), 23=-138 (B), 26=-41 (B)

Job	Truss	Truss Type	Qty	Ply	
P210577	LG01	Lay-In Gable	1	1	Job Reference (optional)

Scale = 1:52.3

Run: 8.63 S Nov 19 2022 Print: 8.630 S Nov 19 2022 MiTek Industries, Inc. Mon Jun 05 09:39:05 ID:KVjK2Q_XpOfR2FkOwvM7Flz9aJS-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

9

Page: 1

7-10-11 15-6-3 7-10-11 7-7-8 4x4= 5 6 4 8-6-13 8-3-2 3 7 2 8 12 13 Г 1 0-0-4 \otimes \times 16 15 14 13 12 11 10 3x4 🎣 3x4、 15-9-5 \vdash Plate Offsets (X, Y): [7:0-0-0.Edge], [8:0-0-0.Edge]

	,, ,), [,,,	o o,=ago],	[ele e e,Eege]										-		
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	1:	(psf) 25.0 3.9/20.0 25.0 0.0 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC201	8/TPI2014	CSI TC BC WB Matrix-S	0.09 0.05 0.19	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.01	(loc) - - 9	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 91 lb	GRIP 244/190 FT = 20%	
LUMBER TOP CHORD BOT CHORD OTHERS BRACING TOP CHORD BOT CHORD WEBS REACTIONS	2x4 SP N 2x4 SP N 2x4 SPF I Structural 6-0-0 oc p Rigid ceili bracing. 1 Row at (size) Max Horiz Max Uplift Max Grav	o.2 o.2 No.3 I wood sheat burlins. ing directly midpt 1=15-9-5, 11=15-9-5 14=15-9-5 14=15-9-5 1=-235 (Li 1=-74 (LC 10=-140 (12=-141 (12=214 (LC 10=267 (L 12=280 (L 14=282 (L 16=267 (L	athing directly applied applied or 10-0-0 oc 5-13 9=15-9-5, 10=15-9-5 5, 12=15-9-5, 13=15- 5, 15=15-9-5, 16=15- C 10) 12), 9=-38 (LC 13), LC 15), 11=-145 (LC LC 14), 16=-140 (LC C 14), 16=-140 (LC C 14), 9=198 (LC 28), C 26), 11=269 (LC 2 C 26), 15=268 (LC 2 C 25), 15=268 (LC 2	1) 2) d or 5, 9-5, 3) 9-5 3) 15), 4) 14), 4) 14), 26), 5) (5), 7) 80, 6) (5), 7)	Unbalanced this design. Wind: ASCE Vasd=91mpl Ke=1.00; Ca exterior zone Interior (1) 5- 12-10-14, Int cantilever lef right exposed for reactions DOL=1.60 Truss design only. For stu see Standard or consult qu TCLL: ASCE Plate DOL=1 DOL=1.15 P Exp.; Ce=0.9 All plates are Gable studs This truss ba	roof live loads l 7-16; Vult=115 n; TCDL=6.0ps t. II; Exp C; End and C-C Exter 4-0 to 7-10-14, terior (1) 12-10- t and right expo d;C-C for memil shown; Lumber ned for wind loa ds exposed to d Industry Gabi laified building 7-16; Pr=25.0 .15; Pg=20.0 late DOL=1.15; 0; Cs=1.00; Ct= a 1.5x4 MT20 u es continuous l spaced at 2-0-1 is been designed	have been of 5mph (3-sec f; BCDL=6.0 closed; MW rior(2E) 0-4- , Exterior(2F -14 to 15-5- -14 to 15-5- closed; end v bers and for pr DOL=1.60 ads in the pl wind (norm. le End Detai designer as psf (roof LL psf; Pf=13.9 r); Is=1.0; Rc -1.10 nless otherwork bottom chore 0 oc. ed for a 10.0	considered fo ond gust))psf; h=35ft; FRS (envelop 0 to 5-4-0, 8) 7-10-14 to 13 zone; ertical left an ces & MWFF plate grip ane of the tru al to the face ls as applical per ANSI/TF : Lum DOL= psf (Lum ugh Cat C; F vise indicated d bearing.	r ope) dd tSS JSS JSS JBLe, PI 1. 1.15 Fully d.				50000		
	(lb) - Max Tension	imum Com	pression/Maximum	9)	chord live loa Provide mec	ad nonconcurre hanical connec	ent with any ction (by othe	other live loa ers) of truss t	ds. o			Å	ATEOFI	AISSOL	
	4-5=-209/ 7-8=-193/	/168, 5-6=-2 /106, 8-9=-2	217/155, 3-4=-182/10 209/159, 6-7=-144/63 285/202	3,	bearing plate 1, 38 lb uplift uplift at joint	e capable of wit at joint 9, 143	hstanding 7 Ib uplift at jo t at joint 16	4 lb uplift at j pint 14, 144 lt 141 lb uplift	oint o at			A	SCOT SEVI	FM.	
BOT CHORD	1-16=-138 14-15=-13 12-13=-13 10-11=-13	8/221, 15-1 38/221, 13- 38/221, 11- 38/221, 9-1	6=-138/221, 14=-138/221, 12=-138/221, 0=-138/221	10	joint 12, 145 10.)) This truss is International	lb uplift at joint designed in ac Residential Co	cordance wi	th the 2018 R502.11.1 a	int				otto NUM	BER	Þ
WEBS	5-13=-17 3-15=-26 6-12=-25 8-10=-24	5/86, 4-14= 0/170, 2-16 5/165, 7-11 4/157	-255/167, =-244/157, =-260/171,	L	R802.10.2 a	nd referenced s Standard	standard AN	SI/TPI 1.				Ø	PE-2001	L ENGL	
NOTES													lan	and a second	

June 6,2023

Job	Truss	Truss Type	Qty	Ply	
P210577	LG02	Lay-In Gable	1	1	I58733485 Job Reference (optional)

Run: 8.63 S Nov 19 2022 Print: 8.630 S Nov 19 2022 MiTek Industries, Inc. Mon Jun 05 09:39:06 ID:2RK68q6pTTw0FnVJW?YTfsz9aJI-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

Scale = 1:64.5

Plate Offsets (X,	Y):	[7:Edge,0-1-8]
-------------------	-----	----------------

Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	1:	(psf) 25.0 3.9/20.0 25.0 0.0 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC201	8/TPI2014	CSI TC BC WB Matrix-S	0.12 0.04 0.06	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 7	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 59 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP N 2x4 SP N 2x4 SPF I Structural 6-0-0 oc p Rigid ceili bracing. (size) Max Horiz Max Uplift Max Grav	o.2 o.2 No.3 I wood sheat burlins. ing directly 1=11-0-9, 12=11-0-9, 12=11-0-9 1=408 (LC 1=-93 (LC 9=-150 (L) 11=-155 (13=-134 (1=228 (LC 8=209 (LC 10=265 (L 12=96 (LC	athing directly applie applied or 10-0-0 oc 7=11-0-9, 8=11-0-9, 10=11-0-9, 11=11-0 9, 13=11-0-9 14) 12), 7=-175 (LC 14) C 14), 10=-139 (LC LC 14), 10=-139 (LC LC 14), 12=-48 (LC 25) C 27), 9=286 (LC 25) C 25), 11=270 (LC 2 C 14), 13=242 (LC 25)	2) d or ; , 3) ,-9, 4) 14), 12), 4, 5), 5), 8)	Wind: ASCE Vasd=91mph Ke=1.00; Car exterior zone Interior (1) 5- 10-10-7 zone vertical left a forces & MW DOL=1.60 pl Truss design only. For stu see Standarc or consult qu TCLL: ASCE Plate DOL=1 DOL=1.15 Pl Exp.; Ce=0.9 All plates are Gable require Gable studs s This truss ha chord live loa	7-16; Vult=115mj n; TCDL=6.0psf; E and C-C Exterior 4-0 to 9-7-14, Ext c; cantilever left ar nd right exposed; (FRS for reactions ate grip DOL=1.6) hed for wind loads ds exposed to win d Industry Gable E alified building de 7-16; Pr=25.0 ps .15); Pg=20.0 psf late DOL=1.15); k 0; Cs=1.00; Ct=1.1 1.5x4 MT20 unle es continuous bot spaced at 2-0-0 o s been designed	oh (3-sec 3CDL=6.0 SCDL=6.0 Sect; MW (2E) 0-44 lerior(2E) and right e C-C for n s shown; 0 s in the pl nd (norm End Detai signer as f (roof LL ; Pf=13.9 S=1.0; Rc 10 ss othen tom chor c. for a 10.0	ond gust))psf; h=35ft; FRS (envelop 0 to 5-4-0, 9-7-14 to xposed ; end hembers and Lumber ane of the tru al to the face) Is as applicat psr ANS//TF .: Lum DOL=1 psf (Lum hugh Cat C; F vise indicated d bearing.	ope) iss), ole, 1.15 1.15 1.15 1. 1.5 1.					
FORCES	(lb) - Max Tension	imum Com	pression/Maximum	9)	Provide mech bearing plate	hanical connection capable of withst	n (by oth tanding 9	ers) of truss to 3 lb uplift at jo	o oint				Same	ADDE
TOP CHORD	1-2=-458/	393, 2-3=-3	338/293, 3-4=-196/1 52/115_6-7=-136/13	69, 3	1, 175 lb upli	ft at joint 7, 48 lb	uplift at jo	oint 12, 150 lb)				FEOFI	VIISS STA
	1-13=-77/ 10-11=-12 8-9=-122/	/63, 12-13= 21/109, 9-1 /108, 7-8=-	-77/63, 11-12=-117/ 0=-122/108, 121/95 78/174, 4 10- 250/4	108, 108, 10	joint 11 and) Beveled plate surface with	9, 139 Ib uplift at J 134 lb uplift at join e or shim requirec truss chord at join	oint 10, 1 It 13. I to provid It(s) 7, 8,	de full bearing 9, 10, 11.	, J				SCOT SEVI	T M.
WEDO	3-11=-26	9/170, 2-13	=-236/147	^{04,} 1'	 This truss is International 	designed in accor Residential Code	dance w	th the 2018 R502.11.1 a	nd			Bi	1 +	. g
NOTES					R802.10.2 ar	nd referenced star	ndard AN	ISI/TPI 1.				Vie	CALL	ama
1) Unbalance	ed root live l	oads have	been considered for	L	DAD CASE(S)	Standard						W7	DE 2001	018807 188

) Unbalanced root live loads have been considered for this design.

June 6,2023

E

SSIONAL

Job	Truss	Truss Type	Qty	Ply	
P210577	LG03	Lay-In Gable	1	1	Job Reference (optional)

Run: 8.63 S Nov 19 2022 Print: 8.630 S Nov 19 2022 MiTek Industries, Inc. Mon Jun 05 09:39:06 ID:LnFlcEBCpco0asXfQzA6RKz9aJB-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

		10-7-2	
Scale = 1:31.3			
Plate Offsets (X, Y): [2:0-2-9,Edge], [5:0-2-9,Edge]			

Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	1	(psf) 25.0 8.9/20.0 25.0 0.0 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC201	8/TPI2014	CSI TC BC WB Matrix-S	0.08 0.04 0.05	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 6	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 42 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP N 2x4 SP N 2x4 SPF Structura 6-0-0 oc 2-0-0 oc Rigid ceil bracing. (size)	lo.2 lo.2 No.3 I wood she purlins, exc purlins (6-0 ing directly 1=10-7-2, 8=10-7-2	athing directly applie ept -0 max.): 2-5. applied or 10-0-0 oc 6=10-7-2, 7=10-7-2 9=10-7-2 10=10-7-	2) ed or ; 3) ,	Wind: ASCE Vasd=91mpl Ke=1.00; Ca exterior zone and right exp exposed;C-C reactions sh DOL=1.60 Truss desig only. For st see Standard or consult qu	7-16; Vult=115m; n; TCDL=6.0psf; E t. II; Exp C; Enclose and C-C Exterior bosed ; end vertica c for members and bwn; Lumber DOL ned for wind loads ids exposed to wind Industry Gable E talified building de	oh (3-sec GCDL=6. sed; MW (2E) zor al left and forces =1.60 pl in the p nd (norm ind Deta signer a	cond gust) Opsf; h=35ft; FRS (envelop FRS (envelop e; cantilever I d right & MWFRS for ate grip lane of the tru al to the face ils as applicat s per ANSI/TF	be) left liss), ble, PI 1.					
	Max Horiz Max Uplift Max Grav	1=63 (LC 1=-28 (LC 7=-28 (LC 9=-47 (LC 1=137 (LC (LC 32), 8 32), 10=2	1) 11) 15), 6=-20 (LC 15), 15), 8=-49 (LC 11), 10), 10=-44 (LC 11), 2 (LC 31), 9=24 23 (LC 31), 9=24) 5) 7=222 6) 7 (LC 7)	ICLL: ASCE 7-16; PT=25.0 psf (root LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf; Pf=18.9 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat C; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10, Lu=50-0-0 Provide adequate drainage to prevent water ponding. Gable requires continuous bottom chord bearing. Gable studs spaced at 2-0-0 oc.									
FORCES	(lb) - Max Tension	kimum Corr	pression/Maximum	8) 9)	This truss ha chord live loa Provide med	is been designed ad nonconcurrent hanical connectio	for a 10. with any n (by oth	0 psf bottom other live loa ers) of truss to	ds. o					
TOP CHORD	1-2=-126 4-5=-78/6	/59, 2-3=-7 62, 5-6=-12	8/62, 3-4=-78/62, 1/39	•,	bearing plate	capable of withst	anding 2	28 lb uplift at jo	oint				000	alle
BOT CHORD	1-10=-16 7-8=-17/5	/49, 9-10=- 52, 6-7=-17	17/52, 8-9=-17/52, /52	1(at joint 8, 47	Ib uplift at joint 9 a	and 44 lt	uplift at joint	10.				TE OF I	MISSO
WEBS	5-7=-167 2-10=-16	/46, 4-8=-2 8/65	12/71, 3-9=-208/69,	i c	International R802.10.2 a	Residential Code	sections	R502.11.1 a	nd			Ø	S SCOT	TM.
NOTES 1) Unbalance this design	ed roof live n.	loads have	been considered for	. 11	 11) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord. LOAD CASE(S) Standard 									

PE-2001018807

E

June 6,2023

SSIONAL

O,

Job	Truss	Truss Type	Qty	Ply	
P210577	LG04	Lay-In Gable	1	1	Job Reference (optional)

Run: 8.63 S Nov 19 2022 Print: 8.630 S Nov 19 2022 MiTek Industries, Inc. Mon Jun 05 09:39:07 ID:WuPvw_K5D?BSPYtnZnshOfz9aJ0-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:43.3

Loading	(psf)	Spacing	2-0-0	CSI		DE							
TCLL (roof)	25.0	Plate Grin DOI	1 15	L TC	0.08								

Loading	(ps	sf) S	pacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP		
TCLL (roof)	25	.0 P	Plate Grip DOL	1.15		TC	0.08	Vert(LL)	n/a	-	n/a	999	MT20	197/144		
Snow (Pf/Pg)	18.9/20	.0 L	umber DOL	1.15		BC	0.03	Vert(TL)	n/a	-	n/a	999				
TCDL	25	.0 R	Rep Stress Incr	YES		WB	0.07	Horiz(TL)	0.00	6	n/a	n/a				
BCLL	0	.0 C	Code	IRC2018	3/TPI2014	Matrix-S										
BCDL	10	.0											Weight: 48 lb	FT = 20%	_	
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD	2x4 SP No.2 2x4 SP No.2 2x4 SP No.2 2x4 SPF No.3 Structural wood	l sheath	ing directly applied	2) d or	 2) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=35ft; Ke=1.00; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DDL=1.60 14) Graphical purlin representation does not depict 1 or the orientation of the purlin along the top and bottom chord. LOAD CASE(S) Standard 											
BOT CHORD	6-0-0 oc purlins 2-0-0 oc purlins Rigid ceiling dir	, excep (6-0-0 ectly ap	ot end verticals, an max.): 2-5. plied or 10-0-0 oc	d 3)	DOL=1.60 Truss desigr only. For stu see Standard	ned for wind loads ds exposed to wi I Industry Gable E	s in the p nd (norm End Deta	ane of the tru al to the face	iss), ole,							
REACTIONS	(size) 1=9-' 8=9-' 11=9	1-11, 6= 1-11, 9= -1-11, 1	9-1-11, 7=9-1-11, 9-1-11, 10=9-1-11 2=9-1-11	, 4)	or consult qualified building designer as per ANSI/TPI 1. 4) TCLL: ASCE 7-16; Pr=25.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf; Pf=18.9 psf (Lum DOL=1.15 Plate DOL=1.15). Ic=1.0 : Pourb Cot C: Eully											
	Max Horiz 1=10 Max Uplift 1=-10 8=-4 10=-4 12=-5	1 (LC 1) 01 (LC 1) (LC 11) 45 (LC 1 95 (LC 1	3) 15), 6=-63 (LC 15), 1, 9=-47 (LC 11), 11), 11=-16 (LC 10 11)	5) 6) (), 7)	Exp.; Ce=0.9 Provide adeq Gable require Truss to be fu braced again	; Cs=1.00; Ct=1.1 juate drainage to es continuous bot ully sheathed fron st lateral moveme	10, Lu=50 prevent tom chor n one fac ent (i.e. d)-0-0 water ponding d bearing. e or securely iagonal web)	j.							
	Max Grav 1=12 7=31 (LC 3 (LC 1	3 (LC 2 (LC 5), 32), 10≕ 13), 12=	7), 6=133 (LC 27), 8=206 (LC 33), 9= 246 (LC 33), 11=3 184 (LC 26)	=254 8) 7 9)	Gable studs s This truss has chord live loa	spaced at 2-0-0 o s been designed id nonconcurrent int(s) 6 considers	ic. for a 10.0 with any) psf bottom other live loa	ds.					all		
FORCES	(lb) - Maximum Tension	Compre	ession/Maximum	10	using ANSI/T	PI 1 angle to grai	in formula	a. Building					TE OF I	MISSO		
TOP CHORD	1-2=-172/158, 2 4-5=-120/121, 5	2-3=-120 5-6=-150	0/121, 3-4=-120/12 0/122, 6-7=0/0	21, 11) Provide mech	nanical connection	n (by oth	ers) of truss t	0 oint			A	ST SCOT	TM.		
BOT CHORD	1-12=-49/58, 11	I-12=-46 9=-28/3	6/69, 10-11=-28/39),	6, 101 lb uplit	ft at joint 1, 16 lb	uplift at jo	bint 11, 4 lb u	plift			R	SEV			
WEBS	5-8=-169/38, 4- 2-12=-148/98	9=-213/	70, 3-10=-210/67,	10	at joint 8, 47 95 lb uplift at	joint 12.	45 ID UP	iπ at joint 10 : de full bearing	and			B	cott.	South		
NOTES				12	surface with t	truss chord at join	t(s) 1, 12		9			87	DE 2001	BER 018807		

- Unbalanced roof live loads have been considered for 1) this design.
- 13) This truss is designed in accordance with the 2018
- International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

June 6,2023

SIONAL

E

MiTek 16023 Swingley Ridge Rd Chesterfield, MO 63017

Job	Truss	Truss Type	Qty	Ply	
P210577	LG05	Lay-In Gable	1	1	I58733488 Job Reference (optional)

Run: 8.63 S Nov 19 2022 Print: 8.630 S Nov 19 2022 MiTek Industries, Inc. Mon Jun 05 09:39:07 ID:iYdwMNtKdqs4ITpQikAEj8z9aIJ-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:59.6

Plate Offsets (X, Y): [6:0-1-7,Edge], [12:Edge,0-3-1], [13:Edge,0-1-8]

Loading TCLL (roof) Snow (Pf/Pg)	18.9	(psf) 25.0 9/20.0	Spacing Plate Grip DOL Lumber DOL	2-0-0 1.15 1.15		CSI TC BC	0.80 0.27	DEFL Vert(LL) Vert(TL)	in n/a n/a	(loc) - -	l/defl n/a n/a	L/d 999 999	PLATES MT20	GRIP 244/190				
TCDL		25.0	Rep Stress Incr	YES		WB	0.42	Horiz(TL)	0.00	13	n/a	n/a						
BCLL		0.0	Code	IRC201	8/TPI2014	Matrix-S												
BCDL		10.0											Weight: 139 lb	FT = 20%				
LUMBER TOP CHORD BOT CHORD WEBS	2x4 SP No.: 2x4 SP No.: 2x4 SPF No	2 2 0.3		T	OP CHORD 1 4 7 1	-2=-598/605, 2-3=- I-5=-258/298, 5-6=- Z-8=-162/176, 8-9=- 0-11=-162/176, 11	497/51 180/14 162/17 -12=-1	7, 3-4=-374/4 9, 6-7=-162/1 6, 9-10=-162/ 62/176,	03, 76, /176,	8) Ga 9) Th cho 10) Pro	ble studs is truss ha ord live lo ovide med	space as bee ad nor chanica	ed at 2-0-0 oc. In designed for a Inconcurrent with a al connection (by	10.0 psf bottom any other live loads. others) of truss to				
OTHERS	2x4 SPF No	o.3			1	2-13=-148/102				bea	aring plat	e capa	ble of withstandi	ng 152 lb uplift at				
BRACING				B	OT CHORD 1	-23=-161/176, 22-2	23=-16	1/176,		joir	nt 1, 21 lb	uplift	at joint 13, 51 lb u	uplift at joint 14, 44 lb				
TOP CHORD	Structural w 6-0-0 oc pu 2-0-0 oc pu	vood shea Irlins, exc Irlins (6-0-	athing directly applied cept end verticals, and 0 max.): 6-12.	l or d	2 1 1	20-22=-161/176, 19-20=-161/176, uplift at joint 15, 41 lb uplift at joint 16, 45 lb uplift 18-19=-161/176, 17-18=-161/176, 17, 58 lb uplift at joint 18, 124 lb uplift at joint 19, 16-17=-161/176, 15-16=-161/176, uplift at joint 22 and 129 ll												
BOT CHORD	Rigid ceiling	g directly	applied or 10-0-0 oc	W	'EBS 1	1-14=-259/117, 10	-14=-1 -15=-1	95/72,		11) Th	is truss is	desig	ned in accordanc	e with the 2018				
WEBS	1 Row at m	idpt	12-13, 11-14, 10-15, 9-16, 8-17, 7-18		5	9-16=-201/65, 8-17=-200/70, 7-18=-204/82, 5-19=-338/216, 4-20=-270/182, 2-22-256/167, 2-22-270/182, 8802.10.2 an								sidential Code sections R502.11.1 and referenced standard ANSI/TPI 1. representation does not depict the size				
REACTIONS	(size) 1 1 1 2 2 Max Horiz 1 Max Uplift 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	$\begin{array}{llllllllllllllllllllllllllllllllllll$				 3-22=-256/167, 2-23=-222/146 NOTES 1) Unbalanced roof live loads have been considered for this design. 2) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=35ft; Ke=1.00; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) 0-4-0 to 5-7-0, Interior (1) 5-7-0 to 7-11-1, Exterior(2R) 7-11-1 to 14-11-14, Interior (1) 14-11-14 to 19-8-12 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOI = 1.60 							LOAD CASE(S) Standard					
FORCES	Max Grav 1=289 (LC 11), 13=109 (LC 2), 14=274 (LC 33), 15=234 (LC 2), 16=241 (LC 2), 17=240 (LC 33), 18=244 (LC 33), 19=262 (LC 25), 20=272 (LC 25), 22=273 (LC 25), 23=244 (LC 25) (lb) - Maximum Compression/Maximum Tension				for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.) TCLL: ASCE 7-16; Pr=25.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf; Pf=18.9 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat C; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10, Lu=50-0-0) Provide adequate drainage to prevent water ponding.								ER 018807					

- All plates are 1.5x4 MT20 unless otherwise indicated.
- 6)
- 7) Gable requires continuous bottom chord bearing.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Contraction

June 6,2023

Job	Truss	Truss Type	Qty	Ply	
P210577	LG06	Lay-In Gable	1	1	Job Reference (optional)

2-10-13

2-10-13

Premier Building Supply (Springhill, KS), Spring Hills, KS - 66083,

Run: 8.63 S Nov 19 2022 Print: 8.630 S Nov 19 2022 MiTek Industries, Inc. Mon Jun 05 09:39:08 ID:2WRpP4wTSMUMPEiOVHmPQCz9alE-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

11-8-12 1-7-8

11-0-11 1-3-6 0-6-13

9-9-5

6-10-8

	11-8-12
Scale = 1:38.1	
Plate Offsets (X_Y): [3:0-1-7 Edge] [7:0-2-9 Edge] [8:0-2-0 0-0-2	31

	Λ, Τ). [5.0	n-r,∟ugej,	[7.0-2-3,Luge], [0.0-	2-0,0-0-3]									
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	1	(psf) 25.0 8.9/20.0 25.0 0.0 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC201	8/TPI2014	CSI TC BC WB Matrix-S	0.08 0.04 0.06	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 9	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 52 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP N 2x4 SP N 2x4 SPF I Structural 6-0-0 oc p 2-0-0 oc p Rigid ceili bracing. (size) Max Horiz Max Uplift Max Grav	o.2 o.2 No.3 I wood shea ourlins, exc ourlins (6-0 ing directly 1=11-8-12 11=11-8-1 13=11-8-1 13=11-8-1 13=11-8-1 13=11-8-1 10=-12 (L1 10=-12 (L1 10=-12 (L1 10=-245 (L1 12=-245 (L1 12=-245 (L1 12=-245 (L1))))	athing directly applie ept -0 max.): 3-7. applied or 10-0-0 oc 2, 9=11-8-12, 10=11- 12, 12=11-8-12, 10=11- 12, 12=11-8-12, 10 13, 11=-50 (LC 15), C 10), 11=-50 (LC 15), C 10), 13=-52 (LC 11) C 10), 13=-52 (LC 11) C 14) 2 26), 9=162 (LC 26) C 32), 13=223 (LC 3 C 32), 13=223 (LC 3)	2 d or 3 8-12, 4 1), 5 , 6 31), 7 31), 7 31), 9	Wind: ASCE Vasd=91mpf Ke=1.00; Ca exterior zone Exterior(2R) Exterior(2R) right exposed for members Lumber DOL Truss design only. For stu see Standard or consult qu TCLL: ASCE Plate DOL=1 DOL=1.15 PI Exp.; Ce=0.5 Provide aded All plates are Gable requiri Gable studs This truss ha	7-16; Vult=115mpl ; TCDL=6.0psf; BC t. II; Exp C; Enclose and C-C Exterior(2-11-1 to 7-9-9, Int 9-9-9 to 11-6-9 zor d; end vertical left; and forces & MWF =1.60 plate grip DC ned for wind loads ids exposed to wind d Industry Gable Er alified building des 7-16; Pr=25.0 psf; 15); Pg=20.0 psf; 15); Pg=20.0 psf; late DOL=1.15); Is= b; Cs=1.00; Ct=1.10; uate drainage to p 4.5x4 MT20 unless es continuous botto spaced at 2-0-0 oc s been designed for a d nonconcurrent w	h (3-sec CDL=6.) ed; MW 2E) 0-4 erior (1 ee; cant and right FRS for DL=1.60 in the p d (norm hd Deta igner a: (roof LL Pf=18.2; =1.0; Rc 0, Lu=5) revent is softer om chor - or of a 10.4 or of a 10.4 o	cond gust) Opsf; h=35ft; IFRS (envelop -0 to 2-11-1,) 7-9-9 to 9-9-9 (lever left and ht exposed;C- reactions sho -) lane of the tru, al to the face ils as applical s per ANSI/TF .: Lum DOL= - 2 psf (Lum bugh Cat C; F)-0-0 water ponding wise indicated d bearing.	9, C wwn; ss , ole, 11. 1.15 ully I.					
FORCES	(lb) - Max Tension	imum Com	pression/Maximum	1) Provide med	hanical connection	(by oth	ers) of truss t	D D				OF I	MISS
TOP CHORD	1-2=-164/ 4-5=-112/ 7-8=-128/	/93, 2-3=-1 /93, 5-6=-1 /85, 8-9=-1	53/100, 3-4=-112/93, 12/93, 6-7=-112/93, 60/76	,	1, 58 lb uplift at joint 11, 53	at joint 9, 12 lb up 3 lb uplift at joint 12	lift at joi 2, 52 lb	nt 10, 50 lb u uplift at joint 1	olift 3			B	STATE SCOT	T M.
BOT CHORD	1-14=-13/ 11-12=-1:	′53, 13-14= 3/53, 10-11	-13/53, 12-13=-13/53 =-13/53, 9-10=-13/53	3, 1 3 1	1) This truss is	designed in accord	lance w	ith the 2018 8502 11 1 2	nd			8.	SEVI	
WEBS	7-10=-124 4-13=-183	4/26, 6-11= 3/77, 2-14=	-215/73, 5-12=-205/ -195/112	5/76, R802.10.2 and referenced standard ANSI/TPI 1. 12) Graphical purific representation does not denict the size										Entre
NOTES					or the orients	ation of the nurlin a	long the	ton and/or	120		-	N	T NUM	BER
1) Unbalance	ed roof live l	oads have	been considered for		hottom chore		iong int					N	ON PE-2001	018807
this design	this design									18A				

LOAD CASE(S) Standard

E

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

MiTek 16023 Swingley Ridge Rd Chesterfield, MO 63017

Job	Truss	Truss Type	Qty	Ply		
P210577	LG07	Lay-In Gable	1	1	Job Reference (optional)	158733490

Run: 8.63 S Nov 19 2022 Print: 8.630 S Nov 19 2022 MiTek Industries, Inc. Mon Jun 05 09:39:08 ID:HFTDI916K7d5_cu6WgQXH5z9al5-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

Scale = 1:79.6

Plate Offsets ((X, Y): [1:0-0-7	,0-0-14]], [3:0-1-7,Edge], [1	0:Edge,0	-2-0], [11:Edge	,0-2-0]											
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	18.9/	(psf) 25.0 20.0 25.0 0.0 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC20	18/TPI2014	CSI TC BC WB Matrix-S	0.86 0.40 0.17	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a -0.01	(loc) - - 11	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 122 lt	GRIP 244/190 D FT = 20%			
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD	2x4 SP No.2 2x4 SP No.2 2x4 SP No.2 2x4 SPF No.3 Structural wo 6-0-0 oc puri	3 ood shea ins, exc	athing directly appli sept end verticals, a	ied or and	BOT CHORD WEBS NOTES 1) Wind: ASC Vasd=91m	1-18=-310/321, 17 16-17=-306/327, 1 14-15=-197/216, 1 12-13=-197/216, 1 9-12=-287/153, 8- 6-16=-204/69, 5-1 E 7-16; Vult=115mp	7-18=-30 5-16=-3 3-14=-1 1-12=-1 13=-202 7=-195/9 ph (3-sec	4/330, 03/333, 97/216, 97/216 /77, 7-14=-19 99, 4-18=-408 cond gust) 0psf: b=35ft:	98/63, 3/240	 Beveled plate or shim required to provide full bearing surface with truss chord at joint(s) 1, 16, 17, 18. This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord. LOAD CASE(S) Standard 							
BOT CHORD	Rigid ceiling bracing, Ex 6-0-0 oc brac 1 Row at mid	directly cept: cing: 1-1	applied or 10-0-0 c [8,16-17. 10-11, 9-12, 8-13,	ос 7-14,	Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=35ft; Ke=1.00; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) 0-2-6 to 1-8-13, Exterior(2R) 1-8-13 to 8-7-5, Interior (1) 8-7-5 to 14-5-9 zone; cantilever left and right exposed ; end vertical left												
REACTIONS	(size) 1= 12 14 16 18 Max Horiz 1= Max Uplift 11 13 15 17 Max Grav 1= 12 14 16 18	14-4-12 =14-4-1 =14-4-1 =14-4-1 =339 (LC =-22 (LI =-120 (I =-120 (I =-81 (LI =-81 (LI =-81 (LI =248 (L =231 (L =245 (L =318 (L	6-16 2, 11=14-4-12, 2, 13=14-4-12, 2, 15=14-4-12, 2, 17=14-4-12, 2 13) C 11), 12=-57 (LC C 11), 14=-61 (LC C 10), 16=-50 (LC C 10), 16=-168 (LC 2), 11=94 (LC 2), C 2), 13=243 (LC 2), C 2), 15=170 (LC 2), C 2), 17=214 (LC 2), C	10), 10), 211), 211) 2), 13), 2),	and right e: MWFRS fo grip DOL=1 2) Truss desi only. For s see Standa or consult c 3) TCLL: ASC Plate DOL= DOL=1.15 Exp.; Ce=0 4) Provide ad 5) All plates a 6) Gable requ 7) Truss to be braced aga	d forces & DOL=1.60 pla lane of the tri al to the face ils as applica is per ANS/IT .: Lum DOL= psf (Lum bugh Cat C; F 0-0-0 water pondin wise indicate d bearing. te or securely liagonal web)	ate uss a), bble, PI 1. 1.15 Fully g. d. /				STATE OF STATE SCOT	MISSOUR TT M. VIER					
FORCES	(Ib) - Maximu Tension 1-2=-254/234 4-5=-197/215 7-8=-197/215 10-11=-193/1	im Com 4, 2-3=-2 5, 5-6=- 5, 8-9=- 159	pression/Maximum 237/244, 3-4=-197/ 197/215, 6-7=-197/ 197/215, 9-10=-197) /215, /215, 7/215,	 Gable stud: This truss h chord live h Provide me bearing pla 11, 120 lb u uplift at join 16, 81 lb up 	ble studs spaced at 2-0-0 oc. s truss has been designed for a 10.0 psf bottom rd live load nonconcurrent with any other live loads. vide mechanical connection (by others) of truss to aring plate capable of withstanding 22 lb uplift at joint 120 lb uplift at joint 15, 57 lb uplift at joint 12, 52 lb ift at joint 13, 61 lb uplift at joint 14, 50 lb uplift at joint .81 lb uplift at joint 17 and 168 lb uplift at joint 18.							PE-200	AL ENGLIS			

June 6,2023

Job	Truss	Truss Type	Qty	Ply	
P210577	LG08	Lay-In Gable	1	1	Job Reference (optional)

Run: 8.63 S Nov 19 2022 Print: 8.630 S Nov 19 2022 MiTek Industries, Inc. Mon Jun 05 09:39:09 ID:eCH6Lt5F9fFN4Nm4JD0i_9z9al0-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Scale = 1:70.2

Plate Offsets (X, Y): [5:0-6-15,0-0-1	5], [6:0-2-8,0-0-6]											
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 25.0 13.9/20.0 25.0 0.0 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018	3/TPI2014	CSI TC BC WB Matrix-S	0.36 0.13 0.39	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 10	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 95 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD WEBS REACTIONS	2x4 SP No.2 2x4 SP No.2 2x4 SPF No.3 2x4 SPF No.3 Structural wood shea 6-0-0 oc purlins, exx Rigid ceiling directly bracing. 1 Row at midpt (size) 1=12-9-5, 12=12-9-5 Max Horiz 1=-328 (L Max Uplift 1=-201 (L 11=-186 (L 11=-203 (LC 11=280 (L 13=270 (L 15=308 (L	athing directly applied cept end verticals. applied or 10-0-0 oc 5-14, 6-13 10=12-9-5, 11=12-9 5, 13=12-9-5, 14=12-5 5, 16=12-9-5 C 12) C 14), 10=-33 (LC 16 LC 17), 15=-472 (LC LC 12) C 13), 10=105 (LC 32 C 30), 12=285 (LC 3 C 23), 14=645 (LC 1 LC 23), 14=645 (LC 1 LC 23), 16=300 (LC 3	1) 2) d or -5, 3) 9-5, 3) 17), 16), 5) 30), 6) 2), 7) 30), 6) 2), 7) 30) 8)	Unbalanced this design. Wind: ASCE Vasd=91mph Ke=1.00; Car exterior zone Interior (1) 2- zone; cantile and right exp MWFRS for I grip DOL=1.6 Truss design only. For stu see Standard or consult qu TCLL: ASCE Plate DOL=1 DOL=1.15 Pl Exp.; Ce=0.9 Unbalanced design. All plates are Gable requirt Gable stude	7-16; Vult=115mp 7-16; Vult=115mp 7-16; Vult=115mp 7-16; Vult=115mp 7-16; Problem 7-1 to 5-5-0, Exter ver left and right e vosed; C-C for men reactions shown; I 30 med for wind loads 1d ndustry Gable E alified building de: 7-16; Pr=25.0 psf; 15); Pg=20.0 psf; 15); Pg=20.0 psf; 15); Pg=20.0 psf; 15); Cs=1.00; Ct=1.1 snow loads have I e 1.5x4 MT20 unle es continuous bott spaced at 2-0-00	ve been of oh (3-sec CDL=6.0 CDL=6.0 (2E) 0-4 (2E) 0-4 (2E) 0-4 vertor(2E) ve	considered fo cond gust) ppsf; h=35ft; FRS (envelog to to 2-7-1, 5-5-0 to 12-7- ; end vertical d forces & DOL=1.60 pla lane of the tru al to the face) ils as applicat s per ANS/TFF .: Lum DOL= ⁻ 0 psf (Lum ough Cat C; F asidered for the wise indicated d bearing.	r 12 left ite iss), ole, 11. 1.15 iully nis				50.00	
FORCES	(lb) - Maximum Com Tension 1-2=-349/373, 2-3=-/ 4-5=-459/815, 5-6=-2	pression/Maximum 423/496, 3-4=-387/54 204/407, 6-7=-265/46	9) 45, 10 69,	This truss ha chord live loa Provide mech bearing plate	s been designed f ad nonconcurrent hanical connectior capable of withst	for a 10.0 with any n (by oth anding 2	0 psf bottom other live load ers) of truss to 01 lb uplift at	ds. o			Å	STATE OF I	T M.
BOT CHORD	7-8=-185/270, 8-9=- 1-16=-81/103, 15-16 14-15=-81/103, 13-1 12-13=-81/103, 11-1 10-11=-81/103	101/95, 9-10=-94/67 =-81/103, 4=-81/103, 2=-81/103,	11	joint 1, 33 lb lb uplift at join joint 12 and) This truss is	uplift at joint 10, 3 nt 15, 190 lb uplift 186 lb uplift at join designed in accorr Residential Code	34 lb upl at joint t 11. dance w	ift at joint 14, 16, 155 lb upli ith the 2018	472 ift at		3	K	oto NUM	BER
WEBS	5-14=-788/373, 4-15 2-16=-277/257, 6-13 8-11=-212/222	i=-447/778, i=-230/8, 7-12=-250/2	^{248,} LC	R802.10.2 ar	Residential Code nd referenced star Standard	sections	ISI/TPI 1.	na			As .	PE-2001	11 ENGLAS

June 6,2023

Page: 1

Job	Truss	Truss Type	Qty	Ply	
P210577	LG09	Lay-In Gable	1	1	I58733492 Job Reference (optional)

Run: 8.63 S Nov 19 2022 Print: 8.630 S Nov 19 2022 MiTek Industries, Inc. Mon Jun 05 09:39:10 ID:Ev7OHfG1sz0OmXrm8AG_Y6z9aHo-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

Scale = 1:42.8

Plate Offsets (X, Y): [1:0-2-15,0-1-8], [4:0-2-14,Edge], [5:0-4-0,0-1-6], [6:0-2-0,0-1-1]

DOL=1.60

Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL	1.	(psf) 25.0 8.9/20.0 25.0 0.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018	3/TPI2014	CSI TC BC WB Matrix-P	0.21 0.06 0.08	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 5	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20	GRIP 244/190	
LUMBER TOP CHORD BOT CHORD OTHERS BRACING TOP CHORD BOT CHORD	2x4 SP N 2x4 SP N 2x4 SPF Structura 6-0-0 oc 2-0-0 oc Rigid ceil bracing	o.2 o.2 No.3 I wood she purlins, exc purlins (6-0 ing directly	athing directly applie ept -0 max.): 1-4. applied or 10-0-0 oc	3) 4) d or 5) 6)	Truss desig only. For stu- see Standarr or consult qu TCLL: ASCE Plate DOL=1 DOL=1.15 P Exp.; Ce=0.5 Provide adec Gable requir	I ned for wind loa ds exposed to d Industry Gabli alified building 7-16; Pr=25.0 .15); Pg=20.0 p late DOL=1.15) b; Cs=1.00; Ct= quate drainage es continuous b	ads in the pl wind (norm e End Detai designer as psf (roof LL psf; Pf=18.9 ; Is=1.0; Rc 1.10, Lu=50 to prevent v pottom chor	ane of the tru al to the face Is as applica per ANSI/Ti : Lum DOL= upsf (Lum ough Cat C; F)-0-0 vater ponding d bearing.	uss), ble, ⊃I 1. 1.15 Fully g.				weight. 33 lb	11 = 20%	
REACTIONS	(size) Max Horiz Max Uplift Max Grav	1=8-0-15, 7=8-0-15, 1=-177 (L 1=-12 (LC 6=-40 (LC 9=-54 (LC 1=144 (LC (LC 13), 7 33), 9=33	5=8-0-15, 6=8-0-15 8=8-0-15, 9=8-0-15 C 15) 11), 5=-45 (LC 15), 15), 8=-38 (LC 10), 14) C 2), 5=135 (LC 27), =131 (LC 2), 8=233 5 (LC 33)	 6) Gable requires continuous bottom chord bearing. 7) Gable studs spaced at 2-0-0 oc. 8) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 12 lb uplift at joint 1, 40 lb uplift at joint 6, 45 lb uplift at joint 5, 38 lb uplift at joint 8 and 54 lb uplift at joint 9. 10) Beveled plate or shim required to provide full bearing surface with truss chord at joint(s) 1, 7, 8, 9. 11) This truss is designed in accordance with the 2018 											
FORCES TOP CHORD BOT CHORD	(Ib) - Max Tension 1-2=-100, 4-5=-112, 1-9=-81/9 6-7=-66/9	(135, 2-3=- /65)8, 8-9=-73,)9, 5-6=-58,	pression/Maximum 99/134, 3-4=-100/12 /100, 7-8=-75/99, /82	11 7, 12) This truss is International R802.10.2 a) Graphical pu or the orienta bottom chore	designed in acc Residential Co nd referenced s irlin representat ation of the purl d.	cordance wi ide sections standard AN tion does no in along the	th the 2018 R502.11.1 a ISI/TPI 1. Ist depict the s top and/or	ind size			ļ	TE OF I	MISSO	
WEBS NOTES 1) Unbalanc: this desig 2) Wind: ASG Vasd=91n Ke=1.00; exterior zc and right c exposed;(reactions	4-7=-95/5 ed roof live l n. CE 7-16; Vu nph; TCDL= Cat. II; Exp one and C-C exposed ; ei c-C for men shown; Lurr	i7, 3-8=-19 loads have lt=115mph -6.0psf; BC C; Enclose C Corner (3 nd vertical I obers and fe ber DOL=1	8/178, 2-9=-279/261 been considered for (3-second gust) DL=6.0psf; h=35ft; d; MWFRS (envelop) zone; cantilever left eft and right proces & MWFRS for .60 plate grip	e)	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	Stanuaru					-	*	SCOT SEVI NUM PE-2001	I ENCIDE	7

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1** Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

MiTek 16023 Swingley Ridge Rd Chesterfield, MO 63017

5 June 6,2023

Job	Truss	Truss Type	Qty	Ply	
P210577	LG10	Lay-In Gable	1	1	I58733493 Job Reference (optional)

Run: 8.63 S Nov 19 2022 Print: 8.630 S Nov 19 2022 MiTek Industries, Inc. Mon Jun 05 09:39:10 ID:32UfYjLnRpmYUSIwUQNOoNz9aHi-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:57.4

Plate Offsets ((X, Y): [6:0-	-2-12,Edge	, [14:0-2-0,0-1-1]											
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	18	(psf) 25.0 8.9/20.0 25.0 0.0 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC201	8/TPI2014	CSI TC BC WB Matrix-S	0.39 0.17 0.40	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 8	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 75 lb	GRIP 197/144 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP N 2x4 SP N 2x4 SPF I 2x4 SPF I Structural 5-10-4 oc 2-0-0 oc p Rigid ceili bracing. (size) Max Horiz Max Uplift Max Grav	o.2 o.2 No.3 No.3 I wood shea purlins, e: purlins, (e:o ing directly 8=11-1-14 11=11-1-1 15=11-1-1 15=11-1-1 15=-248 (I 10=-254 (I 12=-45 (L 10=327 (L))))))))))))))))))))))))))))))))))))	athing directly applied ccept end verticals, ar -0 max.): 1-6. applied or 10-0-0 oc 4, 9=11-1-14, 10=11-1 4, 12=11-1-14, 4, 14=11-1-14, 4 LC 10) C 13), 9=-457 (LC 15) LC 10), 13=-61 (LC 10) LC 15), 15=-94 (LC 1: C 10), 13=-61 (LC 10) LC 15), 15=-28 (LC 1: C 26), 11=233 (LC 27) C 20, 13=242 (LC 2), C 13), 15=146 (LC 28)	1) l or hd 2) -14, 3) (, 4) (), 5) (), 7) (), 7) (), 8) (), 8) (), 8)	Wind: ASCE Vasd=91mph Ke=1.00; Cat exterior zone and right exp exposed;C-C reactions sho DOL=1.60 Truss design only. For stu see Standarc or consult qu TCLL: ASCE Plate DOL=1 DOL=1.15 Pl Exp.; Ce=0.9 Provide adec Gable requirr Gable studs 3 This truss ha chord live loa Provide mech bearing plate 15, 397 lb up uplift at ioint	7-16; Vult=115mph ; TCDL=6.0psf; BC t. II; Exp C; Enclose and C-C Corner (2 osed ; end vertical for members and own; Lumber DOL= ned for wind loads i ds exposed to wind ds exposed to wind ds exposed to wind ds exposed to wind ds exposed to wind d Industry Gable Er alified building des 7-16; Pr=25.0 psf; 15); Pg=20.0 psf; late DOL=1.15); Is= ; Cs=1.00; Ct=1.10 juate drainage to p es continuous botto spaced at 2-0-0 oc s been designed for d nonconcurrent w hanical connection capable of withsta lift at joint 8, 162 lb 13, 45 lb uplift at jo	h (3-sec CDL=6.) ed; MW 3) zone left and forces a 1.60 pl in the p d (norm and Deta igner a: (roof LL Pf=18.9 =1.0; RC, Lu=50 revent or a 10.0 vith any (by oth and 20 and 20 vith any (b) vith any (b)	cond gust) Dpsf; h=35ft; FRS (envelop cantilever lef d right & MWFRS for ate grip lane of the tru, al to the face ³ ils as applical s per ANSI/TF .: Lum DOL=' D psf (Lum ough Cat C; F)-0-0 water ponding d bearing. D psf bottom other live loa ers) of truss t 8 lb uplift at j 4 lb uplift at j	be) ft				S-R OF I	AISS-
FORCES	(lb) - Max Tension 1-15=-88/	imum Com /106, 1-2=-′	pression/Maximum 116/126, 2-3=-116/12	9) 6,	11, 254 lb up Beveled plate	lift at joint 10 and 4 e or shim required t	157 lb u to provi (s) 15	plift at joint 9. de full bearing	g			Ø	ST SCOT	T.M.
BOT CHORD	3-4=-116/ 6-7=-338/ 14-15=-29 12-13=-3 10-11=-3 8-9=-310/	/126, 4-5=- [,] /329, 7-8=- 94/356, 13- 10/362, 11- 10/362, 9-1 /362	116/126, 5-6=-116/12 958/865 14=-310/362, 12=-310/362, 0=-310/362,	6, 10 11	 surface with truss chord at joint(s) 15. 10) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. 11) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord. 									
WEBS	2-13=-207 4-11=-194	7/187, 3-12 4/180, 5-10	=-202/180, =-525/545, 7-9=-629/	₆₄₉ LC	DAD CASE(S)	Standard						Ŷ	SSIONA	L ENGILE

June 6,2023

Job	Truss	Truss Type	Qty	Ply	
P210577	LG11	Lay-In Gable	1	1	I58733494 Job Reference (optional)

Run: 8.63 S Nov 19 2022 Print: 8.630 S Nov 19 2022 MiTek Industries, Inc. Mon Jun 05 09:39:11 ID:v0E5nDof8h_SAiTtxyyYsyz9NX8-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

<u>6-0-0</u> 6-0-0 <u>7-10-5</u> 1-10-5

Scale = 1:63.2 Plate Offsets (X, Y): [3:0-2-8,0-1-12], [6:0-1-3,Edge], [7:0-2-4,0-1-8]

], [ete + e,==ge], [t+e	,	1									
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 25.0 18.9/20.0 25.0 0.0 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018	3/TPI2014	CSI TC BC WB Matrix-S	0.79 0.35 0.60	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 8	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 77 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD WEBS REACTIONS	2x4 SP No.2 2x4 SP No.2 2x4 SPF No.3 *Exce 2x4 SPF No.3 Structural wood she 5-5-6 oc purlins, exi 2-0-0 oc purlins (6-0 Rigid ceiling directly bracing. 1 Row at midpt (size) 8=7-10-5, 11=7-10-5 Max Horiz 12=-419 (Max Uplift 8=-618 (L 10=-69 (L 10=245 (L 10=246 (L 12=96 (L0))	pt* 12-1:2x4 SP No.2 athing directly applied cept end verticals, an -0 max.): 1-3. applied or 7-6-6 oc 1-12, 2-11 9=7-10-5, 10=7-10-5 , 12=7-10-5 LC 10) C 13), 9=-817 (LC 10 C 15), 11=-127 (LC 10 C 10) C 10), 9=788 (LC 13), C 26), 11=249 (LC 2 C 2)	1) 2 d or d 2) 5, 3) 0), 4) 0), 5) 6), 7) 8)	Wind: ASCE Vasd=91mpl Ke=1.00; Ca exterior zone and right exp exposed;C-C reactions shh DOL=1.60 Truss design only. For stu- see Standarro or consult qu TCLL: ASCE Plate DOL=1.15 P Exp.; Ce=0.5 Provide ader Gable requir Truss to be f braced agair Gable studs	7-16; Vult=115mpl 1; TCDL=6.0psf; BG 2. II; Exp C; Enclose and C-C Exterior(: osed ; end vertical 5 for members and own; Lumber DOL= 14 Industry Gable Er alified building des 7-16; Pr=25.0 psf; 15); Pg=20.0 psf; ate DOL=1.15); Is- 1; Cs=1.00; Ct=1.10; uate drainage to p pas continuous botto ully sheathed from st lateral movement spaced at 2-0-0 oc s been designed for	n (3-sec CDL=6.0 ed; MW 2E) zon left and forces & 1.60 pli in the pl d (norm nd Deta igner as (roof LL Pf=18.9 =1.0; Rc 0, Lu=50 revent v pom chor one fac t (i.e. d or a 10.0	ond gust))psf; h=35ft; FRS (envelop e; cantilever I right & MWFRS for ate grip ane of the tru at the face) Is as applicat s per ANS//TF : Lum DOL=1 psf (Lum ugh Cat C; F)-0-0 vater ponding d bearing. e or securely iagonal web). D psf bottom	ne) eft ss , ole, , 11. .15 .15 ully					
FORCES	(lb) - Maximum Com Tension	pression/Maximum	9)	chord live loa Provide mec	ad nonconcurrent w	ith any (by oth	other live load	ds.				CONT.	app
TOP CHORD	1-12=-185/149, 1-2= 3-4=-283/292, 4-5=- 6-7=-998/997, 7-8=-	-190/207, 2-3=-190/2 324/362, 5-6=-905/93 1534/1468	207, ³ 7 38,	bearing plate 12, 618 lb up	capable of withsta lift at joint 8, 127 lb	unding 2 uplift a	5 lb uplift at jo t joint 11, 69 l	bint b			6	THE OF M	AISSOLUS
BOT CHORD	11-12=-538/556, 10- 9-10=-538/556, 8-9=	11=-538/556, -49/56	10)) This truss is International	designed in accord Residential Code s	ance w	th the 2018 R502.11.1 a	nd			A	SCOT	ER
WEBS	2-11=-478/334, 4-10 5-9=-883/785, 7-9=-)=-243/130, 830/847	11)	R802.10.2 ar Graphical pu	nd referenced stand	dard AN does no	ISI/TPI 1. ot depict the s	ize					2 1
NOTES				or the orienta bottom chore	ation of the purlin al I.	long the	top and/or					PE 2001	K Terrer

LOAD CASE(S) Standard

SIONAL

E

June 6,2023

Job	Truss	Truss Type	Qty	Ply	
P210577	LG12	Lay-In Gable	1	1	I58733495 Job Reference (optional)

Run: 8.63 S Nov 19 2022 Print: 8.630 S Nov 19 2022 MiTek Industries, Inc. Mon Jun 05 09:39:11 ID:ULR3ssRJiyZ?k21A7GzyJrz9aF?-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

19-10-9

Scale = 1:52.3

Plate Offsets (X, Y): [5:0-2-8,Edge], [20:0-2-8,0-3-0]

Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 25.0 18.9/20.0 25.0 0.0 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC201	8/TPI2014	CSI TC BC WB Matrix-S	0.71 0.24 0.37	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 12	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 135 II	GRIP 244/190 D FT = 20%	
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD	2x4 SP No.2 2x4 SP No.2 2x4 SPF No.3 2x4 SPF No.3 Structural wood s 6-0-0 oc purlins, 2-0-0 oc purlins, (6)	heathing directly appli except end verticals, a -0-0 max.): 5-11.	T(B(ed or and	OP CHORD 1 7 1 OT CHORD 1 1 1 1 1	-2=-538/547, 2-3= -5=-228/250, 5-6= -8=-154/167, 8-9= 10-11=-154/167, 11 -21=-148/164, 19-3 18-19=-154/167, 17 6-17=-153/167, 13 12-13=-153/167	-437/45 -154/16 -12=-13 21=-15 -18=-14 -16=-14 -14=-14	5, 3-4=-332/3 7, 6-7=-154/ 7, 9-10=-154 39/100 4/167, 53/167, 53/167, 53/167,	364, 167, /167,	9) Pr be jo up 16 up at 10) Th	ovide me aring pla nt 1, 19 lk lift at join i, 46 lb up lift at join joint 21. is truss is cernationa	chanic te capa o uplift t 14, 4 lift at j t 19, 1 s desig al Resig	al connection (b able of withstan at joint 12, 48 ll 2 lb uplift at join oint 17, 109 lb u 27 lb uplift at join gned in accordau dential Code se	by others) of truss to ding 106 lb uplift at o uplift at joint 13, 45 l t 15, 40 lb uplift at join uplift at joint 18, 142 lb nt 20 and 127 lb uplift nce with the 2018 ctions R502,11.1 and	b it
BOT CHORD	Rigid ceiling direct bracing, Except: 6-0-0 oc bracing:	tly applied or 10-0-0 o 19-20,18-19.	ic W	/EBS 1 8 5	10-13=-241/111, 9- 3-15=-200/64, 7-16= 5-18=-304/188, 4-19	14=-200 =-199/6 9=-261/	0/71, 55, 6-17=-207 (165,	/70,	Ri 11) G or	302.10.2 a aphical p the orien	and ref urlin re tation (ferenced standa epresentation do of the purlin alo	Ird ANSI/TPI 1. Des not depict the size ng the top and/or	,
WEBS	1 Row at midpt	11-12		отго ³	3-20=-237/152, 2-2	1=-230/	146		bo	ttom cho	rd.	ndord		
REACTIONS	(size) 1=19-1 13=19- 15=19- 17=19- 19=19- 21=19- Max Horiz 1=334 Max Uplift 1=-106 13=-48 15=-42	0-9, 12=19-10-9, 10-9, 14=19-10-9, 10-9, 16=19-10-9, 10-9, 18=19-10-9, 10-9, 20=19-10-9, 10-9 (LC 11) (LC 12), 12=-19 (LC 1 (LC 10), 14=-45 (LC 1 (LC 10), 16=-40 (LC 1	N 1) 11), 11), 11),	 Wind: ASCE Vasd=91mph Ke=1.00; Cat exterior zone Interior (1) 5- Interior (1) 15 right exposed for members Lumber DOL 	7-16; Vult=115mpf i; TCDL=6.0psf; BC t. II; Exp C; Enclose and C-C Exterior(2 4-3 to 7-11-5, Exte 5-0-3 to 19-9-1 zond 1; end vertical left a and forces & MWF =1.60 plate grip DC	n (3-sec DL=6.0 ed; MW 2E) 0-4 rior(2R e; canti and righ RS for DL=1.60	cond gust) Opsf; h=35ft; FRS (envelop -3 to 5-4-3,) 7-11-5 to 15 lever left and tt exposed;C- reactions sho	LUAL	CASE(S) 5ta		APE		
FORCES	15=-42 17=-46 19=-14 21=-12 Max Grav 1=253 13=250 15=240 17=247 19=281 21=262 (lb) - Maximum Co Tension	(LC 10), 18=-40 (LC (LC 11), 18=-109 (LC 2 (LC 14), 20=-127 (L(7 (LC 14), 20=-127 (L(7 (LC 14) (LC 2), 14=240 (LC 2) 0 (LC 2), 16=239 (LC 2) (LC 2), 18=232 (LC 2 (LC 25), 20=256 (LC 2 (LC 25) compression/Maximum	(10), 2) (11), 2) C 14), , , (2), 3) (2), 3) (2), 3) (2), 4) (5) (6) (7) (8)	Lumber DOL=1.60 plate grip DOL=1.60 Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1. TCLL: ASCE 7-16; Pr=25.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf; Pf=18.9 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat C; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10, Lu=50-0-0 Provide adequate drainage to prevent water ponding. All plates are 1.5x4 MT20 unless otherwise indicated. Gable requires continuous bottom chord bearing. Gable studs spaced at 2-0-0 oc. This truss has been designed for a 10.0 psf bottom chord live load encomponent with a put other live loade							STATE OF SCO SEV SEV NUM PE-200	MISSOLA TT M. VIER MBER 1018807	フ	

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

June 6,2023

4

Job	Truss	Truss Type	Qty	Ply	
P210577	LG13	Lay-In Gable	1	1	Job Reference (optional)

Run: 8.63 S Nov 19 2022 Print: 8.630 S Nov 19 2022 MiTek Industries, Inc. Mon Jun 05 09:39:12 ID:nhMiKGWi26S?473W1Ebb5Kz9aEu-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

June 6,2023

16023 Swingley Ridge Rd Chesterfield, MO 63017

11-10-9

Plate Offsets (X, Y): [4:0-1-8,Edge]

Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(ps 25. 18.9/20. 25. 0. 10.) Spacing) Plate Grip DOL Lumber DOL Rep Stress Incr) Code	2-0-0 1.15 1.15 YES IRC2018/	TPI2014	CSI TC BC WB Matrix-S	0.26 0.09 0.11	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 9	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 63 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD	2x4 SP No.2 2x4 SP No.2 2x4 SPF No.3 2x4 SPF No.3 Structural wood 6-0-0 oc purlins, 2-0-0 oc purlins, Rigid ceiling dire bracing.	sheathing directly appli except end verticals, a (6-0-0 max.): 4-8. ctly applied or 10-0-0 c	1) ed or and 2) c	Vind: ASCE Vasd=91mph Ke=1.00; Cat exterior zone and right exp exposed;C-C reactions shc DOL=1.60 Truss desigr only. For stu see Standarc or consult qu	7-16; Vull=115mpl ;; TCDL=6.0psf; BC . II; Exp C; Encloss and C-C Exterior(; osed ; end vertical for members and wm; Lumber DOL= ned for wind loads i ds exposed to wind l Industry Gable Er alified building des	n (3-sec CDL=6. ed; MW 2E) zon left and forces & 1.60 pl in the p d (norm nd Deta igner as	bond gust) opsf; h=35ft; FRS (envelop e; cantilever i tright & MWFRS for ate grip ane of the tru al to the face is as applical s per ANSI/TF	be) left iss), ble, PI 1.					
REACTIONS	(Si2e) 1=11 1=11 13=1 Max Horiz 1=190 Max Uplift 1=-52 10=-4 12=-6 14=-1 Max Grav 1=153 10=20 12=20 14=21 14=21 14=21	10-9, 9=11-10-9, 10=1 -10-9, 12=11-10-9, 10=1 (LC 10), 9=-18 (LC 11) (LC 10), 9=-18 (LC 11) 2 (LC 10), 11=-48 (LC 3) 3 (LC 11), 13=-87 (LC 3) 3 (LC 14) (LC 13), 9=93 (LC 2), 0 0 (LC 2), 11=237 (LC 2) 1 (LC 2), 13=265 (LC 2)	1, 4) 10), 5) 14), 6) 7) 2), 8) 25), 9)	TCLL: ASCE Plate DOL=1 DOL=1.15 Pl Exp.; Ce=0.9 Provide adeq All plates are Gable studs s Chall studs s This truss ha chord live loa Provide mech	7-16; Pr=25.0 psf, 15); Pg=20.0 psf; ate DOL=1.15); Is= ; Cs=1.00; Ct=1.10 uate drainage to p 1.5x4 MT20 unles as continuous botto spaced at 2-0-0 oc s been designed for d nonconcurrent w manical connection	(roof LL Pf=18.9 =1.0; Rc 0, Lu=50 revent v so other or chor or a 10.0 vith any (by oth			-111				
FORCES TOP CHORD	(lb) - Maximum (Tension 1-2=-329/347, 2 4-5=-97/104, 5-6	Compression/Maximum 3=-227/255, 3-4=-137/ =-97/104, 6-7=-97/104	107, , 10)	bearing plate 1, 18 lb uplift at joint 11, 68 and 139 lb up This truss is o	capable of withsta at joint 9, 42 lb upl b lb uplift at joint 12 blift at joint 14. designed in accord	inding 5 lift at joi 2, 87 lb lance w	2 lb uplift at j nt 10, 48 lb u uplift at joint 1 ith the 2018	oint plift 3				STATE OF I	MISSOLA I M.
BOT CHORD	1-14=-95/104, 1 12-13=-95/104, 10-11=-95/104,	95/30 3-14=-95/104, 11-12=-95/104, 3-10=-95/104	11)	International R802.10.2 ar Graphical put or the orienta	Residential Code s nd referenced stand rlin representation tion of the purlin al	sections dard AN does no long the	R502.11.1 a ISI/TPI 1. ISI/TPI 1. ISI/TPI 1. ISI/TPI 1.	nd iize			R	otte	Source 7
WEBS NOTES	7-10=-209/82, 6 3-13=-292/176,	11=-198/77, 5-12=-232 2-14=-258/158	2/110, LOA	bottom chord AD CASE(S)	Standard					-	A.	PE-2001	018807

Job	Truss	Truss Type	Qty	Ply	
P210577	LG14	Lay-In Gable	1	1	Job Reference (optional)

Run: 8,63 S Nov 19 2022 Print: 8,630 S Nov 19 2022 MiTek Industries, Inc. Mon Jun 05 09:39:12 ID:8eAbNzaqte4IAuxTqnBmoNz9aEp-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:40.2

Plate Offsets (X, Y): [4:0-0-9,Edge]

		1											
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 25.0 13.9/20.0 25.0 0.0 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018	3/TPI2014	CSI TC BC WB Matrix-P	0.13 0.11 0.07	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a -0.01	(loc) - - 3	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 26 lb	GRIP 197/144 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	 2x4 SP No.2 2x4 SP No.2 2x4 SPF No.3 2x4 SPF No.3 Structural wood she 4-6-6 oc purlins, ex Rigid ceiling directly bracing. (size) 3=4-5-13, Max Horiz 5=147 (LC Max Uplift 3=-225 (LC Max Grav 3=225 (LC 5=54 (LC 	athing directly applia cept end verticals. applied or 8-2-5 oc 4=4-5-13, 5=4-5-13 C 14) C 14), 5=-13 (LC 11 C 25), 4=293 (LC 26 25)	4) 5) 6) ed or 7) 8) 3 9) () , 10	TCLL: ASCE Plate DOL=1 DOL=1.15 P Exp.; Ce=0.5 Gable requin Truss to be f braced again Gable studs This truss ha chord live loa Provide mec bearing plate 5 and 243 lb Beveled plat surface with This truss is	: 7-16; Pr=25.0 p. .15); Pg=20.0 ps late DOL=1.15); l ; Cs=1.00; Cl=1. es continuous bo ully sheathed froi st lateral movem spaced at 2-0-0 d s been designed hanical connectid e capable of withs uplift at joint 3. e or shim require truss chord at joi	sf (roof LL sf; Pf=13.9 Is=1.0; Rc 10 bttom chor m one fac oc. 1 for a 10.0 t with any on (by oth standing 1 ed to provid int(s) 3.	: Lum DOL= 9 psf (Lum ough Cat C; F d bearing. e or securely iagonal web) 0 psf bottom other live loas ers) of truss f 3 lb uplift at j de full bearin ith the 2018	1.15 Fully /). ads. to joint g					
FORCES	(lb) - Maximum Com Tension 1-5=-69/58, 1-2=-68	pression/Maximum /80, 2-3=-290/254	LC	Ínternational R802.10.2 a NAD CASE(S)	Residential Code nd referenced sta Standard	e sections andard AN	R502.11.1 a ISI/TPI 1.	and					
WEBS	2-4=-357/210	521/504											
NOTES 1) Unbalance this design 2) Wind: AS Vasd=911 Ke=1.00; exterior z and right exposed; reactions DOL=1.6	eed roof live loads have n. CE 7-16; Vult=115mph mph; TCDL=6.0psf; BC Cat. II; Exp C; Enclose one and C-C Exterior(2 exposed ; end vertical I C-C for members and f shown; Lumber DOL= 0	been considered fo (3-second gust) DL=6.0psf; h=35ft; d; MWFRS (envelop E) zone; cantilever I left and right orces & MWFRS for 1.60 plate grip	r De) left								ES S	STATE OF I SCOT SEVI	MISSOLAL I M. ER

Truss designed for wind loads in the plane of the truss 3) only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1** Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

PE-2001018807

E

June 6,2023

SIONAL

Job	Truss	Truss Type	Qty	Ply	
P210577	LG15	Lay-In Gable	1	1	I58733498 Job Reference (optional)

Run: 8.63 S Nov 19 2022 Print: 8.630 S Nov 19 2022 MiTek Industries, Inc. Mon Jun 05 09:39:12 ID:zoXte0fbTUrRupPdA2IA1ez9aEj-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

Scale = 1:33.8

Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(ps 25. 13.9/20. 25. 0. 10.	still Spacing .0 Plate Grip DOL .0 Lumber DOL .0 Rep Stress Incr .0 Code	2-0-0 1.15 1.15 YES IRC2018	8/TPI2014	CSI TC BC WB Matrix-P	0.09 0.03 0.06	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 5	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 35 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x4 SP No.2 2x4 SPF No.3 Structural wood 6-0-0 oc purlins Rigid ceiling dire bracing. (size) 1=7-5 7=7-5 Max Horiz 1=-11 Max Uplift 1=-26 6=-16 Max Grav 1=122 6=29 8=29	l sheathing directly applie ectly applied or 10-0-0 o 9-5, 5=7-9-5, 6=7-9-5, 9-5, 8=7-9-5 11 (LC 12) 6 (LC 10), 5=-9 (LC 11), 50 (LC 15), 8=-160 (LC 1 5 (LC 27), 5=117 (LC 28 6 (LC 26), 7=147 (LC 28 6 (LC 25)	3) ed or c 5) 6) 7) 8) 4)), 9)	Truss desig only. For stu see Standario or consult qu TCLL: ASCE Plate DOL=' DOL=1.15 P Exp.; Ce=0.9 Gable requir Gable studs This truss ha chord live loa Provide mecu bearing plate 1, 9 lb uplift uplift at joint This truss is	ned for wind lo lds exposed to d Industry Gab lailfied building F7-16; Pr=25.0 .15); Pg=20.0 late DOL=1.15 b; Cs=1.00; Ct- es continuous spaced at 2-0- is been design ad nonconcurre hanical connee e capable of wi at joint 5, 160 l 6. designed in ac Pacidon in ac	ads in the pl wind (norm le End Detai designer as psf (roof LL psf; Pf=13.9); Is=1.0; Rc =1.10 bottom chor 0 oc. ed for a 10.0 ent with any ction (by oth thstanding 2 b uplift at joi	ane of the tri al to the face ils as applica s per ANSI/T: .: Lum DOL= ppsf (Lum ough Cat C; F d bearing. D psf bottom other live loa ers) of truss i 66 lb uplift at j nt 8 and 160 ith the 2018	uss .), ble, PI 1. 1.15 Fully dds. to joint lb					
FORCES	(lb) - Maximum Tension	Compression/Maximum	LC	R802.10.2 a	nd referenced Standard	standard AN	ISI/TPI 1.						
I OP CHORD	1-2=-132/100, 2 4-5=-121/86	2-3=-142/80, 3-4=-136/76	<i>о</i> , –										
BOT CHORD	1-8=-55/97, 7-8= 5-6=-55/97	=-55/97, 6-7=-55/97,											
WEBS NOTES	3-7=-106/5, 2-8=	=-302/184, 4-6=-302/184	1									OF	A SIN

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=35ft; Ke=1.00; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

g NiTek* Component 16023 Swingley Ridge Rd Chesterfield, MO 63017

Job	Truss	Truss Type	Qty	Ply		
P210577	LG16	Lay-In Gable	1	1	Job Reference (optional)	

Run: 8.63 \$ Nov 19 2022 Print: 8.630 \$ Nov 19 2022 MiTek Industries, Inc. Mon Jun 05 09:39:13 ID:rZmNTOi6WjLtNQiOPtN6CUz9aEf-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Plate Offsets (X, Y): [5:0-2-9,Edge], [12:0-2-9,Edge], [14:Edge,0-1-8], [24:0-2-8,0-3-0]

Scale = 1:58.4

Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	18	(psf) 25.0 3.9/20.0 25.0 0.0 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC20	18/TPI2014	CSI TC BC WB Matrix-S	0.10 0.05 0.19	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 14	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 178 lb	GRIP 244/190 • FT = 20%			
LUMBER TOP CHORD BOT CHORD OTHERS BRACING TOP CHORD	2x4 SP No 2x4 SP No 2x4 SPF N Structural 6-0-0 oc p 2-0-0 oc p	5.2 5.2 No.3 wood she purlins, exc purlins, 6-0	athing directly applied	d or	TOP CHORD	-2=-352/228, 2-3=- -5=-168/126, 5-6=- 7-8=-120/108, 8-9=- 10-11=-120/108, 11 12-13=-168/112, 13 1-26=-40/75, 25-26- 22-23=-41/74, 21-22 9-20=-41/74, 18-15	229/15 120/10 120/10 -12=-1 -14=-1 -14=-1 =-40/75 2=-41/7 9=-41/7	3, 3-4=-162/1 8, 6-7=-120/1 8, 9-10=-120/ 20/108, 26/78 4, 23-25=-41/7 4, 20-21=-41/ 4, 17-18=-41/	00, 08, /108, /6, /74, /74,	8) Ga 9) Th ch 10) Pro be 1, up 19	able studs is truss h ord live lo ovide me aring plat 68 lb upli lift at joint , 39 lb up	space as bee ad noi chanic e capa it at joi 17, 40 lift at jo	ed at 2-0-0 oc. en designed for nconcurrent with al connection (b able of withstand int 14, 64 lb upli 0 lb uplift at join oint 20, 39 lb up	a 10.0 psf botto i any other live y others) of trus ling 68 lb uplift it at joint 16, 42 : 18, 39 lb uplift lift at joint 21, 4	m loads. ss to at joint b at joint 6 lb		
BOT CHORD WEBS	Rigid ceili bracing. 1 Row at	ng directly	applied or 10-0-0 oc 11-17, 10-18, 9-19, 8	8-20,	WEBS	6-17=-41/74, 15-16 2-16=-147/24, 11- ⁻ 0-18=-199/64, 9-19 7-21=-197/63, 6-22=	6=-71/1 17=-21 9=-200, =-221/6	27, 14-15=-77 1/67, /63, 8-20=-20(9. 5-23=-153/	7/120 0/63, /41.	up joir an 11) Be	lift at join nt 24, 144 d 153 lb u veled pla	22, 10 Ib up Iplift a te or s	6 lb uplift at join lift at joint 25, 14 t joint 15. him required to	23, 145 lb upli 6 lb uplift at joi provide full bea	It at nt 26 aring		
REACTIONS	bracing. WEBS bracing. 1 Row at midpt 11-17, 10-18, 9-19, 8-20, 7-21, 6-22, 5-23 (size) 1=25-11-9, 14=25-11-9, 15=25-11-9, 18=25-11-9, 17=25-11-9, 18=25-11-9, 17=25-11-9, 22=25-11-9, 23=25-11-9, 24=25-11-9, Max Uplift 1=-68 (LC 12), 14=-68 (LC 11), 15=-153 (LC 15), 16=-64 (LC 10), 17=-42 (LC 11), 18=-40 (LC 10), 17=-42 (LC 11), 18=-40 (LC 10), 21=-39 (LC 10), 22=-46 (LC 10), 23=-16 (LC 11), 24=-145 (LC 14), 23=25 (LC 14), 14=196 (LC 28), 15=297 (LC 26), 16=169 (LC 26), 15=252 (LC 31), 18=-239 (LC 31), 19=240 (LC 32), 20=240 (LC 31), 15=240 (LC 32), 20=240 (LC 31), 15=					 2-26=-243/164, 13-15=-258/176 OTES) Unbalanced roof live loads have been considered for this design.) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=35ft; Ke=1.00; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) 0-4-0 to 5-4-0, Interior (1) 5-4-0 to 7-11-1, Exterior(2R) 7-11-1 to 14-11-14, Interior (1) 14-11-14 to 22-0-12, Exterior(2E) 22-0-12 to 25-9-6 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1. 						desig desig I Resid und ref urlin re ation o d. Sta	chord at joint(s) ined in accordar dential Code se ferenced standa opresentation do of the purlin alor indard	14, 15. ce with the 201 tions R502.11. rd ANSI/TPI 1. es not depict th ig the top and/c MISSOL T M. TER	8 1 and le size or		
FORCES	(lb) - Maxi Tension	23=194 (L 25=266 (L imum Com	.C 28), 24=275 (LC 2 .C 25), 26=279 (LC 2 pression/Maximum	25), 25) (DOL=1 DOL=1.15 P Exp.; Ce=0.9 Frovide adec All plates are Compared by Comparison	DOL=1.15); Pg=20.0 psf; Pf=18.9 psf (Lum 1.15 Plate DOL=1.15); Is=1.0; Rough Cat C; Fully Ce=0.9; Cs=1.00; Ct=1.10, Lu=50-0-0 le adequate drainage to prevent water ponding. ttes are 1.5x4 MT20 unless otherwise indicated. requires continuous bottom chard basing					PE-2001018807 STORAL ENGINE						

June 6,2023

Job	Truss	Truss Type	Qty	Ply	
P210577	LG17	Lay-In Gable	1	1	I58733500 Job Reference (optional)

Run: 8.63 S Nov 19 2022 Print: 8.630 S Nov 19 2022 MiTek Industries, Inc. Mon Jun 05 09:39:13 ID:CXaGX5mELFzATBbMCRyHvYz9aEa-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Sca	e =	: 1:48	

Loading	(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15		TC	0.14	Vert(LL)	n/a	-	n/a	999	MT20	244/190
Snow (Pf/Pg)	13.9/20.0	Lumber DOL	1.15		BC	0.06	Vert(TL)	n/a	-	n/a	999		
TCDL	25.0	Rep Stress Incr	YES		WB	0.17	Horiz(TL)	0.00	7	n/a	n/a		
BCLL	0.0	Code	IRC2018	3/TPI2014	Matrix-S	-	- ()						
BCDL	10.0											Weight: 75 lb	FT = 20%
			2)	Wind: ASCE	7-16: Vult-115mr	oh (3-sec	rond quist)						
	2v/ SP No 2		2)	Vasd=91mpl	TCDI = 6.00 sf	3CDI =6 (h=35ft						
BOT CHORD	2x4 SP No 2			Ke=1 00 Ca	t II: Exp C: Enclos	sed: MW	FRS (envelor	ne)					
OTHERS	2x4 SPE No 3			exterior zone	and C-C Exterior	(2E) 0-4	-0 to 5-4-0.	, ,					
BRACINC				Interior (1) 5-	4-0 to 6-11-14, Ex	xterior(2F	R) 6-11-14 to						
	Structural wood cho	othing directly applic	od or	11-11-14, Int	erior (1) 11-11-14	to 13-7-	, 13 zone;						
TOP CHORD		auning unecuy applie		cantilever lef	t and right expose	ed; end v	ertical left an	d					
BOT CHORD	Rigid ceiling directly	applied or 10-0-0 or	•	right exposed	d;C-C for member	s and for	ces & MWFF	RS					
	bracing.			for reactions	shown; Lumber D	OCL=1.60) plate grip						
REACTIONS	(size) 1=13-11-	5. 7=13-11-5. 8=13-1	11-5.	DOL=1.60									
	9=13-11-	5. 10=13-11-5.	3)	Truss desig	ned for wind loads	s in the p	ane of the tru	lss					
	11=13-11	-5, 12=13-11-5		only. For stu	ds exposed to wir	nd (norm	al to the face), 					
	Max Horiz 1=206 (LO	C 11)		see Standard	a industry Gable E	ind Deta	lis as applica	DIE,					
	Max Uplift 1=-45 (LC	C 10), 7=-13 (LC 11),	1		7 16: Dr 25 0 po	signer as		-11. 115					
	8=-198 (L	C 15), 9=-127 (LC 1	5), 4)	Ploto DOI -1	15): Pa-20.0 ps	0 (1001 LL	Lun DOL=	1.15					
	11=-129 ((LC 14), 12=-197 (LC	C 14)		15), Fy=20.0 psi	, FIEIS.8	v psi (Luiti vugb Cat C: E	ully					
	Max Grav 1=225 (L0	C 27), 7=210 (LC 28)),	Evn : Ce-0 9	$C_{s}=1.00$ Ct=1.10), 10	10 10	agii Gat O, i	uny					
	8=372 (L0	C 26), 9=247 (LC 26)), 5)	All plates are	1 5x4 MT20 unle	ss other	wise indicated	ч					
	10=207 (I	LC 28), 11=249 (LC 3	25), 6)	Gable require	es continuous bott	tom chor	d bearing						
	12=371 (I	LC 25)	7)	Gable studs	spaced at 2-0-0 or	с.	a boarnig.						
FORCES	(lb) - Maximum Corr	npression/Maximum	8)	This truss ha	s been designed f	o. for a 10.0) psf bottom						
	Tension		-,	chord live loa	ad nonconcurrent	with any	other live loa	ds.					
TOP CHORD	1-2=-245/182, 2-3=-	188/95, 3-4=-191/14	18, 9)	Provide mec	hanical connection	n (by oth	ers) of truss t	0					
	4-5=-191/140, 5-6=-	155/51, 6-7=-216/15	59 ´	bearing plate	capable of withst	tanding 4	5 lb uplift at j	oint				2000	ADD
BOT CHORD	1-12=-117/191, 11-1	12=-117/191,		1, 13 lb uplift	at joint 7, 129 lb u	uplift at jo	, 2011 pint 11, 197 lk	C				B OF I	ALSO
	10-11=-117/191, 9-1	10=-117/191,		uplift at joint	12, 127 lb uplift at	t joint 9 a	nd 198 lb upl	ift at				4 SE	-0.0.V
	8-9=-117/191, 7-8=-	117/191		joint 8.	-		-				A	N/	Ner
WEBS	4-10=-163/56, 3-11=	-236/154,	/210 10) This truss is	designed in accor	dance w	ith the 2018				H	S/ SCOT	M. Yr V
	2-12=-341/217, 5-9=	=-230/153, 6-8=-341/	218	International	Residential Code	sections	R502.11.1 a	ind			B	/ SEV	ER \ Y
NOTES				R802.10.2 a	nd referenced star	ndard AN	ISI/TPI 1.			1	0		
 Unbalance 	ed roof live loads have	been considered for	r LC	DAD CASE(S)	Standard						WK		

Unbalanced roof live loads have been considered for 1) this design.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1** Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

UMBE PE-200101880

E

June 6,2023

RSSIONAL

C

Job	Truss	Truss Type	Qty	Ply	
P210577	LG18	Lay-In Gable	1	1	I58733501 Job Reference (optional)

Loading

TCDL

BCLL

BCDL

LUMBER

OTHERS

WEBS

FORCES

WEBS

NOTES

1)

Run: 8.63 E. Nov 21 2022 Print: 8.630 E. Nov 21 2022 MiTek Industries. Inc. Mon. Jun 05 15:30:02 ID:4lpnMTpIPUTbypu7RG1D3Oz9aEW-zfaj47n30hMf?PXFSMcaFKncEIRSemS8jirM2dz9l2p

22-9-11

22-11-0

12) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

LOAD CASE(S) Standard

June 6,2023

MiTek 16023 Swingley Ridge Rd Chesterfield, MO 63017

SSIONAL

Job	Truss	Truss Type	Qty	Ply	
P210577	LG19	Lay-In Gable	1	1	I58733502 Job Reference (optional)

Run: 8.63 S Nov 19 2022 Print: 8.630 S Nov 19 2022 MiTek Industries, Inc. Mon Jun 05 09:39:14 ID:8BDSWb_9t5MTF6Y0pwolAYz9aEH-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

10-7-3 10-2-5 8-10-4 16-10-13 1-4-1 0-4-15 12 131.38 8-10-4 6-3-10 12 15.38 4x6 6x6 👟 5 4x4 **≈** 6 À 78 21 9 22 10 3x4 // 20 2-2-12 0-1-7 3 19 မင်္ဂမ / 」31.38 12 님 12 13 0-0-4 1 3x4 a 18 17 16 15 14 13 \times 12 3x4 🎣 ^{5x8} // 16-10-13 14-11-6 1-11-7 14-11-6

Scale = 1:77

Plate Offsets (X, Y): [5:Edge,0-3-8], [6:0-2-7,Edge], [11:Edge,0-1-8], [12:0-1-10,0-0-6]

9-7-5

Loading TCLL (roof)	10.0	(psf) 25.0	Spacing Plate Grip DOL	2-0-0 1.15		CSI TC	0.13	DEFL Vert(LL)	in n/a	(loc) -	l/defl n/a	L/d 999	PLATES MT20	GRIP 244/190
Snow (Pf/Pg)	13.9/	20.0	Lumber DOL	1.15 VES		BC	0.06	Vert(IL)	n/a	-	n/a	999		
RCU		25.0	Codo	IEO IPC2	019/7012014	Motrix S	0.29	HOHZ(TL)	0.01	11	n/a	n/a		
BCDL		10.0	Code	INCZ	010/1712014	Matrix-S							Weight: 112 lb	FT = 20%
LUMBER TOP CHORD	2x4 SP No.2				WEBS	5-15=-166/22, 4-1 3-17=-208/203, 2-	6=-247/2 -18=-292	231, /243,		11) Bev surf	eled pla ace with	te or s truss	him required to p chord at joint(s) 1	rovide full bearing
BOT CHORD	2x4 SP No.2					8-14=-250/118, 9	-13=-243	/114,		12) This	s truss is	desig	ned in accordance	e with the 2018
OTHERS	2x4 SPF No.	.3				10-12=-185/120				Inte	rnationa	I Resi	dential Code sect	
BRACING					NOTES	l an af là an la a da là a					ASE/S		elenceu stanuart ndard	I ANGI/TETT.
TOP CHORD	Structural wo	ood shea lins	athing directly applied	lor	1) Unbalanced this design	a root live loads ha	ve been	considered for		LUAD	ASE(S	Jola	nuaru	
BOT CHORD	Rigid ceiling bracing.	directly	applied or 10-0-0 oc		 Wind: ASC Vasd=91mp 	E 7-16; Vult=115m oh; TCDL=6.0psf; I	ph (3-seo BCDL=6.	cond gust) 0psf; h=35ft;						
WEBS	1 Row at mic	dpt	5-15		Ke=1.00; C	at. II; Exp C; Enclo	sed; MW	FRS (envelop	e)					
REACTIONS	(size) 1= 12 14 16 18 Max Horiz 1= Max Uplift 1= 13 16 Max Grav 1= 12 14 16 8 (b) Maxim	=16-10-1 2=16-10- 4=16-10- 3=16-10- 3=16-10- =281 (LC 3=-65 (LC 3=-75 (LC 3=-75 (LC 3=-75 (LC 3=-154 (I 3=-159 (L 2=159 (L 2=159 (L 2=159 (L 3=-360 (L 3=-360 (L	3, 11=16-10-13, 13, 13=16-10-13, 13, 15=16-10-13, 13, 17=16-10-13, 13, 17=16-10-13, 14, 12=-358 (LC 17, 12), 12=-358 (LC 17, 14=-84 (LC),), 16), 6), 2), 9),	 and right exposed;C-reactions sl DOL=1.60 Truss desi only. For s see Standa or consult c TCLL: ASC Plate DOL= Unbalancer 	54-0 to 8-10-7, Ex rior (1) 10-7-7 to 1 posed ; end vertic C for members an nown; Lumber DOI gned for wind load tuds exposed to wi rd Industry Gable jualified building d E 7-16; Pr=25.0 ps :1.15); Pg=20.0 ps Plate DOL=1.15); I .9; Cs=1.00; Ct=1. 4 snow loads have	terior(2E) 6-6-2 zor al left and d forces a _=1.60 pl s in the p ind (norm End Deta asigner a: of (roof LL f; Pf=13.9 s=1.0; Re 10 been con	8-10-7 to he; cantilever li f right & MWFRS for ate grip lane of the tru: al to the face) ils as applicab s per ANS/TP L: Lum DOL=1) psf (Lum bugh Cat C; Fu hisidered for th	eft ss le, l 1. .15 illy s			Å	STE OF M	MISSOL
FORCES	(Ib) - Maximu Tonsion	um Com	pression/Maximum		design.				-			A	SCOT	TM. TRY
TOP CHORD	lension 1-2=-397/252 4-5=-129/154 7-8=-90/118, 10-11=-117/4 1-18=-25/99, 15-16=-25/99 12-13=-26/10	2, 2-3=-2 8, 5-6=-{ , 8-9=-8(41 , 17-18= 9, 14-15 00, 11-1	236/164, 3-4=-156/12 34/161, 6-7=-125/140)/71, 9-10=-86/30, -25/99, 16-17=-25/99 =-25/99, 13-14=-25/9 2=-87/299	3, , 9,	 6) All plates a 7) Gable requilibrium 8) Gable studs 9) This truss f 4) Provide me bearing pla 1, 154 lb up uplift at join 13 and 358 	re 1.5x4 MT20 unle res continuous bo s spaced at 2-0-0 d as been designed bad nonconcurrent chanical connectic te capable of withs slift at joint 16, 128 t 18, 84 lb uplift at lb uplift at joint 12	ess other ttom chor oc. for a 10. with any on (by oth tanding 6 Ib uplift a joint 14,	wise indicated d bearing. D psf bottom other live loac ers) of truss to 5 lb uplift at jo tt joint 17, 189 75 lb uplift at jo	s. int Ib bint				PE-2001	L ENGL

June 6,2023

Page: 1

Job	Truss	Truss Type	Qty	Ply	
P210577	LG20	Lay-In Gable	1	1	I58733503 Job Reference (optional)

Run: 8.63 S Nov 19 2022 Print: 8.630 S Nov 19 2022 MiTek Industries, Inc. Mon Jun 05 09:39:15 ID:zc69LSGbS9GCWeoQfFj8cPz9aDw-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

Scale = 1:57.2

Plate Offsets (X, Y): [3:0-2-12,Edge], [7:0-2-9,Edge], [9:Edge,0-1-8]

														_
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 25.0 18.9/20.0 25.0 0.0 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018	3/TPI2014	CSI TC BC WB Matrix-S	0.18 0.05 0.19	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 9	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 103 lb	GRIP 244/190 FT = 20%	
LUMBER TOP CHORD BOT CHORD OTHERS BRACING TOP CHORD	2x4 SP No.2 2x4 SP No.2 2x4 SPF No.3 Structural wood she 6-0-0 oc purlins, exc 2-0-0 oc purlins (6-0 Bioid ceiling directly	athing directly applied ept -0 max.): 3-7. applied or 10-0-0 oc	1) 2) d or	Unbalanced I this design. Wind: ASCE Vasd=91mph Ke=1.00; Cat exterior zone and right exp exposed;C-C reactions sho	roof live loads have 7-16; Vult=115mph ; TCDL=6.0psf; BC . II; Exp C; Enclose and C-C Exterior(2 osed ; end vertical for members and f wn; Lumber DOL=	been of DL=6.0 d; MW E) zon left and orces 8 1.60 pla	considered for ond gust) 0psf; h=35ft; FRS (envelop e; cantilever le cight & MWFRS for ate grip	ee) eft	LOAD	CASE(S)	Sta	ndard		
WEBS REACTIONS	Angla Centry directly bracing. 1 Row at midpt (size) 1=14-0-1 11=14-0- 13=14-0- Max Horiz 1=261 (LC Max Uplift 1=-200 (L 12=-66 (L 14=-55 (L Max Grav 1=445 (LC 10=330 (I 12=207 (L 14=252 (L 16=489 (I	7-12, 6-13, 5-14, 4-1 1, 9=14-0-11, 10=14-(11, 12=14-0-11, 11, 14=14-0-11, 11, 16=14-0-11 C 12), 9=-149 (LC 11 LC 15), 11=-138 (LC C 10), 13=-41 (LC 11 C 10), 16=-605 (LC 1 C 10), 16=-605 (LC 1 C 14), 9=316 (LC 25), LC 26), 11=94 (LC 13) LC 27), 13=252 (LC 3) LC 32), 15=178 (LC 2) LC 21)	5 3) 0-11, 10), 5)), 6) 4) 7) (), 8) 1), 9) 8), 10)	DOL=1.60 Truss design only. For stu see Standard or consult qu TCLL: ASCE Plate DOL=1 DOL=1.15 Pl Exp.; Ce=0.9 Provide adeq All plates are Gable studs of This truss has chord live loa) Provide medt	ed for wind loads in ds exposed to wind I Industry Gable En alified building desi 7-16; Pr=25.0 psf; f ate DOL=1.15); Is= ; Cs=1.00; Ct=1.10 uate drainage to pr 1.5x4 MT20 unless es continuous botto spaced at 2-0-0 oc. s been designed fo d nonconcurrent winanical connection	n the pi I (norm d Deta gner as roof LL Pf=18.9 1.0; Rc total event v s other m chor r a 10.0 (by oth oth any (by oth	ane of the tru al to the face) IS as applicat per ANSI/TP : Lum DOL=1 psf (Lum vugh Cat C; Fi-)-0-0 vater ponding vise indicated d bearing. 0 psf bottom other live load ers) of truss to	ss , ble, , l 1. .15 ully l. ds.				STE OF M	AISSOL	
FORCES	(lb) - Maximum Com Tension	pression/Maximum		joint 1, 149 lb	uplift at joint 9, 13	B lb upl	ift at joint 11,	66			A	ST SCOTI	M.	
TOP CHORD	1-2=-473/345, 2-3=- 4-5=-140/135, 5-6=- 7-8=-197/169, 8-9=-	220/144, 3-4=-140/13 140/135, 6-7=-141/13 209/145	35, 34,	joint 14, 605 10.	Ib uplift at joint 16 a	ind 174	b uplift at joi	nt				SEVI	ER ×	
BOT CHORD	1-16=-83/129, 15-16 14-15=-83/129, 13-1 12-13=-83/129, 11-1 10-11=-128/207, 9-1 7-12=-173/83, 6-13=	5=-83/129, 4=-83/129, 2=-83/129, 0=-145/201 211/66, 5-14=-212/7	12) 79, 13)	surface with t) This truss is o International R802.10.2 ar) Graphical put	russ chord at joint(designed in accorda Residential Code s ad referenced stand rlin representation of	s) 9, 10 ance w ections lard AN	th the 2018 R502.11.1 at ISI/TPI 1. ot depict the si	nd ize			Sales and a second	PE-2001	D18807	
NOTES	4-10=-138/19, 2-16=	-ous/duu, 8-10=-306	/19/	or the orienta bottom chord	tion of the purlin ale	ong the	top and/or					ANA CONA		

June 6,2023

Job	Truss	Truss Type	Qty	Ply	
P210577	LG21	Lay-In Gable	1	1	Job Reference (optional)

Run: 8.63 S Nov 19 2022 Print: 8.630 S Nov 19 2022 MiTek Industries, Inc. Mon Jun 05 09:39:16 ID:Kav1OAKjHiuVcPhOSoIJJSz9aDr-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

6-2-2

Scale = 1:38.3	
----------------	--

Plate Offsets (X, Y): [2:0-2-5,Edge]

Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 25.0 13.9/20.0 25.0 0.0 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC201	8/TPI2014	CSI TC BC WB Matrix-P	0.23 0.04 0.06	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 4	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 32 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD OTHERS BRACING TOP CHORD BOT CHORD REACTIONS FORCES TOP CHORD BOT CHORD BOT CHORD BOT CHORD WEBS NOTES 1) Unbalance this design (Vasd=91n Ke=1.00; exterior zc and right exposed(reactions DOL=1.60 3) Truss des only. For see Stand or consult	2x4 SP No.2 2x4 SP No.2 2x4 SPF No.3 Structural wood shea 6-0-0 oc purlins. Rigid ceiling directly bracing. (size) 1=6-2-2,4 Max Horiz 1=-153 (LC Max Uplift 1=-37 (LC 5=-175 (LC Max Grav 1=164 (LC 5=-333 (LC (lb) - Maximum Comp Tension 1-2=-147/62, 2-3=-15 1-6=-70/122, 5-6=-70 2-6=-77/8, 3-5=-341/ ed roof live loads have n. CE 7-16; Vult=115mph nph; TCDL=6.0psf; BCI Cat. II; Exp C; Encloser one and C-C Exterior(21 exposed ; end vertical le C-C for members and fc C-C for members and fc c-C for wind loads in studs exposed to wind lard Industry Gable Enc qualified building desig	athing directly applie applied or 10-0-0 oc =6-2-2, 5=6-2-2, 6= C 10) 15), 4=-28 (LC 11), C 15) 2 26), 4=158 (LC 25) 2 26), 6=115 (LC 25) pression/Maximum 51/98, 3-4=-147/124 D/122, 4-5=-70/122 204 been considered for (3-second gust) DL=6.0psf; h=35ft; d; MWFRS (envelop E) zone; cantilever le eft and right proces & MWFRS for .60 plate grip the plane of the tru: (normal to the face) d Details as applicab pner as per ANSI/TP	4) 5) 6d or 6) 7) 8) 6-2-2 9) 6-2-2 9) 6-2-2 9) 6-2-2 9) 6-2-2 9) 6-2-2 9) 6-2-2 9) 6-2-2 9) 6-2-2 9) 6-2-2 9) 6-2-2 9) 6-2-2 9) 6-2-2 9) 7 7 7 8 6 7 7 7 7 7 7 8 9 6 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	TCLL: ASCE Plate DOL=1 DOL=1.15 P Exp.; Ce=0.9 Gable requir Gable studs This truss ha chord live loa Provide mec bearing plate 1, 28 lb upliff This truss is International R802.10.2 a DAD CASE(S)	7-16; Pr=25.0 p (.15); Pg=20.0 p late DOL=1.15); y; Cs=1.00; Ct=1 es continuous bi spaced at 2-0-0 is been designed ad nonconcurrer hanical connecti e capable of with a t joint 4 and 1 designed in acc Residential Coo nd referenced st Standard	osf (roof LL sf; Pf=13.9; Is=1.0; Ric ottom chor oc. d for a 10.0 t with any ion (by oth istanding 3 75 Ib uplift ordance w de sections tandard AN	:: Lum DOL=: psf (Lum pugh Cat C; F d bearing.) psf bottom other live loa ers) of truss t 7 lb uplift at j at joint 5. ith the 2018 R502.11.1 a ISI/TPI 1.	1.15 Fully ds. o oint nd				STATE OF I STATE OF I SEVI	MISSOL T.M. ER 018807

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

ONAL E 5 June 6,2023

Job	Truss	Truss Type	Qty	Ply	
P210577	LG22	Lay-In Gable	1	1	Job Reference (optional)

Run: 8.63 S Nov 19 2022 Print: 8.630 S Nov 19 2022 MiTek Industries, Inc. Mon Jun 05 09:39:17 ID:dwqhsZQ6drnVyUjkMmwy5xz9aDk-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:68.8

Plate Offsets (X, Y): [6:0-1-7,Edge], [14:0-2-9,Edge], [15:Edge,0-1-8]

Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	18	(psf) 25.0 3.9/20.0 25.0 0.0 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC20	18/TPI2014	CSI TC BC WB Matrix-S	0.15 0.05 0.25	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 15	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 197 lb	GRIP 244/190 FT = 20%				
LUMBER TOP CHORD BOT CHORD OTHERS BRACING TOP CHORD	2x4 SP N 2x4 SP N 2x4 SPF I Structural 6-0-0 oc p 2-0-0 oc p	o.2 o.2 No.3 wood shea ourlins, exc ourlins, (6-0	athing directly applied ept -0 max.): 6-14.	d or E	TOP CHORD	1-2=-483/356, 2-3= 1-5=-131/51, 5-6=- 7-8=-96/84, 8-9=-96 0-11=-96/84, 11-1 13-14=-95/83, 14-1 1-28=-44/57, 26-28 24-25=-44/57, 20-2 21-22=-44/57, 20-2	-315/21 138/85, 6/84, 9- 2=-95/8 5=-125/ =-44/57 4=-44/5 1=-44/5	2, 3-4=-203/1 6-7=-96/84, 10=-96/84, 44, 12-13=-95/ 94 7, 25-26=-44/5 7, 22-23=-44/ 7, 19-20=-44/	21, /84, /7, /57, /57,	 All plates are 1.5x4 MT20 unless otherwise indicated. Gable requires continuous bottom chord bearing. Gable studs spaced at 2-0-0 oc. This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 54 lb uplift at joint 1, 99 lb uplift at joint 15, 33 lb uplift at joint 16, 45 lb 								
BOT CHORD WEBS	Rigid ceili bracing. 1 Row at	ng directly midpt	applied or 10-0-0 oc 12-18, 11-19, 10-20,	1	1 NEBS 1	8-19=-72/99, 17-1 5-16=-75/88 4-16=-161/55, 13- 2-18=-199/63, 11-	9 lb uplift at joint oint 20, 40 lb up 4 lb uplift at joint i joint 25, 128 lb	18, 80 lb uplift at joint lift at joint 21, 45 lb 23, 95 lb uplift at joint uplift at joint 26 and										
REACTIONS	(size) Max Horiz Max Uplift	1=26-8-9, 17=26-8-9 20=26-8-9 23=26-8-9 26=26-8-9 1=406 (LC 1=-54 (LC 16=-33 (L 18=-39 (L) 20=-38 (L) 22=-45 (L) 24=-95 (L) 24=-95 (L)	9-21, 8-22, 7-23, 5-2 15=26-8-9, 16=26-8 9, 18=26-8-9, 19=26-3 9, 21=26-8-9, 22=26-5 9, 24=26-8-9, 25=26-3 9, 28=26-8-9 2 14) C 10), 17=-45 (LC 14) C 10), 21=-40 (LC 11 C 14), 25=-156 (LC 14) C 14), 25=-156 (LC 14) C 14), 28=-181 (LC	4 -9, 8-9, 8-9,),),),),), 4), 14)	NOTES Unbalanced this design. Wind: ASCE Vasd=91mph Ke=1.00; Car exterior zone Interior (1) 5- 16-8-12, Inte	10-20=-201/64, 9-21=-200/63, 8-22=-206/70, 7-23=-176/38, 5-24=-203/119, 4-25=-258/180, 3-26=-225/154, 2-28=-296/200 OTES Unbalanced roof live loads have been considered for this design. Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=35ft; Ke=1.00; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) 0-4-0 to 5-4-0, Interior (1) 5-4-0 to 9-11-1, Exterior(2R) 9-11-1 to 16-8-12, Unterior (1) 16-8-12 to 24-8-12, Exterior(2E)						 181 Ib uplift at joint 28. 11) Beveled plate or shim required to provide full bearing surface with truss chord at joint(s) 15, 16, 17, 18. 12) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 at R802.10.2 and referenced standard ANSI/TP1 1. 13) Graphical purlin representation does not depict the si or the orientation of the purlin along the top and/or bottom chord. LOAD CASE(S) Standard 						
FORCES	Max Grav (Ib) - Max Tension	1=335 (LC 16=211 (L 18=241 (L 20=244 (L 22=246 (L 24=243 (L 26=245 (L imum Com	C 14), 15=189 (LC 25 .C 32), 17=251 (LC 3 .C 2), 19=207 (LC 32 .C 32), 21=239 (LC 3 .C 32), 23=216 (LC 3 .C 25), 25=280 (LC 2 .C 25), 28=344 (LC 2 pression/Maximum), 1), 1), 1), 5), 5) 2	24-8-12 to 26 exposed ; en members an Lumber DOL 3) Truss design only. For stu see Standarc or consult qu 4) TCLL: ASCE Plate DOL=1.1 DOL=1.15 Exp.; Ce=0.9 5) Provide adec	5-6-6 zone; cantilev d vertical left and r d forces & MWFRS =1.60 plate grip D0 hed for wind loads ds exposed to wind l Industry Gable Er alified building des 7-16; Pr=25.0 psf; .15); Pg=20.0 psf; ate DOL=1.15); Is- ; C s=1.00; Ct=1.10; uate drainage to p	ver left a ight exp for rea DL=1.60 in the p d (norm d Deta igner as (roof LL Pf=18.5 =1.0; Ro 0, Lu=50 revent o	and right vosed;C-C for ctions shown;) lane of the tru al to the face) ils as applicab s per ANS/TF :: Lum DOL=1) psf (Lum vugh Cat C; Fi)-0-0 water ponding	; SCOTT M. SEVIER ble, Pl 1. 1.15 Fully STONAL EN					T M. IER 1018807				

5) Provide adequate drainage to prevent water ponding.

June 6,2023

MiTek° 16023 Swingley Ridge Rd Chesterfield, MO 63017

Job	Truss	Truss Type	Qty	Ply	
P210577	LG23	Lay-In Gable	1	1	I58733506 Job Reference (optional)

Run: 8.63 S Nov 19 2022 Print: 8.630 S Nov 19 2022 MiTek Industries, Inc. Mon Jun 05 09:39:17 ID:zteavGTFSNPo2Gbi9KW7o_z9aDf-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

14-7-5

Scale = 1:51.7

WEBS

NOTES

this design.

5-13=-166/71, 4-14=-258/167,

3-15=-266/172, 2-16=-216/138,

6-12=-258/166, 7-11=-266/173,

1) Unbalanced roof live loads have been considered for

8-10=-216/138

Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	13.9	(psf) 25.0 //20.0 25.0 0.0 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018	3/TPI2014	CSI TC BC WB Matrix-S	0.09 0.04 0.19	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 9	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 82 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD DTHERS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x4 SP No.2 2x4 SPF No. Structural we 6-0-0 oc pur Rigid ceiling bracing. (size) 1= 14 Max Horiz 1= Max Uplift 1= 10 12 Max Grav 1= 10 12 14	2 .3 ood shea tins. directly =14-7-5, 1=14-7-5 =-217 (Lt =-99 (LC 0=-120 (L 5=-147 (I 5=-147 (I 5=-147 (I 5=-147 (I 2=279 (L 4=281 (L 6=230 (L	athing directly applied applied or 10-0-0 oc 9=14-7-5, 10=14-7-5 ; 12=14-7-5, 13=14-7 ; 15=14-7-5, 16=14-7 C 10) 12), 9=-66 (LC 13), LC 15), 11=-148 (LC LC 15), 14=-144 (LC LC 14), 16=-121 (LC C 14), 9=202 (LC 15), C 26), 11=275 (LC 2 C 26), 13=206 (LC 2 C 25), 15=274 (LC 2 C 25)	2) d or 5, 3) 7-5 3) 14), 4) 14), 5), 6), 6) 8), 7) 5), 8)	Wind: ASCE Vasd=91mpl Ke=1.00; Car exterior zone Interior (1) 5- 12-3-14, Intel left and right exposed;C-C reactions sho DOL=1.60 Truss design only. For stu see Standard or consult qu TCLL: ASCE Plate DOL=1 DOL=1.15 Pl Exp.; Ce=0.9 All plates are Gable require Gable studs i This truss has chord live loa	7-16; Vult=115mj ;; TCDL=6.0psf; E t. II; Exp C; Enclov and C-C Exterior 3-14 to 7-3-14, E; iror (1) 12-3-14 to exposed ; end ve ; for members and box; Lumber DOL the for wind loads ids exposed to win d Industry Gable E alified building de 7-16; Pr=25.0 ps .15); Pg=20.0 psf iate DOL=1.15; ik ; Cs=1.00; Ct=1.1 .1.5x4 MT20 unle es continuous bot spaced at 2-0-0 o s been designed	oh (3-sec 3CDL=6.1 sed; MW (2E) 0-4 xterior(2I) 14-3-12 rtical left d forces 8 =1.60 pl s in the p nd (norm End Deta signer a: f (roof LL ; Pf=13.5 s=1.0; Rc 10 ss other tom chor c. for a 10.1 with any	ond gust) Dpsf; h=35ft; FRS (envelop 0 to 5-3-14, R) 7-3-14 to zone; cantile and right & MWFRS for ate grip ane of the tru al to the face ils as applical s per ANSI/TF :: Lum DOL=' 0 psf (Lum) ugh Cat C; F wise indicated d bearing.) psf bottom other live loa	ver , , ole, , 1.15 fully d.					
FORCES	(lb) - Maximi Tension	um Com	pression/Maximum	9)	Provide mecl bearing plate	hanical connection capable of withst	n (by oth tanding 9	ers) of truss t 9 lb uplift at i	o oint				0000	ADD.
TOP CHORD	1-2=-311/197, 2-3=-221/156, 3-4=-180/101, 4-5=-199/155, 5-6=-199/148, 6-7=-146/55, 7-8=-199/112, 8-9=-281/197 1-16=-125/202, 15-16=-125/202, 14-15=-125/202, 13-14=-125/202, 12-13=-125/202, 11-12=-125/202, 10-11=-125/202, 9-10=-125/202				1, 66 lb uplift uplift at joint joint 12, 148 10.) This truss is International R802.10.2 ar	at joint 9, 144 lb 15, 121 lb uplift at lb uplift at joint 11 designed in accor Residential Code nd referenced star	uplift at jo t joint 16, and 120 dance w sections ndard AN	bint 14, 147 lk 142 lb uplift lb uplift at jo ith the 2018 R502.11.1 a ISI/TPI 1.	o at int nd				STATE OF I	MISSOUR I M. ER

LOAD CASE(S) Standard

Job	Truss	Truss Type	Qty	Ply	
P210577	LG24	Lay-In Gable	1	1	Job Reference (optional)

Run: 8.63 S. Nov 19 2022 Print: 8.630 S. Nov 19 2022 MiTek Industries. Inc. Mon. Jun 05 09:39:18 ID:5NwUejdPON2y6F5BQYFApkz9aDS-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

MiTek 16023 Swingley Ridge Rd Chesterfield, MO 63017

Job	Truss	Truss Type	Qty	Ply	
P210577	LG25	Lay-In Gable	1	1	Job Reference (optional)

10-4-12

Premier Building Supply (Springhill, KS), Spring Hills, KS - 66083,

1-9-10

Run: 8.63 S Nov 19 2022 Print: 8.630 S Nov 19 2022 MiTek Industries, Inc. Mon Jun 05 09:39:18 ID:khe19qnxZ3YFY50V74T_JGz9aDG-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

10-8-0

Page: 1

Scale	=	1:32.5	

Plate Offsets (X, Y): [2:0-1-7,Edge], [7:0-0-10,0-1-8], [8:0-3-8,0-1-12]

Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	18.	(psf) 25.0 9/20.0 25.0 0.0 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC201	8/TPI2014	CSI TC BC WB Matrix-S	0.08 0.05 0.05	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 7	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 39 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD OTHERS BRACING TOP CHORD	2x4 SP No. 2x4 SP No. 2x4 SPF No Structural v 6-0-0 oc pu 2-0-0 oc pu	.2 .2 o.3 wood shea urlins, exc urlins (6-0	athing directly applic ept -0 max.): 2-7.	2) ed or	Wind: ASCE Vasd=91mpt Ke=1.00; Ca exterior zone Exterior(2R) zone; cantile and right exp MWFRS for 1	7-16; Vult=115mp n; TCDL=6.0psf; B t. II; Exp C; Enclos e and C-C Exterior 1-9-14 to 6-8-4, In ver left and right e toosed;C-C for men reactions shown; L	oh (3-sed CDL=6.0 sed; MW (2E) 0-4 aterior (1 exposed nbers an Lumber I	ond gust) Opsf; h=35ft; FRS (envelop -0 to 1-9-14,) 6-8-4 to 10-4 ; end vertical d forces & DOL=1.60 pla	be) 5-0 left te					
BOT CHORD	Rigid ceilin bracing. (size) Max Horiz Max Uplift Max Grav	g directly 1=10-4-7, 9=10-4-7, 12=10-4-7 1=75 (LC 1=-23 (LC 8=-58 (LC 10=-40 (L 12=-35 (L) 12=-35 (L) 12=-35 (L) 12=-35 (L) 12=-35 (L) 11=164 (LC (LC 14), 9 (LC 2), 11 (LC 2)	applied or 10-0-0 od 7=10-4-7, 8=10-4-7 10=10-4-7, 11=10-4 14), 7=-51 (LC 14), 26), 9=-37 (LC 10), C 11), 11=-45 (LC 1 C 11) 2 2), 7=147 (LC 2), 8 =231 (LC 34), 10=2 =237 (LC 34), 12=2	$\begin{array}{ccc} & 3)\\ & & \\ $	grip DOL=1.6 Truss design only. For stu see Standarc or consult qu TCLL: ASCE Plate DOL=1 DOL=1.15 Pl Exp.; Ce=0.9 Provide adec Gable studs This truss ha chord live loa Provide mec bearing plate	50 hed for wind loads ids exposed to wind b Industry Gable E alified building dei 7-16; Pr=25.0 psf. 15); Pg=20.0 psf. late DOL=1.15); Is y Cs=1.00; Ct=1.1 y uate drainage to p spaced at 2-0-0 of s been designed f ad nonconcurrent in hanical connectior e capable of withst	ane of the tru al to the face is as applical per ANSI/TF .: Lum DOL=' psf (Lum pugh Cat C; F)-0-0 water ponding 0 psf bottom other live loa ers) of truss t 3 lb uplift at j	iss), ble, Pl 1. 1.15 'ully g. ds. o o						
TOP CHORD	(lb) - Maxin Tension 1-2=-153/2	num Com 4, 2-3=-79	pression/Maximum 9/45, 3-4=-79/45,		1, 51 lb uplift at joint 9, 40 and 35 lb upl	at joint 7, 58 lb up lb uplift at joint 10 lift at ioint 12.	olift at joi , 45 lb u	nt 8, 37 lb up blift at joint 11	lift				TE OF I	MISSO
BOT CHORD	4-5=-79/45 1-12=-47/8 9-10=-47/8	9, 5-6=-79/ 2, 11-12= 2, 8-9=-4	/45, 6-7=-83/47 -47/82, 10-11=-47/8 7/82, 7-8=-77/128	9) 32, 10	N/A)) This truss is International	designed in accor Residential Code	dance w	ith the 2018 R502.11.1 a	nd			A	S SCOT	T M.
WEBS NOTES 1) Unbalance	6-9=-204/6 3-12=-188/ ed roof live lo	4, 5-10=-2 63 ads have	201/64, 4-11=-202/6 been considered for	67, 11 r	 R802.10.2 and referenced standard ANSI/TPI 1. 11) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord. 									
this design.					LOAD CASE(S) Standard									

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1** Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

SSIONAL

E

June 6,2023

Job	Truss	Truss Type	Qty	Ply	
P210577	LG26	Lay-In Gable	1	1	I58733509 Job Reference (optional)

Run: 8,63 S Nov 19 2022 Print: 8,630 S Nov 19 2022 MiTek Industries, Inc. Mon Jun 05 09:39:19 ID:wppBTavqzRxhNoMcGt9ZFaz9aD5-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:63.2

Plate Offsets (X, Y): [6:0-1-8,Edg	e], [9:0-0-13,0-1-8]											
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 25.0 18.9/20.0 25.0 0.0 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC20 ⁷	18/TPI2014	CSI TC BC WB Matrix-S	0.19 0.06 0.25	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a -0.01	(loc) - - 9	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 98 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD OTHERS BRACING TOP CHORD BOT CHORD WEBS REACTIONS	2x4 SP No.2 2x4 SP No.2 2x4 SPF No.3 Structural wood s 6-0-0 oc purlins, e 2-0-0 oc purlins (f Rigid ceiling direc bracing. 1 Row at midpt (size) 1=14-1 10=14- 12=14- 14=14- 16=14- Max Uplift 1=-15 (10=-49 12=-54 14=-14 16=-18 Max Grav 1=314 10=267 12=125 14=281 16=372	V nd or 2 2 3), 0), 4 4), 4 2(), 5 2(6), 6 2(6), 7 8	VEBS IOTES) Unbalanced this design.) Wind: ASCE Vasd=91mpl Ke=1.00; Ca exterior zone Interior (1) 5 14-11-5 zonv vertical left a forces & MW DOL=1.60 pl) Truss desig only. For stu see Standard or consult qu Plate DOL=1 DOL=1.5 P Exp.; Ce=0.9) All plates are) Gable studs) This truss ha	8-10=-219/72, 7- 4-14=-262/169, 3 2-16=-333/206 roof live loads ha 7-16; Vult=115m h; TCDL=6.0psf; it. II; Exp C; Encle and C-C Exteric 1-0 to 9-11-5, E): e; cantilever left a ind right exposed /FRS for reaction late grip DOL=1.6 pred for wind load dis exposed to w d Industry Gable ualified building d ids exposed to w d Industry Gable 1.15); Pg=20.0 ps late DOL=1.15); 0; Cs=1.00; Ct=1. quate drainage to a 1.5x4 MT20 unit spaced at 2-0-0 as been designed	11=-185/5 -15=-218/ ave been of ph (3-sec BCDL=6.0 bsed; MW or(2E) 0-4. kterior(2E) and right e ;C-C for n is shown; 60 Is in the pl ind (norm End Deta esigner as sf (roof LL f; Pf=18.9. Is =1.0; RC 10, Lu=50 p prevent v ess othen oc. I for a 10.0	8, 5-13=-198 136, considered fo ond gust) Dpsf; h=35ft; FRS (envelop 3 to 5-1-0, 9-11-5 to xposed; end nembers and Lumber ane of the tru al to the face ils as applical s per ANSI/TF :: Lum DOL= 0 psf (Lum ough Cat C; F)-0-0 water ponding wise indicated	/102, r be) sss), ble, PI 1. 1.15 fully g. 1.	12) Gra or tf bott LOAD C	phical pried or information of the original price or information of the original sector of	urlin rei lation o d.) Star	presentation doe of the purlin along ndard	s not depict the size the top and/or MISSOLATION	
FORCES	(Ib) - Maximum Co Tension 1-2=-473/414, 2-3 4-5=-114/48, 5-6	ompression/Maximum =-302/248, 3-4=-188/1 -98/48, 6-7=-57/52,	9 63,	chord live loa Provide mec bearing plate 1, 110 lb upl at joint 10, 3	ad nonconcurrent chanical connection capable of withs ift at joint 9, 54 lb 8 lb uplift at joint	t with any on (by oth standing 1 uplift at jo 11, 79 lb i	other live loa ers) of truss t 5 lb uplift at j pint 12, 49 lb uplift at joint 1	ds. o oint uplift I3,			*	SEVI	ER *
BOT CHORD	7-6=-57/52, 8-9=- 1-16=-56/64, 15-1 13-14=-56/64, 12- 11-12=-138/168, 9-10=-139/153	656/64, 14-15=-56/6 13=-56/64, 10-11=-139/166,	4, 1 1	145 lb uplift a uplift at joint0) N/A1) This truss is International	at joint 14, 111 lb 16. designed in acco Residential Code	uplift at jo ordance w e sections	oint 15 and 18 ith the 2018 R502.11.1 a	35 lb Ind			AN .	PE-2001	018807

- 11-12=-138/168, 10-11=-139/166, 9-10=-139/153
 - 11) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

June 6,2023

Job	Truss	Truss Type	Qty	Ply	
P210577	LG27	Lay-In Gable	1	1	Job Reference (optional)

Run: 8.63 S Nov 19 2022 Print: 8.630 S Nov 19 2022 MiTek Industries, Inc. Mon Jun 05 09:39:20 ID:w4Lc1O6Vzg4GvP9tmyzYR9z9aCq-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:41.2

													_
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 25.0 18.9/20.0 25.0 0.0 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018/TPI201	CSI TC BC WB 4 Matrix-P	0.09 0.05 0.06	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 6	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 36 lb	GRIP 244/190 FT = 20%	
LUMBER TOP CHORD BOT CHORD OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x4 SP No.2 2x4 SPF No.3 Structural wood shea 6-0-0 oc purlins, exc 2-0-0 oc purlins (6-0 Rigid ceiling directly bracing. (size) 1=7-2-6, 6 8=7-2-6, 9 Max Horiz 1=194 (LC Max Uplift 1=-20 (LC 9=-115 (LI Max Grav 1=150 (LC 7=-267 (LC (LC 26) 1	athing directly applied of max.): 4-6. applied or 10-0-0 oc b=7-2-6, 7=7-2-6, b=7-2-6, 10=7-2-6 c 14) : 12), 6=-62 (LC 14), c 14), 10=-118 (LC 1 c 14), 6=146 (LC 2), c 2), 8=79 (LC 14), 9 0=-232 (LC 26)	3) Truss only. F see St or con: 4) TCLL: Plate I DOL=7 Exp.; C 5) Provid 6) Gable 7) This tri chord I 8) Provid bearing 1, 62 II at joint 10. =250 9) N/A	designed for wind or studs exposed indard Industry G ult qualified build ASCE 7-16; PT=2: OL=1.15; Pg=2: OL=1.15; Pg=2: 0.5 Plate DOL=1: e adequate draina studs spaced at 2 ss has been dess ve load nonconcu mechanical com plate capable of uplift at joint 6, 8 7, 115 lb uplift at ss is designed in	I loads in the p I to wind (norm able End Deta ing designer as 5.0 psf (roof LL 0.0 psf; Pf=18.3 15); Is=1.0; Rc Ct=1.10, Lu=56 age to prevent -0-0 oc. igned for a 10.0 urrent with any nection (by oth withstanding 2 9 Ib uplift at joi joint 9 and 118 accordance w	ane of the trr ane of the trr al to the face is as applica s per ANSI/TI :: Lum DOL= 0 psf (Lum ough Cat C; F)-0-0 water ponding 0 psf bottom other live loa ers) of truss i 0 lb uplift at j nt 8, 46 lb up i lb uplift at jo	uss), ble, PI 1. 1.15 Fully g. ds. o o oint líft int						
FORCES	(lb) - Maximum Com Tension	pression/Maximum	R802.1	0.2 and reference	ed standard AN	ISI/TPI 1.							
TOP CHORD	1-2=-218/199, 2-3=- ⁻ 4-5=-43/27, 5-6=-53/	150/104, 3-4=-105/18 /33	8, or the	prientation of the p	ourlin along the	top and/or	5126				Canada	ADDA	
BOT CHORD	1-10=-35/50, 9-10=-3 7-8=-88/171, 6-7=-93	35/50, 8-9=-35/50, 3/125	LOAD CAS	E(S) Standard						1	TE OF I	AISSO	
WEBS	5-7=-198/64, 3-9=-24	43/140, 2-10=-233/13	39							A	NY and	New	
NOTES										A	scor	IM. YAY	
 Unbalanc this desig Wind: AS Vasd=91r Ke=1.00; exterior z and right exposed; reactions DOL=1.60 	ed roof live loads have n. CE 7-16; Vult=115mph mph; TCDL=6.0psf; BCI Cat. II; Exp C; Enclose one and C-C Exterior(2 exposed ; end vertical I C-C for members and fo shown; Lumber DOL=1)	been considered for (3-second gust) DL=6.0psf; h=35ft; d; MWFRS (envelop E) zone; cantilever le eft and right prces & MWFRS for 1.60 plate grip	e) eft						1		NUM PE-2001	ER BER 018807	7

