STRUCTURAL DESIGN CALCULATIONS

for

Olson Architectural Group 1916 NW 79th Terrace Kansas City, MO 64151

SWIG – with Savory Management

August 10, 2023

K. Andrew Gilmore, PE AGilmore Services, LLC Professional Structural Engineer

Gravity Load Information

Engineer: KAG

Date: July 19, 2023

Project: SWIG

Live Loads

Roof Live Load (RLL): 20 psf

Dead Loads

Roof Dead Load (RDL):

Roofing: 1 psf

Rigid Insulation: 3 psf Roof Sheathing 3/4" plywood: 2 psf

Roof Joist @ 16" O.C.: 3 psf

Underhung - 1 layers 1/2" gyp: 2.5 psf

Batt Insulation: 1.5 psf

Total: 13 psf

Wall Dead Load (WDL):

1/2" Sheathing: 2 psf

Wall studs - 2x4 @ 16" O.C.: 1.5 psf

1/2" Gyp: 2.5 psf

Batt Insulation: 1.0 psf

Misc: 1.0 psf

Total: 8 psf

This is a beta release of the new ATC Hazards by Location website. Please contact us with feedback.

1 The ATC Hazards by Location website will not be updated to support ASCE 7-22. Find out why.

▲ Hazards by Location

Search Information

Address: 9705 N Ash Ave, Kansas City, MO 64157, USA

Coordinates: 39.2686359, -94.45099239999999

Elevation: 1030 ft

2023-07-24T16:43:37.592Z Timestamp:

Hazard Type: Snow

ASCE 7-16

Ground Snow Load 20 lb/sqft

The results indicated here DO NOT reflect any state or local amendments to the values or any delineation lines made during the building code adoption process. Users should confirm any output obtained from this tool with the local Authority Having Jurisdiction before proceeding with design.

Please note that the ATC Hazards by Location website will not be updated to support ASCE 7-22. Find out why.

Disclaimer

Hazard loads are interpolated from data provided in ASCE 7 and rounded up to the nearest whole integer.

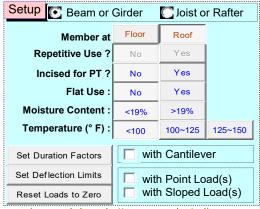
While the information presented on this website is believed to be correct, ATC and its sponsors and contributors assume no responsibility or liability for its accuracy. The material presented in the report should not be used or relied upon for any specific application without competent examination and verification of its accuracy, suitability and applicability by engineers or other licensed professionals. ATC does not intend that the use of this information replace the sound judgment of such competent professionals, having experience and knowledge in the field of practice, nor to substitute for the standard of care required of such professionals in interpreting and applying the results of the report provided by this website. Users of the information from this website assume all liability arising from such use. Use of the output of this website does not imply approval by the governing building code bodies responsible for building code approval and interpretation for the building site described by latitude/longitude location in the report.

Location: Elevated Wall

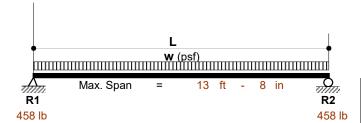
wwpa.org

Designed on: July 24, 2023

Nominal Size: (2) 2 x 6


Species = Douglas Fir-Larch

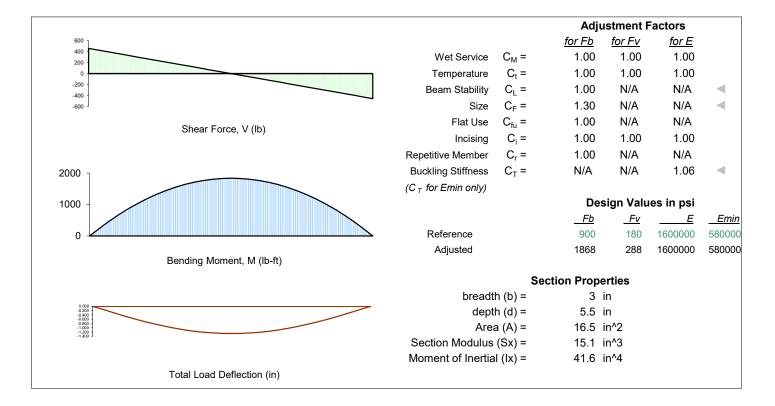
** Dimension Lumber ** Grade = No.2


Span (L) = 16 ft - 0 in

Tributary Width (B) = 1 ft - 0 in

Unsupported Length (lu) = 1 ft - 0 in

(pressed-down buttons are selected)



Stress and/or Deflection Check → NG

	<u>A c t u a l</u>		<u>Allo w</u>	<u>Ratio</u>	
Max fv (psi) & V (lb)	39	432	288	3168	14%
Max fb (psi) & M (lb-ft)	1455	1834	1868	2355	78%
Total Load Max. Defl. (in)	-1.27	L/151	L/180	1.07	119%

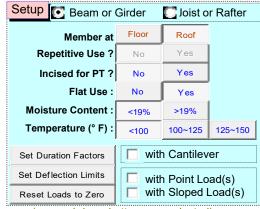
Total Load Max. Defl. (in) -1.27 L/151 L/180 1.07 119% Live Load Max. Defl. (in) -1.27 L/151 L/240 0.80 159%

wwpa.org

Enter Data

Designed on: July 24, 2023

Nominal Size: (2) 2 x 10

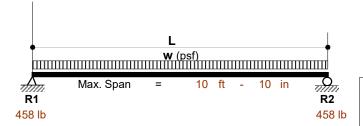

Species = Douglas Fir-Larch

** Dimension Lumber ** Grade = No.2

Span (L) = 16 ft - 0 in

Tributary Width (B) = 1 ft - 0 in

Unsupported Length (lu) = 1 ft - 0 in

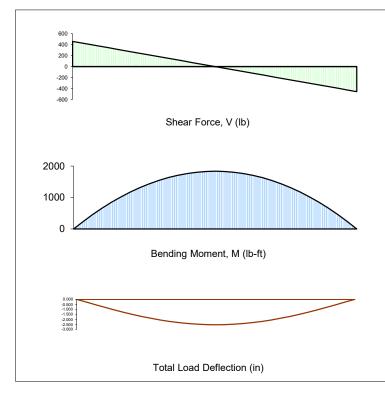


(pressed-down buttons are selected)