June 6,2023

Job	Truss	Truss Type	Qty	Ply	
P210577	LG28	Lay-In Gable	1	1	I58733511 Job Reference (optional)

2-1-8

0-0-4

Run: 8.63 S Nov 19 2022 Print: 8.630 S Nov 19 2022 MiTek Industries, Inc. Mon Jun 05 09:39:20 ID:H28V46AdoCiZ0A1rZVZj8Dz9aCl-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

3-10-9

Scale = 1:26.2

Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 25.0 13.9/20.0 25.0 0.0 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC201	8/TPI2014	CSI TC BC WB Matrix-P	0.08 0.03 0.02	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 3	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 15 lb	GRIP 244/190 FT = 20%	
LUMBER TOP CHORD BOT CHORD OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x4 SP No.2 2x4 SPF No.3 Structural wood shea 3-11-1 oc purlins. Rigid ceiling directly bracing. (size) 1=3-11-1, Max Horiz 1=50 (LC Max Uplift 1=-27 (LC Max Grav 1=127 (LC (L 2))	athing directly applie applied or 10-0-0 oc 3=3-11-1, 4=3-11-1 13) 15), 3=-24 (LC 15) 2 2), 3=127 (LC 2), 4	5) 6) 7) 8) ed or 5 9) L(Gable requirt Gable studs This truss ha chord live loa Provide mec bearing plate 1 and 24 lb u This truss is International R802.10.2 ar DAD CASE(S)	es continuous bot spaced at 2-0-0 c s been designed id nonconcurrent hanical connectio capable of withs plift at joint 3. designed in accor Residential Code to referenced sta Standard	ttom chor oc. for a 10.0 with any n (by oth tanding 2 rdance wi a sections ndard AN	d bearing.) psf bottom other live loa ers) of truss t 7 lb uplift at j ith the 2018 R502.11.1 a ISI/TPI 1.	ds. o oint nd						
FORCES TOP CHORD BOT CHORD WEBS	(lb) - Maximum Com Tension 1-2=-101/38, 2-3=-94 1-4=-13/45, 3-4=-13/ 2-4=-95/19	pression/Maximum 4/31 /45												
NOTES 1) Unbalance this design this design (2) Wind: ASC Vasd=91m Ke=1.00; C exterior zo and right e exposed;C reactions s DOL=1.60 3) Truss des only. For s see Standa or consult (4) TCLL: ASC	the roof live loads have E 7-16; Vult=115mph ph; TCDL=6.0psf; BCI Cat. II; Exp C; Enclosed ne and C-C Exterior(21 xposed; end vertical li -C for members and fc shown; Lumber DOL=1 igned for wind loads in studs exposed to wind ard Industry Gable Enc qualified building desig CE 7-16; Pr=25.0 psf (1)	been considered for (3-second gust) DL=6.0psf; h=35ft; d; MWFRS (envelop E) zone; cantilever le eft and right proces & MWFRS for 1.60 plate grip the plane of the tru (normal to the face) d Details as applicat gner as per ANSI/TP roof LL: Lum DOL=1	e) eft ss , ole, 211. 1.15									STATE OF I SCOT SEV. NUM PE-2001	MISSOUR FM. ER BER 018807	

I) TCLL: ASCE 7-16; Pr=25.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf; Pf=13.9 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat C; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10

June 6,2023

Page: 1

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

NiTek° 16023 Swingley Ridge Rd Chesterfield, MO 63017

Job	Truss	Truss Type	Qty	Ply	
P210577	LG29	Lay-In Gable	1	1	I58733512 Job Reference (optional)

Run: 8.63 S Nov 19 2022 Print: 8.630 S Nov 19 2022 MiTek Industries, Inc. Mon Jun 05 09:39:20 ID:9pO0wTD8rRD?UnLcoLdfl3z9aCh-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

3-9-5

Scal	<u> </u>	1.26

00010 - 1.20														
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 25.0 13.9/20.0 25.0 0.0 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018	/TPI2014	CSI TC BC WB Matrix-P	0.07 0.03 0.02	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 3	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 14 lb	GRIP 244/190 FT = 20%	
LUMBER FOP CHORD 30T CHORD 20THERS 3RACING FOP CHORD 30T CHO	2x4 SP No.2 2x4 SP No.2 2x4 SPF No.3 Structural wood she 3-9-13 oc purlins. Rigid ceiling directly bracing. (size) 1=3-9-5, 3 Max Horiz 1=-49 (LC Max Uplift 1=-26 (LC Max Uplift 1=-26 (LC (LC 2) (lb) - Maximum Com Tension 1-2=-98/37, 2-3=-91. 1-4=-13/44, 3-4=-13 2-4=-92/19 ed roof live loads have n. CE 7-16; Vult=115mph nph; TCDL=6.0psf; BC Cat. II; Exp C; Enclose one and C-C Exterior(2 exposed ; end vertical I c-C for members and f shown; Lumber DOL=') signed for wind loads ir studs exposed to wind lard Industry Gable En qualified building desi CE 7-16; Pr=25.0 psf (=-1.15); Pg=20.0 psf; f Plate DOL=1 15): Is-	athing directly applie applied or 10-0-0 or 3=3-9-5, 4=3-9-5 (10) (2 15), 3=-23 (LC 15) (2 2), 3=123 (LC 2), 4 apression/Maximum /30 /44 been considered for (3-second gust) DL=6.0psf; h=35ft; d; MWFRS (envelop (E) zone; cantilever I left and right orces & MWFRS for 1.60 plate grip n the plane of the tru (normal to the face) d Details as applicat gner as per ANSI/TF roof LL: Lum DOL=1 Pf=13.9 psf (Lum 1 0: Round Cat C: 6	5) 6) 7) 8) ed or 9) LO, 4=132 r r r pe) eft ss ble, Pl 1. 1.15 ully	Gable requir Gable studs This truss ha chord live loa Provide mec bearing plate 1 and 23 lb u This truss is International R802.10.2 a AD CASE(S)	es continuous bo spaced at 2-0-0 d as been designed ad nonconcurrent thanical connectic e capable of withs yplift at joint 3. designed in acco Residential Code nd referenced sta Standard	vittom chor oc. I for a 10.0 t with any on (by oth standing 2 ordance wi e sections andard AN	d bearing. D psf bottom other live load ers) of truss to 6 lb uplift at jo ith the 2018 .R502.11.1 an ISI/TPI 1.	ds. point nd				STATE OF I STATE OF I SCOT SEVI PE-2001	MISSOLUT T.M. ER 018807 ST	
Exp.; Ce=	0.9; Cs=1.00; Ct=1.10	,,.										an	The second	

June 6,2023

Page: 1

Job	Truss	Truss Type	Qty	Ply	
P210577	M01	Hip Girder	1	2	Job Reference (optional)

7-1-8

Premier Building Supply (Springhill, KS), Spring Hills, KS - 66083,

3-8-14

Run: 8.63 S Nov 19 2022 Print: 8.630 S Nov 19 2022 MiTek Industries, Inc. Mon Jun 05 09:39:21 ID:FBT8?RL4yrRiMJErkG1XBCz9YkH-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

15-1-8

11-1-8

Scale = 1:39.3

Plate Offsets (X, Y): [1:0-1-5,0-0-2]

		1													
Loading	(psf)	Spacing	2-0-0		CSI	0.00	DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP		
TCLL (root)	25.0	Plate Grip DOL	1.15			0.22	Vert(LL)	0.03	9-10	>999	240	M120	197/144		
	10.9/20.0	Ron Stross Incr	1.15 NO			0.23		-0.05	9-10	>999	100 n/o				
RCU	25.0	Codo		10/101011	Notrix S	0.24		0.01	/	n/a	n/a				
BCDL	10.0	Code	IKC20	10/11/2014	Watrix-S							Weight: 190 lb	FT = 20%		
LUMBER		•	2) All loads are	considered equal	lly applie	d to all plies,	13) Use Simpson Strong-Tie THJU26 (SGL & SGL LC 2-							
TOP CHORD	2x4 SP No.2			except if note	ed as front (F) or I	back (B)	face in the LC	PL	PLY) or equivalent at 7-1-14 from the left end to connect						
BOT CHORD	2x6 SPF No.2			CASE(S) see	ord.										
WEBS	2x4 SPF No.3 *Exce	pt* 7-6:2x4 SP No.2	2	provided to c	listribute only load	ds noted	as (F) or (B),		14) Use	Simpso	on Stro	ong-Tie THJU26	(SGL & SGL RC 2-		
BRACING				unless other	wise indicated.				PLY	() or equ	livalen	t at 15-1-2 from	the left end to connect		
TOP CHORD	Structural wood she	athing directly applie	ed or ³	b) Unbalanced	roof live loads ha	ve been	considered fo	or		s(es) to	front f	ace of bottom ch	iord.		
	6-0-0 oc purlins, ex	cept end verticals, a	nd	Inis design.	7 16: \/ult 115m	nh (2 aa	and quat)		10) FIII 16) "NIA	ali nali n	ioles w	nere nanger is il	(0.149" x 2") too poilo		
	2-0-0 oc purlins (6-0	-0 max.): 3-5.	4	Vasd-91mpl	7-10, Vuit=11511	PH (3-Sec BCDI –6	nef h-35ft		no) INA		ideline		(0.140 X 3) 10e-halls		
BOT CHORD	Rigid ceiling directly	applied or 10-0-0 oc	С	Ke=1.00: Ca	t. II: Exp C: Enclo	sed: MW	FRS (envelo	pe)		ASE(S	N Sta	ndard			
	bracing.			exterior zone	and C-C Exterior	r(2E) 0-0	-12 to 5-0-12		1) De	ad + Sr) Ola	alanced): Lumbe	r Increase-1 15 Plate		
REACTIONS	(size) 1= Mecha	inical, 7=0-5-8		Interior (1) 5-	0-12 to 7-1-8, Ex	terior(2R) 7-1-8 to 14-	2-6,	i) De	crease=	1 15		a increase=1.15, 1 late		
	Max Horiz 1=61 (LC	87) C 4C) 7 COD (I C 4)	2)	Interior (1) 1	4-2-6 to 15-1-8, E	xterior(2	E) 15-1-8 to		Ur	hiform Lo	bads (l	b/ft)			
	Max Opilit 1=-457 (L	(LC 16), 7 = -608 (LC 1)	3)	19-0-12 zone	e; cantilever left a	nd right e	exposed ; end	ł	Vert: 1-3=-78, 3-5=-88, 5-6=-78, 1-7=-20						
		LC 2), 7=1011 (LC 2))	vertical left a	nembers and	Concentrated Loads (lb)									
FORCES	(Ib) - Maximum Com	pression/Maximum		forces & MW	FRS for reactions	s shown;	Lumber		Vert: 10=144 (F), 9=-73 (F), 8=144 (F), 17=-73 (F),						
	1 2 2102/1222 2 2	- 1700/1260	-		ate grip DOL=1.6	0		4 45	18=-73 (F)						
TOP CHORD	3-4-1515/1174 4-5	5=-1709/1200, 5=-1062/881	5	Diate DOI -1	1-16; PI=25.0 ps	61 (1001 LL	.: Lum DOL=	1.15							
	5-6=-1193/932 6-7=	-966/706			. 15), Pg=20.0 psi late DOI =1 15): li	s-1 0. R	purch Cat C: F	Fully							
BOT CHORD	1-12=-1188/1860. 10	D-12=-1188/1860.		Exp : Ce=0.9	$C_{s=1}^{OC} = 1.13), 1.00$	3-1.0, 10 10 Lu=5	0-0-0	uny							
	9-10=-1204/1815, 8-	-9=-1204/1815,	6) Unbalanced	snow loads have	been cor	nsidered for th								
	7-8=-62/88			design.									(The		
WEBS	2-12=0/99, 2-10=-50)1/154, 3-10=-377/32	28, 7) Provide adeo	quate drainage to	prevent	water ponding	g.				A	A such		
	4-10=-402/96, 4-9=-	120/230, 4-8=-925/4	438, e	 This truss has 	s been designed	for a 10.	0 psf bottom					F.OF	MISS		
	5-8=-237/177, 6-8=-	847/1075		chord live loa	ad nonconcurrent	with any	other live loa	ids.			4	A. A.	NS		
NOTES			ç	 Refer to gird 	er(s) for truss to ti	russ conr	nections.				H	SCOT	TM YEN		
 2-ply trus 	s to be connected toget	ther with 10d	1	0) Provide mec	hanical connectio	n (by oth	ers) of truss t	to			B	SEV	TER Y		
(0.131"x3	(0.131"x3") nails as follows:				bearing plate capable of withstanding 457 lb uplift at										
Top chords connected as follows: 2x4 - 1 row at 0-9-0				Joint 1 and 6	J8 ID UPIIIT at joint	7. rdonoo w	ith the 2019				0	1 the			
0C. Bottom chards connected as follows: 2x6 - 2 rows				International	Residential Code	sections	P502 11 1 a	and			XA		2 WWW		
staggered at 0-9-0 oc				R802 10 2 a	ISI/TPI 1			· · · ·	M.P	NUM	IBER /				
Web connected as follows: 2x4 - 1 row at 0-9-0 oc				2) Graphical pu	Graphical purlin representation does not depict the size						N	OX PE-2001	1018807 / 28		
				or the orienta	ation of the purlin	along the	top and/or				V V	1 and	188		
				bottom chore	i.	-						13'SI	ENU'S		

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Page: 1

19-2-8

Job	Truss	Truss Type	Qty	Ply		
P210577	M02	Roof Special Girder	1	2	Job Reference (optional)	733514

Run: 8.63 S Nov 19 2022 Print: 8.630 S Nov 19 2022 MiTek Industries, Inc. Mon Jun 05 09:39:23 ID:rEyZnIYAeFwfkXJs1ZIIh4z9Yik-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

Scale = 1:75.8

Plate Offsets (X, Y): [9:0-2-12,0-3-0]

Loading	(psf)	Spacing	2-0-0		CSI	0.00	DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP				
TULL (FOOT)	25.0	Plate Grip DOL	1.15			0.30	Vert(LL)	-0.27	20-21	>999	240	MT20	197/144				
	10.9/20.0	Lumber DOL Bon Stroop Inor	1.15			0.94		-0.55	20-21	>030	100						
TODE	25.0					0.01		0.09	14	n/a	n/a						
BCDL	0.0 10.0	Code	IRC20	18/1912014	Matrix-S							Weight: 494 II	o FT = 20%				
LUMBER				WEBS 2	2-25=-1046/2431, 3	8-25=-3			5) TC	LL: ASC	E 7-16	; Pr=25.0 psf (r	oof LL: Lum D	OL=1.15			
TOP CHORD	2x6 SPF No.2 *Exce	ept* 1-3:2x4 SP No.2	2		4-25=-3852/1224, 4	-24=-2	0/132,		Pla	te DOL=	1.15);	Pg=20.0 psf; Pf	i=18.9 psf (Lu	m			
BOT CHORD	2x8 SPF No.2				4-22=-684/2457, 5-	22=-48	8/210,		DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat C; Fully								
WEBS	2x4 SPF No.3 *Exce	ept* 14-13:2x4 SP N	o.2	(6-22=-1652/409, 6-	21=-21	0/491,		Ex	p.; Ce=0.	9; Cs=	=1.00; Ct=1.10,	Lu=50-0-0				
BRACING		'		(6-20=-357/494, 8-2	0=-333	/560,		6) Un	balanced	snow	loads have bee	en considered	for this			
TOP CHORD	Structural wood she	athing directly applie	ed or	;	8-18=-2162/924, 9-	18=-34	0/867,		de	sign.							
	6-0-0 oc purlins, ex	cept end verticals, a	nd	9	9-17=-3885/1205, 1	0-17=-	536/1891,		7) Pro	ovide ade	quate	drainage to pre	vent water po	nding.			
	2-0-0 oc purlins (4-1	1-5 max.): 3-9. 10-1	1.		11-17=-764/2474, 1	1-16=-	594/224,		8) Th	is truss h	as bee	en designed for	a 10.0 psf bot	tom			
BOT CHORD	Rigid ceiling directly	applied or 10-0-0 or	С		12-16=-305/1141, 1	2-15=-	1173/346,		cho	ord live lo	ad no	nconcurrent wit	n any other liv	e loads.			
	bracing, Except:			:	2-26=-2451/1080, 1	3-15=-	691/2754		9) Pro	ovide me	chanic	al connection (b	by others) of tr	uss to			
	6-0-0 oc bracing: 1-	26.	I	NOTES	bearing plate capable of withstanding 1070 lb uplift at												
REACTIONS	(size) 14=0-5-8	26=0-5-8		 2-ply truss to 	be connected toge	ether wi	th 10d			nt 26 and	573 lk) uplift at joint 14	4.	04.0			
	Max Horiz 26=73 (LO	C 16)		(0.131"x3") r	ails as follows:				10) In	IS truss is	Desig	ned in accordan	nce with the 20	1 1 and			
	Max Uplift 14=-573 ((LC 12), 26=-1070 (L	_C 16)	Top chords connected as follows: 2x4 - 1 row at 0-9-0							R802.10.2 and referenced standard ANSI/TPI 1						
	Max Grav 14=2497	(LC 2), 26=2650 (LC	2)	oc, 2x6 - 2 ro	ows staggered at 0-	·9-0 oc.			11) Cr	oz. 10.2 c		procentation d	and ANSI/TETT	the cize			
FORCES	(lb) - Maximum Com	pression/Maximum	,	Bottom chore staggered at	ds connected as fol 0-9-0 oc.	lows: 2	x8 - 2 rows		or	the orient	tation	of the purlin alo	ng the top and	l/or			
		2002/4444		Web connec	ted as follows: 2x4	- 1 row	at 0-9-0 oc.		bot	tom chor	d.						
TOP CHORD	1-2=-200/041, 2-0=-	-3003/1411, - 9177/2004	2	All loads are	considered equally	applie	d to all plies,		12) Us	e Simpso	on Stro	ing-Tie THJA26	(THJA26 on 2	2 ply, Left			
	5 6_ 9177/2004 6 9	D = -0177/2904, D = 0299/20/22		except if not	ed as front (F) or ba	ack (B)	face in the LC	DAD	D Hand Hip) or equivalent at 7-0-6 from the left end to								
	8-97534/2174 9-1	5=-9500/2945, 105886/1668		CASE(S) see	ction. Ply to ply con	nection	s have been		CO	nnect trus	ss(es)	to front face of I	sottom chord.				
	10-11-5370/1536	11-123788/1023		provided to c	listribute only loads	noted	as (F) or (B),										
	12-13=-3028/771 1	3-14=-2364/600		unless other	wise indicated.							000	m				
BOT CHORD	1-26=-234/281 25-2	26=-351/599		3) Unbalanced	roof live loads have	been	considered to	r				P OF	MISCO				
	24-25=-2286/6103	22-24=-2286/6103.		this design.	7 40 1/11 445	. (0						4 SE		0			
	21-22=-3179/9571,	20-21=-3179/9571,	4	i) Wind: ASCE Vood 01mpl	7-16; Vult=115mpi	1 (3-sec	cond gust)				A	N/ and		No			
	18-20=-2872/9388,	17-18=-2119/7576,		Vasu=9111pi	t II: Eve C: Enclose	od: MM	EPS (opvolor	20)			B	S/ SCO	TT M.	5 8			
	16-17=-915/3514, 1		Re=1.00; Cal. II; Exp C; Enclosed; MWFRS (envelope)						SEVIER V								
	14-15=-62/176		Interior (1) 5-0-0 to 7-0-0 Exterior(2E) 7-0-0 to 12-0-0														
		Interior (1) 1	Interior (1) 12-0-0 to 31-2-0. Exterior(2E) 31-2-0 to						20	140		1 2					
				35-2-0. Exte	rior(2R) 35-2-0 to 4	0-2-0. I	nterior (1) 40-	-2-0			X-	A A TRA	NON	yen			
				to 41-1-4 zor	1-4 zone; cantilever left and right exposed; end						AA						
				vertical left and right exposed;C-C for members and							N.	PE-200	101880/	2A			
				forces & MW	FRS for reactions	shown;	Lumber				Y	N Pa		A			

DOL=1.60 plate grip DOL=1.60

June 6,2023

SSIONAL

Continued on page 2 WARNING - Verify

Job	Truss	Truss Type	Qty	Ply	
P210577	M02	Roof Special Girder	1	2	Job Reference (optional)

- 13) Use Simpson Strong-Tie LUS24 (4-10d Girder, 2-10d Truss) or equivalent at 21-11-12 from the left end to connect truss(es) to front face of bottom chord.
- 14) Fill all nail holes where hanger is in contact with lumber. 15) "NAILED" indicates Girder: 3-10d (0.148" x 3") toe-nails
- per NDS guidelines.

LOAD CASE(S) Standard

1) Dead + Snow (balanced): Lumber Increase=1.15, Plate Increase=1.15

Uniform Loads (lb/ft)

Vert: 1-3=-78, 3-9=-88, 9-10=-78, 10-11=-88, 11-13=-78, 1-14=-20

Concentrated Loads (lb)

Vert: 3=-39 (F), 25=240 (F), 29=-35 (F), 30=-35 (F), 32=-35 (F), 34=-35 (F), 35=-35 (F), 36=-35 (F), 37=-35 (F), 43=23 (F), 44=23 (F), 45=23 (F), 46=23 (F), 47=23 (F), 48=23 (F), 49=23 (F), 50=-619 (F) Run: 8.63 S Nov 19 2022 Print: 8.630 S Nov 19 2022 MiTek Industries, Inc. Mon Jun 05 09:39:23 ID:rEyZnIYAeFwfkXJs1ZIIh4z9Yik-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 2

Job	Truss	Truss Type	Qty	Ply	
P210577	M03	Roof Special	1	1	Job Reference (optional)

Run: 8.63 S Nov 19 2022 Print: 8.630 S Nov 19 2022 MiTek Industries, Inc. Mon Jun 05 09:39:25 ID:pbs0Swqk7KkrvaFBclB4sxz9Yfn-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Scale = 1:76.5

Vate Offsets (X, Y): [8:0-2-8,0-3-0], [12:Edge,0-3-8], [13:0-3-8,0-2-0]														
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 25.0 18.9/20.0 25.0 0.0 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018	3/TPI2014	CSI TC BC WB Matrix-S	0.75 0.38 0.98	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.25 -0.60 0.11	(loc) 17-18 17-18 12	l/defl >999 >759 n/a	L/d 240 180 n/a	PLATES MT20 MT18HS Weight: 250 lb	GRIP 197/144 244/190 FT = 20%	
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD WEBS WEBS REACTIONS	2x6 SPF No.2 2x6 SP 2400F 2.0E 2x4 SPF No.3 *Exce SP No.2 Structural wood shea 3-10-1 oc purlins, ex 2-0-0 oc purlins (2-6 Rigid ceiling directly bracing, Except: 6-0-0 oc bracing: 1-2 1 Row at midpt 2 Rows at 1/3 pts (size) 12= Mech Max Horiz 21=92 (LC Max Uplift 12=-242 (I Max Grav 12=2262 (pt* 12-11,13-11,14-9 athing directly applied xcept end verticals, a -7 max.): 4-8. applied or 10-0-0 oc 21. 7-15, 3-21, 8-14 5-20 anical, 21=0-5-8 C 16) LC 16), 21=-416 (LC (LC 2), 21=-2671 (LC	1) 2) :2x4 d or nd 3) 16) 4)	Unbalanced this design. Wind: ASCE Vasd=91mph Ke=1.00; Car exterior zone Interior (1) 5- Interior (1) 14 38-2-0, Interi and right exp exposed;C-C reactions sho DOL=1.60 TCLL: ASCE Plate DOL=1 DOL=1.15 Pl Exp.; Ce=0.9 Unbalanced design.	7-16; Vult=115mph ; TCDL=6.0psf; BC t. II; Exp C; Enclose and C-C Exterior(; 0-0 to 9-0-0, Exteri 4-0-0 to 33-2-0, Ext or (1) 38-2-0 to 41- osed ; end vertical for members and own; Lumber DOL= 7-16; Pr=25.0 psf; 15); Pg=20.0 psf; ate DOL=1.15); Is= ; Cs=1.00; Ct=1.10 snow loads have b	e been (3-sec CDL=6.) ed; MW 2E) 0-0 or(2R) erior(21 1-4 zor left and forces a 1.60 pl (roof LL Pf=18.9 =1.0; Rc 0, Lu=56 een cor	considered for considered for psr, h=35ft; FRS (envelo 0 to 5-0-0, 9-0-0 to 14-0 R) 33-2-0 to te; cantilever 1 right & MWFRS for ate grip :: Lum DOL= 9 psf (Lum bugh Cat C; F)-0-0 isidered for th	pe) -0, left r 1.15 Fully his						
FORCES	(lb) - Maximum Com Tension 1-2=-259/271, 2-3=- 4-5=-2944/519, 5-7= 7-8=-4439/644, 8-9= 9-10=-3450/499, 10- 11-12=-2169/269	pression/Maximum 178/175, 3-4=-3165/5 5979/927, 3460/508, 11=-3011/379,	5) 6) 529, 7) 8) 9)	Provide adec All plates are This truss ha chord live loa Refer to girde Provide mecl bearing plate	uate drainage to p MT20 plates unles s been designed fo ad nonconcurrent w er(s) for truss to tru hanical connection capable of withsta	revent s other or a 10.0 rith any ss conr (by oth nding 2	water ponding wise indicate 0 psf bottom other live loa nections. ers) of truss f 42 lb uplift at	g. ed. ads. to t			4	ATE OF A	AISSOL	
BOT CHORD	$\begin{array}{c} 1\text{-}21\text{=-}156/250, 20\text{-}2\\ 18\text{-}20\text{=-}817/5512, 17\\ 15\text{-}17\text{=-}859/5979, 14\\ 13\text{-}14\text{=-}300/2701, 12\\ 4\text{-}20\text{=-}22/586, 5\text{-}20\text{=}\\ 5\text{-}17\text{=-}66/584, 7\text{-}17\text{=}\\ 7\text{-}15\text{=-}1873/316, 8\text{-}1\\ 11\text{-}13\text{=-}295/2674, 2\text{-}\\ 3\text{-}20\text{=-}138/1140, 3\text{-}2\\ 9\text{-}14\text{=-}350/2369, 8\text{-}1\\ 10\text{-}14\text{=-}101/640, 10\text{-}\\ \end{array}$	11=-376/2165, 7-18=-817/5512, 4-15=-576/4464, 2-13=-40/157 -2857/430, 5-18=0/29; -107/121, 5=-46/824, 21=-555/174, 1=-2962/449, 4=-2900/451, 13=-854/160	10, 92, 11) LO) This truss is International R802.10.2 ar Graphical pu or the orienta bottom choro	416 lb uplift at joint designed in accord Residential Code s nd referenced stand rlin representation ation of the purlin al l. Standard	21. ance w sections dard AN does no ong the	ith the 2018 R502.11.1 a ISI/TPI 1. of depict the s top and/or	and size		, 		SCOTT SEVI SEVI PE-20010 PE-20010	M. ER	
NOTES												Vac		

NOTES

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1** Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

June 6,2023

Page: 1

Job	Truss	Truss Type	Qty	Ply	
P210577	M04	Нір	1	1	Job Reference (optional)

Run: 8.63 S Nov 19 2022 Print: 8.630 S Nov 19 2022 MiTek Industries, Inc. Mon Jun 05 09:39:26 ID:fSVYO5z7gPvt0di0wjML_2z9Yd1-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:75.4

Plate Offsets (X, Y): [18:0-3-0,0-4-0]

Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 25.0 18.9/20.0 25.0 0.0 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018	3/TPI2014	CSI TC BC WB Matrix-S	0.55 0.89 0.91	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.21 -0.49 0.15	(loc) 14-15 14-15 11	l/defl >999 >928 n/a	L/d 240 180 n/a	PLATES MT20 MT18HS Weight: 221 lb	GRIP 197/144 197/144 FT = 20%	
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD WEBS REACTIONS	2x6 SPF No.2 2x6 SPF No.2 2x4 SPF No.3 *Exce Structural wood shea 3-8-5 oc purlins, exc 2-0-0 oc purlins (3-0 Rigid ceiling directly bracing. 1 Row at midpt (size) 11= Mech Max Horiz 18=91 (LC Max Uplift 11=-274 (I Max Grav 11=2262 (pt* 11-10:2x4 SP No. athing directly applied cept end verticals, an -3 max.): 4-8. applied or 6-0-0 oc 5-17, 5-14, 7-12, 9-1 anical, 18=0-5-8 ; 20) LC 13), 18=-366 (LC (LC 2), 18=2671 (LC	2) .2 d or d 1 3) 12) 2) 4)	Wind: ASCE Vasd=91mpl Ke=1.00; Cat exterior zone Interior (1) 5- 18-0-14, Inte 33-2-0 to 40- cantilever left right exposed for reactions DOL=1.60 TCLL: ASCE Plate DOL=1 DOL=1.15 PI Exp.; Ce=0.9 Unbalanced	7-16; Vult=115mp ; TCDL=6.0psf; Bf . II; Exp C; Enclos and C-C Exterior(0-0 to 11-0-0, Exterior(0-1 to 11-0-0, Exterior(2-14, Interior (1) 4 : and right exposed ;C-C for members shown; Lumber Df 7-16; Pr=25.0 psf; 15); Pg=20.0 psf; ate DOL=1.15); Is; c Cs=1.00; Ct=1.11 snow loads have b	h (3-sec CDL=6. ed; MW 2E) 0-0 erior(2R 33-2-0, 0-2-14 t d; end v and for DL=1.60 (roof LL Pf=18.9 =1.0; Rc 0, Lu=50 eeen cor	ond gust) Dpsf; h=35ft; FRS (envelop 0 to 5-0-0, 11-0-0 to Exterior(2R) 0 41-1-4 zone rertical left an ces & MWFR 0 plate grip :: Lum DOL= 0 psf (Lum ough Cat C; F 0-0-0 sidered for th	be) e; d 2S 1.15 fully his						
FORCES	(lb) - Maximum Com Tension	pression/Maximum	5)	design. Provide adeo	uate drainage to p	orevent	vater ponding	ı.						
TOP CHORD	1-2=-302/320, 2-3=-2 4-5=-3045/469, 5-7= 7-8=-3146/480, 8-9= 9-10=-287/76, 10-11	231/263, 3-4=-3394/4 -4773/745, -3452/496, =-308/72	482, 6) 7) 8)	All plates are This truss ha chord live loa Refer to girde	MT20 plates unle s been designed for d nonconcurrent v er(s) for truss to tru	ss other or a 10.0 vith any uss conr	wise indicate) psf bottom other live loa nections.	d. ds.						
BOT CHORD	1-18=-208/290, 17-1 15-17=-664/4749, 14 12-14=-669/4773, 11	8=-293/2009, 1-15=-664/4749, 1-12=-367/2650	9)	Provide mech bearing plate	capable of withsta	(by oth anding 2	ers) of truss t 74 lb uplift at	0				OF M		
WEBS	4-17=-22/672, 5-17= 5-14=-66/120, 7-14= 8-12=-30/701, 9-12= 9-11=-3099/437, 2-1 3-18=-2982/490, 3-1	-2028/318, 5-15=0/2 0/271, 7-12=-1968/3 -48/788, 8=-434/150, 7=-123/1248	92, 10 13, 11) This truss is o International R802.10.2 ar) Graphical pu or the orienta	designed in accord Residential Code and referenced stan rlin representation tion of the purlin a	lance w sections dard AN does no long the	ith the 2018 R502.11.1 a ISI/TPI 1. ot depict the s top and/or	nd size				STATE SCOTT SEVI	M. ER	
NOTES	ad roof live loade have	haan annaidarad far		bottom chord	Stondard					~	AC.	oll >	Server	P
i) Unbaiance	eu root live loads have	been considered for	LO	DAD CASE(S)	Siandard						N TO	NUME	ER $/ \approx 0$	1

Unbalanced roof live loads have been considered for 1) this design.

June 6,2023

E

PE-200101880

SSIONAL

ROF

Job	Truss	Truss Type	Qty	Ply	
P210577	M05	Нір	1	1	Job Reference (optional)

Run: 8,63 S Nov 19 2022 Print: 8,630 S Nov 19 2022 MiTek Industries, Inc. Mon Jun 05 09:39:27 ID:NkkTKa6jIbtOwDTG_AZdL4z9YbY-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:73.8

Plate Offsets (X, Y): [11:Edge,0-2-0]

Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 25.0 18.9/20.0 25.0 0.0 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018	3/TPI2014	CSI TC BC WB Matrix-S	0.44 0.72 0.68	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.15 -0.36 0.11	(loc) 15-16 15-16 11	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 235 lb	GRIP 197/144 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS TOP CHORD BOT CHORD WEBS REACTIONS	2x6 SPF No.2 2x6 SPF No.2 2x4 SPF No.3 *Excep 12-10,19-2:2x4 SP No Structural wood shea 3-5-7 oc purlins, exci 2-0-0 oc purlins (3-5- Rigid ceiling directly a bracing, Except: 6-0-0 oc bracing: 1-2t 1 Row at midpt 5 (size) 11= Mecha Max Horiz 20=106 (LC Max Uplift 11=-248 (L Max Grav 11=2257 (L (lb) - Maximum Comp	ot* 11-10:2x6 SPF No o.2 tthing directly applied ept end verticals, and 13 max.): 4-8. applied or 10-0-0 oc 0,19-20. 5-18, 7-13 anical, 20=0-5-8 C 16) CC 13), 20=-340 (LC 1 LC 2), 20=2666 (LC 2 pression/Maximum	2) .2, or 1 3) (2) 4) (5) 6)	Wind: ASCE Vasd=91mph Ke=1.00; Cat exterior zone Interior (1) 5- 20-0-14, Inte 31-2-0 to 38- cantilever leff right exposed for reactions DOL=1.60 TCLL: ASCE Plate DOL=1.15 Pl Exp.; Ce=0.9 Unbalanced design. Provide adeo This truss ha	7-16; Vult=115mph ; TCDL=6.0psf; BC . II; Exp C; Enclose and C-C Exterior(2 0-0 to 13-0-0, Exterior ior (1) 20-0-14 to 3 2-14, Interior (1) 38 and right exposed i;C-C for members shown; Lumber DC 7-16; Pr=25.0 psf; 15); Pg=20.0 psf; late DOL=1.15); Is= ; Cs=1.00; Ct=1.10 snow loads have be uate drainage to p s been designed fo	n (3-sec CDL=6. ed; MW 2E) 0-0 rior(2R) 31-2-0, 3-2-14 t 1; end v and for DL=1.60 (roof LL Pf=18.9 =1.0; Rc b, Lu=50 een cor revent v r a 10.0	ond gust) Dpsf; h=35ft; FRS (envelc 0 to 5-0-0, 13-0-0 to Exterior(2R) 0 41-0-4 zon ertical left an ces & MWFI 0 plate grip : Lum DOL= 0 psf (Lum vagh Cat C; 0-0-0 isidered for 1 vater pondin 0 psf bottom	ope) ne; nd RS =1.15 Fully this ng.					
TOP CHORD	Tension 1-2=-259/324, 2-3=-2 3-4=-3402/460, 4-5=- 5-7=-3939/606, 7-8=- 8-9=-3416/478, 9-10= 10-11=-2167/281	2698/321, 3024/450, 3066/462, =-3207/384,	7) 8) 9)	chord live loa Refer to girde Provide mech bearing plate joint 11 and 3 This truss is o	d nonconcurrent w er(s) for truss to tru- nanical connection capable of withsta 840 lb uplift at joint designed in accord	rith any ss conr (by oth nding 2 20. ance w	other live loa lections. ers) of truss 48 lb uplift a th the 2018	ads. to it				GS OF M	AISS
BOT CHORD	1-20=-220/253, 19-20 18-19=-285/2432, 16- 15-16=-502/3917, 13- 12-13=-336/2869 11-)=-220/273, -18=-502/3917, -15=-505/3939, -12=-53/239	10	International R802.10.2 ar) Graphical pu	Residential Code s ad referenced stand rlin representation tion of the purlin al	ections dard AN does no	R502.11.1 a SI/TPI 1. of depict the	and size			A	S SCOTT SEVI	M. R.
WEBS	4-18=-33/691, 5-18=- 7-13=-1282/200, 8-13 9-13=-37/427, 9-12=- 10-12=-309/2725, 5-1 7-15=0/230, 2-20=-24 3-19=-1001/232, 2-19	1302/206, 3=-48/751, 684/149, 16=0/233, 5-15=-66/1 454/408, 3-18=-98/76)=-386/2784	LC 12, 9,	bottom chord	Standard		top and/or					PE-20010	
NOTES 1) Unbalance this design	ed roof live loads have b	peen considered for										SIONA	L ENCE

June 6,2023

Job	Truss	Truss Type	Qty	Ply	
P210577	M06	Нір	1	1	Job Reference (optional)

Run: 8.63 S Nov 19 2022 Print: 8.630 S Nov 19 2022 MiTek Industries, Inc. Mon Jun 05 09:39:28 ID:5TwX7Rr_xKZkkbe?3U9wJxz9Yab-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

9-1-7 15-0-0 22-1-0 29-2-0 35-0-12 41-3-0 3-1-12 3-1-12 5-11-11 5-10-9 7-1-0 7-1-0 5-10-12 6-2-4 6x6= 4x8= 6x6= 6-9-2 0-1-0 5 7 S 6 - \boxtimes 12 5 4x4 **≈** 4x4 🚽 4 8 4x8 🚅 22 23 6-9-2 6-7-12 6-7-12 4x8 🚅 3²¹ 24 5x10 👟 20 2 9 19 -8-11 0-6-2 ł 17 16 15 14 13 12 11 4x6= 18 4x6= 6x6= 4x8= 3x4 u 5x8= 6x6= 4x8= 3x8 II 5x8= 3-1-12 2-11-0 9-1-7 14-10-4 22-1-0 29-3-12 35-0-12 41-3-0 -----2-11-0 5-11-11 5-8-13 7-2-12 5-9-0 6-2-4 7-2-12 0-2-12

Scale = 1:73.9

Plate Offsets (X, Y): [10:Edge,0-2-0]

Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 25.0 18.9/20.0 25.0 0.0 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018	3/TPI2014	CSI TC BC WB Matrix-S	0.51 0.66 0.72	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.13 -0.31 0.09	(loc) 14 12-14 10	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 235 lb	GRIP 197/144 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD WEBS REACTIONS	2x6 SPF No.2 2x6 SPF No.2 2x4 SPF No.3 *Exce 11-9,17-2:2x4 SP No Structural wood shea 3-8-6 oc purlins, exc 2-0-0 oc purlins (3-1 Rigid ceiling directly bracing. 1 Row at midpt (size) 10= Mech Max Horiz 18=122 (L Max Uplift 10=-222 (Max Grav 10=2257 ((lb) - Maximum Com Tension	pt* 10-9:2x6 SPF No 5.2 athing directly applie cept end verticals, ar 0-3 max.): 5-7. applied or 10-0-0 oc 6-16, 6-12 anical, 18=0-5-8 .C 20) LC 13), 18=-314 (LC (LC 2), 18=2666 (LC pression/Maximum	2) 0.2, d or 1d 3) (12) 4) 5) 6)	Wind: ASCE Vasd=91mpl Ke=1.00; Ca exterior zone Interior (1) 5- 22-1-0, Interi to 36-2-14, li left and right exposed;C-C reactions sho DOL=1.60 TCLL: ASCE Plate DOL=1 DOL=1.15 P Exp.; Ce=0.5 Unbalanced design. Provide adec This truss ha	7-16; Vult=115 n; TCDL=6.0psf t. II; Exp C; Enc and C-C Exter 0-0 to 15-0-0, E or (1) 22-1-0 to nterior (1) 36-2- exposed ; end c for members a pwn; Lumber D0 7-16; Pr=25.0 .15); Pg=20.0 p late DOL=1.15) b; Cs=1.00; Ct= snow loads hav quate drainage f s been designe	mph (3-sec ; BCDL=6.0 ; BCDL=6.0 ; BCDL=6.0 ; BCDL=6.0 ; Josed; MWi ior(2E) 0-0- Exterior(2R) 29-2-0, Ext 14 to 41-0-4 vertical left and forces 8 DL=1.60 pla psf (roof LL bsf; Pf=18.9 ; Is=1.0; Ro 1.10, Lu=50 re been con to prevent v d for a 10.0	ond gust) opsf; h=35ft; FRS (envelo 0 to 5-0-0, 15-0-0 to erior(2R) 29 4 zone; canti and right KMWFRS fo ite grip : Lum DOL= psf (Lum ugh Cat C; F i-0-0 sidered for t vater pondin. psf bottom	pe) -2-0 lever r 1.15 ∓ully his g.					
TOP CHORD BOT CHORD	1-2=-248/105, 2-4=- 4-5=-3301/428, 5-6= 6-7=-2975/435, 7-8= 8-9=-3374/404, 9-10 1-18=0/236, 17-18=- 16-17=-298/2890, 14 12-14=-392/3511, 12 12-14=-392/3511, 12 12-14=-39	3256/350, 2940/420, 3342/439, J=-2164/286 -79/256, 4-16=-392/3511, 1-12=-337/3010,	7) 8) 9)	chord live loa Refer to gird Provide mec bearing plate joint 10 and 3 This truss is International	ad nonconcurree er(s) for truss to hanical connect capable of with 314 lb uplift at jo designed in acc Residential Co	nt with any o truss conn tion (by othe nstanding 2 pint 18. cordance wi de sections	other live loa ections. ers) of truss t 22 lb uplift at th the 2018 R502.11.1 a	ads. to t			Å	STE OF M	MISSOL
WEBS NOTES 1) Unbalance this design	10-11=-60/279 5-16=-15/618, 6-16= 6-12=-859/134, 7-12 8-12=-211/225, 8-11 9-11=-283/2800, 2-1 4-16=-123/277, 4-17 2-17=-417/2951 ed roof live loads have 1.	896/138, 6-14=0/28 :=-18/639, =-556/142, 8=-2443/454, =-612/181, been considered for	5, 10) LO	R802.10.2 an) Graphical pu or the orienta bottom chorc DAD CASE(S)	nd referenced s rlin representat ation of the purli I. Standard	tandard AN ion does no in along the	SI/TPI 1. t depict the s top and/or	size				SCOTT SEVI PE-20010 PE-20010	T M. ER JER 018807

June 6,2023

Job	Truss	Truss Type	Qty	Ply	
P210577	M07	Нір	1	1	I58733519 Job Reference (optional)

Run: 8.63 S Nov 19 2022 Print: 8.630 S Nov 19 2022 MiTek Industries, Inc. Mon Jun 05 09:39:29 ID:H78XaqOCL9DLeWaeCRSUeRz9YZu-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

9

4x6=

-8-11

10 ₿

3-1-12 10-1-7 17-0-0 22-1-0 27-2-0 34-0-12 41-3-0 H 3-1-12 6-11-11 6-10-9 5-1-0 5-1-0 6-10-12 7-2-4 6x6= 4x8= 6x6= 0-1-10 -10 Ņ 5 22 6 ⊠ 23 7 _ 7-7 4x4 🚅 4x4≈ 12 5 4 8 21 4x8 🚅 24 7-7-2 7-5-8 7-5-8 4x8 🚅 5x10≈ 3 19 ²⁰ 25 2 0-6-2 • ĕ 17 16 15 14 13 12 11 4x6= 18 6x6= 4x8= 4x8= 3x4 🛚 4x8= 4x8= 6x6= 3x8 II

3-1-12 2-11-0 10-1-7 16-10-4 22-1-0 27-3-12 34-0-12 41-3-0 -11 H -2-11-0 6-11-11 6-8-13 5-2-12 5-2-12 6-9-0 7-2-4 0-2-12

Scale = 1:74.1

Plate Offsets (X, Y): [10:Edge,0-2-0]

Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 25.0 18.9/20.0 25.0 0.0 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018	3/TPI2014	CSI TC BC WB Matrix-S	0.44 0.60 0.73	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.12 -0.28 0.08	(loc) 14 14 10	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 243 lb	GRIP 197/144 FT = 20%	
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD WEBS REACTIONS	2x6 SPF No.2 2x6 SPF No.2 2x4 SPF No.3 *Exce 11-9,17-2:2x4 SP No Structural wood shea 3-7-7 oc purlins, exc 2-0-0 oc purlins (4-2 Rigid ceiling directly bracing. 1 Row at midpt (size) 10=0-5-8, Max Horiz 18=138 (L Max Uplift 10=-217 (I Max Grav 10=2257 (pt* 10-9:2x6 SPF No. .2 athing directly applied cept end verticals, and -12 max.): 5-7. applied or 10-0-0 oc 6-15, 6-12 18=0-5-8 .C 16) LC 17), 18=-287 (LC (LC 2), 18=2666 (LC 2)	2) .2, d or d 3) 12) 2) 4)	Wind: ASCE Vasd=91mpl Ke=1.00; Car exterior zone Interior (1) 5- 24-0-14, Inte 27-2-0 to 34- cantilever lef right exposer for reactions DOL=1.60 TCLL: ASCE Plate DOL=1 DOL=1.15 Pl Exp.; Ce=0.9 Unbalanced design.	7-16; Vult=115mph n; TCDL=6.0psf; BC t. II; Exp C; Enclose and C-C Exterior(: 0-0 to 17-0-0, Exterior (1) 24-0-14 to 2 0-12, Interior (1) 34 t and right exposed t;C-C for members shown; Lumber DC 7-16; Pr=25.0 psf; 15); Pg=20.0 psf; ate DOL=1.15); Is= t; Cs=1.00; Ct=1.10; show loads have be	n (3-sec CDL=6.0 ed; MW 2E) 0-0 prior(2R 27-2-0, 4-0-12 t 1; end v and for DL=1.60 (roof LL Pf=18.9 =1.0; Rc 0, Lu=50 een cor	ond gust) Dpsf; h=35ft; FRS (envelo 0 to 5-0-0, 17-0-0 to Exterior(2R) 0 41-0-4 zon rertical left ar ces & MWFF 0 plate grip : Lum DOL= 0 psf (Lum ough Cat C; F 0-0-0 isidered for t	pe) e; nd RS 1.15 Fully his						
FORCES	(lb) - Maximum Com Tension	pression/Maximum	5) 6)	Provide adeo This truss ha	uate drainage to p s been designed fo	revent	water ponding	g.						
TOP CHORD	1-2=-244/51, 2-4=-3; 5-6=-2811/436, 6-7= 7-8=-3212/440, 8-9= 9-10=-2162/293	393/362, 4-5=-3186/4 :-2832/445, :-3494/419,	129, 7)	chord live loa Provide med bearing plate joint 10 and 2	ad nonconcurrent w hanical connection capable of withsta 287 lb uplift at joint	vith any (by oth Inding 2 18.	other live loa ers) of truss 17 lb uplift a	nds. to t					<i>m</i>	
BOT CHORD	1-18=0/230, 17-18=- 15-17=-315/3004, 14 12-14=-299/3054, 11 10-11=-68/322	109/249, 1-15=-299/3054, 1-12=-343/3108,	8) 9)	This truss is International R802.10.2 ar Graphical pu	designed in accord Residential Code s nd referenced stand rlin representation	ance w sections dard AN does no	ith the 2018 R502.11.1 a ISI/TPI 1. ot depict the s	and size			Å	TATE OF M	AISSOLA	
WEBS	5-15=-17/606, 6-15= 6-12=-550/82, 7-12= 8-11=-442/149, 9-11 2-18=-2441/467, 4-1 4-17=-490/184, 2-17	-579/86, 6-14=0/167, -29/623, 8-12=-456/1 =-280/2839, 5=-375/190, =-428/2984	98, LC	or the orienta bottom chorc DAD CASE(S)	ation of the purlin al I. Standard	long the	top and/or			•	*		Service)
1) Unbalance	od roof live loads have	boon considered for									XX	$O \ PE-20010$	18807 / S H	

1) Unbalanced roof live loads have been considered for this desian.

SSIONAL

E

June 6,2023

Job	Truss	Truss Type	Qty	Ply	
P210577	M08	Нір	1	1	Job Reference (optional)

Run: 8.63 S. Nov 19 2022 Print: 8.630 S. Nov 19 2022 MiTek Industries. Inc. Mon. Jun 05 09:39:30 ID:I7HBUc0q58nztVYeEMOgIOz9YZ4-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

LUMBER		2)	Wind: ASCE 7-16; Vult=115mph (3-second gust)	
TOP CHORD	2x6 SPF No.2		Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=35ft;	
BOT CHORD	2x6 SPF No.2		Ke=1.00; Cat. II; Exp C; Enclosed; MWFRS (envelope)	
WEBS	2x4 SPF No.3 *Except* 10-9:2x6 SPF No.2,		exterior zone and C-C Exterior(2E) 0-0-0 to 5-0-0,	
	11-9,16-2:2x4 SP No.2		Interior (1) 5-0-0 to 19-0-0, Exterior(2E) 19-0-0 to	
BRACING			25-2-0, Exterior(2R) 25-2-0 to 32-2-14, Interior (1)	
TOP CHORD	Structural wood sheathing directly applied or		32-2-14 to 41-0-4 zone; cantilever left and right	
	3-4-10 oc purlins except end verticals and		exposed ; end vertical left and right exposed;C-C for	
	2-0-0 oc purlins (4-2-3 max): 5-6		members and forces & MWFRS for reactions shown;	
BOT CHORD	Rigid ceiling directly applied or 10-0-0 oc		Lumber DOL=1.60 plate grip DOL=1.60	
201 0110112	bracing	3)	TCLL: ASCE 7-16; Pr=25.0 psf (roof LL: Lum DOL=1.15	
WEBS	1 Row at midpt 5-13 4-14 7-13		Plate DOL=1.15); Pg=20.0 psf; Pf=18.9 psf (Lum	
REACTIONS	(size) 10-0.5.8 17-0.5.8		DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat C; Fully	
REACTIONS	(312e) 10-0-3-0, 17-0-3-0 Max Hariz 17-152 (LC 20)		Exp.; Ce=0.9; Cs=1.00; Ct=1.10, Lu=50-0-0	
	Max Holiff $10 = 227 (1 C 17) 17 = 200 (1 C 16)$	4)	Unbalanced snow loads have been considered for this	
	Max Opilit $10=-237$ (LC 17), $17=-300$ (LC 16)		design.	
	Max Grav 10=2257 (LC 2), 17=2666 (LC 2)	5)	Provide adequate drainage to prevent water ponding.	
FORCES	(lb) - Maximum Compression/Maximum	6)	This truss has been designed for a 10.0 psf bottom	
	Tension		chord live load nonconcurrent with any other live loads.	
TOP CHORD	1-2=-241/21, 2-4=-3485/377, 4-5=-3036/427,	7)	Provide mechanical connection (by others) of truss to	
	5-6=-2664/444, 6-7=-3053/431,		bearing plate capable of withstanding 237 lb uplift at	
	7-9=-3570/425, 9-10=-2158/296		joint 10 and 300 lb uplift at joint 17.	
BOT CHORD	1-17=-4/221, 16-17=-140/241,	8)	This truss is designed in accordance with the 2018	ATTER
	14-16=-339/3083, 13-14=-242/2652,		International Residential Code sections R502.11.1 and	OF MIL
	11-13=-339/3165, 10-11=-76/370		R802.10.2 and referenced standard ANSI/TPI 1.	E OF MISS
WEBS	5-14=-39/470, 5-13=-211/241, 6-13=-18/489,	9)	Graphical purlin representation does not depict the size	
	9-11=-266/2842, 2-17=-2438/479,		or the orientation of the purlin along the top and/or	SCOTT M YP
	4-14=-603/233, 4-16=-383/184,		bottom chord.	SEVIED V
	2-16=-425/2967, 7-11=-346/152,	LC	AD CASE(S) Standard	
	/-13=-6/8/241			
NOTES				K + +++ Court

Unbalanced roof live loads have been considered for 1)

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

MiTek 16023 Swingley Ridge Rd Chesterfield, MO 63017

Job	Truss	Truss Type	Qty	Ply	
P210577	M09	Нір	1	1	Job Reference (optional)

21-0-0

8-10-9

Premier Building Supply (Springhill, KS), Spring Hills, KS - 66083,

3-1-12

H 3-1-12 12-1-7

8-11-11

Run: 8,63 S Nov 19 2022 Print: 8,630 S Nov 19 2022 MiTek Industries, Inc. Mon Jun 05 09:39:30 ID:E8RsOOfRr6Kb6UXdHHKsrMz9YYG-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

> 23-2-0 32-1-2 41-0-4 44-2-0 2-2-0 8-11-2 8-11-2 3-1-12 7x8= 5x10= 1-10 H 5 6 \boxtimes 24

Page: 1

Scale = 1:77.1

Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 25.0 18.9/20.0 25.0 0.0 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018	3/TPI2014	CSI TC BC WB Matrix-S	0.74 0.67 0.74	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.13 -0.32 0.07	(loc) 15-17 15-17 15-17 11	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 255 lb	GRIP 197/144 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD WEBS REACTIONS	2x6 SPF No.2 2x6 SPF No.2 2x4 SPF No.3 *Exce No.2 Structural wood she: 2-11-10 oc purlins, e 2-0-0 oc purlins (4-2 Rigid ceiling directly bracing. 1 Row at midpt (size) 11=0-5-8, Max Horiz 18=-164 (Max Uplift 11=-317 (Max Uplift 11=-317 (ept* 9-12,17-2:2x4 SF athing directly applie except -3 max.): 5-6. applied or 10-0-0 oc 5-14, 4-15, 7-14 18=0-5-8 LC 17), 18=-317 (LC (10, 2), 48, 2050 (10)	2) d or 3) 16) ⁴⁾	Wind: ASCE Vasd=91mpl Ke=1.00; Car exterior zone Interior (1) 5- 23-2-0, Exter 30-2-14 to 44 exposed ; en members an Lumber DOL TCLL: ASCE Plate DOL=1 DOL=1.15 Pl Exp.; Ce=0.9 Unbalanced design.	7-16; Vult=115mpf n; TCDL=6.0psf; BC t. II; Exp C; Enclose and C-C Exterior(: 0-0 to 21-0-0, Exterior(2R) 23-2-0 to 3 4-2-0 zone; cantilev d vertical left and rid forces & MWFRS =1.60 plate grip DC 7-16; Pr=25.0 psf; 15); Pg=20.0 psf; late DOL=1.15); Is= b; Cs=1.00; Ct=1.10; snow loads have b	n (3-sec CDL=6.4 ed; MW 2E) 0-0 rior(2E) 0-2-14, er left a ight exp for rea DL=1.60 (roof LL Pf=18.9 =1.0; RC 0, Lu=50 een cor	ond gust) Dpsf; h=35ft; FRS (envelop 0 to 5-0-0, 21-0-0 to Interior (1) und right osed;C-C for ctions showr) : Lum DOL= 0 psf (Lum ough Cat C; F 0-0-0 isidered for th	pe) r 1; 1.15 Fully his					
FORCES	(lb) - Maximum Com	pression/Maximum	2) 5) 6)	Provide adec This truss ha	quate drainage to p is been designed for	revent v or a 10.0	vater ponding) psf bottom	g.					
TOP CHORD	1-2=-250/28, 2-4=-3 5-6=-2522/389, 6-7= 7-9=-3622/392, 9-10	625/391, 4-5=-2933/3 2940/369,)=-248/25	370, 7)	Provide mech bearing plate	hanical connection capable of withsta	(by oth nding 3 11.	ers) of truss t 17 lb uplift at	to t					
BOT CHORD	1-18=-14/249, 17-18 15-17=-371/3220, 14 12-14=-207/3218, 14 10-11=-11/245	8=-171/314, 4-15=-134/2515, 1-12=-11/245,	8)	This truss is International R802.10.2 ar Graphical pu	designed in accord Residential Code s nd referenced stand rlin representation	ance w sections dard AN	ith the 2018 R502.11.1 a ISI/TPI 1.	and				OF	
WEBS NOTES	5-15=-72/512, 5-14= 2-18=-2419/473, 9-1 4-15=-822/273, 7-12 7-14=-813/273, 9-12 4-17=-305/182, 2-17	247/292, 6-14=-77/ 1=-2417/472, 2=-314/182, 2=-374/3006, '=-373/3004	544, C	or the orienta bottom chore DAD CASE(S)	ation of the purlin al I. Standard	ong the	top and/or					STATE SCOTT	T M. ER

1) Unbalanced roof live loads have been considered for this design.

Job	Truss	Truss Type	Qty	Ply		
P210577	M10	Roof Special	1	1	I58 Job Reference (optional)	8733522

9-8-9

2x4 SP No.2

2x4 SPF No.3

2x4 SP No.2

Run: 8.63 S. Nov 19 2022 Print: 8.630 S. Nov 19 2022 MiTek Industries. Inc. Mon. Jun 05 09:39:31 ID:jy9o0cv2bmJ_zJvQqPg0X4z9YWf-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

15-9-15 22-1-0 24-0-4 3-1-12 9-6-3 28-1-4 6-3-12 3-1-12 6-4-7 6-3-1 1-11-4 4-1-0 5x8= 1.5x4 **I** 6 19 7 3x4 🚅 4x6= ²⁰218 18 5 12 5 3x4 ≠ 4 4x4 🥃 6-2-7 3 4x4 🚽 17 2 <u>1-6-</u>2 ģ 11 9 141 X 15 14 13 12 3x4= 16 1.5x4 ı 1.5x4 = 3x4= 3x4= 3x8= 1.5x4 u 5x8= 5x5= 3-1-12 <u>27-9-1</u>2 28-1-4 2-11-0 9-6-3 15-9-15 22-1-0 24-2-0 -11 2-11-0 6-4-7 6-3-12 6-3-1 2-1-0 3-7-12 0-3-8 0-2-12 Plate Offsets (X, Y): [3:0-2-0,Edge], [10:0-2-4,0-2-12] 2-0-0 CSI DEFL in l/defl L/d PLATES GRIP (psf) Spacing (loc) 25.0 Plate Grip DOL 1.15 тс 0.79 Vert(LL) -0.04 13-14 >999 240 MT20 244/190 13.9/20.0 Lumber DOL 1.15 BC 0.47 Vert(CT) -0.11 13-14 >999 180 25.0 Rep Stress Incr WB YES 0.62 Horz(CT) -0.01 9 n/a n/a 0.0 Code IRC2018/TPI2014 Matrix-S 10.0 Weight: 174 lb FT = 20% Wind: ASCE 7-16; Vult=115mph (3-second gust) 2) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=35ft; Ke=1.00; Cat. II; Exp C; Enclosed; MWFRS (envelope) 2x4 SP No.2 *Except* 11-7:2x4 SPF No.3 exterior zone and C-C Exterior(2E) 0-0-0 to 5-0-0, Interior (1) 5-0-0 to 22-1-0, Exterior(2R) 22-1-0 to 27-1-0. Interior (1) 27-1-0 to 27-11-8 zone: cantilever left and right exposed ; end vertical left and right Structural wood sheathing directly applied or exposed;C-C for members and forces & MWFRS for 4-1-14 oc purlins. reactions shown; Lumber DOL=1.60 plate grip Rigid ceiling directly applied or 6-0-0 oc DOL=1.60 bracing. Except: 3) TCLL: ASCE 7-16; Pr=25.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf; Pf=13.9 psf (Lum 1 Row at midpt 6-10, 5-12 DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat C; Fully 9=3-10-4, 10=3-10-4, 16=0-5-8 Exp.; Ce=0.9; Cs=1.00; Ct=1.10 Max Horiz 16=301 (LC 13) Unbalanced snow loads have been considered for this 4) 9=-158 (LC 35), 10=-251 (LC 16), desian. 16=-219 (LC 16) This truss has been designed for a 10.0 psf bottom 5) 9=31 (LC 16), 10=1849 (LC 2), chord live load nonconcurrent with any other live loads. 16=1598 (LC 35) 6) Bearing at joint(s) 9 considers parallel to grain value (lb) - Maximum Compression/Maximum using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface. 1-2=-261/272, 2-4=-1450/203, Provide mechanical connection (by others) of truss to 7) 4-5=-1024/190, 5-6=-290/187, 6-7=-44/197, bearing plate capable of withstanding 158 lb uplift at 7-8=-76/244, 8-9=0/187 joint 9, 251 lb uplift at joint 10 and 219 lb uplift at joint OF MISS 1-16=-148/245, 14-16=-343/276, 16 F 13-14=-318/1227, 12-13=-253/836, This truss is designed in accordance with the 2018 8) 11-12=-82/9, 10-11=-12/1, 7-10=-368/144, International Residential Code sections R502 11 1 and SCOTT M. R802.10.2 and referenced standard ANSI/TPI 1. 6-10=-1183/214, 2-16=-1471/372,

LOAD CASE(S) Standard

WEBS

Scale = 1:66.2

Loading

TCDL

BCLL

BCDL

WEBS

WEBS

FORCES

TOP CHORD

BOT CHORD

OTHERS

BRACING

TOP CHORD

BOT CHORD

REACTIONS

1 Row at midpt 7-10

(size)

Max Uplift

Max Grav

Tension

9-10=-117/130

LUMBER

TOP CHORD

BOT CHORD

TCLL (roof)

Snow (Pf/Pg)

1) Unbalanced roof live loads have been considered for this design.