Adjustment Factors

for E

for Fb for Fv

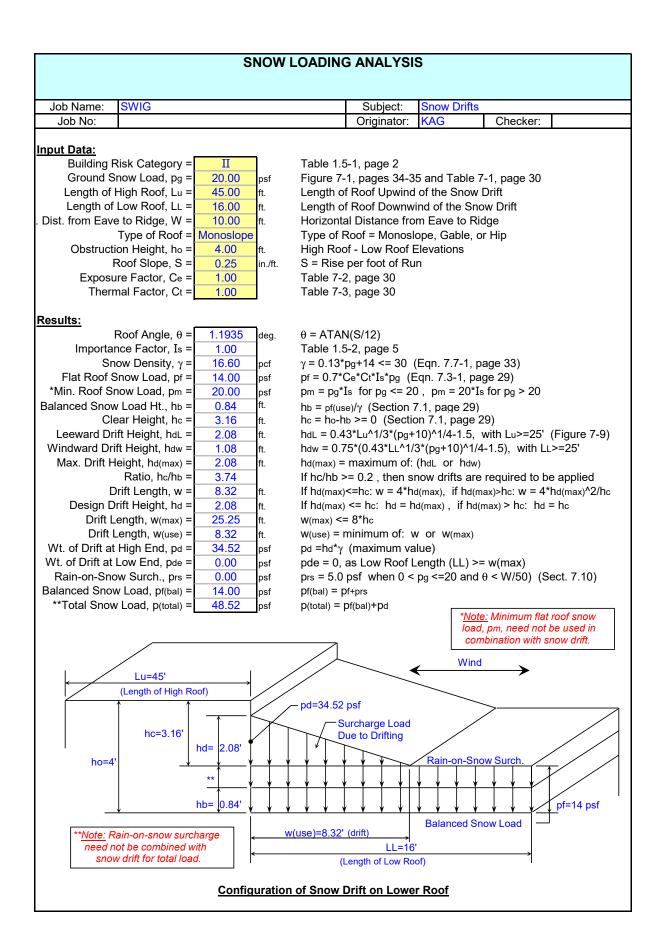


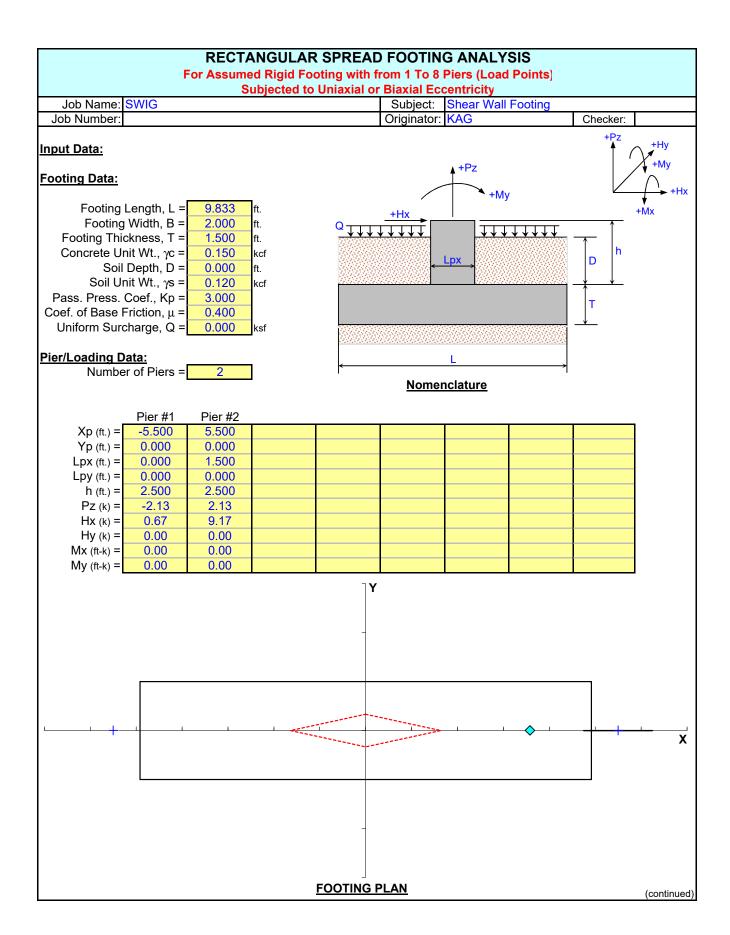
Stress and/or Deflection Check → NG

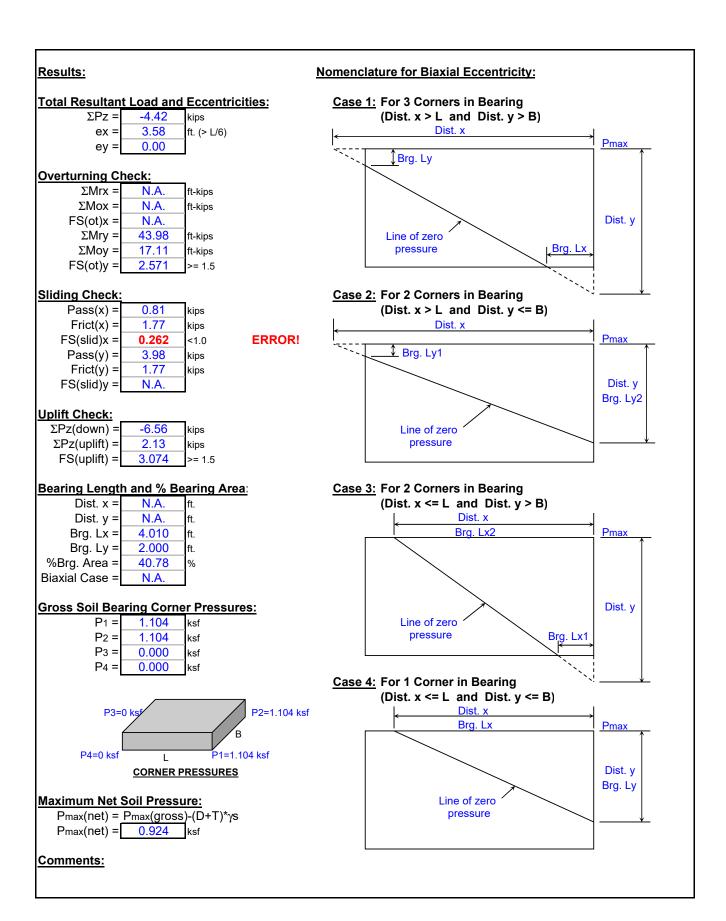
	<u>A c t u a l</u>		<u>Allo w</u>	able	<u>Ratio</u>
Max fv (psi) & V (lb)	24	444	288	5328	8%
Max fb (psi) & M (lb-ft)	1586	1834	1895	2191	84%
Total Load Max. Defl. (in) Live Load Max. Defl. (in)	-2.54 -2.54	L/76 L/76	L/180 L/240	1.07 0.80	238% 317%

LOADING Load Type

LOADING				
Dead Load	Uniform	w (psf) =	0	
Special LL	Uniform	w (psf) =	57	
\				
CD = 1.60				




Wet Service	$C_M =$	1.00	1.00	1.00			
Temperature	$C_t =$	1.00	1.00	1.00			
Beam Stability	C _L =	1.00	N/A	N/A	\triangleleft		
Size	C _F =	1.10	N/A	N/A	\triangleleft		
Flat Use	$C_{fu} =$	1.20	N/A	N/A	\triangleleft		
Incising	$C_i =$	1.00	1.00	1.00			
Repetitive Member	$C_r =$	1.00	N/A	N/A			
Buckling Stiffness	$C_T =$	N/A	N/A	1.06	\triangleleft		
(C $_T$ for Emin only)							
	Design Values in psi						


	<u>Fb</u>	<u>Fv</u>	E	<u>Emin</u>
Reference	900	180	1600000	580000
Adjusted	1895	288	1600000	580000

Section Properties

breadth (b) =	3	ın
depth (d) =	9.25	in
Area (A) =	27.8	in^2
Section Modulus (Sx) =	13.9	in^3
Moment of Inertial (Ix) =	20.8	in^4

MEMBER REPORT

Roof, Roof: Joist Full Drift 1 piece(s) 11 7/8" TJI ® 210 @ 24" OC

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	785 @ 4 1/2"	1679 (3.50")	Passed (47%)	1.15	1.0 D + 1.0 S (All Spans)
Shear (lbs)	741 @ 5 1/2"	1903	Passed (39%)	1.15	1.0 D + 1.0 S (All Spans)
Moment (Ft-lbs)	2943 @ 8' 2 3/4"	4364	Passed (67%)	1.15	1.0 D + 1.0 S (All Spans)
Live Load Defl. (in)	0.366 @ 8' 2 3/4"	0.828	Passed (L/542)		1.0 D + 1.0 S (All Spans)
Total Load Defl. (in)	0.514 @ 8' 2 3/4"	1.104	Passed (L/387)		1.0 D + 1.0 S (All Spans)

Member Length: 17' 8 1/8"

System : Roof Member Type : Joist Building Use : Residential Building Code : IBC 2018 Design Methodology : ASD Member Pitch : 4/12

- Deflection criteria: LL (L/240) and TL (L/180).
- Allowed moment does not reflect the adjustment for the beam stability factor.

	Bearing Length			Loads to Supports (lbs)				
Supports	Total	Available	Required	Dead	Roof Live	Snow	Factored	Accessories
1 - Beveled Plate - DF	5.50"	5.50"	1.75"	226	329	560	785	Blocking
2 - Beveled Plate - DF	5.50"	5.50"	1.75"	226	329	560	785	Blocking

[•] Blocking Panels are assumed to carry no loads applied directly above them and the full load is applied to the member being designed.

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	4' 3" o/c	
Bottom Edge (Lu)	17' 4" o/c	

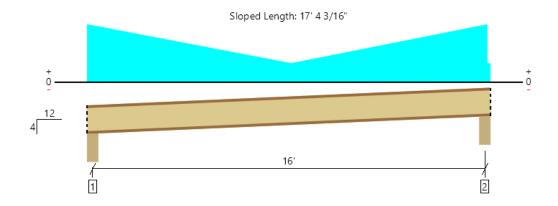
- •TJI joists are only analyzed using Maximum Allowable bracing solutions.
- •Maximum allowable bracing intervals based on applied load.

			Dead	Roof Live	Snow	
Vertical Load	Location	Spacing	(0.90) (non-snow: 1.25)		(1.15)	Comments
1 - Uniform (PSF)	0 to 16' 5 1/2"	24"	13.0	20.0	34.0	Default Load

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator


ForteWEB Software Operator	Job Notes
Andy Gilmore AGilmore Services, LLC (913) 660-3778 andy.gilmore22@gmail.com	

MEMBER REPORT

Roof, Roof: Joist w/ Drift 1 piece(s) 11 7/8" TJI ® 210 @ 24" OC

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	511 @ 4 1/2"	1679 (3.50")	Passed (30%)	1.15	1.0 D + 1.0 S (All Spans)
Shear (lbs)	524 @ 5 1/2"	2069	Passed (25%)	1.25	1.0 D + 1.0 Lr (All Spans)
Moment (Ft-lbs)	2079 @ 8' 2 3/4"	4744	Passed (44%)	1.25	1.0 D + 1.0 Lr (All Spans)
Live Load Defl. (in)	0.215 @ 8' 2 3/4"	0.828	Passed (L/922)		1.0 D + 1.0 Lr (All Spans)
Total Load Defl. (in)	0.363 @ 8' 2 3/4"	1.104	Passed (L/547)		1.0 D + 1.0 Lr (All Spans)

Member Length: 17' 8 1/8"

System: Roof

System: Roor
Member Type: Joist
Building Use: Residential
Building Code: IBC 2018
Design Methodology: ASD
Member Pitch: 4/12

- Deflection criteria: LL (L/240) and TL (L/180).
- Allowed moment does not reflect the adjustment for the beam stability factor.

	Bearing Length			Loads to Supports (lbs)				
Supports	Total	Available	Required	Dead	Roof Live	Snow	Factored	Accessories
1 - Beveled Plate - DF	5.50"	5.50"	1.75"	226	329	286	555	Blocking
2 - Beveled Plate - DF	5.50"	5.50"	1.75"	226	329	278	555	Blocking

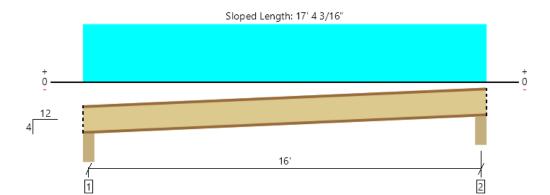
[•] Blocking Panels are assumed to carry no loads applied directly above them and the full load is applied to the member being designed.

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	5' 1" o/c	
Bottom Edge (Lu)	17' 4" o/c	

- •TJI joists are only analyzed using Maximum Allowable bracing solutions.
- •Maximum allowable bracing intervals based on applied load.

Vertical Loads	Location	Spacing	Dead (0.90)	Roof Live (non-snow: 1.25)	Snow (1.15)	Comments
1 - Uniform (PSF)	0 to 16' 5 1/2"	24"	13.0	20.0	-	Default Load
2 - Tapered (PLF)	0 to 8' 4"	N/A	-	-	69.0 to 0.0	
3 - Tapered (PLF)	8' 4" to 16' 4"	N/A	-	-	0.0 to 69.0	

Weyerhaeuser Notes


Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator

ForteWEB Software Operator	Job Notes
Andy Gilmore AGilmore Services, LLC (913) 660-3778 andy.gilmore22@gmail.com	

Roof, Roof: Joist 1 piece(s) 11 7/8" TJI ® 110 @ 24" OC

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	555 @ 4 1/2"	1719 (3.50")	Passed (32%)	1.25	1.0 D + 1.0 Lr (All Spans)
Shear (lbs)	524 @ 5 1/2"	1950	Passed (27%)	1.25	1.0 D + 1.0 Lr (All Spans)
Moment (Ft-lbs)	2079 @ 8' 2 3/4"	3950	Passed (53%)	1.25	1.0 D + 1.0 Lr (All Spans)
Live Load Defl. (in)	0.250 @ 8' 2 3/4"	0.828	Passed (L/794)		1.0 D + 1.0 Lr (All Spans)
Total Load Defl. (in)	0.422 @ 8' 2 3/4"	1.104	Passed (L/471)		1.0 D + 1.0 Lr (All Spans)

Deflection criteria: LL (L/240) and TL (L/180).

• Allowed moment does not reflect the adjustment for the beam stability factor.

	В	Bearing Length			to Supports		
Supports	Total	Available	Required	Dead	Roof Live	Factored	Accessories
1 - Beveled Plate - DF	5.50"	5.50"	1.75"	226	329	555	Blocking
2 - Beveled Plate - DF	5.50"	5.50"	1.75"	226	329	555	Blocking

Blocking Panels are assumed to carry no loads applied directly above them and the full load is applied to the member being designed.

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	3' 11" o/c	
Bottom Edge (Lu)	17' 4" o/c	

- •TJI joists are only analyzed using Maximum Allowable bracing solutions.
- •Maximum allowable bracing intervals based on applied load.

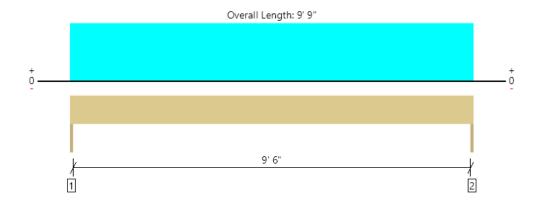
			Dead	Roof Live	
Vertical Load	Location	Spacing	(0.90)	(non-snow: 1.25)	Comments
1 - Uniform (PSF)	0 to 16' 5 1/2"	24"	13.0	20.0	Default Load

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator

ForteWEB Software Operator	Job Notes	
Andy Gilmore AGilmore Services, LLC (913) 660-3778 andy.gilmore22@gmail.com		


Member Length: 17' 8 1/8"

System: Roof
Member Type: Joist
Building Use: Residential
Building Code: IBC 2018
Design Methodology: ASD
Member Pitch: 4/12

MEMBER REPORT

Headers, Wall: Header 9.5' 2 piece(s) 1 3/4" x 11 1/4" 2.0E Microllam® LVL

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	3215 @ 0	3938 (1.50")	Passed (82%)		1.0 D + 1.0 S (All Spans)
Shear (lbs)	2514 @ 1' 3/4"	8603	Passed (29%)	1.15	1.0 D + 1.0 S (All Spans)
Moment (Ft-lbs)	7837 @ 4' 10 1/2"	18558	Passed (42%)	1.15	1.0 D + 1.0 S (All Spans)
Live Load Defl. (in)	0.154 @ 4' 10 1/2"	0.325	Passed (L/758)		1.0 D + 1.0 S (All Spans)
Total Load Defl. (in)	0.184 @ 4' 10 1/2"	0.488	Passed (L/635)		1.0 D + 1.0 S (All Spans)

System: Wall
Member Type: Header
Building Use: Residential
Building Code: IBC 2018
Design Methodology: ASD

- . Deflection criteria: LL (L/360) and TL (L/240).
- Allowed moment does not reflect the adjustment for the beam stability factor.

	Bearing Length			Loads to Supports (lbs)				
Supports	Total	Available	Required	Dead	Roof Live	Snow	Factored	Accessories
1 - Trimmer - DF	1.50"	1.50"	1.50"	524	780	2691	3215	None
2 - Trimmer - DF	1.50"	1.50"	1.50"	524	780	2691	3215	None

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	9' 9" o/c	
Bottom Edge (Lu)	9' 9" o/c	

•Maximum allowable bracing intervals based on applied load.

			Dead	Roof Live	Snow	
Vertical Loads	Location	Tributary Width	(0.90)	(non-snow: 1.25)	(1.15)	Comments
0 - Self Weight (PLF)	0 to 9' 9"	N/A	11.5			
1 - Uniform (PSF)	0 to 9' 9"	8'	12.0	20.0	69.0	Default Load

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator

ForteWEB Software Operator	Job Notes	
Andy Gilmore AGilmore Services, LLC (913) 660-3778 andy.gilmore22@gmail.com		

Page 1 / 1

1

Roof, Wall: Header (Vert Load) 2 piece(s) 2 x 10 DF No.2

Overall Length: 16' 3"

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	366 @ 0	2813 (1.50")	Passed (13%)		1.0 D (All Spans)
Shear (lbs)	326 @ 10 3/4"	2997	Passed (11%)	0.90	1.0 D (All Spans)
Moment (Ft-lbs)	1486 @ 8' 1 1/2"	3177	Passed (47%)	0.90	1.0 D (All Spans)
Live Load Defl. (in)	0.000 @ 0	0.542	Passed (2L/999+)		1.0 D (All Spans)
Total Load Defl. (in)	0.223 @ 8' 1 1/2"	0.813	Passed (L/874)		1.0 D (All Spans)

System: Wall
Member Type: Header
Building Use: Residential
Building Code: IBC 2018
Design Methodology: ASD

- Deflection criteria: LL (L/360) and TL (L/240).
- Allowed moment does not reflect the adjustment for the beam stability factor.
- Applicable calculations are based on NDS.