6-12=-157/772, 10-12=-103/280, 5-12=-1052/274, 4-14=-210/145, 2-14=-246/1413, 4-13=-470/165,

5-13=-15/457, 8-10=-276/124

MiTek 16023 Swingley Ridge Rd Chesterfield, MO 63017

Job	Truss	Truss Type	Qty	Ply	
P210577	M11	Roof Special	1	1	I58733523 Job Reference (optional)

Run: 8.63 S Nov 19 2022 Print: 8.630 S Nov 19 2022 MiTek Industries, Inc. Mon Jun 05 09:39:32 ID:NXPI6XFEmgysync?0?hqCCz9YWC-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Plate Offsets (X, Y): [3:0-2-0,Edge], [10:0-2-8,0-2-8]

Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 25.0 13.9/20.0 25.0 0.0 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018	3/TPI2014	CSI TC BC WB Matrix-S	0.79 0.48 0.66	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.04 -0.11 -0.01	(loc) 13-14 13-14 10	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 169 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD WEBS BRACING TOP CHORD BOT CHORD 1 Row at midp WEBS REACTIONS FORCES TOP CHORD BOT CHORD WEBS	2x4 SP No.2 2x4 SP No.2 *Excep 2x4 SPF No.3 *Excep 2x4 SPF No.3 *Exce Structural wood shea 4-0-3 oc purlins, exc Rigid ceiling directly bracing. Except: t 7-10 1 Row at midpt (size) 10=0-5-8, Max Horiz 16=342 (L Max Uplift 10=-213 (Max Grav 10=1467 (J (lb) - Maximum Com Tension 1-2=-259/271, 2-4=- 4-5=-1123/198, 5-6= 7-8=-161/165, 8-9=-1 1-16=-146/244, 14-1 13-14=-357/1303, 12 11-12=-75/41, 10-11 9-10=-136/148 6-10=-1070/222, 8-1 6-12=-143/711, 10-1 2-16=-1520/381, 5-1 4-14=-228/147, 2-14	* 11-7:2x4 SPF No.3 pt* 9-8:2x4 SP No.2 athing directly applied cept end verticals. applied or 6-0-0 oc 6-10, 5-12 16=0-5-8 C 13) LC 16), 16=-224 (LC 1 LC 2), 16=1648 (LC 3 pression/Maximum 1531/211, -383/187, 6-7=-146/17 35/43 6=-382/251, 2-13=-278/928, =-12/0, 7-10=-207/95, 0=-94/129, 2=-149/362, 2=-1039/272, =-255/1489, =-14/449	2) or 3) 6) 5) 5) 5) 6) 70, 7) LC	Wind: ASCE Vasd=91mph Ke=1.00; Car exterior zone Interior (1) 5- 25-11-8 zone vertical left a forces & MW DOL=1.60 pl TCLL: ASCE Plate DOL=1 DOL=1.15 Pl Exp.; Ce=0.9 Unbalanced design. This truss ha chord live loa Provide mecl bearing plate joint 10 and 2 This truss is International R802.10.2 ar	7-16; Vult=115mph r; TCDL=6.0psf; BC t. II; Exp C; Enclose and C-C Exterior(; 0-0 to 22-1-0, Exter ; cantilever left and right exposed;C FRS for reactions s ate grip DOL=1.60 7-16; Pr=25.0 psf 15); Pg=20.0 psf; 15); Pg=20.0 psf; tate DOL=1.15); Is= ; Cs=1.00; Ct=1.10 snow loads have be s been designed for id nonconcurrent w nanical connection capable of withsta 224 Ib uplift at joint designed in accord Residential Code s of referenced stance Standard	a (3-sec CDL=6.(ad; MW 2E) 0-0. rior(2E) d right e -C for n shown; (roof LL Pf=13.9 -1.0; Rc) een cor or a 10.0 ith any (by oth nding 2 16. ance w sections dard AN	ond gust) Dpsf; h=35ft; FRS (envelop 0 to 5-0-0, 22-1-0 to xposed ; end nembers and Lumber :: Lum DOL= psf (Lum ough Cat C; F issidered for th 0 psf bottom other live loa ers) of truss t 13 lb uplift at ith the 2018 .R502.11.1 a ISI/TPI 1.	pe) 1.15 Fully his to t			A LANDARY AND A L	STATE OF M STATE SCOTT SEVI	MISSOUR ER
1) Unbalance	ed roof live loads have	been considered for								-		NUM	

this design.

PE-200101880

E

June 6,2023

SIONAL

Job	Truss	Truss Type	Qty	Ply	
P210577	M12	Monopitch	1	1	Job Reference (optional)

Scale = 1:34.9

Loading

Run: 8.63 S Nov 19 2022 Print: 8.630 S Nov 19 2022 MiTek Industries, Inc. Mon Jun 05 09:39:32 ID:yDF22JQ0Tzjtdwhhrxx6m9z9YW_-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

1.5x4 **I** 3

Þ

₫ ₩ 4

3x4 =

(loc)

l/defl

3-6-3

L/d PLATES

GRIP 244/190

FT = 20%

12 5 F

7 3x4 🚅 3-6-3 2 6 59 0-2-5 P 8 5 3x4 = 1.5x4 II 2-11-0 7-2-8 2-11-0 4-3-8 CSI DEFL (psf) Spacing 2-0-0 in

> SCOTT M. SEVIER NUMBER PE-2001018807 STONAL ENCIT

> > NITEK° 16023 Swingley Ridge Rd Chesterfield, MO 63017

TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDI	25.0) 13.9/20.0 25.0 0.0 10.0	Plate Grip DOL Lumber DOL Rep Stress Incr Code	1.15 1.15 YES IRC201	8/TPI2014	TC BC WB Matrix-P	0.44 0.17 0.15	Vert(LL) Vert(CT) Horz(CT)	-0.01 -0.02 0.00	4-5 4-5 4	>999 >999 n/a	240 180 n/a	MT20
LUMBER TOP CHORE BOT CHORE WEBS BRACING TOP CHORE	 2x4 SP No.2 2x4 SP No.2 2x4 SPF No.3 Structural wood she 6-0-0 oc purlins, ex Bigid ceiling directly 	athing directly applie cept end verticals. applied or 6-0-0 or	6) Lu	This truss is (International R802.10.2 ar OAD CASE(S)	designed in acc Residential Coc nd referenced st Standard	ordance w le sections andard AN	ith the 2018 R502.11.1 a ISI/TPI 1.	and				Weight. 52 15
REACTIONS	bracing. (size) 4=4-3-8, § Max Horiz 5=147 (LC Max Uplift 4=-61 (LC Max Grav 4=154 (LC	5=4-3-8 C 15) C 13), 5=-117 (LC 12 C 22), 5=722 (LC 2))									
FORCES TOP CHORE BOT CHORE WEBS	 (lb) - Maximum Com Tension 1-2=-340/318, 2-3=- 1-5=-205/333, 4-5=- 2-5=-626/481, 2-4=- 	npression/Maximum 132/99, 3-4=-174/13 265/264 205/242	5									
NOTES 1) Wind: AS Vasd=91 Ke=1.00 exterior z Interior (exposed members Lumber 1 2) TCLL: Al Plate DC DOL=1.1 Exp.; Ce 3) Unbaland design. 4) This trus chord live 5) Provide 1 bearing p 4 and 11	SCE 7-16; Vult=115mph mph; TCDL=6.0psf; BC ; Cat. II; Exp C; Enclose zone and C-C Exterior(2 1) 5-0-0 to 7-0-12 zone; ; end vertical left and rig s and forces & MWFRS DOL=1.60 plate grip DC SCE 7-16; Pr=25.0 psf (DL=1.15); Pg=20.0 psf; F 5 Plate DOL=1.15); Is= =0.9; Cs=1.00; Ct=1.10 ced snow loads have be s has been designed for e load nonconcurrent wi mechanical connection (blate capable of withstar 7 Ib uplift at joint 5.	(3-second gust) DL=6.0psf; h=35ft; d; MWFRS (envelop E) 0-0 to 5-0-0, cantilever left and ri ght exposed;C-C for for reactions shown)L=1.60 roof LL: Lum DOL=1 Pf=13.9 psf (Lum 1.0; Rough Cat C; F een considered for th r a 10.0 psf bottom th any other live loar (by others) of truss to holing 61 lb uplift at jo	e) ght .15 ully is ds. o							,		STATE OF STATE OF SEV SEV NUM PE-200

Job	Truss	Truss Type	Qty	Ply	
P210577	M13	Monopitch	1	1	Job Reference (optional)

Run: 8.63 S Nov 19 2022 Print: 8.630 S Nov 19 2022 MiTek Industries, Inc. Mon Jun 05 09:39:33 ID:zVnTc7dhTBsTAYUyL?I5ykz9YVj-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:36.6

-

Loading (pf) 25.0 Plate Grip DOL 1.15 Plate Grip DOL 1.15 PC 0.54 Vert(LT) 0.01 4.5 >999 180 Plate Grip DOL 1.15 PC 0.54 Vert(CT) 0.00 4 ns ns ns Plate Grip DOL 1.15 PC 0.54 Vert(CT) 0.00 4 ns ns ns Plate Grip DOL 1.15 PC 0.54 Vert(CT) 0.00 4 ns ns ns Plate Grip DOL 1.15 PC 0.54 Vert(CT) 0.00 4 ns ns ns Plate Grip DOL 1.15 PC 0.54 Vert(CT) 0.00 4 ns ns ns Plate CT 1.20 PC 0.55 PC													
TCLL (rod) 25.0 Plate Grip DOL 1.15 TC 0.58 Vert(L) 0.01 4.5 5.999 240 MT20 244/190 TCDL 25.0 Rep Stress Incr YES BC 0.54 Vert(L) 0.01 4.5 5.999 240 MT20 244/190 TCDL 0.0 Code IRC2018/TPI2014 Matrix-S Mtore Vert(L) 0.01 4.5 5.999 240 MT20 244/190 BCDL 10.0 Code IRC2018/TPI2014 Matrix-S Mtore Mtore Vert(L) 0.01 4.5 5.999 160 Vert(L) 0.01 4.5 5.999 160 Vert(L) 0.01 4.5 n/a n/a n/a N/a BCD 10.0 Code IRC2018/TPI2014 Matrix-S Mtore 10.01 Vert(L) 0.01 4.5 5.999 160 Vert(L) 0.01 4.5 n/a n/a n/a N/a Vert(L) 0.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 1	Loading	(psf)	Spacing	2-0-0	csi		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
Snow (P/Pg) 13.9/20.0 Lumber DOL 1.15 BC 0.54 (Pr(CT) 0.01 4-5 5999 180 BCDL 0.0 Code IRC2018/TPI2014 Watrix-S U Horz(CT) 0.00 4 n/a Weight: 20 lb FT = 20% UMBER LUMBER Code Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 204 lb uplit at joint 4 and 47 lb uplit 4 at joint 4.5 999 180 SRACING Structural wood sheathing directly applied or 5:2-8 oc pullins, except and verticals. 7) This truss is designed in accordance with the 2018 International Residential Codes excitons R502.11.1 and R802.10.2 and referenced standard ANSI/TP11. DAD CASE(S) Standard TOP CHORD 2:4 SP No.2 -5:4 Mechanical, 5=0-5-8 Max Horiz 5=108 (LC 13) -5:4 Oc pullins, except and verticals. 7) This truss is designed in accordance with the 2018 International Residential Codes excitons R502.11.1 and R802.10.2 and referenced standard ANSI/TP11. DAD CASE(S) Standard FOR CES 100 Nota XCE 7-16; Vult=115mph (3-second gust) Yusad-34mpi; CDL=-6.0gst, h=-35t; KK Ke=1.00; Cat. II; Exp. (Second gust) Yusad-34mpi; FDL=-6.0gst, h=-35t; KK Ke=1.00; Cat. II; Exp. (DE) = .00; Exp. (Second gust)	TCLL (roof)	25.0	Plate Grip DOL	1.15	TC	0.59	Vert(LL)	-0.01	4-5	>999	240	MT20	244/190
TCDL 25.0 Rep Stress incr YES WB 0.14 Horz(CT) 0.00 4 n/a n/a BCDL 10.0 Code IRC2018/TPI2014 Matrix-S Weight: 20 lb FT = 20% LUMBER TOP CHORD 2x4 SP No.2 Structural wood sheathing directly applied or 5-28 oc purlins, except end verticals. 6) Provide mechanical connection (by others) of truss to bearing plate capable of whitsanding 204 lb uplif at joint 4 and 157 lb uplif at and 157 lb uplif at and 157 lb uplif at and 167 lb uplif at and the 2018 International Residential Code sections RS02:11.1 and R802.10.2 and referenced Standard ANSU/TPI 1. DOP CHORD Structural wood sheathing directly applied or 6-0.0 cc bracing. This truss is atomadra AnSU/TPI 1. REACTIONS (size) 4- Mechanical, 50-5-8 Max Horiz 5-108 (LC 13) The Turus is atomadra ANSU/TPI 1. Max Horiz 5-108 (LC 12), 58-30 (LC 22) FORCES (b) - Maximum Compression/Maximum Tomos and Core Standard ANSU/TPI 1. LOAD CASE(S) Standard TOP CHORD 1-22-c88/205, 2-38-88/69, 3-48-75/66 307 CHORD 1-22-c88/205, 2-38-88/69, 3-48-75/66 Stort Time and right exposed : end vertical left and right exposed : end vertical left and right exposed : end vertical left and right exposed : end vertical left and right exposed : end vertical left and right exposed : end vertical left and right exposed : end vertical left and right exposed : end vertical left and right exposed : end vertical left and right exposed :	Snow (Pf/Pg)	13.9/20.0	Lumber DOL	1.15	BC	0.54	Vert(CT)	0.01	4-5	>999	180		
BCLL 0.0 Code IRC2018/TP12014 Matrix S BCDL 10.0 Code IRC2018/TP12014 Matrix S UUMBER 10.0 Code IRC2018/TP12014 Matrix S DOP CHORD 2x4 SP No.2 S	TCDL	25.0	Rep Stress Incr	YES	WB	0.14	Horz(CT)	0.00	4	n/a	n/a		
LUMBER 10.0 Velopic 20.8 F1 = 20% LUMBER TOP CHORD 2x4 SP No.2 Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 204 lb uplift at joint 5. Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 204 lb uplift at joint 5. SRACING Structural wood sheathing directly applied or 6-0-0 co bracing. This truss is designed in accordance with the 2018 SOT CHORD Structural wood sheathing directly applied or 6-0-0 co bracing. This truss is designed in accordance with the 2018 Max Horiz 5-108 (LC 13) -4 Mechanical, 5=0-5-8 Reference 10.10.13 Max Uplift 4=-204 (LC 30), 5=-157 (LC 12) Max Grav 4=54 (LC 12), 5=800 (LC 22) FORCES (b) - Maximum Compression/Maximum Tension LOAD CASE(s) Standard TOP CHORD 1.2=-268/205, 2.3=-88/69, 3.4=-75/66 S0T CHORD S0T CHORD 1.2=-268/205, 2.3=-88/69, 3.4=-75/66 S0T CHORD S0T CHORD 1.2=-608/205, 2.3=-88/69, 3.4=-75/66 S0T CHORD S0T CHORD 1.2=-608/205, 2.3=-88/69, 3.4=-75/66 S0T CHORD S0T CHORD 1.2=-268/205, 2.3=-88/69, 3.4=-75/66 S0T CHORD S0T CHORD 1.2=-608/205, ECDL-60, sch he-35t; KCMER S0 cord guash vasid=stimute reation right <	BCLL	0.0	Code	IRC2018/TPI2014	Matrix-S								FT 000/
LUMBER TOP CHORD 2x4 SP No.2 X4 SP No.2 STUCLTURE word sheathing directly applied or STUCLTURE word sheathing directly applied sheathing direc	BCDL	10.0										Weight: 20 lb	FT = 20%
TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.2 WEBS 2x4 SPF No.3 BRACING Structural wood sheathing directly applied of 5-2-8 oc purlins, except end verticals. REACTIONS Structural wood sheathing directly applied of 5-0-9 oc bracing. REACTIONS Structural wood sheathing directly applied of 5-0-9 oc bracing. REACTIONS Structural wood sheathing directly applied of 5-0-9 oc bracing. REACTIONS Structural wood sheathing directly applied of 5-0-9 oc bracing. Max Kipit 4=-204 (LC 3), 5=-157 (LC 12) Max Grav 4=54 (LC 12), 5=-830 (LC 22) Max Grav 4=54 (LC 12), 5=-830 (LC 22) FORCES (Ib) - Maximum Compression/Maximum Tension Tension 1-2s-268/205, 2-3-88/69, 3-4s-75/66 S07 CHORD 1-2s-268/204, 2-3-88/69, 3-4s-75/66 S07 CHORD 1-2s-13/27	LUMBER			6) Provide me	chanical connection	(by oth	ers) of truss t	to					
BOT CHORD 2x4 SPF No.3 Structural wood sheathing directly applied or 6-0-0 oc bracing. REACTIONS (size) 4= Mechanical, 5=0-5-8 Max Horiz 5=108 (LC 13) Max Uplit 4=204 (LC 30), 5=-157 (LC 12) Max Grav 4=54 (LC 12), 5=830 (LC 22) FORCES (b) - Maximum Compression/Maximum Tension TOP CHORD 1-2=-288/205, 2-3=-88/69, 3-4==-75/66 30T CHORD 1-2=-288/205, 2-3=-88/69, 3-4==-75/66 30T CHORD 1-2=-268/205, 2-3=-88/69, 3-4==-75/66 30T CHORD 1-2=-268/205, 2-3=-88/69, 3-4==-75/66 30T CHORD 1-2=-268/205, 2-3=-88/69, 3-4==-75/66 30T CHORD 1-2=-268/205, 2-3=-88/751; Kes 1.00; CL 1; Exp C; Enclosed: MWFRS (onvelope) exterior zone and C-C Exterior(2E) zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 pits; HUMFRS (envelope) exterior zone and C-C Exterior(2E) zone; cantilever left exposed; C-C for imbers and forces & MWFRS for reactions shown; Lumber DOL=1.50 pits (cut- DOL=1.15); Pig=20.0 pit; PI=13.9 pit (Lum DOL=1.15; Pitate DOL=1.15; Is=1.0; Rough Cat C; Fully Exp; C:C=0.9; CS=1.00; CS=1.00; 30 T CHORD 1-25, CS=1.00; Rough Cat C; Fully Exp; C:C=0.9; CS=1.00; CS=1.00; Rough Cat C; Fully Exp; C:C=0.9; CS=1.00; CS=1.00; Rough Cat C; Fully Exp; C:C=0.9; CS=1.00; CS=1.00; Rough Cat C; Fully Exp; C:C=0.9; CS=1.00; CS=1.00; Rough Cat C; Fully Exp; C:C=0.9; CS=1.00; CS=1.00; Rough Cat C; Fully Exp; C:C=0.9; CS=1.00; CS=1.00; CS=1.00; Rough Cat C; Fully Exp; C:C=0.9; CS=1.00; CS=1.00; CS=1.00; Rough Cat C; Fully Exp; C:C=0.9; CS=1.00; CS=1.00; CS=1.00; CS=1.00; CS=1.00; CS=1.00; Rough Cat C; Fully Exp; C:C=0.9; CS=1.00; CS=1.	TOP CHORD	2x4 SP No.2		bearing plat	e capable of withsta	nding 2	204 lb uplift at	t					
WEBS 2x4 SPF No.3 // // Institus is designed in accordance with the 2018 RBACING Structural wood sheathing directly applied or 5-28 oc purlies, except end verticals. Roll in thrus is designed in alcorde sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. BOT CHORD Rigid ceiling directly applied or 6-0-0 oc bracing. A= Mechanical, 5=0-5-8 Max Horiz 5=108 (LC 13) Max Horiz 5=108 (LC 13) Max Grav 4=54 (LC 12), 5=830 (LC 22) Vandard Vandard FORCES (b) - Maximum Compression/Maximum Tension Tension Tension TOP CHORD 1-2z-288/205, 2-3=88/69, 3-4=-75/66 3000 3000 3000 3000 SOT CHORD 1-2z-288/205, 2-3=88/69, 3-4=-75/66 3000 3000 3000 3000 3000 3000 VBES 2-5=-535/441 VOTES 1000 CC 2000 4.5 30000 3000 3000	BOT CHORD	2x4 SP No.2		joint 4 and	57 lb uplift at joint 5								
BRACING International Restlemand code Securities RO22.11.1 and Top CHORD TOP CHORD Structural wood sheathing directly applied or 6-0-0 oc bracing. SEACTIONS (size) 4- Mechanical, 5=0-5-8 Max Horiz 5-108 (LC 3) Max Horiz 5-108 (LC 12), 5=830 (LC 22) Max Grav 4=54 (LC 12), 5=830 (LC 22) FORCES (b) - Maximum Compression/Maximum Tension TOP CHORD 1-2=-282/205, 2-3=-88/69, 3-4=-75/66 30T CHORD 1-5=-137/270, 4-5=-110/137 WEBS 2-5=-35/441 VOTES 1) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasad=Hinghood (-C Exterior(2E) zone, cantilever left and right exposed; end vertical left and right exposed; chore vertical left and right exposed; chore vertical left and right exposed; chore vertical left and right exposed; chore shown; Lumber DOL=1.150 plate grip DOL=1.15; Pg=20.0 psf; Pf=13.9 psf (Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf; Pf=13.9 psf (Lum DO	WEBS	EBS 2x4 SPF No.3 // Inis truss is designed in accordance with the 2018											
 IOP CHORD Structural wood sheathing directly applied or 5-2-8 oc puttins, except end verticals. BOT CHORD Rigid ceiling directly applied or 6-0-0 oc bracing. REACTIONS (size) 4= Mechanical, 5=0-5-8 Max Horiz 5=108 (LC 13) Max Uplit 4=-204 (LC 30), 5=-157 (LC 12) Max Grav 4=54 (LC 12), 5=830 (LC 22) FORCES (b) - Maximum Compression/Maximum Tension TOP CHORD 1-2=-268/205, 2-3==-88/69, 3-4=-75/66 30T CHORD 1-2=-268/205, 2-3==-88/69, 3-4=-75/66 30T CHORD 1-2=-268/205, 2-3==-88/69, 3-4=-75/66 30T CHORD 1-2=-268/205, 2-3==-88/69, 3-4=-75/66 30T CHORD 1-2=-268/205, 2-3==-88/69, 3-4=-75/66 30T CHORD 1-2=-268/205, 2-3==-88/69, 3-4=-75/66 30T CHORD 1-2=-268/205, 2-3==-88/69, 3-4=-75/66 30T CHORD 1-2=-c68/205, 10-201, 10-2	BRACING	RACING Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.											
 bit Society of pluins, enclose into enclose on electron of the enclose o	COP CHORD Structural wood sheathing directly applied or 5.2.8 op puring a properticular of the standard ANSI/TETT.												
REACTIONS (size) 4= Mechanical, 5=0-5-8 Max Horiz 5=108 (LC 13) Max Uplift 4=-204 (LC 30), 5=-157 (LC 12) Max Grav 4=54 (LC 12), 5=-83 (OL 22) FORCES (lb) - Maximum Compression/Maximum Tension TOP CHORD 1.2=-268/205, 2.3=-88/69, 3-4=-75/66 307 CHORD 1.5=-137/270, 4-5=-110/137 WEBS 2-5=-535/441 NOTES 1) Wind: ASCE 7-16; Vull=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; B=35ft; Ke=1.00; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=-1.60; T-16; Vr=25.0 psf (roof LL: Lum DOL=1.15 Plate DOL=-1.15; Pa=20.0 psf; Pi=13.9 psf (Lum DOL=-1.15; Pi=20.0 psf; P		S-2-8 oc punins, exe Rigid ceiling directly	applied or 6-0-0 oc	LOND ONOL(0	Otandard								
REACTIONS (size) 4= Mechanical, 5=0-5-8 Max Horiz 5=108 (LC 13) Max Uplift 4=-204 (LC 30), 5=-157 (LC 12) Max Grav 4=54 (LC 12), 5=830 (LC 22) FORCES (lb) - Maximum Compression/Maximum Tension TOP CHORD 1-2=-268/205, 2-3=-88/69, 3-4=-75/66 30T CHORD 1-5=-137/270, 4-5=-110/137 WEBS 2-5=-535/441 NOTES 1) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=35ft; Ke=1.00; Cat. II; Exp C; Enclosed; MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 2) TCLL: ASCE 7-16; Pr=25.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.16; Pr=20.0 psf; FI=13.9 psf (Lum DOL=1.15; Pg=20.0 psf; Se1.00; Cat. C; Fully Exp; Ce=0.9; Cs=1.00; Cat. 10 3) Unbalanced snow loads have been considered for this design.	BOT CHORD	bracing.	applied of 0-0-0 oc										
Max Horiz 5=108 (LC 13) Max Uplift 4=-204 (LC 30), 5=-157 (LC 12) Max Grav 4=54 (LC 12), 5=-830 (LC 22) FORCES (b) - Maximum Compression/Maximum Tension TOP CHORD 1-2=-268/205, 2-3=-88/69, 3-4=-75/66 3OT CHORD 1-5=-137/270, 4-5=-110/137 WEBS 2-5=-35/441 NOTES 2-5=-535/441 NOTES 1) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0pst; BCDL=6.0pst; h=-35ft; Ke=1.00; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 2) TCLL: ASCE 7-16; Pr=25.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 pst; Pf=13.9 psf (Lum DOL=1.15); Pg=20.0 psf, forof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf, forof LL: Lum DOL	REACTIONS	(size) 4= Mecha	nical, 5=0-5-8										
Max Uplift 4=-204 (LC 30), 5=-157 (LC 12) Max Grav 4=54 (LC 12), 5=830 (LC 22) FORCES (b) - Maximum Compression/Maximum Tension TOP CHORD 1-2=-268/205, 2-3=-88/69, 3-4=-75/66 30T CHORD 1-5=-17/270, 4-5=-110/137 WEBS 2-5=-535/441 NOTES 1) Wind: ASCE 7-16; Vult=115mpt (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=35ft; Ke=1.00; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) zone; cantilever left and right exposed; c-G for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 2) TCLL: ASCE 7-16; PT=25.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf; Pf=13.9 psf (Lum DOL=1.15 Plate DOL=1.15); sp=-0.0; cs=1.00; Ct=1.10 3) Unbalanced snow loads have been considered for this design.		Max Horiz 5=108 (LC	C 13)										
Max Grav 4=54 (LC 12), 5=830 (LC 22) FORCES (Ib) - Maximum Compression/Maximum Tension TOP CHORD 1-2=-268/205, 2-3=-88/69, 3-4=-75/66 30T CHORD 1-5=-137/270, 4-5=-110/137 WEBS 2-5=-535/441 NOTES 1) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; BCDL=6.0psf; BCJL=6.0psf; h=35ft; Ke=1.00; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 2) TCLL: ASCE 7-16; Pr=25.0 psf; roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf; Pf=13.9 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat C; Fully Exp; Ce=0.9; CS=1.00; Ct=1.10 3) Unbalanced snow loads have been considered for this design.		Max Uplift 4=-204 (L	C 30), 5=-157 (LC 12	2)									
FORCES (b) - Maximum Compression/Maximum Tension TOP CHORD 1-2=-268/205, 2-3=-88/69, 3-4=-75/66 BOT CHORD 1-5=-137/270, 4-5=-110/137 WEBS 2-5=-535/441 NOTES 1) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=35ft; Ke=1.00; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 2) TCLL: ASCE 7-16; Pr=25.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf; Pl=13.9 psf (Lum DOL=1.15 Plate DOL=1.15); Is=-1.0; Rough Cat C; Fully Exp; Ce=0.9; Cs=-1.00; Ct=1.10 3) Unbalanced snow loads have been considered for this design.		Max Grav 4=54 (LC	12), 5=830 (LC 22)										
 TOP CHORD 1-2=-268/205, 2-3=-88/69, 3-4=-75/66 BOT CHORD 1-5=-137/270, 4-5=-110/137 WEBS 2-5=-535/441 NOTES 1) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=35ft; Ke=1.00; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) zone; cantilever left and right exposed ; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 2) TCLL: ASCE 7-16; Pr=25.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf; Pf=13.9 psf (Lum DOL=1.15); Pg=20.0 psf; Pf=13.9 psf	FORCES	(lb) - Maximum Com	pression/Maximum										
 Not Richard 1 = Le 1000 (24 - 5 = -137)/270, 4 - 5 = -110/137 WEBS 2 - 5 = -137/270, 4 - 5 = -110/137 WEBS 2 - 5 = -535/441 NOTES 1) Wind: ASCE 7 - 16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=35ft; Ke=1.00; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 2) TCLL: ASCE 7-16; Pr=25.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat C; Fully Exp; Ce=0.9; Cs=1.00; Ct=1.10 3) Unbalanced snow loads have been considered for this design. 	TOP CHORD	1-2=-268/205 2-3=-	88/69 3-4=-75/66										
 WEBS 2-5=-535/441 NOTES 1) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=35ft; Ke=1.00; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 2) TCLL: ASCE 7-16; Pr=25.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf; Pf=13.9 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat C; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10 3) Unbalanced snow loads have been considered for this design. 	BOT CHORD	1-5=-137/270, 4-5=-	110/137										
NOTES 1) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=35ft; Ke=1.00; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 2) TCLL: ASCE 7-16; Pr=25.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf; Pf=13.9 psf (Lum DOL=1.15); Pg=20.0 psf; Pf=13.9 psf (Lum DOL=1.15); Is=1.0; Rough Cat C; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10 3) Unbalanced snow loads have been considered for this design.	WEBS	2-5=-535/441											
 1) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=35ft; Ke=1.00; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 2) TCLL: ASCE 7-16; Pr=25.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf; Pf=13.9 psf (Lum DOL=1.15); Pg=20.0 psf; Pf=13.9 psf (Lum DOL=1.15); Is=1.0; Rough Cat C; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10 3) Unbalanced snow loads have been considered for this design. 	NOTES												
Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=35ft; Ke=1.00; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 2) TCLL: ASCE 7-16; Pr=25.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf; Pf=13.9 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat C; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10 3) Unbalanced snow loads have been considered for this design.	1) Wind: ASC	CE 7-16; Vult=115mph	(3-second gust)										
Ke=1.00; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 2) TCLL: ASCE 7-16; Pr=25.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf; Pf=13.9 psf (Lum DOL=1.15; Pg=20.0 psf; Pf=13.9 psf (Lum DOL=1.15; Pg=20.0 psf; OF=1.10; Rough Cat C; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10 3) Unbalanced snow loads have been considered for this design.	Vasd=91m	nph; TCDL=6.0psf; BC	DL=6.0psf; h=35ft;										
exterior zone and C-C Exterior(2E) zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 2) TCLL: ASCE 7-16; Pr=25.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf; Pf=13.9 psf (Lum DOL=1.15); Pg=20.0 psf; Pf=13.9 psf (Lum DOL=1.15); Pg=20.0 psf; Pf=13.9 psf (Lum DOL=1.15); Is=1.0; Rough Cat C; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10 3) Unbalanced snow loads have been considered for this design.	Ke=1.00; 0	Cat. II; Exp C; Enclose	d; MWFRS (envelop	e)									
and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 2) TCLL: ASCE 7-16; Pr=25.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf; Pf=13.9 psf (Lum DOL=1.15) Plate DOL=1.15); Is=1.0; Rough Cat C; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10 3) Unbalanced snow loads have been considered for this design.	exterior zo	ne and C-C Exterior(2	E) zone; cantilever le	eft								000	ADD
 Provide in the index and increase a	and right e	exposed ; end vertical i	ert and right									8 OF I	Alcoh
DOL=1.60 2) TCLL: ASCE 7-16; Pr=25.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf; Pf=13.9 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat C; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10 3) Unbalanced snow loads have been considered for this design.	reactions s	shown: Lumber DOL=1	1.60 plate grip								1	A IL	-050
 2) TCLL: ASCE 7-16; Pr=25.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf; Pf=13.9 psf (Lum DOL=1.15); Is=1.0; Rough Cat C; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10 3) Unbalanced snow loads have been considered for this design. 	DOL=1.60		nee plate grip								A	N acom	New
Plate DOL=1.15); Pg=20.0 psf; Pf=13.9 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat C; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10 3) Unbalanced snow loads have been considered for this design.	2) TCLL: ASO	CE 7-16; Pr=25.0 psf (roof LL: Lum DOL=1	.15							H.	S/ SCOT	I'M. YAY
DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat C; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10 3) Unbalanced snow loads have been considered for this design.	Plate DOL	=1.15); Pg=20.0 psf; F	Pf=13.9 psf (Lum								И.	SEVI	
Exp.; Ce=0.9; Cs=1.00; Ct=1.10 3) Unbalanced snow loads have been considered for this design.	DOL=1.15	Plate DOL=1.15); Is=	1.0; Rough Cat C; Fu	ully							N/	At A	· P
design.	Exp.; Ce=0	0.9; Cs=1.00; Ct=1.10		-							XX/		ANNIN .
	design	eu snow loaus nave de	en considered for thi	15							A.	NUM	BER S
4) This truss has been designed for a 10.0 psf bottom $\Lambda O = 1000$	4) This truss	has been designed for	r a 10.0 psf bottom								N	ON PE-2001	018807
chord live load nonconcurrent with any other live loads.	chord live	load nonconcurrent wi	th any other live load	ls.							N	- The	1SA
5) Refer to girder(s) for truss to truss connections.	5) Refer to gi	rder(s) for truss to trus	s connections.									O'SSI	ENGA
WAL E. H												WNA	L

June 6,2023

Job	Truss	Truss Type	Qty	Ply	
P210577	MG01	Jack-Closed Girder	1	1	Job Reference (optional)

Run: 8.63 S Nov 19 2022 Print: 8.630 S Nov 19 2022 MiTek Industries, Inc. Mon Jun 05 09:39:33 ID:8JLnhtQv_Bf4X_YxST7PIzz9Yiu-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

12 5 F

Special

Scale = 1:36.6

Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 25.0 13.9/20.0 25.0 0.0 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 NO IRC2018	/TPI2014	CSI TC BC WB Matrix-P	0.38 0.50 0.18	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.01 -0.02 0.00	(loc) 4-5 4-5 4	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 36 lb	GRIP 197/144 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x8 SPF No.2 2x4 SPF No.3 Structural wood shea 6-0-0 oc purlins, exx Rigid ceiling directly bracing. (size) 4= Mecha Max Horiz 5=136 (LC	athing directly applied sept end verticals. applied or 6-0-0 oc nical, 5=0-5-8 2 13)	6) 7) ^{1 or} 8)	Provide mech bearing plate joint 4 and 34 This truss is of International R802.10.2 ar Hanger(s) or provided suff Ib down and design/select responsibility In the I OAD	nanical connection capable of withsta 9 lb uplift at joint 5 designed in accord Residential Code s dreferenced stand other connection d cient to support co 469 lb up at 5-1-9 ion of such connect of others.	(by oth inding 3 ance w sections dard AN levice(s oncentra on both ction de	ers) of truss 07 lb uplift a R502.11.1 a ISI/TPI 1.) shall be tited load(s) - om chord. T vice(s) is the	to It and 1027 The s					
FORCES TOP CHORD BOT CHORD WEBS NOTES 1) Wind: ASC Vasd=91m Ke=1.00; (exterior zo Interior (1) exposed; members a: Lumber DC 2) TCLL: ASC Plate DOL DOL=1.15 Exp; Ce= 3) Unbalance design. 4) This truss chord live 5) Refer to gi	Max Uplift $4=-307$ (Li Max Grav $4=639$ (LC (lb) - Maximum Com Tension 1-2=-492/155, 2-3=- 2-5=-443/574, 2-4=-3 CE 7-16; Vult=115mph nph; TCDL=6.0psf; BC Cat. II; Exp C; Enclose one and C-C Exterior(2 15-0-0 to $6-10-4$ zone; end vertical left and rig and forces & MWFRS OL=1.60 plate grip DO CE 7-16; Pr=25.0 psf (L =1.15); Pg=20.0 psf; P Plate DOL=1.15); Is=- 0.9; Cs=1.00; Ct=1.10 ad snow loads have be has been designed for load nonconcurrent wit irder(s) for truss to trus	C 13), 5=-349 (LC 12 C 22), 5=1238 (LC 2) pression/Maximum 120/89, 3-4=-153/119 206/412 370/192 (3-second gust) DL=6.0psf; h=35ft; d; MWFRS (envelope E) 0-0-0 to 5-0-0, cantilever left and rig pht exposed;C-C for for reactions shown; L=1.60 roof LL: Lum DOL=1. rf=13.9 psf (Lum 1.0; Rough Cat C; Fu en considered for this : a 10.0 psf bottom th any other live load: s connections.) 9) LO 1)) ht 15 Ily s.	In the LOAD of the truss a AD CASE(S) Dead + Sno Increase=1. Uniform Loz Vert: 1-3= Concentrate Vert: 8=-*	CASE(S) Section, I re noted as front (F Standard w (balanced): Lum 15 ids (Ib/ft) 78, 1-4=-20 id Loads (Ib) 1021 (F)	ioads a F) or ba	pplied to the ck (B). rease=1.15,	Plate				STATE OF M SCOTT SEVI SEVI PE-20010 PE-20010	AISSOLD MER STALER LENGT

June 6,2023

Page: 1

Job	Truss	Truss Type	Qty	Ply		
P210577	N01	Hip Girder	1	3	Job Reference (optional)	158733527

Run: 8.63 S Nov 19 2022 Print: 8.630 S Nov 19 2022 MiTek Industries, Inc. Mon Jun 05 09:39:34 Page: 1 ID:vndmfL7SAaEyMslp_t17a3z9XyC-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f 3-0-12 7-6-0 11-11-4 15-0-0 3-0-12 4-5-4 3-0-12 4-5-4 NAILED NAILED NAILED NAILED NAILED 12 5 Г 5x5 = 5x5 = 3x8 = 1-10 0-1-10 3 17 18 2 11 12 13 15 16 4 3-0-0 14 ò 5 2-10-6 2-10-6 3-0-0 1-8-11 / 10 6 ₽₽₽₽ ПП Π Π Π Π \boxtimes X 9 19 20 8 21 22 7 24 23 12x12 = 12x12 = 3x12 🛛 12x12 = 12x12 = NAILED NAILED NAILED Special SUL26 NAILED Special Special NAILED SUR26 Special Special 2-11-0 7-6-0 12-1-0 15-0-0 2-11-0 4-7-0 4-7-0 2-11-0 Plate Offsets (X, Y): [6:Edge,0-10-12], [7:0-6-0,0-8-4], [9:0-6-0,0-8-4], [10:Edge,0-10-12]

-										-		1	
Loading	(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15		тс	0.32	Vert(LL)	-0.05	` <i>Ś</i>	>999	240	MT20	197/144
Snow (Pf/Pg)	18.9/20.0	Lumber DOL	1.15		BC	0.26	Vert(CT)	-0.11	8	>999	180		
TCDL	25.0	Rep Stress Incr	NO		WB	0.63	Horz(CT)	0.01	6	n/a	n/a		
BCLL	0.0	Code	IRC2018	3/TPI2014	Matrix-S		- (-)						
BCDL	10.0	0000										Weight: 373 lb	FT = 20%
LUMBER			2)	All loads are	considered equally	applie	d to all plies,		12) Use	e Simpso	on Stro	ong-Tie SUL26 (6-10d Girder, 6-10dx1
TOP CHORD	2x6 SPF No.2			except if note	ed as front (F) or ba	ick (B)	face in the LC	DAD	Í 1/2	Truss) c	or equi	valent at 3-0-12	from the left end to
BOT CHORD	2x12 SP 2400F 2.0E			CASE(S) sec	tion. Ply to ply con	nection	s have been		cor	nect trus	ss(es)	to front face of b	oottom chord, skewed
WEBS	2x4 SPF No.3 *Exce	pt* 10-1,9-1,6-5,7-5:	2x4	provided to d	istribute only loads	noted	as (F) or (B),		45.	0 deg.to	the lef	ft, sloping 0.0 de	₂g. down.
	SP No.2	•		unless otherv	vise indicated.				13) Use	e Simpso	on Stro	ong-Tie SUR26 (6-10d Girder, 6-10dx1
BRACING			3)	Unbalanced	roof live loads have	been	considered fo	r	1/2	Truss) c	or equi	valent at 11-11-4	4 from the left end to
TOP CHORD	Structural wood shea	athing directly applie	d or	this design.					cor	nect trus	ss(es)	to front face of b	oottom chord, skewed
	6-0-0 oc purlins, exc	cept end verticals, ar	nd 4)	Wind: ASCE	7-16; Vult=115mph	n (3-seo	cond gust)		45.	0 deg.to	the rig	ht, sloping 0.0 c	leg. down.
	2-0-0 oc purlins (6-0	-0 max.): 2-4.		Vasd=91mph	; TCDL=6.0psf; BC	DL=6.	0psf; h=35ft;		14) Fill	all nail h	oles w	/here hanger is i	n contact with lumber.
BOT CHORD	Rigid ceiling directly	applied or 10-0-0 oc	;	Ke=1.00; Ca	II; Exp C; Enclose	ed; MW	FRS (envelop	ce)	15) "NA	ALED" ir	ndicate	es Girder: 3-10d	(0.148" x 3") toe-nails
	bracing.			exterior zone	and C-C Exterior(2	2E) 0-1	-12 to 3-0-12,	_	per	NDS gu	Ideline	es.	
REACTIONS	(size) 6=0-5-8, 1	0=0-5-8		Exterior(2R)	3-0-12 to 10-1-10, I	nterior	(1) 10-1-10 to		16) Hai	nger(s) c	or othe	r connection dev	/ice(s) shall be
	Max Horiz 10=41 (LC	C 13)		11-11-4, EXte	erior(2E) 11-11-4 to	14-10	-4 zone; canti	lever	pro	vided su		t to support cond	centrated load(s) 2622
	Max Uplift 6=-1713 (LC 13), 10=-1485 (L	C 12)	err and fight	for mombors and f		R MWEDS for		10 0	iown and	14051	11 on bottom of	and 2388 ib down and
	Max Grav 6=7608 (L	_C 2), 10=6311 (LC 2	2)	exposed; U-U for members and forces & MWFRS for 3//						ib up ai	such /	connection devic	role) is the
FORCES	(lb) - Maximum Com	pression/Maximum	,		wii, Luinber DOL=	1.00 pi	ate grip		roc	oonsibili	Such i	there	
	Tension	processing	5)	TCLL · ASCE	7-16. Pr=25.0 psf ((roof LI	· Lum DOI =1	1 15				ndord	
TOP CHORD	1-2=-8253/1991. 2-3	=-7429/1833.	0)	Plate DOI =1	(15): Pa=20.0 psf: [Pf=18 9	nsf (Lum	1.10		SASE(S		nuaru alanaad): Lumba	ar Ingrada 1 15 Diata
	3-4=-7220/1822, 4-5	=-8020/1979,		DOL=1.15 Pl	ate DOL=1.15): Is=	1.0: R	ough Cat C: F	ullv	1) Di		1 1 5	alanceu). Lumbe	a increase=1.15, Plate
	1-10=-5961/1455, 5-	6=-5786/1445		Exp.: Ce=0.9	: Cs=1.00: Ct=1.10	. Lu=5	0-0-0	,	Increase=1.15				
BOT CHORD	9-10=-173/475, 8-9=	-2677/11355,	6)	Unbalanced	snow loads have be	en cor	nsidered for th	nis	01	Vort 1_	278	2-1	⁷⁸ 6-1020
	7-8=-2677/11355, 6-	7=-141/483	,	design.						Vent. 1-2	2=-70,	2-4=-00, 4-3=-7	0, 0-10-20
WEBS	2-9=-615/2800, 3-9=	-4365/969,	7)	Provide adec	uate drainage to pr	revent	water ponding] .				A	And
	3-8=-594/3279, 3-7=	-4596/983,	8)	This truss ha	s been designed fo	r a 10.) psf bottom					B F OF	MISS
	4-7=-610/2705, 1-9=	-1826/7644,		chord live loa	d nonconcurrent w	ith any	other live loa	ds.			4	9.21	N'SON
	5-7=-1812/7405		9)	Provide mecl	nanical connection	(by oth	ers) of truss to	0			B	SCOT	M. W.
NOTES				bearing plate	capable of withsta	nding 1	485 lb uplift a	at			R		
1) 3-ply truss	to be connected toget	ther with 10d		joint 10 and 7	713 lb uplift at join	t 6.					0	J SEV	
(0.131"x3") nails as follows:		10) This truss is	designed in accorda	ance w	ith the 2018				87		0
Top chord	s connected as follows	s: 2x6 - 2 rows		International	Residential Code s	ections	R502.11.1 a	nd			NX		Son link
staggered	at 0-9-0 oc, 2x4 - 1 rov	w at 0-9-0 oc.		R802.10.2 ar	nd referenced stand	ard AN	NSI/TPL1.				1	KONN	- reven
Bottom ch	ords connected as follo	ows: 2x12 - 5 rows	11) Graphical pu	riin representation of	JOES NO	ot depict the s	size		-	W.	PE-200	1018807
staggered	at U-7-U OC.	1		or the orientation of the purilin along the top and/or bottom chord					N				
vveb conn	ecteu as follows: 2x4 -	1 10W at 0-9-0 0C.								S B			
												UN JON	NI ENA
												Qui	

Scale = 1:40.8

Continued on page 2 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

MiTek° 16023 Swingley Ridge Rd Chesterfield, MO 63017

and June 6,2023

Job	Truss	Truss Type	Qty	Ply	
P210577	N01	Hip Girder	1	3	Job Reference (optional)

Run: 8.63 S Nov 19 2022 Print: 8.630 S Nov 19 2022 MiTek Industries, Inc. Mon Jun 05 09:39:34 ID:vndmfL7SAaEyMslp_117a3z9XyC-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 2

Concentrated Loads (lb)

Vert: 9=-2195 (F=354, B=-2549), 8=51 (F), 7=354 (F), 19=51 (F), 20=-2415 (F=51, B=-2466), 21=-2385 (B), 22=51 (F), 23=-2253 (F=51, B=-2304), 24=-2234 (B)

Job	Truss	Truss Type	Qty	Ply		
P210577	N02	Common Structural Gable	1	1	Job Reference (optional)	58733528

Run: 8.63 S Nov 19 2022 Print: 8.630 S Nov 19 2022 MiTek Industries, Inc. Mon Jun 05 09:39:35 ID:ZkhdhXCo9xvfww9B95cLvsz9YUz-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

5 09:39:35 Page: 1 l4zJC?f

June 6,2023

Mitek[®] 16023 Swingley Ridge Rd Chesterfield, MO 63017

Job	Truss	Truss Type	Qty	Ply	
P210577	N03	Common Girder	1	2	I58733529 Job Reference (optional)

3-7-3

Run: 8.63 S Nov 19 2022 Print: 8.630 S Nov 19 2022 MiTek Industries, Inc. Mon Jun 05 09:39:35 ID:VfsEEreNg?SYFSv6FeFoMSz9YUP-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

HUS26

Page: 1

4-6-0 9-0-0 4-6-0 4-6-0 4x4 🛛 _12 5 ⊏ 2 MT18HS 5x8 🝃 MT18HS 5x8 👟 3 1 1-8-11 C č 6 ΠΓ ΠΠ 4 X \ge 7 8 5 9 10 3x6 II MT18HS 12x20 = 3x6 II

HUS26

4-6-0	9-0-0
4-6-0	4-6-0

HUS26

Scale = 1:34.7

Plate Offsets (X, Y): [5:0-10-0,0-6-4]

Loading TCLL (roof) Snow (Pf/Pg)	13.9	(psf) 25.0 9/20.0	Spacing Plate Grip DOL Lumber DOL	2-0-0 1.15 1.15		CSI TC BC	0.59 0.31	DEFL Vert(LL) Vert(CT)	in -0.03 -0.07	(loc) 5-6 5-6	l/defl >999 >999	L/d 240 180	PLATES MT20 MT18HS	GRIP 197/144 197/144		
TCDL		25.0	Rep Stress Incr	NO		WB	0.99	Horz(CT)	0.00	4	n/a	n/a				
BCLL		0.0	Code	IRC20	18/TPI2014	Matrix-P										
BCDL		10.0											Weight: 116 lb	F1 = 20%		
LUMBER				4) Wind: ASCE	7-16; Vult=115m	ph (3-seo	cond gust)			Vert: 7=	-1979	(B), 8=-2041 (B),	9=-1967 (B),		
TOP CHORD	2x4 SP No.2	2			Vasd=91mp	h; TCDL=6.0psf; E	BCDL=6.	0psf; h=35ft;			10=-207	76 (B)				
BOT CHORD	2x8 SP 2400	0F 2.0E			Ke=1.00; Ca	at. II; Exp C; Enclo	sed; MW	FRS (envelo	pe)							
WEBS	2x4 SPF No	.3 *Exce	pt* 6-1,4-3:2x4 SP N	No.2	exterior zone	e and C-C Exterior	r(2E) zor	e; cantilever	left							
BRACING					and right exp	posed ; end vertica	al left and	d right								
TOP CHORD	Structural w	ood shea	athing directly applie	ed or	exposed;C-C	own: Lumber DOI		& MWFRS to ate grin	r							
	4-10-12 oc p	purlins, e	except end verticals.		DOI = 1.60	own, Lumber DOL	.= 1.00 pi	ate grip								
BOT CHORD	Rigid ceiling	g directly	applied or 10-0-0 oc	c 5) TCLL: ASCE	E 7-16; Pr=25.0 ps	f (roof Ll	.: Lum DOL=	1.15							
REACTIONS	(size) /	-0-5-8 6	-0-5-8		Plate DOL=	1.15); Pg=20.0 psf	; Pf=13.9	9 psf (Lum								
REACTIONS	Max Horiz 6		14)		DOL=1.15 P	Plate DOL=1.15); Is	s=1.0; R	ough Cat C; I	Fully							
	Max Liplift 4	= 554 (LO	C 17) 6=-599 (I C 1	6)	Exp.; Ce=0.9	9; Cs=1.00; Ct=1.1	10									
	Max Grav 4	=4892 (L	.C 2), 6=5111 (LC 2)) 6) Unbalanced	snow loads have	been coi	nsidered for t	his							
FORCES	(lb) - Maxim		nression/Maximum	, 7) All platas ar	o MT20 platos upl	acc otho	wise indicate	d							
1011020	Tension		processing	י פ) This trues he	e Milzo plates unit	for a 10	nsf hottom	eu.							
TOP CHORD	1-2=-4722/6	670, 2-3=	-4722/682,		chord live lo	ad nonconcurrent	with any	other live los	ads							
	1-6=-3317/5	552, 3-4=	-3317/551	g) Provide med	chanical connectio	n (bv oth	ers) of truss	to							
BOT CHORD	5-6=-90/78,	4-5=-27/	30		bearing plate	e capable of withs	tanding §	i99 Îb uplift a	t							
WEBS	2-5=-325/31	196, 1-5=	-582/4492,		joint 6 and 5	54 lb uplift at joint	4.									
	3-5=-609/44	192		1	This truss is	designed in accor	dance w	ith the 2018								
NOTES					International	Residential Code	sections	R502.11.1 a	and							
1) 2-ply truss	s to be connect	ted toget	her with 10d		R802.10.2 a	ind referenced star	ndard Al	NSI/TPL1.					000	TOP		
(0.131"x3	") nails as follo	ws:		1	1) Use Simpso	n Strong-Tie HUS	26 (14-1 from the	Ja Giraer, 6-	100				S OF M	Alcoh		
I op chorc	is connected a	as follows	: 2x4 - 1 row at 0-9-	-0	connect trus	s(es) to back face	of botto	n chord					A SE	-0.0		
OC.	ordo connecto	d oo folk	240 2 Com	1	2) Use Simpso	n Strong-Tie HUS	26 (14-1	6d Girder 6-	16d			A	SI	New		
standered	loius connecte	a as ione	JWS. 2X0 - 2 10WS		Truss) or ea	uivalent spaced at	2-0-0 0	c max. startin	a at			H	SCOT	M. Yor V		
Web conr	nected as follow	ws [.] 2x4 -	1 row at 0-9-0 oc		3-4-12 from	the left end to 7-4	-12 to co	nnect truss(e	s) to			B.	/ SEVI	ER \ X		
2) All loads a	are considered	equally	applied to all plies.		back face of	bottom chord.			,			Ø 🖈		a *X		
except if r	noted as front ((F) or bac	ck (B) face in the LO	DAD 1	Fill all nail he	oles where hanger	is in cor	ntact with lum	ber.				1-2	·X		
CASE(S)	section. Ply to	ply conn	ections have been	L	OAD CASE(S)	Standard					2	K	altim	Kernen		
provided t	to distribute on	ly loads i	noted as (F) or (B),	1) Dead + Sn	ow (balanced): Lu	mber Inc	rease=1.15,	Plate			N7	DE-20010	118807		
unless oth	nerwise indicate	ed.			Increase=1	.15						N	-200I	STOOD SB		
3) Unbalance	ed roof live loa	ads have	been considered for	r	Uniform Lo	ads (lb/ft)						Y	1 PPC	NON B		
this desig	n.				Vert: 1-2	2=-78, 2-3=-78, 4-6	6=-20						UNIONIA	TENA		
					Concentrat	ed Loads (lb)							AVIA	1 2		

Vert: 1-2=-78, 2-3=-78, 4-6=-20 Concentrated Loads (lb)

June 6,2023

000

Job	Truss	Truss Type	Qty	Ply		
P210577	P01	Roof Special Girder	1	1	Job Reference (optional)	158733530

Run: 8.63 S Nov 19 2022 Print: 8.630 S Nov 19 2022 MiTek Industries, Inc. Mon Jun 05 09:39:38 ID:92hT1CcZraXCrl1UxShYcKz9YT9-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Scale = 1:59.2

4-11-8

Plate Offsets (X, Y): [8:0-2-8,0-3-0], [10:Edge,0-4-4], [17:0-5-0,0-4-0]

Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 25.0 18.9/20.0 25.0 0.0 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 NO IRC201	8/TPI2014	CSI TC BC WB Matrix-S	0.47 0.99 0.97	DEFL Vert(LL) Vert(CT) Horz(CT)	in 0.22 -0.44 0.11	(loc) 12-13 12-13 10	l/defl >999 >787 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 170 lt	GRIP 197/144 b FT = 20%				
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD	2x6 SPF No.2 2x6 SPF No.2 2x4 SPF No.3 Structural wood shea 5-3-2 oc purlins, exc	athing directly applied	1) d or nd	Wind: ASCE Vasd=91mph Ke=1.00; Cai exterior zone Interior (1) 5- 13-11-14, Int cantilever lef right exposed	7-16; Vult=115mpl ; TCDL=6.0psf; BC :. II; Exp C; Enclos: and C-C Exterior(0-0 to 6-11-0, Exte erior (1) 13-11-14 t t and right exposed ;C-C for members	h (3-sec CDL=6.0 ed; MW 2E) 0-0 erior(2R to 31-10 d; end v and for	cond gust) Opsf; h=35ft; FRS (envelop -0 to 5-0-0,) 6-11-0 to)-10 zone; /ertical left an cces & MWFF	pe) nd ₹S	13) Har prov Ib d des resp 14) In th of th	nger(s) c vided su own and ign/sele ponsibili ne LOAI ne truss	or othe fficien d 84 lb ction c ty of of D CAS are nc) Sta	r connection de t to support con- up at 26-8-10 of f such connecti- thers. E(S) section, loa oted as front (F) undard	vice(s) shall be centrated load(s) 116 on top chord. The on device(s) is the ads applied to the face or back (B).				
BOT CHORD WEBS REACTIONS	2-0-0 dc pullins (3-1- Rigid ceiling directly bracing. 1 Row at midpt (size) 10=0-7-0, Max Horiz 18=208 (L Max Uplift 10=-1121 Max Gray 10=2005 (-4 max.): 3-8. applied or 5-8-15 oc 4-17, 7-11, 8-10 18=0-5-8 .C 13) (LC 16), 18=-844 (LC 1C 2): 18=-1928 (LC	2) C 16) 3) 2)	for reactions DOL=1.60 TCLL: ASCE Plate DOL=1 DOL=1.15 Pl Exp.; Ce=0.9 Unbalanced	exposed;C-C for members and forces & MWFRS actions shown; Lumber DOL=1.60 plate grip 1.60 : ASCE 7-16; Pr=25.0 psf (roof LL: Lum DOL=1.15 DOL=1.15); Pg=20.0 psf; Pf=18.9 psf (Lum 1.15 Plate DOL=1.15); Is=1.0; Rough Cat C; Fully Ce=0.9; Cs=1.00; Ct=1.10, Lu=50-0-0 lanced snow loads have been considered for this						 Dead + Snow (balanced): Lumber Increase=1.15. Increase=1.15 Uniform Loads (lb/ft) Vert: 1-3=-78, 3-8=-88, 8-9=-78, 1-10=-20 Concentrated Loads (lb) Vert: 3=-36 (F), 6=-32 (F), 15=25 (F), 17=257 (5=-32 (F) 13=25 (F) 11=-28 (F) 8=-93 (F) 20 						
FORCES	(lb) - Maximum Com	pression/Maximum	4)	Provide adec	uate drainage to p	revent	water ponding	g.		(F), 21= 28=-91	-32 (F (F), 29), 22=-32 (F), 24 9=-91 (F), 30=-4	4=-32 (F), 27=-91 (F), 9 (F), 31=25 (F), 32=25				
TOP CHORD	1-2=-359/359, 2-3=-1 3-4=-1717/991, 4-5= 5-7=-4794/1807, 7-8 8-9=-159/92 9-10=-1	1911/1058, 4794/1807, =-3009/1110, 262/132	5) 6)	This truss ha chord live loa Provide med bearing plate	s been designed fo id nonconcurrent w nanical connection capable of withsta	or a 10.0 vith any (by oth anding 1	0 psf bottom other live loa ers) of truss t 121 lb uplift a	ids. to at	(F), 33=25 (F), 34=25 (F), 35=-30 (F), 36=-30 (F), 37=-30 (F), 38=-12 (F), 39=-30 (F)								
BOT CHORD	1-18=-248/351, 17-1 16-17=-1670/3867, 1 12-13=-1631/4716, 1	8=-302/337, 3-16=-1670/3867, 1-12=-1631/4716,	7)	This truss is International R802.10.2 ar	designed in accord Residential Code s nd referenced stan	lance w sections dard AN	ith the 2018 R502.11.1 a NSI/TPI 1.	ind				FE OF	MISSO				
WEBS	3-17=-25/315, 4-17 4-16=-40/130, 4-13= 5-13=-540/222, 7-13 7-11=-1949/608, 8-1 8-10=-3482/1256, 2- 2-17=-1088/1926	=-2452/795, -224/1070, =-241/90, 7-12=0/26 1=-364/1104, 18=-1765/1022,	8) 4, 9) 1(or the orienta bottom chorc Use Simpsor Hand Hip) or connect truss	I purlin representation does not depict the size entation of the purlin along the top and/or nord. soon Strong-Tie THJA26 (THJA26 on 1 ply, Left o) or equivalent at 6-11-6 from the left end to rruss(es) to front face of bottom chord. pson Strong-Tie LUS26 (4-10d Girder, 3-10d						TT M. TER						
NOTES			1 ⁻ 12	Truss, Single the left end to chord.) Fill all nail ho 2) "NAILED" inc	Ply Girder) or equ connect truss(es) les where hanger i licates Girder: 3-10	ivalent to fron is in cor d (0.14	at 30-11-12 fi t face of botto ntact with lum 8" x 3") toe-r	rom om ber. nails			N.	OF PE-200	1018807				

per NDS guidelines.