	Bearing Length			Loads to		
Supports	Total	Available	Required	Dead	Factored	Accessories
1 - Trimmer - DF	1.50"	1.50"	1.50"	366	366	None
2 - Trimmer - DF	1.50"	1.50"	1.50"	366	366	None

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	16' 3" o/c	
Bottom Edge (Lu)	16' 3" o/c	

[•]Maximum allowable bracing intervals based on applied load.

			Dead	
Vertical Loads	Location	Tributary Width	(0.90)	Comments
0 - Self Weight (PLF)	0 to 16' 3"	N/A	7.0	
1 - Uniform (PSF)	0 to 16' 3"	1'	38.0	Default Load

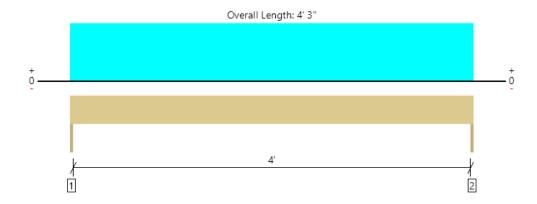
Member Notes

Vert Load

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator


ForteWEB Software Operator	Job Notes
Andy Gilmore AGilmore Services, LLC (913) 660-3778 andy.gilmore22@gmail.com	

MEMBER REPORT

Headers, Wall: Header 2 piece(s) 2 x 8 DF No.2

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	1389 @ 0	2813 (1.50")	Passed (49%)		1.0 D + 1.0 S (All Spans)
Shear (lbs)	912 @ 8 3/4"	3002	Passed (30%)	1.15	1.0 D + 1.0 S (All Spans)
Moment (Ft-lbs)	1476 @ 2' 1 1/2"	2720	Passed (54%)	1.15	1.0 D + 1.0 S (All Spans)
Live Load Defl. (in)	0.027 @ 2' 1 1/2"	0.142	Passed (L/999+)		1.0 D + 1.0 S (All Spans)
Total Load Defl. (in)	0.031 @ 2' 1 1/2"	0.213	Passed (L/999+)		1.0 D + 1.0 S (All Spans)

System: Wall
Member Type: Header
Building Use: Residential
Building Code: IBC 2018
Design Methodology: ASD

- Deflection criteria: LL (L/360) and TL (L/240).
- Allowed moment does not reflect the adjustment for the beam stability factor.
- Applicable calculations are based on NDS.

	Bearing Length			Loads to Supports (lbs)				
Supports	Total	Available	Required	Dead	Roof Live	Snow	Factored	Accessories
1 - Trimmer - DF	1.50"	1.50"	1.50"	216	340	1173	1389	None
2 - Trimmer - DF	1.50"	1.50"	1.50"	216	340	1173	1389	None

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	4' 3" o/c	
Bottom Edge (Lu)	4' 3" o/c	

[•]Maximum allowable bracing intervals based on applied load.

			Dead	Roof Live	Snow	
Vertical Loads	Location	Tributary Width	(0.90)	(non-snow: 1.25)	(1.15)	Comments
0 - Self Weight (PLF)	0 to 4' 3"	N/A	5.5			
1 - Uniform (PSF)	0 to 4' 3"	8'	12.0	20.0	69.0	Default Load

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator

ForteWEB Software Operator	Job Notes	
Andy Gilmore AGilmore Services, LLC (913) 660-3778 andy.gilmore22@gmail.com		

1030 ft

Marshal

Kansas City

Overland Park 70

Olathe 435

▲ This is a beta release of the new ATC Hazards by Location website. Please contact us with feedback

1 The ATC Hazards by Location website will not be updated to support ASCE 7-22. Find out why.

Holton

Topeka

ATC Hazards by Location

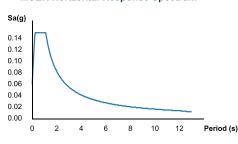
Search Information

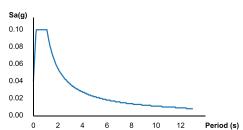
Address: 9705 N Ash Ave, Kansas City, MO 64157, USA

Coordinates: 39.2686359, -94.45099239999999

Elevation: 1030 ft

2023-07-24T16:45:18.853Z Timestamp:


Hazard Type: Seismic Reference Document: ASCE7-16


Risk Category: Site Class: D-default

MCER Horizontal Response Spectrum

П

Design Horizontal Response Spectrum

Basic Parameters

Name	Value	Description
S _S	0.094	MCE _R ground motion (period=0.2s)
S ₁	0.069	MCE _R ground motion (period=1.0s)
S _{MS}	0.15	Site-modified spectral acceleration value
S _{M1}	0.165	Site-modified spectral acceleration value
S _{DS}	0.1	Numeric seismic design value at 0.2s SA
S _{D1}	0.11	Numeric seismic design value at 1.0s SA

▼Additional Information

Name	Value	Description
SDC	В	Seismic design category
Fa	1.6	Site amplification factor at 0.2s
F _v	2.4	Site amplification factor at 1.0s
CR _S	0.931	Coefficient of risk (0.2s)
CR ₁	0.877	Coefficient of risk (1.0s)
PGA	0.044	MCE _G peak ground acceleration
F _{PGA}	1.6	Site amplification factor at PGA
PGA _M	0.071	Site modified peak ground acceleration
TL	12	Long-period transition period (s)
SsRT	0.094	Probabilistic risk-targeted ground motion (0.2s)
SsUH	0.101	Factored uniform-hazard spectral acceleration (2% probability of exceedance in 50 years)
SsD	1.5	Factored deterministic acceleration value (0.2s)
S1RT	0.069	Probabilistic risk-targeted ground motion (1.0s)
S1UH	0.078	Factored uniform-hazard spectral acceleration (2% probability of exceedance in 50 years)
S1D	0.6	Factored deterministic acceleration value (1.0s)
PGAd	0.5	Factored deterministic acceleration value (PGA)

The results indicated here DO NOT reflect any state or local amendments to the values or any delineation lines made during the building code adoption process. Users should confirm any output obtained from this tool with the local Authority Having Jurisdiction before proceeding with design.

Please note that the ATC Hazards by Location website will not be updated to support ASCE 7-22. Find out why.

SEISMIC BASE SHEAR AND VERTICAL SHEAR DISTRIBUTION Job Name: **SWIG** Subject: Main Seismic Force Job Number: Originator: KAG Checker: Input Data: Risk Category = Ш IBC 2012, Table 1604.5, page 336 **111111** ASCE 7-10 Table 1.5-2, page 5 Importance Factor, I = 1.00 Soil Site Class = ASCE 7-10 Table 20.3-1, page 204 D Location Zip Code = 64157 Spectral Accel., Ss = 0.094 ASCE 7-10 Figures 22-1 to 22-11 ASCE 7-10 Figures 22-1 to 22-11 Spectral Accel., S1 = 0.069 Long. Trans. Period, TL = 12.000 sec. ASCE 7 Fig's. 22-12 to 22-18 F₅ Structure Height, hn = 10.000 hn -F4 Actual Calc. Period, Tc = 0.000 **← F**3 sec. from independent analysis Seismic Resist. System = A15 Light-framed walls sheathed with **←** F2 hx wood structural panels rated for **←** F1 shear or steel sheets (ASCE 7-10 Table 12.2-1) Structure Weight Distribution: $V = Cs*W = \Sigma(Fi) = 0.37 \text{ kips}$ No. of Seismic Levels = Seismic Base Shear (Regular Bldg. Configurations Only) Seismic Height, hx Weight, Wx Level x (ft.) (kips) 10.000 24.00 Total Weight, W = $\Sigma W_X = 24.00$ kips (ASCE 7-10 Section 12.7.2) Results: Site Coefficients: 1.600 ASCE 7-10 Table 11.4-1, page 66 Fa = F_v = 2.400 ASCE Table 11.4-2, page 66 Maximum Spectral Response Accelerations for Short and 1-Second Periods: 0.150 SMS = Fa*SS, ASCE Eqn. 11.4-1, page 65 SMS = Sm1 = 0.166 SM1 = F_V *S1, ASCE Eqn. 11.4-2, page 65 Design Spectral Response Accelerations for Short and 1-Second Periods: Sps = 0.100 SDS = 2*SMS/3, ASCE 7-10 Eqn. 11.4-3, page 65 SD1 = 0.110 SD1 = 2*SM1/3, ASCE Eqn. 11.4-4, page 65

(continued:)

Seismic Design	Category:							
	y(for Sps) =	-	ASCE 7	Гable 11.6-1,	page 67			
· ·	y(for SD1) =			Гable 11.6-2,				
	Category =		Most critical			above contro	ols	
	3 ,		4		5 7			
Fundamental P	eriod:							
Period Coef	ficient, CT =	0.020	ASCE 7	Гable 12.8-2,	page 90			
Period Ex	kponent, x =	0.75	ASCE 7	Γable 12.8-2,	page 90			
Approx. I	Period, Ta =	0.112	sec., Ta = C1	*hn^(x), AS(CE 7 Sec	ction 12.8.2	.1, Eqn. 12	8-7
Upper Limit	Coef., Cu =	1.679	ASCE 7	Γable 12.8-1,	page 90			
Period ma	ax., T(max) =	0.189	sec., T(max) =	Cu*Ta, ASC	CE 7 Sec	ction 12.8.2,	page 90	
Fundamental	Period, T =	0.112	sec., T = Ta	<= Cu*Ta, /	ASCE 7	Section 12.	8.2, page 9	90
			_					
Seismic Design	n Coefficien	ts and Factors						
Response Mod	I. Coef., R =			Гable 12.2-1,				
Overstrength F				Гable 12.2-1,				
Defl. Amplif. F	=actor, Cd =	4	ASCE 7	Гable 12.2-1,	pages 73-7	7 5		
	Cs =	0.015	Cs = Sps/(R					
	CS(max) =	0.151	For T<=TL, (3-3
	Cs(min) =	0.010		044*SDS*I >		CE 7 Eqr	า. 12.8-5	
	Use: Cs =	0.015	CS(min) <= C	s <= Cs(max)				
Seismic Base S	Shear:							
OCISITIC Base C	<u> </u>	0.37	kips, V = Cs*	W ASCE 7	Section 1	2.8.1, Egn.	12 8-1	
	·	0.01	Impo, V Go	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	00000111	2.0.1, 2911.	12.0	
Seismic Shear	Vertical Dis	stribution:						
		n Exponent, k =	1.00	k = 1 for T<	=0.5 sec., k =	= 2 for T>=2	2.5 sec.	
				k = (2-1)*(T-	-0.5)/(2.5-0.	5)+1, for 0.5	sec. < T <	2.5 sec.
	Lateral Ford	ce at Any Level:	$F_X = C_{VX}^*V$,	ASCE 7	Section 12.8	3.3, Eqn. 12.	.8-11, page	91
	Vertical Dist	tribution Factor:	$C_{VX} = W_X * h_X$	$^{\ }$ k/(ΣW i*hi^k),	ASCE 7	Eqn. 12.8-	-12, page 9)1
l r	Seismic	Weight, Wx	hx^k	Wx*h^k	Cvx	Shear, Fx	Σ Story	1
	Level x	(kips)	(ft.)	(ft-kips)	(%)	(kips)	Shears	
	1	24.00	10.000	240.0	1.000	0.37	0.37	1

Seismic	Weight, Wx	hx^k	Wx*h^k	Cvx	Shear, Fx	Σ Story
Level x	(kips)	(ft.)	(ft-kips)	(%)	(kips)	Shears
1	24.00	10.000	240.0	1.000	0.37	0.37
Σ =	24.00		240.0	1.000	0.37	

Comments:

▲ This is a beta release of the new ATC Hazards by Location website. Please contact us with feedback

1 The ATC Hazards by Location website will not be updated to support ASCE 7-22. Find out why.

C Hazards by Location

Search Information

Address: 9705 N Ash Ave, Kansas City, MO 64157, USA

Coordinates: 39.2686359. -94.45099239999999

Elevation: 1030 ft

Timestamp: 2023-07-24T16:38:35.723Z

Hazard Type: Wind

ASCE 7-16

MRI 10-Year	. 76	mp
MRI 25-Year	. 83	mpl
MRI 50-Year	. 88	mpl
MRI 100-Year	94	mpl
Risk Category I	103	mpl
Risk Category II	109	mpl
Risk Category III	117	mpl
Risk Category IV	122	mpl

The results indicated here DO NOT reflect any state or local amendments to the values or any delineation lines made during the building code adoption process. Users should confirm any output obtained from this tool with the local Authority Having Jurisdiction before proceeding with design.

Please note that the ATC Hazards by Location website will not be updated to support ASCE 7-22. Find out why.

Disclaimer

Hazard loads are interpolated from data provided in ASCE 7 and rounded up to the nearest whole integer. Per ASCE 7, islands and coastal areas outside the last contour should use the last wind speed contour of the coastal area - in some cases, this website will extrapolate past the last wind speed contour and therefore, provide a wind speed that is slightly higher. NOTE: For queries near wind-borne debris region boundaries, the resulting determination is sensitive to rounding which may affect whether or not it is considered to be within a wind-borne debris

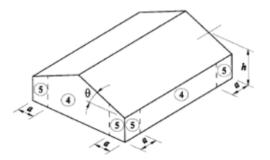
Mountainous terrain, gorges, ocean promontories, and special wind regions shall be examined for unusual wind conditions.

While the information presented on this website is believed to be correct, ATC and its sponsors and contributors assume no responsibility or liability for its accuracy. The material presented in the report should not be used or relied upon for any specific application without competent examination and verification of its accuracy, suitability and applicability by engineers or other licensed professionals. ATC does not intend that the use of this information replace the sound judgment of such competent professionals, having experience and knowledge in the field of practice, nor to substitute for the standard of care required of such professionals in interpreting and applying the results of the report provided by this website. Users of the information from this website assume all liability arising from such use. Use of the output of this website does not imply approval by the governing building code bodies responsible for building code approval and interpretation for the building site described by latitude/longitude location in the report.

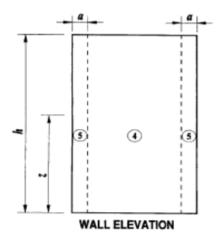
WIND LOADING ANALYSIS - Wall Components and Cladding SWIG Job Name: Subject: Job Number: Originator: KAG Checker: Input Data: Wind Speed, V = 110 mph (Wind Map, Figure 26.5-1A-C) Bldg. Classification = (Table 1.5-1 Risk Category) В Exposure Category = C (Sect. 26.7) Ridge Height, hr = 10.00 ft. (hr >= he) Eave Height, he = ft. (he <= hr) 10.00 Building Width = ft. (Normal to Building Ridge) 16.00 Building Length = ft. (Parallel to Building Ridge) 45.00 Roof Type = Monoslope (Gable or Monoslope) Plan Topo. Factor, Kzt = (Sect. 26.8 & Figure 26.8-1) 1.00 Direct. Factor, Kd = 0.85 (Table 26.6) Enclosed? (Y/N) (Sect. 28.6-1 & Figure 26.11-1) Hurricane Region? Ν hr Component Name = Wall (Girt, Siding, Wall, or Fastener) ft.^2 (Area Tributary to C&C) Effective Area, Ae = 533 he Resulting Parameters and Coefficients: **Elevation** Roof Angle, θ = 0.00 Mean Roof Ht., h = 10.00 ft. (h = he, for roof angle <=10 deg.) Wall External Pressure Coefficients, GCp: GCp Zone 4 Pos. = 0.63 (Fig. 30.4-1, GCp is reduced by 10% for roof angle <=10 deg.) GCp Zone 5 Pos. = 0.63 (Fig. 30.4-1, GCp is reduced by 10% for roof angle <=10 deg.) GCp Zone 4 Neg. = -0.72 (Fig. 30.4-1, GCp is reduced by 10% for roof angle <=10 deg.) GCp Zone 5 Neg. = -0.72 (Fig. 30.4-1, GCp is reduced by 10% for roof angle <=10 deg.) Positive & Negative Internal Pressure Coefficients, GCpi (Figure 26.11-1): +GCpi Coef. = (positive internal pressure) 0.18 -GCpi Coef. = (negative internal pressure) -0.18 If $z \le 15$ then: $Kz = 2.01*(15/zg)^2(2/\alpha)$, If z > 15 then: $Kz = 2.01*(z/zg)^2(2/\alpha)$ (Table 30.3-1) (Table 26.9-1) 9.50 $\alpha =$ (Table 26.9-1) 900 zg = 0.85 (Kh = Kz evaluated at z = h)Kh = Velocity Pressure: qz = 0.00256*Kz*Kzt*Kd*V^2 (Sect. 30.3.2, Eq. 30.3-1) qh = 22.35psf $gh = 0.00256*Kh*Kzt*Kd*V^2$ (qz evaluated at z = h) Design Net External Wind Pressures (Sect. 30.4 & 30.6): For $h \le 60 \text{ ft.: } p = qh^*((GCp) - (+/-GCpi)) \text{ (psf)}$ For h > 60 ft.: $p = q^*(GCp) - qi^*(+/-GCpi)$ (psf) where: q = qz for windward walls, q = qh for leeward walls and side walls qi = qh for all walls (conservatively assumed per Sect. 30.6)