June 6,2023

Page: 1

Job	Truss	Truss Type	Qty	Ply	
P210577	P02	Roof Special	1	1	Job Reference (optional)

Run: 8.63 S Nov 19 2022 Print: 8.630 S Nov 19 2022 MiTek Industries, Inc. Mon Jun 05 09:39:39 ID:eJMZWoRrbnDPdLokURQkvtz9YS4-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:62.3

Plate Offsets (X, Y): [17:0-3-0,0-4-0]

Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 25.0 18.9/20.0 25.0 0.0 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018	3/TPI2014	CSI TC BC WB Matrix-S	0.46 0.72 0.88	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.15 -0.35 0.10	(loc) 12-14 12-14 10	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 185 lb	GRIP 197/144 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD WEBS WEBS REACTIONS	2x6 SPF No.2 2x6 SPF No.2 2x4 SPF No.3 Structural wood shea 4-7-6 oc purlins, exi 2-0-0 oc purlins (3-6 Rigid ceiling directly bracing. 1 Row at midpt 2 Rows at 1/3 pts (size) 10=0-7-0, Max Horiz 17=263 (L Max Uplift 10=-310 (Max Gray, 10=1825)	athing directly applied cept end verticals, and -3 max.): 4-8. applied or 6-0-0 oc 5-16, 6-11 8-10 17=0-5-8 -C 13) LC 16), 17=-355 (LC	1) lor d 2) 16) 3) 2)	Wind: ASCE Vasd=91mph Ke=1.00; Cat exterior zone Interior (1) 5- 15-11-14, Int cantilever left right exposed for reactions DOL=1.60 TCLL: ASCE Plate DOL=1.15 Pl Exp.; Ce=0.9 Unbalanced design.	7-16; Vult=115mph ; TCDL=6.0psf; BC :. II; Exp C; Enclose and C-C Exterior(2 0-0 to 8-11-0, Exte erior (1) 15-11-14 t t and right exposed i;C-C for members shown; Lumber DC 7-16; Pr=25.0 psf; 15); Pg=20.0 psf; ate DOL=1.15); Is= ; Cs=1.00; Ct=1.10 snow loads have be	(3-sec CDL=6.0 cDL=6.0 cDL=6.0 cDL=7 co co co co co co co co co co co co co	ond gust))psf; h=35ft; FRS (envelog 0 to 5-0-0, 8-11-0 to -10 zone; ertical left an ces & MWFF 0 plate grip : Lum DOL= psf (Lum ugh Cat C; F)-0-0 sidered for th	pe) nd RS 1.15 ∓ully his					
FORCES	(lb) - Maximum Com Tension	pression/Maximum	-/ 4) 5)	This truss ha	s been designed fo	revent v r a 10.0 ith anv	vater ponding) psf bottom other live loa	g. ads					
TOP CHORD	1-2=-350/321, 2-3=- 4-5=-2239/421, 5-6= 6-8=-2575/463, 8-9=	242/232, 3-4=-2423/4 3860/655, 181/127, 9-10=-310/	27, 6) 156	Provide mech bearing plate ioint 10 and 3	nanical connection capable of withsta 355 lb uplift at joint	(by oth nding 3 17.	ers) of truss t 10 lb uplift at	to t					
BOT CHORD	1-17=-205/339, 16-1 14-16=-737/3794, 12 11-12=-700/3860, 10	7=-514/1658, 2-14=-737/3794, 0-11=-473/2541	7)	This truss is International R802.10.2 ar	designed in accord Residential Code s nd referenced stand	ance w ections lard AN	th the 2018 R502.11.1 a ISI/TPI 1.	and				GE OF M	MISSO
WEBS	4-16=-8/402, 5-16=- 6-11=-1585/264, 8-1 8-10=-2922/507, 2-1 3-16=-157/870, 3-17 5-12=-18/175, 6-12=	1792/329, 1=-55/942, 7=-519/244, ′=-2390/558, 5-14=0/2 :0/192	8) 250, LC	Graphical pu or the orienta bottom chord DAD CASE(S)	rlin representation tion of the purlin al Standard	does no ong the	ot depict the s top and/or	size				STATE SCOTT	T M. ER

NOTES

PE-20010188

E

June 6,2023

SSIONAL

0

Job	Truss	Truss Type	Qty	Ply	
P210577	P03	Roof Special	1	1	Job Reference (optional)

Run: 8.63 S Nov 19 2022 Print: 8.630 S Nov 19 2022 MiTek Industries, Inc. Mon Jun 05 09:39:40 ID:ACvuaiFspNfv9eQcv07R6?z9YR1-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:65.5

Plate Offsets (X, Y): [8:0-2-12,0-3-0], [10:0-2-12,0-3-12], [17:0-3-0,0-4-4]

Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 25.0 18.9/20.0 25.0 0.0 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018	3/TPI2014	CSI TC BC WB Matrix-S	0.59 0.64 0.79	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.12 -0.30 0.10	(loc) 12-14 12-14 10	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 205 lb	GRIP 197/144 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD WEBS WEBS REACTIONS	2x6 SPF No.2 2x6 SPF No.2 2x4 SPF No.3 *Exce Structural wood shea 4-3-4 oc purlins, exc 2-0-0 oc purlins (3-9 Rigid ceiling directly bracing. 1 Row at midpt 2 Rows at 1/3 pts (size) 10=0-7-0, Max Horiz 17=318 (L Max Uplift 10=-334 (I	pt* 10-8:2x4 SP No.2 athing directly appliec cept end verticals, an -2 max.): 4-8. applied or 6-0-0 oc 5-16, 7-11, 3-17 8-10 17=0-5-8 .C 13) LC 16), 17=-370 (LC	1) tor d 2) 16) ³⁾	Wind: ASCE Vasd=91mph Ke=1.00; Cal exterior zone Interior (1) 55- 17-11-14, Int cantilever lefi right exposed for reactions DCL=1.60 TCLL: ASCE Plate DOL=1 DOL=1.15 Pl Exp.; Ce=0.9 Unbalanced design.	7-16; Vult=115mpl ; TCDL=6.0psf; Bd :. II; Exp C; Enclos: and C-C Exterior(0-0 to 10-11-0, Exi erior (1) 17-11-14 ti and right exposed t;C-C for members shown; Lumber DC 7-16; Pr=25.0 psf; 15); Pg=20.0 psf; ate DOL=1.15); Is= ; Cs=1.00; Ct=1.10; shown loads have b	h (3-sec CDL=6.0 ed; MW 2E) 0-0.0 terior(2F to 35-10 d; end v and for DL=1.60 (roof LL Pf=18.9 =1.0; Rc 0, Lu=50 een cor	ond gust) ppsf; h=35ft; FRS (envelo, 0 to 5-0-0, 10 11-0 to -10 zone; ertical left ar ces & MWFF plate grip : Lum DOL= psf (Lum ough Cat C; F)-0-0 isidered for th	pe) nd RS 1.15 Fully his					
FORCES	Max Grav 10=1946 ((lb) - Maximum Com Tension	(LC 2), 17=2360 (LC pression/Maximum	2) 4) 5)	Provide adec This truss ha chord live loa	uate drainage to p s been designed fo d nonconcurrent w	revent v or a 10.0 /ith any	vater ponding) psf bottom other live loa	g. ads.					
TOP CHORD	1-2=-365/260, 2-3=-2 4-5=-2491/469, 5-7= 7-8=-2529/482, 8-9=	253/209, 3-4=-2745/4 3478/633, 213/152, 9-10=-369/	77, 6) (181	Provide mech bearing plate joint 10 and 3	nanical connection capable of withsta 370 lb uplift at joint	(by oth Inding 3 17.	ers) of truss f 34 lb uplift af	to t					
BOT CHORD	1-17=-144/351, 16-1 14-16=-761/3484, 12 11-12=-695/3478, 10 4-16=-26/525, 5-16= 7-11=-1332/248, 8-1 8-10=-2961/521, 2-1 3-16=-91/669, 3-17= 5-12=-87/84, 7-12=0	7=-675/2034, 2-14=-761/3484,)-11=-497/2553 1334/257, 1=-49/939, 7=-538/254, 2683/652, 5-14=0/2: //220	7) 8) 25, LC	This truss is of International R802.10.2 ar Graphical pu or the orienta bottom chord DAD CASE(S)	designed in accord Residential Code s Ind referenced stan- rlin representation tion of the purlin a Standard	lance w sections dard AN does no long the	th the 2018 R502.11.1 a ISI/TPI 1. of depict the s top and/or	and size		1		STATE OF M	MISSOUR M. ER

NOTES

NUMB

PE-200101880

E

June 6,2023

NOFESSIONAL

Job	Truss	Truss Type	Qty	Ply	
P210577	P04	Roof Special	1	1	Job Reference (optional)

Run: 8.63 S Nov 19 2022 Print: 8.630 S Nov 19 2022 MiTek Industries, Inc. Mon Jun 05 09:39:41 ID:7Pcwiqu6KfLN0ozoWeatmAz9YQC-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

BCDL	10.0						Weight: 228 lb	FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD	2x6 SPF No.2 2x6 SPF No.2 2x4 SPF No.3 *Except* 12-9:2x4 SP No.2 Structural wood sheathing directly applied of 3-11-8 oc purlins, except end verticals, and 2-0-0 oc purlins (3-11-1 max.): 4-8. Rigid ceiling directly applied or 6-0-0 oc bracing.	1) or i	Wind: ASCE Vasd=91mpl Ke=1.00; Ca exterior zone Interior (1) 5 19-11-14, Ini cantilever lef right expose for reactions DOL=1.60	7-16; Vult=115mph (3-sec h; TCDL=6.0psf; BCDL=6.0 t. II; Exp C; Enclosed; MW e and C-C Exterior(2E) 0-0- 0-0 to 12-11-0, Exterior(2E terior (1) 19-11-14 to 37-10 t and right exposed; end v d;C-C for members and for shown; Lumber DOL=1.60	ond gust))psf; h=35ft; FRS (envelope) ·0 to 5-0-0, R) 12-11-0 to ·10 zone; rertical left and rces & MWFRS) plate grip			
WEBS	1 Row at midpt 10-11, 5-17, 7-12, 9-11 3-18	, 2)	Plate DOL=1	: 7-16; Pr=25.0 psf (roof LL 1.15); Pg=20.0 psf; Pf=18.9	.: Lum DOL=1.15) psf (Lum			
REACTIONS FORCES TOP CHORD	(size) 11=0-7-0, 18=0-5-8 Max Horiz 18=373 (LC 13) Max Uplift 11=-359 (LC 16), 18=-385 (LC 16) Max Grav 11=2067 (LC 2), 18=2479 (LC 2) (lb) - Maximum Compression/Maximum Tension 1-2=-379/169, 2-3=-259/141, 3-4=-2992/513 4-5=-2677/506, 5-7=-3303/630, 7-8=-2512/495, 8-9=-2644/546.	3) 4) 5) 3, 6)	DOL=1.15 P Exp.; Ce=0.9 Unbalanced design. Provide adee This truss ha chord live loa Provide mec bearing plate joint 11 and	late DOL=1.15); Is=1.0; Rc 2; Cs=1.00; Ct=1.10, Lu=50 snow loads have been cor quate drainage to prevent v as been designed for a 10.0 ad nonconcurrent with any chanical connection (by oth a capable of withstanding 3 385 lb uplift at joint 18	hugh Cat C; Fully)-0-0 isidered for this water ponding.) psf bottom other live loads. ers) of truss to 159 lb uplift at			
BOT CHORD	9-10=-188/152, 10-11=-182/94 1-18=-54/360, 17-18=-808/2408, 15-17=-781/3343, 13-15=-781/3343, 12-13=-709/3303, 11-12=-350/1206	7)	This truss is International R802.10.2 a Graphical pu	designed in accordance w Residential Code sections nd referenced standard AN Irlin representation does no	ith the 2018 R502.11.1 and ISI/TPI 1. ot depict the size		TE OF M	MISSO
WEBS	4-17=-32/584, 5-17=-1012/209, 7-12=-1178/283, 8-12=-1147/285, 9-12=-397/2421, 9-11=-2178/444, 5-15=0/192, 5-13=-118/102, 7-13=-22/214, 2-18=-587/274, 3-17=-20/464, 3-18=-2939/735	LO	or the orienta bottom chore AD CASE(S)	ation of the purlin along the d. Standard	top and/or		S SCOT	I M. ER
NOTES						117	PE-2001	018807

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

SSIONAL

EL

June 6,2023

Job	Truss	Truss Type	Qty	Ply	
P210577	P05	Roof Special	1	1	Job Reference (optional)

Run: 8.63 S Nov 19 2022 Print: 8.630 S Nov 19 2022 MiTek Industries, Inc. Mon Jun 05 09:39:42 ID:ye4uD7oXvOftu9d1rBvDmnz9YP2-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Scale = 1:81.8

Plate Offsets (X, Y): [7:0-2-12,0-3-8], [9:0-2-0,0-2-0], [13:0-4-0,0-2-8]

Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL	(psf) 25.0 18.9/20.0 25.0 0.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018	3/TPI2014	CSI TC BC WB Matrix-S	0.58 0.54 0.97	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.12 -0.28 0.07	(loc) 16 16-18 11	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20	GRIP 197/144
BCDL	10.0											Weight: 281 lb	FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD WEBS WEBS REACTIONS	2x6 SPF No.2 2x6 SPF No.2 2x4 SPF No.3 *Exce No.2 Structural wood she: 4-2-0 oc purlins, exi 2-0-0 oc purlins (4-1 Rigid ceiling directly bracing. 1 Row at midpt 2 Rows at 1/3 pts (size) 11=0-7-0, Max Horiz 20=225 (L Max Ublift 11=-971 (ept* 11-10,19-2:2x4 S athing directly appliec cept end verticals, an -13 max.): 5-7. applied or 6-0-0 oc 6-18, 6-15, 9-12, 10- 7-13 12=0-11-12, 20=0-5. C 13) LC 62). 12=-541 (LC	1) 2) SP d or rd .12 -8 3) 16).	Unbalanced this design. Wind: ASCE Vasd=91mpf Ke=1.00; Cat exterior zone Interior (1) 5- 19-11-0, Inte 36-8-8 to 41- cantilever left right exposed for reactions DOL=1.60 TCLL: ASCE Plate DOL=1 DOL=1.15 Pf	roof live loads have 7-16; Vult=115mph r; TCDL=6.0psf; BC t. II; Exp C; Enclose and C-C Exterior(2 0-0 to 14-11-0, Ext rior (1) 19-11-0 to 3 8-8, Interior (1) 41- t and right exposed t;C-C for members shown; Lumber DC 7-16; Pr=25.0 psf .15); Pg=20.0 psf; I ate DCL=1.15); Is=	been (3-sec (DL=6. (2) (2) (2) (2) (2) (2) (2) (2) (2) (2)	considered fo considered fo Dpsf; h=35ft; FRS (envelop -0 to 5-0-0, R) 14-11-0 to Exterior(2R) 45-6-8 zone; vertical left an cres & MWFF D plate grip L: Lum DOL= D psf (Lum Dugh Cat C; F	pe) nd RS 1.15 T ully					
	20=-375 (Max Grav 11=188 (L 20=2421 (LC 16) _C 16), 12=3891 (LC (LC 2)	2), ⁴⁾ 5)	Unbalanced : design. Provide adec	snow loads have be	en cor	nsidered for th	his a					
FORCES	(lb) - Maximum Com	pression/Maximum	6)	This truss ha	s been designed fo	r a 10.	0 psf bottom	g.					
TOP CHORD	1-2=-320/124, 2-4=- 4-5=-2805/502, 5-6= 6-7=-1805/403, 7-8= 9-10=-202/962, 10-1	2841/465, 2487/500, 202/166, 8-9=-181/ [,] 1=-146/982	7) 179,	Provide mech bearing plate joint 11, 375	ad nonconcurrent w hanical connection capable of withsta lb uplift at joint 20 a	ith any (by oth nding 9 and 541	other live loa ers) of truss t 071 lb uplift at 1 lb uplift at jo	ids. to t bint				TE OF M	AISSO
BOT CHORD	1-20=-21/307, 19-20 18-19=-633/2509, 16 15-16=-585/2776, 13 12-13=-841/298, 11-)=-212/311, 6-18=-585/2776, 3-15=-401/1824, -12=-112/124	8)	This truss is o International R802.10.2 ar Graphical pu	designed in accord Residential Code s nd referenced stand rlin representation (ance w ections lard AN	ith the 2018 R502.11.1 a NSI/TPI 1.	and				ST SCOTT	F M. ER
WEBS	5-18=0/458, 6-18=-4 6-15=-1301/244, 7-1 2-20=-2210/614, 4-1 4-19=-531/212, 2-19 8-13=-388/135, 7-13 9-13=-386/2197, 9-1 10-12=-1192/246	199/97, 6-16=0/307, 5=-67/979, 8=-212/166, 9=-532/2591, 3=-2412/440, 2=-2823/631,	LC	or the orienta bottom chord DAD CASE(S)	ation of the purlin al I. Standard	ong the	e top and/or				and a second	PE-20010	L ENGINE

June 6,2023

Page: 1

Job	Truss	Truss Type	Qty	Ply	
P210577	P06	Roof Special	1	1	Job Reference (optional)

Run: 8.63 S Nov 19 2022 Print: 8.630 S Nov 19 2022 MiTek Industries, Inc. Mon Jun 05 09:39:43 ID:ReDZ8vQ8fMDV89c0u6rQtlz9YOE-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

Scale = 1:85.9

Plate Offsets (X, Y): [11:Edge,0-3-8], [20:0-3-8,0-3-8]

Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 25.0 18.9/20.0 25.0 0.0 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018	3/TPI2014	CSI TC BC WB Matrix-S	0.53 0.80 0.88	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.19 -0.46 0.12	(loc) 15-16 15-16 11	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 MT18HS Weight: 294 lb	GRIP 197/144 197/144 FT = 20%	
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD WEBS REACTIONS	2x6 SPF No.2 2x6 SPF No.2 2x4 SPF No.3 *Exce SP No.2 Structural wood shea 3-1-15 oc purlins, ei 2-0-0 oc purlins (3-2 Rigid ceiling directly bracing. 1 Row at midpt (size) 11=0-7-0, Max Horiz 21=171 (L Max Uplift 11=-252 (pt* 11-10,12-10,2-20 athing directly applie xcept end verticals, a -10 max.): 5-7. applied or 8-3-2 oc 6-18, 6-15, 10-11, 7- 9-12 21=0-5-8 .C 16) LC 12), 21=-450 (LC	2) 2:2x4 d or .13, 3) .16) 4)	Wind: ASCE Vasd=91mpl Ke=1.00; Car exterior zone Interior (1) 5- 21-11-0, Inte 34-8-8 to 39- cantilever lef right exposed for reactions DOL=1.60 TCLL: ASCE Plate DOL=1 DOL=1.15 Pl Exp.; Ce=0.9 Unbalanced design.	7-16; Vult=115n n; TCDL=6.0psf; t. II; Exp C; Encl and C-C Exteric 0-0 to 16-11-0, I iror (1) 21-11-0 t 8-8, Interior (1) 3 t and right expos d;C-C for membe shown; Lumber 7-16; Pr=25.0 p .15); Pg=20.0 ps late DOL=1.15); 0; Cs=1.00; Ct=1 snow loads have	nph (3-sec BCDL=6.0 osed; MW or(2E) 0-0- Exterior(2F to 34-8-8, 1 39-8-8 to 4 sed; end v ers and for DOL=1.60 vsf (roof LL sf; Pf=18.9 Is=1.0; Rc .10, Lu=50 e been con	ond gust) ppsf; h=35ft; FRS (envelop 0 to 5-0-0, R) 16-11-0 to Exterior(2R) 7-6-8 zone; ertical left ar ces & MWFF plate grip : Lum DOL= psf (Lum ugh Cat C; F -0-0 sidered for th	pe) nd RS 1.15 Fully his						
FORCES	(lb) - Maximum Com	(LC 2), 21=3055 (LC pression/Maximum	2) 5) 6)	Provide adeo All plates are	quate drainage to MT20 plates un	o prevent v nless other	vater ponding wise indicate	g. ed.						
TOP CHORD	1 ension 1-2=-301/10, 2-4=-4 5-6=-3580/709, 6-7= 7-8=-3119/674, 8-9= 9-10=-2532/518, 10-	063/613, 4-5=-4018/ 3926/787, 3177/661, -11=-2586/520	7) 725, 8)	This truss ha chord live loa Provide med bearing plate	s been designed ad nonconcurren hanical connection capable of with 150 lb uplift of initial	d for a 10.0 at with any on (by othe standing 2	opsf bottom other live loa ers) of truss f 52 lb uplift at	ads. to t				0000	- CDP	
BOT CHORD	1-21=0/285, 20-21=- 18-20=-761/3622, 16 15-16=-803/4254, 13 12-13=-489/2372, 11	159/316, 5-18=-803/4254, 3-15=-745/3931, 1-12=-72/95	9) 10	This truss is International R802.10.2 ar	Action applied at join according to the second seco	ordance wi le sections andard AN	th the 2018 R502.11.1 a SI/TPI 1. t depict the s	and size			Å	STATE OF M	M. M.	
WEBS	5-18=-58/853, 6-18= 6-15=-590/151, 7-15 10-12=-508/2847, 2- 2-20=-699/3574, 4-2 4-18=-275/181, 8-13 7-13=-2030/375, 9-1 9-12=-1489/387	-961/180, 6-16=0/29 i=-36/503, 21=-2811/726, 10=-625/243, i=-205/1291, 3=-145/919,	12, LC	or the orienta bottom chorc DAD CASE(S)	ation of the purlir I. Standard	along the	top and/or			4		PE-20010	ER 018807	

NOTES

 Unbalanced roof live loads have been considered for this design.

June 6,2023

JONAL

Job	Truss	Truss Type	Qty	Ply	
P210577	P07	Roof Special	1	1	Job Reference (optional)

8-5-7

5-3-11

<u>| 3-1-12</u> | 3-1-12 Run: 8.63 S Nov 19 2022 Print: 8.630 S Nov 19 2022 MiTek Industries, Inc. Mon Jun 05 09:39:44 ID:hSNgIEMRW1wat pvnjTU z9YN1-RfC?PsB70Hg3NSgPgnL8w3uITXbGKWrCDoi7J4zJC?f

ID:hSNgIEMRW1wat_pvnjTU_z9YN1-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f 32-8-8 13-9-1 18-11-0 25-3-10 31-8-4 38-3-6 43-10-11 49-8-4 5-3-11 5-1-15 6-4-10 6-4-10 1-0-4 5-6-13 5-7-5 5-9-9 3.54¹² 5x10= 8x8= 6x6= 4x8=

Scale = 1:88.6

Plate Offsets (X, Y): [8:0-4-0,Edge], [14:Edge,0-4-0], [23:0-3-8,0-3-8]

Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 25.0 18.9/20.0 25.0 0.0 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018	3/TPI2014	CSI TC BC WB Matrix-S	0.50 0.75 0.95	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.19 -0.45 0.15	(loc) 17-18 17-18 14	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 MT18HS Weight: 311 lb	GRIP 197/144 197/144 FT = 20%
		•		-								, j	
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD	2x6 SPF No.2 2x6 SPF No.2 2x4 SPF No.3 *Exce SP No.2 Structural wood she 3-4-0 oc purlins, ex 2-0-0 oc purlins (3-2	pt* 14-13,14-11,23-2 athing directly appliec cept end verticals, an -14 max.): 6-8.	NC 1) ::2x4 2) d or id	Unbalanced this design. Wind: ASCE Vasd=91mph Ke=1.00; Cat exterior zone Interior (1) 5- 23-11-0, Inte	roof live loads hav 7-16; Vult=115mp i; TCDL=6.0psf; B i. II; Exp C; Enclos and C-C Exterior 0-0 to 18-11-0, Ex rior (1) 23-11-0 to	e been o h (3-sec CDL=6.0 ced; MW (2E) 0-0 terior(21 32-8-8, 8 8 to (considered fo cond gust) Dpsf; h=35ft; FRS (envelop -0 to 5-0-0, R) 18-11-0 to Exterior(2R)	r pe)					
BOT CHORD	Rigid ceiling directly	applied or 8-10-3 oc		32-8-8 10 37-	8-8, Interior (1) 37	-8-8 10 4 d · end v	i9-6-8 2011e; vertical left an	d					
WEBS	bracing. 1 Row at midpt	7-20, 7-17, 8-17, 11- 10-17	14,	right exposed for reactions	d;C-C for members shown; Lumber D	and for OL=1.60	ces & MWFR) plate grip	RS					
REACTIONS	(size) 14=0-7-0, Max Horiz 24=160 (L Max Uplift 14=-413 (Max Grav 14=2771	24=0-5-8 _C 20) LC 13), 24=-340 (LC (LC 2), 24=3174 (LC	3) 12) 2)	DOL=1.60 TCLL: ASCE Plate DOL=1 DOL=1.15 Pl	7-16; Pr=25.0 psf .15); Pg=20.0 psf; ate DOL=1.15); Is	(roof LL Pf=18.9 =1.0; Ro	.: Lum DOL=^ 9 psf (Lum pugh Cat C; F	1.15 ⁻ ully					
FORCES	(lb) - Maximum Com Tension	pression/Maximum	4)	Unbalanced	snow loads have b	0, Lu=50 been cor	o-o-o nsidered for th	nis					
TOP CHORD	1-2=-310/100, 2-4=- 4-5=-4334/742, 5-6= 6-7=-3658/749, 7-8= 8-9=-3976/826, 9-10 10-11=-3606/684, 1' 13-14=-256/103	3954/560, 4064/779, 3865/801,)=-3879/780, 1-13=-156/120,	5) 6) 7) 8)	All plates are This truss ha chord live loa Provide mech	uate drainage to p MT20 plates unle s been designed f id nonconcurrent v nanical connection	orevent ss other or a 10.0 with any o (by oth	water ponding wise indicate) psf bottom other live loa ers) of truss t	g. d. ds. co				TE OF M	AISSOL
BOT CHORD	1-24=0/299, 23-24= 22-23=-633/3540, 20 18-20=-685/4151, 1 15-17=-613/3605, 1	-118/297, D-22=-704/3912, 7-18=-685/4151, 1-15=-536/2784	9)	joint 14 and 3 This truss is a International	add b uplift at joint designed in accord Residential Code	anding 4 24. dance w sections	ith the 2018 R502.11.1 a	ind				S SCOTT	ER
WEBS	6-20=-113/1000, 7-2 7-17=-644/107, 8-17 9-17=-284/1695, 11- 2-24=-2934/719, 2-2 4-23=-873/270, 4-22 5-22=-158/104, 5-20 10-17=-140/320, 10- 11-15=-65/1028	-12-530/2764 -1215/270, -14=-3661/648, -13=-692/3634, -2=-99/481, -547/197, -15=-692/184,	238, ₁₀ LC	K802.10.2 ar Graphical pu or the orienta bottom chord	a referenced star rlin representation tion of the purlin a Standard	dard AN does no llong the	ISI/ I PI 1. of depict the s top and/or	size			The second	NUMI PE-20010	L ENGINE

June 6,2023

Page: 1

Job	Truss	Truss Type	Qty	Ply	
P210577	P08	Нір	1	1	Job Reference (optional)

Run; 8.63 S Nov 19 2022 Print; 8.630 S Nov 19 2022 MiTek Industries, Inc. Mon Jun 05 09:39:45 ID:sO76JR6Kw4knJWkkYoq0?3z9YM3-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:91.6

Plate Offsets (X, Y): [12:0-3-0,0-2-0], [13:Edge,0-3-8], [22:0-3-8,0-3-8]

Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 25.0 18.9/20.0 25.0 0.0 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018	3/TPI2014	CSI TC BC WB Matrix-S	0.79 0.87 0.95	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.22 -0.53 0.15	(loc) 16-17 17-19 13	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 M18AHS MT18HS Weight: 314 lb	GRIP 197/144 142/136 197/144 FT = 20%	
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD WEBS REACTIONS	2x6 SPF No.2 2x6 SPF No.3 *Exce No.2, 14-12:2x4 SP Structural wood shei 2-2-10 oc purlins, ei 2-0-0 oc purlins (3-6 Rigid ceiling directly bracing. 1 Row at midpt (size) 13=0-7-0, Max Horiz 23=171 (L Max Uplift 13=-418 (Max Gray, 13=2891	pt* 13-12,22-2:2x4 S 1650F 1.5E athing directly applie xcept end verticals, a -7 max.): 6-8. applied or 8-2-2 oc 7-19, 7-17, 9-17, 5-1 23=0-5-8 .C 16) LC 13), 23=-342 (LC (LC 2), 23=-3294 (LC	2) SP d or and 19 3) : 16) 4)	Wind: ASCE Vasd=91mpl Ke=1.00; Ca exterior zone Interior (1) 5- 28-2-11, Inte 29-0-5 to 36- cantilever lef right exposed for reactions DOL=1.60 TCLL: ASCE Plate DOL=1 DOL=1.15 Pl Exp.; Ce=0.5 Unbalanced	7-16; Vult=115mp n; TCDL=6.0psf; B(t. II; Exp C; Enclos and C-C Exterior(2-0 to 20-11-0, Ex- rior (1) 28-2-11 to 2 4-1, Interior (1) 36- t and right exposed d;C-C for members shown; Lumber D(7-16; Pr=25.0 psf; ate DDL=1.15); Is- t; Cs=1.00; Ct=1.10 snow loads have b	h (3-sec CDL=6.0 ed; MW 2E) 0-0 terior(21 29-0-5, -4-1 to 5 d; end v s and for OL=1.60 (roof LL Pf=18.5 =1.0; Rc 0, Lu=50 eeen cor	ond gust) Dpsf; h=35ft; FRS (envelo -0 to 5-2-0, 3) 20-11-0 to Exterior(2R) i1-6-8 zone; rertical left ar ces & MWFF 0 plate grip .: Lum DOL= 0 psf (Lum Dugh Cat C; F)-0-0 isidered for t	pe) nd RS 1.15 Fully his						
FORCES	(lb) - Maximum Com Tension	pression/Maximum	2) 5)	Provide adec	uate drainage to p	orevent	vater pondin	g.						
TOP CHORD	1-2=-298/56, 2-4=-4: 5-6=-4169/893, 6-7= 7-8=-4026/918, 8-9= 9-10=-4914/976, 10- 12-13=-2797/576	305/714, 4-5=-4564/ 3736/869, 4298/924, -12=-4791/861,	890, 7) 8)	This truss ha chord live loa Provide med bearing plate	s been designed for ad nonconcurrent w hanical connection capable of withsta	or a 10.0 vith any (by oth anding 4) psf bottom other live loa ers) of truss 18 lb uplift a	ads. to t				TO DE LA COLORIZACIÓN DE LA COLORIZACIÓN DE LA COLORIZACIÓN DE LA COLORIZACIÓN DE LA COLORIZACIÓN DE LA COLORIZ	an an	
BOT CHORD	1-23=-8/285, 22-23= 21-22=-692/3853, 19 17-19=-692/3988, 16 14-16=-807/4497, 13	140/284, 9-21=-758/4115, 6-17=-784/4600, 3-14=-72/169	9) 10	This truss is International R802.10.2 ar	designed in accord Residential Code s ad referenced stan rlin representation	23. lance w sections dard AN does no	ith the 2018 R502.11.1 a ISI/TPI 1. ot depict the s	and size			Å	STATE OF M	M.	
WEBS	6-19=-172/1076, 7-1 7-17=-219/279, 8-17 9-17=-919/258, 9-16 12-14=-758/4466, 2- 5-19=-649/232, 4-22 2-22=-768/3870, 4-2 10-16=-15/283, 10-1	9=-767/195, 96/710, 5=0/227, -233047/773, 2=-811/275, 21=-79/380, 5-21=-87 4=-959/307 been considered for	7/99,	or the orienta bottom chorc DAD CASE(S)	ation of the purlin a l. Standard	long the	top and/or					PE-20010	ER 118807	
 Unbalance 	eu root live loads have	been considered for										A		

NO

1) Unbalanced roof live loads have been considered for this design.

June 6,2023

MiTek° 16023 Swingley Ridge Rd Chesterfield, MO 63017

Job	Truss	Truss Type	Qty	Ply	
P210577	P09	Нір	1	1	Job Reference (optional)

Run; 8.63 S Nov 19 2022 Print; 8.630 S Nov 19 2022 MiTek Industries, Inc. Mon Jun 05 09:39:46 ID:tCiO0tjKvI9YwL7X10Fzapz9YLG-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:94.4

Plate Offsets (X, Y): [12:Edge,0-3-0], [14:0-3-4,0-2-0], [[23:0-3-8,	0-3-8]									
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 25.0 18.9/20.0 25.0 0.0 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC20	018/TPI2014	CSI TC BC WB Matrix-S	0.74 0.79 0.98	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.26 -0.64 0.14	(loc) 15-17 15-17 13	l/defl >999 >947 n/a	L/d 240 180 n/a	PLATES MT20 MT18HS Weight: 352 lb	GRIP 197/144 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS	2x6 SPF No.2 2x6 SP 2400F 2.0E No.2 2x4 SPF No.3 *Exce No.2, 14-12:2x4 SP	*Except* 22-19:2x6 pt* 13-12,23-2:2x4 1650F 1.5E	SPF SP	WEBS	6-20=-127/655, 6 7-18=-109/713, 8 2-24=-3106/776, 5-20=-822/256, 4 2-23=-770/4012, 8-17=-53/718, 9-1 11-15=-23/388 1	-18=-180, -18=-153 12-14=-8 -23=-774, 4-21=-41, 17=-958/2 1-14=-86	/767, 4/339, 22/5172, /267, /298, 5-21=-5 230, 9-15=0/2 2/258	/215, 27,	11) Gra or ti bott	phical p he orient com chor CASE(S)	urlin re tation o rd.) Sta	epresentation doe of the purlin along ndard	s not depict the size the top and/or
BRACING TOP CHORD BOT CHORD	Structural wood she 2-2-3 oc purlins, ex 2-0-0 oc purlins (3-6 Rigid ceiling directly bracing, Except: 9-2-11 oc bracing: 2	athing directly appli cept end verticals, a -9 max.): 6-7. applied or 10-0-0 c 1-23	ied or and oc	NOTES 1) Unbalanced this design. 2) Wind: ASCI Vasd=91mp Ke=1.00; C	d roof live loads ha E 7-16; Vult=115m bh; TCDL=6.0psf; I at. II; Exp C; Enclo	ve been ph (3-seo BCDL=6. osed; MW	considered fo cond gust) 0psf; h=35ft; /FRS (envelop	r pe)					
WEBS REACTIONS	8-11-14 oc bracing: 1 Row at midpt (size) 13=0-7-0, Max Horiz 24=184 (L Max Uplift 13=-425 (Max Grav 13=3012	20-21. 8-18, 5-20, 9-17 24=0-5-8 .C 20) LC 13), 24=-366 (L (LC 2), 24=3413 (L(C 16) C 2)	exterior zon Interior (1) § 25-4-13, Ex 32-11-15 to exposed ; e members a	ne and C-C Exterio 5-4-7 to 22-11-0, E tterior(2R) 25-4-13 5-3-6-8 zone; cant and vertical left and nd forces & MWFF	r(2E) 0-0 Exterior(2 to 32-11 ilever left I right exp RS for rea	-0 to 5-4-7, E) 22-11-0 to -15, Interior (and right posed;C-C for actions shown	1) ;;					
FORCES	(lb) - Maximum Com Tension 1-2=-276/40, 2-4=-4 5-6=-4246/873, 6-7= 7-8=-4219/880, 8-9= 9-11=-6010/1054, 17 12-13=-2890/562	pression/Maximum 627/730, 4-5=-4818 3945/881, 5262/1002, 1-12=-5810/984,	3/883,	3) TCLL: ASC Plate DOL= DOL=1.15 I Exp.; Ce=0 4) Unbalanced design.	E 7-16; Pr=25.0 ps E 7-16; Pr=25.0 ps 1.15); Pg=20.0 ps Plate DOL=1.15); I .9; Cs=1.00; Ct=1. d snow loads have	DOL=1.60 sf (roof Ll f; Pf=18.9 s=1.0; Ro 10, Lu=50 been cor) L: Lum DOL=) psf (Lum pugh Cat C; F 0-0-0 nsidered for th	1.15 ^F ully nis			b	ATE OF M	MISSOL
BOT CHORD	1-24=-20/263, 23-24 21-23=-646/4141, 2(18-20=-533/3795, 17 15-17=-883/5671, 14 13-14=-107/389	.=-170/259,)-21=-680/4331, 7-18=-738/4956, 4-15=-915/5478,		 5) Provide ade 6) All plates ai 7) All plates ai 8) This truss h chord live lo 9) Provide me bearing plat 	equate drainage to re MT20 plates unl re 4x4 MT20 unles has been designed bad nonconcurrent ichanical connection te capable of withs	prevent ess other s otherwi for a 10.1 with any on (by oth standing 4	water ponding rwise indicate se indicated. 0 psf bottom other live loa ers) of truss t 125 lb uplift at	g. d. ds. o				SCOTT SEVI	ER *

International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

joint 13 and 366 lb uplift at joint 24. 10) This truss is designed in accordance with the 2018

PE-2001018

SIONAL

E

June 6,2023

0

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

16023 Swingley Ridge Rd Chesterfield, MO 63017

Job	Truss	Truss Type	Qty	Ply	
P210577	P10	Roof Special	1	1	Job Reference (optional)

Run; 8.63 S Nov 19 2022 Print; 8.630 S Nov 19 2022 MiTek Industries, Inc. Mon Jun 05 09:39:47 ID:F2CG2HD6irnypPcMI2T2bzz9YJK-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f


```
Scale = 1:91.8
```

Plate Offsets (X, Y): [15:Edge,0-3-8], [27:0-3-8,0-3-8]

Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 25.0 18.9/20.0 25.0 0.0 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018	3/TPI2014	CSI TC BC WB Matrix-S	0.63 0.96 0.96	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.24 -0.58 0.18	(loc) 19-21 19-21 15	l/defl >999 >998 n/a	L/d 240 180 n/a	PLATES MT20 MT18HS Weight: 336 lb	GRIP 197/144 197/144 FT = 20%	
LUMBER TOP CHORD BOT CHORD WEBS	2x6 SPF No.2 2x6 SPF No.2 2x4 SPF No.3 *Exce SP No.2	u pt* 15-14,16-14,27-2	WE 2:2x4	EBS 7 2 1 1	-22=-167/838, 14-1 -28=-3044/752, 6-2 1-18=-12/115, 11-1 2-17=-311/1799, 1 3-16=-1874/393, 8	16=-55 22=-12 17=-32 3-17=-2 -22=-1	1/3124, 9/581, 27/524, 255/1761, 457/320,		11) This Inte R80 12) Gra or ti	s truss is rnationa 2.10.2 a phical pu ne orient	desig I Resid and ref urlin re ation o	ned in accordance dential Code sect erenced standard presentation doe of the purlin along	e with the 2018 ions R502.11.1 ar I ANSI/TPI 1. s not depict the s the top and/or	nd size
BRACING TOP CHORD	Structural wood shea 2-5-9 oc purlins, exc 2-0-0 oc purlins (3-7	athing directly applie cept end verticals, ar -2 max.): 6-7.	d or nd	1 5 2	-21=-65/740, 9-21= 1-19=-32/407, 6-23 5-23=-854/261, 4-27 2-27=-728/3918, 4-2	=-934/2 3=-95/5 7=-714/ 25=-32/	16, 9-19=-48 59, 251, 232, 5-25=0/	/224, 239	bott LOAD (om chor CASE(S)	d. Sta	ndard		
BOT CHORD WEBS REACTIONS	Rigid ceiling directly bracing. 1 Row at midpt (size) 15= Mech Max Horiz 28=189 (L Max Uplift 15=-404 (I Max Grav 15=2892 (applied or 2-2-0 oc 11-17, 8-22, 9-21, 5- anical, 28=0-5-8 .C 20) LC 13), 28=-364 (LC (LC 2), 28=3294 (LC	1) -23 (16) (2)	Unbalanced i this design. Wind: ASCE Vasd=91mph Ke=1.00; Cat exterior cone	roof live loads have 7-16; Vult=115mph ; TCDL=6.0psf; BC II; Exp C; Enclose and C-C Exterior(2	been ((3-sec DL=6.(ed; MW (E) 0-0-	considered fo cond gust) Dpsf; h=35ft; FRS (envelop 0 to 5-2-0,	r pe)						
FORCES	(lb) - Maximum Com Tension 1-2=-295/30, 2-4=-44 5-6=-4023/789, 6-7= 7-8=-3876/779, 8-9= 9-11=-5433/946, 11- 12-13=-3897/715, 13 14-15=-2834/527	pression/Maximum 443/653, 4-5=-4617/ 3619/777, 4781/886, 12=-3873/728, 3-14=-2690/504,	786, 3)	23-9-9, Exter 28-11-9 to 45 Interior (1) 50 right exposed for members Lumber DOL TCLL: ASCE	 2-0 (b 25¹⁻⁵), Exterior (2R) 2-3-9-9 to 28 -1-12, Exterior (2R) 2-3-12 to 51-6-9 zor 3 end vertical left a and forces & MWF =1.60 plate grip DC 7-16; Pr=25.0 ps f (5) Q = 250 	45-1-1 45-1-1 ne; can ind righ RS for DL=1.60 froof LL	Interior (1) 2 to 50-3-12, tilever left and t exposed;C- reactions sho :: Lum DOL=	d -C own; 1.15				So OF M	MISS	
BOT CHORD	1-28=-12/279, 27-28 25-27=-653/3993, 25 22-23=-534/3584, 21 19-21=-846/5156, 18 17-18=-863/5002, 16 15-16=-45/73	i=-169/288, 3-25=-667/4149, 1-22=-708/4496, 3-19=-860/5001, 6-17=-482/2528,	4) 5) 6) 7) 8) 9) 10]	Plate DOL=1 DOL=1.15 Pl Exp.; Ce=0.9 Unbalanced design. Provide adec All plates are All plates are This truss ha chord live loa Refer to gird bearing plate joint 15 and 3	(15); Pg=20.0 psf; F ate DOL=1.15); Is= ; Cs=1.00; Ct=1.10 snow loads have be uate drainage to pr MT20 plates unless 4x4 MT20 unless c s been designed fo d nonconcurrent wi er(s) for truss to trus nanical connection capable of withsta 84 lb uplift at joint 2	r=18.9 1.0; Rc , Lu=50 een cor event v s other otherwi r a 10.0 ith any ss conr (by oth nding 4 28.	 pst (Lum pugh Cat C; F)-0-0 usidered for the water ponding wise indicated see indicated. psf bottom other live loa nections. ers) of truss to 04 lb uplift at 	Fully nis g. d. ds.		ل د		Store Store	I M. ER JER D18807	

10) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 404 lb uplift at joint 15 and 364 lb uplift at joint 28.

June 6,2023

Page: 1

Job	Truss	Truss Type	Qty	Ply	
P210577	P11	Roof Special	1	1	Job Reference (optional)

Run: 8.63 S Nov 19 2022 Print: 8.630 S Nov 19 2022 MiTek Industries, Inc. Mon Jun 05 09:39:49 ID:0Drr7uY6oeeL?J0Wk9Sr29z9YHc-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Scale = 1:88.4

Plate Offsets (X, Y): [11:0-2-12,0-3-12], [14:Edge,0-3-8], [25:0-3-8,0-3-8]

Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 25.0 18.9/20.0 25.0 0.0 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018	3/TPI2014	CSI TC BC WB Matrix-S	0.58 0.88 0.91	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.21 -0.51 0.16	(loc) 19 17-19 14	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 MT18HS Weight: 311 lb	GRIP 197/144 197/144 FT = 20%
LUMBER			NC	DTES									
TOP CHORD BOT CHORD WEBS	2x6 SPF No.2 2x6 SPF No.2 2x4 SPF No.3 *Excep SP No.2	pt* 14-13,15-13,25-2	1) :2x4 2)	Unbalanced i this design. Wind: ASCE Vasd=91mph	roof live loads have 7-16; Vult=115mph ı; TCDL=6.0psf; BC	been ((3-sec DL=6.0	considered fo cond gust) Dpsf; h=35ft;	r					
BRACING TOP CHORD	CING Ke=1.00; Cat. II; Exp C; Enclosed; MWFRS (envelope) CHORD Structural wood sheathing directly applied or 2-7-5 oc purlins, except end verticals, and 2-0-0 oc purlins (3-9-2 max.): 6-7. Ke=1.00; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) 0-0-0 to 5-0-0, Interior (1) 5-0-0 to 21-1-3, Exterior(2E) 21-1-3 to 24-7-8, Exterior(2R) 24-7-8 to 29-7-8, Interior (1) 29-7-8												
BOT CHORD	Rigid ceiling directly	applied or 8-0-2 oc		to 45-7-1, Ex left and right	terior(2E) 45-7-1 to exposed ; end verti	49-6-9 cal left	and right	ever					
WEBS REACTIONS	(size) 14= Mecha Max Horiz 26=175 (L Max Uplift 14=-397 (L Max Grav 14=-2771 (g. at midpt 8-20, 11-15, 5-21 exposed; C-C for members and forces & MWFRS for 14= Mechanical, 26=0-5-8 reactions shown; Lumber DOL=1.60 pDL=1.60 7/2 26=175 (LC 20) TCLL: ASCE 7-16; Pr=25.0 psf (roof LL: Lum DOL=1.15) 14=-397 (LC 13), 26=-339 (LC 16) TCLL: ASCE 7-16; Pr=25.0 psf (roof LL: Lum DOL=1.15) 14=2777 (LC 2), 26=3174 (LC 2) PDI 145 Direct DOL											
FORCES	(lb) - Maximum Com	pression/Maximum	-)	DOL=1.15 PI Exp.; Ce=0.9	ate DOL=1.15);	1.0; Ro , Lu=50	ough Cat C; F)-0-0	ully					
TOP CHORD	lension 1-2=-302/71, 2-4=-41 5-6=-3880/798, 6-7= 7-8=-3904/816, 8-9= 9-11=-5229/937, 11- 12-13=-2684/515, 13	116/620, 4-5=-4327/7 -3655/817, -4739/908, 12=-2610/525, \-14=-2721/517	4) 776, 5) 6) 7)	Unbalanced s design. Provide adeq All plates are All plates are	snow loads have be uate drainage to pr MT20 plates unles 4x4 MT20 unless of	en cor revent s other otherwi	nsidered for th water ponding wise indicated se indicated.	nis g. :d.				- COLOR	an a
BOT CHORD	1-26=-5/289, 25-26= 24-25=-652/3679, 21 20-21=-586/3470, 19 17-19=-857/4960, 16 15-16=-795/4443, 14	-144/300, -24=-695/3892,]-20=-755/4461,]-17=-798/4441, -15=-47/68	8) 9) 10]	chord live loa Refer to girde Provide mech bearing plate	s been designed to d nonconcurrent w er(s) for truss to trus nanical connection capable of withsta	ith any ss conr (by oth nding 3	other live load other live load nections. ers) of truss to 197 lb uplift at	ds. o			Å	STATE OF M SCOTT	IISSOUR M. ER
WEBS	6-21=-111/597, 6-20 7-20=-67/619, 8-20= 13-15=-534/3071, 8- 9-19=-701/177, 9-17: 11-17=-67/739, 11-1 12-15=-172/1148, 11 2-26=-2932/740, 5-2 4-25=-764/260, 2-25: 4-24=-61/329, 5-24=	-156/673, -1253/282, 19=-35/558, =-192/106, 6=0/140, -15=-3449/569, 1=-701/228, =-721/3696, -42/158	11) 12) LO) This truss is c International R802.10.2 ar) Graphical pui or the orienta bottom chord	As to upinit at joint a designed in accorda Residential Code s d referenced stanc rlin representation of tion of the purlin all Standard	20. ance w ections lard AN does no ong the	ith the 2018 R502.11.1 a ISI/TPI 1. ot depict the s top and/or	ind size				PE-20010	L ENGINE

June 6,2023

Page: 1

Job	Truss	Truss Type	Qty	Ply		
P210577	P12	Roof Special	1	1	Job Reference (optional)	33541

Run; 8.63 S Nov 19 2022 Print; 8.630 S Nov 19 2022 MiTek Industries, Inc. Mon Jun 05 09:39:50 ID:v3B3EWQGrmi7eNXLyHkkzLz9YGU-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:85.1

			•
Plate Offsets ((X. Y):	[15:Edge.0-3-8], [26:0-3-8.0-3-8]	

Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 25.0 18.9/20.0 25.0 0.0 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018	3/TPI2014	CSI TC BC WB Matrix-S	0.54 0.84 0.85	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.19 -0.46 0.15	(loc) 20-21 20-21 15	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 MT18HS Weight: 298 lb	GRIP 197/144 197/144 FT = 20%	
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD	2x6 SPF No.2 2x6 SPF No.2 2x4 SPF No.3 *Exce SP No.2 Structural wood shea 2-8-15 oc purlins, ea 2-0-0 oc purlins (3-8	pt* 15-14,16-14,26-: athing directly applie xcept end verticals, -10 max.): 6-8.	WI 2:2x4 ed or and	EBS 6	-23=-148/980, 8- -21=-1016/247, 1 2-17=0/178, 12-1 3-16=-125/681, § 0-20=-444/139, 1 2-18=-191/1201, 5-23=-525/200, 4- 2-6=-678/3469, 4 5-25=-122/102, 7 -21=-107/377	21=-76/6 4-16=-4 6=-3483 -20=-15/ 0-18=-3 2-27=-2 26=-819/ -25=-92/ 23=-750/	41, 43/2528, /579, '397, 50/151, 320/711, 265, '422, '174,		10) Pro bea join 11) This Inte R80 12) Gra or t bott	vide mee ring plat t 15 and s truss is rnationa 02.10.2 a phical p he orient com chor	chanica e capa 315 lb desig l Resid and ref urlin re tation c d.	al connection (by ble of withstand uplift at joint 27 ned in accordan dential Code sec erenced standar presentation doo f the purlin alon	r others) of truss t ing 388 lb uplift at ze with the 2018 tions R502.11.1 at d ANSI/TPI 1. as not depict the s g the top and/or	to t and size
BOT CHORD WEBS REACTIONS	Rigid ceiling directly bracing. 1 Row at midpt (size) 15= Mech Max Horiz 27=159 (L Max Uplift 15=-388 (I Max Grav 15=2651 (applied or 6-0-0 oc 9-21, 12-16, 7-23, 7 anical, 27=0-5-8 .C 16) LC 13), 27=-315 (LC (LC 2), 27=3055 (LC	NC 2) 2) 2 16) 2 2)	DTES Unbalanced this design. Wind: ASCE Vasd=91mpt Ke=1.00; Cat	roof live loads hav 7-16; Vult=115m; ; TCDL=6.0psf; E t. II; Exp C; Enclos	ve been o oh (3-sec CDL=6.0 sed; MW (2E) 0-0	considered fo cond gust) Dpsf; h=35ft; FRS (envelop	r De)	LUAD	JASE(S)) Sta	loaro		
FORCES	(lb) - Maximum Com Tension 1-2=-310/120, 2-4=-: 4-5=-4097/743, 5-6= 6-7=-3400/743, 7-8= 8-9=-3961/805, 9-10 10-12=-4954/872, 12	pression/Maximum 3777/573, 3791/761, 3718/803, =-4656/879, 2-13=-1587/331,		Interior (1) 5- 24-1-3, Interi to 30-5-7, Int 45-7-1 to 47- end vertical I forces & MW DOL=1.60 pl	0-0 to 19-1-3, Ext or (1) 24-1-3 to 25 erior (1) 30-5-7 to 6-9 zone; cantilev eft and right expos FRS for reactions ate grip DOL=1.6(erior(2R) 5-5-7, Ex 45-7-1, er left ar sed;C-C shown;) 19-1-3 to terior(2R) 25- Exterior(2E) ad right expos for members Lumber	-5-7 sed ; and				Contraction of the		
BOT CHORD	13-14=-1579/327, 14 1-27=-17/299, 26-27 25-26=-625/3375, 23 21-23=-652/3627, 20 18-20=-826/4695, 17 16-17=-654/3648, 15	I-15=-2580/464 =-119/302, 3-25=-697/3694, J-21=-767/4383, 7-18=-651/3652, 5-16=-44/62	3) 4) 5) 6) 7) 8)	TCLL: ASCE Plate DOL=1 DOL=1.15 Pl Exp.; Ce=0.9 Unbalanced design. Provide adec All plates are This truss ha chord live loa	7-16; Pr=25.0 ps .15); Pg=20.0 ps ate DOL=1.15); H ; Cs=1.00; Ct=1.1 snow loads have uate drainage to MT20 plates unle 4x4 MT20 unless s been designed i d nonconcurrent	f (roof LL ; Pf=18.9 =1.0; Rc 0, Lu=50 prevent v ess other otherwi for a 10.0 with any	:: Lum DOL=' 0 psf (Lum bugh Cat C; F)-0-0 isidered for th water ponding wise indicate se indicated. 0 psf bottom other live loa	1.15 Fully his g. d. ds.		(STE OF J SCOT SEV DE LEOM PE-2001	VIISSOUR TM. ER 018807	

Refer to girder(s) for truss to truss connections.

9)

SSIONAL

EL

June 6,2023

Job	Truss	Truss Type	Qty	Ply	
P210577	P13	Roof Special	1	1	Job Reference (optional)

Run: 8.63 S Nov 19 2022 Print: 8.630 S Nov 19 2022 MiTek Industries, Inc. Mon Jun 05 09:39:52 ID:SVoFR2ed3oRoFvIIN_2QZez9YEv-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:81.3

Plate Offsets (X, Y):	[11:0-2-0,0-4-0], [15:0-3-8,0-2-0]
-----------------------	------------------------------------

Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 25.0 18.9/20.0 25.0 0.0 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018	3/TPI2014	CSI TC BC WB Matrix-S	0.47 0.80 0.95	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.17 -0.43 0.13	(loc) 16-18 18-20 13	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 MT18HS Weight: 267 lb	GRIP 197/144 197/144 FT = 20%	
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD WEBS REACTIONS	2x6 SPF No.2 2x6 SPF No.2 2x4 SPF No.3 *Exce No.2 Structural wood shea 3-0-5 oc purlins, exc 2-0-0 oc purlins (3-7 Rigid ceiling directly bracing. 1 Row at midpt (size) 13= Mech Max Horiz 22=143 (L Max Uplift 13=-379 (U Max Gray, 13=-2530)	pt* 13-12,21-2:2x4 SF athing directly applied cept end verticals, and -6 max.): 5-7. applied or 8-5-7 oc 6-20, 6-18 anical, 22=0-5-8 .C 16) LC 13), 22=-300 (LC	2) 	Wind: ASCE Vasd=91mpl Ke=1.00; Car exterior zone Interior (1) 5- 22-1-3, Interi to 31-3-6, Int left and right exposed;C-C reactions sho DOL=1.60 TCLL: ASCE Plate DOL=1 DOL=1.15 Pl Exp.; Ce=0.9 Unbalanced	7-16; Vult=115mph r; TCDL=6.0psf; BC t. II; Exp C; Enclose and C-C Exterior(2 0-0 to 17-1-3, Exte or (1) 22-1-3 to 26- erior (1) 31-3-6 to 4 exposed ; end verti for members and f wm; Lumber DOL= 7-16; Pr=25.0 psf ; 15); Pg=20.0 psf; I ate DOL=1.15); Is= ; Cs=1.00; Ct=1.10 snow loads have be	a (3-sec CDL=6. CDL=6. CDL=6. WW 2E) 0-0 rior(2R 3-6, Ex 3-6, Ex 5-6-9 z ical left forces 8 1.60 pl (roof LL Pf=18. for conf LL for con	ond gust) Dpsf; h=35ft; FRS (envelop 0 to 5-0-0, 17-1-3 to terior(2R) 26- cone; cantilevi and right & MWFRS for ate grip .: Lum DOL=' p sf (Lum Dugh Cat C; F)-0-0 usidered for th	oe) 3-6 er 1.15 fully nis						
FORCES TOP CHORD	(lb) - Maximum Com Tension 1-2=-302/25, 2-4=-34 5-6=-3334/695, 6-7= 7-8=-4001/782 8-9=	pression/Maximum 874/621, 4-5=-3756/6 3762/779, 4541/843	5) 6) 99, 7)	All plates are This truss ha chord live loa	uate drainage to pr MT20 plates unles s been designed fo d nonconcurrent w ar(s) for truss to true	revent is other ir a 10.0 ith any	water ponding wise indicate) psf bottom other live loa). d. ds.						
BOT CHORD	9-11=-4578/787, 11- 1-22=-6/286, 21-22= 20-21=-664/3445, 18 16-18=-757/4278, 15 14-15=-420/2425, 13	.12=-88/59, 12-13=-97 -114/281, 3-20=-688/3723, 5-16=-759/4319, 3-14=-424/2421	7/39 9) 10)	Provide mech bearing plate joint 13 and 3 This truss is	nanical connection capable of withsta 300 lb uplift at joint designed in accorda Residential Code s	(by oth nding 3 22. ance w ections	ers) of truss to 79 lb uplift at ith the 2018	o			Å	TATE OF M	IISSOL	
WEBS NOTES 1) Unbalance this design	5-20=-82/840, 7-18= 2-22=-2694/722, 4-2 4-21=-576/231, 2-21 6-20=-850/206, 6-18 8-18=-806/221, 8-16 9-15=-565/198, 11-1 11-13=-3415/563 ed roof live loads have	53/626, :0=-272/198, =-689/3388, :=-204/245, 11-14=0/1 :=0/206, 9-16=-106/12 5=-361/2011, been considered for	11) 166, 2 ^{1,} LO	R802.10.2 ar Graphical pu or the orienta bottom chorc	rior sector of the rin representation of tion of the purlin al Standard	does no	ISI/TPI 1. t depict the s top and/or	ize				PE-20010	M. BR 18807	
uns design	1.											Con	5555	

NOTES

Job	Truss	Truss Type	Qty	Ply	
P210577	P14	Нір	1	1	Job Reference (optional)

Run: 8.63 S Nov 19 2022 Print: 8.630 S Nov 19 2022 MiTek Industries, Inc. Mon Jun 05 09:39:53 ID:7nJTC53SCxVZdUS?XH747cz9YBo-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

Scale = 1:78.4

1ate Offsets (X, Y): [12:Edge,0-3-8], [13:0-3-8,0-3-8]														
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 25.0 18.9/20.0 25.0 0.0 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018	3/TPI2014	CSI TC BC WB Matrix-S	0.38 0.72 0.88	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.17 -0.40 0.11	(loc) 16-17 16-17 12	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 MT18HS Weight: 252 lb	GRIP 197/144 197/144 FT = 20%	
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD	2x6 SPF No.2 2x6 SPF No.2 2x4 SPF No.3 *Exce SP No.2 Structural wood shea 3-3-12 oc purlins, ex	pt* 12-11,13-11,20-2 athing directly applie xcept end verticals, a	2) 2:2x4 d or and	Wind: ASCE Vasd=91mpl Ke=1.00; Ca exterior zone Interior (1) 5- 22-2-1, Interi to 34-2-3, Int left and right	7-16; Vult=115mp n; TCDL=6.0psf; B t. II; Exp C; Enclos e and C-C Exterior 0-0 to 15-1-3, Ext ior (1) 22-2-1 to 27 erior (1) 34-2-3 to exposed ; end ven	oh (3-sec CDL=6.0 sed; MW (2E) 0-0 erior(2R 7-1-5, Ex 43-6-9 z rtical left	ond gust) Dpsf; h=35ft; FRS (envelop 0 to 5-0-0, 15-1-3 to terior(2R) 27- one; cantilev and right	pe) -1-5 er						
BOT CHORD WEBS REACTIONS	2-0-0 oc purlins (3-6 Rigid ceiling directly bracing. 1 Row at midpt (size) 12= Mech Max Horiz 21=123 (L Max Uplift 12=-365 (I Max Grav 12=2409 (-2 max.): 5-7. applied or 8-9-4 oc 6-19, 6-16 anical, 21=0-5-8 .C 20) LC 13), 21=-314 (LC (LC 2), 21=-2816 (LC	3) (12) 4) 2)	 exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 3) TCLL: ASCE 7-16; Pr=25.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=18.9 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat C; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10, Lu=50-0-0 4) Unbalanced snow loads have been considered for this design 										
FORCES	(lb) - Maximum Com	pression/Maximum	5)	Provide adeo	quate drainage to	prevent	vater ponding	9.						
TOP CHORD	1-2=-308/96, 2-4=-3517/617, 4-5=-3603/725, 5-6=-3217/715, 6-7=-3762/815, 7-8=-4002/819, 8-9=-4377/855, 9-11=-3853/709, 11-12=-2326/478			All plates are This truss ha chord live loa Refer to gird Provide mec	e MT20 plates unle is been designed f ad nonconcurrent v er(s) for truss to tru banical connection	or a 10.0 with any uss conr	other live loa other live loa ections.	a. ds.						
BOT CHORD	1-21=-5/296, 20-21=-81/293, 19-20=-563/3130, 17-19=-673/3891, 16-17=-673/3891, 14-16=-716/4126, 13-14=-676/3628, 12-13=-59/165			 bearing plate capable of withstanding 365 lb uplift at joint 12 and 314 lb uplift at joint 21. 10) This truss is designed in accordance with the 2018 International Residential Code sections R502 11 1 and 										
WEBS NOTES	5-19=-86/777, 6-19= 6-16=-427/78, 7-16= 11-13=-642/3606, 2- 4-19=-80/310, 4-20= 2-20=-684/3177, 8-1 9-14=-93/570, 9-13=	1088/220, 6-17=0/2 49/567, 8-16=-596/ -21=-2586/704, 556/249, 4=-155/108, 941/262	232, 189, 11 LC	R802.10.2 at) Graphical pu or the orienta bottom chore DAD CASE(S)	nd referenced star rlin representation ation of the purlin a l. Standard	ndard AN does no along the	ISI/TPI 1. of depict the s top and/or	size		J	A PAR	SCOTT SEVI NUME PE-20010	M. Serve DER D18807	

1) Unbalanced roof live loads have been considered for this design.