Wind Load Tabulation for Wall Components & Cladding										
Component	Z	Kh	qh	p :	p = Net Design Pressures (psf)					
	(ft.)		(psf)	Zone 4 (+)	Zone 4 (-)	Zone 5 (+)	Zone 5 (-)			
Wall	0	0.85	22.35	18.10	-20.12	18.10	-20.12			
For $z = hr$:	10.00	0.85	22.35	18.10	-20.12	18.10	-20.12			
F	40.00	0.05	00.05	40.40	00.40	40.40	00.40			
For z = he:		0.85	22.35	18.10	-20.12	18.10	-20.12			
For $z = h$:	10.00	0.85	22.35	18.10	-20.12	18.10	-20.12			

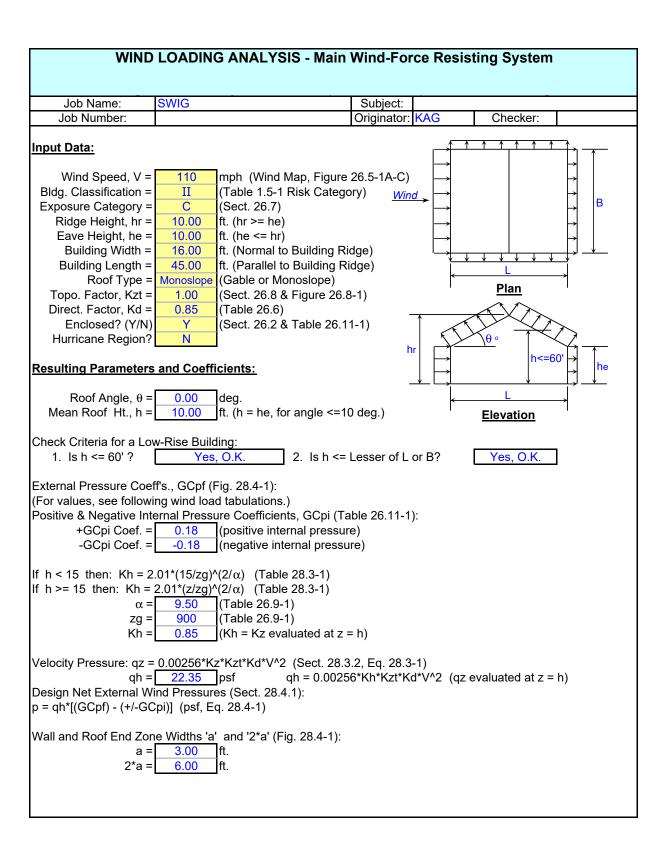
											_	_		_
Notae.	1 1	(+)	and	۱_۱	eiane	eianif\	/ wind	nraceurae	actina	toward	8. aws	ıv fr∩m	respective	curfaces
INULES.		(' <i>)</i>	anu	(- <i>1</i>	SIULIS	SIGHTIII	williu	DICOOULCO	actiliu	waiu	α		IESDECTIVE	Sullaces.


2. Width of Zone 5 (end zones), 'a' =	3.00	1
---------------------------------------	------	---

^{3.} Per Code Section 30.2.2, the minimum wind load for C&C shall not be less than 16 psf.


^{4.} References : a. ASCE 7-10, "Minimum Design Loads for Buildings and Other Structures".

b. "Guide to the Use of the Wind Load Provisions of ASCE 7by: Kishor C. Mehta and James M. Delahay


Wall Components and Cladding:

Wall Zones for Buildings with h <= 60 ft.

Wall Zones for Buildings with h > 60 ft.

MWFRS Wir	nd Load for	Load Case	MWFRS Wind Load for Load Case B				
Surface	GCpf	p = Net Pre	p = Net Pressures (psf)		*GCpf	p = Net Pre	ssures (psf)
		(w/ +GCpi)	(w/ -GCpi)			(w/ +GCpi)	(w/ -GCpi)
Zone 1	0.40	4.92	12.96	Zone 1	-0.45	-14.08	-6.03
Zone 2	-0.69	-19.45	-11.40	Zone 2	-0.69	-19.45	-11.40
Zone 3	-0.37	-12.29	-4.25	Zone 3	-0.37	-12.29	-4.25
Zone 4	-0.29	-10.50	-2.46	Zone 4	-0.45	-14.08	-6.03
Zone 5				Zone 5	0.40	4.92	12.96
Zone 6				Zone 6	-0.29	-10.50	-2.46
Zone 1E	0.61	9.61	17.66	Zone 1E	-0.48	-14.75	-6.71
Zone 2E	-1.07	-27.94	-19.89	Zone 2E	-1.07	-27.94	-19.89
Zone 3E	-0.53	-15.87	-7.82	Zone 3E	-0.53	-15.87	-7.82
Zone 4E	-0.43	-13.63	-5.59	Zone 4E	-0.48	-14.75	-6.71
Zone 5E				Zone 5E	0.61	9.61	17.66
Zone 6E				Zone 6E	-0.43	-13.63	-5.59

*Note: Use roof angle $\theta = 0$ degrees for Longitudinal Direction.

For Case A when GCpf is neg. in Zones 2/2E:

Zones 2/2E dist. = 8.00 ft.

For Case B when GCpf is neg. in Zones 2/2E:

Zones 2/2E dist. = 22.50 ft.

Remainder of roof Zones 2/2E extending to ridge line shall use roof Zones 3/3E pressure coefficients.

MWFRS Wind Load	for Load C	ase A, Torsi	onal Case	MWFRS Wind Load for Case B, Torsional Case				
Surface	GCpf	p = Net Pre	essure (psf)	Surface	GCpf	p = Net Pressure (psf)		
		(w/ +GCpi)	(w/ -GCpi)			(w/ +GCpi)	(w/ -GCpi)	
Zone 1T		1.23	3.24	Zone 1T		-3.52	-1.51	
Zone 2T		-4.86	-2.85	Zone 2T		-4.86	-2.85	
Zone 3T		-3.07	-1.06	Zone 3T		-3.07	-1.06	
Zone 4T		-2.63	-0.61	Zone 4T		-3.52	-1.51	
Zone 5T				Zone 5T		1.23	3.24	
Zone 6T				Zone 6T		-2.63	-0.61	

Notes: 1. For Load Case A (Transverse), Load Case B (Longitudinal), and Torsional Cases:

Zone 1 is windward wall for interior zone.

Zone 2 is windward roof for interior zone.

Zone 3 is leeward roof for interior zone.

Zone 4 is leeward wall for interior zone.

Zone 5 and 6 are sidewalls.

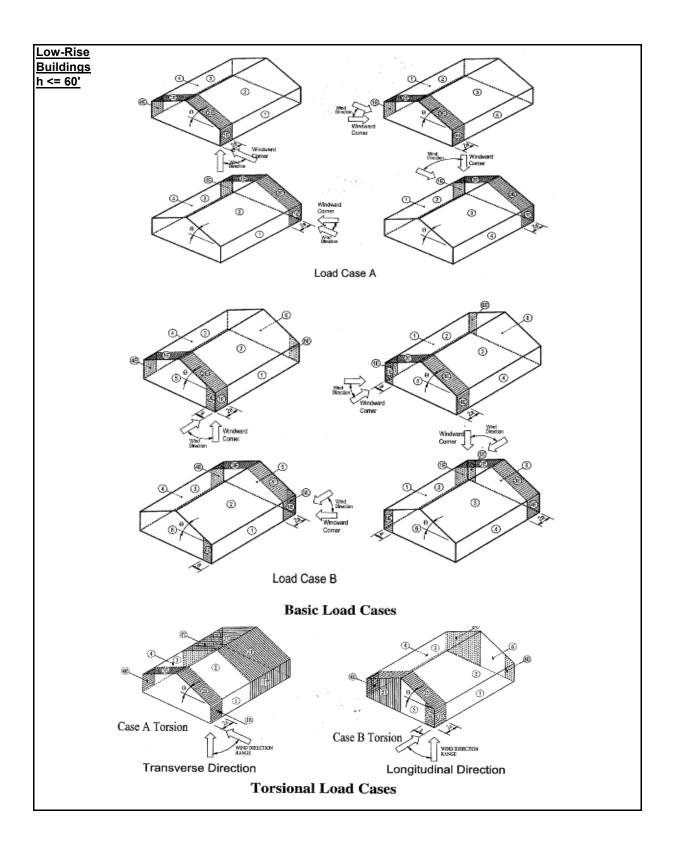
Zone 1E is windward wall for end zone.

Zone 3E is leeward roof for end zone.

Zone 4E is leeward wall for end zone.

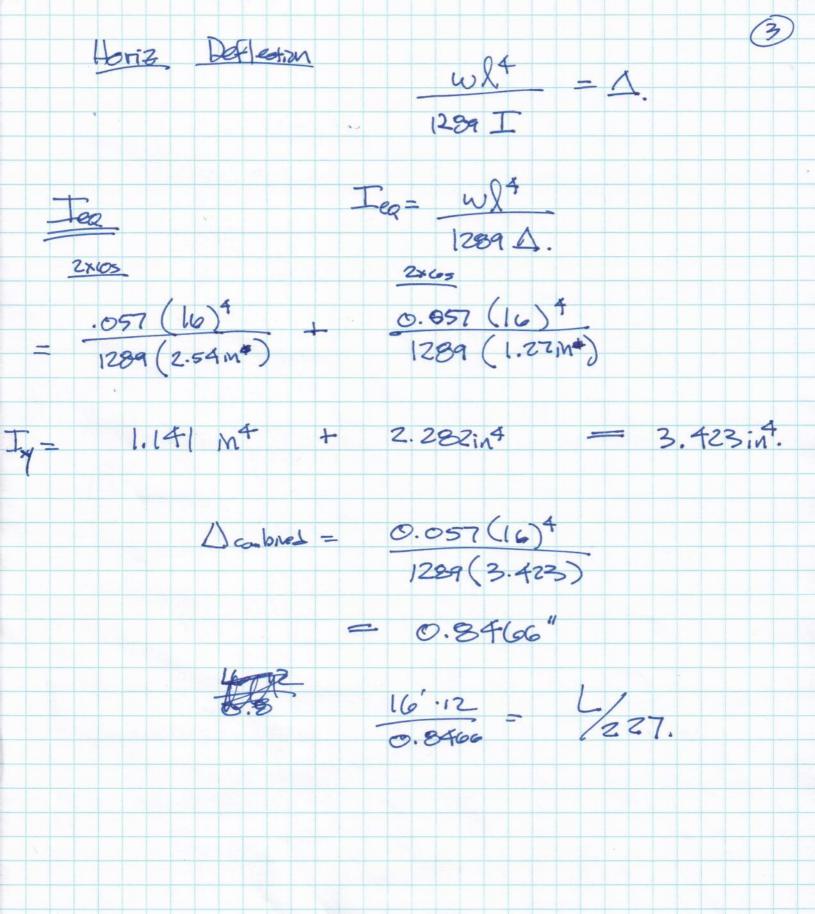
Zone 5 & 6E is sidewalls for end zone.

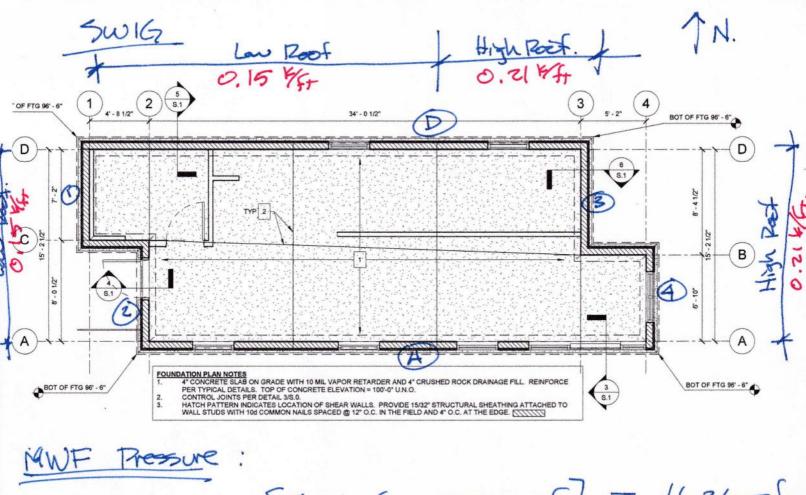
Zone 5 & 6E is sidewalls for end zone.


Zone 5 & 6E is sidewalls for end zone.

Zone 2T is windward roof for torsional case.

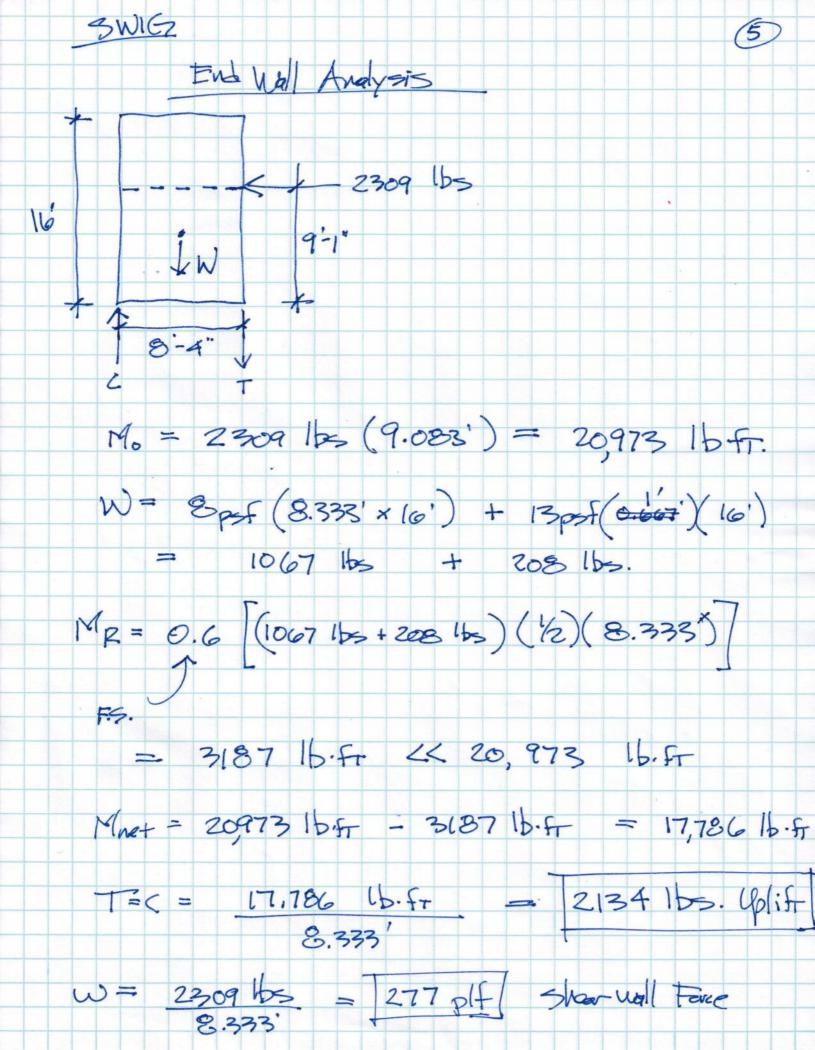
Zone 4T is leeward wall for torsional case.


Zone 5 & 6E is sidewalls for torsional case.