June 6,2023

E

ESSIONAL
Job	Truss	Truss Type	Qty	Ply		
P210577	P15	Roof Special	1	1	Job Reference (optional)	58733544

Run: 8.63 S Nov 19 2022 Print: 8.630 S Nov 19 2022 MiTek Industries, Inc. Mon Jun 05 09:39:54 ID:UqE4X2xE?MiCuiX1I6xCb?z9YAf-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:77.2

Plate Offsets ((X, Y): [6:0-2-12,0-3-0]], [10:0-3-0,0-2-0], [1	1:Edge,0-3	3-8], [12:0-3-8,	0-3-8], [17:0-1-12	,0-5-4]							
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 25.0 18.9/20.0 25.0 0.0 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018	3/TPI2014	CSI TC BC WB Matrix-S	0.59 0.84 0.99	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.20 -0.48 0.11	(loc) 15-16 15-16 11	l/defl >999 >979 n/a	L/d 240 180 n/a	PLATES MT20 MT18HS Weight: 247 lb	GRIP 197/144 197/144 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD WEBS REACTIONS	2x6 SPF No.2 2x6 SPF No.2 2x4 SPF No.3 *Exce SP No.2 Structural wood shea 2-11-15 oc purlins (3-4 Rigid ceiling directly bracing. 1 Row at midpt (size) 11=0-7-0, Max Horiz 20=120 (L Max Uplift 11=-347 (Max Grav 11=2328 (pt* 11-10,12-10,19-2 athing directly applied except end verticals, -11 max.): 6-8. applied or 6-0-0 oc 7-16, 6-18 20=0-5-8 .C 16) LC 13), 20=-256 (LC (LC 2), 20=2736 (LC	2) ::2x4 d or and 3) 16) 4)	Wind: ASCE Vasd=91mpl Ke=1.00; Ca exterior zone Interior (1) 5- 16-2-13, Inte 27-11-4 to 32 cantilever lef right expose for reactions DOL=1.60 TCLL: ASCE Plate DOL=1 DOL=1.15 P Exp.; Ce=0.9 Unbalanced design.	7-16; Vult=115m; ;; TCDL=6.0psf; E t. II; Exp C; Enclo: and C-C Exterior 0-0 to 14-8-0, Ext iror (1) 16-2-13 to 2-11-4, Interior (1) t and right expose d;C-C for member shown; Lumber D 7-16; Pr=25.0 ps .15); Pg=20.0 psf late DOL=1.15); Is b; Cs=1.00; Ct=1.1 snow loads have	bh (3-sec 3CDL=6.1 sed; MW r(2E) 0-0 terior(2E) 27-11-4 32-11-4 ed; end v s and fou 0OL=1.6(f (roof LL ; Pf=18.5 s=1.0; Rc 10, Lu=50 been cor	ond gust) Dpsf; h=35ft; FRS (envelop 0 to 5-0-0, 14-8-0 to Exterior(2R) to 42-2-5 zor ertical left an ces & MWFR 0 plate grip : Lum DOL= psf (Lum ugh Cat C; F 0-0-0 isidered for th	pe)) ne; id SS 1.15 Fully his					
FORCES	(lb) - Maximum Com Tension 1-2=-313/146, 2-4=-; 4-5=-3459/654, 5-6= 6-7=-3680/726, 7-8= 8-9=-4176/787, 9-10 10-11=-2225/464	pression/Maximum 3334/532, 3406/689, 3902/781, I=-4361/772,	5) 6) 7) 8)	Provide adec All plates are This truss ha chord live loa Provide mec bearing plate	quate drainage to MT20 plates unle is been designed ad nonconcurrent hanical connection e capable of withst	prevent ess other for a 10.0 with any n (by oth tanding 3	vater ponding wise indicate) psf bottom other live loa ers) of truss t 47 lb uplift at	g. ed. ids. io				0000	an .
BOT CHORD	1-20=-40/301, 19-20 18-19=-465/2962, 16 15-16=-692/4259, 13 12-13=-713/4092, 12)=-77/301, 6-18=-576/3690, 3-15=-692/4259, 1-12=-90/316	9)	This truss is International R802.10.2 at Craphical pu	designed in accor Residential Code nd referenced star	dance w sections ndard AN	th the 2018 R502.11.1 a ISI/TPI 1.	ind			Å	STATE OF M	MISSOUR
WEBS	6-16=-47/465, 7-16= 7-13=-581/85, 8-13= 9-12=-591/219, 5-18 6-18=-2119/382, 10- 2-20=-2505/651, 4-1 4-19=-670/243, 2-19	-891/188, 7-15=0/25 -30/568, 9-13=-427/ =-374/2252, 12=-633/3838, 8=-73/334, =-609/3021	4, 113, LC	or the orienta bottom chore DAD CASE(S)	ation of the purlin a I. Standard	along the	top and/or	526		1		SEVI NUME PE-20010	ER SER D18807
NOTES 1) Unbalance this design	ed roof live loads have n.	been considered for									Ø	SSIONA	L ENGILE

this design.

June 6,2023

Job	Truss	Truss Type	Qty	Ply		
P210577	P16	Roof Special Girder	1	3	Job Reference (optional)	158733545

Plate Offsets (X, Y): [7:0-3-0,0-2-15], [9:0-2-15,0-2-0], [10:0-2-3,0-2-8], [15:0-4-0,0-5-12]

Run: 8.63 S Nov 19 2022 Print: 8.630 S Nov 19 2022 MiTek Industries, Inc. Mon Jun 05 09:39:55 ID:9uQVYbQa64oe8MZtPdXHp0z9Nhy-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Scale = 1:71.3

Loading	(psf)	Spacing	2-0-0		csi		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP	
TCLL (roof)	25.0	Plate Grip DOL	1.15		TC	0.23	Vert(LL)	-0.15	15-17	>999	240	MT20	197/144	
Snow (Pf/Pg)	18.9/20.0	Lumber DOL	1.15		BC	0.58	Vert(CT)	-0.34	15-17	>999	180			
TCDL	25.0	Rep Stress Incr	NO		WB	0.70	Horz(CT)	0.07	12	n/a	n/a			
BCLL	0.0	Code	IRC20	18/TPI2014	Matrix-S									
BCDL	10.0											Weight: 801 lb	FT = 20%	
		•			•				10) Thi	truce in	docia	nod in accordan		. <u> </u>
	OVE EDE No O			NOTES	he connected tog	othor wi	th 10d		IU) IIII:	rnationa	l Roci	dential Code ser	tions R502 11 1	and
	2X0 SPF NU.2	*Event* 22 10:2v9	ODE	(0 131"v3")	be connected tog	ether wi	un tou		R80	12 10 2 5	and ref	erenced standa	d ANSI/TPI 1	anu
BOT CHORD	2X0 3F 2400F 2.0E	Except 22-19.2xo	SFF	Top chords	connected as follows.	15. 2x6	2 rows		11) Gra	nhical n	urlin re	presentation do	es not denict the	size
WEBS	2v4 SPE No 3 *Exce	ont* 22-1-2x4 SP No	2	staggered at	0-9-0 oc 2x4 - 1 r	ow at 0.	9-0 00		or th	ne orient	ation	of the purlin alor	a the top and/or	
OTHERS	2x4 SP No 2	opt 22 1.2x+ 01 110.	. 2	Bottom chor	ds connected as fo	llows: 2	x8 - 4 rows		bott	om chor	d.		3	
SLIDER	Right 2x4 SP No 2 -	1-6-0		staggered at	t 0-4-0 oc.				12) Use	Simpso	n Stro	ng-Tie HGUS28	-3 (36-16d Girde	er,
BRACING		100		Web connec	ted as follows: 2x4	- 1 row	at 0-9-0 oc.		6-10	5d Truss) or ed	quivalent at 23-8	-4 from the left e	and to
	Structural wood she	athing directly applie	ad or	2) All loads are	considered equally	/ applie	d to all plies,		con	nect trus	s(es)	to back face of b	ottom chord.	
		cent end verticals a	nd	except if not	ed as front (F) or b	ack (B)	face in the LC	DAD	13) Use	Simpso	on Stro	ng-Tie LUS24 (4	1-10d Girder, 2-1	10d
	2-0-0 oc purlins (6-0)-0 max.): 5-7.	ind ind	CASE(S) se	ction. Ply to ply cor	nection	s have been		Tru	ss, Singl	e Ply (Girder) or equiva	alent at 25-6-10 f	from
BOT CHORD	Rigid ceiling directly	applied or 10-0-0 or	0	provided to o	distribute only loads	noted	as (F) or (B),		the	left end	to con	nect truss(es) to	back face of bot	ttom
	bracing.			unless other	wise indicated.				cho	rd.	_			
REACTIONS	(size) 12=0-7-12	2.22=0-5-6	:	Unbalanced	roof live loads have	e been	considered fo	or	14) Use	Simpso	on Stro	ing-Tie TJC37 (6	o nail, 30-90) or	
	Max Horiz 22=-119 ((LC 103)		this design.		(0			equ	ivalent a	it 28-1	-6 from the left e	nd to connect tru	uss
	Max Uplift 12=-1257	(LC 13), 22=-524 (L	.C 13)	 Wind: ASCE 	: 7-16; Vult=115mp	n (3-seo	cond gust)		(es)	to Dack	Tace o	of bottom chord,	skewed 22.5 de	g.to
	Max Grav 12=5469	(LC 2), 22=3896 (LC	2)	Vasd=91mp	n; ICDL=6.0pst; Bi	DL=6.	Jpsr; n=35ft;	20)	15) Eill	all noil b	oloc w	u deg. down. Iboro bongor is i	n contact with lu	mbor
FORCES	(lb) - Maximum Com	noression/Maximum	,	ovtorior zop	a. II, EXP C, Enclos		12 to 5 1 12	pe)	16) "NA	II ED" in	ulicate	Girder: 3-10d	(0 1/18" x 3") toc	nuer.
. 0.1020	Tension	nproceien/maximum		Interior (1) 5	-1-12 to 11-8-14 E	ze) 0-1 vterior('	2E) 11-8-14 to	, 0	ner		ideline		(0.140 × 5) 100	5-110115
TOP CHORD	1-2=-551/156. 2-3=-	-5819/1182.		15-6-15 Inte	rior (1) 15-6-15 to	25-11-7	Exterior(2R))	per	NDO gu				
	3-4=-6744/1380, 4-5	5=-6774/1373,		25-11-7 to 3	0-11-7 Interior (1)	30-11-7	to 39-1-0 zoi	, ne:						
	5-6=-10244/2014, 6	-7=-12239/2482,		cantilever le	ft and right exposed	:end	ertical left an	nd				~	CT.	
	7-8=-12647/2540, 8	-9=-11175/2405,		right expose	d:C-C for members	and fo	ces & MWFF	RS				A	and	
	9-10=-2509/576, 1-2	22=-441/134		for reactions	shown; Lumber D	DL=1.60) plate grip					B F OF	MISS	
BOT CHORD	21-22=-860/4860, 2	0-21=-1012/5905,		DOL=1.60							4	9.21	0.0	N N
	18-20=-1809/10185	i, 17-18=-2292/12757	7, ;	5) TCLL: ASCE	E 7-16; Pr=25.0 psf	(roof Ll	: Lum DOL=	1.15			8	ST SCOT	TM	S
	15-17=-2292/12757	, 14-15=-2191/10647	7,	Plate DOL=	1.15); Pg=20.0 psf;	Pf=18.9) psf (Lum				R			N.
	13-14=-1588/7053,	12-13=-1588/7053,		DOL=1.15 P	late DOL=1.15); Is:	=1.0; Ro	ough Cat C; F	Fully			ha	J SEV		-N
	10-12=-4/5/221/	00 0000/4044		Exp.; Ce=0.9	9; Cs=1.00; Ct=1.1), Lu=5	0-0-0				N ^	- Amber	0	
WEBS	4-20=-904/4726, 5-2	20=-6093/1211,		 Unbalanced 	snow loads have b	een cor	nsidered for the	his		_	\mathbf{X}		Xnia A V	2
	0-10=-120/1007, 8-1 2-21=-130/1079 2 1	14=-1714/209, 21=-1105/260		design.	austa dusiasars to o		unter non-li-	~		-		NUM	BER VY	YV
	3-20-127/650 5-19	21-1190/200, 8323/1779) Provide ade	quate drainage to p	revent	valer ponding	y.			Na	O PE-2001	018807	14
	6-17=-204/1862 6-1	18=-3453/707	i	b) This truss ha	as been designed fo	/ith or:/	other live les	do			N	The second	12	H
	7-15=-552/3051 6-1	15=-834/276.) Provide mor	au nonconcurrent v	(by oth	orrel inve 108	ius.			Y	10'50	O'E	1
	2-22=-5530/1060.9	-14=-663/3952.	:	bearing plat	a canable of withets	unding F	21 lb unlift at	•				V ON	TENA	
	9-13=-950/101, 9-12	2=-5888/1442		ioint 22 and	1257 lb uplift at ioir	nung c it 12.		L				Qui		
	· · · · · · · · · · · · · · · · · · ·													

June 6,2023

Page: 1

	Job	Truss	Truss Type		Qty	Ply		
	P210577	P16	Roof Special Girder		1	3	Job Reference (optional)	158733545
Premier Building Supply (Springhill, KS), Spring Hills, KS - 66083,				Run: 8.63 S Nov 19 2	2022 Print: 8.	630 S Nov 1	9 2022 MiTek Industries, Inc. Mon Jun 05 09:39:55	Page: 2

ID:9uQVYbQa64oe8MZtPdXHp0z9Nhy-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Premier Building Supply (Springhill, KS), Spring Hills, KS - 66083,

17) Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 371 lb down and 131 lb up at 25-11-7 on bottom chord. The design/selection of such connection device(s) is the responsibility of others.

LOAD CASE(S) Standard

Dead + Snow (balanced): Lumber Increase=1.15, Plate 1) Increase=1.15

Uniform Loads (lb/ft)

Vert: 1-4=-78, 4-5=-78, 5-7=-88, 7-10=-78, 10-22 = -20

Concentrated Loads (lb)

Vert: 15=-813 (B), 14=-171 (B), 13=182 (B), 32=-3367 (B), 33=-304 (B), 34=-34 (B)

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job	Truss	Truss Type	Qty	Ply		
P210577	Q01	Roof Special	1	1	I587335 Job Reference (optional)	546

Run: 8.63 S. Nov 19 2022 Print: 8.630 S. Nov 19 2022 MiTek Industries. Inc. Mon. Jun 05 09:39:57 ID:zZrJt0MBm76Eb4jmsz3PWOz9YA6-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

E

June 6,2023

MiTek 16023 Swingley Ridge Rd Chesterfield, MO 63017

Job	Truss	Truss Type	Qty	Ply	
P210577	Q02	Roof Special Girder	1	3	Job Reference (optional)

Run: 8.63 S Nov 19 2022 Print: 8.630 S Nov 19 2022 MiTek Industries, Inc. Mon Jun 05 09:39:58 ID:D?9zREXTc7frZbu9r2mOG7z9Y7J-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

5-<u>3-1-12</u>3-7-7 -8-12 6-9-0 25-9-0 11-1-7 15-5-14 19-10-5 24-3-12 29-7-6 33-8-0 37-7-10 41-6-1 45-5-0 -2-1-51-0-4 3-1-12 4-4-7 4-4-7 4-4-7 4-5-7 1-5-4 3-10-6 4-0-10 3-11-11 3-10-6 3-10-15 0-5-11 12 5 13 46 仚 4x4。 4x6 🚅 6-7-7 4x4 🚅 NAILEDNAILEDNAILEDNAILEDNAILEDNAILEDNAILED 12 14 45 47 2-80-1-63-3-4x4= 4x4= 4x8= 4x6= 8x8= 3x4 II 48/5 _42 ⊠ 10 11 37638_39 40_417 43 8 44 9 16 5 36 35 2 Æ ГŦТ FF 4 23 3-4-4 3-2-8 34 F h XIII П пп 25 0-6-2 ∏ 3⊉0♀_29 54 26 55 56 Ť 5**2**8 51 5227 53 24 দি Ē 17 ⊠ 33 49 4x4 =4x4 =3x4 II 12x12= 23 22 21 20 19 18 3x4 II 6x12= NAILEDNAILEDNAILEDNAILEDNAILEDNAILED 4x6= 4x6= 4x6= 4x8= 4x4= 4x6= 4x4= NAILED LUS26 3х4 **п** 5x8= 3-1-12 6-**TUJ 12**6 <u>2-11-0 11 5-10-8 8 8-10-8 11-1-7</u> <u>2-11-0 11 2-8-12 1-0-4 2-2-15</u> 0-2-12 1-11-12 31-5-0₃₃₋₇₋₈ 25-7-4 29-7-6 15-5-14 19-10-5 24-1-0 37-7-10 41-7-13 45-5-0 -H 1-9-10 2-2-8 4-4-7 4-0-2 4-0-2 3-9-3 4-4-7 4-2-11 1-6-4 4-0-2

Scale = 1:80.3

Plate Offsets (X, Y): [5:0-3-0,0-3-5], [11:0-6-0,0-3-12], [25:0-4-8,Edge]

	., .). [,],	[],[_		- 3 - 1										
Loading	(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc) l/defl	L/d	PLATES	GRIP	
TCLL (roof)	25.0	Plate Grip DOL	1.15		тс	0.63	Vert(LL)	-0.47	25-26	, 5 >999	240	MT20	197/144	
Snow (Pf/Pg)	18 9/20 0	Lumber DOI	1 15		BC	0.80	Vert(CT)	-1 09	25-26	5 >465	180			
	25.0	Ren Stress Incr	NO		WB	0.79	Horz(CT)	0.24	17	7 n/a	n/a			
BCU	0.0	Code	IRC201	18/TPI2014	Matrix-S	00		0.2.						
BCDL	10.0	oode	11(020	10/11/2014								Weight: 816 lb	FT = 20%	
-				-	·									
LUMBER			V	VEBS 3	31-33=-225/285, 2	23-25=-1	917/9703,		5) T	CLL: ASCI	E 7-16	; Pr=25.0 psf (roo	of LL: Lum DOL=	1.15
TOP CHORD	2x6 SPF No.2				11-25=-1908/8750), 11-23=	-6495/1341,		P	late DOL=	1.15);	Pg=20.0 psf; Pf=	18.9 psf (Lum	
BOT CHORD	2x6 SPF No.2 *Exce	pt* 32-4:2x4 SPF No	0.3,		15-18=-2631/495,	16-18=-	684/4216,		D	OL=1.15 H	Plate D	OL=1.15); Is=1.0); Rough Cat C; F	Fully
	10-24:1 1/2" x 5 1/2"	2.0E Microllam® L\	VL,	4	2-33=-2994/1015,	3-31=-1	365/4089,			xp.; Ce=0.	9; Cs=	1.00; Ct=1.10, L	J=50-0-0	L. 1.
	29-25:2x6 SP 2400F	2.0E	00	:	5-30=-422/1237,4 6 20 - 5017/1202	1-30=-54	4/1763,		6) U	nbalanceo	snow	loads have been	considered for ti	nis
WEBS	2x4 SPF No.3 *Exce	pt^ 23-25,25-11:2x4	SP		6 29- 245/1922 7	0-20=-2	00/974		7) D	esign. rovido odo	austo	drainage to prov	ont water pendin	a
	N0.2			-	0-20=-240/1032, / 7-27=-112/1/21 8	20=-30	00/074, 20/512		7) F	I plates are	quale	MT20 uploss oth	ent water ponulity	y.
BRACING					8-26121/870 12)-27=-33)-2775	23/312, 8/3726		0) A	hie truce h		n decigned for a	10.0 pcf bottom	
I OP CHORD	Structural wood shea	athing directly applie	ed or		11-22=-6412/1417	7 12-20=	-3988/901		3) T	hord live lo	as bee	an designed for a	any other live los	she
	6-0-0 oc purlins, exc	cept end verticals, al	na		13-20=-574/3098.	14-20=-	158/306.		10) R	efer to aire	der(s) f	or truss to truss	connections	
	2-0-0 oc punins (5-8	-9 max.): 5-11, 15-1	ю. С		14-19=-479/161.1	5-19=-1	79/894		11) P	rovide me	chanic	al connection (by	others) of truss	to
BOT CHORD	bracing Excont:	applied of 10-0-0 of	N	IOTES	,				b	earing plat	e capa	ble of withstandi	ng 404 lb uplift a	t
	6-0-0 oc bracing: 1-3	33 31-32	1) 3-nly trues to	he connected too	nether wi	th 10d		io	int 17 and	968 lb	uplift at joint 33.	5	
DEACTIONS		onical 22_0 E 9	'	(0 131"x3") r	nails as follows:		un rou		12) T	his truss is	desig	ned in accordance	ce with the 2018	
REACTIONS	(SIZe) $I7 = Wech$	C 12)		Top chords of	connected as follo	ws: 2x6	- 2 rows		In	iternationa	I Resid	dential Code sect	ions R502.11.1 a	and
	Max Holiz 33=127 (L	.0 13) 1 C 17) 22_ 069 /1 C	2 16)	staggered at	0-9-0 oc. 2x4 - 1	row at 0	-9-0 oc.		R	802.10.2 a	and ref	erenced standar	d ANSI/TPI 1.	
	Max Opint $17=-404$ (i Max Gray, $17=-2021$ ((1 C 2) 22 - 2225 (1 C)	2 10)	Bottom chore	ds connected as for	ollows: 2	x6 - 2 rows		13) G	raphical p	urlin re	presentation doe	es not depict the s	size
		(LC 2), 33=3223 (LC	, 2)	staggered at	0-9-0 oc, 2x4 - 1	row at 0	-9-0 oc.		0	r the orient	tation o	of the purlin along	g the top and/or	
FORCES	(ID) - Maximum Com	pression/iviaximum		Web connec	ted as follows: 2x4	4 - 1 row	at 0-9-0 oc.		b	ottom chor	d.			
	1_2203/22/1 2_3	1135/463	2) All loads are	considered equal	ly applie	d to all plies,							
	3-4=-4473/1603 4-5	=-5484/1919		except if note	ed as front (F) or b	back (B)	face in the LO	DAD						
	5-6=-5369/1882 6-7	/= 0101/1010; /=-10834/2992		CASE(S) see	ction. Ply to ply co	nnection	s have been					Sug	THE	
	7-8=-15476/3804. 8-	10=-19419/4018.		provided to c	distribute only load	is noted	as (F) or (B),					OF I	ALSO D	
	10-11=-17245/3553,	11-12=-7589/1443,		Unless other	wise indicated.						1	750	1,0°	
	12-13=-4698/894, 13	3-14=-4668/880,	3) Unbalanced	roor live loads hav	ve been	considered for	ſ			A	NY and	Ver V	
	14-15=-4585/816, 15	5-16=-3338/585,	1) Wind: ASCE	7-16: \/ult=115m	ob (3-60)	cond quet)				A	s scor	$\Gamma M.$	Ś
	16-17=-2834/478		4	Vasd-91mpl	h: TCDI –6 Opsf: F	2001 (3-560 2001 –6	Onef: h=35ft				B.	/ SEV	ER	X
BOT CHORD	1-33=-106/288, 32-3	3=-84/207,		Ke=1 00. Ca	t II: Exp C: Enclo	sed MW	FRS (envelor	e)			A State	1 44 4	Q *	YA .
	31-32=-41/58, 4-31=	-1294/420,		exterior zone	e and C-C Exterior	(2E) 0-0	-0 to 5-0-0.	,				att?	Ser M	47
	30-31=-1539/4158, 2	28-30=-2998/10834,		Interior (1) 5-	-0-0 to 6-9-0, Exte	rior(2R)	6-9-0 to 11-9-	0,		<i>C</i>	W.	NIM	BER X	
	27-28=-3809/15476,	26-27=-4285/19124	4,	Interior (1) 1	1-9-0 to 33-8-0, E	xterior(2	R) 33-8-0 to				17	DE 2001	010007 14	8
	25-26=-4285/19124,	24-25=-133/643,		38-8-0, Interi	ior (1) 38-8-0 to 45	5-3-4 zor	ne; cantilever l	left			N.	PE-2001	01000/	7
	10-20=-140/11/, 23-	24=-004/4122,		and right exp	oosed ; end vertica	al left and	d right				Y	Nº0-	1.SA	
	22-23=-2440/12133, 19-20751/4185 19	20-22=-1319/0939,		exposed;C-C	C for members and	d forces	& MWFRS for				0	SION	TENS	
	17-18=-49/78	J 13000/3+70,		reactions sho	own; Lumber DOL	.=1.60 pl	ate grip					UNA	L	
	11 10- 40/10			DOL=1.60								na		
												Jur	ie 6,2023	

16023 Swingley Ridge Rd Chesterfield, MO 63017

Job	Truss	Truss Type	Qty	Ply	
P210577	Q02	Roof Special Girder	1	3	I58733547 Job Reference (optional)

- 14) Use Simpson Strong-Tie THJA26 (THJA26 on 2 ply, Left Hand Hip) or equivalent at 6-9-6 from the left end to connect truss(es) to front face of bottom chord.
- 15) Use Simpson Strong-Tie LUS26 (4-10d Girder, 4-10d Truss, Single Ply Girder) or equivalent at 21-10-4 from the left end to connect truss(es) to front face of bottom chord.
- 16) Fill all nail holes where hanger is in contact with lumber.
- 17) "NAILED" indicates Girder: 3-10d (0.148" x 3") toe-nails per NDS guidelines.

LOAD CASE(S) Standard

1) Dead + Snow (balanced): Lumber Increase=1.15, Plate Increase=1.15

Uniform Loads (lb/ft)

Vert: 1-5=-78, 5-11=-88, 11-13=-78, 13-15=-78, 15-16=-88, 1-32=-20, 25-31=-20, 17-24=-20

Concentrated Loads (lb)

Vert: 5=-3 (F), 30=263 (F), 55=-105 (F), 56=-871 (F)

Run: 8.63 S Nov 19 2022 Print: 8.630 S Nov 19 2022 MiTek Industries, Inc. Mon Jun 05 09:39:58 ID:D?9zREXTc7frZbu9r2mOG7z9Y7J-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 2

Job	Truss	Truss Type	Qty	Ply		
P210577	Q03	Roof Special	1	2	Job Reference (optional)	

+ 3-1-12 + 5-8-12 + 8-9-0 3-1-12 + 2-7-0 + 3-0-4

13-10-15

5-1-15

18-11-1

5-0-3

Run; 8.63 S Nov 19 2022 Print; 8.630 S Nov 19 2022 MiTek Industries, Inc. Mon Jun 05 09:40:01 ID:nb_ZAGO8oxWCV0WjDKXzN6z9Y3c-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

33-8-0

5-11-0

27-9-0

3-9-12

Page: 1

45-5-0 2-0-9 38-5-2 43-4-7 4-9-2 4-11-5

23-11-4

5-0-3

Scale = 1:80.5

Plate Offsets (X, Y):	[4:0-3-0,0-2-15],	[19:0-4-0,0-0-4]	, [20:0-5-4,0-5-0]

		1/E / 1/E	,			_						_		
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 25.0 18.9/20.0 25.0 0.0 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018	8/TPI2014	CSI TC BC WB Matrix-S	0.35 0.88 0.97	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.32 -0.76 0.21	(loc) 20-21 20-21 14	l/defl >999 >662 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 519	GRIP 197/144 lb FT = 20%	
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD REACTIONS FORCES TOP CHORD	2x6 SPF No.2 2x6 SPF No.2 *Exce 28-19:2x4 SP No.2 2x4 SPF No.3 *Exce Structural wood she 6-0-0 oc purlins, ex 2-0-0 oc purlins, ex 2-0-0 oc purlins (4-6 Rigid ceiling directly bracing, Except: 6-0-0 oc bracing: 1-2 (size) 14= Mech Max Horiz 27=123 (L Max Uplift 14=-231 (Max Grav 14=2513) (lb) - Maximum Com Tension 1-2=-247/284, 2-3=- 3-4=-4943/789, 4-5= 5-6=-9583/1426, 6-8 8-9=-10180/1453 9	L pt* 26-3:2x4 SPF No pt* 29-30:2x4 SP No athing directly applie cept end verticals, ar -15 max.): 4-9, 12-1: applied or 10-0-0 oc 27,25-26. pression/27=-439 (LC (LC 2), 27=2919 (LC pression/Maximum 3966/658, -4670/767, 3=-10180/1453, -10=-3879/515	Wi b.3, b.2 do or nd 3. ; NC 1) 2 (16) (2) 2)	EBS 2-ply truss tr (0.131*x3*) Top chords staggered a Bottom chor staggered a Web conner All loads ard except if not CASE(S) se provided to	25-27=-333/273, 4-24=-154/1340, i 9-20=-523/3467, 1 2-15=-2349/318, 9-17=-4356/696, 2-27=-2614/474, 1 5-24=-3422/486, i 5-21=-255/2099, i 11-17=-226/206, i 12-16=-167/1460 o be connected to nails as follows: connected as follot t 0-9-0 oc, 2x4 - 1 tds connected as follot t 0-9-0 oc, 2x4 - 1 tds connected as follot t 0-9-0 oc, 2x4 - 1 tde as follows: 2x e considered equa ted as front (F) or ction. Ply to ply co distribute only load	3-24=-22 8-20=-44 9-19=-16 13-15=-1 10-17=-2 2-25=-56 6-20=-95 6-21=-84 11-16=-4 gether wi wws: 2x6 - row at 0- rollows: 2 row at 0- tollows: 2 row at 0- row at 0- r	D/1059, 4/132, 71/293, 323/3024, 64/2390, 3/3688, 799, 5-22=0/1 4/180, 81/124, th 10d 2 rows 9-0 oc. x6 - 2 rows 9-0 oc. at 0-9-0 oc. at 0-9-0 oc. at 0-9-0 oc. at 0-9-0 oc. s have been as (F) or (B),	170, PAD	5) T(Pl DC E) 6) Ur de 7) Pr 8) Th ch 9) Re 10) Pr be join 11) Th Ini R 8 12) G or boc LOAD	CLL: ASC ate DOL= DL=1.15 F p.; Ce=0. bibalancec sign. ovide add is truss h ord live lc aring plat nt 14 and is truss is ernationa g02.10.2 a aphical p the orien ttom choir CASE(S)	E 7-16 F1.15); Plate D 9; Cs= d snow equate eas bee as bee as desig and ref rurlin re d desig al Resic and ref rurlin re tation o rd.) Star	; Pr=25.0 psf (Pg=20.0 psf; P POL=1.15); Is= -1.00; Ct=1.10, loads have be drainage to pro- en designed for hoconcurrent wi for truss to trus al connection (able of withstar o uplift at joint 2 ned in accorda dential Code si erenced stand presentation c of the purlin alcondar	oof LL: Lum DOL=1. f=18.9 psf (Lum 1.0; Rough Cat C; Ful Lu=50-0-0 en considered for this avent water ponding. a 10.0 psf bottom th any other live loads s connections. by others) of truss to iding 231 lb uplift at ?7. ince with the 2018 actions R502.11.1 and ard ANSI/TPI 1. loes not depict the siz ong the top and/or	15 Ily s s.
BOT CHORD	10-11=-3853/532, 1 12-13=-1985/253, 1 1-27=-178/241, 26-2 25-26=-47/50, 3-25= 24-25=-647/3641, 2 21-22=-1166/7714, 2 19-20=-1020/7577, 1 6-17=-419/3489, 1 14-15=-37/74	1-12=-3845/478, 3-14=-2424/265 :7=-39/178, :-741/209, 2-24=-1166/7714, 20-21=-1393/9583, 17-19=-959/7209, 5-16=-265/2146,	3) 4)	unless other Unbalanced this design. Wind: ASCE Vasd=91mp Ke=1.00; C. exterior zon Interior (1) 5 13-10-15, In 33-8-0 to 38 cantilever le right expose for reactions	wise indicated. I roof live loads ha E 7-16; Vult=115m th; TCDL=6.0psf; f at. II; Exp C; Enclo e and C-C Exterios i-0-0 to 8-9-0, Exter terior (1) 13-10-15 i-5-2, Interior (1) 3 ft and right expose ed;C-C for membe s shown; Lumber I	ve been of ph (3-sec 3CDL=6.1 osed; MW r(2E) 0-0 erior(2R) 5 to 33-8- ed; end v rs and for DOL=1.60	considered for cond gust) Dpsf; h=35ft; FRS (envelop -0 to 5-0-0, 8-9-0 to 0, Exterior(2R I5-3-4 zone; rertical left anc; cess & MWFR 0 plate grip	-))) S		-		STATE OF STATE OF SCO SE SCO SE	MISSOLUTI TT M. VIER MBER 1018807	

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

DOL=1.60

Job	Truss	Truss Type	Qty	Ply		
P210577	Q04	Roof Special	1	1	Job Reference (optional)	

Run: 8.63 S Nov 19 2022 Print: 8.630 S Nov 19 2022 MiTek Industries, Inc. Mon Jun 05 09:40:03 ID:gUJtX3qWm2Bb4nJp1IJvRYz9X3n-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

Scale = 1:81.9

Plate Offsets	(X, Y): [5:0-4-2,Edge],	[9:0-6-8,0-4-0], [12:	0-2-8,0-3-0	j, [13:Edge,0	-3-8], [19:0-5-4,Edg	ej, [23:0	-3-4,Edgej, [2	25:0-3-0	,0-4-0]				
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 25.0 18.9/20.0 25.0 0.0 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018	3/TPI2014	CSI TC BC WB Matrix-S	0.91 1.00 0.96	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.40 -0.97 0.29	(loc) 19-20 19-20 13	l/defl >999 >523 n/a	L/d 240 180 n/a	PLATES MT20 MT18HS Weight: 278 lb	GRIP 197/144 197/144 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS BRACING	2x6 SPF No.2 2x6 SPF No.2 *Exce 8-18:2x4 SP No.2, 2 2x4 SPF No.3 *Exce 1.5E, 19-9,13-12,14- No.2	ppt* 24-3:2x4 SPF No 2-19:2x6 SP 2400F :pt* 17-19:2x4 SP 16 -12,23-2,15-10:2x4 S	WI 2.3, 2.0E 550F 6P	EBS	23-25=-340/282, 5 6-21=-2778/399, 6 17-19=-605/4902, 9 9-17=-903/186, 12 2-25=-2613/473, 2- 4-21=-66/342, 4-23 10-15=-304/2440, 9 11-14=-649/162, 1	21=-14(20=0/3()-19=-4 14=-34 23=-57 =-785/2)-15=-3(1-15=-1)	0/1279, 05, 6-19=-101 14/2725, 2/3276, 0/3830, 34, 072/505, 36/275	/809,	10) Gra or th bott LOAD C	phical prine orient om chor CASE(S)	urlin re ation o d. Stai	presentation does of the purlin along ndard	s not depict the size the top and/or
TOP CHORD	Structural wood she 3-2-2 oc purlins, ex 2-0-0 oc purlins (2-2	athing directly applie cept end verticals, a -0 max.): 5-9.	nd 1)	TES Unbalanced this design.	roof live loads have	e been o	considered fo	r					
BOT CHORD	Rigid ceiling directly	applied or 2-2-0 oc	max.): 5-9. this design. pplied or 2-2-0 oc 2) Wind: ASCE 7-16; Vult=115mph (3-second gust) Viced 14mph; TCDL 6 0 acft PCDL 6 0 acft b 25ft										
WEBS	1 Row at midpt	6-21, 9-15	at. II; Exp C; Enclos	be)									
REACTIONS	(size) 13=0-5-8, Max Horiz 25=120 (L Max Uplift 13=-231 (Max Grav 13=2513	25=0-5-8 _C 16) LC 16), 25=-439 (LC (LC 2), 25=2919 (LC	2 16) 2)	exterior zone and C-C Exterior(2E) 0-0-0 to 5-0-0, Interior (1) 5-0-0 to 10-9-0, Exterior(2R) 10-9-0 to 5-9-0, Interior (1) 15-9-0 to 33-8-0, Exterior(2R) 33-8-0 to 38-8-0, Interior (1) 38-8-0 to 45-3-4 zone; cantilever									
FORCES	(lb) - Maximum Com Tension	pression/Maximum		exposed;C-(C for members and	forces &	MWFRS for						
TOP CHORD	1-2=-252/308, 2-3=-	4083/672,		reactions sh DOI =1 60	own; Lumber DOL=	=1.60 pla	ate grip						
	3-4=-4107/720, 4-5= 5-6=-4553/751, 6-8= 8-9=-7676/1136, 9-1 10-11=-3875/531, 1 12-13=-2424/315	4830/777, 7737/1141, 0=-3846/532, 1-12=-3821/464,	3)	TCLL: ASCI Plate DOL= DOL=1.15 F Exp.; Ce=0.	E 7-16; Pr=25.0 psf 1.15); Pg=20.0 psf; Plate DOL=1.15); Is: 9; Cs=1.00; Ct=1.10 snow loads have b	(roof LL Pf=18.9 =1.0; Rc 0, Lu=50 een cor	: Lum DOL=1 psf (Lum pugh Cat C; F)-0-0 psidered for th	l.15 ully			Å	TATE OF M	AISSOLUS
BOT CHORD	1-25=-198/246, 24-2 23-24=-42/49, 3-23= 21-23=-703/432, 2(19-20=-1018/7013, 7 8-19=-776/211, 17-1 15-17=-692/5500, 14 13-14=-53/228	25=-40/162, -134/68,)-21=-1018/7013, 18-19=0/144, 8=-91/652, 4-15=-386/3426,	4) 5) 6) 7) 8) 9)	design. Provide ade All plates ar This truss hi chord live lo Provide med bearing plat joint 25 and This truss is	quate drainage to p e MT20 plates unle as been designed for ad nonconcurrent v shanical connection e capable of withsta 231 lb uplift at joint designed in accord	verevent ver	vater ponding wise indicate) psf bottom other live loa ers) of truss t 39 lb uplift at th the 2018	j. d. ds. o		¢		SCOTT SEVI NUME PE-20010	ER DIS807

International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

June 6,2023

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Course

Job	Truss	Truss Type	Qty	Ply	
P210577	Q05	Roof Special	1	1	Job Reference (optional)

Run: 8.63 S Nov 19 2022 Print: 8.630 S Nov 19 2022 MiTek Industries, Inc. Mon Jun 05 09:40:04 ID:XcTq13AaJMVDkRZvqnHAIFz9X0m-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:83.9

Plate Offsets (X, Y): [5:0-3-0,0-2-15]], [10:0-5-8,0-3-8], [2	3:0-2-12,0	-5-4], [27:0-3-	4,Edge], [29:0-3-0,0	0-4-0]								
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 25.0 18.9/20.0 25.0 0.0 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018	3/TPI2014	CSI TC BC WB Matrix-S	0.59 0.95 0.94	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.29 -0.69 0.24	(loc) 7 23-24 16	l/defl >999 >726 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 297 lb	GRIP 197/144 FT = 20%	
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD WEBS REACTIONS FORCES TOP CHORD BOT CHORD	2x6 SPF No.2 2x6 SPF No.2 *Exce No.3, 26-23:2x6 SP 2x4 SPF No.3 *Exce SP No.2, 23-21:2x4 3 Structural wood shea 3-2-9 oc purlins, exc 2-0-0 oc purlins, exc 2-0-0 oc purlins (2-7 Rigid ceiling directly bracing. 1 Row at midpt (size) 16=0-5-8, Max Horiz 29=-116 (I Max Uplift 16=-260 (I Max Grav 16=2900 ((Ib) - Maximum Com Tension 1-2=-254/308, 2-3=-4 3-4=-4135/729, 4-5= 5-6=-4309/725, 6-7= 7-9=-6076/935, 9-10 10-11=-3689/526, 11 12-14=-3408/380, 14 1-29=-199/248, 28-2 27-28=-43/49, 3-27= 25-27=-700/4330, 24 23-24=-812/5727, 22 7-23=-496/145, 21-2 20-21=-497/4211, 18 17-18=-284/3059, 16 15-16=-129/248	pt* 28-3,7-22:2x4 SF 2400F 2.0E pt* 27-2,18-11,17-14 SP 1650F 1.5E athing directly applied expt -2 max.): 5-10. applied or 2-2-0 oc 6-25, 10-18, 9-21 29=0-5-8 LC 17) LC 17), 29=-439 (LC (LC 2), 29=2900 (LC pression/Maximum 4073/669, 4644/751, -6105/939, =-4812/730, 1-12=-3815/524, 4-15=-256/227 9=-47/143, -200/87, 4-25=-812/5727, -223=0/94, '2=-70/433, 3-20=-497/4214, 5-17=-129/248,	We PF :2x4 d or 1) 2) 16) 2) 3) 4) 5) 6) 7)	DTES Unbalanced this design. Wind: ASCE Vasd=91mpl Ke=1.00; Ca exterior zone Interior (1) 5 17-9-0, Inter to 38-8-0, Int left and right exposed;C-C reactions sh DOL=1.60 TCLL: ASCE Plate DOL=1 DOL=1.15 P Exp.; Ce=0.5 Unbalanced design. Provide adec This truss ha chord live loa Provide mec bearing plate ioint 29 and	27-29=-328/279, 5- 6-25=-1862/288, 6- 10-20=-92/27, 2-29 2-27=-580/3830, 11 10-18=-2396/429, 1 12-18=-75/532, 12- 14-17=-451/3257, 5 9-23=-311/1938, 10 21-23=-565/4526, 6 4-25=-241/123, 4-2 roof live loads have 7-16; Vult=115mpl h; TCDL=6.0psf; BG t. II; Exp C; Encloss e and C-C Exterior(-0-0 to 12-9-0, Exte ior (1) 17-9-0 to 33- terior (1) 38-8-0 to 4 exposed; end vert c for members and own; Lumber DOL= 5 7-16; Pr=25.0 psf; late DOL=1.15); Is= 0; Cs=1.00; Ct=1.10 snow loads have b quate drainage to p as been designed fc ad nonconcurrent w thanical connection e capable of withsta 260 lb uolift at ioint	25=-15/ 223=-61/ =-2598/ 1-18=-3 14-16=-3 17=-87 3-21=-12 3-21=-2(3-24=0/2 7=-706/ e been of h (3-sec CDL=6.0 ed; MW 22E) 0-0.0 rior(2R: 8-0, Ex 48-4-0 z tical left forces & e1.60 pla (roof LL Pf=18.9 =1.0; RG 9F=18.9 =1.0; RG 0, Lu=50 een cor revent v or a 10.0/ vith any (by oth unding 4 16.	D/1298, (467, (468, 14/2305, 2673/431, 1/224, 398/369, 06/1166, 245, (252) considered for cond gust) Dpsf; h=35ft; FRS (envelop- 0 to 5-0-0, 1 2-9-0 to terior(2R) 33- cone; cantileve and right & MWFRS for ate grip .: Lum DOL=1 p psf (Lum pugh Cat C; F D-0-0 isidered for th water ponding D psf bottom other live load ers) of truss to 39 lb uplift at	r 8-0 er 1.15 fully his J. ds. o	8) This Inte R8C 9) Gra or tf bott LOAD (s truss is rnationa 12.10.2 a phical ph e orient om chor CASE(S)	e desig I Resid urlin re ation o d.) Star	ned in accordance dential Code secti erenced standard presentation does of the purlin along ndard	e with the 2018 ons R502.11.1 and ANSI/TPI 1. s not depict the siz the top and/or	i e

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

June 6,2023

Job	Truss	Truss Type	Qty	Ply	
P210577	Q06	Roof Special Girder	1	1	Job Reference (optional)

Run; 8.63 S Nov 19 2022 Print; 8.630 S Nov 19 2022 MiTek Industries, Inc. Mon Jun 05 09:40:06 ID:x3xzjHAe3FXcnweHX0B0_Lz9WwJ-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Scale = 1:89.1													
Plate Offsets ([3:0-2-4,0-2-0], (X, Y): [27:0-3-8,0-4-4	[6:0-3-0,0-2-15], [11]], [29:0-3-12,0-5-0], [3	:0-3-0,0-2-15], [15:0-5 34:0-6-4,0-3-0], [36:0-	5-0,0-4-8], [17:0-2-2,0-4-0 -3-0,0-4-0]], [19:Edge,0-4-8	8], [23:0-5	5-8,0-2-	12], [24:6	Edge,0	-3-8], [25:0-3-8,0	-4-0],		
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 25.0 18.9/20.0 25.0 0.0 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 NO IRC2018/TPI2014	CSI TC 0. BC 0. WB 0. Matrix-S	55 Vert(LL) 90 Vert(CT) 98 Horz(CT)	in -0.26 -0.62 0.28	(loc) 8 29-30 19	l/defl >999 >840 n/a	L/d 240 180 n/a	PLATES MT20 MT18HS Weight: 336 lb	GRIP 197/144 197/144 FT = 20%		
LUMBER TOP CHORD BOT CHORD WEBS	2x6 SPF No.2 2x6 SPF No.2 *Exce SPF No.3, 8-28:2x4 2400F 2.0E 2x4 SPF No.3 *Exce 1.5E, 25-23,23-14,22	1-36=-146/247, 35-36= 34-35=-46/52, 4-34=-7 32-34=-638/3906, 31-3 30-31=-808/5174, 29-3 28-29=0/108, 8-29=-48 26-27=-732/4519, 25-2 24-25=-72/366, 23-24=	1-36=-146/247, 35-36=-41/151, 3) TCLL: 34-35=-46/52, 4-34=-706/236, Plate II 32-34=-638/3906, 31-32=-678/4546, DOL= 30-31=-808/5174, 29-30=-808/5174, Exp.; (28-29=0/108, 8-29=-489/139, 27-28=-77/460, Unbali 26-27=-732/4519, 25-26=-700/4040, desigr 24-25=-72/266, 23-24=0/68, 13-23=-404/102, 5) This tr						CLL: ASCE 7-16; Pr=25.0 psf (roof LL: Lum DOL=1.15 late DOL=1.15); Pg=20.0 psf; Pf=18.9 psf (Lum 'OL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat C; Fully xp.; Ce=0.9; Cs=1.00; Ct=1.10, Lu=50-0-0 Inbalanced snow loads have been considered for this esign.				
BRACING TOP CHORD BOT CHORD WEBS REACTIONS	 2x4 SPF No.3 *Except* 27-29:2x4 SP 1650F 1.5E, 25-23,23-14,22-16,19-17,34-2:2x4 SP No.2 Structural wood sheathing directly applied or 2-11-10 oc purlins, except end verticals, and 2-0-0 oc purlins (2-10-10 max.): 6-11, 12-15. Rigid ceiling directly applied or 6-0-0 oc bracing. 1 Row at midpt 7-31, 10-26, 17-19 VS (size) 19=0-5-8, 36=0-5-8 Max Horiz 36=172 (LC 15) 			22-23=-573/2705, 21-22=-230/562, load of 12.0 psf or 2.00 times flat roof loverhangs non-concurrent with other lin 20-21=-37/36, 16-21=-1702/253, overhangs non-concurrent with other lin 19-20=-24/109 6) Provide adequate drainage to prevent v 34-36=-355/331, 4-32=-207/687, 7) All plates are MT20 plates unless other 5-32=-98/131, 5-31=-536/172, 7) All plates are MT20 plates unless other 6-31=-164/1325, 7-31=-1523/257, 7-30=0/233, 7-29=-101/525, 7-30=0/233, 7-29=-101/525, 9) Provide mechanical connection (by oth bearing plate capable of withstanding 3 ion: 36 and 903 lb uplift at joint 19. 10-27=-820/210, 10-26=-1143/199, 10) This trues is designed in accordance w						of load of 13.9 psf on er live loads. ent water ponding. itherwise indicated. 10.0 psf bottom any other live loads. ' others) of truss to ng 378 lb uplift at ce with the 2018			
FORCES TOP CHORD	Max Horiz 36=172 (L Max Uplift 19=-903 (Max Grav 19=2678 i (lb) - Maximum Com Tension 1-2=-253/244, 2-4=- 4-5=-4980/675, 5-6= 6-7=-4285/667, 7-8= 8-10=-5487/904, 10- 11-12=-4168/710, 12 13-14=-4185/756, 14 15-16=-2636/585, 11 17-18=0/131, 17-19=	LC 15) LC 13), 36=-378 (LC (LC 2), 36=2989 (LC pression/Maximum 4187/586, 4662/698, 5506/907, -11=-3881/675, 2-13=-4179/756, 4-15=-2708/570, 6-17=-779/360, =-2567/917	12) 2) NOTES 1) Unbalance this design 2) Wind: ASC Vasd=91m Ke=1.00; (exterior zo Interior (1)	12-25=-1581/306, 23-2 12-23=-151/380, 14-23 14-22=-2175/382, 16-2 2-36=-2682/431, 2-34= 19-21=-190/139, 17-21 ed roof live loads have be n. CE 7-16; Vult=115mph (3 nph; TCDL=6.0psf; BCDL Cat. II; Exp C; Enclosed; one and C-C Exterior(2E)) 5-0-0 to 14-9-0, Exterior	5=-679/3974, =-351/2310, 2=-506/3160, -552/3951, =-550/1621 en considered fi -second gust) =6.0psf; h=35ft; MWFRS (envelo 0-0 to 5-0-0, (2R) 14-9-0 to	or ppe)	R8	ernationa 02.10.2 a	al Residand ref	dential Code sect erenced standard	ions R502.11.1 and J ANSI/TPI 1.		

19-9-0, Interior (1) 19-9-0 to 33-7-0, Exterior(2E) 33-7-0 to 36-2-1, Interior (1) 36-2-1 to 45-2-11, Exterior(2E) 45-2-11 to 49-10-0 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

Page: 1

Continued on page 2

Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITER REFERENCE PAGE MIT-74/3 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITER® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

MiTek 16023 Swingley Ridge Rd Chesterfield, MO 63017

Job	Truss	Truss Type	Qty	Ply	
P210577	Q06	Roof Special Girder	1	1	I58733551 Job Reference (optional)

- Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.
- 12) "NAILED" indicates Girder: 3-10d (0.148" x 3") toe-nails per NDS guidelines.
- In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (F) or back (B).
- LOAD CASE(S) Standard
- 1) Dead + Snow (balanced): Lumber Increase=1.15, Plate Increase=1.15
 - Uniform Loads (lb/ft)
 - Vert: 1-6=-78, 6-11=-88, 11-12=-78, 12-15=-88,
 - 15-17=-78, 17-18=-78, 1-35=-20, 29-34=-20, 24-28=-20, 21-23=-20, 19-20=-20
 - Concentrated Loads (lb)
 - Vert: 15=138 (F), 47=113 (F)

Run: 8.63 S Nov 19 2022 Print: 8.630 S Nov 19 2022 MiTek Industries, Inc. Mon Jun 05 09:40:06 ID:x3xzjHAe3FXcnweHX0B0_Lz9WwJ-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 2

Job	Truss	Truss Type	Qty	Ply	
P210577	Q07	Roof Special	1	1	Job Reference (optional)

Run: 8.63 S Nov 19 2022 Print: 8.630 S Nov 19 2022 MiTek Industries, Inc. Mon Jun 05 09:40:09 ID:RmLuJBsunSV6P1cyXeA4_9z9Wsr-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:89.2													
Plate Offsets ([10:0-4-9,Edge X, Y): [34:0-3-8,Edge	e], [18:0-2-12,0-2-8], [20 e], [38:0-6-4,0-3-0], [40:0	:Edge,0-4-0], [22:0-:)-3-0,0-4-0]	5-8,Edge], [24:0-6	6-4,0-5-0], [25:Edge,0-3-	-8], [28:0·	-6-8,0-5	-0], [30:0)-3-12,	Edge], [31:Edge	.0-3-8],	
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 25.0 18.9/20.0 25.0 0.0 10.0	Spacing 2 Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES RC2018/TPI2014	CSI TC BC WB Matrix-S	0.44 0.96 0.98	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.29 -0.70 0.41	(loc) 8 34-35 20	l/defl >999 >752 n/a	L/d 240 180 n/a	PLATES MT20 MT18HS Weight: 364 lb	GRIP 197/144 197/144 FT = 20%	
LUMBER TOP CHORD BOT CHORD WEBS	2x6 SPF No.2 2x6 SPF No.2 *Exca 39-4,8-33,31-11,17- 13-27,25-15:2x4 SP 1/2" 2.0E Microllamv 2x4 SPF No.3 *Exca 20-18,38-2,34-32,30	ept* .21:2x4 SPF No.3, No.2, 27-25:1 1/2" x 5 ® LVL ept* J-32.24-14.28-14:2x4 SI	BOT CHORD	1-40=-153/248, 38-39=-47/52, 4 36-38=-572/397 34-35=-619/45 ⁻ 8-34=-383/109, 31-32=-52/386, 11-30=-183/144 28-29=-570/404	39-40=-42/ 4-38=-703/2 70, 35-36=-1 17, 33-34=0 32-33=-65/ 30-31=0/8- 31, 29-30=-1 41, 27-28=-	/149, 250, 666/4546, /76, /276, 4, 650/4674, 1727/252,		2) Wi Va Ke ext Inte 21: to 3 43:	nd: ASCI sd=91mp =1.00; C erior zor erior (1) 9-0, Inte 34-2-1, Ir -2-11 to 4	E 7-16; oh; TCl at. II; E e and 5-0-0 to rior (1) nterior 48-2-11	; Vult=115mph (3 DL=6.0psf; BCDI Exp C; Enclosed; C-C Exterior(2E) 0 16-9-0, Exterio 0 21-9-0 to 31-7-((1) 34-2-1 to 43- 1, Interior (1) 48-	A-second gust) L=6.0psf; h=35ft; MWFRS (envelope) 0-0-0 to 5-0-0, r(2R) 16-9-0 to 0, Exterior(2E) 31-7-0 2-11, Exterior(2R) 2-11 to 49-10-0 zone;	
BRACING TOP CHORD BOT CHORD WEBS	No.2, 24-26,28-26:2 Structural wood she 2-10-12 oc purlins, 2-0-0 oc purlins (3-7 Rigid ceiling directly bracing. 1 Row at midpt	or Ind WEBS 82,	28-29=-570/4041, 27-28=-1727/252, 13-28=-1212/180, 26-27=-78/541, 25-26=-68/383, 24-25=-1753/253, 15-24=-139/1450, 23-24=-500/3503, 22-23=-87/590, 21-22=-32/33, 17-22=-1740/148, 20-21=-25/124 BS 38-40=-353/354, 5-35=-741/222, 6-35=-129/1253, 12-30=-990/171, 12-29=-1056/176, 13-29=-182/1425,					ntilever le reaction DL=1.60 LL: ASC tte DOL= DL=1.15 I p.; Ce=0	eft and ed;C-C s show E 7-16 (1.15); Plate D .9; Cs=	ight exposed ; end vertical left and for members and forces & MWFRS x; Lumber DOL=1.60 plate grip Pr=25.0 psf (roof LL: Lum DOL=1.15 Pg=20.0 psf; Pf=18.9 psf (Lum DL=1.15); Is=1.0; Rough Cat C; Fully 1.00; Ct=1.10, Lu=50-0-0 port hour hore negridered for this			
REACTIONS	(size) 20=0-5-8 Max Horiz 40=170 (Max Uplift 20=-446 Max Grav 20=2921	13-25, 10-20, 7-35, 9-32, 15-23= 14-26 14-26 14-26 17-23= 17-23= 14-26 14-26 14-26 14-26 14-26 14-26 17-23= 14-26 14-26 14-26 14-26 14-27 14-28 14-29 14-26 14-26 12-333 (LC 12) 12-38= 12-39= 12-39= 12-39= 12-30=			63, 2-40=-20 4, 5-36=-44/ 7-34=-44/4 0, 9-32=-190	687/421, /122, l96, 08/323, 2/462		4) Off de: 5) Th loa ove	 Unbalanced snow loads have been considered for this design. This truss has been designed for greater of min roof liv load of 12.0 psf or 2.00 times flat roof load of 13.9 psf overhangs non-concurrent with other live loads. 				
FORCES	(lb) - Maximum Con Tension	npression/Maximum		9-34=-172/135 32-34=-503/38 14-26=-2575/36	5, 9-30=-11 55, 30-32=- 68, 24-26=-(2/462, 515/3729, 607/4421.					OF	MISSIM	
TOP CHORD	1-2=-253/250, 2-4=- 4-5=-4996/628, 5-6: 6-7=-4040/604, 7-8: 8-9=-4705/697, 9-11 10-11=-4218/640, 1 12-13=-4645/668, 1 14-15=-3489/519, 1 16-17=-1757/291, 1 18-19=0/131, 18-20	-4231/517, =-4504/614, =-4720/698, 0=-4228/638, 1-12=-4632/680, 3-14=-3999/585, 5-16=-1638/292, 7-18=-856/232, =-2796/555	NOTES 1) Unbalance this design	26-28=-593/419 14-28=-328/24 18-22=-137/17(ed roof live loads l	98, 14-24=-; 11, 20-22=-;)4 have been (209/78, 209/139, 200, 200, 200, 200, 200, 200, 200, 20	or		-		SCOT SEV NUM PE-2001	T M. HER BER 018807	

Continued on page 2 WARNING - Verify

WARNING Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

SSIONAL

E

June 6,2023

Job	Truss	Truss Type	Qty	Ply	12020050
P210577	Q07	Roof Special	1	1	I58733552 Job Reference (optional)

- 6) Provide adequate drainage to prevent water ponding.
- 7) All plates are MT20 plates unless otherwise indicated.
- 8) All plates are 6x6 MT20 unless otherwise indicated.
- 9) This truss has been designed for a 10.0 psf bottom

chord live load nonconcurrent with any other live loads.10) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 333 lb uplift at joint 40 and 446 lb uplift at joint 20.

11) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

 Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

LOAD CASE(S) Standard

Run: 8.63 S Nov 19 2022 Print: 8.630 S Nov 19 2022 MiTek Industries, Inc. Mon Jun 05 09:40:09 ID:RmLuJBsunSV6P1cyXeA4_9z9Wsr-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 2

Job	Truss	Truss Type	Qty	Ply		
P210577	Q08	Roof Special Girder	1	1	Job Reference (optional)	733553

Run; 8.63 S Nov 19 2022 Print; 8.630 S Nov 19 2022 MiTek Industries, Inc. Mon Jun 05 09:40:12 ID:iUB_SCDqdgClw9bd0ph2xVz9Wpn-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:87.3

Plate Offsets	(X, Y): [6:0-3-0,0-2-1	5], [12:0-4-0,0-2-0],	[17:0-2-0,0-	4-4], [19:Edg	je,0-4-4], [21:0-2	-8,0-4-8], [24	4:Edge,0-3-8	8], [27:0-2	2-8,Ec	lge], [28:0-	3-4,0-	5-0], [35:0-3-8,0-	3-8]	
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 25.0 18.9/20.0 25.0 0.0 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 NO IRC2018	8/TPI2014	CSI TC BC WB Matrix-S	0.55 0.91 0.97	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.25 -0.60 0.30	(loc 27-2 27-2 1	c) l/defl 8 >999 8 >868 9 n/a	L/d 240 180 n/a	PLATES MT20 MT18HS Weight: 369 lb	GRIP 197/144 197/144 FT = 20%	
LUMBER TOP CHORD BOT CHORD	2x6 SPF No.2 2x6 SPF No.2 *Exi No.3, 28-27,23-21: 11-26,24-13:2x4 S x 5 1/2" 2 0E Micro	cept* 29-9,16-20:2x4 2x6 SP 2400F 2.0E, P 1650F 1.5E, 26-24 illam® I VI	BC SPF 4:1 1/2"	OT CHORD	1-36=-17/231, 3 34-35=-473/32 31-32=-519/36 29-30=-56/285 27-28=-727/49 11-27=-18/35, 3	35-36=-166/ 67, 32-34=-{ 35, 30-31=-{ , 28-29=0/11 28, 26-27=-1 25-26=-102/	'343, 538/3581, 519/3635, I, 9-28=-149, 1786/276, '600.	/119,	3) T F E 4) U	CLL: ASC Plate DOL= DOL=1.15 F Exp.; Ce=0. Inbalanced lesign.	E 7-16 :1.15); Plate D .9; Cs= d snow	; Pr=25.0 psf (ro Pg=20.0 psf; Pf= OL=1.15); Is=1.1 =1.00; Ct=1.10, L loads have beer	of LL: Lum DOL=1.15 =18.9 psf (Lum J; Rough Cat C; Fully .u=50-0-0 n considered for this	
WEBS	2x4 SPF No.3 *Except* 30-28,28-8,22-13,22-15,19-17,35-2,23-12,27 12:2x4 SP No.2, 23-25,27-25:2x4 SP 1650F 1.5E				24-25=-102/57 13-23=-150/12 21-22=-244/93 16-21=-201/64	1-27=16/35,25-26=102/600, 14-25=-102/579,23-24=-1790/276, 3-23=-150/1293,22-23=-629/3973, 11-22=-244/934,20-21=-37/37, 6-21=-201/64,19-20=-36/157				 This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 13.9 psf or overhangs non-concurrent with other live loads. Provide adecuate drainage to prevent water ponding. 				
BRACING TOP CHORD	 1.5E D Structural wood sheathing directly applied or 3-1-7 oc purlins, except end verticals, and 2-0-0 oc purlins (3-2-9 max.): 6-8, 10-15. D Bigid ceiling directly applied or 4-1-3 oc 			EBS	6-32=-78/884, 7-32=-721/133, 7-31=0/179, 7-30=-525/95, 8-30=-993/219, 28-30=-476/3470, 8-28=-371/2343, 10-28=-1022/253, 10-27=-1438/231,				 8) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 325 h uplift at the second sec					
BOT CHORD WEBS	 2-0-0 oc purlins (3-2-9 max.): 6-8, 10-15. Rigid ceiling directly applied or 4-1-3 oc bracing. 1 Row at midpt 7-32, 7-30, 8-30, 17-19, 12-25 				13-22=-2186/290, 14-22=-449/126, 15-22=-433/2883, 15-21=-1865/272, 2-36=-2761/513, 5-32=-555/194, 4-35=-809/211, 2-35=-491/3371,				b jc 10) T lı	earing plat bint 36 and his truss is nternationa	te capa 1760 lb s desig al Resig	able of withstand o uplift at joint 19 ned in accordan dential Code sec	ing 325 lb uplift at ce with the 2018 tions R502.11.1 and	
REACTIONS	12-25 (size) 19=0-5-8, 36=0-5-8 Max Horiz 36=169 (LC 15) Max Uplift 19=-760 (LC 13), 36=-325 (LC 16) Max Gray, 19=2796 (LC 2), 36=2992 (LC 2)			4-34=-81/415, 5-34=-120/102, 12-25=-3036/474, 23-25=-709/4719, 25-27=-708/4688, 12-23=-106/258, 12-27=-402/3018, 19-21=-225/158, 17, 21=, 464/1844					F 11) (0 b	8802.10.2 a Graphical p or the orien ottom choi	and ref urlin re tation (rd.	erenced standar epresentation do of the purlin alon	d ANSI/TPI 1. es not depict the size g the top and/or	
FORCES	(lb) - Maximum Co	mpression/Maximum	י א א נ	OTES	17 21- 404/10							OF I	A Part	
TOP CHORD	1-2=-242/120, 2-4: 4-5=-3973/539, 5- 6-7=-3325/567, 7- 8-9=-4509/788, 9- 10-11=-4685/764, 12-13=-3956/683, 14-15=-2642/551, 16-17=-782/344, 1 17-19=-2652/841	=-3657/389, =-3668/586, 3=-3460/637, 10=-4659/738, 11-12=-4625/758, 13-14=-2635/549, 15-16=-812/319, 7-18=0/131,	1) 2)	Unbalance this design Wind: ASC Vasd=91m Ke=1.00; C exterior zo Interior (1) 23-9-0, Int to 34-7-0, 44-10-13 t exposed; members a Lumber DC	d roof live loads E 7-16; Vult=11! ph; TCDL=6.0ps Dat. II; Exp C; En ne and C-C Exte 5-0-0 to 18-9-0, prior (1) 23-9-0 to interior (1) 34-7-(o 49-10-0 zone; o end vertical left a and forces & MWD DL=1.60 plate gri	have been of 5mph (3-sec closed; MW rior(2E) 0-0- Exterior(2R) 0 29-7-0, Ex 0 to 44-10-1: cantilever lei and right exp (FRS for rea ip DOL=1.60	considered fc ops; h=35ft; FRS (envelo 0 to 5-0-0, 1 8-9-0 to terior(2R) 29 3, Exterior(2I tt and right osed;C-C fo ctions showr)	pe) -7-0 E) r		j		STE OT SEV SEV SEV NUM PE-2001	T M. IER BER 018807	•

Continued on page 2

Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2/2/2/ BE-VRE USE. Design valid for use only with MITEK® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Lumber DOL=1.60 plate grip DOL=1.60

TUC June 6,2023

Job	Truss	Truss Type	Qty	Ply	
P210577	Q08	Roof Special Girder	1	1	Job Reference (optional)

Run; 8.63 S Nov 19 2022 Print; 8.630 S Nov 19 2022 MiTek Industries, Inc. Mon Jun 05 09:40:12 ID:iUB_SCDqdgClw9bd0ph2xVz9Wpn-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC?f

Page: 2

- 12) "NAILED" indicates Girder: 3-12d (0.148" x 3.25") toenails per NDS guidelines.
- 13) In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (F) or back (B).
- LOAD CASE(S) Standard
- Dead + Snow (balanced): Lumber Increase=1.15, Plate 1) Increase=1.15
 - Uniform Loads (lb/ft)
 - Vert: 1-6=-78, 6-8=-88, 8-10=-78, 10-15=-88, 15-17=-78, 17-18=-78, 1-29=-20, 27-28=-20, 24-26=-20, 21-23=-20, 19-20=-20

 - Concentrated Loads (lb)
 - Vert: 47=130 (B)

Job	Truss	Truss Type	Qty	Ply	
P210577	Q09	Нір	1	1	Job Reference (optional)

Run: 8.63 S Nov 19 2022 Print: 8.630 S Nov 19 2022 MiTek Industries, Inc. Mon Jun 05 09:40:14 ID:MQ7yNYhUSguiLaHo94ePIEz9X6Y-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:77.5

Plate Offsets (X, Y): [4:0-2-8,0-4-12], [9:Edge,0-3-8], [16:Edge,0-3-8]

Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 25.0 18.9/20.0 25.0 0.0 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018	3/TPI2014	CSI TC BC WB Matrix-S	0.80 0.74 0.83	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.15 -0.38 0.10	(loc) 13-15 13-15 9	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 M18AHS Weight: 250 lb	GRIP 197/144 142/136 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD WEBS REACTIONS	2x6 SPF No.2 2x6 SPF No.2 2x4 SPF No.3 *Exce 16-1,15-1,9-8,10-8:2 Structural wood she 2-2-0 oc purlins, ex 2-0-0 oc purlins (3-5 Rigid ceiling directly bracing. 1 Row at midpt (size) 9=0-5-8, Max Horiz 16=90 (LC Max Uplift 9=-265.0	ept* 2x4 SP No.2 athing directly applied cept end verticals, and -8 max.): 4-5. applied or 10-0-0 oc 3-13, 4-12, 6-12 16=0-5-8 C 16) C 17, 16=-265 (I C 1)	2) l or d 3) 6) 4)	Wind: ASCE Vasd=91mph Ke=1.00; Cat exterior zone Interior (1) 5- 24-8-0, Exter 31-8-13 to 42 exposed ; en members and Lumber DOL TCLL: ASCE Plate DOL=1 DOL=1.15 PI Exp.; Ce=0.9 Unbalanced	7-16; Vult=115mpl 1; TCDL=6.0psf; BC 1; TCDL=6.0psf; BC 1; TCDL=6.0psf; BC 1; TCDL=6.0psf; BC 1; TCDL=6.0psf; 1; TCDL=7.10, E: 1; T	h (3-sec CDL=6. ed; MW 2E) 0-1 xterior(2 1-8-13, ver left a ight exp 6 for rea DL=1.60 (roof LL Pf=18.5 =1.0; Rc 0, Lu=50 een cor	ond gust) Opsf; h=35ft; FRS (envelo -12 to 5-1-12 E) 17-10-0 ti Interior (1) ind right osed;C-C foi ctions showr) : Lum DOL= psf (Lum ough Cat C; F)-0-0 usidered for ti	pe) o n; 1.15 ⊽ully his					
FORCES	Max Grav 9=2532 (I (Ib) - Maximum Com	LC 2), 16=2532 (LC 2) hpression/Maximum	5) 6)	Provide adec All plates are	uate drainage to p MT20 plates unles	revent v ss other	water ponding wise indicate	g. ed.					
TOP CHORD	Tension 1-3=-4164/502, 3-4= 4-5=-3065/520, 5-6= 6-8=-4163/503, 1-16 8-92428/334	=-3498/508, =-3508/509, S=-2429/334,	7) 8)	This truss ha chord live loa Provide mech bearing plate	s been designed for ad nonconcurrent w hanical connection capable of withsta	or a 10.0 vith any (by oth unding 2) psf bottom other live loa ers) of truss t 65 lb uplift at	ids. to					
BOT CHORD	15-16=-158/372, 13 12-13=-292/3064, 1	-15=-432/3703, 0-12=-399/3702,	9)	This truss is International	designed in accord Residential Code s	9. lance w	ith the 2018 R502.11.1 a	and				STE OF M	IISSO
WEBS	3-15=-333/171, 3-12 4-13=-51/579, 4-12= 6-12=-816/279, 6-1(1-15=-325/3366, 8-1	3=-826/280, 258/257, 5-12=-23/5)=-336/171, 10=-326/3364	10) 79, LC	or the orienta bottom chord	rlin representation ition of the purlin al I. Standard	does no	top and/or	size			Rev.	SCOTI SEVI	M. CH
												man j	

Unbalanced roof live loads have been considered for 1) this design.

June 6,2023

Job	Truss	Truss Type	Qty	Ply	
P210577	QG01	Jack-Closed Girder	1	3	I58733555 Job Reference (optional)

Run: 8.63 S Nov 19 2022 Print: 8.630 S Nov 19 2022 MiTek Industries, Inc. Mon Jun 05 09:40:15 ID:rUQn_EdQTIYkz1gBgxv7i5z9XXI-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

HGUS28-3

Scale = 1:43.2

Plate Offsets (X, Y): [5:0-3-8,0-6-0]

Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 25.0 13.9/20.0 25.0 0.0 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 NO IRC2018	/TPI2014	CSI TC BC WB Matrix-P	0.22 0.43 0.57	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.02 -0.04 0.00	(loc) 5-6 5-6 4	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 148 lb	GRIP 197/144 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x8 SPF No.2 2x4 SPF No.3 Structural wood shea 6-0-0 oc purlins, exc Rigid ceiling directly bracing. (size) 4= Mecha Max Horiz 6=203 (LC Max Uplift 4=522 (LL) Max Gray, 4=3671 (J	athing directly applie cept end verticals. applied or 10-0-0 oc nical, 6=0-5-8 ; 13) C 16), 6=-476 (LC 16 C 2) 6=4010 (I C 2)	3) d or 4) 5) 5)	Wind: ASCE Vasd=91mph Ke=1.00; Cat exterior zone Interior (1) 5- exposed; en members and Lumber DOL TCLL: ASCE Plate DOL=1 DOL=1.15 PI Exp.; Ce=0.9 Unbalanced s	7-16; Vult=115mph ; TCDL=6.0psf; BC . II; Exp C; Enclose and C-C Exterior(2 1-12 to 7-9-3 zone; d vertical left and ri d forces & MWFRS =1.60 plate grip DC 7-16; Pr=25.0 psf (15); Pg=20.0 psf; I ate DOL=1.15); Is= ; Cs=1.00; Ct=1.10 snow loads have be	a (3-sec CDL=6.0 CDL=6.0 ed; MW 2E) 0-1 c cantile ght exp for rea DL=1.60 (roof LL Pf=13.9 c1.0; Ro een cor	ond gust) Dpsf; h=35ft; FRS (envelo 12 to 5-1-12 ver left and i osed;C-C fo ctions showr) : Lum DOL= psf (Lum ough Cat C; f sidered for t	pe) ; ight r 1; 1.15 Fully his	Co	oncentra Vert: 5=	ted Loa -2685	ads (lb) (F), 10=-2269 (F)	, 11=-1221 (F)
FORCES	(lb) - Maximum Com	.C 2), 6=4010 (LC 2) pression/Maximum	6)	design. This truss ha	s been designed fo	r a 10.0) psf bottom						
TOP CHORD BOT CHORD WEBS NOTES 1) 3-ply truss (0.131"x3" Top chord oc. Bottom ch staggered Web conn 2) All loads a except if n CASE(S) s provided to unless oth	to be connected toget 1-6=-2958/485, 1-2= 2-3=-139/118, 3-4=- 5-6=-369/255, 4-5=- 1-5=-541/3877, 2-5= 2-4=-4609/826 to be connected toget in nails as follows: s connected as follows: s connected as follows: ords connected as follows: ords connected as follows: ords connected as follows: at 0-4-0 oc. ected as follows: 2x4 - ire considered equally oted as follows: 2x4 - ire considered equally oted as follows: 0 or back section. Ply to ply conno o distribute only loads in erwise indicated.	-4013/590, 167/125 720/3661 -474/3880, her with 10d :: 2x4 - 1 row at 0-9-0 ows: 2x8 - 4 rows 1 row at 0-9-0 oc. applied to all plies, :k (B) face in the LO. ections have been noted as (F) or (B),	7) 8) 9) 10) 11) 12) AD 13) LO 1)	 Refer to girder(s) for truss to truss connections. Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 476 lb uplift at joint 6 and 522 lb uplift at joint 4. This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. Use Simpson Strong-Tie HHUS28-2 (22-10d Girder, 4-10d Truss) or equivalent at 2-2-2 from the left end to connect truss(es) to front face of bottom chord. Use Simpson Strong-Tie HUS28-3 (36-10d Girder, 6-10d Truss) or equivalent at 4-1-5 from the left end to connect truss(es) to front face of bottom chord. Use Simpson Strong-Tie HUS26 (14-10d Girder, 4-10d Truss) or equivalent at 6-2-15 from the left end to connect truss(es) to front face of bottom chord. Fill all nail holes where hanger is in contact with lumber. COAD CASE(S) Standard Dead + Snow (balanced): Lumber Increase=1.15, Plate Increase=1.15 						AISSOLUT T.M. ER DISSO7			

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1** Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

June 6,2023

Job	Truss	Truss Type	Qty	Ply	
P210577	QG02	Jack-Closed Girder	1	1	I58733556 Job Reference (optional)

Run: 8.63 S Nov 19 2022 Print: 8.630 S Nov 19 2022 MiTek Industries, Inc. Mon Jun 05 09:40:16 ID:o_k?iuedLB?zrczBilzoxEz9Y9I-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

2-9-12	3-10-0
2-9-12	1-0-4

Scale = 1:41.1

Plate Offsets (X, Y): [5:0-3-0,0-3-8]

		1											
Loading	(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15		TC	0.21	Vert(LL)	-0.01	6-7	>999	240	MT20	197/144
Snow (Pf/Pg)	13.9/20.0	Lumber DOL	1.15		BC	0.49	Vert(CT)	-0.02	6-7	>999	180		
TCDL	25.0	Rep Stress Incr	NO		WB	0.53	Horz(CT)	0.00	4	n/a	n/a		
BCLL	0.0	Code	IRC201	8/TPI2014	Matrix-P								
BCDL	10.0											Weight: 27 lb	FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x8 SPF No.2 *Exce 5-4:2x6 SPF No.2 2x4 SPF No.3 Structural wood she 3-10-0 oc purlins, e Rigid ceiling directly bracing. (size) 4= Mecha Max Horiz 7=107 (LC Max Uplift 4=-143 (L Max Grav 4=891 (LC	ept* 6-2:2x4 SPF No athing directly appli xcept end verticals. applied or 10-0-0 o anical, 7=0-5-8 C 13) C 13), 7=-110 (LC 1 C 22), 7=908 (LC 22	4 0.3, 5 6 ed or 7 ¹⁰ 8 16) <u>9</u> 2) 1	 This truss ha chord live lo. Refer to gird Provide mec bearing plate 7 and 143 lb This truss is International R802.10.2 a Use Simpso Truss, Single the left end t chord. Fill all nail he In the LOAD 	as been designed ad nonconcurren er(s) for truss to hanical connection e capable of withs uplift at joint 4. designed in accor Residential Cod nd referenced sta n Strong-Tie HUS e Ply Girder) or e o connect truss(e ples where hange CASE(S) section	d for a 10.1 t with any truss con on (by oth standing 1 ordance w e sections andard AN S28 (22-10 quivalent es) to fron er is in cor n, loads a	D psf bottom other live loa nections. ers) of truss 10 lb uplift a ith the 2018 is R502.11.1 a ISI/TPI 1. Dd Girder, 4- at 1-10-12 fra face of botto tact with lum oplied to the	ads. to t joint and 10d om om aber. face					
TOP CHORD	(Ib) - Maximum Com Tension 1-7=-402/124, 1-2=-	pression/Maximum 571/111. 2-3=-574/ [.]	L 193. 4	of the truss a	are noted as front Standard	t (F) or ba	ck (B).	Diata					
	3-4=-883/288	,	1	Dead + Sn Increase=1	15	umper inc	rease=1.15,	Plate					
BOT CHORD	6-7=-7/18, 5-6=-98/9 4-5=-39/42	929, 2-5=-223/223,		Uniform Lo	ads (lb/ft) 78 6-720 4-	-520							
WEBS	5-7=-208/128, 1-5=-	80/499, 3-5=-397/1	191	Concentrat	ed Loads (lb)	0-20							
NOTES				Vert: 8=-	1375 (F)								110
 Wind: AS Vasd=911 Ke=1.00; exterior z: and right exposed; reactions DOL=1.60 TCLL: AS Plate DOD Plate DOD 	CE 7-16; Vult=115mph mph; TCDL=6.0psf; BC Cat. II; Exp C; Enclose one and C-C Exterior(2 exposed ; end vertical I C-C for members and f shown; Lumber DOL= 0 CE 7-16; Pr=25.0 psf (L=1.15); Pg=20.0 psf; F	(3-second gust) DL=6.0psf; h=35ft; d; MWFRS (envelop E) zone; cantilever left and right orces & MWFRS for 1.60 plate grip roof LL: Lum DOL= 2f=13.9 psf (Lum	pe) left r 1.15							•		STE OF I SEV	MISSOLA TM. HER Server 018807

Plate DOL=1.15); Pg=20.0 psf; Pf=13.9 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat C; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10

3) Unbalanced snow loads have been considered for this design.

June 6,2023

Page: 1

ESSIONAL E

Job	Truss	Truss Type	Qty	Ply		
P210577	R01	Roof Special Girder	1	1	Job Reference (optional)	58733557

Run: 8.63 S Nov 19 2022 Print: 8.630 S Nov 19 2022 MiTek Industries, Inc. Mon Jun 05 09:40:17 ID:k8JPox1QpajiU0cZvxiL_Kz9XBH-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

Scale = 1	:105.8
-----------	--------

Plate Offsets	(X, Y): [2:0-5-8,Edge],	[5:0-3-8,0-2-0], [11:0	-4-0,0-2-8	8], [28:0-2-12,0	0-4-0], [29:0-3-8,0-	-2-0]								
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 25.0 18.9/20.0 25.0 0.0 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 NO IRC2018	8/TPI2014	CSI TC BC WB Matrix-S	0.82 0.67 0.83	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.10 -0.24 0.05	(loc) 31-32 19-21 18	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 362	GRIP 197/144 Ib FT = 20%	
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD WEBS REACTIONS FORCES TOP CHORD BOT CHORD	2x6 SPF No.2 *Exce 1.5E 2x6 SPF No.2 2x4 SPF No.3 *Exce No.2 Structural wood shea 3-8-15 oc purlins, ex 2-0-0 oc purlins (4-7 Rigid ceiling directly bracing. 1 Row at midpt (size) 18=0-5-8, Max Horiz 34=-178 (I Max Uplift 18=-372 (I 16), 34=-11 Max Grav 18=2681 (I (lb) - Maximum Com 1-2=-823/1033, 2-3= 3-4=-1356/2792, 4-5 5-6=-289/257, 6-7=-5 9-10=-2830/695, 10- 11-12=-2376/675, 12 13-14=-307/72 1-34=-960/817, 33-3 32-33=-3072/1381, 5 29-31=-1671/748, 22 7000 00000 00000	pt* 3-6:2x4 SP 1650/ pt* 7-27,16-19:2x4 S athing directly applied cept -15 max.): 3-6, 11-12 applied or 3-11-15 or 11-22, 10-23, 13-22 28-0-5-8, 34=0-5-4 LC 17) LC 111), 28=-907 (LC 065 (LC 12) (LC 71), 28=2902 (LC C 32) pression/Maximum -1354/2786, =-704/1671, 978/914, 7-9=-2607/6 11=-2602/687, 2-13=-2727/677, 1-16=-3413/574, 4=-960/827, 31-32=-3072/1381, 3-29=-279/357, 27 opt for 200	= W P d or c x c x (1) c 2) c 2) c 2) c 2) , 3660, 3) 4)	EBS Unbalanced this design. Wind: ASCE Vasd=91mpl Ke=1.00; Ca exterior zone Interior (1) 6 38-11-0, Ext 45-4-4 to 61- end vertical I forces & MW DOL=1.60 pl TCLL: ASCE Plate DOL=1 DOL=1.15 P Exp.; Ce=0.9 Unbalanced design.	2-34=-668/1082, 2 3-33=-550/251, 6- 6-28=-573/607, 11 11-22=-183/447, 7 -28=-2648/859, 5 9-27=-1118/442, 9 10-25=-344/251, 7 4-33=-459/639, 5- 4-31=-677/1554, 9 16-18=-2462/706, 13-22=-942/273, 14-19=-533/232, 7 roof live loads have 57-16; Vult=115m, h, TCDL=6.0ps; E t, II; Exp C; Enclo and C-C Exterior -1-0 to 36-1-0, Ex erior(2R) 38-11-0 -8-0 zone; cantilevel left and right expo /FRS for reactions late grip DOL=1.6 57-16; Pr=20.0 ps 145; Pg=20.0 ps 145; Pg=20, ps 145; P	2-33=-21 229=-666 1-23=-14 12-22=-1 7-27=-75 3-25=-26 10-23=-4 29=-979 5-31=-49 13-21=- 14-21=-1 16-19=-6 ve been of ph (3-sec 3SCDL=6. sect; MW r(2E) 0-0 terior(2E) 0-0 t	64/931, 4/03, 6/421, 00/549, 6/2445, 1/608, 32/227, 1/871, 4-32=0 1/276, 5/321, 69/153, 34/3037 considered for cond gust) 0psf; h=35ft; IFRS (envelop -0 to 6-1-0,) 36-1-0 to 4, Interior (1) ad right expose for members - Lum DOL=1 9 psf (Lum ough Cat C; Fi 0-0-0 nsidered for th	/90, /90, ed ; and .15 ully is	 5) WA ance eres Bra ("B bui corr for inst ind assis har 6) Pro 7) All 8) Thi chco 9) Pro bea joir 18. 	RNING: d experie ction. Fc e Guide t cong of N CSI"), joi lding own thract with the desig tallation i ividual tri syndes are plates ar s truss h ord live (c ovide ade plates ar s truss h ord live (c ovide men aring plat t 34, 907	This I need to be a service of the s	long span trus r proper and s ral handling a d Practice for Plate Connecter roduced by SE alified register l inspection of nt/bracing and ember restrain nosibility for tru , or bracing. drainage to p MT20 unless - en designed fic and connection able of withsta lift at joint 28 a struct both SCC SI SCC SI	s requires extre afe handling an nd erection guid Handling, Install id Wood Trusse (CA and TPI. Th ithorized agent ed design profe the temporary the permanent t/bracing. MiTe iss manufacture revent water por otherwise indica or a 10.0 psf bott ith any other livi (by others) of tr nding 1065 lb u and 372 lb uplift	me care d lance, ling & .s le shall ssional .k ., nding. .ted. tom e loads. uss to plift at at joint
	23-25=-342/2516, 22 21-22=-405/3015, 19 18-19=-2/291, 17-18	2-23=-246/2299, 3-21=-401/3054, =-2/291									A.	OFFESSION	01018807	

Continued on page 2 WARNING - Verify

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

June 6,2023

Job	Truss	Truss Type	Qty	Ply	
P210577	R01	Roof Special Girder	1	1	Job Reference (optional)

- 10) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.
- 12) This truss has large uplift reaction(s) from gravity load case(s). Proper connection is required to secure truss against upward movement at the bearings. Building designer must provide for uplift reactions indicated.
- 13) "NAILED" indicates Girder: 3-10d (0.148" x 3") toe-nails per NDS guidelines.
- 14) Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 143 lb down and 496 lb up at 7-11-12, and 143 lb down and 496 lb up at 9-11-12, and 143 lb down and 496 lb up at 11-11-12 on top chord, and 422 lb down and 1323 lb up at 6-1-0 on bottom chord. The design/selection of such connection device(s) is the responsibility of others.
- 15) In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (F) or back (B).

LOAD CASE(S) Standard

- 1) Dead + Snow (balanced): Lumber Increase=1.15, Plate Increase=1.15
 - Uniform Loads (lb/ft)
 - Vert: 1-3=-78, 3-6=-88, 6-11=-78, 11-12=-88, 12-17=-78, 1-17=-20
 - Concentrated Loads (lb)
 - Vert: 33=778 (F), 35=282 (F), 37=282 (F), 38=282 (F), 45=28 (F), 46=28 (F), 47=28 (F)

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Run: 8.63 S Nov 19 2022 Print: 8.630 S Nov 19 2022 MiTek Industries, Inc. Mon Jun 05 09:40:17 ID:k8JPox1QpajiU0cZvxiL_K29XBH-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 2

Job	Truss	Truss Type	Qty	Ply		
P210577	R02	Roof Special	1	1	Job Reference (optional)	58733558

Run; 8.63 S Nov 19 2022 Print; 8.630 S Nov 19 2022 MiTek Industries, Inc. Mon Jun 05 09:40:19 ID:0s3VrStqBOIBbQrJrUV4dlz9XCm-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

<u>4-1-10</u> <u>8-1-0</u> <u>4-1-10</u> <u>3-11-6</u> <u>12-8-6</u> <u>17-3-12</u> <u>20-7-12</u> <u>24-0-8</u> 4-7-6 4-7-6 3-4-0 3-4-12 30-9-4 37-6-0 44-5-0 51-5-2 58-6-4 61-8-0 6-8-12 6-11-0 7-0-1 7-1-2 6-8-12 3-1-12 6x6= 10 34 351 136 6x6 🚅 319323 ₅12 10-6-15 8-4-15 4x8 🚅 2-2-0 10-6-15 4x8-80 12 2.5¹² 3x4 m 7 13 6 16 4x12 =37 6x6= 7x8= 4x8**.** -5-19-8" ⊟18-1-9 6×12 3 4 5 14 .29 2 • 8-0-Ih 15 Ì 뉟 . 9 0 8 28 ₿ 23 茵 16 27 26 25 24 2221 20 19 18 17 5x10= 3x4 II 5x10= 6x6= 5x10 =^{3x10} [¶]-8-0 4-1-10 58-9-0 3-11-0 7-11-4 3-11-0 3-9-10 0-2-10 12-8-6 58-6-4 17-5-8 20-7-12 30-9-4 44-5-0 37-6-0 <u>51-5-2</u> -1--_ 0-2-12 2-11-0 6-11-0 7-1-2 4-9-2 4-9-2 3-2-4 10-1-8 6-8-12 7-0-1

Scale = 1:105.9

Plate Offsets (X.)	():	[2:0-2-12.0-3-0]. [5:0-2-8.0-3-8]	

Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 25.0 18.9/20.0 25.0 0.0 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018	8/TPI2014	CSI TC BC WB Matrix-S	0.44 0.57 0.89	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.10 -0.24 0.06	(loc) 17-19 17-19 16	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 342 lb	GRIP 197/144 P FT = 20%	
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD	2x6 SPF No.2 2x6 SPF No.2 2x4 SPF No.3 *Exce Structural wood shea 3-10-3 oc purlins, ex 2-0-0 oc purlins (6-0 Rigid ceiling directly bracing, Except: 6-0-0 oc bracing: 1-2	pt* 17-14:2x4 SP No athing directly applie ccept -0 max.): 3-5. applied or 10-0-0 oc 28,27-28,23-24.	Wi b.2 d or :	EBS 3 2 4 6 8 1 1 1 1 1 1 1 1 1 1 1 1 1 1	3-27=-206/138, 5-2 -2-27=-409/1341, 4-2 -2-27=-304/231, 4-2 -23=-405/128, 8-2 3-22=-128/1472, 9- -20=-245/151, 14-1 1-20=-1068/285, 1 12-19=-331/151, 12 4-17=-551/2780	4=-76/5 28=-11(24=-16 6=0/19 3=-329 22=-66(16=-23 1-19=0 2-17=-4	77,)4/448, 45/269, I, 5-23=-904/ 1/532, 0/183, 33/662, /403, 27/210,	185,	5) WA and ere Bra ("B" buil cor for inst indi	RNING: experie ction. Fo Guide to cing of M CSI"), joi ding owr tract with the desig allation r vidual tru	This I nce fo r gene D Good letal F ntly pr ner or t n a qua yn and estrain uss me	ong span truss i r proper and safi ral handling and d Practice for Ha late Connected oduced by SBC, the owner's auth alified registered inspection of the tt/bracing and the mber restraint/b	requires extreme care e handling and I erection guidance, andling, Installing & Wood Trusses A and TPI. The iorized agent shall I design professional e temporary the permanent pracing. MiTek	
WEBS REACTIONS	1 Row at midpt (size) 16=0-5-8, 28=0-5-4 Max Horiz 28=190 (L Max Uplift 16=-342 (28=-312 (Max Grav 16=2548 (28=1299 (8-23, 9-20, 11-20 23=0-5-8, (req. 0-5- LC 16) LC 17), 23=-465 (LC LC 12) (LC 2), 23=3573 (LC (LC 29)	1) 10), 2) : 16), 2),	Unbalanced i this design. Wind: ASCE Vasd=91mpt Ke=1.00; Cal exterior zone Interior (1) 6- 43-8-0, Interi and right exp	roof live loads have 7-16; Vult=115mph 1; TCDL=6.0psf; BC t. II; Exp C; Enclose and C-C Exterior(2 2-0 to 37-6-0, Exter or (1) 43-8-0 to 61- osed - end vertical	e been (CDL=6.0 ed; MW 2E) 0-0 rior(2R 8-0 zor	considered fo cond gust) Dpsf; h=35ft; FRS (envelop -0 to 6-2-0,) 37-6-0 to ue; cantilever Licebt	r pe) left	6) Pro 7) All 8) Thi chc 9) WA tha	dling, er vide ade blates ar s truss ha rd live lo RNING: n input b	ection quate e 4x6 as bee ad noi Requi earing	drainage to prev drainage to prev MT20 unless othen designed for a noconcurrent with red bearing size size.	vent water ponding. nerwise indicated. a 10.0 psf bottom n any other live loads. at joint(s) 23 greater	
FORCES	(lb) - Maximum Com Tension 1-2=-749/708, 2-3=-1 4-5=-132/638, 5-6=-2 6-8=-225/1470, 8-9= 9-10=-2157/530, 10- 11-12=-2918/552, 12 14-15=-298/50	pression/Maximum 883/109, 3-4=-855/1 292/1494, 2187/461, -11=-2162/524, 2-14=-3190/470,	25, 3) 4)	exposed;C-C reactions sho DOL=1.60 TCLL: ASCE Plate DOL=1 DOL=1.15 Pl Exp.; Ce=0.9 Unbalanced	<pre>closed , end ventual for members and wm; Lumber DOL= 7-16; Pr=25.0 psf, .15); Pg=20.0 psf; ate DOL=1.15); Is= i; Cs=1.00; Ct=1.10; snow loads have b</pre>	(roof LL Pf=18.9 (roof LL f=18.9 (roof LL f=18.9 (roof LL (roof LL (roof LL (roof LL (roof LL) (roof LL) (MWFRS for ate grip :: Lum DOL=:) psf (Lum ough Cat C; F)-0-0 isidered for th	1.15 Fully nis				STATE OF	MISSOLATIN.	
BOT CHORD	1-28=-636/744, 27-2 26-27=-244/1139, 24 23-24=-587/184, 22- 20-22=-158/1910, 15 17-19=-301/2812, 16 15-16=-1/279	8=-636/753, 4-26=-244/1139, -23=-101/718, -20=-260/2575, 6-17=-1/279,	-,	design.						٦		NUM PE-2001	IER IBER 1018807	

Continued on page 2 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

June 6,2023

Job	Truss	Truss Type	Qty	Ply		
P210577	R02	Roof Special	1	1	Job Reference (optional)	158733558

- Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 312 lb uplift at joint 28, 465 lb uplift at joint 23 and 342 lb uplift at joint 16.
- 11) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

LOAD CASE(S) Standard

Run: 8.63 S Nov 19 2022 Print: 8.630 S Nov 19 2022 MiTek Industries, Inc. Mon Jun 05 09:40:19 ID:0s3VrStqBOIBbQrJrUV4dlz9XCm-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC?f Page: 2

Job	Truss	Truss Type	Qty	Ply	
P210577	R03	Roof Special	1	1	Job Reference (optional)

Run; 8.63 S Nov 19 2022 Print; 8.630 S Nov 19 2022 MiTek Industries, Inc. Mon Jun 05 09:40:21 ID:bfDopYczv7W4VHK7Bx6St9z9XEP-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:105.9

Plate Offsets (X, Y): [2:0-3-0,0-2-8],	, [6:0-2-12,0-3-8], [2:	3:0-3-12,0-	4-8], [24:0-3-	•8,0-2-8], [27:0-2-0,0)-4-0]								
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 25.0 18.9/20.0 25.0 0.0 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC201	8/TPI2014	CSI TC BC WB Matrix-S	0.48 0.68 0.97	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.10 -0.26 0.08	(loc) 23-24 23-24 18	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 363 lb	GRIP 197/144 FT = 20%	
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD	2x6 SPF No.2 2x6 SPF No.2 *Exce No.3 2x4 SPF No.3 *Exce No.2 Structural wood she 3-10-11 oc purlins, e 2-0-0 oc purlins (6-0 Rigid ceiling directly bracing. Except: t 12-23	ept* 26-8,12-22:2x4 ept* 23-21,19-16:2x4 eathing directly applie except 0-0 max.): 4-6. v applied or 6-0-0 oc	BC SPF 4 SP ed or W	DT CHORD	1-33=-659/745, 32 30-32=-213/560, 2 28-29=-163/710, 2 26-27=-108/0, 25-: 8-25=-2226/395, 2 23-24=-191/2175, 12-23=-205/188, 2 19-21=-282/2706, 17-18=-74/307 4-30=-214/119, 6-: 25-27=-1449/283, 10-24=-610/197, 1 13-23=-777/268, 2	-33=-65: 19-30=-11 17-28=-9- 26=-116, 14-25=-9- 22-23=0 11-22=-2- 18-19=- ⁻ 28=-68/6 8-24=-2- 0-23=-3: 1-33=-100	9/753, 63/710, 46/207, /28, 6/354, /130, 4/186, 74/307, 74/307, 352, 40/2135, 54/163, 87/426,		4) Ur de 5) W ar er se Br ("E bu co foi ins	nbalanced ssign. ARNING: d experie ection. Fo e Guide to acing of N 3CSI"), joi ilding own intract with r the desig stallation r dividual tru	I snow This I nce fo o Good Aetal F ntly pr ner or t n a qua gn and restrain uss me	loads have bee long span truss r proper and saf ral handling and d Practice for Ha Plate Connected oduced by SBC the owner's auth alified registered inspection of the mber restraint/l	n considered for thi requires extreme ca e handling and I erection guidance andling, Installing & Wood Trusses A and TPI. The torized agent shall I design profession: e temporary to permanent pracing. MiTek	are , al
WEBS REACTIONS	1 Row at midpt 1 Row at midpt (size) 18=0-5-8, 33=0-5-4 Max Horiz 33=190 (I Max Uplift 18=-344 (33=-320 (I Max Grav 18=2544 33=1302	10-23, 13-23, 15-21 , 27=0-5-8, (req. 0-5 LC 16) (LC 17), 27=-467 (LC (LC 2), 27=3586 (LC (LC 59)	1 -10), C 16), C 2),		3-30=-263/380, 3- 2-32=-341/1178, 5 5-30=-85/394, 5-22 7-25=-298/2204, 6 13-21=-161/129, 2 16-18=-2341/633, 1 5-19=-582/239, 1 11-23=-263/1060	32=-394, -28=-15: 9=0/160, -27=-73- 1-23=-2: 15-21=- 6-19=-5-	/219, 29/270, , 7-27=-2305/3; 4/128, 53/2484, 135/125, 66/2842,	25,	as ha 6) Pr 7) Al 8) Th ch 9) W th	sumes no indling, er ovide ade I plates ar his truss h ord live lo ARNING: an input b	ection equate e 4x6 as bee ad noi Requi earing	nsibility for trus , or bracing. drainage to pre MT20 unless otl an designed for a nconcurrent with red bearing size size.	s manufacture, vent water ponding, nerwise indicated. a 10.0 psf bottom n any other live loace at joint(s) 27 great	Js. ter
FORCES	(lb) - Maximum Com Tension 1-2=-750/730, 2-3=- 4-5=-877/151, 5-6=- 7-8=-282/202, 8-10= 10-11=-2364/538, 1 12-13=-2441/539, 1: 15-16=-3039/429, 1:	npression/Maximum 573/84, 3-4=-885/13 184/995, 6-7=-263/ -2496/479, 1-12=-2148/577, 3-15=-3003/547, 6-17=-318/176	1) 39, 1568, 2)	Unbalance this design Wind: ASC Vasd=91m Ke=1.00; C exterior zo Interior (1) 43-8-0, Inter and right e exposed:C	ed roof live loads have been considered for n. iCE 7-16; Vult=115mph (3-second gust) mph; TCDL=6.0psf; BCDL=6.0psf; h=35ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) ione and C-C Exterior(2E) 0-0 to 6-2-0, I) 6-2-0 to 37-6-0, Exterior(2R) 37-6-0 to iterior (1) 43-8-0 to 61-8-0 zone; cantilever left exposed ; end vertical left and right C-C for members and forces & MWFRS for					C		STATE OF SCOT SEV	MISSOLUTION	

- reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- TCLL: ASCE 7-16; Pr=25.0 psf (roof LL: Lum DOL=1.15 3) Plate DOL=1.15); Pg=20.0 psf; Pf=18.9 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat C; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10, Lu=50-0-0

Continued on page 2 Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2/2/2/ BE-VRE USE. Design valid for use only with MITEK® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

PE-200101880

E

June 6,2023

SIONAL

Ճ

Job	Truss	Truss Type	Qty	Ply		
P210577	R03	Roof Special	1	1	Job Reference (optional)	

- Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 320 lb uplift at joint 33, 467 lb uplift at joint 27 and 344 lb uplift at joint 18.
- 11) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

LOAD CASE(S) Standard

Run: 8.63 S Nov 19 2022 Print: 8.630 S Nov 19 2022 MiTek Industries, Inc. Mon Jun 05 09:40:21 ID:bfDopYczv7W4VHK7Bx6St9z9XEP-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 2

Job	Truss	Truss Type	Qty	Ply	
P210577	R04	Roof Special	1	1	Job Reference (optional)

Run; 8.63 S Nov 19 2022 Print; 8.630 S Nov 19 2022 MiTek Industries, Inc. Mon Jun 05 09:40:23 ID:EcJCVbjB6hJRE3E5Q6IKPmz9XFY-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Scale = 1:105.9

Plate Offsets (X, Y): [3:0	-0-12,0-2-0)], [6:0-2-12,0-3-8],	[23:0-3-1	2,0-4-8], [24:0-3	8-8,0-2-8], [27:0-2-0	,0-4-0], [32:0-3-0,0-3-12	2]						
Loading TCLL (roof)		(psf) 25.0	Spacing Plate Grip DOL	2-0-0 1.15		CSI TC	0.48	DEFL Vert(LL)	in -0.10	(loc) 23-24	l/defl >999	L/d 240	PLATES MT20	GRIP 197/144	
Snow (Pf/Pg) TCDL BCLL	1	8.9/20.0 25.0 0.0	Lumber DOL Rep Stress Incr Code	1.15 YES IRC2	018/TPI2014	BC WB Matrix-S	0.68 0.97	Vert(CT) Horz(CT)	-0.26 0.08	23-24 18	>999 n/a	180 n/a			
BCDL		10.0											Weight: 366 lb	FT = 20%	
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD 1 Row at midp WEBS REACTIONS	2x6 SPF 2x6 SPF No.3 2x4 SPF No.2 Structura 3-10-11 c 2-00 oc Rigid ceil bracing. t 12-23 1 Row at (size) Max Horiz Max Uplift	No.2 No.2 *Exce No.3 *Exce I wood she por purlins, e purlins (6-0 ling directly Except: midpt 18=0-5-8, 32=0-5-4 32=190 (I 18=-344 (32=-321 (18=-324)	ept* 26-8,12-22:2x4 ept* 23-21,19-16:2x eathing directly appl except)-0 max.): 4-6. y applied or 6-0-0 or 10-23, 13-23, 15-2 , 27=0-5-8, (req. 0-4 LC 16) (LC 17), 27=-468 (L (LC 12) (LC 2) (LC 2) (LC 2)	4 SPF 4 SP ied or c 21 5-10), _C 16),	BOT CHORD WEBS	$\begin{array}{l} 1\text{-}32\text{=-}694/836, 30\\ 29\text{-}30\text{=-}187/323, 2\\ 27\text{-}28\text{=-}1202/247, \\ 25\text{-}26\text{=-}160/34, 8\text{-}\\ 24\text{-}25\text{=-}48/332, 20\\ 22\text{-}23\text{=-}0/130, 12\text{-}2\\ 21\text{-}22\text{=-}24/186, 19\\ 18\text{-}19\text{=-}74/307, 17\\ 4\text{-}30\text{=-}328/145, 6\text{-}\\ 25\text{-}27\text{=-}1435/298, \\ 10\text{-}24\text{=-}611/199, 1\\ 13\text{-}23\text{=-}778/268, 2\\ 3\text{-}32\text{=-}1397/563, 3\\ 5\text{-}28\text{=-}1451/261, 5\\ 7\text{-}27\text{=-}2150/288, 7\\ 6\text{-}27\text{=-}524/105, 11\\ 13\text{-}21\text{=-}161/129, 2\\ 16\text{-}18\text{=-}2341/632, 1\\ 15\text{-}19\text{=-}582/238, 1\\ \end{array}$)-32=-26 28-29=-1 26-27=- 25=-226 3-24=-18 23=-206/)-21=-28 2-3=-70/6 8-24=-2 10-23=-3 3-30=-17 5-30=-11 7-25=-30 1-23=-26 21-23=-2 15-21=- 16-19=-5	3/549, 87/323, 117/0, 3/410, 6/2172, 190, 0/2705, /307 504, 47/2135, 61/163, 8/256, 7/232, 8/742, 5-29=0/1 3/2203, 1/1058, 51/2483, 136/125, 64/2842	112,	5) WA annere see Bra ("B bui con for ins ind ass hat 6) Pro 7) All 8) Th cho 9) WA tha	ARNING: d experied cotion. For e Guide tra- acting of M BCSI"), joi ilding own thract with the desig- tallation n tividual tru- sumes no ndling, en- povide ade plates ar- is truss ha ord live lo ARNING: an input bi	This I noce for genee 0 Good letal P ntly pr ner or t n a qua n and estrair respo- cection, quate e 4x6 as bee ad nor Requi earing	ong span truss i r proper and saf ral handling anc d Practice for Ha Plate Connected oduced by SBC. the owner's auth alified registered inspection of th t/bracing and th ember restraint/k nsibility for truss or bracing. drainage to pre- MT20 unless oft en designed for a noconcurrent with red bearing size size.	equires extreme care e handling and erection guidance, indling, Installing & Wood Trusses A and TPI. The iorized agent shall design professional e temporary e permanent oracing. MiTek s manufacture, vent water ponding. herwise indicated. a 10.0 psf bottom any other live loads. at joint(s) 27 greater	1
FORCES TOP CHORD	(lb) - Max Tension 1-2=-845 4-5=-723 6-7=-248 8-10=-24 11-12=-2 13-15=-3 16-17=-3	32=1305 kimum Corr /147, 2-3=- /147, 5-6=- 94/473, 10 147/574, 12 002/544, 12 18/176	(LC 59) hpression/Maximum 782/727, 3-4=-769, 212/1241, =-251/160, -11=-2363/535, 2-13=-2440/537, 5-16=-3038/427,	/126,	 Unbalanced this design. Wind: ASC Vasd=91mp Ke=1.00; C exterior zor Interior (1) (43-8-0, Inter and right ex exposed; C- reactions sl DOL=1.60 TCLL: ASC 	d roof live loads have E 7-16; Vult=115mp ph; TCDL=6.0psf; E at. II; Exp C; Enclo he and C-C Exterior 6-2-0 to 37-6-0, Ext rior (1) 43-8-0 to 6 kposed ; end vertica C for members and hown; Lumber DOL E 7-16; Pr=25.0 ps	ve been bh (3-sec 3CDL=6. sed; MW r(2E) 0-0 terior(2R 1-8-0 zor al left and d forces a =1.60 pl f (roof LL	considered for cond gust) 0psf; h=35ft; (FRS (envelope -0 to 6-2-0,) 37-6-0 to he; cantilever le d right & MWFRS for ate grip _: Lum DOL=1.) ft 15				STATE OF SCOT SEV	MISSOLUT T.M. HER MISSOLUT T.M. HISSOLUT HISSOLUT HISSOLUT HISSO	>

- .: Lum DOL=1.15 3) 25.0 pst (root Plate DOL=1.15); Pg=20.0 psf; Pf=18.9 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat C; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10, Lu=50-0-0
- 4) Unbalanced snow loads have been considered for this design.

June 6,2023

EZ

Page: 1

SIONAL

0

Ճ

Continued on page 2

Job	Truss	Truss Type	Qty	Ply		
P210577	R04	Roof Special	1	1	Job Reference (optional)	158733560

- Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 321 lb uplift at joint 32, 468 lb uplift at joint 27 and 344 lb uplift at joint 18.
- 11) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

LOAD CASE(S) Standard

Run: 8.63 S Nov 19 2022 Print: 8.630 S Nov 19 2022 MiTek Industries, Inc. Mon Jun 05 09:40:23 ID:EcJCVbjB6hJRE3E5Q6IKPmz9XFY-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 2

Job	Truss	Truss Type	Qty	Ply	
P210577	R05	Roof Special	1	1	Job Reference (optional)

Run: 8.63 S Nov 19 2022 Print: 8.630 S Nov 19 2022 MiTek Industries, Inc. Mon Jun 05 09:40:24 ID:9NGPVPWSfzjdFibtZ6WtMgz9XH6-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale =	1:105.9
---------	---------

Plate Offsets ((X, Y): [2:0-	3-0,0-2-8],	[22:0-3-12,0-4-8], [23:0-3-8,0	0-2-0], [24:0-5-	8,0-5-0]									
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	18	(psf) 25.0 3.9/20.0 25.0 0.0 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC20	18/TPI2014	CSI TC BC WB Matrix-S	0.48 0.61 1.00	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.10 -0.25 0.07	(loc) 22-23 22-23 17	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 364	GRIP 197/144 lb FT = 20%	
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD	2x6 SPF N 2x6 SPF N No.3 2x4 SPF N No.2 Structural 3-10-10 oc p Rigid ceili bracing. B	No.2 No.2 *Exce No.3 *Exce wood shea c purlins, e purlins (6-0 ng directly Except:	ept* 25-7,11-21:2x4 ept* 22-20,18-15:2x4 athing directly applie except -0 max.): 4-6. applied or 6-0-0 oc	SPF 4 SP ed or	NEBS	4-28=-411/1 24-26=-1868 7-23=-250/2 9-22=-368/1 2-31=-1067/ 3-29=-292/2 5-26=-1410/ 5-27=-50/47 20-22=-251/ 14-20=-135/ 15-18=-564/	36, 6-26=-153 3/359, 6-24=-21 0/88, 9-23=-60 63, 12-22=-77 438, 3-28=-46; 25, 2-29=-451 253, 5-28=-177 , 12-20=-161/1 2487, 15-17=-5 2845, 10-22=-5	1/247, 399/2263, 5/199, 7/267, 2/119, 1365, 7/1036, 29, 2343/632, 33/238, 261/1059		5) WA anc ere see Bra ("B buil cor for inst ind ass bar	RNING: I experie ction. Fo Guide tr cing of N CSI"), joi Iding own tract with the desig callation r ividual tr cumes no coling, or	This I nce fo or gene o Good Aetal F intly pr ner or h a qua gn and restrain uss me o respon	long span truss r proper and si ral handling and d Practice for H Plate Connecte oduced by SB the owner's au alified registere inspection of the the owner's au alified registere inspection of the orbracing and ember restraint or bracing	requires extren afe handling and of erection guida landling, Installii d Wood Trusses CA and TPI. The thorized agent s ad design profes he temporary the permanent /bracing. MiTek ss manufacture,	ne care ance, ng & siball sional
1 Row at midp WEBS REACTIONS	ot 11-22 1 Row at r (size) Max Horiz Max Uplift Max Grav	midpt 17=0-5-8, 31=0-5-4 31=-190 (17=-346 (31=-320 (17=2545 (31=1277 (9-22, 12-22, 14-20 26=0-5-8, (req. 0-5 LC 21) LC 17), 26=-473 (LC LC 12) (LC 2), 26=3622 (LC (LC 25)	G 16), C 16), C 2),	 Unbalance this design Wind: ASC Vasd=91m Ke=1.00; C exterior zon Interior (1) 43-8-0, Inte and right e 	d roof live loa E 7-16; Vult= ph; TCDL=6.(cat. II; Exp C; ne and C-C E 6-2-0 to 37-6- erior (1) 43-8- xposed ; end	ds have been of 115mph (3-sec 0psf; BCDL=6. Enclosed; MW xterior(2E) 0-0 0, Exterior(2R 0 to 61-8-0 zor vertical left and	considered fo ond gust) Dpsf; h=35ft; FRS (envelop 0 to 6-2-0,) 37-6-0 to le; cantilever I right	or pe) left	6) Pro 7) Thi chc 8) WA tha 9) Pro bea join	 handling, erection, or bracing. Provide adequate drainage to prevent water ponding. This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads WARNING: Required bearing size at joint(s) 26 greate than input bearing size. Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 473 lb uplift at joint 26, 320 lb uplift at joint 31 and 346 lb uplift at joint 				ding. om loads. greater iss to ft at at joint
FORCES	(lb) - Maxi Tension 1-2=-756/ 4-5=-365/ 7-9=-2504 10-11=-21 12-14=-30	imum Com 703, 2-3=- 143, 5-6=- 1/473, 9-10 152/574, 1 206/544, 1 20/276	pression/Maximum 777/112, 3-4=-409/ 259/1624, 6-7=-286)=-2368/535, 1-12=-2445/537, 4-15=-3042/427,	122, 5/133,	exposed;C reactions s DOL=1.60 B) TCLL: ASC Plate DOL= DOL=1.15 Exp.; Ce=0 I) Unbalance	-C for membe hown; Lumbe =1.15); Pg=20 Plate DOL=1. 1.9; Cs=1.00; d snow loads	rs and forces & r DOL=1.60 pli 5.0 psf (roof LL 0.0 psf; Pf=18.9 15); Is=1.0; Rc Ct=1.10, Lu=50 have been cor	* MWFRS for ate grip) psf (Lum pugh Cat C; F)-0-0 asidered for th	1.15 Fully				STATE OF	MISSOURIER	AN AN AN
BOT CHORD	1-31=-633 28-29=-23 26-27=-55 7-24=-217 22-23=-18 11-22=-20 18-20=-28 16-17=-74	30/751, 29-3 39/716, 27- 52/193, 25- 79/401, 23- 37/2181, 2' 55/191, 20- 30/2708, 17 1/307	91=-633/759, -28=-552/193, -26=-86/0, 24-25=-9 -24=-48/345, 1-22=0/130, -21=-24/186, 7-18=-74/307,	93/22,	design.						-	A A A A A A A A A A A A A A A A A A A	PE-200	VIBER)1018807 AL ENGT AL ENGT une 6,2023	L'AND

Job	Truss	Truss Type	Qty	Ply	
P210577	R05	Roof Special	1	1	Job Reference (optional)

10) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

 Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

LOAD CASE(S) Standard

Run: 8.63 S Nov 19 2022 Print: 8.630 S Nov 19 2022 MiTek Industries, Inc. Mon Jun 05 09:40:24 ID:9NGPVPWSfzjdFibtZ6WtMgz9XH6-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 2

Job	Truss	Truss Type	Qty	Ply	
P210577	R06	Roof Special	1	1	Job Reference (optional)

Run; 8.63 S Nov 19 2022 Print; 8.630 S Nov 19 2022 MiTek Industries, Inc. Mon Jun 05 09:40:26 ID:1otnViXek4W71FvJJbYuabz9XIN-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

MiTek 16023 Swingley Ridge Rd Chesterfield, MO 63017

Scale = 1:105.9

Plate Offsets	(X, Y): [2:0-2-1	12,0-3-0]	, [23:0-3-12,0-4-8],	[24:0-3-8	,0-2-0], [25:0-6	-4,0-4-8]									
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	18.9/	(psf) 25.0 /20.0 25.0 0.0 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC20	18/TPI2014	CSI TC BC WB Matrix-S	0.48 0.72 0.85	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.09 -0.24 0.06	(loc) 19-21 23-24 18	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 369	GRIP 197/144 Ib FT = 20%	, 2
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD 1 Row at midt WEBS	BER CHORD 2x6 SPF No.2 CHORD 2x6 SPF No.2 *Except* 26-8,12-22:2x4 SPF No.3 S S 2x4 SPF No.3 *Except* 24-8,23-21,16-19:2x4 SP No.2 CING CHORD Structural wood sheathing directly applied or 3-11-6 oc purlins, except 2-0-0 oc purlins (6-0-0 max.): 5-7. CHORD Rigid ceiling directly applied or 6-0-0 oc bracing. Except: wat midpt 12-23 S 1 Row at midpt 10-23, 13-23, 15-21 CTIONS (size) 18=0-5-8, 27=0-5-8, (req. 0-5-10),				VEBS NOTES) Unbalanced this design	5-29=-498/159 25-27=-1670/3 8-24=-308/248 10-23=-253/15 4-29=-826/189 6-29=-196/118 4-30=-240/224 21-23=-239/24 13-23=-790/26 15-19=-568/23 16-18=-2303/6	, 7-27=-123: 55, 7-25=-2: 2, 10-24=-7: 7, 2-32=-11: , 6-27=-120: 0, 6-28=-11: , 2-30=-526; 11, 13-21=- 7, 15-21=-1: 6, 16-19=-5: 26, 11-23=-: have been (9/169, 30/1652, 26/216, 21/464, 4/222, 6/35, (1543, 146/126, 50/125, 55/2784, 252/1018 considered for	or	 5) WA and ere see Bra ("B bui corr for for ins ind ass har 6) Pro 	ARNING: d experie ection. Fo e Guide t acing of M CSI"), joi lding own tract with the desig tallation n ividual tri sumes no nolling, er povide ade	This I ence fo or gene o Good Metal F intly pr ner or f h a qua gn and restrain uss me o respon rection equate	long span trus r proper and s eral handling a d Practice for Plate Connecte roduced by SE alified register l inspection of nt/bracing and ember restrain onsibility for tru , or bracing. drainage to p	s requires extr afe handling a nd erection gu Handling, Insta d Wood Truss iCA and TPI. T uthorized agen ed design profi the temporary the permaner t/bracing. MiT uss manufactur revent water p	eme care nd idance, illing & es 'he t shall essional it ek re, onding.
WEBS REACTIONS	t midpt 12-23 1 Row at midpt 10-23, 13-23, 15-21 IONS (size) 18=0-5-8, 27=0-5-8, (req. 0-5-10), 32=0-5-4 Max Horiz 32=-190 (LC 17) Max Uplift 18=-345 (LC 17), 27=-469 (LC 16), 32=-326 (LC 12) Max Grav 18=2504 (LC 2), 27=3605 (LC 2), 32=1337 (LC 45)			1 -10), 2 C 16), C 2),	 this design. Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=35ft; Ke=1.00; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) 0-0-0 to 6-2-0, Interior (1) 6-2-0 to 37-6-0, Exterior(2R) 37-6-0 to 43-8-0, Interior (1) 43-8-0 to 61-8-0 zone; cantilever left and right exposed ; end vertical left and right 					7) All 8) Thi cho 9) WA tha	plates ar is truss h ord live lo ARNING: in input b	re 4x6 las bee bad noi Requi bearing	MT20 unless en designed fo nconcurrent w ired bearing si j size.	therwise indic r a 10.0 psf bo ith any other liv ze at joint(s) 2	ated. ttom ve loads. 7 greater
FORCES	 Max Grav 16-2004 (20 2), 21-2000 (20 2), 32=1337 (LC 45) (lb) - Maximum Compression/Maximum Tension 1-2=-747/632, 2-4=-1050/151, 4-5=-313/121, 5-6=-256/131, 6-7=-213/1394, 7-8=-98/507, 8-10=-2293/440, 10-11=-2268/519, 11-12=-2057/559, 12-13=-2341/522, 13-15=-2919/530, 15-16=-2973/417, 10-12=-2010/2010 			/121, 3 507, 3	 exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 3) TCLL: ASCE 7-16; Pr=25.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf; Pf=18.9 psf (Lum DOL=1.15); Plate DOL=1.15); Is=1.0; Rough Cat C; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10, Lu=50-0-0 4) Unbalanced snow loads have been considered for this 								STATE OF	MISSOL DTT M. EVIER	A A A A A A A A A A A A A A A A A A A
BOT CHORD	16-17=319/179 ORD 1-32=-561/741, 30-32=-561/750, 29-30=-271/977, 28-29=-663/199, 27-28=-663/199, 26-27=-80/0, 25-26=-154/25, 8-25=-2522/467, 24-25=-365/164, 23-24=-157/1986, 22-23=0/129, 12-23=-223/170, 21-22=-23/181, 19-21=-270/2645, 18-19=-77/307, 17-18=-77/307				design.								PE-20	MBER 01018807 VAL ENG VAL ENG	July 3

Job	Truss	Truss Type	Qty	Ply		
P210577	R06	Roof Special	1	1	Job Reference (optional)	158733562

- Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 469 lb uplift at joint 27, 326 lb uplift at joint 32 and 345 lb uplift at joint 18.
- 11) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

LOAD CASE(S) Standard

Run: 8.63 S Nov 19 2022 Print: 8.630 S Nov 19 2022 MiTek Industries, Inc. Mon Jun 05 09:40:26 ID:1otnViXek4W71FvJJbYuabz9XIN-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 2

Job	Truss	Truss Type	Qty	Ply		
P210577	R07	Roof Special	1	1	Job Reference (optional)	

Run: 8.63 S Nov 19 2022 Print: 8.630 S Nov 19 2022 MiTek Industries, Inc. Mon Jun 05 09:40:28 ID:eJDL4Qouye2BvWdt47VuQxz9XLv-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

BRACING					
TOP CHORD	Structural 3-11-4 oc	l wood sh purlins, e	eathing directly app except	lied or	
	2-0-0 oc p	purlins (10	0-0-0 max.): 5-7.		
BOT CHORD	Rigid ceili	ing direct	y applied or 6-0-0 o	C	
	bracing.	Except:	, ,,		
1 Row at midp	t 11-22				N
WEBS	1 Row at	midpt	9-22, 12-22, 4-28		1)
REACTIONS	(size)	17=0-5-8	3, 27=0-5-8, (req. 0-	5-13),	
		31=0-5-4	4		2)
	Max Horiz	31=190	(LC 16)		
	Max Uplift	17=-343	(LC 17), 27=-480 (LC 16),	
		31=-310	(LC 12)		
	Max Grav	17=2506	6 (LC 2), 27=3718 (I	_C 2),	
		31=1229	9 (LC 59)		
FORCES	(lb) - Max	imum Co	mpression/Maximur	n	
	Tension				
TOP CHORD	1-2=-728/	505, 2-4=	-865/127, 4-5=-124	/871,	
	5-6=-204/	1551, 6-7	/=-68/521, 7-9=-232	26/420,	2)
	9-10=-227	75/511, 1	0-11=-2080/557,		3)
	11-12=-23	342/512,	12-13=-2885/527,		
	13-15=-30	078/440,	15-16=-302/74		
BOT CHORD	1-31=-43	1/719, 29	-31=-431/727,		•
					<i>(</i> 1)

13-15=-3078/440, 15-16=-302/74 HORD 1-31=-431/719, 29-31=-431/727, 28-29=-211/775, 27-28=-775/269, 26-27=-6/5, 25-26=0/0, 23-24=-720/248, 22-23=-156/2010, 21-22=0/136, 11-22=-261/154, 20-21=-19/187, 18-20=-276/2712, 17-18=0/285, 16-17=0/285 2-29=-500/1101, 12-20=-111/118, 20-22=-232/2392, 15-17=-2295/649, 13-20=-238/130, 13-18=-449/205, 15-18=-536/2711, 24-26=-102/35, 7-24=-2298/453, 24-27=-1736/389, 6-24=-257/1803, 10-22=-266/1054

OTES

) Unbalanced roof live loads have been considered for this design.

- Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=35ft; Ke=1.00; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) 0-0-0 to 6-2-0, Interior (1) 6-2-0 to 37-6-0, Exterior(2R) 37-6-0 to 43-8-0, Interior (1) 43-8-0 to 61-8-0 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
-) TCLL: ASCE 7-16; Pr=25.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf; Pf=18.9 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat C; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10, Lu=50-0-0
-) Unbalanced snow loads have been considered for this design.

WARNING: This long span truss requires extreme care and experience for proper and safe handling and erection. For general handling and erection guidance, see Guide to Good Practice for Handling, Installing & Bracing of Metal Plate Connected Wood Trusses ("BCSI"), jointly produced by SBCA and TPI. The building owner or the owner's authorized agent shall contract with a qualified registered design professional for the design and inspection of the temporary installation restraint/bracing and the permanent individual truss member restraint/bracing. MiTek assumes no responsibility for truss manufacture, handling, erection, or bracing.

Page: 1

- 6) Provide adequate drainage to prevent water ponding.
- 7) All plates are 4x6 MT20 unless otherwise indicated.
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- WARNING: Required bearing size at joint(s) 27 greater than input bearing size.

16023 Swingley Ridge Rd Chesterfield, MO 63017

ontinued on page 2

Job	Truss	Truss Type	Qty	Ply		
P210577	R07	Roof Special	1	1	Job Reference (optional)	158733563

- Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 480 lb uplift at joint 27, 310 lb uplift at joint 31 and 343 lb uplift at joint 17.
- 11) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

LOAD CASE(S) Standard

Run: 8.63 S Nov 19 2022 Print: 8.630 S Nov 19 2022 MiTek Industries, Inc. Mon Jun 05 09:40:28 ID:eJDL4Qouye2BvWdt47VuQxz9XLv-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 2

Job	Truss	Truss Type	Qty	Ply	
P210577	R08	Roof Special	1	1	Job Reference (optional)

Run: 8.63 S Nov 19 2022 Print: 8.630 S Nov 19 2022 MiTek Industries, Inc. Mon Jun 05 09:40:29 ID:HkFucrVm9mZNa4yJJ94oaNz9XNa-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Scale = 1:105.9

Plate Offsets (X, Y): [4:0-	-1-8,0-2-0],	[7:0-2-8,0-4-8], [9:0-	2-0,0-3-8	, [23:0-3-0,Edg	ge], [24:0-3-8,0-2-0]], [26:0-	7-4,0-5-12], [3	31:0-3-0	,0-4-0]					
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	1	(psf) 25.0 8.9/20.0 25.0 0.0 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC201	8/TPI2014	CSI TC BC WB Matrix-S	0.46 0.79 0.98	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.10 -0.25 0.06	(loc) 19-21 23-24 18	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 370 lb	GRIP 197/144 FT = 20%	
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD	2x6 SPF 2x6 SPF No.3 2x4 SPF No.2 Structural 3-11-5 oc 2-0-0 oc p Rigid ceill bracing. t 12-23 1 Pow ot	No.2 No.2 *Exce No.3 *Exce I wood shea purlins, ex purlins (6-0 ing directly Except:	ept* 27-8,12-22:2x4 S ept* 23-21,19-16:2x4 athing directly applie cept -0 max.): 7-9. applied or 6-0-0 oc	W SPF SP d or N(1)	EBS DTES Unbalanced this design	7-28=-2043/323, 26 7-26=-299/2064, 10 2-31=-521/284, 4-2 4-31=-1096/539, 5- 6-29=-127/969, 6-2 9-25=-1611/334, 9- 10-24=-697/208, 11 13-23=-767/261, 16 13-21=-109/120, 21 14-21=-239/130, 14 16-19=-540/2706, 8 roof live loads have	5-28=-1)-23=-2 9=-223 29=-42 8=-118 24=-28 1-23=-2 5-18=-2 1-23=-2 1-23=-2 1-23=-2 1-23=-2 1-23=-2 1-23=-2 1-23=-1 e been o	711/356, 73/147, 125, 0/148, 2/258, 1/2214, 72/1052, 292/652, 38/2379, 48/206, 36/1129		 5) W/A ani ere see Bra ("B bui con for ind ass has 6) Pro 	RNING: d experie ction. Fo Guide t coing of N CSI"), joi lding own tract with the design tallation i ividual tri sumes no rading, er vide ade	This I ence fo or gene o Good Metal F intly pr ner or t h a qua gn and restrain uss me o respon rection equate	long span truss i r proper and saf ral handling and d Practice for Ha Plate Connected oduced by SBC. the owner's auth alified registered inspection of th nt/bracing and th ember restraint// bonsibility for truss or bracing.	equires extreme of handling and erection guidance ndling, Installing & Wood Trusses hand TPI. The orized agent shall design profession e temporary e permanent tracing. MiTek s manufacture, yent water ponding	care e, & .l nal
REACTIONS	Max Horiz Max Uplift Max Grav	18=0-5-8, 31=0-5-4 31=-190 (18=-345 (31=-301 (18=2502 (31=1140 (28=0-5-8, (req. 0-6-1 LC 17) LC 17), 28=-502 (LC LC 12) (LC 2), 28=3820 (LC (LC 2), 28=3820 (LC	0), 2) (16), 2),	Wind: ASCE Vasd=91mpl Ke=1.00; Ca exterior zone Interior (1) 6 43-8-0, Inter and right exp exposed;C-C	7-16; Vult=115mpl h; TCDL=6.0psf; BC t. II; Exp C; Enclose and C-C Exterior(: -2-0 to 37-6-0, Exterior ior (1) 43-8-0 to 61- bosed; end vertical c for members and	h (3-sed CDL=6.0 ed; MW 2E) 0-0 erior(2R ·8-0 zor left and forces 8	cond gust) Dpsf; h=35ft; FRS (envelop -0 to 6-2-0,) 37-6-0 to le; cantilever I d right & MWFRS for	ee) eft	 7) All 8) Th cho 9) WA that 	plates ar s truss h ord live lo RNING: n input b	e 4x6 as bee ad nor Requi earing	MT20 unless of en designed for a nconcurrent with red bearing size size.	erwise indicated. 10.0 psf bottom any other live loa at joint(s) 28 grea	ıds. ater
TOP CHORD	(ID) - Max Tension 1-2=-823/ 5-6=-427/ 8-9=-155/ 10-11=-22 12-13=-23 14-16=-30	(718, 2-4=- /212, 6-7=- /158, 9-10= 259/521, 1 333/520, 1 072/448, 16	pression/Maximum 755/687, 4-5=-429/2 241/1715, 7-8=-70/4 2297/449, 1-12=-2072/566, 3-14=-2878/536, 3-17=-301/74	12, 3) 00, 3) 4)	reactions she DOL=1.60 TCLL: ASCE Plate DOL=1 DOL=1.15 P Exp.; Ce=0.9 Unbalanced	own; Lumber DOL= 7-16; Pr=25.0 psf 1.15); Pg=20.0 psf; late DOL=1.15); ls= 2; Cs=1.00; Ct=1.10 snow loads have b	=1.60 pl (roof LL Pf=18.9 =1.0; Ro), Lu=50 een cor	ate grip .: Lum DOL=1 9 psf (Lum bugh Cat C; Fi 0-0-0 nsidered for th	.15 ully is				STATE OF SCOT	MISSOUR T.M. IER	AN IN
BOT CHORD	1-31=-64 28-29=-7 26-27=-9 25-26=-1 23-24=-10 12-23=-20 19-21=-2	8/814, 29-3 49/228, 27- 2/12, 8-26= 76/176, 24- 60/2003, 22 64/159, 21- 83/2707, 18	31=-206/525, -28=-206/34, 1832/271, -25=-188/148, -223=0/136, -22=-22/193, 8-19=0/284, 17-18=0	/284	design.								PE-2001	11 ENGL	

June 6,2023

Page: 1

Continued on page 2 WARNING - Verify of

Job	Truss	Truss Type	Qty	Ply	
P210577	R08	Roof Special	1	1	Job Reference (optional)

- Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 502 lb uplift at joint 28, 301 lb uplift at joint 31 and 345 lb uplift at joint 18.
- 11) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

LOAD CASE(S) Standard

Run: 8.63 S Nov 19 2022 Print: 8.630 S Nov 19 2022 MiTek Industries, Inc. Mon Jun 05 09:40:29 ID:HkFucrVm9mZNa4yJJ94oaNz9XNa-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 2

Job	Truss	Truss Type	Qty	Ply	
P210577	R09	Monopitch	1	1	Job Reference (optional)

	3-11-0	4-1-10	9-6-8	14-11-1	20-5-0	J
Scale - 1:50 5	3-11-0	0-2-10	5-4-14	5-4-9	5-5-15	

Scale = 1:50.5 Plate Offsets (X, Y): [9:0-2-8,0-1-12]

Loading	(psf)	Spacing	2-0-0		CSI	0.74	DEFL	in -0.05	(loc)	l/defl	L/d	PLATES	GRIP	
Snow (Pf/Pa)	13 9/20 0	Lumber DOI	1 15		BC	0.43	Vert(CT)	-0.12	8-9	>999	180		2 17/100	
TCDL	25.0	Rep Stress Incr	YES		WB	0.97	Horz(CT)	0.02	7	n/a	n/a			
BCLL	0.0	Code	IRC2018	/TPI2014	Matrix-S	0.07		0.02	•					
BCDL	10.0											Weight: 92 lb	FT = 20%	
LUMBER			4)	This truss ha	s been designed f	or a 10.) psf bottom							
TOP CHORD	2x4 SP No.2		,	chord live loa	ad nonconcurrent v	vith any	other live loa	ads.						
BOT CHORD	2x4 SP No.2		5)	Refer to gird	er(s) for truss to tru	uss conr	nections.							
WEBS	2x4 SPF No.3		6)	Provide mec	hanical connection	ı (by oth	ers) of truss	to						
BRACING				bearing plate	capable of withsta	anding 1	62 lb uplift a	t						
TOP CHORD	Structural wood shea	athing directly applie	d or	joint / and 3	35 ID UPIIIT At Joint	11.	ith the 2010							
	4-4-2 oc purlins, exc	cept end verticals.	()	International	Residential Code	sections	R502 11 1 4	and						
BOLCHORD	Rigid ceiling directly bracing.	applied or 6-0-0 oc		R802.10.2 a	nd referenced stan	dard AN	ISI/TPI 1.							
REACTIONS	(size) 7= Mecha	nical, 11=0-5-4	LC	AD CASE(S)	Standard									
	Max Horiz 11=199 (L	.C 13)												
	Max Uplift 7=-162 (L	C 16), 11=-335 (LC	12)											
	Max Grav 7=905 (LC	C 2), 11=1528 (LC 2)												
FORCES	(lb) - Maximum Com	pression/Maximum												
	Tension													
I OP CHORD	1-2=-822/685, 2-4=-	1464/229,	07											
	4-0=-1122/186, 5-6=	-131/88, 6-7=-223/1 622/807	21											
DOT CHORD	8-9=-245/1376 7-8=	-258/1048												
WEBS	2-11=-1379/561. 5-7	=-1206/234,												
	4-9=-305/231, 2-9=-	676/2013, 4-8=-353/	97,											
	5-8=0/338	-											The	
NOTES												OF I	AL all	
1) Wind: AS	CE 7-16; Vult=115mph	(3-second gust)										FEUTI	N SCH	
Vasd=91n	nph; TCDL=6.0psf; BC	DL=6.0psf; h=35ft;	,								6	AN.	N.S.Y	
Ke=1.00;	Cat. II; Exp C; Enclose	d; MWFRS (envelop	e)								R	SCOT	ГМ. \ZY	λ
exterior 20	5-0-0 to $20-3-4$ zono:	E) U-U-U IO 5-U-U, captilever left and riv	aht								R	SEV	ER \	8
exposed .	end vertical left and rid	the exposed C-C for	ym								2		. \★	K
members	members and forces & MWFRS for reactions shown:								2					
Lumber D	OL=1.60 plate grip DO	L=1.60										Catton	Jerul	
2) TCLL: AS	TCLL: ASCE 7-16; Pr=25.0 psf (roof LL: Lum DOL=1.15													
Plate DOL	Plate DOL=1.15); Pg=20.0 psf; Pf=13.9 psf (Lum													
DOL=1.15	5 Plate DOL=1.15); Is=	1.0; Rough Cat C; Fu	ully								Y	100	1 SA	
Exp.; Ce=	0.9; Cs=1.00; Ct=1.10	an an airthe airth airth									0	STONIA	TENA	
 Unbalance 	ed snow loads have be	en considered for th	IS									UNA A		

3) Unbalanced snow loads have been considered for this design.

June 6,2023

Job	Truss	Truss Type	Qty	Ply	
P210577	V01	Valley	1	1	Job Reference (optional)

1-0-10

0-0-4

1-4-5

Run: 8.63 S Nov 19 2022 Print: 8.630 S Nov 19 2022 MiTek Industries, Inc. Mon Jun 05 09:40:31 ID:HNkmvp7o5M5wzK3vaXg1uSz9Zst-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

6-5-3

Scale = 1:24.8

Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL	(psf) 25.0 13.9/20.0 25.0 0.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018/TPI2014	CSI TC BC WB Matrix-P	0.18 0.07 0.05	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 3	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20	GRIP 244/190
BCDL	10.0										Weight: 19 lb	FT = 20%
LUMBER TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.2 OTHERS 2x4 SPF No.3 BRACING TOP CHORD TOP CHORD Structural wood sheathing directly applied or 6-0-0 oc purlins. BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing. REACTIONS (size) 1=6-5-3, 3=6-5-3, 4=6-5-3 Max Horiz 1=20 (LC 16) Max Uplift 1=-30 (LC 16), 3=-33 (LC 17), 4=-11 (LC 16) Max Grav 1=153 (LC 2), 3=153 (LC 2), 4=296			4) TCLL: AS Plate DOI DOL=1.1 Exp.; Ce= 5) Unbalanc design. 6) Gable rec 7) Gable stu 8) This truss chord live 9) Provide m bearing p 1, 33 lb u 10) This truss Internatio	 4) TCLL: ASCE 7-16; Pr=25.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf; Pf=13.9 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat C; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10 5) Unbalanced snow loads have been considered for this design. 6) Gable requires continuous bottom chord bearing. 7) Gable studs spaced at 4-0-0 oc. 8) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 30 lb uplift at joint 1, 33 lb uplift at joint 3 and 11 lb uplift at joint 4. 10) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and 								
FORCES	(Ib) - Maximum Com	pression/Maximum	R802.10.2 LOAD CASE	and referenced sta S) Standard	Indard AN	ISI/TPI 1.						
TOP CHORD BOT CHORD WEBS	1-2=-62/35, 2-3=-62/ 1-4=0/25, 3-4=0/25 2-4=-233/148	/40										
1) Unbalance	ed roof live loads have	been considered for										
 this design Wind: ASC Vasd=91m Ke=1.00; (exterior zc and right e exposed; C reactions s DOL=1.60 Truss des only. For see Stand or consult 	n. CE 7-16; Vult=115mph nph; TCDL=6.0psf; BC Cat. II; Exp C; Enclose one and C-C Exterior(2 exposed ; end vertical I C-C for members and for shown; Lumber DOL=1) signed for wind loads in studs exposed to wind ard Industry Gable End qualified building design	(3-second gust) DL=6.0psf; h=35ft; d; MWFRS (envelope E) zone; cantilever le eft and right prces & MWFRS for I.60 plate grip h the plane of the trus (normal to the face), d Details as applicab gner as per ANSI/TPI	e) eft ss , le, I 1.								STATE OF I SCOT SEVI NUM PE-2001	MISSOLA TM. ER BER 018807

June 6,2023

Page: 1

16023 Swingley Ridge Rd Chesterfield, MO 63017
Job	Truss	Truss Type	Qty	Ply	
P210577	V02	Valley	1	1	I58733567 Job Reference (optional)

0-6-2

0-6-2

Premier Building Supply (Springhill, KS), Spring Hills, KS - 66083,

Run: 8.63 S Nov 19 2022 Print: 8.630 S Nov 19 2022 MiTek Industries, Inc. Mon Jun 05 09:40:32 ID:HNkmvp7o5M5wzK3vaXg1uSz9Zst-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

2-9-2

2-9-2

2-3-0

Scale = 1:22.6	
Plate Offsets (X, Y):	[1:Edge.0-1-2], [1:0-1-5.0-5-13]

Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 25.0 13.9/20.0 25.0 0.0 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018	3/TPI2014	CSI TC BC WB Matrix-P	0.20 0.08 0.00	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 3	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 10 lb	GRIP 197/144 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS WEDGE BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 Left: 2x4 SP No.2 Structural wood she 2-3-0 oc purlins, ex Rigid ceiling directly bracing. (size) 1=2-9-2, Max Horiz 1=52 (LC Max Uplift 1=-20 (LC Max Grav 1=157 (L)	eathing directly applic cept end verticals. applied or 10-0-0 o 3=2-9-2 13) 5 16), 3=-31 (LC 16) C 2), 3=157 (LC 2)	5) 6) 7) 8) ed or 9) c LC	Gable requii Gable studs This truss ha chord live lo Provide mec bearing plat 3 and 20 lb This truss is Internationa R802.10.2 a DAD CASE(S)	res continuous b spaced at 4-0-0 as been designe ad nonconcurrer chanical connect e capable of with uplift at joint 1. designed in acc I Residential Coo nd referenced st Standard	ottom chor oc. d for a 10.0 nt with any ion (by oth- nstanding 3 cordance wi de sections tandard AN	d bearing.) psf bottom other live loa ers) of truss t 1 lb uplift at ju ith the 2018 R502.11.1 a ISI/TPI 1.	ds. o pint nd					
FORCES	(lb) - Maximum Con Tension 1-2=-69/59, 2-3=-13	npression/Maximum											
 NOTES Wind: AS Vasd=91r Ke=1.00; exterior z: and right exposed; reactions DOL=1.6(Truss de only. For see Stanc or consuli TCLL: AS Plate DOI DOL=1.1! Exp.; Ce= Unbalanc design 	CE 7-16; Vult=115mph mph; TCDL=6.0psf; BC Cat. II; Exp C; Enclose one and C-C Exterior(2 exposed ; end vertical C-C for members and f shown; Lumber DOL= 0 signed for wind loads i studs exposed to wind dard Industry Gable En t qualified building desi CEC 7-16; Pr=25.0 psf LE=1.15); Pg=20.0 psf; I 5 Plate DOL=1.15); Is= e0.9; Cs=1.00; Ct=1.10 ed snow loads have be	a (3-second gust) CDL=6.0psf; h=35ft; d; MWFRS (envelop 2E) zone; cantilever left and right forces & MWFRS for 1.60 plate grip In the plane of the tru (normal to the face d Details as applical gner as per ANSI/TF (roof LL: Lum DOL=: 7=13.9 psf (Lum 1.0; Rough Cat C; F een considered for th	be) left Jss), ble, PI 1. 1.15 Fully nis									STATE OF J SCOT SEV PE-2001 PE-2001	MISSOLUTION T.M. HER 018807 SOLUTION IL ENGINE

June 6,2023

Job	Truss	Truss Type	Qty	Ply		
P210577	V03	Valley	2	1	I5873 Job Reference (optional)	33568

Run: 8.63 S Nov 19 2022 Print: 8.630 S Nov 19 2022 MiTek Industries, Inc. Mon Jun 05 09:40:32 ID:HNkmvp7o5M5wzK3vaXg1uSz9Zst-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

3-10-0

1-11-0

Page: 1

3-10-0

Scale = 1:24.1

Plate Offsets (X, Y): [2:0-2-0,Edge]

Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 25.0 13.9/20.0 25.0 0.0 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC201	8/TPI2014	CSI TC BC WB Matrix-R	0.16 0.10 0.00	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 4	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 13 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x4 SP No.2 2x4 SPF No.3 Structural wood she 3-10-0 oc purlins, e Rigid ceiling directly bracing. (size) 4=3-10-0, Max Horiz 5=-20 (LC Max Uplift 4=-24 (LC Max Grav 4=213 (LC (lb) - Maximum Com Tension	athing directly applie xcept end verticals. applied or 10-0-0 oc 5=3-10-0 ; 12) ; 17), 5=-24 (LC 16) C 2), 5=213 (LC 2) pression/Maximum	5) 6) 7) 9 9 2 10 11	Unbalanced design. Gable requir. Truss to be f braced agair Gable studs This truss ha chord live loa)) Provide mec bearing plate 5 and 24 lb u) This truss is International R802.10.2 ar DAD CASE(S)	snow loads have es continuous bo ully sheathed froi st lateral movem spaced at 4-0-0 (is been designed ad nonconcurrent hanical connectio e capable of withs uplift at joint 4. designed in acco Residential Code nd referenced sta Standard	the been con- bitom chor m one fac- oc. f for a 10.0 t with any on (by oth standing 2 ordance w e sections andard AN	hisidered for the d bearing. e or securely iagonal web) D psf bottom other live loa ers) of truss t 4 lb uplift at j ith the 2018 s R502.11.1 a ISI/TPI 1.	his , to oint und					
TOP CHORD	1-5=-177/133, 1-2=- 3-4=-177/125	190/116, 2-3=-190/1	24,										
NOTES	4-5=-90/132												
 Unbalanc. this desig Wind: ASS Vasd=91r Ke=1.00; exterior zr and right exposed;(reactions DOL=1.6(Truss designed 	ed roof live loads have n. CE 7-16; Vult=115mph mph; TCDL=6.0psf; BC Cat. II; Exp C; Enclose one and C-C Exterior(2 exposed ; end vertical I C-C for members and f shown; Lumber DOL= 0 signed for wind loads in	been considered for (3-second gust) DL=6.0psf; h=35ft; d; MWFRS (envelop E) zone; cantilever li left and right orces & MWFRS for 1.60 plate grip									STATE OF J	MISSOLA T M. HER	

- only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
 4) TCLL: ASCE 7-16; Pr=25.0 psf (roof LL: Lum DOL=1.15)
- 4) TCLL: ASCE 7-16; Pr=25.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf; Pf=13.9 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat C; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10

0

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

UMPE

PE-200101880

SSIONAL EN

June 6,2023

Job	Truss	Truss Type	Qty	Ply	
P210577	V04	Valley	2	1	Job Reference (optional)

Run: 8.63 S Nov 19 2022 Print: 8.630 S Nov 19 2022 MiTek Industries, Inc. Mon Jun 05 09:40:33 ID:IZI8797QsfDnbTe67EBGQfz9Zss-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

> 1-8-14 1-8-14

2-9-6

1-0-8

3-5-11

0-8-6

0-8-15

3-5-11

Scale = 1:22.1

Plate Offsets (X, Y): [2:0-2-0,Edge]

Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 25.0 13.9/20.0 25.0 0.0 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018/	TPI2014	CSI TC BC WB Matrix-P	0.03 0.06 0.00	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 3	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 9 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x4 SP No.2 Structural wood shea 3-6-14 oc purlins. Rigid ceiling directly bracing. (size) 1=3-5-11, Max Horiz 1=-8 (LC 2 Max Uplift 1=-15 (LC Max Crav, 1=-124 (LC	athing directly applied applied or 10-0-0 oc 3=3-5-11 21) 16), 3=-15 (LC 17) 2) 3=124 (LC 2)	6) 7) 8) 1 or 9) 10) LOA	Gable require Gable studs s This truss ha chord live loa Provide mecl bearing plate 1 and 15 lb u This truss is International R802.10.2 ar AD CASE(S)	es continuous botto spaced at 4-0-0 oc. s been designed fo d nonconcurrent w nanical connection capable of withsta plift at joint 3. designed in accord Residential Code s d referenced stand Standard	in a 10.0 ith any (by oth nding 1 ance w ections dard AN	d bearing.) psf bottom other live loac ers) of truss to 5 lb uplift at jo ith the 2018 R502.11.1 at ISI/TPI 1.	ds. o pint					
FORCES TOP CHORD BOT CHORD NOTES 1) Unbalance this design 2) Wind: AS0 Vasd=91n	Max Opint 1=-15 (LC 1), 3=-13 (LC 1) Max Grav 1=124 (LC 2), 3=124 (LC 2) 'ORCES (lb) - Maximum Compression/Maximum Tension 'OP CHORD 1-2=-148/96, 2-3=-148/100 ;OT CHORD 1-3=-73/121 IOTES) Unbalanced roof live loads have been considered for this design.) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph: TCDI =6 0nsf: BCDI =6 0nsf: h=35ft;												
Ke=1.00; exterior zc and right exposed;(reactions DOL=1.60 3) Truss dee only. For see Stand or consult 4) TCLL: AS Plate DOU	Cat. II; Exp C; Enclosed one and C-C Exterior(21 exposed; end vertical lé c-C for members and fc shown; Lumber DOL=1) signed for wind loads in studs exposed to wind lard Industry Gable Enc qualified building desig CE 7-16; Pr=25.0 psf (r =1.15); Pg=20.0 psf; P	d; MWFRS (envelope) zone; cantilever le eft and right prces & MWFRS for .60 plate grip the plane of the trus (normal to the face), I Details as applicabl iner as per ANSI/TPI oof LL: Lum DOL=1. f=13.9 psf (Lum	e) ft e, 1. 15							ė		STATE OF M SCOTT SEVI	AISSOLP T.M. ER SER DISSO7

4 DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat C; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10

5) Unbalanced snow loads have been considered for this design.

Page: 1

MiTek 16023 Swingley Ridge Rd Chesterfield, MO 63017

Job	Truss	Truss Type	Qty	Ply	
P210577	V05	Valley	1	1	Job Reference (optional)

1-6-0

Run: 8.63 S Nov 19 2022 Print: 8.630 S Nov 19 2022 MiTek Industries, Inc. Mon Jun 05 09:40:34 ID:IZI8797QsfDnbTe67EBGQfz9Zss-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

7-1-3

Page: 1

Scale =	1:25.3
---------	--------

Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 25.0 13.9/20.0 25.0 0.0 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018	8/TPI2014	CSI TC BC WB Matrix-P	0.24 0.08 0.06	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 3	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 21 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	LUMBER COP CHORD $2x4$ SP No.2 SOT CHORD $2x4$ SP No.2 DTHERSDTHERS $2x4$ SPF No.3BRACING $2x4$ SPF No.3COP CHORDStructural wood sheathing directly applied or $6-0$ -0 oc purlins.SOT CHORDRigid ceiling directly applied or 10-0-0 oc bracing.REACTIONS(size)1=7-1-3, 3=7-1-3, 4=7-1-3 Max HorizMax Uplift1=-34 (LC 20) Max UpliftMax Grav1=174 (LC 16), 3=-38 (LC 17), $4=-13$ (LC 2)CORCES(lb) - Maximum Compression/Maximum				7-16; Pr=25.0 p .15); Pg=20.0 ps late DOL=1.15); b; Cs=1.00; Ct=1 snow loads have es continuous bo spaced at 4-0-0 s been designed an onconcurren hanical connectii capable of with at joint 3 and 13 designed in acco	sf (roof LL sf; Pf=13.S Is=1.0; Rc 10 e been cor bottom chor oc. I for a 10.1 t with any on (by oth standing 3 B Ib uplift a brdance w e sections	L: Lum DOL=' p psf (Lum bugh Cat C; F asidered for th d bearing.) psf bottom other live loa- ers) of truss t 4 lb uplifat i t joint 4. ith the 2018 R502,11.1 a	1.15 fully his ds. o point					
FORCES TOP CHORD BOT CHORD WEBS NOTES 1) Unbalance this design 2) Wind: ASG Vasd=91n Ke=1.00; exterior zc and right e exposed;C DCL=1.6C 3) Truss des	(lb) - Maximum Com Tension 1-2=-70/39, 2-3=-70 1-4=0/28, 3-4=0/28 2-4=-264/160 ed roof live loads have n. CE 7-16; Vult=115mph nph; TCDL=6.0psf; BC Cat. II; Exp C; Enclose one and C-C Exterior(2 exposed ; end vertical C-C for members and f shown; Lumber DOL=) signed for wind loads in	pression/Maximum /44 been considered for (3-second gust) :DL=6.0psf; h=35ft; :d; MWFRS (envelop ?E) zone; cantilever left and right orces & MWFRS for 1.60 plate grip n the plane of the tru	LC eft	DAD CASE(S)	Standard							STATE OF SCOT	MISSOLP T.M. HER DED

B) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

PE-200101880

E

June 6,2023

SIONAL

Job	Truss	Truss Type	Qty	Ply	
P210577	V06	Valley	1	1	Job Reference (optional)

Run: 8.63 S Nov 19 2022 Print: 8.630 S Nov 19 2022 MiTek Industries, Inc. Mon Jun 05 09:40:34 ID:IZI8797QsfDnbTe67EBGQfz9Zss-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

2-4-14 3-1-3 0-10-4 0-8-6

Page: 1

1-6-10 1-6-10

3x4 👟 3x4 🚅

3-1-3

Scale = 1:26.1

Plate Offsets (X, Y): [2:0-2-0,Edge]

-													
Loading	(psf)	Spacing	2-0-0		csi		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15		TC	0.03	Vert(LL)	n/a	-	n/a	999	MT20	244/190
Snow (Pf/Pg)	13.9/20.0	Lumber DOL	1.15		BC	0.04	Vert(TL)	n/a	-	n/a	999		
TCDL	25.0	Rep Stress Incr	YES		WB	0.00	Horiz(TL)	0.00	3	n/a	n/a		
BCLL	0.0	Code	IRC2018	3/TPI2014	Matrix-P								
BCDL	10.0											Weight: 7 lb	FT = 20%
LUMBER			6)	Gable require	es continuous bott	tom chor	d bearing.						
TOP CHORD	2x4 SP No.2		7)	Gable studs	spaced at 4-0-0 or	с.							
BOT CHORD	2x4 SP No.2		8)	This truss ha	s been designed f	for a 10.0) psf bottom						
BRACING				chord live loa	ad nonconcurrent	with any	other live loa	ds.					
TOP CHORD	Structural wood she	athing directly applie	ed or ⁹⁾	Provide mec	hanical connectior	n (by oth	ers) of truss t	o					
	3-2-6 oc purlins.			bearing plate	capable of withst	anding 1	2 lb uplift at j	oint					
3OT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing. 100 This truss is designed in accordance with the 2018													
DEACTIONS		2 2 4 2		International	Residential Code	sections	R502.11.1 a	nd					
REACTIONS	(SIZE) 1=3-1-3, 3 Max Horiz 1=7 (1 C 2	5=3-1-3 20)		R802.10.2 a	nd referenced star	ndard AN	ISI/TPI 1.						
	Max I Inlift 112 (I C	.0) (16) 3–12 (IC 17)	LC	AD CASE(S)	Standard								
	Max Grav 1=102 (LC	C 2), 3=102 (LC 2)											
FORCES	(lb) - Maximum Com	pression/Maximum											
	Tension												
TOP CHORD	1-2=-121/78, 2-3=-1	21/81											
BOT CHORD	1-3=-60/99												
NOTES													
1) Unbalance	ed roof live loads have	been considered for	r										
this desig	n.												
2) Wind: AS	CE 7-16; Vult=115mph	(3-second gust)											
Vasd=91n	npn; TCDL=6.0pst; BC	DL=6.0pst; n=35π;	(a)										~
exterior zo	one and C-C Exterior/2	PE) zone: cantilever l	oft									Sol	all all all all all all all all all all
and right e	exposed · end vertical	left and right	on									E OF I	MISS
exposed;0	C-C for members and f	orces & MWFRS for									6	- AL	A Solo
reactions	shown; Lumber DOL="	1.60 plate grip									H	SCOT	TM XPY
DOL=1.60)										B	SEV	
Truss des	signed for wind loads ir	n the plane of the tru	SS								h		
only. For	only. For study exposed to wind (normal to the face),												
see Stand	lard Industry Gable En	d Details as applicat								6		all a	KIMU
	CE 7-16: Pr-25 0 pof (roof LL. Lum DOL -1	11. ⊨15								1	NUM	BER
Plate DOI	=1.15) Pa=20.0 psf (Pf=13.9 psf (I um	.15								N	OX PE-2001	018807
DOL=1.15	5 Plate DOL=1.15): Is=	1.0; Rough Cat C: F	ully								0	The last	158
Exp.; Ce=	0.9; Cs=1.00; Ct=1.10											Signa Signa	ENUE

5) Unbalanced snow loads have been considered for this design.

MiTek 16023 Swingley Ridge Rd Chesterfield, MO 63017

Job	Truss	Truss Type	Qty	Ply	
P210577	V07	Valley	1	1	I58733572 Job Reference (optional)

Run: 8.63 S Nov 19 2022 Print: 8.630 S Nov 19 2022 MiTek Industries, Inc. Mon Jun 05 09:40:35 ID:IZI8797QsfDnbTe67EBGQfz9Zss-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

1.5x4 🛚

1

5-10-10

1

Scale = 1:22.8														
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 25.0 13.9/20.0 25.0 0.0 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC201	8/TPI2014	CSI TC BC WB Matrix-P	0.87 0.32 0.00	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 3	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 19 lb	GRIP 244/190 FT = 20%	
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD BOT CHORD BOT CHORD BOT CHORD BOT CHORD BOT CHORD BOT CHORD NOTES 1) Wind: ASC Vasd=91n Ke=1.00; (exterior zc and right e exposed;C reactions : DOL=1.60 2) Truss des only. For see Stand or consult DOL=1.15 Exp.; Ce= 4) Unbalancc design. 5) Gable req 6) Gable stud	2x4 SP No.2 2x4 SP No.2 2x4 SPF No.3 Structural wood sheat except end verticals. Rigid ceiling directly bracing. (size) 1=5-10-10 Max Horiz 1=98 (LC Max Uplift 1=-40 (LC Max Grav 1=312 (LC (lb) - Maximum Com Tension 1-2=-127/110, 2-3=: 1-3=-43/47 CE 7-16; Vult=115mph mph; TCDL=6.0psf; BC Cat. II; Exp C; Enclose one and C-C Exterior(2 exposed ; end vertical I C-C for members and for shown; Lumber DOL=1 Signed for wind loads in studs exposed to wind ard Industry Gable End qualified building desig CE 7-16; Pr=25.0 psf; F i Plate DOL=1.15); Is= 0.9; Cs=1.00; Ct=1.10 ed snow loads have be uires continuous bottor ds spaced at 4-0-0 oc.	athing directly applied applied or 10-0-0 oc 13) (3=5-10-10 13) (16), 3=-59 (LC 16) 222), 3=312 (LC 22) pression/Maximum 262/202 (3-second gust) DL=6.0psf; h=35ft; d; MWFRS (envelope E) zone; cantilever le eft and right proces & MWFRS for I.60 plate grip n the plane of the trus (normal to the face), d Details as applicabl gner as per ANSI/TPI roof LL: Lum DOL=1. Y=13.9 psf (Lum 1.0; Rough Cat C; Fu een considered for thi m chord bearing.	7) 8) d, 9) L () ft ss le, 1. 1.5 illy s	 This truss ha chord live loa Provide mec bearing platt 1 and 59 lb () This truss is International R802.10.2 a OAD CASE(S) 	is been designed ad nonconcurrent hanical connectio e capable of withs uplift at joint 3. designed in accor Residential Code nd referenced sta Standard	for a 10.0 with any n (by othe tanding 4 rdance wi e sections ndard AN) psf bottom other live loaders) of truss to 0 lb uplift at ju th the 2018 R502.11.1 a SI/TPI 1.	ds. o oint nd) ر		STATE OF I SCOT SEVI DE 2001	MISSOLUTION	,

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

June 6,2023

Job	Truss	Truss Type	Qty	Ply	
P210577	V08	Valley	1	1	I58733573 Job Reference (optional)

3-10-10

Premier Building Supply (Springhill, KS), Spring Hills, KS - 66083,

Run: 8.63 S. Nov 19 2022 Print: 8.630 S. Nov 19 2022 MiTek Industries. Inc. Mon. Jun 05 09:40:35 ID:IZI8797QsfDnbTe67EBGQfz9Zss-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

1.5x4 🛚

i

Scale	=	1:1	9.6

Loading

TCDL

BCLL

BCDL

TCLL (roof)

Snow (Pf/Pg)

	-		3-10-1	0						
Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
Plate Grip DOL	1.15	тс	0.28	Vert(LL)	n/a	-	n/a	999	MT20	244/190
Lumber DOL	1.15	BC	0.11	Vert(TL)	n/a	-	n/a	999		
Rep Stress Incr	YES	WB	0.00	Horiz(TL)	0.00	3	n/a	n/a		
Code	IRC2018/TPI2014	Matrix-P								

Weight: 12 lb	FT = 20%	

- LUMBER 7) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. TOP CHORD 2x4 SP No.2 2x4 SP No.2 BOT CHORD 8) Provide mechanical connection (by others) of truss to 2x4 SPF No.3 bearing plate capable of withstanding 24 lb uplift at joint WFBS 1 and 36 lb uplift at joint 3. BRACING 9) This truss is designed in accordance with the 2018 TOP CHORD Structural wood sheathing directly applied or International Residential Code sections R502.11.1 and 3-11-3 oc purlins, except end verticals. R802.10.2 and referenced standard ANSI/TPI 1. BOT CHORD Rigid ceiling directly applied or 10-0-0 oc LOAD CASE(S) Standard bracing. **REACTIONS** (size) 1=3-10-10, 3=3-10-10 Max Horiz 1=60 (LC 15) Max Uplift 1=-24 (LC 16), 3=-36 (LC 16) Max Grav 1=182 (LC 2), 3=182 (LC 2) FORCES (lb) - Maximum Compression/Maximum Tension TOP CHORD 1-2=-78/67, 2-3=-152/125 BOT CHORD 1-3=-26/28 NOTES Wind: ASCE 7-16; Vult=115mph (3-second gust) 1) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=35ft; Ke=1.00; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) zone; cantilever left and right exposed ; end vertical left and right

MiTek 16023 Swingley Ridge Rd Chesterfield, MO 63017

	exposed;C-C for members and forces & MWFRS for
	reactions shown; Lumber DOL=1.60 plate grip
	DOL=1.60
2)	Truss designed for wind loads in the plane of the truss
	only. For studs exposed to wind (normal to the face),
	see Standard Industry Gable End Details as applicable,
	or consult qualified building designer as per ANSI/TPI 1.
3)	TCLL: ASCE 7-16; Pr=25.0 psf (roof LL: Lum DOL=1.15
	Plate DOI =1 15); Pa=20.0 pcf; Pf=12.0 pcf /l um

(psf)

25.0

25.0

0.0

10.0

13 9/20 0

=1.15); Pg=20.0 psf; Pf=13.9 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat C; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10 4) Unbalanced snow loads have been considered for this

- design.
- 5) Gable requires continuous bottom chord bearing.

6) Gable studs spaced at 4-0-0 oc.

Job	Truss	Truss Type	Qty	Ply	
P210577	V09	Valley	1	1	I58733574 Job Reference (optional)

Run: 8.63 S. Nov 19 2022 Print: 8.630 S. Nov 19 2022 MiTek Industries. Inc. Mon. Jun 05 09:40:36 ID:IZI8797QsfDnbTe67EBGQfz9Zss-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:16.4 Plate Offsets (X, Y): [2:Edge,0-1-14]

2x4 SP No 2

2x4 SP No.2

bracing.

Tension

1-3=-9/10

2x4 SPF No.3

Loading

TCDL

BCLL

BCDL

WEBS

LUMBER

TOP CHORD

BOT CHORD

TOP CHORD

BOT CHORD

FORCES

NOTES

1)

2)

3)

4)

5)

design

TOP CHORD

BOT CHORD

DOL=1.60

REACTIONS (size)

BRACING

TCLL (roof)

Snow (Pf/Pg)

0-9-11		0-4
		ð

1-10-10

PLATES

Weight: 5 lb

MT20

GRIP

244/190

FT = 20%

L/d

999

999

n/a

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to preven tbuckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses sand truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

MiTek 16023 Swingley Ridge Rd Chesterfield, MO 63017

Job	Truss	Truss Type	Qty	Ply	
P210577	X01	Flat Girder	2	3	I58733575 Job Reference (optional)

Run: 8.63 E Nov 21 2022 Print: 8.630 E Nov 21 2022 MiTek Industries, Inc. Mon Jun 05 15:47:44 ID:DP_VGXsiZmPvGdOqSxRXGtz9XAC-xadSYacyNNvGAIZzY_d9DshjW2zC??S9SdcSGBz9HoF Page: 1

	5-6-1	15		11-0-3	. 16	6-5-6		21-10)-10		27-3-13	3		32-9	9-0		38-4-0	
	5-6-1	15		5-5-3	5	-5-3		5-5	-3	-	5-5-3			5-5	-3		5-6-15	
		SUPPLEME OTHER ME WIDTH (SU ARE THE R	ENTARY BE ANS TO AI ICH AS CO RESPONSIE	EARING PLA ⁻ LLOW FOR T DLUMN CAPS BILITY OF TH ESIGNER	FES, SPECIAL HE MINIMUM , BEARING BL E TRUSS MAN	ANCHO REQUIF OCKS, I IUFACT	DRAGE, OR RED SUPPO ETC.) TURER	2 DRT										
Ν	/T18HS 9x18 =				5x8=	8x8=				4x8=				8x	8=	10x10=		4x6 ॥
Ŧ		3	45 ⊠	6 7 × ×	89	10	1112	13	14	15 ⊠	16 ⊠	17	18 19 ⊠	2(<u>م</u>	21 22 23	24 ⊠	25 — 🖾
₹-6-2 49	50 3×8 m	5 3×8 it		53 3×8 =	55 3×8 n	56 3x8 II		58 3×8 II	59 3x8 II		60 3×8 II		8	6-3×	8	64 3×8 = 65 3×8	n 66 3x8 n	26
	₩ 48	47 4	46	454 43	42 41	40	39	38	37	36 35	34	33	32	31		30 29 28	27	× - ·
MT1	18HS 3x12 II	10	0x10=	7x8=			1.5x4 I			7x8	3=		7x8=				MT	18HS 9x18 =
			1.5x4 ॥				5x8=						1.5x4	Ш				
	5-6-1	15	1 1	11-0-3	16	5-5-6		21-10	0-10		27-3-13	3		32-9	9-0		38-4-0	
Scale = 1:66.6	5-6-1	15	•	5-5-3	5	-5-3	•	5-5	-3		5-5-3			5-5	-3		5-6-15	•
Plate Offsets ((X, Y): [1:Edge	e,0-6-1], [1	10:0-4-0,0	-6-0], [20:0-	4-0,0-6-0], [22	2:0-5-0,	,Edge], [26	6:Edge,0	-5-12], [3	82:0-2-0,0)-3-8], [44	1:0-2-8	,0-3-8],	[49:0-	6-0,0-0)-10]		
Loading		(psf)	Spacing	2	-0-0		CSI			DEFL		in ((loc)	l/defl	L/d	PLATES	GRIF	
TCLL (roof) Snow (Pf/Pg) TCDL	18.9	25.0 0/20.0 25.0	Plate Grip Lumber D Rep Stres	DOL 1 OL 1 ss Incr N	.15 .15 IO	014	TC BC WB Matrix-	9	0.37 0.97 0.96	Vert(Ll Vert(C Horz(C	-) 0. T) -0. T) 0.	.17 37 .38 37 .11	7-38 7-38 26	>999 >999 n/a	240 180 n/a	MT18HS MT20	197/² 197/²	144 144
BCDL		10.0	oouc		102010/11/2	014	Widding	0								Weight: 14	01 lb FT =	20%
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD	2x8 SPF No 2x8 SPF No 2x4 SPF No 2x4 SPF No 2x4 SPF No 2x4 SPF No 2-0-0 oc pur end verticals Biold ceiling	.2 .3 *Except :6-22:2x4 \$ 9-15,32-15 .3 rlins (6-0-0 s. . directly a	t* 49-1,25 SP 1650F 5,32-22:2x) max.): 1-	-26:2x8 SPF 1.5E, 4 SP No.2 -25, except	TOP CH	ORD	1-49=-11 2-3=-848 4-5=-848 6-7=-848 8-9=-169 10-11=-1 12-13=-1 14-15=-1 16-17=-1 18-19=-1 20-21=-1	737/3053 5/2267, 5 5/2267, 5 24/4397, 6924/439 6924/439 6924/439 6924/439 4050/369 4050/369 4050/369	3, 1-2=-8 3-4=-848 5-6=-848 7-8=-848 97, 10=-1 97, 11-12 97, 13-14 97, 13-14 97, 15-16 90, 17-18 90, 19-20 90, 21-22	485/226 5/2267, 5/2267, 6924/43 2=-16924 4=-16924 6=-14050 3=-14050 0=-14050 2=-14050	7, /4397, /4397, /3690, /3690, /3690, /3690,							
BUICHURD	bracing.	directly a	pplied of	10-0-0 00			22-23=-2	59/174, 2	23-24=-2	259/174,	,							
JOINTS	1 Brace at J 25, 50, 51, 5 55, 56, 58, 5 61, 63, 64, 6	lt(s): 1, 53, 54, 59, 60, 65, 66			BOT CH	24-25=-259/174, 25-26=-1359/410 CHORD 48-49=-313/456, 47-48=-313/456, 46-47=-313/456, 45-46=-3835/14201, 44-45=-3835/14201, 43-44=-3835/14201, 42-42=-3835/14201, 41-42=-3835/14201,												
REACTIONS	(Ib/size) 26 49 Max Horiz 49 Max Uplift 26 10 Max Grav 26 25	6=11464/0 9=11464/0 9=-293 (LC 6=-2118 (L 0) 6=13017 (l 5))-5-8, (req)-5-8, (req C 10) LC 11), 49 (LC 25), 49	. 0-6-13), . 0-6-13) 9=-2118 (LC 9=12975 (LC	;		40-41=-3 38-39=-4 36-37=-4 34-35=-4 32-33=-4 30-31=-2 28-29=-2	835/1420 512/1700 512/1700 512/1700 512/1700 512/1700 277/8519	01, 39-4(05, 37-3(05, 35-3(05, 33-34 05, 31-3(9, 29-30) 9, 27-28	2=-3833/)=-3835/ 3=-4512/ 6=-4512/ 4=-4512/ 2=-2277/8 =-2277/8	14201, 14201, 17005, 17005, 17005, 3519, 519, 519,					655	and	
FORCES	(lb) - Max. C (lb) or less e	Comp./Max except whe	k. Ten A en shown.	ll forces 250			26-27=-2	277/851	9	,	,				A	STATE O	F MISS	OUR

Continued on page 2 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building design runst verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TPH1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

SEVIER

NUMBER PE-2001018807

SSIONAL ET

June 6,2023

Job	Truss	Truss Type	Qty	Ply	
P210577	X01	Flat Girder	2	3	I58733575 Job Reference (optional)

1-50=-3496/13375. 50-51=-3609/13807.

46-52=-10313/2724, 52-53=-9224/2432,

46-51=-3708/14185, 4-46=-1247/353,

53-54=-9169/2419, 8-54=-9660/2549.

55-56=-1202/4486, 56-57=-1239/4620,

60-61=-4708/1253, 32-61=-4922/1310, 18-32=-2251/613. 32-62=-2491/9523. 62-63=-2402/9167, 63-64=-2370/9053, 22-64=-2549/9733, 22-29=-162/696, 22-65=-14510/3781, 65-66=-13981/3643, 26-66=-13650/3557, 2-50=-820/275, 48-50=-1352/415, 3-51=-411/136, 47-51=-877/258, 5-52=-1338/359, 6-53=-863/258, 45-53=-793/244, 7-54=-99/466, 41-55=-51/282, 10-56=-890/266, 40-56=-1060/313, 13-58=-998/287, 38-58=-967/278, 14-59=-254/99, 34-60=-365/130, 17-61=-1130/319, 33-61=-862/249, 19-62=-112/446, 20-63=-958/286, 31-63=-1102/326, 21-64=-282/98, 30-64=-125/563, 23-65=-62/340, 28-65=-310/107, 24-66=-602/212,

39-57=-1231/4602. 12-39=-2046/557.

15-36=-182/827, 15-60=-4805/1279,

8-42=-145/626, 8-55=-1284/4792,

WEBS

ID:DP_VGXsiZmPvGdOqSxRXGtz9XAC-xadSYacyNNvGAIZzY_d9DshjW2zC??S9SdcSGBz9HoF 16) Graphical purlin representation does not depict the size

Run: 8.63 E. Nov 21 2022 Print: 8.630 E. Nov 21 2022 MiTek Industries. Inc. Mon. Jun 05 15:47:44

Page: 2

or the orientation of the purlin along the top and/or bottom chord.

LOAD CASE(S) Standard

 Dead + Snow (balanced): Lumber Increase=1.15, Plate Increase=1.15 Uniform Loads (lb/ft)

Vert: 1-25=-588 (F=-500), 26-49=-20

- NOTES
- 3-ply truss to be connected together with 10d (0.131"x3") nails as follows: Top chords connected as follows: 2x8 - 2 rows

27-66=-1015/320

staggered at 0-6-0 oc. Bottom chords connected as follows: 2x8 - 2 rows staggered at 0-9-0 oc.

- Web connected as follows: 2x4 1 row at 0-9-0 oc.
 All loads are considered equally applied to all plies, except if noted as front (F) or back (B) face in the LOAD CASE(S) section. Ply to ply connections have been provided to distribute only loads noted as (F) or (B), unless otherwise indicated.
- 3) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=35ft; Ke=1.00; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone and C-C Corner (3) zone; cantilever left and right exposed; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 4) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 5) TCLL: ASCE 7-16; Pr=25.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf; Pf=18.9 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat C; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10, Lu=50-0-0; Min. flat roof snow load governs. Rain surcharge applied to all exposed surfaces with slopes less than 0.500/12 in accordance with IBC 1608.3.4.
- 6) Provide adequate drainage to prevent water ponding.
- 7) All plates are MT20 plates unless otherwise indicated.
- 8) All plates are 3x6 MT20 unless otherwise indicated.
- 9) The Fabrication Tolerance at joint 1 = 4%
- Truss to be fully sheathed from one face or securely braced against lateral movement (i.e. diagonal web).
- 11) Gable studs spaced at 2-0-0 oc.
- 12) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 13) WARNING: Required bearing size at joint(s) 49, 26 greater than input bearing size.
- 14) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 2118 lb uplift at joint 49 and 2118 lb uplift at joint 26.
- 15) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

Job	Truss	Truss Type	Qty	Ply	
P210577	X02	Monopitch	2	2	Job Reference (optional)

Run: 8.63 S Nov 19 2022 Print: 8.630 S Nov 19 2022 MiTek Industries, Inc. Mon Jun 05 09:40:38 ID:mfPrOPy4rYo7lwrA6WPCB?z9Zro-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

3-11-0	· [].*	12-2-13	20-5-0
3-11-0	0-2-10	8-1-3	8-2-3

Plate Offsets (X, Y): [2:0-4-0,0-2-12], [6:0-2-0,0-2-8], [7:0-3-8,0-3-8]

Scale = 1:48.7

Loading TCLL (roof) Snow (Pf/Pg TCDL BCLL BCDL	(psf) 25.0 13.9/20.0 25.0 0.0 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	6-0-0 1.15 1.15 NO IRC2018	/TPI2014	CSI TC BC WB Matrix-S	0.83 0.56 0.97	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.07 -0.17 0.01	(loc) 6-7 6-7 6	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 229 lb	GRIP 197/144 FT = 20%
LUMBER TOP CHOR BOT CHOR WEBS BRACING TOP CHOR	 2x6 SPF No.2 2x8 SPF No.2 2x4 SPF No.3 *Exce 2-0-0 oc purlins (6-0 verticals (Switched from shee) 	pt* 5-6:2x8 SPF No.2 -0 max.), except end eted: Spacing > 2-0-0)	3)	Wind: ASCE Vasd=91mph Ke=1.00; Cat exterior zone Interior (1) 5- exposed ; en members and Lumber DOL	7-16; Vult=115mph ; TCDL=6.0psf; BC . II; Exp C; Enclose and C-C Exterior(2 0-0 to 20-1-6 zone; d vertical left and ri d forces & MWFRS =1.60 plate grip DC	a (3-sec DL=6.0 ed; MW 2E) 0-0 cantile ght exp for rea DL=1.60	ond gust))psf; h=35ft; FRS (envelo 0 to 5-0-0, ver left and i osed;C-C fo ctions showr)	pe) right r 1;					
BOT CHOR WEBS REACTION	 Rigid ceiling directly bracing. 1 Row at midpt 5 (size) 6= Mecha Max Horiz 9=560 (LC Max Uplift 6=-475 (LI Max Grav, 6=2684 (I 	4) 5) 2) 6)	 4) TCLL: ASCE 7-16; Pr=25.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf; Pf=13.9 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat C; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10 5) Unbalanced snow loads have been considered for this design. 6) This truss has been designed for a 10.0 psf bottom 										
FORCES	FORCES (Ib) - Maximum Compression/Maximum				 7) Refer to girder(s) for truss to truss connections. 8) Provide mechanical connection (s) to trus to trus to the trust to								
TOP CHOR	OP CHORD 1-2=-2028/205, 2-4=-4714/713, 4-5=-639/254, 5-6=-1028/548				bearing plate capable of withstanding 475 lb uplift at ioint 6 and 1004 lb uplift at ioint 9.								
BOT CHOR WEBS	D 1-9=-12/2016, 7-9=-4 2-9=-3604/1504, 4-6 4-7=-334/708, 2-7=-1	453/1972, 6-7=-744/4 =-4264/849, 1820/4399	368 9)	9) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802 10 2 and referenced standard ANSI/TPL1								5	
NOTES	,		LO	AD CASE(S)	Standard							A DE	AP.
 2-ply tru (0.131") Top chc stagger oc. Bottom stagger Web co All loads except i CASE(\$ provided unless o 	ss to be connected toget 3") nails as follows: rds connected as follows ad at 0-9-0 oc, 2x8 - 2 row chords connected as follow at 0-9-0 oc. nnected as follows: 2x4 - are considered equally noted as front (F) or bac) section. Ply to ply conn t to distribute only loads to therwise indicated.	ther with 10d s: 2x6 - 2 rows ws staggered at 0-9-0 ows: 2x8 - 2 rows 1 row at 0-3-0 oc. applied to all plies, ck (B) face in the LOA nections have been noted as (F) or (B),	D		Gandard					ļ		STE OF M SCOTT SEVIL NUME PE-20010	M. ER DISSOLUTION ER DISSO7

June 6,2023