- 2. (+) and (-) signs signify wind pressures acting toward & away from respective surfaces.
- 3. Building must be designed for all wind directions using the 8 load cases shown below. The load cases are applied to each building corner in turn as the reference corner.
- 4. Wind loads for torsional cases are 25% of respective transverse or longitudinal zone load values. Torsional loading shall apply to all 8 basic load cases applied at each reference corner. Exception: One-story buildings with "h" <= 30', buildings <= 2 stories framed with light frame construction, and buildings <=2 stories designed with flexible diaphragms need not be designed for torsional load cases.</p>
- 5. Per Code Section 28.4.4, the minimum wind load for MWFRS shall not be less than 16 psf.

SWIG. 976545	h kemo	0
wall that pans.	Ross	
Span = 16'-0"		
AllundeWild Load = 0.6	[20.12 psf x2] = #	24.1 psf.
Wall Height		
49	= 24.1 psf (1/2) (4.75') = 57.24 pff.	
	= 8psf (4.75') = 38	splf J
Try Parde 2×10.	1 Dec	tole Zx12
Mail:	= 3177 1b.fr Vall:	vente 16%. = 7568 15.fj = 1214 16.fg
Harizantal Loss	1834.	
Devole 2x10.	Morent Octral = 1977 Mallerable = 1895. 2191 @ 84%.	b.fr.

2	W16.					(2)
	Double	BX6 @ (Mactual = Al allanolde	1834. B.		@ 782	
	Confined	Section	-Harizanta	l Farce.		
	2405				246	
	fb = 15	86 psi		fp =	= 1455 psi	
	Fb=	1895 ps;		Fb	= 1868 ps,	
		86 + 1455 45 + 1869		0.801		
	Centrive.	1 Stress	5= 0	1901 +	0.161	_ 0.962



Wallandle: 0.6 9.61 psf + 17.66 psf = 16.36 psf.

W Reaction @ Roof (1)

High - 149.1 pf. = 0.15 f.

Law - 209 4 plf. = 0.21 /4.

Canevere Hobour Influence width = f' + f' Uplift Force = 2134 1/25. Fig = [1.5' × 1'-0"] &' × 150pcf = 1800# Wall = [2.5' × 0.5'] & x 150 per = 1,500 # Slab = [0.333' X 8 X/2] x 150pd. = 1600 # Triangle Whence 4900 #. 0.6 4900] = 29401/3 > 2134 1/s.

SWIG. Long Wall Analysis. (Non-Segmented Shor Wall) hal A FA = 210 pf (1/2 × 15.167') = 1592 lb=. Mo = 1592 lbs (9.083') = 14,460 lb.fr. W = 8 psf(24')(13.5') + 13psf(1/2)(15.167')(24')= 2592 lbs + 2366 lbs. = 4958 lbs. Mp= 0.6 4958 lbs . 12'] = 35,697 1b.ft > 14,460 1b.ft .. No Uplift.

SWIG Somiz Analysis Per spread sheet Perse Sheer = 370 (bs. by observation - WMZ Controls. PROJECT: SWIG

SUBJECT: Exterior Shear Walls

JOB NO.:

PAGE: DESIGN BY: KAG **REVIEW BY:**

Shear Wall Design Based on IBC

LATERAL FORCE ON DIAPHRAGM: $v_{dia, WIND} = 0$ plf,for wind

> $v_{dia, SEISMIC} =$ 15 plf,for seismic, ASD

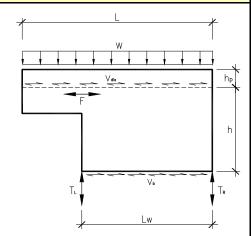
GRAVITY LOADS ON THE ROOF: $W_{DL} =$ 153 plf,for dead load

 $W_{LL} =$ 25 plf,for live load

DIMENSIONS: 9.083 ft $L_w =$ 8.333 ft, h =

L = 8.333 ft, $h_p = 9.083$ ft

PANEL GRADE (0 or 1) = 1 <= Sheathing and Single-Floor


MINIMUM NOMINAL PANEL THICKNESS = 15/32 in 2 10d COMMON NAIL SIZE (0=6d, 1=8d, 2=10d)

SPECIFIC GRAVITY OF FRAMING MEMBERS 0.5

EDGE STUD SECTION 1 pcs, b = 5.5 in , h = 5.5 in SPECIES (1 = DFL, 2 = SP) 1 DOUGLAS FIR-LARCH

GRADE (1, 2, 3, 4, 5, or 6) 6 No. 2

STORY OPTION (1=ground level, 2=upper level) 1 ground level shear wall

THE SHEAR WALL DESIGN IS ADEQUATE.

DESIGN SUMMARY

BLOCKED 15/32 SHEATHING WITH 10d COMMON NAILS

@ 6 in O.C. BOUNDARY & ALL EDGES / 12 in O.C. FIELD,

5/8 in DIA. x 10 in LONG ANCHOR BOLTS @ 38 in O.C.

 $T_L = 1.69 k$, $T_R = 1.69 k$ F = 0.00 kHOLD-DOWN FORCES: (USE PHD2-SDS3 SIMPSON HOLD-DOWN)

DATE: 7/25/2023

DRAG STRUT FORCES:

EDGE STUD: 1 - 6" x 6" DOUGLAS FIR-LARCH No. 2, CONTINUOUS FULL HEIGHT.

SHEAR WALL DEFLECTION: $\Delta = 0.26$ in

ANALYSIS

CHECK MAX SHEAR WALL DIMENSION RATIO L/B = 1.1[Satisfactory]

DETERMINE REQUIRED CAPACITY $v_b = 277$ plf, (Side Diaphragm Required, the Max. Nail Spacing = in)

THE SHEAR CAPACITIES PER IBC Table 2306.3 / SDPWS-08 Table 4.3A with ASD reduction factor 2.0)

		Min. Min.		Blocked Nail Spacing				
Panel Grade	Common	Penetration	Thickness	Boundary & All Edges				
	Nail	(in)	(in)	6	4	3	2	
Sheathing and Single-Floor	10d	1 5/8	15/32	310	460	600	770	

1. The indicated shear numbers have reduced by specific gravity factor per IBC note a.

2. Since the wall is blocked, SDPW-08 Table 4.3.3.2 does not apply.

DETERMINE MAX SPACING OF 5/8" DIA ANCHOR BOLT (NDS 2005, Tab.11E)

DETERMINE DRAG STRUT FORCE: $F = (L-L_w) MAX(v_{dia, WIND}, \Omega_0 v_{dia, SEISMIC}) =$

5/8 in DIA. x 10 in LONG ANCHOR BOLTS @ 38 in O.C.

THE HOLD-DOWN FORCES:

	V _{dia}	Wall Seismic	Overturning Moments (ft-lbs)		Resisting Moments (ft-lbs)	Safety Factors	Net Uplift (lbs)		Holddown
	(plf)	at mid-story (lbs)	Moments (It-lbs)		Moments (It-Ibs)	Factors	(iDS)		SIMPSON
SEISMIC 15	15	242	3335	Left	10358	0.9	T _L =	0	رم
	10			Right	10358	0.9	T _R =	0	్దర్గు
WIND 277	277	777	20966	Left	10358	2/3	T _L =	1687	PHORESIS
	211			Right	10358	2/3	T _R =	1687	₹`

0.00 k

(T_L & T_R values should include upper level UPLIFT forces if applicable)

 $(\Omega_0 = 1)$ (Sec. 1633.2.6)

CHECK MAXIMUM SHEAR WALL DEFLECTION: (IBC Section 2305.3 / SDPWS-08 4.3.2)

$$\Delta = \Delta_{Bending} + \Delta_{Shear} + \Delta_{Nail\ slip} + \Delta_{Chord\ splice\ slip} = \frac{8v_b h^3}{EAL_w} + \frac{v_b h}{Gt} + 0.75 h_{e_n} + \frac{hd_a}{L_w} = 0.264 \text{ in, ASD} < \frac{\delta_{xe,allowable, ASD}}{\delta_{xe,allowable, ASD}} = 0.389 \text{ in}$$
Where: $v_b = 277 \text{ plf, ASD}$ $L_w = 8 \text{ ft}$ $E = 1.7E + 06 \text{ psi}$ $G = 9.0E + 04 \text{ ps$

CHECK EDGE STUD CAPACITY

P_{max} = 2.51 kips, (2/3 value. This value should include upper level DOWNWARD loads if applicable)

 $F_c = 700$ psi $C_D = 1.60$ $C_P = 0.57$ 25 in² $C_F = 1.00$ E = 1300 ksi $F_c = 641$ psi $f_c = 100$ psi [Satisfactory]